WorldWideScience

Sample records for bone regenerative effects

  1. Regenerative Stem Cell Therapy for Breast Cancer Bone Metastasis

    Science.gov (United States)

    2015-11-01

    1 AD_________________ Award Number: W81XWH-11-1-0593 TITLE: Regenerative Stem Cell Therapy for Breast Cancer Bone Metastasis PRINCIPAL...3. DATES COVERED (From - To) 09/15/2011 - 08/14/2015 4. TITLE AND SUBTITLE Regenerative Stem Cell Therapy for Breast Cancer Bone Metastasis 5a...4 Title of the Grant: Regenerative Stem Cell Therapy for Breast Cancer Bone Metastasis Award number: W81XWH-11-1-0593 Principal Investigator

  2. Bone Morphogenetic Protein-2, but Not Mesenchymal Stromal Cells, Exert Regenerative Effects on Canine and Human Nucleus Pulposus Cells

    NARCIS (Netherlands)

    Bach, Frances C.; Miranda-Bedate, Alberto; Van Heel, Ferdi W M; Riemers, Frank M.; Müller, Margot C M E; Creemers, Laura B.; Ito, Keita; Benz, Karin; Meij, Björn P.; Tryfonidou, Marianna A.

    2017-01-01

    Chronic back pain is related to intervertebral disc (IVD) degeneration and dogs are employed as animal models to develop growth factor- and cell-based regenerative treatments. In this respect, the differential effects of transforming growth factor beta-1 (TGF-β1) and bone morphogenetic protein-2

  3. Bone morphogenetic protein-2, but not mesenchymal stromal cells, exert regenerative effects on canine and human nucleus pulposus cells

    NARCIS (Netherlands)

    Bach, Frances; Miranda-Bedate, Alberto; van Heel, Ferdi; Riemers, Frank; Muller, Margot; Creemers, Laura; Ito, Keita; Benz, Karin; Meij, Björn; Tryfonidou, M

    2017-01-01

    Chronic back pain is related to intervertebral disc (IVD) degeneration and dogs are employed as animal models to develop growth factor- and cell-based regenerative treatments. In this respect, the differential effects of transforming growth factor beta-1 (TGF-β1) and bone morphogenetic protein-2

  4. Bone morphogenetic protein-2, but not mesenchymal stromal cells, exert regenerative effects on Canine and human nucleus pulposus cells

    NARCIS (Netherlands)

    Bach, F.C.; Miranda-Bedate, A.; Van Heel, F.W.M.; Riemers, F.M.; Müller, M.C.M.E.; Creemers, L.B.; Ito, K.; Benz, K.; Meij, B.P.; Tryfonidou, M.A.

    2017-01-01

    Chronic back pain is related to intervertebral disc (IVD) degeneration and dogs are employed as animal models to develop growth factor- and cell-based regenerative treatments. In this respect, the differential effects of transforming growth factor beta-1 (TGF-β1) and bone morphogenetic protein-2

  5. Plug and play: combining materials and technologies to improve bone regenerative strategies

    NARCIS (Netherlands)

    Moroni, Lorenzo; Nandakumar, A.; Barrère, F.; van Blitterswijk, Clemens; Habibovic, Pamela

    2015-01-01

    Despite recent advances in the development of biomaterials intended to replace natural bone grafts for the regeneration of large, clinically relevant defects, most synthetic solutions that are currently applied in the clinic are still inferior to natural bone grafts with regard to regenerative

  6. Application of human amniotic mesenchymal cells as an allogeneic transplantation cell source in bone regenerative therapy

    International Nuclear Information System (INIS)

    Tsuno, Hiroaki; Yoshida, Toshiko; Nogami, Makiko; Koike, Chika; Okabe, Motonori; Noto, Zenko; Arai, Naoya; Noguchi, Makoto; Nikaido, Toshio

    2012-01-01

    Autogenous mesenchymal stem cells (MSCs) have therapeutic applications in bone regenerative therapy due to their pluripotency. However, the ability of MSCs to proliferate and differentiate varies between donors. Furthermore, alternative sources of MSCs are required for patients with contraindications to autogenous cell therapy. The aim of this study was to evaluate the potential of mesenchymal cells from the human amniotic membrane (HAM) as a source of cells for allogeneic transplantation in bone regenerative therapy. Cells that retained a proliferative capacity of more than 50 population doubling level were distinguished from other HAM cells as HAMα cells and induced to osteogenic status—their in vivo osteogenesis was subsequently investigated in rats. It was found that HAMα cells were spindle shaped and were positive for MSC markers and negative for hematopoietic stem cell markers. Alkaline phosphatase activity and calcium deposition increased with osteogenic status of HAMα cells. The expression of osteocalcin mRNA was increased in HAMα cells cultured on calcium phosphate scaffolds. Moreover, xenografted HAMα cells remained viable and produced extracellular matrix for several weeks. Thus, this study suggests that human amniotic mesenchymal cells possess osteogenic differentiation potential and could be applied to allogeneic transplantation in bone regenerative therapy. - Highlights: ► Human amniotic mesenchymal cells include cells (HAMα cells) that have the properties of MSCs. ► HAMα cells have excellent osteogenic differentiation potential. ► Osteogenic differentiation ability of HAMα was amplified by calcium phosphate scaffolds. ► HAMα cells can be applicable to allogeneic cell transplantation in bone regenerative therapy.

  7. ALVEOLAR BONE REGENERATION AFTER DEMINERALIZED FREEZE DRIED BONE ALOGRAFT (DFDBA BONE GRAFTING

    Directory of Open Access Journals (Sweden)

    Sri Oktawati

    2006-04-01

    Full Text Available Periodontal treatment by conventional way will result in healing repair, which easily cause recurrence. Modification of treatment should be done to get an effective result, that is the regeneration of alveolar bone and to reduce inflammation. The objective of this study is to determine the alveolar bone regeneration after using DFDBA (Demineralized Freeze Dried Bone Allograft. Quasi experimental designs with pre and post test method was used in this study. From 13 patients, 26 defects got conventional or regenerative treatment. The indicator of alveolar bone regenaration in bone height in radiographic appearance and level of osteocalsin in gingival crevicular fluid (GCF were checked before and after the treatment, then the changes that occurred were analyzed. The result of the research showed that alveolar bone regeneration only occurred to the group of regenerative treatment using DFDBA. The conclusion is the effective periodontal tissue regeneration occurred at regenerative treatment by using DFDBA, and the osteocalsin in GCF can be used as indicator of bone growth.

  8. Application of human amniotic mesenchymal cells as an allogeneic transplantation cell source in bone regenerative therapy

    Energy Technology Data Exchange (ETDEWEB)

    Tsuno, Hiroaki [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Yoshida, Toshiko [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Nogami, Makiko [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Department of Orthopedic Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Koike, Chika; Okabe, Motonori [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Noto, Zenko [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Arai, Naoya; Noguchi, Makoto [Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Nikaido, Toshio, E-mail: tnikaido@med.u-toyama.ac.jp [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan)

    2012-12-01

    Autogenous mesenchymal stem cells (MSCs) have therapeutic applications in bone regenerative therapy due to their pluripotency. However, the ability of MSCs to proliferate and differentiate varies between donors. Furthermore, alternative sources of MSCs are required for patients with contraindications to autogenous cell therapy. The aim of this study was to evaluate the potential of mesenchymal cells from the human amniotic membrane (HAM) as a source of cells for allogeneic transplantation in bone regenerative therapy. Cells that retained a proliferative capacity of more than 50 population doubling level were distinguished from other HAM cells as HAM{alpha} cells and induced to osteogenic status-their in vivo osteogenesis was subsequently investigated in rats. It was found that HAM{alpha} cells were spindle shaped and were positive for MSC markers and negative for hematopoietic stem cell markers. Alkaline phosphatase activity and calcium deposition increased with osteogenic status of HAM{alpha} cells. The expression of osteocalcin mRNA was increased in HAM{alpha} cells cultured on calcium phosphate scaffolds. Moreover, xenografted HAM{alpha} cells remained viable and produced extracellular matrix for several weeks. Thus, this study suggests that human amniotic mesenchymal cells possess osteogenic differentiation potential and could be applied to allogeneic transplantation in bone regenerative therapy. - Highlights: Black-Right-Pointing-Pointer Human amniotic mesenchymal cells include cells (HAM{alpha} cells) that have the properties of MSCs. Black-Right-Pointing-Pointer HAM{alpha} cells have excellent osteogenic differentiation potential. Black-Right-Pointing-Pointer Osteogenic differentiation ability of HAM{alpha} was amplified by calcium phosphate scaffolds. Black-Right-Pointing-Pointer HAM{alpha} cells can be applicable to allogeneic cell transplantation in bone regenerative therapy.

  9. Adaptive scapula bone remodeling computational simulation: Relevance to regenerative medicine

    International Nuclear Information System (INIS)

    Sharma, Gulshan B.; Robertson, Douglas D.

    2013-01-01

    actual specimen. Low predicted bone density was lower than actual specimen. Differences were probably due to applied muscle and joint reaction loads, boundary conditions, and values of constants used. Work is underway to study this. Nonetheless, the results demonstrate three dimensional bone remodeling simulation validity and potential. Such adaptive predictions take physiological bone remodeling simulations one step closer to reality. Computational analyses are needed that integrate biological remodeling rules and predict how bone will respond over time. We expect the combination of computational static stress analyses together with adaptive bone remodeling simulations to become effective tools for regenerative medicine research

  10. Early Orthodontic Tooth Movement into Regenerative Bony Defects: A Case Report.

    Science.gov (United States)

    Tsai, Hui-Chen; Yao, Chung-Chen Jane; Wong, Man-Ying

    Early orthodontic tooth movement following regenerative surgery is controversial. In this case, during protraction of the maxillary right first premolar to substitute for the long-term missing maxillary right canine, Bio-Oss and Bio-Gide were used for lateral ridge augmentation at the area of the maxillary right lateral incisor and to cover the denuded surface at the buccal side of the first premolar. Orthodontic tooth movement (OTM) commenced 2 weeks after regenerative surgery. After 8 months, new bone formation was observed on the root surface of the first premolar during implant surgery. A cone beam computed tomography scan taken 1.5 years postsurgery revealed good maintenance of regenerative bone at the same site. This satisfactory outcome of early OTM following regenerative surgery suggests biomechanical stimulation may not jeopardize the regenerative effect.

  11. Aging of bone marrow mesenchymal stromal/stem cells: Implications on autologous regenerative medicine.

    Science.gov (United States)

    Charif, N; Li, Y Y; Targa, L; Zhang, L; Ye, J S; Li, Y P; Stoltz, J F; Han, H Z; de Isla, N

    2017-01-01

    With their proliferation, differentiation into specific cell types, and secretion properties, mesenchymal stromal/stem cells (MSC) are very interesting tools to be used in regenerative medicine. Bone marrow (BM) was the first MSC source characterized. In the frame of autologous MSC therapy, it is important to detect donor's parameters affecting MSC potency. Age of the donors appears as one parameter that could greatly affect MSC properties. Moreover, in vitro cell expansion is needed to obtain the number of cells necessary for clinical developments. It will lead to in vitro cell aging that could modify cell properties. This review recapitulates several studies evaluating the effect of in vitro and in vivo MSC aging on cell properties.

  12. Platelet-rich fibrin: a boon in regenerative endodontics.

    Science.gov (United States)

    Rebentish, Priyanka D; Umashetty, Girish; Kaur, Harpreet; Doizode, Trupthi; Kaslekar, Mithun; Chowdhury, Shouvik

    2016-12-01

    Research into regenerative dentistry has contributed momentum to the field of molecular biology. Periapical surgery aims at removing periapical pathology to achieve complete wound healing and regeneration of bone and periodontal tissue. Regenerative endodontic procedures are widely being added to the current armamentarium of pulp therapy procedures. The regenerative potential of platelets has been deliberated. Platelet-rich fibrin (PRF) is a wonderful tissue-engineering product and has recently gained much popularity due its promising results in wound healing bone induction. The features of this product are an attribute of platelets which, after cellular interactions, release growth factors and have shown application in diverse disciplines of dentistry. This paper is intended to shed light onto the various prospects of PRF and to provide clinical insight into regenerative endodontic therapy.

  13. Three dimensional de novo micro bone marrow and its versatile application in drug screening and regenerative medicine.

    Science.gov (United States)

    Li, Guanqun; Liu, Xujun; Du, Qian; Gao, Mei; An, Jing

    2015-08-01

    The finding that bone marrow hosts several types of multipotent stem cell has prompted extensive research aimed at regenerating organs and building models to elucidate the mechanisms of diseases. Conventional research depends on the use of two-dimensional (2D) bone marrow systems, which imposes several obstacles. The development of 3D bone marrow systems with appropriate molecules and materials however, is now showing promising results. In this review, we discuss the advantages of 3D bone marrow systems over 2D systems and then point out various factors that can enhance the 3D systems. The intensive research on 3D bone marrow systems has revealed multiple important clinical applications including disease modeling, drug screening, regenerative medicine, etc. We also discuss some possible future directions in the 3D bone marrow research field. © 2015 by the Society for Experimental Biology and Medicine.

  14. Bone Marrow Stem Cell Derived Paracrine Factors for Regenerative Medicine: Current Perspectives and Therapeutic Potential

    Directory of Open Access Journals (Sweden)

    Tom J. Burdon

    2011-01-01

    Full Text Available During the past several years, there has been intense research in the field of bone marrow-derived stem cell (BMSC therapy to facilitate its translation into clinical setting. Although a lot has been accomplished, plenty of challenges lie ahead. Furthermore, there is a growing body of evidence showing that administration of BMSC-derived conditioned media (BMSC-CM can recapitulate the beneficial effects observed after stem cell therapy. BMSCs produce a wide range of cytokines and chemokines that have, until now, shown extensive therapeutic potential. These paracrine mechanisms could be as diverse as stimulating receptor-mediated survival pathways, inducing stem cell homing and differentiation or regulating the anti-inflammatory effects in wounded areas. The current review reflects the rapid shift of interest from BMSC to BMSC-CM to alleviate many logistical and technical issues regarding cell therapy and evaluates its future potential as an effective regenerative therapy.

  15. Micro-computed tomography (CT) based assessment of dental regenerative therapy in the canine mandible model

    Science.gov (United States)

    Khobragade, P.; Jain, A.; Setlur Nagesh, S. V.; Andreana, S.; Dziak, R.; Sunkara, S. K.; Sunkara, S.; Bednarek, D. R.; Rudin, S.; Ionita, C. N.

    2015-03-01

    High-resolution 3D bone-tissue structure measurements may provide information critical to the understanding of the bone regeneration processes and to the bone strength assessment. Tissue engineering studies rely on such nondestructive measurements to monitor bone graft regeneration area. In this study, we measured bone yield, fractal dimension and trabecular thickness through micro-CT slices for different grafts and controls. Eight canines underwent surgery to remove a bone volume (defect) in the canine's jaw at a total of 44 different locations. We kept 11 defects empty for control and filled the remaining ones with three regenerative materials; NanoGen (NG), a FDA-approved material (n=11), a novel NanoCalcium Sulfate (NCS) material (n=11) and NCS alginate (NCS+alg) material (n=11). After a minimum of four and eight weeks, the canines were sacrificed and the jaw samples were extracted. We used a custombuilt micro-CT system to acquire the data volume and developed software to measure the bone yield, fractal dimension and trabecular thickness. The software used a segmentation algorithm based on histograms derived from volumes of interest indicated by the operator. Using bone yield and fractal dimension as indices we are able to differentiate between the control and regenerative material (p<0.005). Regenerative material NCS showed an average 63.15% bone yield improvement over the control sample, NCS+alg showed 55.55% and NanoGen showed 37.5%. The bone regeneration process and quality of bone were dependent upon the position of defect and time period of healing. This study presents one of the first quantitative comparisons using non-destructive Micro-CT analysis for bone regenerative material in a large animal with a critical defect model. Our results indicate that Micro-CT measurement could be used to monitor invivo bone regeneration studies for greater regenerative process understanding.

  16. Functional and regenerative effects of local administration of autologous mononuclear bone marrow cells combined with silicone conduit on transected femoral nerve of rabbits.

    Science.gov (United States)

    Trindade, Anelise Bonilla; Schestatsky, Pedro; Torres, Vítor Félix; Gomes, Cristiano; Gianotti, Giordano Cabral; Paz, Ana Helena da Rosa; Terraciano, Paula Barros; Marques, Janete Maria Volpato; Guimarães, Karina Magano; Graça, Dominguita Lühers; Cirne-Lima, Elizabeth Obino; Contesini, Emerson Antonio

    2015-10-01

    The inoculation of cells into injury sites can accelerate and improve the quality of nerve regeneration. This study aimed to evaluate the functional and regenerative effects of mononuclear autologous bone marrow cells (MABMC) combined with silicon conduit grafting in rabbit femoral nerves. Twenty-eight animals were allocated to one of two groups: treatment group (TG) or control group (CG), divided according to the time of evaluation, at either 50 or 75 days. After neurotmesis of the femoral nerve, surgical repair was performed with nerve autografts in silicon conduits, leaving a 5mm gap in both groups. The TG received MABMC in silicon conduits, and CG received a sham saline inoculum. Histological, clinical and electrophysiological analyses detected no differences between groups, but analysis of leg diameter showed that TG diameters were larger. This cell therapy did not improve regeneration of the femoral nerve, but there was a tendency for better functional recovery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Regenerative Perspective in Modern Dentistry

    Directory of Open Access Journals (Sweden)

    Mihnea Ioan Nicolescu

    2016-04-01

    Full Text Available This review aims to trace the contour lines of regenerative dentistry, to offer an introductory overview on this emerging field to both dental students and practitioners. The crystallized depiction of the concept is a translational approach, connecting dental academics to scientific research and clinical utility. Therefore, this review begins by presenting the general features of regenerative medicine, and then gradually introduces the specific aspects of major dental subdomains, highlighting the progress achieved during the last years by scientific research and, in some cases, which has already been translated into clinical results. The distinct characteristics of stem cells and their microenvironment, together with their diversity in the oral cavity, are put into the context of research and clinical use. Examples of regenerative studies regarding endodontic and periodontal compartments, as well as hard (alveolar bone and soft (salivary glands related tissues, are presented to make the reader further acquainted with the topic. Instead of providing a conclusion, we will emphasize the importance for all dental community members, from young students to experienced dentists, of an early awareness rising regarding biomedical research progress in general and regenerative dentistry in particular.

  18. A case of non-regenerative immune-mediated anemia treated by ...

    African Journals Online (AJOL)

    A 12-year-old female Shih Tzu dog was referred with diarrhea. Hematological examination indicated severe nonregenerative anemia. Bone marrow aspiration smears and core biopsy specimens revealed normal bone marrow. Based on those results, non-regenerative immune mediated anemia was diagnosed. The dog ...

  19. Human gingiva-derived mesenchymal stem cells are superior to bone marrow-derived mesenchymal stem cells for cell therapy in regenerative medicine

    Energy Technology Data Exchange (ETDEWEB)

    Tomar, Geetanjali B.; Srivastava, Rupesh K.; Gupta, Navita; Barhanpurkar, Amruta P.; Pote, Satish T. [National Center for Cell Science, University of Pune Campus, Pune 411 007 (India); Jhaveri, Hiral M. [Department of Periodontics and Oral Implantology, Dr. D.Y. Patil Dental College and Hospital, Pune (India); Mishra, Gyan C. [National Center for Cell Science, University of Pune Campus, Pune 411 007 (India); Wani, Mohan R., E-mail: mohanwani@nccs.res.in [National Center for Cell Science, University of Pune Campus, Pune 411 007 (India)

    2010-03-12

    Mesenchymal stem cells (MSCs) are capable of self-renewal and differentiation into multiple cell lineages. Presently, bone marrow is considered as a prime source of MSCs; however, there are some drawbacks and limitations in use of these MSCs for cell therapy. In this study, we demonstrate that human gingival tissue-derived MSCs have several advantages over bone marrow-derived MSCs. Gingival MSCs are easy to isolate, homogenous and proliferate faster than bone marrow MSCs without any growth factor. Importantly, gingival MSCs display stable morphology and do not loose MSC characteristic at higher passages. In addition, gingival MSCs maintain normal karyotype and telomerase activity in long-term cultures, and are not tumorigenic. Thus, we reveal that human gingiva is a better source of MSCs than bone marrow, and large number of functionally competent clinical grade MSCs can be generated in short duration for cell therapy in regenerative medicine and tissue engineering.

  20. Human gingiva-derived mesenchymal stem cells are superior to bone marrow-derived mesenchymal stem cells for cell therapy in regenerative medicine

    International Nuclear Information System (INIS)

    Tomar, Geetanjali B.; Srivastava, Rupesh K.; Gupta, Navita; Barhanpurkar, Amruta P.; Pote, Satish T.; Jhaveri, Hiral M.; Mishra, Gyan C.; Wani, Mohan R.

    2010-01-01

    Mesenchymal stem cells (MSCs) are capable of self-renewal and differentiation into multiple cell lineages. Presently, bone marrow is considered as a prime source of MSCs; however, there are some drawbacks and limitations in use of these MSCs for cell therapy. In this study, we demonstrate that human gingival tissue-derived MSCs have several advantages over bone marrow-derived MSCs. Gingival MSCs are easy to isolate, homogenous and proliferate faster than bone marrow MSCs without any growth factor. Importantly, gingival MSCs display stable morphology and do not loose MSC characteristic at higher passages. In addition, gingival MSCs maintain normal karyotype and telomerase activity in long-term cultures, and are not tumorigenic. Thus, we reveal that human gingiva is a better source of MSCs than bone marrow, and large number of functionally competent clinical grade MSCs can be generated in short duration for cell therapy in regenerative medicine and tissue engineering.

  1. REAC regenerative treatment efficacy in experimental chondral lesions: a pilot study on ovine animal model

    Directory of Open Access Journals (Sweden)

    Sanna Passino E

    2017-09-01

    Full Text Available Eraldo Sanna Passino,1,2 Stefano Rocca,1 Sabrina Caggiu,1 Nicolò Columbano,1,2 Alessandro Castagna,3 Vania Fontani,3–5 Salvatore Rinaldi3–51Department of Veterinary Medicine, University of Sassari, Sassari, Italy; 2Comparative Surgery Research Laboratory, University of Sassari, Sassari, Italy; 3Department of Regenerative Medicine, Rinaldi Fontani Institute, Florence, Italy; 4Research Department, Rinaldi Fontani Foundation, Florence, Italy; 5Research Department, IRF Shanghai Biomedical Sciences, Shanghai, People’s Republic of China Abstract: Radioelectric asymmetric conveyor (REAC technology is a platform designed to optimize cell polarity. Cell polarity is a universal biological phenomenon that is implicated in cell differentiation, proliferation, morphogenesis, aging, and rejuvenation. In this work, we investigate a timing and administration protocol for tissue optimization regenerative treatment type C, in order to treat aging-related chondral damage or injuries and gain insights into regenerative processes of articular cartilage in humans. The chondral lesion produced in this study in an animal model (6 knee joints of 4 adult sheep was 6 mm in diameter and about 2 mm deep. These lesions, which did not involve subchondral bone, tend to increase in size and depth and are not completely repaired with normal hyaline articular cartilage since adult articular cartilage is avascular and has a very slow turnover at the cellular and molecular level. Moreover, the hydration of articular cartilage is reduced with aging and with decreased mitotic activity, synthesis, and population size of chondrocytes. Six months posttreatment, lesions appeared filled, though not completely, with newly generated tissue of the light opalescent color of healthy articular cartilage, which otherwise covered the underlying subchondral bone. The newly formed tissue surface appeared to be quite regular. Nearly complete regeneration of subchondral bone occurred, with

  2. Regenerative Medicine for Periodontal and Peri-implant Diseases.

    Science.gov (United States)

    Larsson, L; Decker, A M; Nibali, L; Pilipchuk, S P; Berglundh, T; Giannobile, W V

    2016-03-01

    The balance between bone resorption and bone formation is vital for maintenance and regeneration of alveolar bone and supporting structures around teeth and dental implants. Tissue regeneration in the oral cavity is regulated by multiple cell types, signaling mechanisms, and matrix interactions. A goal for periodontal tissue engineering/regenerative medicine is to restore oral soft and hard tissues through cell, scaffold, and/or signaling approaches to functional and aesthetic oral tissues. Bony defects in the oral cavity can vary significantly, ranging from smaller intrabony lesions resulting from periodontal or peri-implant diseases to large osseous defects that extend through the jaws as a result of trauma, tumor resection, or congenital defects. The disparity in size and location of these alveolar defects is compounded further by patient-specific and environmental factors that contribute to the challenges in periodontal regeneration, peri-implant tissue regeneration, and alveolar ridge reconstruction. Efforts have been made over the last few decades to produce reliable and predictable methods to stimulate bone regeneration in alveolar bone defects. Tissue engineering/regenerative medicine provide new avenues to enhance tissue regeneration by introducing bioactive models or constructing patient-specific substitutes. This review presents an overview of therapies (e.g., protein, gene, and cell based) and biomaterials (e.g., resorbable, nonresorbable, and 3-dimensionally printed) used for alveolar bone engineering around teeth and implants and for implant site development, with emphasis on most recent findings and future directions. © International & American Associations for Dental Research 2015.

  3. The past, present and future of ligament regenerative engineering.

    Science.gov (United States)

    Mengsteab, Paulos Y; Nair, Lakshmi S; Laurencin, Cato T

    2016-12-01

    Regenerative engineering has been defined as the convergence of Advanced Materials Sciences, Stem Cell Sciences, Physics, Developmental Biology and Clinical Translation for the regeneration of complex tissues and organ systems. Anterior cruciate ligament (ACL) reconstruction necessitates the regeneration of bone, ligament and their interface to achieve superior clinical results. In the past, the ACL has been repaired with the use of autologous and allogeneic grafts, which have their respective drawbacks. Currently, investigations on the use of biodegradable matrices to achieve knee stability and permit tissue regeneration are making promising advancements. In the future, utilizing regenerative biology cues to induce an endogenous regenerative response may aid the enhancement of clinical ACL reconstruction outcomes.

  4. Functionalized carbon nanotube reinforced scaffolds for bone regenerative engineering: fabrication, in vitro and in vivo evaluation

    International Nuclear Information System (INIS)

    Mikael, Paiyz E; Amini, Ami R; Laurencin, Cato T; Nukavarapu, Syam P; Basu, Joysurya; Josefina Arellano-Jimenez, M; Barry Carter, C; Sanders, Mary M

    2014-01-01

    Designing biodegradable scaffolds with bone-compatible mechanical properties has been a significant challenge in the field of bone tissue engineering and regenerative engineering. The objective of this work is to improve the polymeric scaffold's mechanical strength by compositing it with mechanically superior carbon nanotubes. Poly(lactide-co-glycolide) (PLGA) microsphere scaffolds exhibit mechanical properties in the range of human cancellous bone. On the other hand, carbon nanotubes have outstanding mechanical properties. The aim of this study is to improve further the mechanical strength of PLGA scaffolds such that they may be applicable for a wide range of load-bearing repair and regeneration applications. We have formed composite microspheres of PLGA containing pristine and modified (with hydroxyl (OH), carboxylic acid (COOH)) multi-walled carbon nanotubes (MWCNTs), and fabricated them into three-dimensional porous scaffolds. Results show that by adding only 3% MWCNTs, the compressive strength and modulus was significantly increased (35 MPa, 510.99 MPa) compared to pure PLGA scaffolds (19 MPa and 166.38 MPa). Scanning electron microscopy images showed excellent cell adhesion and proliferation. In vitro studies exhibited good cell viability, proliferation and mineralization. The in vivo study, however, indicated differences in inflammatory response throughout the 12 weeks of implantation, with OH-modified MWCNTs having the least response, followed by unmodified and COOH-modified exhibiting a more pronounced response. Overall, our results show that PLGA scaffolds containing water-dispersible MWCNTs are mechanically stronger and display good cellular and tissue compatibility, and hence are potential candidates for load-bearing bone tissue engineering. (paper)

  5. Evaluating the feasibility of utilizing the small molecule phenamil as a novel biofactor for bone regenerative engineering.

    Science.gov (United States)

    Lo, Kevin W-H; Ulery, Bret D; Kan, Ho Man; Ashe, Keshia M; Laurencin, Cato T

    2014-09-01

    Osteoblast cell adhesion and differentiation on biomaterials are important achievements necessary for implants to be useful in bone regenerative engineering. Recombinant bone morphogenetic proteins (BMPs) have been shown to be important for these processes; however, there are many challenges associated with the widespread use of these proteins. A recent report demonstrated that the small molecule phenamil, a diuretic derivative, was able to induce osteoblast differentiation and mineralization in vitro via the canonical BMP signalling cascade (Park et al., 2009). In this study, the feasibility of using phenamil as a novel biofactor in conjunction with a biodegradable poly(lactide-co-glycolide acid) (PLAGA) polymeric scaffold for engineering bone tissue was evaluated. The in vitro cellular behaviour of osteoblast-like MC3T3-E1 cells cultured on PLAGA scaffolds in the presence of phenamil at 10 μM were characterized with regard to initial cell adhesion, proliferation, alkaline phosphatase (ALP) activity and matrix mineralization. The results demonstrate that phenamil supported cell proliferation, promoted ALP activity and facilitated matrix mineralization of osteoblast-like MC3T3-E1 cells. Moreover, in this study, we found that phenamil promoted integrin-mediated cell adhesion on PLAGA scaffolds. It was also shown that phenamil encapsulated within porous, microsphere PLAGA scaffolds retained its osteogenic activity upon release. Based on these findings, the small molecule phenamil has the potential to serve as a novel biofactor for the repair and regeneration of bone tissues. Copyright © 2012 John Wiley & Sons, Ltd.

  6. Biomolecule delivery to engineer the cellular microenvironment for regenerative medicine.

    Science.gov (United States)

    Bishop, Corey J; Kim, Jayoung; Green, Jordan J

    2014-07-01

    To realize the potential of regenerative medicine, controlling the delivery of biomolecules in the cellular microenvironment is important as these factors control cell fate. Controlled delivery for tissue engineering and regenerative medicine often requires bioengineered materials and cells capable of spatiotemporal modulation of biomolecule release and presentation. This review discusses biomolecule delivery from the outside of the cell inwards through the delivery of soluble and insoluble biomolecules as well as from the inside of the cell outwards through gene transfer. Ex vivo and in vivo therapeutic strategies are discussed, as well as combination delivery of biomolecules, scaffolds, and cells. Various applications in regenerative medicine are highlighted including bone tissue engineering and wound healing.

  7. Regenerative surgical therapy for peri-implantitis using deproteinized bovine bone mineral with 10% collagen, enamel matrix derivative and Doxycycline-A prospective 3-year cohort study.

    Science.gov (United States)

    Mercado, Faustino; Hamlet, Stephen; Ivanovski, Saso

    2018-05-16

    There is limited evidence regarding the long-term efficacy of regenerative treatment for peri-implantitis. The aim of this study was to evaluate a combination therapy of deproteinized bovine bone mineral with 10% collagen (DBBMC), enamel matrix derivative (EMD) and Doxycycline in the regeneration of bone defects associated with peri-implantitis. Thirty patients diagnosed with peri-implantitis (BoP/suppuration, probing depth greater than 4 mm, minimum radiographic bone loss of 20%, at least 2 years in function) were enrolled in the study. Clinical measurements included probing depths, recession, radiographic bone fill, gingival inflammation and bleeding on probing/suppuration. Following surgical access and debridement, the implant surfaces were decontaminated with 24% EDTA for 2 min, and the bone defects were filled with a combined mixture of DBBMC, EMD and Doxycycline powder. The defects were covered with connective tissue grafts where necessary. Clinical measurements were recorded after 12, 24 and 36 months. The mean probing depth and bone loss at the initial visit was 8.9 mm (±1.9) and 6.92 mm (±1.26), respectively. Both mean probing depth and bone loss reduced significantly from baseline to 3.55 mm (±0.50) and 2.85 mm (±0.73) at 12 months, 3.50 (±0.50) and 2.62 mm (±0.80) at 24 months and 3.50 mm (±0.50) and 2.60 mm (±0.73) at 36 months. 56.6% of the implants were considered successfully treated (according to Successful Treatment Outcome Criterion: PD 10%, no BoP/suppuration, no recession >0.5 mm for anterior implants and >1.5 mm for posterior implants) after 36 months. Regenerative treatment of peri-implantitis using a combined mixture of DBBMC, EMD and Doxycycline achieved promising results. The benefits of this protocol incorporating EMD should be tested in randomized clinical trials. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Regenerative medicine in dental and oral tissues: Dental pulp mesenchymal stem cell

    Directory of Open Access Journals (Sweden)

    Janti Sudiono

    2017-08-01

    Full Text Available Background. Regenerative medicine is a new therapeutic modality using cell, stem cell and tissue engineering technologies. Purpose. To describe the regenerative capacity of dental pulp mesenchymal stem cell. Review. In dentistry, stem cell and tissue engineering technologies develop incredibly and attract great interest, due to the capacity to facilitate innovation in dental material and regeneration of dental and oral tissues. Mesenchymal stem cells derived from dental pulp, periodontal ligament and dental follicle, can be isolated, cultured and differentiated into various cells, so that can be useful for regeneration of dental, nerves, periodontal and bone tissues. Tissue engineering is a technology in reconstructive biology, which utilizes mechanical, cellular, or biological mediators to facilitate regeneration or reconstruction of a particular tissue. The multipotency, high proliferation rates and accessibility, make dental pulp as an attractive source of mesenchymal stem cells for tissue regeneration. Revitalized dental pulp and continued root development is the focus of regenerative endodontic while biological techniques that can restore lost alveolar bone, periodontal ligament, and root cementum is the focus of regenerative periodontic. Conclucion. Dentin-derived morphogens such as BMP are known to be involved in the regulation of odontogenesis. The multipotency and angiogenic capacity of DPSCs as the regenerative capacity of human dentin / pulp complex indicated that dental pulp may contain progenitors that are responsible for dentin repair. The human periodontal ligament is a viable alternative source for possible primitive precursors to be used in stem cell therapy.

  9. Osteostatin-coated porous titanium can improve early bone regeneration of cortical bone defects in rats

    NARCIS (Netherlands)

    Van Der Stok, Johan; Lozano, Daniel; Chai, Yoke Chin; Amin Yavari, Saber; Bastidas Coral, Angela P.; Verhaar, Jan A N; Gómez-Barrena, Enrique; Schrooten, Jan; Jahr, Holger; Zadpoor, Amir A.; Esbrit, Pedro; Weinans, Harrie

    2015-01-01

    A promising bone graft substitute is porous titanium. Porous titanium, produced by selective laser melting (SLM), can be made as a completely open porous and load-bearing scaffold that facilitates bone regeneration through osteoconduction. In this study, the bone regenerative capacity of porous

  10. Regenerative strategies for the treatment of knee joint disabilities

    CERN Document Server

    Reis, Rui

    2017-01-01

    This book presents regenerative strategies for the treatment of knee joint disabilities. The book is composed of four main sections totaling 19 chapters which review the current knowledge on the clinical management and preclinical regenerative strategies. It examines the role of different natural-based biomaterials as scaffolds and implants for addressing different tissue lesions in the knee joint. Section one provides an updated and comprehensive discussion on articular cartilage tissue regeneration. Section two focuses on the important contributions for bone and osteochondral tissue engineering. Section three overview the recent advances on meniscus repair/regeneration strategies. Finally, section four further discusses the current strategies for treatment of ligament lesions. Each chapter is prepared by world know expert on their fields, so we do firmly believe that the proposed book will be a reference in the area of biomaterials for regenerative medicine.

  11. Effects of murine and human bone marrow-derived mesenchymal stem cells on cuprizone induced demyelination.

    Directory of Open Access Journals (Sweden)

    Jasmin Nessler

    Full Text Available For the treatment of patients with multiple sclerosis there are no regenerative approaches to enhance remyelination. Mesenchymal stem cells (MSC have been proposed to exert such regenerative functions. Intravenous administration of human MSC reduced the clinical severity of experimental autoimmune encephalomyelitis (EAE, an animal model mimicking some aspects of multiple sclerosis. However, it is not clear if this effect was achieved by systemic immunomodulation or if there is an active neuroregeneration in the central nervous system (CNS. In order to investigate remyelination and regeneration in the CNS we analysed the effects of intravenously and intranasally applied murine and human bone marrow-derived MSC on cuprizone induced demyelination, a toxic animal model which allows analysis of remyelination without the influence of the peripheral immune system. In contrast to EAE no effects of MSC on de- and remyelination and glial cell reactions were found. In addition, neither murine nor human MSC entered the lesions in the CNS in this toxic model. In conclusion, MSC are not directed into CNS lesions in the cuprizone model where the blood-brain-barrier is intact and thus cannot provide support for regenerative processes.

  12. Adipose-derived mesenchymal stem cells and regenerative medicine.

    Science.gov (United States)

    Konno, Masamitsu; Hamabe, Atsushi; Hasegawa, Shinichiro; Ogawa, Hisataka; Fukusumi, Takahito; Nishikawa, Shimpei; Ohta, Katsuya; Kano, Yoshihiro; Ozaki, Miyuki; Noguchi, Yuko; Sakai, Daisuke; Kudoh, Toshihiro; Kawamoto, Koichi; Eguchi, Hidetoshi; Satoh, Taroh; Tanemura, Masahiro; Nagano, Hiroaki; Doki, Yuichiro; Mori, Masaki; Ishii, Hideshi

    2013-04-01

    Adipose tissue-derived mesenchymal stem cells (ADSCs) are multipotent and can differentiate into various cell types, including osteocytes, adipocytes, neural cells, vascular endothelial cells, cardiomyocytes, pancreatic β-cells, and hepatocytes. Compared with the extraction of other stem cells such as bone marrow-derived mesenchymal stem cells (BMSCs), that of ADSCs requires minimally invasive techniques. In the field of regenerative medicine, the use of autologous cells is preferable to embryonic stem cells or induced pluripotent stem cells. Therefore, ADSCs are a useful resource for drug screening and regenerative medicine. Here we present the methods and mechanisms underlying the induction of multilineage cells from ADSCs. © 2013 The Authors Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.

  13. Introduction to regenerative medicine and tissue engineering.

    Science.gov (United States)

    Stoltz, J-F; Decot, V; Huseltein, C; He, X; Zhang, L; Magdalou, J; Li, Y P; Menu, P; Li, N; Wang, Y Y; de Isla, N; Bensoussan, D

    2012-01-01

    Human tissues don't regenerate spontaneously, explaining why regenerative medicine and cell therapy represent a promising alternative treatment (autologous cells or stem cells of different origins). The principle is simple: cells are collected, expanded and introduced with or without modification into injured tissues or organs. Among middle-term therapeutic applications, cartilage defects, bone repair, cardiac insufficiency, burns, liver or bladder, neurodegenerative disorders could be considered.

  14. A regenerative approach towards mucosal fenestration closure

    Science.gov (United States)

    Gandi, Padma; Anumala, Naveen; Reddy, Amarender; Viswa Chandra, Rampalli

    2013-01-01

    Mucosal fenestration is an opening or an interstice through the oral mucosa. A lesion which occurs with greater frequency than generally realised, its occurrence is attributed to a myriad of causes. Mucogingival procedures including connective tissue grafts, free gingival grafts and lateral pedicle grafts are generally considered to be the treatment of choice in the closure of a mucosal fenestration. More often, these procedures are performed in conjunction with other procedures such as periradicular surgery and with bone grafts. However, the concomitant use of gingival grafts and bone grafts in mucosal fenestrations secondary to infections in sites exhibiting severe bone loss is highly debatable. In this article, we report two cases of mucosal fenestrations secondary to trauma and their management by regenerative periodontal surgery with the placement of guided tissue regeneration membrane and bone graft. The final outcome was a complete closure of the fenestration in both the cases. PMID:23749826

  15. Surgical Non-Regenerative Treatments for Peri-Implantitis: a Systematic Review

    Directory of Open Access Journals (Sweden)

    Ausra Ramanauskaite

    2016-09-01

    Full Text Available Objectives: The purposes of the present study were 1 to systematically review the literature on the surgical non-regenerative treatments of peri-implantitis and 2 to determine a predictable therapeutic option for the clinical management of peri-implantitis lesions. Material and Methods: The study search was performed on primary database MEDLINE and EMBASE from 2005 until 2016. Sequential screenings at the title, abstract, and full-text levels were performed. Clinical human studies in the English language that had reported changes in probing depth (PD and/or bleeding on probing (BOP and/or radiologic marginal bone level changes after peri-implantitis surgical non-regenerative treatment at 6-month follow-up or longer were included accordingly PRISMA guidelines. Results: The first electronic and hand search resulted in 765 citations. From 16 full-text articles reviewed, 6 were included in this systematic review. Surgical non-regenerative methods were found to be efficient in reducing clinical parameters. BOP and PD values were significantly decreased following implantoplasty and systematic administration of antibacterials, but not after local application of chemical compounds or diode laser. Similarly, significant improvement in clinical and radiographic parameters was found only after implantoplasty compared with resective surgery alone. We found significant heterogeneity in study designs and treatments provided among the pooled studies. All of the studies revealed an unclear or high risk of bias. Conclusions: Surgical non-regenerative treatment of peri-implantitis was found to be effective to reduce the soft tissue inflammation and decrease probing depth. More randomized controlled clinical trials are needed to assess the efficacy of surgical non-regenerative therapy of peri-implantitis.

  16. Osteoporotic Animal Models of Bone Healing: Advantages and Pitfalls.

    Science.gov (United States)

    Calciolari, Elena; Donos, Nikolaos; Mardas, Nikos

    2017-10-01

    The aim of this review was to summarize the advantages and pitfalls of the available osteoporotic animal models of bone healing. A thorough literature search was performed in MEDLINE via OVID and EMBASE to identify animal studies investigating the effect of experimental osteoporosis on bone healing and bone regeneration. The osteotomy model in the proximal tibia is the most popular osseous defect model to study the bone healing process in osteoporotic-like conditions, although other well-characterized models, such as the post-extraction model, might be taken into consideration by future studies. The regenerative potential of osteoporotic bone and its response to biomaterials/regenerative techniques has not been clarified yet, and the critical size defect model might be an appropriate tool to serve this purpose. Since an ideal animal model for simulating osteoporosis does not exist, the type of bone remodeling, the animal lifespan, the age of peak bone mass, and the economic and ethical implications should be considered in our selection process. Furthermore, the influence of animal species, sex, age, and strain on the outcome measurement should be taken into account. In order to make future studies meaningful, standardized international guidelines for osteoporotic animal models of bone healing need to be set up.

  17. Dental pulp stem cells: function, isolation and applications in regenerative medicine.

    Science.gov (United States)

    Tatullo, Marco; Marrelli, Massimo; Shakesheff, Kevin M; White, Lisa J

    2015-11-01

    Dental pulp stem cells (DPSCs) are a promising source of cells for numerous and varied regenerative medicine applications. Their natural function in the production of odontoblasts to create reparative dentin support applications in dentistry in the regeneration of tooth structures. However, they are also being investigated for the repair of tissues outside of the tooth. The ease of isolation of DPSCs from discarded or removed teeth offers a promising source of autologous cells, and their similarities with bone marrow stromal cells (BMSCs) suggest applications in musculoskeletal regenerative medicine. DPSCs are derived from the neural crest and, therefore, have a different developmental origin to BMSCs. These differences from BMSCs in origin and phenotype are being exploited in neurological and other applications. This review briefly highlights the source and functions of DPSCs and then focuses on in vivo applications across the breadth of regenerative medicine. © 2014 The Authors. Journal of Tissue Engineering and Regenerative Medicine published by John Wiley & Sons, Ltd.

  18. Emdogain in regenerative periodontal therapy. A review of the literature.

    NARCIS (Netherlands)

    Sculean, A.; Windisch, P.; Dori, F.; Keglevich, T.; Molnar, B.; Gera, I.

    2007-01-01

    The goal of regenerative periodontal therapy is the reconstitution of the lost periodontal structures (i.e. the new formation of root cementum, periodontal ligament and alveolar bone). Results from basic research have pointed to the important role of the enamel matrix protein derivative (EMD) in the

  19. From regenerative dentistry to regenerative medicine: progress, challenges, and potential applications of oral stem cells

    Directory of Open Access Journals (Sweden)

    Xiao L

    2014-12-01

    Full Text Available Li Xiao,1 Masanori Nasu2 1Department of Pharmacology, 2Research Center, The Nippon Dental University, Tokyo, Japan Abstract: Adult mesenchymal stem cells (MSCs and epithelial stem cells play essential roles in tissue repair and self-healing. Oral MSCs and epithelial stem cells can be isolated from adult human oral tissues, for example, teeth, periodontal ligament, and gingiva. Cocultivated adult oral epithelial stem cells and MSCs could represent some developmental events, such as epithelial invagination and tubular structure formation, signifying their potentials for tissue regeneration. Oral epithelial stem cells have been used in regenerative medicine over 1 decade. They are able to form a stratified cell sheet under three-dimensional culture conditions. Both experimental and clinical data indicate that the cell sheets can not only safely and effectively reconstruct the damaged cornea in humans, but also repair esophageal ulcer in animal models. Oral MSCs include dental pulp stem cells (DPSCs, stem cells from exfoliated deciduous teeth (SHED, stem cells from apical papilla (SCAP, periodontal ligament stem cells (PDLSCs, and mesenchymal stem cells from gingiva (GMSCs. They are widely applied in both regenerative dentistry and medicine. DPSCs, SHED, and SCAP are able to form dentin–pulp complex when being transplanted into immunodeficient animals. They have been experimentally used for the regeneration of dental pulp, neuron, bone muscle and blood vessels in animal models and have shown promising results. PDLSCs and GMSCs are demonstrated to be ideal cell sources for repairing the damaged tissues of periodontal, muscle, and tendon. Despite the abovementioned applications of oral stem cells, only a few human clinical trials are now underway to use them for the treatment of certain diseases. Since clinical use is the end goal, their true regenerative power and safety need to be further examined.Keywords: oral mesenchymal stem cells, oral

  20. EXPERIMENTAL RESEARCH OF REGENERATIVE FEATURES IN BONE TISSUES AROUND IMPLANTS AFTER ONE-STAGE BILATERAL TOTAL HIP REPLACEMENT

    Directory of Open Access Journals (Sweden)

    V. M. Mashkov

    2012-01-01

    Full Text Available Objective: to research the specific features of regenerative processes of bone tissue around implants after one-stage bilateral total hip replacement in experiment. Material and methods: 27 total hip replacement operations have been performed in 18 rabbits of breed "chinchilla" to which bipolar femoral endoprosthesis made of titanic alloy PT-38, one type-size, with friction pair metal-on-metal and neck-shaft angle 165 degrees have been implanted: total unilateral hip replacement operations have been performed in 9 animals (control group, one-stage bilateral total hip replacement operations have been performed in 9 animals (experimental group. During research they have been on radiological and clinical checking-up. After the experiment the animals had histological tests of the tissues around endoprosthesis components. Results and conclusions: After one-stage bilateral total hip replacement in early terms of research more expressed changes of bone tissue in the form of its thinning and decompaction were found around implants. One-stage bilateral total hip replacement did not essentially influence on the speed of osteogenesis around endoprothesis components in comparison with unilateral total hip replacement, so in late terms of observation in both groups the fixing of endoprothesis components did not differ.

  1. Two sides of the same coin: stem cells in cancer and regenerative medicine.

    Science.gov (United States)

    Ilmer, Matthias; Vykoukal, Jody; Recio Boiles, Alejandro; Coleman, Michael; Alt, Eckhard

    2014-07-01

    Multipotent stromal cells (MSCs) derived from bone marrow, adipose tissue, cord blood, and other origins have recently received much attention as potential therapeutic agents with beneficial immunomodulatory and regenerative properties. In their native tissue environment, however, such cells also appear to have essential functions in building and supporting tumor microenvironments, providing metastatic niches, and maintaining cancer hallmarks. Here, we consider the varied roles of these tissue-resident stroma-associated cells, synthesize recent and emerging discoveries, and discuss the role, potential, and clinical applications of MSCs in cancer and regenerative medicine.-Ilmer, M., Vykoukal, J., Recio Boiles, A., Coleman, M., Alt, E. Two sides of the same coin: stem cells in cancer and regenerative medicine. © FASEB.

  2. Animal models for bone tissue engineering and modelling disease

    Science.gov (United States)

    Griffin, Michelle

    2018-01-01

    ABSTRACT Tissue engineering and its clinical application, regenerative medicine, are instructing multiple approaches to aid in replacing bone loss after defects caused by trauma or cancer. In such cases, bone formation can be guided by engineered biodegradable and nonbiodegradable scaffolds with clearly defined architectural and mechanical properties informed by evidence-based research. With the ever-increasing expansion of bone tissue engineering and the pioneering research conducted to date, preclinical models are becoming a necessity to allow the engineered products to be translated to the clinic. In addition to creating smart bone scaffolds to mitigate bone loss, the field of tissue engineering and regenerative medicine is exploring methods to treat primary and secondary bone malignancies by creating models that mimic the clinical disease manifestation. This Review gives an overview of the preclinical testing in animal models used to evaluate bone regeneration concepts. Immunosuppressed rodent models have shown to be successful in mimicking bone malignancy via the implantation of human-derived cancer cells, whereas large animal models, including pigs, sheep and goats, are being used to provide an insight into bone formation and the effectiveness of scaffolds in induced tibial or femoral defects, providing clinically relevant similarity to human cases. Despite the recent progress, the successful translation of bone regeneration concepts from the bench to the bedside is rooted in the efforts of different research groups to standardise and validate the preclinical models for bone tissue engineering approaches. PMID:29685995

  3. Fibrin glue as the cell-delivery vehicle for mesenchymal stromal cells in regenerative medicine.

    Science.gov (United States)

    Wu, Xiuwen; Ren, Jianan; Li, Jieshou

    2012-05-01

    The use of tissue-engineering techniques such as stem-cell therapy to renew injured tissues is a promising strategy in regenerative medicine. As a cell-delivery vehicle, fibrin glues (FG) facilitate cell attachment, growth and differentiation and, ultimately, tissue formation and organization by its three-dimensional structure. Numerous studies have provided evidence that stromal cells derived from bone marrow (bone marrow stromal cells; BMSC) and adipose tissue (adipose-derived stromal cells; ADSC) contain a population of adult multipotent mesenchymal stromal cells (MSC) and endothelial progenitor cells that can differentiate into several lineages. By combining MSC with FG, the implantation could take advantage of the mutual benefits. Researchers and physicians have pinned their hopes on stem cells for developing novel approaches in regenerative medicine. This review focuses on the therapeutic potential of MSC with FG in bone defect reconstruction, cartilage and tendon injury repair, ligament, heart and nerve regeneration, and, furthermore, wound healing.

  4. Researches on regenerative medicine-current state

    Directory of Open Access Journals (Sweden)

    WANG Zheng-guo

    2012-11-01

    Full Text Available 【Abstract】 Since 1980s, the rapid development of tissue engineering and stem cell research has pushed re-generative medicine to a new fastigium, and regenerative medicine has become a noticeable research field in the international biology and medicine. In China, about 100 million patients need repair and regeneration treatment every year, while the number is much larger in the world. Regenerative medicine could provide effective salvation for these patients. Both Chinese Academy of Sciences and Chinese Academy of Engineering have made roadmaps of 2010-2050 and 2011-2030 for regenerative medicine. The final goal of the two roadmaps is to make China go up to leading position in most research aspects of regenerative medicine. In accord with this strategy, the government and some enterprises have invested 3-5 billion RMB (0.5-0.8 billion USD for the research on regenerative medicine. In order to push the translation of regenerative medicine forward—from bench to bedside, a strategic alliance has been established, and it includes 27 top-level research institutes, medical institutes, colleges, universities and enterprises in the field of stem cell and regeneration medicine. Recently the journal, Science, has published a special issue—Regenerative Medi-cine in China, consisting of 35 papers dealing with stem cell and regeneration, tissue engineering and regeneration, trauma and regeneration and bases for tissue repair and regenerative medicine. It is predicated that a greater breakthrough in theory and practice of regenerative medicine will be achieved in the near future (20 to 30 years. Key words: Regenerative medicine; Tissue engineering; Stem cells; Wound healing

  5. Bone-Inspired Spatially Specific Piezoelectricity Induces Bone Regeneration.

    Science.gov (United States)

    Yu, Peng; Ning, Chengyun; Zhang, Yu; Tan, Guoxin; Lin, Zefeng; Liu, Shaoxiang; Wang, Xiaolan; Yang, Haoqi; Li, Kang; Yi, Xin; Zhu, Ye; Mao, Chuanbin

    2017-01-01

    The extracellular matrix of bone can be pictured as a material made of parallel interspersed domains of fibrous piezoelectric collagenous materials and non-piezoelectric non-collagenous materials. To mimic this feature for enhanced bone regeneration, a material made of two parallel interspersed domains, with higher and lower piezoelectricity, respectively, is constructed to form microscale piezoelectric zones (MPZs). The MPZs are produced using a versatile and effective laser-irradiation technique in which K 0.5 Na 0.5 NbO 3 (KNN) ceramics are selectively irradiated to achieve microzone phase transitions. The phase structure of the laser-irradiated microzones is changed from a mixture of orthorhombic and tetragonal phases (with higher piezoelectricity) to a tetragonal dominant phase (with lower piezoelectricity). The microzoned piezoelectricity distribution results in spatially specific surface charge distribution, enabling the MPZs to bear bone-like microscale electric cues. Hence, the MPZs induce osteogenic differentiation of stem cells in vitro and bone regeneration in vivo even without being seeded with stem cells. The concept of mimicking the spatially specific piezoelectricity in bone will facilitate future research on the rational design of tissue regenerative materials.

  6. Bone Marrow Regeneration Promoted by Biophysically Sorted Osteoprogenitors From Mesenchymal Stromal Cells

    Science.gov (United States)

    Poon, Zhiyong; Lee, Wong Cheng; Guan, Guofeng; Nyan, Lin Myint; Lim, Chwee Teck; Han, Jongyoon

    2015-01-01

    Human tissue repair deficiencies can be supplemented through strategies to isolate, expand in vitro, and reimplant regenerative cells that supplant damaged cells or stimulate endogenous repair mechanisms. Bone marrow-derived mesenchymal stromal cells (MSCs), a subset of which is described as mesenchymal stem cells, are leading candidates for cell-mediated bone repair and wound healing, with hundreds of ongoing clinical trials worldwide. An outstanding key challenge for successful clinical translation of MSCs is the capacity to produce large quantities of cells in vitro with uniform and relevant therapeutic properties. By leveraging biophysical traits of MSC subpopulations and label-free microfluidic cell sorting, we hypothesized and experimentally verified that MSCs of large diameter within expanded MSC cultures were osteoprogenitors that exhibited significantly greater efficacy over other MSC subpopulations in bone marrow repair. Systemic administration of osteoprogenitor MSCs significantly improved survival rates (>80%) as compared with other MSC subpopulations (0%) for preclinical murine bone marrow injury models. Osteoprogenitor MSCs also exerted potent therapeutic effects as “cell factories” that secreted high levels of regenerative factors such as interleukin-6 (IL-6), interleukin-8 (IL-8), vascular endothelial growth factor A, bone morphogenetic protein 2, epidermal growth factor, fibroblast growth factor 1, and angiopoietin-1; this resulted in increased cell proliferation, vessel formation, and reduced apoptosis in bone marrow. This MSC subpopulation mediated rescue of damaged marrow tissue via restoration of the hematopoiesis-supporting stroma, as well as subsequent hematopoiesis. Together, the capabilities described herein for label-freeisolation of regenerative osteoprogenitor MSCs can markedly improve the efficacy of MSC-based therapies. PMID:25411477

  7. A review of the regenerative endodontic treatment procedure

    Directory of Open Access Journals (Sweden)

    Bin-Na Lee,

    2015-08-01

    Full Text Available Traditionally, apexification has been used to treat immature permanent teeth that have lost pulp vitality. This technique promotes the formation of an apical barrier to close the open apex so that the filling materials can be confined to the root canal. Because tissue regeneration cannot be achieved with apexification, a new technique called regenerative endodontic treatment was presented recently to treat immature permanent teeth. Regenerative endodontic treatment is a treatment procedure designed to replace damaged pulp tissue with viable tissue which restores the normal function of the pulp-dentin structure. After regenerative endodontic treatment, continued root development and hard tissue deposition on the dentinal wall can occur under ideal circumstances. However, it is difficult to predict the result of regenerative endodontic treatment. Therefore, the purpose of this study was to summarize multiple factors effects on the result of regenerative endodontic treatment in order to achieve more predictable results. In this study, we investigated the features of regenerative endodontic treatment in comparison with those of other pulp treatment procedures and analyzed the factors that have an effect on regenerative endodontic treatment.

  8. Potential feasibility of dental stem cells for regenerative therapies: stem cell transplantation and whole-tooth engineering.

    Science.gov (United States)

    Nakahara, Taka

    2011-07-01

    Multipotent mesenchymal stem cells from bone marrow are expected to be a somatic stem cell source for the development of new cell-based therapy in regenerative medicine. However, dental clinicians are unlikely to carry out autologous cell/tissue collection from patients (i.e., marrow aspiration) as a routine procedure in their clinics; hence, the utilization of bone marrow stem cells seems impractical in the dental field. Dental tissues harvested from extracted human teeth are well known to contain highly proliferative and multipotent stem cell compartments and are considered to be an alternative autologous cell source in cell-based medicine. This article provides a short overview of the ongoing studies for the potential application of dental stem cells and suggests the utilization of 2 concepts in future regenerative medicine: (1) dental stem cell-based therapy for hepatic and other systemic diseases and (2) tooth replacement therapy using the bioengineered human whole tooth, called the "test-tube dental implant." Regenerative therapies will bring new insights and benefits to the fields of clinical medicine and dentistry.

  9. Regenerative potential and healing dynamics of the periodontium: a critical-size supra-alveolar periodontal defect study.

    Science.gov (United States)

    Polimeni, Giuseppe; Susin, Cristiano; Wikesjö, Ulf M E

    2009-03-01

    The nature and characteristics of the newly formed periodontium obtained following regenerative procedures remain a matter of controversy. The objective of this study was to evaluate the regenerative potential of the periodontal attachment and healing dynamics as observed from the spatial distribution of newly formed cementum, periodontal ligament (PDL) and alveolar bone following optimal circumstances for wound healing/regeneration in a discriminating animal model. Critical-size, 6-mm, supra-alveolar, periodontal defects were surgically created in six young adult Beagle dogs. Space-providing ePTFE devices with 300-microm laser-drilled pores were implanted to support wound stability and space provision in one jaw quadrant/animal. Treatments were alternated between left and right jaw quadrants in subsequent animals. The gingival flaps were advanced to submerge the defect sites for primary intention healing. Histometric analysis followed an 8-week healing interval. Healing was uneventful in all animals. The histometric analysis showed that cementum regeneration (2.99 +/- 0.22 mm) was significantly greater than PDL (2.54 +/- 0.18 mm, p=0.03) and bone regeneration (2.46 +/- 0.26 mm, p=0.03). The wound area showed significant positive non-linear effect on cementum (log beta=1.25, palveolar bone virtually regenerate in parallel under optimal circumstances for periodontal wound healing/regeneration. Moreover, space provision positively influences the extent of periodontal regeneration.

  10. Regenerative medicine primer.

    Science.gov (United States)

    Terzic, Andre; Nelson, Timothy J

    2013-07-01

    The pandemic of chronic diseases, compounded by the scarcity of usable donor organs, mandates radical innovation to address the growing unmet needs of individuals and populations. Beyond life-extending measures that are often the last available option, regenerative strategies offer transformative solutions in treating degenerative conditions. By leveraging newfound knowledge of the intimate processes fundamental to organogenesis and healing, the emerging regenerative armamentarium aims to boost the aptitude of human tissues for self-renewal. Regenerative technologies strive to promote, augment, and reestablish native repair processes, restituting organ structure and function. Multimodal regenerative approaches incorporate transplant of healthy tissues into damaged environments, prompt the body to enact a regenerative response in damaged tissues, and use tissue engineering to manufacture new tissue. Stem cells and their products have a unique aptitude to form specialized tissues and promote repair signaling, providing active ingredients of regenerative regimens. Concomitantly, advances in materials science and biotechnology have unlocked additional prospects for growing tissue grafts and engineering organs. Translation of regenerative principles into practice is feasible and safe in the clinical setting. Regenerative medicine and surgery are, thus, poised to transit from proof-of-principle studies toward clinical validation and, ultimately, standardization, paving the way for next-generation individualized management algorithms. Copyright © 2013 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  11. Maxillary Bone Regeneration Based on Nanoreservoirs Functionalized ε-Polycaprolactone Biomembranes in a Mouse Model of Jaw Bone Lesion

    Directory of Open Access Journals (Sweden)

    Marion Strub

    2018-01-01

    Full Text Available Current approaches of regenerative therapies constitute strategies for bone tissue reparation and engineering, especially in the context of genetical diseases with skeletal defects. Bone regeneration using electrospun nanofibers’ implant has the following objectives: bone neoformation induction with rapid healing, reduced postoperative complications, and improvement of bone tissue quality. In vivo implantation of polycaprolactone (PCL biomembrane functionalized with BMP-2/Ibuprofen in mouse maxillary defects was followed by bone neoformation kinetics evaluation using microcomputed tomography. Wild-Type (WT and Tabby (Ta mice were used to compare effects on a normal phenotype and on a mutant model of ectodermal dysplasia (ED. After 21 days, no effect on bone neoformation was observed in Ta treated lesion (4% neoformation compared to 13% in the control lesion. Between the 21st and the 30th days, the use of biomembrane functionalized with BMP-2/Ibuprofen in maxillary bone lesions allowed a significant increase in bone neoformation peaks (resp., +8% in mutant Ta and +13% in WT. Histological analyses revealed a neoformed bone with regular trabecular structure, areas of mineralized bone inside the membrane, and an improved neovascularization in the treated lesion with bifunctionalized membrane. In conclusion, PCL functionalized biomembrane promoted bone neoformation, this effect being modulated by the Ta bone phenotype responsible for an alteration of bone response.

  12. Regenerative Medicine Build-Out

    Science.gov (United States)

    Pfenning, Michael A.; Gores, Gregory J.; Harper, C. Michel

    2015-01-01

    Summary Regenerative technologies strive to boost innate repair processes and restitute normative impact. Deployment of regenerative principles into practice is poised to usher in a new era in health care, driving radical innovation in patient management to address the needs of an aging population challenged by escalating chronic diseases. There is urgency to design, execute, and validate viable paradigms for translating and implementing the science of regenerative medicine into tangible health benefits that provide value to stakeholders. A regenerative medicine model of care would entail scalable production and standardized application of clinical grade biotherapies supported by comprehensive supply chain capabilities that integrate sourcing and manufacturing with care delivery. Mayo Clinic has rolled out a blueprint for discovery, translation, and application of regenerative medicine therapies for accelerated adoption into the standard of care. To establish regenerative medical and surgical service lines, the Mayo Clinic model incorporates patient access, enabling platforms and delivery. Access is coordinated through a designated portal, the Regenerative Medicine Consult Service, serving to facilitate patient/provider education, procurement of biomaterials, referral to specialty services, and/or regenerative interventions, often in clinical trials. Platforms include the Regenerative Medicine Biotrust and Good Manufacturing Practice facilities for manufacture of clinical grade products for cell-based, acellular, and/or biomaterial applications. Care delivery leverages dedicated interventional suites for provision of regenerative services. Performance is tracked using a scorecard system to inform decision making. The Mayo Clinic roadmap exemplifies an integrated organization in the discovery, development, and delivery of regenerative medicine within a growing community of practice at the core of modern health care. Significance Regenerative medicine is at the

  13. Regenerative Medicine Build-Out.

    Science.gov (United States)

    Terzic, Andre; Pfenning, Michael A; Gores, Gregory J; Harper, C Michel

    2015-12-01

    Regenerative technologies strive to boost innate repair processes and restitute normative impact. Deployment of regenerative principles into practice is poised to usher in a new era in health care, driving radical innovation in patient management to address the needs of an aging population challenged by escalating chronic diseases. There is urgency to design, execute, and validate viable paradigms for translating and implementing the science of regenerative medicine into tangible health benefits that provide value to stakeholders. A regenerative medicine model of care would entail scalable production and standardized application of clinical grade biotherapies supported by comprehensive supply chain capabilities that integrate sourcing and manufacturing with care delivery. Mayo Clinic has rolled out a blueprint for discovery, translation, and application of regenerative medicine therapies for accelerated adoption into the standard of care. To establish regenerative medical and surgical service lines, the Mayo Clinic model incorporates patient access, enabling platforms and delivery. Access is coordinated through a designated portal, the Regenerative Medicine Consult Service, serving to facilitate patient/provider education, procurement of biomaterials, referral to specialty services, and/or regenerative interventions, often in clinical trials. Platforms include the Regenerative Medicine Biotrust and Good Manufacturing Practice facilities for manufacture of clinical grade products for cell-based, acellular, and/or biomaterial applications. Care delivery leverages dedicated interventional suites for provision of regenerative services. Performance is tracked using a scorecard system to inform decision making. The Mayo Clinic roadmap exemplifies an integrated organization in the discovery, development, and delivery of regenerative medicine within a growing community of practice at the core of modern health care. Regenerative medicine is at the vanguard of health care

  14. Possible mechanisms of retinal function recovery with the use of cell therapy with bone marrow-derived stem cells

    Directory of Open Access Journals (Sweden)

    Rubens Camargo Siqueira

    2010-10-01

    Full Text Available Bone marrow has been proposed as a potential source of stem cells for regenerative medicine. In the eye, degeneration of neural cells in the retina is a hallmark of such widespread ocular diseases as age-related macular degeneration (AMD and retinitis pigmentosa. Bone marrow is an ideal tissue for studying stem cells mainly because of its accessibility. Furthermore, there are a number of well-defined mouse models and cell surface markers that allow effective study of hematopoiesis in healthy and injured mice. Because of these characteristics and the experience of bone marrow transplantation in the treatment of hematological disease such as leukemia, bone marrow-derived stem cells have also become a major tool in regenerative medicine. Those cells may be able to restore the retina function through different mechanisms: A cellular differentiation, B paracrine effect, and C retinal pigment epithelium repair. In this review, we described these possible mechanisms of recovery of retinal function with the use of cell therapy with bone marrow-derived stem cells.

  15. Regenerative-filter-incinerator device

    Energy Technology Data Exchange (ETDEWEB)

    Rosebrock, T.L.

    1977-10-18

    A regenerative-filter-incinerator device, for use in the exhaust system of a diesel engine, includes a drum-like regenerative-heat exchanger-filter assembly rotatably mounted within a housing that is adapted to be installed directly in the exhaust gas stream discharged from a diesel engine as close to the engine as possible. The regenerative-heat exchanger-filter assembly provides an inner chamber which serves as a reaction chamber for the secondary combustion of exhaust gases including particulates discharged from the engine. The regenerative-heat exchanger-filter assembly includes separately rotatable heat exchange-filter elements pervious to radial flow of fluid therethrough and adapted to filter out particulates from the exhaust gases and to carry them into the reaction chamber. During engine operation, the reaction chamber is provided with a quantity of heat, as necessary, to effect secondary combustion of the exhaust gases and particulates by means of an auxiliary heat source and the heat generated within the reaction chamber is stored in the individual heat exchange-filter elements during the discharge of exhaust gases therethrough from the reaction chamber and this heat is then transferred to the inflowing volume of the exhaust gases so that, in effect, exhaust gas is discharged from the device at substantially the same temperature as it was during its inlet into the device from the engine.

  16. Dose reduction of bone morphogenetic protein-2 for bone regeneration using a delivery system based on lyophilization with trehalose

    Directory of Open Access Journals (Sweden)

    Zhang X

    2018-01-01

    Full Text Available Xiaochen Zhang,1,* Quan Yu,2,* Yan-an Wang,1 Jun Zhao2 1Department of Oral and Maxillofacial-Head and Neck Oncology, 2Department of Orthodontics, College of Stomatology, Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China *These authors contributed equally to this work Introduction: To induce sufficient new bone formation, high doses of bone morphogenetic protein-2 (BMP-2 are applied in regenerative medicine that often induce serious side effects. Therefore, improved treatment strategies are required. Here, we investigate whether the delivery of BMP-2 lyophilized in the presence of trehalose reduced the dose of BMP-2 required for bone regeneration. Materials and methods: A new growth factor delivery system was fabricated using BMP-2-loaded TiO2 nanotubes by lyophilization with trehalose (TiO2-Lyo-Tre-BMP-2. We measured BMP-2 release characteristics, bioactivity, and stability, and determined the effects on the osteogenic differentiation of bone marrow stromal cells in vitro. Additionally, we evaluated the ability of this formulation to regenerate new bone around implants in rat femur defects by micro-computed tomography (micro-CT, sequential fluorescent labelling, and histological analysis. Results: Compared with absorbed BMP-2-loaded TiO2 nanotubes (TiO2-BMP-2, TiO2-Lyo-Tre-BMP-2 exhibited sustained release, consistent bioactivity, and higher stability of BMP-2, and resulted in greater osteogenic differentiation of BMSCs. Eight weeks post-operation, TiO2-Lyo-Tre-BMP-2 nanotubes, with various dosages of BMP-2, regenerated larger amounts of new bone than TiO2-BMP-2 nanotubes. Conclusion: Our findings indicate that delivery of BMP-2 lyophilized with trehalose may be a promising method to reduce the dose of BMP-2 and avoid the associated side effects. Keywords: bone morphogenetic protein-2, dose reduction, delivery system, trehalose, lyophilization, TiO2 nanotubes, BMP-2, regenerative medicine, surface

  17. Orthodontic-periodontal interactions: Orthodontic extrusion in interdisciplinary regenerative treatments.

    Science.gov (United States)

    Paolone, Maria Giacinta; Kaitsas, Roberto

    2018-06-01

    Orthodontics is a periodontal treatment. "Guided orthodontic regeneration" (GOR) procedures use orthodontic movements in perio-restorative patients. The GOR technique includes a guided orthodontic "soft tissue" regeneration (GOTR) and a guided orthodontic "bone" regeneration (GOBR) with a plastic soft tissue approach and a regenerating reality. The increased amount of soft tissue gained with orthodontic movement can be used for subsequent periodontal regenerative techniques. The increased amount of bone can as well improve primary implant stability and, eventually, simplify a GTR technique to regenerate soft tissues, to restore tooth with external resorption in aesthetic zone or to extract a tooth to create new hard-soft tissue for adjacent teeth. Copyright © 2018. Published by Elsevier Masson SAS.

  18. Autologous Bone Marrow Concentrate in a Sheep Model of Osteoarthritis: New Perspectives for Cartilage and Meniscus Repair.

    Science.gov (United States)

    Desando, Giovanna; Giavaresi, Gianluca; Cavallo, Carola; Bartolotti, Isabella; Sartoni, Federica; Nicoli Aldini, Nicolò; Martini, Lucia; Parrilli, Annapaola; Mariani, Erminia; Fini, Milena; Grigolo, Brunella

    2016-06-01

    Cell-based therapies are becoming a valuable tool to treat osteoarthritis (OA). This study investigated and compared the regenerative potential of bone marrow concentrate (BMC) and mesenchymal stem cells (MSC), both engineered with Hyaff(®)-11 (HA) for OA treatment in a sheep model. OA was induced via unilateral medial meniscectomy. Bone marrow was aspirated from the iliac crest, followed by concentration processes or cell isolation and expansion to obtain BMC and MSC, respectively. Treatments consisted of autologous BMC and MSC seeded onto HA. The regenerative potential of bone, cartilage, menisci, and synovia was monitored using macroscopy, histology, immunohistochemistry, and micro-computed tomography at 12 weeks post-op. Data were analyzed using the general linear model with adjusted Sidak's multiple comparison and Spearman's tests. BMC-HA treatment showed a greater repair ability in inhibiting OA progression compared to MSC-HA, leading to a reduction of inflammation in cartilage, meniscus, and synovium. Indeed, the decrease of inflammation positively contributed to counteract the progression of fibrotic and hypertrophic processes, known to be involved in tissue failure. Moreover, the treatment with BMC-HA showed the best results in allowing meniscus regeneration. Minor healing effects were noticed at bone level for both cell strategies; however, a downregulation of subchondral bone thickness (Cs.Th) was found in both cell treatments compared to the OA group in the femur. The transplantation of BMC-HA provided the best effects in supporting regenerative processes in cartilage, meniscus, and synovium and at less extent in bone. On the whole, both MSC and BMC combined with HA reduced inflammation and contributed to switch off fibrotic and hypertrophic processes. The observed regenerative potential by BMC-HA on meniscus could open new perspectives, suggesting its use not only for OA care but also for the treatment of meniscal lesions, even if further analyses are

  19. Regenerative medicine blueprint.

    Science.gov (United States)

    Terzic, Andre; Harper, C Michel; Gores, Gregory J; Pfenning, Michael A

    2013-12-01

    Regenerative medicine, a paragon of future healthcare, holds unprecedented potential in extending the reach of treatment modalities for individuals across diseases and lifespan. Emerging regenerative technologies, focused on structural repair and functional restoration, signal a radical transformation in medical and surgical practice. Regenerative medicine is poised to provide innovative solutions in addressing major unmet needs for patients, ranging from congenital disease and trauma to degenerative conditions. Realization of the regenerative model of care predicates a stringent interdisciplinary paradigm that will drive validated science into standardized clinical options. Designed as a catalyst in advancing rigorous new knowledge on disease causes and cures into informed delivery of quality care, the Mayo Clinic regenerative medicine blueprint offers a patient-centered, team-based strategy that optimizes the discovery-translation-application roadmap for the express purpose of science-supported practice advancement.

  20. Stem cell- and growth factor-based regenerative therapies for avascular necrosis of the femoral head

    Science.gov (United States)

    2012-01-01

    Avascular necrosis (AVN) of the femoral head is a debilitating disease of multifactorial genesis, predominately affects young patients, and often leads to the development of secondary osteoarthritis. The evolving field of regenerative medicine offers promising treatment strategies using cells, biomaterial scaffolds, and bioactive factors, which might improve clinical outcome. Early stages of AVN with preserved structural integrity of the subchondral plate are accessible to retrograde surgical procedures, such as core decompression to reduce the intraosseous pressure and to induce bone remodeling. The additive application of concentrated bone marrow aspirates, ex vivo expanded mesenchymal stem cells, and osteogenic or angiogenic growth factors (or both) holds great potential to improve bone regeneration. In contrast, advanced stages of AVN with collapsed subchondral bone require an osteochondral reconstruction to preserve the physiological joint function. Analogously to strategies for osteochondral reconstruction in the knee, anterograde surgical techniques, such as osteochondral transplantation (mosaicplasty), matrix-based autologous chondrocyte implantation, or the use of acellular scaffolds alone, might preserve joint function and reduce the need for hip replacement. This review summarizes recent experimental accomplishments and initial clinical findings in the field of regenerative medicine which apply cells, growth factors, and matrices to address the clinical problem of AVN. PMID:22356811

  1. Phenotypic characterization of the bone marrow stem cells used in regenerative cellular therapy

    International Nuclear Information System (INIS)

    Macias Abraham, Consuelo; Valle Perez, Lazaro O del; Baganet Cobas, Aymara

    2011-01-01

    Regenerative medicine is a novel therapeutic method with broad potential for the treatment of various illnesses, based on the use of bone marrow (BM) stem cells, whose phenotypic characterization is limited. The paper deals with the expression of different cell membrane markers in mononuclear BM cells from 14 patients who underwent autologous cell therapy, obtained by medullary puncture and mobilization to peripheral blood, with the purpose of characterizing the different types of cells present in that heterogeneous cellular population and identifying the adhesion molecules involved in their adhesion. A greater presence was observed of adherent stem cells from the marrow stroma in mononuclear cells obtained directly from the BM; a larger population of CD90 +c ells in mononuclear cells from CD34 -/ CD45 -p eripheral blood with a high expression of molecules CD44 and CD62L, which suggests a greater presence of mesenchymal stem cells (MSC) in mobilized cells from the marrow stroma. The higher levels of CD34 +c ells in peripheral blood stem cells with a low expression of molecules CD117 -a nd DR -s uggests the presence of hematopoietic stem cells, hemangioblasts and progenitor endothelial cells mobilized to peripheral circulation. It was found that mononuclear cells from both the BM and peripheral blood show a high presence of stem cells with expression of adhesion molecule CD44 (MMC marker), probably involved in their migration, settling and differentiation

  2. Role of Osteal Macrophages in Bone Metabolism

    Directory of Open Access Journals (Sweden)

    Sun Wook Cho

    2015-03-01

    Full Text Available Macrophages have been shown to have pleiotropic functions in various pathophysiologies, especially in terms of anti-inflammatory and regenerative activity. Recently, the novel functions of bone marrow resident macrophages (called osteal macrophages were intensively studied in bone development, remodeling and tissue repair processes. This review discusses the current evidence for a role of osteal macrophages in bone modeling, remodeling, and fracture healing processes.

  3. Genetic engineering for skeletal regenerative medicine.

    Science.gov (United States)

    Gersbach, Charles A; Phillips, Jennifer E; García, Andrés J

    2007-01-01

    The clinical challenges of skeletal regenerative medicine have motivated significant advances in cellular and tissue engineering in recent years. In particular, advances in molecular biology have provided the tools necessary for the design of gene-based strategies for skeletal tissue repair. Consequently, genetic engineering has emerged as a promising method to address the need for sustained and robust cellular differentiation and extracellular matrix production. As a result, gene therapy has been established as a conventional approach to enhance cellular activities for skeletal tissue repair. Recent literature clearly demonstrates that genetic engineering is a principal factor in constructing effective methods for tissue engineering approaches to bone, cartilage, and connective tissue regeneration. This review highlights this literature, including advances in the development of efficacious gene carriers, novel cell sources, successful delivery strategies, and optimal target genes. The current status of the field and the challenges impeding the clinical realization of these approaches are also discussed.

  4. Gingival cyst of the adult: regenerative therapy of associated root exposure. A case report and literature review.

    Science.gov (United States)

    Kelsey, W Patrick; Kalmar, John R; Tatakis, Dimitris N

    2009-12-01

    The gingival cyst of the adult (GCA) is an uncommon developmental cyst of odontogenic origin most frequently seen near mandibular canines and premolars and is routinely treated with excisional biopsy. This article presents a case of a GCA treated with a combined regenerative approach and reviews the GCA literature with an emphasis on the clinical aspects of this lesion. A 54 year-old man presented for treatment of generalized severe chronic periodontitis. Clinical examination revealed a cystic lesion in the gingiva of the mandibular canine-premolar area. Radiographs revealed a well-defined radiolucency in the coronal one-third of the tooth roots. Surgical enucleation of the lesion revealed root exposure of the second premolar. Because of the anatomy of the lesion-associated defect, regenerative treatment, using a combination of freeze-dried bone allograft and a collagen membrane, was considered the therapeutic approach of choice. The biopsy revealed histologic features consistent with a GCA. Clinical and radiographic examinations 1 year post-surgery indicated uneventful soft tissue healing and bone fill of the initial defect. The review of the literature revealed only one other case of root exposure associated with GCA and no previous report of regenerative therapy. In rare instances, a GCA lesion may result in tooth-root exposure. In such cases, a combined regenerative treatment approach may be used to achieve resolution.

  5. Three-dimensional bioprinting in tissue engineering and regenerative medicine.

    Science.gov (United States)

    Gao, Guifang; Cui, Xiaofeng

    2016-02-01

    With the advances of stem cell research, development of intelligent biomaterials and three-dimensional biofabrication strategies, highly mimicked tissue or organs can be engineered. Among all the biofabrication approaches, bioprinting based on inkjet printing technology has the promises to deliver and create biomimicked tissue with high throughput, digital control, and the capacity of single cell manipulation. Therefore, this enabling technology has great potential in regenerative medicine and translational applications. The most current advances in organ and tissue bioprinting based on the thermal inkjet printing technology are described in this review, including vasculature, muscle, cartilage, and bone. In addition, the benign side effect of bioprinting to the printed mammalian cells can be utilized for gene or drug delivery, which can be achieved conveniently during precise cell placement for tissue construction. With layer-by-layer assembly, three-dimensional tissues with complex structures can be printed using converted medical images. Therefore, bioprinting based on thermal inkjet is so far the most optimal solution to engineer vascular system to the thick and complex tissues. Collectively, bioprinting has great potential and broad applications in tissue engineering and regenerative medicine. The future advances of bioprinting include the integration of different printing mechanisms to engineer biphasic or triphasic tissues with optimized scaffolds and further understanding of stem cell biology.

  6. The application of an enamel matrix protein derivative (Emdogain) in regenerative periodontal therapy: a review.

    NARCIS (Netherlands)

    Sculean, A.; Schwarz, F.; Becker, J.; Brecx, M.

    2007-01-01

    Regenerative periodontal therapy aims at reconstitution of the lost periodontal structures such as new formation of root cementum, periodontal ligament and alveolar bone. Findings from basic research indicate that enamel matrix protein derivative (EMD) has a key role in periodontal wound healing.

  7. JAW CYSTS AND GUIDED BONE REGENERATION (a late complication after enucleation

    Directory of Open Access Journals (Sweden)

    Hristina Lalabonova

    2013-10-01

    Full Text Available Maxillary jaw bone possesses a high regenerative capacity. Yet sometimes the defects enucleation of jaw cysts leaves may regenerate only partially or not at all. For this reason some researchers advise treatment of the residual cavities after cystectomy using bone regeneration stimulation methods. We report a case of an atypical complication after enucleation of a maxillary cyst manifesting itself eight years after the initial treatment. The symptoms the patient reported were at first periodic sweating on the left sides of face and head. This was followed by a piercing pain in the left palpebral fissure radiating to the middle of the palate and felt in the left cheekbone, left eye and left supraorbital ridge. The patient has a history of maxillary cysts recurring three times and of three operations she had 20, 12 and 8 years previously. The multiple recurrences of the cysts after their enucleation indicates poor regenerative capacity of the body which resulted in the formation of cicatricial tissue. It is most probably this tissue that was responsible for the disruption of the nerve conduction capacity which can account for the reported symptoms. We filled the cavity with bone graft material which boosted the bone structure regeneration. Although maxillary jaws possess high regenerative capacity we advise the use of guided bone regeneration in cases of large bone defects that usually occur after enucleation of jaw cysts.

  8. Researches on regenerative medicine-current state and prospect.

    Science.gov (United States)

    Wang, Zheng-Guo; Xiao, Kai

    2012-01-01

    Since 1980s, the rapid development of tissue engineering and stem cell research has pushed regenerative medicine to a new fastigium, and regenerative medicine has become a noticeable research field in the international biology and medicine. In China, about 100 million patients need repair and regeneration treatment every year, while the number is much larger in the world. Regenerative medicine could provide effective salvation for these patients. Both Chinese Academy of Sciences and Chinese Academy of Engineering have made roadmaps of 2010-2050 and 2011-2030 for regenerative medicine. The final goal of the two roadmaps is to make China go up to leading position in most research aspects of regenerative medicine. In accord with this strategy, the government and some enterprises have invested 3-5 billion RMB (0.5-0.8 billion USD) for the research on regenerative medicine. In order to push the translation of regenerative medicine forward-from bench to bedside, a strategic alliance has been established, and it includes 27 top-level research institutes, medical institutes, colleges, universities and enterprises in the field of stem cell and regeneration medicine. Recently the journal, Science, has published a special issue-Regenerative Medicine in China, consisting of 35 papers dealing with stem cell and regeneration, tissue engineering and regeneration, trauma and regeneration and bases for tissue repair and regenerative medicine. It is predicated that a greater breakthrough in theory and practice of regenerative medicine will be achieved in the near future (20 to 30 years).

  9. Trans-differentiation via Epigenetics: A New Paradigm in the Bone Regeneration.

    Science.gov (United States)

    Cho, Young-Dan; Ryoo, Hyun-Mo

    2018-02-01

    In regenerative medicine, growing cells or tissues in the laboratory is necessary when damaged cells can not heal by themselves. Acquisition of the required cells from the patient's own cells or tissues is an ideal option without additive side effects. In this context, cell reprogramming methods, including the use of induced pluripotent stem cells (iPSCs) and trans-differentiation, have been widely studied in regenerative research. Both approaches have advantages and disadvantages, and the possibility of de-differentiation because of the epigenetic memory of iPSCs has strengthened the need for controlling the epigenetic background for successful cell reprogramming. Therefore, interest in epigenetics has increased in the field of regenerative medicine. Herein, we outline in detail the cell trans-differentiation method using epigenetic modification for bone regeneration in comparison to the use of iPSCs.

  10. Cryopreserved Dental Pulp Tissues of Exfoliated Deciduous Teeth Is a Feasible Stem Cell Resource for Regenerative Medicine

    Science.gov (United States)

    Yamaza, Haruyoshi; Akiyama, Kentaro; Hoshino, Yoshihiro; Song, Guangtai; Kukita, Toshio; Nonaka, Kazuaki; Shi, Songtao; Yamaza, Takayoshi

    2012-01-01

    Human exfoliated deciduous teeth have been considered to be a promising source for regenerative therapy because they contain unique postnatal stem cells from human exfoliated deciduous teeth (SHED) with self-renewal capacity, multipotency and immunomodulatory function. However preservation technique of deciduous teeth has not been developed. This study aimed to evaluate that cryopreserved dental pulp tissues of human exfoliated deciduous teeth is a retrievable and practical SHED source for cell-based therapy. SHED isolated from the cryopreserved deciduous pulp tissues for over 2 years (25–30 months) (SHED-Cryo) owned similar stem cell properties including clonogenicity, self-renew, stem cell marker expression, multipotency, in vivo tissue regenerative capacity and in vitro immunomodulatory function to SHED isolated from the fresh tissues (SHED-Fresh). To examine the therapeutic efficacy of SHED-Cryo on immune diseases, SHED-Cryo were intravenously transplanted into systemic lupus erythematosus (SLE) model MRL/lpr mice. Systemic SHED-Cryo-transplantation improved SLE-like disorders including short lifespan, elevated autoantibody levels and nephritis-like renal dysfunction. SHED-Cryo amended increased interleukin 17-secreting helper T cells in MRL/lpr mice systemically and locally. SHED-Cryo-transplantation was also able to recover osteoporosis bone reduction in long bones of MRL/lpr mice. Furthermore, SHED-Cryo-mediated tissue engineering induced bone regeneration in critical calvarial bone-defect sites of immunocompromised mice. The therapeutic efficacy of SHED-Cryo transplantation on immune and skeletal disorders was similar to that of SHED-Fresh. These data suggest that cryopreservation of dental pulp tissues of deciduous teeth provide a suitable and desirable approach for stem cell-based immune therapy and tissue engineering in regenerative medicine. PMID:23251621

  11. Regenerative periapical surgery: A case report

    Directory of Open Access Journals (Sweden)

    Sonam Bhandari

    2013-01-01

    Full Text Available Introduction: Periapical surgery is an important treatment alternative in the presence of a large periapical cyst. To achieve optimal healing and regeneration of the bone different bone substitutes can be used. Case Report: A 35 year old male patient reported with the soft diffuse swelling in anterior palatal region and drainings in us with 21 labially. He had a history of trauma 5 years back. The clinical and radiographic diagnosis of infected periapical cyst with 11,21; invasive cervical root resorption with 21 and internal root resorption with 11 was made. Endodontic treatment was performed with11,2 followed by periapical curettage. A picectomy and retrograde filling with white mineral trioxide aggregate (MTA was carried out with 11,21. The cervical resorption defect with 21 was restored with white MTA. Platelet rich fibrin (PRF was mixed with demineralised bone matrix (Osseograft and used as a regenerative biomaterial in the periapiacl defect. 14 months follow up shows satisfactory healing and regeneration of periapical region. Discussion: There is considerable clinical interest in using PRF alone or in combination with graft materials as it is a reservoir of many growth factors and have potential for accelerated soft-and hard tissue healing. PRF is a new generation of platelet concentrate, derived from patients own blood.

  12. Platelet-Rich Plasma in Bone Regeneration: Engineering the Delivery for Improved Clinical Efficacy

    Directory of Open Access Journals (Sweden)

    Isaac A. Rodriguez

    2014-01-01

    Full Text Available Human bone is a tissue with a fairly remarkable inherent capacity for regeneration; however, this regenerative capacity has its limitations, and defects larger than a critical size lack the ability to spontaneously heal. As such, the development and clinical translation of effective bone regeneration modalities are paramount. One regenerative medicine approach that is beginning to gain momentum in the clinical setting is the use of platelet-rich plasma (PRP. PRP therapy is essentially a method for concentrating platelets and their intrinsic growth factors to stimulate and accelerate a healing response. While PRP has shown some efficacy in both in vitro and in vivo scenarios, to date its use and delivery have not been optimized for bone regeneration. Issues remain with the effective delivery of the platelet-derived growth factors to a localized site of injury, the activation and temporal release of the growth factors, and the rate of growth factor clearance. This review will briefly describe the physiological principles behind PRP use and then discuss how engineering its method of delivery may ultimately impact its ability to successfully translate to widespread clinical use.

  13. Novel Therapy for Bone Regeneration in Large Segmental Defects

    Science.gov (United States)

    2017-12-01

    Nanohydrox- yapatite- coated electrospun poly(L-lactide) nanofibers enhance osteogenic differentiation of stem cells and induce ectopic bone formation... Bone Regeneration in a Large Animal Critical Sized Defect Model, Second Annual Symposium on Cell Therapy and Regenerative Medicine, 2016 4...osteogenic cells and growth factors demonstrated success in facilitating bone regeneration in these cases. However, due to the lack of mechanical property

  14. Regenerative approach to bilateral rostral mandibular reconstruction in a case series of dogs

    Directory of Open Access Journals (Sweden)

    Boaz eArzi

    2015-03-01

    Full Text Available Extensive rostral mandibulectomy in dogs typically results in instability of the mandibles that may lead to malocclusion, difficulty in eating and drinking, food prehension, and pain of the temporomandibular joint. Large rostral mandibular defects are challenging to reconstruct due to the complex geometry of this region. In order to restore mandibular continuity and stability following extensive rostral mandibulectomy, we developed a surgical technique using a combination of intraoral and extraoral approaches, a locking titanium plate and a compression resistant matrix (CRM infused with rhBMP-2. Furthermore, surgical planning that consisted of computed tomographic (CT scanning and 3D model printing were utilized. We describe a regenerative surgical technique for immediate or delayed reconstruction of critical-size rostral mandibular defects in 5 dogs. Three dogs had healed with intact gingival covering over the mandibular defect and had immediate return to normal function and occlusion. Two dogs had the complication of focal plate exposure and dehiscence, which was corrected with mucosal flaps and suturing; these dogs have since healed with intact gingival covering over the mandibular defect. Mineralized tissue formation was palpated clinically within 2 weeks and solid bone formation within 3 months. Computed tomography findings at 6 months postoperatively demonstrated that the newly regenerated mandibular bone had increased in mineral volume with evidence of integration between the native bone, new bone and CRM compared to the immediate postoperative CT. We conclude that rostral mandibular reconstruction using a regenerative approach provides an excellent solution for restoring mandibular continuity and preventing mandibular instability in dogs.

  15. Current overview on challenges in regenerative endodontics

    Science.gov (United States)

    Bansal, Ramta; Jain, Aditya; Mittal, Sunandan

    2015-01-01

    Introduction: Regenerative endodontics provides hope of converting the non-vital tooth into vital once again. It focuses on substituting traumatized and pathological pulp with functional pulp tissue. Current regenerative procedures successfully produce root development but still fail to re-establish real pulp tissue and give unpredictable results. There are several drawbacks that need to be addressed to improve the quality and efficiency of the treatment. Aim: The aim of this review article is to discuss major priorities that ought to be dealt before applications of regenerative endodontics flourish the clinical practice. Materials and Methods: A web-based research on MEDLINE was done using filter terms Review, published in the last 10 years and Dental journals. Keywords used for research were “regenerative endodontics,” “dental stem cells,” “growth factor regeneration,” “scaffolds,” and “challenges in regeneration.” This review article screened about 150 articles and then the relevant information was compiled. Results: Inspite of the impressive growth in regenerative endodontic field, there are certain loopholes in the existing treatment protocols that might sometimes result in undesired and unpredictable outcomes. Conclusion: Considerable research and development efforts are required to improve and update existing regenerative endodontic strategies to make it an effective, safe, and biological mode to save teeth. PMID:25657518

  16. An overview of periodontal regenerative procedures for the general dental practitioner

    Directory of Open Access Journals (Sweden)

    M. Siaili

    2018-01-01

    Full Text Available The complete regeneration of the periodontal tissues following periodontal disease remains an unmet challenge, and has presented clinicians with a remarkably difficult clinical challenge to solve given the extensive research in this area and our current understanding of the biology of the periodontal tissues. In particular as clinicians we look for treatments that will improve the predictability of the procedure, improve the magnitude of the effect of treatment, and perhaps most importantly in the long term would extend the indications for treatment beyond the need for single enclosed bony defects to allow for suprabony regeneration, preferably with beneficial effects on the gingival soft tissues. A rapid development in both innovative methods and products for the correction of periodontal deficiencies have been reported during the last three decades. For example, guided tissue regeneration with or without the use of bone supplements has been a well-proven treatment modality for the reconstruction of bony defects prior to the tissue engineering era. Active biomaterials have been subsequently introduced to the periodontal community with supporting dental literature suggesting that certain factors should be taken into consideration when undertaking periodontal regenerative procedures. These factors as well as a number of other translational research issues will need to be addressed, and ultimately it is vital that we do not extrapolate results from pre-clinical and animal studies without conducting extensive randomized clinical trials to substantiate outcomes from these procedures. Whatever the outcomes, the pursuit of regeneration of the periodontal tissues remains a goal worth pursuing for our patients. The aim of the review, therefore is to update clinicians on the recent advances in both materials and techniques in periodontal regenerative procedures and to highlight the importance of both patient factors and the technical aspects of

  17. Regenerative endodontics: a comprehensive review.

    Science.gov (United States)

    Kim, S G; Malek, M; Sigurdsson, A; Lin, L M; Kahler, B

    2018-05-19

    The European Society of Endodontology and the American Association for Endodontists have released position statements and clinical considerations for regenerative endodontics. There is increasing literature on this field since the initial reports of Iwaya et al. (Dental Traumatology, 17, 2001, 185) and Banchs & Trope (Journal of Endodontics, 30, 2004, 196). Endogenous stem cells from an induced periapical bleeding and scaffolds using blood clot, platelet rich plasma or platelet-rich fibrin have been utilized in regenerative endodontics. This approach has been described as a 'paradigm shift' and considered the first treatment option for immature teeth with pulp necrosis. There are three treatment outcomes of regenerative endodontics; (i) resolution of clinical signs and symptoms; (ii) further root maturation; and (iii) return of neurogenesis. It is known that results are variable for these objectives, and true regeneration of the pulp/dentine complex is not achieved. Repair derived primarily from the periodontal and osseous tissues has been shown histologically. It is hoped that with the concept of tissue engineering, namely stem cells, scaffolds and signalling molecules, that true pulp regeneration is an achievable goal. This review discusses current knowledge as well as future directions for regenerative endodontics. Patient-centred outcomes such as tooth discolouration and possibly more appointments with the potential for adverse effects needs to be discussed with patients and parents. Based on the classification of Cvek (Endodontics and Dental Traumatology, 8, 1992, 45), it is proposed that regenerative endodontics should be considered for teeth with incomplete root formation although teeth with near or complete root formation may be more suited for conventional endodontic therapy or MTA barrier techniques. However, much is still not known about clinical and biological aspects of regenerative endodontics. © 2018 International Endodontic Journal. Published by

  18. Strategies for Controlled Delivery of Growth Factors and Cells for Bone Regeneration

    Science.gov (United States)

    Vo, Tiffany N.; Kasper, F. Kurtis; Mikos, Antonios G.

    2012-01-01

    The controlled delivery of growth factors and cells within biomaterial carriers can enhance and accelerate functional bone formation. The carrier system can be designed with preprogrammed release kinetics to deliver bioactive molecules in a localized, spatiotemporal manner most similar to the natural wound healing process. The carrier can also act as an extracellular matrix-mimicking substrate for promoting osteoprogenitor cellular infiltration and proliferation for integrative tissue repair. This review discusses the role of various regenerative factors involved in bone healing and their appropriate combinations with different delivery systems for augmenting bone regeneration. The general requirements of protein, cell and gene therapy are described, with elaboration on how the selection of materials, configurations and processing affects growth factor and cell delivery and regenerative efficacy in both in vitro and in vivo applications for bone tissue engineering. PMID:22342771

  19. An Intelligent Regenerative Braking Strategy for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Zhibin Song

    2011-09-01

    Full Text Available Regenerative braking is an effective approach for electric vehicles (EVs to extend their driving range. A fuzzy-logic-based regenerative braking strategy (RBS integrated with series regenerative braking is developed in this paper to advance the level of energy-savings. From the viewpoint of securing car stability in braking operations, the braking force distribution between the front and rear wheels so as to accord with the ideal distribution curve are considered to prevent vehicles from experiencing wheel lock and slip phenomena during braking. Then, a fuzzy RBS using the driver’s braking force command, vehicle speed, battery SOC, battery temperature are designed to determine the distribution between friction braking force and regenerative braking force to improve the energy recuperation efficiency. The experimental results on an “LF620” prototype EV validated the feasibility and effectiveness of regenerative braking and showed that the proposed fuzzy RBS was endowed with good control performance. The maximum driving range of LF620 EV was improved by 25.7% compared with non-RBS conditions.

  20. Regenerative endodontics.

    Science.gov (United States)

    Simon, S; Smith, A J

    2014-03-01

    Significant advances in our understanding of the biological processes involved in tooth development and repair at the cellular and molecular levels have underpinned the newly emerging area of regenerative endodontics. Development of treatment protocols based on exploiting the natural wound healing properties of the dental pulp and applying tissue engineering principles has allowed reporting of case series showing preservation of tissue vitality and apexogenesis. To review current case series reporting regenerative endodontics. Current treatment approaches tend to stimulate more reparative than regenerative responses in respect of the new tissue generated, which often does not closely resemble the physiological structure of dentine-pulp. However, despite these biological limitations, such techniques appear to offer significant promise for improved treatment outcomes. Improved biological outcomes will likely emerge from the many experimental studies being reported and will further contribute to improvements in clinical treatment protocols.

  1. Nanoengineered implant as a new platform for regenerative nanomedicine using 3D well-organized human cell spheroids

    Directory of Open Access Journals (Sweden)

    Keller L

    2017-01-01

    Full Text Available Laetitia Keller,1,2,* Ysia Idoux-Gillet,1,2,* Quentin Wagner,1,2,* Sandy Eap,1,2,* David Brasse,3 Pascale Schwinté,1,2 Manuel Arruebo,4 Nadia Benkirane-Jessel1,2 1INSERM (French National Institute of Health and Medical Research, “Osteoarticular and Dental Regenerative Nanomedicine” Laboratory, UMR 1109, Faculté de Médecine, FMTS, 2University of Strasbourg, Faculté de Chirurgie Dentaire, 3CNRS (Centre National de la Recherche Scientifique, UMR 7178, IPHC (Hubert Curien Multidisciplinary Institute, Strasbourg, France; 4Department of Chemical Engineering, INA (Aragon Nanoscience Institute, University of Zaragoza, Zaragoza, Spain *These authors contributed equally to this work Abstract: In tissue engineering, it is still rare today to see clinically transferable strategies for tissue-engineered graft production that conclusively offer better tissue regeneration than the already existing technologies, decreased recovery times, and less risk of complications. Here a novel tissue-engineering concept is presented for the production of living bone implants combining 1 a nanofibrous and microporous implant as cell colonization matrix and 2 3D bone cell spheroids. This combination, double 3D implants, shows clinical relevant thicknesses for the treatment of an early stage of bone lesions before the need of bone substitutes. The strategy presented here shows a complete closure of a defect in nude mice calvaria after only 31 days. As a novel strategy for bone regenerative nanomedicine, it holds great promises to enhance the therapeutic efficacy of living bone implants. Keywords: bioengineering, implants, osteoblasts, matrix mineralization, microtissues

  2. Regenerative medicine applications in combat casualty care.

    Science.gov (United States)

    Fleming, Mark E; Bharmal, Husain; Valerio, Ian

    2014-03-01

    The purpose of this report is to describe regenerative medicine applications in the management of complex injuries sustained by service members injured in support of the wars in Afghanistan and Iraq. Improvements in body armor, resuscitative techniques and faster transport have translated into increased patient survivability and more complex wounds. Combat-related blast injuries have resulted in multiple extremity injuries, significant tissue loss and amputations. Due to the limited availability and morbidity associated with autologous tissue donor sites, the introduction of regenerative medicine has been critical in managing war extremity injuries with composite massive tissue loss. Through case reports and clinical images, this report reviews the application of regenerative medicine modalities employed to manage combat-related injuries. It illustrates that the novel use of hybrid reconstructions combining traditional and regenerative medicine approaches are an effective tool in managing wounds. Lessons learned can be adapted to civilian care.

  3. Multifunctional materials for bone cancer treatment

    Directory of Open Access Journals (Sweden)

    Marques C

    2014-05-01

    Full Text Available Catarina Marques,1 José MF Ferreira,1 Ecaterina Andronescu,2 Denisa Ficai,2 Maria Sonmez,3 Anton Ficai21Department of Materials and Ceramics Engineering, Centre for Research in Ceramics and Composite Materials, University of Aveiro, Aveiro, Portugal; 2Faculty of Applied Chemistry and Material Science, University Politehnica of Bucharest, Bucharest, Romania; 3National Research and Development Institute for Textiles and Leather, Bucharest, RomaniaAbstract: The purpose of this review is to present the most recent findings in bone tissue engineering. Special attention is given to multifunctional materials based on collagen and collagen–hydroxyapatite composites used for skin and bone cancer treatments. The multifunctionality of these materials was obtained by adding to the base regenerative grafts proper components, such as ferrites (magnetite being the most important representative, cytostatics (cisplatin, carboplatin, vincristine, methotrexate, paclitaxel, doxorubicin, silver nanoparticles, antibiotics (anthracyclines, geldanamycin, and/or analgesics (ibuprofen, fentanyl. The suitability of complex systems for the intended applications was systematically analyzed. The developmental possibilities of multifunctional materials with regenerative and curative roles (antitumoral as well as pain management in the field of skin and bone cancer treatment are discussed. It is worth mentioning that better materials are likely to be developed by combining conventional and unconventional experimental strategies.Keywords: bone graft, cancer, collagen, magnetite, cytostatics, silver

  4. Secretome within the bone marrow microenvironment: A basis for mesenchymal stem cell treatment and role in cancer dormancy.

    Science.gov (United States)

    Eltoukhy, Hussam S; Sinha, Garima; Moore, Caitlyn; Gergues, Marina; Rameshwar, Pranela

    2018-05-31

    The secretome produced by cells within the bone marrow is significant to homeostasis. The bone marrow, a well-studied organ, has multiple niches with distinct roles for supporting stem cell functions. Thus, an understanding of mediators involved in the regulation of stem cells could serve as a model for clinical problems and solutions such as tissue repair and regeneration. The exosome secretome of bone marrow stem cells is a developing area of research with respect to the regenerative potential by bone marrow cell, particularly the mesenchymal stem cells. The bone marrow niche regulates endogenous processes such as hematopoiesis but could also support the survival of tumors such as facilitating the cancer stem cells to exist in dormancy for decades. The bone marrow-derived secretome will be critical to future development of therapeutic strategies for oncologic diseases, in addition to regenerative medicine. This article discusses the importance for parallel studies to determine how the same secretome may compromise safety during the use of stem cells in regenerative medicine. Copyright © 2018 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  5. New advances in stem cell research: practical implications for regenerative medicine.

    Science.gov (United States)

    Ratajczak, Mariusz Z; Jadczyk, Tomasz; Pędziwiatr, Daniel; Wojakowski, Wojciech

    2014-01-01

    Regenerative medicine is searching for stem cells that can be safely and efficiently employed for regeneration of damaged solid organs (e.g., the heart, brain, or liver). Ideal for this purpose would be pluripotent stem cells, which, according to their definition, have broad potential to differentiate into all types of adult cells. For almost 20 years, there have been unsuccessful attempts to harness controversial embryonic stem cells (ESCs) isolated from embryos. Induced pluripotent stem cells (iPSCs), generated by genetic modification of adult somatic cells, are a more promising source. However, both iPSC and ESCs are associated with a risk of teratoma formation. At the same time, various types of more‑differentiated adult stem and progenitor cells derived from the bone marrow, umbilical cord blood, mobilized peripheral blood, or fat tissue are being employed in clinical trials to regenerate damaged solid organs. However, for most of these cells, there is a lack of convincing documentation for successful regeneration of the treated organs. Beneficial effects of those cells might be explained by paracrine effects of growth factors, cytokines, chemokines, bioactive lipids, and extracellular microvesicles, which are released from the cells and have trophic, antiapoptotic, and angiopoietic effects. Nevertheless, there is evidence that adult tissues harbor a promising population of very rare dormant stem cells with broad differentiation potential. In this review, we will discuss various potential sources of stem cells for regenerative medicine and the mechanisms that explain some of their beneficial effects as well as highlight the results of the first clinical trials.  

  6. Surgical Regenerative Treatments for Peri-Implantitis: Meta-analysis of Recent Findings in a Systematic Literature Review

    Directory of Open Access Journals (Sweden)

    Povilas Daugela

    2016-09-01

    Full Text Available Objectives: The purpose of the present study was to systematically review the literature on the surgical regenerative treatment of the peri-implantitis and to determine an effective therapeutic predictable option for their clinical management. Material and Methods: The study searched MEDLINE and EMBASE databases from 2006 to 2016. Clinical human studies that had reported changes in probing depth (PD and/or bleeding on probing (BOP and/or radiologic marginal bone level (RBL changes after peri-implantitis surgical treatment at 12-month follow-up or longer were included accordingly to PRISMA guidelines. Results: The initial search obtained 883 citations. After screening and determination of eligibility, 18 articles were included in the review. The meta-analysis of selected studies revealed that the weighted mean RBL fill was 1.97 mm (95% confidence interval [CI] = 1.58 to 2.35 mm, PD reduction was 2.78 mm (95% CI = 2.31 to 3.25 mm, and BOP reduced by 52.5% (95% CI = 41.6 to 63.1%. Defect fill in studies using and not using barrier membranes for graft coverage was 1.86 mm (95% CI = 1.36 to 2.36 mm and 2.12 mm (95% CI = 1.46 to 2.78 mm correspondingly. High heterogeneity among the studies regarding defects morphology, surgical protocols, and selection of biomaterials were found. Conclusions: All included studies underlined an improvement of clinical conditions after the surgical regenerative treatment of peri-implantitis, however, there is a lack of scientific evidence in the literature regarding the superiority of the regenerative versus non-regenerative surgical treatment. The presence of a barrier membrane or submergence in the regenerative procedure does not seem to be fundamental in order to obtain clinical success of the surgery.

  7. Nanoengineered implant as a new platform for regenerative nanomedicine using 3D well-organized human cell spheroids

    Science.gov (United States)

    Keller, Laetitia; Idoux-Gillet, Ysia; Wagner, Quentin; Eap, Sandy; Brasse, David; Schwinté, Pascale; Arruebo, Manuel; Benkirane-Jessel, Nadia

    2017-01-01

    In tissue engineering, it is still rare today to see clinically transferable strategies for tissue-engineered graft production that conclusively offer better tissue regeneration than the already existing technologies, decreased recovery times, and less risk of complications. Here a novel tissue-engineering concept is presented for the production of living bone implants combining 1) a nanofibrous and microporous implant as cell colonization matrix and 2) 3D bone cell spheroids. This combination, double 3D implants, shows clinical relevant thicknesses for the treatment of an early stage of bone lesions before the need of bone substitutes. The strategy presented here shows a complete closure of a defect in nude mice calvaria after only 31 days. As a novel strategy for bone regenerative nanomedicine, it holds great promises to enhance the therapeutic efficacy of living bone implants. PMID:28138241

  8. Artificial organs versus regenerative medicine: is it true?

    Science.gov (United States)

    Nosé, Yukihiko; Okubo, Hisashi

    2003-09-01

    Individuals engaged in the fields of artificial kidney and artificial heart have often mistakenly stated that "the era of artificial organs is over; regenerative medicine is the future." Contrarily, we do not believe artificial organs and regenerative medicine are different medical technologies. As a matter of fact, artificial organs developed during the last 50 years have been used as a bridge to regeneration. The only difference between regenerative medicine and artificial organs is that artificial organs for the bridge to regeneration promote tissue regeneration in situ, instead of outside the body (for example, vascular prostheses, neuroprostheses, bladder substitutes, skin prostheses, bone prostheses, cartilage prostheses, ligament prostheses, etc.). All of these artificial organs are successful because tissue regeneration over a man-made prosthesis is established inside the patient's body (artificial organs to support regeneration). Another usage of the group of artificial organs for the bridge to regeneration is to sustain the functions of the patient's diseased organs during the regeneration process of the body's healthy tissues and/or organs. This particular group includes artificial kidney, hepatic assist, respiratory assist, and circulatory assist. Proof of regeneration of these healthy tissues and/or organs is demonstrated in the short-term recovery of end-stage organ failure patients (artificial organs for bridge to regeneration). A third group of artificial organs for the bridge to regeneration accelerates the regenerating process of the patient's healthy tissues and organs. This group includes neurostimulators, artificial blood (red cells) blood oxygenators, and plasmapheresis devices, including hemodiafiltrators. So-called "therapeutic artificial organs" fall into this category (artificial organs to accelerate regeneration). Thus, almost all of today's artificial organs are useful in the bridge to regeneration of healthy natural tissues and organs

  9. Regenerative similariton laser

    Directory of Open Access Journals (Sweden)

    Thibault North

    2016-05-01

    Full Text Available Self-pulsating lasers based on cascaded reshaping and reamplification (2R are capable of initiating ultrashort pulses despite the accumulation of large amounts of nonlinearities in all-fiber resonators. The spectral properties of pulses in self-similar propagation are compatible with cascaded 2R regeneration by offset filtering, making parabolic pulses suitable for the design of a laser of this recently introduced class. A new type of regenerative laser giving birth to similaritons is numerically investigated and shows that this laser is the analog of regenerative sources based solely on self-phase modulation and offset filtering. The regenerative similariton laser does not suffer from instabilities due to excessive nonlinearities and enables ultrashort pulse generation in a simple cavity configuration.

  10. A short review: Recent advances in electrospinning for bone tissue regeneration

    Directory of Open Access Journals (Sweden)

    Song-Hee Shin

    2012-12-01

    Full Text Available Nanofibrous structures developed by electrospinning technology provide attractive extracellular matrix conditions for the anchorage, migration, and differentiation of tissue cells, including those responsible for the regeneration of hard tissues. Together with the ease of set up and cost-effectiveness, the possibility to produce nanofibers with a wide range of compositions and morphologies is the merit of electrospinning. Significant efforts have exploited the development of bone regenerative nanofibers, which includes tailoring of composite/hybrid compositions that are bone mimicking and the surface functionalization such as mineralization. Moreover, by utilizing bioactive molecules such as adhesive proteins, growth factors, and chemical drugs, in concert with the nanofibrous matrices, it is possible to provide artificial materials with improved cellular responses and therapeutic efficacy. These studies have mainly focused on the regulation of stem cell behaviors for use in regenerative medicine and tissue engineering. While there are some challenges in achieving controllable delivery of bioactive molecules and complex-shaped three-dimensional scaffolds for tissue engineering, the electrospun nanofibrous matrices can still have a beneficial impact in the area of hard-tissue regeneration.

  11. Regenerative rehabilitation: a new future?

    Science.gov (United States)

    Perez-Terzic, Carmen; Childers, Martin K

    2014-11-01

    Modern rehabilitation medicine is propelled by newfound knowledge aimed at offering solutions for an increasingly aging population afflicted by chronic debilitating conditions. Considered a core component of future health care, the rollout of regenerative medicine underscores a paradigm shift in patient management targeted at restoring physiologic function and restituting normative impact. Nascent regenerative technologies offer unprecedented prospects in achieving repair of degenerated, diseased, or damaged tissues. In this context, principles of regenerative science are increasingly integrated in rehabilitation practices as illustrated in the present Supplement. Encompassing a growing multidisciplinary domain, the emergent era of "regenerative rehabilitation" brings radical innovations at the forefront of healthcare blueprints.

  12. A survey of dental residents' expectations for regenerative endodontics.

    Science.gov (United States)

    Manguno, Christine; Murray, Peter E; Howard, Cameron; Madras, Jonathan; Mangan, Stephen; Namerow, Kenneth N

    2012-02-01

    The objective was to survey a group of dental residents regarding their expectations for using regenerative endodontic procedures as part of future dental treatments. After institutional review board approval, the opinions of 32 dentists who were having postgraduate residency training to become specialists in a dental school were surveyed. The survey had 40 questions about professional status, ethical beliefs, judgment, and clinical practice. It was found that 83.9% of dentists had no continuing education or training in stem cells or regenerative endodontic procedures. Results showed that 96.8% of dentists are willing to receive training to be able to provide regenerative endodontic procedures for their patients. Of the total group, 49.1% of dentists already use membranes, scaffolds, or bioactive materials to provide dental treatment. It was determined that 47.3% of dentists agree that the costs of regenerative procedures should be comparable with current treatments. It was also found that 55.1% of dentists were unsure whether regenerative procedures would be successful. Dentists are supportive of using regenerative endodontic procedures in their dental practice, and they are willing to undergo extra training and to buy new technology to provide new procedures. Nevertheless, dentists also need more evidence for the effectiveness and safety of regenerative treatments before they will be recommended for most patients. Copyright © 2012. Published by Elsevier Inc.

  13. Perfluorodecalin and bone regeneration

    Directory of Open Access Journals (Sweden)

    F Tamimi

    2013-01-01

    Full Text Available Perfluorodecalin (PFD is a chemically and biologically inert biomaterial and, as many perfluorocarbons, is also hydrophobic, radiopaque and has a high solute capacity for gases such as oxygen. In this article we have demonstrated, both in vitro and in vivo, that PFD may significantly enhance bone regeneration. Firstly, the potential benefit of PFD was demonstrated by prolonging the survival of bone marrow cells cultured in anaerobic conditions. These findings translated in vivo, where PFD incorporated into bone-marrow-loaded 3D-printed scaffolds substantially improved their capacity to regenerate bone. Secondly, in addition to biological applications, we have also shown that PFD improves the radiopacity of bone regeneration biomaterials, a key feature required for the visualisation of biomaterials during and after surgical implantation. Finally, we have shown how the extreme hydrophobicity of PFD enables the fabrication of highly cohesive self-setting injectable biomaterials for bone regeneration. In conclusion, perfluorocarbons would appear to be highly beneficial additives to a number of regenerative biomaterials, especially those for bone regeneration.

  14. Endothelial Jagged-1 Is Necessary for Homeostatic and Regenerative Hematopoiesis

    Directory of Open Access Journals (Sweden)

    Michael G. Poulos

    2013-09-01

    Full Text Available The bone marrow (BM microenvironment is composed of multiple niche cells that, by producing paracrine factors, maintain and regenerate the hematopoietic stem cell (HSC pool (Morrison and Spradling, 2008. We have previously demonstrated that endothelial cells support the proper regeneration of the hematopoietic system following myeloablation (Butler et al., 2010; Hooper et al., 2009; Kobayashi et al., 2010. Here, we demonstrate that expression of the angiocrine factor Jagged-1, supplied by the BM vascular niche, regulates homeostatic and regenerative hematopoiesis through a Notch-dependent mechanism. Conditional deletion of Jagged-1 in endothelial cells (Jag1(ECKO mice results in a profound decrease in hematopoiesis and premature exhaustion of the adult HSC pool, whereas quantification and functional assays demonstrate that loss of Jagged-1 does not perturb vascular or mesenchymal compartments. Taken together, these data demonstrate that the instructive function of endothelial-specific Jagged-1 is required to support the self-renewal and regenerative capacity of HSCs in the adult BM vascular niche.

  15. Gene therapy for cartilage and bone tissue engineering

    CERN Document Server

    Hu, Yu-Chen

    2014-01-01

    "Gene Therapy for Cartilage and Bone Tissue Engineering" outlines the tissue engineering and possible applications of gene therapy in the field of biomedical engineering as well as basic principles of gene therapy, vectors and gene delivery, specifically for cartilage and bone engineering. It is intended for tissue engineers, cell therapists, regenerative medicine scientists and engineers, gene therapist and virologists. Dr. Yu-Chen Hu is a Distinguished Professor at the Department of Chemical Engineering, National Tsing Hua University and has received the Outstanding Research Award (National Science Council), Asia Research Award (Society of Chemical Engineers, Japan) and Professor Tsai-Teh Lai Award (Taiwan Institute of Chemical Engineers). He is also a fellow of the American Institute for Medical and Biological Engineering (AIMBE) and a member of the Tissue Engineering International & Regenerative Medicine Society (TERMIS)-Asia Pacific Council.

  16. Combination of hydroxyapatite, platelet rich fibrin and amnion membrane as a novel therapeutic option in regenerative periapical endodontic surgery: Case series

    Directory of Open Access Journals (Sweden)

    Uday Kiran Uppada

    2017-01-01

    Conclusion: The results of this case seriessubstantiatesthe credibility of using a combination ofamnion membrane with a bone graft and PRF to enhance radiographic healing outcome with decreased post-operative discomfort and present a viable regenerative treatment modality in periapical surgery.

  17. Genetic Engineering of Mesenchymal Stem Cells for Regenerative Medicine.

    Science.gov (United States)

    Nowakowski, Adam; Walczak, Piotr; Janowski, Miroslaw; Lukomska, Barbara

    2015-10-01

    Mesenchymal stem cells (MSCs), which can be obtained from various organs and easily propagated in vitro, are one of the most extensively used types of stem cells and have been shown to be efficacious in a broad set of diseases. The unique and highly desirable properties of MSCs include high migratory capacities toward injured areas, immunomodulatory features, and the natural ability to differentiate into connective tissue phenotypes. These phenotypes include bone and cartilage, and these properties predispose MSCs to be therapeutically useful. In addition, MSCs elicit their therapeutic effects by paracrine actions, in which the metabolism of target tissues is modulated. Genetic engineering methods can greatly amplify these properties and broaden the therapeutic capabilities of MSCs, including transdifferentiation toward diverse cell lineages. However, cell engineering can also affect safety and increase the cost of therapy based on MSCs; thus, the advantages and disadvantages of these procedures should be discussed. In this review, the latest applications of genetic engineering methods for MSCs with regenerative medicine purposes are presented.

  18. The pharmacology of regenerative medicine.

    Science.gov (United States)

    Christ, George J; Saul, Justin M; Furth, Mark E; Andersson, Karl-Erik

    2013-07-01

    Regenerative medicine is a rapidly evolving multidisciplinary, translational research enterprise whose explicit purpose is to advance technologies for the repair and replacement of damaged cells, tissues, and organs. Scientific progress in the field has been steady and expectations for its robust clinical application continue to rise. The major thesis of this review is that the pharmacological sciences will contribute critically to the accelerated translational progress and clinical utility of regenerative medicine technologies. In 2007, we coined the phrase "regenerative pharmacology" to describe the enormous possibilities that could occur at the interface between pharmacology, regenerative medicine, and tissue engineering. The operational definition of regenerative pharmacology is "the application of pharmacological sciences to accelerate, optimize, and characterize (either in vitro or in vivo) the development, maturation, and function of bioengineered and regenerating tissues." As such, regenerative pharmacology seeks to cure disease through restoration of tissue/organ function. This strategy is distinct from standard pharmacotherapy, which is often limited to the amelioration of symptoms. Our goal here is to get pharmacologists more involved in this field of research by exposing them to the tools, opportunities, challenges, and interdisciplinary expertise that will be required to ensure awareness and galvanize involvement. To this end, we illustrate ways in which the pharmacological sciences can drive future innovations in regenerative medicine and tissue engineering and thus help to revolutionize the discovery of curative therapeutics. Hopefully, the broad foundational knowledge provided herein will spark sustained conversations among experts in diverse fields of scientific research to the benefit of all.

  19. Immunolocalization of Myostatin (GDF-8) Following Musculoskeletal Injury and the Effects of Exogenous Myostatin on Muscle and Bone Healing

    Science.gov (United States)

    Elkasrawy, Moataz; Immel, David; Wen, Xuejun; Liu, Xiaoyan; Liang, Li-Fang

    2012-01-01

    The time course and cellular localization of myostatin expression following musculoskeletal injury are not well understood; therefore, the authors evaluated the temporal and spatial localization of myostatin during muscle and bone repair following deep penetrant injury in a mouse model. They then used hydrogel delivery of exogenous myostatin in the same injury model to determine the effects of myostatin exposure on muscle and bone healing. Results showed that a “pool” of intense myostatin staining was observed among injured skeletal muscle fibers 12–24 hr postsurgery and that myostatin was also expressed in the soft callus chondrocytes 4 days following osteotomy. Hydrogel delivery of 10 or 100 µg/ml recombinant myostatin decreased fracture callus cartilage area relative to total callus area in a dose-dependent manner by 41% and 80% (pMyostatin treatment also decreased fracture callus total bone volume by 30.6% and 38.8% (pmyostatin yielding the greatest decrease in callus bone volume. Finally, exogenous myostatin treatment caused a significant dose-dependent increase in fibrous tissue formation in skeletal muscle. Together, these findings suggest that early pharmacological inhibition of myostatin is likely to improve the regenerative potential of both muscle and bone following deep penetrant musculoskeletal injury. PMID:22205678

  20. Evaluation strategy of regenerative braking energy for supercapacitor vehicle.

    Science.gov (United States)

    Zou, Zhongyue; Cao, Junyi; Cao, Binggang; Chen, Wen

    2015-03-01

    In order to improve the efficiency of energy conversion and increase the driving range of electric vehicles, the regenerative energy captured during braking process is stored in the energy storage devices and then will be re-used. Due to the high power density of supercapacitors, they are employed to withstand high current in the short time and essentially capture more regenerative energy. The measuring methods for regenerative energy should be investigated to estimate the energy conversion efficiency and performance of electric vehicles. Based on the analysis of the regenerative braking energy system of a supercapacitor vehicle, an evaluation system for energy recovery in the braking process is established using USB portable data-acquisition devices. Experiments under various braking conditions are carried out. The results verify the higher efficiency of energy regeneration system using supercapacitors and the effectiveness of the proposed measurement method. It is also demonstrated that the maximum regenerative energy conversion efficiency can reach to 88%. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  1. LIVER AND BONE MARROW STEM/PROGENITOR CELLS AS REGULATORS OF REPARATIVE REGENERATION OF DAMAGED LIVER

    Directory of Open Access Journals (Sweden)

    А. V. Lundup

    2010-01-01

    Full Text Available In this review the modern information about effectiveness of liver insufficiency treatment by stem/ progenitor cells of liver (oval cells and bone marrow (hemopoietic cells and mesenchymal cells was presented. It is shown that medical action of these cells is referred on normalization of liver cell interaction and reorganization of processes of a reparative regeneration in damaged liver. It is believed that application of mesenchymal stromal cells from an autological bone marrow is the most perspective strategy. However, for definitive judgement about regenerative possibilities of the autological bone marrow cells it is necessary to carry out large-scale double blind clinical researches. 

  2. High Aldehyde Dehydrogenase Activity Identifies a Subset of Human Mesenchymal Stromal Cells with Vascular Regenerative Potential.

    Science.gov (United States)

    Sherman, Stephen E; Kuljanin, Miljan; Cooper, Tyler T; Putman, David M; Lajoie, Gilles A; Hess, David A

    2017-06-01

    During culture expansion, multipotent mesenchymal stromal cells (MSCs) differentially express aldehyde dehydrogenase (ALDH), an intracellular detoxification enzyme that protects long-lived cells against oxidative stress. Thus, MSC selection based on ALDH-activity may be used to reduce heterogeneity and distinguish MSC subsets with improved regenerative potency. After expansion of human bone marrow-derived MSCs, cell progeny was purified based on low versus high ALDH-activity (ALDH hi ) by fluorescence-activated cell sorting, and each subset was compared for multipotent stromal and provascular regenerative functions. Both ALDH l ° and ALDH hi MSC subsets demonstrated similar expression of stromal cell (>95% CD73 + , CD90 + , CD105 + ) and pericyte (>95% CD146 + ) surface markers and showed multipotent differentiation into bone, cartilage, and adipose cells in vitro. Conditioned media (CDM) generated by ALDH hi MSCs demonstrated a potent proliferative and prosurvival effect on human microvascular endothelial cells (HMVECs) under serum-free conditions and augmented HMVEC tube-forming capacity in growth factor-reduced matrices. After subcutaneous transplantation within directed in vivo angiogenesis assay implants into immunodeficient mice, ALDH hi MSC or CDM produced by ALDH hi MSC significantly augmented murine vascular cell recruitment and perfused vessel infiltration compared with ALDH l ° MSC. Although both subsets demonstrated strikingly similar mRNA expression patterns, quantitative proteomic analyses performed on subset-specific CDM revealed the ALDH hi MSC subset uniquely secreted multiple proangiogenic cytokines (vascular endothelial growth factor beta, platelet derived growth factor alpha, and angiogenin) and actively produced multiple factors with chemoattractant (transforming growth factor-β, C-X-C motif chemokine ligand 1, 2, and 3 (GRO), C-C motif chemokine ligand 5 (RANTES), monocyte chemotactic protein 1 (MCP-1), interleukin [IL]-6, IL-8) and matrix

  3. The effect of the bioactive sphingolipids S1P and C1P on multipotent stromal cells--new opportunities in regenerative medicine.

    Science.gov (United States)

    Marycz, Krzysztof; Śmieszek, Agnieszka; Jeleń, Marta; Chrząstek, Klaudia; Grzesiak, Jakub; Meissner, Justyna

    2015-09-01

    Sphingosine-1-phosphate (S1P) and ceramide-1-phosphate (C1P) belong to a family of bioactive sphingolipids that act as important extracellular signaling molecules and chemoattractants. This study investigated the influence of S1P and C1P on the morphology, proliferation activity and osteogenic properties of rat multipotent stromal cells derived from bone marrow (BMSCs) and subcutaneous adipose tissue (ASCs). We show that S1P and C1P can influence mesenchymal stem cells (MSCs), each in a different manner. S1P stimulation promoted the formation of cellular aggregates of BMSCs and ASCs, while C1P had an effect on the regular growth pattern and expanded intercellular connections, thereby increasing the proliferative activity. Although osteogenic differentiation of MSCs was enhanced by the addition of S1P, the effectiveness of osteoblast differentiation was more evident in BMSCs, particularly when biochemical and molecular marker levels were considered. The results of the functional osteogenic differentiation assay, which includes an evaluation of the efficiency of extracellular matrix mineralization (SEM-EDX), revealed the formation of numerous mineral aggregates in BMSC cultures stimulated with S1P. Our data demonstrated that in an appropriate combination, the bioactive sphingolipids S1P and C1P may find wide application in regenerative medicine, particularly in bone regeneration with the use of MSCs.

  4. REGEN: Ancestral Genome Reconstruction for Bacteria.

    Science.gov (United States)

    Yang, Kuan; Heath, Lenwood S; Setubal, João C

    2012-07-18

    Ancestral genome reconstruction can be understood as a phylogenetic study with more details than a traditional phylogenetic tree reconstruction. We present a new computational system called REGEN for ancestral bacterial genome reconstruction at both the gene and replicon levels. REGEN reconstructs gene content, contiguous gene runs, and replicon structure for each ancestral genome. Along each branch of the phylogenetic tree, REGEN infers evolutionary events, including gene creation and deletion and replicon fission and fusion. The reconstruction can be performed by either a maximum parsimony or a maximum likelihood method. Gene content reconstruction is based on the concept of neighboring gene pairs. REGEN was designed to be used with any set of genomes that are sufficiently related, which will usually be the case for bacteria within the same taxonomic order. We evaluated REGEN using simulated genomes and genomes in the Rhizobiales order.

  5. Regenerative agriculture: merging farming and natural resource conservation profitably.

    Science.gov (United States)

    LaCanne, Claire E; Lundgren, Jonathan G

    2018-01-01

    Most cropland in the United States is characterized by large monocultures, whose productivity is maintained through a strong reliance on costly tillage, external fertilizers, and pesticides (Schipanski et al., 2016). Despite this, farmers have developed a regenerative model of farm production that promotes soil health and biodiversity, while producing nutrient-dense farm products profitably. Little work has focused on the relative costs and benefits of novel regenerative farming operations, which necessitates studying in situ , farmer-defined best management practices. Here, we evaluate the relative effects of regenerative and conventional corn production systems on pest management services, soil conservation, and farmer profitability and productivity throughout the Northern Plains of the United States. Regenerative farming systems provided greater ecosystem services and profitability for farmers than an input-intensive model of corn production. Pests were 10-fold more abundant in insecticide-treated corn fields than on insecticide-free regenerative farms, indicating that farmers who proactively design pest-resilient food systems outperform farmers that react to pests chemically. Regenerative fields had 29% lower grain production but 78% higher profits over traditional corn production systems. Profit was positively correlated with the particulate organic matter of the soil, not yield. These results provide the basis for dialogue on ecologically based farming systems that could be used to simultaneously produce food while conserving our natural resource base: two factors that are pitted against one another in simplified food production systems. To attain this requires a systems-level shift on the farm; simply applying individual regenerative practices within the current production model will not likely produce the documented results.

  6. A new take on an old story: chick limb organ culture for skeletal niche development and regenerative medicine evaluation

    Directory of Open Access Journals (Sweden)

    EL Smith

    2013-09-01

    Full Text Available Scientific research and progress, particularly in the drug discovery and regenerative medicine fields, is typically dependent on suitable animal models to develop new and improved clinical therapies for injuries and diseases. In vivo model systems are frequently utilised, but these models are expensive, highly complex and pose a number of ethical considerations leading to the development and use of a number of alternative ex vivo model systems. The ex vivo embryonic chick long bone and limb bud models have been utilised in the scientific research field as a model to understand skeletal development for over eighty years. The rapid development of avian skeletal tissues, coupled with the ease of experimental manipulation, availability of genome sequence and the presence of multiple cell and tissue types has seen such model systems gain significant research interest in the last few years in the tissue engineering field. The models have been explored both as systems for understanding the developmental bone niche and as potential testing tools for tissue engineering strategies for bone repair and regeneration. This review details the evolution of the chick limb organ culture system and presents recent innovative developments and emerging techniques and technologies applied to these models that are aiding our understanding of skeletal developmental and regenerative medicine research and application.

  7. Hydroxyapatite from fish scale for potential use as bone scaffold or regenerative material

    Energy Technology Data Exchange (ETDEWEB)

    Pon-On, Weeraphat, E-mail: fsciwpp@ku.ac.th [Department of Physics, Faculty of Science, Kasetsart University, Bangkok (Thailand); Suntornsaratoon, Panan [Center of Calcium and Bone Research, Faculty of Science, Mahidol University, Bangkok (Thailand); Charoenphandhu, Narattaphol [Center of Calcium and Bone Research, Faculty of Science, Mahidol University, Bangkok (Thailand); Department of Physiology, Faculty of Science, Mahidol University, Bangkok (Thailand); Thongbunchoo, Jirawan [Center of Calcium and Bone Research, Faculty of Science, Mahidol University, Bangkok (Thailand); Krishnamra, Nateetip [Center of Calcium and Bone Research, Faculty of Science, Mahidol University, Bangkok (Thailand); Department of Physiology, Faculty of Science, Mahidol University, Bangkok (Thailand); Tang, I. Ming [Department of Materials Science, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand)

    2016-05-01

    The present paper studies the physico-chemical, bioactivity and biological properties of hydroxyapatite (HA) which is derived from fish scale (FS) (FSHA) and compares them with those of synthesized HA (sHA) obtained by co-precipitation from chemical solution as a standard. The analysis shows that the FSHA is composed of flat-plate nanocrystal with a narrow width size of about 15–20 nm and having a range of 100 nm in length and that the calcium phosphate ratio (Ca/P) is 2.01 (Ca-rich CaP). Whereas, synthesized HA consists of sub-micron HA particle having a Ca/P ratio of 1.65. Bioactivity test shows that the FSHA forms more new apatite than does the sHA after being incubated in simulated body fluid (SBF) for 7 days. Moreover, the biocompatibility study shows a higher osteoblast like cell adhesion on the FSHA surface than on the sHA substrate after 3 days of culturing. Our results also show the shape of the osteoblast cells on the FSHA changes from being a rounded shape to being a flattened shape reflecting its spreading behavior on this surface. MTT assay and ALP analysis show significant increases in the proliferation and activity of osteoblasts over the FSHA scaffold after 5 days of culturing as compared to those covering the sHA substrates. These results confirm that the bio-materials derived from fish scale (FSHA) are biologically better than the chemically synthesized HA and have the potential for use as a bone scaffold or as regenerative materials. - Highlights: • Preparation of hydroxyapatite (HA) which is derived from fish scale (FS) (FSHA) and their bioactivities • The FSHA is composed of flat-plate nanocrystal with a narrow size of 15–20 nm. • Bioactivity test shows that the FSHA forms more new apatite than does the sHA after being incubated SBF. • In vitro cell availability tests show a higher cell adhesion on the FSHA surface.

  8. Effect of energy-regenerative braking on electric vehicle battery thermal management and control method based on simulation investigation

    International Nuclear Information System (INIS)

    Huang, Jingying; Qin, Datong; Peng, Zhiyuan

    2015-01-01

    Highlights: • A two-degree-of-freedom lumped thermal model is developed for battery. • The battery thermal model is integrated with vehicle driving model. • Real-time battery thermal responses is obtained. • Active control of current by regenerative braking ratio adjustment is proposed. • More energy is recovered with smaller battery temperature rise. - Abstract: Battery thermal management is important for the safety and reliability of electric vehicle. Based on the parameters obtained from battery hybrid pulse power characterization test, a two-degree-of-freedom lumped thermal model is established. The battery model is then integrated with vehicle driving model to simulate real-time battery thermal responses. An active control method is proposed to reduce heat generation due to regenerative braking. The proposed control method not only subjects to the braking safety regulation, but also adjusts the regenerative braking ratio through a fuzzy controller. By comparing with other regenerative braking scenarios, the effectiveness of the proposed strategy has been validated. According to the results, the proposed control strategy suppresses battery temperature rise by modifying the charge current due to regenerative braking. The overlarge components of current are filtered out whereas the small ones are magnified. Therefore, with smaller battery temperature rise, more energy is recovered. Compared to the traditional passive heat dissipating, the proposed active methodology is feasible and provides a novel solution for electric vehicle battery thermal management.

  9. Optimal thermoeconomic performance of an irreversible regenerative ferromagnetic Ericsson refrigeration cycle

    International Nuclear Information System (INIS)

    Xu, Zhichao; Guo, Juncheng; Lin, Guoxing; Chen, Jincan

    2016-01-01

    On the basis of the Langevin theory of classical statistical mechanics, the magnetization, entropy, and iso-field heat capacity of ferromagnetic materials are analyzed and their mathematical expressions are derived. An irreversible regenerative Ericsson refrigeration cycle by using a ferromagnetic material as the working substance is established, in which finite heat capacity rates of low and high temperature reservoirs, non-perfect regenerative heat of the refrigeration cycle, additional regenerative heat loss, etc. are taken into account. Based on the regenerative refrigeration cycle model, a thermoeconomic function is introduced as one objective function and optimized with respect to the temperatures of the working substance in the two iso-thermal processes. By means of numerical calculation, the effects of the effective factor of the heat exchangers in high/low temperature reservoir sides, efficiency of the regenerator, heat capacity rate of the low temperature reservoir, and applied magnetic field on the optimal thermoeconomic function as well as the corresponding cooling rate and coefficient of performance are revealed. The results obtained in this paper can provide some theoretical guidance for the optimal design of actual regenerative magnetic refrigerator cycle. - Highlights: • Thermodynamic performance of ferromagnetic material is analyzed. • An irreversible regenerative ferromagnetic Ericsson refrigeration cycle is set up. • The thermoeconomic objective function is introduced and optimized. • Impacts of the thermoeconomic and other parameters are discussed.

  10. REGEN: Ancestral Genome Reconstruction for Bacteria

    Directory of Open Access Journals (Sweden)

    João C. Setubal

    2012-07-01

    Full Text Available Ancestral genome reconstruction can be understood as a phylogenetic study with more details than a traditional phylogenetic tree reconstruction. We present a new computational system called REGEN for ancestral bacterial genome reconstruction at both the gene and replicon levels. REGEN reconstructs gene content, contiguous gene runs, and replicon structure for each ancestral genome. Along each branch of the phylogenetic tree, REGEN infers evolutionary events, including gene creation and deletion and replicon fission and fusion. The reconstruction can be performed by either a maximum parsimony or a maximum likelihood method. Gene content reconstruction is based on the concept of neighboring gene pairs. REGEN was designed to be used with any set of genomes that are sufficiently related, which will usually be the case for bacteria within the same taxonomic order. We evaluated REGEN using simulated genomes and genomes in the Rhizobiales order.

  11. Changes in Regenerative Capacity through Lifespan

    Directory of Open Access Journals (Sweden)

    Maximina H. Yun

    2015-10-01

    Full Text Available Most organisms experience changes in regenerative abilities through their lifespan. During aging, numerous tissues exhibit a progressive decline in homeostasis and regeneration that results in tissue degeneration, malfunction and pathology. The mechanisms responsible for this decay are both cell intrinsic, such as cellular senescence, as well as cell-extrinsic, such as changes in the regenerative environment. Understanding how these mechanisms impact on regenerative processes is essential to devise therapeutic approaches to improve tissue regeneration and extend healthspan. This review offers an overview of how regenerative abilities change through lifespan in various organisms, the factors that underlie such changes and the avenues for therapeutic intervention. It focuses on established models of mammalian regeneration as well as on models in which regenerative abilities do not decline with age, as these can deliver valuable insights for our understanding of the interplay between regeneration and aging.

  12. Regenerative Rehabilitation – a New Future?

    Science.gov (United States)

    Perez-Terzic, Carmen; Childers, Martin K.

    2014-01-01

    Modern rehabilitation medicine is propelled by newfound knowledge aimed at offering solutions for an increasingly aging population afflicted by chronic debilitating conditions. Considered a core component of future healthcare, the roll-out of regenerative medicine underscores a paradigm shift in patient management targeted at restoring physiologic function and restituting normative impact. Nascent regenerative technologies offer unprecedented prospects in achieving repair of degenerated, diseased or damaged tissues. In this context, principles of regenerative science are increasingly integrated in rehabilitation practices as illustrated in the present Supplement. Encompassing a growing multidisciplinary domain, the emergent era of “regenerative rehabilitation” brings radical innovations at the forefront of healthcare blueprints. PMID:25310603

  13. Antimicrobial and bone-forming activity of a copper coated implant in a rabbit model.

    Science.gov (United States)

    Prinz, Cornelia; Elhensheri, Mohamed; Rychly, Joachim; Neumann, Hans-Georg

    2017-08-01

    Current strategies in implant technology are directed to generate bioactive implants that are capable to activate the regenerative potential of the surrounding tissue. On the other hand, implant-related infections are a common problem in orthopaedic trauma patients. To meet both challenges, i.e. to generate a bone implant with regenerative and antimicrobial characteristics, we tested the use of copper coated nails for surgical fixation in a rabbit model. Copper acetate was galvanically deposited with a copper load of 1 µg/mm 2 onto a porous oxide layer of Ti6Al4V nails, which were used for the fixation of a tibia fracture, inoculated with bacteria. After implantation of the nail the concentration of copper ions did not increase in blood which indicates that copper released from the implant was locally restricted to the fracture site. After four weeks, analyses of the extracted implants revealed a distinct antimicrobial effect of copper, because copper completely prevented both a weak adhesion and firm attachment of biofilm-forming bacteria on the titanium implant. To evaluate fracture healing, radiographic examination demonstrated an increased callus index in animals with copper coated nails. This result indicates a stimulated bone formation by releasing copper ions. We conclude that the use of implants with a defined load of copper ions enables both prevention of bacterial infection and the stimulation of regenerative processes.

  14. Endochondral vs. intramembranous demineralized bone matrices as implants for osseous defects.

    Science.gov (United States)

    Nidoli, M C; Nielsen, F F; Melsen, B

    1999-05-01

    This study focuses on the difference in regenerative capacity between endochondral and intramembranous demineralized bone matrices (DBMs) when implanted into bony defects. It also focuses on the possible influence of the type of skeletal recipient site (orthotopic or heterotopic). Of 34 Wistar rats, 10 served as a source of DBM, and 24 were divided into two groups of 12 animals. In group A identical defects were produced in the parietal bones, whereas in group B the defects were produced in each radius. The right defects were implanted with endochondral DBM and the left defects were implanted with intramembranous DBM. Descriptive and/or histomorphometric analyses were performed by means of light and polarized microscopy, and radiography (group B). Right and left data were compared to disclose differences in bone-healing capacity. The quantitative results demonstrated that endochondral DBM displays a greater regenerative capacity than intramembranous DBM when implanted heterotopically. The different clinical performances of endochondral and intramembranous bone grafts might be explained on the basis of the mechanical rather than the osteoinductive principle. The qualitative results suggest that the type of bone deposition induced by the DBMs is not related to the type of implanted DBM. Recipient site characteristics and/or environmental factors seem decisive in the occurrence of either types of ossification.

  15. Placenta Derived Mesenchymal Stem Cells Hosted on RKKP Glass-Ceramic: A Tissue Engineering Strategy for Bone Regenerative Medicine Applications

    Directory of Open Access Journals (Sweden)

    Mario Ledda

    2016-01-01

    Full Text Available In tissue engineering protocols, the survival of transplanted stem cells is a limiting factor that could be overcome using a cell delivery matrix able to support cell proliferation and differentiation. With this aim, we studied the cell-friendly and biocompatible behavior of RKKP glass-ceramic coated Titanium (Ti surface seeded with human amniotic mesenchymal stromal cells (hAMSCs from placenta. The sol-gel synthesis procedure was used to prepare the RKKP glass-ceramic material, which was then deposited onto the Ti surface by Pulsed Laser Deposition method. The cell metabolic activity and proliferation rate, the cytoskeletal actin organization, and the cell cycle phase distribution in hAMSCs seeded on the RKKP coated Ti surface revealed no significant differences when compared to the cells grown on the treated plastic Petri dish. The health of of hAMSCs was also analysed studying the mRNA expressions of MSC key genes and the osteogenic commitment capability using qRT-PCR analysis which resulted in being unchanged in both substrates. In this study, the combination of the hAMSCs’ properties together with the bioactive characteristics of RKKP glass-ceramics was investigated and the results obtained indicate its possible use as a new and interesting cell delivery system for bone tissue engineering and regenerative medicine applications.

  16. REGEN: Ancestral Genome Reconstruction for Bacteria

    OpenAIRE

    Yang, Kuan; Heath, Lenwood S.; Setubal, João C.

    2012-01-01

    Ancestral genome reconstruction can be understood as a phylogenetic study with more details than a traditional phylogenetic tree reconstruction. We present a new computational system called REGEN for ancestral bacterial genome reconstruction at both the gene and replicon levels. REGEN reconstructs gene content, contiguous gene runs, and replicon structure for each ancestral genome. Along each branch of the phylogenetic tree, REGEN infers evolutionary events, including gene creation and deleti...

  17. Regenerative Therapy for Retinal Disorders

    Directory of Open Access Journals (Sweden)

    Narsis Daftarian

    2010-01-01

    Full Text Available Major advances in various disciplines of basic sciences including embryology, molecular and cell biology, genetics, and nanotechnology, as well as stem cell biology have opened new horizons for regenerative therapy. The unique characteristics of stem cells prompt a sound understanding for their use in modern regenerative therapies. This review article discusses stem cells, developmental stages of the eye field, eye field transcriptional factors, and endogenous and exogenous sources of stem cells. Recent studies and challenges in the application of stem cells for retinal pigment epithelial degeneration models will be summarized followed by obstacles facing regenerative therapy.

  18. Clinical concepts for regenerative therapy in intrabony defects.

    Science.gov (United States)

    Cortellini, Pierpaolo; Tonetti, Maurizio S

    2015-06-01

    Evidence indicates that periodontal regeneration is an efficacious and predictable procedure for the treatment of isolated and multiple intrabony defects. Meta-analyses from systematic reviews indicate an added benefit, in terms of clinical attachment level gain, when demineralized freeze-dried bone allograft, barrier membranes and active biologic products/compounds are applied in addition to open flap debridement. On the other hand, a consistent amount of variability of the outcomes is evident among different studies and within the experimental population of each study. This variability is explained, at least in part, by different patient and defect characteristics. Patient-related factors include smoking habit, compliance with home oral hygiene and residual inflammation after cause-related therapy. Defect-associated factors include defect depth and radiographic angle, the number of residual bony walls, pocket depth and the degree of hypermobility. In addition, surgical-related variables, such as surgical skill, clinical experience and knowledge, and application of the different regenerative materials, have a significant impact on clinical outcomes. This paper presents a strategy to optimize the clinical outcomes of periodontal regeneration. The surgical design of the flap, the use of different regenerative materials and the application of appropriate passive sutures are discussed in this review along with the scientific foundations. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Regenerative adsorption distillation system

    KAUST Repository

    Ng, Kim Choon; Thu, Kyaw; Amy, Gary; Chunggaze, Mohammed; Al-Ghasham, Tawfiq

    2013-01-01

    There is provided a regenerative adsorption distillation system comprising a train of distillation effects in fluid communication with each other. The train of distillation effects comprises at least one intermediate effect between the first and last distillation effects of the train, each effect comprising a vessel and a condensing tube for flow of a fluid therein. The system further comprises a pair of adsorption-desorption beds in vapour communication with the last effect and at least one intermediate effect, wherein the beds contain an adsorbent that adsorbs vapour from the last effect and transmits desorbed vapour into at least one of the intermediate effect.

  20. Regenerative adsorption distillation system

    KAUST Repository

    Ng, Kim Choon

    2013-12-26

    There is provided a regenerative adsorption distillation system comprising a train of distillation effects in fluid communication with each other. The train of distillation effects comprises at least one intermediate effect between the first and last distillation effects of the train, each effect comprising a vessel and a condensing tube for flow of a fluid therein. The system further comprises a pair of adsorption-desorption beds in vapour communication with the last effect and at least one intermediate effect, wherein the beds contain an adsorbent that adsorbs vapour from the last effect and transmits desorbed vapour into at least one of the intermediate effect.

  1. Applications of Metals for Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Kristina Glenske

    2018-03-01

    Full Text Available The regeneration of bone tissue is the main purpose of most therapies in dental medicine. For bone regeneration, calcium phosphate (CaP-based substitute materials based on natural (allo- and xenografts and synthetic origins (alloplastic materials are applied for guiding the regeneration processes. The optimal bone substitute has to act as a substrate for bone ingrowth into a defect, as well as resorb in the time frame needed for complete regeneration up to the condition of restitution ad integrum. In this context, the modes of action of CaP-based substitute materials have been frequently investigated, where it has been shown that such materials strongly influence regenerative processes such as osteoblast growth or differentiation and also osteoclastic resorption due to different physicochemical properties of the materials. However, the material characteristics needed for the required ratio between new bone tissue formation and material degradation has not been found, until now. The addition of different substances such as collagen or growth factors and also of different cell types has already been tested but did not allow for sufficient or prompt application. Moreover, metals or metal ions are used differently as a basis or as supplement for different materials in the field of bone regeneration. Moreover, it has already been shown that different metal ions are integral components of bone tissue, playing functional roles in the physiological cellular environment as well as in the course of bone healing. The present review focuses on frequently used metals as integral parts of materials designed for bone regeneration, with the aim to provide an overview of currently existing knowledge about the effects of metals in the field of bone regeneration.

  2. The emerging role of bone marrow adipose tissue in bone health and dysfunction.

    Science.gov (United States)

    Ambrosi, Thomas H; Schulz, Tim J

    2017-12-01

    Replacement of red hematopoietic bone marrow with yellow adipocyte-rich marrow is a conserved physiological process among mammals. The extent of this conversion is influenced by a wide array of pathological and non-pathological conditions. Of particular interest is the observation that some marrow adipocyte-inducing factors seem to oppose each other, for instance obesity and caloric restriction. Intriguingly, several important molecular characteristics of bone marrow adipose tissue (BMAT) are distinct from the classical depots of white and brown fat tissue. This depot of fat has recently emerged as an active part of the bone marrow niche that exerts paracrine and endocrine functions thereby controlling osteogenesis and hematopoiesis. While some functions of BMAT may be beneficial for metabolic adaptation and bone homeostasis, respectively, most findings assign bone fat a detrimental role during regenerative processes, such as hematopoiesis and osteogenesis. Thus, an improved understanding of the biological mechanisms leading to formation of BMAT, its molecular characteristics, and its physiological role in the bone marrow niche is warranted. Here we review the current understanding of BMAT biology and its potential implications for health and the development of pathological conditions.

  3. Supplementation of fat grafts with adipose-derived regenerative cells in reconstructive surgery [Stammzellangereicherte Fetttransplantation in der rekonstruktiven Chirurgie

    Directory of Open Access Journals (Sweden)

    Herold, C.

    2012-09-01

    Full Text Available [english] Introduction: The fraction of regenerative cells in adipose tissue has been described to be even higher than in bone marrow. Adipose tissue itself is excessively available in most patients. Given that adipose tissue is abundant in majority of patients adipose derrived stem cells (ASCs have come under scrutiny for regenerative procedures in reconstructive surgery.Material and methods: ASCs were extracted by the Celution system for enrichment of fat grafts that were administered in patients with decreased wound healing, soft tissue or scar defects.Results: All patients were satisfied after reconstruction with ASCs augmented fat grafts and no side effects were observed. Discussion: The Celution system provides fast recovery of ASCs which can be immediately utilized for appropriate application. Since a high number of stem cells are harvested from fat tissue no expansion of cells is needed as described for bone marrow derived stem cells. Enrichment of fat graft with ASCs is of great interest due to their reported angiogenetic effect. The reported cases demonstrate the potential of ASCs in the field of regenerative medicine and encourage further application in reconstructive surgery.[german] Einleitung: Es konnte gezeigt werden, dass der Anteil regenerativer Zellen im Fettgewebe höher als im Knochenmark ist. Fettgewebe hingegen ist bei den meisten Patienten exzessiv vorhanden. Das legt den Einsatz von ASCs (adipose derived stem cells bei regenerativen Anwendungen in der rekonstruktiven Chirurgie nahe.Material und Methoden: Mit dem Celution System von Cytori Therapeutics Inc. prozessierte, ASC angereicherte Fetttransplantate werden an vier Patienten mit Weichteildefiziten und störenden Narben sowie Wundheilungsstörungen angewendet.Ergebnisse: Insbesondere bei Patienten mit Weichteildefiziten und Narben konnte eine suffiziente Volumenaugmentation und ansprechende Verbesserung der Narben erzielt werden. Es wurden keine Nebenwirkungen

  4. Summary of: Regenerative endodontics.

    Science.gov (United States)

    Clark, Stephen J

    2014-03-01

    Significant advances in our understanding of the biological processes involved in tooth development and repair at the cellular and molecular levels have underpinned the newly emerging area of regenerative endodontics. Development of treatment protocols based on exploiting the natural wound healing properties of the dental pulp and applying tissue engineering principles has allowed reporting of case series showing preservation of tissue vitality and apexogenesis. To review current case series reporting regenerative endodontics. Current treatment approaches tend to stimulate more reparative than regenerative responses in respect of the new tissue generated, which often does not closely resemble the physiological structure of dentine-pulp. However, despite these biological limitations, such techniques appear to offer significant promise for improved treatment outcomes. Improved biological outcomes will likely emerge from the many experimental studies being reported and will further contribute to improvements in clinical treatment protocols.

  5. Mobilization of endogenous bone marrow derived endothelial progenitor cells and therapeutic potential of parathyroid hormone after ischemic stroke in mice.

    Directory of Open Access Journals (Sweden)

    Li-Li Wang

    Full Text Available Stroke is a major neurovascular disorder threatening human life and health. Very limited clinical treatments are currently available for stroke patients. Stem cell transplantation has shown promising potential as a regenerative treatment after ischemic stroke. The present investigation explores a new concept of mobilizing endogenous stem cells/progenitor cells from the bone marrow using a parathyroid hormone (PTH therapy after ischemic stroke in adult mice. PTH 1-34 (80 µg/kg, i.p. was administered 1 hour after focal ischemia and then daily for 6 consecutive days. After 6 days of PTH treatment, there was a significant increase in bone marrow derived CD-34/Fetal liver kinase-1 (Flk-1 positive endothelial progenitor cells (EPCs in the peripheral blood. PTH treatment significantly increased the expression of trophic/regenerative factors including VEGF, SDF-1, BDNF and Tie-1 in the brain peri-infarct region. Angiogenesis, assessed by co-labeled Glut-1 and BrdU vessels, was significantly increased in PTH-treated ischemic brain compared to vehicle controls. PTH treatment also promoted neuroblast migration from the subventricular zone (SVZ and increased the number of newly formed neurons in the peri-infarct cortex. PTH-treated mice showed significantly better sensorimotor functional recovery compared to stroke controls. Our data suggests that PTH therapy improves endogenous repair mechanisms after ischemic stroke with functional benefits. Mobilizing endogenous bone marrow-derived stem cells/progenitor cells using PTH and other mobilizers appears an effective and feasible regenerative treatment after ischemic stroke.

  6. Multiscale Inorganic Hierarchically Materials: Towards an Improved Orthopaedic Regenerative Medicine.

    Science.gov (United States)

    Ruso, Juan M; Sartuqui, Javier; Messina, Paula V

    2015-01-01

    Bone is a biologically and structurally sophisticated multifunctional tissue. It dynamically responds to biochemical, mechanical and electrical clues by remodelling itself and accordingly the maximum strength and toughness are along the lines of the greatest applied stress. The challenge is to develop an orthopaedic biomaterial that imitates the micro- and nano-structural elements and compositions of bone to locally match the properties of the host tissue resulting in a biologically fixed implant. Looking for the ideal implant, the convergence of life and materials sciences occurs. Researchers in many different fields apply their expertise to improve implantable devices and regenerative medicine. Materials of all kinds, but especially hierarchical nano-materials, are being exploited. The application of nano-materials with hierarchical design to calcified tissue reconstructive medicine involve intricate systems including scaffolds with multifaceted shapes that provides temporary mechanical function; materials with nano-topography modifications that guarantee their integration to tissues and that possesses functionalized surfaces to transport biologic factors to stimulate tissue growth in a controlled, safe, and rapid manner. Furthermore materials that should degrade on a timeline coordinated to the time that takes the tissues regrow, are prepared. These implantable devices are multifunctional and for its construction they involve the use of precise strategically techniques together with specific material manufacturing processes that can be integrated to achieve in the design, the required multifunctionality. For such reasons, even though the idea of displacement from synthetic implants and tissue grafts to regenerative-medicine-based tissue reconstruction has been guaranteed for well over a decade, the reality has yet to emerge. In this paper, we examine the recent approaches to create enhanced bioactive materials. Their design and manufacturing procedures as well

  7. Regenerative braking system of PM synchronous motor

    Science.gov (United States)

    Gao, Qian; Lv, Chengxing; Zhao, Na; Zang, Hechao; Jiang, Huilue; Zhang, Zhaowen; Zhang, Fengli

    2018-04-01

    Permanent-magnet synchronous motor is widely adopted in many fields with the advantage of a high efficiency and a high torque density. Regenerative Braking Systems (RBS) provide an efficient method to assist PMSM system achieve better fuel economy and lowering exhaust emissions. This paper describes the design and testing of the regenerative braking systems of PMSM. The mode of PWM duty has been adjusted to control regenerative braking of PMSM using energy controller for the port-controlled Hamiltonian model. The simulation analysis indicates that a smooth control could be realized and the highest efficiency and the smallest current ripple could be achieved by Regenerative Braking Systems.

  8. Bone regeneration: stem cell therapies and clinical studies in orthopaedics and traumatology.

    Science.gov (United States)

    Gómez-Barrena, Enrique; Rosset, Philippe; Müller, Ingo; Giordano, Rosaria; Bunu, Carmen; Layrolle, Pierre; Konttinen, Yrjö T; Luyten, Frank P

    2011-06-01

    Regenerative medicine seeks to repair or replace damaged tissues or organs, with the goal to fully restore structure and function without the formation of scar tissue. Cell based therapies are promising new therapeutic approaches in regenerative medicine. By using mesenchymal stem cells, good results have been reported for bone engineering in a number of clinical studies, most of them investigator initiated trials with limited scope with respect to controls and outcome. With the implementation of a new regulatory framework for advanced therapeutic medicinal products, the stage is set to improve both the characterization of the cells and combination products, and pave the way for improved controlled and well-designed clinical trials. The incorporation of more personalized medicine approaches, including the use of biomarkers to identify the proper patients and the responders to treatment, will be contributing to progress in the field. Both translational and clinical research will move the boundaries in the field of regenerative medicine, and a coordinated effort will provide the clinical breakthroughs, particularly in the many applications of bone engineering. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  9. Long-term antibiotic delivery by chitosan-based composite coatings with bone regenerative potential

    Science.gov (United States)

    Ordikhani, F.; Simchi, A.

    2014-10-01

    Composite coatings with bone-bioactivity and drug-eluting capacity are considered as promising materials for titanium bone implants. In this work, drug-eluting chitosan-bioactive glass coatings were fabricated by a single-step electrophoretic deposition technique. Drug-loading and -releasing capacity of the composite coatings were carried out using the vancomycin antibiotic. Uniform coatings with a thickness of ∼55 μm containing 23.7 wt% bioactive glass particles and various amounts of the antibiotic (380-630 μg/cm2) were produced. The coatings were bioactive in terms of apatite-forming ability in simulated body fluid and showed favorable cell adhesion and growth. In vitro biological tests also indicated that the composite coatings had better cellular affinity than pristine chitosan coatings. The in vitro elution kinetics of the composite coating revealed an initial burst release of around 40% of the drug within the first elution step of 1 h and following by a continuous eluting over 4 weeks, revealing long-term drug-delivering potential. Antibacterial tests using survival assay against Gram-positive Staphylococcus aureus bacteria determined the effect of vancomycin release on reduction of infection risk. Almost no bacteria were survived on the coatings prepared from the EPD suspension containing ≥0.5 g/l vancomycin. The developed chitosan-based composite coatings with bone bioactivity and long-term drug-delivery ability may be potentially useful for metallic implants to reduce infection risk.

  10. The biphasic effect of triiodothyronine compared to bone resorbing effect of PTH on bone modelling of mouse long bone in vitro

    International Nuclear Information System (INIS)

    Soskolne, W.A.; Schwartz, Z.; Goldstein, M.; Ornoy, A.

    1990-01-01

    To examine the effects of T3 on fetal long bone modelling the radii and ulnae of 16 day old fetal mice were grown in vitro for two days. Their growth, mineralization, and resorption were assessed by measuring diaphyseal length, calcium and phosphorus content, hydroxyproline content, and the release of incorporated 45 Ca. The effects of T3 were compared to the effects of 1-34 PTH, a known resorbing agent, on the same system. Devitalized bones were used as a control. The results showed that T3 had a biphasic effect. At high concentrations (10(-5) M-10(-6) M) T3 inhibited the growth of the bones as indicated by their diaphyseal length and hydroxyproline content. Calcium and phosphorus content were significantly decreased while 45 Ca release was increased. Similar effects were also found after the addition of 1-34 PTH to the media. However, T3, at lower concentrations (10(-7) M-10(-9) M), stimulated the growth and calcification of the bones as indicated by an increase in diaphyseal length and the hydroxyproline, calcium, and phosphorus content. 45 Ca release was significantly decreased at these concentrations. Neither T3 nor 1-34 PTH affected devitalized bones in the same system. The results suggest that at physiological concentrations, T3 has a direct, anabolic effect on bone, which may explain its major role in the growth process of various species. At high doses, however, T3 stimulates bone resorption in a way similar to PTH

  11. Thermo-economic optimization of Regenerative Organic Rankine Cycle for waste heat recovery applications

    International Nuclear Information System (INIS)

    Imran, Muhammad; Park, Byung Sik; Kim, Hyouck Ju; Lee, Dong Hyun; Usman, Muhammad; Heo, Manki

    2014-01-01

    Highlights: • Thermo-economic optimization of regenerative ORC is performed. • Optimization is performed using multi objective genetic algorithm. • Objective function is maximum cycle efficiency and minimum specific investment. • Evaporation pressure, pinch point and superheat are decision variables. • Sensitivity analysis is performed to investigate effect of decision variables. - Abstract: Organic Rankine Cycle (ORC) is low grade and waste heat conversion technology. The current article deal with the thermo-economic optimization of basic ORC and regenerative ORC for waste heat recovery applications under constant heat source condition. Thermal efficiency and specific investment cost of basic ORC, single stage regenerative and double stage regenerative ORC has been optimized by using Non-dominated Sorting Genetic Algorithm-II (NSGA-II). Maximum thermal efficiency and minimum specific investment cost were selected as objective functions and relative increase in thermal efficiency and cost has been analyzed taking the basic ORC as base case. The constraint set consist of evaporation pressure, superheat, pinch point temperature difference in evaporator and condenser. The optimization was performed for five different working fluids. The optimization result show that R245fa is best working under considered conditions and basic ORC has low specific investment cost and thermal efficiency compared to regenerative ORC. R245fa is low boiling organic fluid, which has high degree of thermal stability and compatible with common construction materials of ORC. The average increase in thermal efficiency from basic ORC to single stage regenerative ORC was 1.01% with an additional cost of 187 $/kW while from basic ORC to double stage regenerative ORC was 1.45% with an average increase in cost of 297 $/kW. The sensitivity analysis was also performed to investigate the effect of operating conditions which show that evaporation pressure has promising effect on thermal

  12. Combining technologies to create bioactive hybrid scaffolds for bone tissue engineering

    NARCIS (Netherlands)

    Nandakumar, A.; Barradas, A.M.C.; de Boer, Jan; Moroni, Lorenzo; van Blitterswijk, Clemens; Habibovic, Pamela

    2013-01-01

    Combining technologies to engineer scaffolds that can offer physical and chemical cues to cells is an attractive approach in tissue engineering and regenerative medicine. In this study, we have fabricated polymer-ceramic hybrid scaffolds for bone regeneration by combining rapid prototyping (RP),

  13. Desferrioxamine for Stimulation of Fracture Healing and Revascularization in a Bone Defect Model

    Science.gov (United States)

    2012-02-01

    cartilaginous tissue still present. DBM + L-DFO: Fracture gap less evident with more complete bone bridging with denser trabecular bone and less...fracture callus volume by micro-CT, and qualitative histology for callus tissue quality and vascularity in 5 groups (No implant, CS implant, DFO+CS...Weinhold, P. North Carolina Tissue Engineering and Regenerative Medicine Meeting, November 4, 2011; Winston Salem, NC. (presented) • Desferroxamine with

  14. Development and Characterization of Organic Electronic Scaffolds for Bone Tissue Engineering.

    Science.gov (United States)

    Iandolo, Donata; Ravichandran, Akhilandeshwari; Liu, Xianjie; Wen, Feng; Chan, Jerry K Y; Berggren, Magnus; Teoh, Swee-Hin; Simon, Daniel T

    2016-06-01

    Bones have been shown to exhibit piezoelectric properties, generating electrical potential upon mechanical deformation and responding to electrical stimulation with the generation of mechanical stress. Thus, the effects of electrical stimulation on bone tissue engineering have been extensively studied. However, in bone regeneration applications, only few studies have focused on the use of electroactive 3D biodegradable scaffolds at the interphase with stem cells. Here a method is described to combine the bone regeneration capabilities of 3D-printed macroporous medical grade polycaprolactone (PCL) scaffolds with the electrical and electrochemical capabilities of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT). PCL scaffolds have been highly effective in vivo as bone regeneration grafts, and PEDOT is a leading material in the field of organic bioelectronics, due to its stability, conformability, and biocompatibility. A protocol is reported for scaffolds functionalization with PEDOT, using vapor-phase polymerization, resulting in a conformal conducting layer. Scaffolds' porosity and mechanical stability, important for in vivo bone regeneration applications, are retained. Human fetal mesenchymal stem cells proliferation is assessed on the functionalized scaffolds, showing the cytocompatibility of the polymeric coating. Altogether, these results show the feasibility of the proposed approach to obtain electroactive scaffolds for electrical stimulation of stem cells for regenerative medicine. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Cell-printing and transfer technology applications for bone defects in mice.

    Science.gov (United States)

    Tsugawa, Junichi; Komaki, Motohiro; Yoshida, Tomoko; Nakahama, Ken-ichi; Amagasa, Teruo; Morita, Ikuo

    2011-10-01

    Bone regeneration therapy based on the delivery of osteogenic factors and/or cells has received a lot of attention in recent years since the discovery of pluripotent stem cells. We reported previously that the implantation of capillary networks engineered ex vivo by the use of cell-printing technology could improve blood perfusion. Here, we developed a new substrate prepared by coating glass with polyethylene glycol (PEG) to create a non-adhesive surface and subsequent photo-lithography to finely tune the adhesive property for efficient cell transfer. We examined the cell-transfer efficiency onto amniotic membrane and bone regenerative efficiency in murine calvarial bone defect. Cell transfer of KUSA-A1 cells (murine osteoblasts) to amniotic membrane was performed for 1 h using the substrates. Cell transfer using the substrate facilitated cell engraftment onto the amniotic membrane compared to that by direct cell inoculation. KUSA-A1 cells transferred onto the amniotic membrane were applied to critical-sized calvarial bone defects in mice. Micro-computed tomography (micro-CT) analysis showed rapid and effective bone formation by the cell-equipped amniotic membrane. These results indicate that the cell-printing and transfer technology used to create the cell-equipped amniotic membrane was beneficial for the cell delivery system. Our findings support the development of a biologically stable and effective bone regeneration therapy. Copyright © 2011 John Wiley & Sons, Ltd.

  16. MSCs-derived exosomes: cell-secreted nanovesicles with regenerative potential

    Directory of Open Access Journals (Sweden)

    Ana Marote

    2016-08-01

    Full Text Available Exosomes are membrane-enclosed nanovesicles (30-150 nm that shuttle active cargoes between different cells. These tiny extracellular vesicles have been recently isolated from mesenchymal stem cells (MSCs conditioned medium, a population of multipotent cells identified in several adult tissues. MSCs paracrine activity has been already shown to be the key mediator of their elicited regenerative effects. On the other hand, the individual contribution of MSCs-derived exosomes for these effects is only now being unraveled. The administration of MSCs-derived exosomes has been demonstrated to restore tissue function in multiple diseases/injury models and to induce beneficial in vitro effects, mainly mediated by exosomal-enclosed miRNAs. Additionally, the source and the culture conditions of MSCs have been shown to influence the regenerative responses induced by exosomes. Therefore, these studies reveal that MSCs-derived exosomes hold a great potential for cell-free therapies that are safer and easier to manipulate than cell-based products. Nevertheless, this is an emerging research field and hence, further studies are required to understand the full dimension of this complex intercellular communication system and how it can be optimized to take full advantage of its therapeutic effects. In this mini-review, we summarize the most significant new advances in the regenerative properties of MSCs-derived exosomes and discuss the molecular mechanisms underlying these effects.

  17. Temporomandibular Joint Regenerative Medicine

    Directory of Open Access Journals (Sweden)

    Xavier Van Bellinghen

    2018-02-01

    Full Text Available The temporomandibular joint (TMJ is an articulation formed between the temporal bone and the mandibular condyle which is commonly affected. These affections are often so painful during fundamental oral activities that patients have lower quality of life. Limitations of therapeutics for severe TMJ diseases have led to increased interest in regenerative strategies combining stem cells, implantable scaffolds and well-targeting bioactive molecules. To succeed in functional and structural regeneration of TMJ is very challenging. Innovative strategies and biomaterials are absolutely crucial because TMJ can be considered as one of the most difficult tissues to regenerate due to its limited healing capacity, its unique histological and structural properties and the necessity for long-term prevention of its ossified or fibrous adhesions. The ideal approach for TMJ regeneration is a unique scaffold functionalized with an osteochondral molecular gradient containing a single stem cell population able to undergo osteogenic and chondrogenic differentiation such as BMSCs, ADSCs or DPSCs. The key for this complex regeneration is the functionalization with active molecules such as IGF-1, TGF-β1 or bFGF. This regeneration can be optimized by nano/micro-assisted functionalization and by spatiotemporal drug delivery systems orchestrating the 3D formation of TMJ tissues.

  18. Cell and biomolecule delivery for regenerative medicine

    Science.gov (United States)

    Smith, Ian O; Ma, Peter X

    2010-01-01

    Regenerative medicine is an exciting field that aims to create regenerative alternatives to harvest tissues for transplantation. In this approach, the delivery of cells and biological molecules plays a central role. The scaffold (synthetic temporary extracellular matrix) delivers cells to the regenerative site and provides three-dimensional environments for the cells. To fulfil these functions, we design biodegradable polymer scaffolds with structural features on multiple size scales. To enhance positive cell–material interactions, we design nano-sized structural features in the scaffolds to mimic the natural extracellular matrix. We also integrate micro-sized pore networks to facilitate mass transport and neo tissue regeneration. We also design novel polymer devices and self-assembled nanospheres for biomolecule delivery to recapitulate key events in developmental and wound healing processes. Herein, we present recent work in biomedical polymer synthesis, novel processing techniques, surface engineering and biologic delivery. Examples of enhanced cellular/tissue function and regenerative outcomes of these approaches are discussed to demonstrate the excitement of the biomimetic scaffold design and biologic delivery in regenerative medicine. PMID:27877317

  19. [Bone Cell Biology Assessed by Microscopic Approach. The effect of parathyroid hormone and teriparatide on bone].

    Science.gov (United States)

    Takahata, Masahiko

    2015-10-01

    Continuous exposure to parathyroid hormone (PTH) leads to hypercalcemia and a decrease in bone volume, which is referred to as its catabolic effect, while intermittent exogenously administered PTH leads to an anabolic effect on bone. Intermittent administration of PTH dramatically increases bone remodeling and modeling through their direct and indirect effects on the functional cells of bone remodeling units and their precursors. These effects on bone metabolism differ according to dosing frequency of PTH. Therefore, different dosing frequency of PTH shows different therapeutic effects on bone in terms of bone volume and bone quality in patients with osteoporosis.

  20. Regenerative Intelligent Brake Control for Electric Motorcycles

    Directory of Open Access Journals (Sweden)

    Juan Jesús Castillo Aguilar

    2017-10-01

    Full Text Available Vehicle models whose propulsion system is based on electric motors are increasing in number within the automobile industry. They will soon become a reliable alternative to vehicles with conventional propulsion systems. The main advantages of this type of vehicles are the non-emission of polluting gases and noise and the effectiveness of electric motors compared to combustion engines. Some of the disadvantages that electric vehicle manufacturers still have to solve are their low autonomy due to inefficient energy storage systems, vehicle cost, which is still too high, and reducing the recharging time. Current regenerative systems in motorcycles are designed with a low fixed maximum regeneration rate in order not to cause the rear wheel to slip when braking with the regenerative brake no matter what the road condition is. These types of systems do not make use of all the available regeneration power, since more importance is placed on safety when braking. An optimized regenerative braking strategy for two-wheeled vehicles is described is this work. This system is designed to recover the maximum energy in braking processes while maintaining the vehicle’s stability. In order to develop the previously described regenerative control, tyre forces, vehicle speed and road adhesion are obtained by means of an estimation algorithm. A based-on-fuzzy-logic algorithm is programmed to carry out an optimized control with this information. This system recuperates maximum braking power without compromising the rear wheel slip and safety. Simulations show that the system optimizes energy regeneration on every surface compared to a constant regeneration strategy.

  1. Comparative energy analysis on a new regenerative Brayton cycle

    International Nuclear Information System (INIS)

    Goodarzi, M.

    2016-01-01

    Highlights: • New regenerative Brayton cycle has been introduced. • New cycle has higher thermal efficiency and lower exhausted heat per output power. • Regenerator may remain useful in the new cycle even at high pressure ratio. • New regenerative Brayton cycle is suggested for low pressure ratio operations. - Abstract: Gas turbines are frequently used for power generation. Brayton cycle is the basis for gas turbine operation and developing the alternative cycles. Regenerative Brayton cycle is a developed cycle for basic Brayton cycle with higher thermal efficiency at low to moderate pressure ratios. A new regenerative Brayton cycle has been introduced in the present study. Energy analysis has been conducted on ideal cycles to compare them from the first law of thermodynamics viewpoint. Comparative analyses showed that the new regenerative Brayton cycle has higher thermal efficiency than the original one at the same pressure ratio, and also lower heat absorption and exhausted heat per unite output power. Computed results show that new cycle improves thermal efficiency from 12% to 26% relative to the original regenerative Brayton cycle in the range of studied pressure ratios. Contrary to the original regenerative Brayton cycle, regenerator remains useful in the new regenerative Brayton cycle even at higher pressure ratio.

  2. Advances in Osteobiologic Materials for Bone Substitutes.

    Science.gov (United States)

    Hasan, Anwarul; Byambaa, Batzaya; Morshed, Mahboob; Cheikh, Mohammad Ibrahim; Shakoor, Rana Abdul; Mustafy, Tanvir; Marei, Hany

    2018-04-27

    A significant challenge in the current orthopedics is the development of suitable osteobiologic materials that can replace the conventional allografts, autografts and xenografts, and thereby serve as implant materials as bone substitutes for bone repair or remodeling. The complex biology behind the nano-microstructure of bones and their repair mechanisms, which involve various types of chemical and biomechanical signaling amongst different cells, has set strong requirements for biomaterials to be used in bone tissue engineering. This review presents an overview of various types of osteobiologic materials to facilitate the formation of the functional bone tissue and healing of the bone, covering metallic, ceramic, polymeric and cell-based graft substitutes, as well as some biomolecular strategies including stem cells, extracellular matrices, growth factors and gene therapies. Advantages and disadvantages of each type, particularly from the perspective of osteoinductive and osteoconductive capabilities, are discussed. Although the numerous challenges of bone regeneration in tissue engineering and regenerative medicine are yet to be entirely addressed, further advancements in osteobiologic materials will pave the way towards engineering fully functional bone replacement grafts. This article is protected by copyright. All rights reserved.

  3. Harnessing magnetic-mechano actuation in regenerative medicine and tissue engineering.

    Science.gov (United States)

    Santos, Lívia J; Reis, Rui L; Gomes, Manuela E

    2015-08-01

    Mechanical stimulus is of upmost importance in tissues developmental and regeneration processes as well as in maintaining body homeostasis. Classical physiological reactions encompass an increase of blood vessel diameter upon exposure to high blood pressure, or the expansion of cortical bone after continuous high-impact exercise. At a cellular level, it is well established that extracellular stiffness, topography, and remote magnetic actuation are instructive mechanical signals for stem cell differentiation. Based on this, biomaterials and their properties can be designed to act as true stem cell regulators, eventually leading to important advances in conventional tissue engineering techniques. This review identifies the latest advances and tremendous potential of magnetic actuation within the scope of regenerative medicine and tissue engineering. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Preventive and Regenerative Foam Rolling are Equally Effective in Reducing Fatigue-Related Impairments of Muscle Function following Exercise

    Directory of Open Access Journals (Sweden)

    Johannes Fleckenstein, Jan Wilke, Lutz Vogt, Winfried Banzer

    2017-12-01

    Full Text Available Objectives of the study were to compare the effects of a single bout of preventive or regenerative foam rolling (FR on exercise-induced neuromuscular exhaustion. Single-centre randomised-controlled study was designed. Forty-five healthy adults (22 female; 25±2 yrs were allocated to three groups: 1 FR of the lower limb muscles prior to induction of fatigue, 2 FR after induction of fatigue, 3 no-treatment control. Neuromuscular exhaustion was provoked using a standardized and validated functional agility short-term fatigue protocol. Main outcome measure was the maximal isometric voluntary force of the knee extensors (MIVF. Secondary outcomes included pain and reactive strength (RSI. Preventive (-16% and regenerative FR (-12% resulted in a decreased loss in MIVF compared to control (-21%; p 0.8, p < 0.1. Differences over time (p < 0.001 between groups regarding pain and RSI did not turn out to be clinically meaningful. A single bout of foam rolling reduces neuromuscular exhaustion with reference to maximal force production. Regenerative rather than preventive foam rolling seems sufficient to prevent further fatigue.

  5. Perfluoroalkyl substances in human bone: concentrations in bones and effects on bone cell differentiation.

    Science.gov (United States)

    Koskela, A; Koponen, J; Lehenkari, P; Viluksela, M; Korkalainen, M; Tuukkanen, J

    2017-07-28

    Perfluoroalkyl substances (PFAS), including two most commonly studied compounds perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), are widely distributed environmental pollutants, used extensively earlier. Due to their toxicological effects the use of PFAS is now regulated. Based on earlier studies on PFOA's distribution in bone and bone marrow in mice, we investigated PFAS levels and their possible link to bone microarchitecture of human femoral bone samples (n = 18). Soft tissue and bone biopsies were also taken from a 49-year old female cadaver for PFAS analyses. We also studied how PFOA exposure affects differentiation of human osteoblasts and osteoclasts. PFAS were detectable from all dry bone and bone marrow samples, PFOS and PFOA being the most prominent. In cadaver biopsies, lungs and liver contained the highest concentrations of PFAS, whereas PFAS were absent in bone marrow. Perfluorononanoic acid (PFNA) was present in the bones, PFOA and PFOS were absent. In vitro results showed no disturbance in osteogenic differentiation after PFOA exposure, but in osteoclasts, lower concentrations led to increased resorption, which eventually dropped to zero after increase in PFOA concentration. In conclusion, PFAS are present in bone and have the potential to affect human bone cells partly at environmentally relevant concentrations.

  6. Intranasal delivery of hypoxia-preconditioned bone marrow-derived mesenchymal stem cells enhanced regenerative effects after intracerebral hemorrhagic stroke in mice.

    Science.gov (United States)

    Sun, Jinmei; Wei, Zheng Zachory; Gu, Xiaohuan; Zhang, James Ya; Zhang, Yongbo; Li, Jimei; Wei, Ling

    2015-10-01

    Intracerebral hemorrhagic stroke (ICH) causes high mortality and morbidity with very limited treatment options. Cell-based therapy has emerged as a novel approach to replace damaged brain tissues and promote regenerative processes. In this study we tested the hypothesis that intranasally delivered hypoxia-preconditioned BMSCs could reach the brain, promote tissue repair and improve functional recovery after ICH. Hemorrhagic stroke was induced in adult C57/B6 mice by injection of collagenase IV into the striatum. Animals were randomly divided into three groups: sham group, intranasal BMSC treatment group, and vehicle treatment group. BMSCs were pre-treated with hypoxic preconditioning (HP) and pre-labeled with Hoechst before transplantation. Behavior tests, including the mNSS score, rotarod test, adhesive removal test, and locomotor function evaluation were performed at varying days, up to 21days, after ICH to evaluate the therapeutic effects of BMSC transplantation. Western blots and immunohistochemistry were performed to analyze the neurotrophic effects. Intranasally delivered HP-BMSCs were identified in peri-injury regions. NeuN+/BrdU+ co-labeled cells were markedly increased around the hematoma region, and growth factors, including BDNF, GDNF, and VEGF were significantly upregulated in the ICH brain after BMSC treatment. The BMSC treatment group showed significant improvement in behavioral performance compared with the vehicle group. Our data also showed that intranasally delivered HP-BMSCs migrated to peri-injury regions and provided growth factors to increase neurogenesis after ICH. We conclude that intranasal administration of BMSC is an effective treatment for ICH, and that it enhanced neuroregenerative effects and promoted neurological functional recovery after ICH. Overall, the investigation supports the potential therapeutic strategy for BMSC transplantation therapy against hemorrhagic stroke. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Maximum Safety Regenerative Power Tracking for DC Traction Power Systems

    Directory of Open Access Journals (Sweden)

    Guifu Du

    2017-02-01

    Full Text Available Direct current (DC traction power systems are widely used in metro transport systems, with running rails usually being used as return conductors. When traction current flows through the running rails, a potential voltage known as “rail potential” is generated between the rails and ground. Currently, abnormal rises of rail potential exist in many railway lines during the operation of railway systems. Excessively high rail potentials pose a threat to human life and to devices connected to the rails. In this paper, the effect of regenerative power distribution on rail potential is analyzed. Maximum safety regenerative power tracking is proposed for the control of maximum absolute rail potential and energy consumption during the operation of DC traction power systems. The dwell time of multiple trains at each station and the trigger voltage of the regenerative energy absorbing device (READ are optimized based on an improved particle swarm optimization (PSO algorithm to manage the distribution of regenerative power. In this way, the maximum absolute rail potential and energy consumption of DC traction power systems can be reduced. The operation data of Guangzhou Metro Line 2 are used in the simulations, and the results show that the scheme can reduce the maximum absolute rail potential and energy consumption effectively and guarantee the safety in energy saving of DC traction power systems.

  8. A combined approach of enamel matrix derivative gel and autogenous bone grafts in treatment of intrabony periodontal defects. A case report.

    Science.gov (United States)

    Leung, George; Jin, Lijian

    2003-04-01

    Enamel matrix derivative (EMD) has recently been introduced as a new modality in regenerative periodontal therapy. This case report demonstrates a combined approach in topical application of EMD gel (Emdogain) and autogenous bone grafts for treatment of intrabony defects and furcation involvement defects in a patient with chronic periodontitis. The seven-month post-surgery clinical and radiographic results were presented. The combined application of EMD gel with autogenous bone grafts in intrabony osseous defects resulted in clinically significant gain of attachment on diseased root surfaces and bone fill on radiographs. Further controlled clinical studies are required to confirm the long-term effectiveness of the combination of EMD gel and autogenous bone grafts in treatment of various osseous defects in subjects with chronic periodontitis.

  9. Regenerative potential and anti-bacterial activity of tetracycline loaded apatitic nanocarriers for the treatment of periodontitis

    International Nuclear Information System (INIS)

    Madhumathi, K; Sampath Kumar, T S

    2014-01-01

    Current treatment of periodontal infections includes mechanical debridement, administration of antibiotics and bone grafting. Oral administration of antibiotics results in undesirable side effects, while current modes of local administration are affected by problems concerning allergic response to the polymeric carrier agents. We have developed an osteoconductive drug delivery system composed of apatitic nanocarriers capable of providing sustained delivery of drugs in the periodontium. Calcium deficient hydroxyapatite (CDHA) nanocarriers of different Ca/P ratios were synthesized and characterized using the x-ray diffraction method, transmission electron microscopy, inductively coupled plasma atomic emission spectroscopy, Fourier transform infrared spectroscopy and the BET gas isotherm method. Loading and release studies performed with tetracycline showed a sustained release of up to 88% in phosphate buffered saline over a period of five days. Antibacterial activity studies showed that the tetracycline loaded CDHA (TC-CDHA) nanocarriers were effective against S. aureus and E. coli bacteria. The biocompatibility of the TC-CDHA nanocarriers was demonstrated using an alamar blue assay and further characterized by cell uptake studies. Interestingly, cell uptake of drug loaded CDHA also increased the cellular proliferation of human periodontal ligament fibroblast cells. Hence, it can be concluded that the CDHA nanocarriers are ideal drug delivery agents and have bone regenerative potential for local periodontal applications. (paper)

  10. Microscale Regenerative Heat Exchanger

    Science.gov (United States)

    Moran, Matthew E.; Stelter, Stephan; Stelter, Manfred

    2006-01-01

    The device described herein is designed primarily for use as a regenerative heat exchanger in a miniature Stirling engine or Stirling-cycle heat pump. A regenerative heat exchanger (sometimes called, simply, a "regenerator" in the Stirling-engine art) is basically a thermal capacitor: Its role in the Stirling cycle is to alternately accept heat from, then deliver heat to, an oscillating flow of a working fluid between compression and expansion volumes, without introducing an excessive pressure drop. These volumes are at different temperatures, and conduction of heat between these volumes is undesirable because it reduces the energy-conversion efficiency of the Stirling cycle.

  11. Chitosan and Its Potential Use as a Scaffold for Tissue Engineering in Regenerative Medicine

    Science.gov (United States)

    Rodríguez-Vázquez, Martin; Vega-Ruiz, Brenda; Ramos-Zúñiga, Rodrigo; Saldaña-Koppel, Daniel Alexander; Quiñones-Olvera, Luis Fernando

    2015-01-01

    Tissue engineering is an important therapeutic strategy to be used in regenerative medicine in the present and in the future. Functional biomaterials research is focused on the development and improvement of scaffolding, which can be used to repair or regenerate an organ or tissue. Scaffolds are one of the crucial factors for tissue engineering. Scaffolds consisting of natural polymers have recently been developed more quickly and have gained more popularity. These include chitosan, a copolymer derived from the alkaline deacetylation of chitin. Expectations for use of these scaffolds are increasing as the knowledge regarding their chemical and biological properties expands, and new biomedical applications are investigated. Due to their different biological properties such as being biocompatible, biodegradable, and bioactive, they have given the pattern for use in tissue engineering for repair and/or regeneration of different tissues including skin, bone, cartilage, nerves, liver, and muscle. In this review, we focus on the intrinsic properties offered by chitosan and its use in tissue engineering, considering it as a promising alternative for regenerative medicine as a bioactive polymer. PMID:26504833

  12. Regenerative Braking System for Series Hybrid Electric City Bus

    OpenAIRE

    Zhang, Junzhi; Lu, Xin; Xue, Junliang; Li, Bos

    2008-01-01

    Regenerative Braking Systems (RBS) provide an efficient method to assist hybrid electric buses achieve better fuel economy while lowering exhaust emissions. This paper describes the design and testing of three regenerative braking systems, one of which is a series regenerative braking system and two of which are parallel regenerative braking systems. The existing friction based Adjustable Braking System (ABS) on the bus is integrated with each of the new braking systems in order to ensure bus...

  13. Nanotechnology in bone tissue engineering.

    Science.gov (United States)

    Walmsley, Graham G; McArdle, Adrian; Tevlin, Ruth; Momeni, Arash; Atashroo, David; Hu, Michael S; Feroze, Abdullah H; Wong, Victor W; Lorenz, Peter H; Longaker, Michael T; Wan, Derrick C

    2015-07-01

    Nanotechnology represents a major frontier with potential to significantly advance the field of bone tissue engineering. Current limitations in regenerative strategies include impaired cellular proliferation and differentiation, insufficient mechanical strength of scaffolds, and inadequate production of extrinsic factors necessary for efficient osteogenesis. Here we review several major areas of research in nanotechnology with potential implications in bone regeneration: 1) nanoparticle-based methods for delivery of bioactive molecules, growth factors, and genetic material, 2) nanoparticle-mediated cell labeling and targeting, and 3) nano-based scaffold construction and modification to enhance physicochemical interactions, biocompatibility, mechanical stability, and cellular attachment/survival. As these technologies continue to evolve, ultimate translation to the clinical environment may allow for improved therapeutic outcomes in patients with large bone deficits and osteodegenerative diseases. Traditionally, the reconstruction of bony defects has relied on the use of bone grafts. With advances in nanotechnology, there has been significant development of synthetic biomaterials. In this article, the authors provided a comprehensive review on current research in nanoparticle-based therapies for bone tissue engineering, which should be useful reading for clinicians as well as researchers in this field. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. REGENERATIVE DESIGN PRACTICES IN NIGERIA: A CASE ...

    African Journals Online (AJOL)

    User

    2017-07-01

    Jul 1, 2017 ... a view to effectively implement the concept within the study area. ... REGENERATIVE DESIGN PRACTICES IN NIGERIA: A CASE STUDY OF NGOZIKA HOUSING .... could mean greater acceptance of new development by the public and .... human/environment relations based on the Cartesian separation of ...

  15. Various effects of antidepressant drugs on bone microarchitectecture, mechanical properties and bone remodeling

    International Nuclear Information System (INIS)

    Bonnet, N.; Bernard, P.; Beaupied, H; Bizot, J.C.; Trovero, F.; Courteix, D.; Benhamou, C.L.

    2007-01-01

    The aim of this study was to evaluate the effects of various drugs which present antidepressant properties: selective serotonin-reuptake inhibitors (SSRIs, fluoxetine), serotonin and noradrenaline-reuptake inhibitors (Desipramine) and phosphodiesterase inhibitors (PDE, rolipram and tofisopam) on bone microarchitecture and biomechanical properties. Twelve female mice were studied per group starting at an age of 10 weeks. During 4 weeks, they received subcutaneously either placebo or 20 mg kg -1 day -1 of desipramine, fluoxetine or 10 mg kg -1 day -1 of rolipram or tofisopam. Serum Osteocalcin and CTx were evaluated by ELISA. Bone microarchitecture of the distal femur was characterized by X-ray microCT (Skyscan1072). Mechanical properties were assessed by three-point bending test (Instron 4501) and antidepressant efficacy by forced swimming and open field tests. Fluoxetine displayed lower TbTh (- 6.1%, p -1 , 6431 ± 1182 MPa) than in placebo (101 ± 9 N mm -1 , 8441 ± 1180 MPa). Bone markers indicated a significantly higher bone formation in tofisopam (+ 8.6%) and a lower in fluoxetine (- 56.1%) compared to placebo. These data suggest deleterious effects for SSRIs, both on trabecular and cortical bone and a positive effect of PDE inhibitors on trabecular bone. Furthermore tofisopam anabolic effect in terms of bone markers, suggests a potential therapeutic effect of the PDE inhibitors on bone

  16. Application of Stem Cell Technology in Dental Regenerative Medicine.

    Science.gov (United States)

    Feng, Ruoxue; Lengner, Chistopher

    2013-07-01

    In this review, we summarize the current literature regarding the isolation and characterization of dental tissue-derived stem cells and address the potential of these cell types for use in regenerative cell transplantation therapy. Looking forward, platforms for the delivery of stem cells via scaffolds and the use of growth factors and cytokines for enhancing dental stem cell self-renewal and differentiation are discussed. We aim to understand the developmental origins of dental tissues in an effort to elucidate the molecular pathways governing the genesis of somatic dental stem cells. The advantages and disadvantages of several dental stem cells are discussed, including the developmental stage and specific locations from which these cells can be purified. In particular, stem cells from human exfoliated deciduous teeth may act as a very practical and easily accessibly reservoir for autologous stem cells and hold the most value in stem cell therapy. Dental pulp stem cells and periodontal ligament stem cells should also be considered for their triple lineage differentiation ability and relative ease of isolation. Further, we address the potentials and limitations of induced pluripotent stem cells as a cell source in dental regenerative. From an economical and a practical standpoint, dental stem cell therapy would be most easily applied in the prevention of periodontal ligament detachment and bone atrophy, as well as in the regeneration of dentin-pulp complex. In contrast, cell-based tooth replacement due to decay or other oral pathology seems, at the current time, an untenable approach.

  17. The regenerative medicine coalition. Interview with Frank-Roman Lauter.

    Science.gov (United States)

    Lauter, Frank-Roman

    2012-11-01

    Frank-Roman Lauter, Secretary General of the recently launched Regenerative Medicine Coalition, explains how the coalition was formed and what they hope to achieve. Frank-Roman Lauter has served as Secretary General of the Regenerative Medicine Coalition since 2012, and as Head of Business Development at Berlin-Brandenburg Center for Regenerative Therapies since 2007. Frank-Roman Lauter's interest is the organization of academic infrastructures to promote efficient translation of research findings into new therapies. He co-organizes joined strategy development for regenerative medicine clusters from seven European countries (FP7-EU Project) and has initiated cooperation between the California Institute for Regenerative Medicine and the German Federal Ministry for Education & Research, resulting in a joined funding program. Recently, he cofounded the international consortium of Regenerative Medicine translational centers (RMC; www.the-rmc.org ). Trained as a molecular biologist at the Max-Planck Institute in Berlin-Dahlem and at Stanford, he has 16 years of experience as an entrepreneur and life science manager in Germany and the USA.

  18. Concise Review: Multifaceted Characterization of Human Mesenchymal Stem Cells for Use in Regenerative Medicine.

    Science.gov (United States)

    Samsonraj, Rebekah M; Raghunath, Michael; Nurcombe, Victor; Hui, James H; van Wijnen, Andre J; Cool, Simon M

    2017-12-01

    Mesenchymal stem cells (MSC) hold great potential for regenerative medicine because of their ability for self-renewal and differentiation into tissue-specific cells such as osteoblasts, chondrocytes, and adipocytes. MSCs orchestrate tissue development, maintenance and repair, and are useful for musculoskeletal regenerative therapies to treat age-related orthopedic degenerative diseases and other clinical conditions. Importantly, MSCs produce secretory factors that play critical roles in tissue repair that support both engraftment and trophic functions (autocrine and paracrine). The development of uniform protocols for both preparation and characterization of MSCs, including standardized functional assays for evaluation of their biological potential, are critical factors contributing to their clinical utility. Quality control and release criteria for MSCs should include cell surface markers, differentiation potential, and other essential cell parameters. For example, cell surface marker profiles (surfactome), bone-forming capacities in ectopic and orthotopic models, as well as cell size and granularity, telomere length, senescence status, trophic factor secretion (secretome), and immunomodulation, should be thoroughly assessed to predict MSC utility for regenerative medicine. We propose that these and other functionalities of MSCs should be characterized prior to use in clinical applications as part of comprehensive and uniform guidelines and release criteria for their clinical-grade production to achieve predictably favorable treatment outcomes for stem cell therapy. Stem Cells Translational Medicine 2017;6:2173-2185. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  19. Histologic Outcomes of Uninfected Human Immature Teeth Treated with Regenerative Endodontics: 2 Case Reports.

    Science.gov (United States)

    Nosrat, Ali; Kolahdouzan, Alireza; Hosseini, Farzaneh; Mehrizi, Ehsan A; Verma, Prashant; Torabinejad, Mahmoud

    2015-10-01

    A growing body of evidence exists showing the possibility of growing vital tissues in the root canal spaces of teeth with necrotic pulps and open apices. However, there is very limited histologic information regarding characteristics of tissues formed in the root canal space of human teeth after regenerative endodontics. The aim of this study was to examine clinically and histologically the outcomes of human immature teeth treated with regenerative endodontics. Two healthy birooted human maxillary first premolar teeth scheduled for extraction were included. Preoperative radiographs confirmed that these teeth had immature apices. Vitality tests showed the presence of vital pulps in these teeth. After receiving consent forms, the teeth were isolated with a rubber dam, and the pulps were completely removed. After the formation of blood clots in the canals, the teeth were covered with mineral trioxide aggregate. Four months later, the teeth were clinically and radiographically evaluated, extracted, and examined histologically. Both patients remained asymptomatic after treatment. Radiographic examination of the teeth showed signs of root development after treatment. Histologic examination of tissues growing into the root canal space of these teeth shows the presence of connective tissue, bone and cementum formation, and thickening of roots. Based on our findings, it appears that when canals of teeth with open apices are treated with regenerative endodontics, tissues of the periodontium grow into the root canals of these teeth. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  20. Regenerative endodontics and tissue engineering: what the future holds?

    Science.gov (United States)

    Goodis, Harold E; Kinaia, Bassam Michael; Kinaia, Atheel M; Chogle, Sami M A

    2012-07-01

    The work performed by researchers in regenerative endodontics and tissue engineering over the last decades has been superb; however, many questions remain to be answered. The basic biologic mechanisms must be elucidated that will allow the development of dental pulp and dentin in situ. Stress must be placed on the many questions that will lead to the design of effective, safe treatment options and therapies. This article discusses those questions, the answers to which may become the future of regenerative endodontics. The future remains bright, but proper support and patience are required. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Clay-Enriched Silk Biomaterials for Bone Formation

    Science.gov (United States)

    Mieszawska, Aneta J.; Llamas, Jabier Gallego; Vaiana, Christopher A.; Kadakia, Madhavi P.; Naik, Rajesh R.; Kaplan, David L.

    2011-01-01

    The formation of silk protein/clay composite biomaterials for bone tissue formation is described. Silk fibroin serves as an organic scaffolding material offering mechanical stability suitable for bone specific uses. Clay montmorillonite (Cloisite ® Na+) and sodium silicate are sources of osteoinductive silica-rich inorganic species, analogous to bioactive bioglass-like bone repair biomaterial systems. Different clay particle-silk composite biomaterial films were compared to silk films doped with sodium silicate as controls for support of human bone marrow derived mesenchymal stem cells (hMSCs) in osteogenic culture. The cells adhered and proliferated on the silk/clay composites over two weeks. Quantitative real-time RT-PCR analysis revealed increased transcript levels for alkaline phosphatase (ALP), bone sialoprotein (BSP), and collagen type 1 (Col I) osteogenic markers in the cells cultured on the silk/clay films in comparison to the controls. Early evidence for bone formation based on collagen deposition at the cell-biomaterial interface was also found, with more collagen observed for the silk films with higher contents of clay particles. The data suggest that the silk/clay composite systems may be useful for further study toward bone regenerative needs. PMID:21549864

  2. Regenerative Endodontics: Barriers and Strategies for Clinical Translation

    OpenAIRE

    Kim, Sahng G.; Zhou, Jian; Ye, Ling; Cho, Shoko; Suzuki, Takahiro; Fu, Susan Y.; Yang, Rujing; Zhou, Xuedong; Mao, Jeremy J.

    2012-01-01

    Despite a great deal of enthusiasm and effort, regenerative endodontics has encountered substantial challenges towards clinical translation. Recent adoption by the American Dental Association (ADA) of evoked pulp bleeding in immature permanent teeth is an important step for regenerative endodontics. However, there is no regenerative therapy for the majority of endodontic diseases. Simple recapitulation of cell therapy and tissue engineering strategies that are under development for other orga...

  3. Effect of Probiotics Supplementation on Bone Mineral Content and Bone Mass Density

    Directory of Open Access Journals (Sweden)

    Kolsoom Parvaneh

    2014-01-01

    Full Text Available A few studies in animals and a study in humans showed a positive effect of probiotic on bone metabolism and bone mass density. Most of the investigated bacteria were Lactobacillus and Bifidobacterium . The positive results of the probiotics were supported by the high content of dietary calcium and the high amounts of supplemented probiotics. Some of the principal mechanisms include (1 increasing mineral solubility due to production of short chain fatty acids; (2 producing phytase enzyme by bacteria to overcome the effect of mineral depressed by phytate; (3 reducing intestinal inflammation followed by increasing bone mass density; (4 hydrolysing glycoside bond food in the intestines by Lactobacillus and Bifidobacteria. These mechanisms lead to increase bioavailability of the minerals. In conclusion, probiotics showed potential effects on bone metabolism through different mechanisms with outstanding results in the animal model. The results also showed that postmenopausal women who suffered from low bone mass density are potential targets to consume probiotics for increasing mineral bioavailability including calcium and consequently increasing bone mass density.

  4. Characterization of bone marrow-derived mesenchymal stem cells in aging.

    Science.gov (United States)

    Baker, Natasha; Boyette, Lisa B; Tuan, Rocky S

    2015-01-01

    Adult mesenchymal stem cells are a resource for autologous and allogeneic cell therapies for immune-modulation and regenerative medicine. However, patients most in need of such therapies are often of advanced age. Therefore, the effects of the aged milieu on these cells and their intrinsic aging in vivo are important considerations. Furthermore, these cells may require expansion in vitro before use as well as for future research. Their aging in vitro is thus also an important consideration. Here, we focus on bone marrow mesenchymal stem cells (BMSCs), which are unique compared to other stem cells due to their support of hematopoietic cells in addition to contributing to bone formation. BMSCs may be sensitive to age-related diseases and could perpetuate degenerative diseases in which bone remodeling is a contributory factor. Here, we review (1) the characterization of BMSCs, (2) the characterization of in vivo-aged BMSCs, (3) the characterization of in vitro-aged BMSCs, and (4) potential approaches to optimize the performance of aged BMSCs. This article is part of a Special Issue entitled "Stem Cells and Bone". Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Polyurethanes Crosslinked with Poly(vinyl alcohol as a Slowly-Degradable and Hydrophilic Materials of Potential Use in Regenerative Medicine

    Directory of Open Access Journals (Sweden)

    Justyna Kucińska-Lipka

    2018-02-01

    Full Text Available Novel, slowly-degradable and hydrophilic materials with proper mechanical properties and surface characteristics are in great demand within the biomedical field. In this paper, the design, synthesis, and characterization of polyurethanes (PUR crosslinked with poly(vinyl alcohol (PVA as a new proposition for regenerative medicine is described. PVA-crosslinked PURs were synthesized by a two-step polymerization performed in a solvent (dimethylsulfoxide, DMSO. The raw materials used for the synthesis of PVA-crosslinked PURs were poly(ε-caprolactone (PCL, 1,6-hexamethylene diisocyanate (HDI, and PVA as a crosslinking agent. The obtained materials were studied towards their physicochemical, mechanical, and biological performance. The tests revealed contact angle of the materials surface between 38–47° and tensile strength in the range of 41–52 MPa. Mechanical characteristics of the obtained PURs was close to the characteristics of native human bone such as the cortical bone (TSb = 51–151 MPa or the cancellous bone (TSb = 10–20 MPa. The obtained PVA-crosslinked PURs did not show significant progress of degradation after 3 months of incubation in a phosphate-buffered saline (PBS. Accordingly, the obtained materials may behave similar to slowly-degradable materials, which can provide long-term physical support in, for example, tissue regeneration, as well as providing a uniform calcium deposition on the material surface, which may influence, for example, bone restoration. A performed short-term hemocompatibility study showed that obtained PVA-crosslinked PURs do not significantly influence blood components, and a cytotoxicity test performed with the use of MG 63 cell line revealed the great cytocompatibility of the obtained materials. According to the performed studies, such PVA-crosslinked PURs may be a suitable proposition for the field of tissue engineering in regenerative medicine.

  6. Design of An Energy Efficient Hydraulic Regenerative circuit

    Science.gov (United States)

    Ramesh, S.; Ashok, S. Denis; Nagaraj, Shanmukha; Adithyakumar, C. R.; Reddy, M. Lohith Kumar; Naulakha, Niranjan Kumar

    2018-02-01

    Increasing cost and power demand, leads to evaluation of new method to increase through productivity and help to solve the power demands. Many researchers have break through to increase the efficiency of a hydraulic power pack, one of the promising methods is the concept of regenerative. The objective of this research work is to increase the efficiency of a hydraulic circuit by introducing a concept of regenerative circuit. A Regenerative circuit is a system that is used to speed up the extension stroke of the double acting single rod hydraulic cylinder. The output is connected to the input in the directional control value. By this concept, increase in velocity of the piston and decrease the cycle time. For the research, a basic hydraulic circuit and a regenerative circuit are designated and compared both with their results. The analysis was based on their time taken for extension and retraction of the piston. From the detailed analysis of both the hydraulic circuits, it is found that the efficiency by introducing hydraulic regenerative circuit increased by is 5.3%. The obtained results conclude that, implementing hydraulic regenerative circuit in a hydraulic power pack decreases power consumption, reduces cycle time and increases productivity in a longer run.

  7. Use of carboxymethyl cellulose and collagen carrier with equine bone lyophilisate suggests late onset bone regenerative effect in a humerus drill defect - a pilot study in six sheep

    DEFF Research Database (Denmark)

    Jensen, Jonas; Foldager, Casper Bindzus; Jakobsen, Thomas Vestergaard

    2010-01-01

    in the other. The animals were divided into three groups of two animals and observed for 8, 12 and 16 weeks. Drill holes was evaluated using quantitative computed tomography (QCT), micro computed tomography (microCT) and histomorphometry. Mean total bone mineral density (BMD) of each implantation site...... was calculated with both QCT and microCT. Bone volume to total volume (BV/TV) was analyzed using microCT and histomorphometry. Although not statistically significant, results showed increased bone BMD after 16 weeks in microCT data and an increased BV/TV after 16 weeks in both microCT and histology. Correlation...... between QCT and microCT was R(2) = 0.804. Correlation between histomorphometry and microCT BV/TV data was R(2) = 0.8935 and with an average overrepresentation of 8.2% in histomorphometry. In conclusion the CMC-Collagen + Colloss E filler seems like a viable osteogenic bone filler mid- to long term...

  8. Effects of combined hydroxyapatite and human platelet rich plasma on bone healing in rabbit model: radiological, macroscopical, hidtopathological and biomechanical evaluation.

    Science.gov (United States)

    Oryan, A; Meimandi Parizi, A; Shafiei-Sarvestani, Z; Bigham, A S

    2012-12-01

    Hydroxyapatite is an osteoconductive material used as a bone graft extender and exhibits excellent biocompatibility with soft tissues such as skin, muscle and gums, making it an ideal candidate for orthopedic and dental implants or components of implants. Synthetic hydroxyapatite has been widely used in repair of hard tissues, and common uses include bone repair, bone augmentation, as well as coating of implants or acting as fillers in bone or teeth. On the other hand, human platelet rich plasma (hPRP) has been used as a source of osteoinductive factor. A combination of hPRP and hydroxyapatite is expected to create a composite with both osteoconductive and osteoinductive properties. This study examined the effect of a combination of hydroxyapatite and hPRP on osteogenesis in vivo, using rabbit model bone healing. A critical size defect of 10 mm long was created in the radial diaphysis of 36 rabbit and either supplied with hydroxyapatite-human PRP or hydroxyapatite or was left empty (control group). Radiographs of each forelimb were taken postoperatively on 1st day and then at the 2nd, 4th, 6th and 8th weeks post injury to evaluate bone formation, union and remodeling of the defect. The operated radiuses of half of the animals in each group were removed on 56th postoperative day and were grossly and histopathologically evaluated. In addition, biomechanical test was conducted on the operated and normal forearms of the other half of the animals of each group. This study demonstrated that hydroxyapatite-humanPRP, could promote bone regeneration in critical size defects with a high regenerative capacity. The results of the present study demonstrated that hydroxyapatite-hPRP could be an attractive alternative for reconstruction of the major diaphyseal defects of the long bones in animal models.

  9. Adipose-derived stem cells retain their regenerative potential after methotrexate treatment

    International Nuclear Information System (INIS)

    Beane, Olivia S.; Fonseca, Vera C.; Darling, Eric M.

    2014-01-01

    In musculoskeletal tissues like bone, chemotherapy can impair progenitor cell differentiation and proliferation, resulting in decreased bone growth and mineralization throughout a patient's lifetime. In the current study, we investigated the effects of chemotherapeutics on adipose-derived stem cell (ASC) function to determine whether this cell source could be a candidate for repairing, or even preventing, chemotherapy-induced tissue damage. Dose-dependent proliferation rates of ASCs and normal human fibroblasts (NHFs) were quantified after treatment with cytarabine (CY), etoposide (ETO), methotrexate (MTX), and vincristine (VIN) using a fluorescence-based assay. The influence of MTX on the multipotency of ASCs and freshly isolated stromal vascular fraction (SVF) cells was also evaluated using lineage-specific stains and spectrophotometry. ASC and NHF proliferation were equally inhibited by exposure to CY and ETO; however, when treated with MTX and VIN, ASCs exhibited greater resistance. This was especially apparent for MTX-treated samples, with ASC proliferation showing no inhibition for clinically relevant MTX doses ranging from 0.1 to 50 μM. Additional experiments revealed that the differentiation potential of ASCs was not affected by MTX treatment and that upregulation of dihydrofolate reductase possibly contributed to this response. Moreover, SVF cells, which include ASCs, exhibited similar resistance to MTX impairment, with respect to cellular proliferation, clonogenicity, and differentiation capability. Therefore, we have shown that the regenerative properties of ASCs resist the cytotoxicity of MTX, identifying these cells as a potential key for repairing musculoskeletal damage in patients undergoing chemotherapy. - Highlights: • Long-term effects of chemotherapeutics can include musculoskeletal dysfunction. • A screen of common drugs showed disparate effects on ASCs and fibroblasts. • One drug, methotrexate, did not impair ASC growth

  10. Adipose-derived stem cells retain their regenerative potential after methotrexate treatment

    Energy Technology Data Exchange (ETDEWEB)

    Beane, Olivia S. [Center for Biomedical Engineering, Brown University, Providence, RI (United States); Fonseca, Vera C. [Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI (United States); Darling, Eric M., E-mail: Eric_Darling@brown.edu [Center for Biomedical Engineering, Brown University, Providence, RI (United States); Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI (United States); Department of Orthopaedics, Brown University, Providence, RI (United States); School of Engineering, Brown University, Providence, RI (United States)

    2014-10-01

    In musculoskeletal tissues like bone, chemotherapy can impair progenitor cell differentiation and proliferation, resulting in decreased bone growth and mineralization throughout a patient's lifetime. In the current study, we investigated the effects of chemotherapeutics on adipose-derived stem cell (ASC) function to determine whether this cell source could be a candidate for repairing, or even preventing, chemotherapy-induced tissue damage. Dose-dependent proliferation rates of ASCs and normal human fibroblasts (NHFs) were quantified after treatment with cytarabine (CY), etoposide (ETO), methotrexate (MTX), and vincristine (VIN) using a fluorescence-based assay. The influence of MTX on the multipotency of ASCs and freshly isolated stromal vascular fraction (SVF) cells was also evaluated using lineage-specific stains and spectrophotometry. ASC and NHF proliferation were equally inhibited by exposure to CY and ETO; however, when treated with MTX and VIN, ASCs exhibited greater resistance. This was especially apparent for MTX-treated samples, with ASC proliferation showing no inhibition for clinically relevant MTX doses ranging from 0.1 to 50 μM. Additional experiments revealed that the differentiation potential of ASCs was not affected by MTX treatment and that upregulation of dihydrofolate reductase possibly contributed to this response. Moreover, SVF cells, which include ASCs, exhibited similar resistance to MTX impairment, with respect to cellular proliferation, clonogenicity, and differentiation capability. Therefore, we have shown that the regenerative properties of ASCs resist the cytotoxicity of MTX, identifying these cells as a potential key for repairing musculoskeletal damage in patients undergoing chemotherapy. - Highlights: • Long-term effects of chemotherapeutics can include musculoskeletal dysfunction. • A screen of common drugs showed disparate effects on ASCs and fibroblasts. • One drug, methotrexate, did not impair ASC growth

  11. Characterization of Bone Marrow Mononuclear Cells on Biomaterials for Bone Tissue Engineering In Vitro

    Science.gov (United States)

    Verboket, René; Kontradowitz, Kerstin; Oppermann, Elsie; Brune, Jan C.; Nau, Christoph; Meier, Simon; Bonig, Halvard; Marzi, Ingo; Seebach, Caroline

    2015-01-01

    Bone marrow mononuclear cells (BMCs) are suitable for bone tissue engineering. Comparative data regarding the needs of BMC for the adhesion on biomaterials and biocompatibility to various biomaterials are lacking to a large extent. Therefore, we evaluated whether a surface coating would enhance BMC adhesion and analyze the biocompatibility of three different kinds of biomaterials. BMCs were purified from human bone marrow aspirate samples. Beta tricalcium phosphate (β-TCP, without coating or coated with fibronectin or human plasma), demineralized bone matrix (DBM), and bovine cancellous bone (BS) were assessed. Seeding efficacy on β-TCP was 95% regardless of the surface coating. BMC demonstrated a significantly increased initial adhesion on DBM and β-TCP compared to BS. On day 14, metabolic activity was significantly increased in BMC seeded on DBM in comparison to BMC seeded on BS. Likewise increased VEGF-synthesis was observed on day 2 in BMC seeded on DBM when compared to BMC seeded on BS. The seeding efficacy of BMC on uncoated biomaterials is generally high although there are differences between these biomaterials. Beta-TCP and DBM were similar and both superior to BS, suggesting either as suitable materials for spatial restriction of BMC used for regenerative medicine purposes in vivo. PMID:25802865

  12. Characterization of bone marrow mononuclear cells on biomaterials for bone tissue engineering in vitro.

    Science.gov (United States)

    Henrich, Dirk; Verboket, René; Schaible, Alexander; Kontradowitz, Kerstin; Oppermann, Elsie; Brune, Jan C; Nau, Christoph; Meier, Simon; Bonig, Halvard; Marzi, Ingo; Seebach, Caroline

    2015-01-01

    Bone marrow mononuclear cells (BMCs) are suitable for bone tissue engineering. Comparative data regarding the needs of BMC for the adhesion on biomaterials and biocompatibility to various biomaterials are lacking to a large extent. Therefore, we evaluated whether a surface coating would enhance BMC adhesion and analyze the biocompatibility of three different kinds of biomaterials. BMCs were purified from human bone marrow aspirate samples. Beta tricalcium phosphate (β-TCP, without coating or coated with fibronectin or human plasma), demineralized bone matrix (DBM), and bovine cancellous bone (BS) were assessed. Seeding efficacy on β-TCP was 95% regardless of the surface coating. BMC demonstrated a significantly increased initial adhesion on DBM and β-TCP compared to BS. On day 14, metabolic activity was significantly increased in BMC seeded on DBM in comparison to BMC seeded on BS. Likewise increased VEGF-synthesis was observed on day 2 in BMC seeded on DBM when compared to BMC seeded on BS. The seeding efficacy of BMC on uncoated biomaterials is generally high although there are differences between these biomaterials. Beta-TCP and DBM were similar and both superior to BS, suggesting either as suitable materials for spatial restriction of BMC used for regenerative medicine purposes in vivo.

  13. Characterization of Bone Marrow Mononuclear Cells on Biomaterials for Bone Tissue Engineering In Vitro

    Directory of Open Access Journals (Sweden)

    Dirk Henrich

    2015-01-01

    Full Text Available Bone marrow mononuclear cells (BMCs are suitable for bone tissue engineering. Comparative data regarding the needs of BMC for the adhesion on biomaterials and biocompatibility to various biomaterials are lacking to a large extent. Therefore, we evaluated whether a surface coating would enhance BMC adhesion and analyze the biocompatibility of three different kinds of biomaterials. BMCs were purified from human bone marrow aspirate samples. Beta tricalcium phosphate (β-TCP, without coating or coated with fibronectin or human plasma, demineralized bone matrix (DBM, and bovine cancellous bone (BS were assessed. Seeding efficacy on β-TCP was 95% regardless of the surface coating. BMC demonstrated a significantly increased initial adhesion on DBM and β-TCP compared to BS. On day 14, metabolic activity was significantly increased in BMC seeded on DBM in comparison to BMC seeded on BS. Likewise increased VEGF-synthesis was observed on day 2 in BMC seeded on DBM when compared to BMC seeded on BS. The seeding efficacy of BMC on uncoated biomaterials is generally high although there are differences between these biomaterials. Beta-TCP and DBM were similar and both superior to BS, suggesting either as suitable materials for spatial restriction of BMC used for regenerative medicine purposes in vivo.

  14. Aarhus Regenerative Orthopaedics Symposium (AROS)

    DEFF Research Database (Denmark)

    Foldager, Casper B.; Bendtsen, Michael; Berg, Lise C.

    2016-01-01

    to musculoskeletal pain and disability. The Aarhus Regenerative Orthopaedics Symposium (AROS) 2015 was motivated by the need to address regenerative challenges in an ageing population by engaging clinicians, basic scientists, and engineers. In this position paper, we review our contemporary understanding of societal......, patient-related, and basic science-related challenges in order to provide a reasoned roadmap for the future to deal with this compelling and urgent healthcare problem. © 2017 The Author(s). Published by Taylor & Francis on behalf of the Nordic Orthopedic Federation....

  15. Materials and scaffolds in medical 3D printing and bioprinting in the context of bone regeneration.

    Science.gov (United States)

    Heller, Martin; Bauer, Heide-Katharina; Goetze, Elisabeth; Gielisch, Matthias; Ozbolat, Ibrahim T; Moncal, Kazim K; Rizk, Elias; Seitz, Hermann; Gelinsky, Michael; Schröder, Heinz C; Wang, Xiaohong H; Müller, Werner E G; Al-Nawas, Bilal

    The structural and functional repair of lost bone is still one of the biggest challenges in regenerative medicine. In many cases, autologous bone is used for the reconstruction of bone tissue; however, the availability of autologous material is limited, which always means additional stress to the patient. Due to this, more and more frequently various biocompatible materials are being used instead for bone augmentation. In this context, in order to ensure the structural function of the bone, scaffolds are implanted and fixed into the bone defect, depending on the medical indication. Nevertheless, for the surgeon, every individual clinical condition in which standardized scaffolds have to be aligned is challenging, and in many cases the alignment is not possible without limitations. Therefore, in the last decades, 3D printing (3DP) or additive manufacturing (AM) of scaffolds has become one of the most innovative approaches in surgery to individualize and improve the treatment of patients. Numerous biocompatible materials are available for 3DP, and various printing techniques can be applied, depending on the process conditions of these materials. Besides these conventional printing techniques, another promising approach in the context of medical AM is 3D bioprinting, a technique which makes it possible to print human cells embedded in special carrier substances to generate functional tissues. Even the direct printing into bone defects or lesions becomes possible. 3DP is already improving the treatment of patients, and has the potential to revolutionize regenerative medicine in future.

  16. New evaluation methodology of regenerative braking contribution to energy efficiency improvement of electric vehicles

    International Nuclear Information System (INIS)

    Qiu, Chengqun; Wang, Guolin

    2016-01-01

    Highlights: • Two different contribution ratio evaluation parameters according to the deceleration braking process are proposed. • Methodologies for calculating the contribution made by regenerative brake to improve vehicle energy efficiency are proposed. • Road test results imply that the proposed parameters are effective. - Abstract: Comprehensive research is conducted on the design and control of a regenerative braking system for electric vehicles. The mechanism and evaluation methods of contribution brought by regenerative braking to improve electric vehicle’s energy efficiency are discussed and analyzed by the energy flow. Methodologies for calculating the contribution made by regenerative brake are proposed. Additionally a new regenerative braking control strategy called “serial 2 control strategy” is introduced. Moreover, two control strategies called “parallel control strategy” and “serial 1 control strategy” are proposed as the comparative control strategy. Furthermore, two different contribution ratio evaluation parameters according to the deceleration braking process are proposed. Finally, road tests are carried out under China typical city regenerative driving cycle standard with three different control strategies. The serial 2 control strategy offers considerably higher regeneration efficiency than the parallel strategy and serial 1 strategy.

  17. Cell-based Assay System for Predicting Bone Regeneration in Patient Affected by Aseptic Nonunion and Treated with Platelet Rich Fibrin.

    Science.gov (United States)

    Perut, Francesca; Dallari, Dante; Rani, Nicola; Baldini, Nicola; Granchi, Donatella

    Regenerative strategies based on the use of platelet concentrates as an autologous source of growth factors (GF) has been proposed to promote the healing of long bone nonunions. However, the relatively high failure rate stimulates interest in growing knowledge and developing solutions to obtain the best results from the regenerative approach. In this study we evaluated whether a cell-based assay system could be able to recognize patients who will benefit or not from the use of autologous platelet preparations. The autologous serum was used in culture medium to promote the osteogenic differentiation of normal bone-marrow stromal cells (BMSC). Blood samples were collected from 16 patients affected by aseptic long bone nonunion who were candidates to the treatment with autologous platelet-rich fibrin. The osteoinductive effect was detected by measuring the BMSC proliferation, the mineralization activity, and the expression of bone-related genes. Serum level of basic fibroblast growth factor (bFGF) was considered as a representative marker of the delivery of osteogenic GFs from platelets. Laboratory results were related to the characteristics of the disease before the treatment and to the outcome at 12 months. Serum samples from "good responders" showed significantly higher levels of bFGF and were able to induce a significantly higher proliferation of BMSC, while no significant differences were observed in terms of osteoblast differentiation. BMSC-based assay could be a useful tool to recognize patients who have a low probability to benefit from the use of autologous platelet concentrate to promote the healing of long bone nonunion.

  18. Stem Cell Banking for Regenerative and Personalized Medicine

    Directory of Open Access Journals (Sweden)

    David T. Harris

    2014-02-01

    Full Text Available Regenerative medicine, tissue engineering and gene therapy offer the opportunity to treat and cure many of today’s intractable afflictions. These approaches to personalized medicine often utilize stem cells to accomplish these goals. However, stem cells can be negatively affected by donor variables such as age and health status at the time of collection, compromising their efficacy. Stem cell banking offers the opportunity to cryogenically preserve stem cells at their most potent state for later use in these applications. Practical stem cell sources include bone marrow, umbilical cord blood and tissue, and adipose tissue. Each of these sources contains stem cells that can be obtained from most individuals, without too much difficulty and in an economical fashion. This review will discuss the advantages and disadvantages of each stem cell source, factors to be considered when contemplating banking each stem cell source, the methodology required to bank each stem cell source, and finally, current and future clinical uses of each stem cell source.

  19. Stem Cell Banking for Regenerative and Personalized Medicine

    Science.gov (United States)

    Harris, David T.

    2014-01-01

    Regenerative medicine, tissue engineering and gene therapy offer the opportunity to treat and cure many of today’s intractable afflictions. These approaches to personalized medicine often utilize stem cells to accomplish these goals. However, stem cells can be negatively affected by donor variables such as age and health status at the time of collection, compromising their efficacy. Stem cell banking offers the opportunity to cryogenically preserve stem cells at their most potent state for later use in these applications. Practical stem cell sources include bone marrow, umbilical cord blood and tissue, and adipose tissue. Each of these sources contains stem cells that can be obtained from most individuals, without too much difficulty and in an economical fashion. This review will discuss the advantages and disadvantages of each stem cell source, factors to be considered when contemplating banking each stem cell source, the methodology required to bank each stem cell source, and finally, current and future clinical uses of each stem cell source. PMID:28548060

  20. Regenerative Rehabilitation: Combining Stem Cell Therapies and Activity-Dependent Stimulation.

    Science.gov (United States)

    Moritz, Chet T; Ambrosio, Fabrisia

    2017-07-01

    The number of clinical trials in regenerative medicine is burgeoning, and stem cell/tissue engineering technologies hold the possibility of becoming the standard of care for a multitude of diseases and injuries. Advances in regenerative biology reveal novel molecular and cellular targets, with potential to optimize tissue healing and functional recovery, thereby refining rehabilitation clinical practice. The purpose of this review is to (1) highlight the potential for synergy between the fields of regenerative medicine and rehabilitation, a convergence of disciplines known as regenerative rehabilitation; (2) provide translational examples of regenerative rehabilitation within the context of neuromuscular injuries and diseases; and (3) offer recommendations for ways to leverage activity dependence via combined therapy and technology, with the goal of enhancing long-term recovery. The potential clinical benefits of regenerative rehabilitation will likely become a critical aspect in the standard of care for many neurological and musculoskeletal disorders.

  1. Regenerative Medicine for Neurological Disorders

    Directory of Open Access Journals (Sweden)

    Dong-Hyuk Park

    2010-01-01

    Full Text Available The annual meeting of the American Society for Neural Therapy and Repair (ASNTR has always introduced us to top-notch and up-to-date approaches for regenerative medicine related to neuroscience, ranging from stem cell–based therapy to novel drugs. The 16th ASNTR meeting focused on a variety of different topics, including the unknown pathogenesis or mechanisms of specific neurodegenerative diseases, stem cell biology, and development of novel alternative medicines or devices. Newly developed stem cells, such as amniotic epithelial stem cells and induced pluripotent stem cells, as well as well-known traditional stem cells, such as neural, embryonic, bone marrow mesenchymal, and human umbilical cord blood–derived stem cells, were reported. A number of commercialized stem cells were also covered at this meeting. Fetal neural tissues, such as ventral mesencephalon, striatum, and Schwann cells, were investigated for neurodegenerative diseases or spinal cord injury. A number of studies focused on novel methods for drug monitoring or graft tracking, and combination therapy with stem cells and medicine, such as cytokines or trophic factors. Finally, the National Institutes of Health guidelines for human stem cell research, clinical trials of commercialized stem cells without larger animal testing, and prohibition of medical tourism were big controversial issues that led to heated discussion.

  2. Engineering growth factors for regenerative medicine applications.

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Aaron C.; Briquez, Priscilla S.; Hubbell, Jeffrey A.; Cochran, Jennifer R.

    2016-01-15

    Growth factors are important morphogenetic proteins that instruct cell behavior and guide tissue repair and renewal. Although their therapeutic potential holds great promise in regenerative medicine applications, translation of growth factors into clinical treatments has been hindered by limitations including poor protein stability, low recombinant expression yield, and suboptimal efficacy. This review highlights current tools, technologies, and approaches to design integrated and effective growth factor-based therapies for regenerative medicine applications. The first section describes rational and combinatorial protein engineering approaches that have been utilized to improve growth factor stability, expression yield, biodistribution, and serum half-life, or alter their cell trafficking behavior or receptor binding affinity. The second section highlights elegant biomaterial-based systems, inspired by the natural extracellular matrix milieu, that have been developed for effective spatial and temporal delivery of growth factors to cell surface receptors. Although appearing distinct, these two approaches are highly complementary and involve principles of molecular design and engineering to be considered in parallel when developing optimal materials for clinical applications.

  3. The effect of Platelet Lysate on osteoblast proliferation associated with a transient increase of the inflammatory response in bone regeneration.

    Science.gov (United States)

    Ruggiu, Alessandra; Ulivi, Valentina; Sanguineti, Francesca; Cancedda, Ranieri; Descalzi, Fiorella

    2013-12-01

    Platelet Lysate (PL) contains a cocktail of growth factors and cytokines, which actively participates in tissue repair and its clinical application has been broadly described. The aim of this study was to assess the regenerative potential of PL for bone repair. We demonstrated that PL stimulation induces a transient increase of the inflammatory response in quiescent human osteoblasts, via NF-kB activation, COX-2 induction, PGE2 production and secretion of pro-inflammatory cytokines. Furthermore, we showed that long-term PL stimulation enhances proliferation of actively replicating osteoblasts, without affecting their differentiation potential, along with changes of cell morphology, resulting in increased cell density at confluence. In confluent resting osteoblasts, PL treatment induced resumption of proliferation, change in cell morphology and increase of cell density at confluence. A burst of PL treatment (24-h) was sufficient to trigger such processes in both conditions. These results correlated with up-regulation of the proliferative and survival pathways ERKs and Akt and with cell cycle re-activation via induction of CyclinD1 and phosphorylation of Rb, following PL stimulation. Our findings demonstrate that PL treatment results in activation and expansion of resting osteoblasts, without affecting their differentiation potential. Therefore PL represents a good therapeutic candidate in regenerative medicine for bone repair. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Advanced regenerative heat recovery system

    Science.gov (United States)

    Prasad, A.; Jasti, J. K.

    1982-02-01

    A regenerative heat recovery system was designed and fabricated to deliver 1500 scfm preheated air to a maximum temperature of 1600 F. Since this system is operating at 2000 F, the internal parts were designed to be fabricated with ceramic materials. This system is also designed to be adaptable to an internal metallic structure to operate in the range of 1100 to 1500 F. A test facility was designed and fabricated to test this system. The test facility is equipped to impose a pressure differential of up to 27 inches of water column in between preheated air and flue gas lines for checking possible leakage through the seals. The preliminary tests conducted on the advanced regenerative heat recovery system indicate the thermal effectiveness in the range of 60% to 70%. Bench scale studies were conducted on various ceramic and gasket materials to identify the proper material to be used in high temperature applications. A market survey was conducted to identify the application areas for this heat recovery system. A cost/benefit analysis showed a payback period of less than one and a half years.

  5. Overcoming immunological barriers in regenerative medicine.

    Science.gov (United States)

    Zakrzewski, Johannes L; van den Brink, Marcel R M; Hubbell, Jeffrey A

    2014-08-01

    Regenerative therapies that use allogeneic cells are likely to encounter immunological barriers similar to those that occur with transplantation of solid organs and allogeneic hematopoietic stem cells (HSCs). Decades of experience in clinical transplantation hold valuable lessons for regenerative medicine, offering approaches for developing tolerance-induction treatments relevant to cell therapies. Outside the field of solid-organ and allogeneic HSC transplantation, new strategies are emerging for controlling the immune response, such as methods based on biomaterials or mimicry of antigen-specific peripheral tolerance. Novel biomaterials can alter the behavior of cells in tissue-engineered constructs and can blunt host immune responses to cells and biomaterial scaffolds. Approaches to suppress autoreactive immune cells may also be useful in regenerative medicine. The most innovative solutions will be developed through closer collaboration among stem cell biologists, transplantation immunologists and materials scientists.

  6. Tissue-specific composite cell aggregates drive periodontium tissue regeneration by reconstructing a regenerative microenvironment.

    Science.gov (United States)

    Zhu, Bin; Liu, Wenjia; Zhang, Hao; Zhao, Xicong; Duan, Yan; Li, Dehua; Jin, Yan

    2017-06-01

    Periodontitis is the most common cause of periodontium destruction. Regeneration of damaged tissue is the expected treatment goal. However, the regeneration of a functional periodontal ligament (PDL) insertion remains a difficulty, due to complicated factors. Recently, periodontal ligament stem cells (PDLSCs) and bone marrow-derived mesenchymal stem cells (BMMSCs) have been shown to participate in PDL regeneration, both pathologically and physiologically. Besides, interactions affect the biofunctions of different derived cells during the regenerative process. Therefore, the purpose of this study was to discuss the different derived composite cell aggregate (CA) systems of PDLSCs and BMMSCs (iliac-derived or jaw-derived) for periodontium regeneration under regenerative microenvironment reconstruction. Our results showed although all three mono-MSC CAs were compacted and the cells arranged regularly in them, jaw-derived BMMSC (JBMMSC) CAs secreted more extracellular matrix than the others. Furthermore, PDLSC/JBMMSC compound CAs highly expressed ALP, Col-I, fibronectin, integrin-β1 and periostin, suggesting that their biofunction is more appropriate for periodontal structure regeneration. Inspiringly, PDLSC/JBMMSC compound CAs regenerated more functional PDL-like tissue insertions in both nude mice ectopic and minipig orthotopic transplantation. The results indicated that the different derived CAs of PDLSCs/JBMMSCs provided an appropriate regenerative microenvironment facilitating a more stable and regular regeneration of functional periodontium tissue. This method may provide a possible strategy to solve periodontium defects in periodontitis and powerful experimental evidence for clinical applications in the future. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  7. Regenerative endodontics--Creating new horizons.

    Science.gov (United States)

    Dhillon, Harnoor; Kaushik, Mamta; Sharma, Roshni

    2016-05-01

    Trauma to the dental pulp, physical or microbiologic, can lead to inflammation of the pulp followed by necrosis. The current treatment modality for such cases is non-surgical root canal treatment. The damaged tissue is extirpated and the root canal system prepared. It is then obturated with an inert material such a gutta percha. In spite of advances in techniques and materials, 10%-15% of the cases may end in failure of treatment. Regenerative endodontics combines principles of endodontics, cell biology, and tissue engineering to provide an ideal treatment for inflamed and necrotic pulp. It utilizes mesenchymal stem cells, growth factors, and organ tissue culture to provide treatment. Potential treatment modalities include induction of blood clot for pulp revascularization, scaffold aided regeneration, and pulp implantation. Although in its infancy, successful treatment of damaged pulp tissue has been performed using principles of regenerative endodontics. This field is dynamic and exciting with the ability to shape the future of endodontics. This article highlights the fundamental concepts, protocol for treatment, and possible avenues for research in regenerative endodontics. © 2015 Wiley Periodicals, Inc.

  8. Femtosecond laser ablation of bovine cortical bone

    Science.gov (United States)

    Cangueiro, Liliana T.; Vilar, Rui; Botelho do Rego, Ana M.; Muralha, Vania S. F.

    2012-12-01

    We study the surface topographical, structural, and compositional modifications induced in bovine cortical bone by femtosecond laser ablation. The tests are performed in air, with a Yb:KYW chirped-pulse-regenerative amplification laser system (500 fs, 1030 nm) at fluences ranging from 0.55 to 2.24 J/cm2. The ablation process is monitored by acoustic emission measurements. The topography of the laser-treated surfaces is studied by scanning electron microscopy, and their constitution is characterized by glancing incidence x-ray diffraction, x-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and micro-Raman spectroscopy. The results show that femtosecond laser ablation allows removing bone without melting, carbonization, or cracking. The structure and composition of the remaining tissue are essentially preserved, the only constitutional changes observed being a reduction of the organic material content and a partial recrystallization of hydroxyapatite in the most superficial region of samples. The results suggest that, within this fluence range, ablation occurs by a combination of thermal and electrostatic mechanisms, with the first type of mechanism predominating at lower fluences. The associated thermal effects explain the constitutional changes observed. We show that femtosecond lasers are a promising tool for delicate orthopaedic surgeries, where small amounts of bone must be cut with negligible damage, thus minimizing surgical trauma.

  9. Multimodal Approaches for Regenerative Stroke Therapies: Combination of Granulocyte Colony-Stimulating Factor with Bone Marrow Mesenchymal Stem Cells is Not Superior to G-CSF Alone

    Directory of Open Access Journals (Sweden)

    Adrian Tudor Balseanu

    2014-06-01

    Full Text Available Attractive therapeutic strategies to enhance post-stroke recovery of aged brains include methods of cellular therapy that can enhance the endogenous restorative mechanisms of the injured brain. Since stroke afflicts mostly the elderly, it is highly desirable to test the efficacy of cell therapy in the microenvironment of aged brains that is generally refractory to regeneration. In particular, stem cells from the bone marrow allow an autologous transplantation approach that can be translated in the near future to the clinical practice. Such a bone marrow-derived therapy includes the grafting of stem cells as well as the delayed induction of endogenous stem cell mobilization and homing by the stem cell mobilizer granulocyte colony-stimulating factor (G-CSF. We tested the hypothesis that grafting of bone marrow-derived pre-differentiated mesenchymal cells (BM-MSCs in G-CSF-treated animals improves the long-term functional outcome in aged rodents. To this end, G-CSF alone (50 μg/kg or in combination with a single dose (106 cells of rat BM MSCs was administered intravenously to Sprague-Dawley rats at 6 h after transient occlusion (90 min of the middle cerebral artery. Infarct volume was measured by magnetic resonance imaging at 3 and 48 days post-stroke and additionally by immunhistochemistry at day 56. Functional recovery was tested during the entire post-stroke survival period of 56 days. Daily treatment for post-stroke aged rats with G-CSF led to a robust and consistent improvement of neurological function after 28 days. The combination therapy also led to robust angiogenesis in the formerly infarct core and beyond in the “islet of regeneration.” However, G-CSF + BM MSCs may not impact at all on the spatial reference-memory task or infarct volume and therefore did not further improve the post-stroke recovery. We suggest that in a real clinical practice involving older post-stroke patients, successful regenerative therapies

  10. Performance enhancement of a solar still using cotton regenerative medium

    Directory of Open Access Journals (Sweden)

    Thirumalai Gopal Sakthivel

    2017-01-01

    Full Text Available This paper presents the performance of a single slope solar still using cotton cloth regenerative medium. The performance was evaluated under the metrological conditions of Chennai city in India during the summer months of 2016. Two single-slope solar stills are fabricated with an effective area of 0.5 m2 with various thicknesses (2, 4, 6, and 8 mm of cotton cloth were used for the performance comparison. The results showed, the solar still with 6 mm thick cotton assisted regenerative solar still has about 28% improved productivity when compared to conventional solar still.

  11. The dissolution kinetics of magnetite under regenerative conditions

    International Nuclear Information System (INIS)

    Ranganathan, S.

    2004-01-01

    Dissolution studies of magnetite were carried out under regenerative conditions in dilute chemical decontamination formulations. During regeneration of the formulation, the H + from the strong acid cation exchange resin gets released and the metal is absorbed on the resin. The efficiency of the regenerative process depends on the stability constants of the complexes involved and the selectivity on the ion exchange column. The regenerative condition helps to maintain a constant chelating agent concentration and pH during the dissolution experiment. Such a condition is ideal for obtaining data on the dissolution behaviour of the corrosion products with special application to actual reactor decontamination. The ethylenediaminetetraacetic acid (EDTA) based formulation used was found to be ineffective due to the high stability constant of Fe(III)-EDTA complex, which is not easily cleaved by the cation exchange resin. Hence, knowledge of the kinetics of magnetite dissolution under regenerative condition is of primary importance. The 2,6-pyridinedicarboxylic acid formulation is found to be better for the dissolution of Fe 3 O 4 in both static and regenerative modes in the presence of reductants than nitrilotriacetic acid and EDTA. (orig.)

  12. The dissolution kinetics of magnetite under regenerative conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ranganathan, S. [New Brunswick Univ., Frederiction (Canada). Dept. of Chemical Engineering; Raghavan, P.S.; Gopalan, R.; Srinivasan, M.P.; Narasimhan, S.V. [Water and Steam Chemistry Lab. of Bhabha Atomic Research Centre (BARC) (India)

    2004-07-01

    Dissolution studies of magnetite were carried out under regenerative conditions in dilute chemical decontamination formulations. During regeneration of the formulation, the H{sup +} from the strong acid cation exchange resin gets released and the metal is absorbed on the resin. The efficiency of the regenerative process depends on the stability constants of the complexes involved and the selectivity on the ion exchange column. The regenerative condition helps to maintain a constant chelating agent concentration and pH during the dissolution experiment. Such a condition is ideal for obtaining data on the dissolution behaviour of the corrosion products with special application to actual reactor decontamination. The ethylenediaminetetraacetic acid (EDTA) based formulation used was found to be ineffective due to the high stability constant of Fe(III)-EDTA complex, which is not easily cleaved by the cation exchange resin. Hence, knowledge of the kinetics of magnetite dissolution under regenerative condition is of primary importance. The 2,6-pyridinedicarboxylic acid formulation is found to be better for the dissolution of Fe{sub 3}O{sub 4} in both static and regenerative modes in the presence of reductants than nitrilotriacetic acid and EDTA. (orig.)

  13. Optimization of the alignment sensitivity and energy stability of the NIF regenerative amplifier cavity

    International Nuclear Information System (INIS)

    Hopps, N. W.

    1998-01-01

    The work to improve the energy stability of the regenerative amplifier ('regen') for the National Ignition Facility is described. This includes a fast feed-forward system, designed to regulate the output energy of the regen by monitoring how quickly a pulse builds up over many round trips. Shot-to-shot energy fluctuations of all elements prior to (and including) the regen may be compensated for in this way, at the expense of a loss of approximately 50%. Also included is a detailed study into the alignment sensitivity of the regen cavity, with the goal of quantifying the effect of misalignment on the output energy. This is done by calculating the displacement of the eigenmode by augmenting the cavity ABCD matrix with the misalignment matrix elements, E, F. In this way, cavity misalignment issues due to thermal loading of the gain medium are investigated. Alternative cavity designs, which reduce the alignment sensitivity and therefore the energy drift over periods of continuous operation, are considered. Alterations to the amplifier head design are also considered

  14. Bone marrow stem cell mobilization in stroke: a ‘bonehead’ may be good after all!

    OpenAIRE

    Borlongan, CV

    2011-01-01

    Mobilizing bone cells to the head, astutely referred to as ‘bonehead’ therapeutic approach, represents a major discipline of regenerative medicine. The last decade has witnessed mounting evidence supporting the capacity of bone marrow (BM)-derived cells to mobilize from BM to peripheral blood (PB), eventually finding their way to the injured brain. This homing action is exemplified in BM stem cell mobilization following ischemic brain injury. Here, I review accumulating laboratory studies imp...

  15. Fusion of intestinal epithelial cells with bone marrow derived cells is dispensable for tissue homeostasis

    NARCIS (Netherlands)

    de Jong, Joan H.; Rodermond, Hans M.; Zimberlin, Cheryl D.; Lascano, Valeria; de Sousa E Melo, Felipe; Richel, Dick J.; Medema, Jan Paul; Vermeulen, Louis

    2012-01-01

    The epithelial lining of the intestine is characterized by an immense cellular turn-over ascertaining an extensive regenerative capacity. Multiple reports suggest that besides the local intestinal stem cell pool, circulating cells of bone marrow origin (BMDCs) contribute to this process by fusing

  16. Regenerative Hydride Heat Pump

    Science.gov (United States)

    Jones, Jack A.

    1992-01-01

    Hydride heat pump features regenerative heating and single circulation loop. Counterflow heat exchangers accommodate different temperatures of FeTi and LaNi4.7Al0.3 subloops. Heating scheme increases efficiency.

  17. Combined hydraulic and regenerative braking system

    Science.gov (United States)

    Venkataperumal, R.R.; Mericle, G.E.

    1979-08-09

    A combined hydraulic and regenerative braking system and method for an electric vehicle is disclosed. The braking system is responsive to the applied hydraulic pressure in a brake line to control the braking of the vehicle to be completely hydraulic up to a first level of brake line pressure, to be partially hydraulic at a constant braking force and partially regenerative at a linearly increasing braking force from the first level of applied brake line pressure to a higher second level of brake line pressure, to be partially hydraulic at a linearly increasing braking force and partially regenerative at a linearly decreasing braking force from the second level of applied line pressure to a third and higher level of applied line pressure, and to be completely hydraulic at a linearly increasing braking force from the third level to all higher applied levels of line pressure.

  18. The roles of cellular and molecular components of a hematoma at early stage of bone healing.

    Science.gov (United States)

    Shiu, Hoi Ting; Leung, Ping Chung; Ko, Chun Hay

    2018-04-01

    Bone healing is a complex repair process that commences with the formation of a blood clot at the injured bone, termed hematoma. It has evidenced that a lack of a stable hematoma causes delayed bone healing or non-union. The hematoma at the injured bone constitutes the early healing microenvironment. It appears to dictate healing pathways that ends in a regenerative bone. However, the hematoma is often clinically removed from the damaged site. Conversely, blood-derived products have been used in bone tissue engineering for treating critical sized defects, including fibrin gels and platelet-rich plasma. A second generation of platelet concentrate that is based on leukocyte and fibrin content has also been developed and introduced in market. Conflicting effect of these products in bone repair are reported. We propose that the bone healing response becomes dysregulated if the blood response and subsequent formation and properties of a hematoma are altered. This review focuses on the central structural, cellular, and molecular components of a fracture hematoma, with a major emphasis on their roles in regulating bone healing mechanism, and their interactions with mesenchymal stem cells. New angles towards a better understanding of these factors and relevant mechanisms involved at the beginning of bone healing may help to clarify limited or adverse effects of blood-derived products on bone repair. We emphasize that the recreation of an early hematoma niche with critical compositions might emerge as a viable therapeutic strategy for enhanced skeletal tissue engineering. Copyright © 2017 John Wiley & Sons, Ltd.

  19. Advances in Bone Marrow Stem Cell Therapy for Retinal Dysfunction

    Science.gov (United States)

    Park, Susanna S.; Moisseiev, Elad; Bauer, Gerhard; Anderson, Johnathon D.; Grant, Maria B.; Zam, Azhar; Zawadzki, Robert J.; Werner, John S.; Nolta, Jan A.

    2016-01-01

    The most common cause of untreatable vision loss is dysfunction of the retina. Conditions, such as age-related macular degeneration, diabetic retinopathy and glaucoma remain leading causes of untreatable blindness worldwide. Various stem cell approaches are being explored for treatment of retinal regeneration. The rationale for using bone marrow stem cells to treat retinal dysfunction is based on preclinical evidence showing that bone marrow stem cells can rescue degenerating and ischemic retina. These stem cells have primarily paracrine trophic effects although some cells can directly incorporate into damaged tissue. Since the paracrine trophic effects can have regenerative effects on multiple cells in the retina, the use of this cell therapy is not limited to a particular retinal condition. Autologous bone marrow-derived stem cells are being explored in early clinical trials as therapy for various retinal conditions. These bone marrow stem cells include mesenchymal stem cells, mononuclear cells and CD34+ cells. Autologous therapy requires no systemic immunosuppression or donor matching. Intravitreal delivery of CD34+ cells and mononuclear cells appears to be tolerated and is being explored since some of these cells can home into the damaged retina after intravitreal administration. The safety of intravitreal delivery of mesenchymal stem cells has not been well established. This review provides an update of the current evidence in support of the use of bone marrow stem cells as treatment for retinal dysfunction. The potential limitations and complications of using certain forms of bone marrow stem cells as therapy are discussed. Future directions of research include methods to optimize the therapeutic potential of these stem cells, non-cellular alternatives using extracellular vesicles, and in vivo high-resolution retinal imaging to detect cellular changes in the retina following cell therapy. PMID:27784628

  20. Bioactivation of calcium deficient hydroxyapatite with foamed gelatin gel. A new injectable self-setting bone analogue.

    Science.gov (United States)

    Dessì, M; Alvarez-Perez, M A; De Santis, R; Ginebra, M P; Planell, J A; Ambrosio, L

    2014-02-01

    An alternative approach to bone repair for less invasive surgical techniques, involves the development of biomaterials directly injectable into the injury sites and able to replicate a spatially organized platform with features of bone tissue. Here, the preparation and characterization of an innovative injectable bone analogue made of calcium deficient hydroxyapatite and foamed gelatin is presented. The biopolymer features and the cement self-setting reaction were investigated by rheological analysis. The porous architecture, the evolution of surface morphology and the grains dimension were analyzed with electron microscopy (SEM/ESEM/TEM). The physico-chemical properties were characterized by X-ray diffraction and FTIR analysis. Moreover, an injection test was carried out to prove the positive effect of gelatin on the flow ensuing that cement is fully injectable. The cement mechanical properties are adequate to function as temporary substrate for bone tissue regeneration. Furthermore, MG63 cells and bone marrow-derived human mesenchymal stem cells (hMSCs) were able to migrate and proliferate inside the pores, and hMSCs differentiated to the osteoblastic phenotype. The results are paving the way for an injectable bone substitute with properties that mimic natural bone tissue allowing the successful use as bone filler for craniofacial and orthopedic reconstructions in regenerative medicine.

  1. Non-invasive monitoring of cytokine-based regenerative treatment of cartilage by hyperspectral unmixing (Conference Presentation)

    Science.gov (United States)

    Mahbub, Saabah B.; Succer, Peter; Gosnell, Martin E.; Anwaer, Ayad G.; Herbert, Benjamin; Vesey, Graham; Goldys, Ewa M.

    2016-03-01

    Extracting biochemical information from tissue autofluorescence is a promising approach to non-invasively monitor disease treatments at a cellular level, without using any external biomarkers. Our recently developed unsupervised hyperspectral unmixing by Dependent Component Analysis (DECA) provides robust and detailed metabolic information with proper account of intrinsic cellular heterogeneity. Moreover this method is compatible with established methods of fluorescent biomarker labelling. Recently adipose-derived stem cell (ADSC) - based therapies have been introduced for treating different diseases in animals and humans. ADSC have been shown promise in regenerative treatments for osteoarthritis and other bone and joint disorders. One of the mechanism of their action is their anti-inflammatory effects within osteoarthritic joints which aid the regeneration of cartilage. These therapeutic effects are known to be driven by secretions of different cytokines from the ADSCs. We have been using the hyperspectral unmixing techniques to study in-vitro the effects of ADSC-derived cytokine-rich secretions with the cartilage chip in both human and bovine samples. The study of metabolic effects of different cytokine treatment on different cartilage layers makes it possible to compare the merits of those treatments for repairing cartilage.

  2. Autonomous Operation of Super-Regenerative Receiver in BAN

    NARCIS (Netherlands)

    Kalyanasundaram, P.; Huang, L.; Dolmans, G.; Imamura, K.

    2012-01-01

    Super-regenerative receiver is one of the potential candidates to achieve ultra low power wireless communication in body area network (BAN). The main limitations of the super-regenerative receiver include the difficulty in choosing a good quench waveform to optimize its sensitivity and selectivity,

  3. Adaptive controller for regenerative and friction braking system

    Science.gov (United States)

    Davis, Roy I.

    1990-01-01

    A regenerative and friction braking system for a vehicle having one or more roadwheels driven by an electric traction motor includes a driver responsive device for producing a brake demand signal having a magnitude corresponding to the level of braking force selected by the driver and friction and regenerative brakes operatively connected with the roadwheels of the vehicle. A system according to this invention further includes control means for operating the friction and regenerative braking subsystems so that maximum brake torques sustainable by the roadwheels of the vehicle without skidding or slipping will not be exceeded.

  4. State of the art: stem cells in equine regenerative medicine.

    Science.gov (United States)

    Lopez, M J; Jarazo, J

    2015-03-01

    According to Greek mythology, Prometheus' liver grew back nightly after it was removed each day by an eagle as punishment for giving mankind fire. Hence, contrary to popular belief, the concept of tissue and organ regeneration is not new. In the early 20th century, cell culture and ex vivo organ preservation studies by Alexis Carrel, some with famed aviator Charles Lindbergh, established a foundation for much of modern regenerative medicine. While early beliefs and discoveries foreshadowed significant accomplishments in regenerative medicine, advances in knowledge within numerous scientific disciplines, as well as nano- and micromolecular level imaging and detection technologies, have contributed to explosive advances over the last 20 years. Virtually limitless preparations, combinations and applications of the 3 major components of regenerative medicine, namely cells, biomaterials and bioactive molecules, have created a new paradigm of future therapeutic options for most species. It is increasingly clear, however, that despite significant parallels among and within species, there is no 'one-size-fits-all' regenerative therapy. Likewise, a panacea has yet to be discovered that completely reverses the consequences of time, trauma and disease. Nonetheless, there is no question that the promise and potential of regenerative medicine have forever altered medical practices. The horse is a relative newcomer to regenerative medicine applications, yet there is already a large body of work to incorporate novel regenerative therapies into standard care. This review focuses on the current state and potential future of stem cells in equine regenerative medicine. © 2014 EVJ Ltd.

  5. Platelet rich fibrin - a novel acumen into regenerative endodontic therapy

    Directory of Open Access Journals (Sweden)

    Kavita Hotwani

    2014-02-01

    Full Text Available Research into regenerative dentistry has added impetus onto the field of molecular biology. It can be documented as a prototype shift in the therapeutic armamentarium for dental disease. Regenerative endodontic procedures are widely being added to the current armamentarium of pulp therapy procedures. The regenerative potential of platelets has been deliberated. A new family of platelet concentrates called the platelet rich fibrin (PRF has been recently used by several investigators and has shown application in diverse disciplines of dentistry. This paper is intended to add light on the various prospects of PRF and clinical insights to regenerative endodontic therapy.

  6. Effects of Spaceflight on Bone: The Rat as an Animal Model for Human Bone Loss

    Science.gov (United States)

    Halloran, B.; Weider, T.; Morey-Holton, E.

    1999-01-01

    The loss of weight bearing during spaceflight results in osteopenia in humans. Decrements in bone mineral reach 3-10% after as little as 75-184 days in space. Loss of bone mineral during flight decreases bone strength and increases fracture risk. The mechanisms responsible for, and the factors contributing to, the changes in bone induced by spaceflight are poorly understood. The rat has been widely used as an animal model for human bone loss during spaceflight. Despite its potential usefulness, the results of bone studies performed in the rat in space have been inconsistent. In some flights bone formation is decreased and cancellous bone volume reduced, while in others no significant changes in bone occur. In June of 1996 Drs. T. Wronski, S. Miller and myself participated in a flight experiment (STS 78) to examine the effects of glucocorticoids on bone during weightlessness. Technically the 17 day flight experiment was flawless. The results, however, were surprising. Cancellous bone volume and osteoblast surface in the proximal tibial metaphysis were the same in flight and ground-based control rats. Normal levels of cancellous bone mass and bone formation were also detected in the lumbar vertebrae and femoral neck of flight rats. Furthermore, periosteal bone formation rate was found to be identical in flight and ground-based control rats. Spaceflight had little or no effect on bone metabolism! These results prompted us to carefully review the changes in bone observed in, and the flight conditions of previous spaceflight missions.

  7. The effect of bone marrow aspirate, bone graft and collagen composites on fixation of bone implants

    DEFF Research Database (Denmark)

    Babiker, Hassan; Ding, Ming; Overgaard, Søren

    2007-01-01

     Introduction: Replacement of extensive local bone loss especially in revision joint arthroplasties is a significant clinical challenge. Autogenous and allogenic cancellous bone grafts have been the gold standard in reconstructive orthopaedic surgery, but it is well known that there is morbidity...... associated with harvesting of autogenous bone graft and limitations in the quantity of bone available. Disadvantages of allograft include the risk of bacterial or viral contamination and non union as well as the potential risk of disease transmission. Alternative options are attractive and continue...... to be sought. Hydroxyapatite and collagen composites have the potential in mimicking and replacing skeletal bones. Aim: This study attempted to determine the effect of hydroxyapatite/collagen composites in the fixation of bone implants. The composites used in this study is produced by Institute of Science...

  8. Can bone marrow differentiate into renal cells?

    Science.gov (United States)

    Imai, Enyu; Ito, Takahito

    2002-10-01

    A considerable plasticity of adult stem cells has been confirmed in a wide variety of tissues. In particular, the pluripotency of bone marrow-derived stem cells may influence the regeneration of injured tissues and may provide novel avenues in regenerative medicine. Bone marrow contains at least hematopoietic and mesenchymal stem cells, and both can differentiate into a wide range of differentiated cells. Side population (SP) cells, which are originally defined in bone marrow cells by high efflux of DNA-binding dye, seem to be a new class of multipotent stem cells. Irrespective of the approach used to obtain stem cells, the fates of marrow-derived cells following bone marrow transplantation can be traced by labeling donor cells with green fluorescence protein or by identifying donor Y chromosome in female recipients. So far, bone marrow-derived cells have been reported to differentiate into renal cells, including mesangial cells, endothelial cells, podocytes, and tubular cells in the kidney, although controversy exists. Further studies are required to address this issue. Cell therapy will be promising when we learn to control stem cells such as bone marrow-derived stem cells, embryonic stem cells, and resident stem cells in the kidney. Identification of factors that support stem cells or promote their differentiation should provide a relevant step towards cell therapy.

  9. The effect of radiation therapy on bone scintigraphy

    International Nuclear Information System (INIS)

    Kado, Bunmei; Nakajima, Tetsuo; Sakura, Mizuyoshi; Ishihara, Akinori; Sasaki, Yasuhito; Nagai, Teruo.

    1982-01-01

    With the purpose to evaluate effect of radiation therapy on bone scintigraphy, ninety nine bone scans and Ga-67 citrate tumor scans were performed on 67 patients, including 42 with lung cancer, 5 with esophageal cancer, 4 malignant lymphoma and 15 with other malignancy. The spinal uptake of Tc-99m diphosphonate and Ga-67 citrate were evaluated during or after radiation therapy involving thoracic and lumbar spines. The correlation among the spinal uptake of radioactivity in the radiation field, the irradiation dose and the interval after radiotherapy was investigated. The results revealed that 34 of 99 bone scans (34%) showed ''decreased'' radioactivity in the irradiated spines. Twenty six of 41 bone scans (63%) performed more than three months after radiotherapy showed ''decreased'' spinal uptake. Among the same 41 bone scans, 16 of 21 bone scans (76%) taken in patients who received more than 5000 rads showed ''decreased'' spinal uptake. The decreased spinal uptake was irreversible. Eight cases changed to ''decreased'' from ''equilibrated'' during follow up study after radiotherapy. Twenty two of 31 cases (71%) with Ga tumor scans, which were performed in the earlier periods and with less dose of radiotherapy as compared with bone scans, showed ''decreased'' spinal uptake, which suggests impaired Ga-67 uptake by the bone marrow rather than the spinal bone. The factors causing decreased uptake of radioactivity in bone scan after irradiation were discussed in view of irradiation effect on bone tissue. The descrepancy of uptake of radioactivity between bone scan and Ga tumor scan was also discussed reviewing difference of radiation effect on bone and bone marrow cells. (author)

  10. Evaluating effects of L-carnitine on human bone-marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Fujisawa, Koichi; Takami, Taro; Fukui, Yumi; Quintanilha, Luiz Fernando; Matsumoto, Toshihiko; Yamamoto, Naoki; Sakaida, Isao

    2017-05-01

    Mesenchymal stem cells (MSCs) are multipotent cells showing potential for use in regenerative medicine. Culture techniques that are more stable and methods for the more efficient production of MSCs with therapeutic efficacy are needed. We evaluate the effects of growing bone marrow (Bm)-derived MSCs in the presence of L-carnitine, which is believed to promote lipid metabolism and to suppress apoptosis. The presence of L-carnitine decreased the degree of drug-induced apoptosis and suppressed adipogenic differentiation. Metabolomic analysis by means of the exhaustive investigation of metabolic products showed that, in addition to increased β-oxidation and the expression of all carnitine derivatives other than deoxycarnitine (an intermediate in carnitine synthesis), polysaturated and polyunsaturated acids were down-regulated. An integrated analysis incorporating both serial analysis of gene expression and metabolomics revealed increases in cell survival, suggesting the utility of carnitine. The addition of carnitine elevated the oxygen consumption rate by BmMSCs that had been cultured for only a few generations and those that had become senescent following repeated replication indicating that mitochondrial activation occurred. Our exhaustive analysis of the effects of various carnitine metabolites thus suggests that the addition of L-carnitine to BmMSCs during expansion enables efficient cell production.

  11. Recent considerations in regenerative endodontic treatment approaches

    Directory of Open Access Journals (Sweden)

    Hacer Aksel

    2014-09-01

    Conclusion: Although the regenerative treatment approaches have good clinical outcomes in the majority of case reports, the outcomes are unpredictable. Since the current clinical protocols for regenerative endodontics do not fully fulfill the triad of tissue engineering ((growth factors, scaffold and stem cells, further translational studies are required to achieve more pulp- and dentin-like tissue in the root canal system to achieve pulp regeneration.

  12. Bone Formation with Deproteinized Bovine Bone Mineral or Biphasic Calcium Phosphate in the Presence of Autologous Platelet Lysate: Comparative Investigation in Rabbit

    Directory of Open Access Journals (Sweden)

    Carole Chakar

    2014-01-01

    Full Text Available Bone substitutes alone or supplemented with platelet-derived concentrates are widely used to promote bone regeneration but their potency remains controversial. The aim of this study was, therefore, to compare the regenerative potential of preparations containing autologous platelet lysate (APL and particles of either deproteinized bovine bone mineral (DBBM or biphasic calcium phosphate (BCP, two bone substitutes with different resorption patterns. Rabbit APL was prepared by freeze-thawing a platelet suspension. Critical-size defects in rabbit femoral condyle were filled with DBBM or DBBM+APL and BCP or BCP+APL. Rabbits were sacrificed after six weeks and newly formed bone and residual implanted material were evaluated using nondemineralized histology and histomorphometry. New bone was observed around particles of all fillers tested. In the defects filled with BCP, the newly formed bone area was greater (70%; P<0.001 while the residual material area was lower (60%; P<0.001 than that observed in those filled with DBBM. New bone and residual material area of defects filled with either APL+DBBM or APL+BCP were similar to those observed in those filled with the material alone. In summary, osteoconductivity and resorption of BCP were greater than those of DBBM, while APL associated with either DBBM or BCP did not have an additional benefit.

  13. Ultrastructural study of the chromatoid body in planarian regenerative cells

    Energy Technology Data Exchange (ETDEWEB)

    Hori, I. (Kanazawa Medical Univ., Ishikawa (Japan))

    1982-04-01

    The present paper deals with the ultrastructural changes of chromatoid bodies in planarian regenerative cells under normal and experimental conditions. A close relationship was usually observed between chromatoid bodies and pore regions of the nuclear envelope in these cells. The chromatoid bodies continued to decrease in size during cytodifferentiation of regenerative cells, though they did not disappear entirely throughout the regeneration processes. Cytochemistry and (/sup 3/H)uridine autoradiography have shown that the chromatoid body contains RNA. The typical morphological effect of actinomycin D became apparent in three organelles, i.e., nucleolus, polysome and chromatoid body. Ultrastructural changes in nucleoli were observed to occur after actinomycin treatment (20 ..mu..g/ml). The exposure to a higher dose of actinomycin (50 ..mu..g/ml) caused a decay of chromatoid bodies while nuclear envelopes retained numerous pores. Both the nucleoli and the chromatoid bodies disappeared in the sequential stages. Within the cytoplasm of such cells disintegration of a polysomal pattern was correlated with the disappearance of chromatoid bodies. The significance of the planarian chromatoid body is discussed in relation to differentiation of the regenerative cells.

  14. The Effect of PEI and PVP-Stabilized Gold Nanoparticles on Equine Platelets Activation: Potential Application in Equine Regenerative Medicine

    Directory of Open Access Journals (Sweden)

    Mateusz Hecold

    2017-01-01

    Full Text Available The aim of this work was to assess the effect of different stabilizing agents, for example, polyethylenimine (PEI and polyvinylpyrrolidone (PVP, on gold nanoparticles (AuNPs and their influence on equine platelet activation and release of particular growth factors. The gold nanoparticles were produced by chemical reduction of chloroauric acid. UV-Vis spectroscopy confirmed the presence of gold nanoparticles in investigated solutions. The AuNPs were incubated with whole blood at various concentrations. The morphology of platelets in PRP prepared from the blood incubated with AuNPs was characterized by scanning transmission electron microscopy, whereas the concentrations of growth factors and cytokines were evaluated by ELISA assays. The most promising results were obtained with equine platelets incubated with 5% AuNPs stabilized by PEI, which lead to secretion of bone morphogenetic protein 2 (BMP-2, vascular endothelial growth factor (VEGF, and fibroblast growth factor 1 (FGF-1 and simultaneously cause decrease in concentration of interleukin-1 alpha (IL-1α. The qRT-PCR confirmed ELISA test results. The incubation with 5% AuNPs stabilized by PEI leads to upregulation of BMP-2 and VEGF transcripts of mRNA level and to downregulating expression of interleukin-6 (IL-6. Obtained data shed a promising light on gold nanoparticle application for future regenerative medicine application.

  15. Bone effects of biologic drugs in rheumatoid arthritis.

    Science.gov (United States)

    Corrado, Addolorata; Neve, Anna; Maruotti, Nicola; Cantatore, Francesco Paolo

    2013-01-01

    Biologic agents used in the treatment of rheumatoid arthritis (RA) are able to reduce both disease activity and radiographic progression of joint disease. These drugs are directed against several proinflammatory cytokines (TNF α , IL-6, and IL-1) which are involved both in the pathogenesis of chronic inflammation and progression of joint structural damage and in systemic and local bone loss typically observed in RA. However, the role of biologic drugs in preventing bone loss in clinical practice has not yet clearly assessed. Many clinical studies showed a trend to a positive effect of biologic agents in preventing systemic bone loss observed in RA. Although the suppression of inflammation is the main goal in the treatment of RA and the anti-inflammatory effects of biologic drugs exert a positive effect on bone metabolism, the exact relationship between the prevention of bone loss and control of inflammation has not been clearly established, and if the available biologic drugs against TNF α , IL-1, and IL-6 can exert their effect on systemic and local bone loss also through a direct mechanism on bone cell metabolism is still to be clearly defined.

  16. Mechanism analysis and evaluation methodology of regenerative braking contribution to energy efficiency improvement of electrified vehicles

    International Nuclear Information System (INIS)

    Lv, Chen; Zhang, Junzhi; Li, Yutong; Yuan, Ye

    2015-01-01

    Highlights: • The energy flow of an electric vehicle with regenerative brake is analyzed. • Methodology for measuring the regen brake contribution is discussed. • Evaluation parameters of regen brake contribution are proposed. • Vehicle tests are carried out on chassis dynamometer. • Test results verify the evaluation method and parameters proposed. - Abstract: This article discusses the mechanism and evaluation methods of contribution brought by regenerative braking to electric vehicle’s energy efficiency improvement. The energy flow of an electric vehicle considering the braking energy regeneration was analyzed. Then, methodologies for measuring the contribution made by regenerative brake to vehicle energy efficiency improvement were introduced. Based on the energy flow analyzed, two different evaluation parameters were proposed. Vehicle tests were carried out on chassis dynamometer under typical driving cycles with three different control strategies. The experimental results the difference between the proposed two evaluation parameters, and demonstrated the feasibility and effectiveness of the evaluation methodologies proposed

  17. Regenerative endodontics: barriers and strategies for clinical translation.

    Science.gov (United States)

    Mao, Jeremy J; Kim, Sahng G; Zhou, Jian; Ye, Ling; Cho, Shoko; Suzuki, Takahiro; Fu, Susan Y; Yang, Rujing; Zhou, Xuedong

    2012-07-01

    Regenerative endodontics has encountered substantial challenges toward clinical translation. The adoption by the American Dental Association of evoked pulp bleeding in immature permanent teeth is an important step for regenerative endodontics. However, there is no regenerative therapy for most endodontic diseases. Simple recapitulation of cell therapy and tissue engineering strategies that are under development for other organ systems has not led to clinical translation in regeneration endodontics. Recent work using novel biomaterial scaffolds and growth factors that orchestrate the homing of host endogenous cells represents a departure from traditional cell transplantation approaches and may accelerate clinical translation. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. MicroRNA Delivery for Regenerative Medicine

    OpenAIRE

    Peng, Bo; Chen, Yongming; Leong, Kam W.

    2015-01-01

    MicroRNA (miRNA) directs post-transcriptional regulation of a network of genes by targeting mRNA. Although relatively recent in development, many miRNAs direct differentiation of various stem cells including induced pluripotent stem cells (iPSCs), a major player in regenerative medicine. An effective and safe delivery of miRNA holds the key to translating miRNA technologies. Both viral and nonviral delivery systems have seen success in miRNA delivery, and each approach possesses advantages an...

  19. The effect of Hydroxyapatite/collagen I composites, bone marrow aspirate and bone graft on fixation of bone implants in sheep

    DEFF Research Database (Denmark)

    Babiker, Hassan

      The effect of Hydroxyapatite/collagen I composites, bone marrow aspirate and bone graft on fixation of bone implants IN SHEEP   Ph.D. Student, Hassan Babiker; Associate Professor, Ph.D. Ming Ding; Professor, dr.med., Soren Overgaard. Department of Orthopaedic Surgery, Odense University Hospital......, Odense, Denmark   Background: Hydroxyapatite and collagen composites (HA/coll) have the potential in mimicking and replacing skeletal bones. This study attempted to determine the effect of newly developed HA/coll-composites with and without bone marrow aspirate (BMA) in order to enhance the fixation...... of bone implants.   Materials and Methods: Titanium alloy implants were inserted into bilateral femoral condyles of 8 skeletally mature sheep, four in each sheep. The implant has a circumferential gap of 2 mm. The gap was filled with: HA/coll; HA/coll-BMA; autograft or allograft. Allograft was served...

  20. Uranium's effects on bone integrity

    International Nuclear Information System (INIS)

    Souidi, Maamar; Wade-Gueye, Ndeye Marieme; Manens, Line; Blanchardon, Eric; Aigueperse, Jocelyne

    2018-01-01

    Uranium is a radioactive heavy metal naturally present in the environment. Its recent use in various civilian and military applications sometimes result in its release into the environment. After chronic ingestion, uranium accumulates in various organs, preferentially in bones. Several studies have shown that exposure to high concentrations of uranium affects bone growth. Little is known, however, about the effects of chronic exposure to low doses of uranium on bone, especially when ingested via drinking water, the main route by which the public is exposed to this radionuclide. This study examined the effects of chronic exposure to natural uranium through drinking water on bone integrity and bone turnover. Rats were contaminated with different concentrations of natural uranium (15, 10, and 40 mg / l) for 9 months. A high-resolution three-dimensional microtomography scanner was used for the first time to study uranium's impact on bone metabolism and thus on bone tissue integrity. After nine months of uranium exposure, micro-architecture analysis revealed that the cortical bone diameter of the femoral diaphysis of rats contaminated at a concentration of 40 mg/L of uranium had decreased significantly. In conclusion, our findings that chronic ingestion of uranium at low concentrations affects growth of cortical bone width suggests that it may affect bone strength. These results thus suggest the need to pay special attention to children during chronic low-dose exposure to this radionuclide. (authors)

  1. Clinical considerations for regenerative endodontic procedures.

    Science.gov (United States)

    Geisler, Todd M

    2012-07-01

    The management of a tooth with incomplete root maturation and a necrotic pulp is an endodontic and a restorative challenge. Apexification procedures alone leave the tooth in a weakened state and at risk for reinfection. Regenerative endodontic procedures potentially offer advantages, including the possibility of hard tissue deposition and continued root development. Case studies have reported regeneration of human pulplike tissues in vivo, but there is no protocol that reliably regenerates pulplike tissue. This article summarizes historical, current, and future regenerative treatment approaches. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Regenerative Endodontic Treatment: Report of Two Cases with Different Clinical Management and Outcomes

    Directory of Open Access Journals (Sweden)

    Mehrfam Khoshkhounejad

    2015-11-01

    Full Text Available Endodontic intervention in necrotic immature permanent teeth is usually a clinical challenge. With appropriate case selection, regenerative treatment can be effective, providing a desirable outcome. However, there is still no consensus on the optimal disinfection protocol or the method to achieve predictable clinical outcome. This article presents two cases of regenerative treatment in necrotic immature teeth, using mineral trioxide aggregate (MTA and BiodentineTM as coronal barriers and different irrigants, which led to different clinical outcomes.

  3. Human Dental Pulp-Derived Cells Produce Bone-Like Tissue and Exhibit Bone Cell-Like Responsiveness to Mechanical Loading

    DEFF Research Database (Denmark)

    Kraft, David Christian Evar; Melsen, Birte; Bindslev, Dorthe Arenholt

    2010-01-01

    and characterize cell lines from human 3rd molar dental pulp tissue to determine whether human dental pulp-derived cells (DPCs) are osteogenic and responsive to mechanical loading by pulsating fluid flow (PFF) in vitro. Methods: Human DPCs used for this study were characterized by measuring proliferation....... We also assessed bone formation by DPCs on hydroxyapatite-tricalcium phosphate granules after subcutaneous implantation in mice. Results: We found that DPCs are intrinsically mechanosensitive and, like osteogenic cells, respond to PFF-induced fluid shear stress. Implantation of DPCs resulted...... remodeling in vivo, and therefore provide a promising new tool for regenerative dentistry, for example mineralized tissue engineering to restore bone defects in relation to periodontitis, periimplantatis and orofacial surgery. Experiments in progress have proven that DPCSs are also useful for assessing...

  4. Repairing quite swimmingly: advances in regenerative medicine using zebrafish.

    Science.gov (United States)

    Goessling, Wolfram; North, Trista E

    2014-07-01

    Regenerative medicine has the promise to alleviate morbidity and mortality caused by organ dysfunction, longstanding injury and trauma. Although regenerative approaches for a few diseases have been highly successful, some organs either do not regenerate well or have no current treatment approach to harness their intrinsic regenerative potential. In this Review, we describe the modeling of human disease and tissue repair in zebrafish, through the discovery of disease-causing genes using classical forward-genetic screens and by modulating clinically relevant phenotypes through chemical genetic screening approaches. Furthermore, we present an overview of those organ systems that regenerate well in zebrafish in contrast to mammalian tissue, as well as those organs in which the regenerative potential is conserved from fish to mammals, enabling drug discovery in preclinical disease-relevant models. We provide two examples from our own work in which the clinical translation of zebrafish findings is either imminent or has already proven successful. The promising results in multiple organs suggest that further insight into regenerative mechanisms and novel clinically relevant therapeutic approaches will emerge from zebrafish research in the future. © 2014. Published by The Company of Biologists Ltd.

  5. The imperative for regenerative agriculture.

    Science.gov (United States)

    Rhodes, Christopher J

    2017-03-01

    A review is made of the current state of agriculture, emphasising issues of soil erosion and dependence on fossil fuels, in regard to achieving food security for a relentlessly enlarging global population. Soil has been described as "the fragile, living skin of the Earth", and yet both its aliveness and fragility have all too often been ignored in the expansion of agriculture across the face of the globe. Since it is a pivotal component in a global nexus of soil-water-air-energy, how we treat the soil can impact massively on climate change - with either beneficial or detrimental consequences, depending on whether the soil is preserved or degraded. Regenerative agriculture has at its core the intention to improve the health of soil or to restore highly degraded soil, which symbiotically enhances the quality of water, vegetation and land-productivity. By using methods of regenerative agriculture, it is possible not only to increase the amount of soil organic carbon (SOC) in existing soils, but to build new soil. This has the effect of drawing down carbon from the atmosphere, while simultaneously improving soil structure and soil health, soil fertility and crop yields, water retention and aquifer recharge - thus ameliorating both flooding and drought, and also the erosion of further soil, since runoff is reduced. Since food production on a more local scale is found to preserve the soil and its quality, urban food production should be seen as a significant potential contributor to regenerative agriculture in the future, so long as the methods employed are themselves 'regenerative'. If localisation is to become a dominant strategy for dealing with a vastly reduced use of fossil fuels, and preserving soil quality - with increased food production in towns and cities - it will be necessary to incorporate integrated ('systems') design approaches such as permaculture and the circular economy (which minimise and repurpose 'waste') within the existing urban infrastructure. In

  6. Regenerative Needs Following Alveolar Ridge Preservation Procedures in Compromised and Noncompromised Extraction Sockets: A Cone Beam Computed Tomography Study.

    Science.gov (United States)

    Koutouzis, Theofilos; Lipton, David

    2016-01-01

    The aim of this study was to evaluate the necessity for additional regenerative procedures following healing of compromised and noncompromised extraction sockets with alveolar ridge preservation procedures through the use of virtual implant imaging software. The cohort was comprised of 87 consecutive patients subjected to a single maxillary tooth extraction with an alveolar ridge preservation procedure for subsequent implant placement. Patients were divided into two main groups based on the integrity of the buccal bone plate following teeth extraction. Patients in the compromised socket (CS) group (n = 52) had partial or complete buccal bone plate loss, and patients in the noncompromised socket (NCS) group (n = 35) exhibited no bone loss of their socket walls following tooth extraction. Following 4 to 6 months of healing, all patients had a cone beam computed tomography (CBCT) study. Root-formed implants were placed virtually in an ideal prosthetic position. The number of implants per group and location (anterior, premolar, molar) exhibiting exposed buccal implant surface was calculated. In the CS group, 5 out of 19 anterior implants (26.3%), 4 out of 14 premolar implants (28.5%), and 7 out of 19 molar implants (36.8%) had exposed buccal surfaces. In the NCS group, 4 out of 9 anterior implants (44.4%), 2 out of 9 premolar implants (22.2%), and 4 out of 17 molar implants (23.5%) had exposed buccal surfaces. There were no statistically significant differences for intragroup and intergroup comparisons (χ² test, P > .05). This study failed to find statistically significant differences in the frequency of implants with exposed buccal surfaces placed virtually, following treatment of compromised and noncompromised sockets. A high proportion (22% to 44%) of sites had implants that potentially needed additional regenerative procedures.

  7. Center for Neuroscience & Regenerative Medicine

    Data.gov (United States)

    Federal Laboratory Consortium — The Center for Neuroscience and Regenerative Medicine (CNRM) was established as a collaborative intramural federal program involving the U.S. Department of Defense...

  8. Treatment of infrabony defects with platelet-rich fibrin along with bone graft: Case report

    Directory of Open Access Journals (Sweden)

    Surekha Y Bhedasgaonkar

    2015-01-01

    Full Text Available Although periodontitis is an infectious disease of periodontal tissues, changes that occur in the bone are crucial, because destruction of bone is responsible for tooth loss. Although horizontal bone loss is most common, vertical bone loss is more amenable to regenerative periodontal therapy. Recently, importance has been given to use of platelet-rich fibrin (PRF for predictably obtaining periodontal regeneration. PRF is a concentrated suspension of growth factors found in platelets. These growth factors moderate the wound healing and promote tissue regeneration. This article includes case reports of two patients who showed infrabony defects that were treated with combining PRF with allograft. This case report tried to compare the clinical and radiographical outcome obtained by combination of PRF and allograft.

  9. Stem cell bioprinting for applications in regenerative medicine.

    Science.gov (United States)

    Tricomi, Brad J; Dias, Andrew D; Corr, David T

    2016-11-01

    Many regenerative medicine applications seek to harness the biologic power of stem cells in architecturally complex scaffolds or microenvironments. Traditional tissue engineering methods cannot create such intricate structures, nor can they precisely control cellular position or spatial distribution. These limitations have spurred advances in the field of bioprinting, aimed to satisfy these structural and compositional demands. Bioprinting can be defined as the programmed deposition of cells or other biologics, often with accompanying biomaterials. In this concise review, we focus on recent advances in stem cell bioprinting, including performance, utility, and applications in regenerative medicine. More specifically, this review explores the capability of bioprinting to direct stem cell fate, engineer tissue(s), and create functional vascular networks. Furthermore, the unique challenges and concerns related to bioprinting living stem cells, such as viability and maintaining multi- or pluripotency, are discussed. The regenerative capacity of stem cells, when combined with the structural/compositional control afforded by bioprinting, provides a unique and powerful tool to address the complex demands of tissue engineering and regenerative medicine applications. © 2016 New York Academy of Sciences.

  10. Applied Induced Pluripotent Stem Cells in Combination With Biomaterials in Bone Tissue Engineering.

    Science.gov (United States)

    Ardeshirylajimi, Abdolreza

    2017-10-01

    Due to increasing of the orthopedic lesions and fractures in the world and limitation of current treatment methods, researchers, and surgeons paid attention to the new treatment ways especially to tissue engineering and regenerative medicine. Innovation in stem cells and biomaterials accelerate during the last decade as two main important parts of the tissue engineering. Recently, induced pluripotent stem cells (iPSCs) introduced as cells with highly proliferation and differentiation potentials that hold great promising features for used in tissue engineering and regenerative medicine. As another main part of tissue engineering, synthetic, and natural polymers have been shown daily grow up in number to increase and improve the grade of biopolymers that could be used as scaffold with or without stem cells for implantation. One of the developed areas of tissue engineering is bone tissue engineering; the aim of this review is present studies were done in the field of bone tissue engineering while used iPSCs in combination with natural and synthetic biomaterials. J. Cell. Biochem. 118: 3034-3042, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. Conference Report: 6th Annual International Symposium on Regenerative Rehabilitation.

    Science.gov (United States)

    Loghmani, M Terry; Roche, Joseph A

    2018-04-03

    The 6th International Symposium on Regenerative Rehabilitation, hosted by the Alliance for Regenerative Rehabilitation Research and Training (AR 3 T), included a preconference meeting of institutional representatives of the International Consortium of Regenerative Rehabilitation, keynote talks from distinguished scientists, platform and poster presentations from experts and trainees, panel discussions and postconference workshops. The following priorities were identified: increasing rigor in basic, preclinical and clinical studies, especially the use of better controls; developing better outcome measures for preclinical and clinical trials; focusing on developing more tissue-based interventions versus cell-based interventions; including regenerative rehabilitation in curricula of professional programs like occupational and physical therapy; and developing better instruments to quantify rehabilitative interventions.

  12. Effects of Growth Hormone on Bone.

    Science.gov (United States)

    Tritos, Nicholas A; Klibanski, Anne

    2016-01-01

    Describe the effects of growth hormone (GH) and insulin-like growth factor 1 (IGF-1) on the skeleton. The GH and IGF-1 axis has pleiotropic effects on the skeleton throughout the lifespan by influencing bone formation and resorption. GH deficiency leads to decreased bone turnover, delayed statural growth in children, low bone mass, and increased fracture risk in adults. GH replacement improves adult stature in GH deficient children, increases bone mineral density (BMD) in adults, and helps to optimize peak bone acquisition in patients, during the transition from adolescence to adulthood, who have persistent GH deficiency. Observational studies suggest that GH replacement may mitigate the excessive fracture risk associated with GH deficiency. Acromegaly, a state of GH and IGF-1 excess, is associated with increased bone turnover and decreased BMD in the lumbar spine observed in some studies, particularly in patients with hypogonadism. In addition, patients with acromegaly appear to be at an increased risk of morphometric-vertebral fractures, especially in the presence of active disease or concurrent hypogonadism. GH therapy also has beneficial effects on statural growth in several conditions characterized by GH insensitivity, including chronic renal failure, Turner syndrome, Prader-Willi syndrome, postnatal growth delay in patients with intrauterine growth retardation who do not demonstrate catchup growth, idiopathic short stature, short stature homeobox-containing (SHOX) gene mutations, and Noonan syndrome. GH and IGF-1 have important roles in skeletal physiology, and GH has an important therapeutic role in both GH deficiency and insensitivity states. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. The effects of surgicel and bone wax hemostatic agents on bone healing: An experimental study

    Directory of Open Access Journals (Sweden)

    Nasser Nooh

    2014-01-01

    Full Text Available Background: The biological effects of hemostatic agends on the physiological healing process need to be tested. The aim of this study was to assess the effects of oxidized cellulose (surgicel and bone wax on bone healing in goats′ feet. Materials and Methods: Three congruent circular bone defects were created on the lateral aspects of the right and left metacarpal bones of ten goats. One defect was left unfilled and acted as a control; the remaining two defects were filled with bone wax and surgicel respectively. The 10 animals were divided into two groups of 5 animals each, to be sacrificed at the 3rd and 5th week postoperatively. Histological analysis assessing quality of bone formed and micro-computed tomography (MCT measuring the quantities of bone volume (BV and bone density (BD were performed. The results of MCT analysis pertaining to BV and BD were statistically analyzed using two-way analysis of variance (ANOVA and posthoc least significant difference tests. Results: Histological analysis at 3 weeks showed granulation tissue with new bone formation in the control defects, active bone formation only at the borders for surgicel filled defects and fibrous encapsulation with foreign body reaction in the bone wax filled defects. At 5 weeks, the control and surgicel filled defects showed greater bone formation; however the control defects had the greatest amount of new bone. Bone wax filled defects showed very little bone formation. The two-way ANOVA for MCT results showed significant differences for BV and BD between the different hemostatic agents during the two examination periods. Conclusion: Surgicel has superiority over bone wax in terms of osseous healing. Bone wax significantly hinders osteogenesis and induces inflammation.

  14. Downward Slope Driving Control for Electric Powered Wheelchair Based on Capacitor Regenerative Brake

    Science.gov (United States)

    Seki, Hirokazu; Takahashi, Yoshiaki

    This paper describes a novel capacitor regenerative braking control scheme of electric powered wheelchairs for efficient driving on downward slopes. An electric powered wheelchair, which generates the driving force by electric motors, is expected to be widely used as a mobility support system for elderly people and disabled people; however the energy efficiency has to be further improved because it is driven only by battery energy. This study proposes a capacitor regenerative braking circuit and two types of velocity control schemes with variable duty ratio. The proposed regenerative braking circuit is based on the step-up/down circuit with additional resistance and connects right and left motors in series in order to obtain a larger braking power. Some driving experiments on a practical downward slope show the effectiveness of the proposed control system.

  15. A high-power compact regenerative amplifier FEL

    International Nuclear Information System (INIS)

    Nguyen, D.C.; Sheffield, R.L.; Fortgang, C.M.; Kinross-Wright, J.M.; Ebrahim, N.A.; Goldstein, J.C.

    1997-01-01

    The Regenerative Amplifier FEL (RAFEL) is a new FEL approach aimed at achieving the highest optical power from a compact rf-linac FEL. The key idea is to feed back a small fraction ( 5 in single pass) wiggler to enable the FEL to reach saturation in a few passes. This paper summarizes the design of a high-power compact regenerative amplifier FEL and describes the first experimental demonstration of the RAFEL concept

  16. Gingiva as a new and the most accessible source of mesenchymal stem cells from the oral cavity to be used in regenerative therapies

    Directory of Open Access Journals (Sweden)

    Bartłomiej Górski

    2016-08-01

    Full Text Available Since the discovery of bone marrow mesenchymal stem cells (BMMSCs, many researchers have focused their attention on new sources of mesenchymal stem cells (MSCs. Consequently, MSCs that display self-renewal capacity, multidifferentiation potential and immunomodulatory properties have been isolated from human oral tissues, including tooth, periodontal ligament, and gingiva. Oral MSCs involve dental pulp stem cells (DPSCs, stem cells from exfoliated deciduous teeth (SHED, periodontal ligament stem cells (PDLSCs, dental follicle stem cells (DFCs, stem cells from apical papilla (SCAP and gingival stem cells (GMSCs. Current research on oral stem cells is expanding at an unprecedented rate. That being the case, a plethora of in vitro differentiation assays, immunodeficient animal transplantations and preclinical trials have demonstrated that these cells exhibit strong potential for both regenerative dentistry and medicine. Oral MSCs have proved their capability to repair cornea, dental pulp, periodontal, bone, cartilage, tendon, neural, muscle and endothelial tissues without neoplasm formation as well as to treat inflammatory diseases and immune disorders. This article describes the current understanding of oral MSCs and their prospective applications in cell-based therapy, tissue engineering and regenerative medicine. Special attention is placed on GMSCs as they are easily accessible and may be obtained in a convenient and minimally invasive way.

  17. Regenerative Potential of Mesenchymal Stromal Cells: Age-Related Changes

    Directory of Open Access Journals (Sweden)

    Flavia Bruna

    2016-01-01

    Full Text Available Preclinical and clinical studies have shown that a therapeutic effect results from mesenchymal stromal cells (MSCs transplant. No systematic information is currently available regarding whether donor age modifies MSC regenerative potential on cutaneous wound healing. Here, we evaluate whether donor age influences this potential. Two different doses of bone marrow MSCs (BM-MSCs from young, adult, or old mouse donors or two doses of their acellular derivatives mesenchymal stromal cells (acd-MSCs were intradermally injected around wounds in the midline of C57BL/6 mice. Every two days, wound healing was macroscopically assessed (wound closure and microscopically assessed (reepithelialization, dermal-epidermal junction, skin appendage regeneration, granulation tissue, leukocyte infiltration, and density dermal collagen fibers after 12 days from MSC transplant. Significant differences in the wound closure kinetic, quality, and healing of skin regenerated were observed in lesions which received BM-MSCs from different ages or their acd-MSCs compared to lesions which received vehicle. Nevertheless, our data shows that adult’s BM-MSCs or their acd-MSCs were the most efficient for recovery of most parameters analyzed. Our data suggest that MSC efficacy was negatively affected by donor age, where the treatment with adult’s BM-MSCs or their acd-MSCs in cutaneous wound promotes a better tissue repair/regeneration. This is due to their paracrine factors secretion.

  18. Regenerative medicine in otorhinolaryngology.

    Science.gov (United States)

    Wormald, J C R; Fishman, J M; Juniat, S; Tolley, N; Birchall, M A

    2015-08-01

    Tissue engineering using biocompatible scaffolds, with or without cells, can permit surgeons to restore structure and function following tissue resection or in cases of congenital abnormality. Tracheal regeneration has emerged as a spearhead application of these technologies, whilst regenerative therapies are now being developed to treat most other diseases within otolaryngology. A systematic review of the literature was performed using Ovid Medline and Ovid Embase, from database inception to 15 November 2014. A total of 561 papers matched the search criteria, with 76 fulfilling inclusion criteria. Articles were predominantly pre-clinical animal studies, reflecting the current status of research in this field. Several key human research articles were identified and discussed. The main issues facing research in regenerative surgery are translation of animal model work into human models, increasing stem cell availability so it can be used to further research, and development of better facilities to enable implementation of these advances.

  19. 3D silicon doped hydroxyapatite scaffolds decorated with Elastin-like Recombinamers for bone regenerative medicine.

    Science.gov (United States)

    Vila, Mercedes; García, Ana; Girotti, Alessandra; Alonso, Matilde; Rodríguez-Cabello, Jose Carlos; González-Vázquez, Arlyng; Planell, Josep A; Engel, Elisabeth; Buján, Julia; García-Honduvilla, Natalio; Vallet-Regí, María

    2016-11-01

    The current study reports on the manufacturing by rapid prototyping technique of three-dimensional (3D) scaffolds based on silicon substituted hydroxyapatite with Elastin-like Recombinamers (ELRs) functionalized surfaces. Silicon doped hydroxyapatite (Si-HA), with Ca 10 (PO 4 ) 5.7 (SiO 4 ) 0.3 (OH) 1.7 h 0.3 nominal formula, was surface functionalized with two different types of polymers designed by genetic engineering: ELR-RGD that contain cell attachment specific sequences and ELR-SN A 15/RGD with both hydroxyapatite and cells domains that interact with the inorganic phase and with the cells, respectively. These hybrid materials were subjected to in vitro assays in order to clarify if the ELRs coating improved the well-known biocompatible and bone regeneration properties of calcium phosphates materials. The in vitro tests showed that there was a total and homogeneous colonization of the 3D scaffolds by Bone marrow Mesenchymal Stromal Cells (BMSCs). In addition, the BMSCs were viable and able to proliferate and differentiate into osteoblasts. Bone tissue engineering is an area of increasing interest because its main applications are directly related to the rising life expectancy of the population, which promotes higher rates of several bone pathologies, so innovative strategies are needed for bone tissue regeneration therapies. Here we use the rapid prototyping technology to allow moulding ceramic 3D scaffolds and we use different bio-polymers for the functionalization of their surfaces in order to enhance the biological response. Combining the ceramic material (silicon doped hydroxyapatite, Si-HA) and the Elastin like Recombinamers (ELRs) polymers with the presence of the integrin-mediate adhesion domain alone or in combination with SNA15 peptide that possess high affinity for hydroxyapatite, provided an improved Bone marrow Mesenchymal Stromal Cells (BMSCs) differentiation into osteoblastic linkage. Copyright © 2016 Acta Materialia Inc. Published by Elsevier

  20. Bone Regeneration from PLGA Micro-Nanoparticles.

    Science.gov (United States)

    Ortega-Oller, Inmaculada; Padial-Molina, Miguel; Galindo-Moreno, Pablo; O'Valle, Francisco; Jódar-Reyes, Ana Belén; Peula-García, Jose Manuel

    2015-01-01

    Poly-lactic-co-glycolic acid (PLGA) is one of the most widely used synthetic polymers for development of delivery systems for drugs and therapeutic biomolecules and as component of tissue engineering applications. Its properties and versatility allow it to be a reference polymer in manufacturing of nano- and microparticles to encapsulate and deliver a wide variety of hydrophobic and hydrophilic molecules. It additionally facilitates and extends its use to encapsulate biomolecules such as proteins or nucleic acids that can be released in a controlled way. This review focuses on the use of nano/microparticles of PLGA as a delivery system of one of the most commonly used growth factors in bone tissue engineering, the bone morphogenetic protein 2 (BMP2). Thus, all the needed requirements to reach a controlled delivery of BMP2 using PLGA particles as a main component have been examined. The problems and solutions for the adequate development of this system with a great potential in cell differentiation and proliferation processes under a bone regenerative point of view are discussed.

  1. Clinical effectiveness of combining platelet rich fibrin with alloplastic bone substitute for the management of combined endodontic periodontal lesion.

    Science.gov (United States)

    Goyal, Lata

    2014-02-01

    The term "endo-perio" lesion has been proposed to describe the destructive lesion resulting from inflammatory products found in varying degrees in both the periodontium and the pulpal tissues. In most of the cases, clinical symptoms disappear following successful endodontic therapy. However failure after conventional root canal treatment calls for surgical intervention. A 35 year old male patient with endo-perio lesion in right maxillary lateral incisor was treated with platelet rich fibrin (PRF) and alloplastic bone substitute after conventional endodontic therapy. At the end of 6 months there was gain in clinical attachment, increased radiographic bone fill and reduction in probing depth which was maintained till 18 month follow-up. Present case report aims to evaluate the efficacy of PRF and alloplastic bone substitute in the management of intrabony defect associated with endo-perio lesion in maxillary lateral incisor because the healing potential of PRF and bone graft has not been widely studied in endodontics. The use of PRF allows the clinician to optimize tissue remodelling, wound healing and angiogenesis by the local delivery of growth factors and proteins. The novel technique described here enables the clinician to be benefited from the full regenerative capacity of this autologous biologic material.

  2. Clinical effectiveness of combining platelet rich fibrin with alloplastic bone substitute for the management of combined endodontic periodontal lesion

    Directory of Open Access Journals (Sweden)

    Lata Goyal

    2014-02-01

    Full Text Available The term "endo-perio" lesion has been proposed to describe the destructive lesion resulting from inflammatory products found in varying degrees in both the periodontium and the pulpal tissues. In most of the cases, clinical symptoms disappear following successful endodontic therapy. However failure after conventional root canal treatment calls for surgical intervention. A 35 year old male patient with endo-perio lesion in right maxillary lateral incisor was treated with platelet rich fibrin (PRF and alloplastic bone substitute after conventional endodontic therapy. At the end of 6 months there was gain in clinical attachment, increased radiographic bone fill and reduction in probing depth which was maintained till 18 month follow-up. Present case report aims to evaluate the efficacy of PRF and alloplastic bone substitute in the management of intrabony defect associated with endo-perio lesion in maxillary lateral incisor because the healing potential of PRF and bone graft has not been widely studied in endodontics. The use of PRF allows the clinician to optimize tissue remodelling, wound healing and angiogenesis by the local delivery of growth factors and proteins. The novel technique described here enables the clinician to be benefited from the full regenerative capacity of this autologous biologic material.

  3. Compacted cancellous bone has a spring-back effect

    DEFF Research Database (Denmark)

    Kold, S; Bechtold, JE; Ding, Ming

    2003-01-01

    A new surgical technique, compaction, has been shown to improve implant fixation. It has been speculated that the enhanced implant fixation with compaction could be due to a spring-back effect of compacted bone. However, such an effect has yet to be shown. Therefore we investigated in a canine mo....... Thus we found a spring-back effect of compacted bone, which may be important for increasing implant fixation by reducing initial gaps between the implant and bone....

  4. Advancing pig cloning technologies towards application in regenerative medicine.

    Science.gov (United States)

    Nagashima, H; Matsunari, H; Nakano, K; Watanabe, M; Umeyama, K; Nagaya, M

    2012-08-01

    Regenerative medicine is expected to make a significant contribution by development of novel therapeutic treatments for intractable diseases and for improving the quality of life of patients. Many advances in regenerative medicine, including basic and translational research, have been developed and tested in experimental animals; pigs have played an important role in various aspects of this work. The value of pigs as a model species is being enhanced by the generation of specially designed animals through cloning and genetic modifications, enabling more sophisticated research to be performed and thus accelerating the clinical application of regenerative medicine. This article reviews the significant aspects of the creation and application of cloned and genetically modified pigs in regenerative medicine research and considers the possible future directions of the technology. We also discuss the importance of reproductive biology as an interface between basic science and clinical medicine. © 2012 Blackwell Verlag GmbH.

  5. Physical activity effects on bone metabolism.

    Science.gov (United States)

    Smith, E L; Gilligan, C

    1991-01-01

    The incidence of osteoporotic fractures rises exponentially with age and is increasing faster than the demographic increase in the aging population. Physical activity has great potential to reduce the risk for osteoporotic fractures. Three independent but interactive factors contribute to the risk of fractures: bone strength, the risk of falling, and the effectiveness of neuromuscular response that protects the skeleton from injury. Exercise can reduce fracture risk not only by preventing bone loss, but by decreasing the risk of falling and the force of impact by improving strength, flexibility, balance, and reaction time. Extreme inactivity causes rapid bone loss of up to 40%, while athletic activity results in bone hypertrophy of up to 40%. Exercise intervention programs have reduced bone loss or increased bone mass in both men and women of various ages and initial bone status. These benefits have been shown for arm bone mineral content, total body calcium, spine, calcium bone index, tibia, and calcaneus. In both middle-aged and elderly women, physical activity intervention reduced bone loss or increased bone mass. The mechanisms for maintenance of skeletal integrity rely on a cellular response to hormonal and mechanical load stimuli. Studies in animal models show that training affects cellular activity. In osteoporotics, cellular erosion is increased and mineral apposition rate (MAR) decreased compared with normal age-matched controls. In contrast to this, sows trained on a treadmill 20 min per day for 20 weeks had greater active periosteal surface, periosteal MAR, and osteonal MAR than untrained sows.

  6. Addition of blood to a phycogenic bone substitute leads to increased in vivo vascularization

    International Nuclear Information System (INIS)

    Barbeck, Mike; Sader, Robert; Ghanaati, Shahram; Najman, Stevo; Stojanović, Sanja; Živković, Jelena M; Mitić, Žarko; Choukroun, Joseph; Kovačević, Predrag; James Kirkpatrick, C

    2015-01-01

    The present study aimed to analyze the effects of the addition of blood to the phycogenic bone substitute Algipore ® on the severity of in vivo tissue reaction. Initially, Fourier-transform infrared spectroscopy (FTIR) of the bone substitute was conducted to analyze its chemical composition. The subcutaneous implantation model in Balb/c mice was then applied for up to 30 d to analyze the tissue reactions on the basis of specialized histochemical, immunohistochemical, and histomorphometrical methods. The data of the FTIR analysis showed that the phycogenic bone substitute material is mainly composed of hydroxyapatite with some carbonate content. The in vivo analyses revealed that the addition of blood to Algipore ® had a major impact on both angiogenesis and vessel maturation. The higher vascularization seemed to be based on significantly higher numbers of multinucleated TRAP-positive cells. However, mostly macrophages and a relatively low number of multinucleated giant cells were involved in the tissue reaction to Algipore ® . The presented data show that the addition of blood to a bone substitute impacts the tissue reaction to it. In particular, the immune response and the vascularization were influenced, and these are believed to have a major impact on the regenerative potential of the process of bone tissue regeneration. (paper)

  7. Giant hepatic regenerative nodules in Alagille syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, Jordan B. [Lewis Katz School of Medicine at Temple University, Department of Radiology, Temple University Hospital, Philadelphia, PA (United States); Bellah, Richard D.; Anupindi, Sudha A. [The Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States); University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA (United States); Maya, Carolina [The Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States); Pawel, Bruce R. [University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA (United States); The Children' s Hospital of Philadelphia, Department of Pathology and Laboratory Medicine, Philadelphia, PA (United States)

    2017-02-15

    Children with Alagille syndrome undergo surveillance radiologic examinations as they are at risk for developing cirrhosis and hepatocellular carcinoma. There is limited literature on the imaging of liver masses in Alagille syndrome. We report the ultrasound (US) and magnetic resonance imaging (MRI) appearances of incidental benign giant hepatic regenerative nodules in this population. To describe the imaging findings of giant regenerative nodules in patients with Alagille syndrome. A retrospective search of the hospital database was performed to find all cases of hepatic masses in patients with Alagille syndrome during a 10-year period. Imaging, clinical charts, laboratory data and available pathology were reviewed and analyzed and summarized for each patient. Twenty of 45 patients with confirmed Alagille syndrome had imaging studies. Of those, we identified six with giant focal liver masses. All six patients had large central hepatic masses that were remarkably similar on US and MRI, in addition to having features of cirrhosis. In each case, the mass was located in hepatic segment VIII and imaging showed the mass splaying the main portal venous branches at the hepatic hilum, as well as smaller portal and hepatic venous branches coursing through them. On MRI, signal intensity of the mass was isointense to liver on T1-weighted sequences in four of six patients, but hyperintense on T1 in two of six patients. In all six cases, the mass was hypointense on T2- weighted sequences. The mass post-contrast was isointense to adjacent liver in all phases in five the cases. Five out of six patients had pathological correlation demonstrating preserved ductal architecture confirming the final diagnosis of a regenerative nodule. Giant hepatic regenerative nodules with characteristic US and MR features can occur in patients with Alagille syndrome with underlying cirrhosis. Recognizing these lesions as benign giant hepatic regenerative nodules should, thereby, mitigate any need for

  8. Giant hepatic regenerative nodules in Alagille syndrome

    International Nuclear Information System (INIS)

    Rapp, Jordan B.; Bellah, Richard D.; Anupindi, Sudha A.; Maya, Carolina; Pawel, Bruce R.

    2017-01-01

    Children with Alagille syndrome undergo surveillance radiologic examinations as they are at risk for developing cirrhosis and hepatocellular carcinoma. There is limited literature on the imaging of liver masses in Alagille syndrome. We report the ultrasound (US) and magnetic resonance imaging (MRI) appearances of incidental benign giant hepatic regenerative nodules in this population. To describe the imaging findings of giant regenerative nodules in patients with Alagille syndrome. A retrospective search of the hospital database was performed to find all cases of hepatic masses in patients with Alagille syndrome during a 10-year period. Imaging, clinical charts, laboratory data and available pathology were reviewed and analyzed and summarized for each patient. Twenty of 45 patients with confirmed Alagille syndrome had imaging studies. Of those, we identified six with giant focal liver masses. All six patients had large central hepatic masses that were remarkably similar on US and MRI, in addition to having features of cirrhosis. In each case, the mass was located in hepatic segment VIII and imaging showed the mass splaying the main portal venous branches at the hepatic hilum, as well as smaller portal and hepatic venous branches coursing through them. On MRI, signal intensity of the mass was isointense to liver on T1-weighted sequences in four of six patients, but hyperintense on T1 in two of six patients. In all six cases, the mass was hypointense on T2- weighted sequences. The mass post-contrast was isointense to adjacent liver in all phases in five the cases. Five out of six patients had pathological correlation demonstrating preserved ductal architecture confirming the final diagnosis of a regenerative nodule. Giant hepatic regenerative nodules with characteristic US and MR features can occur in patients with Alagille syndrome with underlying cirrhosis. Recognizing these lesions as benign giant hepatic regenerative nodules should, thereby, mitigate any need for

  9. Micro-Scale Regenerative Heat Exchanger

    Science.gov (United States)

    Moran, Matthew E.; Stelter, Stephan; Stelter, Manfred

    2004-01-01

    A micro-scale regenerative heat exchanger has been designed, optimized and fabricated for use in a micro-Stirling device. Novel design and fabrication techniques enabled the minimization of axial heat conduction losses and pressure drop, while maximizing thermal regenerative performance. The fabricated prototype is comprised of ten separate assembled layers of alternating metal-dielectric composite. Each layer is offset to minimize conduction losses and maximize heat transfer by boundary layer disruption. A grating pattern of 100 micron square non-contiguous flow passages were formed with a nominal 20 micron wall thickness, and an overall assembled ten-layer thickness of 900 microns. Application of the micro heat exchanger is envisioned in the areas of micro-refrigerators/coolers, micropower devices, and micro-fluidic devices.

  10. Erich Regener and the ionisation maximum of the atmosphere

    Science.gov (United States)

    Carlson, P.; Watson, A. A.

    2014-12-01

    In the 1930s the German physicist Erich Regener (1881-1955) did important work on the measurement of the rate of production of ionisation deep under water and in the atmosphere. Along with one of his students, Georg Pfotzer, he discovered the altitude at which the production of ionisation in the atmosphere reaches a maximum, often, but misleadingly, called the Pfotzer maximum. Regener was one of the first to estimate the energy density of cosmic rays, an estimate that was used by Baade and Zwicky to bolster their postulate that supernovae might be their source. Yet Regener's name is less recognised by present-day cosmic ray physicists than it should be, largely because in 1937 he was forced to take early retirement by the National Socialists as his wife had Jewish ancestors. In this paper we briefly review his work on cosmic rays and recommend an alternative naming of the ionisation maximum. The influence that Regener had on the field through his son, his son-in-law, his grandsons and his students, and through his links with Rutherford's group in Cambridge, is discussed in an appendix. Regener was nominated for the Nobel Prize in Physics by Schrödinger in 1938. He died in 1955 at the age of 73.

  11. Electrolyte for batteries with regenerative solid electrolyte interface

    Science.gov (United States)

    Xiao, Jie; Lu, Dongping; Shao, Yuyan; Bennett, Wendy D.; Graff, Gordon L.; Liu, Jun; Zhang, Ji-Guang

    2017-08-01

    An energy storage device comprising: an anode; and a solute-containing electrolyte composition wherein the solute concentration in the electrolyte composition is sufficiently high to form a regenerative solid electrolyte interface layer on a surface of the anode only during charging of the energy storage device, wherein the regenerative layer comprises at least one solute or solvated solute from the electrolyte composition.

  12. Regeneration of skull bones in adult rabbits after implantation of commercial osteoinductive materials and transplantation of a tissue-engineering construct.

    Science.gov (United States)

    Volkov, A V; Alekseeva, I S; Kulakov, A A; Gol'dshtein, D V; Shustrov, S A; Shuraev, A I; Arutyunyan, I V; Bukharova, T B; Rzhaninova, A A; Bol'shakova, G B; Grigor'yan, A S

    2010-10-01

    We performed a comparative study of reparative osteogenesis in rabbits with experimental critical defects of the parietal bones after implantation of commercial osteoinductive materials "Biomatrix", "Osteomatrix", "BioOss" in combination with platelet-rich plasma and transplantation of a tissue-engineering construct on the basis of autogenic multipotent stromal cells from the adipose tissue predifferentiated in osteogenic direction. It was found that experimental reparative osteogenesis is insufficiently stimulated by implantation materials and full-thickness trepanation holes were not completely closed. After transplantation of the studied tissue-engineering construct, the defect was filled with full-length bone regenerate (in the center of the regenerate and from the maternal bone) in contrast to control and reference groups, where the bone tissue was formed only on the side of the maternal bone. On day 120 after transplantation of the tissue-engineering construct, the percent of newly-formed bone tissue in the regenerate was 24% (the total percent of bone tissue in the regenerate was 39%), which attested to active incomplete regenerative process in contrast to control and reference groups. Thus, the study demonstrated effective regeneration of the critical defects of the parietal bones in rabbits 120 days after transplantation of the tissue-engineering construct in contrast to commercial osteoplastic materials for directed bone regeneration.

  13. Demineralized bone matrix fibers formable as general and custom 3D printed mold-based implants for promoting bone regeneration.

    Science.gov (United States)

    Rodriguez, Rudy U; Kemper, Nathan; Breathwaite, Erick; Dutta, Sucharita M; Hsu, Erin L; Hsu, Wellington K; Francis, Michael P

    2016-07-26

    Bone repair frequently requires time-consuming implant construction, particularly when using un-formed implants with poor handling properties. We therefore developed osteoinductive, micro-fibrous surface patterned demineralized bone matrix (DBM) fibers for engineering both defect-matched and general three-dimensional implants. Implant molds were filled with demineralized human cortical bone fibers there were compressed and lyophilized, forming mechanically strong shaped DBM scaffolds. Enzyme linked immunosorbent assays and mass spectrometry confirmed that DBM fibers contained abundant osteogenic growth factors (bone morphogenetic proteins, insulin-like growth factor-I) and extracellular matrix proteins. Mercury porosimetry and mechanical testing showed interconnected pores within the mechanically stable, custom DBM fiber scaffolds. Mesenchymal stem cells readily attached to the DBM and showed increasing metabolic activity over time. DBM fibers further increased alkaline phosphatase activity in C2C12 cells. In vivo, DBM implants elicited osteoinductive potential in a mouse muscle pouch, and also promoted spine fusion in a rat arthrodesis model. DBM fibers can be engineered into custom-shaped, osteoinductive and osteoconductive implants with potential for repairing osseous defects with precise fitment, potentially reducing operating time. By providing pre-formed and custom implants, this regenerative allograft may improve patient outcomes following surgical bone repair, while further advancing personalized orthopedic and craniomaxillofacial medicine using three-dimensional-printed tissue molds.

  14. Alginate based scaffolds for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Valente, J.F.A.; Valente, T.A.M. [CICS-UBI - Centro de Investigacao em Ciencias da Saude, Faculdade de Ciencias da Saude, Universidade da Beira Interior, Covilha (Portugal); Alves, P.; Ferreira, P. [CIEPQPF, Departamento de Engenharia Quimica, Universidade de Coimbra, Polo II, Pinhal de Marrocos, 3030-290 Coimbra (Portugal); Silva, A. [Centro de Ciencia e Tecnologia Aeroespaciais, Universidade da Beira Interior, Covilha (Portugal); Correia, I.J., E-mail: icorreia@ubi.pt [CICS-UBI - Centro de Investigacao em Ciencias da Saude, Faculdade de Ciencias da Saude, Universidade da Beira Interior, Covilha (Portugal)

    2012-12-01

    The design and production of scaffolds for bone tissue regeneration is yet unable to completely reproduce the native bone properties. In the present study new alginate microparticle and microfiber aggregated scaffolds were produced to be applied in this area of regenerative medicine. The scaffolds' mechanical properties were characterized by thermo mechanical assays. Their morphological characteristics were evaluated by isothermal nitrogen adsorption and scanning electron microscopy. The density of both types of scaffolds was determined by helium pycnometry and mercury intrusion porosimetry. Furthermore, scaffolds' cytotoxic profiles were evaluated in vitro by seeding human osteoblast cells in their presence. The results obtained showed that scaffolds have good mechanical and morphological properties compatible with their application as bone substitutes. Moreover, scaffold's biocompatibility was confirmed by the observation of cell adhesion and proliferation after 5 days of being seeded in their presence and by non-radioactive assays. - Highlights: Black-Right-Pointing-Pointer Design and production of scaffolds for bone tissue regeneration. Black-Right-Pointing-Pointer Microparticle and microfiber alginate scaffolds were produced through a particle aggregation technique; Black-Right-Pointing-Pointer Scaffolds' mechanically and biologically properties were characterized through in vitro studies;.

  15. A regenerative elastocaloric heat pump

    DEFF Research Database (Denmark)

    Engelbrecht, Kurt; Eriksen, Dan; Dallolio, Stefano

    2016-01-01

    A large fraction of global energy use is for refrigeration and air-conditioning, which could be decarbonized if efficient renewable energy technologies could be found. Vapour-compression technology remains the most widely used system to move heat up the temperature scale after more than 100 years...... a regenerative elastocaloric heat pump that exhibits a temperature span of 15.3 K on the water side with a corresponding specific heating power up to 800 W kg−1 and maximum COP (coefficient-of-performance) values of up to 7. The efficiency and specific heating power of this device exceeds those of other devices...... based on caloric effects. These results open up the possibility of using the elastocaloric effect in various cooling and heat-pumping applications....

  16. Educational tool for modeling and simulation of a closed regenerative life support system

    Science.gov (United States)

    Arai, Tatsuya; Fanchiang, Christine; Aoki, Hirofumi; Newman, Dava J.

    For long term missions on the moon and Mars, regenerative life support systems emerge as a promising key technology for sustaining successful explorations with reduced re-supply logistics and cost. The purpose of this study was to create a simple model of a regenerative life support system which allows preliminary investigation of system responses. A simplified regenerative life support system was made with MATLAB Simulink ™. Mass flows in the system were simplified to carbon, water, oxygen and carbon dioxide. The subsystems included crew members, animals, a plant module, and a waste processor, which exchanged mass into and out of mass reservoirs. Preliminary numerical simulations were carried out to observe system responses. The simplified life support system model allowed preliminary investigation of the system response to perturbations such as increased or decreased number of crew members. The model is simple and flexible enough to add new components, and also possible to numerically predict non-linear subsystem functions and responses. Future work includes practical issues such as energy efficiency, air leakage, nutrition, and plant growth modeling. The model functions as an effective teaching tool about how a regenerative advanced life support system works.

  17. Suppressive effect of compact bone-derived mesenchymal stem cells on chronic airway remodeling in murine model of asthma.

    Science.gov (United States)

    Ogulur, Ismail; Gurhan, Gulben; Aksoy, Ayca; Duruksu, Gokhan; Inci, Cigdem; Filinte, Deniz; Kombak, Faruk Erdem; Karaoz, Erdal; Akkoc, Tunc

    2014-05-01

    New therapeutic strategies are needed in the treatment of asthma besides vaccines and pharmacotherapies. For the development of novel therapies, the use of mesenchymal stem cells (MSCs) is a promising approach in regenerative medicine. Delivery of compact bone (CB) derived MSCs to the injured lungs is an alternative treatment strategy for chronic asthma. In this study, we aimed to isolate highly enriched population of MSCs from mouse CB with regenerative capacity, and to investigate the impact of these cells in airway remodeling and inflammation in experimental ovalbumin-induced mouse model of chronic asthma. mCB-MSCs were isolated, characterized, labeled with GFP and then transferred into mice with chronic asthma developed by ovalbumin (OVA) provocation. Histopathological changes including basement membrane, epithelium, subepithelial smooth thickness and goblet cell hyperplasia, and MSCs migration to lung tissues were evaluated. These histopathological alterations were increased in ovalbumin-treated mice compared to PBS group (Pasthma. The results reported here provided evidence that mCB-MSCs may be an alternative strategy for the treatment of remodeling and inflammation associated with chronic asthma. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. An ultrastructural study of the chromatoid body in planarian regenerative cells

    International Nuclear Information System (INIS)

    Hori, Isao

    1982-01-01

    The present paper deals with the ultrastructural changes of chromatoid bodies in planarian regenerative cells under normal and experimental conditions. A close relationship was usually observed between chromatoid bodies and pore regions of the nuclear envelope in these cells. The chromatoid bodies continued to decrease in size during cytodifferentiation of regenerative cells, though they did not disappear entirely throughout the regeneration processes. Cytochemistry and [ 3 H]uridine autoradiography have shown that the chromatoid body contains RNA. The typical morphological effect of actinomycin D became apparent in three organelles, i.e., nucleolus, polysome and chromatoid body. Ultrastructural changes in nucleoli were observed to occur after actinomycin treatment (20 μg/ml). The exposure to a higher dose of actinomycin (50 μg/ml) caused a decay of chromatoid bodies while nuclear envelopes retained numerous pores. Both the nucleoli and the chromatoid bodies disappeared in the sequential stages. Within the cytoplasm of such cells disintegration of a polysomal pattern was correlated with the disappearance of chromatoid bodies. The significance of the planarian chromatoid body is discussed in relation to differentiation of the regenerative cells. (author)

  19. Regenerative endodontics: A way forward.

    Science.gov (United States)

    Diogenes, Anibal; Ruparel, Nikita B; Shiloah, Yoav; Hargreaves, Kenneth M

    2016-05-01

    Immature teeth are susceptible to infections due to trauma, anatomic anomalies, and caries. Traditional endodontic therapies for immature teeth, such as apexification procedures, promote resolution of the disease and prevent future infections. However, these procedures fail to promote continued root development, leaving teeth susceptible to fractures. Regenerative endodontic procedures (REPs) have evolved in the past decade, being incorporated into endodontic practice and becoming a viable treatment alternative for immature teeth. The authors have summarized the status of regenerative endodontics on the basis of the available published studies and provide insight into the different levels of clinical outcomes expected from these procedures. Substantial advances in regenerative endodontics are allowing a better understanding of a multitude of factors that govern stem cell-mediated regeneration and repair of the damaged pulp-dentin complex. REPs promote healing of apical periodontitis, continued radiographic root development, and, in certain cases, vitality responses. Despite the clinical success of these procedures, they appear to promote a guided endodontic repair process rather than a true regeneration of physiological-like tissue. Immature teeth with pulpal necrosis with otherwise poor prognosis can be treated with REPs. These procedures do not preclude the possibility of apexification procedures if attempts are unsuccessful. Therefore, REPs may be considered first treatment options for immature teeth with pulpal necrosis. Copyright © 2016 American Dental Association. Published by Elsevier Inc. All rights reserved.

  20. Innovative regenerative medicines in the EU: a better future in evidence?

    Science.gov (United States)

    Corbett, Mark S; Webster, Andrew; Hawkins, Robert; Woolacott, Nerys

    2017-03-08

    Despite a steady stream of headlines suggesting they will transform the future of healthcare, high-tech regenerative medicines have, to date, been quite inaccessible to patients, with only eight having been granted an EU marketing licence in the last 7 years. Here, we outline some of the historical reasons for this paucity of licensed innovative regenerative medicines. We discuss the challenges to be overcome to expedite the development of this complex and rapidly changing area of medicine, together with possible reasons to be more optimistic for the future. Several factors have contributed to the scarcity of cutting-edge regenerative medicines in clinical practice. These include the great expense and difficulties involved in planning how individual therapies will be developed, manufactured to commercial levels and ultimately successfully delivered to patients. Specific challenges also exist when evaluating the safety, efficacy and cost-effectiveness of these therapies. Furthermore, many treatments are used without a licence from the European Medicines Agency, under "Hospital Exemption" from the EC legislation. For products which are licensed, alternative financing approaches by healthcare providers may be needed, since many therapies will have significant up-front costs but uncertain benefits and harms in the long-term. However, increasing political interest and more flexible mechanisms for licensing and financing of therapies are now evident; these could be key to the future growth and development of regenerative medicine in clinical practice. Recent developments in regulatory processes, coupled with increasing political interest, may offer some hope for improvements to the long and often difficult routes from laboratory to marketplace for leading-edge cell or tissue therapies. Collaboration between publicly-funded researchers and the pharmaceutical industry could be key to the future development of regenerative medicine in clinical practice; such collaborations

  1. Platelet concentrates: Bioengineering dentistry′s regenerative dreams

    Directory of Open Access Journals (Sweden)

    Sushma Naag

    2015-01-01

    Full Text Available Technological advances in the fields of medicine and allied sciences had given much needed momentum into the field of molecular biology and regenerative medicine. They indeed provided a boost to innovate new yields for both hard tissue and soft tissue regeneration in dentistry. One among them is the use of platelet concentrates (platelet rich plasma [PRP], platelet rich fibrin [PRF]. Autologous concentrate of blood platelets with a suspension of growth factors offers an enhanced healing of hard and soft tissues. It is an auxiliary benefit for an operator to be aware of platelet concentrates and its healing properties for delivering unsurpassed oral health care to patients. The current article outlines the principles, objectives and clinical insight to the regenerative potential of platelet concentrates in various fields of dentistry. The search words of the PubMed data base were PRF and other permutations of keywords such as "PRP dentistry", PRF dentistry, PRF regenerative dentistry.

  2. Late effects of radiation on mature and growing bone

    International Nuclear Information System (INIS)

    Ramuz, O.; Mornex, F.; Bourhis, J.

    1997-01-01

    The physiopathology of radiation-induced bone damage is no completely elucidated. Ionizing radiation may induce an inhibition or an impairment of growing bone. This fact is of particular importance in children, and represents one of the most important dose-limiting factors in the radiotherapeutic management of children with malignant diseases. Scoliosis, epiphyseal slippage, avascular necrosis, abnormalities of craniofacial growth may be observed after radiation. Child's age at the time of treatment, location of irradiated bone and irradiation characteristics may influence the radiation related observed effects. In adults, pathological analysis of mature bone after ionizing radiation exposure are rare, suggesting that it is difficult to draw a clear feature of the action of radiation on the bone. Osteoporosis, medullary fibrosis and cytotoxicity on bone cells lead to fracture or necrosis. Various factors can influence bone tolerance to radiation such as bone involvement by tumor cells or infection, which is frequent is mandibulary osteoradionecrosis. Technical improvements in radiation techniques have also decreased radio-induced bone complications : the volume, fractionation and total dose are essential to consider. The absence of a consistent radiation-induced late effects evaluation scale has hampered efforts to analyze the influence of various therapeutic maneuvers and the comparison of results from different reported series. The currently proposed evaluation scale may help harmonizing the classification of radiation-induced bone late effects. (author)

  3. The effect of antiresorptives on bone quality.

    Science.gov (United States)

    Recker, Robert R; Armas, Laura

    2011-08-01

    Currently, antiresorptive therapy in the treatment and prevention of osteoporosis includes bisphosphonates, estrogen replacement, selective estrogen receptor modulators (raloxifene), and denosumab (a human antibody that inactivates RANKL). The original paradigm driving the development of antiresorptive therapy was that inhibition of bone resorption would allow bone formation to continue and correct the defect. However, it is now clear increases in bone density account for little of the antifracture effect of these treatments. We examined the antifracture benefit of antiresorptives deriving from bone quality changes. We searched the archive of nearly 30,000 articles accumulated over more than 40 years in our research center library using a software program (Refman™). Approximately 250 publications were identified in locating the 69 cited here. The findings document antiresorptive agents are not primarily anabolic. All cause a modest increase in bone density due to a reduction in the bone remodeling space; however, the majority of their efficacy is due to suppression of the primary cause of osteoporosis, ie, excessive bone remodeling not driven by mechanical need. All of them improve some element(s) of bone quality. Antiresorptive therapy reduces risk of fracture by improving bone quality through halting removal of bone tissue and the resultant destruction of microarchitecture of bone and, perhaps to some extent, by improving the intrinsic material properties of bone tissue. Information presented here may help clinicians to improve selection of patients for antiresorptive therapy by avoiding them in cases clearly not due to excessive bone remodeling.

  4. Effect of GH/IGF-1 on Bone Metabolism and Osteoporsosis

    Directory of Open Access Journals (Sweden)

    Vittorio Locatelli

    2014-01-01

    Full Text Available Background. Growth hormone (GH and insulin-like growth factor (IGF-1 are fundamental in skeletal growth during puberty and bone health throughout life. GH increases tissue formation by acting directly and indirectly on target cells; IGF-1 is a critical mediator of bone growth. Clinical studies reporting the use of GH and IGF-1 in osteoporosis and fracture healing are outlined. Methods. A Pubmed search revealed 39 clinical studies reporting the effects of GH and IGF-1 administration on bone metabolism in osteopenic and osteoporotic human subjects and on bone healing in operated patients with normal GH secretion. Eighteen clinical studies considered the effect with GH treatment, fourteen studies reported the clinical effects with IGF-1 administration, and seven related to the GH/IGF-1 effect on bone healing. Results. Both GH and IGF-1 administration significantly increased bone resorption and bone formation in the most studies. GH/IGF-1 administration in patients with hip or tibial fractures resulted in increased bone healing, rapid clinical improvements. Some conflicting results were evidenced. Conclusions. GH and IGF-1 therapy has a significant anabolic effect. GH administration for the treatment of osteoporosis and bone fractures may greatly improve clinical outcome. GH interacts with sex steroids in the anabolic process. GH resistance process is considered.

  5. Effect of GH/IGF-1 on Bone Metabolism and Osteoporsosis

    Science.gov (United States)

    Locatelli, Vittorio; Bianchi, Vittorio E.

    2014-01-01

    Background. Growth hormone (GH) and insulin-like growth factor (IGF-1) are fundamental in skeletal growth during puberty and bone health throughout life. GH increases tissue formation by acting directly and indirectly on target cells; IGF-1 is a critical mediator of bone growth. Clinical studies reporting the use of GH and IGF-1 in osteoporosis and fracture healing are outlined. Methods. A Pubmed search revealed 39 clinical studies reporting the effects of GH and IGF-1 administration on bone metabolism in osteopenic and osteoporotic human subjects and on bone healing in operated patients with normal GH secretion. Eighteen clinical studies considered the effect with GH treatment, fourteen studies reported the clinical effects with IGF-1 administration, and seven related to the GH/IGF-1 effect on bone healing. Results. Both GH and IGF-1 administration significantly increased bone resorption and bone formation in the most studies. GH/IGF-1 administration in patients with hip or tibial fractures resulted in increased bone healing, rapid clinical improvements. Some conflicting results were evidenced. Conclusions. GH and IGF-1 therapy has a significant anabolic effect. GH administration for the treatment of osteoporosis and bone fractures may greatly improve clinical outcome. GH interacts with sex steroids in the anabolic process. GH resistance process is considered. PMID:25147565

  6. In Vivo Assessment of Bone Regeneration in Alginate/Bone ECM Hydrogels with Incorporated Skeletal Stem Cells and Single Growth Factors

    Science.gov (United States)

    Gothard, David; Smith, Emma L.; Kanczler, Janos M.; Black, Cameron R.; Wells, Julia A.; Roberts, Carol A.; White, Lisa J.; Qutachi, Omar; Peto, Heather; Rashidi, Hassan; Rojo, Luis; Stevens, Molly M.; El Haj, Alicia J.; Rose, Felicity R. A. J.; Shakesheff, Kevin M.; Oreffo, Richard O. C.

    2015-01-01

    The current study has investigated the use of decellularised, demineralised bone extracellular matrix (ECM) hydrogel constructs for in vivo tissue mineralisation and bone formation. Stro-1-enriched human bone marrow stromal cells were incorporated together with select growth factors including VEGF, TGF-β3, BMP-2, PTHrP and VitD3, to augment bone formation, and mixed with alginate for structural support. Growth factors were delivered through fast (non-osteogenic factors) and slow (osteogenic factors) release PLGA microparticles. Constructs of 5 mm length were implanted in vivo for 28 days within mice. Dense tissue assessed by micro-CT correlated with histologically assessed mineralised bone formation in all constructs. Exogenous growth factor addition did not enhance bone formation further compared to alginate/bone ECM (ALG/ECM) hydrogels alone. UV irradiation reduced bone formation through degradation of intrinsic growth factors within the bone ECM component and possibly also ECM cross-linking. BMP-2 and VitD3 rescued osteogenic induction. ALG/ECM hydrogels appeared highly osteoinductive and delivery of angiogenic or chondrogenic growth factors led to altered bone formation. All constructs demonstrated extensive host tissue invasion and vascularisation aiding integration and implant longevity. The proposed hydrogel system functioned without the need for growth factor incorporation or an exogenous inducible cell source. Optimal growth factor concentrations and spatiotemporal release profiles require further assessment, as the bone ECM component may suffer batch variability between donor materials. In summary, ALG/ECM hydrogels provide a versatile biomaterial scaffold for utilisation within regenerative medicine which may be tailored, ultimately, to form the tissue of choice through incorporation of select growth factors. PMID:26675008

  7. Mechanical Loading Improves Tendon-Bone Healing in a Rabbit Anterior Cruciate Ligament Reconstruction Model by Promoting Proliferation and Matrix Formation of Mesenchymal Stem Cells and Tendon Cells

    Directory of Open Access Journals (Sweden)

    Fanglong Song

    2017-02-01

    Full Text Available Background/Aims: This study investigated the effect of mechanical stress on tendon-bone healing in a rabbit anterior cruciate ligament (ACL reconstruction model as well as cell proliferation and matrix formation in co-culture of bone-marrow mesenchymal stem cells (BMSCs and tendon cells (TCs. Methods: The effect of continuous passive motion (CPM therapy on tendon-bone healing in a rabbit ACL reconstruction model was evaluated by histological analysis, biomechanical testing and gene expressions at the tendon-bone interface. Furthermore, the effect of mechanical stretch on cell proliferation and matrix synthesis in BMSC/TC co-culture was also examined. Results: Postoperative CPM therapy significantly enhanced tendon-bone healing, as evidenced by increased amount of fibrocartilage, elevated ultimate load to failure levels, and up-regulated gene expressions of Collagen I, alkaline phosphatase, osteopontin, Tenascin C and tenomodulin at the tendon-bone junction. In addition, BMSC/TC co-culture treated with mechanical stretch showed a higher rate of cell proliferation and enhanced expressions of Collagen I, Collagen III, alkaline phosphatase, osteopontin, Tenascin C and tenomodulin than that of controls. Conclusion: These results demonstrated that proliferation and differentiation of local precursor cells could be enhanced by mechanical stimulation, which results in enhanced regenerative potential of BMSCs and TCs in tendon-bone healing.

  8. Epigallocatechin Gallate-Modified Gelatin Sponges Treated by Vacuum Heating as a Novel Scaffold for Bone Tissue Engineering.

    Science.gov (United States)

    Honda, Yoshitomo; Takeda, Yoshihiro; Li, Peiqi; Huang, Anqi; Sasayama, Satoshi; Hara, Eiki; Uemura, Naoya; Ueda, Mamoru; Hashimoto, Masanori; Arita, Kenji; Matsumoto, Naoyuki; Hashimoto, Yoshiya; Baba, Shunsuke; Tanaka, Tomonari

    2018-04-11

    Chemical modification of gelatin using epigallocatechin gallate (EGCG) promotes bone formation in vivo. However, further improvements are required to increase the mechanical strength and bone-forming ability of fabricated EGCG-modified gelatin sponges (EGCG-GS) for practical applications in regenerative therapy. In the present study, we investigated whether vacuum heating-induced dehydrothermal cross-linking of EGCG-GS enhances bone formation in critical-sized rat calvarial defects. The bone-forming ability of vacuum-heated EGCG-GS (vhEGCG-GS) and other sponges was evaluated by micro-computed tomography and histological staining. The degradation of sponges was assessed using protein assays, and cell morphology and proliferation were verified by scanning electron microscopy and immunostaining using osteoblastic UMR106 cells in vitro. Four weeks after the implantation of sponges, greater bone formation was detected for vhEGCG-GS than for EGCG-GS or vacuum-heated gelatin sponges (dehydrothermal cross-linked sponges without EGCG). In vitro experiments revealed that the relatively low degradability of vhEGCG-GS supports cell attachment, proliferation, and cell-cell communication on the matrix. These findings suggest that vacuum heating enhanced the bone forming ability of EGCG-GS, possibly via the dehydrothermal cross-linking of EGCG-GS, which provides a scaffold for cells, and by maintaining the pharmacological effect of EGCG.

  9. A Comprehensive Review of the Techniques on Regenerative Shock Absorber Systems

    Directory of Open Access Journals (Sweden)

    Ran Zhang

    2018-05-01

    Full Text Available In this paper, the current technologies of the regenerative shock absorber systems have been categorized and evaluated. Three drive modes of the regenerative shock absorber systems, namely the direct drive mode, the indirect drive mode and hybrid drive mode are reviewed for their readiness to be implemented. The damping performances of the three different modes are listed and compared. Electrical circuit and control algorithms have also been evaluated to maximize the power output and to deliver the premium ride comfort and handling performance. Different types of parameterized road excitations have been applied to vehicle suspension systems to investigate the performance of the regenerative shock absorbers. The potential of incorporating nonlinearity into the regenerative shock absorber design analysis is discussed. The research gaps for the comparison of the different drive modes and the nonlinearity analysis of the regenerative shock absorbers are identified and, the corresponding research questions have been proposed for future work.

  10. Perkembangan Terkini Membran Guided Tissue Regeneration/Guided Bone Regeneration sebagai Terapi Regenerasi Jaringan Periodontal

    Directory of Open Access Journals (Sweden)

    Cindy Cahaya

    2015-06-01

    kombinasi prosedur-prosedur di atas, termasuk prosedur bedah restoratif yang berhubungan dengan rehabilitasi oral dengan penempatan dental implan. Pada tingkat selular, regenerasi periodontal adalah proses kompleks yang membutuhkan proliferasi yang terorganisasi, differensiasi dan pengembangan berbagai tipe sel untuk membentuk perlekatan periodontal. Rasionalisasi penggunaan guided tissue regeneration sebagai membran pembatas adalah menahan epitel dan gingiva jaringan pendukung, sebagai barrier membrane mempertahankan ruang dan gigi serta menstabilkan bekuan darah. Pada makalah ini akan dibahas sekilas mengenai 1. Proses penyembuhan terapi periodontal meliputi regenerasi, repair ataupun pembentukan perlekatan baru. 2. Periodontal spesific tissue engineering. 3. Berbagai jenis membran/guided tissue regeneration yang beredar di pasaran dengan keuntungan dan kerugian sekaligus karakteristik masing-masing membran. 4. Perkembangan membran terbaru sebagai terapi regenerasi penyakit periodontal. Tujuan penulisan untuk memberi gambaran masa depan mengenai terapi regenerasi yang menjanjikan sebagai perkembangan terapi penyakit periodontal.   Latest Development of Guided Tissue Regeneration and Guided Bone Regeneration Membrane as Regenerative Therapy on Periodontal Tissue. Periodontitis is a patological state which influences the integrity of periodontal system that could lead to the destruction of the periodontal tissue and end up with tooth loss. Currently, there are so many researches and efforts to regenerate periodontal tissue, not only to stop the process of the disease but also to reconstruct the periodontal tissue. Periodontal regenerative therapy aims at directing the growth of new bone, cementum and periodontal ligament on the affected teeth. Regenerative procedures consist of soft tissue graft, bone graft, roots biomodification, guided tissue regeneration and combination of the procedures, including restorative surgical procedure that is

  11. Regenerative medicine through a crisis: social perception and the financial reality.

    Science.gov (United States)

    Brindley, David; Davie, Natasha

    2009-12-01

    The aim of this perspective piece is to highlight how the "social perception" and "financial reality" of regenerative medicine may act to hinder its evolution into the principal health-care option for the future. We also consider the role of the consumer and the need for increased public awareness. Furthermore, we consider the effects of the changing social attitudes toward the field, as well as taking into account the influence of current and future political thinking. From a financial viewpoint, we analyze the compatibility of the current venture capital model with regenerative medicine start-ups and explore approaches to ensure sufficient funding and support throughout all stages of product development, for example, the modularization of funding.

  12. Perivascular cells for regenerative medicine

    NARCIS (Netherlands)

    M. Crisan (Mihaela); M. Corselli (Mirko); W.C. Chen (William); B. Péault (Bruno)

    2012-01-01

    textabstractMesenchymal stem/stromal cells (MSC) are currently the best candidate therapeutic cells for regenerative medicine related to osteoarticular, muscular, vascular and inflammatory diseases, although these cells remain heterogeneous and necessitate a better biological characterization. We

  13. Hierarchical Design of Tissue Regenerative Constructs.

    Science.gov (United States)

    Rose, Jonas C; De Laporte, Laura

    2018-03-01

    The worldwide shortage of organs fosters significant advancements in regenerative therapies. Tissue engineering and regeneration aim to supply or repair organs or tissues by combining material scaffolds, biochemical signals, and cells. The greatest challenge entails the creation of a suitable implantable or injectable 3D macroenvironment and microenvironment to allow for ex vivo or in vivo cell-induced tissue formation. This review gives an overview of the essential components of tissue regenerating scaffolds, ranging from the molecular to the macroscopic scale in a hierarchical manner. Further, this review elaborates about recent pivotal technologies, such as photopatterning, electrospinning, 3D bioprinting, or the assembly of micrometer-scale building blocks, which enable the incorporation of local heterogeneities, similar to most native extracellular matrices. These methods are applied to mimic a vast number of different tissues, including cartilage, bone, nerves, muscle, heart, and blood vessels. Despite the tremendous progress that has been made in the last decade, it remains a hurdle to build biomaterial constructs in vitro or in vivo with a native-like structure and architecture, including spatiotemporal control of biofunctional domains and mechanical properties. New chemistries and assembly methods in water will be crucial to develop therapies that are clinically translatable and can evolve into organized and functional tissues. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Upcycling umbilical cords: bridging regenerative medicine with neonatology.

    Science.gov (United States)

    Moreira, Alvaro; Alayli, Yasmeen; Balgi, Saloni; Winter, Caitlyn; Kahlenberg, Samuel; Mustafa, Shamimunisa; Hornsby, Peter

    2017-11-27

    Preterm birth is a major health concern that affects 10% of all worldwide deliveries. Many preterm infants are discharged from the hospital with morbidities that lead to an increased risk for neurodevelopmental impairment, recurrent hospitalizations, and life-long conditions. Unfortunately, the treatment of these conditions is palliative rather than curative, which calls for novel and innovative strategies. Progress in regenerative medicine has offered therapeutic options for many of these conditions. Specifically, human umbilical cord mesenchymal stem cells (MSCs) and cord blood (UCB) cells have shown promise in treating adult-onset diseases. Unlike bone-marrow and embryonic derived stem cells, umbilical cord-derived cells are easily and humanely obtained, have low immunogenicity, and offer the potential of autologous therapy. While there are several studies to uphold the efficacy of umbilical cord MSCs in adult therapies, there remains an unmet need for the investigation of its use in treating neonates. The purpose of this review is to provide a summary of current information on the potential therapeutic benefits and clinical applicability of umbilical cord MSCs and UCB cells. Promising preclinical studies have now led to a research movement that is focusing on cell-based therapies for preterm infants.

  15. Engineered, axially-vascularized osteogenic grafts from human adipose-derived cells to treat avascular necrosis of bone in a rat model.

    Science.gov (United States)

    Ismail, Tarek; Osinga, Rik; Todorov, Atanas; Haumer, Alexander; Tchang, Laurent A; Epple, Christian; Allafi, Nima; Menzi, Nadia; Largo, René D; Kaempfen, Alexandre; Martin, Ivan; Schaefer, Dirk J; Scherberich, Arnaud

    2017-11-01

    Avascular necrosis of bone (AVN) leads to sclerosis and collapse of bone and joints. The standard of care, vascularized bone grafts, is limited by donor site morbidity and restricted availability. The aim of this study was to generate and test engineered, axially vascularized SVF cells-based bone substitutes in a rat model of AVN. SVF cells were isolated from lipoaspirates and cultured onto porous hydroxyapatite scaffolds within a perfusion-based bioreactor system for 5days. The resulting constructs were inserted into devitalized bone cylinders mimicking AVN-affected bone. A ligated vascular bundle was inserted upon subcutaneous implantation of constructs in nude rats. After 1 and 8weeks in vivo, bone formation and vascularization were analyzed. Newly-formed bone was found in 80% of SVF-seeded scaffolds after 8weeks but not in unseeded controls. Human ALU+cells in the bone structures evidenced a direct contribution of SVF cells to bone formation. A higher density of regenerative, M2 macrophages was observed in SVF-seeded constructs. In both experimental groups, devitalized bone was revitalized by vascularized tissue after 8 weeks. SVF cells-based osteogenic constructs revitalized fully necrotic bone in a challenging AVN rat model of clinically-relevant size. SVF cells contributed to accelerated initial vascularization, to bone formation and to recruitment of pro-regenerative endogenous cells. Avascular necrosis (AVN) of bone often requires surgical treatment with autologous bone grafts, which is surgically demanding and restricted by significant donor site morbidity and limited availability. This paper describes a de novo engineered axially-vascularized bone graft substitute and tests the potential to revitalize dead bone and provide efficient new bone formation in a rat model. The engineering of an osteogenic/vasculogenic construct of clinically-relevant size with stromal vascular fraction of human adipose, combined to an arteriovenous bundle is described. This

  16. Regenerative medicine: looking backward 10 years further on.

    Science.gov (United States)

    Kemp, Paul

    2016-12-01

    The last decade has seen considerable changes in the Regenerative Medicine industry, but unfortunately the hope for numerous treatments that 'replace or regenerate human cells, tissues or organs to restore or establish normal function' has not yet emerged. In contrast to this, there have been major advances in the field of cellular immunotherapy though some do not consider these to be Regenerative Medicines. Regulatory changes have in some cases improved the route to a marketing license but they have not been matched by clarification of the complex, national reimbursement processes for cell-based treatments and this has adversely affected a number of leading Regenerative Medicine Companies. The review considers the direction that the industry may go in the future in relation to scientific, manufacturing and clinical strategies which may improve the rate of success of new therapies..

  17. Dental pulp stem cells in regenerative dentistry.

    Science.gov (United States)

    Casagrande, Luciano; Cordeiro, Mabel M; Nör, Silvia A; Nör, Jacques E

    2011-01-01

    Stem cells constitute the source of differentiated cells for the generation of tissues during development, and for regeneration of tissues that are diseased or injured postnatally. In recent years, stem cell research has grown exponentially owing to the recognition that stem cell-based therapies have the potential to improve the life of patients with conditions that span from Alzheimer's disease to cardiac ischemia to bone or tooth loss. Growing evidence demonstrates that stem cells are primarily found in niches and that certain tissues contain more stem cells than others. Among these tissues, the dental pulp is considered a rich source of mesenchymal stem cells that are suitable for tissue engineering applications. It is known that dental pulp stem cells have the potential to differentiate into several cell types, including odontoblasts, neural progenitors, osteoblasts, chondrocytes, and adipocytes. The dental pulp stem cells are highly proliferative. This characteristic facilitates ex vivo expansion and enhances the translational potential of these cells. Notably, the dental pulp is arguably the most accessible source of postnatal stem cells. Collectively, the multipotency, high proliferation rates, and accessibility make the dental pulp an attractive source of mesenchymal stem cells for tissue regeneration. This review discusses fundamental concepts of stem cell biology and tissue engineering within the context of regenerative dentistry.

  18. Exploring gamma radiation effect on exoelectron emission properties of bone

    International Nuclear Information System (INIS)

    Zakaria, M.; Dekhtyar, Y.; Bogucharska, T.; Noskov, V.

    2006-01-01

    Gamma radiation is used for radiation therapy to treat carcinogenic diseases including bone cancer. Ionising radiation kills carcinogenic calls. However, there are side effects of the gamma radiation on the bone surface electron structure. One of the effects is in the form of altering electron density of states of bone that, with time, influences biomedical reactions on bone life condition. (authors)

  19. Exploring gamma radiation effect on exoelectron emission properties of bone

    Energy Technology Data Exchange (ETDEWEB)

    Zakaria, M.; Dekhtyar, Y.; Bogucharska, T.; Noskov, V. [Riga Technical Univ., Biomedical Engineering and Nanotechnology Institute (Latvia)

    2006-07-01

    Gamma radiation is used for radiation therapy to treat carcinogenic diseases including bone cancer. Ionising radiation kills carcinogenic calls. However, there are side effects of the gamma radiation on the bone surface electron structure. One of the effects is in the form of altering electron density of states of bone that, with time, influences biomedical reactions on bone life condition. (authors)

  20. Effects of implant drilling parameters for pilot and twist drills on temperature rise in bone analog and alveolar bones.

    Science.gov (United States)

    Chen, Yung-Chuan; Hsiao, Chih-Kun; Ciou, Ji-Sih; Tsai, Yi-Jung; Tu, Yuan-Kun

    2016-11-01

    This study concerns the effects of different drilling parameters of pilot drills and twist drills on the temperature rise of alveolar bones during dental implant procedures. The drilling parameters studied here include the feed rate and rotation speed of the drill. The bone temperature distribution was analyzed through experiments and numerical simulations of the drilling process. In this study, a three dimensional (3D) elasto-plastic dynamic finite element model (DFEM) was proposed to investigate the effects of drilling parameters on the bone temperature rise. In addition, the FE model is validated with drilling experiments on artificial human bones and porcine alveolar bones. The results indicate that 3D DFEM can effectively simulate the bone temperature rise during the drilling process. During the drilling process with pilot drills or twist drills, the maximum bone temperature occurred in the region of the cancellous bones close to the cortical bones. The feed rate was one of the important factors affecting the time when the maximum bone temperature occurred. Our results also demonstrate that the elevation of bone temperature was reduced as the feed rate increased and the drill speed decreased, which also effectively reduced the risk region of osteonecrosis. These findings can serve as a reference for dentists in choosing drilling parameters for dental implant surgeries. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  1. Analysis of downshift’s improvement to energy efficiency of an electric vehicle during regenerative braking

    International Nuclear Information System (INIS)

    Li, Liang; Li, Xujian; Wang, Xiangyu; Song, Jian; He, Kai; Li, Chenfeng

    2016-01-01

    Highlights: • Downshift is effective in improving the energy efficiency of electric vehicles. • Energy improvement of downshift varies with vehicle speed and brake strength. • The designed nonlinear sliding mode observer is accurate in estimating bake torque. • The proposed resembling PWM method is practical to regulate hydraulic pressure. • The effect of downshift on braking safety and comfort can be restrained by control. - Abstract: Downshift during regenerative braking helps to improve the energy efficiency of electric vehicles. Two main problems are involved in the downshift process. One is the determination of optimal downshift point, and the other is the cooperative control of regenerative braking and hydraulic braking. In order to achieve a systemic solution to these problems, a hierarchical control strategy is brought forward for an electric vehicle with a two-speed automated mechanical transmission. For the upper controller, an off-line calculation and on-line look-up table method is adopted to obtain the optimal downshift point, and a series regenerative braking distribution strategy is designed. For the medium controller, a nonlinear sliding mode observer is designed to obtain the actual hydraulic brake torque. For the lower controller, cooperative control of regenerative braking and hydraulic braking is given to ensure brake safety during downshift process, and a resembling pulse width modulation method is proposed to regulated the hydraulic brake torque. Simulation results and hardware-in-loop test show that the proposed algorithm is effective in improving the energy efficiency of electric vehicles.

  2. Regenerative Endodontics: A Road Less Travelled

    Science.gov (United States)

    Bansal, Ramta; Mittal, Sunandan; Kumar, Tarun; Kaur, Dilpreet

    2014-01-01

    Although traditional approaches like root canal therapy and apexification procedures have been successful in treating diseased or infected root canals, but these modalities fail to re-establish healthy pulp tissue in treated teeth. Regeneration-based approaches aims to offer high levels of success by replacing diseased or necrotic pulp tissues with healthy pulp tissue to revitalize teeth. The applications of regenerative approaches in dental clinics have potential to dramatically improve patients’ quality of life. This review article offers a detailed overview of present regenerative endodontic approaches aiming to revitalize teeth and also outlines the problems to be dealt before this emerging field contributes to clinical treatment protocols. It conjointly covers the basic trilogy elements of tissue engineering. PMID:25478476

  3. iPS cell technologies and their prospect for bone regeneration and disease modeling: A mini review

    Directory of Open Access Journals (Sweden)

    Maria Csobonyeiova

    2017-07-01

    Full Text Available Bone disorders are a group of varied acute and chronic traumatic, degenerative, malignant or congenital conditions affecting the musculoskeletal system. They are prevalent in society and, with an ageing population, the incidence and impact on the population’s health is growing. Severe persisting pain and limited mobility are the major symptoms of the disorder that impair the quality of life in affected patients. Current therapies only partially treat the disorders, offering management of symptoms, or temporary replacement with inert materials. However, during the last few years, the options for the treatment of bone disorders have greatly expanded, thanks to the advent of regenerative medicine. Skeletal cell-based regeneration medicine offers promising reparative therapies for patients. Mesenchymal stem (stromal cells from different tissues have been gradually translated into clinical practice; however, there are a number of limitations. The introduction of reprogramming methods and the subsequent production of induced pluripotent stem cells provides a possibility to create human-specific models of bone disorders. Furthermore, human-induced pluripotent stem cell-based autologous transplantation is considered to be future breakthrough in the field of regenerative medicine. The main goal of the present paper is to review recent applications of induced pluripotent stem cells in bone disease modeling and to discuss possible future therapy options. The present article contributes to the dissemination of scientific and pre-clinical results between physicians, mainly orthopedist and thus supports the translation to clinical practice.

  4. Chitosan porous 3D scaffolds embedded with resolvin D1 to improve in vivo bone healing.

    Science.gov (United States)

    Vasconcelos, Daniela P; Costa, Madalena; Neves, Nuno; Teixeira, José H; Vasconcelos, Daniel M; Santos, Susana G; Águas, Artur P; Barbosa, Mário A; Barbosa, Judite N

    2018-06-01

    The aim of this study was to investigate the effect chitosan (Ch) porous 3D scaffolds embedded with resolvin D1 (RvD1), an endogenous pro-resolving lipid mediator, on bone tissue healing. These scaffolds previous developed by us have demonstrated to have immunomodulatory properties namely in the modulation of the macrophage inflammatory phenotypic profile in an in vivo model of inflammation. Herein, results obtained in an in vivo rat femoral defect model demonstrated that two months after Ch + RvD1 scaffolds implantation, an increase in new bone formation, in bone trabecular thickness, and in collagen type I and Coll I/Coll III ratio were observed. These results suggest that Ch scaffolds embedded with RvD1 were able to lead to the formation of new bone with improvement of trabecular thickness. This study shows that the presence of RvD1 in the acute phase of the inflammatory response to the implanted biomaterial had a positive role in the subsequent bone tissue repair, thus demonstrating the importance of innovative approaches for the control of immune responses to biomedical implants in the design of advanced strategies for regenerative medicine. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1626-1633, 2018. © 2018 Wiley Periodicals, Inc.

  5. Capacitor regenerative braking system of electric wheelchair for senior citizen based on variable frequency chopper control.

    Science.gov (United States)

    Takahashi, Yoshiaki; Seki, Hirokazu

    2009-01-01

    This paper proposes a novel regenerative braking control system of electric wheelchairs for senior citizen. "Electric powered wheelchair", which generates the driving force by electric motors according to the human operation, is expected to be widely used as a mobility support system for elderly people. This study focuses on the braking control to realize the safety and smooth stopping motion using the regenerative braking control technique based on fuzzy algorithm. The ride quality improvement and energy recycling can be expected by the proposed control system with stopping distance estimation and variable frequency control on the step-up/down chopper type of capacitor regenerative circuit. Some driving experiments confirm the effectiveness of the proposed control system.

  6. Research into the Effect of Supercapacitor Terminal Voltage on Regenerative Suspension Energy-Regeneration and Dynamic Performance

    Directory of Open Access Journals (Sweden)

    Ruochen Wang

    2017-01-01

    Full Text Available To study the effect of supercapacitor initial terminal voltage on the regenerative and semiactive suspension energy-regeneration and dynamic performance, firstly, the relationship between supercapacitor terminal voltage and linear motor electromagnetic damping force and that between supercapacitor terminal voltage and recycled energy by the supercapacitor in one single switching period were both analyzed. The result shows that the linear motor electromagnetic damping force is irrelevant to the supercapacitor terminal voltage, and the recycled energy by the supercapacitor reaches the maximum when initial terminal voltage of the supercapacitor equals output terminal voltage of the linear motor. Then, performances of system dynamics and energy-regeneration were studied as the supercapacitor initial terminal voltage varied in situations of B level and C level road. The result showed that recycled energy by the supercapacitor increased at first and then decreased while the dynamic performance had no obvious change. On the basis of previous study, a mode-switching control strategy of supercapacitor for the regenerative and semiactive suspension system was proposed, and the mode-switching rule was built. According to simulation and experiment results, the system energy-regeneration efficiency can be increased by utilizing the control strategy without influencing suspension dynamic performance, which is highly valuable to practical engineering.

  7. Preclinical imaging methods for assessing the safety and efficacy of regenerative medicine therapies

    Science.gov (United States)

    Scarfe, Lauren; Brillant, Nathalie; Kumar, J. Dinesh; Ali, Noura; Alrumayh, Ahmed; Amali, Mohammed; Barbellion, Stephane; Jones, Vendula; Niemeijer, Marije; Potdevin, Sophie; Roussignol, Gautier; Vaganov, Anatoly; Barbaric, Ivana; Barrow, Michael; Burton, Neal C.; Connell, John; Dazzi, Francesco; Edsbagge, Josefina; French, Neil S.; Holder, Julie; Hutchinson, Claire; Jones, David R.; Kalber, Tammy; Lovatt, Cerys; Lythgoe, Mark F.; Patel, Sara; Patrick, P. Stephen; Piner, Jacqueline; Reinhardt, Jens; Ricci, Emanuelle; Sidaway, James; Stacey, Glyn N.; Starkey Lewis, Philip J.; Sullivan, Gareth; Taylor, Arthur; Wilm, Bettina; Poptani, Harish; Murray, Patricia; Goldring, Chris E. P.; Park, B. Kevin

    2017-10-01

    Regenerative medicine therapies hold enormous potential for a variety of currently incurable conditions with high unmet clinical need. Most progress in this field to date has been achieved with cell-based regenerative medicine therapies, with over a thousand clinical trials performed up to 2015. However, lack of adequate safety and efficacy data is currently limiting wider uptake of these therapies. To facilitate clinical translation, non-invasive in vivo imaging technologies that enable careful evaluation and characterisation of the administered cells and their effects on host tissues are critically required to evaluate their safety and efficacy in relevant preclinical models. This article reviews the most common imaging technologies available and how they can be applied to regenerative medicine research. We cover details of how each technology works, which cell labels are most appropriate for different applications, and the value of multi-modal imaging approaches to gain a comprehensive understanding of the responses to cell therapy in vivo.

  8. Periodontal Regenerative Therapy in Patient with Chronic Periodontitis and Type 2 Diabetes Mellitus: A Case Report.

    Science.gov (United States)

    Seshima, Fumi; Nishina, Makiko; Namba, Takashi; Saito, Atsushi

    2016-01-01

    We report a case of generalized chronic periodontitis and type 2 diabetes mellitus requiring periodontal treatment including regenerative therapy. The patient was a 66-year-old man who presented with the chief complaint of gingival inflammation and mobile teeth in the molar region. He had been being treated for type 2 diabetes mellitus since 1999. His glycated hemoglobin (HbA1c) level was 7.8%. An initial examination revealed sites with a probing depth of ≥7 mm in the molar region, and radiography revealed angular bone defects in this area. Based on a clinical diagnosis of generalized chronic periodontitis, the patient underwent initial periodontal therapy. An improvement was observed in periodontal conditions on reevaluation, and his HbA1c level showed a reduction to 6.9%. Periodontal regenerative therapy with enamel matrix derivative was then performed on #16, 26, and 27. Following another reevaluation, a removable partial denture was fabricated for #47 and the patient placed on supportive periodontal therapy (SPT). To date, periodontal conditions have remained stable and the patient's HbA1c level has increased to 7.5% during SPT. The results show the importance of collaboration between dentist and physician in managing periodontal and diabetic conditions in such patients.

  9. Reflective Self-Regenerative Systems Architecture Study

    National Research Council Canada - National Science Library

    Pu, Carlton; Blough, Douglas

    2006-01-01

    In this study, we develop the Reflective Self-Regenerative Systems (RSRS) architecture in detail, describing the internal structure of each component and the mutual invocations among the components...

  10. Regenerative braking systems with torsional springs made of carbon nanotube yarn

    International Nuclear Information System (INIS)

    Liu, S; Martin, C; Livermore, C; Lashmore, D; Schauer, M

    2014-01-01

    The demonstration of large stroke, high energy density and high power density torsional springs based on carbon nanotube (CNT) yarns is reported, as well as their application as an energy-storing actuator for regenerative braking systems. Originally untwisted CNT yarn is cyclically loaded and unloaded in torsion, with the maximum rotation angle increasing until failure. The maximum extractable energy density is measured to be as high as 6.13 kJ/kg. The tests also reveal structural reorganization and hysteresis in the torsional loading curves. A regenerative braking system is built to capture the kinetic energy of a wheel and store it as elastic energy in twisted CNT yarns. When the yam's twist is released, the stored energy reaccelerates the wheel. The measured energy and mean power densities of the CNT yarns in the simple regenerative braking system are up to 4.69 kJ/kg and 1.21 kW/kg, respectively. A slightly lower energy density of up to 1.23 kJ/kg and a 0.29 kW/kg mean power density are measured for the CNT yarns in a more complex system that mimics a unidirectional rotating regenerative braking mechanism. The lower energy densities for CNT yarns in the regenerative braking systems as compared with the yarns themselves reflect the frictional losses of the regenerative systems

  11. Regenerative braking systems with torsional springs made of carbon nanotube yarn

    Science.gov (United States)

    Liu, S.; Martin, C.; Lashmore, D.; Schauer, M.; Livermore, C.

    2014-11-01

    The demonstration of large stroke, high energy density and high power density torsional springs based on carbon nanotube (CNT) yarns is reported, as well as their application as an energy-storing actuator for regenerative braking systems. Originally untwisted CNT yarn is cyclically loaded and unloaded in torsion, with the maximum rotation angle increasing until failure. The maximum extractable energy density is measured to be as high as 6.13 kJ/kg. The tests also reveal structural reorganization and hysteresis in the torsional loading curves. A regenerative braking system is built to capture the kinetic energy of a wheel and store it as elastic energy in twisted CNT yarns. When the yam's twist is released, the stored energy reaccelerates the wheel. The measured energy and mean power densities of the CNT yarns in the simple regenerative braking system are up to 4.69 kJ/kg and 1.21 kW/kg, respectively. A slightly lower energy density of up to 1.23 kJ/kg and a 0.29 kW/kg mean power density are measured for the CNT yarns in a more complex system that mimics a unidirectional rotating regenerative braking mechanism. The lower energy densities for CNT yarns in the regenerative braking systems as compared with the yarns themselves reflect the frictional losses of the regenerative systems.

  12. Methods to Analyze Bone Regenerative Response to Different rhBMP-2 Doses in Rabbit Craniofacial Defects

    Science.gov (United States)

    2014-02-28

    Ruggiero, S., Fantasia, J., Burakoff, R., Moorji, S.M., Paric, E., et al. Sonic hedgehog gene enhanced tissue engineering for bone regeneration. Gene Ther...discectomy and fusion: a case study. Spine J 7, 235, 2007. 8. Zara, J.N., Siu, R.K., Zhang, X., Shen, J., Ngo, R., Lee, M., et al. High doses of bone

  13. Functionalized Surface Geometries Induce: “Bone: Formation by Autoinduction”

    Directory of Open Access Journals (Sweden)

    Ugo Ripamonti

    2018-02-01

    Full Text Available The induction of tissue formation, and the allied disciplines of tissue engineering and regenerative medicine, have flooded the twenty-first century tissue biology scenario and morphed into high expectations of a fulfilling regenerative dream of molecularly generated tissues and organs in assembling human tissue factories. The grand conceptualization of deploying soluble molecular signals, first defined by Turing as forms generating substances, or morphogens, stemmed from classic last century studies that hypothesized the presence of morphogens in several mineralized and non-mineralized mammalian matrices. The realization of morphogens within mammalian matrices devised dissociative extractions and chromatographic procedures to isolate, purify, and finally reconstitute the cloned morphogens, found to be members of the transforming growth factor-β (TGF-β supergene family, with insoluble signals or substrata to induce de novo tissue induction and morphogenesis. Can we however construct macroporous bioreactors per se capable of inducing bone formation even without the exogenous applications of the osteogenic soluble molecular signals of the TGF-β supergene family? This review describes original research on coral-derived calcium phosphate-based macroporous constructs showing that the formation of bone is independent of the exogenous application of the osteogenic soluble signals of the TGF-β supergene family. Such signals are the molecular bases of the induction of bone formation. The aim of this review is to primarily describe today's hottest topic of biomaterials' science, i.e., to construct and define osteogenetic biomaterials' surfaces that per se, in its own right, do initiate the induction of bone formation. Biomaterials are often used to reconstruct osseous defects particularly in the craniofacial skeleton. Edentulism did spring titanium implants as tooth replacement strategies. No were else that titanium surfaces require functionalized

  14. Human amnion mesenchymal stem cells promote proliferation and osteogenic differentiation in human bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Wang, Yuli; Yin, Ying; Jiang, Fei; Chen, Ning

    2015-02-01

    Human amnion mesenchymal stem cells (HAMSCs) can be obtained from human amniotic membrane, a highly abundant and readily available tissue. HAMSC sources present fewer ethical issues, have low immunogenicity, anti-inflammatory properties, considerable advantageous characteristics, and are considered an attractive potential treatment material in the field of regenerative medicine. We used a co-culture system to determine whether HAMSCs could promote osteogenesis in human bone marrow mesenchymal stem cells (HBMSCs). We isolated HAMSCs from discarded amnion samples and collected them using pancreatin/collagenase digestion. We cultured HAMSCs and HBMSCSs in basal medium. Activity of alkaline phosphatase (ALP), an early osteogenesis marker, was increased in the co-culture system compared to the control single cultures, which we also confirmed by ALP staining. We used immunofluorescence testing to investigate the effects of co-culturing with HAMSCs on HBMSC proliferation, which revealed that the co-culturing enhanced EdU expression in HBMSCs. Western blotting and quantitative real-time PCR indicated that co-culturing promoted osteogenesis in HBMSCs. Furthermore, Alizarin red S staining revealed that extracellular matrix calcium levels in mineralized nodule formation produced by the co-cultures were higher than that in the controls. Using the same co-culture system, we further observed the effects of HAMSCs on osteogenic differentiation in primary osteoblasts by Western blotting, which better addressed the mechanism for HAMSCs in bone regeneration. The results showed HAMSCs are osteogenic and not only play a role in promoting HBMSC proliferation and osteogenic differentiation but also in osteoblasts, laying the foundation for new regenerative medicine methods.

  15. Fuzzy logic electric vehicle regenerative antiskid braking and traction control system

    Science.gov (United States)

    Cikanek, Susan R.

    1994-01-01

    An regenerative antiskid braking and traction control system using fuzzy logic for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensor and determining if regenerative antiskid braking control, requiring hydraulic braking control, and requiring traction control are required. The processor then employs fuzzy logic based on the determined vehicle state and provides command signals to a motor controller to control operation of the electric traction motor and to the brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative braking control, hydraulic braking control, and traction control.

  16. A new biocompatible delivery scaffold containing heparin and bone morphogenetic protein 2

    Directory of Open Access Journals (Sweden)

    Thanyaphoo Suphannee

    2016-09-01

    Full Text Available Silicon-substituted calcium phosphate (Si-CaP was developed in our laboratory as a biomaterial for delivery in bone tissue engineering. It was fabricated as a 3D-construct of scaffolds using chitosan-trisodium polyphosphate (TPP cross-linked networks. In this study, heparin was covalently bonded to the residual -NH2 groups of chitosan on the scaffold applying carbodiimide chemistry. Bonded heparin was not leached away from scaffold surfaces upon vigorous washing or extended storage. Recombinant human bone morphogenetic protein 2 (rhBMP-2 was bound to conjugated scaffolds by ionic interactions between the negatively charged SO42- clusters of heparin and positively charged amino acids of rhBMP-2. The resulting scaffolds were inspected for bone regenerative capacity by subcutaneous implanting in rats. Histological observation and mineralization assay were performed after 4 weeks of implantation. Results from both in vitro and in vivo experiments suggest the potential of the developed scaffolds for bone tissue engineering applications in the future.

  17. Heterogeneous and self-organizing mineralization of bone matrix promoted by hydroxyapatite nanoparticles.

    Science.gov (United States)

    Campi, G; Cristofaro, F; Pani, G; Fratini, M; Pascucci, B; Corsetto, P A; Weinhausen, B; Cedola, A; Rizzo, A M; Visai, L; Rea, G

    2017-11-16

    The mineralization process is crucial to the load-bearing characteristics of the bone extracellular matrix. In this work, we have studied the spatiotemporal dynamics of mineral deposition by human bone marrow mesenchymal stem cells differentiating toward osteoblasts promoted by the presence of exogenous hydroxyapatite nanoparticles. At the molecular level, the added nanoparticles positively modulated the expression of bone-specific markers and enhanced calcified matrix deposition during osteogenic differentiation. The nucleation, growth and spatial arrangement of newly deposited hydroxyapatite nanocrystals have been evaluated using scanning micro X-ray diffraction and scanning micro X-ray fluorescence. As leading results, we have found the emergence of a complex scenario where the spatial organization and temporal evolution of the process exhibit heterogeneous and self-organizing dynamics. At the same time the possibility of controlling the differentiation kinetics, through the addition of synthetic nanoparticles, paves the way to empower the generation of more structured bone scaffolds in tissue engineering and to design new drugs in regenerative medicine.

  18. Use of platelet lysate for bone regeneration - are we ready for clinical translation?

    Science.gov (United States)

    Altaie, Ala; Owston, Heather; Jones, Elena

    2016-02-26

    Current techniques to improve bone regeneration following trauma or tumour resection involve the use of autograft bone or its substitutes supplemented with osteoinductive growth factors and/or osteogenic cells such as mesenchymal stem cells (MSCs). Although MSCs are most commonly grown in media containing fetal calf serum, human platelet lysate (PL) offers an effective alternative. Bone marrow - derived MSCs grown in PL-containing media display faster proliferation whilst maintaining good osteogenic differentiation capacity. Limited pre-clinical investigations using PL-expanded MSCs seeded onto osteoconductive scaffolds indicate good potential of such constructs to repair bone in vivo. In an alternative approach, nude PL-coated scaffolds without seeded MSCs have been proposed as novel regenerative medicine devices. Even though methods to coat scaffolds with PL vary, in vitro studies suggest that PL allows for MSC adhesion, migration and differentiation inside these scaffolds. Increased new bone formation and vascularisation in comparison to uncoated scaffolds have also been observed in vivo. This review outlines the state-of-the-art research in the field of PL for ex vivo MSC expansion and in vivo bone regeneration. To minimise inconsistency between the studies, further work is required towards standardisation of PL preparation in terms of the starting material, platelet concentration, leukocyte depletion, and the method of platelet lysis. PL quality control procedures and its "potency" assessment are urgently needed, which could include measurements of key growth and attachment factors important for MSC maintenance and differentiation. Furthermore, different PL formulations could be tailor-made for specific bone repair indications. Such measures would undoubtedly speed up clinical translation of PL-based treatments for bone regeneration.

  19. Genetic and Epigenetic Regulation of Human Cardiac Reprogramming and Differentiation in Regenerative Medicine.

    Science.gov (United States)

    Burridge, Paul W; Sharma, Arun; Wu, Joseph C

    2015-01-01

    Regeneration or replacement of lost cardiomyocytes within the heart has the potential to revolutionize cardiovascular medicine. Numerous methodologies have been used to achieve this aim, including the engraftment of bone marrow- and heart-derived cells as well as the identification of modulators of adult cardiomyocyte proliferation. Recently, the conversion of human somatic cells into induced pluripotent stem cells and induced cardiomyocyte-like cells has transformed potential approaches toward this goal, and the engraftment of cardiac progenitors derived from human embryonic stem cells into patients is now feasible. Here we review recent advances in our understanding of the genetic and epigenetic control of human cardiogenesis, cardiac differentiation, and the induced reprogramming of somatic cells to cardiomyocytes. We also cover genetic programs for inducing the proliferation of endogenous cardiomyocytes and discuss the genetic state of cells used in cardiac regenerative medicine.

  20. Effect of treadmill gait on bone markers and bone mineral density of quadriplegic subjects

    Directory of Open Access Journals (Sweden)

    D.C.L. Carvalho

    2006-10-01

    Full Text Available Quadriplegic subjects present extensive muscle mass paralysis which is responsible for the dramatic decrease in bone mass, increasing the risk of bone fractures. There has been much effort to find an efficient treatment to prevent or reverse this significant bone loss. We used 21 male subjects, mean age 31.95 ± 8.01 years, with chronic quadriplegia, between C4 and C8, to evaluate the effect of treadmill gait training using neuromuscular electrical stimulation, with 30-50% weight relief, on bone mass, comparing individual dual-energy X-ray absorptiometry responses and biochemical markers of bone metabolism. Subjects were divided into gait (N = 11 and control (N = 10 groups. The gait group underwent gait training for 6 months, twice a week, for 20 min, while the control group did not perform gait. Bone mineral density (BMD of lumbar spine, femoral neck, trochanteric area, and total femur, and biochemical markers (osteocalcin, bone alkaline phosphatase, pyridinoline, and deoxypyridinoline were measured at the beginning of the study and 6 months later. In the gait group, 81.8% of the subjects presented a significant increase in bone formation and 66.7% also presented a significant decrease of bone resorption markers, whereas 30% of the controls did not present any change in markers and 20% presented an increase in bone formation. Marker results did not always agree with BMD data. Indeed, many individuals with increased bone formation presented a decrease in BMD. Most individuals in the gait group presented an increase in bone formation markers and a decrease in bone resorption markers, suggesting that gait training, even with 30-50% body weight support, was efficient in improving the bone mass of chronic quadriplegics.

  1. Augmented cartilage regeneration by implantation of cellular versus acellular implants after bone marrow stimulation: a systematic review and meta-analysis of animal studies

    NARCIS (Netherlands)

    Pot, M.W.; Kuppevelt, T.H. van; Gonzales, V.K.; Buma, P.; Hout, J. in't; Vries, R.B.M. de; Daamen, W.F.

    2017-01-01

    Bone marrow stimulation may be applied to regenerate focal cartilage defects, but generally results in transient clinical improvement and formation of fibrocartilage rather than hyaline cartilage. Tissue engineering and regenerative medicine strive to develop new solutions to regenerate hyaline

  2. EFFECTS OF RUN TRAINING ON BONE DEVELOPMENT AND BONE MINERALIZATION IN GROWING MICE

    Directory of Open Access Journals (Sweden)

    B Gönül

    2011-06-01

    Full Text Available We planned to study the body weights, bone sizes and bone mineral (Ca, Mg, Zn contents of growing mice subjected to treadmill training. Twelve 4-week-old male Swiss Albino mice were divided into sedentary and exercise groups. The mice were trained by running exercise on a flat bed treadmill with 15 m/min, 30 min/day motion, throughout 5 days per week, for 12 weeks. The body weight of animals, and length, fat-free dry weight and Ca, Mg, and Zn contents of bones were measured in both groups. Body weights of animals, and lengths and wet and dry weights of the femur and the tibia were significantly higher in the exercised group. Also, the Zn, Mg and Ca mineral contents of bones in the group that underwent exercise were higher than in the other group. Running exercise with a flat bed treadmill performed by the growing mice is an effective exercise mode, especially for bone morphology.

  3. Biomineralization of Engineered Spider Silk Protein-Based Composite Materials for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    John G. Hardy

    2016-07-01

    Full Text Available Materials based on biodegradable polyesters, such as poly(butylene terephthalate (PBT or poly(butylene terephthalate-co-poly(alkylene glycol terephthalate (PBTAT, have potential application as pro-regenerative scaffolds for bone tissue engineering. Herein, the preparation of films composed of PBT or PBTAT and an engineered spider silk protein, (eADF4(C16, that displays multiple carboxylic acid moieties capable of binding calcium ions and facilitating their biomineralization with calcium carbonate or calcium phosphate is reported. Human mesenchymal stem cells cultured on films mineralized with calcium phosphate show enhanced levels of alkaline phosphatase activity suggesting that such composites have potential use for bone tissue engineering.

  4. Human resource development contributes to the creation of outstanding regenerative medicine products

    Directory of Open Access Journals (Sweden)

    Fusako Nishigaki

    2017-12-01

    Full Text Available Regenerative medicine is currently the focus of global attention. Countries all around the world are actively working to create new regenerative treatment modalities through pioneering research and novel technologies. This is wonderful news for patients who could not be treated with existing medical options. New venture businesses and companies are being established in regenerative medicine and their rapid industrialization is anticipated. However, to ensure high-quality products, human resources qualified in research and development and the manufacturing of these products are essential. The Forum for Innovative Regenerative Medicine (FIRM conducted a questionnaire of its industry members to examine the training and hiring of people in research and development, product creation, manufacturing, and more. Regenerative medicine is a brand new field; thus, many different businesses will need to cooperate together. People with a broad range of technical skills, abilities, and knowledge will be in demand, with various levels of expertise, from basic to advanced.

  5. Free radical scavenging injectable hydrogels for regenerative therapy

    Energy Technology Data Exchange (ETDEWEB)

    Komeri, Remya [Sree Chitra Tirunal Institute for Medical Sciences and Technology, Polymer Science Division, BMT Wing, Thiruvananthapuram 695 012, Kerala State (India); Thankam, Finosh Gnanaprakasam [Dept. of Biomedical Sciences, Creighton University, 2500 California Plaza, Omaha NE68178 (United States); Muthu, Jayabalan, E-mail: mjayabalan52@gmail.com [Sree Chitra Tirunal Institute for Medical Sciences and Technology, Polymer Science Division, BMT Wing, Thiruvananthapuram 695 012, Kerala State (India)

    2017-02-01

    . • The PEAX-P hydrogel has suitable swelling, mechanical and degradation characterestics for injectable myocardial therapy. • The PEAX-P hydrogel scavenge 51% DPPH radical, 40% hydroxyl radicals and 41% nitrate radicals. • The in vitro studies confirm the protective effect of the present hydrogel on cardiomyoblast cells under oxidative stress. • The free electrons, hydrogen atoms and free water are responsible for the free radical scavenging property of hydrogel. • The present hydrogel is a potential candidate for myocardial regenerative therapy even with hypoxic microenvironment.

  6. Free radical scavenging injectable hydrogels for regenerative therapy

    International Nuclear Information System (INIS)

    Komeri, Remya; Thankam, Finosh Gnanaprakasam; Muthu, Jayabalan

    2017-01-01

    . • The PEAX-P hydrogel has suitable swelling, mechanical and degradation characterestics for injectable myocardial therapy. • The PEAX-P hydrogel scavenge 51% DPPH radical, 40% hydroxyl radicals and 41% nitrate radicals. • The in vitro studies confirm the protective effect of the present hydrogel on cardiomyoblast cells under oxidative stress. • The free electrons, hydrogen atoms and free water are responsible for the free radical scavenging property of hydrogel. • The present hydrogel is a potential candidate for myocardial regenerative therapy even with hypoxic microenvironment.

  7. Effect of alpha-calciferol on bone mineral density, bone histomorphometry and bone biomechanics in rats by radiative injury to kidney

    International Nuclear Information System (INIS)

    Zhu Feipeng; Wang Hongfu; Gao Linfeng; Jin Weifang

    2003-01-01

    The work is to study the effects of alpha-calciferol on bone mineral density, histomorphometry and biomechanics in rats with osteoporosis induced by irradiation of the rat kidney. 32 male SD rats of six months in age were randomly divided into 4 groups (8 rats per group), i.e. the model group, the sham group, the bone one group and the fosamax group. Osteoporosis was developed in the rats by irradiating the kidney. Then the rats were administrated orally as follows in a 90 days, 0.1 g·kg -1 BW.d of alpha-calciferol for the bone one group, 10 mg·kg -1 BW.d of alendronate sodium in 1 mL CMC for the fosamax group, and 1 mL CMC for both the model group and sham group. BMD of L1-4, bone histomorphometry and the bone biomechanical properties were measured. Compared with the model group, both the bone one group and the fosamax group were characterized with significantly higher BMD of L1-4 (p<0.01), significantly larger volume and width of bone trabecula, smaller space of bone trabecula (p<0.05, p<0.01), and significantly larger maximal stress of femur and lumbar vertebra (p<0.05, p<0.01). It is concluded that Alpha-calciferol can improve BMD, bone histomorphometry and bone biomechanical properties in rat osteoporosis induced by kidney irradiation

  8. Current and emerging basic science concepts in bone biology: implications in craniofacial surgery.

    Science.gov (United States)

    Oppenheimer, Adam J; Mesa, John; Buchman, Steven R

    2012-01-01

    Ongoing research in bone biology has brought cutting-edge technologies into everyday use in craniofacial surgery. Nonetheless, when osseous defects of the craniomaxillofacial skeleton are encountered, autogenous bone grafting remains the criterion standard for reconstruction. Accordingly, the core principles of bone graft physiology continue to be of paramount importance. Bone grafts, however, are not a panacea; donor site morbidity and operative risk are among the limitations of autologous bone graft harvest. Bone graft survival is impaired when irradiation, contamination, and impaired vascularity are encountered. Although the dura can induce calvarial ossification in children younger than 2 years, the repair of critical-size defects in the pediatric population may be hindered by inadequate bone graft donor volume. The novel and emerging field of bone tissue engineering holds great promise as a limitless source of autogenous bone. Three core constituents of bone tissue engineering have been established: scaffolds, signals, and cells. Blood supply is the sine qua non of these components, which are used both individually and concertedly in regenerative craniofacial surgery. The discerning craniofacial surgeon must determine the proper use for these bone graft alternatives, while understanding their concomitant risks. This article presents a review of contemporary and emerging concepts in bone biology and their implications in craniofacial surgery. Current practices, areas of controversy, and near-term future applications are emphasized.

  9. Effects of developmental exposure to perfluorooctanoic acid (PFOA) on long bone morphology and bone cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Koskela, A., E-mail: antti.koskela@oulu.fi [Institute of Cancer Research and Translational Medicine, MRC Oulu and Department of Anatomy and Cell Biology, Faculty of Medicine, University of Oulu, Oulu (Finland); Finnilä, M.A. [Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu (Finland); Korkalainen, M. [National Institute for Health and Welfare, Department of Health Protection, Kuopio (Finland); Spulber, S. [Department of Neuroscience, Karolinska Institutet, Stockholm (Sweden); Koponen, J. [National Institute for Health and Welfare, Department of Health Protection, Kuopio (Finland); Håkansson, H. [Institute of Environmental Medicine, Karolinska Institutet, Stockholm (Sweden); Tuukkanen, J. [Institute of Cancer Research and Translational Medicine, MRC Oulu and Department of Anatomy and Cell Biology, Faculty of Medicine, University of Oulu, Oulu (Finland); Viluksela, M. [National Institute for Health and Welfare, Department of Health Protection, Kuopio (Finland); Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio (Finland)

    2016-06-15

    Perfluorooctanoic acid (PFOA) is a ubiquitous and persistent environmental chemical, which has been used extensively due to its stability and surface tension-lowering properties. Toxicological effects include induction of neonatal mortality and reproductive toxicity. In this study, pregnant C57BL/6 mice were exposed orally to 0.3 mg PFOA/kg/day throughout pregnancy, and female offspring were studied at the age of 13 or 17 months. Morphometrical and biomechanical properties of femurs and tibias were analyzed with micro-computed tomography and 3-point bending, and bone PFOA concentrations were determined by mass spectrometry. The effects of PFOA on bone cell differentiation were studied in osteoclasts from C57BL/6 mice and in the MC3T3 pre-osteoblast cell line. PFOA exposed mice showed increased femoral periosteal area as well as decreased mineral density of tibias. Biomechanical properties of these bones were not affected. Bone PFOA concentrations were clearly elevated even at the age of 17 months. In osteoblasts, low concentrations of PFOA increased osteocalcin (OCN) expression and calcium secretion, but at PFOA concentrations of 100 μM and above osteocalcin (OCN) expression and calcium secretion were decreased. The number of osteoclasts was increased at all PFOA concentrations tested and resorption activity dose-dependently increased from 0.1–1.0 μM, but decreased at higher concentrations. The results show that PFOA accumulates in bone and is present in bones until the old age. PFOA has the potential to influence bone turnover over a long period of time. Therefore bone is a target tissue for PFOA, and altered bone geometry and mineral density seem to persist throughout the life of the animal. - Highlights: • Bone is a target tissue for PFOA both in vivo and in vitro. • Maternal exposure during pregnancy results in PFOA accumulation in bone of the offspring. • PFOA is present in bones until the old age. • PFOA causes mild alterations in bone morphometry

  10. Effects of developmental exposure to perfluorooctanoic acid (PFOA) on long bone morphology and bone cell differentiation

    International Nuclear Information System (INIS)

    Koskela, A.; Finnilä, M.A.; Korkalainen, M.; Spulber, S.; Koponen, J.; Håkansson, H.; Tuukkanen, J.; Viluksela, M.

    2016-01-01

    Perfluorooctanoic acid (PFOA) is a ubiquitous and persistent environmental chemical, which has been used extensively due to its stability and surface tension-lowering properties. Toxicological effects include induction of neonatal mortality and reproductive toxicity. In this study, pregnant C57BL/6 mice were exposed orally to 0.3 mg PFOA/kg/day throughout pregnancy, and female offspring were studied at the age of 13 or 17 months. Morphometrical and biomechanical properties of femurs and tibias were analyzed with micro-computed tomography and 3-point bending, and bone PFOA concentrations were determined by mass spectrometry. The effects of PFOA on bone cell differentiation were studied in osteoclasts from C57BL/6 mice and in the MC3T3 pre-osteoblast cell line. PFOA exposed mice showed increased femoral periosteal area as well as decreased mineral density of tibias. Biomechanical properties of these bones were not affected. Bone PFOA concentrations were clearly elevated even at the age of 17 months. In osteoblasts, low concentrations of PFOA increased osteocalcin (OCN) expression and calcium secretion, but at PFOA concentrations of 100 μM and above osteocalcin (OCN) expression and calcium secretion were decreased. The number of osteoclasts was increased at all PFOA concentrations tested and resorption activity dose-dependently increased from 0.1–1.0 μM, but decreased at higher concentrations. The results show that PFOA accumulates in bone and is present in bones until the old age. PFOA has the potential to influence bone turnover over a long period of time. Therefore bone is a target tissue for PFOA, and altered bone geometry and mineral density seem to persist throughout the life of the animal. - Highlights: • Bone is a target tissue for PFOA both in vivo and in vitro. • Maternal exposure during pregnancy results in PFOA accumulation in bone of the offspring. • PFOA is present in bones until the old age. • PFOA causes mild alterations in bone morphometry

  11. Bioprinting in Regenerative Medicine

    Directory of Open Access Journals (Sweden)

    Manuela Monti

    2016-02-01

    Full Text Available Prof. Turksen is a very well known scientist in the stem cell biology field and he is also internationally known for his fundamental studies on claudin-6. In addition to his research activity he is editor for the Stem Cell Biology and Regenerative Medicine series (Humana Press and editor-in-chief of Stem Cell Reviews and Reports.....

  12. Effect of Quercetin on Bone Mineral Status and Markers of Bone Turnover in Retinoic Acid-Induced Osteoporosis

    Directory of Open Access Journals (Sweden)

    Oršolić Nada

    2018-06-01

    Full Text Available Retinoic acid-induced osteoporosis (RBM is one of the most common causes of secondary osteoporosis. This study tested the anti-osteoporetic effect of quercetin in RBM-induced bone loss model (RBM. After 14-day supplementation of 13cRA to induce RBM, rats were administered with quercetin (100 mg/kg or alendronate (40 mg/kg. We analysed changes in body and uterine weight of animals, femoral geometric characteristics, calcium and phosphorus content, bone weight index, bone hystology, bone mineral density (BMD, markers of bone turnover, lipid peroxidation, glutathione levels and SOD, CAT activity of liver, kidney spleen, and ovary as well as biochemical and haematological variables. In comparison to the control RBM rats, the treatment with quercetin increased bone weight index, BMD, osteocalcin level, femoral geometric characteristics, calcium and phosphorus content in the 13cRA-induced bone loss model. Histological results showed its protective action through promotion of bone formation. According to the results, quercetin could be an effective substitution for alendronate in 13cRA-induced osteoporosis. Good therapeutic potential of quercetin on rat skeletal system is based partly on its antioxidant capacity and estrogenic activity.

  13. A regenerative elastocaloric heat pump

    Science.gov (United States)

    Tušek, Jaka; Engelbrecht, Kurt; Eriksen, Dan; Dall'Olio, Stefano; Tušek, Janez; Pryds, Nini

    2016-10-01

    A large fraction of global energy use is for refrigeration and air-conditioning, which could be decarbonized if efficient renewable energy technologies could be found. Vapour-compression technology remains the most widely used system to move heat up the temperature scale after more than 100 years; however, caloric-based technologies (those using the magnetocaloric, electrocaloric, barocaloric or elastocaloric effect) have recently shown a significant potential as alternatives to replace this technology due to high efficiency and the use of green solid-state refrigerants. Here, we report a regenerative elastocaloric heat pump that exhibits a temperature span of 15.3 K on the water side with a corresponding specific heating power up to 800 W kg-1 and maximum COP (coefficient-of-performance) values of up to 7. The efficiency and specific heating power of this device exceeds those of other devices based on caloric effects. These results open up the possibility of using the elastocaloric effect in various cooling and heat-pumping applications.

  14. Fuzzy logic electric vehicle regenerative antiskid braking and traction control system

    Science.gov (United States)

    Cikanek, S.R.

    1994-10-25

    An regenerative antiskid braking and traction control system using fuzzy logic for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensor and determining if regenerative antiskid braking control, requiring hydraulic braking control, and requiring traction control are required. The processor then employs fuzzy logic based on the determined vehicle state and provides command signals to a motor controller to control operation of the electric traction motor and to the brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative braking control, hydraulic braking control, and traction control. 123 figs.

  15. STEM CELL ORIGIN DIFFERENTLY AFFECTS BONE TISSUE ENGINEERING STRATEGIES.

    Directory of Open Access Journals (Sweden)

    Monica eMattioli-Belmonte

    2015-09-01

    Full Text Available Bone tissue engineering is a promising research area for the improvement of traditional bone grafting procedure drawbacks. Thanks to the capability of self-renewal and multi-lineage differentiation, stem cells are one of the major actors in tissue engineering approaches, and adult mesenchymal stem cells (MSCs are considered to be appropriate for regenerative medicine strategies. Bone marrow MSCs (BM-MSCs are the earliest- discovered and well-known stem cell population used in bone tissue engineering. However, several factors hamper BM-MSC clinical application and subsequently, new stem cell sources have been investigated for these purposes. The successful identification and combination of tissue engineering, scaffold, progenitor cells, and physiologic signalling molecules enabled the surgeon to design, recreate the missing tissue in its near natural form. On the basis of these considerations, we analysed the capability of two different scaffolds, planned for osteochondral tissue regeneration, to modulate differentiation of adult stem cells of dissimilar local sources (i.e. periodontal ligament, maxillary periosteum as well as adipose-derived stem cells, in view of possible craniofacial tissue engineering strategies. We demonstrated that cells are differently committed toward the osteoblastic phenotype and therefore, considering their peculiar features, they may alternatively represent interesting cell sources in different stem cell-based bone/periodontal tissue regeneration approaches.

  16. Osteoporosis imaging: effects of bone preservation on MDCT-based trabecular bone microstructure parameters and finite element models

    International Nuclear Information System (INIS)

    Baum, Thomas; Grande Garcia, Eduardo; Burgkart, Rainer; Gordijenko, Olga; Liebl, Hans; Jungmann, Pia M.; Gruber, Michael; Zahel, Tina; Rummeny, Ernst J.; Waldt, Simone; Bauer, Jan S.

    2015-01-01

    Osteoporosis is defined as a skeletal disorder characterized by compromised bone strength due to a reduction of bone mass and deterioration of bone microstructure predisposing an individual to an increased risk of fracture. Trabecular bone microstructure analysis and finite element models (FEM) have shown to improve the prediction of bone strength beyond bone mineral density (BMD) measurements. These computational methods have been developed and validated in specimens preserved in formalin solution or by freezing. However, little is known about the effects of preservation on trabecular bone microstructure and FEM. The purpose of this observational study was to investigate the effects of preservation on trabecular bone microstructure and FEM in human vertebrae. Four thoracic vertebrae were harvested from each of three fresh human cadavers (n = 12). Multi-detector computed tomography (MDCT) images were obtained at baseline, 3 and 6 month follow-up. In the intervals between MDCT imaging, two vertebrae from each donor were formalin-fixed and frozen, respectively. BMD, trabecular bone microstructure parameters (histomorphometry and fractal dimension), and FEM-based apparent compressive modulus (ACM) were determined in the MDCT images and validated by mechanical testing to failure of the vertebrae after 6 months. Changes of BMD, trabecular bone microstructure parameters, and FEM-based ACM in formalin-fixed and frozen vertebrae over 6 months ranged between 1.0–5.6 % and 1.3–6.1 %, respectively, and were not statistically significant (p > 0.05). BMD, trabecular bone microstructure parameters, and FEM-based ACM as assessed at baseline, 3 and 6 month follow-up correlated significantly with mechanically determined failure load (r = 0.89–0.99; p < 0.05). The correlation coefficients r were not significantly different for the two preservation methods (p > 0.05). Formalin fixation and freezing up to six months showed no significant effects on trabecular bone microstructure

  17. Induced pluripotent stem cells for regenerative medicine.

    Science.gov (United States)

    Hirschi, Karen K; Li, Song; Roy, Krishnendu

    2014-07-11

    With the discovery of induced pluripotent stem (iPS) cells, it is now possible to convert differentiated somatic cells into multipotent stem cells that have the capacity to generate all cell types of adult tissues. Thus, there is a wide variety of applications for this technology, including regenerative medicine, in vitro disease modeling, and drug screening/discovery. Although biological and biochemical techniques have been well established for cell reprogramming, bioengineering technologies offer novel tools for the reprogramming, expansion, isolation, and differentiation of iPS cells. In this article, we review these bioengineering approaches for the derivation and manipulation of iPS cells and focus on their relevance to regenerative medicine.

  18. Reconstruction of radial bone defect in rat by calcium silicate biomaterials.

    Science.gov (United States)

    Oryan, Ahmad; Alidadi, Soodeh

    2018-05-15

    Despite many attempts, an appropriate therapeutic method has not yet been found to enhance bone formation, mechanical strength and structural and functional performances of large bone defects. In the present study, the bone regenerative potential of calcium silicate (CS) biomaterials combined with chitosan (CH) as calcium silicate/chitosan (CSC) scaffold was investigated in a critical radial bone defect in a rat model. The bioimplants were bilaterally implanted in the defects of 20 adult Sprague-Dawley rats. The rats were euthanized and the bone specimens were harvested at the 56th postoperative day. The healed radial bones were evaluated by three-dimensional CT, radiology, histomorphometric analysis, biomechanics, and scanning electron microscopy. The XRD analysis of the CS biomaterial showed its similarity to wollastonite (β-SiCO 3 ). The degradation rate of the CSC scaffold was much higher and it induced milder inflammatory reaction when compared to the CH alone. More bone formation and higher biomechanical performance were observed in the CSC treated group in comparison with the CH treated ones in histological, CT scan and biomechanical examinations. Scanning electron microscopic observation demonstrated the formation of more hydroxyapatite crystals in the defects treated with CSC. This study showed that the CSC biomaterials could be used as proper biodegradable materials in the field of bone reconstruction and tissue engineering. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Immobilization and Application of Electrospun Nanofiber Scaffold-based Growth Factor in Bone Tissue Engineering.

    Science.gov (United States)

    Chen, Guobao; Lv, Yonggang

    2015-01-01

    Electrospun nanofibers have been extensively used in growth factor delivery and regenerative medicine due to many advantages including large surface area to volume ratio, high porosity, excellent loading capacity, ease of access and cost effectiveness. Their relatively large surface area is helpful for cell adhesion and growth factor loading, while storage and release of growth factor are essential to guide cellular behaviors and tissue formation and organization. In bone tissue engineering, growth factors are expected to transmit signals that stimulate cellular proliferation, migration, differentiation, metabolism, apoptosis and extracellular matrix (ECM) deposition. Bolus administration is not always an effective method for the delivery of growth factors because of their rapid diffusion from the target site and quick deactivation. Therefore, the integration of controlled release strategy within electrospun nanofibers can provide protection for growth factors against in vivo degradation, and can manipulate desired signal at an effective level with extended duration in local microenvironment to support tissue regeneration and repair which normally takes a much longer time. In this review, we provide an overview of growth factor delivery using biomimetic electrospun nanofiber scaffolds in bone tissue engineering. It begins with a brief introduction of different kinds of polymers that were used in electrospinning and their applications in bone tissue engineering. The review further focuses on the nanofiber-based growth factor delivery and summarizes the strategies of growth factors loading on the nanofiber scaffolds for bone tissue engineering applications. The perspectives on future challenges in this area are also pointed out.

  20. Accelerated craniofacial bone regeneration through dense collagen gel scaffolds seeded with dental pulp stem cells

    Science.gov (United States)

    Chamieh, Frédéric; Collignon, Anne-Margaux; Coyac, Benjamin R.; Lesieur, Julie; Ribes, Sandy; Sadoine, Jérémy; Llorens, Annie; Nicoletti, Antonino; Letourneur, Didier; Colombier, Marie-Laure; Nazhat, Showan N.; Bouchard, Philippe; Chaussain, Catherine; Rochefort, Gael Y.

    2016-12-01

    Therapies using mesenchymal stem cell (MSC) seeded scaffolds may be applicable to various fields of regenerative medicine, including craniomaxillofacial surgery. Plastic compression of collagen scaffolds seeded with MSC has been shown to enhance the osteogenic differentiation of MSC as it increases the collagen fibrillary density. The aim of the present study was to evaluate the osteogenic effects of dense collagen gel scaffolds seeded with mesenchymal dental pulp stem cells (DPSC) on bone regeneration in a rat critical-size calvarial defect model. Two symmetrical full-thickness defects were created (5 mm diameter) and filled with either a rat DPSC-containing dense collagen gel scaffold (n = 15), or an acellular scaffold (n = 15). Animals were imaged in vivo by microcomputer tomography (Micro-CT) once a week during 5 weeks, whereas some animals were sacrificed each week for histology and histomorphometry analysis. Bone mineral density and bone micro-architectural parameters were significantly increased when DPSC-seeded scaffolds were used. Histological and histomorphometrical data also revealed significant increases in fibrous connective and mineralized tissue volume when DPSC-seeded scaffolds were used, associated with expression of type I collagen, osteoblast-associated alkaline phosphatase and osteoclastic-related tartrate-resistant acid phosphatase. Results demonstrate the potential of DPSC-loaded-dense collagen gel scaffolds to benefit of bone healing process.

  1. Regenerative engineering

    CERN Document Server

    Laurencin, Cato T

    2013-01-01

    Regenerative Engineering: The Future of Medicine Saadiq F. El-Amin III , MD , PhD; Joylene W.L. Thomas, MD ; Ugonna N. Ihekweazu, MD ; Mia D. Woods, MS; and Ashim Gupta, MSCell Biology Gloria Gronowicz, PhD and Karen Sagomonyants, DMDStem Cells and Tissue Regeneration Kristen Martins-Taylor, PhD; Xiaofang Wang, MD , PhD; Xue-Jun Li, PhD; and Ren-He Xu, MD , PhDIntroduction to Materials Science Sangamesh G. Kumbar, PhD and Cato T. Laurencin, MD , PhDBiomaterials A. Jon Goldberg, PhD and Liisa T. Kuhn, PhDIn Vitro Assessment of Cell-Biomaterial Interactions Yong Wang, PhDHost Response to Biomate

  2. Phase I/II Trial of Autologous Bone Marrow Stem Cell Transplantation with a Three-Dimensional Woven-Fabric Scaffold for Periodontitis

    Directory of Open Access Journals (Sweden)

    Shunsuke Baba

    2016-01-01

    Full Text Available Regenerative medicine is emerging as a promising option, but the potential of autologous stem cells has not been investigated well in clinical settings of periodontal treatment. In this clinical study, we evaluated the safety and efficacy of a new regenerative therapy based on the surgical implantation of autologous mesenchymal stem cells (MSCs with a biodegradable three-dimensional (3D woven-fabric composite scaffold and platelet-rich plasma (PRP. Ten patients with periodontitis, who required a surgical procedure for intrabony defects, were enrolled in phase I/II trial. Once MSCs were implanted in each periodontal intrabony defect, the patients were monitored during 36 months for a medical exam including laboratory tests of blood and urine samples, changes in clinical attachment level, pocket depth, and linear bone growth (LBG. All three parameters improved significantly during the entire follow-up period (p<0.0001, leading to an average LBG of 4.7 mm after 36 months. Clinical mobility measured by Periotest showed a decreasing trend after the surgery. No clinical safety problems attributable to the investigational MSCs were identified. This clinical trial suggests that the stem cell therapy using MSCs-PRP/3D woven-fabric composite scaffold may constitute a novel safe and effective regenerative treatment option for periodontitis.

  3. Disuse exaggerates the detrimental effects of alcohol on cortical bone

    Science.gov (United States)

    Hefferan, Theresa E.; Kennedy, Angela M.; Evans, Glenda L.; Turner, Russell T.

    2003-01-01

    BACKGROUND: Alcohol abuse is associated with an increased risk for osteoporosis. However, comorbidity factors may play an important role in the pathogenesis of alcohol-related bone fractures. Suboptimal mechanical loading of the skeleton, an established risk factor for bone loss, may occur in some alcohol abusers due to reduced physical activity, muscle atrophy, or both. The effect of alcohol consumption and reduced physical activity on bone metabolism has not been well studied. The purpose of this study was to determine whether mechanical disuse alters bone metabolism in a rat model for chronic alcohol abuse. METHODS: Alcohol was administered in the diet (35% caloric intake) of 6-month-old male rats for 4 weeks. Rats were hindlimb-unloaded the final 2 weeks of the experiment to prevent dynamic weight bearing. Afterward, cortical bone histomorphometry was evaluated at the tibia-fibula synostosis. RESULTS: At the periosteal surface of the tibial diaphysis, alcohol and hindlimb unloading independently decreased the mineralizing perimeter, mineral apposition rate, and bone formation rate. In addition, alcohol, but not hindlimb unloading, increased endocortical bone resorption. The respective detrimental effects of alcohol and hindlimb unloading to inhibit bone formation were additive; there was no interaction between the two variables. CONCLUSIONS: Reduced weight bearing accentuates the detrimental effects of alcohol on cortical bone in adult male rats by further inhibiting bone formation. This finding suggests that reduced physical activity may be a comorbidity factor for osteoporosis in alcohol abusers.

  4. Protective Effects of Selected Botanical Agents on Bone

    Directory of Open Access Journals (Sweden)

    James Jam Jolly

    2018-05-01

    Full Text Available Osteoporosis is a serious health problem affecting more than 200 million elderly people worldwide. The early symptoms of this disease are hardly detectable. It causes progressive bone loss, which ultimately renders the patients susceptible to fractures. Osteoporosis must be prevented because the associated fragility fractures result in high morbidity, mortality, and healthcare costs. Many plants used in herbal medicine contain bioactive compounds possessing skeletal protective effects. This paper explores the anti-osteoporotic properties of selected herbal plants, including their actions on osteoblasts (bone forming cells, osteoclasts (bone resorbing cells, and bone remodelling. Some of the herbal plant families included in this review are Berberidaceae, Fabaceae, Arecaceae, Labiatae, Simaroubaceaea, and Myrsinaceae. Their active constituents, mechanisms of action, and pharmaceutical applications were discussed. The literature shows that very few herbal plants have undergone human clinical trials to evaluate their pharmacological effects on bone to date. Therefore, more intensive research should be performed on these plants to validate their anti-osteoporotic properties so that they can complement the currently available conventional drugs in the battle against osteoporosis.

  5. Surface Engineering for Bone Implants: A Trend from Passive to Active Surfaces

    Directory of Open Access Journals (Sweden)

    John Jansen

    2012-07-01

    Full Text Available The mechanical and biological properties of bone implants need to be optimal to form a quick and firm connection with the surrounding environment in load bearing applications. Bone is a connective tissue composed of an organic collagenous matrix, a fine dispersion of reinforcing inorganic (calcium phosphate nanocrystals, and bone-forming and -degrading cells. These different components have a synergistic and hierarchical structure that renders bone tissue properties unique in terms of hardness, flexibility and regenerative capacity. Metallic and polymeric materials offer mechanical strength and/or resilience that are required to simulate bone tissue in load-bearing applications in terms of maximum load, bending and fatigue strength. Nevertheless, the interaction between devices and the surrounding tissue at the implant interface is essential for success or failure of implants. In that respect, coatings can be applied to facilitate the process of bone healing and obtain a continuous transition from living tissue to the synthetic implant. Compounds that are inspired by inorganic (e.g., hydroxyapatite crystals or organic (e.g., collagen, extracellular matrix components, enzymes components of bone tissue, are the most obvious candidates for application as implant coating to improve the performance of bone implants. This review provides an overview of recent trends and strategies in surface engineering that are currently investigated to improve the biological performance of bone implants in terms of functionality and biological efficacy.

  6. SPE (tm) regenerative hydrogen/oxygen fuel cells for extraterrestrial surface and microgravity applications

    Science.gov (United States)

    Mcelroy, J. F.

    1990-01-01

    Viewgraphs on SPE regenerative hydrogen/oxygen fuel cells for extraterrestrial surface and microgravity applications are presented. Topics covered include: hydrogen-oxygen regenerative fuel cell energy storage system; electrochemical cell reactions; SPE cell voltage stability; passive water removal SPE fuel cell; fuel cell performance; SPE water electrolyzers; hydrophobic oxygen phase separator; hydrophilic/electrochemical hydrogen phase separator; and unitized regenerative fuel cell.

  7. Silk scaffolds in bone tissue engineering: An overview.

    Science.gov (United States)

    Bhattacharjee, Promita; Kundu, Banani; Naskar, Deboki; Kim, Hae-Won; Maiti, Tapas K; Bhattacharya, Debasis; Kundu, Subhas C

    2017-11-01

    applications as cell scaffolding matrices to micro-nano carriers for delivering bone growth factors and therapeutic molecules to diseased or damaged sites to facilitate bone regeneration, is emphasized here. The review rationalizes that the choice of silk protein as a biomaterial is not only because of its natural polymeric nature, mechanical robustness, flexibility and wide range of cell compatibility but also because of its ability to template the growth of hydroxyapatite, the chief inorganic component of bone mineral matrix, resulting in improved osteointegration. The discussion extends to the role of inorganic ions such as Si and Ca as matrix components in combination with silk to influence bone regrowth. The effect of ions or growth factor-loaded vehicle incorporation into regenerative matrix, nanotopography is also considered. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Electric vehicle regenerative antiskid braking and traction control system

    Science.gov (United States)

    Cikanek, S.R.

    1995-09-12

    An antiskid braking and traction control system for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes one or more sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensors and determining if regenerative antiskid braking control, requiring hydraulic braking control, or requiring traction control are required. The processor then employs a control strategy based on the determined vehicle state and provides command signals to a motor controller to control the operation of the electric traction motor and to a brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative antiskid braking control, hydraulic braking control, and traction control. 10 figs.

  9. Electric vehicle regenerative antiskid braking and traction control system

    Science.gov (United States)

    Cikanek, Susan R.

    1995-01-01

    An antiskid braking and traction control system for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes one or more sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensors and determining if regenerative antiskid braking control, requiring hydrualic braking control, or requiring traction control are required. The processor then employs a control strategy based on the determined vehicle state and provides command signals to a motor controller to control the operation of the electric traction motor and to a brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative antiskid braking control, hydraulic braking control, and traction control.

  10. Experimental study of the effects of radiation on growing bone by bone scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Ohtake, Hisashi; Sakai, Yasuhiko; Morita, Seiichiro; Bussaka, Yoshitaka; Kikuchi, Shigeru; Okinaga, Toshichika; Oshibuchi, Masao; Umezaki, Noriyoshi

    1987-02-01

    Bones of immature rabbits were irradiated during the growth period, and followed with bone scintigraphy using Tc-99m methylene diphosphonate. The accumulation of the radionuclide was decreased in the irradiated bone at an early period as compared to the control side, and the decrease was more pronounced as the dose of irradiation was increased. In the groups irradiated with less than 4,000 rad, the accumulation ratio reached a minimum at 5 weeks and was followed by a gradual recovery. In the group irradiated with 6,000 rad, the recovery was small; and no recovery was observed in the 8,000 rad group. These changes were compared to the inhibition of the longitudinal growth of the bone. The accumulation ratio for the radionuclide was a more sensitive index of the effect of radiation than the growth rate.

  11. Stem cells and bone: a historical perspective.

    Science.gov (United States)

    Bianco, Paolo

    2015-01-01

    Bone physiology and stem cells were tightly intertwined with one another, both conceptually and experimentally, long before the current explosion of interest in stem cells and so-called regenerative medicine. Bone is home to the two best known and best characterized systems of postnatal stem cells, and it is the only organ in which two stem cells and their dependent lineages coordinate the overall adaptive responses of two major physiological systems. All along, the nature and the evolutionary significance of the interplay of bone and hematopoiesis have remained a major scientific challenge, but also allowed for some of the most spectacular developments in cell biology-based medicine, such as hematopoietic stem cell transplantation. This question recurs in novel forms at multiple turning points over time: today, it finds in the biology of the "niche" its popular phrasing. Entirely new avenues of investigation emerge as a new view of bone in physiology and medicine is progressively established. Looking at bone and stem cells in a historical perspective provides a unique case study to highlight the general evolution of science in biomedicine since the end of World War II to the present day. A paradigm shift in science and in its relation to society and policies occurred in the second half of the XXth century, with major implications thereof for health, industry, drug development, market and society. Current interest in stem cells in bone as in other fields is intertwined with that shift. New opportunities and also new challenges arise. This article is part of a Special Issue entitled "Stem cells and bone". Copyright © 2014. Published by Elsevier Inc.

  12. Highly porous scaffolds of PEDOT:PSS for bone tissue engineering.

    Science.gov (United States)

    Guex, Anne Géraldine; Puetzer, Jennifer L; Armgarth, Astrid; Littmann, Elena; Stavrinidou, Eleni; Giannelis, Emmanuel P; Malliaras, George G; Stevens, Molly M

    2017-10-15

    Conjugated polymers have been increasingly considered for the design of conductive materials in the field of regenerative medicine. However, optimal scaffold properties addressing the complexity of the desired tissue still need to be developed. The focus of this study lies in the development and evaluation of a conductive scaffold for bone tissue engineering. In this study PEDOT:PSS scaffolds were designed and evaluated in vitro using MC3T3-E1 osteogenic precursor cells, and the cells were assessed for distinct differentiation stages and the expression of an osteogenic phenotype. Ice-templated PEDOT:PSS scaffolds presented high pore interconnectivity with a median pore diameter of 53.6±5.9µm and a total pore surface area of 7.72±1.7m 2 ·g -1 . The electrical conductivity, based on I-V curves, was measured to be 140µS·cm -1 with a reduced, but stable conductivity of 6.1µS·cm -1 after 28days in cell culture media. MC3T3-E1 gene expression levels of ALPL, COL1A1 and RUNX2 were significantly enhanced after 4weeks, in line with increased extracellular matrix mineralisation, and osteocalcin deposition. These results demonstrate that a porous material, based purely on PEDOT:PSS, is suitable as a scaffold for bone tissue engineering and thus represents a promising candidate for regenerative medicine. Tissue engineering approaches have been increasingly considered for the repair of non-union fractions, craniofacial reconstruction or large bone defect replacements. The design of complex biomaterials and successful engineering of 3-dimensional tissue constructs is of paramount importance to meet this clinical need. Conductive scaffolds, based on conjugated polymers, present interesting candidates to address the piezoelectric properties of bone tissue and to induce enhanced osteogenesis upon implantation. However, conductive scaffolds have not been investigated in vitro in great measure. To this end, we have developed a highly porous, electrically conductive scaffold

  13. The early career researcher's toolkit: translating tissue engineering, regenerative medicine and cell therapy products.

    Science.gov (United States)

    Rafiq, Qasim A; Ortega, Ilida; Jenkins, Stuart I; Wilson, Samantha L; Patel, Asha K; Barnes, Amanda L; Adams, Christopher F; Delcassian, Derfogail; Smith, David

    2015-11-01

    Although the importance of translation for the development of tissue engineering, regenerative medicine and cell-based therapies is widely recognized, the process of translation is less well understood. This is particularly the case among some early career researchers who may not appreciate the intricacies of translational research or make decisions early in development which later hinders effective translation. Based on our own research and experiences as early career researchers involved in tissue engineering and regenerative medicine translation, we discuss common pitfalls associated with translational research, providing practical solutions and important considerations which will aid process and product development. Suggestions range from effective project management, consideration of key manufacturing, clinical and regulatory matters and means of exploiting research for successful commercialization.

  14. Optimizing tamoxifen-inducible Cre/loxp system to reduce tamoxifen effect on bone turnover in long bones of young mice.

    Science.gov (United States)

    Zhong, Zhendong A; Sun, Weihua; Chen, Haiyan; Zhang, Hongliang; Lay, Yu-An E; Lane, Nancy E; Yao, Wei

    2015-12-01

    For tamoxifen-dependent Cre recombinase, also known as CreER recombinase, tamoxifen (TAM) is used to activate the Cre to generate time- and tissue-specific mouse mutants. TAM is a potent CreER system inducer; however, TAM is also an active selective estrogen receptor modulator (SERM) that can influence bone homeostasis. The purpose of this study was to optimize the TAM dose for Cre recombinase activation while minimizing the effects of TAM on bone turnover in young growing mice. To evaluate the effects of TAM on bone turnover and bone mass, 1-month-old wild-type male and female mice were intraperitoneally injected with TAM at 0, 1, 10 or 100mg/kg/day for four consecutive days, or 100, 300 mg/kg/day for one day. The distal femurs were analyzed one month after the last TAM injection by microCT, mechanical test, and surface-based bone histomorphometry. Similar doses of TAM were used in Col1 (2.3 kb)-CreERT2; mT/mG reporter male mice to evaluate the dose-dependent efficacy of Cre-ER activation in bone tissue. A TAM dose of 100 mg/kg × 4 days significantly increased trabecular bone volume/total volume (BV/TV) of the distal femur, femur length, bone strength, and serum bone turnover markers compared to the 0mg control group. In contrast, TAM doses ≤ 10 mg/kg did not significantly change any of these parameters compared to the 0mg group, although a higher bone strength was observed in the 10mg group. Surface-based histomorphometry revealed that the 100mg/kg dose of TAM dose significantly increased trabecular bone formation and decreased periosteal bone formation at 1-week post-TAM treatment. Using the reporter mouse model Col1-CreERT2; mT/mG, we found that 10mg/kg TAM induced Col1-CreERT2 activity in bone at a comparable level to the 100mg/kg dose. TAM treatment at 100mg/kg/day × 4 days significantly affects bone homeostasis, resulting in an anabolic bone effect on trabecular bone in 1-month-old male mice. However, a lower dose of TAM at 10 mg/kg/day × 4 days can

  15. Enhanced Bone Tissue Regeneration by Porous Gelatin Composites Loaded with the Chinese Herbal Decoction Danggui Buxue Tang.

    Directory of Open Access Journals (Sweden)

    Wen-Ling Wang

    Full Text Available Danggui Buxue Tang (DBT is a traditional Chinese herbal decoction containing Radix Astragali and Radix Angelicae sinensis. Pharmacological results indicate that DBT can stimulate bone cell proliferation and differentiation. The aim of the study was to investigate the efficacy of adding DBT to bone substitutes on bone regeneration following bone injury. DBT was incorporated into porous composites (GGT made from genipin-crosslinked gelatin and β-triclacium phosphates as bone substitutes (GGTDBT. The biological response of mouse calvarial bone to these composites was evaluated by in vivo imaging systems (IVIS, micro-computed tomography (micro-CT, and histology analysis. IVIS images revealed a stronger fluorescent signal in GGTDBT-treated defect than in GGT-treated defect at 8 weeks after implantation. Micro-CT analysis demonstrated that the level of repair from week 4 to 8 increased from 42.1% to 71.2% at the sites treated with GGTDBT, while that increased from 33.2% to 54.1% at GGT-treated sites. These findings suggest that the GGTDBT stimulates the innate regenerative capacity of bone, supporting their use in bone tissue regeneration.

  16. Effect of epimedium pubescen flavonoid on bone mineral status and bone turnover in male rats chronically exposed to cigarette smoke.

    Science.gov (United States)

    Gao, Shu-guang; Cheng, Ling; Li, Kang-hua; Liu, Wen-He; Xu, Mai; Jiang, Wei; Wei, Li-Cheng; Zhang, Fang-jie; Xiao, Wen-feng; Xiong, Yi-lin; Tian, Jian; Zeng, Chao; Sun, Jin-peng; Xie, Qiang; Lei, Guang-hua

    2012-06-19

    Epimedii herba is one of the most frequently used herbs in formulas that are prescribed for the treatment of osteoporosis in China and its main constituent is Epimedium pubescen flavonoid (EPF). However, it is unclear whether EPF during chronic exposure to cigarette smoke may have a protective influence on the skeleton. The present study investigated the effect of EPF on bone mineral status and bone turnover in a rat model of human relatively high exposure to cigarette smoke. Fifty male Wistar rats were randomized into five groups: controls, passive smoking groups and passive smoking rats administered EPF at three dosage levels (75, 150 or 300 mg/kg/day) in drinking water for 4 months. A rat model of passive smoking was prepared by breeding male rats in a cigarette-smoking box. Bone mineral content (BMC), bone mineral density (BMD), bone turnover markers, bone histomorphometric parameters and biomechanical properties were examined. Smoke exposure decreased BMC and BMD, increased bone turnover (inhibited bone formation and stimulated its resorption), affected bone histomorphometry (increased trabecular separation and osteoclast surface per bone surface; decreased trabecular bone volume, trabecular thickness, trabecular number, cortical thickness, bone formation rate and osteoblast surface per bone surface), and reduced mechanical properties. EPF supplementation during cigarette smoke exposure prevented smoke-induced changes in bone mineral status and bone turnover. The results suggest that EPF can prevent the adverse effects of smoke exposure on bone by stimulating bone formation and inhibiting bone turnover and bone resorption.

  17. Vascular Platform to Define Hematopoietic Stem Cell Factors and Enhance Regenerative Hematopoiesis

    Directory of Open Access Journals (Sweden)

    Michael G. Poulos

    2015-11-01

    Full Text Available Hematopoietic stem cells (HSCs inhabit distinct microenvironments within the adult bone marrow (BM, which govern the delicate balance between HSC quiescence, self-renewal, and differentiation. Previous reports have proposed that HSCs localize to the vascular niche, comprised of endothelium and tightly associated perivascular cells. Herein, we examine the capacity of BM endothelial cells (BMECs to support ex vivo and in vivo hematopoiesis. We demonstrate that AKT1-activated BMECs (BMEC-Akt1 have a unique transcription factor/cytokine profile that supports functional HSCs in lieu of complex serum and cytokine supplementation. Additionally, transplantation of BMEC-Akt1 cells enhanced regenerative hematopoiesis following myeloablative irradiation. These data demonstrate that BMEC-Akt1 cultures can be used as a platform for the discovery of pro-HSC factors and justify the utility of BMECs as a cellular therapy. This technical advance may lead to the development of therapies designed to decrease pancytopenias associated with myeloablative regimens used to treat a wide array of disease states.

  18. Current concepts: tissue engineering and regenerative medicine applications in the ankle joint.

    Science.gov (United States)

    Correia, S I; Pereira, H; Silva-Correia, J; Van Dijk, C N; Espregueira-Mendes, J; Oliveira, J M; Reis, R L

    2014-03-06

    Tissue engineering and regenerative medicine (TERM) has caused a revolution in present and future trends of medicine and surgery. In different tissues, advanced TERM approaches bring new therapeutic possibilities in general population as well as in young patients and high-level athletes, improving restoration of biological functions and rehabilitation. The mainstream components required to obtain a functional regeneration of tissues may include biodegradable scaffolds, drugs or growth factors and different cell types (either autologous or heterologous) that can be cultured in bioreactor systems (in vitro) prior to implantation into the patient. Particularly in the ankle, which is subject to many different injuries (e.g. acute, chronic, traumatic and degenerative), there is still no definitive and feasible answer to 'conventional' methods. This review aims to provide current concepts of TERM applications to ankle injuries under preclinical and/or clinical research applied to skin, tendon, bone and cartilage problems. A particular attention has been given to biomaterial design and scaffold processing with potential use in osteochondral ankle lesions.

  19. Concise Review: Biomimetic Functionalization of Biomaterials to Stimulate the Endogenous Healing Process of Cartilage and Bone Tissue.

    Science.gov (United States)

    Taraballi, Francesca; Bauza, Guillermo; McCulloch, Patrick; Harris, Josh; Tasciotti, Ennio

    2017-12-01

    Musculoskeletal reconstruction is an ongoing challenge for surgeons as it is required for one out of five patients undergoing surgery. In the past three decades, through the close collaboration between clinicians and basic scientists, several regenerative strategies have been proposed. These have emerged from interdisciplinary approaches that bridge tissue engineering with material science, physiology, and cell biology. The paradigm behind tissue engineering is to achieve regeneration and functional recovery using stem cells, bioactive molecules, or supporting materials. Although plenty of preclinical solutions for bone and cartilage have been presented, only a few platforms have been able to move from the bench to the bedside. In this review, we highlight the limitations of musculoskeletal regeneration and summarize the most relevant acellular tissue engineering approaches. We focus on the strategies that could be most effectively translate in clinical practice and reflect on contemporary and cutting-edge regenerative strategies in surgery. Stem Cells Translational Medicine 2017;6:2186-2196. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  20. Integration of regenerative shock absorber into vehicle electric system

    Science.gov (United States)

    Zhang, Chongxiao; Li, Peng; Xing, Shaoxu; Kim, Junyoung; Yu, Liangyao; Zuo, Lei

    2014-03-01

    Regenerative/Energy harvesting shock absorbers have a great potential to increase fuel efficiency and provide suspension damping simultaneously. In recent years there's intensive work on this topic, but most researches focus on electricity extraction from vibration and harvesting efficiency improvement. The integration of electricity generated from regenerative shock absorbers into vehicle electric system, which is very important to realize the fuel efficiency benefit, has not been investigated. This paper is to study and demonstrate the integration of regenerative shock absorber with vehicle alternator, battery and in-vehicle electrical load together. In the presented system, the shock absorber is excited by a shaker and it converts kinetic energy into electricity. The harvested electricity flows into a DC/DC converter which realizes two functions: controlling the shock absorber's damping and regulating the output voltage. The damping is tuned by controlling shock absorber's output current, which is also the input current of DC/DC converter. By adjusting the duty cycles of switches in the converter, its input impedance together with input current can be adjusted according to dynamic damping requirements. An automotive lead-acid battery is charged by the DC/DC converter's output. To simulate the working condition of combustion engine, an AC motor is used to drive a truck alternator, which also charges the battery. Power resistors are used as battery's electrical load to simulate in-vehicle electrical devices. Experimental results show that the proposed integration strategy can effectively utilize the harvested electricity and power consumption of the AC motor is decreased accordingly. This proves the combustion engine's load reduction and fuel efficiency improvement.

  1. Study on Differential Regenerative Braking Torque Control to Increase the Stability of the Small Electric Vehicle with Four In-Wheel Motors

    Directory of Open Access Journals (Sweden)

    Ali N. M.

    2017-01-01

    Full Text Available Based on the advantages of the electric motor such as fast and precise torque response, the performance of the electric vehicle (EV can be improved. During braking or driving on the cornering, the vehicle will over steer or under steer if a car turns by more or less than the amount commanded by the driver. To improve the stability of the small EV with four in-wheel motors, the differential regenerative braking torque control is proposed. In this system, the regenerative braking torque at each wheel will be controlled individually based on the value of slip ratio. If the slip ratio is greater than the optimum value, the regenerative brake will turn off. In this situation, the electric motor will not produce the regenerative braking torque. Conversely, if the slip ratio lower than the optimum value, the regenerative brake will turn on and the electric motor will generate the regenerative braking torque. In the numerical analysis, to investigate the effectiveness of the proposed model, the road condition is set to an icy road on the left tire and dry asphalt on the right tire. From the simulation results, the differential regenerative braking torque control can prevent the tire from lock-up and avoid the vehicle from skidding.

  2. A living thick nanofibrous implant bifunctionalized with active growth factor and stem cells for bone regeneration

    Directory of Open Access Journals (Sweden)

    Eap S

    2015-02-01

    Full Text Available Sandy Eap,1,2,* Laetitia Keller,1–3,* Jessica Schiavi,1,2 Olivier Huck,1,2 Leandro Jacomine,4 Florence Fioretti,1,2 Christian Gauthier,4 Victor Sebastian,1,3,5 Pascale Schwinté,1,2 Nadia Benkirane-Jessel1,21INSERM, UMR 1109, Osteoarticular and Dental Regenerative Nanomedicine Laboratory, FMTS, Faculté de Médecine, Strasbourg, France; 2Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France; 3Department of Chemical Engineering, Aragon Nanoscience Institute, University of Zaragoza, Zaragoza, Spain; 4CNRS (National Center for Scientific Research, ICS (Charles Sadron Institute, Strasbourg, France; 5Networking Research Center of Bioengineering, Biomaterials and Nanomedicine, Zaragoza, Spain*These authors contributed equally to this workAbstract: New-generation implants focus on robust, durable, and rapid tissue regeneration to shorten recovery times and decrease risks of postoperative complications for patients. Herein, we describe a new-generation thick nanofibrous implant functionalized with active containers of growth factors and stem cells for regenerative nanomedicine. A thick electrospun poly(ε-caprolactone nanofibrous implant (from 700 µm to 1 cm thick was functionalized with chitosan and bone morphogenetic protein BMP-7 as growth factor using layer-by-layer technology, producing fish scale-like chitosan/BMP-7 nanoreservoirs. This extracellular matrix-mimicking scaffold enabled in vitro colonization and bone regeneration by human primary osteoblasts, as shown by expression of osteocalcin, osteopontin, and bone sialoprotein (BSPII, 21 days after seeding. In vivo implantation in mouse calvaria defects showed significantly more newly mineralized extracellular matrix in the functionalized implant compared to a bare scaffold after 30 days’ implantation, as shown by histological scanning electron microscopy/energy dispersive X-ray microscopy study and calcein injection. We have as well bifunctionalized our BMP-7

  3. Horizontal alveolar bone loss: A periodontal orphan

    Science.gov (United States)

    Jayakumar, A.; Rohini, S.; Naveen, A.; Haritha, A.; Reddy, Krishnanjeneya

    2010-01-01

    Background: Attempts to successfully regenerate lost alveolar bone have always been a clinician’s dream. Angular defects, at least, have a fairer chance, but the same cannot be said about horizontal bone loss. The purpose of the present study was to evaluate the prevalence of horizontal alveolar bone loss and vertical bone defects in periodontal patients; and later, to correlate it with the treatment modalities available in the literature for horizontal and vertical bone defects. Materials and Methods: The study was conducted in two parts. Part I was the radiographic evaluation of 150 orthopantomographs (OPGs) (of patients diagnosed with chronic periodontitis and seeking periodontal care), which were digitized and read using the AutoCAD 2006 software. All the periodontitis-affected teeth were categorized as teeth with vertical defects (if the defect angle was ≤45° and defect depth was ≥3 mm) or as having horizontal bone loss. Part II of the study comprised search of the literature on treatment modalities for horizontal and vertical bone loss in four selected periodontal journals. Results: Out of the 150 OPGs studied, 54 (36%) OPGs showed one or more vertical defects. Totally, 3,371 teeth were studied, out of which horizontal bone loss was found in 3,107 (92.2%) teeth, and vertical defects were found only in 264 (7.8%) of the teeth, which was statistically significant (P<.001). Search of the selected journals revealed 477 papers have addressed the treatment modalities for vertical and horizontal types of bone loss specifically. Out of the 477 papers, 461 (96.3%) have addressed vertical bone loss, and 18 (3.7%) have addressed treatment options for horizontal bone loss. Two papers have addressed both types of bone loss and are included in both categories. Conclusion: Horizontal bone loss is more prevalent than vertical bone loss but has been sidelined by researchers as very few papers have been published on the subject of regenerative treatment modalities for

  4. Preparation of dexamethasone-loaded biphasic calcium phosphate nanoparticles/collagen porous composite scaffolds for bone tissue engineering.

    Science.gov (United States)

    Chen, Ying; Kawazoe, Naoki; Chen, Guoping

    2018-02-01

    Although bone is regenerative, its regeneration capacity is limited. For bone defects beyond a critical size, further intervention is required. As an attractive strategy, bone tissue engineering (bone TE) has been widely investigated to repair bone defects. However, the rapid and effective bone regeneration of large non-healing defects is still a great challenge. Multifunctional scaffolds having osteoinductivity and osteoconductivity are desirable to fasten functional bone tissue regeneration. In the present study, biomimetic composite scaffolds of collagen and biphasic calcium phosphate nanoparticles (BCP NPs) with a controlled release of dexamethasone (DEX) and the controlled pore structures were prepared for bone TE. DEX was introduced in the BCP NPs during preparation of the BCP NPs and hybridized with collagen scaffolds, which pore structures were controlled by using pre-prepared ice particulates as a porogen material. The composite scaffolds had well controlled and interconnected pore structures, high mechanical strength and a sustained release of DEX. The composite scaffolds showed good biocompatibility and promoted osteogenic differentiation of hMSCs when used for three-dimensional culture of human bone marrow-derived mesenchymal stem cells. Subcutaneous implantation of the composite scaffolds at the dorsa of athymic nude mice demonstrated that they facilitated the ectopic bone tissue regeneration. The results indicated the DEX-loaded BCP NPs/collagen composite scaffolds had high potential for bone TE. Scaffolds play a crucial role for regeneration of large bone defects. Biomimetic scaffolds having the same composition of natural bone and a controlled release of osteoinductive factors are desirable for promotion of bone regeneration. In this study, composite scaffolds of collagen and biphasic CaP nanoparticles (BCP NPs) with a controlled release nature of dexamethasone (DEX) were prepared and their porous structures were controlled by using ice particulates

  5. Design and experiment study of a semi-active energy-regenerative suspension system

    International Nuclear Information System (INIS)

    Shi, Dehua; Chen, Long; Wang, Ruochen; Jiang, Haobin; Shen, Yujie

    2015-01-01

    A new kind of semi-active energy-regenerative suspension system is proposed to recover suspension vibration energy, as well as to reduce the suspension cost and demands for the motor-rated capacity. The system consists of an energy-regenerative damper and a DC-DC converter-based energy-regenerative circuit. The energy-regenerative damper is composed of an electromagnetic linear motor and an adjustable shock absorber with three regulating levels. The linear motor just works as the generator to harvest the suspension vibration energy. The circuit can be used to improve the system’s energy-regenerative performance and to continuously regulate the motor’s electromagnetic damping force. Therefore, although the motor works as a generator and damps the isolation without an external power source, the motor damping force is controllable. The damping characteristics of the system are studied based on a two degrees of freedom vehicle vibration model. By further analyzing the circuit operation characteristics under different working modes, the double-loop controller is designed to track the desired damping force. The external-loop is a fuzzy controller that offers the desired equivalent damping. The inner-loop controller, on one hand, is used to generate the pulse number and the frequency to control the angle and the rotational speed of the step motor; on the other hand, the inner-loop is used to offer the duty cycle of the energy-regenerative circuit. Simulations and experiments are conducted to validate such a new suspension system. The results show that the semi-active energy-regenerative suspension can improve vehicle ride comfort with the controllable damping characteristics of the linear motor. Meanwhile, it also ensures energy regeneration. (paper)

  6. Effects of cyclic compression on the mechanical properties and calcification process of immature chick bone tissue in culture.

    Science.gov (United States)

    Maeda, Eijiro; Nakagaki, Masashi; Ichikawa, Katsuhisa; Nagayama, Kazuaki; Matsumoto, Takeo

    2017-06-01

    Contribution of mechanical loading to tissue growth during both the development and post-natal maturation is of a particular interest, as its understanding would be important to strategies in bone tissue engineering and regenerative medicine. The present study has been performed to investigate how immature bone responds to mechanical loading using an ex vivo culture system. A slice of the tibia, with the thickness of 3 mm, was obtained from 0-day-old chick. For the ex vivo culture experiment in conjunction with cyclic compressive loading, we developed a custom-made, bioreactor system where both the load and the deformation applied to the specimen was recorded. Cyclic compression, with an amplitude of 0.3 N corresponding to 1 to 2% compressive strain, was applied to immature bone specimen during a 3-day culture period at an overall loading rate 3-4 cycles/min, in the presence of β-glycerol phosphate and dexamethasone in culture medium. The stress-strain relationship was obtained at the beginning and the end of the culture experiment. In addition, analyses for alkaline phosphate release, cell viability and tissue calcification were also performed. It was exhibited that elastic moduli of bone slices were significantly elevated at the end of the 3-day culture in the presence of cyclic compression, which was a similar phenomenon to significant elevation of the elastic moduli of bone tissue by the maturation from 0-day old to 3-day old. By contrast, no significant changes in the moduli were observed in the absence of cyclic compression or in deactivated, cell-free samples. The increases in the moduli were coincided with the increase in calcified area in the bone samples. It was confirmed that immature bone can respond to compressive loading in vitro and demonstrate the growth of bone matrix, similar to natural, in vivo maturation. The elevation of the elastic moduli was attributable to the increased calcified area and the realignment of collagen fibers parallel to

  7. Effects of cyclic compression on the mechanical properties and calcification process of immature chick bone tissue in culture

    Directory of Open Access Journals (Sweden)

    Eijiro Maeda

    2017-06-01

    Full Text Available Contribution of mechanical loading to tissue growth during both the development and post-natal maturation is of a particular interest, as its understanding would be important to strategies in bone tissue engineering and regenerative medicine. The present study has been performed to investigate how immature bone responds to mechanical loading using an ex vivo culture system. A slice of the tibia, with the thickness of 3 mm, was obtained from 0-day-old chick. For the ex vivo culture experiment in conjunction with cyclic compressive loading, we developed a custom-made, bioreactor system where both the load and the deformation applied to the specimen was recorded. Cyclic compression, with an amplitude of 0.3 N corresponding to 1 to 2% compressive strain, was applied to immature bone specimen during a 3-day culture period at an overall loading rate 3–4 cycles/min, in the presence of β-glycerol phosphate and dexamethasone in culture medium. The stress-strain relationship was obtained at the beginning and the end of the culture experiment. In addition, analyses for alkaline phosphate release, cell viability and tissue calcification were also performed. It was exhibited that elastic moduli of bone slices were significantly elevated at the end of the 3-day culture in the presence of cyclic compression, which was a similar phenomenon to significant elevation of the elastic moduli of bone tissue by the maturation from 0-day old to 3-day old. By contrast, no significant changes in the moduli were observed in the absence of cyclic compression or in deactivated, cell-free samples. The increases in the moduli were coincided with the increase in calcified area in the bone samples. It was confirmed that immature bone can respond to compressive loading in vitro and demonstrate the growth of bone matrix, similar to natural, in vivo maturation. The elevation of the elastic moduli was attributable to the increased calcified area and the realignment of collagen

  8. Swine cortical and cancellous bone: histomorphometric and densitometric characterisation

    Directory of Open Access Journals (Sweden)

    Maria Elena Andreis

    2017-06-01

    Full Text Available Introduction: Swine bone morphology, composition and remodelling are similar to humans’, therefore they are considered good models in bone-related research. They have been used for several studies involving bone growth, bone and cartilage fractures and femoral head osteonecrosis. Nevertheless, the literature about pig normal bone features is incomplete. This work aims to fill the literature gaps on the microarchitecture and Bone Mineral Density (BMD of swine femoral diaphysis and distal epiphysis and tibial plateau and diaphysis. Materials and methods: Five hind limbs were collected from slaughtered 80-100 kg pigs. Microscopic analysis of cortical and cancellous bone from middle/distal femur and proximal/middle tibia was performed to determine basic histomorphometric parameters at different sites. Dual-energy X-Rays Absorptiometry was also employed to evaluate BMD. ANOVA and correlation between BMD, bone area (BA and cortical thickness were performed. Results and discussion: Diaphyseal cortical bone was mostly plexiform both in the tibia and the femur; primary/secondary osteons without clear organization were also found. Mean values for bone area, bone perimeter, trabecular width, number and separation and BMD at different anatomical sites were defined. No significant difference was found for these values at different anatomical sites. BMD proved to be positively correlated with cortical thickness (r=0,80; p<0,01. Despite the small sample size, these results seem homogeneous. They could therefore represent reference values for normal bone parameters in pigs. Applied anatomy and regenerative medicine, in fact, demand very precise information about bone micromorphology, composition and density to provide reliable indication in bone substitutes building. Moreover, since the interpretation of bone abnormalities is based on mastering normal bone characteristics, the definition of reference parameters is mandatory to avoid misinterpretation and

  9. The Effect of Aloe, Gelfoam, Plaster on Bone Formation in applying to the bone defect

    International Nuclear Information System (INIS)

    Choi, Eui Hwan; Kim, Su Gwan

    1999-01-01

    This study was to evaluate the effects of Aloe, Gelfoam, and Plaster of Paris on bone healing. Four experimental defects were created for placement of the three materials in the right femur of dogs. One defect served as an empty control site. The evaluation was performed at 1-, 6-, and 12-weeks by light microscopy and NIH image program. Radiographic and Histologic examinations showed new bone formation in the presence of Aloe, Gelfoam, and Plaster of Paris and similar bone healing reactions. On the basis of these findings, it was concluded that Aloe, Gelfoam, and Plaster of Paris may be adequate agents for use in bone procurement.

  10. The effect of radiation sterilization on human transplantable bone

    International Nuclear Information System (INIS)

    Triantafyllou, N.; Karatzas, P.

    1974-11-01

    In order to study the effect of radiation sterilization on human transplantable bones, work was carried out on human and bovine bone tissue samples. Factors causing possible alterations in the mechanical structures of the preserved bone allografts were considered to be deep freezing (-35degC), lyophylization, irradiation, or a combination of lyophylization and irradiation. The latter could be shown to lower the mechanical strength of the bone. Crystal lattice of the bone did not show any alterations in x-ray diffraction pattern, following freeze drying and/or irradiation with doses up to 10 Mrad of gamma radiation. Deterioration in mechanical properties is probably due to damage to the organic phase of the bone matrix

  11. Scaffold-cell bone engineering in a validated preclinical animal model: precursors vs differentiated cell source.

    Science.gov (United States)

    Berner, A; Henkel, J; Woodruff, M A; Saifzadeh, S; Kirby, G; Zaiss, S; Gohlke, J; Reichert, J C; Nerlich, M; Schuetz, M A; Hutmacher, D W

    2017-07-01

    The properties of osteoblasts (OBs) isolated from the axial skeleton (tOBs) differ from OBs of the orofacial skeleton (mOBs) due to the different embryological origins of the bones. The aim of the study was to assess and compare the regenerative potential of allogenic bone marrow-derived mesenchymal progenitor cells with allogenic tOBs and allogenic mOBs in combination with a mPCL-TCP scaffold in critical-sized segmental bone defects in sheep tibiae. After 6 months, the tibiae were explanted and underwent biomechanical testing, micro-computed tomography (microCT) and histological and immunohistochemical analyses. Allogenic MPCs demonstrated a trend towards a better outcome in biomechanical testing and the mean values of newly formed bone. Biomechanical, microCT and histological analysis showed no significant differences in the bone regeneration potential of tOBs and mOBs in our in vitro study, as well as in the bone regeneration potential of different cell types in vivo. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  12. Stem Cell Therapy: Repurposing Cell-Based Regenerative Medicine Beyond Cell Replacement.

    Science.gov (United States)

    Napoli, Eleonora; Lippert, Trenton; Borlongan, Cesar V

    2018-02-27

    Stem cells exhibit simple and naive cellular features, yet their exact purpose for regenerative medicine continues to elude even the most elegantly designed research paradigms from developmental biology to clinical therapeutics. Based on their capacity to divide indefinitely and their dynamic differentiation into any type of tissue, the advent of transplantable stem cells has offered a potential treatment for aging-related and injury-mediated diseases. Recent laboratory evidence has demonstrated that transplanted human neural stem cells facilitate endogenous reparative mechanisms by initiating multiple regenerative processes in the brain neurogenic areas. Within these highly proliferative niches reside a myriad of potent regenerative molecules, including anti-inflammatory cytokines, proteomes, and neurotrophic factors, altogether representing a biochemical cocktail vital for restoring brain function in the aging and diseased brain. Here, we advance the concept of therapeutically repurposing stem cells not towards cell replacement per se, but rather exploiting the cells' intrinsic properties to serve as the host brain regenerative catalysts.

  13. Regenerative Medicine: Advances from Developmental to Degenerative Diseases.

    Science.gov (United States)

    Blair, Nicholas F; Frith, Thomas J R; Barbaric, Ivana

    2017-01-01

    Chronic tissue and organ failure caused by an injury, disease, ageing or congenital defects represents some of the most complex therapeutic challenges and poses a significant financial healthcare burden. Regenerative medicine strategies aim to fulfil the unmet clinical need by restoring the normal tissue function either through stimulating the endogenous tissue repair or by using transplantation strategies to replace the missing or defective cells. Stem cells represent an essential pillar of regenerative medicine efforts as they provide a source of progenitors or differentiated cells for use in cell replacement therapies. Whilst significant leaps have been made in controlling the stem cell fates and differentiating them to cell types of interest, transitioning bespoke cellular products from an academic environment to off-the-shelf clinical treatments brings about a whole new set of challenges which encompass manufacturing, regulatory and funding issues. Notwithstanding the need to resolve such issues before cell replacement therapies can benefit global healthcare, mounting progress in the field has highlighted regenerative medicine as a realistic prospect for treating some of the previously incurable conditions.

  14. Nanocomposite hydrogels stabilized by self-assembled multivalent bisphosphonate-magnesium nanoparticles mediate sustained release of magnesium ion and promote in-situ bone regeneration.

    Science.gov (United States)

    Zhang, Kunyu; Lin, Sien; Feng, Qian; Dong, Chaoqun; Yang, Yanhua; Li, Gang; Bian, Liming

    2017-12-01

    Hydrogels are appealing biomaterials for applications in regenerative medicine due to their tunable physical and bioactive properties. Meanwhile, therapeutic metal ions, such as magnesium ion (Mg 2+ ), not only regulate the cellular behaviors but also stimulate local bone formation and healing. However, the effective delivery and tailored release of Mg 2+ remains a challenge, with few reports on hydrogels being used for Mg 2+ delivery. Bisphosphonate exhibits a variety of specific bioactivities and excellent binding affinity to multivalent cations such as Mg 2+ . Herein, we describe a nanocomposite hydrogel based on hyaluronic acid and self-assembled bisphosphonate-magnesium (BP-Mg) nanoparticles. These nanoparticles bearing acrylate groups on the surface not only function as effective multivalent crosslinkers to strengthen the hydrogel network structure, but also promote the mineralization of hydrogels and mediate sustained release of Mg 2+ . The released Mg 2+ ions facilitate stem cell adhesion and spreading on the hydrogel substrates in the absence of cell adhesion ligands, and promote osteogenesis of the seeded hMSCs in vitro. Furthermore, the acellular porous hydrogels alone can support in situ bone regeneration without using exogenous cells and inductive agents, thereby greatly simplifying the approaches of bone regeneration therapy. In this study, we developed a novel bioactive nanocomposite hydrogel based on hyaluronic acid and self-assembled bisphosphonate-magnesium (BP-Mg) nanoparticles. Such hydrogels are stabilized by the multivalent crosslinking domains formed by the aggregation of Ac-BP-Mg NPs, and therefore show enhanced mechanical properties, improved capacity for mineralization, and controlled release kinetics of Mg 2+ . Moreover, the released Mg 2+ can enhance cell adhesion and spreading, and further promote the osteogenic differentiation of hMSCs. Owing to these unique properties, these acellular hydrogels alone can well facilitate the in vivo

  15. Bone marrow-derived mesenchymal stromal cell treatment in patients with severe ischaemic heart failure

    DEFF Research Database (Denmark)

    Mathiasen, Anders Bruun; Qayyum, Abbas Ali; Jørgensen, Erik

    2015-01-01

    AIMS: Regenerative treatment with mesenchymal stromal cells (MSCs) has been promising in patients with ischaemic heart failure but needs confirmation in larger randomized trials. We aimed to study effects of intra-myocardial autologous bone marrow-derived MSC treatment in patients with severe isc...... identified. CONCLUSION: Intra-myocardial injections of autologous culture expanded MSCs were safe and improved myocardial function in patients with severe ischaemic heart failure. STUDY REGISTRATION NUMBER: NCT00644410 (ClinicalTrials.gov)....... ischaemic heart failure. METHODS AND RESULTS: The MSC-HF trial is a randomized, double-blind, placebo-controlled trial. Patients were randomized 2 : 1 to intra-myocardial injections of MSC or placebo, respectively. The primary endpoint was change in left ventricular end-systolic volume (LVESV), measured...

  16. Prospective regenerative medicine therapies for obstetric trauma-induced fecal incontinence.

    Science.gov (United States)

    Parmar, Nina; Kumar, Lalit; Emmanuel, Anton; Day, Richard M

    2014-01-01

    Fecal incontinence is a major public health issue that has yet to be adequately addressed. Obstetric trauma and injury to the anal sphincter muscles are the most common cause of fecal incontinence. New therapies are emerging aimed at repair or regeneration of sphincter muscle and restoration of continence. While regenerative medicine offers an attractive option for fecal incontinence there are currently no validated techniques using this approach. Although many challenges are yet to be resolved, the advent of regenerative medicine is likely to offer disruptive technologies to treat and possibly prevent the onset of this devastating condition. This article provides a review on regenerative medicine approaches for treating fecal incontinence and a critique of the current landscape in this area.

  17. Recommendations on the effect of antidiabetic drugs in bone.

    Science.gov (United States)

    Rozas-Moreno, Pedro; Reyes-García, Rebeca; Jódar-Gimeno, Esteban; Varsavsky, Mariela; Luque-Fernández, Inés; Cortés-Berdonces, María; Muñoz-Torres, Manuel

    2017-03-01

    To provide recommendations on the effect of antidiabetic drugs on bone fragility to help select the most adequate antidiabetic treatment, especially in diabetic patients with high risk of fracture. Members of the Bone Metabolism Working Group of the Spanish Society of Endocrinology. The GRADE system (Grading of Recommendations, Assessment, Development, and Evaluation) was used to establish both the strength of recommendations and the quality of evidence. A systematic search was made in MEDLINE (Pubmed) using the following terms associated to the name of each antidiabetic drug: AND "osteoporosis", "fractures", "bone mineral density", "bone markers", "calciotropic hormones". Papers in English with publication date before 30 April 2016 were reviewed. Recommendations were jointly discussed by the Working Group. The document summaries the data on the potential effects of antidiabetic drugs on bone metabolism and fracture risk. Copyright © 2017 SEEN. Publicado por Elsevier España, S.L.U. All rights reserved.

  18. Evaluation of cell sheet application on one wall bone defect in Macaca nemestrina through periostin expression

    Science.gov (United States)

    Tamin, R. Y.; Soeroso, Y.; Amir, L.; Idrus, E.

    2017-08-01

    Chronic periodontitis is an oral disease in which the destruction of periodontal tissue leads to tooth loss. Regenerative therapy for attachment cannot be applied to one wall bone defects owing to the minimal existing healthy bone. Tissue engineering in the form of cell sheets has been developed to overcome this limitation. In a previous study, cell sheet application to a one wall bone defect in Macaca nemestrina showed good clinical results. To evaluate the effectiveness of cell sheet application histologically, the level of periostin expression in the gingival crevicular fluid (GCF) of M. nemestrina was determined. Periostin is a 90-kDa protein that regulates coordination and interaction for regeneration and tissue repair. A laboratory observation study was performed to see the differences in periostin levels in samples collected from M. nemestrina’s GCF, where a cell sheet was applied to the bone defect. Gel electrophoresis with SDS-PAGE was performed to detect periostin expression based on its molecular weight and to compare the expression band between the cell sheet and the control at 1, 2, and 3 weeks after treatment. The gel electrophoresis result shows different thicknesses of the protein band around the molecular weight of periostin between the cell sheet groups.

  19. Pharmacological activation of aldehyde dehydrogenase 2 promotes osteoblast differentiation via bone morphogenetic protein-2 and induces bone anabolic effect

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Monika; Pal, Subhashis; China, Shyamsundar Pal; Porwal, Konica [Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Lucknow 226031 (India); Dev, Kapil [Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031 (India); Shrivastava, Richa [Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow 226031 (India); Raju, Kanumuri Siva Rama; Rashid, Mamunur [Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031 (India); Trivedi, Arun Kumar; Sanyal, Sabyasachi [Biochemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031 (India); Wahajuddin, Muhammad [Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031 (India); Bhaduria, Smrati [Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow 226031 (India); Maurya, Rakesh [Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031 (India); Chattopadhyay, Naibedya, E-mail: n_chattopadhyay@cdri.res.in [Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Lucknow 226031 (India)

    2017-02-01

    Aldehyde dehydrogenases (ALDHs) are a family of enzymes involved in detoxifying aldehydes. Previously, we reported that an ALDH inhibitor, disulfiram caused bone loss in rats and among ALDHs, osteoblast expressed only ALDH2. Loss-of-function mutation in ALDH2 gene is reported to cause bone loss in humans which suggested its importance in skeletal homeostasis. We thus studied whether activating ALDH2 by N-(1, 3-benzodioxol-5-ylmethyl)-2, 6-dichlorobenzamide (alda-1) had osteogenic effect. We found that alda-1 increased and acetaldehyde decreased the differentiation of rat primary osteoblasts and expressions of ALDH2 and bone morphogenetic protein-2 (BMP-2). Silencing ALDH2 in osteoblasts abolished the alda-1 effects. Further, alda-1 attenuated the acetaldehyde-induced lipid-peroxidation and oxidative stress. BMP-2 is essential for bone regeneration and alda-1 increased its expression in osteoblasts. We then showed that alda-1 (40 mg/kg dose) augmented bone regeneration at the fracture site with concomitant increase in BMP-2 protein compared with control. The osteogenic dose (40 mg/kg) of alda-1 attained a bone marrow concentration that was stimulatory for osteoblast differentiation, suggesting that the tissue concentration of alda-1 matched its pharmacologic effect. In addition, alda-1 promoted modeling-directed bone growth and peak bone mass achievement, and increased bone mass in adult rats which reiterated its osteogenic effect. In osteopenic ovariectomized (OVX) rats, alda-1 reversed trabecular osteopenia with attendant increase in serum osteogenic marker (procollagen type I N-terminal peptide) and decrease in oxidative stress. Alda-1 has no effect on liver and kidney function. We conclude that activating ALDH2 by alda-1 had an osteoanabolic effect involving increased osteoblastic BMP-2 production and decreased OVX-induced oxidative stress. - Highlights: • Alda-1 induced osteoblast differentiation that involved upregulation of ALDH2 and BMP-2 • Alda-1

  20. Effect of epimedium pubescen flavonoid on bone mineral status and bone turnover in male rats chronically exposed to cigarette smoke

    Directory of Open Access Journals (Sweden)

    Gao Shu-guang

    2012-06-01

    Full Text Available Abstract Background Epimedii herba is one of the most frequently used herbs in formulas that are prescribed for the treatment of osteoporosis in China and its main constituent is Epimedium pubescen flavonoid (EPF. However, it is unclear whether EPF during chronic exposure to cigarette smoke may have a protective influence on the skeleton. The present study investigated the effect of EPF on bone mineral status and bone turnover in a rat model of human relatively high exposure to cigarette smoke. Methods Fifty male Wistar rats were randomized into five groups: controls, passive smoking groups and passive smoking rats administered EPF at three dosage levels (75, 150 or 300 mg/kg/day in drinking water for 4 months. A rat model of passive smoking was prepared by breeding male rats in a cigarette-smoking box. Bone mineral content (BMC, bone mineral density (BMD, bone turnover markers, bone histomorphometric parameters and biomechanical properties were examined. Results Smoke exposure decreased BMC and BMD, increased bone turnover (inhibited bone formation and stimulated its resorption, affected bone histomorphometry (increased trabecular separation and osteoclast surface per bone surface; decreased trabecular bone volume, trabecular thickness, trabecular number, cortical thickness, bone formation rate and osteoblast surface per bone surface, and reduced mechanical properties. EPF supplementation during cigarette smoke exposure prevented smoke-induced changes in bone mineral status and bone turnover. Conclusion The results suggest that EPF can prevent the adverse effects of smoke exposure on bone by stimulating bone formation and inhibiting bone turnover and bone resorption.

  1. Regenerative feedback resonant circuit

    Science.gov (United States)

    Jones, A. Mark; Kelly, James F.; McCloy, John S.; McMakin, Douglas L.

    2014-09-02

    A regenerative feedback resonant circuit for measuring a transient response in a loop is disclosed. The circuit includes an amplifier for generating a signal in the loop. The circuit further includes a resonator having a resonant cavity and a material located within the cavity. The signal sent into the resonator produces a resonant frequency. A variation of the resonant frequency due to perturbations in electromagnetic properties of the material is measured.

  2. Stem cells applications in bone and tooth repair and regeneration: New insights, tools, and hopes.

    Science.gov (United States)

    Abdel Meguid, Eiman; Ke, Yuehai; Ji, Junfeng; El-Hashash, Ahmed H K

    2018-03-01

    The exploration of stem and progenitor cells holds promise for advancing our understanding of the biology of tissue repair and regeneration mechanisms after injury. This will also help in the future use of stem cell therapy for the development of regenerative medicine approaches for the treatment of different tissue-species defects or disorders such as bone, cartilages, and tooth defects or disorders. Bone is a specialized connective tissue, with mineralized extracellular components that provide bones with both strength and rigidity, and thus enable bones to function in body mechanical supports and necessary locomotion process. New insights have been added to the use of different types of stem cells in bone and tooth defects over the last few years. In this concise review, we briefly describe bone structure as well as summarize recent research progress and accumulated information regarding the osteogenic differentiation of stem cells, as well as stem cell contributions to bone repair/regeneration, bone defects or disorders, and both restoration and regeneration of bones and cartilages. We also discuss advances in the osteogenic differentiation and bone regeneration of dental and periodontal stem cells as well as in stem cell contributions to dentine regeneration and tooth engineering. © 2017 Wiley Periodicals, Inc.

  3. The Ovonic regenerative fuel cell, a fundamentally new approach

    International Nuclear Information System (INIS)

    Ovshinsky, S.R.; Venkatesan, S.; Corrigan, D.A.

    2004-01-01

    The Ovonic Regenerative Fuel Cell utilizes Ovonic metal hydride materials in place of traditional noble metal catalysts in the hydrogen fuel electrode. This provides unique features including the ability to capture and utilize regenerative braking energy at high efficiency and the ability to operate for a significant period upon interruption of the hydrogen fuel supply. Additionally, this novel fuel cell does not use high price components, such as platinum catalysts, microporous membranes, and graphite bipolar plates, used in PEM fuel cells. Proof of concept has been demonstrated in full-size multicell prototypes delivering about 100 W power. The Ovonic Regenerative Fuel Cell is yet another component of ECD Ovonic technology contributing to the emerging hydrogen economy which already includes Uni-Solar PV solar cells, Ovonic solid-state hydrogen storage devices, and Ovonic nickel-metal hydride batteries from Cobasys, a joint venture between ECD Ovonics and ChevronTexaco. (author)

  4. Comparison of human adipose-derived stem cells and bone marrow-derived stem cells in a myocardial infarction model

    DEFF Research Database (Denmark)

    Rasmussen, Jeppe; Frøbert, Ole; Holst-Hansen, Claus

    2014-01-01

    Background: Treatment of myocardial infarction with bone marrow-derived mesenchymal stem cells and recently also adipose-derived stem cells has shown promising results. In contrast to clinical trials and their use of autologous bone marrow-derived cells from the ischemic patient, the animal...... myocardial infarction models are often using young donors and young, often immune-compromised, recipient animals. Our objective was to compare bone marrow-derived mesenchymal stem cells with adipose-derived stem cells from an elderly ischemic patient in the treatment of myocardial infarction, using a fully...... grown non-immunecompromised rat model. Methods: Mesenchymal stem cells were isolated from adipose tissue and bone marrow and compared with respect to surface markers and proliferative capability. To compare the regenerative potential of the two stem cell populations, male Sprague-Dawley rats were...

  5. Bone Augmentation in Rabbit Tibia Using Microfixed Cobalt-Chromium Membranes with Whole Blood and Platelet-Rich Plasma

    Directory of Open Access Journals (Sweden)

    Oscar A. Decco

    2015-07-01

    Full Text Available Background: Bone augmentation is a subject of intensive investigation in regenerative bone medicine and constitutes a clinical situation in which autogenous bone grafts or synthetic materials are used to aid new bone formation. Method: Based on a non-critical defect, Co-Cr barrier membranes were placed on six adult Fauve de Bourgogne rabbits, divided into two groups: whole blood and PRP. Three densitometric controls were performed during the experiment. The animals were euthanized at 30, 45, 60, and 110 days. The presence of newly formed bone was observed. Samples for histological studies were taken from the augmentation center. Results: External and internal bone tissue augmentation was observed in almost all cases. Significant differences between PRP- and whole blood–stimulated bone augmentation were not observed. At 60 days, bones with PRP presented higher angiogenesis, which may indicate more proliferation and cellular activity. Conclusion: PRP activates the bone regeneration process under optimized conditions by stimulation of osteoblast proliferation after six weeks, when a significant difference in cellular activity was observed. Membranes could stimulate bone augmentation at the site of placement and in the surrounding areas.

  6. The effect of chronic alcohol administration on bone mineral content and bone strength in male rats.

    Science.gov (United States)

    Broulík, P D; Vondrová, J; Růzicka, P; Sedlácek, R; Zíma, T

    2010-01-01

    Alcohol use has been identified as a risk factor for the development of osteoporosis. Eight male Wistar rats at two months of age were alcoho-fed (7.6 g 95 % ethanol/kg b.w. per day) to evaluate the effects of long-term administration (three months) of alcohol in drinking water. We have used a dose which is considered to be comparable to a dose of 1 liter of wine or 2.5 liters of 12(°) beer used in male adults daily. The bones were tested mechanically by a three-point bending test in a Mini Bionix (MTS) testing system. The bones from alcohol-fed rats were characterized by a reduction in bone density as well as in ash, calcium and phosphate content. In alcohol-fed rats the reduction in bone mineral density (10 %) was reflected by about 12 % reduction of mechanical strength of femur (158+/-5.5 vs. 178+/-3.2 N/mm(2)). Alcohol significantly altered femoral cortical thickness. In our experiment alcohol itself did not exert any antiandrogenic effect and it did not produce changes in the weight of seminal vesicles. Liver function test (GGT, ALP, AST) did not differ between alcohol-fed rats and control rats. Alcohol-induced bone loss is associated with increased bone resorption and decreased bone formation. These results document the efficacy of alcohol at the dose of 7.6 g 95 % ethanol/kg b.w. to cause bone loss and loss of bone mechanical strength in intact rats. The results of the present study may be interpreted as supporting the hypothesis of alcohol as a risk factor for osteoporosis.

  7. Carbon nanotube torsional springs for regenerative braking systems

    Science.gov (United States)

    Liu, Sanwei; Martin, Corbin; Lashmore, David; Schauer, Mark; Livermore, Carol

    2015-10-01

    The modeling and demonstration of large stroke, high energy density and high power density torsional springs based on carbon nanotube (CNT) yarns is reported, as well as their application as energy-storing actuators for regenerative braking systems. An originally untwisted CNT yarn is cyclically loaded and unloaded in torsion, with the maximum rotation angle increasing incrementally until failure. The measured average extractable energy density values are 2.9 kJ kg-1  ±  1.2 kJ kg-1 and 3.4 kJ kg-1  ±  0.4 kJ kg-1 for 1-ply CNT yarns and 2-ply CNT yarns, respectively. Additionally, a regenerative braking system is demonstrated to capture the kinetic energy of a wheel and store it as elastic energy in twisted CNT yarns. When the yarn’s twist is released, the stored energy reaccelerates the wheel. The measured energy and mean power densities of the CNT yarns in the simple regenerative braking setup are on average 3.3 kJ kg-1 and 0.67 kW kg-1, respectively, with maximum measured values of up to 4.7 kJ kg-1 and 1.2 kW kg-1, respectively. A slightly lower energy density of up to 1.2 kJ kg-1 and a 0.29 kW kg-1 mean power density are measured for CNT yarns in a more complex setup that mimics a unidirectional rotating regenerative braking mechanism.

  8. Microtomographic and morphometric characterization of a bioceramic bone substitute in dental implantology

    Directory of Open Access Journals (Sweden)

    Deborah Meleo

    2012-01-01

    Full Text Available In recent years, bone tissue regeneration studies have led to a deeper knowledge of chemical and structural features of the best biomaterials to be used as replacements for lost bone structures, with the autologus bone still today the only graft material able to ostegenerate, osteinduct and/or osteoconduct. The difficulties of the small available amount of autologus bone, together with morbidity of a second surgical operation on the same patient, have been overcome using both synthetic and biologic substitute bones. The possibility of investigating morphometric characteristics of substitute bones makes it possible to evaluate the predictability of regenerative processes and, so far, a range of different methods have been used for the purpose. X-ray microtomography (micro-CT is a miniaturized form of conventional tomography, able to analyze the internal structure of small objects, performing three-dimensional images with high spatial resolution (<10 micron pixel size. For a correct analysis, samples need not be altered or treated in any way, as micro-CT is a non-invasive and non-destructive technique. It shows promising results in biomaterial studies and tissue engineering. This work shows the potential applications of this microtomographic technique by means of an in vitro analysis system, in characterizing morphometric features of human bone tissue, and contributes to the use of this technique in studies concerning biomaterials and bioscaffolds inserted in bone tissue.

  9. Regenerative braking strategies, vehicle safety and stability control systems: critical use-case proposals

    Science.gov (United States)

    Oleksowicz, Selim A.; Burnham, Keith J.; Southgate, Adam; McCoy, Chris; Waite, Gary; Hardwick, Graham; Harrington, Cian; McMurran, Ross

    2013-05-01

    The sustainable development of vehicle propulsion systems that have mainly focused on reduction of fuel consumption (i.e. CO2 emission) has led, not only to the development of systems connected with combustion processes but also to legislation and testing procedures. In recent years, the low carbon policy has made hybrid vehicles and fully electric vehicles (H/EVs) popular. The main virtue of these propulsion systems is their ability to restore some of the expended energy from kinetic movement, e.g. the braking process. Consequently new research and testing methods for H/EVs are currently being developed. This especially concerns the critical 'use-cases' for functionality tests within dynamic events for both virtual simulations, as well as real-time road tests. The use-case for conventional vehicles for numerical simulations and road tests are well established. However, the wide variety of tests and their great number (close to a thousand) creates a need for selection, in the first place, and the creation of critical use-cases suitable for testing H/EVs in both virtual and real-world environments. It is known that a marginal improvement in the regenerative braking ratio can significantly improve the vehicle range and, therefore, the economic cost of its operation. In modern vehicles, vehicle dynamics control systems play the principal role in safety, comfort and economic operation. Unfortunately, however, the existing standard road test scenarios are insufficient for H/EVs. Sector knowledge suggests that there are currently no agreed tests scenarios to fully investigate the effects of brake blending between conventional and regenerative braking as well as the regenerative braking interaction with active driving safety systems (ADSS). The paper presents seven manoeuvres, which are considered to be suitable and highly informative for the development and examination of H/EVs with regenerative braking capability. The critical manoeuvres presented are considered to be

  10. Honey: an effective regenerative medicine product in wound management.

    Science.gov (United States)

    Martinotti, Simona; Bucekova, Marcela; Majtan, Juraj; Ranzato, Elia

    2018-05-10

    Honey has successfully been used in treatment of a broad spectrum of injuries including burns and non-healing wounds. It acts as antibacterial and anti-biofilm agent with anti/pro-inflammatory properties. However, besides these traditional properties, recent evidence suggests that honey is also an immunomodulator in wound healing and contains several bee and plant-derived components that may speed up the wound healing and tissue regeneration process. Identifying their exact mechanism of action allows better understanding of honey healing properties and promotes its wider translation into clinical practice. This review will discuss the physiological basis for the use of honey in wound management, its current clinical uses, as well as the potential role of honey bioactive compounds in dermal regenerative medicine and tissue re-modelling. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Effect of cisplatin on bone transport osteogenesis in dogs.

    Science.gov (United States)

    Ehrhart, Nicole; Eurell, Jo Ann C; Tommasini, Matteo; Constable, Peter D; Johnson, Ann L; Feretti, Antonio

    2002-05-01

    To document effects of cisplatin on regenerate bone formation during the distraction and consolidation phases of bone transport osteogenesis. 10 skeletally mature hounds. Bone transport osteogenesis was performed to reconstruct a 3-cm defect in the radius of each dog. Five dogs were randomly selected to receive cisplatin (70 mg/m2, IV, q 21 d for 4 cycles), and 5 were administered saline (0.9% NaCl) solution. Bone mineral density was measured by use of dual-energy x-ray absorptiometry (DEXA) on days 24, 55, and 90 after surgery. Dogs were euthanatized 90 days after surgery. Histomorphometry was performed on nondecalcified sections of regenerate bone. Bone mineral density and histomorphometric indices of newly formed bone were compared between groups. Densitometric differences in regenerate bone mineral density were not detected between groups at any time period. Cisplatin-treated dogs had decreased mineralized bone volume, decreased percentage of woven bone volume, decreased percentage of osteoblast-covered bone, increased porosity, and increased percentage of osteoblast-covered surfaces, compared with values for control dogs. Lamellar bone volume and osteoid volume did not differ significantly between groups. Regenerate bone will form and remodel during administration of cisplatin. Results of histomorphometric analysis suggest that bone formation and resorption may be uncoupled in cisplatin-treated regenerate bone as a result of increased osteoclast activity or delayed secondary bone formation during remodeling. These histomorphometric differences were modest in magnitude and did not result in clinically observable complications or decreased bone mineral density as measured by use of DEXA.

  12. A novel use of 3D printing model demonstrates the effects of deteriorated trabecular bone structure on bone stiffness and strength.

    Science.gov (United States)

    Barak, Meir Max; Black, Margaret Arielle

    2018-02-01

    Trabecular bone structure is crucial to normal mechanical behavior of bones. Studies have shown that osteoporosis negatively affects trabecular bone structure, mainly by reducing bone volume fraction (BV/TV) and thus increasing fracture risk. One major limitation in assessing and quantifying the effect of this structural deterioration is that no two trabecular structures are identical. Thus, when we compare a group of healthy bones against a different group of bones that experienced resorption (i.e. decreased BV/TV) we only discover an "average" mechanical effect. It is impossible to quantify the mechanical effect of individual structural deterioration for each sample, simply because we never have the same sample in both states (intact and deteriorated structure). 3D printing is a new technology that can assist in overcoming this issue. Here we report a preliminary study that compares a healthy 3D printed trabecular bone model with the same model after bone resorption was simulated. Since the deteriorated structural bone model is derived from the healthy one, it is possible to directly estimate (percentage wise) the decrease of tissue stiffness and strength as a result of bone resorption for this specific structure. Our results demonstrate that a relatively small decrease in BV/TV (about 8%) leads to a dramatic decrease in structural strength (24%) and structural stiffness (17%), (P printing is a novel and valuable tool for quantifying the effect of structural deterioration on the mechanical properties of trabecular bone. In the future, this approach may help us attain better personal fracture risk assessments by CT scanning, 3D printing and mechanically testing individual bone replicas from patients suffering excessive bone resorption. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. VEGF-incorporated biomimetic poly(lactide-co-glycolide) sintered microsphere scaffolds for bone tissue engineering.

    Science.gov (United States)

    Jabbarzadeh, Ehsan; Deng, Meng; Lv, Qing; Jiang, Tao; Khan, Yusuf M; Nair, Lakshmi S; Laurencin, Cato T

    2012-11-01

    Regenerative engineering approaches utilizing biomimetic synthetic scaffolds provide alternative strategies to repair and restore damaged bone. The efficacy of the scaffolds for functional bone regeneration critically depends on their ability to induce and support vascular infiltration. In the present study, three-dimensional (3D) biomimetic poly(lactide-co-glycolide) (PLAGA) sintered microsphere scaffolds were developed by sintering together PLAGA microspheres followed by nucleation of minerals in a simulated body fluid. Further, the angiogenic potential of vascular endothelial growth factor (VEGF)-incorporated mineralized PLAGA scaffolds were examined by monitoring the growth and phenotypic expression of endothelial cells on scaffolds. Scanning electron microscopy micrographs confirmed the growth of bone-like mineral layers on the surface of microspheres. The mineralized PLAGA scaffolds possessed interconnectivity and a compressive modulus of 402 ± 61 MPa and compressive strength of 14.6 ± 2.9 MPa. Mineralized scaffolds supported the attachment and growth and normal phenotypic expression of endothelial cells. Further, precipitation of apatite layer on PLAGA scaffolds resulted in an enhanced VEGF adsorption and prolonged release compared to nonmineralized PLAGA and, thus, a significant increase in endothelial cell proliferation. Together, these results demonstrated the potential of VEGF-incorporated biomimetic PLAGA sintered microsphere scaffolds for bone tissue engineering as they possess the combined effects of osteointegrativity and angiogenesis. Copyright © 2012 Wiley Periodicals, Inc.

  14. A survey of attitude and opinions of endodontic residents towards regenerative endodontics

    Science.gov (United States)

    Utneja, Shivani; Nawal, Ruchika Roongta; Ansari, Mohammed Irfan; Talwar, Sangeeta; Verma, Mahesh

    2013-01-01

    Aim: The objective of this survey was to study the level of awareness, current state of knowledge and opinions towards regenerative endodontic treatments amongst the endodontic residents of India. Settings and Design: Questionnaire based survey was designed. Materials and Methods: After approval from the organizing committee of 26th Federation of Operative Dentistry of India and 19th Indian Endodontic Society National conference 2011, 200 copies of the questionnaire were circulated amongst the endodontic residents in conservative dentistry and endodontics at various colleges across the country about regenerative endodontic procedures. The survey included profile of the respondents and consisted of 23 questions about their knowledge, attitude and opinions regarding use of these procedures as part of future dental treatment. Results: The survey showed that half the participants (50.6%) had received continued education in stem cells and/or regenerative dental treatments. The majority of participants were of the opinion (86.6%) that regenerative therapy should be incorporated into dentistry, and most of them (88%) were willing to acquire training in learning this new treatment strategy. The results indicated that half of the participants (52.6%) were already using some type of regenerative therapy in their clinical practice; however, with a majority of these limited to use of membranes, scaffolds or bioactive materials. Conclusions: These results reflect that endodontic residents are optimistic about the use of regenerative endodontic procedures; however, a need for more research and training was felt. PMID:23956532

  15. Enhancing proliferation and optimizing the culture condition for human bone marrow stromal cells using hypoxia and fibroblast growth factor-2

    Directory of Open Access Journals (Sweden)

    Jung-Seok Lee

    2018-04-01

    Full Text Available This study aimed to determine the cellular characteristics and behaviors of human bone marrow stromal cells (hBMSCs expanded in media in a hypoxic or normoxic condition and with or without fibroblast growth factor-2 (FGF-2 treatment. hBMSCs isolated from the vertebral body and expanded in these four groups were evaluated for cellular proliferation/migration, colony-forming units, cell-surface characterization, in vitro differentiation, in vivo transplantation, and gene expression. Culturing hBMSCs using a particular environmental factor (hypoxia and with the addition of FGF-2 increased the cellular proliferation rate while enhancing the regenerative potential, modulated the multipotency-related processes (enhanced chondrogenesis-related processes/osteogenesis, but reduced adipogenesis, and increased cellular migration and collagen formation. The gene expression levels in the experimental samples showed activation of the hypoxia-inducible factor-1 pathway and glycolysis in the hypoxic condition, with this not being affected by the addition of FGF-2. The concurrent application of hypoxia and FGF-2 could provide a favorable condition for culturing hBMSCs to be used in clinical applications associated with bone tissue engineering, due to the enhancement of cellular proliferation and regenerative potential. Keywords: Bone marrow stromal cells, Hypoxia, Fibroblast growth factor, Tissue regeneration, Microenvironment interactions

  16. Regenerative Engineering and Bionic Limbs.

    Science.gov (United States)

    James, Roshan; Laurencin, Cato T

    2015-03-01

    Amputations of the upper extremity are severely debilitating, current treatments support very basic limb movement, and patients undergo extensive physiotherapy and psychological counselling. There is no prosthesis that allows the amputees near-normal function. With increasing number of amputees due to injuries sustained in accidents, natural calamities and international conflicts, there is a growing requirement for novel strategies and new discoveries. Advances have been made in technological, material and in prosthesis integration where researchers are now exploring artificial prosthesis that integrate with the residual tissues and function based on signal impulses received from the residual nerves. Efforts are focused on challenging experts in different disciplines to integrate ideas and technologies to allow for the regeneration of injured tissues, recording on tissue signals and feed-back to facilitate responsive movements and gradations of muscle force. A fully functional replacement and regenerative or integrated prosthesis will rely on interface of biological process with robotic systems to allow individual control of movement such as at the elbow, forearm, digits and thumb in the upper extremity. Regenerative engineering focused on the regeneration of complex tissue and organ systems will be realized by the cross-fertilization of advances over the past thirty years in the fields of tissue engineering, nanotechnology, stem cell science, and developmental biology. The convergence of toolboxes crated within each discipline will allow interdisciplinary teams from engineering, science, and medicine to realize new strategies, mergers of disparate technologies, such as biophysics, smart bionics, and the healing power of the mind. Tackling the clinical challenges, interfacing the biological process with bionic technologies, engineering biological control of the electronic systems, and feed-back will be the important goals in regenerative engineering over the next

  17. Periosteal Distraction Osteogenesis: An Effective Method for Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Danyang Zhao

    2016-01-01

    Full Text Available The treatment of bone defects is challenging and controversial. As a new technology, periosteal distraction osteogenesis (PDO uses the osteogenicity of periosteum, which creates an artificial space between the bone surface and periosteum to generate new bone by gradually expanding the periosteum with no need for corticotomy. Using the newly formed bone of PDO to treat bone defects is effective, which can not only avoid the occurrence of immune-related complications, but also solve the problem of insufficient donor. This review elucidates the availability of PDO in the aspects of mechanisms, devices, strategies, and measures. Moreover, we also focus on the future prospects of PDO and hope that PDO will be applied to the clinical treatment of bone defects in the future.

  18. The effect of dexamethasone and triiodothyronine on terminal differentiation of primary bovine chondrocytes and chondrogenically differentiated mesenchymal stem cells

    NARCIS (Netherlands)

    Randau, T.M.; Schildberg, F.A.; Alini, M.; Wimmer, M.D.; Haddouti, E.-M.; Gravius, S.; Ito, K.; Stoddart, M.J.

    2013-01-01

    The newly evolved field of regenerative medicine is offering solutions in the treatment of bone or cartilage loss and deficiency. Mesenchymal stem cells, as well as articular chondrocytes, are potential cells for the generation of bone or cartilage. The natural mechanism of bone formation is that of

  19. Advanced Tissue Sciences Inc.: learning from the past, a case study for regenerative medicine.

    Science.gov (United States)

    Pangarkar, Nitin; Pharoah, Marc; Nigam, Avinav; Hutmacher, Dietmar W; Champ, Simon

    2010-09-01

    On 31st March 2003 Advanced Tissue Sciences (ATS) was liquidated, with the effect that in excess of US$300 million of stakeholder financing was destroyed. Although successful in the development of breakthrough technologies in the regenerative medicine arena and the building of a substantial portfolio of patents, the company never made a profit. In this case study, ATS’ business strategy, market and competitive environment will be discussed in the context of the company’s historical development. A number of important lessons from this case are discussed. From a management perspective the most critical lesson is the importance of effective financial planning and management of costs, and in particular R&D costs, including the significant costs associated with clinical trials. In addition, a clear strategic focus is extremely important due to the significant resources required in the development of a new therapy. From an investor’s perspective the lessons to be gathered from the ATS case are related to the risk involved in investing in the field of regenerative medicine. This case indicates that both professional and private investors did not fully question the validity of ATS’ business strategy and financial forecasts. A clear and focused strategy based on long-term investor commitment is essential for the successful commercialization of regenerative medicine.

  20. Concise review: bridging the gap: bone regeneration using skeletal stem cell-based strategies-where are we now?

    DEFF Research Database (Denmark)

    Dawson, Jonathan I; Kanczler, Janos; Kassem, Moustapha

    2014-01-01

    Skeletal stem cells confer to bone its innate capacity for regeneration and repair. Bone regeneration strategies seek to harness and enhance this regenerative capacity for the replacement of tissue damaged or lost through congenital defects, trauma, functional/esthetic problems, and a broad range...... for musculoskeletal regeneration. Stem Cells 2014;32:35-44...... of diseases associated with an increasingly aged population. This review describes the state of the field and current steps to translate and apply skeletal stem cell biology in the clinic and the problems therein. Challenges are described along with key strategies including the isolation and ex vivo expansion...

  1. Effects of different loading patterns on the trabecular bone morphology of the proximal femur using adaptive bone remodeling.

    Science.gov (United States)

    Banijamali, S Mohammad Ali; Oftadeh, Ramin; Nazarian, Ara; Goebel, Ruben; Vaziri, Ashkan; Nayeb-Hashemi, Hamid

    2015-01-01

    In this study, the changes in the bone density of human femur model as a result of different loadings were investigated. The model initially consisted of a solid shell representing cortical bone encompassing a cubical network of interconnected rods representing trabecular bone. A computationally efficient program was developed that iteratively changed the structure of trabecular bone by keeping the local stress in the structure within a defined stress range. The stress was controlled by either enhancing existing beam elements or removing beams from the initial trabecular frame structure. Analyses were performed for two cases of homogenous isotropic and transversely isotropic beams.Trabecular bone structure was obtained for three load cases: walking, stair climbing and stumbling without falling. The results indicate that trabecular bone tissue material properties do not have a significant effect on the converged structure of trabecular bone. In addition, as the magnitude of the loads increase, the internal structure becomes denser in critical zones. Loading associated with the stumbling results in the highest density;whereas walking, considered as a routine daily activity, results in the least internal density in different regions. Furthermore, bone volume fraction at the critical regions of the converged structure is in good agreement with previously measured data obtained from combinations of dual X-ray absorptiometry (DXA) and computed tomography (CT). The results indicate that the converged bone architecture consisting of rods and plates are consistent with the natural bone morphology of the femur. The proposed model shows a promising means to understand the effects of different individual loading patterns on the bone density.

  2. Alendronate Can Improve Bone Alterations in Experimental Diabetes by Preventing Antiosteogenic, Antichondrogenic, and Proadipocytic Effects of AGEs on Bone Marrow Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Sara Rocío Chuguransky

    2016-01-01

    Full Text Available Bisphosphonates such as alendronate are antiosteoporotic drugs that inhibit the activity of bone-resorbing osteoclasts and secondarily promote osteoblastic function. Diabetes increases bone-matrix-associated advanced glycation end products (AGEs that impair bone marrow progenitor cell (BMPC osteogenic potential and decrease bone quality. Here we investigated the in vitro effect of alendronate and/or AGEs on the osteoblastogenic, adipogenic, and chondrogenic potential of BMPC isolated from nondiabetic untreated rats. We also evaluated the in vivo effect of alendronate (administered orally to rats with insulin-deficient Diabetes on long-bone microarchitecture and BMPC multilineage potential. In vitro, the osteogenesis (Runx2, alkaline phosphatase, type 1 collagen, and mineralization and chondrogenesis (glycosaminoglycan production of BMPC were both decreased by AGEs, while coincubation with alendronate prevented these effects. The adipogenesis of BMPC (PPARγ, intracellular triglycerides, and lipase was increased by AGEs, and this was prevented by coincubation with alendronate. In vivo, experimental Diabetes (a decreased femoral trabecular bone area, osteocyte density, and osteoclastic TRAP activity; (b increased bone marrow adiposity; and (c deregulated BMPC phenotypic potential (increasing adipogenesis and decreasing osteogenesis and chondrogenesis. Orally administered alendronate prevented all these Diabetes-induced effects on bone. Thus, alendronate could improve bone alterations in diabetic rats by preventing the antiosteogenic, antichondrogenic, and proadipocytic effects of AGEs on BMPC.

  3. Nanotechnology and regenerative therapeutics in plastic surgery: The next frontier

    Science.gov (United States)

    Tan, Aaron; Chawla, Reema; Natasha, G; Mahdibeiraghdar, Sara; Jeyaraj, Rebecca; Rajadas, Jayakumar; Hamblin, Michael R.; Seifalian, Alexander M.

    2015-01-01

    Summary The rapid ascent of nanotechnology and regenerative therapeutics as applied to medicine and surgery has seen an exponential rise in the scale of research generated in this field. This is evidenced not only by the sheer volume of papers dedicated to nanotechnology but also in a large number of new journals dedicated to nanotechnology and regenerative therapeutics specifically to medicine and surgery. Aspects of nanotechnology that have already brought benefits to these areas include advanced drug delivery platforms, molecular imaging and materials engineering for surgical implants. Particular areas of interest include nerve regeneration, burns and wound care, artificial skin with nanoelectronic sensors and head and neck surgery. This study presents a review of nanotechnology and regenerative therapeutics, with focus on its applications and implications in plastic surgery. PMID:26422652

  4. Short communication: Effect of commercial or depurinized milk diet on plasma advanced oxidation protein products, cardiovascular markers, and bone marrow CD34+ stem cell potential in rat experimental hyperuricemia.

    Science.gov (United States)

    Kocic, Gordana; Sokolovic, Dusan; Jevtovic, Tatjana; Cvetkovic, Tatjana; Veljkovic, Andrej; Kocic, Hristina; Stojanovic, Svetlana; Jovanovic, Aneta; Jovanovic, Jelena; Zivkovic, Petar

    2014-11-01

    Cardiovascular repair and myocardial contractility may be improved by migration of bone marrow stem cells (BMSC) and their delivery to the site of injury, a process known as BMSC homing. The aim of our study was to examine the dietary effect of a newly patented depurinized milk (DP) that is almost free of uric acid and purine and pyrimidine compounds compared with a standard commercial 1.5% fat UHT milk diet or allopurinol therapy in rat experimental hyperuricemia. Bone marrow stem cell potential (BMCD34(+), CD34-postive bone marrow cells), plasma oxidative stress parameters [advanced oxidation protein products, AOPP) and thiobarbituric acid reactive substances (TBARS)], myocardial damage markers [creatine phosphokinase (CPK), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH)], plasma cholesterol, and high-density lipoprotein cholesterol were investigated. The DP milk diet significantly increased the number of BMCD34(+) stem cells compared with commercial UHT milk. Allopurinol given alone also increased the number of BMCD34(+). Hyperuricemia caused a significant increase in all plasma enzyme markers for myocardial damage (CPK, LDH, and AST). A cardioprotective effect was achieved with allopurinol but almost equally with DP milk and more than with commercial milk. Regarding plasma AOPP, TBARS, and cholesterol levels, the most effective treatment was DP milk. In conclusion, the protective role of a milk diet on cardiovascular function may be enhanced through the new depurinized milk diet, which may improve cardiovascular system function via increased bone marrow stem cell regenerative potential, decreased plasma oxidative stress parameters, and decreased levels of myocardial damage markers and cholesterol. New dairy technology strategies focused on eliminating harmful milk compounds should be completely nontoxic. Novel milk products should be tested for their ability to improve tissue repair and function. Copyright © 2014 American Dairy Science

  5. LOX/Methane Regeneratively-Cooled Rocket Engine Development

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this project is to advance the technologies required to build a subcritical regeneratively cooled liquid oxygen/methane rocket combustion chamber for...

  6. The effects of low environmental cadmium exposure on bone density

    Energy Technology Data Exchange (ETDEWEB)

    Trzcinka-Ochocka, M., E-mail: ochocka@imp.lodz.pl [Department of Chemical Hazards, Laboratory of Biomonitoring, Nofer Institute of Occupational Medicine, Lodz (Poland); Jakubowski, M. [Department of Chemical Hazards, Laboratory of Biomonitoring, Nofer Institute of Occupational Medicine, Lodz (Poland); Szymczak, W. [Department of Environmental Epidemiology, Nofer Institute of Occupational Medicine, Lodz (Poland); Insitute of Psychology, University of Lodz (Poland); Janasik, B.; Brodzka, R. [Department of Chemical Hazards, Laboratory of Biomonitoring, Nofer Institute of Occupational Medicine, Lodz (Poland)

    2010-04-15

    Recent epidemiological data indicate that low environmental exposure to cadmium, as shown by cadmium body burden (Cd-U), is associated with renal dysfunction as well as an increased risk of cadmium-induced bone disorders. The present study was designed to assess the effects of low environmental cadmium exposure, at the level sufficient to induce kidney damage, on bone metabolism and mineral density (BMD). The project was conducted in the area contaminated with cadmium, nearby a zinc smelter located in the region of Poland where heavy industry prevails. The study population comprised 170 women (mean age=39.7; 18-70 years) and 100 men (mean age=31.9; 18-76 years). Urinary and blood cadmium and the markers of renal tubular dysfunction ({beta}{sub 2}M-U RBP, NAG), glomerular dysfunction (Alb-U and {beta}{sub 2}M-S) and bone metabolism markers (BAP-S, CTX-S) as well as forearm BMD, were measured. The results of this study based on simple dose-effect analysis showed the relationship between increasing cadmium concentrations and an increased excretion of renal dysfunction markers and decreasing bone density. However, the results of the multivariate analysis did not indicate the association between exposure to cadmium and decrease in bone density. They showed that the most important factors that have impact on bone density are body weight and age in the female subjects and body weight and calcium excretion in males. Our investigation revealed that the excretion of low molecular weight proteins occurred at a lower level of cadmium exposure than the possible loss of bone mass. It seems that renal tubular markers are the most sensitive and significant indicators of early health effects of cadmium intoxication in the general population. The correlation of urinary cadmium concentration with markers of kidney dysfunction was observed in the absence of significant correlations with bone effects. Our findings did not indicate any effects of environmental cadmium exposure on bone

  7. The Mechanical Properties and Biometrical Effect of 3D Preformed Titanium Membrane for Guided Bone Regeneration on Alveolar Bone Defect

    Directory of Open Access Journals (Sweden)

    So-Hyoun Lee

    2017-01-01

    Full Text Available The purpose of this study is to evaluate the effect of three-dimensional preformed titanium membrane (3D-PFTM to enhance mechanical properties and ability of bone regeneration on the peri-implant bone defect. 3D-PFTMs by new mechanically compressive molding technology and manually shaped- (MS- PFTMs by hand manipulation were applied in artificial peri-implant bone defect model for static compressive load test and cyclic fatigue load test. In 12 implants installed in the mandibular of three beagle dogs, six 3D-PFTMs, and six collagen membranes (CM randomly were applied to 2.5 mm peri-implant buccal bone defect with particulate bone graft materials for guided bone regeneration (GBR. The 3D-PFTM group showed about 7.4 times higher mechanical stiffness and 5 times higher fatigue resistance than the MS-PFTM group. The levels of the new bone area (NBA, %, the bone-to-implant contact (BIC, %, distance from the new bone to the old bone (NB-OB, %, and distance from the osseointegration to the old bone (OI-OB, % were significantly higher in the 3D-PFTM group than the CM group (p<.001. It was verified that the 3D-PFTM increased mechanical properties which were effective in supporting the space maintenance ability and stabilizing the particulate bone grafts, which led to highly efficient bone regeneration.

  8. [Progress in stem cells and regenerative medicine].

    Science.gov (United States)

    Wang, Libin; Zhu, He; Hao, Jie; Zhou, Qi

    2015-06-01

    Stem cells have the ability to differentiate into all types of cells in the body and therefore have great application potential in regenerative medicine, in vitro disease modelling and drug screening. In recent years, stem cell technology has made great progress, and induced pluripotent stem cell technology revolutionizes the whole stem cell field. At the same time, stem cell research in our country has also achieved great progress and becomes an indispensable power in the worldwide stem cell research field. This review mainly focuses on the research progress in stem cells and regenerative medicine in our country since the advent of induced pluripotent stem cell technology, including induced pluripotent stem cells, transdifferentiation, haploid stem cells, and new gene editing tools.

  9. Expanding the Description of Spaceflight Effects beyond Bone Mineral Density [BMD]: Trabecular Bone Score [TBS] in ISS Astronauts

    Science.gov (United States)

    Sibonga, J. D.; Spector, E. R.; King, L. J.; Evans, H. J.; Smith, S. A.

    2014-01-01

    Dual-energy x-ray absorptiometry [DXA] is the widely-applied bone densitometry method used to diagnose osteoporosis in a terrestrial population known to be at risk for age-related bone loss. This medical test, which measures areal bone mineral density [aBMD] of clinically-relevant skeletal sites (e.g., hip and spine), helps the clinician to identify which persons, among postmenopausal women and men older than 50 years, are at high risk for low trauma or fragility fractures and might require an intervention. The most recognized osteoporotic fragility fracture is the vertebral compression fracture which can lead to kyphosis or hunched backs typically seen in the elderly. DXA measurement of BMD however is recognized to be insufficient as a sole index for assessing fracture risk. DXA's limitation may be related to its inability to monitor changes in structural parameters, such as trabecular vs. cortical bone volumes, bone geometry or trabecular microarchitecture. Hence, in order to understand risks to human health and performance due to space exposure, NASA needs to expand its measurements of bone to include other contributors to skeletal integrity. To this aim, the Bone and Mineral Lab conducted a pilot study for a novel measurement of bone microarchitecture that can be obtained by retrospective analysis of DXA scans. Trabecular Bone Score (TBS) assesses changes to trabecular microarchitecture by measuring the grey color "texture" information extracted from DXA images of the lumbar spine. An analysis of TBS in 51 ISS astronauts was conducted to assess if TBS could detect 1) an effect of spaceflight and 2) a response to countermeasures independent of DXA BMD. In addition, changes in trunk body lean tissue mass and in trunk body fat tissue mass were also evaluated to explore an association between body composition, as impacted by ARED exercise, and bone microarchitecture. The pilot analysis of 51 astronaut scans of the lumbar spine suggests that, following an ISS

  10. Influence of System Parameters on Fuse Protection Use in Regenerative DC Drives

    Directory of Open Access Journals (Sweden)

    Isa Salman Qamber

    2009-06-01

    Full Text Available Current limiting fuses are widely used to protect the thyristors in DC drive systems. One very important problem is the choice of the correct voltage rating for fuses protecting regenerative DC drives, where many types of fault may occur, which makes fuse protection difficult. In the event of a commutation failure while regenerating, the fuses need to interrupt the loop supplied by the AC and DC voltages acting in series, which is the most difficult case for protection by fuses. In this paper a detailed study of the complete interruption process has been investigated by modeling of arcing process of the fuse protection against the regenerative circuit internal commutation fault. The effect of varying the motor time constant, supply impedance, number of fuses used to clear the fault and DC machine rating on the total transient response is studied. The model of a 200 A fuse is employed in this study. Fuses in series with both the semiconductor devices (F1 and fuses in AC lines (F2 are considered. Comparison was made between arc energy produced for fuses protecting the regenerative circuit if failure occurs, with the arc energy produced in a standard AC test in order to investigate the required voltage rating for the fuse.

  11. Effects of casein, whey and soy proteins on volumetric bone density and bone strength in immunocompromised piglets

    DEFF Research Database (Denmark)

    Budek, Alicja Zofia; Bjørnvad, Charlotte; Mølgaard, Christian

    2007-01-01

    Summary:Background and aims: Bone-promoting effect of different proteins in early life, under immunocompromised conditions, is unknown. We investigated effects of milk- and plantderived proteins on bone development in immunocompromised piglets. Methods: Newborn, colostrum-deprived piglets were...... assigned to a formula based on either casein (n=11), whey (n=11) or soy (n=10) as the protein source (each 55 g/L), and equal amounts of fat, carbohydrates, calcium and phosphorus. Results & Conclusion: Despite efforts to sustain immuno-protection (sow serum and antibiotic injections), some piglets became...... sick and were early euthanised. After 6 days, bone density (peripheral quantitative computed tomography), bone mechanical strength (three-point bending test) and serum insulin-like growth factor-I (sIGF-I) (immunoassay) were measured in the surviving piglets (casein n=5, whey n=9, soy n=5)....

  12. A newly developed snack effective for enhancing bone volume

    Directory of Open Access Journals (Sweden)

    Hayashi Hidetaka

    2009-07-01

    Full Text Available Abstract Background The incidence of primary osteoporosis is higher in Japan than in USA and European countries. Recently, the importance of preventive medicine has been gradually recognized in the field of orthopaedic surgery with a concept that peak bone mass should be increased in childhood as much as possible for the prevention of osteoporosis. Under such background, we have developed a new bean snack with an aim to improve bone volume loss. In this study, we examined the effects of a newly developed snack on bone volume and density in osteoporosis model mice. Methods Orchiectomy (ORX and ovariectomy (OVX were performed for C57BL/6J mice of twelve-week-old (Jackson Laboratory, Bar Harbar, ME, USA were used in this experiment. We prepared and given three types of powder diet e.g.: normal calcium diet (NCD, Ca: 0.9%, Clea Japan Co., Tokyo, Japan, low calcium diet (LCD, Ca: 0.63%, Clea Japan Co., and special diet (SCD, Ca: 0.9%. Eighteen weeks after surgery, all the animals were sacrified and prepared for histomorphometric analysis to quantify bone density and bone mineral content. Results As a result of histomorphometric examination, SCD was revealed to enhance bone volume irrespective of age and sex. The bone density was increased significantly in osteoporosis model mice fed the newly developmental snack as compared with the control mice. The bone mineral content was also enhanced significantly. These phenomena were revealed in both sexes. Conclusion It is shown that the newly developed bean snack is highly effective for the improvement of bone volume loss irrespective of sex. We demonstrated that newly developmental snack supplements may be a useful preventive measure for Japanese whose bone mineral density values are less than the ideal condition.

  13. Carbon nanotube torsional springs for regenerative braking systems

    International Nuclear Information System (INIS)

    Liu, Sanwei; Martin, Corbin; Livermore, Carol; Lashmore, David; Schauer, Mark

    2015-01-01

    The modeling and demonstration of large stroke, high energy density and high power density torsional springs based on carbon nanotube (CNT) yarns is reported, as well as their application as energy-storing actuators for regenerative braking systems. An originally untwisted CNT yarn is cyclically loaded and unloaded in torsion, with the maximum rotation angle increasing incrementally until failure. The measured average extractable energy density values are 2.9 kJ kg −1   ±  1.2 kJ kg −1 and 3.4 kJ kg −1   ±  0.4 kJ kg −1 for 1-ply CNT yarns and 2-ply CNT yarns, respectively. Additionally, a regenerative braking system is demonstrated to capture the kinetic energy of a wheel and store it as elastic energy in twisted CNT yarns. When the yarn’s twist is released, the stored energy reaccelerates the wheel. The measured energy and mean power densities of the CNT yarns in the simple regenerative braking setup are on average 3.3 kJ kg −1 and 0.67 kW kg −1 , respectively, with maximum measured values of up to 4.7 kJ kg −1 and 1.2 kW kg −1 , respectively. A slightly lower energy density of up to 1.2 kJ kg −1 and a 0.29 kW kg −1 mean power density are measured for CNT yarns in a more complex setup that mimics a unidirectional rotating regenerative braking mechanism. (paper)

  14. Vacuum-sintered body of a novel apatite for artificial bone

    Science.gov (United States)

    Tamura, Kenichi; Fujita, Tatsushi; Morisaki, Yuriko

    2013-12-01

    We produced regenerative artificial bone material and bone parts using vacuum-sintered bodies of a novel apatite called "Titanium medical apatite (TMA®)" for biomedical applications. TMA was formed by chemically connecting a Ti oxide molecule with the reactive [Ca10(PO4)6] group of Hydroxyapatite (HAp). The TMA powders were kneaded with distilled water, and solid cylinders of compacted TMA were made by compression molding at 10 MPa using a stainless-steel vessel. The TMA compacts were dried and then sintered in vacuum (about 10-3 Pa) or in air using a resistance heating furnace in the temperature range 1073-1773 K. TMA compacts were sintered at temperatures greater than 1073 K, thus resulting in recrystallization. The TMA compact bodies sintered in the range 1273-1773 K were converted into mixtures composed of three crystalline materials: α-TCP (tricalcium phosphate), β-TCP, and Perovskite-CaTiO3. The Perovskite crystals were stable and hard. In vacuum-sintering, the Perovskite crystals were transformed into fibers (approximately 1 µm in diameter × 8 µm in length), and the fiber distribution was uniform in various directions. We refer to the TMA vacuum-sintered bodies as a "reinforced composite material with Perovskite crystal fibers." However, in atmospheric sintering, the Perovskite crystals were of various sizes and were irregularly distributed as a result of the effect of oxygen. After sintering temperature at 1573 K, the following results were obtained: the obtained TMA vacuum-sintered bodies (1) were white, (2) had a density of approximately 2300 kg/m3 (corresponding to that of a compact bone or a tooth), and had a thermal conductivity of approximately 31.3 W/(m·K) (corresponding to those of metal or ceramic implants). Further, it was possible to cut the TMA bodies into various forms with a cutting machine. An implant made of TMA and inserted into a rabbit jaw bone was covered by new bone tissues after just one month because of the high

  15. NELL-1 Injection Maintains Long-Bone Quantity and Quality in an Ovariectomy-Induced Osteoporotic Senile Rat Model

    Science.gov (United States)

    Kwak, Jinny; Zara, Janette N.; Chiang, Michael; Ngo, Richard; Shen, Jia; James, Aaron W.; Le, Khoi M.; Moon, Crystal; Zhang, Xinli; Gou, Zhongru; Ting, Kang

    2013-01-01

    Over 10 million Americans have osteoporosis, and is the predominant cause of fractures in the elderly. Treatment of fractures in the setting of osteoporosis is complicated by a suboptimal bone regenerative response due to a decline in the number of osteoblasts, their function, and survival. Consequently, an osteogenic therapeutic to prevent and treat fractures in patients with osteoporosis is needed. Nel-like molecule-1 (NELL-1), a novel osteoinductive growth factor, has been shown to promote bone regeneration. In this study, we aim to demonstrate the capacity of recombinant NELL-1 to prevent ovariectomy (OVX)-induced osteoporosis in a senile rat model. Ten-month-old female Sprague-Dawley rats underwent either sham surgery or OVX. Subsequently, 50 μL of 600 μg/mL NELL-1 lyophilized onto a 0–50-μm tricalcium phosphate (TCP) carrier was injected into the femoral bone marrow cavity while phosphate-buffered saline (PBS) control was injected into the contralateral femur. Our microcomputed tomography results showed that OVX+PBS/TCP control femurs showed a continuous decrease in the bone volume (BV) and bone mineral density (BMD) from 2 to 8 weeks post-OVX. In contrast, OVX+NELL-1/TCP femurs showed resistance to OVX-induced bone resorption showing BV and BMD levels similar to that of SHAM femurs at 8 weeks post-OVX. Histology showed increased endosteal-woven bone, as well as decreased adipocytes in the bone marrow of NELL-1-treated femurs compared to control. NELL-1-treated femurs also showed increased immunostaining for bone differentiation markers osteopontin and osteocalcin. These findings were validated in vitro, in which addition of NELL-1 in OVX bone marrow stem cells resulted in increased osteogenic differentiation. Thus, NELL-1 effectively enhances in situ osteogenesis in the bone marrow, making it potentially useful in the prevention and treatment of osteoporotic fractures. PMID:23083222

  16. Vibration control of an energy regenerative seat suspension with variable external resistance

    Science.gov (United States)

    Ning, Donghong; Sun, Shuaishuai; Du, Haiping; Li, Weihua; Zhang, Nong

    2018-06-01

    In this paper, an energy regenerative seat suspension with a variable external resistance is proposed and built, and a semi-active controller for its vibration control is also designed and validated. The energy regenerative seat suspension is built with a three-phase generator and a gear reducer, which are installed in the scissors structure centre of the seat suspension, and the vibration energy is directly harvested from the rotary movement of suspension's scissors structure. The electromagnetic torque of the semi-active seat suspension actuator is controlled by an external variable resistor. An integrated model including the seat suspension's kinematics and the generator is built and proven to match the test result very well. A simplified experimental phenomenon model is also built based on the test results for the controller design. A state feedback H∞ controller is proposed for the regenerative seat suspension's semi-active vibration control. The proposed regenerative seat suspension and its controller are validated with both simulations and experiments. A well-tuned passive seat suspension is applied to evaluate the regenerative seat's performance. Based on ISO 2631-1, the frequency-weighted root mean square (FW-RMS) acceleration of the proposed seat suspension has a 22.84% reduction when compared with the passive one, which indicates the improvement of ride comfort. At the same time, the generated RMS power is 1.21 W. The proposed regenerative seat suspension can greatly improve the driver's ride comfort and has the potential to be developed to a self-powered semi-active system.

  17. The effects of bone marrow aspirate, bone graft, and collagen composites on fixation of titanium implants

    DEFF Research Database (Denmark)

    Babiker, Hassan; Ding, Ming; Sandri, Monica

    2012-01-01

    Replacement of extensive local bone loss especially in revision joint arthroplasty and spine fusion is a significant clinical challenge. Allograft and autograft have been considered as gold standards for bone replacement. However, there are several disadvantages such as donor site pain, bacterial...... contamination, and non union as well as the potential risk of disease transmission. Hydroxyapatite and collagen composites (HA/Collagen) have the potential in mimicking and replacing skeletal bones. This study attempted to determine the effects of newly developed HA/Collagen-composites with and without bone...... marrow aspirate (BMA) on enhancement of bone implant fixation. Method: Titanium alloy implants were inserted into bilateral femoral condyles of eight skeletally mature sheep, four implants per sheep. The implant had a circumferential gap of 2 mm. The gap was filled with: HA/Collagen; HA...

  18. A novel osteogenesis technique: The expansible guided bone regeneration

    Directory of Open Access Journals (Sweden)

    Osama Zakaria

    2012-12-01

    Full Text Available Guided bone regeneration is a unique osteogenesis technique that requires a barrier membrane under periosteum to create space for bone regeneration. However, creating sizeable spaces is clinically not commonly feasible. A titanium plate and a thin silicone membrane were surgically layered on each calvaria of eight rabbits. Then, the periphery of the silicone membrane was fixed by a plastic ring to the underlying bone using titanium micro screws. After 1 week, a 5-mm-length titanium screw was used to elevate the titanium plate, which in turn elevated the silicone membrane together with overlying soft tissue in a rate of 1 mm/day for 5 days to create a secluded space. Animals were killed at 2 months (n = 4, group 1 and 4 months (n = 4, group 2 after the elevation. Histological and microradiographical analyses demonstrated creation of an amount of de novo bone formation (68.2 ± 22 mm3 in group 1 and 70.3 ± 14 mm3 in group 2 in the sizeable created spaces (207.1 ± 31 mm3 in group 1 and 202 ± 21 mm3 in group 2 without exposure of the device. This novel osteogenesis technique, “expansible guided bone regeneration,” created a substantial in vivo incubator without applying growth factors or osteoprogenitor cells. Creating a growing space over the secluded surface allowed the development of normal biological healing process occurring on the bone surface into a regenerative process, generating bone outside the genetically determined skeletal bone. This technique is a new tissue engineering approach stimulating endogenous tissue repair without applying cells or factors exogenously.

  19. Novel Textile Scaffolds Generated by Flock Technology for Tissue Engineering of Bone and Cartilage

    OpenAIRE

    Walther, Anja; Hoyer, Birgit; Springer, Armin; Mrozik, Birgit; Hanke, Thomas; Cherif, Chokri; Pompe, Wolfgang; Gelinsky, Michael

    2012-01-01

    Textile scaffolds can be found in a variety of application areas in regenerative medicine and tissue engineering. In the present study we used electrostatic flocking—a well-known textile technology—to produce scaffolds for tissue engineering of bone. Flock scaffolds stand out due to their unique structure: parallel arranged fibers that are aligned perpendicularly to a substrate, resulting in mechanically stable structures with a high porosity. In compression tests we demonstrated good mechani...

  20. Regenerative memory in time-delayed neuromorphic photonic resonators

    Science.gov (United States)

    Romeira, B.; Avó, R.; Figueiredo, José M. L.; Barland, S.; Javaloyes, J.

    2016-01-01

    We investigate a photonic regenerative memory based upon a neuromorphic oscillator with a delayed self-feedback (autaptic) connection. We disclose the existence of a unique temporal response characteristic of localized structures enabling an ideal support for bits in an optical buffer memory for storage and reshaping of data information. We link our experimental implementation, based upon a nanoscale nonlinear resonant tunneling diode driving a laser, to the paradigm of neuronal activity, the FitzHugh-Nagumo model with delayed feedback. This proof-of-concept photonic regenerative memory might constitute a building block for a new class of neuron-inspired photonic memories that can handle high bit-rate optical signals.

  1. Adjunctive Platelet-Rich Plasma (PRP in Infrabony Regenerative Treatment: A Systematic Review and RCT’s Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Mubashir Saleem

    2018-01-01

    Full Text Available Background and Objective. The purpose of this study was to highlight the clinical performance of platelet-rich plasma (PRP used as an adjunctive tool for regeneration in infrabony periodontal defects using different biomaterials or performing different surgical flap approaches. Comparative evaluation of main clinical outcomes as probing pocket depth reduction, clinical attachment gain, and recession reduction with and without the use of PRP has been analysed. Materials and Methods. According to the focused question, an electronic and hand searching has been performed up to December 2016. From a batch of 73 articles, the selection strategy and Jadad quality assessment led us to include 15 studies for the meta-analysis. Results. Despite the high heterogeneity found and the lack of complete data regarding the selected clinical outcomes, a comparative analysis has been possible by the categorization of used biomaterials and surgical flap approaches. This method led us to observe the best performance of grafts with the use of adjunctive PRP in CAL gain and PPD reduction. No difference has been outlined with a specific surgical flap. Conclusions. Although PRP is considered a cheap and patient’s derived growth factor, the not conclusive data reported would suggest that its use in addition to bone substitutes could be of some clinical benefit in the regenerative treatment of infrabony defects. Clinical Relevance. This systematic review was intended to sort out the huge controversial debate in the field about the possible use of PRP in regenerative surgery in infrabony defect. The clinical relevance of using blood-borne growth factors to conventional procedures is effective as these could determine a better performance and outcomes despite the surgical approach adopted and limit the use of additional biomaterials for the blood clot stabilization.

  2. Regulators of pluripotency and their implications in regenerative medicine

    Directory of Open Access Journals (Sweden)

    El-Badawy A

    2015-04-01

    Full Text Available Ahmed El-Badawy, Nagwa El-Badri Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, Egypt Abstract: The ultimate goal of regenerative medicine is to replace damaged tissues with new functioning ones. This can potentially be accomplished by stem cell transplantation. While stem cell transplantation for blood diseases has been increasingly successful, widespread application of stem cell therapy in the clinic has shown limited results. Despite successful efforts to refine existing methodologies and to develop better ones for reprogramming, clinical application of stem cell therapy suffers from issues related to the safety of the transplanted cells, as well as the low efficiency of reprogramming technology. Better understanding of the underlying mechanism(s involved in pluripotency should accelerate the clinical application of stem cell transplantation for regenerative purposes. This review outlines the main decision-making factors involved in pluripotency, focusing on the role of microRNAs, epigenetic modification, signaling pathways, and toll-like receptors. Of special interest is the role of toll-like receptors in pluripotency, where emerging data indicate that the innate immune system plays a vital role in reprogramming. Based on these data, we propose that nongenetic mechanisms for reprogramming provide a novel and perhaps an essential strategy to accelerate application of regenerative medicine in the clinic. Keywords: dedifferentiation, transdifferentiation, reprogramming, pluripotency, microRNAs, epigenetic modifications, signaling pathways, toll-like receptors

  3. Nanotechnology and regenerative therapeutics in plastic surgery: The next frontier.

    Science.gov (United States)

    Tan, Aaron; Chawla, Reema; G, Natasha; Mahdibeiraghdar, Sara; Jeyaraj, Rebecca; Rajadas, Jayakumar; Hamblin, Michael R; Seifalian, Alexander M

    2016-01-01

    The rapid ascent of nanotechnology and regenerative therapeutics as applied to medicine and surgery has seen an exponential rise in the scale of research generated in this field. This is evidenced not only by the sheer volume of papers dedicated to nanotechnology but also in a large number of new journals dedicated to nanotechnology and regenerative therapeutics specifically to medicine and surgery. Aspects of nanotechnology that have already brought benefits to these areas include advanced drug delivery platforms, molecular imaging and materials engineering for surgical implants. Particular areas of interest include nerve regeneration, burns and wound care, artificial skin with nanoelectronic sensors and head and neck surgery. This study presents a review of nanotechnology and regenerative therapeutics, with focus on its applications and implications in plastic surgery. Copyright © 2015 British Association of Plastic, Reconstructive and Aesthetic Surgeons. All rights reserved.

  4. Assessment of gene-by-sex interaction effect on bone mineral density

    DEFF Research Database (Denmark)

    Liu, Ching-Ti; Estrada, Karol; Yerges-Armstrong, Laura M

    2012-01-01

    Sexual dimorphism in various bone phenotypes, including bone mineral density (BMD), is widely observed; however, the extent to which genes explain these sex differences is unclear. To identify variants with different effects by sex, we examined gene-by-sex autosomal interactions genome-wide, and ......Sexual dimorphism in various bone phenotypes, including bone mineral density (BMD), is widely observed; however, the extent to which genes explain these sex differences is unclear. To identify variants with different effects by sex, we examined gene-by-sex autosomal interactions genome...

  5. Can Bone Tissue Engineering Contribute to Therapy Concepts after Resection of Musculoskeletal Sarcoma?

    Directory of Open Access Journals (Sweden)

    Boris Michael Holzapfel

    2013-01-01

    Full Text Available Resection of musculoskeletal sarcoma can result in large bone defects where regeneration is needed in a quantity far beyond the normal potential of self-healing. In many cases, these defects exhibit a limited intrinsic regenerative potential due to an adjuvant therapeutic regimen, seroma, or infection. Therefore, reconstruction of these defects is still one of the most demanding procedures in orthopaedic surgery. The constraints of common treatment strategies have triggered a need for new therapeutic concepts to design and engineer unparalleled structural and functioning bone grafts. To satisfy the need for long-term repair and good clinical outcome, a paradigm shift is needed from methods to replace tissues with inert medical devices to more biological approaches that focus on the repair and reconstruction of tissue structure and function. It is within this context that the field of bone tissue engineering can offer solutions to be implemented into surgical therapy concepts after resection of bone and soft tissue sarcoma. In this paper we will discuss the implementation of tissue engineering concepts into the clinical field of orthopaedic oncology.

  6. Removing the cells from adult bone marrow derived stem cell therapy does not eliminate cardioprotection.

    Science.gov (United States)

    Yasin, Mohammed

    2013-04-01

    The debate as to whether adult stem cell therapy is regenerative or not continues. The non-regenerative benefits of adult bone marrow-derived stem cell therapy were investigated by testing whether the supernatant derived from unfractionated bone marrow mononuclear cells might be cardioprotective in an animal model of myocardial ischaemia-reperfusion injury. Regional myocardial reperfusion injury was acquired by 25 min reversible left anterior descending coronary artery (LAD) occlusion followed by 2 h reperfusion, in anaesthetized Wistar male rats. Unfractionated bone marrow mononuclear cells (BMMNC) isolated from sibling Wistar male rat whole bone marrow were phenotyped by fluorescence activated cell sorting flowcytometry for the haematopoietic stem cell surface markers c-kit, CD34, CD45 and CD133. Animals subjected to regional myocardial reperfusion injury received either 10 million BMMNC or BMMNC supernatant (BMS); both were collected in 0.5 ml phosphate-buffered saline and delivered by intravenous bolus at the onset of reperfusion. The left ventricular region distal to the LAD occlusion point was excised for measurement of myocardial infarct size and proteomic analysis, which was used to identify whether there were any differences in myocardial proteins associated with intravenous injection of either BMMNC or BMS. BMMNC were phenotyped to be c-kit(+) (7 ± 1%), CD34(+) (7 ± 1%), CD45(+) (54 ± 6%), CD133(+) (15 ± 1%). The supernatant reduced myocardial infarct size (BMS 34 ± 2%, n = 15 vs control 57 ± 2%, n = 7, P < 0.0001), which was comparable to the reduction in infarct size afforded by the injection of cells (BMMNC 33 ± 3% vs control 57 ± 2%, n = 10, P < 0.0001). Proteomics of hearts treated with either BMS or BMMNC demonstrated higher expression of (i) anti-apoptotic signal transduction protein: 14-3-3-epsilon (1.5-fold); (ii) anti-oxidants: peroxiredoxin-6 (2.1-fold); (iii) heat shock proteins: alpha B-crystallin (1.7-fold), heat shock protein 72 (2

  7. Biological effect of hydrolyzed collagen on bone metabolism.

    Science.gov (United States)

    Daneault, Audrey; Prawitt, Janne; Fabien Soulé, Véronique; Coxam, Véronique; Wittrant, Yohann

    2017-06-13

    Osteoporosis is a chronic and asymptomatic disease characterized by low bone mass and skeletal microarchitectural deterioration, increased risk of fracture, and associated comorbidities most prevalent in the elderly. Due to an increasingly aging population, osteoporosis has become a major health issue requiring innovative disease management. Proteins are important for bone by providing building blocks and by exerting specific regulatory function. This is why adequate protein intake plays a considerable role in both bone development and bone maintenance. More specifically, since an increase in the overall metabolism of collagen can lead to severe dysfunctions and a more fragile bone matrix and because orally administered collagen can be digested in the gut, cross the intestinal barrier, enter the circulation, and become available for metabolic processes in the target tissues, one may speculate that a collagen-enriched diet provides benefits for the skeleton. Collagen-derived products such as gelatin or hydrolyzed collagen (HC) are well acknowledged for their safety from a nutritional point of view; however, what is their impact on bone biology? In this manuscript, we critically review the evidence from literature for an effect of HC on bone tissues in order to determine whether HC may represent a relevant alternative in the design of future nutritional approaches to manage osteoporosis prevention.

  8. Mechanisms for the bone anabolic effect of parathyroid hormone treatment in humans

    DEFF Research Database (Denmark)

    Aslan, Derya; Dahl Andersen, Mille; Gede, Lene Bjerring

    2012-01-01

    . However, development of the biochemical measurement of PTH in the 1980s led us to understand the regulation of PTH secretion and calcium metabolism which subsequently paved the way for the use of PTH as an anabolic treatment of osteoporosis as, when given intermittently, it has strong anabolic effects...... in bone. This could not have taken place without the basic understanding achieved by the biochemical measurements of PTH. The stimulatory effects of PTH on bone formation have been explained by the so-called ‘anabolic window’, which means that during PTH treatment, bone formation is in excess over bone...... resorption during the first 6–18 months. This is due to the following: (1) PTH up-regulates c-fos expression in bone cells, (2) IGF is essential for PTH's anabolic effect, (3) bone lining cells are driven to differentiate into osteoblasts, (4) mesenchymal stem cells adhesion to bone surface is enhanced, (5...

  9. Regenerative Therapies for Diabetic Microangiopathy

    Directory of Open Access Journals (Sweden)

    Roberto Bassi

    2012-01-01

    Full Text Available Hyperglycaemia occurring in diabetes is responsible for accelerated arterial remodeling and atherosclerosis, affecting the macro- and the microcirculatory system. Vessel injury is mainly related to deregulation of glucose homeostasis and insulin/insulin-precursors production, generation of advanced glycation end-products, reduction in nitric oxide synthesis, and oxidative and reductive stress. It occurs both at extracellular level with increased calcium and matrix proteins deposition and at intracellular level, with abnormalities of intracellular pathways and increased cell death. Peripheral arterial disease, coronary heart disease, and ischemic stroke are the main causes of morbidity/mortality in diabetic patients representing a major clinical and economic issue. Pharmacological therapies, administration of growth factors, and stem cellular strategies are the most effective approaches and will be discussed in depth in this comprehensive review covering the regenerative therapies of diabetic microangiopathy.

  10. Simulated weightlessness and synbiotic diet effects on rat bone mechanical strength

    Science.gov (United States)

    Sarper, Hüseyin; Blanton, Cynthia; DePalma, Jude; Melnykov, Igor V.; Gabaldón, Annette M.

    2014-10-01

    This paper reports results on exposure to simulated weightlessness that leads to a rapid decrease in bone mineral density known as spaceflight osteopenia by evaluating the effectiveness of dietary supplementation with synbiotics to counteract the effects of skeletal unloading. Forty adult male rats were studied under four different conditions in a 2 × 2 factorial design with main effects of diet (synbiotic and control) and weight condition (unloaded and control). Hindlimb unloading was performed at all times for 14 days followed by 14 days of recovery (reambulation). The synbiotic diet contained probiotic strains Lactobacillus acidophilus and Lactococcus lactis lactis and prebiotic fructooligosaccharide. This paper also reports on the development of a desktop three-point bending device to measure the mechanical strength of bones from rats subjected to simulated weightlessness. The importance of quantifying bone resistance to breakage is critical when examining the effectiveness of interventions against osteopenia resulting from skeletal unloading, such as astronauts experience, disuse or disease. Mechanical strength indices provide information beyond measures of bone density and microarchitecture that enhance the overall assessment of a treatment's potency. In this study we used a newly constructed three-point bending device to measure the mechanical strength of femur and tibia bones from hindlimb-unloaded rats fed an experimental synbiotic diet enriched with probiotics and fermentable fiber. Two calculated outputs for each sample were Young's modulus of elasticity and fracture stress. Bone major elements (calcium, magnesium, and phosphorous) were quantified using ICP-MS analysis. Hindlimb unloading was associated with a significant loss of strength in the femur, and with significant reductions in major bone elements. The synbiotic diet did not protect against these unloading effects. Tibia strength and major elements were not reduced by hindlimb unloading, as was

  11. Feasibility investigation of allogeneic endometrial regenerative cells

    Directory of Open Access Journals (Sweden)

    Reid Michael

    2009-02-01

    Full Text Available Abstract Endometrial Regenerative Cells (ERC are a population of mesenchymal-like stem cells having pluripotent differentiation activity and ability to induce neoangiogenesis. In vitro and animal studies suggest ERC are immune privileged and in certain situations actively suppress ongoing immune responses. In this paper we describe the production of clinical grade ERC and initial safety experiences in 4 patients with multiple sclerosis treated intravenously and intrathecally. The case with the longest follow up, of more than one year, revealed no immunological reactions or treatment associated adverse effects. These preliminary data suggest feasibility of clinical ERC administration and support further studies with this novel stem cell type.

  12. Nonlinear Modeling and Coordinate Optimization of a Semi-Active Energy Regenerative Suspension with an Electro-Hydraulic Actuator

    Directory of Open Access Journals (Sweden)

    Farong Kou

    2018-01-01

    Full Text Available In order to coordinate the damping performance and energy regenerative performance of energy regenerative suspension, this paper proposes a structure of a vehicle semi-active energy regenerative suspension with an electro-hydraulic actuator (EHA. In light of the proposed concept, a specific energy regenerative scheme is designed and a mechanical properties test is carried out. Based on the test results, the parameter identification for the system model is conducted using a recursive least squares algorithm. On the basis of the system principle, the nonlinear model of the semi-active energy regenerative suspension with an EHA is built. Meanwhile, linear-quadratic-Gaussian control strategy of the system is designed. Then, the influence of the main parameters of the EHA on the damping performance and energy regenerative performance of the suspension is analyzed. Finally, the main parameters of the EHA are optimized via the genetic algorithm. The test results show that when a sinusoidal is input at the frequency of 2 Hz and the amplitude of 30 mm, the spring mass acceleration root meam square value of the optimized EHA semi-active energy regenerative suspension is reduced by 22.23% and the energy regenerative power RMS value is increased by 40.51%, which means that while meeting the requirements of vehicle ride comfort and driving safety, the energy regenerative performance is improved significantly.

  13. Device for processing regenerative wastes of ion exchange resin

    International Nuclear Information System (INIS)

    Kuroda, Osamu; Ebara, Katsuya; Shindo, Toshikazu; Takahashi, Sankichi

    1986-01-01

    Purpose: To facilitate the operation and maintenance of a processing device by dividing radioactive wastes produced in the regenerative process of ion exchange resin into a regenerated usable recovery liquid and wastes. Constitution: Sulfuric acid is recovered by a diffusion dialysis method from wastes containing sulfuric acid that are generated in the regenerative process of cation-exchange resin and also caustic soda is recovered by the diffusion dialysis method from wastes containing caustic soda that are generated in the regenerative process of anion-exchange resin. The sulfuric acid and caustic soda thus recovered are used for the regeneration of ion-exchange resin. A concentrator is provided for concentrating the sulfuric acid and caustic soda water solution to concentration suitable for the regeneration of these ion-exchange resins. Also provided is a recovery device for recovering water generated from the concentrator. This device is of so simple a constitution that its operation and maintenance can be performed very easily, thereby greatly reducing the quantity of waste liquid required to be stored in drums. (Takahashi, M.)

  14. Regenerative Medicine Applications in Wound Care.

    Science.gov (United States)

    Nilforoushzadeh, Mohammad Ali; Sisakht, Mahsa Mollapour; Seifalian, Alexander Marcus; Amirkhani, Mohammad Amir; Banafshe, Hamid Reza; Verdi, Javad; Sharifzad, Farzaneh; Taghiabadi, Ehsan

    2017-01-01

    During the last two decades, a number of studies have been carried out on the application of regenerative medicine in the field of dermatology. The aim of this research was to critically review the application of regenerative medicine in the field of dermatology. The next aim was to look in depth to see whether regenerative medicine strategies have a place in the future of wound healing in a clinical setting. More specifically, to see if these strategies would apply for burns and non-healing diabetic wounds. Billions of dollars have been spent worldwide on research in wound treatment and skin regeneration. Although a high number of clinical trials show promising results, there is still no commercially available treatment for use. In addition, the outcome data from the clinical trials, taking place throughout the world, are not published in a standardized manner. Standardization within clinical trials is required for: protocols, outcome, endpoint values, and length of follow-up. The lack of standardization makes it much more difficult to compare the data collected and the different types of treatment. Despite several promising results from research and early phase clinical studies, the treatment for wounds as well as skin regeneration is still considered as an unmet clinical need. However, in the past three years, more promising research has been approaching clinical trials; this could be the solution that clinicians have been waiting for. This is a multibillion dollar industry for which there should be enough incentive for researchers and industry to seek the solution. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Accelerating regenerative medicine: the Japanese experiment in ethics and regulation.

    Science.gov (United States)

    Lysaght, Tamra

    2017-09-01

    In 2014, the Japanese National Diet introduced new laws aimed at promoting the clinical translation of stem cells and regenerative medicine. The basic action of these laws is to allow the early introduction of regenerative medicine products into the Japanese market through an accelerated approval process, while providing patients with access to certain types of stem cell and cell-based therapies in the context of private clinical practice. While this framework appears to offer enormous opportunities for the translation of stem cell science, it raises ethical challenges that have not yet been fully explored. This paper critically analyzes this framework with respect to the prioritization of safety over clinical benefit, distributive justice and public trust in science and medicine. It is argued that the framework unfairly burdens patients and strained healthcare systems without any clear benefits, and may undermine the credibility of the regenerative medicine field as it emerges.

  16. Widespread differential maternal and paternal genome effects on fetal bone phenotype at mid-gestation.

    Science.gov (United States)

    Xiang, Ruidong; Lee, Alice M C; Eindorf, Tanja; Javadmanesh, Ali; Ghanipoor-Samami, Mani; Gugger, Madeleine; Fitzsimmons, Carolyn J; Kruk, Zbigniew A; Pitchford, Wayne S; Leviton, Alison J; Thomsen, Dana A; Beckman, Ian; Anderson, Gail I; Burns, Brian M; Rutley, David L; Xian, Cory J; Hiendleder, Stefan

    2014-11-01

    Parent-of-origin-dependent (epi)genetic factors are important determinants of prenatal development that program adult phenotype. However, data on magnitude and specificity of maternal and paternal genome effects on fetal bone are lacking. We used an outbred bovine model to dissect and quantify effects of parental genomes, fetal sex, and nongenetic maternal effects on the fetal skeleton and analyzed phenotypic and molecular relationships between fetal muscle and bone. Analysis of 51 bone morphometric and weight parameters from 72 fetuses recovered at day 153 gestation (54% term) identified six principal components (PC1-6) that explained 80% of the variation in skeletal parameters. Parental genomes accounted for most of the variation in bone wet weight (PC1, 72.1%), limb ossification (PC2, 99.8%), flat bone size (PC4, 99.7%), and axial skeletal growth (PC5, 96.9%). Limb length showed lesser effects of parental genomes (PC3, 40.8%) and a significant nongenetic maternal effect (gestational weight gain, 29%). Fetal sex affected bone wet weight (PC1, p maternal genome effects on bone wet weight (74.1%, p paternal genome controlled limb ossification (95.1%, p maternal genome effects on growth plate height (98.6%, p maternal genome effects on fetal serum 25-hydroxyvitamin D (96.9%, p paternal genome effects on alkaline phosphatase (90.0%, p maternally controlled bone wet weight and paternally controlled limb ossification, respectively. Bone wet weight and flat bone size correlated positively with muscle weight (r = 0.84 and 0.77, p maternally expressed H19 regulates growth factors by miRNA interference, this suggests muscle-bone interaction via epigenetic factors. © 2014 American Society for Bone and Mineral Research.

  17. Developing a pro-regenerative biomaterial scaffold microenvironment requires T helper 2 cells.

    Science.gov (United States)

    Sadtler, Kaitlyn; Estrellas, Kenneth; Allen, Brian W; Wolf, Matthew T; Fan, Hongni; Tam, Ada J; Patel, Chirag H; Luber, Brandon S; Wang, Hao; Wagner, Kathryn R; Powell, Jonathan D; Housseau, Franck; Pardoll, Drew M; Elisseeff, Jennifer H

    2016-04-15

    Immune-mediated tissue regeneration driven by a biomaterial scaffold is emerging as an innovative regenerative strategy to repair damaged tissues. We investigated how biomaterial scaffolds shape the immune microenvironment in traumatic muscle wounds to improve tissue regeneration. The scaffolds induced a pro-regenerative response, characterized by an mTOR/Rictor-dependent T helper 2 pathway that guides interleukin-4-dependent macrophage polarization, which is critical for functional muscle recovery. Manipulating the adaptive immune system using biomaterials engineering may support the development of therapies that promote both systemic and local pro-regenerative immune responses, ultimately stimulating tissue repair. Copyright © 2016, American Association for the Advancement of Science.

  18. Effect of platelet-rich plasma combined with demineralised bone matrix on bone healing in rabbit ulnar defects.

    Science.gov (United States)

    Galanis, Vasilios; Fiska, Alice; Kapetanakis, Stylianos; Kazakos, Konstantinos; Demetriou, Thespis

    2017-09-01

    This study evaluates the effect of autologous platelet-rich plasma (PRP) combined with xenogeneic demineralised bone matrix (DBM) on bone healing of critical-size ulnar defects (2-2.5 times the ulnar diameter) in New Zealand White rabbits. Critical-size defects were created unilaterally in the ulna of 36 rabbits, while keeping the contralateral limb intact. They were divided into three groups. In Group A, the defect was filled with autologous PRP and in Group B, with autologous PRP combined with DBM; in Group C, the defect remained empty. The rabbits were euthanised 12 weeks postoperatively. Radiological, biomechanical and histological assessments were carried out and statistical analysis of the results was performed. Group B had significantly higher radiological and histological scores than Groups A and C. Defects in Group B showed significant new bone formation, whereas there was minimal or no new bone formation in Groups A and C. Only specimens in Group B showed macroscopic bone union. Biomechanical evaluation of the treated and intact contralateral limbs in Group B showed significant differences. In this study, statistically significant enhancement of bone healing was found in critical-size defects treated with PRP and DBM, as shown by radiological findings, gross assessment, and biomechanical and histopathological results. Defects in the two other groups remained unbridged. Therefore, PRP was effective only when it was used in combination with a bone graft. Copyright: © Singapore Medical Association

  19. Aging and Adipose Tissue: Potential Interventions for Diabetes and Regenerative Medicine

    Science.gov (United States)

    Palmer, Allyson K.; Kirkland, James L.

    2016-01-01

    Adipose tissue dysfunction occurs with aging and has systemic effects, including peripheral insulin resistance, ectopic lipid deposition, and inflammation. Fundamental aging mechanisms, including cellular senescence and progenitor cell dysfunction, occur in adipose tissue with aging and may serve as potential therapeutic targets in age-related disease. In this review, we examine the role of adipose tissue in healthy individuals and explore how aging leads to adipose tissue dysfunction, redistribution, and changes in gene regulation. Adipose tissue plays a central role in longevity, and interventions restricted to adipose tissue may impact lifespan. Conversely, obesity may represent a state of accelerated aging. We discuss the potential therapeutic potential of targeting basic aging mechanisms, including cellular senescence, in adipose tissue, using type II diabetes and regenerative medicine as examples. We make the case that aging should not be neglected in the study of adipose-derived stem cells for regenerative medicine strategies, as elderly patients make up a large portion of individuals in need of such therapies. PMID:26924669

  20. Regenerative Endodontic Treatment of a Maxillary Mature Premolar

    Directory of Open Access Journals (Sweden)

    Qingan Xu

    2018-01-01

    Full Text Available Regenerative endodontic treatment was performed on a mature maxillary premolar diagnosed as chronic pulpitis. The root canals were chemomechanically prepared and placed intracanal medicaments at the first appointment. Then 2 weeks later, a blood clot was created in the canals, over which mineral trioxide aggregate was placed. At 6-month follow-up, cementum-like tissue seemed to be formed in the root canal along with nearly recovered pulp vitality. At 12-month recall, the radiographic results revealed evidence of root wall thickening. At 30-month recall, no periapical lesion was found. This case report indicates that regenerative endodontic treatment for the mature premolar is feasible. More cases are needed for further validation.

  1. Recommendations for using regenerative endodontic procedures in permanent immature traumatized teeth.

    Science.gov (United States)

    Garcia-Godoy, Franklin; Murray, Peter E

    2012-02-01

    The regeneration of immature permanent teeth following trauma could be beneficial to reduce the risk of fracture and loss of millions of teeth each year. Regenerative endodontic procedures include revascularization, partial pulpotomy, and apexogenesis. Several case reports give these procedures a good prognosis as an alternative to apexification. Care is needed to deliver regenerative endodontic procedures that maintain or restore the vitality of teeth, but which also disinfect and remove necrotic tissues. Regeneration can be accomplished through the activity of the cells from the pulp, periodontium, vascular, and immune system. Most therapies use the host's own pulp or vascular cells for regeneration, but other types of dental stem cell therapies are under development. There are no standardized treatment protocols for endodontic regeneration. The purpose of this article is to review the recent literature and suggest guidelines for using regenerative endodontic procedures for the treatment of permanent immature traumatized teeth. Recommendations for the selection of regenerative and conventional procedures based on the type of tooth injury, fracture type, presence of necrosis or infection, periodontal status, presence of periapical lesions, stage of tooth development, vitality status, patient age, and patient health status will be reviewed. Because of the lack of long-term evidence to support the use of regenerative endodontic procedures in traumatized teeth with open apices, revascularization regeneration procedures should only be attempted if the tooth is not suitable for root canal obturation, and after apexogenesis, apexification, or partial pulpotomy treatments have already been attempted and have a poor prognosis. © 2011 John Wiley & Sons A/S.

  2. The effect of semelil (angipars® on bone resorption and bone formation markers in type 2 diabetic patients

    Directory of Open Access Journals (Sweden)

    Hasani-Ranjbar Shirin

    2012-12-01

    Full Text Available Abstract Background and purpose of the study Diabetes mellitus has been recognized as a major risk factor for osteoporosis in which bone turnover is affected by different mechanisms. As the morbidity, mortality and financial cost related to osteoporosis are expected to rise in Iran in coming years, and considering the efficacy of Angipars® for improvement of different ulcers which made it a new herbal drug in diabetic foot ulcer, there is a need to evaluate the effect of this new drug on different organs including bone resorption and bone formation markers. Methods In this randomized, double- blind clinical trial, 61 diabetic patients were included. The subjects were randomly divided into intervention and control groups. Subjects of intervention group received 100 mg of Angipars® twice a day. Laboratory tests including bone resorption and bone formation markers were performed at baseline and after 3 months. Result 31 patients in study group and 30 patients in control group finished the study. The mean age of the study population and the mean disease duration was respectively 51.8 ± 6.2 and 7.5 ± 4.7 years with no significant differences between intervention and control patients. No statistically significant differences between patients and controls were observed in pyridinoline, osteocalcin, urine calcium, bone alkaline phosphatase and tumor necrosis factor (TNF-α. Only urine creatinine level significantly changed between two groups after 3 month of treatment (p-value: 0.029 Conclusion In conclusion, the findings of this study indicate that Semelil (Angipars® had no beneficial or harmful effects on bone. It might be other effects of this new component on bone turnover process which need more studies and more time to be discovered.

  3. Evaluation of follow-up bone scintigraphy for assessing the effects of hormone and chemotherapy of bone metastases from prostatic cancer

    Energy Technology Data Exchange (ETDEWEB)

    Otsuka, Nobuaki; Ito, Yasuhiko; Morita, Rikushi; Yoneda, Masaya; Muranaka, Akira [Kawasaki Medical School, Kurashiki, Okayama (Japan)

    1983-08-01

    To assess the clinical usefulness of bone scintigraphy for the osseous metastases of prostatic cancer after treatment, we attempted the correlative studies on laboratory data (TAP, PAP, ALP, and LDH) and scintigraphy. In 77 patients with prostatic cancer, bone scintigraphies were performed with sup(99m)Tc-phosphorous compounds to detect bone metastases. In 34 cases (44 %) bone metastases were detected. In 21 patients out of them, we assessed the effects of hormone and chemotherapy for bone metastases using serial bone scintigraphy. In 19 cases (24.7 %) of the bone scintigraphy showed equivocal results. Of 21 patients with bone metastases, 15 patients showed improvement on scintigram after hormone or chemotherapy. In much improved group (5 patients) and moderately improved group (5 patients), TAP and PAP levels were low and stable. On the other hand, in slightly improved group (5 patients) which showed partially effective on scintigram after treatment, serum TAP and PAP level were unstable. Some cases in the group of which the 1st scintigrams showed normal were turned to positive on scintigram, while TAP, PAP, ALP and LDH level were not elevated. Therefore, follow-up bone scintigraphies have value in evaluating the disease extent in patients with prostatic carcinoma.

  4. An animal model to study regenerative endodontics.

    Science.gov (United States)

    Torabinejad, Mahmoud; Corr, Robert; Buhrley, Matthew; Wright, Kenneth; Shabahang, Shahrokh

    2011-02-01

    A growing body of evidence is demonstrating the possibility for regeneration of tissues within the pulp space and continued root development in teeth with necrotic pulps and open apices. There are areas of research related to regenerative endodontics that need to be investigated in an animal model. The purpose of this study was to investigate ferret cuspid teeth as a model to investigate factors involved in regenerative endodontics. Six young male ferrets between the ages of 36-133 days were used in this investigation. Each animal was anesthetized and perfused with 10% buffered formalin. Block sections including the mandibular and maxillary cuspid teeth and their surrounding periapical tissues were obtained, radiographed, decalcified, sectioned, and stained with hematoxylin-eosin to determine various stages of apical closure in these teeth. The permanent mandibular and maxillary cuspid teeth with open apices erupted approximately 50 days after birth. Initial signs of closure of the apical foramen in these teeth were observed between 90-110 days. Complete apical closure was observed in the cuspid teeth when the animals were 133 days old. Based on the experiment, ferret cuspid teeth can be used to investigate various factors involved in regenerative endodontics that cannot be tested in human subjects. The most appropriate time to conduct the experiments would be when the ferrets are between the ages of 50 and 90 days. Copyright © 2011. Published by Elsevier Inc.

  5. Regenerative laser system

    International Nuclear Information System (INIS)

    Biancardi, F.R.; Landerman, A.; Melikian, G.

    1975-01-01

    Regenerative apparatus for exhausting the working medium from the optical cavity of a laser and for supplying preheated diluent to the reaction chamber of a laser is disclosed. In an aftercooler thermal energy is exchanged between the working medium exhausted from the optical cavity and a cryogenic coolant which is subsequently utilized as the motive fluid for an ejector and as a diluent in the production of laser gas. Highly toxic and corrosive gases are condensed out of the working medium as the cryogenic coolant is evaporated and superheated. A preheater transfers additional heat to the diluent before the diluent enters the reaction chamber. (U.S.)

  6. State of the Art on the Evidence Base in Cardiac Regenerative Therapy: Overview of 41 Systematic Reviews

    Directory of Open Access Journals (Sweden)

    Mariangela Peruzzi

    2015-01-01

    Full Text Available Objectives. To provide a comprehensive appraisal of the evidence from secondary research on cardiac regenerative therapy. Study Design and Setting. Overview of systematic reviews of controlled clinical trials concerning stem cell administration or mobilization in patients with cardiovascular disease. Results. After a systematic database search, we short-listed 41 reviews (660 patients. Twenty-two (54% reviews focused on acute myocardial infarction (AMI, 19 (46% on chronic ischemic heart disease (IHD or heart failure (HF, 29 (71% on bone marrow-derived stem-cells (BMSC, and 36 (88% to randomized trials only. Substantial variability among reviews was found for validity (AMSTAR score: median 9 [minimum 3]; 1st quartile 9; 3rd quartile 10; maximum 11, effect estimates (change in ejection fraction from baseline to follow-up: 3.47% [0.02%; 2.90%; 4.22%; 6.11%], and citations (Web of Science yearly citations: 4.1 [0; 2.2; 6.5; 68.9]. No significant association was found between these three features. However, reviews focusing on BMSC therapy had higher validity scores (P=0.008 and showed more pronounced effect estimates (P=0.002. Higher citations were associated with journal impact factor (P=0.007, corresponding author from North America/Europe (P=0.022, and inclusion of nonrandomized trials (P=0.046. Conclusions. Substantial heterogeneity is apparent among these reviews in terms of quality and effect estimates.

  7. Adipose, Bone Marrow and Synovial Joint-Derived Mesenchymal Stem Cells for Cartilage Repair

    Science.gov (United States)

    Fellows, Christopher R.; Matta, Csaba; Zakany, Roza; Khan, Ilyas M.; Mobasheri, Ali

    2016-01-01

    Current cell-based repair strategies have proven unsuccessful for treating cartilage defects and osteoarthritic lesions, consequently advances in innovative therapeutics are required and mesenchymal stem cell-based (MSC) therapies are an expanding area of investigation. MSCs are capable of differentiating into multiple cell lineages and exerting paracrine effects. Due to their easy isolation, expansion, and low immunogenicity, MSCs are an attractive option for regenerative medicine for joint repair. Recent studies have identified several MSC tissue reservoirs including in adipose tissue, bone marrow, cartilage, periosteum, and muscle. MSCs isolated from these discrete tissue niches exhibit distinct biological activities, and have enhanced regenerative potentials for different tissue types. Each MSC type has advantages and disadvantages for cartilage repair and their use in a clinical setting is a balance between expediency and effectiveness. In this review we explore the challenges associated with cartilage repair and regeneration using MSC-based cell therapies and provide an overview of phenotype, biological activities, and functional properties for each MSC population. This paper also specifically explores the therapeutic potential of each type of MSC, particularly focusing on which cells are capable of producing stratified hyaline-like articular cartilage regeneration. Finally we highlight areas for future investigation. Given that patients present with a variety of problems it is unlikely that cartilage regeneration will be a simple “one size fits all,” but more likely an array of solutions that need to be applied systematically to achieve regeneration of a biomechanically competent repair tissue. PMID:28066501

  8. Adipose, Bone Marrow and Synovial Joint-derived Mesenchymal Stem Cells for Cartilage Repair

    Directory of Open Access Journals (Sweden)

    Christopher Fellows

    2016-12-01

    Full Text Available Current cell-based repair strategies have proven unsuccessful for treating cartilage defects and osteoarthritic lesions, consequently advances in innovative therapeutics are required and mesenchymal stem cell-based (MSC therapies are an expanding area of investigation. MSCs are capable of differentiating into multiple cell lineages and exerting paracrine effects. Due to their easy isolation, expansion and low immunogenicity, MSCs are an attractive option for regenerative medicine for joint repair. Recent studies have identified several MSC tissue reservoirs including in adipose tissue, bone marrow, cartilage, periosteum and muscle. MSCs isolated from these discrete tissue niches exhibit distinct biological activities, and have enhanced regenerative potentials for different tissue types. Each MSC type has advantages and disadvantages for cartilage repair and their use in a clinical setting is a balance between expediency and effectiveness. In this review we explore the challenges associated with cartilage repair and regeneration using MSC-based cell therapies and provide an overview of phenotype, biological activities and functional properties for each MSC population. This paper also specifically explores the therapeutic potential of each type of MSC, particularly focusing on which cells are capable of producing stratified hyaline-like articular cartilage regeneration. Finally we highlight areas for future investigation. Given that patients present with a variety of problems it is unlikely that cartilage regeneration will be a simple ‘one size fits all’, but more likely an array of solutions that need to applied systematically to achieve regeneration of a biomechanically competent repair tissue.

  9. Effect of risedronate on bone in renal transplant recipients.

    Science.gov (United States)

    Coco, Maria; Pullman, James; Cohen, Hillel W; Lee, Sally; Shapiro, Craig; Solorzano, Clemencia; Greenstein, Stuart; Glicklich, Daniel

    2012-08-01

    Bisphosphonates may prevent or treat the bone loss promoted by the immunosuppressive regimens used in renal transplantation. Risedronate is a commonly used third-generation amino-bisphosphonate, but little is known about its effects on the bone health of renal transplant recipients. We randomly assigned 42 new living-donor kidney recipients to either 35 mg of risedronate weekly or placebo for 12 months. We obtained bone biopsies at the time of renal transplant and after 12 months of protocol treatment. Treatment with risedronate did not affect bone mineral density (BMD) in the overall cohort. In subgroup analyses, it tended to preserve BMD in female participants but did not significantly affect the BMD of male participants. Risedronate did associate with increased osteoid volume and trabecular thickness in male participants, however. There was no evidence for the development of adynamic bone disease. In summary, further study is needed before the use of prophylactic bisphosphonates to attenuate bone loss can be recommended in renal transplant recipients.

  10. The effect of radiotherapy, and radiotherapy combined with bisphosphonates or RANK ligand inhibitors on bone quality in bone metastases. A systematic review

    NARCIS (Netherlands)

    Groenen, K.H.J.; Pouw, M.H.; Hannink, G.; Hosman, A.J.; van der Linden, Y.M.; Verdonschot, Nicolaas Jacobus Joseph; Tanck, E.

    2016-01-01

    Purpose The role of radiotherapy in stabilizing metastatic bones is unclear. This systematic review assessed the effects of (1) radiotherapy, (2) radiotherapy combined with bisphosphonates, and (3) radiotherapy combined with RANK ligand (RANKL) inhibitors on bone quality and bone strength in bone

  11. Stem cells and the future of regenerative medicine

    National Research Council Canada - National Science Library

    National Research Council, Committee on the Biological and Biomedical Applications of Stem Cell Research; Commission on Life Sciences; National Research Council; Board on Life Sciences; Board on Neuroscience and Behavioral Health; Division on Earth and Life Studies; Institute of Medicine

    2002-01-01

    .... Stem Cells and the Future of Regenerative Medicine provides a deeper exploration of the biological, ethical, and funding questions prompted by the therapeutic potential of undifferentiated human cells...

  12. Effect of the “protein diet” and bone tissue.

    Science.gov (United States)

    Nascimento da Silva, Zoraide; Azevedo de Jesuz, Vanessa; De Salvo Castro, Eduardo; Soares da Costa, Carlos Alberto; Teles Boaventura, Gilson; Blondet de Azeredo, Vilma

    2014-01-01

    The aim of this study is to evaluate the effect of the hyperproteic diet consumption on bone tissue. The study was conducted during sixty days. Twenty eight Wistar albinus rats, adults, originated from Laboratory of Experimental Nutrition were divided in four groups: (n = 7); Control 1 (C1), Control 2 (C2), Hyperproteic 1 (HP1) e Hyperproteic 2 (HP2). The C2 and HP2 groups were submitted to 30% of food restriction. The hyperproteic diet was based on the Atkins diet and prepared to simulate the protein diet. At the end of the study the animals were anesthetized to performer bone densitometry analyses by DEXA and blood and tissue collection. Serum and bone minerals analyses were conducted by colorimetric methods in automated equipment. The total bone mineral density (BMD) of the pelvis and the spine of the food restriction groups (HP2 e C2) were lower (p hyperproteic groups (HP1 e HP2). It was observed similar effect on the osteocalcin level, that presented lower (p hyperproteic groups. The insulin level was lower only in HP2 and serum calcium of the HP1 and HP2 groups was lower than C1. The protein diet promotes significant bone change on femur and in the hormones levels related to bone synthesis and maintenance of this tissue.

  13. Effects of radiations on bone marrow

    International Nuclear Information System (INIS)

    Tubiana, M.; Frindel, E.; Croizat, H.; Parmentier, C.

    1979-01-01

    After total body irradiation for kidney transplant, the initial decrease of circulating blood cells is more rapid, the nadir is reached sooner and the regeneration occurs earlier when the doses are higher than a few hundred rads. The LD 50 in man seems to be higher than 450 rads. The in vivo and in vitro assays of hemopoietic stem cells have greatly increasedd the understanding of acute and late effects. Multipotential stem cells are very radiosensitive, furthermore the differentiation of the surviving stem cells is accelerated after irradiation. This results in a severe depletion of the stem cell compartment. When this stem cell number falls below a critical value, the stem cell no longer differentiates till the completion of the regeneration of the stem cell compartment. Stem cell proliferation is regulated by inhibitors and stimulators. Release of stimulators by irradiated bone marrow has been demonstrated. Severe sequellae are observed after irradiation of animal and human bone marrow. They seem to be due either to the damage of the stromal cell or to the stem cell population. In patients, four compensating mechanisms are observed after a regional bone marrow irradiation: stimulation of non irradiated bone marrow, extension of hemopoietic areas, regeneration of irradiated bone marrow when the irradiated volume is large and increase in the amplification factor resulting in an increase in the output of mature cells for one stem cell input. Assay of progenitor cells provides useful information and a reduction in their number is still observed many years after a large regional irradiation

  14. The effect of platelet rich plasma from bone marrow aspirate with added bone morphogenetic protein-2 on the Achilles tendon-bone junction in rabbits.

    Science.gov (United States)

    Kim, Hak Jun; Nam, Hyok-Woo; Hur, Chang-Yong; Park, Misu; Yang, Hee Seok; Kim, Byung-Soo; Park, Jung-Ho

    2011-12-01

    To determine if exogenously injected bone marrow derived platelet-rich plasma (PRP) plus bone morphogenetic protein (BMP)-2 could accelerate the healing of bone-tendon junction injuries and increase the junction holding strength during the early regeneration period. A direct injury model of the bone-tendon junction was made using an Achilles tendon-calcaneus bone junction in a rabbit. In the PRP/BMP-2/fibrin group, 0.05 mL of bone marrow derived PRP and 100 ng/mL of BMP-2 both incorporated into 0.1 mL of fibrin glue were injected into Achilles tendon-calcaneus bone junctions. The effect of the intervention was tested by comparing the results of an intervention group to a control group. The results of biomechanical testing, and histological and gross analyses were compared between the 2 groups at the following time points after surgery: 2 weeks, 4 weeks, and 8 weeks. Histologic examinations showed that woven bone developed in tendon-bone junctions at 2 weeks after surgery in the PRP/BMP-2/fibrin group. Mechanical test results showed no significant difference between the PRP/BMP-2/fibrin and control groups at 2 and 4 weeks after surgery, but the mean maximal load in the PRP/BMP-2/fibrin group was significantly higher than in the control group (p rabbit model of tendon-bone junction injury.

  15. Adaptation and validation of the REGEN expert system for the Central Appalachians

    Science.gov (United States)

    Lance A. Vickers; Thomas R. Fox; David L. Loftis; David A. Boucugnani

    2011-01-01

    REGEN is an expert system that predicts future species composition at the onset of stem exclusion using preharvest stand conditions. To extend coverage into hardwood stands of the Central Appalachians, we developed REGEN knowledge bases for four site qualities (xeric, subxeric, submesic, mesic) based on relevant literature and expert opinion. Data were collected from...

  16. Predicting Forest Regeneration in the Central Appalachians Using the REGEN Expert System

    Science.gov (United States)

    Lance A. Vickers; Thomas R. Fox; David L. Loftis; David A. Boucugnani

    2011-01-01

    REGEN is an expert system designed by David Loftis to predict the future species composition of dominant and codominant stems in forest stands at the onset of stem exclusion following a proposed harvest. REGEN predictions are generated using competitive rankings for advance reproduction along with other existing stand conditions. These parameters are contained within...

  17. Exploiting the Bioactive Properties of the Dentin-Pulp Complex in Regenerative Endodontics.

    Science.gov (United States)

    Smith, Anthony J; Duncan, Henry F; Diogenes, Anibal; Simon, Stephane; Cooper, Paul R

    2016-01-01

    The development of regenerative endodontic therapies offers exciting opportunities for future improvements in treatment outcomes. Advances in our understanding of regenerative events at the molecular and cellular levels are helping to underpin development of these therapies, although the various strategies differ in the translational challenges they pose. The identification of a variety of bioactive molecules, including growth factors, cytokines, chemokines, and matrix molecules, sequestered within dentin and dental pulp provides the opportunity to present key signaling molecules promoting reparative and regenerative events after injury. The protection of the biological activity of these molecules by mineral in dentin before their release allows a continuing supply of these molecules, while avoiding the short half-life and the non-human origin of exogenous molecules. The ready release of these bioactive molecules by the various tissue preparation agents, medicaments, and materials commonly used in endodontics highlights the opportunities for translational regenerative strategies exploiting these molecules with little change to existing clinical practice. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  18. Enhanced Regenerative Braking Strategies for Electric Vehicles: Dynamic Performance and Potential Analysis

    Directory of Open Access Journals (Sweden)

    Boyi Xiao

    2017-11-01

    Full Text Available A regenerative braking system and hydraulic braking system are used in conjunction in the majority of electric vehicles worldwide. We propose a new regenerative braking distribution strategy that is based on multi-input fuzzy control logic while considering the influences of the battery’s state of charge, the brake strength and the motor speed. To verify the braking performance and recovery economy, this strategy was applied to a battery electric vehicle model and compared with two other improved regenerative braking strategies. The performance simulation was performed using standard driving cycles (NEDC, LA92, and JP1015 and a real-world-based urban cycle in China. The tested braking strategies satisfied the general safety requirements of Europe (as specified in ECE-13H, and the emergency braking scenario and economic potential were tested. The simulation results demonstrated the differences in the braking force distribution performance of these three regenerative braking strategies, the feasibility of the braking methods for the proposed driving cycles and the energy economic potential of the three strategies.

  19. The Design and Use of Animal Models for Translational Research in Bone Tissue Engineering and Regenerative Medicine

    Science.gov (United States)

    2010-01-07

    collagen based matrix (osteoid) that is mineralized with a unique carbonated hydroxyapatite . This mineralized bone matrix provides the unique...distinguish bone matrix and true biological mineralization (carbonated microcrystalline hydroxyapatite ) from scar or regions of precipitation of...lu s R at tu s n or v eg ic u s= ra tt u s O ry ct ol ag u s cu n ic u lu s C an is fa m il ia ri s C ap ra h ir cu s O v is ar ie s S u s sc ro fa C

  20. TGIF1 Gene Silencing in Tendon-Derived Stem Cells Improves the Tendon-to-Bone Insertion Site Regeneration

    Directory of Open Access Journals (Sweden)

    Liyang Chen

    2015-11-01

    Full Text Available Background/Aims: The slow healing process of tendon-to-bone junctions can be accelerated via implanted tendon-derived stem cells (TDSCs with silenced transforming growth interacting factor 1 (TGIF1 gene. Tendon-to-bone insertion site is the special form of connective tissues derivatives of common connective progenitors, where TGF-β plays bidirectional effects (chondrogenic or fibrogenic through different signaling pathways at different stages. A recent study revealed that TGF-β directly induces the chondrogenic gene Sox9. However, TGIF1 represses the expression of the cartilage master Sox9 gene and changes its expression rate against the fibrogenesis gene Scleraxis (Scx. Methods: TGIF1 siRNA was transduced or TGIF1 was over-expressed in tendon-derived stem cells. Following suprapinatus tendon repair, rats were either treated with transduced TDSCs or nontransduced TDSCs. Histologic examination and Western blot were performed in both groups. Results: In this study, the silencing of TGIF1 significantly upregulated the chondrogenic genes and markers. Similarly, TGIF1 inhibited TDSC differentiation into cartilage via interactions with TGF-β-activated Smad2 and suppressed the phosphorylation of Smad2. The area of fibrocartilage at the tendon-bone interface was significantly increased in the TGIF1 (- group compared with the control and TGIF1-overexpressing groups in the early stages of the animal model. The interface between the tendon and bone showed a increase of new bone and fibrocartilage in the TGIF1 (- group at 4 weeks. Fibrovascular scar tissue was observed in the TGIF1-overexpressing group and the fibrin glue only group. Low levels of fibrocartilage and fibrovascular scar tissue were found in the TDSCs group. Conclusion: Collectively, this study shows that the tendon-derived stem cell modified with TGIF1 gene silencing has promising effects on tendon-to-bone healing which can be further explored as a therapeutic tool in regenerative medicine.

  1. Transient switching control strategy from regenerative braking to anti-lock braking with a semi-brake-by-wire system

    Science.gov (United States)

    Li, Liang; Li, Xujian; Wang, Xiangyu; Liu, Yahui; Song, Jian; Ran, Xu

    2016-02-01

    Regenerative braking is an important technology in improving fuel economy of an electric vehicle (EV). However, additional motor braking will change the dynamic characteristics of the vehicle, leading to braking instability, especially when the anti-lock braking system (ABS) is triggered. In this paper, a novel semi-brake-by-wire system, without the use of a pedal simulator and fail-safe device, is proposed. In order to compensate for the hysteretic characteristics of the designed brake system while ensure braking reliability and fuel economy when the ABS is triggered, a novel switching compensation control strategy using sliding mode control is brought forward. The proposed strategy converts the complex coupling braking process into independent control of hydraulic braking and regenerative braking, through which a balance between braking performance, braking reliability, braking safety and fuel economy is achieved. Simulation results show that the proposed strategy is effective and adaptable in different road conditions while the large wheel slip rate is triggered during a regenerative braking course. The research provides a new possibility of low-cost equipment and better control performance for the regenerative braking in the EV and the hybrid EV.

  2. Regenerative endodontics: a true paradigm shift or a bandwagon about to be derailed?

    Science.gov (United States)

    Nazzal, H; Duggal, M S

    2017-02-01

    Regenerative endodontic techniques (RETs) have been hailed as a paradigm shift for the management of traumatised non-vital immature permanent anterior teeth. In this article the aim was to critically appraise the literature with regards to the outcome of regenerative endodontics on root development. Critical review of the literature where regenerative endodontic techniques have been used in the management of immature non-vital teeth with continuation of root development as the main outcome reported. Most studies published were in the form of case reports and series with very few randomised controlled trials with a high risk of bias. Continuation of root development following the use of RET has been shown to be unpredictable at best with lower success in those teeth losing vitality as a result of dental trauma. Despite the high success of regenerative endodontics in terms of periodontal healing including resolution of clinical and radiographic signs and symptoms of infection, continuation of root development remains an unpredictable outcome. The use of a blood clot as a scaffold in regenerative endodontics should be reviewed carefully as that might offer an environment for repair rather than regeneration. In addition, preservation of structures, such as Hertwig's epithelial root sheath, may have an important bearing on the success of this approach and should be further investigated.

  3. Mimicking the effects of spaceflight on bone: Combined effects of disuse and chronic low-dose rate radiation exposure on bone mass in mice

    Science.gov (United States)

    Yu, Kanglun; Doherty, Alison H.; Genik, Paula C.; Gookin, Sara E.; Roteliuk, Danielle M.; Wojda, Samantha J.; Jiang, Zhi-Sheng; McGee-Lawrence, Meghan E.; Weil, Michael M.; Donahue, Seth W.

    2017-11-01

    During spaceflight, crewmembers are subjected to biomechanical and biological challenges including microgravity and radiation. In the skeleton, spaceflight leads to bone loss, increasing the risk of fracture. Studies utilizing hindlimb suspension (HLS) as a ground-based model of spaceflight often neglect the concomitant effects of radiation exposure, and even when radiation is accounted for, it is often delivered at a high-dose rate over a very short period of time, which does not faithfully mimic spaceflight conditions. This study was designed to investigate the skeletal effects of low-dose rate gamma irradiation (8.5 cGy gamma radiation per day for 20 days, amounting to a total dose of 1.7 Gy) when administered simultaneously to disuse from HLS. The goal was to determine whether continuous, low-dose rate radiation administered during disuse would exacerbate bone loss in a murine HLS model. Four groups of 16 week old female C57BL/6 mice were studied: weight bearing + no radiation (WB+NR), HLS + NR, WB + radiation exposure (WB+RAD), and HLS+RAD. Surprisingly, although HLS led to cortical and trabecular bone loss, concurrent radiation exposure did not exacerbate these effects. Our results raise the possibility that mechanical unloading has larger effects on the bone loss that occurs during spaceflight than low-dose rate radiation.

  4. The effects of bone on proton NMR relaxation times of surrounding liquids

    Science.gov (United States)

    Davis, C. A.; Genant, H. K.; Dunham, J. S.

    1986-01-01

    Preliminary attempts by our group at UCSF to assess fat content of vertebral marrow in the lumbar spine using relaxation time information demonstrated that the presence of trabecular bone affects relaxation times. The objective of this work was a thorough study of the effects of bone on NMR relaxation characteristics of surrounding liquids. Trabecular bone from autopsy specimens was ground up and sifted into a series of powders with graded densities ranging from 0.3 gm/cc to 0.8 gm/cc. Each powder was placed first in n-saline and then in cottonseed oil. With spectroscopy, spin-lattice relaxation times (T1) and effective spin-spin relaxation times (T2*) were measured for each liquid in each bone powder. As bone density and surface to volume ratio increased, T1 decreased faster for saline than for oil. T2* decreased significantly for both water and oil as the surface to volume ratio increased. It was concluded that effects of water on T1 could be explained by a surface interaction at the bone/liquid interface, which restricted rotational and translational motion of nearby molecules. The T1s of oil were not affected since oil molecules are nonpolar, do not participate in significant intermolecular hydrogen bonding, and therefore would not be expected to interact strongly with the bone surface. Effects on T2* could be explained by local magnetic field inhomogeneities created by discontinuous magnetic susceptibility near the bone surface. These preliminary results suggest that water in contact with trabecular bone in vivo will exhibit shortened relaxation times.

  5. Nanotechnologies in regenerative medicine

    Czech Academy of Sciences Publication Activity Database

    Kubinová, Šárka; Syková, Eva

    2010-01-01

    Roč. 19, 3-4 (2010), s. 144-156 ISSN 1364-5706 R&D Projects: GA AV ČR IAA500390902; GA MŠk(CZ) LC554; GA AV ČR KAN201110651 Grant - others:GA ČR(CZ) 1M0538; GA ČR(CZ) GA203/09/1242; GA AV ČR(CZ) KAN200520804; EC FP6 project ENIMET(XE) LSHM-CT-2005-019063 Program:1M; GA; KA Institutional research plan: CEZ:AV0Z50390703 Keywords : Nanotechnology * regenerative medicine * nanofibers Subject RIV: FH - Neurology Impact factor: 1.051, year: 2010

  6. Effects of ovariectomy and cadmium (Cd) on bone calcium

    International Nuclear Information System (INIS)

    Sacco-Gibson, N.; Chaudhry, S.; Abrams, J.; Peterson, D.; Bhattacharyya, M.

    1991-01-01

    This study evaluated the effects of Cd exposure on bone calcium following ovariectomy. Fourteen female beagles (7-9 y old) with 45 Ca prelabeled skeletons (100 μCi/kg body weight) were divided into four groups: shams (SO-; n = 3); ovariectomized (OV-; n =4); shams exposed to Cd (OV+; n = 4). Cd was given in capsules for 4 weeks, increasing dosage weekly (1,5, 15, 50 ppm), followed by exposure for 4.5, 2.0, and 15 weeks in drinking water (15 ppm). Repeated measures of bone mineral density (BMD) were made by dual photon absorptiometry. After the last Cd-water exposure, ribs, tibiae, humerii and lumbar vertebrae (L2-4; L5) were taken from each dog (except SO+, kept for further study). No consistent differences between treatment and control groups were observed in dry or ash weight, Ca content, ash/dry , Ca/dry, and Ca/ash ratios. However, 45 Ca, 45 Ca/dry, and 45 Ca/ash were significantly higher (18 to 38%) in bones of OV+ and OV- compared to SO-. In contrast, significant decreases in BMD of L 2-4 were observed in OV+ dogs (baseline to sacrifice) (OV+: -7.2 ± 1.1%; OV-: -4.0 ± 1.9%; SO-: -1.0 ± 1.7%). Our results suggest: (1) ovariectomy sensitizes bone to cadmium effects and (2) bone mineral loss due to Cd exposure, such as in Itai-Itai disease, may be due to direct effects

  7. Regenerative medicine in Europe: global competition and innovation governance.

    Science.gov (United States)

    Hogarth, Stuart; Salter, Brian

    2010-11-01

    Leading European nations with strong biotech sectors, such as the UK and Germany, are investing heavily in regenerative medicine, seeking competitive advantage in this emerging sector. However, in the broader biopharmaceutical sector, the EU is outperformed by the USA on all metrics, reflecting longstanding problems: limited venture capital finance, a fragmented patent system, and relatively weak relations between academia and industry. The current global downturn has exacerbated these difficulties. The crisis comes at a time when the EU is reframing its approach to the governance of innovation and renewing its commitment to the goal of making Europe the leading player in the global knowledge economy. If the EU is to gain a competitive advantage in the regenerative medicine sector then it must coordinate a complex multilevel governance framework that encompasses the EU, member states and regional authorities. This article takes stock of Europe's current competitive position within the global bioeconomy, drawing on a variety of metrics in the three intersecting spheres of innovation governance: science, market and society. These data then provide a platform for reviewing the problems of innovation governance faced by the EU and the strategic choices that have to be confronted in the regenerative medicine sector.

  8. Regenerative endodontics: A state of the art

    Directory of Open Access Journals (Sweden)

    Rashmi Bansal

    2011-01-01

    Full Text Available Scientific advances in the creation of restorative biomaterials, in vitro cell culture technology, tissue grafting, tissue engineering, molecular biology and the human genome project provide the basis for the introduction of new technologies into dentistry. Non-vital infected teeth have long been treated with root canal therapy (for mature root apex and apexification (for immature root apex, or doomed to extraction. Although successful, current treatments fail to re-establish healthy pulp tissue in these teeth. But, what if the non-vital tooth could be made vital once again? That is the hope offered by regenerative endodontics, an emerging field focused on replacing traumatized and diseased pulp with functional pulp tissue. Restoration of vitality of non-vital tooth is based on tissue engineering and revascularization procedures. The purpose of this article is to review these biological procedures and the hurdles that must be overcome to develop regenerative endodontic procedures.

  9. Turning Regenerative Medicine Breakthrough Ideas and Innovations into Commercial Products.

    Science.gov (United States)

    Bayon, Yves; Vertès, Alain A; Ronfard, Vincent; Culme-Seymour, Emily; Mason, Chris; Stroemer, Paul; Najimi, Mustapha; Sokal, Etienne; Wilson, Clayton; Barone, Joe; Aras, Rahul; Chiesi, Andrea

    2015-12-01

    The TERMIS-Europe (EU) Industry committee intended to address the two main critical issues in the clinical/commercial translation of Advanced Therapeutic Medicine Products (ATMP): (1) entrepreneurial exploitation of breakthrough ideas and innovations, and (2) regulatory market approval. Since January 2012, more than 12,000 publications related to regenerative medicine and tissue engineering have been accepted for publications, reflecting the intense academic research activity in this field. The TERMIS-EU 2014 Industry Symposium provided a reflection on the management of innovation and technological breakthroughs in biotechnology first proposed to contextualize the key development milestones and constraints of allocation of financial resources, in the development life-cycle of radical innovation projects. This was illustrated with the biofuels story, sharing similarities with regenerative medicine. The transition was then ensured by an overview of the key identified challenges facing the commercialization of cell therapy products as ATMP examples. Real cases and testimonies were then provided by a palette of medical technologies and regenerative medicine companies from their commercial development of cell and gene therapy products. Although the commercial development of ATMP is still at the proof-of-concept stage due to technology risks, changing policies, changing markets, and management changes, the sector is highly dynamic with a number of explored therapeutic approaches, developed by using a large diversity of business models, both proposed by the experience, pitfalls, and successes of regenerative medicine pioneers, and adapted to the constraint resource allocation and environment in radical innovation projects.

  10. Effects of Antiseptic Solutions Commonly Used in Dentistry on Bone Viability, Bone Morphology, and Release of Growth Factors.

    Science.gov (United States)

    Sawada, Kosaku; Fujioka-Kobayashi, Masako; Kobayashi, Eizaburo; Schaller, Benoit; Miron, Richard J

    2016-02-01

    Antiseptic solutions are commonly used in dentistry for a number of sterilization procedures, including harvesting of bone chips, irrigation of extraction sockets, and sterilization of osteonecrotic bone. Despite its widespread use, little information is available regarding the effects of various antiseptic solutions on bone cell viability, morphology, and the release of growth factors. The antiseptic solutions included 1) 0.5% povidone iodine (PI), 2) 0.2% chlorhexidine diguluconate (CHX), 3) 1% hydrogen peroxide (H2O2), and 4) 0.25% sodium hypochlorite (HYP). Bone samples collected from porcine mandibular cortical bone were rinsed in the antiseptic solutions for 10 minutes and assessed for cell viability using an MTS assay and protein release of transforming growth factor (TGF-β1), bone morphogenetic protein 2 (BMP2), vascular endothelial growth factor (VEGF), interleukin (IL)-1β, and receptor activator of nuclear factor κB ligand (RANKL) using an enzyme-linked immunosorbent assay at 15 minutes and 4 hours after rinsing. After antiseptic rinsing, changes to the surface protein content showed marked alterations, with an abundant protein layer remaining on CHX-rinsed bone samples. The amount of surface protein content gradually decreased in the following order: CHX, H2O2, PI, and HYP. A similar trend was also observed for the relative cell viability from within bone samples after rinsing, with up to 6 times more viable cells found in the CHX-rinsed bone samples than in the HYP- and PI-rinsed samples. An analysis of the growth factors found that both HYP and PI had significantly lower VEGF and TGF-β1 protein release from bone samples at 15 minutes and 4 hours after rinsing compared with CHX and H2O2. A similar trend was observed for RANKL and IL-1β protein release, although no change was observed for BMP2. The results from the present study have demonstrated that antiseptic solutions present with very different effects on bone samples after 10 minutes of

  11. Effect of Rosiglitazone on Radiation Damage in Bone Marrow Hemopoiesis

    Science.gov (United States)

    Benkő, Klára; Pintye, Éva; Szabó, Boglárka; Géresi, Krisztina; Megyeri, Attila; Benkő, Ilona

    2008-12-01

    To study radiobiological effects and drugs, which can modify radiation injury, has an importance if we would like to avoid harmful effects of radiation due to emergency situations or treat patients with malignant diseases by radiotherapy. During the long treatment schedules patients may be treated by not only anticancer but many other drugs because of accompanying diseases. These drugs may also modify radiobiological effects. Rosiglitazone pre-treatment proved to be myeloprotective and accelerated recovery of 5-fluorouracil-damaged bone marrow in our previous experiments. Our new studies are designed to evaluate whether rosiglitazone has similar beneficial effects in radiation-damaged hemopoiesis. Bone marrow damage was precipitated by total body irradiation (TBI) using single increasing doses (2-10 Gy) of γ—irradiation in groups of mice. Lethality was well correlated with damage in hemopoiesis measured by cellularity of bone marrow (LD50 values were 4.8 and 5.3 gray respectively). Rosiglitazone, an insulin-sensitizing drug, had no significant effect on bone marrow cellularity. Insulin resistance associated with obesity or diabetes mellitus type 2 is intensively growing among cancer patients requiring some kind of radiotherapy. Therefore it is important to know whether drugs used for their therapy can modify radiation effects.

  12. Effect of Rosiglitazone on Radiation Damage in Bone Marrow Hemopoiesis

    International Nuclear Information System (INIS)

    Benko', Klara; Pintye, Eva; Szabo, Boglarka; Geresi, Krisztina; Megyeri, Attila; Benko, Ilona

    2008-01-01

    To study radiobiological effects and drugs, which can modify radiation injury, has an importance if we would like to avoid harmful effects of radiation due to emergency situations or treat patients with malignant diseases by radiotherapy. During the long treatment schedules patients may be treated by not only anticancer but many other drugs because of accompanying diseases. These drugs may also modify radiobiological effects. Rosiglitazone pre-treatment proved to be myeloprotective and accelerated recovery of 5-fluorouracil-damaged bone marrow in our previous experiments. Our new studies are designed to evaluate whether rosiglitazone has similar beneficial effects in radiation-damaged hemopoiesis. Bone marrow damage was precipitated by total body irradiation (TBI) using single increasing doses (2-10 Gy) of γ--irradiation in groups of mice. Lethality was well correlated with damage in hemopoiesis measured by cellularity of bone marrow (LD 50 values were 4.8 and 5.3 gray respectively). Rosiglitazone, an insulin-sensitizing drug, had no significant effect on bone marrow cellularity. Insulin resistance associated with obesity or diabetes mellitus type 2 is intensively growing among cancer patients requiring some kind of radiotherapy. Therefore it is important to know whether drugs used for their therapy can modify radiation effects.

  13. Human histologic evaluation of anorganic bovine bone mineral combined with recombinant human platelet-derived growth factor BB in maxillary sinus augmentation: case series study.

    Science.gov (United States)

    Nevins, Myron; Garber, David; Hanratty, James J; McAllister, Bradley S; Nevins, Marc L; Salama, Maurice; Schupbach, Peter; Wallace, Steven; Bernstein, Simon M; Kim, David M

    2009-12-01

    The objective of this proof-of-principle study was to examine the potential for improved bone regenerative outcomes in maxillary sinus augmentation procedures when recombinant human platelet-derived growth factor BB (0.3 mg/mL) is combined with particulate anorganic bovine bone mineral. The surgical outcomes in all treated sites were uneventful at 6 to 8 months, with sufficient regenerated bone present to allow successful placement of maxillary posterior implants. Large areas of dense, well-formed lamellar bone were seen throughout the intact core specimens in more than half of the grafted sites. Abundant numbers of osteoblasts were noted in concert with significant osteoid in all sites, indicating ongoing osteogenesis. A number of cores demonstrated efficient replacement of the normally slowly resorbing anorganic bovine bone mineral matrix particles with newly formed bone when the matrix was saturated with recombinant human platelet-derived growth factor BB.

  14. Experimental Evaluation of the Effectiveness of Demineralized Bone Matrix and Collagenated Heterologous Bone Grafts Used Alone or in Combination with Platelet-Rich Fibrin on Bone Healing in Sinus Floor Augmentation.

    Science.gov (United States)

    Peker, Elif; Karaca, Inci Rana; Yildirim, Benay

    2016-01-01

    The aim of this study was an experimental evaluation of the effectiveness of demineralized bone matrix (DBM) and collagenated heterologous bone graft (CHBG) used alone or in combination with platelet-rich fibrin on bone healing in sinus floor augmentation procedures. In this study, 36 New Zealand rabbits were used. The bilateral sinus elevation was performed, and 72 defects were obtained. The rabbit maxillary sinuses were divided into four groups according to the augmentation biomaterials obtained: demineralized bone matrix (Grafton DBM Putty, Osteotech; DBM group), DBM combined with platelet-rich fibrin (PRF; DBM + PRF group), collagenated heterologous bone graft (CHBG; Apatos Mix, OsteoBiol, Tecnoss; CHBG group), CHBG combined with PRF (CHBG + PRF group). All groups were sacrificed at 2, 4, and 8 weeks after surgery for histologic, histomorphometric, and immunohistochemical analyses. The inflammatory reaction was moderate to intense at the second week in all groups and declined from 2 to 8 weeks. New bone formation was started at the second week and increased from 2 to 8 weeks in all groups. There was no significant difference in bone formation between the experimental groups that used PRF mixed graft material and control groups that used only graft material. The percentage of new bone formation showed a significant difference in DBM groups and DBM + PRF groups compared with other groups. There were osteoclasts around all the bone graft materials used, but the percentage of residual graft particles was significantly higher in CHBG groups and CHBG + PRF groups at the eighth week. There is no beneficial effect of the application of PRF in combination with demineralized bone matrix or collagenated heterologous bone graft on bone formation in sinus floor augmentation. The results of this study showed that both collagenated heterologous bone graft and demineralized bone matrix have osteoconductive properties, but demineralized bone matrix showed more bone formation

  15. PTH prevents the adverse effects of focal radiation on bone architecture in young rats.

    Science.gov (United States)

    Chandra, Abhishek; Lan, Shenghui; Zhu, Ji; Lin, Tiao; Zhang, Xianrong; Siclari, Valerie A; Altman, Allison R; Cengel, Keith A; Liu, X Sherry; Qin, Ling

    2013-08-01

    Radiation therapy is a common treatment regimen for cancer patients. However, its adverse effects on the neighboring bone could lead to fractures with a great impact on quality of life. The underlying mechanism is still elusive and there is no preventive or curative solution for this bone loss. Parathyroid hormone (PTH) is a current therapy for osteoporosis that has potent anabolic effects on bone. In this study, we found that focal radiation from frequent scans of the right tibiae in 1-month-old rats by micro-computed tomography severely decreased trabecular bone mass and deteriorated bone structure. Interestingly, PTH daily injections remarkably improved trabecular bone in the radiated tibiae with increases in trabecular number, thickness, connectivity, structure model index and stiffness, and a decrease in trabecular separation. Histomorphometric analysis revealed that radiation mainly decreased the number of osteoblasts and impaired their mineralization activity but had little effects on osteoclasts. PTH reversed these adverse effects and greatly increased bone formation to a similar level in both radiated and non-radiated bones. Furthermore, PTH protects bone marrow mesenchymal stem cells from radiation-induced damage, including a decrease in number and an increase in adipogenic differentiation. While radiation generated the same amount of free radicals in the bone marrow of vehicle-treated and PTH-treated animals, the percentage of apoptotic bone marrow cells was significantly attenuated in the PTH group. Taken together, our data demonstrate a radioprotective effect of PTH on bone structure and bone marrow and shed new light on a possible clinical application of anabolic treatment in radiotherapy. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Effect of microstructure on micromechanical performance of dry cortical bone tissues

    International Nuclear Information System (INIS)

    Yin Ling; Venkatesan, Sudharshan; Kalyanasundaram, Shankar; Qin Qinghua

    2009-01-01

    The mechanical properties of bone depend on composition and structure. Previous studies have focused on macroscopic fracture behavior of bone. In the present study, we performed microindentation studies to understand the deformation properties and microcrack-microstructure interactions of dry cortical bone. Dry cortical bone tissues from lamb femurs were tested using Vickers indentation with loads of 0.245-9.8 N. We examined the effect of bone microstructure on deformation and crack propagation using scanning electron microscopy (SEM). The results showed the significant effect of cortical bone microstructure on indentation deformation and microcrack propagation. The indentation deformation of the dry cortical bone was basically plastic at any applied load with a pronounced viscoelastic recovery, in particular at lower loads. More microcracks up to a length of approximately 20 μm occurred when the applied load was increased. At loads of 4.9 N and higher, most microcracks were found to develop from the boundaries of haversian canals, osteocyte lacunae and canaliculi. Some microcracks propagated from the parallel direction of the longitudinal interstitial lamellae. At loads 0.45 N and lower, no visible microcracks were observed.

  17. Effects of Implant-Associated Osteomyelitis on Cefuroxime Bone Pharmacokinetics

    DEFF Research Database (Denmark)

    Tøttrup, Mikkel; Bue, Mats; Koch, Janne

    2016-01-01

    Background: The prolonged antibiotic therapy that is often needed for successful management of osteomyelitis may be related to incomplete penetration of antibiotics into the target site. The objective of this study was to assess the effects of implant-associated osteomyelitis on cefuroxime...... cavity up to MICs of 2 mg/L compared with the other tissues, but the time was shorter for higher MICs.  Conclusions: Cefuroxime penetration into infected cancellous bone was incomplete but comparable with that in healthy bone. The destructive bone processes associated with acute osteomyelitis reduced...

  18. Stem Cells in Regenerative Medicine

    OpenAIRE

    Sykova, Eva; Forostyak, Serhiy

    2013-01-01

    Background: A number of cardiovascular, neurological, musculoskeletal and other diseases have a limited capacity for repair and only a modest progress has been made in treatment of brain diseases. The discovery of stem cells has opened new possibilities for the treatment of these maladies, and cell therapy now stands at the cutting-edge of modern regenerative medicine and tissue engineering. Experimental data and the first clinical trials employing stem cells have shown their broad therapeuti...

  19. Regenerative Snubber For GTO-Commutated SCR Inverter

    Science.gov (United States)

    Rippel, Wally E.; Edwards, Dean B.

    1992-01-01

    Proposed regenerative snubbing circuit substituted for dissipative snubbing circuit in inverter based on silicon controlled rectifiers (SCR's) commutated by gate-turn-off thyristor (GTO). Intended to reduce loss of power that occurs in dissipative snubber. Principal criteria in design: low cost, simplicity, and reliability.

  20. On friction braking demand with regenerative braking

    NARCIS (Netherlands)

    Walker, A.M.; Lampérth, M.U.; Wilkins, S.

    2002-01-01

    Developments in Hybrid Electric and pure Electric Vehicles are intended to improve the operational efficiency of road vehicles. Regenerative braking, which has long been established in rail vehicles, is integral to efficiency improvement, with up to 30% of overall traction energy demand satisfied by

  1. Effects of hypogonadism on bone metabolism in female adolescents and young adults.

    Science.gov (United States)

    Misra, Madhusmita

    2012-01-24

    Gonadal steroids, including androgens and oestrogens, play a critical part in bone metabolism, and conditions associated with a deficiency of gonadal steroids can reduce BMD in adults and impair bone accrual in adolescents. In addition, other associated hormone alterations, for example, insulin-like growth factor 1 deficiency or high cortisol levels, can further exacerbate the effect of hypogonadism on bone metabolism, as can factors such as calcium and vitamin D deficiency, low body weight and exercise status. This Review discusses the effects of different hypogonadal states on bone metabolism in female adolescents and young adults, with particular emphasis on conditions associated with low energy availability, such as anorexia nervosa and athletic amenorrhoea, in which many factors other than hypogonadism affect bone. In contrast to most hypogonadal conditions, in which replacement of gonadal steroids is sufficient to normalize bone accrual rates and BMD, gonadal steroid replacement may not be sufficient to normalize bone metabolism in these states of energy deficit.

  2. Effects of anti-sclerostin antibody and running on bone remodeling and strength

    Directory of Open Access Journals (Sweden)

    H. Toumi

    2015-06-01

    Full Text Available Sclerostin antibody (Scl-Ab represents a promising therapeutic approach to treat patients with osteoporosis. Purpose: The aim of this study was to investigate the effects of Scl-Ab, running and a combination of both on bone formation. Methods: Sixty female Wistar rats, aged 8 months were randomly assigned to five groups (subcutaneous injections performed twice a week: (1 (Sham: sedentary rats + saline, (2 (OVX: ovariectomized rats + saline, (3 (OVX + E: OVX rats + saline + treadmill training (5 times/week, 1 h/day, (4 (OVX + E + S: OVX rats + treadmill training + 5 mg/kg Scl-Ab and (5 (OVX + S: OVX rats + 5 mg/kg Scl-Ab. After 14 weeks, body composition, whole body and femoral BMDs were determined by DXA and serum was collected for analysis of osteocalcin and NTX. Bone microarchitecture was analyzed using μCT and bone strength was assessed at the femur mid-shaft in 3-point bending. Results: Running exercise decreased fat mass as well as the bone resorption marker NTX relative to the non-exercised control groups, effects that were associated with a prevention of the deleterious effects of OVX on whole body and femoral BMDs. Scl-Ab increased the bone formation marker osteocalcin, which resulted in robust increases in BMD and femoral metaphyseal bone volume to levels greater than in the Sham group. OVX + S + E group did not further impact on bone mass relative to the OVX + S group. At the cortical femur diaphysis, Scl-Ab prevented the decreases in bone strength after OVX, while exercise did not affect cortical strength. Conclusion: We suggest that while running on a treadmill can prevent some bone loss through a modest antiresorptive effect, it did not contribute to the robust bone-forming effects of Scl-Ab when combined in an estrogen ablation model.

  3. A novel regenerative shock absorber with a speed doubling mechanism and its Monte Carlo simulation

    Science.gov (United States)

    Zhang, Ran; Wang, Xu; Liu, Zhenwei

    2018-03-01

    A novel regenerative shock absorber has been designed and fabricated. The novelty of the presented work is the application of the double speed regenerative shock absorber that utilizes the rack and pinion mechanism to increase the magnet speed with respect to the coils for higher power output. The simulation models with parameters identified from finite element analysis and the experiments are developed. The proposed regenerative shock absorber is compared with the regenerative shock absorber without the rack and pinion mechanism, when they are integrated into the same quarter vehicle suspension system. The sinusoidal wave road profile displacement excitation and the random road profile displacement excitation with peak amplitude of 0.035 m are applied as the inputs in the frequency range of 0-25 Hz. It is found that with the sinusoidal and random road profile displacement input, the proposed innovative design can increase the output power by 4 times comparing to the baseline design. The proposed double speed regenerative shock absorber also presents to be more sensitive to the road profile irregularity than the single speed regenerative shock absorber as suggested by Monte Carlo simulation. Lastly the coil mass and amplification factor are studied for sensitivity analysis and performance optimization, which provides a general design method of the regenerative shock absorbers. It shows that for the system power output, the proposed design becomes more sensitive to either the coil mass or amplification factor depending on the amount of the coil mass. With the specifically selected combination of the coil mass and amplification factor, the optimized energy harvesting performance can be achieved.

  4. Development of the Gecko (Pachydactylus turneri) Animal Model during Foton M-2 to Study Comparative Effects of Microgravity in Terrestrial and Aquatic Organisms

    Science.gov (United States)

    Almeida, E. A.; Roden, C.; Phillips, J. A.; Globus, R. K.; Searby, N.; Vercoutere, W.; Morey-Holton, E.; Gulimova, V.; Saveliev, S.; Tairbekov, M.; hide

    2006-01-01

    Terrestrial organisms exposed to microgravity during spaceflight experience degeneration in bone, muscle, and possibly other tissues that require gravity-mediated mechanical stimulation for normal regenerative growth. In the Gecko experiment aboard Foton M-2, we flew for the first time, five terrestrial Pachydactylus turneri specimens to develop a model of microgravity effects comparable to the newt Pleurodeles waltl, a well-established model organism for spaceflight. These lower vertebrate species have similar body plans and size, are poikilothermic, have tissue regenerative ability, and are adapted to moderate periods of fasting. Furthermore the gecko (Pachydactylus) can also survive prolonged periods without water. In pre-flight control experiments and after a 16-day Foton M-2 spaceflight without food or water, the geckos were recovered and showed no apparent negative health effects. However, detailed analysis of bone mass and architecture by micro Computed Tomography { pCT), showed that both synchronous control and spaceflight animals lost significant amounts of cancellous bone in the distal femur and humerus relative to basal controls. In addition, cell cycle analysis of 30h post-flight liver tissue reveals a shift of DNA content from G2 and S to G1, both in spaceflight and synchronous controls. Together, these results suggest that housing conditions alone induce rapid catabolism of cancellous bone and reduced normal tissue regeneration. Further use of the gecko Puchydactylus turneri as a spaceflight model requires modification of housing conditions, possibly by including water and food, or changing other factors such as eliminating housing stresses to obtain stable bone structure and tissue regeneration during spaceflight experiments.

  5. Suppression Effect of Astaxanthin on Osteoclast Formation In Vitro and Bone Loss In Vivo

    Directory of Open Access Journals (Sweden)

    Yun-Ho Hwang

    2018-03-01

    Full Text Available Osteoporosis is characterized by a reduction of the bone mineral density (BMD and microarchitectural deterioration of the bone, which lead to bone fragility and susceptibility to fracture. Astaxanthin (AST has a variety of biological activities, such as a protective effect against asthma or neuroinflammation, antioxidant effect, and decrease of the osteoclast number in the right mandibles in the periodontitis model. Although treatment with AST is known to have an effect on inflammation, no studies on the effect of AST exposure on bone loss have been performed. Thus, in the present study, we examined the antiosteoporotic effect of AST on bone mass in ovariectomized (OVX mice and its possible mechanism of action. The administration of AST (5, 10 mg/kg for 6 weeks suppressed the enhancement of serum calcium, inorganic phosphorus, alkaline phosphatase, total cholesterol, and tartrate-resistant acid phosphatase (TRAP activity. The bone mineral density (BMD and bone microarchitecture of the trabecular bone in the tibia and femur were recovered by AST exposure. Moreover, in the in vitro experiment, we demonstrated that AST inhibits osteoclast formation through the expression of the nuclear factor of activated T cells (NFAT c1, dendritic cell-specific transmembrane protein (DC-STAMP, TRAP, and cathepsin K without any cytotoxic effects on bone marrow-derived macrophages (BMMs. Therefore, we suggest that AST may have therapeutic potential for the treatment of postmenopausal osteoporosis.

  6. Pattern of Bone Generation after Irradiation in Vascularized Tissue Engineered Constructs.

    Science.gov (United States)

    Eweida, Ahmad; Fathi, Ibrahim; Eltawila, Ahmed M; Elsherif, Ahmad M; Elkerm, Yasser; Harhaus, Leila; Kneser, Ulrich; Sakr, Mahmoud F

    2018-02-01

    Regenerative medicine modalities provide promising alternatives to conventional reconstruction techniques but are still deficient after malignant tumor excision or irradiation due to defective vascularization.  We investigated the pattern of bone formation in axially vascularized tissue engineering constructs (AVTECs) after irradiation in a study that mimics the clinical scenario after head and neck cancer. Heterotopic bone generation was induced in a subcutaneously implanted AVTEC in the thigh of six male New Zealand rabbits. The tissue construct was made up of Nanobone (Artoss GmbH; Rostock, Germany) granules mixed with autogenous bone marrow and 80 μL of bone morphogenic protein-2 at a concentration of 1.5 μg/μL. An arteriovenous loop was created microsurgically between the saphenous vessels and implanted in the core of the construct to induce axial vascularization. The constructs were subjected to external beam irradiation on postoperative day 20 with a single dose of 15 Gy. The constructs were removed 20 days after irradiation and subjected to histological and immunohistochemical analysis for vascularization, bone formation, apoptosis, and cellular proliferation.  The vascularized constructs showed homogenous vascularization and bone formation both in their central and peripheral regions. Although vascularity, proliferation, and apoptosis were similar between central and peripheral regions of the constructs, significantly more bone was formed in the central regions of the constructs.  The study shows for the first time the pattern of bone formation in AVTECs after irradiation using doses comparable to those applied after head and neck cancer. Axial vascularization probably enhances the osteoinductive properties in the central regions of AVTECs after irradiation. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  7. Bone turnover in postmenopausal osteoporosis. Effect of calcitonin treatment.

    Science.gov (United States)

    Civitelli, R; Gonnelli, S; Zacchei, F; Bigazzi, S; Vattimo, A; Avioli, L V; Gennari, C

    1988-10-01

    To investigate the effectiveness of calcitonin treatment of postmenopausal osteoporosis in relation to bone turnover, we examined 53 postmenopausal osteoporotic women before and after one year of therapy with salmon calcitonin (sCT), at the dose of 50 IU every other day. Baseline evaluation revealed that 17 (32%) patients had high turnover (HTOP), and 36 (68%) normal turnover osteoporosis (NTOP) as assessed by measurement of whole body retention (WBR) of 99mTc-methylene diphosphonate. The two groups did not differ in terms of bone mineral content (BMC) measured by dual photon absorptiometry at both lumbar spine and femoral diaphysis. However, HTOP patients had higher levels of serum osteocalcin (OC) and urinary hydroxyproline excretion (HOP/Cr). Multivariate regression analysis showed no correlation between parameters of bone turnover (WBR, OC, HOP/Cr) and both femoral and vertebral bone density; the latter being negatively correlated only with the years elapsed since menopause (R2 = 0.406). Treatment with sCT resulted in a significant increase of vertebral BMC in the 53 patients taken as a whole group (+/- 7%, P less than 0.001). When the results obtained in HTOP and NTOP were analyzed separately, only those with HTOP showed a marked increment of spinal BMC (+22%, P less than 0.001), NTOP subjects neither gained nor lost bone mineral during the study. Femoral BMC decreased in the whole group after sCT therapy (-3%, P less than 0.003). However, HTOP patients maintained initial BMC values, whereas those with NTOP lost a significant amount of bone during the study period (-5%, P less than 0.001). The increase of vertebral bone mass was associated with a marked depression of bone turnover detectable in both subsets of patients and in the whole group. (a) assessment of bone turnover cannot help predict the severity of bone loss in postmenopausal osteoporosis; (b) calcitonin therapy appears to be particularly indicated for patients with high-turnover osteoporosis

  8. The effect of sympathectomy on bone blood flow in man

    International Nuclear Information System (INIS)

    Lahtinen, T.; Alhava, E.M.; Hyoedynmaa, S.; Hendolin, H.; Oksala, I.

    1982-01-01

    The effect of lumbar sympathectomy on bone blood flow was measured in seven patients with a Xe-133 washout method. On the third postoperative day there was a significant increase of blood flow in the proximal femur and a slight increase in the proximal tibia. Two months after the operation blood flow in the proximal part of the femur was no more significantly increased but in the proximal tibia there was a significant increase. The study suggests that the positive effect of sympathectomy on bone blood flow may be of value in cases where the increase of blood flow to peripheral bones is required

  9. Quo Vadis medycyno regeneracyjna?: Quo Vadis Regenerative Medicine?

    Science.gov (United States)

    Ratajczak, Mariusz Z; Suszyńska, Malwina

    2013-07-01

    There are presented the most important sources of pluripotent stem cells for potential application in the regenerative medicine. This review summarizes also advantages and disadvantages for potential application of these cells in clinical medicine.

  10. Modelling of preheated regenerative chain in Cernavoda NPP using MMS calculation code

    International Nuclear Information System (INIS)

    Bigu, M.; Nita, I.; Prisecaru, I.; Dupleac, D.

    2005-01-01

    Full text: In this work it was studied operation of preheated regenerative chain from NPP Cernavoda. To obtain this analysis coupled analyses of condensate system, water supply system, and drain cooler system were effected. The analysis boundaries are: Upstream: - Steam condensers - Turbine Bleed Steam Downstream: - Steam Generators. The analysis was made in two steps: 1) Getting of hydraulic characteristic of pipe network from steam condensers to steam generators at nominal regime; this step was obtained with hydraulic package called PIPENET. 2) Real thermal hydraulic analyses were done based on hydraulic characteristic of pipe network and supplementary data required for heat transfer calculation in equipment of preheated regenerative chain. Thermal analyses were done using MMS package and refered to normal operating regimes, namely, nominal operating regime required for calibration of calculating model, shutdown regime, start-up regime from zero power hot to nominal power and to abnormal operating regimes, namely, turbine trip, reactor trip and loss of two condensate pumps. The results were compared with already existing analysis and showed the largest differences at interface areas (i.e. 5%). This led us to idea of extending analysis to all secondary circuits in order to reduce the number of boundary conditions which can generate uncertainty in analysis. In this analysis we obtained an advanced model of preheated regenerative chain of secondary circuit in Cernavoda NPP which could be extended up to cover the whole secondary circuit by including the analysis of steam generators, turbine, and steam condenser. (authors)

  11. Modelling of preheated regenerative chain in Cernavoda NPP using MMS calculation code

    International Nuclear Information System (INIS)

    Bigu, M.; Nita, I.; Prisecaru, I.; Dupleac, D.

    2005-01-01

    In this work it was studied operation of preheated regenerative chain from NPP Cernavoda. To obtain this analysis coupled analyses of condensate system, water supply system, and drain cooler system were effected. The analysis boundaries are: Upstream: - Steam condensers - Turbine Bleed Steam Downstream: - Steam Generators. The analysis was made in two steps: 1) Getting of hydraulic characteristic of pipe network from steam condensers to steam generators at nominal regime; this step was obtained with hydraulic package called PIPENET. 2) Real thermal hydraulic analyses were done based on hydraulic characteristic of pipe network and supplementary data required for heat transfer calculation in equipment of preheated regenerative chain. Thermal analyses were done using MMS package and referred to normal operating regimes, namely, nominal operating regime required for calibration of calculating model, shutdown regime, start-up regime from zero power hot to nominal power and to abnormal operating regimes, namely, turbine trip, reactor trip and loss of two condensate pumps. The results were compared with already existing analysis and showed the largest differences at interface areas (i.e. 5%). This led US to idea of extending analysis to all secondary circuits in order to reduce the number of boundary conditions which can generate uncertainty in analysis. In this analysis we obtained an advanced model of preheated regenerative chain of secondary circuit in Cernavoda NPP which could be extended up to cover the whole secondary circuit by including the analysis of steam generators, turbine, and steam condenser. (authors)

  12. A comparative study of the regenerative effect of sinus bone grafting with platelet-rich fibrin-mixed Bio-Oss® and commercial fibrin-mixed Bio-Oss®: an experimental study.

    Science.gov (United States)

    Xuan, Feng; Lee, Chun-Ui; Son, Jeong-Seog; Jeong, Seung-Mi; Choi, Byung-Ho

    2014-06-01

    Anorganic bovine bone (Bio-Oss®) particles are one of the most popular grafting materials. The particles are often mixed with platelet-rich fibrin (PRF) or a commercial fibrin (Tisseel®) to form a mouldable graft material. The objective of this study was to compare the potentials of PRF-mixed Bio-Oss® and Tisseel®-mixed Bio-Oss® to enhance bone regeneration in a canine sinus model. Six mongrel dogs were used in this study. After elevating the sinus membrane in both maxillary sinus cavities, an implant was placed into the sinus cavity. In one of the sinus cavities, the PRF/Bio-Oss® composite was grafted, and the Tisseel®/Bio-Oss® composite was grafted in the other sinus cavity. After a 6 month healing period, bone formation in the graft sites and bone-implant contact were evaluated. The mean osseointegration rate was 43.5 ± 12.4% and new bone formation rate 41.8 ± 5.9% in the PRF/Bio-Oss® composite sites. In the Tisseel®/Bio-Oss® composite sites they were 30.7 ± 7.9% and 31.3 ± 6.4%. There were statistically significant differences between the groups. The findings from this study suggest that when platelet-rich fibrin is used as an adjunct to Bio-Oss® particles for bone augmentation in the maxillary sinus, bone formation in the graft sites is significantly greater than when Tisseel® is used. Copyright © 2013 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  13. Bone marrow-derived mesenchymal stem cells effectively regenerate fibrotic liver in bile duct ligation rat model.

    Science.gov (United States)

    Mohamed, Hoda E; Elswefy, Sahar E; Rashed, Laila A; Younis, Nahla N; Shaheen, Mohamed A; Ghanim, Amal M H

    2016-03-01

    Mesenchymal stem cells (MSCs) have attracted lots of attention for the treatment of acute liver failure and end-stage liver diseases. This study aimed at investigating the fundamental mechanism by which bone marrow-derived MSCs (BM-MSCs) induce liver regeneration of fibrotic liver in rats. Rats underwent bile duct ligation (BDL) surgery and four weeks later they were treated with either BM-MSCs (3 × 10(6) cells /rat, once, tail vein injection) or silymarin (100 mg/kg, daily, orally) for four weeks. Liver function tests and hepatic oxidative stress were determined. Hepatic injury and fibrosis were assessed by H and E, Sirus red staining and immunohistochemical expression of α-smooth muscle actin (α-SMA). Hepatocyte growth factor (HGF) and the gene expression of cytokeratin-19 (CK-19) and matrix metalloproteinase-2 (MMP-2) in liver tissue were determined. BDL induced cholestatic liver injury characterized by elevated ALT and AST activities, bilirubin and decreased albumin. The architecture damage was staged as Metavir score: F3, A3. Fibrosis increased around proliferating bile duct as indicated by sirus red staining and α-SMA immunostaining. Fibrogenesis was favored over fibrolysis and confirmed by decreased HGF with increased expression of CK-19, but decreased MMP-2 expression. BM-MSCs treatment restored deteriorated liver functions and restored the histological changes, resolved fibrosis by improving liver regenerative capabilities (P liver regenerative capabilities can be stimulated by BM-MSCs via augmentation of HGF that subsequently up-regulate MMP-2 mRNA while downregulating CK-19 mRNA. © 2016 by the Society for Experimental Biology and Medicine.

  14. Effects of treatments for experimental bone tumor on prostaglandin E level and bone scintigrams

    Energy Technology Data Exchange (ETDEWEB)

    Otsuka, Nobuaki; Ito, Yasuhiko; Yoneda, Masaya; Muranaka, Akira; Nishishita, Soichi; Morita, Rikushi [Kawasaki Medical School, Kurashiki, Okayama (Japan)

    1983-10-01

    The role of Prostaglandin E (PgE) level was studied experimentally as follows: 1) intrahepatic implantation of VX-2, 2) intravenous injection of VX-2, 3) effect of treatments on intramedullary implanted VX-2. The levels of PgE in intrahepatic and intravenous transplantation were not higher than that of intramedullary transplantation. Mitomycin C (MMC) did not reduce the PgE level and appearance time of bone scan abnormality was the same as that of untreated animals. A combination of indomethacin and MMC caused a delay in appearance time of bone scan abnormalities.

  15. [Ethical aspects of regenerative medicine, with special reference to embryonic stem cells and therapeutic cloning].

    Science.gov (United States)

    Imura, Hiroo

    2003-03-01

    Regenerative medicine is expected to be new therapeutic means for treating incurable diseases but requires serious bioethical consideration. Embryonic stem(ES) cells, that are pleuripotent cells suitable to regenerative medicine, can be used in Japan for investigative use under a strict control by guide-lines. On the other hand, use of embryo produced by nuclear transfer has not been allowed in Japan and further serious consideration is required. Some other ethical aspects of regenerative medicine are also discussed.

  16. Tissue engineering and microRNAs: future perspectives in regenerative medicine.

    Science.gov (United States)

    Gori, Manuele; Trombetta, Marcella; Santini, Daniele; Rainer, Alberto

    2015-01-01

    Tissue engineering is a growing area of biomedical research, holding great promise for a broad range of potential applications in the field of regenerative medicine. In recent decades, multiple tissue engineering strategies have been adopted to mimic and improve specific biological functions of tissues and organs, including biomimetic materials, drug-releasing scaffolds, stem cells, and dynamic culture systems. MicroRNAs (miRNAs), noncoding small RNAs that negatively regulate the expression of downstream target mRNAs, are considered a novel class of molecular targets and therapeutics that may play an important role in tissue engineering. Herein, we highlight the latest achievements in regenerative medicine, focusing on the role of miRNAs as key modulators of gene expression, stem cell self-renewal, proliferation and differentiation, and eventually in driving cell fate decisions. Finally, we will discuss the contribution of miRNAs in regulating the rearrangement of the tissue microenvironment and angiogenesis, and the range of strategies for miRNA delivery into target cells and tissues. Manipulation of miRNAs is an alternative approach and an attractive strategy for controlling several aspects of tissue engineering, although some issues concerning their in vivo effects and optimal delivery methods still remain uncovered.

  17. The effect of 12-month participation in osteogenic and non-osteogenic sports on bone development in adolescent male athletes. The PRO-BONE study

    DEFF Research Database (Denmark)

    Vlachopoulos, Dimitris; Barker, Alan R; Ubago-Guisado, Esther

    2018-01-01

    OBJECTIVES: Research investigating the longitudinal effects of the most popular sports on bone development in adolescent males is scarce. The aim is to investigate the effect of 12-month participation in osteogenic and non-osteogenic sports on bone development. DESIGN: A 12-month study...... by dual-energy X-ray absorptiometry, and bone stiffness was measured by quantitative ultrasound. Bone outcomes at 12 months were adjusted for baseline bone status, age, height, lean mass and moderate to vigorous physical activity. RESULTS: Footballers had higher improvement in adjusted BMC at the total...... body, total hip, shaft, Ward's triangle, legs and bone stiffness compared to cyclists (6.3-8.0%). Footballers had significantly higher adjusted BMC at total body, shaft and legs compared to swimmers (5.4-5.6%). There was no significant difference between swimmers and cyclists for any bone outcomes...

  18. Error-rate performance analysis of opportunistic regenerative relaying

    KAUST Repository

    Tourki, Kamel; Yang, Hongchuan; Alouini, Mohamed-Slim

    2011-01-01

    In this paper, we investigate an opportunistic relaying scheme where the selected relay assists the source-destination (direct) communication. In our study, we consider a regenerative opportunistic relaying scheme in which the direct path can

  19. Stationary super-capacitor energy storage system to save regenerative braking energy in a metro line

    International Nuclear Information System (INIS)

    Teymourfar, Reza; Asaei, Behzad; Iman-Eini, Hossein; Nejati fard, Razieh

    2012-01-01

    Highlights: ► Super-capacitors are used to store regenerative braking energy in a metro network. ► A novel approach is proposed to model easily and accurately the metro network. ► An efficient approach is proposed to calculate the required super-capacitors. ► Maximum energy saving is around 44% at off-peak period and 42% at peak period. ► Benefit/cost analyses are performed for the suggested ESS. - Abstract: In this paper, the stationary super-capacitors are used to store a metro network regenerative braking energy. In order to estimate the required energy storage systems (ESSs), line 3 of Tehran metro network is modeled through a novel approach, in peak and off-peak conditions based on the real data obtained from Tehran metro office. A useful method is proposed to predict the maximum instantaneous regenerative energy which is delivered to each station before applying ESS and based on that the ESS configuration for each station is determined. Finally, the effectiveness of the proposed ESS is confirmed by economic evaluations and benefit/cost analyses on line 3 of Tehran metro network.

  20. Effects of multi-deficiencies-diet on bone parameters of peripheral bone in ovariectomized mature rat.

    Directory of Open Access Journals (Sweden)

    Thaqif El Khassawna

    Full Text Available Many postmenopausal women have vitamin D and calcium deficiency. Therefore, vitamin D and calcium supplementation is recommended for all patients with osteopenia and osteoporosis. We used an experimental rat model to test the hypothesis that induction of osteoporosis is more efficiently achieved in peripheral bone through combining ovariectomy with a unique multi-deficiencies diet (vitamin D depletion and deficient calcium, vitamin K and phosphorus. 14-week-old Sprague-Dawley rats served as controls to examine the initial bone status. 11 rats were bilaterally ovariectomized (OVX and fed with multi-deficiencies diet. Three months later the treated group and the Sham group (n = 8 were euthanized. Bone biomechanical competence of the diaphyseal bone was examined on both, tibia and femur. Image analysis was performed on tibia via µCT, and on femur via histological analysis. Lower torsional stiffness indicated inferior mechanical competence of the tibia in 3 month OVX+Diet. Proximal metaphyseal region of the tibia showed a diminished bone tissue portion to total tissue in the µCT despite the increased total area as evaluated in both µCT and histology. Cortical bone showed higher porosity and smaller cross sectional thickness of the tibial diaphysis in the OVX+Diet rats. A lower ALP positive area and elevated serum level of RANKL exhibited the unbalanced cellular interaction in bone remodeling in the OVX+Diet rat after 3 month of treatment. Interestingly, more adipose tissue area in bone marrow indicated an effect of bone loss similar to that observed in osteoporotic patients. Nonetheless, the presence of osteoid and elevated serum level of PTH, BGP and Opn suggest the development of osteomalacia rather than an osteoporosis. As the treatment and fracture management of both osteoporotic and osteomalacia patients are clinically overlapping, this study provides a preclinical animal model to be utilized in local supplementation of minerals, drugs

  1. Effects of multi-deficiencies-diet on bone parameters of peripheral bone in ovariectomized mature rat.

    Science.gov (United States)

    El Khassawna, Thaqif; Böcker, Wolfgang; Govindarajan, Parameswari; Schliefke, Nathalie; Hürter, Britta; Kampschulte, Marian; Schlewitz, Gudrun; Alt, Volker; Lips, Katrin Susanne; Faulenbach, Miriam; Möllmann, Henriette; Zahner, Daniel; Dürselen, Lutz; Ignatius, Anita; Bauer, Natali; Wenisch, Sabine; Langheinrich, Alexander Claus; Schnettler, Reinhard; Heiss, Christian

    2013-01-01

    Many postmenopausal women have vitamin D and calcium deficiency. Therefore, vitamin D and calcium supplementation is recommended for all patients with osteopenia and osteoporosis. We used an experimental rat model to test the hypothesis that induction of osteoporosis is more efficiently achieved in peripheral bone through combining ovariectomy with a unique multi-deficiencies diet (vitamin D depletion and deficient calcium, vitamin K and phosphorus). 14-week-old Sprague-Dawley rats served as controls to examine the initial bone status. 11 rats were bilaterally ovariectomized (OVX) and fed with multi-deficiencies diet. Three months later the treated group and the Sham group (n = 8) were euthanized. Bone biomechanical competence of the diaphyseal bone was examined on both, tibia and femur. Image analysis was performed on tibia via µCT, and on femur via histological analysis. Lower torsional stiffness indicated inferior mechanical competence of the tibia in 3 month OVX+Diet. Proximal metaphyseal region of the tibia showed a diminished bone tissue portion to total tissue in the µCT despite the increased total area as evaluated in both µCT and histology. Cortical bone showed higher porosity and smaller cross sectional thickness of the tibial diaphysis in the OVX+Diet rats. A lower ALP positive area and elevated serum level of RANKL exhibited the unbalanced cellular interaction in bone remodeling in the OVX+Diet rat after 3 month of treatment. Interestingly, more adipose tissue area in bone marrow indicated an effect of bone loss similar to that observed in osteoporotic patients. Nonetheless, the presence of osteoid and elevated serum level of PTH, BGP and Opn suggest the development of osteomalacia rather than an osteoporosis. As the treatment and fracture management of both osteoporotic and osteomalacia patients are clinically overlapping, this study provides a preclinical animal model to be utilized in local supplementation of minerals, drugs and growth factors

  2. No effect of Osteoset, a bone graft substitute, on bone healing in humans: a prospective randomized double-blind study

    DEFF Research Database (Denmark)

    Petruskevicius, Juozas; Nielsen, Mette Strange; Kaalund, Søren

    2002-01-01

    We studied the effects of a newly marketed bone substitute, Osteoset, on bone healing in a tibial defect in humans. 20 patients undergoing an ACL (anterior cruciate ligament) reconstruction with bone-patella tendon-bone graft were block-randomized into 2 groups of 10 each. In the treatment group......, the tibial defect was filled manually with Osteoset pellets, in the control group the defect was left empty. CTs of the defect were taken on the first day after the operation, 6 weeks, 3 and 6 months postoperatively. We found about the same amount of bone in the defect in the Osteoset and control groups...... after 6 weeks, 3, and 6 months. In the control group, but not in the Osteoset group, the bone volume increased from 6 weeks to 3 months. The Osteoset pellets were almost resorbed after 6 weeks....

  3. Ectodermal Differentiation of Wharton's Jelly Mesenchymal Stem Cells for Tissue Engineering and Regenerative Medicine Applications.

    Science.gov (United States)

    Jadalannagari, Sushma; Aljitawi, Omar S

    2015-06-01

    Mesenchymal stem cells (MSCs) from Wharton's jelly (WJ) of the human umbilical cord are perinatal stem cells that have self-renewal ability, extended proliferation potential, immunosuppressive properties, and are accordingly excellent candidates for tissue engineering. These MSCs are unique, easily accessible, and a noncontroversial cell source of regeneration in medicine. Wharton's jelly mesenchymal stem cells (WJMSCs) are multipotent and capable of multilineage differentiation into cells like adipocytes, bone, cartilage, and skeletal muscle upon exposure to appropriate conditions. The ectoderm is one of the three primary germ layers found in the very early embryo that differentiates into the epidermis, nervous system (spine, peripheral nerves, brain), and exocrine glands (mammary, sweat, salivary, and lacrimal glands). Accumulating evidence shows that MSCs obtained from WJ have an ectodermal differentiation potential. The current review examines this differentiation potential of WJMSC into the hair follicle, skin, neurons, and sweat glands along with discussing the potential utilization of such differentiation in regenerative medicine.

  4. Synergistic effects of dimethyloxallyl glycine and recombinant human bone morphogenetic protein-2 on repair of critical-sized bone defects in rats

    Science.gov (United States)

    Qi, Xin; Liu, Yang; Ding, Zhen-Yu; Cao, Jia-Qing; Huang, Jing-Huan; Zhang, Jie-Yuan; Jia, Wei-Tao; Wang, Jing; Liu, Chang-Sheng; Li, Xiao-Lin

    2017-02-01

    In bone remodeling, osteogenesis is closely coupled to angiogenesis. Bone tissue engineering using multifunctional bioactive materials is a promising technique which has the ability to simultaneously stimulate osteogenesis and angiogenesis for repair of bone defects. We developed mesoporous bioactive glass (MBG)-doped poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) composite scaffolds as delivery vehicle. Two bioactive molecules, dimethyloxalylglycine (DMOG), a small-molecule angiogenic drug, and recombinant human bone morphogenetic protein-2 (rhBMP-2), an osteoinductive growth factor, were co-incorporated into the scaffold. The synergistic effects of DMOG and rhBMP-2 released in the composite scaffolds on osteogenic and angiogenic differentiation of hBMSCs were investigated using real-time quantitative polymerase chain reaction and western blotting. Moreover, in vivo studies were conducted to observe bone regeneration and vascular formation of critical-sized bone defects in rats using micro-computed tomography, histological analyses, Microfil® perfusion, fluorescence labeling, and immunohistochemical analysis. The results showed that DMOG and rhBMP-2 released in the MBG-PHBHHx scaffolds did exert synergistic effects on the osteogenic and angiogenic differentiation of hBMSCs. Moreover, DMOG and rhBMP-2 produced significant increases in newly-formed bone and neovascularization of calvarial bone defects in rats. It is concluded that the co-delivery strategy of both rhBMP-2 and DMOG can significantly improve the critical-sized bone regeneration.

  5. Vitamin D, muscle and bone: Integrating effects in development, aging and injury.

    Science.gov (United States)

    Girgis, Christian M; Baldock, Paul A; Downes, Michael

    2015-07-15

    Beyond the established effects of muscle loading on bone, a complex network of hormones and growth factors integrates these adjacent tissues. One such hormone, vitamin D, exerts broad-ranging effects in muscle and bone calcium handling, differentiation and development. Vitamin D also modulates muscle and bone-derived hormones, potentially facilitating cross-talk between these tissues. In the clinical setting, vitamin D deficiency or mutations of the vitamin D receptor result in generalized atrophy of muscle and bone, suggesting coordinated effects of vitamin D at these sites. In this review, we discuss emerging evidence that vitamin D exerts specific effects throughout the life of the musculoskeletal system - in development, aging and injury. From this holistic viewpoint, we offer new insights into an old debate: whether vitamin D's effects in the musculoskeletal system are direct via local VDR signals or indirect via its systemic effects in calcium and phosphate homeostasis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Design, synthesis, and initial evaluation of D-glyceraldehyde crosslinked gelatin-hydroxyapatite as a potential bone graft substitute material

    Science.gov (United States)

    Florschutz, Anthony Vatroslav

    Utilization of bone grafts for the treatment of skeletal pathology is a common practice in orthopaedic, craniomaxillofacial, dental, and plastic surgery. Autogenous bone graft is the established archetype but has disadvantages including donor site morbidity, limited supply, and prolonging operative time. In order to avoid these and other issues, bone graft substitute materials are becoming increasingly prevalent among surgeons for reconstructing skeletal defects and arthrodesis applications. Bone graft substitutes are biomaterials, biologics, and guided tissue/bone regenerative devices that can be used alone or in combinations as supplements or alternatives to autogenous bone graft. There is a growing interest and trend to specialize graft substitutes for specific indications and although there is good rationale for this indication-specific approach, the development and utility of a more universal bone graft substitute may provide a better answer for patients and surgeons. The aim of the present research focuses on the design, synthesis, and initial evaluation of D-glyceraldehyde crosslinked gelatin-hydroxyapatite composites for potential use as a bone graft substitutes. After initial establishment of rational material design, gelatinhydroxyapatite scaffolds were fabricated with different gelatin:hydroxyapatite ratios and crosslinking concentrations. The synthesized scaffolds were subsequently evaluated on the basis of their swelling behavior, porosity, density, percent composition, mechanical properties, and morphology and further assessed with respect to cell-biomaterial interaction and biomineralization in vitro. Although none of the materials achieved mechanical properties suitable for structural graft applications, a reproducible material design and synthesis was achieved with properties recognized to facilitate bone formation. Select scaffold formulations as well as a subset of scaffolds loaded with recombinant human bone morphogenetic protein-2 were

  7. Performance analysis of a small regenerative gas turbine system adopting steam injection and side-wall in finned tube evaporator

    International Nuclear Information System (INIS)

    Kang, Soo Young; Lee, Jong Jun; Kim, Tong Seop

    2009-01-01

    Small gas turbines in power range of several MWs are quite suitable for application in distributed generation as well as Community Energy Systems (CES). Humidification is an effective way to improve gas turbine performance, and steam injection is the most general and practically feasible method. This study intended to examine the effect of steam injection on the performance of several MW class gas turbines. A primary concern is given to the regenerative cycle gas turbine. The steam injection effect on the performance of a system without the regenerator (i.e. a simple cycle) is also examined. In addition, the influence of bypass of some of the exhaust gas on the performance of the gas turbine, especially the regenerative cycle gas turbine, is evaluated.

  8. Thermo- economical consideration of Regenerative organic Rankine cycle coupling with the absorption chiller systems incorporated in the trigeneration system

    International Nuclear Information System (INIS)

    Anvari, Simin; Taghavifar, Hadi; Parvishi, Alireza

    2017-01-01

    Highlights: • A new trigeneration cycle was studied from a new viewpoint of exergoeconomic and thermodynamic. • Organic Rankine and refrigeration cycles are used for recovery waste heat of cogeneration system. • Application of trigeneration cycles is advantageous in economical and thermodynamic aspects. - Abstract: In this paper, a combined cooling, heating and power cycle is proposed consisting of three sections of gas turbine and heat recovery steam generator cycle, Regenerative organic Rankine cycle, and absorption refrigeration cycle. This trigeneration cycle is subjected to a thorough thermodynamic and exergoeconomic analysis. The principal goal followed in the investigation is to address the thermodynamic and exergoeconomic of a trigeneration cycle from a new prospective such that the economic and thermodynamic viability of incorporating Regenerative organic Rankine cycle, and absorption refrigeration cycle to the gas turbine and heat recovery steam generator cycle is being investigated. Thus, the cost-effectiveness of the introduced method can be studied and further examined. The results indicate that adding Regenerative organic Rankine cycle to gas turbine and heat recovery steam generator cycle leads to 2.5% increase and the addition of absorption refrigeration cycle to the gas turbine and heat recovery steam generator/ Regenerative Organic Rankine cycle would cause 0.75% increase in the exergetic efficiency of the entire cycle. Furthermore, from total investment cost of the trigeneration cycle, only 5.5% and 0.45% results from Regenerative organic Rankine cycle and absorption refrigeration cycles, respectively.

  9. Regenerative Payload for GSAT-3 & Advanced Communication ...

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Regenerative Payload for GSAT-3 & Advanced Communication Series Satellite. GSAT-4. 8 Ka -Band Spot Beams; 8 Narrow Band (64Kbps) Channels/ Beam; 1 Wide Band (2Mbps) Channel/ Beam;; 64 Kbps Signaling Channel; On-Board Switch Matrix; 8 Channel ...

  10. Effect of parity on bone mineral density: A systematic review and meta-analysis.

    Science.gov (United States)

    Song, Seung Yeon; Kim, Yejee; Park, Hyunmin; Kim, Yun Joo; Kang, Wonku; Kim, Eun Young

    2017-08-01

    Parity has been suggested as a possible factor affecting bone health in women. However, study results on its association with bone mineral density are conflicting. PubMed, EMBASE, the Cochrane Library, and Korean online databases were searched using the terms "parity" and "bone mineral density", in May 2016. Two independent reviewers extracted the mean and standard deviation of bone mineral density measurements of the femoral neck, spine, and total hip in nulliparous and parous healthy women. Among the initial 10,146 studies, 10 articles comprising 24,771 women met the inclusion criteria. The overall effect of parity on bone mineral density was positive (mean difference=5.97mg/cm 2 ; 95% CI 2.37 to 9.57; P=0.001). The effect appears site-specific as parity was not significantly associated with the bone mineral density of the femoral neck (P=0.09) and lumbar spine (P=0.17), but parous women had significantly higher bone mineral density of the total hip compared to nulliparous women (mean difference=5.98mg/cm 2 ; 95% CI 1.72 to 10.24; P=0.006). No obvious heterogeneity existed among the included studies (femoral neck I 2 =0%; spine I 2 =31%; total hip I 2 =0%). Parity has a positive effect on bone in healthy, community-dwelling women and its effect appears site-specific. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Regenerative adsorbent heat pump

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative adsorbent heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system and at least a portion of the heat of adsorption. A series of at least four compressors containing an adsorbent is provided. A large amount of heat is transferred from compressor to compressor so that heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  12. Highly Efficient, Durable Regenerative Solid Oxide Stack, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Precision Combustion, Inc. (PCI) proposes to develop a highly efficient regenerative solid oxide stack design. Novel structural elements allow direct internal...

  13. Effects of amlodipine on bone metabolism in male albino Wistar rats

    Directory of Open Access Journals (Sweden)

    Iveta Gradošová

    2011-01-01

    Full Text Available Amlodipine (dihydropyridine-type calcium channel blocker is a widely used agent for the treatment of hypertension in human and veterinary medicine but detailed information about its effects on bone metabolism are missing. Therefore, the aim of our study was to investigate the effect of amlodipine on bone metabolism in male albino Wistar rats. Amlodipine (0.3 mg/100 g body weight; gavage was administered to 8 rats for 8 weeks. Control group (n = 8 received aqua pro inj. (0.2 ml/100 g body weight; gavage. Bone marker concentrations of carboxy-terminal cross-linking telopeptide of type I collagen (CTX-I and aminoterminal propeptide of procollagen type I in serum, and of bone alkaline phosphatase (BALP in both serum and bone homogenate were measured by enzyme immunoassay. We investigated the expression of bone morphogenetic protein 2 (BMP-2 in proximal tibia using Western blotting, and bone mineral density was measured by Dual-energy X-ray Absorptiometry in lumbar and caudal vertebrae and in femoral areas. Mechanical properties of the femurs were measured by three-point bending of the shaft and compression testing of the femoral neck. After 8 weeks of amlodipine administration there was a significant decrease in serum concentrations of BALP (p = 0.0009 and CTX-I (p = 0.003, and the content of BALP in bone homogenate (p = 0.026 compared to the control. In addition, Western blot analysis indicated increased BMP-2 protein concentration after amlodipine administration. Our findings suggest that amlodipine has a retarding influence on bone metabolism in rats by decreasing bone turnover, which probably in consequence increases expression of BMP-2.

  14. Smart Dressings Based on Nanostructured Fibers Containing Natural Origin Antimicrobial, Anti-Inflammatory, and Regenerative Compounds

    Directory of Open Access Journals (Sweden)

    Vanesa Andreu

    2015-08-01

    Full Text Available A fast and effective wound healing process would substantially decrease medical costs, wound care supplies, and hospitalization significantly improving the patients’ quality of life. The search for effective therapeutic approaches seems to be imperative in order to avoid the aggravation of chronic wounds. In spite of all the efforts that have been made during the recent years towards the development of artificial wound dressings, none of the currently available options combine all the requirements necessary for quick and optimal cutaneous regeneration. Therefore, technological advances in the area of temporary and permanent smart dressings for wound care are required. The development of nanoscience and nanotechnology can improve the materials and designs used in topical wound care in order to efficiently release antimicrobial, anti-inflammatory and regenerative compounds speeding up the endogenous healing process. Nanostructured dressings can overcome the limitations of the current coverings and, separately, natural origin components can also overcome the drawbacks of current antibiotics and antiseptics (mainly cytotoxicity, antibiotic resistance, and allergies. The combination of natural origin components with demonstrated antibiotic, regenerative, or anti-inflammatory properties together with nanostructured materials is a promising approach to fulfil all the requirements needed for the next generation of bioactive wound dressings. Microbially compromised wounds have been treated with different essential oils, honey, cationic peptides, aloe vera, plant extracts, and other natural origin occurring antimicrobial, anti-inflammatory, and regenerative components but the available evidence is limited and insufficient to be able to draw reliable conclusions and to extrapolate those findings to the clinical practice. The evidence and some promising preliminary results indicate that future comparative studies are justified but instead of talking about

  15. Effect of latrogenic trauma on the bone scintigram: an animal study. Concise communication

    International Nuclear Information System (INIS)

    Alazraki, N.; Moitoza, J.; Heaphy, J.; Taylor, A. Jr.

    1984-01-01

    An animal study was performed to assess the effect on the Tc-99m phosphate bone scintigram of injury by needle aspiration or drill hole to metaphyseal and diaphyseal areas in immature and mature bones. Results showed that in 12 immature rabbits such trauma to metaphyseal regions had no effect on the bone image. Similar metaphyseal trauma in two mature dogs showed definite abnormalities on the bone image, but in one mature rabbit, no abnormality could be identified by scintigram. Diaphyseal trauma always gave a definitely abnormal bone image. Extrapolation of these results to humans should be cautious, but it suggests that needling or drilling in metaphyseal regions in neonates or young children probably does not affect later bone images

  16. Active Magnetic Regenerative Liquefier

    Energy Technology Data Exchange (ETDEWEB)

    Barclay, John A. [Heracles Energy Corporation d.b.a. Prometheus Energy, Washington, DC (United States); Oseen-Send, Kathryn [Heracles Energy Corporation d.b.a. Prometheus Energy, Washington, DC (United States); Ferguson, Luke [Heracles Energy Corporation d.b.a. Prometheus Energy, Washington, DC (United States); Pouresfandiary, Jamshid [Heracles Energy Corporation d.b.a. Prometheus Energy, Washington, DC (United States); Cousins, Anand [Heracles Energy Corporation d.b.a. Prometheus Energy, Washington, DC (United States); Ralph, Heather [Heracles Energy Corporation d.b.a. Prometheus Energy, Washington, DC (United States); Hampto, Tom [Heracles Energy Corporation d.b.a. Prometheus Energy, Washington, DC (United States)

    2016-01-12

    This final report for the DOE Project entitled Active Magnetic Regenerative Liquefier (AMRL) funded under Grant DE-FG36-08GO18064 to Heracles Energy Corporation d.b.a. Prometheus Energy (Heracles/Prometheus) describes an active magnetic regenerative refrigerator (AMRR) prototype designed and built during the period from July 2008 through May 2011. The primary goal of this project was to make significant technical advances toward highly efficient liquefaction of hydrogen. Conventional hydrogen liquefiers at any scale have a maximum FOM of ~0.35 due primarily to the intrinsic difficulty of rapid, efficient compression of either hydrogen or helium working gases. Numerical simulation modeling of high performance AMRL designs indicates certain designs have promise to increase thermodynamic efficiency from a FOM of ~0.35 toward ~0.5 to ~0.6. The technical approach was the use of solid magnetic working refrigerants cycled in and out of high magnetic fields to build an efficient active regenerative magnetic refrigeration module providing cooling power for AMRL. A single-stage reciprocating AMRR with a design temperature span from ~290 K to ~120 K was built and tested with dual magnetic regenerators moving in and out of the conductively-cooled superconducting magnet subsystem. The heat transfer fluid (helium) was coupled to the process stream (refrigeration/liquefaction load) via high performance heat exchangers. In order to maximize AMRR efficiency a helium bypass loop with adjustable flow was incorporated in the design because the thermal mass of magnetic refrigerants is higher in low magnetic field than in high magnetic field. Heracles/Prometheus designed experiments to measure AMRR performance under a variety of different operational parameters such as cycle frequency, magnetic field strength, heat transfer fluid flow rate, amount of bypass flow of the heat transfer fluid while measuring work input, temperature span, cooling capability as a function of cold temperature

  17. Independent effects of the chemical and microstructural surface properties of polymer/ceramic composites on proliferation and osteogenic differentiation of human MSCs.

    Science.gov (United States)

    Sun, Lanying; Danoux, Charlène B; Wang, Qibao; Pereira, Daniel; Barata, David; Zhang, Jingwei; LaPointe, Vanessa; Truckenmüller, Roman; Bao, Chongyun; Xu, Xin; Habibovic, Pamela

    2016-09-15

    Within the general aim of finding affordable and sustainable regenerative solutions for damaged and diseased tissues and organs, significant efforts have been invested in developing synthetic alternatives to natural bone grafts, such as autografts. Calcium phosphate (CaP) ceramics are among widely used synthetic bone graft substitutes, but their mechanical properties and bone regenerative capacity are still outperformed by their natural counterparts. In order to improve the existing synthetic bone graft substitutes, it is imperative to understand the effects of their individual properties on a biological response, and to find a way to combine the desired properties into new, improved functional biomaterials. To this end, we studied the independent effects of the chemical composition and surface microstructure of a poly(lactic acid)/hydroxyapatite (PLA/HA) composite material on the proliferation and osteogenic differentiation of clinically relevant bone marrow-derived human mesenchymal stromal cells (hMSCs). While the molecular weight of the polymer and presence/absence of the ceramic phase were used as the chemical variables, a soft embossing technique was used to pattern the surfaces of all materials with either pits or pillars with identical microscale dimensions. The results indicated that, while cell morphology was affected by both the presence and availability of HA and by the surface microstructure, the effect of the latter parameter on cell proliferation was negligible. The osteogenic differentiation of hMSCs, and in particular the expression of bone morphogenetic protein 2 (BMP-2) and osteopontin (OP) were significantly enhanced when cells were cultured on the composite based on low-molecular-weight PLA, as compared to the high-molecular-weight PLA-based composite and the two pure polymers. The OP expression on the low-molecular-weight PLA-based composite was further enhanced when the surface was patterned with pits. Taken together, within this experimental

  18. Clay nanoparticles for regenerative medicine and biomaterial design: A review of clay bioactivity.

    Science.gov (United States)

    Mousa, Mohamed; Evans, Nicholas D; Oreffo, Richard O C; Dawson, Jonathan I

    2018-03-01

    Clay nanoparticles, composites and hydrogels are emerging as a new class of biomaterial with exciting potential for tissue engineering and regenerative medicine applications. Clay particles have been extensively explored in polymeric nanocomposites for self-assembly and enhanced mechanical properties as well as for their potential as drug delivery modifiers. In recent years, a cluster of studies have explored cellular interactions with clay nanoparticles alone or in combination with polymeric matrices. These pioneering studies have suggested new and unforeseen utility for certain clays as bioactive additives able to enhance cellular functions including adhesion, proliferation and differentiation, most notably for osteogenesis. This review examines the recent literature describing the potential effects of clay-based nanomaterials on cell function and examines the potential role of key clay physicochemical properties in influencing such interactions and their exciting possibilities for regenerative medicine. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Design, clinical translation and immunological response of biomaterials in regenerative medicine

    Science.gov (United States)

    Sadtler, Kaitlyn; Singh, Anirudha; Wolf, Matthew T.; Wang, Xiaokun; Pardoll, Drew M.; Elisseeff, Jennifer H.

    2016-07-01

    The field of regenerative medicine aims to replace tissues lost as a consequence of disease, trauma or congenital abnormalities. Biomaterials serve as scaffolds for regenerative medicine to deliver cells, provide biological signals and physical support, and mobilize endogenous cells to repair tissues. Sophisticated chemistries are used to synthesize materials that mimic and modulate native tissue microenvironments, to replace form and to elucidate structure-function relationships of cell-material interactions. The therapeutic relevance of these biomaterial properties can only be studied after clinical translation, whereby key parameters for efficacy can be defined and then used for future design. In this Review, we present the development and translation of biomaterials for two tissue engineering targets, cartilage and cornea, both of which lack the ability to self-repair. Finally, looking to the future, we discuss the role of the immune system in regeneration and the potential for biomaterial scaffolds to modulate immune signalling to create a pro-regenerative environment.

  20. Development of a computer code for a regenerative Rankine cycle analysis

    International Nuclear Information System (INIS)

    Wi, Myung Hwan; Kim, Seong O; Choi, Seok Ki; Kim, Jin Hwan

    2005-01-01

    A regenerative Rankine cycle can increase the thermal efficiency of a steam system without increasing the steam pressure and temperature. The regenerative process involves heating the feedwater on its return trip to the steam generator by extracting steam at various stages of the turbine and transferring the energy to the feedwater via a feedwater heater. Some real plants use more than five feedwater heaters to enhance the cycle efficiency. However, the optimum number of feedwater heaters required is determined by balancing the efficiency improvement against the capital investment for a given cycle. In the present study, the computer code, TAOPCS, for the thermodynamic analysis of a regenerative steam cycle was developed to optimally design and accurately analyze the behavior of the power conversion system of Korea Advance Liquid Metal Reactor (KALIMER). In order to understand the functions and the characteristics of the code, the main features of the TAPCS were described and the example results are presented in this paper