WorldWideScience

Sample records for bone regenerative effects

  1. [Effect of combined therapeutic methods on healing of periodontal vertical bone defects in regenerative surgery].

    Science.gov (United States)

    Dori, Ferenc

    2009-03-15

    Several methods are available to enhance the healing and regeneration of periodontal tissues after surgical therapy of intrabony defects. The main indications for the use of combined regenerative procedures are the extent and morphology of the osseous lesions. The six studies of the present dissertation focused on the clinical effect of different barrier techniques, bone substitutes, enamel matrix derivatives and a growth factors containing adjuvant used in various combinations on the healing of severe periodontal intrabony impairments. Synthetic, xenogenetic and autologous materials were used in these randomized clinical studies. Mechanical barriers (polytetrafluoroethylene and collagen membranes) for GTR, biological barriers/enamel matrix proteins (EMD), synthetic (beta-TCP) and xenogeneic (NBM) bone grafts and autologous platelet-rich plasma (PRP) were combined in the test and control groups of the trials. The main clinical variable was the clinical attachment level (CAL) and the subsidiary one was the probing pocket depth (PPD), estimated at baseline and after one year. The summation of the results after the statistical analysis takes cognizance of the followings: a) Each of the eleven regenerative methods evaluated (ten combined procedures) leads to significant CAL gain and PPD decrease. b) Using beta-TCP or NBM with EMD or with PRP+GTR and GTR's, the difference between the parameters of the test and control groups were not statistically significant. c) It was confirmed in four studies that the addition of PRP to graft materials has not increased significantly the positive outcomes independent of the type of barrier or graft. d) Adding platelet-rich plasma to natural bone mineral, no benefit was observed from the point of view of the clinical variables. e) The polypeptide proteins of the platelet-rich plasma do not enhance the clinical regenerative effect of enamel matrix proteins. In conclusion, the option of the periodontal surgeons between these methods

  2. Are bone marrow regenerative cells ideal seed cells for the treatment of cerebral ischemia?

    Institute of Scientific and Technical Information of China (English)

    Yi Li; Xuming Hua; Fang Hua; Wenwei Mao; Liang Wan; Shiting Li

    2013-01-01

    Bone marrow cells for the treatment of ischemic brain injury may depend on the secretion of a large number of neurotrophic factors. Bone marrow regenerative cells are capable of increasing the secretion of neurotrophic factors. In this study, after tail vein injection of 5-fluorouracil for 7 days, bone marrow cells and bone marrow regenerative cells were isolated from the tibias and femurs of rats, and then administered intravenously via the tail vein after focal cerebral ischemia. Immunohistological staining and reverse transcription-PCR detection showed that transplanted bone marrow cells and bone marrow regenerative cells could migrate and survive in the ischemic regions, such as the cortical and striatal infarction zone. These cells promote vascular endothelial cell growth factor mRNA expression in the ischemic marginal zone surrounding the ischemic penumbra of the cortical and striatal infarction zone, and have great advantages in promoting the recovery of neurological function, reducing infarct size and promoting angiogenesis. Bone marrow regenerative cells exhibited stronger neuroprotective effects than bone marrow cells. Our experimental findings indicate that bone marrow regenerative cells are preferable over bone marrow cells for cell therapy for neural regeneration after cerebral ischemia. Their neuroprotective effect is largely due to their ability to induce the secretion of factors that promote vascular regeneration, such as vascular endothelial growth factor.

  3. Adaptive scapula bone remodeling computational simulation: Relevance to regenerative medicine

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Gulshan B., E-mail: gbsharma@ucalgary.ca [Emory University, Department of Radiology and Imaging Sciences, Spine and Orthopaedic Center, Atlanta, Georgia 30329 (United States); University of Pittsburgh, Swanson School of Engineering, Department of Bioengineering, Pittsburgh, Pennsylvania 15213 (United States); University of Calgary, Schulich School of Engineering, Department of Mechanical and Manufacturing Engineering, Calgary, Alberta T2N 1N4 (Canada); Robertson, Douglas D., E-mail: douglas.d.robertson@emory.edu [Emory University, Department of Radiology and Imaging Sciences, Spine and Orthopaedic Center, Atlanta, Georgia 30329 (United States); University of Pittsburgh, Swanson School of Engineering, Department of Bioengineering, Pittsburgh, Pennsylvania 15213 (United States)

    2013-07-01

    actual specimen. Low predicted bone density was lower than actual specimen. Differences were probably due to applied muscle and joint reaction loads, boundary conditions, and values of constants used. Work is underway to study this. Nonetheless, the results demonstrate three dimensional bone remodeling simulation validity and potential. Such adaptive predictions take physiological bone remodeling simulations one step closer to reality. Computational analyses are needed that integrate biological remodeling rules and predict how bone will respond over time. We expect the combination of computational static stress analyses together with adaptive bone remodeling simulations to become effective tools for regenerative medicine research.

  4. Bone regenerative properties of rat, goat and human platelet-rich plasma.

    NARCIS (Netherlands)

    Plachokova, A.S.; Dolder, J. van den; Beucken, J.J.J.P. van den; Jansen, J.A.

    2009-01-01

    To explore the reported contradictory osteogenic capacity of platelet-rich plasma (PRP), the aim of the study was to examine and compare the bone regenerative effect of: PRPs of different species (rat, goat, human); human bone graft (HB) vs. HB combined with human PRP (HB+hPRP); and HB+hPRP vs. synt

  5. The bone regenerative effect of platelet-rich plasma in combination with an osteoconductive material in rat cranial defects.

    NARCIS (Netherlands)

    Plachokova, A.S.; Dolder, J. van den; Stoelinga, P.J.W.; Jansen, J.A.

    2006-01-01

    The effect of platelet-rich plasma (PRP) on bone regeneration, in combination with an osteoconductive material, was evaluated in a rat model. Cranial defects, 6.2 mm in diameter, were filled with HA/beta-TCP particles, HA/beta-TCP particles combined with PRP and HA/beta-TCP particles combined with P

  6. Biomimetically Enhanced Demineralized Bone Matrix for Bone Regenerative Applications

    Directory of Open Access Journals (Sweden)

    Sriram eRavindran

    2015-10-01

    Full Text Available Demineralized bone matrix (DBM is one of the most widely used bone graft materials in dentistry. However, the ability of DBM to reliably and predictably induce bone regeneration has always been a cause for concern. The quality of DBM varies greatly depending on several donor dependent factors and also manufacturing techniques. In order to standardize the quality and to enable reliable and predictable bone regeneration, we have generated a biomimetically-enhanced version of DBM (BE-DBM using clinical grade commercial DBM as a control. We have generated the BE-DBM by incorporating a cell-derived pro-osteogenic extracellular matrix (ECM within clinical grade DBM. In the present study, we have characterized the BE-DBM and evaluated its ability to induce osteogenic differentiation of human marrow derived stromal cells (HMSCs with respect to clinical grade commercial DBM. Our results indicate that the BE-DBM contains significantly more pro-osteogenic factors than DBM and enhances HMSC differentiation and mineralized matrix formation in vitro and in vivo. Based on our results, we envision that the BE-DBM has the potential to replace DBM as the bone graft material of choice.

  7. New regenerative treatment for tooth and periodontal bone defect associated with posttraumatic alveolar bone crush fracture.

    Science.gov (United States)

    Kiyokawa, Kensuke; Kiyokawa, Munekatsu; Takagi, Mikako; Rikimaru, Hideaki; Fukaya, Takuji

    2009-05-01

    We developed a new regenerative treatment of tooth and periodontal defect and tooth dislocation associated with posttraumatic alveolar bone crush fracture in the region of the maxillary anterior teeth. Using this method, dislocated teeth are first extracted and crushed alveolar bone is debrided. The dislocated teeth are then reimplanted, and cancellous iliac bone (bone marrow) is grafted to the area surrounding the teeth to regenerate periodontal bone. Tooth reimplantation was completely successful in 2 cases, and periodontal bone regenerated to a sufficient height with the iliac bone graft. Compared with the general method of treatment with a prosthesis (bridge), when using this method to treat cases such as these, there is no sacrifice of healthy teeth adjacent to the defect, and sufficient esthetic and functional recovery is possible. It is thought that this method could be applied as a new treatment of alveolar bone fracture in the future.

  8. Are bone marrow regenerative cells ideal seed cells for the treatment of cerebral ischemia?★

    OpenAIRE

    Li, Yi; Hua, Xuming; Hua, Fang; Mao, Wenwei; Wan, Liang; Li, Shiting

    2013-01-01

    Bone marrow cells for the treatment of ischemic brain injury may depend on the secretion of a large number of neurotrophic factors. Bone marrow regenerative cells are capable of increasing the secretion of neurotrophic factors. In this study, after tail vein injection of 5-fluorouracil for 7 days, bone marrow cells and bone marrow regenerative cells were isolated from the tibias and femurs of rats, and then administered intravenously via the tail vein after focal cerebral ischemia. Immunohist...

  9. Use of carboxymethyl cellulose and collagen carrier with equine bone lyophilisate suggests late onset bone regenerative effect in a humerus drill defect - a pilot study in six sheep

    DEFF Research Database (Denmark)

    Jensen, Jonas; Foldager, Casper Bindzus; Jakobsen, Thomas Vestergaard;

    2010-01-01

    in the other. The animals were divided into three groups of two animals and observed for 8, 12 and 16 weeks. Drill holes was evaluated using quantitative computed tomography (QCT), micro computed tomography (microCT) and histomorphometry. Mean total bone mineral density (BMD) of each implantation site...

  10. Changes of Bone Turnover Markers in Long Bone Nonunions Treated with a Regenerative Approach

    Directory of Open Access Journals (Sweden)

    Donatella Granchi

    2017-01-01

    Full Text Available In this clinical trial, we investigated if biochemical bone turnover markers (BTM changed according to the progression of bone healing induced by autologous expanded MSC combined with a biphasic calcium phosphate in patients with delayed union or nonunion of long bone fractures. Bone formation markers, bone resorption markers, and osteoclast regulatory proteins were measured by enzymatic immunoassay before surgery and after 6, 12, and 24 weeks. A satisfactory bone healing was obtained in 23 out of 24 patients. Nine subjects reached a good consolidation already at 12 weeks, and they were considered as the “early consolidation” group. We found that bone-specific alkaline phosphatase (BAP, C-terminal propeptide of type I procollagen (PICP, and beta crosslaps collagen (CTX changed after the regenerative treatment, BAP and CTX correlated to the imaging results collected at 12 and 24 weeks, and BAP variation along the healing course differed in patients who had an “early consolidation.” A remarkable decrease in BAP and PICP was observed at all time points in a single patient who experienced a treatment failure, but the predictive value of BTM changes cannot be determined. Our findings suggest that BTM are promising tools for monitoring cell therapy efficacy in bone nonunions, but studies with larger patient numbers are required to confirm these preliminary results.

  11. Intranasal delivery of hypoxia-preconditioned bone marrow-derived mesenchymal stem cells enhanced regenerative effects after intracerebral hemorrhagic stroke in mice.

    Science.gov (United States)

    Sun, Jinmei; Wei, Zheng Zachory; Gu, Xiaohuan; Zhang, James Ya; Zhang, Yongbo; Li, Jimei; Wei, Ling

    2015-10-01

    Intracerebral hemorrhagic stroke (ICH) causes high mortality and morbidity with very limited treatment options. Cell-based therapy has emerged as a novel approach to replace damaged brain tissues and promote regenerative processes. In this study we tested the hypothesis that intranasally delivered hypoxia-preconditioned BMSCs could reach the brain, promote tissue repair and improve functional recovery after ICH. Hemorrhagic stroke was induced in adult C57/B6 mice by injection of collagenase IV into the striatum. Animals were randomly divided into three groups: sham group, intranasal BMSC treatment group, and vehicle treatment group. BMSCs were pre-treated with hypoxic preconditioning (HP) and pre-labeled with Hoechst before transplantation. Behavior tests, including the mNSS score, rotarod test, adhesive removal test, and locomotor function evaluation were performed at varying days, up to 21days, after ICH to evaluate the therapeutic effects of BMSC transplantation. Western blots and immunohistochemistry were performed to analyze the neurotrophic effects. Intranasally delivered HP-BMSCs were identified in peri-injury regions. NeuN+/BrdU+ co-labeled cells were markedly increased around the hematoma region, and growth factors, including BDNF, GDNF, and VEGF were significantly upregulated in the ICH brain after BMSC treatment. The BMSC treatment group showed significant improvement in behavioral performance compared with the vehicle group. Our data also showed that intranasally delivered HP-BMSCs migrated to peri-injury regions and provided growth factors to increase neurogenesis after ICH. We conclude that intranasal administration of BMSC is an effective treatment for ICH, and that it enhanced neuroregenerative effects and promoted neurological functional recovery after ICH. Overall, the investigation supports the potential therapeutic strategy for BMSC transplantation therapy against hemorrhagic stroke. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. The rational use of animal models in the evaluation of novel bone regenerative therapies

    OpenAIRE

    Perić, Mihaela; DUMIĆ-ČULE, Ivo; Grčević, Danka; Matijašić, Mario; Verbanac, Donatella; Paul, Ruth; Grgurević, Lovorka; Trkulja, Vladimir; Bagi, Čedo M.; Vukičević, Slobodan

    2015-01-01

    Bone has a high potential for endogenous self-repair. However, due to population aging, human diseases with impaired bone regeneration are on the rise. Current strategies to facilitate bone healing include various biomolecules, cellular therapies, biomaterials and different combinations of these. Animal models for testing novel regenerative therapies remain the gold standard in pre-clinical phases of drug discovery and development. Despite improvements in animal experimentation, excessive poo...

  13. Bone Marrow Stem Cell Derived Paracrine Factors for Regenerative Medicine: Current Perspectives and Therapeutic Potential

    Directory of Open Access Journals (Sweden)

    Tom J. Burdon

    2011-01-01

    Full Text Available During the past several years, there has been intense research in the field of bone marrow-derived stem cell (BMSC therapy to facilitate its translation into clinical setting. Although a lot has been accomplished, plenty of challenges lie ahead. Furthermore, there is a growing body of evidence showing that administration of BMSC-derived conditioned media (BMSC-CM can recapitulate the beneficial effects observed after stem cell therapy. BMSCs produce a wide range of cytokines and chemokines that have, until now, shown extensive therapeutic potential. These paracrine mechanisms could be as diverse as stimulating receptor-mediated survival pathways, inducing stem cell homing and differentiation or regulating the anti-inflammatory effects in wounded areas. The current review reflects the rapid shift of interest from BMSC to BMSC-CM to alleviate many logistical and technical issues regarding cell therapy and evaluates its future potential as an effective regenerative therapy.

  14. Biomaterials in periodontal regenerative surgery: effects of cryopreserved bone, commercially available coral, demineralized freeze-dried dentin, and cementum on periodontal ligament fibroblasts and osteoblasts.

    Science.gov (United States)

    Devecioğlu, Didem; Tözüm, Tolga F; Sengün, Dilek; Nohutcu, Rahime M

    2004-10-01

    The ultimate goal of periodontal therapy is to achieve successful periodontal regeneration. The effects of different biomaterials, allogenic and alloplastic, used in periodontal surgeries to achieve regeneration have been studied in vitro on periodontal ligament (PDL) cells and MC3T3-E1 cells. The materials tested included cryopreserved bone allograft (CBA), coralline hydroxyapatite (CH), demineralized freeze-dried dentin (DFDD), and cementum. CBA and CH revealed an increase in initial PDL cell attachment, whereas CH resulted in an increase in long-term PDL cell attachment. Mineral-like nodule formation was observed significantly higher in DFDD compared to other materials tested for osteoblasts. Based on the results of this in vitro study, we conclude that the materials used are all biocompatible with human PDL cells and osteoblasts, which have pivotal importance in periodontal regeneration.

  15. Concise review: cell-based strategies in bone tissue engineering and regenerative medicine

    NARCIS (Netherlands)

    Ma, J.; Both, S.K.; Yang, F.; Cui, F.Z.; Pan, J.; Meijer, G.J.; Jansen, J.A.; Beucken, J.J.J.P van den

    2014-01-01

    Cellular strategies play an important role in bone tissue engineering and regenerative medicine (BTE/RM). Variability in cell culture procedures (e.g., cell types, cell isolation and expansion, cell seeding methods, and preculture conditions before in vivo implantation) may influence experimental ou

  16. Trophic Effects and Regenerative Potential of Mobilized Mesenchymal Stem Cells From Bone Marrow and Adipose Tissue as Alternative Cell Sources for Pulp/Dentin Regeneration.

    Science.gov (United States)

    Murakami, Masashi; Hayashi, Yuki; Iohara, Koichiro; Osako, Yohei; Hirose, Yujiro; Nakashima, Misako

    2015-01-01

    Dental pulp stem cell (DPSC) subsets mobilized by granulocyte-colony-stimulating factor (G-CSF) are safe and efficacious for complete pulp regeneration. The supply of autologous pulp tissue, however, is very limited in the aged. Therefore, alternative sources of mesenchymal stem/progenitor cells (MSCs) are needed for the cell therapy. In this study, DPSCs, bone marrow (BM), and adipose tissue (AD)-derived stem cells of the same individual dog were isolated using G-CSF-induced mobilization (MDPSCs, MBMSCs, and MADSCs). The positive rates of CXCR4 and G-CSFR in MDPSCs were similar to MADSCs and were significantly higher than those in MBMSCs. Trophic effects of MDPSCs on angiogenesis, neurite extension, migration, and antiapoptosis were higher than those of MBMSCs and MADSCs. Pulp-like loose connective tissues were regenerated in all three MSC transplantations. Significantly higher volume of regenerated pulp and higher density of vascularization and innervation were observed in response to MDPSCs compared to MBMSC and MADSC transplantation. Collagenous matrix containing dentin sialophosphoprotein (DSPP)-positive odontoblast-like cells was the highest in MBMSCs and significantly higher in MADSCs compared to MDPSCs. MBMSCs and MADSCs, therefore, have potential for pulp regeneration, although the volume of regenerated pulp tissue, angiogenesis, and reinnervation, were less. Thus, in conclusion, an alternative cell source for dental pulp/dentin regeneration are stem cells from BM and AD tissue.

  17. Application of human amniotic mesenchymal cells as an allogeneic transplantation cell source in bone regenerative therapy

    Energy Technology Data Exchange (ETDEWEB)

    Tsuno, Hiroaki [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Yoshida, Toshiko [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Nogami, Makiko [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Department of Orthopedic Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Koike, Chika; Okabe, Motonori [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Noto, Zenko [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Arai, Naoya; Noguchi, Makoto [Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Nikaido, Toshio, E-mail: tnikaido@med.u-toyama.ac.jp [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan)

    2012-12-01

    Autogenous mesenchymal stem cells (MSCs) have therapeutic applications in bone regenerative therapy due to their pluripotency. However, the ability of MSCs to proliferate and differentiate varies between donors. Furthermore, alternative sources of MSCs are required for patients with contraindications to autogenous cell therapy. The aim of this study was to evaluate the potential of mesenchymal cells from the human amniotic membrane (HAM) as a source of cells for allogeneic transplantation in bone regenerative therapy. Cells that retained a proliferative capacity of more than 50 population doubling level were distinguished from other HAM cells as HAM{alpha} cells and induced to osteogenic status-their in vivo osteogenesis was subsequently investigated in rats. It was found that HAM{alpha} cells were spindle shaped and were positive for MSC markers and negative for hematopoietic stem cell markers. Alkaline phosphatase activity and calcium deposition increased with osteogenic status of HAM{alpha} cells. The expression of osteocalcin mRNA was increased in HAM{alpha} cells cultured on calcium phosphate scaffolds. Moreover, xenografted HAM{alpha} cells remained viable and produced extracellular matrix for several weeks. Thus, this study suggests that human amniotic mesenchymal cells possess osteogenic differentiation potential and could be applied to allogeneic transplantation in bone regenerative therapy. - Highlights: Black-Right-Pointing-Pointer Human amniotic mesenchymal cells include cells (HAM{alpha} cells) that have the properties of MSCs. Black-Right-Pointing-Pointer HAM{alpha} cells have excellent osteogenic differentiation potential. Black-Right-Pointing-Pointer Osteogenic differentiation ability of HAM{alpha} was amplified by calcium phosphate scaffolds. Black-Right-Pointing-Pointer HAM{alpha} cells can be applicable to allogeneic cell transplantation in bone regenerative therapy.

  18. Platelet-rich fibrin (PRF) in implant dentistry in combination with new bone regenerative technique in elderly patients.

    Science.gov (United States)

    Cortese, Antonio; Pantaleo, Giuseppe; Borri, Antonio; Caggiano, Mario; Amato, Massimo

    2016-01-01

    related to the use of PRF. The effectiveness of PRF is shown in promoting the healing of surgical wounds, it has, in fact, platelet growth factors that can improve the vascularisation of the surgical site, promoting neoangiogenesis. Furthermore, by simply changing the settings of the centrifuge, it is possible to obtain a normal gelling if it has to be used as regenerative and stimulating material, or more consistent substance to be used as a filler in the split crest gap. The main advantages in using the platelet-rich fibrin are healing and bone regenerative properties in combination with its complete resorption after surgery, thus avoiding a second surgery time, important factor in the elderly patients. Currently, it is a minimally invasive technique with low risks and satisfactory clinical results such preventing complications or implant failure particularly in elderly patients for age related conditions. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. The rational use of animal models in the evaluation of novel bone regenerative therapies.

    Science.gov (United States)

    Peric, Mihaela; Dumic-Cule, Ivo; Grcevic, Danka; Matijasic, Mario; Verbanac, Donatella; Paul, Ruth; Grgurevic, Lovorka; Trkulja, Vladimir; Bagi, Cedo M; Vukicevic, Slobodan

    2015-01-01

    Bone has a high potential for endogenous self-repair. However, due to population aging, human diseases with impaired bone regeneration are on the rise. Current strategies to facilitate bone healing include various biomolecules, cellular therapies, biomaterials and different combinations of these. Animal models for testing novel regenerative therapies remain the gold standard in pre-clinical phases of drug discovery and development. Despite improvements in animal experimentation, excessive poorly designed animal studies with inappropriate endpoints and inaccurate conclusions are being conducted. In this review, we discuss animal models, procedures, methods and technologies used in bone repair studies with the aim to assist investigators in planning and performing scientifically sound experiments that respect the wellbeing of animals. In the process of designing an animal study for bone repair investigators should consider: skeletal characteristics of the selected animal species; a suitable animal model that mimics the intended clinical indication; an appropriate assessment plan with validated methods, markers, timing, endpoints and scoring systems; relevant dosing and statistically pre-justified sample sizes and evaluation methods; synchronization of the study with regulatory requirements and additional evaluations specific to cell-based approaches. This article is part of a Special Issue entitled "Stem Cells and Bone". Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Enzymatically synthesized inorganic polymers as morphogenetically active bone scaffolds: application in regenerative medicine.

    Science.gov (United States)

    Wang, Xiaohong; Schröder, Heinz C; Müller, Werner E G

    2014-01-01

    In recent years a paradigm shift in understanding of human bone formation has occurred that starts to change current concepts in tissue engineering of bone and cartilage. New discoveries revealed that fundamental steps in biomineralization are enzyme driven, not only during hydroxyapatite deposition, but also during initial bioseed formation, involving the transient deposition and subsequent transformation of calcium carbonate to calcium phosphate mineral. The principal enzymes mediating these reactions, carbonic anhydrase and alkaline phosphatase, open novel targets for pharmacological intervention of bone diseases like osteoporosis, by applying compounds acting as potential activators of these enzymes. It is expected that these new findings will give an innovation boost for the development of scaffolds for bone repair and reconstruction, which began with the use of bioinert materials, followed by bioactive materials and now leading to functional regenerative tissue units. These new developments have become possible with the discovery of the morphogenic activity of bioinorganic polymers, biocalcit, bio-polyphosphate and biosilica that are formed by a biogenic, enzymatic mechanism, a driving force along with the development of novel rapid-prototyping three-dimensional (3D) printing methods and bioprinting (3D cell printing) techniques that may allow a fabrication of customized implants for patients suffering in bone diseases in the future.

  1. Development of electrospun bone-mimetic matrices for bone regenerative applications

    Science.gov (United States)

    Phipps, Matthew Christopher

    Although bone has a dramatic capacity for regeneration, certain injuries and procedures present defects that are unable to heal properly, requiring surgical intervention to induce and support osteoregeneration. Our research group has hypothesized that the development of a biodegradable material that mimics the natural composition and architecture of bone extracellular matrix has the potential to provide therapeutic benefit to these patients. Utilizing a process known as electrospinning, our lab has developed a bone-mimetic matrix (BMM) consisting of composite nanofibers of the mechanically sta-ble polymer polycaprolactone (PCL), and the natural bone matrix molecules type-I colla-gen and hydroxyapatite nanocrystals (HA). We herein show that BMMs supported great-er adhesion, proliferation, and integrin activation of mesenchymal stem cells (MSCs), the multipotent bone-progenitor cells within bone marrow and the periosteum, in comparison to electrospun PCL alone. These cellular responses, which are essential early steps in the process of bone regeneration, highlight the benefits of presenting cells with natural bone molecules. Subsequently, evaluation of new bone formation in a rat cortical tibia defect showed that BMMs are highly osteoconductive. However, these studies also revealed the inability of endogenous cells to migrate within electrospun matrices due to the inherently small pore sizes. To address this limitation, which will negatively impact the rate of scaf-fold-to-bone turnover and inhibit vascularization, sacrificial fibers were added to the ma-trix. The removal of these fibers after fabrication resulted in BMMs with larger pores, leading to increased infiltration of MSCs and endogenous bone cells. Lastly, we evaluat-ed the potential of our matrices to stimulate the recruitment of MSCs, a vital step in bone healing, through the sustained delivery of platelet derived growth factor-BB (PDGF-BB). BMMs were found to adsorb and subsequently release greater

  2. Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review.

    Science.gov (United States)

    Pina, Sandra; Oliveira, Joaquim M; Reis, Rui L

    2015-02-18

    Tissue engineering and regenerative medicine has been providing exciting technologies for the development of functional substitutes aimed to repair and regenerate damaged tissues and organs. Inspired by the hierarchical nature of bone, nanostructured biomaterials are gaining a singular attention for tissue engineering, owing their ability to promote cell adhesion and proliferation, and hence new bone growth, compared with conventional microsized materials. Of particular interest are nanocomposites involving biopolymeric matrices and bioactive nanosized fillers. Biodegradability, high mechanical strength, and osteointegration and formation of ligamentous tissue are properties required for such materials. Biopolymers are advantageous due to their similarities with extracellular matrices, specific degradation rates, and good biological performance. By its turn, calcium phosphates possess favorable osteoconductivity, resorbability, and biocompatibility. Herein, an overview on the available natural polymer/calcium phosphate nanocomposite materials, their design, and properties is presented. Scaffolds, hydrogels, and fibers as biomimetic strategies for tissue engineering, and processing methodologies are described. The specific biological properties of the nanocomposites, as well as their interaction with cells, including the use of bioactive molecules, are highlighted. Nanocomposites in vivo studies using animal models are also reviewed and discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Platelet-rich fibrin (PRF in implant dentistry in combination with new bone regenerative technique in elderly patients

    Directory of Open Access Journals (Sweden)

    Antonio Cortese, MD, DDS

    2016-01-01

    Conclusions: The main advantages in using the platelet-rich fibrin are healing and bone regenerative properties in combination with its complete resorption after surgery, thus avoiding a second surgery time, important factor in the elderly patients. Currently, it is a minimally invasive technique with low risks and satisfactory clinical results such preventing complications or implant failure particularly in elderly patients for age related conditions.

  4. Bone marrow pathology in dogs and cats with non-regenerative immune-mediated haemolytic anaemia and pure red cell aplasia.

    Science.gov (United States)

    Weiss, D J

    2008-01-01

    Many dogs and cats with immune-mediated haemolytic anaemia (IMHA) lack a bone marrow erythroid regenerative response. To better understand the failure of the bone marrow to respond to the anaemia, bone marrow pathology associated with non-regenerative IMHA and pure red cell aplasia (PRCA) was reviewed. Eighty-two affected dogs and 57 affected cats were identified from a population presenting to a referral hospital over a 10-year period. Fifty-five dogs had non-regenerative IMHA (38 had bone marrow erythroid hyperplasia and 17 had erythroid maturation arrest) and 27 had pure red cell aplasia (PRCA). Twenty-eight cats had non-regenerative IMHA (24 had erythroid hyperplasia and 4 had erythroid maturation arrest) and 29 had PRCA. A variety of pathological changes were observed in bone marrow aspirates and core biopsy specimens taken from these animals. These changes included dysmyelopoiesis, myelonecrosis, myelofibrosis, interstitial oedema, haemorrhage, acute inflammation, haemophagocytic syndrome, lymphocyte aggregation, and lymphocyte or plasma cell hyperplasia. In both dogs and cats, dysmyelopoiesis, myelonecrosis, myelofibrosis, interstitial oedema, haemorrhage, acute inflammation and haemophagocytic syndrome were primarily noted in bone marrow specimens where there was evidence of erythroid hyperplasia. These animals were also more often neutropenic and thrombocytopenic, and had decreased 60 day survival when compared with dogs or cats with non-regenerative anaemia associated with erythroid maturation arrest or PRCA. Therefore, the pathogenesis of the non-regenerative anaemia in non-regenerative IMHA may involve both antibody-mediated destruction of bone marrow precursor cells and pathological events within the bone marrow that result in ineffective erythropoiesis.

  5. Hydroxyapatite from fish scale for potential use as bone scaffold or regenerative material

    Energy Technology Data Exchange (ETDEWEB)

    Pon-On, Weeraphat, E-mail: fsciwpp@ku.ac.th [Department of Physics, Faculty of Science, Kasetsart University, Bangkok (Thailand); Suntornsaratoon, Panan [Center of Calcium and Bone Research, Faculty of Science, Mahidol University, Bangkok (Thailand); Charoenphandhu, Narattaphol [Center of Calcium and Bone Research, Faculty of Science, Mahidol University, Bangkok (Thailand); Department of Physiology, Faculty of Science, Mahidol University, Bangkok (Thailand); Thongbunchoo, Jirawan [Center of Calcium and Bone Research, Faculty of Science, Mahidol University, Bangkok (Thailand); Krishnamra, Nateetip [Center of Calcium and Bone Research, Faculty of Science, Mahidol University, Bangkok (Thailand); Department of Physiology, Faculty of Science, Mahidol University, Bangkok (Thailand); Tang, I. Ming [Department of Materials Science, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand)

    2016-05-01

    The present paper studies the physico-chemical, bioactivity and biological properties of hydroxyapatite (HA) which is derived from fish scale (FS) (FSHA) and compares them with those of synthesized HA (sHA) obtained by co-precipitation from chemical solution as a standard. The analysis shows that the FSHA is composed of flat-plate nanocrystal with a narrow width size of about 15–20 nm and having a range of 100 nm in length and that the calcium phosphate ratio (Ca/P) is 2.01 (Ca-rich CaP). Whereas, synthesized HA consists of sub-micron HA particle having a Ca/P ratio of 1.65. Bioactivity test shows that the FSHA forms more new apatite than does the sHA after being incubated in simulated body fluid (SBF) for 7 days. Moreover, the biocompatibility study shows a higher osteoblast like cell adhesion on the FSHA surface than on the sHA substrate after 3 days of culturing. Our results also show the shape of the osteoblast cells on the FSHA changes from being a rounded shape to being a flattened shape reflecting its spreading behavior on this surface. MTT assay and ALP analysis show significant increases in the proliferation and activity of osteoblasts over the FSHA scaffold after 5 days of culturing as compared to those covering the sHA substrates. These results confirm that the bio-materials derived from fish scale (FSHA) are biologically better than the chemically synthesized HA and have the potential for use as a bone scaffold or as regenerative materials. - Highlights: • Preparation of hydroxyapatite (HA) which is derived from fish scale (FS) (FSHA) and their bioactivities • The FSHA is composed of flat-plate nanocrystal with a narrow size of 15–20 nm. • Bioactivity test shows that the FSHA forms more new apatite than does the sHA after being incubated SBF. • In vitro cell availability tests show a higher cell adhesion on the FSHA surface.

  6. Assessment of bone-fill following regenerative periodontal therapy by image subtraction using commercially available software

    National Research Council Canada - National Science Library

    Pavan Yellarthi; Viswa Rampalli; Naveen Anumala; Rama Devaraju

    2014-01-01

    .... Settings and Design: For the bone-fill assessment, radiographs of 78 angular bone defects from 30 subjects who underwent periodontal flap surgery with hydroxyapatite bone graft placement were utilized...

  7. A comparative study of the regenerative effect of sinus bone grafting with platelet-rich fibrin-mixed Bio-Oss® and commercial fibrin-mixed Bio-Oss®: an experimental study.

    Science.gov (United States)

    Xuan, Feng; Lee, Chun-Ui; Son, Jeong-Seog; Jeong, Seung-Mi; Choi, Byung-Ho

    2014-06-01

    Anorganic bovine bone (Bio-Oss®) particles are one of the most popular grafting materials. The particles are often mixed with platelet-rich fibrin (PRF) or a commercial fibrin (Tisseel®) to form a mouldable graft material. The objective of this study was to compare the potentials of PRF-mixed Bio-Oss® and Tisseel®-mixed Bio-Oss® to enhance bone regeneration in a canine sinus model. Six mongrel dogs were used in this study. After elevating the sinus membrane in both maxillary sinus cavities, an implant was placed into the sinus cavity. In one of the sinus cavities, the PRF/Bio-Oss® composite was grafted, and the Tisseel®/Bio-Oss® composite was grafted in the other sinus cavity. After a 6 month healing period, bone formation in the graft sites and bone-implant contact were evaluated. The mean osseointegration rate was 43.5 ± 12.4% and new bone formation rate 41.8 ± 5.9% in the PRF/Bio-Oss® composite sites. In the Tisseel®/Bio-Oss® composite sites they were 30.7 ± 7.9% and 31.3 ± 6.4%. There were statistically significant differences between the groups. The findings from this study suggest that when platelet-rich fibrin is used as an adjunct to Bio-Oss® particles for bone augmentation in the maxillary sinus, bone formation in the graft sites is significantly greater than when Tisseel® is used.

  8. The regenerative effect of catalyst fluidization under methanation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Seemann, M.C.; Schildhauer, T.J.; Biollaz, S.M.A.; Stucki, S.; Wokaun, A. [Laboratory of Energy and Materials Cycles, Thermal Process Engineering, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)

    2006-09-25

    The regenerative effect of fluidization on catalysts in methanation reactors was shown by in situ measurements of the axial gas phase concentration profiles. The profiles prove strong carbon exchange processes between the catalyst and the gas phase. These exchange processes structure the bed into three zones: carbon deposition, predominantly by CO dissociation, at the inlet; predominant gasification of solid carbon species from the catalyst in the following zone, and predominant carbon deposition by methane dissociation in the upper part of the bed. By analyzing the carbon-balance, locally up to 20% excess carbon was found in the gas phase, mainly in form of methane. The excess methane decomposes again, forming less reactive carbon with a slow rate. Due to an intensive catalyst mixing, the build-up of unreactive carbon can be prevented by regeneration in the middle zone of the reactor. As these processes are influenced by the particle movement, conclusions about regions of up- and down-flow of the catalyst particles can be drawn. (author)

  9. The bone-regenerative properties of Emdogain adsorbed onto poly(D,L-lactic-coglycolic acid)/calcium phosphate composites in an ectopic and an orthotopic rat model.

    NARCIS (Netherlands)

    Plachokova, A.S.; Dolder, J. van den; Jansen, J.A.

    2008-01-01

    BACKGROUND AND OBJECTIVE: The aim of this study was to evaluate the bone-regenerative properties of Emdogain in osseous and nonosseous sites. MATERIAL AND METHODS: For the orthotopic study, unloaded poly(D,L-lactic-coglycolic acid)/calcium phosphate implants, and poly(D,L-lactic-coglycolic acid)/cal

  10. Bone marrow derived stem cells in regenerative medicine as advanced therapy medicinal products.

    Science.gov (United States)

    Astori, Giuseppe; Soncin, Sabrina; Lo Cicero, Viviana; Siclari, Francesco; Sürder, Daniel; Turchetto, Lucia; Soldati, Gianni; Moccetti, Tiziano

    2010-05-15

    Bone marrow derived stem cells administered after minimal manipulation represent an important cell source for cell-based therapies. Clinical trial results, have revealed both safety and efficacy of the cell reinfusion procedure in many cardiovascular diseases. Many of these early clinical trials were performed in a period before the entry into force of the US and European regulation on cell-based therapies. As a result, conflicting data have been generated on the effectiveness of those therapies in certain conditions as acute myocardial infarction. As more academic medical centers and private companies move toward exploiting the full potential of cell-based medicinal products, needs arise for the development of the infrastructure necessary to support these investigations. This review describes the regulatory environment surrounding the production of cell based medicinal products and give practical aspects for cell isolation, characterization, production following Good Manufacturing Practice, focusing on the activities associated with the investigational new drug development.

  11. Signaling pathways involved in osteogenesis and their application for bone regenerative medicine

    NARCIS (Netherlands)

    Hayrapetyan, A.; Jansen, J.A.; Beucken, J.J.J.P van den

    2015-01-01

    Bone regeneration is a well organized but complex physiological process, in which different cell types and their activated signaling pathways are involved. In bone regeneration and remodeling processes, mesenchymal stem cells (MSCs) have a crucial role, and their differentiation during these

  12. Regenerative Effects of Mesenchymal Stem Cells: Contribution of Muse Cells, a Novel Pluripotent Stem Cell Type that Resides in Mesenchymal Cells

    OpenAIRE

    Mari Dezawa; Taeko Shigemoto; Fumitaka Ogura; Shohei Wakao; Yasumasa Kuroda

    2012-01-01

    Mesenchymal stem cells (MSCs) are easily accessible and safe for regenerative medicine. MSCs exert trophic, immunomodulatory, anti-apoptotic, and tissue regeneration effects in a variety of tissues and organs, but their entity remains an enigma. Because MSCs are generally harvested from mesenchymal tissues, such as bone marrow, adipose tissue, or umbilical cord as adherent cells, MSCs comprise crude cell populations and are heterogeneous. The specific cells responsible for each effect have no...

  13. Evaluation of the regenerative effect of a 25% doxycycline-loaded biodegradable membrane for guided tissue regeneration.

    Science.gov (United States)

    Chang, C Y; Yamada, S

    2000-07-01

    Biodegradable materials have been successfully utilized for guided tissue regeneration (GTR) and local delivery systems (LDS) because they are biocompatible, less cytotoxic, and do not require removal. Several studies have demonstrated that tetracyclines (TCs), when applied topically, stimulated osteogenesis in experimental bone defects. The purpose of this study was to evaluate the regenerative effect of a 25% doxycycline-loaded biodegradable GTR membrane (Doxy-M) in dogs. Doxy-M was made by coating the inner surface of a biodegradable membrane (BD-M) with 25% doxycycline. Five male mongrel dogs with 20 created osseous defects were enrolled. The plain BD-M was used as the control membrane. Either Doxy-M or BD-M was applied in 20 randomly selected defects (10 Doxy-M, 10 BD-M) for 12 weeks with the GTR technique. The histometric analysis was evaluated with the following parameters: defect height (DH), apical extension of junctional epithelium (AEJP), new cementum height (NCH), new bone height (NBH), and new bone area (NBA). The Doxy-M-treated defects showed more pronounced new bone formation and less crestal bone resorption than the BD-M-treated defects. There were no statistically significant differences between the two groups in DH, AEJP, and NCH. Statistically significantly larger NBH (P Doxy-M-treated defects. The results strongly suggest that Doxy-M may have a beneficial effect on osteogenesis to favor periodontal regeneration.

  14. Leptin Effects on the Regenerative Capacity of Human Periodontal Cells

    Directory of Open Access Journals (Sweden)

    Marjan Nokhbehsaim

    2014-01-01

    Full Text Available Obesity is increasing throughout the globe and characterized by excess adipose tissue, which represents a complex endocrine organ. Adipose tissue secrets bioactive molecules called adipokines, which act at endocrine, paracrine, and autocrine levels. Obesity has recently been shown to be associated with periodontitis, a disease characterized by the irreversible destruction of the tooth-supporting tissues, that is, periodontium, and also with compromised periodontal healing. Although the underlying mechanisms for these associations are not clear yet, increased levels of proinflammatory adipokines, such as leptin, as found in obese individuals, might be a critical pathomechanistic link. The objective of this study was to examine the impact of leptin on the regenerative capacity of human periodontal ligament (PDL cells and also to study the local leptin production by these cells. Leptin caused a significant downregulation of growth (TGFβ1, and VEGFA and transcription (RUNX2 factors as well as matrix molecules (collagen, and periostin and inhibited SMAD signaling under regenerative conditions. Moreover, the local expression of leptin and its full-length receptor was significantly downregulated by inflammatory, microbial, and biomechanical signals. This study demonstrates that the hormone leptin negatively interferes with the regenerative capacity of PDL cells, suggesting leptin as a pathomechanistic link between obesity and compromised periodontal healing.

  15. 3D silicon doped hydroxyapatite scaffolds decorated with Elastin-like Recombinamers for bone regenerative medicine.

    Science.gov (United States)

    Vila, Mercedes; García, Ana; Girotti, Alessandra; Alonso, Matilde; Rodríguez-Cabello, Jose Carlos; González-Vázquez, Arlyng; Planell, Josep A; Engel, Elisabeth; Buján, Julia; García-Honduvilla, Natalio; Vallet-Regí, María

    2016-11-01

    The current study reports on the manufacturing by rapid prototyping technique of three-dimensional (3D) scaffolds based on silicon substituted hydroxyapatite with Elastin-like Recombinamers (ELRs) functionalized surfaces. Silicon doped hydroxyapatite (Si-HA), with Ca10(PO4)5.7(SiO4)0.3(OH)1.7h0.3 nominal formula, was surface functionalized with two different types of polymers designed by genetic engineering: ELR-RGD that contain cell attachment specific sequences and ELR-SNA15/RGD with both hydroxyapatite and cells domains that interact with the inorganic phase and with the cells, respectively. These hybrid materials were subjected to in vitro assays in order to clarify if the ELRs coating improved the well-known biocompatible and bone regeneration properties of calcium phosphates materials. The in vitro tests showed that there was a total and homogeneous colonization of the 3D scaffolds by Bone marrow Mesenchymal Stromal Cells (BMSCs). In addition, the BMSCs were viable and able to proliferate and differentiate into osteoblasts. Bone tissue engineering is an area of increasing interest because its main applications are directly related to the rising life expectancy of the population, which promotes higher rates of several bone pathologies, so innovative strategies are needed for bone tissue regeneration therapies. Here we use the rapid prototyping technology to allow moulding ceramic 3D scaffolds and we use different bio-polymers for the functionalization of their surfaces in order to enhance the biological response. Combining the ceramic material (silicon doped hydroxyapatite, Si-HA) and the Elastin like Recombinamers (ELRs) polymers with the presence of the integrin-mediate adhesion domain alone or in combination with SNA15 peptide that possess high affinity for hydroxyapatite, provided an improved Bone marrow Mesenchymal Stromal Cells (BMSCs) differentiation into osteoblastic linkage. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights

  16. Evaluation of bone regenerative capacity in rats claverial bone defect using platelet rich fibrin with and without beta tri calcium phosphate bone graft material

    Directory of Open Access Journals (Sweden)

    Walid Ahmed Abdullah

    2016-07-01

    Conclusion: The addition of β-TCP to PRF significantly improved bone regeneration in the first 2 weeks after surgery. Although the differences between results with and without the addition of β-TCP to PRF were statistically insignificant from weeks 3 to 6, it was nevertheless apparent that the group receiving the combination showed better results. We suggest a synergistic mechanism for this effect.

  17. First pulse effect self-suppression picosecond regenerative amplifier (Conference Presentation)

    Science.gov (United States)

    Fan, Haitao; Chang, Liang; Zhang, Yi; Yao, Siyi; Lu, Wei; Yang, Xiaohong

    2017-03-01

    First pulse effect, commonly seen in nanosecond cavity-dumped lasers and picosecond regenerative amplifiers, not only leads to degradation of processing quality, but also acts as potential threat to optical switching elements. Several methods have been developed to suppress that effect, including electronic controls, polarization controls, and diffraction controls. We present a new way for first pulse self-suppression without any additional components. By carefully arranging the cavity mirror of a regenerative amplifier, we realized `parasitic lasing like' radiation. When the regenerative amplifier works in `operation ready' status, the parasitic lasing occurs and prevents the gain crystal from saturation. When the regenerative amplifier starts working and amplifying pulses, the first pulse in a pulse train will not get much more gain and energy than pulses following it. As parasitic lasing disappears at the same time, the average output power of the amplifier does not significantly reduce. This cost effective method does not require any additional component. In addition, as it is not polarization dependent, this method is widely suitable for different kinds of regenerative amplifiers. It's the easiest and cheapest way to suppress first pulse effect, to the best of our knowledge.

  18. Post chemotherapy blood and bone marrow regenerative changes in childhood acute lymphoblastic leukemia a prospective study

    Directory of Open Access Journals (Sweden)

    Rashmi Kushwaha

    2014-01-01

    Full Text Available Context: This study was done to assess the Serial peripheral blood and bone marrow changes in patients of Acute Lymphoblastic Leukemia on chemotherapy. Aims: To assess the therapy related serial bone marrow changes in patients of Acute Lymphoblastic Leukemia. Settings and Design: Prospective study, carried out in Lymphoma- Leukemia Lab, Department of Pathology, K.G.M.U from March 2011 to March 2012. A total of 60 cases were studied Materials and Methods: History, complete hemogram, bone marrow examination at pretherapy (Day-0, intratherapy (Day-14, and end of induction chemotherapy (Day-28 were done. Peripheral blood smears were evaluated at regular interval to assess clearance of blast cells. Statistical analysis used: The statistical analysis was done using SPSS (Statistical Package for Social Sciences Version 15.0 statistical Analysis Software. The values were represented in Number (% and Mean ± SD. The following Statistical formulas were used: Mean, standard deviation, Chi square test, Paired "t" test, Student ′t′ test, Level of significance P Results: Incidence of ALL-L1 (46.7% and ALL-L2 (53.3% was equal. ALL-L2 patients had poor survival.Day 0 (D-0 bone marrow was hypercellular with flooding of marrow by leukemic cells. High levels of tumor load at D′0′ were associated with poor survival. 14 th day of Induction phase showed significant decrease in hemoglobin and TLC as compared to D ′0′ parameters. D28 showed marrow regeneration. Cellularity, Blast%, and Leukemic Index showed significant drop from day ′0′ to day 14 due to myelosupression, whereas regeneration reflected by increased cellularity as per day 28 marrow. Lymphocytosis (>20% at end of induction chemotherapy had better survival and longer remission.Risk of mortality was directly proportional to blast clearance and was a major independent prognostic factor for achievement of complete remission. Conclusions: A bone marrow examination at the end of induction

  19. Alteration of hedgehog signaling by chronic exposure to different pesticide formulations and unveiling the regenerative potential of recombinant sonic hedgehog in mouse model of bone marrow aplasia.

    Science.gov (United States)

    Chaklader, Malay; Law, Sujata

    2015-03-01

    Chronic pesticide exposure-induced downregulation of hedgehog signaling and its subsequent degenerative effects on the mammalian hematopoietic system have not been investigated yet. However a number of concurrent studies have pointed out the positive correlation between chronic pesticide exposure induced bone marrow failure and immune suppression. Here, we have given an emphasis on the recapitulation of human marrow aplasia like condition in mice by chronic mixed pesticide exposures and simultaneously unravel the role of individual pesticides in the said event. Unlike the effect of mixed pesticide, individual pesticides differentially alter the hedgehog signaling in the bone marrow primitive hematopoietic compartment (Sca1 + compartment) and stromal compartment. Individually, hexaconazole disrupted hematopoietic as well as stromal hedgehog signaling activation through inhibiting SMO and facilitating PKC δ expression. On contrary, both chlorpyriphos and cypermethrin increased the sequestration and degradation of GLI1 by upregulating SU(FU) and βTrCP, respectively. However, cypermethrin-mediated inhibition of hedgehog signaling has partly shown to be circumvented by non-canonical activation of GLI1. Finally, we have tested the regenerative response of sonic hedgehog and shown that in vitro supplemented recombinant SHH protein augmented clonogenic stromal progenitors (CFU-F) as well as primitive multipotent hematopoietic clones including CFU-GEMM and CFU-GM of mixed pesticide-induced aplastic marrow. It is an indication of the marrow regeneration. Finally, our findings provide a gripping evidence that downregulated hedgehog signaling contribute to pesticide-mediated bone marrow aplasia but it could be recovered by proper supplementation of recombinant SHH along with hematopoietic base cocktail. Furthermore, SU(FU) and GLI1 can be exploited as future theradiagnostic markers for early marrow aplasia diagnosis.

  20. Placenta Derived Mesenchymal Stem Cells Hosted on RKKP Glass-Ceramic: A Tissue Engineering Strategy for Bone Regenerative Medicine Applications

    Directory of Open Access Journals (Sweden)

    Mario Ledda

    2016-01-01

    Full Text Available In tissue engineering protocols, the survival of transplanted stem cells is a limiting factor that could be overcome using a cell delivery matrix able to support cell proliferation and differentiation. With this aim, we studied the cell-friendly and biocompatible behavior of RKKP glass-ceramic coated Titanium (Ti surface seeded with human amniotic mesenchymal stromal cells (hAMSCs from placenta. The sol-gel synthesis procedure was used to prepare the RKKP glass-ceramic material, which was then deposited onto the Ti surface by Pulsed Laser Deposition method. The cell metabolic activity and proliferation rate, the cytoskeletal actin organization, and the cell cycle phase distribution in hAMSCs seeded on the RKKP coated Ti surface revealed no significant differences when compared to the cells grown on the treated plastic Petri dish. The health of of hAMSCs was also analysed studying the mRNA expressions of MSC key genes and the osteogenic commitment capability using qRT-PCR analysis which resulted in being unchanged in both substrates. In this study, the combination of the hAMSCs’ properties together with the bioactive characteristics of RKKP glass-ceramics was investigated and the results obtained indicate its possible use as a new and interesting cell delivery system for bone tissue engineering and regenerative medicine applications.

  1. Placenta Derived Mesenchymal Stem Cells Hosted on RKKP Glass-Ceramic: A Tissue Engineering Strategy for Bone Regenerative Medicine Applications

    Science.gov (United States)

    Fosca, Marco; De Bonis, Angela; Curcio, Mariangela; Lolli, Maria Grazia; De Stefanis, Adriana; Marchese, Rodolfo; Rau, Julietta V.

    2016-01-01

    In tissue engineering protocols, the survival of transplanted stem cells is a limiting factor that could be overcome using a cell delivery matrix able to support cell proliferation and differentiation. With this aim, we studied the cell-friendly and biocompatible behavior of RKKP glass-ceramic coated Titanium (Ti) surface seeded with human amniotic mesenchymal stromal cells (hAMSCs) from placenta. The sol-gel synthesis procedure was used to prepare the RKKP glass-ceramic material, which was then deposited onto the Ti surface by Pulsed Laser Deposition method. The cell metabolic activity and proliferation rate, the cytoskeletal actin organization, and the cell cycle phase distribution in hAMSCs seeded on the RKKP coated Ti surface revealed no significant differences when compared to the cells grown on the treated plastic Petri dish. The health of of hAMSCs was also analysed studying the mRNA expressions of MSC key genes and the osteogenic commitment capability using qRT-PCR analysis which resulted in being unchanged in both substrates. In this study, the combination of the hAMSCs' properties together with the bioactive characteristics of RKKP glass-ceramics was investigated and the results obtained indicate its possible use as a new and interesting cell delivery system for bone tissue engineering and regenerative medicine applications. PMID:28078286

  2. The effect of enamel matrix derivative (Emdogain(R)) on gene expression profiles of human primary alveolar bone cells

    NARCIS (Netherlands)

    Yan, X.Z.; Rathe, F.; Gilissen, C.; Zande, M. van der; Veltman, J.; Junker, R.; Yang, F.; Jansen, J.A.; Walboomers, X.F.

    2014-01-01

    Emdogain(R) is frequently used in regenerative periodontal treatment. Understanding its effect on gene expression of bone cells would enable new products and pathways promoting bone formation to be established. The aim of the study was to analyse the effect of Emdogain(R) on expression profiles of h

  3. Glycol chitosan/nanohydroxyapatite biocomposites for potential bone tissue engineering and regenerative medicine.

    Science.gov (United States)

    Dumont, Vitor C; Mansur, Herman S; Mansur, Alexandra A P; Carvalho, Sandhra M; Capanema, Nádia S V; Barrioni, Breno R

    2016-12-01

    In the last few decades, research on biocomposite nanomaterials has grown exponentially due to the global demand for novel solutions in bone tissue engineering and repair. In the present study, it is reported the design and synthesis of biocomposites based on glycol chitosan (GLY-CHI) matrices incorporated with nano-hydroxyapatite particles (nHA) produced via an eco-friendly chemical colloidal process in water media followed by solvent casting and evaporation methods at room temperature. The structure, morphology, and crystallinity of the components and biocomposites were extensively characterized by light microscopy (LM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), wavelength dispersive X-ray fluorescence spectroscopy (WD-XRF), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and X-ray micro-computed tomography analysis (μCT). Furthermore, cytotoxicity and cell viability tests were performed on three cell lines using a 3-(4,5-dimethylthiazol-2yl) 2,5-diphenyl tetrazolium bromide (MTT) assay, an alkaline phosphatase (ALP) activity test, and LIVE/DEAD(®) assays. The results demonstrated that the GLY-CHI ligand played a major role in the nucleation, growth and colloidal stabilization of calcium phosphate particles at nanoscale dimensions with a narrow distribution and average size of 74±15nm. The FTIR spectroscopy associated with the XRD results indicated that nanosized hydroxyapatite (nHA) was the predominant calcium phosphate phase produced in the colloidal processing route. In addition, the X-ray micro-CT analysis of the nanocomposite membranes showed that nHA particles were homogenously dispersed in the glycol-chitosan polymeric matrix. Moreover, according to the in vitro bioassays, the biocomposites showed an adequate cell viability response and non-cytotoxic behavior toward osteoblastic-like (SAOS) and embryonic cell lines (HEK293T). Finally, the results of

  4. Human gingiva-derived mesenchymal stem cells are superior to bone marrow-derived mesenchymal stem cells for cell therapy in regenerative medicine

    Energy Technology Data Exchange (ETDEWEB)

    Tomar, Geetanjali B.; Srivastava, Rupesh K.; Gupta, Navita; Barhanpurkar, Amruta P.; Pote, Satish T. [National Center for Cell Science, University of Pune Campus, Pune 411 007 (India); Jhaveri, Hiral M. [Department of Periodontics and Oral Implantology, Dr. D.Y. Patil Dental College and Hospital, Pune (India); Mishra, Gyan C. [National Center for Cell Science, University of Pune Campus, Pune 411 007 (India); Wani, Mohan R., E-mail: mohanwani@nccs.res.in [National Center for Cell Science, University of Pune Campus, Pune 411 007 (India)

    2010-03-12

    Mesenchymal stem cells (MSCs) are capable of self-renewal and differentiation into multiple cell lineages. Presently, bone marrow is considered as a prime source of MSCs; however, there are some drawbacks and limitations in use of these MSCs for cell therapy. In this study, we demonstrate that human gingival tissue-derived MSCs have several advantages over bone marrow-derived MSCs. Gingival MSCs are easy to isolate, homogenous and proliferate faster than bone marrow MSCs without any growth factor. Importantly, gingival MSCs display stable morphology and do not loose MSC characteristic at higher passages. In addition, gingival MSCs maintain normal karyotype and telomerase activity in long-term cultures, and are not tumorigenic. Thus, we reveal that human gingiva is a better source of MSCs than bone marrow, and large number of functionally competent clinical grade MSCs can be generated in short duration for cell therapy in regenerative medicine and tissue engineering.

  5. Multilayer bioactive glass/zirconium titanate thin films in bone tissue engineering and regenerative dentistry

    Directory of Open Access Journals (Sweden)

    Mozafari M

    2013-04-01

    Full Text Available Masoud Mozafari,1,2 Erfan Salahinejad,1,3 Vahid Shabafrooz,1 Mostafa Yazdimamaghani,1 Daryoosh Vashaee,4 Lobat Tayebi1,5 1Helmerich Advanced Technology Research Center, School of Materials Science and Engineering, Oklahoma State University, Tulsa, OK, USA; 2Biomaterials Group, Faculty of Biomedical Engineering (Center of Excellence, Amirkabir University of Technology, Tehran, Iran; 3Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz, Iran; 4Helmerich Advanced Technology Research Center, School of Electrical and Computer Engineering, Oklahoma State University, Tulsa, OK, USA; 5School of Chemical Engineering, Oklahoma State University, Tulsa, OK, USA Abstract: Surface modification, particularly coatings deposition, is beneficial to tissue-engineering applications. In this work, bioactive glass/zirconium titanate composite thin films were prepared by a sol-gel spin-coating method. The surface features of the coatings were studied by scanning electron microscopy, atomic force microscopy, and spectroscopic reflection analyses. The results show that uniform and sound multilayer thin films were successfully prepared through the optimization of the process variables and the application of carboxymethyl cellulose as a dispersing agent. Also, it was found that the thickness and roughness of the multilayer coatings increase nonlinearly with increasing the number of the layers. This new class of nanocomposite coatings, comprising the bioactive and inert components, is expected not only to enhance bioactivity and biocompatibility, but also to protect the surface of metallic implants against wear and corrosion. Keywords: bioactive glass, zirconium titanate, spin-coating, microstructural properties, bone/dental applications, tissue engineering

  6. THE EFFECT OF MEBT/MEBO ON EPIDERMAL REGENERATIVE STEM CELLS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To investigate the mechanism of the effect of Moist Exposed Burn Therapy (MEBT) and Moist Exposed Burn Ointment (MEBO) on the spontaneous repair and healing of superficial third degree burn wound involving fatty layer. Method: A series of skin tissue samples were taken from deep burn wounds of 2 cases. Immunocytochemistry method, biotin avidin DCS system, and indirect immunofluorescence technique were applied. Mouse anti human keratin type 19 monoclonal antibody was used to detect regenerative epidermal stem cells in wound tissues. Results: Epidermal regenerative stem cells emerged at 24 hours post burn, and the number of epidermal regenerative stem cell increased on day 4 post burn. On days 7 and 14 post burn, the number of epidermal stem cells increased to the peak level. On days 21 and 28 post burn, it decreased and disappeared gradually as burn wound progressed to healing. Conclusion: MEBT/MEBO has the effect of promoting the activation and proliferation of epidermal regenerative stem cells in the residual viable tissue of superficial full thickness burn wound, and these stem cells play an unique role in spontaneous wound healing of deep burn.

  7. The Design and Use of Animal Models for Translational Research in Bone Tissue Engineering and Regenerative Medicine

    Science.gov (United States)

    2010-01-07

    repair,40,41 evaluation of the differential effects of marrow-derived and periosteal - derived cell populations,42 and in screening for the effects of cell...defect or gap in bone (caused by either tissue loss or distraction maintained by internal or external fixation), local tissue loss (particularly periosteal ...as an excel- lent resource. Critical defects are defined as ‘‘a defect that will not heal without intervention.’’ The femur and tibial diaphysis tend

  8. Regenerative Effects of Mesenchymal Stem Cells: Contribution of Muse Cells, a Novel Pluripotent Stem Cell Type that Resides in Mesenchymal Cells.

    Science.gov (United States)

    Wakao, Shohei; Kuroda, Yasumasa; Ogura, Fumitaka; Shigemoto, Taeko; Dezawa, Mari

    2012-11-08

    Mesenchymal stem cells (MSCs) are easily accessible and safe for regenerative medicine. MSCs exert trophic, immunomodulatory, anti-apoptotic, and tissue regeneration effects in a variety of tissues and organs, but their entity remains an enigma. Because MSCs are generally harvested from mesenchymal tissues, such as bone marrow, adipose tissue, or umbilical cord as adherent cells, MSCs comprise crude cell populations and are heterogeneous. The specific cells responsible for each effect have not been clarified. The most interesting property of MSCs is that, despite being adult stem cells that belong to the mesenchymal tissue lineage, they are able to differentiate into a broad spectrum of cells beyond the boundary of mesodermal lineage cells into ectodermal or endodermal lineages, and repair tissues. The broad spectrum of differentiation ability and tissue-repairing effects of MSCs might be mediated in part by the presence of a novel pluripotent stem cell type recently found in adult human mesenchymal tissues, termed multilineage-differentiating stress enduring (Muse) cells. Here we review recently updated studies of the regenerative effects of MSCs and discuss their potential in regenerative medicine.

  9. Regenerative Effects of Mesenchymal Stem Cells: Contribution of Muse Cells, a Novel Pluripotent Stem Cell Type that Resides in Mesenchymal Cells

    Directory of Open Access Journals (Sweden)

    Mari Dezawa

    2012-11-01

    Full Text Available Mesenchymal stem cells (MSCs are easily accessible and safe for regenerative medicine. MSCs exert trophic, immunomodulatory, anti-apoptotic, and tissue regeneration effects in a variety of tissues and organs, but their entity remains an enigma. Because MSCs are generally harvested from mesenchymal tissues, such as bone marrow, adipose tissue, or umbilical cord as adherent cells, MSCs comprise crude cell populations and are heterogeneous. The specific cells responsible for each effect have not been clarified. The most interesting property of MSCs is that, despite being adult stem cells that belong to the mesenchymal tissue lineage, they are able to differentiate into a broad spectrum of cells beyond the boundary of mesodermal lineage cells into ectodermal or endodermal lineages, and repair tissues. The broad spectrum of differentiation ability and tissue-repairing effects of MSCs might be mediated in part by the presence of a novel pluripotent stem cell type recently found in adult human mesenchymal tissues, termed multilineage-differentiating stress enduring (Muse cells. Here we review recently updated studies of the regenerative effects of MSCs and discuss their potential in regenerative medicine.

  10. Clinical evaluation of a combined regenerative technique with enamel matrix derivative, bone grafts, and guided tissue regeneration.

    Science.gov (United States)

    Harris, Randall J; Harris, Laura E; Harris, Christopher R; Harris, Anne J

    2007-04-01

    The goal of this study was to evaluate the clinical changes obtained when intra-bony defects were treated with an enamel matrix derivative (EMD), a bone graft, and guided tissue regeneration. Fifty patients with a periodontal defect not associated with a furcation and with an attachment loss of at least 7.0 mm were included in this study. Full-thickness flaps were reflected, the roots were planed, EMD was applied, a demineralized freeze-dried bone allograft combined with EMD was placed, a bioabsorbable membrane was placed, and more EMD was applied. The defect areas were then sutured. At a mean of 5.3 months after treatment, there was a mean increase in recession of 0.7 mm, a mean reduction in probing depth of 5.7 mm, and a mean gain in attachment level of 5.0 mm. In this study there was more recession in smokers than in nonsmokers and in defects associated with anterior teeth. Additionally, the deeper defects (those with greater probing depths and attachment level loss) had the greatest reductions in probing depth and gains in attachment level. Based on this study, this technique proved itself to be an effective method to improve the clinical situation when treating periodontal defects not involving furcations.

  11. The Effect of PEI and PVP-Stabilized Gold Nanoparticles on Equine Platelets Activation: Potential Application in Equine Regenerative Medicine

    Directory of Open Access Journals (Sweden)

    Mateusz Hecold

    2017-01-01

    Full Text Available The aim of this work was to assess the effect of different stabilizing agents, for example, polyethylenimine (PEI and polyvinylpyrrolidone (PVP, on gold nanoparticles (AuNPs and their influence on equine platelet activation and release of particular growth factors. The gold nanoparticles were produced by chemical reduction of chloroauric acid. UV-Vis spectroscopy confirmed the presence of gold nanoparticles in investigated solutions. The AuNPs were incubated with whole blood at various concentrations. The morphology of platelets in PRP prepared from the blood incubated with AuNPs was characterized by scanning transmission electron microscopy, whereas the concentrations of growth factors and cytokines were evaluated by ELISA assays. The most promising results were obtained with equine platelets incubated with 5% AuNPs stabilized by PEI, which lead to secretion of bone morphogenetic protein 2 (BMP-2, vascular endothelial growth factor (VEGF, and fibroblast growth factor 1 (FGF-1 and simultaneously cause decrease in concentration of interleukin-1 alpha (IL-1α. The qRT-PCR confirmed ELISA test results. The incubation with 5% AuNPs stabilized by PEI leads to upregulation of BMP-2 and VEGF transcripts of mRNA level and to downregulating expression of interleukin-6 (IL-6. Obtained data shed a promising light on gold nanoparticle application for future regenerative medicine application.

  12. Regenerative endodontics.

    Science.gov (United States)

    Simon, S; Smith, A J

    2014-03-01

    Significant advances in our understanding of the biological processes involved in tooth development and repair at the cellular and molecular levels have underpinned the newly emerging area of regenerative endodontics. Development of treatment protocols based on exploiting the natural wound healing properties of the dental pulp and applying tissue engineering principles has allowed reporting of case series showing preservation of tissue vitality and apexogenesis. To review current case series reporting regenerative endodontics. Current treatment approaches tend to stimulate more reparative than regenerative responses in respect of the new tissue generated, which often does not closely resemble the physiological structure of dentine-pulp. However, despite these biological limitations, such techniques appear to offer significant promise for improved treatment outcomes. Improved biological outcomes will likely emerge from the many experimental studies being reported and will further contribute to improvements in clinical treatment protocols.

  13. Regenerative Endodontics.

    Science.gov (United States)

    Feigin, Kristina; Shope, Bonnie

    2017-09-01

    Regenerative endodontics has been defined as "biologically based procedure designed to replace damaged structures, including dentin and root structures, as well as cells of the pulp-dentin complex." This is an exciting and rapidly evolving field of human endodontics for the treatment of immature permanent teeth with infected root canal systems. These procedures have shown to be able not only to resolve pain and apical periodontitis but continued root development, thus increasing the thickness and strength of the previously thin and fracture-prone roots. In the last decade, over 80 case reports, numerous animal studies, and series of regenerative endodontic cases have been published. However, even with multiple successful case reports, there are still some remaining questions regarding terminology, patient selection, and procedural details. Regenerative endodontics provides the hope of converting a nonvital tooth into vital one once again.

  14. Comparison of 2 regenerative procedures--guided tissue regeneration and demineralized freeze-dried bone allograft--in the treatment of intrabony defects: a clinical and radiographic study.

    Science.gov (United States)

    Parashis, A; Andronikaki-Faldami, A; Tsiklakis, K

    1998-07-01

    The purpose of this study was to compare clinically and radiographically the effectiveness of guided tissue regeneration (GTR), using a bioabsorbable polylactic acid softened with citric acid ester barrier and commercially available demineralized freeze-dried bone allograft (DFDBA) in the treatment of 2- and 3-wall intrabony defects. Twelve patients each with one treated defect comprised each group. Conservative treatment was completed 2 to 4 months prior to surgery. Clinical measurements, plaque index, gingival index, probing depths (PD), clinical attachment levels (CAL) and recession (REC), were comparable in both groups at baseline. They were repeated at 12 months. Surgical measurements were also comparable at baseline in both groups. In the GTR group, at baseline the mean distance between the cemento-enamel junction (CEJ) and base of the defect was 12.3 +/- 2.9 mm and in the DFDBA group 11.3 +/- 1.8 mm. The defect depth was 6.3 +/- 2.0 mm and 5.4 +/- 1.3 mm, respectively. Radiographs were taken at baseline and 12 months later and compared using non-standardized digital subtraction radiography. In the GTR group, mean PD decreased from 7.9 +/- 2.5 mm to 3.5 +/- 1.4 mm and mean CAL from 10.8 +/- 2.8 mm to 7.0 +/- 1.6 mm, the differences being statistically significant (P = 0.002), while REC increased from 2.9 +/- 1.2 mm to 3.5 +/- 1.1 mm. In the DFDBA group, mean PD decreased from 7.1 +/- 1.1 mm to 3.5 +/- 1.1 mm and mean CAL from 9.8 +/- 1.5 mm to 6.6 +/- 1.7 mm (P = 0.002), while REC increased from 2.8 +/- 1.0 mm to 3.1 +/- 1.2 mm. No significant differences were found when the clinical results of the 2 groups were compared. Radiographic differences between the baseline and reconstructed images 12 months later were observed in both groups. Mean crestal bone resorption was 15.3 +/- 22.5% in the GTR group and 10.4 +/- 31.8% in the DFDBA group, and mean improvement in the distance between the CEJ and the base of the defect was 22.8 +/- 18.1% in the GTR group and 15

  15. Natural products for treatment of bone erosive diseases: The effects and mechanisms on inhibiting osteoclastogenesis and bone resorption.

    Science.gov (United States)

    An, Jing; Hao, Dingjun; Zhang, Qian; Chen, Bo; Zhang, Rui; Wang, Yi; Yang, Hao

    2016-07-01

    Excessive bone resorption plays a central role on the development of bone erosive diseases, including osteoporosis, rheumatoid arthritis, and periodontitis. Osteoclasts, bone-resorbing multinucleated cells, are differentiated from hemopoietic progenitors of the monocyte/macrophage lineage. Regulation of osteoclast differentiation is considered an effective therapeutic target to the treatment of pathological bone loss. Natural plant-derived products, with potential therapeutic and preventive activities against bone-lytic diseases, have received increasing attention in recent years because of their whole regulative effects and specific pharmacological activities, which are more suitable for long-term use than chemically synthesized medicines. In this review, we summarized the detailed research progress on the active compounds derived from medical plants with potential anti-resorptive effects and their molecular mechanisms on inhibiting osteoclast formation and function. The active ingredients derived from natural plants that are efficacious in suppressing osteoclastogenesis and bone resorption include flavonoids, terpenoids (sesquiterpenoids, diterpenoids, triterpenoids), glycosides, lignans, coumarins, alkaloids, polyphenols, limonoids, quinones and others (steroid, oxoxishhone, fatty acid). Studies have shown that above natural products exert the inhibitory effects via regulating many factors involved in the process of osteoclast differentiation and bone resorption, including the essential cytokines (RANKL, M-CSF), transcription factors (NFATc1, c-Fos), signaling pathways (NF-κB, MAPKs, Src/PI3K/Akt, the calcium ion signaling), osteoclast-specific genes (TRAP, CTSK, MMP-9, integrin β3, OSCAR, DC-STAMP, Atp6v0d2) and local factors (ROS, LPS, NO). The development of osteoclast-targeting natural products is of great value for the prevention or treatment of bone diseases and for bone regenerative medicine.

  16. Effects of Inactivity and Exercise on Bone.

    Science.gov (United States)

    Smith, Everett L.; Gilligan, Catherine

    1987-01-01

    Research has shown that bone tissue responds to the forces of gravity and muscle contraction. The benefits of weight-bearing exercise in preventing or reversing bone mass loss related to osteoporosis is reviewed. The effects of weightlessness and immobilization, and the possible effects of athletic amenorrhea, on bone mineral density are…

  17. Dynamic simulation on effect of flame arrangement on thermal process of regenerative reheating furnace

    Institute of Scientific and Technical Information of China (English)

    OU Jian-ping; MA Ai-chun; ZHAN Shu-hua; ZHOU Jie-min; XIAO Ze-qiang

    2007-01-01

    By analyzing the characteristics of combustion and billet heating process, a 3-D transient computer fluid dynamic simulation system based on commercial software CFX4.3 and some self-programmed codes were developed to simulate the thermal process in a continuous heating furnace using high temperature air combustion technology. The effects of different switching modes on injection entrancement of multi burners, combustion and billet heating process in furnace were analyzed numerically, and the computational results were compared with on-site measurement, which verified the practicability of this numerical simulation system.The results indicate that the flow pattern and distribution of temperature in regenerative reheating furnace with partial same-side-switching combustion mode are favorable to satisfy the high quality requirements of reheating, in which the terminal heating temperature of billets is more than 1 460 K and the temperature difference between two nodes is not more than 10 K. But since the surface average temperature of billets apart from heating zone is only about 1 350 K and continued heating is needed in soaking zone, the design and operation of current state are still needed to be optimized to improve the temperature schedule of billet heating. The distribution of velocity and temperature in regenerative reheating furnace with same-side-switching combustion mode cannot satisfy the even and fast heating process. The terminal heating temperature of billets is lower than that of the former case by 30 K. The distribution of flow and temperature can be improved by using cross-switching combustion mode, whose terminal temperature of billets is about 1 470 K with small temperature difference within 10 K.

  18. Regenerative and reparative effects of human chorion-derived stem cell conditioned medium on photo-aged epidermal cells.

    Science.gov (United States)

    Li, Qiankun; Chen, Yan; Ma, Kui; Zhao, Along; Zhang, Cuiping; Fu, Xiaobing

    2016-01-01

    Epidermal cells are an important regenerative source for skin wound healing. Aged epidermal cells have a low ability to renew themselves and repair skin injury. Ultraviolet (UV) radiation, particularly UVB, can cause photo-aging of the skin by suppressing the viability of human epidermal cells. A chorion-derived stem cell conditioned medium (CDSC-CNM) is thought to have regenerative properties. This study aimed to determine the regenerative effects of CDSC-CNM on UVB-induced photo-aged epidermal cells. Epidermal cells were passaged four times and irradiated with quantitative UVB, and non-irradiated cells served as a control group. Cells were then treated with different concentrations of CDSC-CNM. Compared to the non-irradiated group, the proliferation rates and migration rates of UVB-induced photo-aged epidermal cells significantly decreased (p cells significantly improved their viability, and their ROS generation and DNA damage decreased. The secretory factors in CDSC-CNM, including epidermal growth factor (EGF), transforming growth factor-β (TGF-β), interleukin (IL)-6, and IL-8 and the related signaling pathway protein levels, increased compared to the control medium (CM). The potential regenerative and reparative effects of CDSC-CNM indicate that it may be a candidate material for the treatment of prematurely aged skin. The functions of the secretory factors and the mechanisms of CDSC-CNM therapy deserve further attention.

  19. Bone composition: relationship to bone fragility and antiosteoporotic drug effects.

    Science.gov (United States)

    Boskey, Adele L

    2013-01-01

    The composition of a bone can be described in terms of the mineral phase, hydroxyapatite, the organic phase, which consists of collagen type I, noncollagenous proteins, other components and water. The relative proportions of these various components vary with age, site, gender, disease and treatment. Any drug therapy could change the composition of a bone. This review, however, will only address those pharmaceuticals used to treat or prevent diseases of bone: fragility fractures in particular, and the way they can alter the composition. As bone is a heterogeneous tissue, its composition must be discussed in terms of the chemical makeup, properties of its chemical constituents and their distributions in the ever-changing bone matrix. Emphasis, in this review, is placed on changes in composition as a function of age and various diseases of bone, particularly osteoporosis. It is suggested that while some of the antiosteoporotic drugs can and do modify composition, their positive effects on bone strength may be balanced by negative ones.

  20. Adipose-Derived Stem Cells: A Review of Signaling Networks Governing Cell Fate and Regenerative Potential in the Context of Craniofacial and Long Bone Skeletal Repair

    Directory of Open Access Journals (Sweden)

    Kshemendra Senarath-Yapa

    2014-05-01

    Full Text Available Improvements in medical care, nutrition and social care are resulting in a commendable change in world population demographics with an ever increasing skew towards an aging population. As the proportion of the world’s population that is considered elderly increases, so does the incidence of osteodegenerative disease and the resultant burden on healthcare. The increasing demand coupled with the limitations of contemporary approaches, have provided the impetus to develop novel tissue regeneration therapies. The use of stem cells, with their potential for self-renewal and differentiation, is one potential solution. Adipose-derived stem cells (ASCs, which are relatively easy to harvest and readily available have emerged as an ideal candidate. In this review, we explore the potential for ASCs to provide tangible therapies for craniofacial and long bone skeletal defects, outline key signaling pathways that direct these cells and describe how the developmental signaling program may provide clues on how to guide these cells in vivo. This review also provides an overview of the importance of establishing an osteogenic microniche using appropriately customized scaffolds and delineates some of the key challenges that still need to be overcome for adult stem cell skeletal regenerative therapy to become a clinical reality.

  1. Platelet-Rich Fibrin (PRF) in Implants Dentistry in Combination with New Bone Regenerative Flapless Technique: Evolution of the Technique and Final Results.

    Science.gov (United States)

    Cortese, Antonio; Pantaleo, Giuseppe; Amato, Massimo; Howard, Candace M; Pedicini, Lorenzo; Claudio, Pier Paolo

    2017-01-01

    Most common techniques for alveolar bone augmentation are guided bone regeneration (GBR) and autologous bone grafting. GBR studies demonstrated long-term reabsorption using heterologous bone graft. A general consensus has been achieved in implant surgery for a minimal amount of 2 mm of healthy bone around the implant. A current height loss of about 3-4 mm will result in proper deeper implant insertion when alveolar bone expansion is not planned because of the dome shape of the alveolar crest. To manage this situation a split crest technique has been proposed for alveolar bone expansion and the implants' insertion in one stage surgery. Platelet-rich fibrin (PRF) is a healing biomaterial with a great potential for bone and soft tissue regeneration without inflammatory reactions, and may be used alone or in combination with bone grafts, promoting hemostasis, bone growth, and maturation. The aim of this study was to demonstrate the clinical effectiveness of PRF combined with a new split crest flapless modified technique in 5 patients vs. 5 control patients. Ten patients with horizontal alveolar crests deficiency were treated in this study, divided into 2 groups: Group 1 (test) of 5 patients treated by the flapless split crest new procedure; Group 2 (control) of 5 patients treated by traditional technique with deeper insertion of smaller implants without split crest. The follow-up was performed with x-ray orthopantomography and intraoral radiographs at T0 (before surgery), T1 (operation time), T2 (3 months) and T3 (6 months) post-operation. All cases were successful; there were no problems at surgery and post-operative times. All implants succeeded osteointegration and all patients underwent uneventful prosthetic rehabilitation. Mean height bone loss was 1 mm, measured as bone-implant most coronal contact (Δ-BIC), and occurred at immediate T2 post-operative time (3 months). No alveolar bone height loss was detected at implant insertion time, which was instead

  2. Multimodal Approaches for Regenerative Stroke Therapies: Combination of Granulocyte Colony-Stimulating Factor with Bone Marrow Mesenchymal Stem Cells is Not Superior to G-CSF Alone

    Directory of Open Access Journals (Sweden)

    Adrian Tudor Balseanu

    2014-06-01

    Full Text Available Attractive therapeutic strategies to enhance post-stroke recovery of aged brains include methods of cellular therapy that can enhance the endogenous restorative mechanisms of the injured brain. Since stroke afflicts mostly the elderly, it is highly desirable to test the efficacy of cell therapy in the microenvironment of aged brains that is generally refractory to regeneration. In particular, stem cells from the bone marrow allow an autologous transplantation approach that can be translated in the near future to the clinical practice. Such a bone marrow-derived therapy includes the grafting of stem cells as well as the delayed induction of endogenous stem cell mobilization and homing by the stem cell mobilizer granulocyte colony-stimulating factor (G-CSF. We tested the hypothesis that grafting of bone marrow-derived pre-differentiated mesenchymal cells (BM-MSCs in G-CSF-treated animals improves the long-term functional outcome in aged rodents. To this end, G-CSF alone (50 μg/kg or in combination with a single dose (106 cells of rat BM MSCs was administered intravenously to Sprague-Dawley rats at 6 h after transient occlusion (90 min of the middle cerebral artery. Infarct volume was measured by magnetic resonance imaging at 3 and 48 days post-stroke and additionally by immunhistochemistry at day 56. Functional recovery was tested during the entire post-stroke survival period of 56 days. Daily treatment for post-stroke aged rats with G-CSF led to a robust and consistent improvement of neurological function after 28 days. The combination therapy also led to robust angiogenesis in the formerly infarct core and beyond in the “islet of regeneration.” However, G-CSF + BM MSCs may not impact at all on the spatial reference-memory task or infarct volume and therefore did not further improve the post-stroke recovery. We suggest that in a real clinical practice involving older post-stroke patients, successful regenerative therapies

  3. MULTIMODAL APPROACHES FOR REGENERATIVE STROKE THERAPIES: COMBINATION OF GRANULOCYTE COLONY-STIMULATING FACTOR WITH BONE MARROW MESENCHYMAL STEM CELLS IS NOT SUPERIOR TO G-CSF ALONE

    Directory of Open Access Journals (Sweden)

    AurelPopa-Wagner

    1900-01-01

    Full Text Available Attractive therapeutic strategies to enhance post-stroke recovery of aged brains include methods of cellular therapy that can enhance the endogenous restorative mechanisms of the injured brain. Since stroke afflicts mostly the elderly, it is highly desirable to test the efficacy of cell therapy in the microenvironment of aged brains that is generally refractory to regeneration. In particular, stem cells from the bone marrow allow an autologous transplantation approach that can be translated in the near future to the clinical practice. Such a bone marrow-derived therapy includes the grafting of stem cells as well as the delayed induction of endogenous stem cell mobilisation and homing by the stem cell mobiliser Granulocyte-colony Stimulating Factor (G-CSF. We tested the hypothesis that grafting of bone marrow-derived pre-differentiated mesenchymal cells (BM MSCs in G-CSF-treated animals improves the long-term functional outcome in aged rodents. To this end, G-CSF alone (50 µg/kg or in combination with a single dose (106 cells of rat BM MSCs were administered intravenously to Sprague-Dawley rats at six hour safter transient occlusion (90 min of the middle cerebral artery. Infarct volume was measured by MRI at 3 and 48 days post-stroke and additionally by immunhistochemistry at day 56. Functional recovery was tested during the entire post-stroke survival period of 56 days. Daily treatment for post-stroke aged rats with G-CSF led to a robust and consistent improvement of neurological function after 28 days. The combination therapy also led to robust angiogenesis in the formerly infarct core and beyond in the “islet of regeneration”. However, G-CSF + BM MSCs may not impact at all on the spatial reference-memory task or infarct volume and therefore did not further improve the post-stroke recovery. We suggest that in a real clinical practice involving older post-stroke patients, successful regenerative therapies would have to be carried out for a

  4. Erythropoietin Modulates the Structure of Bone Morphogenetic Protein 2–Engineered Cranial Bone

    OpenAIRE

    Sun, Hongli; Jung, Younghun; Shiozawa, Yusuke; Taichman, Russell S.; Krebsbach, Paul H.

    2012-01-01

    The ideally engineered bone should have similar structural and functional properties to the native tissue. Although structural integrity is critical for functional bone regeneration, we know less about modulating the structural properties of the engineered bone elicited by bone morphogenetic protein (BMP) than efficacy and safety. Erythropoietin (Epo), a primary erythropoietic hormone, has been used to augment blood transfusion in orthopedic surgery. However, the effects of Epo on bone regene...

  5. Beneficial effects of adiponectin on periodontal ligament cells under normal and regenerative conditions.

    Science.gov (United States)

    Nokhbehsaim, Marjan; Keser, Sema; Nogueira, Andressa Vilas Boas; Cirelli, Joni Augusto; Jepsen, Søren; Jäger, Andreas; Eick, Sigrun; Deschner, James

    2014-01-01

    Type 2 diabetes and obesity are increasing worldwide and linked to periodontitis, a chronic disease which is characterized by the irreversible destruction of the tooth-supporting tissues, that is, periodontium. The mechanisms underlying the association of diabetes mellitus and obesity with periodontal destruction and compromised periodontal healing are not well understood, but decreased plasma levels of adiponectin, as found in diabetic and obese individuals, might be a critical mechanistic link. The aim of this in vitro study was to examine the effects of adiponectin on periodontal ligament (PDL) cells under normal and regenerative conditions, and to study the regulation of adiponectin and its receptors in these cells. Adiponectin stimulated significantly the expression of growth factors and extracellular matrix, proliferation, and in vitro wound healing, reduced significantly the constitutive tumor necrosis factor-α expression, and caused a significant upregulation of its own expression. The beneficial actions of enamel matrix derivative on a number of PDL cell functions critical for periodontal regeneration were partially enhanced by adiponectin. The periodontopathogen Porphyromonas gingivalis inhibited the adiponectin expression and stimulated the expression of its receptors. In conclusion, reduced levels of adiponectin, as found in type 2 diabetes and obesity, may compromise periodontal health and healing.

  6. Cryptomphalus aspersa Mollusc Egg Extract Promotes Regenerative Effects in Human Dermal Papilla Stem Cells

    Directory of Open Access Journals (Sweden)

    María Teresa Alameda

    2017-02-01

    Full Text Available The aim of this study was to test, by an in vitro approach, whether a natural extract derived from eggs of the mollusc Cryptomphalus aspersa (e-CAF that seems to present regenerative properties, can enhance the mobilization of human hair dermal papilla cells (HHDPCs and play a role on tissue repair and regeneration. We have tested HHDPCs proliferation by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium-bromide (MTT assay; cell migration by using a wound healing assay, as well as the modulation of the expression of cytoskeletal (F-actin and vimentin and cell adhesion to the extracellular matrix (ECM (vinculin and P-FAK proteins. We also explored whether e-CAF could lead HHDPCs to keratinocytes and/or fibroblasts by evaluating the expression of specific markers. We have compared these e-CAF effects with those induced by TGFβ1, implicated in regulation of cell proliferation and migration. e-CAF promotes proliferation and migration of HDDPCs cells in a time- and dose-dependent manner; it also increases the migratory behavior and the expression of adhesion molecules. These results support the fact that e-CAF could play a role on skin regeneration and be used for the prevention or repair of damaged tissue, either due to external causes or as a result of cutaneous aging.

  7. Beneficial Effects of Adiponectin on Periodontal Ligament Cells under Normal and Regenerative Conditions

    Directory of Open Access Journals (Sweden)

    Marjan Nokhbehsaim

    2014-01-01

    Full Text Available Type 2 diabetes and obesity are increasing worldwide and linked to periodontitis, a chronic disease which is characterized by the irreversible destruction of the tooth-supporting tissues, that is, periodontium. The mechanisms underlying the association of diabetes mellitus and obesity with periodontal destruction and compromised periodontal healing are not well understood, but decreased plasma levels of adiponectin, as found in diabetic and obese individuals, might be a critical mechanistic link. The aim of this in vitro study was to examine the effects of adiponectin on periodontal ligament (PDL cells under normal and regenerative conditions, and to study the regulation of adiponectin and its receptors in these cells. Adiponectin stimulated significantly the expression of growth factors and extracellular matrix, proliferation, and in vitro wound healing, reduced significantly the constitutive tumor necrosis factor-α expression, and caused a significant upregulation of its own expression. The beneficial actions of enamel matrix derivative on a number of PDL cell functions critical for periodontal regeneration were partially enhanced by adiponectin. The periodontopathogen Porphyromonas gingivalis inhibited the adiponectin expression and stimulated the expression of its receptors. In conclusion, reduced levels of adiponectin, as found in type 2 diabetes and obesity, may compromise periodontal health and healing.

  8. Bioreactor-Based Online Recovery of Human Progenitor Cells with Uncompromised Regenerative Potential: A Bone Tissue Engineering Perspective.

    Directory of Open Access Journals (Sweden)

    Maarten Sonnaert

    Full Text Available The use of a 3D perfusion culture environment for stem cell expansion has been shown to be beneficial for maintenance of the original cell functionality but due to several system inherent characteristics such as the presence of extracellular matrix, the continued development and implementation of 3D perfusion bioreactor technologies is hampered. Therefore, this study developed a methodology for harvesting a progenitor cell population from a 3D open porous culture surface after expansion in a perfusion bioreactor and performed a functional characterization of the expanded cells. An initial screening showed collagenase to be the most interesting reagent to release the cells from the 3D culture surface as it resulted in high yields without compromising cell viability. Subsequently a Design of Experiment approach was used to obtain optimized 3D harvest conditions by assessing the interplay of flow rate, collagenase concentration and incubation time on the harvest efficiency, viability and single cell fraction. Cells that were recovered with the optimized harvest protocol, by perfusing a 880 U/ml collagenase solution for 7 hours at a flow rate of 4 ml/min, were thereafter functionally analyzed for their characteristics as expanded progenitor cell population. As both the in vitro tri-lineage differentiation capacity and the in vivo bone forming potential were maintained after 3D perfusion bioreactor expansion we concluded that the developed seeding, culture and harvest processes did not significantly compromise the viability and potency of the cells and can contribute to the future development of integrated bioprocesses for stem cell expansion.

  9. Regenerative engineering

    CERN Document Server

    Laurencin, Cato T

    2013-01-01

    Regenerative Engineering: The Future of Medicine Saadiq F. El-Amin III , MD , PhD; Joylene W.L. Thomas, MD ; Ugonna N. Ihekweazu, MD ; Mia D. Woods, MS; and Ashim Gupta, MSCell Biology Gloria Gronowicz, PhD and Karen Sagomonyants, DMDStem Cells and Tissue Regeneration Kristen Martins-Taylor, PhD; Xiaofang Wang, MD , PhD; Xue-Jun Li, PhD; and Ren-He Xu, MD , PhDIntroduction to Materials Science Sangamesh G. Kumbar, PhD and Cato T. Laurencin, MD , PhDBiomaterials A. Jon Goldberg, PhD and Liisa T. Kuhn, PhDIn Vitro Assessment of Cell-Biomaterial Interactions Yong Wang, PhDHost Response to Biomate

  10. Methods to Analyze Bone Regenerative Response to Different rhBMP-2 Doses in Rabbit Craniofacial Defects

    Science.gov (United States)

    2014-02-28

    overnight and sterilized using ethylene oxide (EtO) (AN74i; Andersen Products, Haw River, NC) prior to rhBMP-2 loading. Sterility was verified using a...dose effects ranged between 6 and 8 for the imaging methods while histomorphometric analysis would require 25 animals per group to detect similar...supraphysiological doses of the protein. These high doses result in a high cost of therapy and po- tentially multiple adverse effects in clinical use

  11. The effect of enamel matrix derivative (Emdogain®) on gene expression profiles of human primary alveolar bone cells.

    Science.gov (United States)

    Yan, X Z; Rathe, F; Gilissen, C; van der Zande, M; Veltman, J; Junker, R; Yang, F; Jansen, J A; Walboomers, X F

    2014-06-01

    Emdogain® is frequently used in regenerative periodontal treatment. Understanding its effect on gene expression of bone cells would enable new products and pathways promoting bone formation to be established. The aim of the study was to analyse the effect of Emdogain® on expression profiles of human-derived bone cells with the help of the micro-array, and subsequent validation. Bone was harvested from non-smoking patients during dental implant surgery. After outgrowth, cells were cultured until subconfluence, treated for 24 h with either Emdogain® (100 µg/ml) or control medium, and subsequently RNA was isolated and micro-array was performed. The most important genes demonstrated by micro-array data were confirmed by qPCR and ELISA tests. Emdogain tipped the balance between genes expressed for bone formation and bone resorption towards a more anabolic effect, by interaction of the PGE2 pathway and inhibition of IL-7 production. In addition the results of the present study indicate that Emdogain possibly has an effect on gene expression for extracellular matrix formation of human bone cells, in particular on bone matrix formation and on proliferation and differentiation. With the micro-array and the subsequent validation, the genes possibly involved in Emdogain action on bone cells were identified. These results can contribute to establishing new products and pathways promoting bone formation.

  12. Regenerative strategies for craniofacial disorders

    Directory of Open Access Journals (Sweden)

    Catharine Bradford Garland

    2012-12-01

    Full Text Available Craniofacial disorders present markedly complicated problems in reconstruction because of the complex interactions of the multiple, simultaneously affected tissues. Regenerative medicine holds promise for new strategies to improve treatment of these disorders. This review addresses current areas of unmet need in craniofacial reconstruction and emphasizes how craniofacial tissues differ from their analogs elsewhere in the body. We present a problem-based approach to illustrate current treatment strategies for various craniofacial disorders, to highlight areas of need, and to suggest regenerative strategies for craniofacial bone, fat, muscle, nerve, and skin. For some tissues, current approaches offer excellent reconstructive solutions using autologous tissue or prosthetic materials. Thus, new regenerative approaches would need to offer major advantages in order to be adopted. In other tissues, the unmet need is great, and we suggest the greatest regenerative need is for muscle, skin, and nerve. The advent of composite facial tissue transplantation and the development of regenerative medicine are each likely to add important new paradigms to our treatment of craniofacial disorders.

  13. Artificial Gravity: Effects on Bone Turnover

    Science.gov (United States)

    Heer, M.; Zwart, S /R.; Baecker, N.; Smith, S. M.

    2007-01-01

    The impact of microgravity on the human body is a significant concern for space travelers. Since mechanical loading is a main reason for bone loss, artificial gravity might be an effective countermeasure to the effects of microgravity. In a 21-day 6 head-down tilt bed rest (HDBR) pilot study carried out by NASA, USA, the utility of artificial gravity (AG) as a countermeasure to immobilization-induced bone loss was tested. Blood and urine were collected before, during, and after bed rest for bone marker determinations. Bone mineral density was determined by DXA and pQCT before and after bed rest. Urinary excretion of bone resorption markers (n-telopeptide and helical peptide) were increased from pre-bed rest, but there was no difference between the control and the AG group. The same was true for serum c-telopeptide measurements. Bone formation markers were affected by bed rest and artificial gravity. While bone-specific alkaline phosphatase tended to be lower in the AG group during bed rest (p = 0.08), PINP, another bone formation marker, was significantly lower in AG subjects than CN before and during bed rest. PINP was lower during bed rest in both groups. For comparison, artificial gravity combined with ergometric exercise was tested in a 14-day HDBR study carried out in Japan (Iwase et al. J Grav Physiol 2004). In that study, an exercise regime combined with AG was able to significantly mitigate the bed rest-induced increase in the bone resorption marker deoxypyridinoline. While further study is required to more clearly differentiate bone and muscle effects, these initial data demonstrate the potential effectiveness of short-radius, intermittent AG as a countermeasure to the bone deconditioning that occurs during bed rest and spaceflight. Future studies will need to optimize not only the AG prescription (intensity and duration), but will likely need to include the use of exercise or other combined treatments.

  14. Regenerative adsorption distillation system

    KAUST Repository

    Ng, Kim Choon

    2013-12-26

    There is provided a regenerative adsorption distillation system comprising a train of distillation effects in fluid communication with each other. The train of distillation effects comprises at least one intermediate effect between the first and last distillation effects of the train, each effect comprising a vessel and a condensing tube for flow of a fluid therein. The system further comprises a pair of adsorption-desorption beds in vapour communication with the last effect and at least one intermediate effect, wherein the beds contain an adsorbent that adsorbs vapour from the last effect and transmits desorbed vapour into at least one of the intermediate effect.

  15. Enhancement in daily yield due to regenerative effect in solar distillation

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, B.; Bhagat, N.C. [B.R. Ambedkar Bahr University, Bihar (India); Tiwari, G.N. [Indian Institute of Technology, New Delhi (India). Centre for Energy Studies

    1997-04-01

    In this communication, an energy balance equation in terms of design and climatic parameters has been written for each component of a regenerative active solar distillation system. An analytical expression for the water and the condensing cover temperatures, the hourly yield and the flowing water temperature has been derived. Numerical computations have been carried out for a typical day in Delhi and it has been inferred that the daily output is increased significantly due to nocturnal production of distilled water. (author)

  16. Regenerative Braking Algorithm for an ISG HEV Based on Regenerative Torque Optimization

    Institute of Scientific and Technical Information of China (English)

    XIAO Wen-yong; WANG Feng; ZHUO Bin

    2008-01-01

    A novel regenerative braking algorithm based on regenerative torque optimization with emulate engine compression braking (EECB) was proposed to make effective and maximum use of brake energy in order to improve fuel economy. The actual brake oil pressure of driving wheel which is reduced by the amount of the regenerative braking force is supplied from the electronic hydraulic brake system. Regenerative torque optimization maximizes the actual regenerative power recuperation by energy storage component, and EECB is a useful extended type of regenerative braking. The simulation results show that actual regenerative power recuperation for the novel regenerative braking algorithm is more than using conventional one, and life-span of brake disks is prolonged for the novel algorithm.

  17. Effects of obesity on bone metabolism

    Directory of Open Access Journals (Sweden)

    Cao Jay J

    2011-06-01

    Full Text Available Abstract Obesity is traditionally viewed to be beneficial to bone health because of well-established positive effect of mechanical loading conferred by body weight on bone formation, despite being a risk factor for many other chronic health disorders. Although body mass has a positive effect on bone formation, whether the mass derived from an obesity condition or excessive fat accumulation is beneficial to bone remains controversial. The underline pathophysiological relationship between obesity and bone is complex and continues to be an active research area. Recent data from epidemiological and animal studies strongly support that fat accumulation is detrimental to bone mass. To our knowledge, obesity possibly affects bone metabolism through several mechanisms. Because both adipocytes and osteoblasts are derived from a common multipotential mesenchymal stem cell, obesity may increase adipocyte differentiation and fat accumulation while decrease osteoblast differentiation and bone formation. Obesity is associated with chronic inflammation. The increased circulating and tissue proinflammatory cytokines in obesity may promote osteoclast activity and bone resorption through modifying the receptor activator of NF-κB (RANK/RANK ligand/osteoprotegerin pathway. Furthermore, the excessive secretion of leptin and/or decreased production of adiponectin by adipocytes in obesity may either directly affect bone formation or indirectly affect bone resorption through up-regulated proinflammatory cytokine production. Finally, high-fat intake may interfere with intestinal calcium absorption and therefore decrease calcium availability for bone formation. Unraveling the relationship between fat and bone metabolism at molecular level may help us to develop therapeutic agents to prevent or treat both obesity and osteoporosis. Obesity, defined as having a body mass index ≥ 30 kg/m2, is a condition in which excessive body fat accumulates to a degree that adversely

  18. Effects of murine and human bone marrow-derived mesenchymal stem cells on cuprizone induced demyelination.

    Directory of Open Access Journals (Sweden)

    Jasmin Nessler

    Full Text Available For the treatment of patients with multiple sclerosis there are no regenerative approaches to enhance remyelination. Mesenchymal stem cells (MSC have been proposed to exert such regenerative functions. Intravenous administration of human MSC reduced the clinical severity of experimental autoimmune encephalomyelitis (EAE, an animal model mimicking some aspects of multiple sclerosis. However, it is not clear if this effect was achieved by systemic immunomodulation or if there is an active neuroregeneration in the central nervous system (CNS. In order to investigate remyelination and regeneration in the CNS we analysed the effects of intravenously and intranasally applied murine and human bone marrow-derived MSC on cuprizone induced demyelination, a toxic animal model which allows analysis of remyelination without the influence of the peripheral immune system. In contrast to EAE no effects of MSC on de- and remyelination and glial cell reactions were found. In addition, neither murine nor human MSC entered the lesions in the CNS in this toxic model. In conclusion, MSC are not directed into CNS lesions in the cuprizone model where the blood-brain-barrier is intact and thus cannot provide support for regenerative processes.

  19. Long-term effect on tooth vitality of regenerative therapy in deep periodontal bony defects: a retrospective study.

    Science.gov (United States)

    de Sanctis, Massimo; Goracci, Cecilia; Zucchelli, Giovanni

    2013-01-01

    Over the last few decades, many authors have investigated the effect of periodontal disease and treatment on pulpal status with controversial results. This study was conducted to verify whether periodontal disease in a deep intrabony defect and complex therapy, including aggressive root planing such as in periodontal regeneration, have an influence on tooth vitality. One hundred thirty-seven patients who fulfilled the requirements were included. The collected data did not support the need for "preventive" root canal treatment in severely compromised teeth that are planned to undergo periodontal regenerative surgery.

  20. Long-term stability of surgical bone regenerative procedures of peri-implantitis lesions in a prospective case-control study over three years

    OpenAIRE

    2011-01-01

    Abstract Objectives: To evaluate the extent of bone fill over three years following surgical treatment of peri-implantitis with bone grafting with or without a membrane. Material & Methods: In a non-submerged wound healing mode, 15 subjects with 27 implants were treated with a bone substitute (Algipore?) alone, and 17 subjects with 29 implants were treated with the bone substitute and a resorbable membrane (Osseoquest?). Implants with radiographic bone loss ?1.8 mm following the...

  1. Clinical Application of Vascular Regenerative Therapy for Peripheral Artery Disease

    Directory of Open Access Journals (Sweden)

    Hiroshi Suzuki

    2013-01-01

    Full Text Available Prognosis of peripheral artery disease (PAD, especially critical limb ischemia, is very poor despite the development of endovascular therapy and bypass surgery. Many patients result in leg amputation and, therefore, vascular regenerative therapy is expected in this field. Gene therapy using vascular endothelial growth factor is the first step of vascular regenerative therapy, but did not confirm effectiveness in a large-scale randomized comparative study. Based on animal experiments, bone marrow mononuclear cells (MNCs, peripheral blood MNCs were used as the cell source for regenerative therapy. Those cells were confirmed to be effective to decrease rest pain and ulcer size, but its effect was not fully satisfied. Mesenchymal stem cells (MSCs are expected as an effective cell source for vascular regeneration and clinical studies are ongoing, because the cells are able to differentiate into various cell types and produce a significant amount of vascular growth factors. Of vascular regeneration therapy, peripheral MNCs and bone marrow MNCs were recognized as advanced medical technology but do not attain to the standard therapy. However, clinical use of MSCs have already started, and induced pluripotent stem cells are surely promising tool for vascular regeneration therapy although further basic studies are required for clinical application.

  2. Effects of Erythropoietin on the Bone Microenvironment

    OpenAIRE

    McGee, SJ; Havens, AM; Shiozawa, Y; Y. Jung; Taichman, RS

    2011-01-01

    It has well been established that blood and bone share a unique, regulatory relationship with one another, though the specifics of this relationship still remain unanswered. Erythropoietin (Epo) is known primarily for its role as a hematopoietic hormone. However, after the discovery of Epo receptor (Epo-R) outside the hematopoietic tissues, Epo has been avidly studied for its possible non-hematopoietic effects. It has been proposed that Epo interacts with bone both directly, by activating bon...

  3. Regenerative Perspective in Modern Dentistry

    Directory of Open Access Journals (Sweden)

    Mihnea Ioan Nicolescu

    2016-04-01

    Full Text Available This review aims to trace the contour lines of regenerative dentistry, to offer an introductory overview on this emerging field to both dental students and practitioners. The crystallized depiction of the concept is a translational approach, connecting dental academics to scientific research and clinical utility. Therefore, this review begins by presenting the general features of regenerative medicine, and then gradually introduces the specific aspects of major dental subdomains, highlighting the progress achieved during the last years by scientific research and, in some cases, which has already been translated into clinical results. The distinct characteristics of stem cells and their microenvironment, together with their diversity in the oral cavity, are put into the context of research and clinical use. Examples of regenerative studies regarding endodontic and periodontal compartments, as well as hard (alveolar bone and soft (salivary glands related tissues, are presented to make the reader further acquainted with the topic. Instead of providing a conclusion, we will emphasize the importance for all dental community members, from young students to experienced dentists, of an early awareness rising regarding biomedical research progress in general and regenerative dentistry in particular.

  4. Effect of Chenopodium ambrosioides on the healing process of the in vivo bone tissue.

    Science.gov (United States)

    Penha, Elizandra Silva da; Lacerda-Santos, Rogério; Carvalho, Maria Goretti Freire de; Oliveira, Patrícia Teixeira de

    2017-07-25

    The focus of this double-blind randomized study was on evaluating the effect of an aqueous extract of Mastruz (Chenopodium ambrosioides L.) on the bone repair process in vivo. In total, 36 male Wistar rats were randomly selected for this study, and divided into 3 groups (n = 12): Group HS (Hemostatic Sponge), Group SM (Hemostatic Sponge with Mastruz) and Group BC (Blood Clot). In each animal, bone defects measuring 2 mm in diameter were performed in both tibias for placement of the substances. After 3 and 10 days, the animals were sacrificed, and the tissues were analyzed under an optical microscope relative to the following events: inflammatory infiltrate; necrosis; young fibroblasts; osteoclastic and osteoblastic activity; endosteal and periosteal bone formation; and bone repair. The results were assessed by using Kruskal-Wallis and Mann-Whitney tests (p < .05). Inflammatory infiltrate demonstrated difference between Groups SM and BC in the time interval of 3 days (p = .004); an event related to the presence of the fibrin sponge and liquid of the extract, which induced a foreign body initial reaction. The presence of young fibroblasts (p = .003), osteoclastic (p = .003), and osteoblastic (p = .020) activity was statistically significant between Groups HS and BC in the time interval of 10 days; performance was related to the presence of the sponge within bone. As regards injured bone tissue repair, Group SM demonstrated a higher level of regenerative capacity (p = 0.004), due to a larger quantities of endosteal and periosteal bone formation, demonstrated in Group SM. The aqueous extract of mastruz stimulated bone neoformation, presenting wound closure with bone tissue at the end of 10 days. © 2017 Wiley Periodicals, Inc.

  5. Effects of Spaceflight on Bone: The Rat as an Animal Model for Human Bone Loss

    Science.gov (United States)

    Halloran, B.; Weider, T.; Morey-Holton, E.

    1999-01-01

    The loss of weight bearing during spaceflight results in osteopenia in humans. Decrements in bone mineral reach 3-10% after as little as 75-184 days in space. Loss of bone mineral during flight decreases bone strength and increases fracture risk. The mechanisms responsible for, and the factors contributing to, the changes in bone induced by spaceflight are poorly understood. The rat has been widely used as an animal model for human bone loss during spaceflight. Despite its potential usefulness, the results of bone studies performed in the rat in space have been inconsistent. In some flights bone formation is decreased and cancellous bone volume reduced, while in others no significant changes in bone occur. In June of 1996 Drs. T. Wronski, S. Miller and myself participated in a flight experiment (STS 78) to examine the effects of glucocorticoids on bone during weightlessness. Technically the 17 day flight experiment was flawless. The results, however, were surprising. Cancellous bone volume and osteoblast surface in the proximal tibial metaphysis were the same in flight and ground-based control rats. Normal levels of cancellous bone mass and bone formation were also detected in the lumbar vertebrae and femoral neck of flight rats. Furthermore, periosteal bone formation rate was found to be identical in flight and ground-based control rats. Spaceflight had little or no effect on bone metabolism! These results prompted us to carefully review the changes in bone observed in, and the flight conditions of previous spaceflight missions.

  6. Effects of Spaceflight on Bone: The Rat as an Animal Model for Human Bone Loss

    Science.gov (United States)

    Halloran, B.; Weider, T.; Morey-Holton, E.

    1999-01-01

    The loss of weight bearing during spaceflight results in osteopenia in humans. Decrements in bone mineral reach 3-10% after as little as 75-184 days in space. Loss of bone mineral during flight decreases bone strength and increases fracture risk. The mechanisms responsible for, and the factors contributing to, the changes in bone induced by spaceflight are poorly understood. The rat has been widely used as an animal model for human bone loss during spaceflight. Despite its potential usefulness, the results of bone studies performed in the rat in space have been inconsistent. In some flights bone formation is decreased and cancellous bone volume reduced, while in others no significant changes in bone occur. In June of 1996 Drs. T. Wronski, S. Miller and myself participated in a flight experiment (STS 78) to examine the effects of glucocorticoids on bone during weightlessness. Technically the 17 day flight experiment was flawless. The results, however, were surprising. Cancellous bone volume and osteoblast surface in the proximal tibial metaphysis were the same in flight and ground-based control rats. Normal levels of cancellous bone mass and bone formation were also detected in the lumbar vertebrae and femoral neck of flight rats. Furthermore, periosteal bone formation rate was found to be identical in flight and ground-based control rats. Spaceflight had little or no effect on bone metabolism! These results prompted us to carefully review the changes in bone observed in, and the flight conditions of previous spaceflight missions.

  7. Effects of food enriched with egg yolk hydrolysate (bone peptide) on bone metabolism in orchidectomized dogs.

    Science.gov (United States)

    Kobayashi, Toyokazu; Koie, Hiroshi; Watanabe, Arisa; Ino, Arisa; Watabe, Kazuya; Kim, Mujo; Kanayama, Kiichi; Otsuji, Kazuya

    2015-04-01

    We examined the effects of chicken egg hydrolysate (also known as "bone peptide" or BP) on bone metabolism in 5- to 8-month-old orchidectomized dogs. The bone formation marker serum bone alkaline phosphatase (BAP) and the bone resorption marker urine deoxypyridinoline (DPD) were used as indicators to measure changes in bone metabolism. The following results were observed that Serum BAP was higher in dogs fed BP-enriched food throughout the clinical investigation. Serum BAP was statistically significantly higher in dogs fed BP-enriched food than in dogs fed non-BP-enriched food at 2 months after orchidectomy. This suggests that BP promoted bone formation immediately after orchidectomy.

  8. Research into the Effect of Supercapacitor Terminal Voltage on Regenerative Suspension Energy-Regeneration and Dynamic Performance

    Directory of Open Access Journals (Sweden)

    Ruochen Wang

    2017-01-01

    Full Text Available To study the effect of supercapacitor initial terminal voltage on the regenerative and semiactive suspension energy-regeneration and dynamic performance, firstly, the relationship between supercapacitor terminal voltage and linear motor electromagnetic damping force and that between supercapacitor terminal voltage and recycled energy by the supercapacitor in one single switching period were both analyzed. The result shows that the linear motor electromagnetic damping force is irrelevant to the supercapacitor terminal voltage, and the recycled energy by the supercapacitor reaches the maximum when initial terminal voltage of the supercapacitor equals output terminal voltage of the linear motor. Then, performances of system dynamics and energy-regeneration were studied as the supercapacitor initial terminal voltage varied in situations of B level and C level road. The result showed that recycled energy by the supercapacitor increased at first and then decreased while the dynamic performance had no obvious change. On the basis of previous study, a mode-switching control strategy of supercapacitor for the regenerative and semiactive suspension system was proposed, and the mode-switching rule was built. According to simulation and experiment results, the system energy-regeneration efficiency can be increased by utilizing the control strategy without influencing suspension dynamic performance, which is highly valuable to practical engineering.

  9. Effects of Calcium Sulfate Combined with Platelet-rich Plasma on Restoration of Long Bone Defect in Rabbits

    Institute of Scientific and Technical Information of China (English)

    Hua Chen; Xin-Ran Ji; Qun Zhang; Xue-Zhong Tian; Bo-Xun Zhang; Pei-Fu Tang

    2016-01-01

    Background:The treatment for long bone defects has been a hot topic in the field of regenerative medicine.This study aimed to evaluate the therapeutic effects of calcium sulfate (CS) combined with platelet-rich plasma (PRP) on long bone defect restoration.Methods:A radial bone defect model was constructed through an osteotomy using New Zealand rabbits.The rabbits were randomly divided into four groups (n =10 in each group):a CS combined with PRP (CS-PRP) group,a CS group,a PRP group,and a positive (recombinant human bone morphogenetic protein-2) control group.PRP was prepared from autologous blood using a two-step centrifugation process.CS-PRP was obtained by mixing hemihydrate CS with PRP.Radiographs and histologic micrographs were generated.The percentage of bone regenerated bone area in each rabbit was calculated at 10 weeks.One-way analysis of variance was performed in this study.Results:The radiographs and histologic micrographs showed bone restoration in the CS-PRP and positive control groups,while nonunion was observed in the CS and PRP groups.The percentages of bone regenerated bone area in the CS-PRP (84.60 ± 2.87%) and positive control (52.21 ± 4.53%) groups were significantly greater than those in the CS group (12.34 ± 2.17%) and PRP group (16.52 ± 4.22%) (P < 0.001).In addition,the bone strength of CS-PRP group (43.l 0 ± 4.10%) was significantly greater than that of the CS group (20.10 ± 3.70%) or PRP group (25.10 ± 2.10%) (P < 0.001).Conclusion:CS-PRP functions as an effective treatment for long bone defects through stimulating bone regeneration and enhancing new bone strength.

  10. Clinical concepts for regenerative therapy in furcations.

    Science.gov (United States)

    Sanz, Mariano; Jepsen, Karin; Eickholz, Peter; Jepsen, Søren

    2015-06-01

    Furcation involvements present one of the greatest challenges in periodontal therapy because furcation-involved molar teeth respond less favorably to conventional periodontal therapy compared with noninvolved molar or nonmolar teeth. Various regenerative procedures have been proposed and applied with the aim of eliminating the furcation defect or reducing the furcation depth. An abundance of studies and several systematic reviews have established the effectiveness of membrane therapy (guided tissue regeneration) for buccal Class II furcation involvement of mandibular and maxillary molars compared with open flap surgery. Bone grafts/substitutes may enhance the results of guided tissue regeneration. However, complete furcation closure is not a predictable outcome. Limited data and no meta-analyses are available on the effects of enamel matrix proteins for furcation regeneration. Enamel matrix protein therapy has demonstrated clinical improvements in the treatment of buccal Class II furcation defects in mandibular molars; however, complete closure of the furcation lesion is achieved only in a minority of cases. Neither guided tissue regeneration nor enamel matrix protein therapy have demonstrated predictable results for approximal Class II and for Class III furcations. Promising preclinical data from furcation regeneration studies in experimental animals is available for growth factor- and differentiation factor-based technologies, but very limited data are available from human clinical studies. Although cell-based therapies have received considerable attention in regenerative medicine, their experimental evaluation in the treatment of periodontal furcation lesions is at a very early stage of development. In summary, the indications and the limitations for currently available treatment modalities for furcation defects are well established. New regenerative treatments are clearly needed to improve the predictability of a complete resolution of furcation defects.

  11. [Regenerative approach for COPD].

    Science.gov (United States)

    Kubo, Hiroshi

    2011-10-01

    No treatment to cure of chronic obstructive pulmonary disease (COPD) is available. Regenerative medicine is one of promising areas for this intractable disease. Several reagents and growth factors are known to promote lung regeneration in small animal models. However, regenerative medicines for human lungs are not achieved yet. Recent advances in stem cell biology and tissue engineering have expanded our understanding of lung endogenous stem cells, and this new knowledge provides us with new ideas for future regenerative therapy for lung diseases. Although lungs are the most challenging organ for regenerative medicine, our cumulative knowledge of lung regeneration and of endogenous progenitor cells makes clear the possibilities for regenerative approach to COPD.

  12. Exploring gamma radiation effect on exoelectron emission properties of bone

    Energy Technology Data Exchange (ETDEWEB)

    Zakaria, M.; Dekhtyar, Y.; Bogucharska, T.; Noskov, V. [Riga Technical Univ., Biomedical Engineering and Nanotechnology Institute (Latvia)

    2006-07-01

    Gamma radiation is used for radiation therapy to treat carcinogenic diseases including bone cancer. Ionising radiation kills carcinogenic calls. However, there are side effects of the gamma radiation on the bone surface electron structure. One of the effects is in the form of altering electron density of states of bone that, with time, influences biomedical reactions on bone life condition. (authors)

  13. Cell Biology of Thiazide Bone Effects

    Science.gov (United States)

    Gamba, Gerardo; Riccardi, Daniela

    2008-09-01

    The thiazide-sensitive Na+:Cl- cotransporter (NCC) is the major pathway for salt reabsorption in the mammalian kidney. The activity of NCC is not only related to salt metabolism, but also to calcium and magnesium homeostasis due to the inverse relationship between NCC activity and calcium reabsorption. Hence, the thiazide-type diuretics that specifically block NCC have been used for years, not only for treatment of hypertension and edematous disease, but also for the management of renal stone disease. Epidemiological studies have shown that chronic thiazide treatment is associated with higher bone mineral density and reduced risk of bone fractures, which can only partly be explained in terms of their effects on the kidney. In this regard, we have recently shown that NCC is expressed in bone cells and that inhibition of NCC in bone, either by thiazides or by reduction of NCC protein with specific siRNA, is associated with increased mineralization in vitro. These observations open a field of study to begin to understand the cell biology of the beneficial effects of thiazides in bone.

  14. Effect of bone graft density on in vitro cell behavior with enamel matrix derivative.

    Science.gov (United States)

    Miron, Richard J; Caluseru, Oana M; Guillemette, Vincent; Zhang, Yufeng; Buser, Daniel; Chandad, Fatiha; Sculean, Anton

    2015-09-01

    Bone replacement grafting materials play an important role in regenerative dentistry. Despite a large array of tested bone-grafting materials, little information is available comparing the effects of bone graft density on in vitro cell behavior. Therefore, the aim of the present study is to compare the effects of cells seeded on bone grafts at low and high density in vitro for osteoblast adhesion, proliferation, and differentiation. The response of osteoblasts to the presence of a growth factor (enamel matrix derivative, (EMD)) in combination with low (8 mg per well) or high (100 mg per well) bone grafts (BG; natural bone mineral, Bio-Oss®) density, was studied and compared for osteoblast cell adhesion, proliferation, and differentiation as assessed by real-time PCR. Standard tissue culture plastic was used as a control with and without EMD. The present study demonstrates that in vitro testing of bone-grafting materials is largely influenced by bone graft seeding density. Osteoblast adhesion was up to 50 % lower when cells were seeded on high-density BG when compared to low-density BG and control tissue culture plastic. Furthermore, proliferation was affected in a similar manner whereby cell proliferation on high-density BG (100 mg/well) was significantly increased when compared to that on low-density BG (8 mg/well). In contrast, cell differentiation was significantly increased on high-density BG as assessed by real-time PCR for markers collagen 1 (Col 1), alkaline phosphatase (ALP), and osteocalcin (OC) as well as alizarin red staining. The effects of EMD on osteoblast adhesion, proliferation, and differentiation further demonstrated that the bone graft seeding density largely controls in vitro results. EMD significantly increased cell attachment only on high-density BG, whereas EMD was able to further stimulate cell proliferation and differentiation of osteoblasts on control culture plastic and low-density BG when compared to high-density BG. The results

  15. Effect of coating Straumann Bone Ceramic with Emdogain on mesenchymal stromal cell hard tissue formation.

    Science.gov (United States)

    Mrozik, Krzysztof Marek; Gronthos, Stan; Menicanin, Danijela; Marino, Victor; Bartold, P Mark

    2012-06-01

    Periodontal tissue engineering requires a suitable biocompatible scaffold, cells with regenerative capacity, and instructional molecules. In this study, we investigated the capacity of Straumann Bone Ceramic coated with Straumann Emdogain, a clinical preparation of enamel matrix protein (EMP), to aid in hard tissue formation by post-natal mesenchymal stromal cells (MSCs) including bone marrow stromal cells (BMSCs) and periodontal ligament fibroblasts (PDLFs). MSCs were isolated and ex vivo-expanded from human bone marrow and periodontal ligament and, in culture, allowed to attach to Bone Ceramic in the presence or absence of Emdogain. Gene expression of bone-related proteins was investigated by real time RT-PCR for 72 h, and ectopic bone formation was assessed histologically in subcutaneous implants of Bone Ceramic containing MSCs with or without Emdogain in NOD/SCID mice. Alkaline phosphatase activity was also assessed in vitro, in the presence or absence of Emdogain. Collagen-I mRNA was up-regulated in both MSC populations over the 72-h time course with Emdogain. Expression of BMP-2 and the osteogenic transcription factor Cbfa-1 showed early stimulation in both MSC types after 24 h. In contrast, expression of BMP-4 was consistently down-regulated in both MSC types with Emdogain. Up-regulation of osteopontin and periostin mRNA was restricted to BMSCs, while higher levels of bone sialoprotein-II were observed in PDLFs with Emdogain. Furthermore, alkaline phosphatase activity levels were reduced in both BMSCs and PDLFs in the presence of Emdogain. Very little evidence was found for ectopic bone formation following subcutaneous implantation of MSCs with Emdogain-coated or -uncoated Bone Ceramic in NOD/SCID mice. The early up-regulation of several important bone-related genes suggests that Emdogain may have a significant stimulatory effect in the commitment of mesenchymal cells to osteogenic differentiation in vitro. While Emdogain inhibited AP activity and appeared

  16. Genetic engineering for skeletal regenerative medicine.

    Science.gov (United States)

    Gersbach, Charles A; Phillips, Jennifer E; García, Andrés J

    2007-01-01

    The clinical challenges of skeletal regenerative medicine have motivated significant advances in cellular and tissue engineering in recent years. In particular, advances in molecular biology have provided the tools necessary for the design of gene-based strategies for skeletal tissue repair. Consequently, genetic engineering has emerged as a promising method to address the need for sustained and robust cellular differentiation and extracellular matrix production. As a result, gene therapy has been established as a conventional approach to enhance cellular activities for skeletal tissue repair. Recent literature clearly demonstrates that genetic engineering is a principal factor in constructing effective methods for tissue engineering approaches to bone, cartilage, and connective tissue regeneration. This review highlights this literature, including advances in the development of efficacious gene carriers, novel cell sources, successful delivery strategies, and optimal target genes. The current status of the field and the challenges impeding the clinical realization of these approaches are also discussed.

  17. No negative effects of bone impaction grafting with bone and ceramic mixtures.

    NARCIS (Netherlands)

    Arts, J.J.C.; Gardeniers, J.W.M.; Welten, M.L.M.; Verdonschot, N.J.J.; Schreurs, B.W.; Buma, P.

    2005-01-01

    Reconstructing large loaded bone defects with ceramic bone graft extenders is tempting considering the expected future donor bone shortage. However, whether there are negative effects is unknown. Standardized large defects in the acetabulum of goats were created and subsequently reconstructed with m

  18. Esophagus and regenerative medicine

    Institute of Scientific and Technical Information of China (English)

    Ricardo Londono; Blair A Jobe; Toshitaka Hoppo; Stephen F Badylak

    2012-01-01

    In addition to squamous cell carcinoma,the incidence of Barrett's esophagus with high-grade dysplasia and esophageal adenocarcinoma is rapidly increasing worldwide.Unfortunately,the current standard of care for esophageal pathology involves resection of the affected tissue,sometimes involving radical esophagectomy.Without exception,these procedures are associated with a high morbidity,compromised quality of life,and unacceptable mortality rates.Regenerative medicine approaches to functional tissue replacement include the use of biological and synthetic scaffolds to promote tissue remodeling and growth.In the case of esophageal repair,extracellular matrix (ECM) scaffolds have proven to be effective for the reconstruction of small patch defects,anastomosis reinforcement,and the prevention of stricture formation after endomucosal resection (EMR).More so,esophageal cancer patients treated with ECM scaffolds have shown complete restoration of a normal,functional,and disease-free epithelium after EMR.These studies provide evidence that a regenerative medicine approach may enable aggressive resection of neoplastic tissue without the need for radical esophagectomy and its associated complications.

  19. Adverse Effects of Osteocytic Constitutive Activation of ß-Catenin on Bone Strength and Bone Growth.

    Science.gov (United States)

    Chen, Sixu; Feng, Jianquan; Bao, Quanwei; Li, Ang; Zhang, Bo; Shen, Yue; Zhao, Yufeng; Guo, Qingshan; Jing, Junjun; Lin, Shuxian; Zong, Zhaowen

    2015-07-01

    The activation of the canonical Wnt/β-catenin signaling pathway in both mesenchymal stem cells and osteoblasts has been demonstrated to increase bone mass, showing promise for the treatment of low bone volume conditions such as osteoporosis. However, the possible side effects of manipulating this pathway have not been fully addressed. Previously, we reported that the constitutive activation of ß-catenin in osteoblasts impaired vertebral linear growth. In the present study, β-catenin was constitutively activated in osteocytes by crossing Catnb+/lox(exon 3) mice with dentin matrix protein 1(DMP1)-Cre transgenic mice, and the effects of this activation on bone mass, bone growth and bone strength were then observed. DMP1-Cre was found to be predominantly expressed in osteocytes, with weak expression in a small portion of osteoblasts and growth plate chondrocytes. After the activation, the cancellous bone mass was dramatically increased, almost filling the entire bone marrow cavity in long bones. However, bone strength decreased significantly. Thinner and more porous cortical bone along with impaired mineralization were responsible for the decrease in bone strength. Furthermore, the mice showed shorter stature with impaired linear growth of the long bones. Moreover, the concentration of serum phosphate decreased significantly after the activation of ß-catenin, and a high inorganic phosphate (Pi) diet could partially rescue the phenotype of decreased mineralization level and impaired linear growth. Taken together, the constitutive activation of β-catenin in osteocytes may increase cancellous bone mass; however, the activation also had adverse effects on bone strength and bone growth. These adverse effects should be addressed before the adoption of any therapeutic clinical application involving adjustment of the Wnt/β-catenin signaling pathway. © 2015 American Society for Bone and Mineral Research.

  20. Regenerative cell therapy and pharmacotherapeutic intervention in heart failure Part 2 : Pharmacological targets, agents and intervention perspectives

    NARCIS (Netherlands)

    Qian, C.; Schoemaker, R. G.; van Gilst, W. H.; Yu, B.; Roks, A. J. M.

    2008-01-01

    Regenerative medicine represents a promising perspective on therapeutic angiogenesis in patients with cardiovascular disease, including heart failure. However, previous or ongoing clinical trials show ambiguous outcomes with respect to the benefit of regenerative therapy by means of bone marrow stem

  1. Regenerative cell therapy and pharmacotherapeutic intervention in heart failure Part 2 : Pharmacological targets, agents and intervention perspectives

    NARCIS (Netherlands)

    Qian, C.; Schoemaker, R. G.; van Gilst, W. H.; Yu, B.; Roks, A. J. M.

    2008-01-01

    Regenerative medicine represents a promising perspective on therapeutic angiogenesis in patients with cardiovascular disease, including heart failure. However, previous or ongoing clinical trials show ambiguous outcomes with respect to the benefit of regenerative therapy by means of bone marrow stem

  2. Effects of Tai Ji Exercise on Bone Structure and Function

    Institute of Scientific and Technical Information of China (English)

    Xu Hong; David Lawson

    2005-01-01

    To evaluated the effects of the 24 movements Tai Ji exercise on bone structure and function. Broadband Ultrsonic Attenuation (BUA) and velocity of sound (VOS), bone formation marker Osteocalcin (OSTN) and bone resorption markers urinary Pyridum crosslinks (PYR and D-PYR) were studied before and after four months of Tai Ji exercise. Improved bone structure and increased bone density in menopausal women were reflected by BUA results. The increased BUA appears to be associated with increased bone formation rather than decreased bone resorption.

  3. The Effect of Estrogen on the Restoration of Bone Mass and Bone Quality in Ovariectomized Rats

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To evaluate the effect of estrogen on its ability to restore the bone mass and bone quality in ovariectomized rats by examining the changes of bone morphology and histomorphometry, 3month-old rats were divided randomly into 4 groups: normal control, ovariectomized (OVX), shamoperated (Sham-O) and OVX plus estrogen (OVX+E2). Treatment initiated from the day 8 weeks after operation and continued for 12 weeks. Bone morphology and histomorphometry were examined afterwards. Results showed that comparing to control group, the trabecular bone in OVX appeared thinner and reduced in the amount. The connectivity between trabecula was decreased and the structure disordered. The free-end of trabecula was increased. The cavity of bone marrow enlarged. After treatment with estrogen, above changes improved remarkably by different degree, although did not reach the normal face. The bone histomorphometry results damonstrated that estrogen treatment increased bone mass and the amount of trabecula by 129% and 132% respectively (P<0. 05). The activity of bone resorption decreased significantly and the rate of bone formation increased to 203 %. These results suggest that treatment of ovariectomized rats with estrogen can not only increase bone mass, also improve the bone structure and enhance the property of bone mechanics.

  4. Stem cell research and regenerative medicine in 2014: first year of regenerative medicine in Japan.

    Science.gov (United States)

    Okano, Hideyuki

    2014-09-15

    It is my great pleasure to announce that we were able to publish the Japan Issue in Stem Cells and Development, especially in this year 2014. This year, 2014, is said to be the First Year of Regenerative Medicine in Japan. This movement is likely to be based on the establishment of a new law system regarding regenerative medicine (an Act for Ensuring the Safety of Regenerative Medicine or the so-called Regenerative Medicine Law) and the partial revision of the Pharmaceutical Affairs Law (PAL). Both laws will come into effect in 2014 in this country. These new law systems are expected to have a great impact on the facilitation of R&D related to regenerative medicine and stem cell biology. In the present Japan Issue, some excellent stem cell research in this country will be introduced to celebrate the First Year of Regenerative Medicine in Japan.

  5. Regenerative potential of immature permanent teeth with necrotic pulps after different regenerative protocols.

    Science.gov (United States)

    Nagy, Mohamed M; Tawfik, Hosam E; Hashem, Ahmed Abdel Rahman; Abu-Seida, Ashraf M

    2014-02-01

    Regenerative endodontics is a promising alternative treatment for immature teeth with necrotic pulps. The present study was performed to assess the regenerative potential of young permanent immature teeth with necrotic pulp after the following treatment protocols: (1) a mineral trioxide aggregate (MTA) apical plug, (2) the regenerative endodontic protocol (blood clot scaffold), and (3) the regenerative endodontic protocol with a blood clot and an injectable scaffold impregnated with basic fibroblast growth factor. Immature necrotic permanent maxillary central incisors (n = 36) of patients 9-13 years old were divided into 3 groups according to the treatment protocol: the MTA group (MTA apical plug), the REG group (regenerative endodontic protocol [blood clot]), and the FGF group (regenerative endodontic protocol [blood clot + injectable scaffold]). Follow-up was done up to 18 months. Standardized radiographs were digitally evaluated for an increase in root length and thickness, a decrease in the apical diameter, and a change in periapical bone density. After a follow-up period of 18 months, most of the cases showed radiographic evidence of periapical healing. Groups 2 and 3 showed a progressive increase in root length and width and a decrease in apical diameter. The regenerative endodontic procedure allowed the continued development of roots in teeth with necrotic pulps. The use of artificial hydrogel scaffold and basic fibroblast growth factor was not essential for repair. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  6. [Effects of SERMs on bone health. Mechanisms of bone mass control by selective estrogen receptor modulator].

    Science.gov (United States)

    Imai, Yuuki; Kato, Shigeaki

    2010-03-01

    The bone mass, which is controlled by the balances between bone formation and bone resorption can be reduced by estrogen deficiency in post-menopausal osteoporosis. Reduced bone mass can be recovered by hormone replacement therapy (HRT) , however, HRT has various side effects. Although SERMs can rescue the bone mass with less side effect compared to HRT, the precise mechanisms of this effect is still elusive. From the results of the analyses for osteoclast specific estrogen receptor (ER) alphaknockout mice and the genome wide approach of ERalphabinding site, estrogen and SERMs can, at least in part, protect the bone mass by inducing the expression of Fas ligand and controling the life span of osteoclasts. More precise molecular mechanisms of the effect of SERM, especially in tissue/cell type specificity, may help to investigate new SERM, which is more specific and effective to treat post-menopausal osteoporosis.

  7. Regeneration of a Compromized Masticatory Unit in a Large Mandibular Defect Caused by a Huge Solitary Bone Cyst: A Case Report and Review of the Regenerative Literature.

    Science.gov (United States)

    Muhammad, Joseph Kamal; Akhtar, Shakeel; Abu Al Nassar, Hiba; Al Khoury, Nabil

    2016-07-01

    The reconstructive options for large expansive cystic lesion affecting the jaws are many. The first stage of treatment may involve enucleation or marsupialization of the cyst. Attempted reconstruction of large osseous defects arising from the destruction of local tissue can present formidable challenges. The literature reports the use of bone grafts, free tissue transfer, bone morphogenic protein and reconstruction plates to assist in the healing and rehabilitation process. The management of huge mandibular cysts needs to take into account the preservation of existing intact structures, removal of the pathology and the reconstructive objectives which focus both on aesthetic and functional rehabilitation. The planning and execution of such treatment requires not only the compliance of the patient and family but also their assent as customers with a voice in determining their surgical destiny. The authors would like to report a unique case of a huge solitary bone cyst that had reduced the ramus, angle and part of the body of one side of the mandible to a pencil-thin-like strut of bone. A combination of decompression through marsupialization, serial packing, and the fabrication of a custom made obturator facilitated the regeneration of the myo-osseous components of the masticatory unit of this patient. Serial CT scans showed evidence of concurrent periosteal and endosteal bone formation and, quite elegantly, the regeneration of the first branchial arch components of the right myo-osseous masticatory complex. The microenvironmental factors that may have favored regeneration of these complex structures are discussed.

  8. From regenerative dentistry to regenerative medicine: progress, challenges, and potential applications of oral stem cells.

    Science.gov (United States)

    Xiao, Li; Nasu, Masanori

    2014-01-01

    Adult mesenchymal stem cells (MSCs) and epithelial stem cells play essential roles in tissue repair and self-healing. Oral MSCs and epithelial stem cells can be isolated from adult human oral tissues, for example, teeth, periodontal ligament, and gingiva. Cocultivated adult oral epithelial stem cells and MSCs could represent some developmental events, such as epithelial invagination and tubular structure formation, signifying their potentials for tissue regeneration. Oral epithelial stem cells have been used in regenerative medicine over 1 decade. They are able to form a stratified cell sheet under three-dimensional culture conditions. Both experimental and clinical data indicate that the cell sheets can not only safely and effectively reconstruct the damaged cornea in humans, but also repair esophageal ulcer in animal models. Oral MSCs include dental pulp stem cells (DPSCs), stem cells from exfoliated deciduous teeth (SHED), stem cells from apical papilla (SCAP), periodontal ligament stem cells (PDLSCs), and mesenchymal stem cells from gingiva (GMSCs). They are widely applied in both regenerative dentistry and medicine. DPSCs, SHED, and SCAP are able to form dentin-pulp complex when being transplanted into immunodeficient animals. They have been experimentally used for the regeneration of dental pulp, neuron, bone muscle and blood vessels in animal models and have shown promising results. PDLSCs and GMSCs are demonstrated to be ideal cell sources for repairing the damaged tissues of periodontal, muscle, and tendon. Despite the abovementioned applications of oral stem cells, only a few human clinical trials are now underway to use them for the treatment of certain diseases. Since clinical use is the end goal, their true regenerative power and safety need to be further examined.

  9. From regenerative dentistry to regenerative medicine: progress, challenges, and potential applications of oral stem cells

    Directory of Open Access Journals (Sweden)

    Xiao L

    2014-12-01

    Full Text Available Li Xiao,1 Masanori Nasu2 1Department of Pharmacology, 2Research Center, The Nippon Dental University, Tokyo, Japan Abstract: Adult mesenchymal stem cells (MSCs and epithelial stem cells play essential roles in tissue repair and self-healing. Oral MSCs and epithelial stem cells can be isolated from adult human oral tissues, for example, teeth, periodontal ligament, and gingiva. Cocultivated adult oral epithelial stem cells and MSCs could represent some developmental events, such as epithelial invagination and tubular structure formation, signifying their potentials for tissue regeneration. Oral epithelial stem cells have been used in regenerative medicine over 1 decade. They are able to form a stratified cell sheet under three-dimensional culture conditions. Both experimental and clinical data indicate that the cell sheets can not only safely and effectively reconstruct the damaged cornea in humans, but also repair esophageal ulcer in animal models. Oral MSCs include dental pulp stem cells (DPSCs, stem cells from exfoliated deciduous teeth (SHED, stem cells from apical papilla (SCAP, periodontal ligament stem cells (PDLSCs, and mesenchymal stem cells from gingiva (GMSCs. They are widely applied in both regenerative dentistry and medicine. DPSCs, SHED, and SCAP are able to form dentin–pulp complex when being transplanted into immunodeficient animals. They have been experimentally used for the regeneration of dental pulp, neuron, bone muscle and blood vessels in animal models and have shown promising results. PDLSCs and GMSCs are demonstrated to be ideal cell sources for repairing the damaged tissues of periodontal, muscle, and tendon. Despite the abovementioned applications of oral stem cells, only a few human clinical trials are now underway to use them for the treatment of certain diseases. Since clinical use is the end goal, their true regenerative power and safety need to be further examined.Keywords: oral mesenchymal stem cells, oral

  10. Effect of chronic metabolic acidosis on bone density and bone architecture in vivo in rats.

    Science.gov (United States)

    Gasser, Jürg A; Hulter, Henry N; Imboden, Peter; Krapf, Reto

    2014-03-01

    Chronic metabolic acidosis (CMA) might result in a decrease in vivo in bone mass based on its reported in vitro inhibition of bone mineralization, bone formation, or stimulation of bone resorption, but such data, in the absence of other disorders, have not been reported. CMA also results in negative nitrogen balance, which might decrease skeletal muscle mass. This study analyzed the net in vivo effects of CMA's cellular and physicochemical processes on bone turnover, trabecular and cortical bone density, and bone microarchitecture using both peripheral quantitative computed tomography and μCT. CMA induced by NH4Cl administration (15 mEq/kg body wt/day) in intact and ovariectomized (OVX) rats resulted in stable CMA (mean Δ[HCO3(-)]p = 10 mmol/l). CMA decreased plasma osteocalcin and increased TRAP5b in intact and OVX animals. CMA decreased total volumetric bone mineral density (vBMD) after 6 and 10 wk (week 10: intact normal +2.1 ± 0.9% vs. intact acidosis -3.6 ± 1.2%, P metabolic acidosis induces a large decrease in cortical bone mass (a prime determinant of bone fragility) in intact and OVX rats and impairs bone microarchitecture characterized by a decrease in trabecular number.

  11. Effect of Regenerative Organic Rankine Cycle (RORC on the Performance of Solar Thermal Power in Yogyakarta, Indonesia

    Directory of Open Access Journals (Sweden)

    Ghalya Pikra

    2013-07-01

    Full Text Available This paper presents effect of Regenerative Organic Rankine Cycle (RORC on the performance of solar thermal power in Yogyakarta, Indonesia. Solar thermal power is a plant that uses solar energy as heat source. Indonesia has high humidity level, so that parabolic trough is the most suitable type of solar thermal power technology to be developed, where the design is made with small focal distance. Organic Rankine Cycle (ORC is a Rankine cycle that use organic fluid as working fluid to utilize low temperature heat sources. RORC is used to increase ORC performance. The analysis was done by comparing ORC system with and without regenerator addition. Refrigerant that be used in the analysis is R123. Preliminary data was taken from the solar collector system that has been installed in Yogyakarta. The analysis shows that with 36 m total parabolic length, the resulting solar collector capacity is 63 kW, heat input/evaporator capacity is determined 26.78 kW and turbine power is 3.11 kW for ORC, and 3.38 kW for RORC. ORC thermal efficiency is 11.28% and RORC is 12.26%. Overall electricity efficiency is 4.93% for ORC, and 5.36% for RORC. With 40°C condensing temperature and evaporation at 10 bar saturated condition, efficiency of RORC is higher than ORC. Greater evaporation temperature at the same pressure (10 bar provide greater turbine power and efficiency.

  12. Effects of radiotherapy on bone tissue

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Samantha Seara da; Almeida, Darcy de [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil)]. E-mail: samanthaseara@hotmail.com; Sarmento, Viviane Almeida; Ramalho, Luciana Maria Pedreira; Freitas, Andre Carlos de [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Faculdade de Odontologia; Tavares, Maria Eulina; Souza, Jailton Caetano [Hospital Santa Izabel (HSI), Salvador, BA (Brazil); Veeck, Elaine Bauer; Costa, Nilza Pereira da [Pontificia Univ. Catolica do Rio Grande do Sul (PUCRS), Porto Alegre, RS (Brazil)

    2007-05-15

    Objective: To investigate the effects of radiotherapy on bone tissues and the accuracy of gray level measurements on radiographic images. Materials and methods: Four Wistar rats were submitted to external radiotherapy (single 3000 cGy dose) on an area of 2 cm x 2 cm of their right legs. The animals were sacrificed six weeks after radiotherapy, and both irradiated and contralateral (non-irradiated) legs were removed, dissected, evaluated for thickness, x-rayed in a standardized form and histologically processed (stained with hematoxylin-eosin and picrosirius red). The radiographs were digitalized and the gray level average was measured with the ImageTool{sup R} software. Results: The femur thickness of non-irradiated legs was greater than that of the irradiated legs (p < 0.05). Radiographically, the findings indicated a higher bone density in the non-irradiated legs, although with no statistically significant difference (p > 0.05). Histological analysis of the irradiated legs demonstrated a decrease in the number of osteocytes and Haversian canals, although with no statistically significance (p > 0.05). On the other hand, a significant increase in adipocytes was observed, resulting in a reduction of medullary tissue in the irradiated legs (p < 0.05), besides a higher osteoblastic activity in the non-irradiated legs (p < 0.05). Conclusion: Radiotherapy within the above mentioned parameters determined a decrease in activity of bone remodeling, which could be radiographically detected in the majority of the evaluated specimens. (author)

  13. The effect of lead in bone densitometry

    Science.gov (United States)

    Popovic, Marija; McNeill, Fiona E.; Webber, Colin E.; Chettle, David R.

    2004-01-01

    Dual energy X-ray absorptiometry (DXA) is presently considered the standard technique for diagnosis of osteoporosis. It has been suggested that the presence of lead interferes with the accurate measurement of bone mineral density (BMD) by DXA because of the increased attenuation and that an accurate measurement of BMD cannot be determined unless the patient's bone lead content of patients is known. We performed DXA measurements on plaster of Paris phantoms and a Hologic Spine phantom in combination with polyester resin doped with various concentrations of lead. At lead levels which correspond to bone concentrations in occupationally exposed individuals, the suggested increase in densitometric BMD was not detected. Numerical calculations show that the effect of the lead depends upon the two energies of the X-ray beam of a particular device. The discrepancy between the actual and the densitometric BMD increases linearly and is about 0.3% at 100 ppm. Such change cannot be detected by the Hologic QDR 4500A, the device used for this experiment.

  14. Effect of treadmill gait on bone markers and bone mineral density of quadriplegic subjects

    Directory of Open Access Journals (Sweden)

    D.C.L. Carvalho

    2006-10-01

    Full Text Available Quadriplegic subjects present extensive muscle mass paralysis which is responsible for the dramatic decrease in bone mass, increasing the risk of bone fractures. There has been much effort to find an efficient treatment to prevent or reverse this significant bone loss. We used 21 male subjects, mean age 31.95 ± 8.01 years, with chronic quadriplegia, between C4 and C8, to evaluate the effect of treadmill gait training using neuromuscular electrical stimulation, with 30-50% weight relief, on bone mass, comparing individual dual-energy X-ray absorptiometry responses and biochemical markers of bone metabolism. Subjects were divided into gait (N = 11 and control (N = 10 groups. The gait group underwent gait training for 6 months, twice a week, for 20 min, while the control group did not perform gait. Bone mineral density (BMD of lumbar spine, femoral neck, trochanteric area, and total femur, and biochemical markers (osteocalcin, bone alkaline phosphatase, pyridinoline, and deoxypyridinoline were measured at the beginning of the study and 6 months later. In the gait group, 81.8% of the subjects presented a significant increase in bone formation and 66.7% also presented a significant decrease of bone resorption markers, whereas 30% of the controls did not present any change in markers and 20% presented an increase in bone formation. Marker results did not always agree with BMD data. Indeed, many individuals with increased bone formation presented a decrease in BMD. Most individuals in the gait group presented an increase in bone formation markers and a decrease in bone resorption markers, suggesting that gait training, even with 30-50% body weight support, was efficient in improving the bone mass of chronic quadriplegics.

  15. Regenerative nanomedicine: current perspectives and future directions

    Directory of Open Access Journals (Sweden)

    Chaudhury K

    2014-09-01

    Full Text Available Koel Chaudhury, Vishu Kumar, Jayaprakash Kandasamy, Sourav RoyChoudhurySchool of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, IndiaAbstract: Nanotechnology has considerably accelerated the growth of regenerative medicine in recent years. Application of nanotechnology in regenerative medicine has revolutionized the designing of grafts and scaffolds which has resulted in new grafts/scaffold systems having significantly enhanced cellular and tissue regenerative properties. Since the cell–cell and cell-matrix interaction in biological systems takes place at the nanoscale level, the application of nanotechnology gives an edge in modifying the cellular function and/or matrix function in a more desired way to mimic the native tissue/organ. In this review, we focus on the nanotechnology-based recent advances and trends in regenerative medicine and discussed under individual organ systems including bone, cartilage, nerve, skin, teeth, myocardium, liver and eye. Recent studies that are related to the design of various types of nanostructured scaffolds and incorporation of nanomaterials into the matrices are reported. We have also documented reports where these materials and matrices have been compared for their better biocompatibility and efficacy in supporting the damaged tissue. In addition to the recent developments, future directions and possible challenges in translating the findings from bench to bedside are outlined.Keywords: regenerative medicine, nanomedicine, nanotechnology

  16. The Effects of Obesity on Murine Cortical Bone

    Science.gov (United States)

    Martin, Sophi

    This dissertation details the effects of obesity on the mechanical properties and structure of cortical bone. Obesity is associated with greater bone mineral content that might be expected to protect against fracture, which has been observed in adults. Paradoxically however, the incidence of bone fractures has been found to increase in overweight and obese children and adolescents. Femora from adolescent and adult mice fed a high-fat diet are investigated for changes in shape, tissue structure, as well as tissue-level and whole-bone mechanical properties. Results indicate increased bone size, reduced size-independent mechanical properties, but maintained size-dependent mechanical properties. Other changes in cortical bone response to obesity are observed with advancing age. This study indicates that bone quantity and bone quality play important compensatory roles in determining fracture risk, and that fracture risk may not be lessened for adults as previously thought.

  17. Bone repair: Effects of physical exercise and LPS systemic exposition.

    Science.gov (United States)

    Nogueira, Jonatas E; Branco, Luiz G S; Issa, João Paulo M

    2016-08-01

    Bone repair can be facilitated by grafting, biochemical and physical stimulation. Conversely, it may be delayed lipopolysaccharide (LPS). Physical exercise exerts beneficial effects on the bone, but its effect on bone repair is not known. We investigated the effect of exercise on the LPS action on bone healing through bone densitometry, quantitative histological analysis for bone formation rate and immunohistochemical markers in sedentary and exercised animals. Rats ran on the treadmill for four weeks. After training the rats were submitted to a surgical procedure (bone defect in the right tibia) and 24h after the surgery LPS was administered at a dose of 100μg/kg i.p., whereas the control rats received a saline injection (1ml/kg, i.p.). Right tibias were obtained for analysis after 10days during which rats were not submitted to physical training. Physical exercise had a positive effect on bone repair, increasing bone mineral density, bone mineral content, bone formation rate, type I collagen and osteocalcin expression. These parameters were not affected by systemic administration of LPS. Our data indicate that physical exercise has an important osteogenic effect, which is maintained during acute systemic inflammation induced by exposure to a single dose of LPS.

  18. Regenerative Hydride Heat Pump

    Science.gov (United States)

    Jones, Jack A.

    1992-01-01

    Hydride heat pump features regenerative heating and single circulation loop. Counterflow heat exchangers accommodate different temperatures of FeTi and LaNi4.7Al0.3 subloops. Heating scheme increases efficiency.

  19. Regenerative Hydride Heat Pump

    Science.gov (United States)

    Jones, Jack A.

    1992-01-01

    Hydride heat pump features regenerative heating and single circulation loop. Counterflow heat exchangers accommodate different temperatures of FeTi and LaNi4.7Al0.3 subloops. Heating scheme increases efficiency.

  20. Advances in Regenerative medicine

    OpenAIRE

    2011-01-01

    PREFACE In order to better introduce this book, it is important to define regenerative medicine as this field is built through a combination of multiple elements including living cells, matrix to support the living cells (i.e. a scaffold), and cell communicators (or signaling systems) to stimulate the cells, and their surrounding environment to grow and develop into new tissue or organ. Indeed, regenerative medicine is an emerging multidisciplinary field involving biology, medicine, and ...

  1. Platelet-rich fibrin: a boon in regenerative endodontics.

    Science.gov (United States)

    Rebentish, Priyanka D; Umashetty, Girish; Kaur, Harpreet; Doizode, Trupthi; Kaslekar, Mithun; Chowdhury, Shouvik

    2016-12-01

    Research into regenerative dentistry has contributed momentum to the field of molecular biology. Periapical surgery aims at removing periapical pathology to achieve complete wound healing and regeneration of bone and periodontal tissue. Regenerative endodontic procedures are widely being added to the current armamentarium of pulp therapy procedures. The regenerative potential of platelets has been deliberated. Platelet-rich fibrin (PRF) is a wonderful tissue-engineering product and has recently gained much popularity due its promising results in wound healing bone induction. The features of this product are an attribute of platelets which, after cellular interactions, release growth factors and have shown application in diverse disciplines of dentistry. This paper is intended to shed light onto the various prospects of PRF and to provide clinical insight into regenerative endodontic therapy.

  2. Effect of Antimicrobials Used in Regenerative Endodontic Procedures on 3-week-old Enterococcus faecalis Biofilm.

    Science.gov (United States)

    Tagelsir, Azza; Yassen, Ghaeth H; Gomez, Grace F; Gregory, Richard L

    2016-02-01

    We evaluated the effect of various antimicrobials used in endodontic regeneration on a 3-week-old Enterococcus faecalis biofilm. E. faecalis biofilm was grown on standardized dentin samples for 3 weeks. Infected dentin samples were randomized into 8 experimental groups (n = 8) and treated with calcium hydroxide (Ca[OH]2), 500 mg/mL of double antibiotic paste (DAP, equal portions of metronidazole and ciprofloxacin), low dilutions of DAP (1 or 0.1 mg/mL loaded into a methylcellulose vehicle system), sterile saline, or placebo paste (only methylcellulose) for 7 days. The other experimental groups were treated with 1.5% sodium hypochlorite (NaOCl) or 2% chlorhexidine gluconate (CHX) solutions for 5 minutes. After the assigned treatments, the bacterial biofilms were detached from dentin, spiral plated, and quantified using an automated counting machine. Permutation tests followed by Sidak post hoc multiple comparisons were used for statistical analyses (α = 0.05). The infected dentin treated with 1.5% NaOCl or 500 mg/mL of DAP provided complete eradication of bacterial biofilm. Furthermore, the infected dentin treated with 2% CHX, Ca(OH)2, or 1 mg/mL of DAP had a comparable antibiofilm effect, but they were not able to completely eradicate bacterial biofilm. No significant difference in the antibiofilm effect was observed between 500 mg/mL of DAP, Ca(OH)2, 1.5% NaOCl, and 2% CHX. At least 1 mg/mL of DAP in a methylcellulose vehicle system is required to eliminate a substantial amount of E. faecalis biofilm. Furthermore, the antibiofilm effects of 1.5% NaOCl and 2% CHX irrigation solutions were comparable with that of 500 mg/mL of DAP and Ca(OH)2. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  3. Panacea seed “Nigella”: A review focusing on regenerative effects for gastric ailments

    Directory of Open Access Journals (Sweden)

    Shahida A. Khan

    2016-07-01

    Full Text Available Nigella sativa (NS or black cumin is a dark, thin, and crescent-shaped, seeded shrub belonging to the Ranunculaceae family commonly growing on Mediterranean coasts in Saudi Arabia, northern Africa and Asia. They have amazing curative and therapeutic features that make them one of the most popular, safe, non-detrimental, and cytoprotective medicinal plant that can be used for prevention and treatment of many complicated diseases. Originally, N. sativa was used to treat migraines and allergy, and researches have shown its effectiveness in destroying cancer cells as well. The gastro protective effect of NS oil and its constituents has also been reported earlier; however, the complete perception on etiology and pathogenesis of gastric ulcer is not yet clear. Herein, we attempt to unveil some of the potential mechanisms exhibited by NS in preventing problems related to gastric ulcers. Gastric ailments like ulcers and tumors are the most common disorders of the gastro-intestinal tract in the present day life of the industrialized world. Gastric ulcer being a multifaceted problem exhibits complex etiology and is the fourth most common cause of cancer mortality. Drug interactions and toxicity are the main hindrances in chemotherapy. The existing merits and demerits of modern-day drugs make us turn toward the plant kingdom which may provide a valuable resource of novel potent natural compounds for pharmaceuticals or alternately, as dietary supplements. In this context, the revered phytotherapeutic N. sativa comes as a promising savior in today’s times. This review aims to summarize, both the functional and disease-related effects in the area of gastroenterology.

  4. Biomolecule delivery to engineer the cellular microenvironment for regenerative medicine.

    Science.gov (United States)

    Bishop, Corey J; Kim, Jayoung; Green, Jordan J

    2014-07-01

    To realize the potential of regenerative medicine, controlling the delivery of biomolecules in the cellular microenvironment is important as these factors control cell fate. Controlled delivery for tissue engineering and regenerative medicine often requires bioengineered materials and cells capable of spatiotemporal modulation of biomolecule release and presentation. This review discusses biomolecule delivery from the outside of the cell inwards through the delivery of soluble and insoluble biomolecules as well as from the inside of the cell outwards through gene transfer. Ex vivo and in vivo therapeutic strategies are discussed, as well as combination delivery of biomolecules, scaffolds, and cells. Various applications in regenerative medicine are highlighted including bone tissue engineering and wound healing.

  5. EFFECT OF SYNTHETIC AUXIN LIKE GROWTH REGULATORS ON CALLUS REGENERATIVE ABILITY OF COMMON WHEAT VC. ZYMOYARKA

    Directory of Open Access Journals (Sweden)

    I. R. Gorbatyuk

    2015-02-01

    Full Text Available The aim of the study was to determine the dependence of morphogenetic reactions of wheat callus tissues to content of syntetic growth regulators of auxin nature (picloram, dicamba in the nutrient medium. Apical meristems of Triticum aestivum wheat were the primary explants for callusogenesis. Basic culture medium MS supplemented by vitamins of Gamborg, dicamba at different concentrations (0.2, 0.4, 0.6 mg/l, and picloram (0.16; 0.25; 0.5 mg/l was used for regeneration. It was established that dicamba at a concentration of 0.2 mg/l is the most effective for production of regenerants. It was also observed that at the concentration of 0.16 mg/l picloram there are the formation of the greatest number of morphogenic zones (60% and a significant amount of plant-regenerants. Increased concentrations of picloram to 0.25 mg/l and 0.5 mg/l caused a decrease in the number of morphogenic islands: in the first case, 10%, and the second – 36.4%. Among the described options the MS medium supplemented with 0.5 mg/l 6-benzylaminopurine and 0.16 mg/l picloram was the most effective. Shoots obtained from callus culture were capable to form roots in vitro and adapt to septic conditions. Regenerated plants when cultivated in greenhouse showed high viability (over 75% and reached the generative phase.

  6. Effects of Light-Emitting Diode Photobiomodulation Therapy and BioOss as Single and Combined Treatment in an Experimental Model of Bone Defect Healing in Rats.

    Science.gov (United States)

    Havlucu, Uğur; Bölükbaşı, Nilüfer; Yeniyol, Sinem; Çetin, Şule; Özdemir, Tayfun

    2015-08-01

    The present study assesses histopathologically and histomorphometrically the effects of light-emitting diode (LED) photobiomodulation therapy (LPT) on bone healing in BioOss-filled femoral defects of rats. It has been reported that LPT modulates cellular metabolic processes, leading to an enhanced regenerative potential for biological tissues. Thirty-six male Wistar rats with femoral bone defects were divided into 4 groups: defect group (empty bone defect, without application of LPT), graft group (bone defect filled with BioOss, without application of LPT), (defect+LPT) group (empty bone defect, with application of LPT), and (graft+LPT) group (bone defect filled with BioOss, with application of LPT). An OsseoPulse LED device (wavelength: 618 nm; output power: 20 mW/cm(2)) was initiated 24 hours postsurgery and performed every 24 hours for 7, 14, and 21 days. The LPT-applied and BioOss-filled defects presented a higher amount of new bone formation with trabeculae formation. These defects showed statistically significant lower values of inflammation severity, and fewer remnants of biomaterial were present. Within the limitations of this study, LPT has positive effects on bone healing histopathologically and histomorphometrically for the defects filled with BioOss 3 weeks after the rats' femora injury.

  7. 干细胞在心脏再生医学中的作用及中医药研究策略%Effect of stem cells and strategy of traditional Chinese medicine in cardiac regenerative medicine

    Institute of Scientific and Technical Information of China (English)

    姚魁武; 王阶; 张良登

    2011-01-01

    cells, bone marrow stem cells, adult cardiac stem cells, et al, which indicate the ability to regenerate myocardium and application perspectives. The understanding on cardiac regeneration in TCM is contained in yin and yang concept, the law of mother and son in five elements and vital essence theory. TCM needs to collate the understanding of cardiac regenerative medicine in TCM theory systematically, TCM compounds, value active components of TCM targeting to stem cells and to enhance researches on mechanisms of effective TCM.

  8. Nerve Regenerative Effects of GABA-B Ligands in a Model of Neuropathic Pain

    Directory of Open Access Journals (Sweden)

    Valerio Magnaghi

    2014-01-01

    Full Text Available Neuropathic pain arises as a direct consequence of a lesion or disease affecting the peripheral somatosensory system. It may be associated with allodynia and increased pain sensitivity. Few studies correlated neuropathic pain with nerve morphology and myelin proteins expression. Our aim was to test if neuropathic pain is related to nerve degeneration, speculating whether the modulation of peripheral GABA-B receptors may promote nerve regeneration and decrease neuropathic pain. We used the partial sciatic ligation- (PSL- induced neuropathic model. The biochemical, morphological, and behavioural outcomes of sciatic nerve were analysed following GABA-B ligands treatments. Simultaneous 7-days coadministration of baclofen (10 mg/kg and CGP56433 (3 mg/kg alters tactile hypersensitivity. Concomitantly, specific changes of peripheral nerve morphology, nerve structure, and myelin proteins (P0 and PMP22 expression were observed. Nerve macrophage recruitment decreased and step coordination was improved. The PSL-induced changes in nociception correlate with altered nerve morphology and myelin protein expression. Peripheral synergic effects, via GABA-B receptor activation, promote nerve regeneration and likely ameliorate neuropathic pain.

  9. No effect of Osteoset, a bone graft substitute, on bone healing in humans: a prospective randomized double-blind study

    DEFF Research Database (Denmark)

    Petruskevicius, Juozas; Nielsen, Mette Strange; Kaalund, Søren;

    2002-01-01

    We studied the effects of a newly marketed bone substitute, Osteoset, on bone healing in a tibial defect in humans. 20 patients undergoing an ACL (anterior cruciate ligament) reconstruction with bone-patella tendon-bone graft were block-randomized into 2 groups of 10 each. In the treatment group...

  10. The Effect of Alendronate Loaded Biphasic Calcium Phosphate Scaffolds on Bone Regeneration in a Rat Tibial Defect Model

    Directory of Open Access Journals (Sweden)

    Kwang-Won Park

    2015-11-01

    Full Text Available This study investigated the effect of alendronate (Aln released from biphasic calcium phosphate (BCP scaffolds. We evaluated the in vitro osteogenic differentiation of Aln/BCP scaffolds using MG-63 cells and the in vivo bone regenerative capability of Aln/BCP scaffolds using a rat tibial defect model with radiography, micro-computed tomography (CT, and histological examination. In vitro studies included the surface morphology of BCP and Aln-loaded BCP scaffolds visualized using field-emission scanning electron microscope, release kinetics of Aln from BCP scaffolds, alkaline phosphatase (ALP activity, calcium deposition, and gene expression. The in vitro studies showed that sustained release of Aln from the BCP scaffolds consisted of porous microstructures, and revealed that MG-63 cells cultured on Aln-loaded BCP scaffolds showed significantly increased ALP activity, calcium deposition, and gene expression compared to cells cultured on BCP scaffolds. The in vivo studies using radiograph and histology examination revealed abundant callus formation and bone maturation at the site in the Aln/BCP groups compared to the control group. However, solid bony bridge formation was not observed at plain radiographs until 8 weeks. Micro-CT analysis revealed that bone mineral density and bone formation volume were increased over time in an Aln concentration-dependent manner. These results suggested that Aln/BCP scaffolds have the potential for controlling the release of Aln and enhance bone formation and mineralization.

  11. Regenerative Medicine Applications in Wound Care.

    Science.gov (United States)

    Ali Nilforoushzadeh, Mohammad; Mollapour Sisakht, Mahsa; Marcus Seifalian, Alexander; Amir Amirkhani, Mohammad; Reza Banafsheh, Hamid; Verdi, Javad; Sharifzad, Farzaneh; Taghiabadi, Ehsan

    2017-09-29

    During the last two decades, a number of studies have been published on different aspects of regenerative medicine in the field of dermatology. The following article aims at integrating all available information about regenerative dermatology, from the past to the present. In addition, we focused on most well-known application of regenerative medicine in dermatology field, wound healing, especially for burns and non-healing wounds based on available skin replacement in market. The present review focuses on providing an overview on available products in market and on-going clinical trials. These are valuable to get the picture of latest trends and also helpful for clinicians. In future, regenerative dermatology may encompass more effective and time-saving therapies for treating skin injuries and diseases. However, more clinical trials are required to establish standardized protocols and ascertain the safety, long-term effects, and efficacy of the novel therapeutic methods in regenerative dermatology. Despite several improvements in this field, extensive research is required for performing successful and precise clinical trials in future. Further improvements would enable the researchers to develop new products in this field. In this review, we have discussed the most recent breakthroughs in the field of regenerative dermatology. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Hypoxia-mimicking bioactive glass regenerative effects on dental stem cells

    Science.gov (United States)

    Noor, Siti Noor Fazliah Mohd; Azevedo, Maria; Mohamad, Hasmaliza; Autefage, Hélène

    2016-12-01

    Vascularization is an important aspect of tissue regeneration. Hypoxia, low oxygen concentration, is a known stimulus for the release of vascular endothelial growth factors (VEGF) which play important roles in vascularization. The current study aimed to assess the effect of a cobalt-containing bioactive glass (BG) in stimulating hypoxia and promoting vascularization. To incorporate cobalt into BG, 1 mol% of calcium was substituting with cobalt, and this formulation was compared to the one without cobalt. Both BGs were processed via melt-derived method. The BG powders with particle size less than 38 µm were incubated with cell culture medium for 4 hours at 37°C on continuous rolling, and then the medium was filtered using 0.22 µm syringe filters. Prior to use, the BG-conditioned media were supplemented with 10% (v/v) fetal bovine serum and 1% (v/v) antibiotic-antimycotic, and were allowed to equilibrate overnight inside a CO2 incubator. The conditioned media were used on human dental stem cells (stem cells from permanent (DPSC) and deciduous (SHED) teeth) and assessed for their capacity to stimulate the release of angiogenic factors from the cells. The results showed that cobalt ions were released from the cobalt-containing BG, following partial dissolution of the glasses in cell culture medium, and promoted VEGF release from the cells. In conclusion, the incorporation of cobalt in BG may have potential to be used for tissue regeneration by promoting vascularization through the activation of hypoxia pathway and the release of VEGF.

  13. Bone

    Science.gov (United States)

    Helmberger, Thomas K.; Hoffmann, Ralf-Thorsten

    The typical clinical signs in bone tumours are pain, destruction and destabilization, immobilization, neurologic deficits, and finally functional impairment. Primary malignant bone tumours are a rare entity, accounting for about 0.2% of all malignancies. Also benign primary bone tumours are in total rare and mostly asymptomatic. The most common symptomatic benign bone tumour is osteoid osteoma with an incidence of 1:2000.

  14. Disuse exaggerates the detrimental effects of alcohol on cortical bone

    Science.gov (United States)

    Hefferan, Theresa E.; Kennedy, Angela M.; Evans, Glenda L.; Turner, Russell T.

    2003-01-01

    BACKGROUND: Alcohol abuse is associated with an increased risk for osteoporosis. However, comorbidity factors may play an important role in the pathogenesis of alcohol-related bone fractures. Suboptimal mechanical loading of the skeleton, an established risk factor for bone loss, may occur in some alcohol abusers due to reduced physical activity, muscle atrophy, or both. The effect of alcohol consumption and reduced physical activity on bone metabolism has not been well studied. The purpose of this study was to determine whether mechanical disuse alters bone metabolism in a rat model for chronic alcohol abuse. METHODS: Alcohol was administered in the diet (35% caloric intake) of 6-month-old male rats for 4 weeks. Rats were hindlimb-unloaded the final 2 weeks of the experiment to prevent dynamic weight bearing. Afterward, cortical bone histomorphometry was evaluated at the tibia-fibula synostosis. RESULTS: At the periosteal surface of the tibial diaphysis, alcohol and hindlimb unloading independently decreased the mineralizing perimeter, mineral apposition rate, and bone formation rate. In addition, alcohol, but not hindlimb unloading, increased endocortical bone resorption. The respective detrimental effects of alcohol and hindlimb unloading to inhibit bone formation were additive; there was no interaction between the two variables. CONCLUSIONS: Reduced weight bearing accentuates the detrimental effects of alcohol on cortical bone in adult male rats by further inhibiting bone formation. This finding suggests that reduced physical activity may be a comorbidity factor for osteoporosis in alcohol abusers.

  15. The species-specific regenerative effects of notochordal cell-conditioned medium on chondrocyte-like cells derived from degenerated human intervertebral discs

    NARCIS (Netherlands)

    Bach, F C; de Vries, S A; Krouwels, A; Creemers, L B; Ito, K; Meij, B P; Tryfonidou, M A

    2015-01-01

    During intervertebral disc (IVD) maturation, the main cell type shifts from notochordal cells (NCs) to chondrocyte-like cells (CLCs). NCs secrete factors with regenerative potential, making them an interesting focus for regenerative treatments. During initial development, these strategies preferably

  16. The species-specific regenerative effects of notochordal cell-conditioned medium on chondrocyte-like cells derived from degenerated human intervertebral discs.

    NARCIS (Netherlands)

    Bach, FC; de Vries, S A H; Krouwels, A; Creemers, L B; Ito, K; Meij, B P; Tryfonidou, M A

    2015-01-01

    During intervertebral disc (IVD) maturation, the main cell type shifts from notochordal cells (NCs) to chondrocyte-like cells (CLCs). NCs secrete factors with regenerative potential, making them an interesting focus for regenerative treatments. During initial development, these strategies preferably

  17. Current overview on challenges in regenerative endodontics

    Science.gov (United States)

    Bansal, Ramta; Jain, Aditya; Mittal, Sunandan

    2015-01-01

    Introduction: Regenerative endodontics provides hope of converting the non-vital tooth into vital once again. It focuses on substituting traumatized and pathological pulp with functional pulp tissue. Current regenerative procedures successfully produce root development but still fail to re-establish real pulp tissue and give unpredictable results. There are several drawbacks that need to be addressed to improve the quality and efficiency of the treatment. Aim: The aim of this review article is to discuss major priorities that ought to be dealt before applications of regenerative endodontics flourish the clinical practice. Materials and Methods: A web-based research on MEDLINE was done using filter terms Review, published in the last 10 years and Dental journals. Keywords used for research were “regenerative endodontics,” “dental stem cells,” “growth factor regeneration,” “scaffolds,” and “challenges in regeneration.” This review article screened about 150 articles and then the relevant information was compiled. Results: Inspite of the impressive growth in regenerative endodontic field, there are certain loopholes in the existing treatment protocols that might sometimes result in undesired and unpredictable outcomes. Conclusion: Considerable research and development efforts are required to improve and update existing regenerative endodontic strategies to make it an effective, safe, and biological mode to save teeth. PMID:25657518

  18. Current overview on challenges in regenerative endodontics.

    Science.gov (United States)

    Bansal, Ramta; Jain, Aditya; Mittal, Sunandan

    2015-01-01

    Regenerative endodontics provides hope of converting the non-vital tooth into vital once again. It focuses on substituting traumatized and pathological pulp with functional pulp tissue. Current regenerative procedures successfully produce root development but still fail to re-establish real pulp tissue and give unpredictable results. There are several drawbacks that need to be addressed to improve the quality and efficiency of the treatment. The aim of this review article is to discuss major priorities that ought to be dealt before applications of regenerative endodontics flourish the clinical practice. A web-based research on MEDLINE was done using filter terms Review, published in the last 10 years and Dental journals. Keywords used for research were "regenerative endodontics," "dental stem cells," "growth factor regeneration," "scaffolds," and "challenges in regeneration." This review article screened about 150 articles and then the relevant information was compiled. Inspite of the impressive growth in regenerative endodontic field, there are certain loopholes in the existing treatment protocols that might sometimes result in undesired and unpredictable outcomes. Considerable research and development efforts are required to improve and update existing regenerative endodontic strategies to make it an effective, safe, and biological mode to save teeth.

  19. Current overview on challenges in regenerative endodontics

    Directory of Open Access Journals (Sweden)

    Ramta Bansal

    2015-01-01

    Full Text Available Introduction: Regenerative endodontics provides hope of converting the non-vital tooth into vital once again. It focuses on substituting traumatized and pathological pulp with functional pulp tissue. Current regenerative procedures successfully produce root development but still fail to re-establish real pulp tissue and give unpredictable results. There are several drawbacks that need to be addressed to improve the quality and efficiency of the treatment. Aim: The aim of this review article is to discuss major priorities that ought to be dealt before applications of regenerative endodontics flourish the clinical practice. Materials and Methods: A web-based research on MEDLINE was done using filter terms Review, published in the last 10 years and Dental journals. Keywords used for research were "regenerative endodontics," "dental stem cells," "growth factor regeneration," "scaffolds," and "challenges in regeneration." This review article screened about 150 articles and then the relevant information was compiled. Results: Inspite of the impressive growth in regenerative endodontic field, there are certain loopholes in the existing treatment protocols that might sometimes result in undesired and unpredictable outcomes. Conclusion: Considerable research and development efforts are required to improve and update existing regenerative endodontic strategies to make it an effective, safe, and biological mode to save teeth.

  20. Summary of: Regenerative endodontics.

    Science.gov (United States)

    Clark, Stephen J

    2014-03-01

    Significant advances in our understanding of the biological processes involved in tooth development and repair at the cellular and molecular levels have underpinned the newly emerging area of regenerative endodontics. Development of treatment protocols based on exploiting the natural wound healing properties of the dental pulp and applying tissue engineering principles has allowed reporting of case series showing preservation of tissue vitality and apexogenesis. To review current case series reporting regenerative endodontics. Current treatment approaches tend to stimulate more reparative than regenerative responses in respect of the new tissue generated, which often does not closely resemble the physiological structure of dentine-pulp. However, despite these biological limitations, such techniques appear to offer significant promise for improved treatment outcomes. Improved biological outcomes will likely emerge from the many experimental studies being reported and will further contribute to improvements in clinical treatment protocols.

  1. Regenerative similariton laser

    Directory of Open Access Journals (Sweden)

    Thibault North

    2016-05-01

    Full Text Available Self-pulsating lasers based on cascaded reshaping and reamplification (2R are capable of initiating ultrashort pulses despite the accumulation of large amounts of nonlinearities in all-fiber resonators. The spectral properties of pulses in self-similar propagation are compatible with cascaded 2R regeneration by offset filtering, making parabolic pulses suitable for the design of a laser of this recently introduced class. A new type of regenerative laser giving birth to similaritons is numerically investigated and shows that this laser is the analog of regenerative sources based solely on self-phase modulation and offset filtering. The regenerative similariton laser does not suffer from instabilities due to excessive nonlinearities and enables ultrashort pulse generation in a simple cavity configuration.

  2. Effects of Escherichia Coli-derived Recombinant Human Bone Morphogenetic Protein-2 Loaded Porous Hydroxyaptite-based Ceramics on Calvarial Defect in Rabbits

    Science.gov (United States)

    Kim, Shin-Young; Lee, Youngkyun; Seo, Seung-Jun; Lim, Jae-Hong

    2017-01-01

    Background Recombinant human bone morphogenetic proteins (rhBMPs) have been widely used in regenerative therapies to promote bone formation. The production of rhBMPs using bacterial systems such as Escherichia coli (E. coli) is estimated to facilitate clinical applications by lowering the cost without compromising biological activity. In clinical practice, rhBMP-2 and osteoconductive carriers (e.g., hydroxyapatite [HA] and bovine bone xenograft) are used together. This study examined the effect of E. coli-derived rhBMP-2 combined with porous HA-based ceramics on calvarial defect in rabbits. Methods Six adult male New Zealand white rabbits were used in this study. The experimental groups were divided into the following 4 groups: untreated (NC), bovine bone graft (BO), porous HA (HA) and porous HA with rhBMP-2 (HA-BMP). Four transosseous defects of 8 mm in diameter were prepared using stainless steel trephine bur in the frontal and parietal bones. Histological and histomorphometric analyses at 4 weeks after surgery revealed significant new bone formation by porous HA alone. Results HA-BMP showed significantly higher degree of bone formation compared with BO and HA group (Pceramics can promote new bone formation. PMID:28326298

  3. A regenerative approach towards mucosal fenestration closure.

    Science.gov (United States)

    Gandi, Padma; Anumala, Naveen; Reddy, Amarender; Chandra, Rampalli Viswa

    2013-06-06

    Mucosal fenestration is an opening or an interstice through the oral mucosa. A lesion which occurs with greater frequency than generally realised, its occurrence is attributed to a myriad of causes. Mucogingival procedures including connective tissue grafts, free gingival grafts and lateral pedicle grafts are generally considered to be the treatment of choice in the closure of a mucosal fenestration. More often, these procedures are performed in conjunction with other procedures such as periradicular surgery and with bone grafts. However, the concomitant use of gingival grafts and bone grafts in mucosal fenestrations secondary to infections in sites exhibiting severe bone loss is highly debatable. In this article, we report two cases of mucosal fenestrations secondary to trauma and their management by regenerative periodontal surgery with the placement of guided tissue regeneration membrane and bone graft. The final outcome was a complete closure of the fenestration in both the cases.

  4. NOTCH-Mediated Maintenance and Expansion of Human Bone Marrow Stromal/Stem Cells: A Technology Designed for Orthopedic Regenerative Medicine.

    Science.gov (United States)

    Dong, Yufeng; Long, Teng; Wang, Cuicui; Mirando, Anthony J; Chen, Jianquan; O'Keefe, Regis J; Hilton, Matthew J

    2014-12-01

    Human bone marrow-derived stromal/stem cells (BMSCs) have great therapeutic potential for treating skeletal disease and facilitating skeletal repair, although maintaining their multipotency and expanding these cells ex vivo have proven difficult. Because most stem cell-based applications to skeletal regeneration and repair in the clinic would require large numbers of functional BMSCs, recent research has focused on methods for the appropriate selection, expansion, and maintenance of BMSC populations during long-term culture. We describe here a novel biological method that entails selection of human BMSCs based on NOTCH2 expression and activation of the NOTCH signaling pathway in cultured BMSCs via a tissue culture plate coated with recombinant human JAGGED1 (JAG1) ligand. We demonstrate that transient JAG1-mediated NOTCH signaling promotes human BMSC maintenance and expansion while increasing their skeletogenic differentiation capacity, both ex vivo and in vivo. This study is the first of its kind to describe a NOTCH-mediated methodology for the maintenance and expansion of human BMSCs and will serve as a platform for future clinical or translational studies aimed at skeletal regeneration and repair.

  5. Cryogenic regenerative heat exchangers

    CERN Document Server

    Ackermann, Robert A

    1997-01-01

    An in-depth survey of regenerative heat exchangers, this book chronicles the development and recent commercialization of regenerative devices for cryogenic applications. Chapters cover historical background, concepts, practical applications, design data, and numerical solutions, providing the latest information for engineers to develop advanced cryogenic machines. The discussions include insights into the operation of a regenerator; descriptions of the cyclic and fluid temperature distributions in a regenerator; data for various matrix geometries and materials, including coarse and fine bronze, stainless steel-woven wire mesh screens, and lead spheres; and unique operating features of cryocoolers that produce deviations from ideal regenerator theory.

  6. Periosteal Distraction Osteogenesis: An Effective Method for Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Danyang Zhao

    2016-01-01

    Full Text Available The treatment of bone defects is challenging and controversial. As a new technology, periosteal distraction osteogenesis (PDO uses the osteogenicity of periosteum, which creates an artificial space between the bone surface and periosteum to generate new bone by gradually expanding the periosteum with no need for corticotomy. Using the newly formed bone of PDO to treat bone defects is effective, which can not only avoid the occurrence of immune-related complications, but also solve the problem of insufficient donor. This review elucidates the availability of PDO in the aspects of mechanisms, devices, strategies, and measures. Moreover, we also focus on the future prospects of PDO and hope that PDO will be applied to the clinical treatment of bone defects in the future.

  7. Umbilical cord blood: a trustworthy source of multipotent stem cells for regenerative medicine.

    Science.gov (United States)

    Jaing, Tang-Her

    2014-01-01

    It is conservatively estimated that one in three individuals in the US might benefit from regenerative medicine therapy. However, the relation of embryonic stem cells (ESCs) to human blastocysts always stirs ethical, political, moral, and emotional debate over their use in research. Thus, for the reasonably foreseeable future, the march of regenerative medicine to the clinic will depend upon the development of non-ESC therapies. Current sources of non-ESCs easily available in large numbers can be found in the bone marrow, adipose tissue, and umbilical cord blood (UCB). UCB provides an immune-compatible source of stem cells for regenerative medicine. Owing to inconsistent results, it is certainly an important and clinically relevant question whether UCB will prove to be therapeutically effective. This review will show that UCB contains multiple populations of multipotent stem cells, capable of giving rise to hematopoietic, epithelial, endothelial, and neural tissues both in vitro and in vivo. Here we raise the possibility that due to unique immunological properties of both the stem cell and non-stem cell components of cord blood, it may be possible to utilize allogeneic cells for regenerative applications without needing to influence or compromise the recipient immune system.

  8. Bioprinting in Regenerative Medicine

    Directory of Open Access Journals (Sweden)

    Manuela Monti

    2016-02-01

    Full Text Available Prof. Turksen is a very well known scientist in the stem cell biology field and he is also internationally known for his fundamental studies on claudin-6. In addition to his research activity he is editor for the Stem Cell Biology and Regenerative Medicine series (Humana Press and editor-in-chief of Stem Cell Reviews and Reports.....

  9. Therapy Effect: Impact on Bone Marrow Morphology.

    Science.gov (United States)

    Li, K David; Salama, Mohamed E

    2016-03-01

    This article highlights the most common morphologic features identified in the bone marrow after chemotherapy for hematologic malignancies, growth-stimulating agents, and specific targeted therapies. The key is to be aware of these changes while reviewing post-therapeutic bone marrow biopsies and to not mistake reactive patterns for neoplastic processes. In addition, given the development and prevalent use of targeted therapy, such as tyrosine kinase inhibitors and immune modulators, knowledge of drug-specific morphologic changes is required for proper bone marrow interpretation and diagnosis.

  10. Effect of cefazolin loaded bone matrix gelatin on repairing large segmental bone defects and preventing infection

    Institute of Scientific and Technical Information of China (English)

    游洪波; 陈安民

    2004-01-01

    Objective: To explore the possibility of repairing long segmental bone defects and preventing infection with cefazolin loaded bone matrix gelatin (C-BMG). Methods: C-BMG was made from putting cefazolin into BMG by vacuum absorption and lyophilization techniques. The sustaining period of effective drug concentration in vitro and in vivo was detected. The time of inhibiting bacteria, and the drug concentration in local tissues ( bone and muscle) and plasma after implantation of C-BMG were examined by high performance liquid chromatography.Results: The effective inhibition time to staphylococcus aureus of C-BMG was 22 days in vitro; while 14 days in vivo. The cefazolin concentration in local tissues was higher in early stage, and later it kept a stable and low drug release. C-BMG showed an excellent ability to repair segmental long bone defects.Conclusions: C-BMG can gradually release cefazolin with effective drug concentration and has excellent ability to repair segmental bone defects. It can be used to repair segmental long bone defects and prevent infection after operation.

  11. Effect of Probiotics Supplementation on Bone Mineral Content and Bone Mass Density

    Directory of Open Access Journals (Sweden)

    Kolsoom Parvaneh

    2014-01-01

    Full Text Available A few studies in animals and a study in humans showed a positive effect of probiotic on bone metabolism and bone mass density. Most of the investigated bacteria were Lactobacillus and Bifidobacterium . The positive results of the probiotics were supported by the high content of dietary calcium and the high amounts of supplemented probiotics. Some of the principal mechanisms include (1 increasing mineral solubility due to production of short chain fatty acids; (2 producing phytase enzyme by bacteria to overcome the effect of mineral depressed by phytate; (3 reducing intestinal inflammation followed by increasing bone mass density; (4 hydrolysing glycoside bond food in the intestines by Lactobacillus and Bifidobacteria. These mechanisms lead to increase bioavailability of the minerals. In conclusion, probiotics showed potential effects on bone metabolism through different mechanisms with outstanding results in the animal model. The results also showed that postmenopausal women who suffered from low bone mass density are potential targets to consume probiotics for increasing mineral bioavailability including calcium and consequently increasing bone mass density.

  12. Effects of multi-deficiencies-diet on bone parameters of peripheral bone in ovariectomized mature rat.

    Directory of Open Access Journals (Sweden)

    Thaqif El Khassawna

    Full Text Available Many postmenopausal women have vitamin D and calcium deficiency. Therefore, vitamin D and calcium supplementation is recommended for all patients with osteopenia and osteoporosis. We used an experimental rat model to test the hypothesis that induction of osteoporosis is more efficiently achieved in peripheral bone through combining ovariectomy with a unique multi-deficiencies diet (vitamin D depletion and deficient calcium, vitamin K and phosphorus. 14-week-old Sprague-Dawley rats served as controls to examine the initial bone status. 11 rats were bilaterally ovariectomized (OVX and fed with multi-deficiencies diet. Three months later the treated group and the Sham group (n = 8 were euthanized. Bone biomechanical competence of the diaphyseal bone was examined on both, tibia and femur. Image analysis was performed on tibia via µCT, and on femur via histological analysis. Lower torsional stiffness indicated inferior mechanical competence of the tibia in 3 month OVX+Diet. Proximal metaphyseal region of the tibia showed a diminished bone tissue portion to total tissue in the µCT despite the increased total area as evaluated in both µCT and histology. Cortical bone showed higher porosity and smaller cross sectional thickness of the tibial diaphysis in the OVX+Diet rats. A lower ALP positive area and elevated serum level of RANKL exhibited the unbalanced cellular interaction in bone remodeling in the OVX+Diet rat after 3 month of treatment. Interestingly, more adipose tissue area in bone marrow indicated an effect of bone loss similar to that observed in osteoporotic patients. Nonetheless, the presence of osteoid and elevated serum level of PTH, BGP and Opn suggest the development of osteomalacia rather than an osteoporosis. As the treatment and fracture management of both osteoporotic and osteomalacia patients are clinically overlapping, this study provides a preclinical animal model to be utilized in local supplementation of minerals, drugs

  13. Effects of Multi-Deficiencies-Diet on Bone Parameters of Peripheral Bone in Ovariectomized Mature Rat

    Science.gov (United States)

    El Khassawna, Thaqif; Böcker, Wolfgang; Govindarajan, Parameswari; Schliefke, Nathalie; Hürter, Britta; Kampschulte, Marian; Schlewitz, Gudrun; Alt, Volker; Lips, Katrin Susanne; Faulenbach, Miriam; Möllmann, Henriette; Zahner, Daniel; Dürselen, Lutz; Ignatius, Anita; Bauer, Natali; Wenisch, Sabine; Langheinrich, Alexander Claus; Schnettler, Reinhard; Heiss, Christian

    2013-01-01

    Many postmenopausal women have vitamin D and calcium deficiency. Therefore, vitamin D and calcium supplementation is recommended for all patients with osteopenia and osteoporosis. We used an experimental rat model to test the hypothesis that induction of osteoporosis is more efficiently achieved in peripheral bone through combining ovariectomy with a unique multi-deficiencies diet (vitamin D depletion and deficient calcium, vitamin K and phosphorus). 14-week-old Sprague-Dawley rats served as controls to examine the initial bone status. 11 rats were bilaterally ovariectomized (OVX) and fed with multi-deficiencies diet. Three months later the treated group and the Sham group (n = 8) were euthanized. Bone biomechanical competence of the diaphyseal bone was examined on both, tibia and femur. Image analysis was performed on tibia via µCT, and on femur via histological analysis. Lower torsional stiffness indicated inferior mechanical competence of the tibia in 3 month OVX+Diet. Proximal metaphyseal region of the tibia showed a diminished bone tissue portion to total tissue in the µCT despite the increased total area as evaluated in both µCT and histology. Cortical bone showed higher porosity and smaller cross sectional thickness of the tibial diaphysis in the OVX+Diet rats. A lower ALP positive area and elevated serum level of RANKL exhibited the unbalanced cellular interaction in bone remodeling in the OVX+Diet rat after 3 month of treatment. Interestingly, more adipose tissue area in bone marrow indicated an effect of bone loss similar to that observed in osteoporotic patients. Nonetheless, the presence of osteoid and elevated serum level of PTH, BGP and Opn suggest the development of osteomalacia rather than an osteoporosis. As the treatment and fracture management of both osteoporotic and osteomalacia patients are clinically overlapping, this study provides a preclinical animal model to be utilized in local supplementation of minerals, drugs and growth factors

  14. Effect of epimedium pubescen flavonoid on bone mineral status and bone turnover in male rats chronically exposed to cigarette smoke

    Directory of Open Access Journals (Sweden)

    Gao Shu-guang

    2012-06-01

    Full Text Available Abstract Background Epimedii herba is one of the most frequently used herbs in formulas that are prescribed for the treatment of osteoporosis in China and its main constituent is Epimedium pubescen flavonoid (EPF. However, it is unclear whether EPF during chronic exposure to cigarette smoke may have a protective influence on the skeleton. The present study investigated the effect of EPF on bone mineral status and bone turnover in a rat model of human relatively high exposure to cigarette smoke. Methods Fifty male Wistar rats were randomized into five groups: controls, passive smoking groups and passive smoking rats administered EPF at three dosage levels (75, 150 or 300 mg/kg/day in drinking water for 4 months. A rat model of passive smoking was prepared by breeding male rats in a cigarette-smoking box. Bone mineral content (BMC, bone mineral density (BMD, bone turnover markers, bone histomorphometric parameters and biomechanical properties were examined. Results Smoke exposure decreased BMC and BMD, increased bone turnover (inhibited bone formation and stimulated its resorption, affected bone histomorphometry (increased trabecular separation and osteoclast surface per bone surface; decreased trabecular bone volume, trabecular thickness, trabecular number, cortical thickness, bone formation rate and osteoblast surface per bone surface, and reduced mechanical properties. EPF supplementation during cigarette smoke exposure prevented smoke-induced changes in bone mineral status and bone turnover. Conclusion The results suggest that EPF can prevent the adverse effects of smoke exposure on bone by stimulating bone formation and inhibiting bone turnover and bone resorption.

  15. Effects of osteoporosis therapies on bone biomechanics

    OpenAIRE

    2010-01-01

    Anti-fracture therapies for the treatment of osteoporosis have been shown clinically to reduce the incidence of fracture; however, standard clinical measurements of bone density cannot sufficiently explain these large reductions. Therefore, the overall goal of this research is to develop a better understanding of the mechanisms through which anti-fracture therapies improve bone strength -- a critical determinant of fracture risk -- which should lead to improved assessment of treatment efficac...

  16. Dose-dependent effects of genistein on bone nomeostasis in rats' mandibular subchondral bone

    Institute of Scientific and Technical Information of China (English)

    Yong-qi LI; Xiang-hui XING; Hui WANG; Xi-li WENG; Shi-bin YU; Guang-ying DONG

    2012-01-01

    To investigate the effect of genistein on bone homeostasis in mandibular subchondral bone of rats.Methods:Female SD rats were administered with genistein (10 and 50 mg/kg) or placebo by oral gavage for 6 weeks.Then the animals were sacrificed,and histomorphology and micro-structure of mandibular condyle were examined using HE staining and micro-CT analysis,respectively.The expression levels of alkaline phosphatase (ALP),osteocalcin (OC),osteoprotegerin (OPG),the receptor activator of nuclear factor KB ligand (RANKL) and estrogen receptors (Ers) in mandibular condyle were detected using real-time PCR.Cultured osteoblasts were prepared from rat mandibular condyle for in in vitro study.The cells were treated with genistein (10-7 or 10-4 mol/L) for 48 h.The expression of the bone homeostasis-associated factors and estrogen receptors (Ers) was detected using realtime PCR,and ER silencing was performed.Results:At both the low- and high-doses,genistein significantly increased the bone mineral density (BMD) and bone volume,and resulted in thicker subchondral trabecular bone in vivo.In both in vivo and in vitro study,the low-dose genistein significantly increased the expression of ALP,OC and OPG,but decreased the expression of RANKL and the RANKL/OPG ratio.The high-dose genistein decreased the expression of all these bone homeostasis-associated factors.Both the low and high doses of genistein significantly increased the expression of Erβ,while Erα expression was increased by the low dose genistein and decreased by the high dose genistein.Erβ silencing abrogated most of the effects of genistein treatment.Conclusion:In rat mandibular condylar subchondral bone,low-dose genistein increases bone formation and inhibit bone resorption,while excess genistein inhibits both bone formation and resorption.The effects of genistein were predominantly mediated through Erβ.

  17. Professional sport activity and micronutrients: effects on bone mass.

    Science.gov (United States)

    Nuti, R; Martini, G; Merlotti, D; Valleggi, F; De Paola, V; Gennari, L

    2005-01-01

    Osteoporosis is the most prevalent metabolic bone disease among developed countries. Although bone mass and density are certainly determined by various concurrent factors such as genetics, hormones, life-style and the environment, and although the genetic program has a critical role in growth and in bone peak development, for their realization an adequate nutritional intake of nutrients and regular exercise are always necessary and may represent a way to prevent osteoporosis and fractures. Exercise and especially high-impact sport activity during growth and adolescence increases bone mineral density (BMD) in weight-loaded skeletal regions. Aerobics, weight bearing and resistance exercises may also be effective in increasing BMD in post-menopausal women. Even though most of the research on nutritional components has focused almost exclusively on calcium and vitamin D, there is now considerable interest in the effects of a variety of other nutrients on bone status.

  18. Recommendations on the effect of antidiabetic drugs in bone.

    Science.gov (United States)

    Rozas-Moreno, Pedro; Reyes-García, Rebeca; Jódar-Gimeno, Esteban; Varsavsky, Mariela; Luque-Fernández, Inés; Cortés-Berdonces, María; Muñoz-Torres, Manuel

    2017-03-01

    To provide recommendations on the effect of antidiabetic drugs on bone fragility to help select the most adequate antidiabetic treatment, especially in diabetic patients with high risk of fracture. Members of the Bone Metabolism Working Group of the Spanish Society of Endocrinology. The GRADE system (Grading of Recommendations, Assessment, Development, and Evaluation) was used to establish both the strength of recommendations and the quality of evidence. A systematic search was made in MEDLINE (Pubmed) using the following terms associated to the name of each antidiabetic drug: AND "osteoporosis", "fractures", "bone mineral density", "bone markers", "calciotropic hormones". Papers in English with publication date before 30 April 2016 were reviewed. Recommendations were jointly discussed by the Working Group. The document summaries the data on the potential effects of antidiabetic drugs on bone metabolism and fracture risk. Copyright © 2017 SEEN. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. Effects of the gut microbiota on bone mass.

    Science.gov (United States)

    Ohlsson, Claes; Sjögren, Klara

    2015-02-01

    The gut microbiota (GM), the commensal bacteria living in our intestine, performs numerous useful functions, including modulating host metabolism and immune status. Recent studies demonstrate that the GM is also a regulator of bone mass and it is proposed that the effect of the GM on bone mass is mediated via effects on the immune system, which in turn regulates osteoclastogenesis. Under normal conditions, the skeleton is constantly remodeled by bone-forming osteoblasts (OBs) and bone-resorbing osteoclasts (OCLs), and imbalances in this process may lead to osteoporosis. Here we review current knowledge on the possible role for the GM in the regulation of bone metabolism and propose that the GM might be a novel therapeutic target for osteoporosis and fracture prevention. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Effect of Low-Level Laser Therapy on Bone Regeneration During Osseointegration and Bone Graft.

    Science.gov (United States)

    Zein, Randa; Selting, Wayne; Benedicenti, Stefano

    2017-07-21

    The effect of low-level laser therapy (LLLT) on bone regeneration during osseointegration and bone graft is very controversial. Despite many positive reports of in vitro and in vivo studies and more than 50 randomized clinical trials claiming a positive effect of photobiomodulation (PBM), many reports found no significant effect of lasers. The aim of this study was to evaluate studies correlating PBM and bone regeneration and to assesses parameters that produce positive results based on dose and output power used. Four electronic databases were used: PubMed, Springer, Google Scholar, and Cochrane. The research yielded 230 articles. The full texts of all articles were evaluated and scored using eligibility criteria adapted from Cericato et al. After evaluation, only 19 articles met the inclusion criteria. A positive effect of low-level laser energy on bone regeneration within a certain relationship between dose and output power was found. LLLT stimulates cellular metabolism, increasing protein synthesis and subsequent bone regeneration. A high dose combined with low power or a low dose combined with high power appears to produce a positive effect.

  1. Polymer-ceramic spiral structured scaffolds for bone tissue engineering: effect of hydroxyapatite composition on human fetal osteoblasts.

    Science.gov (United States)

    Zhang, Xiaojun; Chang, Wei; Lee, Paul; Wang, Yuhao; Yang, Min; Li, Jun; Kumbar, Sangamesh G; Yu, Xiaojun

    2014-01-01

    For successful bone tissue engineering, a scaffold needs to be osteoconductive, porous, and biodegradable, thus able to support attachment and proliferation of bone cells and guide bone formation. Recently, hydroxyapatites (HA), a major inorganic component of natural bone, and biodegrade polymers have drawn much attention as bone scaffolds. The present study was designed to investigate whether the bone regenerative properties of nano-HA/polycaprolactone (PCL) spiral scaffolds are augmented in an HA dose dependent manner, thereby establishing a suitable composition as a bone formation material. Nano-HA/PCL spiral scaffolds were prepared with different weight ratios of HA and PCL, while porosity was introduced by a modified salt leaching technique. Human fetal osteoblasts (hFOBs) were cultured on the nano-HA/PCL spiral scaffolds up to 14 days. Cellular responses in terms of cell adhesion, viability, proliferation, differentiation, and the expression of bone-related genes were investigated. These scaffolds supported hFOBs adhesion, viability and proliferation. Cell proliferation trend was quite similar on polymer-ceramic and neat polymer spiral scaffolds on days 1, 7, and 14. However, the significantly increased amount of alkaline phosphatase (ALP) activity and mineralized matrix synthesis was evident on the nano-HA/PCL spiral scaffolds. The HA composition in the scaffolds showed a significant effect on ALP and mineralization. Bone phenotypic markers such as bone sialoprotein (BSP), osteonectin (ON), osteocalcin (OC), and type I collagen (Col-1) were semi-quantitatively estimated by reverse transcriptase polymerase chain reaction analysis. All of these results suggested the osteoconductive characteristics of HA/PCL nanocomposite and cell maturation were HA dose dependent. For instance, HA∶PCL = 1∶4 group showed significantly higher ALP mineralization and elevated levels of BSP, ON, OC and Col-I expression as compared other lower or higher ceramic ratios

  2. Polymer-ceramic spiral structured scaffolds for bone tissue engineering: effect of hydroxyapatite composition on human fetal osteoblasts.

    Directory of Open Access Journals (Sweden)

    Xiaojun Zhang

    Full Text Available For successful bone tissue engineering, a scaffold needs to be osteoconductive, porous, and biodegradable, thus able to support attachment and proliferation of bone cells and guide bone formation. Recently, hydroxyapatites (HA, a major inorganic component of natural bone, and biodegrade polymers have drawn much attention as bone scaffolds. The present study was designed to investigate whether the bone regenerative properties of nano-HA/polycaprolactone (PCL spiral scaffolds are augmented in an HA dose dependent manner, thereby establishing a suitable composition as a bone formation material. Nano-HA/PCL spiral scaffolds were prepared with different weight ratios of HA and PCL, while porosity was introduced by a modified salt leaching technique. Human fetal osteoblasts (hFOBs were cultured on the nano-HA/PCL spiral scaffolds up to 14 days. Cellular responses in terms of cell adhesion, viability, proliferation, differentiation, and the expression of bone-related genes were investigated. These scaffolds supported hFOBs adhesion, viability and proliferation. Cell proliferation trend was quite similar on polymer-ceramic and neat polymer spiral scaffolds on days 1, 7, and 14. However, the significantly increased amount of alkaline phosphatase (ALP activity and mineralized matrix synthesis was evident on the nano-HA/PCL spiral scaffolds. The HA composition in the scaffolds showed a significant effect on ALP and mineralization. Bone phenotypic markers such as bone sialoprotein (BSP, osteonectin (ON, osteocalcin (OC, and type I collagen (Col-1 were semi-quantitatively estimated by reverse transcriptase polymerase chain reaction analysis. All of these results suggested the osteoconductive characteristics of HA/PCL nanocomposite and cell maturation were HA dose dependent. For instance, HA∶PCL = 1∶4 group showed significantly higher ALP mineralization and elevated levels of BSP, ON, OC and Col-I expression as compared other lower or higher ceramic

  3. Effects of Ligustrazine on Expression of Bone Marrow Heparan Sulfates in Syngeneic Bone Marrow Transplantation Mice

    Institute of Scientific and Technical Information of China (English)

    任天华; 刘文励; 孙汉英; 戴琪琳; 孙岚

    2003-01-01

    To explore the effects of ligustrazine on bone marrow heparan sulfates (HS) expression in bone marrow transplantation (BMT) mice, the syngeneic BMT mice were orally given 2 mg ligustrazine twice a day. On the 7th, 10th, 14th, 18th day after BMT, peripheral blood cells and bone marrow nuclear cells (BMNC) were counted, and the expression levels of HS in bone marrow and on the stromal cell surfaces were detected by immunohistochemistry and flow cytometry assay respectively. In ligustrazine-treated group, the white blood cells (WBC) and BMNC on the 7th, 10th, 14th, 18th day and platelets (PLT) on the 7th, 10th day were all significantly more than those in control group (P<0.05). The bone marrow HS expression levels in ligustrazine-treated group were higher than those in control group (P<0. 05) on the 7th, 10th, 14th, 18th day. However, the HS expression levels on the stromal cell surfaces showed no significant difference between the two groups on the 18th day (P>0. 05). It was concluded that ligustrazine could up-regulate HS expression in bone marrow, which might be one of the mechanisms contributing to ligustrazine promoting hematopoietic reconstitution after BMT.

  4. Therapeutic effect of bone cement injection in the treatment of intraosseous ganglion of the carpal bones.

    Science.gov (United States)

    Yu, Kunlun; Shao, Xinzhong; Tian, Dehu; Bai, Jiangbo; Zhang, Bing; Zhang, Yingze

    2016-09-01

    The aim of the present study was to treat intraosseous ganglia of the carpal bones with injectable bone cement grafting. Between January 2012 and December 2013, 4 patients (3 men and 1 woman) presenting with wrist pain and activity limitation were diagnosed with intraosseous ganglion of the carpal bones by radiography. The patients were treated with minimal invasive curettage and bone cement injection surgery. All patients were followed up for a mean time of 17 months (range, 12-22 months). The wrist pain was significantly reduced in all patients following surgery. In addition, the activity range and grip strength were also improved compared with the preoperative parameters. Subsequent to treatment, the Mayo wrist score and the Disabilities of the Arm, Shoulder and Hand score presented mean values of 78.8 (range, 75-80) and 11 (range, 7.7-15.0), respectively. These results suggested that the patients showed a good recovery. All patients were satisfied with the postoperative results and returned to work within 4 weeks. In conclusion, bone cement injection is an effective and safe therapeutic strategy for the treatment of intraosseous ganglia of the carpal bone.

  5. Effect of nasal salmon calcitonin on bone remodeling and bone mass in postmenopausal osteoporosis.

    Science.gov (United States)

    Thamsborg, G; Jensen, J E; Kollerup, G; Hauge, E M; Melsen, F; Sorensen, O H

    1996-02-01

    The effect of nasal salmon calcitonin (SCT) on bone has been investigated by densitometry, biochemical markers of bone turnover, and histomorphometry. 62 women (mean age 65 years) who had experienced Colles' fracture after menopause were randomized to receive either nasal salmon calcitonin (SCT) 200 IU or nasal placebo daily for 24 months. All received a daily supplement of 0.5 g calcium. There was a significant increase above baseline in the bone mineral density of the lumbar spine in the SCT group (2.5%; 95% confidence interval 0.9--4.2%) and in the placebo group (1.7%; 95% confidence interval 0.3--3.1%) after 24 months, but the difference between the groups was not significant (0.8%; 95% confidence interval -1.2-3.0%). Serum levels of osteocalcin decreased significantly below baseline in the SCT group, whereas they were unchanged in the placebo group. At months 12 and 24, serum levels of osteocalcin were significantly lower in the SCT group than in the placebo group (p transient decrease was observed in the placebo group. The differences between the groups were, however, not significant. The erosion depth was significantly lower in the SCT group than in the placebo group after 12 months (median [interquartile range]; 46.9 mu m [10.4] vs. 50.5 mu m [10.7]; p = 0.03), whereas bone volume and activation frequency did not differ between the groups. This study indicates that nasal SCT in a dose of 200 IU daily induces only a minor inhibition of bone resorption and therefore produces only a minor increase in bone mass. Furthermore, it seems that nasal SCT in a dose of 200 IU does not interfere with the recruitment of new bone multicellular units, but preferably decreases ongoing osteoclastic bone resorption.

  6. Gonadal steroid–dependent effects on bone turnover and bone mineral density in men

    Science.gov (United States)

    Finkelstein, Joel S.; Lee, Hang; Leder, Benjamin Z.; Goldstein, David W.; Hahn, Christopher W.; Hirsch, Sarah C.; Linker, Alex; Perros, Nicholas; Servais, Andrew B.; Taylor, Alexander P.; Webb, Matthew L.; Youngner, Jonathan M.; Yu, Elaine W.

    2016-01-01

    BACKGROUND. Severe gonadal steroid deficiency induces bone loss in adult men; however, the specific roles of androgen and estrogen deficiency in hypogonadal bone loss are unclear. Additionally, the threshold levels of testosterone and estradiol that initiate bone loss are uncertain. METHODS. One hundred ninety-eight healthy men, ages 20–50, received goserelin acetate, which suppresses endogenous gonadal steroid production, and were randomized to treatment with 0, 1.25, 2.5, 5, or 10 grams of testosterone gel daily for 16 weeks. An additional cohort of 202 men was randomized to receive these treatments plus anastrozole, which suppresses conversion of androgens to estrogens. Thirty-seven men served as controls and received placebos for goserelin and testosterone. Changes in bone turnover markers, bone mineral density (BMD) by dual-energy x-ray absorptiometry (DXA), and BMD by quantitative computed tomography (QCT) were assessed in all men. Bone microarchitecture was assessed in 100 men. RESULTS. As testosterone dosage decreased, the percent change in C-telopeptide increased. These increases were considerably greater when aromatization of testosterone to estradiol was also suppressed, suggesting effects of both testosterone and estradiol deficiency. Decreases in DXA BMD were observed when aromatization was suppressed but were modest in most groups. QCT spine BMD fell substantially in all testosterone-dose groups in which aromatization was also suppressed, and this decline was independent of testosterone dose. Estradiol deficiency disrupted cortical microarchitecture at peripheral sites. Estradiol levels above 10 pg/ml and testosterone levels above 200 ng/dl were generally sufficient to prevent increases in bone resorption and decreases in BMD in men. CONCLUSIONS. Estrogens primarily regulate bone homeostasis in adult men, and testosterone and estradiol levels must decline substantially to impact the skeleton. TRIAL REGISTRATION. ClinicalTrials.gov, NCT00114114

  7. Platelet-rich plasma in regenerative medicine

    Directory of Open Access Journals (Sweden)

    Guhta Ra Hara and Thaha Basu

    2014-01-01

    Full Text Available Platelet-rich plasma (PRP contains at least seven growth factors including epidermal, plateletderived, transforming, vascular endothelial, fibroblast, insulin-like and keratinocyte growth factor. The therapeutic effect of PRP occurs because of the high concentration of these growth factors compared with those found in normal plasma. In recent years, PRP is widely used across many clinical fields, especially in regenerative medicine. This review aimed at presenting an overview of the applications of PRP in regenerative medicine. The mechanisms of PRP effects on healing are also stated in this review. [Biomed Res Ther 2014; 1(1.000: 25-31

  8. Regenerative photonic therapy: Review

    Science.gov (United States)

    Salansky, Natasha; Salansky, Norman

    2012-09-01

    After four decades of research of photobiomodulation phenomena in mammals in vitro and in vivo, a solid foundation is created for the use of photobiomodulation in regenerative medicine. Significant accomplishments are achieved in animal models that demonstrate opportunities for photo-regeneration of injured or pathological tissues: skin, muscles and nerves. However, the use of photobiomodulation in clinical studies leads to controversial results while negative or marginal clinical efficacy is reported along with positive findings. A thor ough analysis of requirements to the optical parameters (dosimetry) for high efficacy in photobimodulation led us to the conclusion that there are several misconceptions in the clinical applications of low level laser therapy (LLLT). We present a novel appr oach of regenerative photonic therapy (RPT) for tissue healing and regeneration that overcomes major drawbacks of LLLT. Encouraging clinical results on RPT efficacy are presented. Requirements for RPT approach and vision for its future development for tissue regeneration is discussed.

  9. Regenerative Endodontics: Burning Questions.

    Science.gov (United States)

    Smith, Anthony J; Cooper, Paul R

    2017-09-01

    Pulp regeneration and its clinical translation into regenerative endodontic procedures are receiving increasing research attention, leading to significant growth of the published scientific and clinical literature within these areas. Development of research strategies, which consider patient-, clinician-, and scientist-based outcomes, will allow greater focus on key research questions driving more rapid clinical translation. Three key areas of focus for these research questions should include cells, signaling, and infection/inflammation. A translational pathway is envisaged in which clinical approaches are increasingly refined to provide regenerative endodontic protocols that are based on a robust understanding of the physiological processes and events responsible for the normal secretion, structure, and biological behavior of pulpal tissue. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  10. Regenerative feedback resonant circuit

    Science.gov (United States)

    Jones, A. Mark; Kelly, James F.; McCloy, John S.; McMakin, Douglas L.

    2014-09-02

    A regenerative feedback resonant circuit for measuring a transient response in a loop is disclosed. The circuit includes an amplifier for generating a signal in the loop. The circuit further includes a resonator having a resonant cavity and a material located within the cavity. The signal sent into the resonator produces a resonant frequency. A variation of the resonant frequency due to perturbations in electromagnetic properties of the material is measured.

  11. Cytomics in regenerative medicine

    Science.gov (United States)

    Tárnok, Attila; Pierzchalski, Arkadiusz

    2008-02-01

    Cytomics is the high-content analysis of cell-systems [6, 78]. The area of Cytomics and Systems Biology received great attention during the last years as it harbours the promise to substantially impact on various fields of biomedicine, drug discovery, predictive medicine [6] and may have major potential for regenerative medicine. In regenerative medicine Cytomics includes process control of cell preparation and culturing using non-invasive detection techniques, quality control and standardization for GMP and GLP conformity and even prediction of cell fate based on sophisticated data analysis. Cytomics requires quantitative and stoichiometric single cell analysis. In some areas the leading cytometric techniques represent the cutting edge today. Many different applications/variations of multicolour staining were developed for flow- or slide-based cytometry (SBC) analysis of suspensions and sections to whole animal analysis [78]. SBC has become an important analytical technology in drug discovery, diagnosis and research and is an emerging technology for systems analysis [78]. It enables high-content high-throughput measurement of cell suspensions, cell cultures and tissues. In the last years various commercial SBC instruments were launched principally enabling to perform similar tasks. Standardisation as well as comparability of different instruments is a major challenge. Hyperspectral optical imaging may be implemented in SBC analysis for label free cell detection based on cellular autofluorescence [3]. All of these developments push the systemic approach of the analysis of biological specimens to enhance the outcome of regenerative medicine.

  12. The Mechanical Properties and Biometrical Effect of 3D Preformed Titanium Membrane for Guided Bone Regeneration on Alveolar Bone Defect

    Directory of Open Access Journals (Sweden)

    So-Hyoun Lee

    2017-01-01

    Full Text Available The purpose of this study is to evaluate the effect of three-dimensional preformed titanium membrane (3D-PFTM to enhance mechanical properties and ability of bone regeneration on the peri-implant bone defect. 3D-PFTMs by new mechanically compressive molding technology and manually shaped- (MS- PFTMs by hand manipulation were applied in artificial peri-implant bone defect model for static compressive load test and cyclic fatigue load test. In 12 implants installed in the mandibular of three beagle dogs, six 3D-PFTMs, and six collagen membranes (CM randomly were applied to 2.5 mm peri-implant buccal bone defect with particulate bone graft materials for guided bone regeneration (GBR. The 3D-PFTM group showed about 7.4 times higher mechanical stiffness and 5 times higher fatigue resistance than the MS-PFTM group. The levels of the new bone area (NBA, %, the bone-to-implant contact (BIC, %, distance from the new bone to the old bone (NB-OB, %, and distance from the osseointegration to the old bone (OI-OB, % were significantly higher in the 3D-PFTM group than the CM group (p<.001. It was verified that the 3D-PFTM increased mechanical properties which were effective in supporting the space maintenance ability and stabilizing the particulate bone grafts, which led to highly efficient bone regeneration.

  13. Divergent effects of obesity on bone health

    Science.gov (United States)

    Gower, Barbara A; Casazza, Krista

    2017-01-01

    Historically, obesity was thought to be advantageous for maintaining healthy bones due to the greater BMD observed in overweight individuals. However, recent observations of increased fracture in some obese individuals has led to concern that common metabolic complications of obesity, such as type 2 diabetes, metabolic syndrome, impaired glucose tolerance, insulin resistance, hyperglycemia, and inflammation may be associated with poor bone health. In support of this hypothesis, greater visceral fat, a hallmark of insulin resistance and metabolic syndrome, is associated with lower BMD. Research is needed to determine if and how visceral fat and/or poor metabolic health are causally associated with bone health. Clinicians should consider adding a marker metabolic health, such as waist circumference or fasting plasma glucose concentration, to other known risk factors for osteoporosis and fracture. PMID:24063845

  14. The effects of static magnetic fields on bone.

    Science.gov (United States)

    Zhang, Jian; Ding, Chong; Ren, Li; Zhou, Yimin; Shang, Peng

    2014-05-01

    All the living beings live and evolve under geomagnetic field (25-65 μT). Besides, opportunities for human exposed to different intensities of static magnetic fields (SMF) in the workplace have increased progressively, such SMF range from weak magnetic field (1 T). Given this, numerous scientific studies focus on the health effects and have demonstrated that certain magnetic fields have positive influence on our skeleton systems. Therefore, SMF is considered as a potential physical therapy to improve bone healing and keep bones healthy nowadays. Here, we review the mechanisms of effects of SMF on bone tissue, ranging from physical interactions, animal studies to cellular studies.

  15. Paracrine proangiopoietic effects of human umbilical cord blood-derived purified CD133+ cells--implications for stem cell therapies in regenerative medicine.

    Science.gov (United States)

    Ratajczak, Janina; Kucia, Magda; Mierzejewska, Kasia; Marlicz, Wojciech; Pietrzkowski, Zbigniew; Wojakowski, Wojciech; Greco, Nicholas J; Tendera, Michal; Ratajczak, Mariusz Z

    2013-02-01

    CD133+ cells purified from hematopoietic tissues are enriched mostly for hematopoietic stem/progenitor cells, but also contain some endothelial progenitor cells and very small embryonic-like stem cells. CD133+ cells, which are akin to CD34+ cells, are a potential source of stem cells in regenerative medicine. However, the lack of convincing donor-derived chimerism in the damaged organs of patients treated with these cells suggests that the improvement in function involves mechanisms other than a direct contribution to the damaged tissues. We hypothesized that CD133+ cells secrete several paracrine factors that play a major role in the positive effects observed after treatment and tested supernatants derived from these cells for the presence of such factors. We observed that CD133+ cells and CD133+ cell-derived microvesicles (MVs) express mRNAs for several antiapoptotic and proangiopoietic factors, including kit ligand, insulin growth factor-1, vascular endothelial growth factor, basic fibroblast growth factor, and interleukin-8. These factors were also detected in a CD133+ cell-derived conditioned medium (CM). More important, the CD133+ cell-derived CM and MVs chemoattracted endothelial cells and display proangiopoietic activity both in vitro and in vivo assays. This observation should be taken into consideration when evaluating clinical outcomes from purified CD133+ cell therapies in regenerative medicine.

  16. Three-dimensional bioprinting in tissue engineering and regenerative medicine.

    Science.gov (United States)

    Gao, Guifang; Cui, Xiaofeng

    2016-02-01

    With the advances of stem cell research, development of intelligent biomaterials and three-dimensional biofabrication strategies, highly mimicked tissue or organs can be engineered. Among all the biofabrication approaches, bioprinting based on inkjet printing technology has the promises to deliver and create biomimicked tissue with high throughput, digital control, and the capacity of single cell manipulation. Therefore, this enabling technology has great potential in regenerative medicine and translational applications. The most current advances in organ and tissue bioprinting based on the thermal inkjet printing technology are described in this review, including vasculature, muscle, cartilage, and bone. In addition, the benign side effect of bioprinting to the printed mammalian cells can be utilized for gene or drug delivery, which can be achieved conveniently during precise cell placement for tissue construction. With layer-by-layer assembly, three-dimensional tissues with complex structures can be printed using converted medical images. Therefore, bioprinting based on thermal inkjet is so far the most optimal solution to engineer vascular system to the thick and complex tissues. Collectively, bioprinting has great potential and broad applications in tissue engineering and regenerative medicine. The future advances of bioprinting include the integration of different printing mechanisms to engineer biphasic or triphasic tissues with optimized scaffolds and further understanding of stem cell biology.

  17. Implications of mesenchymal stem cells in regenerative medicine.

    Science.gov (United States)

    Kariminekoo, Saber; Movassaghpour, Aliakbar; Rahimzadeh, Amirbahman; Talebi, Mehdi; Shamsasenjan, Karim; Akbarzadeh, Abolfazl

    2016-05-01

    Mesenchymal stem cells (MSCs) are a population of multipotent progenitors which reside in bone marrow, fat, and some other tissues and can be isolated from various adult and fetal tissues. Self-renewal potential and multipotency are MSC's hallmarks. They have the capacity of proliferation and differentiation into a variety of cell lineages like osteoblasts, condrocytes, adipocytes, fibroblasts, cardiomyocytes. MSCs can be identified by expression of some surface molecules like CD73, CD90, CD105, and lack of hematopoietic specific markers including CD34, CD45, and HLA-DR. They are hopeful tools for regenerative medicine for repairing injured tissues. Many studies have focused on two significant features of MSC therapy: (I) systemically administered MSCs home to sites of ischemia or injury, and (II) MSCs can modulate T-cell-mediated immunological responses. MSCs express chemokine receptors and ligands involved in cells migration and homing process. MSCs induce immunomedulatory effects on the innate (dendritic cells, monocyte, natural killer cells, and neutrophils) and the adaptive immune system cells (T helper-1, cytotoxic T lymphocyte, and B lymphocyte) by secreting soluble factors like TGF-β, IL-10, IDO, PGE-2, sHLA-G5, or by cell-cell interaction. In this review, we discuss the main applications of mesenchymal stem in Regenerative Medicine and known mechanisms of homing and Immunomodulation of MSCs.

  18. Effect of bone marrow mesenchymal stem cells on the proliferation of bone marrow CD34~+ cells in vitro

    Institute of Scientific and Technical Information of China (English)

    王荣

    2013-01-01

    Objective To investigate the effect on the marrow CD34+ cells by bone marrow mesenchymal stem cells(BMMSC),VarioMACS was used to sort bone marrow CD34+ cells,and then the purity of CD34+ cell was tested by FCM. Marrow mononuclear cells from abortion fetal bone marrow were isolated,and BMMSC were

  19. Effect of mining and utilizing bone coal on environment

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The average air -ray dose rates measured from the field, road, bone coal, bone coal cinder and bone coalcinder bricks in the three bone coal mines in westZhejiang Province, are 3.8 102,4.1 102, 7.1 102, 4.0 102and 7.1 102 nGy/h, respectively. The mean contents of238U, 226Ra,232Th and 40K in the bone coal of the three bone coalmines are 2.0 103, 2.1 103, 3.9 101 and6.1 102 Bq/kg, respectively, in the bone coal cinder(BCC)are 1.6 103, 1.6 103, 2.3 101and 4.5 102 Bq/kg, respectively, and in the bone coalcinder brick(BCCB) are 1.2 103, 1.2 103,2.4 101 and 4.0 102 Bq/kg, respectively, and those in thereference soil are 3.4 102, 1.0 102, 4.9 101and 4.9 102 Bq/kg, respectively. Theannual mean of effective dose equivalentfor public living in house buildings made with BCCB near thethree mines is 6.8 mSv.

  20. Effect of thermodisinfection on mechanic parameters of cancellous bone.

    Science.gov (United States)

    Fölsch, Christian; Kellotat, Andreas; Rickert, Markus; Ishaque, Bernd; Ahmed, Gafar; Pruss, Axel; Jahnke, Alexander

    2016-09-01

    Revision surgery of joint replacements is increasing and raises the demand for allograft bone since restoration of bone stock is crucial for longevity of implants. Proceedings of bone grafts influence the biological and mechanic properties differently. This study examines the effect of thermodisinfection on mechanic properties of cancellous bone. Bone cylinders from both femoral heads with length 45 mm were taken from twenty-three 6-8 months-old piglets, thermodisinfected at 82.5 °C according to bone bank guidelines and control remained native. The specimens were stored at -20 °C immediately and were put into 21 °C Ringer's solution for 3 h before testing. Shear and pressure modulus were tested since three point bending force was examined until destruction. Statistical analysis was done with non-parametric Wilcoxon, t test and SPSS since p mechanic properties of cancellous bone and the reduction of mechanic properties should not relevantly impair clinical use of thermodisinfected cancellous bone.

  1. A newly developed snack effective for enhancing bone volume

    Directory of Open Access Journals (Sweden)

    Hayashi Hidetaka

    2009-07-01

    Full Text Available Abstract Background The incidence of primary osteoporosis is higher in Japan than in USA and European countries. Recently, the importance of preventive medicine has been gradually recognized in the field of orthopaedic surgery with a concept that peak bone mass should be increased in childhood as much as possible for the prevention of osteoporosis. Under such background, we have developed a new bean snack with an aim to improve bone volume loss. In this study, we examined the effects of a newly developed snack on bone volume and density in osteoporosis model mice. Methods Orchiectomy (ORX and ovariectomy (OVX were performed for C57BL/6J mice of twelve-week-old (Jackson Laboratory, Bar Harbar, ME, USA were used in this experiment. We prepared and given three types of powder diet e.g.: normal calcium diet (NCD, Ca: 0.9%, Clea Japan Co., Tokyo, Japan, low calcium diet (LCD, Ca: 0.63%, Clea Japan Co., and special diet (SCD, Ca: 0.9%. Eighteen weeks after surgery, all the animals were sacrified and prepared for histomorphometric analysis to quantify bone density and bone mineral content. Results As a result of histomorphometric examination, SCD was revealed to enhance bone volume irrespective of age and sex. The bone density was increased significantly in osteoporosis model mice fed the newly developmental snack as compared with the control mice. The bone mineral content was also enhanced significantly. These phenomena were revealed in both sexes. Conclusion It is shown that the newly developed bean snack is highly effective for the improvement of bone volume loss irrespective of sex. We demonstrated that newly developmental snack supplements may be a useful preventive measure for Japanese whose bone mineral density values are less than the ideal condition.

  2. Effect of Teriparatide, Vibration and the Combination on Bone Mass and Bone Architecture in Chronic Spinal Cord Injury

    Science.gov (United States)

    2014-10-01

    Spinal Cord Injury Effect of Teriparatide, Vibration and the Combination on Bone Mass and Bone Architechture in Chronic... Spinal Cord Injury 5a. CONTRACT NUMBER W81XWH-10-1-0951 Mass and Bone Architecture in Chronic Spinal Cord Injury 5b. GRANT NUMBER 5c. PROGRAM...distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Severe bone loss commonly occurs in individuals with chronic spinal cord injury who are

  3. The imperative for regenerative agriculture.

    Science.gov (United States)

    Rhodes, Christopher J

    2017-03-01

    A review is made of the current state of agriculture, emphasising issues of soil erosion and dependence on fossil fuels, in regard to achieving food security for a relentlessly enlarging global population. Soil has been described as "the fragile, living skin of the Earth", and yet both its aliveness and fragility have all too often been ignored in the expansion of agriculture across the face of the globe. Since it is a pivotal component in a global nexus of soil-water-air-energy, how we treat the soil can impact massively on climate change - with either beneficial or detrimental consequences, depending on whether the soil is preserved or degraded. Regenerative agriculture has at its core the intention to improve the health of soil or to restore highly degraded soil, which symbiotically enhances the quality of water, vegetation and land-productivity. By using methods of regenerative agriculture, it is possible not only to increase the amount of soil organic carbon (SOC) in existing soils, but to build new soil. This has the effect of drawing down carbon from the atmosphere, while simultaneously improving soil structure and soil health, soil fertility and crop yields, water retention and aquifer recharge - thus ameliorating both flooding and drought, and also the erosion of further soil, since runoff is reduced. Since food production on a more local scale is found to preserve the soil and its quality, urban food production should be seen as a significant potential contributor to regenerative agriculture in the future, so long as the methods employed are themselves 'regenerative'. If localisation is to become a dominant strategy for dealing with a vastly reduced use of fossil fuels, and preserving soil quality - with increased food production in towns and cities - it will be necessary to incorporate integrated ('systems') design approaches such as permaculture and the circular economy (which minimise and repurpose 'waste') within the existing urban infrastructure. In

  4. Effect of Pamidronate on Bone Pain in Patients with Bone Metastasis

    Directory of Open Access Journals (Sweden)

    Shahrbanoo Keihanian

    2013-06-01

    Full Text Available Background & Objectives: Bone metastases induce harmful potential complications on the life of patients. Pamidronate reduces skeletal complications in patients with bone metastases. This study evaluated the effect of Pamidronate on bone pain in cancer patients with bone metastasis.   Methods: This was quasi experimental study carried out at Imam Sajjad hospital in Ramsar on 41 patients with malignancy by convenience sampling. In this study 90 mg of Pamidronate was injected intravenously each month for 3 months. Data collection was done through demographic and clinical data questionnaire and visual analog scale . Data of before and after intervention were compared. Statistical analysis was performed using paired t tests, chi-square, Friedman and Wilcox on tests with SPSS version 11.5 and p<0.05 was considered significant.   Results: Statistical analysis showed that the most age group (36% was 50-59 years and the most patients (65.9% were female. The most common type of cancer was breast (43.9% and the most common bone metastasis point in the most of patients (65.9% was diffuse. The most common sites of pain associated with bone were sternum, ischium and T3-T4 vertebrae. Before treatment, the most patients (80.5% complained of moderate pain whereas after treatment, the majority of them (41.5% complained of low pain. The results of this study indicated that there was significant difference (p=0.032 between consumption of NSAIDs before and after treatment, but there was no significant difference between consumption of o pium before and after treatment (p=0.096.   Conclusion: Pamidronate is effective in prevention of losing bone, reduced pain and analgesic consumption . So i t can be used as primary and routine treatment .

  5. Uso de terapia regenerativa com células-tronco da medula óssea em doenças cardiovasculares: perspectiva do hematologista Regenerative therapy using bone marrow stem cells in cardiovascular diseases: the perspective of the hematologist

    Directory of Open Access Journals (Sweden)

    Augusto C. A. Mota

    2005-06-01

    Full Text Available O desenvolvimento de técnicas de transplante de órgãos sólidos e de medula óssea foi um dos mais fascinantes avanços da medicina no século XX. A virada do século XXI testemunha um desdobramento também fascinante e promissor desta modalidade terapêutica: o uso de células-tronco para regenerar tecidos lesados outrora considerados irreparáveis. Resultados encorajadores de inúmeros estudos com animais de experimentação impulsionaram grupos de diversos centros no mundo a iniciar estudos clínicos com transplante de células-tronco em várias doenças, particularmente as doenças cardiovasculares e neurológicas. Embora ainda estejamos algo distante de entender o mecanismo preciso pelo qual as células-tronco regeneram órgãos lesados, os estudos publicados até o presente momento, incluindo vários estudos envolvendo seres humanos, sugerem haver um benefício real com esta terapia. O presente artigo pretende abordar os aspectos relevantes da terapia celular em doenças cardiovasculares, incluindo conceitos básicos sobre células-tronco, e os principais estudos de animais de experimentação e clínicos publicados até o presente.Solid organ and bone marrow transplantation were two of the most fascinating treatment modalities developed in the second half of the past century. At the turn of the 21st century the use of stem cells emerge as a potential therapeutic option for diseases previously thought to be irreversible. The promising results of animal studies paved the way for several groups all around the world to investigate the role of stem cell therapy in the clinical setting. The results of these clinical trials have been published over the last couple of years, most of which dealing with cardiovascular and neurological disorders. The results of the trials published thus far are encouraging (both animal and clinical and suggest that there may be a real benefit with this therapy, yet we are still considerably distant from a

  6. Emdogain in regenerative periodontal therapy. A review of the literature.

    NARCIS (Netherlands)

    Sculean, A.; Windisch, P.; Dori, F.; Keglevich, T.; Molnar, B.; Gera, I.

    2007-01-01

    The goal of regenerative periodontal therapy is the reconstitution of the lost periodontal structures (i.e. the new formation of root cementum, periodontal ligament and alveolar bone). Results from basic research have pointed to the important role of the enamel matrix protein derivative (EMD) in the

  7. Effect of autologous bone marrow-derived cells associated with guided bone regeneration or not in the treatment of peri-implant defects.

    Science.gov (United States)

    Ribeiro, F V; Suaid, F F; Ruiz, K G S; Rodrigues, T L; Carvalho, M D; Nociti, F H; Sallum, E A; Casati, M Z

    2012-01-01

    This study investigated the effect of bone marrow-derived cells associated with guided bone regeneration in the treatment of dehiscence bone defects around dental implants. Iliac-derived bone marrow cells were harvested from dogs and phenotypically characterized with regard to their osteogenic properties. After teeth extraction, three implant sites were drilled, dehiscences created and implants placed. Dehiscences were randomly assigned to: bone marrow-derived cells, bone marrow-derived cells+guided bone regeneration, and control (no treatment). After 3 months, implants with adjacent tissues were processed histologically, bone-to-implant contact, bone fill within the threads, new bone area in a zone lateral to the implant, new bone height, and new bone weight at the bottom of the defect were determined. Phenotypic characterization demonstrated that bone marrow-derived cells presented osteogenic potential. Statistically higher bone fill within the threads was observed in both bone marrow-derived cells+guided bone regeneration bone marrow-derived cell groups compared with the control group (P0.05). For the other parameters (new bone area, bone-to-implant contact, new bone height and new bone weight), only the bone marrow-derived cells+guided bone regeneration group presented higher values compared with the non-treated control (Pregeneration, although the combined approach seems to be relevant, especially to bone formation out of the implant threads.

  8. Surgical Non-Regenerative Treatments for Peri-Implantitis: a Systematic Review

    Directory of Open Access Journals (Sweden)

    Ausra Ramanauskaite

    2016-09-01

    Full Text Available Objectives: The purposes of the present study were 1 to systematically review the literature on the surgical non-regenerative treatments of peri-implantitis and 2 to determine a predictable therapeutic option for the clinical management of peri-implantitis lesions. Material and Methods: The study search was performed on primary database MEDLINE and EMBASE from 2005 until 2016. Sequential screenings at the title, abstract, and full-text levels were performed. Clinical human studies in the English language that had reported changes in probing depth (PD and/or bleeding on probing (BOP and/or radiologic marginal bone level changes after peri-implantitis surgical non-regenerative treatment at 6-month follow-up or longer were included accordingly PRISMA guidelines. Results: The first electronic and hand search resulted in 765 citations. From 16 full-text articles reviewed, 6 were included in this systematic review. Surgical non-regenerative methods were found to be efficient in reducing clinical parameters. BOP and PD values were significantly decreased following implantoplasty and systematic administration of antibacterials, but not after local application of chemical compounds or diode laser. Similarly, significant improvement in clinical and radiographic parameters was found only after implantoplasty compared with resective surgery alone. We found significant heterogeneity in study designs and treatments provided among the pooled studies. All of the studies revealed an unclear or high risk of bias. Conclusions: Surgical non-regenerative treatment of peri-implantitis was found to be effective to reduce the soft tissue inflammation and decrease probing depth. More randomized controlled clinical trials are needed to assess the efficacy of surgical non-regenerative therapy of peri-implantitis.

  9. Surgical Non-Regenerative Treatments for Peri-Implantitis: a Systematic Review

    Science.gov (United States)

    Ramanauskaite, Ausra; Daugela, Povilas; Faria de Almeida, Ricardo

    2016-01-01

    ABSTRACT Objectives The purposes of the present study were 1) to systematically review the literature on the surgical non-regenerative treatments of peri-implantitis and 2) to determine a predictable therapeutic option for the clinical management of peri-implantitis lesions. Material and Methods The study search was performed on primary database MEDLINE and EMBASE from 2005 until 2016. Sequential screenings at the title, abstract, and full-text levels were performed. Clinical human studies in the English language that had reported changes in probing depth (PD) and/or bleeding on probing (BOP) and/or radiologic marginal bone level changes after peri-implantitis surgical non-regenerative treatment at 6-month follow-up or longer were included accordingly PRISMA guidelines. Results The first electronic and hand search resulted in 765 citations. From 16 full-text articles reviewed, 6 were included in this systematic review. Surgical non-regenerative methods were found to be efficient in reducing clinical parameters. BOP and PD values were significantly decreased following implantoplasty and systematic administration of antibacterials, but not after local application of chemical compounds or diode laser. Similarly, significant improvement in clinical and radiographic parameters was found only after implantoplasty compared with resective surgery alone. We found significant heterogeneity in study designs and treatments provided among the pooled studies. All of the studies revealed an unclear or high risk of bias. Conclusions Surgical non-regenerative treatment of peri-implantitis was found to be effective to reduce the soft tissue inflammation and decrease probing depth. More randomized controlled clinical trials are needed to assess the efficacy of surgical non-regenerative therapy of peri-implantitis. PMID:27833739

  10. Regenerative Periodontal Therapy: History and Prospects

    Directory of Open Access Journals (Sweden)

    Arasay Calzada Bandomo

    2013-10-01

    Full Text Available Within the field of tissue engineering, in the area of periodontics, the use of matrices for guiding tissue proliferation has included the guided tissue regeneration procedures, which aims at new bone, cementum and desmodontium formation. The present literature review was conducted in order to provide a general and updated overview on the use of these procedures in periodontal therapy. It was concluded that guided tissue regeneration improve the periodontal therapeutic spectrum; that scientific literature supports its choice and, specially the use of membranes to facilitate the regenerative processes of the anomalies caused by periodontal disease and its sequelae.

  11. Melatonin Effects on Hard Tissues: Bone and Tooth

    Directory of Open Access Journals (Sweden)

    Hong-Wen He

    2013-05-01

    Full Text Available Melatonin is an endogenous hormone rhythmically produced in the pineal gland under the control of the suprachiasmatic nucleus (SCN and the light/dark cycle. This indole plays an important role in many physiological processes including circadian entrainment, blood pressure regulation, seasonal reproduction, ovarian physiology, immune function, etc. Recently, the investigation and applications of melatonin in the hard tissues bone and tooth have received great attention. Melatonin has been investigated relative to bone remolding, osteoporosis, osseointegration of dental implants and dentine formation. In the present review, we discuss the large body of published evidence and review data of melatonin effects on hard tissues, specifically, bone and tooth.

  12. Effects of anticonvulsants and inactivity on bone disease in epileptics

    Science.gov (United States)

    Murchison, Lilian E.; Bewsher, P. D.; Chesters, Marion; Gilbert, J.; Catto, G.; Law, Elizabeth; McKay, E.; Ross, H. S.

    1975-01-01

    No significant biochemical or radiological features of vitamin D deficiency were found in groups of juvenile and adult epileptics and control groups of non-epileptic patients in hospitals for the mentally retarded. There was evidence of hepatic enzyme induction in patients on anticonvulsants, in that urinary D-glucaric acid concentration and excretion were raised. No effect was found of prolonged anticonvulsant therapy on bone densitometry, but in children immobility was closely associated with decreased bone density. The evidence suggests that disuse osteoporosis is the major bone disease in these mentally retarded children. PMID:1161672

  13. Regenerative Medicine for Neurological Disorders

    Directory of Open Access Journals (Sweden)

    Dong-Hyuk Park

    2010-01-01

    Full Text Available The annual meeting of the American Society for Neural Therapy and Repair (ASNTR has always introduced us to top-notch and up-to-date approaches for regenerative medicine related to neuroscience, ranging from stem cell–based therapy to novel drugs. The 16th ASNTR meeting focused on a variety of different topics, including the unknown pathogenesis or mechanisms of specific neurodegenerative diseases, stem cell biology, and development of novel alternative medicines or devices. Newly developed stem cells, such as amniotic epithelial stem cells and induced pluripotent stem cells, as well as well-known traditional stem cells, such as neural, embryonic, bone marrow mesenchymal, and human umbilical cord blood–derived stem cells, were reported. A number of commercialized stem cells were also covered at this meeting. Fetal neural tissues, such as ventral mesencephalon, striatum, and Schwann cells, were investigated for neurodegenerative diseases or spinal cord injury. A number of studies focused on novel methods for drug monitoring or graft tracking, and combination therapy with stem cells and medicine, such as cytokines or trophic factors. Finally, the National Institutes of Health guidelines for human stem cell research, clinical trials of commercialized stem cells without larger animal testing, and prohibition of medical tourism were big controversial issues that led to heated discussion.

  14. Effects of implant drilling parameters for pilot and twist drills on temperature rise in bone analog and alveolar bones.

    Science.gov (United States)

    Chen, Yung-Chuan; Hsiao, Chih-Kun; Ciou, Ji-Sih; Tsai, Yi-Jung; Tu, Yuan-Kun

    2016-11-01

    This study concerns the effects of different drilling parameters of pilot drills and twist drills on the temperature rise of alveolar bones during dental implant procedures. The drilling parameters studied here include the feed rate and rotation speed of the drill. The bone temperature distribution was analyzed through experiments and numerical simulations of the drilling process. In this study, a three dimensional (3D) elasto-plastic dynamic finite element model (DFEM) was proposed to investigate the effects of drilling parameters on the bone temperature rise. In addition, the FE model is validated with drilling experiments on artificial human bones and porcine alveolar bones. The results indicate that 3D DFEM can effectively simulate the bone temperature rise during the drilling process. During the drilling process with pilot drills or twist drills, the maximum bone temperature occurred in the region of the cancellous bones close to the cortical bones. The feed rate was one of the important factors affecting the time when the maximum bone temperature occurred. Our results also demonstrate that the elevation of bone temperature was reduced as the feed rate increased and the drill speed decreased, which also effectively reduced the risk region of osteonecrosis. These findings can serve as a reference for dentists in choosing drilling parameters for dental implant surgeries.

  15. EFFECTS OF RUN TRAINING ON BONE DEVELOPMENT AND BONE MINERALIZATION IN GROWING MICE

    Directory of Open Access Journals (Sweden)

    B Gönül

    2011-06-01

    Full Text Available We planned to study the body weights, bone sizes and bone mineral (Ca, Mg, Zn contents of growing mice subjected to treadmill training. Twelve 4-week-old male Swiss Albino mice were divided into sedentary and exercise groups. The mice were trained by running exercise on a flat bed treadmill with 15 m/min, 30 min/day motion, throughout 5 days per week, for 12 weeks. The body weight of animals, and length, fat-free dry weight and Ca, Mg, and Zn contents of bones were measured in both groups. Body weights of animals, and lengths and wet and dry weights of the femur and the tibia were significantly higher in the exercised group. Also, the Zn, Mg and Ca mineral contents of bones in the group that underwent exercise were higher than in the other group. Running exercise with a flat bed treadmill performed by the growing mice is an effective exercise mode, especially for bone morphology.

  16. Regenerative Medicine Build-Out

    OpenAIRE

    Terzic, Andre; Pfenning, Michael A.; Gregory J Gores; Harper, C. Michel

    2015-01-01

    Summary Regenerative technologies strive to boost innate repair processes and restitute normative impact. Deployment of regenerative principles into practice is poised to usher in a new era in health care, driving radical innovation in patient management to address the needs of an aging population challenged by escalating chronic diseases. There is urgency to design, execute, and validate viable paradigms for translating and implementing the science of regenerative medicine into tangible heal...

  17. Effects of microgravity on bone and calcium homeostasis

    Science.gov (United States)

    Zérath, E.

    Mechanical function is known to be of crucial importance for the maintenance of bone tissue. Gravity on one hand and muscular effort on the other hand are required for normal skeletal structure. It has been shown by numerous experimental studies that loss of total-body calcium, and marked skeletal changes occur in people who have flown in space. However, most of the pertinent investigations have been conducted on animal models, including rats and non-human primates, and a reasonably clear picture of bone response to spaceflight has emerged during the past few years. Osteopenia induced by microgravity was found to be associated with reduction in both cortical and trabecular bone formation, alteration in mineralization patterns, and disorganization of collagen, and non-collagenous protein metabolism. Recently, cell-culture techniques have offered a direct approach of altered gravity effects at the osteoblastic-cell level. But the fundamental mechanisms by which bone and calcium are lost during spaceflight are not yet fully known. Infrequenccy and high financial cost of flights have created the necessity to develop on-Earth models designed to mimic weightlessness effects. Antiorthostatic suspension devices are now commonly used to obtain hindlimb unloading in rats, with skeletal effects similar to those observed after spaceflight. Therefore, actual and ``simulated'' spaceflights, with investigations conducted at whole body and cellular levels, are needed to elucidate pathogeny of bone loss in space, to develop effective countermeasures, and to study recovery processes of bone changes after return to Earth.

  18. Modeling of biological doses and mechanical effects on bone transduction

    CERN Document Server

    Rieger, Romain; Jennane, Rachid; 10.1016/j.jtbi.2011.01.003

    2012-01-01

    Shear stress, hormones like parathyroid and mineral elements like calcium mediate the amplitude of stimulus signal which affects the rate of bone remodeling. The current study investigates the theoretical effects of different metabolic doses in stimulus signal level on bone. The model was built considering the osteocyte as the sensing center mediated by coupled mechanical shear stress and some biological factors. The proposed enhanced model was developed based on previously published works dealing with different aspects of bone transduction. It describes the effects of physiological doses variations of Calcium, Parathyroid Hormone, Nitric Oxide and Prostaglandin E2 on the stimulus level sensed by osteocytes in response to applied shear stress generated by interstitial fluid flow. We retained the metabolic factors (Parathyroid Hormone, Nitric Oxide, and Prostaglandin E2) as parameters of bone cell mechanosensitivity because stimulation/inhibition of induced pathways stimulates osteogenic response in vivo. We t...

  19. Effect of Epimedium-derived Phytoestrogen on Bone Turnover and Bone Microarchitecture in OVX-induced Osteoporotic Rats

    Institute of Scientific and Technical Information of China (English)

    Songlin PENG; Renyun XIA; Huang FANG; Feng LI; Anmin CHEN; Ge ZHANG; Ling QIN

    2008-01-01

    To investigate the preventive effect of epimedium-defivod phytoestrogen (PE) on osteoporosis induced by ovariectomy (OVX) in rats, 11-month-old female Wistar rats were randomly di- vided into Sham, OVX and PE groups. One week after OVX, daily oral administration of PE (0.4 g·kg-1·day·-1) started in PE group, and rats in Sham and OVX groups were given vehicle accordingly. The administrations lasted for 12 weeks. The biological markers including serum osteocalcin (OC) and urinary deoxypyridinoline (DPD) for bone turnover were evaluated at the end of the 12th week. On the 13th week, all the rats were sacrificed. The right proximal tibiae were removed, subjected to micro CT for determination of trabeonlar bone structure and then bone histomorphometry was per- formed to assess bone remodeling. The OVX rats were in a high bone turnover status as evidenced by increased bone formation markers and bone resorption markers. Treatment with PE could suppress the high bone turnover rate in OVX rats. Micro CT data revealed that PE treatment could ameliorate the deterioration of the micro-architecture of proximal tibiae induced by OVX, as demonstrated by greater bone volume, increased trabecular thickness and less trahecular separation in PE group in comparison with OVX group. The static and dynamic parameters of bone histomorphometry indi- cated that there were significant increases in bone formation variables and significant decreases in bone resorption variables between PE and OVX groups. The findings suggest that PE has a beneficial effect on trabecular bone in OVX rat model and this effect is possibly associated with stimulation of bone formation as well as inhibition of bone resorption.

  20. Center for Neuroscience & Regenerative Medicine

    Data.gov (United States)

    Federal Laboratory Consortium — The Center for Neuroscience and Regenerative Medicine (CNRM) was established as a collaborative intramural federal program involving the U.S. Department of Defense...

  1. Initiation of limb regeneration: the critical steps for regenerative capacity.

    Science.gov (United States)

    Yokoyama, Hitoshi

    2008-01-01

    While urodele amphibians (newts and salamanders) can regenerate limbs as adults, other tetrapods (reptiles, birds and mammals) cannot and just undergo wound healing. In adult mammals such as mice and humans, the wound heals and a scar is formed after injury, while wound healing is completed without scarring in an embryonic mouse. Completion of regeneration and wound healing takes a long time in regenerative and non-regenerative limbs, respectively. However, it is the early steps that are critical for determining the extent of regenerative response after limb amputation, ranging from wound healing with scar formation, scar-free wound healing, hypomorphic limb regeneration to complete limb regeneration. In addition to the accumulation of information on gene expression during limb regeneration, functional analysis of signaling molecules has recently shown important roles of fibroblast growth factor (FGF), Wnt/beta-catenin and bone morphogenic protein (BMP)/Msx signaling. Here, the routine steps of wound healing/limb regeneration and signaling molecules specifically involved in limb regeneration are summarized. Regeneration of embryonic mouse digit tips and anuran amphibian (Xenopus) limbs shows intermediate regenerative responses between the two extremes, those of adult mammals (least regenerative) and urodele amphibians (more regenerative), providing a range of models to study the various abilities of limbs to regenerate.

  2. Regenerative adsorbent heat pump

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative adsorbent heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system and at least a portion of the heat of adsorption. A series of at least four compressors containing an adsorbent is provided. A large amount of heat is transferred from compressor to compressor so that heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  3. REGENERATIVE TRANSISTOR AMPLIFIER

    Science.gov (United States)

    Kabell, L.J.

    1958-11-25

    Electrical circults for use in computers and the like are described. particularly a regenerative bistable transistor amplifler which is iurned on by a clock signal when an information signal permits and is turned off by the clock signal. The amplifier porforms the above function with reduced power requirements for the clock signal and circuit operation. The power requirements are reduced in one way by employing transformer coupling which increases the collector circuit efficiency by eliminating the loss of power in the collector load resistor.

  4. Effects of Cremation on Fetal Bones.

    Science.gov (United States)

    Zana, Michela; Magli, Francesca; Mazzucchi, Alessandra; Castoldi, Elisa; Gibelli, Daniele; Caccia, Giulia; Cornacchia, Francesca; Gaudio, Daniel A; Mattia, Mirko; Cattaneo, Cristina

    2017-09-01

    The charring process is a weak point of anthropological analysis as it changes bone morphology and reduces information obtainable, specially in fetuses. This experiment aims at verifying the conservation of fetal bones after cremation. A total of 3138 fetuses of unknown sex and age were used, deriving from legal and therapeutic abortions from different hospitals of Milan. Cremations took place in modern crematoria. Nine cremation events were analyzed, each ranging from 57 to 915 simultaneously cremated fetuses. During the cremations, 4356 skeletal remains were recovered, 3756 of which (86.2%) were morphologically distinguishable. All types of fetal skeletal elements were found, with the exception of some cranial bones. Only 3.4% of individuals could be detected after the cremation process, because of the prevalence of abortions under 12 lunar weeks. All fire alterations were observed and the results were statistically analyzed. This pilot study confirmed the possibility of preservation of fetal skeletal elements after cremation. © 2017 American Academy of Forensic Sciences.

  5. Nonpulsed sinusoidal electromagnetic fields as a noninvasive strategy in bone repair: the effect on human mesenchymal stem cell osteogenic differentiation.

    Science.gov (United States)

    Ledda, Mario; D'Emilia, Enrico; Giuliani, Livio; Marchese, Rodolfo; Foletti, Alberto; Grimaldi, Settimio; Lisi, Antonella

    2015-02-01

    In vivo control of osteoblast differentiation is an important process needed to maintain the continuous supply of mature osteoblast cells for growth, repair, and remodeling of bones. The regulation of this process has also an important and significant impact on the clinical strategies and future applications of cell therapy. In this article, we studied the effect of nonpulsed sinusoidal electromagnetic field radiation tuned at calcium-ion cyclotron frequency of 50 Hz exposure treatment for bone differentiation of human mesenchymal stem cells (hMSCs) alone or in synergy with dexamethasone, their canonical chemical differentiation agent. Five days of continuous exposure to calcium-ion cyclotron resonance affect hMSC proliferation, morphology, and cytoskeletal actin reorganization. By quantitative real-time polymerase chain reaction, we also observed an increase of osteoblast differentiation marker expression such as Runx2, alkaline phosphatase (ALP), osteocalcin (OC), and osteopontin (OPN) together with the osteoprotegerin mRNA modulation. Moreover, in these cells, the increase of the protein expression of OPN and ALP was also demonstrated. These results demonstrate bone commitment of hMSCs through a noninvasive and biocompatible differentiating physical agent treatment and highlight possible applications in new regenerative medicine protocols.

  6. Effects of microgravity on rat bone, cartlage and connective tissues

    Science.gov (United States)

    Doty, S.

    1990-01-01

    The response to hypogravity by the skeletal system was originally thought to be the result of a reduction in weight bearing. Thus a reduced rate of new bone formation in the weight-bearing bones was accepted, when found, as an obvious result of hypogravity. However, data on non-weight-bearing tissues have begun to show that other physiological changes can be expected to occur to animals during spaceflight. This overview of the Cosmos 1887 data discusses these results as they pertain to individual bones or tissues because the response seems to depend on the architecture and metabolism of each tissue under study. Various effects were seen in different tissues from the rats flown on Cosmos 1887. The femur showed a reduced bone mineral content but only in the central region of the diaphysis. This same region in the tibia showed changes in the vascularity of bone as well as some osteocytic cell death. The humerus demonstrated reduced morphometric characteristics plus a decrease in mechanical stiffness. Bone mineral crystals did not mature normally as a result of flight, suggesting a defect in the matrix mineralization process. Note that these changes relate directly to the matrix portion of the bone or some function of bone which slowly responds to changes in the environment. However, most cellular functions of bone are rapid responders. The stimulation of osteoblast precursor cells, the osteoblast function in collagen synthesis, a change in the proliferation rate of cells in the epiphyseal growth plate, the synthesis and secretion of osteocalcin, and the movement of water into or out of tissues, are all processes which respond to environmental change. These rapidly responding events produced results from Cosmos 1887 which were frequently quite different from previous space flight data.

  7. Platelet derivatives in regenerative medicine: an update.

    Science.gov (United States)

    De Pascale, Maria Rosaria; Sommese, Linda; Casamassimi, Amelia; Napoli, Claudio

    2015-01-01

    Prior preclinical and clinical studies support the use of platelet-derived products for the treatment of soft and hard tissue lesions. These regenerative effects are controlled by autocrine and paracrine biomolecules including growth factors and cytokines contained in platelet alpha granules. Each growth factor is involved in a phase of the healing process, such as inflammation, collagen synthesis, tissue granulation, and angiogenesis collectively promoting tissue restitution. Platelet derivatives have been prepared as platelet-rich plasma, platelet gel, platelet-rich fibrin, and platelet eye drops. These products vary in their structure, growth factors, composition, and cytokine concentrations. Here, we review the current use of platelet-derived biological products focusing on the rationale for their use and the main requirements for their preparation. Variation in the apparent therapeutic efficacy may have resulted from a lack of reproducible, standardized protocols for preparation. Despite several individual studies showing favorable treatment effects, some randomized controlled trials as well as meta-analyses have found no constant clinical benefit from the application of platelet-derived products for prevention of tissue lesions. Recently, 3 published studies in dentistry showed an improvement in bone density. Seven published studies showed positive results in joint regeneration. Five published studies demonstrated an improvement in the wound healing, and an improvement of eye epithelial healing was observed in 2 reports. Currently, at least 14 ongoing clinical trials in phase 3 or 4 have been designed with large groups of treated patients (n > 100). Because the rationale of the therapy with platelet-derived compounds is still debated, a definitive insight can be acquired only when these large randomized trials will be completed.

  8. Nanostructured polymeric scaffolds for orthopaedic regenerative engineering.

    Science.gov (United States)

    Deng, Meng; James, Roshan; Laurencin, Cato T; Kumbar, Sangamesh G

    2012-03-01

    Successful regeneration necessitates the development of three-dimensional (3-D) tissue-inducing scaffolds that mimic the hierarchical architecture of native tissue extracellular matrix (ECM). Cells in nature recognize and interact with the surface topography they are exposed to via ECM proteins. The interaction of cells with nanotopographical features such as pores, ridges, groves, fibers, nodes, and their combinations has proven to be an important signaling modality in controlling cellular processes. Integrating nanotopographical cues is especially important in engineering complex tissues that have multiple cell types and require precisely defined cell-cell and cell-matrix interactions on the nanoscale. Thus, in a regenerative engineering approach, nanoscale materials/scaffolds play a paramount role in controlling cell fate and the consequent regenerative capacity. Advances in nanotechnology have generated a new toolbox for the fabrication of tissue-specific nanostructured scaffolds. For example, biodegradable polymers such as polyesters, polyphosphazenes, polymer blends and composites can be electrospun into ECM-mimicking matrices composed of nanofibers, which provide high surface area for cell attachment, growth, and differentiation. This review provides the fundamental guidelines for the design and development of nanostructured scaffolds for the regeneration of various tissue types in human upper and lower extremities such as skin, ligament, tendon, and bone. Examples focusing on the collective work of our laboratory in those areas are discussed to demonstrate the regenerative efficacy of this approach. Furthermore, preliminary strategies and significant challenges to integrate these individual tissues into one complex organ through regenerative engineering-based integrated graft systems are also discussed.

  9. Evaluation strategy of regenerative braking energy for supercapacitor vehicle.

    Science.gov (United States)

    Zou, Zhongyue; Cao, Junyi; Cao, Binggang; Chen, Wen

    2015-03-01

    In order to improve the efficiency of energy conversion and increase the driving range of electric vehicles, the regenerative energy captured during braking process is stored in the energy storage devices and then will be re-used. Due to the high power density of supercapacitors, they are employed to withstand high current in the short time and essentially capture more regenerative energy. The measuring methods for regenerative energy should be investigated to estimate the energy conversion efficiency and performance of electric vehicles. Based on the analysis of the regenerative braking energy system of a supercapacitor vehicle, an evaluation system for energy recovery in the braking process is established using USB portable data-acquisition devices. Experiments under various braking conditions are carried out. The results verify the higher efficiency of energy regeneration system using supercapacitors and the effectiveness of the proposed measurement method. It is also demonstrated that the maximum regenerative energy conversion efficiency can reach to 88%.

  10. Regenerative Medicine Build-Out.

    Science.gov (United States)

    Terzic, Andre; Pfenning, Michael A; Gores, Gregory J; Harper, C Michel

    2015-12-01

    Regenerative technologies strive to boost innate repair processes and restitute normative impact. Deployment of regenerative principles into practice is poised to usher in a new era in health care, driving radical innovation in patient management to address the needs of an aging population challenged by escalating chronic diseases. There is urgency to design, execute, and validate viable paradigms for translating and implementing the science of regenerative medicine into tangible health benefits that provide value to stakeholders. A regenerative medicine model of care would entail scalable production and standardized application of clinical grade biotherapies supported by comprehensive supply chain capabilities that integrate sourcing and manufacturing with care delivery. Mayo Clinic has rolled out a blueprint for discovery, translation, and application of regenerative medicine therapies for accelerated adoption into the standard of care. To establish regenerative medical and surgical service lines, the Mayo Clinic model incorporates patient access, enabling platforms and delivery. Access is coordinated through a designated portal, the Regenerative Medicine Consult Service, serving to facilitate patient/provider education, procurement of biomaterials, referral to specialty services, and/or regenerative interventions, often in clinical trials. Platforms include the Regenerative Medicine Biotrust and Good Manufacturing Practice facilities for manufacture of clinical grade products for cell-based, acellular, and/or biomaterial applications. Care delivery leverages dedicated interventional suites for provision of regenerative services. Performance is tracked using a scorecard system to inform decision making. The Mayo Clinic roadmap exemplifies an integrated organization in the discovery, development, and delivery of regenerative medicine within a growing community of practice at the core of modern health care. Regenerative medicine is at the vanguard of health care

  11. Regenerative Medicine Build-Out

    Science.gov (United States)

    Pfenning, Michael A.; Gores, Gregory J.; Harper, C. Michel

    2015-01-01

    Summary Regenerative technologies strive to boost innate repair processes and restitute normative impact. Deployment of regenerative principles into practice is poised to usher in a new era in health care, driving radical innovation in patient management to address the needs of an aging population challenged by escalating chronic diseases. There is urgency to design, execute, and validate viable paradigms for translating and implementing the science of regenerative medicine into tangible health benefits that provide value to stakeholders. A regenerative medicine model of care would entail scalable production and standardized application of clinical grade biotherapies supported by comprehensive supply chain capabilities that integrate sourcing and manufacturing with care delivery. Mayo Clinic has rolled out a blueprint for discovery, translation, and application of regenerative medicine therapies for accelerated adoption into the standard of care. To establish regenerative medical and surgical service lines, the Mayo Clinic model incorporates patient access, enabling platforms and delivery. Access is coordinated through a designated portal, the Regenerative Medicine Consult Service, serving to facilitate patient/provider education, procurement of biomaterials, referral to specialty services, and/or regenerative interventions, often in clinical trials. Platforms include the Regenerative Medicine Biotrust and Good Manufacturing Practice facilities for manufacture of clinical grade products for cell-based, acellular, and/or biomaterial applications. Care delivery leverages dedicated interventional suites for provision of regenerative services. Performance is tracked using a scorecard system to inform decision making. The Mayo Clinic roadmap exemplifies an integrated organization in the discovery, development, and delivery of regenerative medicine within a growing community of practice at the core of modern health care. Significance Regenerative medicine is at the

  12. Effect of rhythmic gymnastics on volumetric bone mineral density and bone geometry in premenarcheal female athletes and controls.

    Science.gov (United States)

    Tournis, S; Michopoulou, E; Fatouros, I G; Paspati, I; Michalopoulou, M; Raptou, P; Leontsini, D; Avloniti, A; Krekoukia, M; Zouvelou, V; Galanos, A; Aggelousis, N; Kambas, A; Douroudos, I; Lyritis, G P; Taxildaris, K; Pappaioannou, N

    2010-06-01

    Weight-bearing exercise during growth exerts positive effects on the skeleton. Our objective was to test the hypothesis that long-term elite rhythmic gymnastics exerts positive effects on volumetric bone mineral density and geometry and to determine whether exercise-induced bone adaptation is associated with increased periosteal bone formation or medullary contraction using tibial peripheral quantitative computed tomography and bone turnover markers. We conducted a cross-sectional study at a tertiary center. We studied 26 elite premenarcheal female rhythmic gymnasts (RG) and 23 female controls, aged 9-13 yr. We measured bone age, volumetric bone mineral density, bone mineral content (BMC), cortical thickness, cortical and trabecular area, and polar stress strength index (SSIp) by peripheral quantitative computed tomography of the left tibia proximal to the distal metaphysis (trabecular) at 14, 38 (cortical), and 66% (muscle mass) from the distal end and bone turnover markers. The two groups were comparable according to height and chronological and bone age. After weight adjustment, cortical BMC, area, and thickness at 38% were significantly higher in RG (P < 0.005-0.001). Periosteal circumference, SSIp, and muscle area were higher in RG (P < 0.01-0.001). Muscle area was significantly associated with cortical BMC, area, and SSIp, whereas years of training showed positive association with cortical BMC, area, and thickness independent of chronological age. RG in premenarcheal girls may induce positive adaptations on the skeleton, especially in cortical bone. Increased duration of exercise is associated with a positive response of bone geometry.

  13. Effect of the “protein diet” and bone tissue.

    Science.gov (United States)

    Nascimento da Silva, Zoraide; Azevedo de Jesuz, Vanessa; De Salvo Castro, Eduardo; Soares da Costa, Carlos Alberto; Teles Boaventura, Gilson; Blondet de Azeredo, Vilma

    2014-01-01

    The aim of this study is to evaluate the effect of the hyperproteic diet consumption on bone tissue. The study was conducted during sixty days. Twenty eight Wistar albinus rats, adults, originated from Laboratory of Experimental Nutrition were divided in four groups: (n = 7); Control 1 (C1), Control 2 (C2), Hyperproteic 1 (HP1) e Hyperproteic 2 (HP2). The C2 and HP2 groups were submitted to 30% of food restriction. The hyperproteic diet was based on the Atkins diet and prepared to simulate the protein diet. At the end of the study the animals were anesthetized to performer bone densitometry analyses by DEXA and blood and tissue collection. Serum and bone minerals analyses were conducted by colorimetric methods in automated equipment. The total bone mineral density (BMD) of the pelvis and the spine of the food restriction groups (HP2 e C2) were lower (p hyperproteic groups (HP1 e HP2). It was observed similar effect on the osteocalcin level, that presented lower (p hyperproteic groups. The insulin level was lower only in HP2 and serum calcium of the HP1 and HP2 groups was lower than C1. The protein diet promotes significant bone change on femur and in the hormones levels related to bone synthesis and maintenance of this tissue.

  14. Effects of ionizing radiation on bone cell differentiation in an experimental murine bone cell model

    Science.gov (United States)

    Baumstark-Khan, Christa; Lau, Patrick; Hellweg, Christine; Reitz, Guenther

    During long-term space travel astronauts are exposed to a complex mixture of different radiation types under conditions of dramatically reduced weight-bearing activity. It has been validated that astronauts loose a considerable amount of bone mass at a rate up to one to two percent each month in space. Therapeutic doses of ionizing radiation cause bone damage and increase fracture risks after treatment for head-and-neck cancer and in pelvic irradiation. For low radiation doses, the possibility of a disturbed healing potential of bone was described. Radiation induced damage has been discussed to inflict mainly on immature and healing bone. Little is known about radiation effects on bone remodelling and even less on the combined action of microgravity and radiation. Bone remodelling is a life-long process performed by balanced action of cells from the osteoblast and osteoclast lineages. While osteoblasts differentiate either into bone-lining cells or into osteocytes and play a crucial role in bone matrix synthesis, osteoclasts are responsible for bone resorption. We hypothesize that the balance between bone matrix assembly by osteocytes and bone degradation by osteoclasts is modulated by microgravity as well as by ionizing radiation. To address this, a cell model consisting of murine cell lines with the potential to differentiate into bone-forming osteoblasts (OCT-1, MC3T3-E1 S24, and MC3T3-E1 S4) was used for studying radiation response after exposure to simulated components of cosmic radiation. Cells were exposed to graded doses of 150 kV X-rays, α particles (0.525 MeV/u, 160 keV/µm; PTB, Braunschweig, Germany) and accelerated heavy ions (75 MeV/u carbon, 29 keV/µm; 95 MeV/u argon, 230 keV/µm; GANIL, Caen, France). Cell survival was measured as colony forming ability; cell cycle progression was analyzed via fluorescence-activated cell scanning (FACS) by measurement of the content of propidium iodide-stained DNA, DNA damage was visualized by γH2AX

  15. Regenerative repair of damaged meniscus with autologous adipose tissue-derived stem cells.

    Science.gov (United States)

    Pak, Jaewoo; Lee, Jung Hun; Lee, Sang Hee

    2014-01-01

    Mesenchymal stem cells (MSCs) are defined as pluripotent cells found in numerous human tissues, including bone marrow and adipose tissue. Such MSCs, isolated from bone marrow and adipose tissue, have been shown to differentiate into bone and cartilage, along with other types of tissues. Therefore, MSCs represent a promising new therapy in regenerative medicine. The initial treatment of meniscus tear of the knee is managed conservatively with nonsteroidal anti-inflammatory drugs and physical therapy. When such conservative treatment fails, an arthroscopic resection of the meniscus is necessary. However, the major drawback of the meniscectomy is an early onset of osteoarthritis. Therefore, an effective and noninvasive treatment for patients with continuous knee pain due to damaged meniscus has been sought. Here, we present a review, highlighting the possible regenerative mechanisms of damaged meniscus with MSCs (especially adipose tissue-derived stem cells (ASCs)), along with a case of successful repair of torn meniscus with significant reduction of knee pain by percutaneous injection of autologous ASCs into an adult human knee.

  16. Primary Hyperparathyroidism: Effects on Bone Health.

    Science.gov (United States)

    Zanocco, Kyle A; Yeh, Michael W

    2017-03-01

    Primary hyperparathyroidism (PHPT) is the most common cause of chronic hypercalcemia. With the advent of routine calcium screening, the classic presentation of renal and osseous symptoms has been largely replaced with mild, asymptomatic disease. In hypercalcemia caused by PHPT, serum parathyroid hormone levels are either high, or inappropriately normal. A single-gland adenoma is responsible for 80% of PHPT cases. Less frequent causes include 4-gland hyperplasia and parathyroid carcinoma. Diminished bone mineral density and nephrolithiasis are the major current clinical sequelae. Parathyroidectomy is the only definitive treatment for PHPT, and in experienced hands, cure rates approach 98%.

  17. Aarhus Regenerative Orthopaedics Symposium (AROS)

    DEFF Research Database (Denmark)

    Foldager, Casper B.; Bendtsen, Michael; Berg, Lise C.

    2016-01-01

    to musculoskeletal pain and disability. The Aarhus Regenerative Orthopaedics Symposium (AROS) 2015 was motivated by the need to address regenerative challenges in an ageing population by engaging clinicians, basic scientists, and engineers. In this position paper, we review our contemporary understanding of societal...

  18. The effect of Hydroxyapatite/collagen I composites, bone marrow aspirate and bone graft on fixation of bone implants in sheep

    DEFF Research Database (Denmark)

    Babiker, Hassan

      The effect of Hydroxyapatite/collagen I composites, bone marrow aspirate and bone graft on fixation of bone implants IN SHEEP   Ph.D. Student, Hassan Babiker; Associate Professor, Ph.D. Ming Ding; Professor, dr.med., Soren Overgaard. Department of Orthopaedic Surgery, Odense University Hospital......, Odense, Denmark   Background: Hydroxyapatite and collagen composites (HA/coll) have the potential in mimicking and replacing skeletal bones. This study attempted to determine the effect of newly developed HA/coll-composites with and without bone marrow aspirate (BMA) in order to enhance the fixation...... of bone implants.   Materials and Methods: Titanium alloy implants were inserted into bilateral femoral condyles of 8 skeletally mature sheep, four in each sheep. The implant has a circumferential gap of 2 mm. The gap was filled with: HA/coll; HA/coll-BMA; autograft or allograft. Allograft was served...

  19. Non ionising radiation as a non chemical strategy in regenerative medicine: Ca(2+)-ICR "In Vitro" effect on neuronal differentiation and tumorigenicity modulation in NT2 cells.

    Science.gov (United States)

    Ledda, Mario; Megiorni, Francesca; Pozzi, Deleana; Giuliani, Livio; D'Emilia, Enrico; Piccirillo, Sara; Mattei, Cristiana; Grimaldi, Settimio; Lisi, Antonella

    2013-01-01

    In regenerative medicine finding a new method for cell differentiation without pharmacological treatment or gene modification and minimal cell manipulation is a challenging goal. In this work we reported a neuronal induced differentiation and consequent reduction of tumorigenicity in NT2 human pluripotent embryonal carcinoma cells exposed to an extremely low frequency electromagnetic field (ELF-EMF), matching the cyclotron frequency corresponding to the charge/mass ratio of calcium ion (Ca(2+)-ICR). These cells, capable of differentiating into post-mitotic neurons following treatment with Retinoic Acid (RA), were placed in a solenoid and exposed for 5 weeks to Ca(2+)-ICR. The solenoid was installed in a μ-metal shielded room to avoid the effect of the geomagnetic field and obtained totally controlled and reproducible conditions. Contrast microscopy analysis reveled, in the NT2 exposed cells, an important change in shape and morphology with the outgrowth of neuritic-like structures together with a lower proliferation rate and metabolic activity alike those found in the RA treated cells. A significant up-regulation of early and late neuronal differentiation markers and a significant down-regulation of the transforming growth factor-α (TGF-α) and the fibroblast growth factor-4 (FGF-4) were also observed in the exposed cells. The decreased protein expression of the transforming gene Cripto-1 and the reduced capability of the exposed NT2 cells to form colonies in soft agar supported these last results. In conclusion, our findings demonstrate that the Ca(2+)-ICR frequency is able to induce differentiation and reduction of tumorigenicity in NT2 exposed cells suggesting a new potential therapeutic use in regenerative medicine.

  20. Non ionising radiation as a non chemical strategy in regenerative medicine: Ca(2+-ICR "In Vitro" effect on neuronal differentiation and tumorigenicity modulation in NT2 cells.

    Directory of Open Access Journals (Sweden)

    Mario Ledda

    Full Text Available In regenerative medicine finding a new method for cell differentiation without pharmacological treatment or gene modification and minimal cell manipulation is a challenging goal. In this work we reported a neuronal induced differentiation and consequent reduction of tumorigenicity in NT2 human pluripotent embryonal carcinoma cells exposed to an extremely low frequency electromagnetic field (ELF-EMF, matching the cyclotron frequency corresponding to the charge/mass ratio of calcium ion (Ca(2+-ICR. These cells, capable of differentiating into post-mitotic neurons following treatment with Retinoic Acid (RA, were placed in a solenoid and exposed for 5 weeks to Ca(2+-ICR. The solenoid was installed in a μ-metal shielded room to avoid the effect of the geomagnetic field and obtained totally controlled and reproducible conditions. Contrast microscopy analysis reveled, in the NT2 exposed cells, an important change in shape and morphology with the outgrowth of neuritic-like structures together with a lower proliferation rate and metabolic activity alike those found in the RA treated cells. A significant up-regulation of early and late neuronal differentiation markers and a significant down-regulation of the transforming growth factor-α (TGF-α and the fibroblast growth factor-4 (FGF-4 were also observed in the exposed cells. The decreased protein expression of the transforming gene Cripto-1 and the reduced capability of the exposed NT2 cells to form colonies in soft agar supported these last results. In conclusion, our findings demonstrate that the Ca(2+-ICR frequency is able to induce differentiation and reduction of tumorigenicity in NT2 exposed cells suggesting a new potential therapeutic use in regenerative medicine.

  1. The Effect of Physical Loading on Bone Broadband Ultrasound Attenuation

    Institute of Scientific and Technical Information of China (English)

    LIU Cheng-rui; NIU Hai-jun; WANG Ling; FAN Yu-bo; LI De-yu

    2015-01-01

    Objective: Physical loading changes bone microstructure and may influ-ence quantitative ultrasound (QUS) parameters. This study aims at evaluating the effect of physical loading on bone QUS measurement. Methods:Ten fresh bovine bone specimens were studied, which were scanned by a micro-CT and the density and structure parameters were calculated. The QUS measurement was performed when specimens sub-jected to loading, which changed from 0 to 1,000 N with the step of 100 N. Statistical analysis was performed to evaluate the difference between nBUA measured with and without loading, and the relationship between nBUA and the parameters measured by micro-CT. Results:While the loading exerted on bone lugher than 200 N, the measured nBUA significantly higher than nBUA measured without loading. With the increasing of loading, which exerted on bone, the values of nBUA also increased. A new parameter, the slope of the linearity fitted curve of nBUA values measured under different loading conditions, was introduced to evaluate BMD. The correlation coefficient between the slope and BMD is -0.869 (P=0.001). Conclusion: Physical loading substantially influences bone QUS measurement. QUS measurement performed under loading condition may be a new ultrasound method for osteoporosis diagnosis.

  2. Nostril Base Augmentation Effect of Alveolar Bone Graft

    Directory of Open Access Journals (Sweden)

    Woojin Lee

    2013-09-01

    Full Text Available BackgroundThe aims of alveolar bone grafting are closure of the fistula, stabilization of the maxillary arch, support for the roots of the teeth adjacent to the cleft on each side. We observed nostril base augmentation in patients with alveolar clefts after alveolar bone grafting. The purpose of this study was to evaluate the nostril base augmentation effect of secondary alveolar bone grafting in patients with unilateral alveolar cleft.MethodsRecords of 15 children with alveolar clefts who underwent secondary alveolar bone grafting with autogenous iliac cancellous bone between March of 2011 and May of 2012 were reviewed. Preoperative and postoperative worm's-eye view photographs and reconstructed three-dimensional computed tomography (CT scans were used for photogrammetry. The depression of the nostril base and thickness of the philtrum on the cleft side were measured in comparison to the normal side. The depression of the cleft side pyriform aperture was measured in comparison to the normal side on reconstructed three-dimensional CT.ResultsSignificant changes were seen in the nostril base (P=0.005, the philtrum length (P=0.013, and the angle (P=0.006. The CT measurements showed significant changes in the pyriform aperture (P<0.001 and the angle (P<0.001.ConclusionsAn alveolar bone graft not only fills the gap in the alveolar process but also augments the nostril base after surgery. In this study, only an alveolar bone graft was performed to prevent bias from other procedures. Nostril base augmentation can be achieved by performing alveolar bone grafts in children, in whom invasive methods are not advised.

  3. Regenerative Therapies for Diabetic Microangiopathy

    Directory of Open Access Journals (Sweden)

    Roberto Bassi

    2012-01-01

    Full Text Available Hyperglycaemia occurring in diabetes is responsible for accelerated arterial remodeling and atherosclerosis, affecting the macro- and the microcirculatory system. Vessel injury is mainly related to deregulation of glucose homeostasis and insulin/insulin-precursors production, generation of advanced glycation end-products, reduction in nitric oxide synthesis, and oxidative and reductive stress. It occurs both at extracellular level with increased calcium and matrix proteins deposition and at intracellular level, with abnormalities of intracellular pathways and increased cell death. Peripheral arterial disease, coronary heart disease, and ischemic stroke are the main causes of morbidity/mortality in diabetic patients representing a major clinical and economic issue. Pharmacological therapies, administration of growth factors, and stem cellular strategies are the most effective approaches and will be discussed in depth in this comprehensive review covering the regenerative therapies of diabetic microangiopathy.

  4. Researches on regenerative medicine——current state and prospect

    Institute of Scientific and Technical Information of China (English)

    WANG Zheng-guo; XIAO Kai

    2012-01-01

    Since 1980s,the rapid development of tissue engineering and stem cell research has pushed regenerative medicine to a new fastigium,and regenerative medicine has become a noticeable research field in the international biology and medicine.In China,about 100 million patients need repair and regeneration treatment every year,while the number is much larger in the world.Regenerative medicine could provide effective salvation for these patients.Both Chinese Academy of Sciences and Chinese Academy of Engineering have made roadmaps of 2010-2050 and 2011-2030 for regenerative medicine.The final goal of the two roadmaps is to make China go up to leading position in most research aspects of regenerative medicine.In accord with this strategy,the government and some enterprises have invested 3-5 billion RMB (0.5-0.8 billion USD)for the research on regenerative medicine.In order to push the translation of regenerative medicine forward - from bench to bedside,a strategic alliance has been established.and it includes 27 top-level research institutes,medical institutes,colleges,universities and enterprises in the field of stem cell and regeneration medicine.Recently the journal,Science,has published a special issue-Regenerative Medicine in China,consisting of 35 papers dealing with stem cell and regeneration,tissue engineering and regeneration,trauma and regeneration and bases for tissue repair and regenerative medicine.It is predicated that a greater breakthrough in theory and practice of regenerative medicine will be achieved in the near future (20 to 30 years).

  5. Active Magnetic Regenerative Liquefier

    Energy Technology Data Exchange (ETDEWEB)

    Barclay, John A. [Heracles Energy Corporation d.b.a. Prometheus Energy, Washington, DC (United States); Oseen-Send, Kathryn [Heracles Energy Corporation d.b.a. Prometheus Energy, Washington, DC (United States); Ferguson, Luke [Heracles Energy Corporation d.b.a. Prometheus Energy, Washington, DC (United States); Pouresfandiary, Jamshid [Heracles Energy Corporation d.b.a. Prometheus Energy, Washington, DC (United States); Cousins, Anand [Heracles Energy Corporation d.b.a. Prometheus Energy, Washington, DC (United States); Ralph, Heather [Heracles Energy Corporation d.b.a. Prometheus Energy, Washington, DC (United States); Hampto, Tom [Heracles Energy Corporation d.b.a. Prometheus Energy, Washington, DC (United States)

    2016-01-12

    This final report for the DOE Project entitled Active Magnetic Regenerative Liquefier (AMRL) funded under Grant DE-FG36-08GO18064 to Heracles Energy Corporation d.b.a. Prometheus Energy (Heracles/Prometheus) describes an active magnetic regenerative refrigerator (AMRR) prototype designed and built during the period from July 2008 through May 2011. The primary goal of this project was to make significant technical advances toward highly efficient liquefaction of hydrogen. Conventional hydrogen liquefiers at any scale have a maximum FOM of ~0.35 due primarily to the intrinsic difficulty of rapid, efficient compression of either hydrogen or helium working gases. Numerical simulation modeling of high performance AMRL designs indicates certain designs have promise to increase thermodynamic efficiency from a FOM of ~0.35 toward ~0.5 to ~0.6. The technical approach was the use of solid magnetic working refrigerants cycled in and out of high magnetic fields to build an efficient active regenerative magnetic refrigeration module providing cooling power for AMRL. A single-stage reciprocating AMRR with a design temperature span from ~290 K to ~120 K was built and tested with dual magnetic regenerators moving in and out of the conductively-cooled superconducting magnet subsystem. The heat transfer fluid (helium) was coupled to the process stream (refrigeration/liquefaction load) via high performance heat exchangers. In order to maximize AMRR efficiency a helium bypass loop with adjustable flow was incorporated in the design because the thermal mass of magnetic refrigerants is higher in low magnetic field than in high magnetic field. Heracles/Prometheus designed experiments to measure AMRR performance under a variety of different operational parameters such as cycle frequency, magnetic field strength, heat transfer fluid flow rate, amount of bypass flow of the heat transfer fluid while measuring work input, temperature span, cooling capability as a function of cold temperature

  6. Compacted cancellous bone has a spring-back effect

    DEFF Research Database (Denmark)

    Kold, S; Bechtold, JE; Ding, Ming;

    2003-01-01

    A new surgical technique, compaction, has been shown to improve implant fixation. It has been speculated that the enhanced implant fixation with compaction could be due to a spring-back effect of compacted bone. However, such an effect has yet to be shown. Therefore we investigated in a canine...... model whether implant cavities prepared with compaction had spring back. Before killing the animals, we used one of two surgical techniques to make implant cavities of identical dimensions in both lateral femoral condyles of 7 dogs. One side had the implant cavity prepared with compaction, the other....... Thus we found a spring-back effect of compacted bone, which may be important for increasing implant fixation by reducing initial gaps between the implant and bone....

  7. Regenerative medicine: does Erythropoietin have a role?

    Science.gov (United States)

    Buemi, Michele; Lacquaniti, Antonio; Maricchiolo, Giulia; Bolignano, Davide; Campo, Susanna; Cernaro, Valeria; Sturiale, Alessio; Grasso, Giovanni; Buemi, Antoine; Allegra, Alessandro; Donato, Valentina; Genovese, Lucrezia

    2009-01-01

    Regenerative Medicine, a recent new medical domain, aims to develop new therapies through the stimulation of natural regenerative processes also in human beings. In this field, Erythropoietin (EPO) represents a significant subject of research. Several studies allow the assertion that EPO, in different concentrations, has protective effects mainly on the central nervous system, cardiovascular system and renal tissue. This action is carried out through one of few regenerative activities of human beings: angiogenesis. This mechanism, which involves endothelial stem cells and VEGF (Vascular Endothelial Growth Factor), has been experimentally demonstrated with Recombinant human erythropoietin (rHuEPO) and Darbepoetin, a long-acting EPO derivate. Furthermore, the demonstration of a cardiac production of EPO in Fugu rubripes and in Zebrafish has led cardiologists to "discover" Erythropoietin, postulating a hypothetical role in treatment of cardiovascular disease for this hormone. This is some of the experimental evidence which demonstrates that EPO can be in reason considered an important element of research of Regenerative Medicine and put in the network of drugs able to regenerate tissues and organs.

  8. The Effect of Bone Loss Pattern on the Structural Capacity of the Proximal Femur

    Institute of Scientific and Technical Information of China (English)

    FAN Li-xia; Eric Wang

    2006-01-01

    The effect of age-related bone loss on the structural capacity of the proximal femur were investigated by Finite Element Analysis(FEA). Four bone loss patterns were considered. These were "uniform cortical bone loss", "neck cortical bone loss", "intertrochanteric cortical bone loss" and "uniform trabecular bone loss". The results show that the two "non-uniform cortical bone loss" patterns are more dangerous than the "uniform cortical bone loss" pattern, and that the cortical bone loss in intertrochanteric region is associated with a greater reduction in cortical failure load than the cortical bone loss in the femoral neck. The trabecular bone loss causes a limited decrease in both cortical failure and trabecular failure loads. This research should be helpful to the clinical assessment of femur fracture risk due to age-related bone loss.

  9. Therapy Effects of Bone Marrow Stromal Cells on Ischemic Stroke

    OpenAIRE

    Xinchun Ye; Jinxia Hu; Guiyun Cui

    2016-01-01

    Stroke is the second most common cause of death and major cause of disability worldwide. Recently, bone marrow stromal cells (BMSCs) have been shown to improve functional outcome after stroke. In this review, we will focus on the protective effects of BMSCs on ischemic brain and the relative molecular mechanisms underlying the protective effects of BMSCs on stroke.

  10. Effect of swimming on bone metabolism in adolescents.

    Science.gov (United States)

    Derman, Orhan; Cinemre, Alphan; Kanbur, Nuray; Doğan, Muhsin; Kiliç, Mustafa; Karaduman, Erdem

    2008-01-01

    Physical activity has been shown to have a positive effect on bone metabolism among adolescents. The objective of this study was to determine the effect of swimming on bone metabolism during adolescence. Swimming, as a non-weight-bearing sport, has been considered to be insignificant in the maintenance of bone mass. We studied whether swimming is associated with a higher peak bone mass. Forty swimmers (males aged 10-17 years and females aged 9-16 years) were studied. The control group consisted of the same number of adolescents aged between 10-16 years who did not swim; distribution of male and female gender was similar in the non-swimming control group compared to the swimming group. Adolescents were matched for age, gender and pubertal stages based on Tanner staging. All subjects underwent combined measurement of bone mineral metabolism by dual-energy X-ray absorptiometry of total body calcium content, and specific biochemical markers of turnover including osteocalcin, calcium, phosphorus and alkaline phosphatase. Bone age (determined by Greulich and Pyle's Radiographic Atlas of Skeletal Development of the Hand and Wrist), weight, height, ideal body weight, ideal body weight ratio, body mass index, Tanner classification (rated by examiner), diet, history of tobacco and alcohol exposure, exercise, socioeconomic status and history of chronic illness and medications were recorded to evaluate potential mediators that would affect bone metabolism. Tanner staging was used to assess puberty, and diet was evaluated based on reported consumption of milk, yogurt and cheese and cola/caffeine beverage consumption daily. There was significant difference in bone mineral content between adolescent male swimmers and the control group males. Consumption of cola beverages were significantly higher among the control group compared with the swimmer group. Ideal body weight ratio was significantly high among the female control group compared with female swimmers. Milk consumption was

  11. Effects of denosumab on bone mineral density and bone turnover in postmenopausal women.

    Science.gov (United States)

    Wensel, Terri M; Iranikhah, Maryam M; Wilborn, Teresa W

    2011-05-01

    Osteoporosis is a degenerative bone disease affecting approximately 10 million American adults. Several options are available to prevent development of the disease or slow and even stop its progression. Nonpharmacologic measures include adequate intake of calcium and vitamin D, exercise, fall prevention, and avoidance of tobacco and excessive alcohol intake. Current drug therapy includes bisphosphonates, calcitonin, estrogen or hormone therapy, selective estrogen receptor modulators, and teriparatide. Denosumab, a receptor activator of nuclear factor-K B ligand (RANKL) inhibitor, was recently approved by the United States Food and Drug Administration for treatment of postmenopausal osteoporosis. Patients treated with denosumab experienced significant gains in bone mineral density, rapid reductions in markers of bone turnover, and a reduced risk for new vertebral fracture. Compared with placebo, patients receiving denosumab 60 mg subcutaneously once every 6 months experienced gains in bone mineral density of 6.5-11% when treated for 24-48 months. One trial demonstrated the superiority of denosumab compared with alendronate, but the differences were small. The most common adverse reactions to denosumab include back pain, pain in extremities, musculoskeletal pain, and cystitis. Serious, but rare, adverse reactions include the development of serious infections, dermatologic changes, and hypocalcemia. The recommended dosing of denosumab is 60 mg every 6 months as a subcutaneous injection in the upper arm, upper thigh, or abdomen. Although beneficial effects on bone mineral density and fracture rate have been established in clinical trials, the risks associated with denosumab must be evaluated before therapy initiation. Of concern is the risk of infection, and denosumab should likely be avoided in patients taking immunosuppressive therapy or at high risk for infection. Therefore, bisphosphonates will likely remain as first-line therapy. Denosumab should be considered in

  12. Effects of ipriflavone on augmented bone using a guided bone regeneration procedure.

    Science.gov (United States)

    Ito, Koichi; Minegishi, Tadashi; Takayama, Tadahiro; Tamura, Takanori; Yamada, Yutaka; Sato, Shuichi

    2007-02-01

    : This study investigated the effects of ipriflavone (IP) on augmented bone using a guided bone regeneration (GBR) procedure. In 15 rabbits, two titanium caps were placed into calvarial bone for GBR. The animals were divided into three groups: the No-IP (no intake of IP), Post-IP (IP orally, 10 mg/kg/day after GBR), and Pre-IP (IP intake beginning before GBR) groups. One cap was removed from each rabbit after 3 months, and the remaining site was a control. One month after one cap removal, all the animals were euthanized, and histologic and histomorphometric analyses were performed. In all of the groups, the newly generated tissue was of varying size, and it consisted of thin pieces of mineralized bone and large marrow spaces with fat cells and some hematopoietic cells. In all of the control sites, the newly generated tissue was noted and almost filled the space under the cap. There was a significant difference between groups No-IP and Pre-IP (93.8+/-4.6% vs. 98.5+/-0.8%, Ptissue generated at the test sites in all of the groups was resorbed, and its original shape and volume were not maintained 1 month after one cap removal. In particular, the greatest percentage, approximately 20% of the newly generated tissue, was resorbed in the No-IP group (93.8+/-4.6% vs. 73.9+/-3.7%, Ptissue generated appeared to increase with an increase in the total IP dose. Within the limitations of this rabbit experimental model, we conclude that the daily intake of IP before or after GBR inhibits the resorption of augmented tissue and would be useful for improving the quality of newly generated bone beyond the skeletal envelope.

  13. Bone Anabolic Effects of Soluble Si: In Vitro Studies with Human Mesenchymal Stem Cells and CD14+ Osteoclast Precursors.

    Science.gov (United States)

    Costa-Rodrigues, J; Reis, S; Castro, A; Fernandes, M H

    2016-01-01

    Silicon (Si) is indispensable for many cellular processes including bone tissue metabolism. In this work, the effects of Si on human osteogenesis and osteoclastogenesis were characterized. Human mesenchymal stem cells (hMSC) and CD14+ stem cells, as osteoblast and osteoclast precursors, were treated with a wide range of Si concentrations, covering the physiological plasma levels. Si promoted a dose-dependent increase in hMSC proliferation, differentiation, and function, at levels similar to the normal basal plasma levels. Additionally, a decrease in the expression of the osteoclastogenic activators M-CSF and RANKL was observed. Also, Si elicited a decrease in osteoclastogenesis, which became significant at higher concentrations, as those observed after meals. Among the intracellular mechanisms studied, an upregulation of MEK and PKC signalling pathways was observed in both cell types. In conclusion, Si appears to have a direct positive effect on human osteogenesis, at basal plasma levels. On the other hand, it also seemed to be an inhibitor of osteoclastogenesis, but at higher concentrations, though yet in the physiological range. Further, an indirect effect of Si on osteoclastogenesis may also occur, through a downregulation of M-CSF and RANKL expression by osteoblasts. Thus, Si may be an important player in bone anabolic regenerative approaches.

  14. Effect of the "protein diet" and bone tissue

    Directory of Open Access Journals (Sweden)

    Zoraide Nascimento da Silva

    2014-01-01

    Full Text Available The aim of this study is to evaluate the effect of the hyperproteic diet consumption on bone tissue. Methods: The study was conducted during sixty days. Twenty eight Wistar albinus rats, adults, originated from Laboratory of Experimental Nutrition were divided in four groups: (n = 7; Control 1 (C1, Control 2 (C2, Hyperproteic 1 (HP1 e Hyperproteic 2 (HP2. The C2 and HP2 groups were submitted to 30% of food restriction. The hyperproteic diet was based on the Atkins diet and prepared to simulate the protein diet. At the end of the study the animals were anesthetized to performer bone densitometry analyses by DEXA and blood and tissue collection. Serum and bone minerals analyses were conducted by colorimetric methods in automated equipment. Results: The total bone mineral density (BMD of the pelvis and the spine of the food restriction groups (HP2 e C2 were lower (p < 0.05 than C1 e HP1 groups. While the femur BMD of the HP2 was lower (p < 0.05 related to others groups. It had been observed reduction (p < 0.05 in the medium point of the width of femur diaphysis and in bone calcium level in the hyperproteic groups (HP1 e HP2. It was observed similar effect on the osteocalcin level, that presented lower (p < 0.05 in the hyperproteic groups. The insulin level was lower only in HP2 and serum calcium of the HP1 and HP2 groups was lower than C1. Conclusion: The protein diet promotes significant bone change on femur and in the hormones levels related to bone synthesis and maintenance of this tissue.

  15. Regenerative strategies for the treatment of knee joint disabilities

    CERN Document Server

    Reis, Rui

    2017-01-01

    This book presents regenerative strategies for the treatment of knee joint disabilities. The book is composed of four main sections totaling 19 chapters which review the current knowledge on the clinical management and preclinical regenerative strategies. It examines the role of different natural-based biomaterials as scaffolds and implants for addressing different tissue lesions in the knee joint. Section one provides an updated and comprehensive discussion on articular cartilage tissue regeneration. Section two focuses on the important contributions for bone and osteochondral tissue engineering. Section three overview the recent advances on meniscus repair/regeneration strategies. Finally, section four further discusses the current strategies for treatment of ligament lesions. Each chapter is prepared by world know expert on their fields, so we do firmly believe that the proposed book will be a reference in the area of biomaterials for regenerative medicine.

  16. [The prospects for the development of regenerative physical therapy].

    Science.gov (United States)

    Konchugova, T V; Bobrovnitskiĭ, I P; Orekhova, É M; Puzyreva, G A

    2014-01-01

    The review is concerned with the investigations into the influence of physiotherapeutic factors on the regeneration of the muscular, nervous, bone, and epidermal tissues; also, it analyses the publications pertaining to the influence of low-intensive physiotherapeutic modalities on the migration rate, proliferative activity, and differentiation of stem cells as well as physiological stability and viability of these cells following their transplantation. The currently available data give evidence of the possibility in principle of the combined application of physiotherapeutic factors and cellular technologies in regenerative medicine and the prospects opening for the development of the new direction of research in modern biomedicine, namely regenerative physical therapy. The importance of interdisciplinary basic and clinical investigations in this direction becomes especially evident in the light of the recent achievements and rapid progress in the development of modern regenerative medicine.

  17. In vivo osteoinductive effect and in vitro isolation and cultivation bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Redzić, Amira; Smajilagić, Amer; Aljicević, Mufida; Berberović, Ljubomir

    2010-12-01

    for conventional medicine and autologue bone transplantation. That new horizons have potential to minimize surgery and patient donor morbidity, with more success treatment in bone regenerative and metabolism diseases.

  18. A review of the regenerative endodontic treatment procedure

    Directory of Open Access Journals (Sweden)

    Bin-Na Lee,

    2015-08-01

    Full Text Available Traditionally, apexification has been used to treat immature permanent teeth that have lost pulp vitality. This technique promotes the formation of an apical barrier to close the open apex so that the filling materials can be confined to the root canal. Because tissue regeneration cannot be achieved with apexification, a new technique called regenerative endodontic treatment was presented recently to treat immature permanent teeth. Regenerative endodontic treatment is a treatment procedure designed to replace damaged pulp tissue with viable tissue which restores the normal function of the pulp-dentin structure. After regenerative endodontic treatment, continued root development and hard tissue deposition on the dentinal wall can occur under ideal circumstances. However, it is difficult to predict the result of regenerative endodontic treatment. Therefore, the purpose of this study was to summarize multiple factors effects on the result of regenerative endodontic treatment in order to achieve more predictable results. In this study, we investigated the features of regenerative endodontic treatment in comparison with those of other pulp treatment procedures and analyzed the factors that have an effect on regenerative endodontic treatment.

  19. The pharmacology of regenerative medicine.

    Science.gov (United States)

    Christ, George J; Saul, Justin M; Furth, Mark E; Andersson, Karl-Erik

    2013-07-01

    Regenerative medicine is a rapidly evolving multidisciplinary, translational research enterprise whose explicit purpose is to advance technologies for the repair and replacement of damaged cells, tissues, and organs. Scientific progress in the field has been steady and expectations for its robust clinical application continue to rise. The major thesis of this review is that the pharmacological sciences will contribute critically to the accelerated translational progress and clinical utility of regenerative medicine technologies. In 2007, we coined the phrase "regenerative pharmacology" to describe the enormous possibilities that could occur at the interface between pharmacology, regenerative medicine, and tissue engineering. The operational definition of regenerative pharmacology is "the application of pharmacological sciences to accelerate, optimize, and characterize (either in vitro or in vivo) the development, maturation, and function of bioengineered and regenerating tissues." As such, regenerative pharmacology seeks to cure disease through restoration of tissue/organ function. This strategy is distinct from standard pharmacotherapy, which is often limited to the amelioration of symptoms. Our goal here is to get pharmacologists more involved in this field of research by exposing them to the tools, opportunities, challenges, and interdisciplinary expertise that will be required to ensure awareness and galvanize involvement. To this end, we illustrate ways in which the pharmacological sciences can drive future innovations in regenerative medicine and tissue engineering and thus help to revolutionize the discovery of curative therapeutics. Hopefully, the broad foundational knowledge provided herein will spark sustained conversations among experts in diverse fields of scientific research to the benefit of all.

  20. Effect of anti-osteoporotic agents on the prevention of bone loss in unloaded bone.

    Science.gov (United States)

    Siu, Wing Sum; Ko, Chun Hay; Hung, Leung Kim; Lau, Ching Po; Lau, Clara Bik San; Fung, Kwok Pui; Leung, Ping Chung

    2013-10-01

    Pharmaceutical countermeasures to treat disuse osteoporosis are rarely studied. Pharmaceutical studies for the treatment and prevention of osteoporosis depend on the ovariectomized rat model, which is a suitable model for the disease in women. Disuse osteoporosis affects men and women, but there is lack of awareness and relevant pharmaceutical studies for this condition. The objectives of this study were to verify the validity of an unusual tail-suspension rat model in the induction of disuse osteoporosis and subsequent pharmaceutical treatments. This model was created by unloading the hind limbs of the rats in order to create a state of weightlessness in their hindlimb bones. Validation of the model was performed with non-suspended rats. This study included five groups of suspended rats fed with different agents, such as distilled water (control), high-, medium- and low-dose raloxifene and a bisphosphonate (alendronate). The experiment lasted for 28 days. Comparisons were made between the suspended control and treatment groups. Ovariectomized and sham‑operated rats were also included as a reference for bone changes during osteoporosis. Changes in bone mineral density (BMD) at the distal femur and proximal tibia, microarchitecture at the distal femur and biomechanical strength at the diaphyseal femur were studied. Reduction of BMD and deterioration of trabeculae were similar between the suspended control and ovariectomized rats. Loss of BMD induced by tail suspension was reduced most effectively by medium-dose raloxifene. Deterioration of trabecular microarchitecture was also prevented by raloxifene. The tail-suspension rat model is suitable for the study of disuse osteoporosis under the effects of various therapeutic agents. The preventive effects of raloxifene against bone loss under disuse conditions have been demonstrated using this model.

  1. Regenerative Therapy for Retinal Disorders

    Directory of Open Access Journals (Sweden)

    Narsis Daftarian

    2010-01-01

    Full Text Available Major advances in various disciplines of basic sciences including embryology, molecular and cell biology, genetics, and nanotechnology, as well as stem cell biology have opened new horizons for regenerative therapy. The unique characteristics of stem cells prompt a sound understanding for their use in modern regenerative therapies. This review article discusses stem cells, developmental stages of the eye field, eye field transcriptional factors, and endogenous and exogenous sources of stem cells. Recent studies and challenges in the application of stem cells for retinal pigment epithelial degeneration models will be summarized followed by obstacles facing regenerative therapy.

  2. Material Mismatch Effect on the Fracture of a Bone-Composite Cement Interface.

    Science.gov (United States)

    Khandaker, M; Tarantini, S

    2012-12-01

    The interfacial mechanics at the bone-implant interface is a critical issue for implant fixation and the filling of bone defects created by tumors and/or their excision. Our previous study found that micron and nano sizes MgO particles improved the fracture toughness of bone-cement interfaces under tension loading. The strength of bonding of different types of bone with different types of implants may not be the same. The aims of this research were to determine the influences of material mismatch due to bone orientation and a magnesium oxide (MgO) filler material for PMMA bone cement on the mechanical strength between bone and bone cement specimens. This research studied the longitudinal and transverse directions bovine cortical bone as different bone materials and poly Methyl MethAcrylate (PMMA) bone cement with and without MgO additives as different implant materials. The scope of work for this study was: (1) to determine the bending strength and modulus of different bone and bone cement specimens, (2) to determine whether inclusion of MgO particles on PMMA has any influence on these mechanical properties of PMMA, and (3) to determine whether bone orientation and inclusion of MgO particles with PMMA has any influence on the interface strength between bone and PMMA. This study showed that bone orientation has statistically significant effect on the bonding strength between bone and bone cement specimens (P value0.05).

  3. Bone Biomarkers on the Pathway to Effective Spaceflight Countermeasures

    Science.gov (United States)

    Spatz, Jordan

    2009-01-01

    Osteocyte cells are the most abundant yet least understood bone cell type in the human body. However, recent discovers in osteocyte cell biology have shed light on their importance as key mechanosensing cells regulating the bone remodeling process. Thus, we propose the first ever in vitro gene expression evaluation of osteocytes exposed to simulated microgravity to determine mechanistic pathways of their gravity sensing ability. Improved understanding of the fundamental mechanisms at the osteocyte cellular level may lead to improved treatment options to mitigate the effects of bone loss encountered by astronauts on long duration space missions and provide tailored treatment options for maintaining bone strength of immobilized/partially paralyzed patients here on Earth. Aim 1: Characterize the gene expression patterns and protein levels following exposure of murine osteocytelike cell line (MLO-Y4) to simulated microgravity using the NASA Rotating Wall Vessel (RWV) Bioreactor. Osteocytes are theorized to be the mechanosensors and transducers of mechanical load for bones, yet the biological mechanism of this action remains elusive. We propose to investigate the genetic regulation of the mechanism of the MLO-Y4 cell in the NASA Bioreactor as it is the accepted ground-based analog for simulating vector averaged microgravity.

  4. A survey of dental residents' expectations for regenerative endodontics.

    Science.gov (United States)

    Manguno, Christine; Murray, Peter E; Howard, Cameron; Madras, Jonathan; Mangan, Stephen; Namerow, Kenneth N

    2012-02-01

    The objective was to survey a group of dental residents regarding their expectations for using regenerative endodontic procedures as part of future dental treatments. After institutional review board approval, the opinions of 32 dentists who were having postgraduate residency training to become specialists in a dental school were surveyed. The survey had 40 questions about professional status, ethical beliefs, judgment, and clinical practice. It was found that 83.9% of dentists had no continuing education or training in stem cells or regenerative endodontic procedures. Results showed that 96.8% of dentists are willing to receive training to be able to provide regenerative endodontic procedures for their patients. Of the total group, 49.1% of dentists already use membranes, scaffolds, or bioactive materials to provide dental treatment. It was determined that 47.3% of dentists agree that the costs of regenerative procedures should be comparable with current treatments. It was also found that 55.1% of dentists were unsure whether regenerative procedures would be successful. Dentists are supportive of using regenerative endodontic procedures in their dental practice, and they are willing to undergo extra training and to buy new technology to provide new procedures. Nevertheless, dentists also need more evidence for the effectiveness and safety of regenerative treatments before they will be recommended for most patients. Copyright © 2012. Published by Elsevier Inc.

  5. The effects of proteasome inhibitors on bone remodeling in multiple myeloma.

    Science.gov (United States)

    Zangari, Maurizio; Suva, Larry J

    2016-05-01

    Bone disease is a characteristic feature of multiple myeloma, a malignant plasma cell dyscrasia. In patients with multiple myeloma, the normal process of bone remodeling is dysregulated by aberrant bone marrow plasma cells, resulting in increased bone resorption, prevention of new bone formation, and consequent bone destruction. The ubiquitin-proteasome system, which is hyperactive in patients with multiple myeloma, controls the catabolism of several proteins that regulate bone remodeling. Clinical studies have reported that treatment with the first-in-class proteasome inhibitor bortezomib reduces bone resorption and increases bone formation and bone mineral density in patients with multiple myeloma. Since the introduction of bortezomib in 2003, several next-generation proteasome inhibitors have also been used clinically, including carfilzomib, oprozomib, ixazomib, and delanzomib. This review summarizes the available preclinical and clinical evidence regarding the effect of proteasome inhibitors on bone remodeling in multiple myeloma. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Effect of bone loss in anterior shoulder instability

    Science.gov (United States)

    Garcia, Grant H; Liu, Joseph N; Dines, David M; Dines, Joshua S

    2015-01-01

    Anterior shoulder instability with bone loss can be a difficult problem to treat. It usually involves a component of either glenoid deficiency or a Hill-Sachs lesion. Recent data shows that soft tissue procedures alone are typically not adequate to provide stability to the shoulder. As such, numerous surgical procedures have been described to directly address these bony deficits. For glenoid defects, coracoid transfer and iliac crest bone block procedures are popular and effective. For humeral head defects, both remplissage and osteochondral allografts have decreased the rates of recurrent instability. Our review provides an overview of current literature addressing these treatment options and others for addressing bone loss complicating anterior glenohumeral instability. PMID:26085984

  7. The effect of bone displacement operations on facial soft tissues.

    Science.gov (United States)

    Habib, Ali; Hisham, Ahmed

    2013-01-01

    A novel biomechanical model for face soft tissue (skin, mucosa, and muscles) is introduced to investigate the effect of mandible and chin bone displacement on the overall appearance of the patient's face. Nonlinear FE analysis is applied to the model and the results obtained are used to help surgeons to decide the amount of displacement required.

  8. Cell cytoskeletal changes effected by static compressive stress lead to changes in the contractile properties of tissue regenerative collagen membranes

    Directory of Open Access Journals (Sweden)

    K Gellynck

    2013-06-01

    Full Text Available Static compressive stress can influence the matrix, which subsequently affects cell behaviour and the cell’s ability to further transform the matrix. This study aimed to assess response to static compressive stress at different stages of osteoblast differentiation and assess the cell cytoskeleton’s role as a conduit of matrix-derived stimuli. Mouse bone marrow mesenchymal stem cells (MSCs (D1 ORL UVA, osteoblastic cells (MC3T3-E1 and post-osteoblast/pre-osteocyte-like cells (MLO-A5 were seeded in hydrated and compressed collagen gels. Contraction was quantified macroscopically, and cell morphology, survival, differentiation and mineralisation assessed using confocal microscopy, alamarBlue® assay, real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR and histological stains, respectively. Confocal microscopy demonstrated cell shape changes and favourable microfilament organisation with static compressive stress of the collagen matrix; furthermore, cell survival was greater compared to the hydrated gels. The stage of osteoblast differentiation determined the degree of matrix contraction, with MSCs demonstrating the greatest amount. Introduction of microfilament disrupting inhibitors confirmed that pre-stress and tensegrity forces were under the influence of gel density, and there was increased survival and differentiation of the cells within the compressed collagen compared to the hydrated collagen. There was also relative stiffening and differentiation with time of the compressed cell-seeded collagen, allowing for greater manipulation. In conclusion, the combined collagen chemistry and increased density of the microenvironment can promote upregulation of osteogenic genes and mineralisation; MSCs can facilitate matrix contraction to form an engineered membrane with the potential to serve as a ‘pseudo-periosteum’ in the regeneration of bone defects.

  9. Perivascular cells for regenerative medicine

    NARCIS (Netherlands)

    M. Crisan (Mihaela); M. Corselli (Mirko); W.C. Chen (William); B. Péault (Bruno)

    2012-01-01

    textabstractMesenchymal stem/stromal cells (MSC) are currently the best candidate therapeutic cells for regenerative medicine related to osteoarticular, muscular, vascular and inflammatory diseases, although these cells remain heterogeneous and necessitate a better biological characterization. We an

  10. STEM CELLS IN REGENERATIVE ENDODONTICS

    National Research Council Canada - National Science Library

    T Nivethithan; Manish Ranjan

    2017-01-01

    Endodontic treatment is helpful in saving millions of teeth each year, but at present the focus has shifted towards regenerative approaches as an ideal form of therapy to treat diseased or necrotic pulp tissues...

  11. Effects of GIP, GLP-1 and GLP-1RAs on Bone Cell Metabolism

    DEFF Research Database (Denmark)

    Hansen, Morten S S; Tencerova, Michaela; Frølich, Jacob

    2017-01-01

    mediate effects beyond control of glucose homeostasis, and reports on associations between incretin hormones and bone metabolism have emerged. The aim of this MiniReview was to provide an overview of current knowledge regarding the in vivo and in vitro effects of GIP and GLP-1 on bone metabolism. We...... identified a total of 30 pre-clinical and clinical investigations of the effects of GIP, GLP-1 and GLP-1RAs on bone turnover markers, bone mineral density (BMD), bone microarchitecture and fracture risk. Studies conducted in cell cultures and rodents demonstrated that GIP and GLP-1 play a role in regulating...... skeletal homeostasis, with pre-clinical data suggesting that GIP inhibits bone resorption whereas GLP-1 may promote bone formation and enhance bone material properties. These effects are not corroborated by clinical studies. While there is evidence of effects of GIP and GLP-1 on bone metabolism in pre...

  12. Strontium Ranelate Effect on the Repair of Bone Defects and Molecular Components of the Cortical Bone of Rats.

    Science.gov (United States)

    Rosa, Jucely Aparecida da; Sakane, Kumiko Koibuchi; Santos, Karina Cecília Panelli; Corrêa, Vivian Bradaschia; Arana-Chavez, Victor Elias; Oliveira, Jefferson Xavier de

    2016-01-01

    This study was conducted to evaluate the effects of treatment with strontium ranelate (SR) on the repair of bone defects and molecular components of bones in femurs. Adult female rats (n=27) were subjected to ovariectomy (OVX) or Sham surgery. Thirty days after surgery, a defect was made in the femur and the animals were then divided into three groups: OVX, SHAM and OVX+SR. Euthanasia was performed four weeks after the bone defect surgery. Repair in bone defect was assessed by computed microtomography (μCT) and chemical composition of cortical bone was analyzed by Fourier transform infrared (FTIR) spectroscopy and energy dispersive X-ray spectroscopy (EDS). The trabecular thickness (Tb.Th) of the newly formed bone in the OVX+SR group was significantly higher than that for the OVX group. The collagen maturity in the OVX+SR group was smaller than in the other two groups. In this group, a significant increase in the amount of strontium (Sr) and a decrease in the amount of calcium (Ca) embedded to bone tissue were also observed. Systemic treatment with SR improved microarchitecture of the newly formed bone inside the defect, but decreased cross-linking of mature collagen in cortical bone.

  13. Personalized Regenerative Medicine.

    Science.gov (United States)

    Arjmand, Babak; Goodarzi, Parisa; Mohamadi-Jahani, Fereshteh; Falahzadeh, Khadijeh; Larijani, Bagher

    2017-03-01

    Personalized medicine as a novel field of medicine refers to the prescription of specific therapeutics procedure for an individual. This approach has established based on pharmacogenetic and pharmacogenomic information and data. The terms precision and personalized medicines are sometimes applied interchangeably. However, there has been a shift from "personalized medicine" towards "precision medicine". Although personalized medicine emerged from pharmacogenetics, nowadays it covers many fields of healthcare. Accordingly, regenerative medicine and cellular therapy as the new fields of medicine use cell-based products in order to develop personalized treatments. Different sources of stem cells including mesenchymal stem cells, embryonic stem cells and induced pluripotent stem cells (iPSCs) have been considered in targeted therapies which could give many advantages. iPSCs as the novel and individual pluripotent stem cells have been introduced as the appropriate candidates for personalized cell therapies. Cellular therapies can provide a personalized approach. Because of person-to-person and population differences in the result of stem cell therapy, individualized cellular therapy must be adjusted according to the patient specific profile, in order to achieve best therapeutic results and outcomes. Several factors should be considered to achieve personalized stem cells therapy such as, recipient factors, donor factors, and the overall body environment in which the stem cells could be active and functional. In addition to these factors, the source of stem cells must be carefully chosen based on functional and physical criteria that lead to optimal outcomes.

  14. Thermally regenerative fuel cells

    Science.gov (United States)

    Ludwig, F. A.; Kindler, A.; McHardy, J.

    1991-10-01

    The three phase project was undertaken to investigate solventless ionic liquids as possible working fluids for a new type of thermally regenerative fuel cell (TRFC). The heart of the new device, invented at Hughes Aircraft Company in 1983, is an electrochemical concentration cell where acid and base streams react to produce electrical energy. Thermal energy is then used to decompose the resulting salts and regenerate the cell reactants. In principle, a TRFC can be matched to any source of thermal energy simply by selecting working fluids with the appropriate regeneration temperature. However, aqueous working fluids (the focus of previous studies) impose limitations on both the operating temperatures and the achievable energy densities. It was the need to overcome these limitations that prompted the present investigation. Specific aims were to identify possible working fluids for TRFC systems with both low and high regeneration temperatures. A major advantage of our aqueous-fluid TRFC systems has been the ability to use hydrogen electrodes. The low activation and mass transfer losses of these electrodes contribute substantially to overall system efficiency.

  15. Cellular cardiac regenerative therapy in which patients?

    Science.gov (United States)

    Chachques, Juan C

    2009-08-01

    Cell-based myocardial regenerative therapy is undergoing experimental and clinical trials in order to limit the consequences of decreased contractile function and compliance of damaged ventricles owing to ischemic and nonischemic myocardial diseases. A variety of myogenic and angiogenic cell types have been proposed, such as skeletal myoblasts, mononuclear and mesenchymal bone marrow cells, circulating blood-derived progenitors, adipose-derived stromal cells, induced pluripotent stem cells, umbilical cord cells, endometrial mesenchymal stem cells, adult testis pluripotent stem cells and embryonic cells. Current indications for stem cell therapy concern patients who have had a left- or right-ventricular infarction or idiopathic dilated cardiomyopathies. Other indications and potential applications include patients with diabetic cardiomyopathy, Chagas heart disease (American trypanosomiasis), ischemic mitral regurgitation, left ventricular noncompacted myocardium and pediatric cardiomyopathy. Suitable sources of cells for cardiac implant will depend on the types of diseases to be treated. For acute myocardial infarction, a cell that reduces myocardial necrosis and augments vascular blood flow will be desirable. For heart failure, cells that replace or promote myogenesis, reverse apoptopic mechanisms and reactivate dormant cell processes will be useful. It is important to note that stem cells are not an alternative to heart transplantation; selected patients should be in an early stage of heart failure as the goal of this regenerative approach is to avoid or delay organ transplantation. Since the cell niche provides crucial support needed for stem cell maintenance, the most interesting and realistic perspectives include the association of intramyocardial cell transplantation with tissue-engineered scaffolds and multisite cardiac pacing in order to transform a passive regenerative approach into a 'dynamic cellular support', a promising method for the creation of

  16. Effects of denosumab, alendronate, or denosumab following alendronate on bone turnover, calcium homeostasis, bone mass and bone strength in ovariectomized cynomolgus monkeys.

    Science.gov (United States)

    Kostenuik, Paul J; Smith, Susan Y; Samadfam, Rana; Jolette, Jacquelin; Zhou, Lei; Ominsky, Michael S

    2015-04-01

    deleterious effects on Ca homeostasis or bone quality.

  17. Nostril Base Augmentation Effect of Alveolar Bone Graft

    Directory of Open Access Journals (Sweden)

    Woojin Lee

    2013-09-01

    Full Text Available Background The aims of alveolar bone grafting are closure of the fistula, stabilization ofthe maxillary arch, support for the roots of the teeth adjacent to the cleft on each side.We observed nostril base augmentation in patients with alveolar clefts after alveolar bonegrafting. The purpose of this study was to evaluate the nostril base augmentation effect ofsecondary alveolar bone grafting in patients with unilateral alveolar cleft.Methods Records of 15 children with alveolar clefts who underwent secondary alveolar bonegrafting with autogenous iliac cancellous bone between March of 2011 and May of 2012 werereviewed. Preoperative and postoperative worm’s-eye view photographs and reconstructedthree-dimensional computed tomography (CT scans were used for photogrammetry. Thedepression of the nostril base and thickness of the philtrum on the cleft side were measuredin comparison to the normal side. The depression of the cleft side pyriform aperture wasmeasured in comparison to the normal side on reconstructed three-dimensional CT.Results Significant changes were seen in the nostril base (P=0.005, the philtrum length(P=0.013, and the angle (P=0.006. The CT measurements showed significant changes in thepyriform aperture (P<0.001 and the angle (P<0.001.Conclusions An alveolar bone graft not only fills the gap in the alveolar process but alsoaugments the nostril base after surgery. In this study, only an alveolar bone graft was performedto prevent bias from other procedures. Nostril base augmentation can be achieved byperforming alveolar bone grafts in children, in whom invasive methods are not advised.

  18. Guided tissue regeneration using a collagen barrier and bone swaging technique in noncontained infrabony defects.

    Science.gov (United States)

    Kodama, Toshiro; Minabe, Masato; Sugiyama, Takashi; Mitarai, Eiko; Fushimi, Hajime; Kitsugi, Daisuke; Tsutsumi, Kouji; Katsuki, Makiko

    2013-01-01

    This clinical study evaluated the effectiveness of guided tissue regeneration using a resorbable collagen membrane and bone swaging in noncontained infrabony defects by assessing changes in probing pocket depth, probing attachment level, and radiographic bone level after 6 months, 1 year, and 2 years. Postsurgical clinical and radiographic measurements were statistically significantly different from presurgical measurements. The rate of bone fill was positively associated with the baseline depth of the bone defect but not associated with the width. The noncontained infrabony defects treated with this combined regenerative method improved clinically and radiographically.

  19. Effects of 200cH medications on mice bone marrow cells and macrophages

    Directory of Open Access Journals (Sweden)

    Dorly de F. Buchi

    2011-07-01

    Full Text Available Paracelsus once wrote: "All things are poison and nothing is without poison, only the dose permits something not to be poisonous." Latter Hahnemann formulated the law of similars, preparations which cause certain symptoms in healthy individuals if given in diluted form to patients exhibiting similar symptoms will cure it. Highly diluted natural complexes prepared according to Hahnemann’s ancient techniques may represent a new form of immunomodulatory therapy. The lack of scientific research with highly diluted products led us to investigate the in vivo and in vitro actions of commonly used medications. Here we describe the results of experimental studies aimed at verifying the effects of Mercurius solubilis, Atropa Belladonna, Lachesis muta and Bryonia alba. All medications were at 200cH dilution. Animals were maintained for 7 days and were allowed to drink the medications, which were prepared in a way that the final dilution and agitation (200cH was performed in drinking water. The medication bottle was changed and sucussed every afternoon. Co-culture of non treated mice bone marrow cells and in vitro treated peritoneal macrophages were also performed. After animal treatment the bone marrow cells were immunophenotyped with hematopoietic lineage markers on a flow cytometer. We have determined CD11b levels on bone marrow cells after culture and co-culture with treated macrophages and these macrophages were processed to scanning electron microscopy. We have observed by morphological changes that macrophages were activated after all treatments. Mercurius solubilis treated mice showed an increase in CD3 expression and in CD11b on nonadherent bone marrow cells after co-culture with in vitro treatment. Atropa Belladonna increased CD45R and decreased Ly-6G expression on bone marrow cells after animal treatment. Lachesis muta increased CD3, CD45R and, CD11c expression and decreased CD11b ex vivo and in nonadherent cells from co

  20. The effect of aromatase inhibitors on bone metabolism

    DEFF Research Database (Denmark)

    Folkestad, Lars; Bjarnason, Nina H; Bjerregaard, Jon Kroll;

    2009-01-01

    Aromatase inhibitors increase the disease-free survival in patients with receptor-positive breast cancer. Aromatase is a cytochrome P450 enzyme complex catalysing the conversion of androgens to oestrogens. These properties cause a significant increase in bone loss. In this MiniReview, we present ...... in comparison with tamoxifen. We conclude that treatment with aromatase inhibitors leads to an increased bone loss and thus an increase in the risk of fractures in women with breast cancer.......Aromatase inhibitors increase the disease-free survival in patients with receptor-positive breast cancer. Aromatase is a cytochrome P450 enzyme complex catalysing the conversion of androgens to oestrogens. These properties cause a significant increase in bone loss. In this MiniReview, we present...... data from the aromatase inhibitor studies and the studies designed to investigate aromatase inhibitor effect on bone metabolism. At the cellular level, oestrogen has profound effects on both osteoblasts and osteoclasts. Oestrogen decreases the osteoblastic production of resorptive cytokines...

  1. A regenerative elastocaloric heat pump

    Science.gov (United States)

    Tušek, Jaka; Engelbrecht, Kurt; Eriksen, Dan; Dall'Olio, Stefano; Tušek, Janez; Pryds, Nini

    2016-10-01

    A large fraction of global energy use is for refrigeration and air-conditioning, which could be decarbonized if efficient renewable energy technologies could be found. Vapour-compression technology remains the most widely used system to move heat up the temperature scale after more than 100 years; however, caloric-based technologies (those using the magnetocaloric, electrocaloric, barocaloric or elastocaloric effect) have recently shown a significant potential as alternatives to replace this technology due to high efficiency and the use of green solid-state refrigerants. Here, we report a regenerative elastocaloric heat pump that exhibits a temperature span of 15.3 K on the water side with a corresponding specific heating power up to 800 W kg-1 and maximum COP (coefficient-of-performance) values of up to 7. The efficiency and specific heating power of this device exceeds those of other devices based on caloric effects. These results open up the possibility of using the elastocaloric effect in various cooling and heat-pumping applications.

  2. Decontamination methods using a dental water jet and dental floss for microthreaded implant fixtures in regenerative periimplantitis treatment.

    Science.gov (United States)

    Park, Shin-Young; Kim, Kyoung-Hwa; Shin, Seung-Yun; Koo, Ki-Tae; Lee, Yong-Moo; Chung, Chong-Pyoung; Seol, Yang-Jo

    2015-06-01

    This study evaluated decontamination methods using a dental water jet and dental floss on microthreaded implants for regenerative periimplantitis therapy. In 6 beagle dogs, experimental periimplantitis was induced, and decontamination procedures, including manual saline irrigation (control group), saline irrigation using a dental water jet (group 1) and saline irrigation using a dental water jet with dental flossing (group 2), were performed. After in situ decontamination procedures, some of the implant fixtures (n = 4 per group) were retrieved for analysis by SEM, whereas other fixtures (n = 4 per group) underwent regenerative therapy. After 3 months of healing, the animals were killed. The SEM examination indicated that decontamination of the implant surfaces was the most effective in group 2, with no changes in implant surface morphology. The histological examination also revealed that group 2 achieved significantly greater amounts of newly formed bone (6.75 ± 2.19 mm; P = 0.018), reosseointegration (1.88 ± 1.79 mm; P = 0.038), and vertical bone fill (26.69 ± 18.42%; P = 0.039). Decontamination using a dental water jet and dental floss on microthreaded implants showed positive mechanical debridement effects and positive bone regeneration effects.

  3. Surgical Regenerative Treatments for Peri-Implantitis: Meta-analysis of Recent Findings in a Systematic Literature Review

    Directory of Open Access Journals (Sweden)

    Povilas Daugela

    2016-09-01

    Full Text Available Objectives: The purpose of the present study was to systematically review the literature on the surgical regenerative treatment of the peri-implantitis and to determine an effective therapeutic predictable option for their clinical management. Material and Methods: The study searched MEDLINE and EMBASE databases from 2006 to 2016. Clinical human studies that had reported changes in probing depth (PD and/or bleeding on probing (BOP and/or radiologic marginal bone level (RBL changes after peri-implantitis surgical treatment at 12-month follow-up or longer were included accordingly to PRISMA guidelines. Results: The initial search obtained 883 citations. After screening and determination of eligibility, 18 articles were included in the review. The meta-analysis of selected studies revealed that the weighted mean RBL fill was 1.97 mm (95% confidence interval [CI] = 1.58 to 2.35 mm, PD reduction was 2.78 mm (95% CI = 2.31 to 3.25 mm, and BOP reduced by 52.5% (95% CI = 41.6 to 63.1%. Defect fill in studies using and not using barrier membranes for graft coverage was 1.86 mm (95% CI = 1.36 to 2.36 mm and 2.12 mm (95% CI = 1.46 to 2.78 mm correspondingly. High heterogeneity among the studies regarding defects morphology, surgical protocols, and selection of biomaterials were found. Conclusions: All included studies underlined an improvement of clinical conditions after the surgical regenerative treatment of peri-implantitis, however, there is a lack of scientific evidence in the literature regarding the superiority of the regenerative versus non-regenerative surgical treatment. The presence of a barrier membrane or submergence in the regenerative procedure does not seem to be fundamental in order to obtain clinical success of the surgery.

  4. The pleiotropic effects of paricalcitol: Beyond bone-mineral metabolism.

    Science.gov (United States)

    Egido, Jesús; Martínez-Castelao, Alberto; Bover, Jordi; Praga, Manuel; Torregrosa, José Vicente; Fernández-Giráldez, Elvira; Solozábal, Carlos

    2016-01-01

    Secondary hyperparathyroidism (SHPT) is a common complication in patients with chronic kidney disease (CKD) that is characterised by elevated parathyroid hormone (PTH) levels and a series of bone-mineral metabolism anomalies. In patients with SHPT, treatment with paricalcitol, a selective vitamin D receptor activator, has been shown to reduce PTH levels with minimal serum calcium and phosphorus variations. The classic effect of paricalcitol is that of a mediator in mineral and bone homeostasis. However, recent studies have suggested that the benefits of treatment with paricalcitol go beyond PTH reduction and, for instance, it has a positive effect on cardiovascular disease and survival. The objective of this study is to review the most significant studies on the so-called pleiotropic effects of paricalcitol treatment in patients with CKD. Copyright © 2015 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.

  5. Regenerative Cooling for Liquid Rocket Engines

    Institute of Scientific and Technical Information of China (English)

    QiFeng

    1995-01-01

    Heat transfer in the thrust chamber is of great importance in the design of liquid propellant rocket engines.Regenerative cooling is and advanced method which can ensure not only the proper running but also higher performance of a rocket engine.The theoretical model is complicated,it relates to fluid bynamics,heat transfer,combustion.etc…,In this paper,a regenerative cooling model is presented.Effects such as radiation,heat transfer to environment,variable thermal properties and coking are included in the model.This model can be applied to all kinds of liquid propellant rocket engines as well as similar constructions.The modularized computer code is completed in the work.

  6. Bimix antimicrobial scaffolds for regenerative endodontics.

    Science.gov (United States)

    Palasuk, Jadesada; Kamocki, Krzysztof; Hippenmeyer, Lauren; Platt, Jeffrey A; Spolnik, Kenneth J; Gregory, Richard L; Bottino, Marco C

    2014-11-01

    Eliminating and/or inhibiting bacterial growth within the root canal system has been shown to play a key role in the regenerative outcome. The aim of this study was to synthesize and determine in vitro both the antimicrobial effectiveness and cytocompatibility of bimix antibiotic-containing polydioxanone-based polymer scaffolds. Antibiotic-containing (metronidazole [MET] and ciprofloxacin [CIP]) polymer solutions (distinct antibiotic weight ratios) were spun into fibers as a potential mimic to the double antibiotic paste (DAP, a MET/CIP mixture). Fiber morphology, chemical characteristics, and tensile strength were evaluated by scanning electron microscopy, Fourier transform infrared spectroscopy, and tensile testing, respectively. Antimicrobial efficacy was tested over time (aliquot collection) against Enterococcus faecalis (Ef), Porphyromonas gingivalis (Pg), and Fusobacterium nucleatum (Fn). Similarly, cytotoxicity was evaluated in human dental pulp stem cells. Data were statistically analyzed (P regenerative endodontics. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  7. Expanding the Description of Spaceflight Effects beyond Bone Mineral Density [BMD]: Trabecular Bone Score [TBS] in ISS Astronauts

    Science.gov (United States)

    Sibonga, J. D.; Spector, E. R.; King, L. J.; Evans, H. J.; Smith, S. A.

    2014-01-01

    Dual-energy x-ray absorptiometry [DXA] is the widely-applied bone densitometry method used to diagnose osteoporosis in a terrestrial population known to be at risk for age-related bone loss. This medical test, which measures areal bone mineral density [aBMD] of clinically-relevant skeletal sites (e.g., hip and spine), helps the clinician to identify which persons, among postmenopausal women and men older than 50 years, are at high risk for low trauma or fragility fractures and might require an intervention. The most recognized osteoporotic fragility fracture is the vertebral compression fracture which can lead to kyphosis or hunched backs typically seen in the elderly. DXA measurement of BMD however is recognized to be insufficient as a sole index for assessing fracture risk. DXA's limitation may be related to its inability to monitor changes in structural parameters, such as trabecular vs. cortical bone volumes, bone geometry or trabecular microarchitecture. Hence, in order to understand risks to human health and performance due to space exposure, NASA needs to expand its measurements of bone to include other contributors to skeletal integrity. To this aim, the Bone and Mineral Lab conducted a pilot study for a novel measurement of bone microarchitecture that can be obtained by retrospective analysis of DXA scans. Trabecular Bone Score (TBS) assesses changes to trabecular microarchitecture by measuring the grey color "texture" information extracted from DXA images of the lumbar spine. An analysis of TBS in 51 ISS astronauts was conducted to assess if TBS could detect 1) an effect of spaceflight and 2) a response to countermeasures independent of DXA BMD. In addition, changes in trunk body lean tissue mass and in trunk body fat tissue mass were also evaluated to explore an association between body composition, as impacted by ARED exercise, and bone microarchitecture. The pilot analysis of 51 astronaut scans of the lumbar spine suggests that, following an ISS

  8. The Pharmacology of Regenerative Medicine

    Science.gov (United States)

    Saul, Justin M.; Furth, Mark E.; Andersson, Karl-Erik

    2013-01-01

    Regenerative medicine is a rapidly evolving multidisciplinary, translational research enterprise whose explicit purpose is to advance technologies for the repair and replacement of damaged cells, tissues, and organs. Scientific progress in the field has been steady and expectations for its robust clinical application continue to rise. The major thesis of this review is that the pharmacological sciences will contribute critically to the accelerated translational progress and clinical utility of regenerative medicine technologies. In 2007, we coined the phrase “regenerative pharmacology” to describe the enormous possibilities that could occur at the interface between pharmacology, regenerative medicine, and tissue engineering. The operational definition of regenerative pharmacology is “the application of pharmacological sciences to accelerate, optimize, and characterize (either in vitro or in vivo) the development, maturation, and function of bioengineered and regenerating tissues.” As such, regenerative pharmacology seeks to cure disease through restoration of tissue/organ function. This strategy is distinct from standard pharmacotherapy, which is often limited to the amelioration of symptoms. Our goal here is to get pharmacologists more involved in this field of research by exposing them to the tools, opportunities, challenges, and interdisciplinary expertise that will be required to ensure awareness and galvanize involvement. To this end, we illustrate ways in which the pharmacological sciences can drive future innovations in regenerative medicine and tissue engineering and thus help to revolutionize the discovery of curative therapeutics. Hopefully, the broad foundational knowledge provided herein will spark sustained conversations among experts in diverse fields of scientific research to the benefit of all. PMID:23818131

  9. Effects of demineralized bone matrix and a 'Ricinus communis' polymer on bone regeneration: a histological study in rabbit calvaria.

    Science.gov (United States)

    Laureano Filho, José R; Andrade, Emanuel S S; Albergaria-Barbosa, José R; Camargo, Igor B; Garcia, Robson R

    2009-09-01

    The aim of the present study was to histologically analyze the effects of bovine and human demineralized bone matrix and a Ricinus communis polymer on the bone regeneration process. Two surgical bone defects were created in rabbit calvaria, one on the right and the other on the left side of the parietal suture. Eighteen rabbits were divided into three groups. In Group I, the experimental defect was treated with bovine demineralized bone matrix, Group II with human demineralized bone matrix, and in Group III, the experimental cavity was treated with polyurethane resin derived from Ricinus communis oil. The control defects were filled with the animals' own blood. The animals were sacrificed after 7 and 15 weeks. Histological analysis revealed that in all groups (control and experimental), bone regeneration increased with time. The least time required for bone regeneration was noted in the control group, with a substantial decrease in the thickness of the defect. All materials proved to be biologically compatible, but polyurethane resorbed more slowly and demonstrated considerably better results than the demineralized bone matrices.

  10. Combination of hydroxyapatite, platelet rich fibrin and amnion membrane as a novel therapeutic option in regenerative periapical endodontic surgery: Case series.

    Science.gov (United States)

    Uppada, Uday Kiran; Kalakonda, Butchibabu; Koppolu, Pradeep; Varma, Narendra; Palakurthy, Kiran; Manchikanti, Venkatesh; Prasad, Shilpa; Samar, Shereen; Swapna, Lingam Amara

    2017-01-01

    Periapical surgery is the last resort in the arsenal of an endodontist to effectively deal with periapical lesions that result from necrosis of the pulp. Bone grafts, growth factors and membranes form an array of regenerative materials that influence the healing outcome of periapical surgery. The main purpose of the two cases reported here was to assess the potential benefits of a combination of bone graft, platelet-rich fibrin (PRF) and amnion membrane in terms of reduced post-operative discomfort, radiographic evidence of accelerated periapical bone healing and present a novel therapeutic option in the management of large periapical lesions. Two cases of radicular cysts were treated through a combined regenerative approachof Bio-Gen mix(®), PRF and amnion membrane. The patients were assessed for discomfort immediate post-operatively and after a week. The patients were recalled every month for the next 6 months for radiographic assessment of the periapical healing. Literature is replete with articles that have substantiated the role of demineralized bone matrix comprising a mixture of cancellous and cortical bone graft particles in enhancing regeneration. To the best of our knowledge, there has been no evidence related to the application of a human placental membrane in periapical surgery. Hence, the rationale of using a combined approach of Bio-Gen mix(®), PRF and amnion membrane was to combine the individual advantages of these materials to enhance clinical and radiographic healing outcomes. Our present case reports provide an insight into this novel therapeutic option. The results of this case seriessubstantiatesthe credibility of using a combination ofamnion membrane with a bone graft and PRF to enhance radiographic healing outcome with decreased post-operative discomfort and present a viable regenerative treatment modality in periapical surgery. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Stem cells: A potential regenerative future in dentistry

    Directory of Open Access Journals (Sweden)

    Sumit Narang

    2012-01-01

    Full Text Available In recent years, the field of dentistry has embossed its presence by taking major leaps in research and further bringing it into practice. The most valuable ongoing research in regenerative dentistry is the study on stem cells. It was instituted that stem cells grow rapidly and have the potential to form specialized dentin, bone, and neuronal cells. These neuronal cells can be used for dental therapies and can provide better treatment options for patients. The stem cells based therapies could help in new advances in treating damaged teeth, inducing bone regeneration and treating neural injury as well.

  12. Regenerative Endodontics for Adult Patients.

    Science.gov (United States)

    He, Ling; Kim, Sahng G; Gong, Qimei; Zhong, Juan; Wang, Sainan; Zhou, Xuedong; Ye, Ling; Ling, Junqi; Mao, Jeremy J

    2017-09-01

    The goal of endodontics is to save teeth. Since inception, endodontic treatments are performed to obturate disinfected root canals with inert materials such as gutta-percha. Although teeth can be saved after successful endodontic treatments, they are devitalized and therefore susceptible to reinfections and fractures. The American Association of Endodontists (AAE) has made a tremendous effort to revitalize disinfected immature permanent teeth in children and adolescents with diagnoses including pulp necrosis or apical periodontitis. The American Dental Association (ADA) in 2011 issued several clinical codes for regenerative endodontic procedures or apical revascularization in necrotic immature permanent teeth in children and adolescents. These AAE and ADA initiatives have stimulated robust interest in devising a multitude of tissue engineering approaches for dental pulp and dentin regeneration. Can the concept of regenerative endodontics be extended to revitalize mature permanent teeth with diagnoses including irreversible pulpitis and/or pulp necrosis in adults? The present article was written not only to summarize emerging findings to revitalize mature permanent teeth in adult patients but also to identify challenges and strategies that focus on realizing the goal of regenerative endodontics in adults. We further present clinical cases and describe the biological basis of potential regenerative endodontic procedures in adults. This article explores the frequently asked question if regenerative endodontic therapies should be developed for dental pulp and/or dentin regeneration in adults, who consist of the great majority of endodontic patients. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  13. Alendronate has a residual effect on bone mass in postmenopausal Danish women up to 7 years after treatment withdrawal

    DEFF Research Database (Denmark)

    Bagger, Yu Z; Tankó, László B; Alexandersen, Peter

    2003-01-01

    Alendronate has been shown to reduce bone turnover and increase bone mass. However, little is known about the duration of the effect on bone after treatment withdrawal. The aim of this study was to investigate the long-term effects on bone mineral density (BMD) and bone turnover of various alendr...

  14. Mesenchymal stem cells in regenerative rehabilitation.

    Science.gov (United States)

    Nurkovic, Jasmin; Dolicanin, Zana; Mustafic, Fahrudin; Mujanovic, Rifat; Memic, Mensur; Grbovic, Vesna; Skevin, Aleksandra Jurisic; Nurkovic, Selmina

    2016-06-01

    [Purpose] Regenerative medicine and rehabilitation contribute in many ways to a specific plan of care based on a patient's medical status. The intrinsic self-renewing, multipotent, regenerative, and immunosuppressive properties of mesenchymal stem cells offer great promise in the treatment of numerous autoimmune, degenerative, and graft-versus-host diseases, as well as tissue injuries. As such, mesenchymal stem cells represent a therapeutic fortune in regenerative medicine. The aim of this review is to discuss possibilities, limitations, and future clinical applications of mesenchymal stem cells. [Subjects and Methods] The authors have identified and discussed clinically and scientifically relevant articles from PubMed that have met the inclusion criteria. [Results] Direct treatment of muscle injuries, stroke, damaged peripheral nerves, and cartilage with mesenchymal stem cells has been demonstrated to be effective, with synergies seen between cellular and physical therapies. Over the past few years, several researchers, including us, have shown that there are certain limitations in the use of mesenchymal stem cells. Aging and spontaneous malignant transformation of mesenchymal stem cells significantly affect the functionality of these cells. [Conclusion] Definitive conclusions cannot be made by these studies because limited numbers of patients were included. Studies clarifying these results are expected in the near future.

  15. Reconstruction of bone tissue in the experiment and clinical effectiveness of osteoplasty with tricalcium phosphate in patients with generalized periodontitis

    Directory of Open Access Journals (Sweden)

    Dmitrieva E.O.

    2014-12-01

    Full Text Available Background. The theoretical basis of osteoplasty, fully supported by clinical observations, is that violations occur in periodontitis of correlation between tooth and the surrounding tissues, including the microcirculation. Objective. The aim was experimental evaluation of tissue alterations in bone implant material tricalcium phosphate®, as well as determining the dynamics of clinical and instrumental parameters after its use in the surgical treatment of patients with generalized periodontitis I-III degree for 1 year. Methods. The analysis of quantitative morphological estimation of regenerative processes in osteal tissue in model of osteal defect is carried out at implantation of material amorphous calcium phosphate at this work. It was investigated dynamics of clinical and instrumental parameters after its use in the surgical treatment of patients with generalized periodontitis I-III degree during 1 year. Results. We found out that amorphous calcium phosphate undergo resorbtion and thus optimize bone regeneration. Regeneration is accompanied by decreased specific area of the particles implanted and increased integration index and specific density of trabeculae within the reaction zone. Highest intensity of these processes was ob-served in the period from 15th fill the 30th day after implantation. In patients with chronic generalized periodontitis use of tricalcium phosphate improves most periodontal indices, limits the extent of pathological tooth mobility and gingival recession index, increases capillary resistance, prevents the growth of vertical alveolar ridge resorption. Conclusion. The most significant clinical efficiency of osteoplasty with tricalcium phosphate observed in patients under 35, regardless of the sex of the patients. Citation: Dmitrieva EO. [Reconstruction of bone tissue in the experiment and clinical effectiveness of osteoplasty with tricalcium phosphate in patients with generalized periodontitis]. Morphologia. 2014

  16. Inhaled corticosteroids: Effects on growth and bone health.

    Science.gov (United States)

    Skoner, David P

    2016-12-01

    Both slowed growth in children and reduced bone mineral density (BMD) are systemic effects of corticosteroids, and there is concern about the degree to which these systemic effects affect growth and BMD. To engage in a data-driven discussion of the effects of inhaled corticosteroids (ICSs) on growth in children and BMD. Articles were selected based on their relevance to this review. Studies of ICSs in children in which growth was a secondary outcome have revealed slowed growth associated with low doses of budesonide, fluticasone propionate, and beclomethasone dipropionate. In the study of budesonide, the effect was permanent, and in the study of fluticasone propionate, the effect was long-lasting, but it is unclear whether the effect was permanent. However, the results of studies in which growth was the primary outcome were mixed. Slowed growth was detected in a study of beclomethasone dipropionate; however, slowed growth was not detected in a study of ciclesonide or flunisolide. A decrease in BMD acquisition in children was associated with high doses but not low to medium doses of ICSs. In adults, there was a dose-related effect of ICSs on BMD. Both higher daily dose and larger cumulative dose were associated with increased bone density loss. Because of the systemic effects on growth and bone health, children should be monitored for growth using stadiometry every 3 to 6 months and BMD should be monitored yearly in patients being treated with high doses of ICSs. Copyright © 2016 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  17. Antibacterial Effects of Antimicrobials Used in Regenerative Endodontics against Biofilm Bacteria Obtained from Mature and Immature Teeth with Necrotic Pulps.

    Science.gov (United States)

    Jacobs, Jordon C; Troxel, Alex; Ehrlich, Ygal; Spolnik, Kenneth; Bringas, Josef S; Gregory, Richard L; Yassen, Ghaeth H

    2017-04-01

    We investigated the direct and residual antibacterial effects of intracanal antimicrobials against bacterial biofilms obtained from infected mature and immature teeth with necrotic pulps. Sterile dentin slabs (n = 100) were inoculated with bacterial biofilms obtained from root canals of an immature or a mature tooth with pulpal necrosis and incubated anaerobically for 3 weeks (n = 50 per biofilm). Dentin infected with each type of biofilm received 1 week of treatment with 1 or 5 mg/mL double antibiotic paste (DAP) in methylcellulose hydrogels, calcium hydroxide, or placebo paste or received no treatment (n = 10). The pastes were removed, and biofilm disruption assays were performed. Additional dentin slabs (n = 100) were pretreated with the same treatments (n = 20). The pastes were rinsed off, and the samples were immersed in phosphate-buffered saline for 1 week. Thereafter, samples from the treatment groups were infected with bacterial biofilm from both clinical sources mentioned earlier (n = 10 per biofilm) and incubated anaerobically for 3 weeks before conducting biofilm disruption assays. Uninfected dentin slabs were used for both antibacterial experiments as negative control groups (n = 20). All antimicrobials showed significant direct antibacterial effects regardless of the biofilm source. Dentin pretreated with 5 mg/mL DAP provided significantly higher residual antibacterial effects in comparison with all other groups regardless of the source of biofilm. Dentin pretreated with calcium hydroxide did not show any residual antibacterial effects. Tested antimicrobials showed significant direct antibacterial effects. Only 5 mg/mL DAP exhibited significant residual antibacterial effects against bacterial biofilms from an infected root canal of an immature tooth. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  18. The effects of oestrogens on linear bone growth

    DEFF Research Database (Denmark)

    Juul, A

    2001-01-01

    Regulation of linear bone growth in children and adolescents comprises a complex interaction of hormones and growth factors. Growth hormone (GH) is considered to be the key hormone regulator of linear growth in childhood. The pubertal increase in growth velocity associated with GH has traditionally...... female growth spurt despite lack of androgen action. Oestrogens may also influence linear bone growth indirectly via modulation of the GH-insulin-like growth factor-I (IGF-I) axis. Thus, ER blockade diminishes endogenous GH secretion, androgen receptor (AR) blockade increases GH secretion in peripubertal...... boys, and non-aromatizable androgens [oxandrolone or dihydrotestosterone (DHT)] have no effect on GH secretion. Treatment with aromatase inhibitors reduces circulating IGF-I concentrations in healthy males, and reduces growth in boys with testotoxicosis. Taken together, these findings suggest...

  19. Effects of casein, whey and soy proteins on volumetric bone density and bone strength in immunocompromised piglets

    DEFF Research Database (Denmark)

    Budek, Alicja Zofia; Bjørnvad, Charlotte; Mølgaard, Christian

    2007-01-01

    assigned to a formula based on either casein (n=11), whey (n=11) or soy (n=10) as the protein source (each 55 g/L), and equal amounts of fat, carbohydrates, calcium and phosphorus. Results & Conclusion: Despite efforts to sustain immuno-protection (sow serum and antibiotic injections), some piglets became......Summary:Background and aims: Bone-promoting effect of different proteins in early life, under immunocompromised conditions, is unknown. We investigated effects of milk- and plantderived proteins on bone development in immunocompromised piglets. Methods: Newborn, colostrum-deprived piglets were...... sick and were early euthanised. After 6 days, bone density (peripheral quantitative computed tomography), bone mechanical strength (three-point bending test) and serum insulin-like growth factor-I (sIGF-I) (immunoassay) were measured in the surviving piglets (casein n=5, whey n=9, soy n=5)....

  20. Perspectives in regenerative medicine

    CERN Document Server

    Ray Banerjee, Ena

    2014-01-01

    The information given in this book tries to capture the essence of the sheer dynamicity of the cell along with useful tips on how to address critical rate limiting steps in the process of exploration and investigation of its capacity to regenerate, rebuild and replenish from within. The definitions of stem cells, stemness, and the niche concept continue to undergo revisions. In adult vertebrates, hematopoietic and some non-hematopoietic progenitors are synthesized within specialized niches of bone marrow. They migrate to designated tissues, and are either trans-differentiated or become quiescent and settle down. These form the stem cell niche reservoir in all tissues. Not only the primary hematopoietic tissue but all organs and tissues are also capable of generating progenitors which are either synthesized from these migrants or are direct recruits from other tissues. In the niches, the cells settle down and await their turn to either make more clones like themselves or differentiate and mobilize in an exigen...

  1. Regenerative Endodontics by Cell Homing.

    Science.gov (United States)

    He, Ling; Zhong, Juan; Gong, Qimei; Cheng, Bin; Kim, Sahng G; Ling, Junqi; Mao, Jeremy J

    2017-01-01

    Apical revascularization (AR) and platelet-rich plasma have been used to restore dental pulp vitality in infected immature permanent teeth. Two regenerative therapies are cell transplantation and cell homing. This article updates and benchmarks these therapies with cell homing. A case report concluded that AR increased root length; however, quantitative and statistical assessments disproved this. Regenerative endodontic therapies require prospective clinical trials demonstrating safety and efficacy. These therapies are intrinsically susceptible to procedural and patient variations. Cell homing uses novel molecules that drive therapeutic efficacy, and may be less sensitive to procedural and patient variations. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Optical techniques in regenerative medicine

    CERN Document Server

    Morgan, Stephen P

    2013-01-01

    In regenerative medicine, tissue engineers largely rely on destructive and time-consuming techniques that do not allow in situ and spatial monitoring of tissue growth. Furthermore, once the therapy is implanted in the patient, clinicians are often unable to monitor what is happening in the body. To tackle these barriers, optical techniques have been developed to image and characterize many tissue properties, fabricate tissue engineering scaffolds, and characterize the properties of the scaffolds. Optical Techniques in Regenerative Medicine illustrates how to use optical imaging techniques and

  3. Regeneratively Cooled Porous Media Jacket

    Science.gov (United States)

    Mungas, Greg (Inventor); Fisher, David J. (Inventor); London, Adam Pollok (Inventor); Fryer, Jack Merrill (Inventor)

    2013-01-01

    The fluid and heat transfer theory for regenerative cooling of a rocket combustion chamber with a porous media coolant jacket is presented. This model is used to design a regeneratively cooled rocket or other high temperature engine cooling jacket. Cooling jackets comprising impermeable inner and outer walls, and porous media channels are disclosed. Also disclosed are porous media coolant jackets with additional structures designed to transfer heat directly from the inner wall to the outer wall, and structures designed to direct movement of the coolant fluid from the inner wall to the outer wall. Methods of making such jackets are also disclosed.

  4. Micro-computed tomography (CT) based assessment of dental regenerative therapy in the canine mandible model

    Science.gov (United States)

    Khobragade, P.; Jain, A.; Setlur Nagesh, S. V.; Andreana, S.; Dziak, R.; Sunkara, S. K.; Sunkara, S.; Bednarek, D. R.; Rudin, S.; Ionita, C. N.

    2015-03-01

    High-resolution 3D bone-tissue structure measurements may provide information critical to the understanding of the bone regeneration processes and to the bone strength assessment. Tissue engineering studies rely on such nondestructive measurements to monitor bone graft regeneration area. In this study, we measured bone yield, fractal dimension and trabecular thickness through micro-CT slices for different grafts and controls. Eight canines underwent surgery to remove a bone volume (defect) in the canine's jaw at a total of 44 different locations. We kept 11 defects empty for control and filled the remaining ones with three regenerative materials; NanoGen (NG), a FDA-approved material (n=11), a novel NanoCalcium Sulfate (NCS) material (n=11) and NCS alginate (NCS+alg) material (n=11). After a minimum of four and eight weeks, the canines were sacrificed and the jaw samples were extracted. We used a custombuilt micro-CT system to acquire the data volume and developed software to measure the bone yield, fractal dimension and trabecular thickness. The software used a segmentation algorithm based on histograms derived from volumes of interest indicated by the operator. Using bone yield and fractal dimension as indices we are able to differentiate between the control and regenerative material (pprocess and quality of bone were dependent upon the position of defect and time period of healing. This study presents one of the first quantitative comparisons using non-destructive Micro-CT analysis for bone regenerative material in a large animal with a critical defect model. Our results indicate that Micro-CT measurement could be used to monitor invivo bone regeneration studies for greater regenerative process understanding.

  5. Residual antibiofilm effects of various concentrations of double antibiotic paste used during regenerative endodontics after different application times.

    Science.gov (United States)

    Jenks, Daniel B; Ehrlich, Ygal; Spolnik, Kenneth; Gregory, Richard L; Yassen, Ghaeth H

    2016-10-01

    We investigated the residual antibiofilm effects of different concentrations of double antibiotic paste (DAP) applied on radicular dentin for 1 or 4 weeks. Dentin samples were prepared (n=120), sterilized and pretreated for 1 or 4 weeks with the clinically used concentration of DAP (500mg/mL), low concentrations of DAP (1, 5 or 50mg/mL) loaded into a methylcellulose system, calcium hydroxide (Ca(OH)2), or placebo paste. After the assigned treatment time, treatment pastes were rinsed off and the samples were kept independently in phosphate buffered saline for 3 weeks. Pretreated dentin samples were then inoculated with Enterococcus faecalis and bacterial biofilms were allowed to grow for an additional 3 weeks. Biofilms were then retrieved from dentin using biofilm disruption assays, diluted, spiral plated, and quantified. Fisher's Exact and Wilcoxon rank sum tests were used for statistical comparisons (α=0.05). Dentin pretreatment for 4 weeks with 5, 50 or 500mg/mL of DAP demonstrated significantly higher residual antibiofilm effects and complete eradication of E. faecalis biofilms in comparison to a 1 week pretreatment with similar concentrations. However, dentin pretreated with 1mg/mL of DAP or Ca(OH)2 did not provide a substantial residual antibiofilm effect regardless of the application time. Dentin pretreatment with 5mg/mL of DAP or higher for 4 weeks induced significantly higher residual antibiofilm effects in comparison to a 1 week pretreatment with the same concentrations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. The Beneficial Effect of Praeruptorin C on Osteoporotic Bone in Ovariectomized Mice via Suppression of Osteoclast Formation and Bone Resorption.

    Science.gov (United States)

    Liu, Xuqiang; Chin, Jie-Fen; Qu, Xinhua; Bi, Haidi; Liu, Yuan; Yu, Ziqiang; Zhai, Zanjing; Qin, An; Zhang, Bin; Dai, Min

    2017-01-01

    Being a highly prevalent disease, osteoporosis causes metabolism defects. Low bone density, compromised bone strength, and an increased danger of fragility fracture are its main characteristics. Natural compounds have been considered as potential alternative therapeutic agents for treating osteoporosis. In this study, we demonstrated that a natural compound, praeruptorin C (Pra-C), derived from the dried roots of Peucedanum praeruptorum, has beneficial effects in suppressing osteoclast formation and resorption function via attenuating the activation of nuclear factor kappa B as well as c-Jun N-terminal kinase/mitogen-activated protein kinase signaling pathways. Moreover, Pra-C was tested in the ovariectomized (OVX) mice, a well-established model of post-menopausal bone loss, and the results indicated Pra-C exerted beneficial effects on inhibiting excessive osteoclast activity and increasing bone mass of OVX mice. Therefore, the protective effects of Pra-C on OVX mice bone are related to its inhibition of osteoclast formation and bone resorption, suggesting that Pra-C is a good potential candidate for osteoporosis treatment.

  7. Preliminary report: effect of adrenal androgen and estrogen on bone maturation and bone mineral density.

    Science.gov (United States)

    Arisaka, O; Hoshi, M; Kanazawa, S; Numata, M; Nakajima, D; Kanno, S; Negishi, M; Nishikura, K; Nitta, A; Imataka, M; Kuribayashi, T; Kano, K

    2001-04-01

    To clarify the independent physiological roles of adrenal androgen and estrogen on bone growth, we compared the lumbar spine bone mineral density (BMD) in prepubertal girls with virilizing congenital adrenal hyperplasia (CAH) (n = 17) and girls with central precocious puberty (CPP) (n = 18). When BMD was analyzed according to chronologic age, no significant differences were found between CPP and CAH patients. However, when adjusted to bone age, BMD was statistically higher in CAH than in CPP subjects. This finding suggests that adrenal androgen, as well as estrogen, plays an important role in increasing BMD. Adrenal androgen may act on bone not only as androgen, but as estrogen after having been metabolized into an aromatized bone-active compound in peripheral tissues, such as bone and fat. Therefore, adrenal androgen may have a more important role in increasing BMD than previously realized.

  8. The effect of semelil (angipars® on bone resorption and bone formation markers in type 2 diabetic patients

    Directory of Open Access Journals (Sweden)

    Hasani-Ranjbar Shirin

    2012-12-01

    Full Text Available Abstract Background and purpose of the study Diabetes mellitus has been recognized as a major risk factor for osteoporosis in which bone turnover is affected by different mechanisms. As the morbidity, mortality and financial cost related to osteoporosis are expected to rise in Iran in coming years, and considering the efficacy of Angipars® for improvement of different ulcers which made it a new herbal drug in diabetic foot ulcer, there is a need to evaluate the effect of this new drug on different organs including bone resorption and bone formation markers. Methods In this randomized, double- blind clinical trial, 61 diabetic patients were included. The subjects were randomly divided into intervention and control groups. Subjects of intervention group received 100 mg of Angipars® twice a day. Laboratory tests including bone resorption and bone formation markers were performed at baseline and after 3 months. Result 31 patients in study group and 30 patients in control group finished the study. The mean age of the study population and the mean disease duration was respectively 51.8 ± 6.2 and 7.5 ± 4.7 years with no significant differences between intervention and control patients. No statistically significant differences between patients and controls were observed in pyridinoline, osteocalcin, urine calcium, bone alkaline phosphatase and tumor necrosis factor (TNF-α. Only urine creatinine level significantly changed between two groups after 3 month of treatment (p-value: 0.029 Conclusion In conclusion, the findings of this study indicate that Semelil (Angipars® had no beneficial or harmful effects on bone. It might be other effects of this new component on bone turnover process which need more studies and more time to be discovered.

  9. Nano-hydroxyapatite and its applications in preventive, restorative and regenerative dentistry: a review of literature.

    Science.gov (United States)

    Pepla, Erlind; Besharat, Lait Kostantinos; Palaia, Gaspare; Tenore, Gianluca; Migliau, Guido

    2014-07-01

    This study aims to critically summarize the literature about nano-hydroxyapatite. The purpose of this work is to analyze the benefits of using nano-hydroxyapatite in dentistry, especially for its preventive, restorative and regenerative applications. We also provide an overview of new dental materials, still experimental, which contain the nano-hydroxyapatite in its nano-crystalline form. Hydroxyapatite is one of the most studied biomaterials in the medical field for its proven biocompatibility and for being the main constituent of the mineral part of bone and teeth. In terms of restorative and preventive dentistry, nano-hydroxyapatite has significant remineralizing effects on initial enamel lesions, certainly superior to conventional fluoride, and good results on the sensitivity of the teeth. The nano-HA has also been used as an additive material, in order to improve already existing and widely used dental materials, in the restorative field (experimental addition to conventional glass ionomer cements, that has led to significant improvements in their mechanical properties). Because of its unique properties, such as the ability to chemically bond to bone, to not induce toxicity or inflammation and to stimulate bone growth through a direct action on osteoblasts, nano-HA has been widely used in periodontology and in oral and maxillofacial surgery. Its use in oral implantology, however, is a widely used practice established for years, as this substance has excellent osteoinductive capacity and improves bone-to-implant integration.

  10. Effects of bone-conducted music on swimming performance.

    Science.gov (United States)

    Tate, Angela R; Gennings, Chris; Hoffman, Regina A; Strittmatter, Andrew P; Retchin, Sheldon M

    2012-04-01

    Music has been shown to be a useful adjunct for many forms of exercise and has been observed to improve athletic performance in some settings. Nonetheless, because of the limited availability of practical applications of sound conduction in water, there are few studies of the effects of music on swimming athletes. The SwiMP3 is a novel device that uses bone conduction as a method to circumvent the obstacles to transmitting high fidelity sound in an aquatic environment. Thus, we studied the influence of music on swimming performance and enjoyment using the SwiMP3. Twenty-four competitive swimmers participated in a randomized crossover design study in which they completed timed swimming trials with and without the use of music delivered via bone conduction with the SwiMP3. Each participant swam four 50-m trials and one 800-m trial and then completed a physical enjoyment survey. Statistically significant improvements in swimming performance times were found in both the 50-m (0.32 seconds; p = 0.013) and 800-m (6.5 seconds; p = 0.031) trials with music using the SwiMP3. There was no significant improvement in physical enjoyment with the device as measured by a validated assessment tool. Bone-conducted music appears to have a salutary influence on swimming performance in a practice environment among competitive adult swimmers.

  11. Effects of spaceflight and simulated weightlessness on longitudinal bone growth

    Science.gov (United States)

    Sibonga, J. D.; Zhang, M.; Evans, G. L.; Westerlind, K. C.; Cavolina, J. M.; Morey-Holton, E.; Turner, R. T.

    2000-01-01

    Indirect measurements have suggested that spaceflight impairs bone elongation in rats. To test this possibility, our laboratory measured, by the fluorochrome labeling technique, bone elongation that occurred during a spaceflight experiment. The longitudinal growth rate (LGR) in the tibia of rats in spaceflight experiments (Physiological Space Experiments 1, 3, and 4 and Physiological-Anatomical Rodent Experiment 3) and in two models of skeletal unloading (hind-limb elevation and unilateral sciatic neurotomy) were calculated. The effects of an 11 day spaceflight on gene expression of cartilage matrix proteins in rat growth plates were also determined by northern analysis and are reported for the first time in this study. Measurements of longitudinal growth indicate that skeletal unloading generally did not affect LGR, regardless of age, strain, gender, duration of unloading, or method of unloading. There was, however, one exception with 34% suppression in LGR detected in slow-growing, ovariectomized rats skeletally unloaded for 8 days by hind-limb elevation. This detection of reduced LGR by hind-limb elevation is consistent with changes in steady-state mRNA levels for type II collagen (-33%) and for aggrecan (-53%) that were detected in rats unloaded by an 11 day spaceflight. The changes detected in gene expression raise concern that spaceflight may result in changes in the composition of extracellular matrix, which could have a negative impact on conversion of growth-plate cartilage into normal cancellous bone by endochondral ossification.

  12. Low intensity ultrasound effects over osteopenic female rats bones

    Directory of Open Access Journals (Sweden)

    Carvalho Daniela Cristina Leite de

    2003-01-01

    Full Text Available Several studies have already shown the beneficial effects of low intensity pulsed ultrasound on osteogenesis in fracture cases. However, few reports have related the ultrasound action in bone with some injury but without fracture. Thus, we induced a rat osteopenia model by ovariectomy and the proximal third of rat femur was stimulated by ultrasound (200mus burst of 1.5 MHz sine waves repeated at 1.0 kHz, 30mW/cm², SATA for 20 min/day, during 20 days. After the treatment period, the body weight was significantly higher in the non-treated group than the treated one. No significant difference in bone mineral content was detected among the groups (p > 0.05. Also, no significant difference was noted in the mechanical properties of the femoral diaphysis. However, histologic investigations showed that the treated femur presented less microarchitectural deterioration than the non-treated group. Moreover, it was demonstrated that the treated group did show recent bone formation which was not there in the non-treated group. These results suggest that the low intensity ultrasound can interfere in a positive way on osteoporosis.

  13. Intrauterine retention of foetal bone: an IUCD effect

    Directory of Open Access Journals (Sweden)

    Balaji P. Nalwad

    2014-06-01

    Full Text Available Intrauterine retention of foetal bone is a rare complication of abortion. These patients may present with irregular bleeding per vaginum, dysmenorrheal, pelvic pain and secondary infertility. A 27 year old female (G2, P1, L1, A1 referred by a general practitioner to our OPD as a case of secondary infertility. Patient was asymptomatic and had a second trimester abortion three years back. USG showed a foreign body in the uterine cavity. There was no history of IUCD insertion. On the advice of general practitioner, CT scan was done, which showed similar finding. Then this case was referred to us for further clinical evaluation. On hysteroscopy, we found foetal bones impacted between two Ostia which were removed with difficulty in the same setting. Dye test for patency of tubes was negative, probably due to edema. After that, patient conceived naturally within four months and delivered a healthy baby. Retained foetal bone in the uterine cavity was causing secondary infertility by its IUCD effect. Hysteroscopy is the gold standard method for diagnosis and treatment of foreign body in the uterine cavity. [Int J Res Med Sci 2014; 2(3.000: 1229-1231

  14. Effect of load on the bone around bone-anchored amputation prostheses.

    Science.gov (United States)

    Stenlund, Patrik; Trobos, Margarita; Lausmaa, Jukka; Brånemark, Rickard; Thomsen, Peter; Palmquist, Anders

    2016-06-24

    Osseointegrated transfemoral amputation prostheses have proven successful as an alternative method to the conventional socket-type prostheses. The method improves prosthetic use and thus increases the demands imposed on the bone-implant system. The hypothesis of the present study was that the loads applied to the bone-anchored implant system of amputees would result in locations of high stress and strain transfer to the bone tissue and thus contribute to complications such as unfavourable bone remodeling and/or elevated inflammatory response and/or compromised sealing function at the tissue-abutment interface. In the study, site-specific loading measurements were made on amputees and used as input data in finite element analyses to predict the stress and strain distribution in the bone tissue. Furthermore, a tissue sample retrieved from a patient undergoing implant revision was characterized in order to evaluate the long-term tissue response around the abutment. Within the limit of the evaluated bone properties in the present experiments, it is concluded that the loads applied to the implant system may compromise the sealing function between the bone and the abutment, contributing to resorption of the bone in direct contact with the abutment at the most distal end. This was supported by observations in the retrieved clinical sample of bone resorption and the formation of a soft tissue lining along the abutment interface. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.

  15. Intracortical bone remodeling variation shows strong genetic effects.

    Science.gov (United States)

    Havill, L M; Allen, M R; Harris, J A K; Levine, S M; Coan, H B; Mahaney, M C; Nicolella, D P

    2013-11-01

    Intracortical microstructure influences crack propagation and arrest within bone cortex. Genetic variation in intracortical remodeling may contribute to mechanical integrity and, therefore, fracture risk. Our aim was to determine the degree to which normal population-level variation in intracortical microstructure is due to genetic variation. We examined right femurs from 101 baboons (74 females, 27 males; aged 7-33 years) from a single, extended pedigree to determine osteon number, osteon area (On.Ar), haversian canal area, osteon population density, percent osteonal bone (%On.B), wall thickness (W.Th), and cortical porosity (Ct.Po). Through evaluation of the covariance in intracortical properties between pairs of relatives, we quantified the contribution of additive genetic effects (heritability [h (2)]) to variation in these traits using a variance decomposition approach. Significant age and sex effects account for 9 % (Ct.Po) to 21 % (W.Th) of intracortical microstructural variation. After accounting for age and sex, significant genetic effects are evident for On.Ar (h (2) = 0.79, p = 0.002), %On.B (h (2) = 0.82, p = 0.003), and W.Th (h (2) = 0.61, p = 0.013), indicating that 61-82 % of the residual variation (after accounting for age and sex effects) is due to additive genetic effects. This corresponds to 48-75 % of the total phenotypic variance. Our results demonstrate that normal, population-level variation in cortical microstructure is significantly influenced by genes. As a critical mediator of crack behavior in bone cortex, intracortical microstructural variation provides another mechanism through which genetic variation may affect fracture risk.

  16. Effect of unilateral superior cervical ganglionectomy on bone mineral content and density of rat's mandible.

    Science.gov (United States)

    Ladizesky, M G; Cutrera, R A; Boggio, V; Mautalen, C; Cardinali, D P

    2000-01-14

    To assess the effect of a local sympathectomy on bone metabolism, the effect of a unilateral superior cervical ganglionectomy (Gx) on growth and bone mineral content and density of the ipsi- and contralateral mandibles was examined in female rats. A significant increase in the hemi-mandibular bone ipsilateral to Gx was found as compared to the contralateral, sham-operated side 30 days, but not 15 days, after surgery. Bone mineral content of the hemi-mandibular bones was significantly lower in the side ipsilateral to Gx in the group of rats killed on the 30th day after surgery. Since no difference in areas between innervated and denervated hemi-mandibles was found, bone mineral density was also significantly lower in the hemi-mandible ipsilateral to Gx. The results further support that a regional sympathectomy causes qualitative alterations in bone modeling and remodeling, leading to bone resorption.

  17. High-fat Diet Decreases Cancellous Bone Mass But Has No Effect on Cortical Bone Mass in the Tibia in Mice

    Science.gov (United States)

    Introduction: Body mass has a positive effect on bone mineral density and the strength. Whether mass derived from an obesity condition is beneficial to bone has not been established; neither have the mechanism by which obesity affects bone metabolism. The aim of this study was to examine the effects...

  18. The effects of luteolin on osteoclast differentiation, function in vitro and ovariectomy-induced bone loss.

    Science.gov (United States)

    Kim, Tae-Ho; Jung, Ji Won; Ha, Byung Geun; Hong, Jung Min; Park, Eui Kyun; Kim, Hyun-Ju; Kim, Shin-Yoon

    2011-01-01

    Flavonoids, a group of polyphenolic compounds abundant in plants, are known to prevent bone loss in ovariectomized (OVX) animal models. Inhibition of osteoclast differentiation and bone resorption is considered as an effective therapeutic approach in the treatment of postmenopausal bone loss. Luteolin, a plant flavonoid, has potent anti-inflammatory properties both in vivo and vitro. In this study, we found that luteolin markedly decreased the differentiation of both bone marrow mononuclear cells and Raw264.7 cells into osteoclasts. Luteolin also inhibited the bone resorptive activity of differentiated osteoclasts. We further investigated the effects of luteolin on ovariectomy-induced bone loss using micro-computed tomography, biomechanical tests and serum markers assay for bone remodeling. Oral administration of luteolin (5 and 20 mg/kg per day) to OVX mice caused significant increase in bone mineral density and bone mineral content of trabecular and cortical bones in the femur as compared to those of OVX controls, and prevented decreases of bone strength indexes induced by OVX surgery. Serum biochemical markers assays revealed that luteolin prevents OVX-induced increases in bone turnover. These data strongly suggest that luteolin has the potential for prevention of bone loss in postmenopausal osteoporosis by reducing both osteoclast differentiation and function. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. The Effect of Acupuncture on Bone Mineral Density in Postmenopausal Women

    Institute of Scientific and Technical Information of China (English)

    欧阳钢; 王玲玲; 王东岩; 卓铁军; 申志祥

    2002-01-01

    @@ According to the TCM theory that the kidney is in charge of the bone, the authors carried out a study on the effect of acupuncture on bone mineral density in 40 postmenopausal women with osteoporosis treated by the method of reinforcing the kidney to strengthen the bone, with satisfactory therapeutic results reported as follows.

  20. Effect of regular anti-osteoporosis treatment on bone mineral density and bone metabolism in patients with primary osteoporosis and its relationship with bone fractures

    Institute of Scientific and Technical Information of China (English)

    Xue-Feng Qian; Ping Cao; Shuan Liu; Hong-Ping Yang; Ming-Yong Zhang

    2016-01-01

    Objective:To analyze the effect of regular anti-osteoporosis treatment on bone mineral density and bone metabolism in patients with primary osteoporosis and its relationship with bone fractures.Methods:A total of 120 patients with primary osteoporosis were included in this study and randomly divided into observation group and control group (n=60). Control group received consistent treatment, observation group received individualized regular anti-osteoporosis treatment, and then the differences in bone mineral density, bone metabolism, trace elements, oxidative stress, fracture incidence, and so on were compared between two groups of patients 1 year after treatment.Results:Absolute BMD value of observation group after treatment was higher than that of control group; serum bone formation indexes ALP, BGP, PⅠNP and PⅠCP content were higher than those of control group; serum bone resorption indexesβ-CTX, sRANKL, TRACP, BAP and DPD content were lower than those of control group; serum trace elements iron and zinc content were higher than those of control group while calcium content was lower than that of control group; serum AOPP and MAOA content of observation group were significantly lower than those of control group while SOD and T-AOC content were significantly higher than those of control group;fracture incidence was significantly lower than that of control group during treatment.Conclusions:The regular anti-osteoporosis treatment can increase bone mineral density, optimize the overall condition and reduce the incidence of long-term fracture in patients with primary osteoporosis.

  1. Effects of bone morphogenetic protein-2 on bone cells in primary culture: immunohistochemical and electronmicroscopical studies

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, I.; Prochnow, N.; Mueller, K.M. [Berufsgenossenschaftliche Kliniken Bergmannsheil, Bochum (Germany). Inst. fuer Pathologie; Wiemann, M.; Schirrmacher, K.; Bingmann, D. [Essen Univ. (Germany). Inst. fuer Physiologie; Sebald, W. [Wuerzburg Univ. (Germany). Inst. fuer Physiologische Chemie II

    2001-02-01

    Bone morphogenetic protein 2 (BMP-2), among other morphogenetic effects on non osseous tissues, promotes bone formation in vivo. Therefore, BMP-2 may accelerate the integration of osseous implants. Although the effects of BMPs on cell proliferation have been studied extensively in vivo or in cell lines, little is published about effects on bone cells in primary cultures, especially on cell differentiation. As such information is a prerequisite to understand and to control effects of BMPs on cells at the surface of implant materials, the present experiments aimed to describe effects of BMP-2 on primary cultures derived from calvarial fragments of neonatal rats. The cells were stimulated with 50 nM BMP-2 added to the nutrient medium for 3 or 6 days. Light- and electronmicroscopical studies showed that cells in the sprouting zones were larger and more often spindle shaped. Stimulated cells had more nucleoli than control cells and the endoplasmic reticulum was widened. They retained properties of typical bone cells: An immunhistochemical analysis showed that stimulated cells increased the activity of alkaline phosphatase, they secreted collagen type I and to a minor extent collagen type III. In BMP-2 treated cells the pattern of cells stained for actin, desmin and vimentin hardly changed whereas extracellular fibronectin appeared to be less cross-linked in BMP-2 treated cultures. The distribution and labeling strength of osteocalcin, a specific marker protein of bone cells did not change markedly. After exposure to BMP-2 cells tended to detach from the cover slips. Electron microscopy showed a reduced number of cell processes possibly facilitating the detachment and/or mobility. Stimulated cells contained an increased number of lamellar bodies which may reflect an increased synthesis and/or membrane turnover. Staining of non-osseous cells with anti-CD68-or anti-myeloid antibodies revealed that the small percentage of these cells regularly occurring in primary cultures

  2. One-year clinical study of NeuroRegen scaffold implantation following scar resection in complete chronic spinal cord injury patients.

    Science.gov (United States)

    Xiao, Zhifeng; Tang, Fengwu; Tang, Jiaguang; Yang, Huilin; Zhao, Yannan; Chen, Bing; Han, Sufang; Wang, Nuo; Li, Xing; Cheng, Shixiang; Han, Guang; Zhao, Changyu; Yang, Xiaoxiong; Chen, Yumei; Shi, Qin; Hou, Shuxun; Zhang, Sai; Dai, Jianwu

    2016-07-01

    The objective of this clinical study was to assess the safety and feasibility of the collagen scaffold, NeuroRegen scaffold, one year after scar tissue resection and implantation. Scar tissue is a physical and chemical barrier that prevents neural regeneration. However, identification of scar tissue is still a major challenge. In this study, the nerve electrophysiology method was used to distinguish scar tissue from normal neural tissue, and then different lengths of scars ranging from 0.5-4.5 cm were surgically resected in five complete chronic spinal cord injury (SCI) patients. The NeuroRegen scaffold along with autologous bone marrow mononuclear cells (BMMCs), which have been proven to promote neural regeneration and SCI recovery in animal models, were transplanted into the gap in the spinal cord following scar tissue resection. No obvious adverse effects related to scar resection or NeuroRegen scaffold transplantation were observed immediately after surgery or at the 12-month follow-up. In addition, patients showed partially autonomic nervous function improvement, and the recovery of somatosensory evoked potentials (SSEP) from the lower limbs was also detected. The results indicate that scar resection and NeuroRegen scaffold transplantation could be a promising clinical approach to treating SCI.

  3. [Telmisartan effect's on remodelling bone markers in hypertensive patients].

    Science.gov (United States)

    Pérez-Castrillón, J L; De Luis, D; Inglada, L; Olmos Martínez, J M; Pinacho, F; Conde, R; González-Sagrado, M; Dueñas-Laita, A

    2012-01-01

    The telmisartan is an angiotensin II receptor blocker (ARB) with a few own characteristics that it allows us to obtain a few additional benefits. It displays the ability to act as a partial agonist of PPARgamma. On the other hand, PPAR gamma intervenes in the control of bone remodelling though with not concordant results. The objective of this study to value the effect of telmisartan on bone markers in hypertensive patients. A sample of 31 hypertensive patients with hypertension were included. The dose of telmisartan was of 80 mg/24 h and the period of follow-up was 12 weeks. The control group included 32 hypertensive patients treated before with IECA (enalapril-20 mg/24 h - or quinapril - 40 mg/24 hours). The following parameters were determined P1NP, β-CTX, 25OHD and PTH , osteocalcin, insulin and adiponectin. The patients treated with Telmisartan shown a significantly decrease in systolic blood pressure (156 ± 19 mmHg vs 133 ± 15 mmHg, p = 0.001) and diastolic blood pressure (92 ± 9 mmHg vs 82 ± 6 mmHg, p = 0.01) . Changes were not observed in other parameter, PTHi (48 ± 22 pg/ml vs 45 ± 22 pg/ml, p > 0.05) and 25-vitamin D (21 ± 10 ng/ml vs 25 ± 8 ng/ml, p > 0.05), CTX (0.195 ± 0.12 ng/ml vs 0.221 ± 0.13 ng/ml, p > 0.05), PINP (39 ± 20 ng/ml vs 40 ± 19 ng/ml, p > 0.05), osteocalcin (11 ± 9 ng/ml vs 11 ± 5 ng/ml, p > 0.05), glucose, adiponectin, insulin and HOMA. When the patients divided in two groups depending on the levels of vitamin D (insufficient and not insufficient), with a cut of 20 ng/ml, there was changes on bone markers but a decrease of the glucose was observed in patients with levels of vitamin D over 20 ng/ml (135 ± 53 mg/dl vs 119 ± 39 mg/dl, p = 0.01). The patients treated with IECAS decreases the systolic blood pressure but the diastolic blood pressure values of arterial systolic does not show changes. Telmisartan has a neutral effect to level of the bone markers of bone remodelling.

  4. Clinical evaluation of regenerative potential of type I collagen membrane along with xenogenic bone graft in the treatment of periodontal intrabony defects assessed with surgical re-entry and radiographic linear and densitometric analysis

    Directory of Open Access Journals (Sweden)

    Sowmya N

    2010-01-01

    Full Text Available Background and Objectives: The primary goal of periodontal therapy is to restore the tooth supporting tissues lost due to periodontal disease. The aim of the present study was to compare the efficacy of combination of type I collagen (GTR membrane and xenogenic bone graft with open flap debridement (OFD in treatment of periodontal intrabony defects. Materials and Methods: Twenty paired intrabony defects were surgically treated using split mouth design. The defects were randomly assigned to treatment with OFD + collagen membrane + bone graft (Test or OFD alone (Control. The clinical efficacy of two treatment modalities was evaluated at 9 month postoperatively by clinical, radiographical, and intrasurgical (re-entry parameters. The measurements included probing pocket depth (PD, clinical attachment level (CAL, gingival recession (GR, bone fill (BF, bone density (BD and intra bony component (INTRA. Results: The mean reduction in PD at 0-9 month was 3.3±0.82 mm and CAL gain of 3.40±1.51 mm occurred in the collagen membrane + bone graft (Test group; corresponding values for OFD (Control were 2.20±0.63 mm and 1.90±0.57 mm. Similar pattern of improvement was observed when radiographical and intra-surgical (re-entry post operative evaluation was made. All improvement in different parameters was statistically significant (P< 0.01. Interpretation and Conclusion: Treatment with a combination of collagen membrane and bone graft led to a significantly more favorable clinical outcome in intrabony defects as compared to OFD alone.

  5. Effect of Progressive Locomotor Treadmill Compared to Conventional Training on Bone Mineral Density and Bone Remodeling in Paraplegia

    Directory of Open Access Journals (Sweden)

    Ghasemi Mobarake

    2016-11-01

    Full Text Available Background The decrease in bone mass in paraplegic spinal cord injured persons increases the risk factors for fractures. Objectives The aim of the present study was to evaluate the effects of progressive locomotor treadmill training (LT on muscle mass, bone mineral density, and bone remodeling in paraplegia patients. Methods The subjects investigated in this research included seventeen paraplegic spinal cord injured persons who were divided randomly into two groups: LT group (n = 10 and conventional exercise group (n = 7. The exercise training protocol was performed during 12 weeks, 3 days a week, 60 minutes a session. LT included 15 minutes warm-up on stationary bike plus 45 minutes LT with 50 percent body-weight support and finally 10 minutes cool-down as an adjunct to a conventional physiotherapy program. 10 percent loading weight was added per week for LT. Conventional exercise training incorporated 15 minutes warm-up plus 45 minutes over-ground training such as stretch exercise and resistance training. Results The obtained results showed that there were significant differences in serum alkaline phosphatase levels (P < 0.001, osteocalcin levels (P = 0.003, bone mineral content (BMC of the femoral neck (P < 0.001, bone mineral density (BMD of femoral neck (P < 0.001, bone mineral content (BMC of the lumbar spine (P < 0.001, and bone mineral density (BMD of the lumbar spine (P = 0.000 between LT and conventional exercise regimes. Conclusions LT training, in addition to improvement of motor function and reduction of bone loss, can be prescribed as an effective exercise intervention for the treatment of osteoporosis in incomplete spinal cord injured persons.

  6. Biomimetic microenvironments for regenerative endodontics.

    Science.gov (United States)

    Kaushik, Sagar N; Kim, Bogeun; Walma, Alexander M Cruz; Choi, Sung Chul; Wu, Hui; Mao, Jeremy J; Jun, Ho-Wook; Cheon, Kyounga

    2016-01-01

    Regenerative endodontics has been proposed to replace damaged and underdeveloped tooth structures with normal pulp-dentin tissue by providing a natural extracellular matrix (ECM) mimicking environment; stem cells, signaling molecules, and scaffolds. In addition, clinical success of the regenerative endodontic treatments can be evidenced by absence of signs and symptoms; no bony pathology, a disinfected pulp, and the maturation of root dentin in length and thickness. In spite of the various approaches of regenerative endodontics, there are several major challenges that remain to be improved: a) the endodontic root canal is a strong harbor of the endodontic bacterial biofilm and the fundamental etiologic factors of recurrent endodontic diseases, (b) tooth discolorations are caused by antibiotics and filling materials, (c) cervical root fractures are caused by endodontic medicaments, (d) pulp tissue is not vascularized nor innervated, and (e) the dentin matrix is not developed with adequate root thickness and length. Generally, current clinical protocols and recent studies have shown a limited success of the pulp-dentin tissue regeneration. Throughout the various approaches, the construction of biomimetic microenvironments of pulp-dentin tissue is a key concept of the tissue engineering based regenerative endodontics. The biomimetic microenvironments are composed of a synthetic nano-scaled polymeric fiber structure that mimics native pulp ECM and functions as a scaffold of the pulp-dentin tissue complex. They will provide a framework of the pulp ECM, can deliver selective bioactive molecules, and may recruit pluripotent stem cells from the vicinity of the pulp apex. The polymeric nanofibers are produced by methods of self-assembly, electrospinning, and phase separation. In order to be applied to biomedical use, the polymeric nanofibers require biocompatibility, stability, and biodegradability. Therefore, this review focuses on the development and application of the

  7. Effect of platelet-rich plasma on the healing of intra-bony defects treated with a natural bone mineral and a collagen membrane.

    NARCIS (Netherlands)

    Dori, F.; Huszar, T.; Nikolidakis, D.; Arweiler, N.B.; Gera, I.; Sculean, A.

    2007-01-01

    BACKGROUND: Regenerative periodontal therapy with a combination of platelet-rich plasma (PRP)+a natural bone mineral (NBM)+guided tissue regeneration (GTR) has been shown to result in significantly higher probing depth reductions and clinical attachment-level gains compared with treatment with open

  8. Effect of platelet-rich plasma on the healing of intrabony defects treated with an anorganic bovine bone mineral and expanded polytetrafluoroethylene membranes.

    NARCIS (Netherlands)

    Dori, F.; Huszar, T.; Nikolidakis, D.; Arweiler, N.B.; Gera, I.; Sculean, A.

    2007-01-01

    BACKGROUND: Regenerative periodontal therapy with a combination of platelet-rich plasma (PRP) + an anorganic bovine bone mineral (ABBM) + guided tissue regeneration (GTR) has been shown to result in significantly higher probing depth reductions and clinical attachment level gains compared to treatme

  9. Regenerative Potential of Mesenchymal Stromal Cells: Age-Related Changes

    Science.gov (United States)

    Bruna, Flavia; Contador, David; Conget, Paulette; Erranz, Benjamín; Sossa, Claudia L.; Arango-Rodríguez, Martha L.

    2016-01-01

    Preclinical and clinical studies have shown that a therapeutic effect results from mesenchymal stromal cells (MSCs) transplant. No systematic information is currently available regarding whether donor age modifies MSC regenerative potential on cutaneous wound healing. Here, we evaluate whether donor age influences this potential. Two different doses of bone marrow MSCs (BM-MSCs) from young, adult, or old mouse donors or two doses of their acellular derivatives mesenchymal stromal cells (acd-MSCs) were intradermally injected around wounds in the midline of C57BL/6 mice. Every two days, wound healing was macroscopically assessed (wound closure) and microscopically assessed (reepithelialization, dermal-epidermal junction, skin appendage regeneration, granulation tissue, leukocyte infiltration, and density dermal collagen fibers) after 12 days from MSC transplant. Significant differences in the wound closure kinetic, quality, and healing of skin regenerated were observed in lesions which received BM-MSCs from different ages or their acd-MSCs compared to lesions which received vehicle. Nevertheless, our data shows that adult's BM-MSCs or their acd-MSCs were the most efficient for recovery of most parameters analyzed. Our data suggest that MSC efficacy was negatively affected by donor age, where the treatment with adult's BM-MSCs or their acd-MSCs in cutaneous wound promotes a better tissue repair/regeneration. This is due to their paracrine factors secretion. PMID:27247575

  10. Genetic Engineering of Mesenchymal Stem Cells for Regenerative Medicine.

    Science.gov (United States)

    Nowakowski, Adam; Walczak, Piotr; Janowski, Miroslaw; Lukomska, Barbara

    2015-10-01

    Mesenchymal stem cells (MSCs), which can be obtained from various organs and easily propagated in vitro, are one of the most extensively used types of stem cells and have been shown to be efficacious in a broad set of diseases. The unique and highly desirable properties of MSCs include high migratory capacities toward injured areas, immunomodulatory features, and the natural ability to differentiate into connective tissue phenotypes. These phenotypes include bone and cartilage, and these properties predispose MSCs to be therapeutically useful. In addition, MSCs elicit their therapeutic effects by paracrine actions, in which the metabolism of target tissues is modulated. Genetic engineering methods can greatly amplify these properties and broaden the therapeutic capabilities of MSCs, including transdifferentiation toward diverse cell lineages. However, cell engineering can also affect safety and increase the cost of therapy based on MSCs; thus, the advantages and disadvantages of these procedures should be discussed. In this review, the latest applications of genetic engineering methods for MSCs with regenerative medicine purposes are presented.

  11. Effects of Spaceflight on Bone Microarchitecture in the Axial and Appendicular Skeleton in Growing Ovariectomized Rats.

    Science.gov (United States)

    Keune, Jessica A; Branscum, Adam J; Iwaniec, Urszula T; Turner, Russell T

    2015-12-22

    This study investigated the effects of a 14-day spaceflight on bone mass, density and microarchitecture in weight bearing (femur and humerus) and non-weight bearing (2(nd) lumbar vertebra and calvarium) bones in the context of ovarian hormone insufficiency. 12-week-old Fisher 344 rats were ovariectomized 2 weeks before flight and randomized into one of three groups: 1) baseline (n = 6), 2) ground control (n = 12) or 3) spaceflight (n = 12). Additional ground-based ovary-intact rats provided age-matched reference values at baseline (n = 8) and landing (n = 10). Ovariectomy resulted in bone- and bone compartment-specific deficits in cancellous bone volume fraction. Spaceflight resulted in lower cortical bone accrual in the femur but had no effect on cortical bone in the humerus or calvarium. Cancellous bone volume fraction was lower in flight animals compared to ground control animals in lumbar vertebra and distal femur metaphysis and epiphysis; significant differences were not detected in the distal humerus. Bone loss (compared to baseline controls) in the femur metaphysis was associated with lower trabecular number, whereas trabecular thickness and number were lower in the epiphysis. In summary, the effect of spaceflight on bone microarchitecture in ovariectomized rats was bone-and bone compartment-specific but not strictly related to weight bearing.

  12. Remodelling of bone and bones. Effects of altered mechanical stress on anlages.

    Science.gov (United States)

    Storey, E; Feik, S A

    1982-04-01

    Tails from 4-day-old Sprague-Dawley rats were bent in situ or skinned bent tail segments were transplanted s.c. into 50 g hosts. Tissue changes were studied for up to 24 weeks by radiographic and histological techniques. The early changes in situ resulted largely from limited translation of bones within their encasing tissues with resorption on the leading (pressure) side inducing thinning, and on the trailing (tension) side thickening of bone. The changes in transplanted anlages occurred in 3 stages: initially, bending of the anlages, with tension between the stretched periosteum and the outer bone surface inducing formation, and compression of cartilage and bone on the inner aspect leading to resorption; then resumption of longitudinal growth and expansion of the bent loop leading to translation of bones within the encasing soft tissues with resorption and thinning of bone on the leading pressure side and formation, with thickening of the inner shaft, on the trailing tension side; and finally with cessation of growth and translation, a reversal to the previous phase. The results support the hypothesis that 2 processes are involved: first, internal stress, and second, translation of bones with, in all instances, pressure inducing resorption and tension inducing formation of bone.

  13. The effects of bone marrow aspirate, bone graft, and collagen composites on fixation of titanium implants

    DEFF Research Database (Denmark)

    Babiker, Hassan; Ding, Ming; Sandri, Monica

    2012-01-01

    Replacement of extensive local bone loss especially in revision joint arthroplasty and spine fusion is a significant clinical challenge. Allograft and autograft have been considered as gold standards for bone replacement. However, there are several disadvantages such as donor site pain, bacterial...

  14. Advances in regenerative orthopedics.

    Science.gov (United States)

    Evans, Christopher H

    2013-11-01

    Orthopedic injuries are common and a source of much misery and economic stress. Several relevant tissues, such as cartilage, meniscus, and intra-articular ligaments, do not heal. And even bone, which normally regenerates spontaneously, can fail to mend. The regeneration of orthopedic tissues requires 4 key components: cells, morphogenetic signals, scaffolds, and an appropriate mechanical environment. Although differentiated cells from the tissue in question can be used, most cellular research focuses on the use of mesenchymal stem cells. These can be retrieved from many different tissues, and one unresolved question is the degree to which the origin of the cells matters. Embryonic and induced pluripotent stem cells are also under investigation. Morphogenetic signals are most frequently supplied by individual recombinant growth factors or native mixtures provided by, for example, platelet-rich plasma; mesenchymal stem cells are also a rich source of trophic factors. Obstacles to the sustained delivery of individual growth factors can be addressed by gene transfer or smart scaffolds, but we still lack detailed, necessary information on which delivery profiles are needed. Scaffolds may be based on natural products, synthetic materials, or devitalized extracellular matrix. Strategies to combine these components to regenerate tissue can follow traditional tissue engineering practices, but these are costly, cumbersome, and not well suited to treating large numbers of individuals. More expeditious approaches make full use of intrinsic biological processes in vivo to avoid the need for ex vivo expansion of autologous cells and multiple procedures. Clinical translation remains a bottleneck. Copyright © 2013 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  15. The effect of bone marrow aspirate, bone graft and collagen composites on fixation of bone implants

    DEFF Research Database (Denmark)

    Babiker, Hassan; Ding, Ming; Overgaard, Søren

    2007-01-01

    or allograft (control group). The bone marrow was harvested by aspiration from the proximal part of the tibia. Autologous bone graft harvested from the four drill holes in the femoral condyles. A standardised surgical procedure was used. After surgery the sheep were observed at the outdoor facilities...... part of the implant. Specimens are preserving now at - 20°C and wait for the push-out test which is destructive and will be performed on an 858 Bionex MTS hydraulic material testing machine (MTS system cooperation, Minneapolis, Minnesota, USA). The specimens for histological analysis were taken from...

  16. Eco-inventory for energy systems: Example regenerative energy systems; Oekoinventare fuer Energiesysteme: Beispiel regenerative Energiesysteme

    Energy Technology Data Exchange (ETDEWEB)

    Doka, G. [Inst. fuer Energietechnik, ETH, Zurich (Switzerland); Frischknecht, R. [Inst. fuer Energietechnik, ETH, Zurich (Switzerland); Hofstetter, P. [Inst. fuer Energietechnik, ETH, Zurich (Switzerland); Knoepfel, I. [Inst. fuer Energietechnik, ETH, Zurich (Switzerland); Suter, P. [Inst. fuer Energietechnik, ETH, Zurich (Switzerland); Walder, E. [Inst. fuer Energietechnik, ETH, Zurich (Switzerland); Dones, R. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1995-10-01

    The article describes the relevant process chains for the final energy supply from regenerative energy sources and the occurring environmental effects, such as emissions of noxious matter and consumption of resources. There is considered the electricity generation in photo-voltaic small-scale plants and water power plants. (orig.) [Deutsch] Der Beitrag beschreibt zur Endenergiebereitstellung aus regenerativen Energiequellen massgeblichen Prozessketten und die dabei auftretenden Umwelteinwirkungen, wie Schadstoffemissionen und Ressourcenverbraeuche. Betrachtet wird die Elektrizitaetserzeugung in photovoltaischen Kleinanlagen und Wasserkraftanlagen. (orig.)

  17. Effect on Hydration and Hardening of Tricalcium Phosphate Bone Cement

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The bioactive α-Ca3 (PO4)2 bone cement was studied by XRD , SEM and isothermal calorimetric measurements. The results showed that a mixed pattern of TCP and hydroxylapatite were obtained after hydration and hardening. The mechanism of hydration and hardening of the α-Ca3 ( PO4 )2 was dissolution-precipitation,(NH4) H2 PO4 was the best set accelerator to the α-Ca3 ( PO4 )2 cement, and the HAP powers and the(NH4) H2 PO4 concentration had a great effect on the hydration rate of α-Ca3 ( PO4 )2.

  18. Effect of the "protein diet" and bone tissue

    OpenAIRE

    Zoraide Nascimento da Silva; Vanessa Azevedo de Jesuz; Eduardo de Salvo Castro; Carlos Alberto Soares da Costa; Gilson Teles Boaventura; Vilma Blondet de Azeredo

    2014-01-01

    The aim of this study is to evaluate the effect of the hyperproteic diet consumption on bone tissue. Methods: The study was conducted during sixty days. Twenty eight Wistar albinus rats, adults, originated from Laboratory of Experimental Nutrition were divided in four groups: (n = 7); Control 1 (C1), Control 2 (C2), Hyperproteic 1 (HP1) e Hyperproteic 2 (HP2). The C2 and HP2 groups were submitted to 30% of food restriction. The hyperproteic diet was based on the Atkins diet and prepared to si...

  19. Effects of Platelet Factor 4 on Expression of Bone Marrow Heparan Sulfate in Syngenic Bone Marrow Transplantation Mice

    Institute of Scientific and Technical Information of China (English)

    孟凡凯; 孙汉英; 刘文励; 袁慧玲; 徐惠珍; 孙岚; 周银莉; 任天华

    2002-01-01

    Summary: To explore the effects of platelet factor 4(PF4) on hematopoietic reconstitution and its mechanism in syngenic bone marrow transplantation (BMT). The syngenic BMT mice models were established. 20 and 26 h before irradiation, the mice were injected 20 μg/kg PF4 or PBS twice into abdominal cavity, then the donor bone marrow nuclear cells (BMNC) were transplanted. On the 7th day, spleen clone forming units (CFU-S) were counted. On the 7th, 14th and 21st day after BMT, the BMNC and megakaryoryocytes in bone marrow tissue were counted and the percentage of hematopoietic tissue and expression level of heparan sulfate in bone marrow tissue were assessed. In PF4-treated groups, the CFU-S counts on the 7th day were higher than those in BMT groups after BMT. The BMNC and megakaryoryocyte counts and the percentage of hematopoietic tissue and heparan sulfate expression level were higher than those in BMT group on the 7th, 14th and 21st day after BMT (P<0. 01 or P<0. 05). PF4 could accelerate hematopoietic reconstitution of syngenic bone marrow transplantation. The promotion of the heparan sulfate expression in bone marrow may be one of mechanisms of PF4.

  20. Effects of intramuscular administration of 1α,25(OH)2D3 during skeletal muscle regeneration on regenerative capacity, muscular fibrosis, and angiogenesis.

    Science.gov (United States)

    Srikuea, Ratchakrit; Hirunsai, Muthita

    2016-06-15

    The recent discovery of the vitamin D receptor (VDR) in regenerating muscle raises the question regarding the action of vitamin D3 on skeletal muscle regeneration. To investigate the action of vitamin D3 on this process, the tibialis anterior muscle of male C57BL/6 mice (10 wk of age) was injected with 1.2% BaCl2 to induce extensive muscle injury. The bioactive form of vitamin D3 [1α,25(OH)2D3] was administered daily via intramuscular injections during the regenerative phase (days 4-7 postinjury). Physiological and supraphysiological doses of 1α,25(OH)2D3 relative to 1 μg/kg muscle wet weight and mouse body weight were investigated. Muscle samples were collected on day 8 postinjury to examine proteins related to vitamin D3 metabolism (VDR, CYP24A1, and CYP27B1), satellite cell differentiation and regenerative muscle fiber formation [myogenin and embryonic myosin heavy chain (EbMHC)], protein synthesis signaling (Akt, p70 S6K1, 4E-BP1, and myostatin), fiber-type composition (fast and slow MHCs), fibrous formation (vimentin), and angiogenesis (CD31). Administration of 1α,25(OH)2D3 at physiological and supraphysiological doses enhanced VDR expression in regenerative muscle. Moreover, CYP24A1 and vimentin expression was increased, accompanying decreased myogenin and EbMHC expression at the supraphysiological dose. However, there was no change in CYP27B1, Akt, p70 S6K1, 4E-BP1, myostatin, fast and slow MHCs, or CD31 expression at any dose investigated. Taken together, administration of 1α,25(OH)2D3 at a supraphysiological dose decreased satellite cell differentiation, delayed regenerative muscle fiber formation, and increased muscular fibrosis. However, protein synthesis signaling, fiber-type composition, and angiogenesis were not affected by either 1α,25(OH)2D3 administration at a physiological or supraphysiological dose.

  1. Effect of combined teriparatide and monthly minodronic acid therapy on cancellous bone mass in ovariectomized rats: a bone histomorphometry study.

    Science.gov (United States)

    Iwamoto, Jun; Seki, Azusa; Sato, Yoshihiro

    2014-07-01

    The purpose of the present study was to determine whether teriparatide and monthly minodronic acid would have an additive effect on cancellous bone mass in ovariectomized rats. Seven-week-old female Sprague-Dawley rats were randomized into five groups of 10 animals each, including a sham-operation+vehicle group, an ovariectomy (OVX)+vehicle group, an OVX+minodronic acid (6 μg/kgs.c., every 4 weeks) group, an OVX+teriparatide (20 μg/kgs.c., daily) group, and an OVX+minodronic acid+teriparatide group. After the 12-week experimental period, static and dynamic histomorphometric analyses were performed on the cancellous bone of the tibial proximal metaphysis. OVX decreased the bone volume per total volume (BV/TV) and the trabecular number (Tb.N) and increased the trabecular separation (Tb.Sp) as a result of increased bone remodeling. Minodronic acid prevented the OVX-induced decreases in BV/TV, while teriparatide increased the BV/TV and trabecular width (Tb.Wi) beyond the values of the sham controls. Minodronic acid prevented, but teriparatide only mitigated, the OVX-induced decrease in Tb.N, although both drugs similarly prevented the OVX-induced increase in Tb.Sp. A combination of teriparatide and minodronic acid further increased the BV/TV and Tb.N and decreased the Tb.Sp as a result of the suppression of bone remodeling, compared with teriparatide alone. These results suggest the differential effect of teriparatide and monthly minodronic acid on cancellous bone structure and the additive effect of the two drugs on cancellous bone mass in OVX rats. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. [EFFECT OF BONE MARROW MESENCHYMAL STEM CELLS ON GASTRIC ULCER REPAIRING].

    Science.gov (United States)

    Wang, Guozhong; Li, Chengjun; Fan, Xichao; Li, Bo; Xiao, Wei; Jin, Li

    2015-07-01

    To explore the ettect and mechanisms of bone marrow mesenchymal stem cells (BMSCs) on healing quality of acetic acid-induced gastric ulcer. Forty-eight clean grade male Wistar rats were used to establish the model of gastric ulcer with acetic acid and were randomly divided into 3 groups after 3 days of modeling, 16 rats each group. After the abdominal cavity was open and stomach was pulled out, no treatment was given in group A, 150 µL phosphate buffered saline (PBS) and 150 µL BMSCs at passage 4+PBS (1 x 10(8) cells/100 µL) were injected into the gastric wall surrounding the ulcer at 5 different points in groups B and C respectively. After 10 days, the ulcer area was measured, the mucosal thickness and the number of dilated glands were tested in the regenerative mucosa by histological method. And the expression of vascular endothelial growth factor (VEGF) was detected at ulcerative margin by immunohistochemical method. The ulcer area in group C was significantly smaller than that of groups A and B (P 0.05). HE staining showed that group C had thicker regenerative gastric mucosa, less dilated glands, and more regular mucosal structure than groups A and B, showing significant differences in regenerative gastric mucosa thickness and dilated glands number (P 0.05). Immunohistochemical staining showed that the positive expression of VEGF in the ulcer margin mucosa of group C was significantly higher than that of groups A and B. The integral absorbance (IA) value of VEGF expression in group C was significantly higher than that in groups A and B (P 0.05). BMSCs can accelerate ulcer healing by the secretion of VEGF, and improve the quality of ulcer healing.

  3. Bone sparing effect of a novel phytoestrogen diarylheptanoid from Curcuma comosa Roxb. in ovariectomized rats.

    Directory of Open Access Journals (Sweden)

    Duangrat Tantikanlayaporn

    Full Text Available Phytoestrogens have been implicated in the prevention of bone loss in postmenopausal osteoporosis. Recently, an active phytoestrogen from Curcuma comosa Roxb, diarylheptanoid (DPHD, (3R-1,7-diphenyl-(4E,6E-4,6-heptadien-3-ol, was found to strongly promote human osteoblast function in vitro. In the present study, we demonstrated the protective effect of DPHD on ovariectomy-induced bone loss (OVX in adult female Sprague-Dawley rats with 17β-estradiol (E2, 10 µg/kg Bw as a positive control. Treatment of OVX animals with DPHD at 25, 50, and 100 mg/kg Bw for 12 weeks markedly increased bone mineral density (BMD of tibial metaphysis as measured by peripheral Quantitative Computed Tomography (pQCT. Histomorphometric analysis of bone structure indicated that DPHD treatment retarded the ovariectomy-induced deterioration of bone microstructure. Ovariectomy resulted in a marked decrease in trabecular bone volume, number and thickness and these changes were inhibited by DPHD treatment, similar to that seen with E2. Moreover, DPHD decreased markers of bone turnover, including osteocalcin and tartrate resistant acid phosphatase (TRAP activity. These results suggest that DPHD has a bone sparing effect in ovariectomy-induced trabecular bone loss and prevents deterioration of bone microarchitecture by suppressing the rate of bone turnover. Therefore, DPHD appears to be a promising candidate for preserving bone mass and structure in the estrogen deficient women with a potential role in reducing postmenopausal osteoporosis.

  4. Hysterectomy with ovarian conservation: effect on bone mineral density

    Energy Technology Data Exchange (ETDEWEB)

    Lareon, G.; Baillon, L. [Westmead Hospital, Westmead, NSW, (Australia). Department of Nuclear Medicine and Ultrasound

    1997-09-01

    Full text: There are conflicting data on the long-term effects of hysterectomy with ovarian conservation on bone mineral density (BMD). Accordingly, we performed a cross-sectional study on 58 women with premenopausal hysterectomy and ovarian conservation (group 1) and 59 women with natural menopause (group 2). No subjects had disorders or medications known to interfere with bone metabolism. Patients underwent bone densitometry of the lumbar spine and hip using a Norland XR-36. By chi-squared and one-way ANOVA, there were no differences in age: 55.4{+-} 11.0 y (1)v 57.6{+-} 9.8 y (2); exercise, alcohol or smoking consumption, family history of osteoporosis, height: 1.61 {+-} 0.08m (1) v 1.61 {+-} 0.08m (2); weight 67.7 {+-} 11.3kg (1) v 68.3 kg {+-} 12.5 kg (2); body mass index: 30.95 (1 ) v 26.26 (2). Lumbar spine BMD was also similar for the two groups [0.95 {+-} 0.18g/cm{sup 2} (1) v 0.94{+-} 0.21 g/cm{sup 2} (2)]. However, hysterectomy patients had a significantly lower hip BMD: 0.63 {+-} 0.16 g/cm{sup 2} v 0.76 {+-} 0.18 g/cm{sup 2} (p>0.001). Multivariate logistic regression showed that spine BMD was influenced by age, family history, height and weight (R{sup 2} = 0.37), but not prior hysterectomy. Hip BMD was related to age, hysterectomy, smoking and weight (R{sup 2} = o 45). We conclude that prior hysterectomy with ovarian conservation has an adverse effect on hip but not spine BMD.

  5. MicroRNA Delivery for Regenerative Medicine

    OpenAIRE

    Peng, Bo; Chen, Yongming; Leong, Kam W.

    2015-01-01

    MicroRNA (miRNA) directs post-transcriptional regulation of a network of genes by targeting mRNA. Although relatively recent in development, many miRNAs direct differentiation of various stem cells including induced pluripotent stem cells (iPSCs), a major player in regenerative medicine. An effective and safe delivery of miRNA holds the key to translating miRNA technologies. Both viral and nonviral delivery systems have seen success in miRNA delivery, and each approach possesses advantages an...

  6. Effect of rhBMP-2 Immobilized Anorganic Bovine Bone Matrix on Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Jung-Bo Huh

    2015-07-01

    Full Text Available Anorganic bovine bone matrix (Bio-Oss® has been used for a long time for bone graft regeneration, but has poor osteoinductive capability. The use of recombinant human bone morphogenetic protein-2 (rhBMP-2 has been suggested to overcome this limitation of Bio-Oss®. In the present study, heparin-mediated rhBMP-2 was combined with Bio-Oss® in animal experiments to investigate bone formation performance; heparin was used to control rhBMP-2 release. Two calvarial defects (8 mm diameter were formed in a white rabbit model and then implanted or not (controls with Bio-Oss® or BMP-2/Bio-Oss®. The Bio-Oss® and BMP-2/Bio-Oss® groups had significantly greater new bone areas (expressed as percentages of augmented areas than the non-implanted controls at four and eight weeks after surgery, and the BMP-2/Bio-Oss® group (16.50 ± 2.87 (n = 6 had significantly greater new bone areas than the Bio-Oss® group (9.43 ± 3.73 (n = 6 at four weeks. These findings suggest that rhBMP-2 treated heparinized Bio-Oss® markedly enhances bone regeneration.

  7. Effects of low-intensity pulsed ultrasound on new trabecular bone during bone-tendon junction healing in a rabbit model: a synchrotron radiation micro-CT study.

    Directory of Open Access Journals (Sweden)

    Hongbin Lu

    Full Text Available This study was designed to evaluate the effects of low-intensity pulsed ultrasound on bone regeneration during the bone-tendon junction healing process and to explore the application of synchrotron radiation micro computed tomography in three dimensional visualization of the bone-tendon junction to evaluate the microarchitecture of new trabecular bone. Twenty four mature New Zealand rabbits underwent partial patellectomy to establish a bone-tendon junction injury model at the patella-patellar tendon complex. Animals were then divided into low-intensity pulsed ultrasound treatment (20 min/day, 7 times/week and placebo control groups, and were euthanized at week 8 and 16 postoperatively (n = 6 for each group and time point. The patella-patellar tendon specimens were harvested for radiographic, histological and synchrotron radiation micro computed tomography detection. The area of the newly formed bone in the ultrasound group was significantly greater than that of control group at postoperative week 8 and 16. The high resolution three dimensional visualization images of the bone-tendon junction were acquired by synchrotron radiation micro computed tomography. Low-intensity pulsed ultrasound treatment promoted dense and irregular woven bone formation at week 8 with greater bone volume fraction, number and thickness of new trabecular bone but with lower separation. At week 16, ultrasound group specimens contained mature lamellar bone with higher bone volume fraction and thicker trabeculae than that of control group; however, there was no significant difference in separation and number of the new trabecular bone. This study confirms that low-intensity pulsed ultrasound treatment is able to promote bone formation and remodeling of new trabecular bone during the bone-tendon junction healing process in a rabbit model, and the synchrotron radiation micro computed tomography could be applied for three dimensional visualization to quantitatively evaluate

  8. An Intelligent Regenerative Braking Strategy for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Zhibin Song

    2011-09-01

    Full Text Available Regenerative braking is an effective approach for electric vehicles (EVs to extend their driving range. A fuzzy-logic-based regenerative braking strategy (RBS integrated with series regenerative braking is developed in this paper to advance the level of energy-savings. From the viewpoint of securing car stability in braking operations, the braking force distribution between the front and rear wheels so as to accord with the ideal distribution curve are considered to prevent vehicles from experiencing wheel lock and slip phenomena during braking. Then, a fuzzy RBS using the driver’s braking force command, vehicle speed, battery SOC, battery temperature are designed to determine the distribution between friction braking force and regenerative braking force to improve the energy recuperation efficiency. The experimental results on an “LF620” prototype EV validated the feasibility and effectiveness of regenerative braking and showed that the proposed fuzzy RBS was endowed with good control performance. The maximum driving range of LF620 EV was improved by 25.7% compared with non-RBS conditions.

  9. Regenerative Blower for EVA Suit Ventilation Fan

    Science.gov (United States)

    Izenson, Michael G.; Chen, Weibo; Paul, Heather L.

    2010-01-01

    Portable life support systems in future space suits will include a ventilation subsystem driven by a dedicated fan. This ventilation fan must meet challenging requirements for pressure rise, flow rate, efficiency, size, safety, and reliability. This paper describes research and development that showed the feasibility of a regenerative blower that is uniquely suited to meet these requirements. We proved feasibility through component tests, blower tests, and design analysis. Based on the requirements for the Constellation Space Suit Element (CSSE) Portable Life Support System (PLSS) ventilation fan, we designed the critical elements of the blower. We measured the effects of key design parameters on blower performance using separate effects tests, and used the results of these tests to design a regenerative blower that will meet the ventilation fan requirements. We assembled a proof-of-concept blower and measured its performance at sub-atmospheric pressures that simulate a PLSS ventilation loop environment. Head/flow performance and maximum efficiency point data were used to specify the design and operating conditions for the ventilation fan. We identified materials for the blower that will enhance safety for operation in a lunar environment, and produced a solid model that illustrates the final design. The proof-of-concept blower produced the flow rate and pressure rise needed for the CSSE ventilation subsystem while running at 5400 rpm, consuming only 9 W of electric power using a non-optimized, commercial motor and controller and inefficient bearings. Scaling the test results to a complete design shows that a lightweight, compact, reliable, and low power regenerative blower can meet the performance requirements for future space suit life support systems.

  10. Development of a combined radiation and full thickness burn injury minipig model to study the effects of uncultured adipose-derived regenerative cell therapy in wound healing.

    Science.gov (United States)

    Foubert, Philippe; Doyle-Eisele, Melanie; Gonzalez, Andreina; Berard, Felipe; Weber, Waylon; Zafra, Diana; Alfonso, Zeni; Zhao, Sherry; Tenenhaus, Mayer; Fraser, John K

    2017-03-01

    To develop an approach that models the cutaneous healing that occurs in a patient with full thickness thermal burn injury complicated by total body radiation exposure sufficient to induce sub-lethal prodromal symptoms. An assessment of the effects of an autologous cell therapy on wound healing on thermal burn injury with concomitant radiation exposure was used to validate the utility of the model. Göttingen minipigs were subjected to a 1.2 Gy total body irradiation by exposure to a 6 MV X-ray linear accelerator followed by ∼10 cm(2) full thickness burns (pre-heated brass block with calibrated spring). Three days after injury, wounds were excised to the underlying fascia and each animal was randomized to receive treatment with autologous adipose-derived regenerative cells (ADRC) delivered by local or intravenous injection, or vehicle control. Blood counts were used to assess radiation-induced marrow suppression. All animals were followed using digital imaging to assess wound healing. Full-thickness biopsies were obtained at 7, 14, 21 and 30 days' post-treatment. Compared to animals receiving burn injury alone, significant transient neutropenia and thrombocytopenia were observed in irradiated subjects with average neutrophil nadir of 0.79 × 10(3)/μl (day 15) and platelet nadir of 60 × 10(3)/μl (day 12). Wound closure through a combination of contraction and epithelialization from the wound edges occurred over a period of approximately 28 days' post excision and treatment. Re-epithelialization was accelerated in wounds treated with ADRC (mean 3.5-fold increase at 2 weeks post-treatment relative to control). This acceleration was accompanied by an average 67% increase in blood vessel density and 30% increase in matrix (collagen) deposition. Similar results were observed when ADRC were injected either directly into the wound or by intravenous administration. Although preliminary, this study provides a reproducible minipig model of thermal burn

  11. Multiple regenerative techniques for class II furcation defect

    Directory of Open Access Journals (Sweden)

    Pushpendra Kumar Verma

    2012-01-01

    Full Text Available Regeneration of the periodontium is a major goal in the treatment of teeth affected by periodontitis. Periodontal regeneration is quite challenging, especially when it is in the furcation area. There are several techniques used alone or in combination, considered to achieve periodontal regeneration, including bone grafts or substitutes, guided tissue regeneration, root surface modification, and biological mediators. Many factors may account for variability in the response to regenerative therapy in class II furcation. This case report describes the management of a buccal class II furcation defect, with the help of surgical intervention, including the guided tissue regeneration (GTR membrane and bone graft materials. This combined treatment resulted in a healthy periodontium, with radiographic evidence of alveolar bone gain. This case report demonstrates that proper diagnosis, followed by removal of the etiological factors and utilizing combined treatment modalities, restored health and function of the tooth with severe attachment loss, at the 18-month follow-up.

  12. LIVER AND BONE MARROW STEM/PROGENITOR CELLS AS REGULATORS OF REPARATIVE REGENERATION OF DAMAGED LIVER

    Directory of Open Access Journals (Sweden)

    А. V. Lundup

    2010-01-01

    Full Text Available In this review the modern information about effectiveness of liver insufficiency treatment by stem/ progenitor cells of liver (oval cells and bone marrow (hemopoietic cells and mesenchymal cells was presented. It is shown that medical action of these cells is referred on normalization of liver cell interaction and reorganization of processes of a reparative regeneration in damaged liver. It is believed that application of mesenchymal stromal cells from an autological bone marrow is the most perspective strategy. However, for definitive judgement about regenerative possibilities of the autological bone marrow cells it is necessary to carry out large-scale double blind clinical researches. 

  13. Relative and combined effects of ethanol and protein deficiency on bone manganese and copper.

    Science.gov (United States)

    González-Pérez, José M; González-Reimers, Emilio; DeLaVega-Prieto, María José; Durán-Castellón, María del Carmen; Viña-Rodríguez, José; Galindo-Martín, Luis; Alvisa-Negrín, Julio; Santolaria-Fernández, Francisco

    2012-06-01

    Both manganese and copper may affect bone synthesis. Bone content of both metals can be altered in alcoholics, although controversy exists regarding this matter. To analyse the relative and combined effects of ethanol and a low protein diet on bone copper and manganese, and their relationships with bone structure and metabolism, including trabecular bone mass (TBM), osteoid area (OA), osteocalcin (OCN), insulin-like growth factor-1 (IGF-1), parathyroid hormone (PTH), urinary hydroxyproline (uHP) and vitamin D. Adult male Sprague-Dawley rats were divided into four groups. The control rats received a 18% protein-containing diet; a second group, an isocaloric, 2% protein-containing diet; a third one, an isocaloric, 36% ethanol-containing diet and a fourth, an isocaloric diet containing 2% protein and 36% ethanol. After sacrifice, TBM and OA were histomorphometrically assessed; bone and serum manganese and copper were determined by atomic absorption spectrophotometry, and serum OCN, IGF-1, PTH, uHP and vitamin D by radioimmunoassay. Ethanol-fed rats showed decreased TBM and bone manganese. Significant relationships existed between bone manganese and TBM, serum IGF-1 and OCN. Ethanol leads to a decrease in bone manganese, related to decreased bone mass and bone synthesis. No alterations were found in bone copper.

  14. The unsolved case of “bone-impairing analgesics”: the endocrine effects of opioids on bone metabolism

    Science.gov (United States)

    Coluzzi, Flaminia; Pergolizzi, Joseph; Raffa, Robert B; Mattia, Consalvo

    2015-01-01

    The current literature describes the possible risks for bone fracture in chronic analgesics users. There are three main hypotheses that could explain the increased risk of fracture associated with central analgesics, such as opioids: 1) the increased risk of falls caused by central nervous system effects, including sedation and dizziness; 2) reduced bone mass density caused by the direct opioid effect on osteoblasts; and 3) chronic opioid-induced hypogonadism. The impact of opioids varies by sex and among the type of opioid used (less, for example, for tapentadol and buprenorphine). Opioid-associated androgen deficiency is correlated with an increased risk of osteoporosis; thus, despite that standards have not been established for monitoring and treating opioid-induced hypogonadism or hypoadrenalism, all patients chronically taking opioids (particularly at doses ≥100 mg morphine daily) should be monitored for the early detection of hormonal impairment and low bone mass density. PMID:25848298

  15. Surface chemistry and effects on bone regeneration of a novel biomimetic synthetic bone filler.

    Science.gov (United States)

    Morra, Marco; Giavaresi, Gianluca; Sartori, Maria; Ferrari, Andrea; Parrilli, Annapaola; Bollati, Daniele; Baena, Ruggero Rodriguez Y; Cassinelli, Clara; Fini, Milena

    2015-04-01

    The paper presents results of physico-chemical and biological investigations of a surface-engineered synthetic bone filler. Surface analysis confirms that the ceramic phosphate granules present a collagen nanolayer to the surrounding environment. Cell cultures tests show that, in agreement with literature reports, surface-immobilized collagen molecular cues can stimulate progression along the osteogenic pathway of undifferentiated human mesenchymal cells. Finally, in vivo test in a rabbit model of critical bone defects shows statistically significant increase of bone volume and mineral apposition rate between the biomimetic bone filler and collagen-free control. All together, obtained data confirm that biomolecular surface engineering can upgrade the properties of implant device, by promoting more specific and targeted implant-host cells interactions.

  16. Regenerative Endodontic Procedures: Clinical Outcomes.

    Science.gov (United States)

    Diogenes, Anibal; Ruparel, Nikita B

    2017-01-01

    Immature teeth are at risk for pulp necrosis, resulting in arrested root development and poor long-term prognosis. There is growing evidence that regenerative endodontic procedures promote desirable clinical outcomes. Despite significant advances in the field of regenerative endodontics and acceptable clinical outcomes, current evidence suggests that the tissues formed following currently used procedures do not completely recapitulate the former pulp-dentin complex. Further research is needed to identify prognostic factors and predictors of successful outcomes and to develop different treatment strategies to better predictably achieve all identified clinical outcomes, while favoring tissue formation that more closely resembles the pulp-dentin complex. Copyright © 2016. Published by Elsevier Inc.

  17. Effects of growth hormone and low dose estrogen on bone growth and turnover in long bones of hypophysectomized rats

    Science.gov (United States)

    Kidder, L. S.; Schmidt, I. U.; Evans, G. L.; Turner, R. T.

    1997-01-01

    Pituitary hormones are recognized as critical to longitudinal growth, but their role in the radial growth of bone and in maintaining cancellous bone balance are less clear. This investigation examines the histomorphometric effects of hypophysectomy (Hx) and ovariectomy (OVX) and the subsequent replacement of growth hormone (GH) and estrogen (E), in order to determine the effects and possible interactions between these two hormones on cortical and cancellous bone growth and turnover. The replacement of estrogen is of interest since Hx results in both pituitary and gonadal hormone insufficiencies, with the latter being caused by the Hx-associated reduction in follicle stimulating hormone (FSH). All hypophysectomized animals received daily supplements of hydrocortisone (500 microg/kg) and L-thyroxine (10 microg/kg), whereas intact animals received daily saline injections. One week following surgery, hypophysectomized animals received either daily injections of low-dose 17 beta-estradiol (4.8 microg/kg s.c.), 3 X/d recombinant human GH (2 U/kg s.c.), both, or saline for a period of two weeks. Flurochromes were administered at weekly intervals to label bone matrix undergoing mineralization. Whereas Hx resulted in reductions in body weight, uterine weight, and tibial length, OVX significantly increased body weight and tibial length, while reducing uterine weight. The combination of OVX and Hx resulted in values similar to Hx alone. Treatment with GH normalized body weight and bone length, while not affecting uterine weight in hypophysectomized animals. Estrogen increased uterine weight, while not impacting longitudinal bone growth and reduced body weight. Hypophysectomy diminished tibial cortical bone area through reductions in both mineral appositional rate (MAR) and bone formation rate (BFR). While E had no effect, GH increased both MAR and BFR, though not to sham-operated (control) levels. Hypophysectomy reduced proximal tibial trabecular number and cancellous bone

  18. Effects of growth hormone and low dose estrogen on bone growth and turnover in long bones of hypophysectomized rats

    Science.gov (United States)

    Kidder, L. S.; Schmidt, I. U.; Evans, G. L.; Turner, R. T.

    1997-01-01

    Pituitary hormones are recognized as critical to longitudinal growth, but their role in the radial growth of bone and in maintaining cancellous bone balance are less clear. This investigation examines the histomorphometric effects of hypophysectomy (Hx) and ovariectomy (OVX) and the subsequent replacement of growth hormone (GH) and estrogen (E), in order to determine the effects and possible interactions between these two hormones on cortical and cancellous bone growth and turnover. The replacement of estrogen is of interest since Hx results in both pituitary and gonadal hormone insufficiencies, with the latter being caused by the Hx-associated reduction in follicle stimulating hormone (FSH). All hypophysectomized animals received daily supplements of hydrocortisone (500 microg/kg) and L-thyroxine (10 microg/kg), whereas intact animals received daily saline injections. One week following surgery, hypophysectomized animals received either daily injections of low-dose 17 beta-estradiol (4.8 microg/kg s.c.), 3 X/d recombinant human GH (2 U/kg s.c.), both, or saline for a period of two weeks. Flurochromes were administered at weekly intervals to label bone matrix undergoing mineralization. Whereas Hx resulted in reductions in body weight, uterine weight, and tibial length, OVX significantly increased body weight and tibial length, while reducing uterine weight. The combination of OVX and Hx resulted in values similar to Hx alone. Treatment with GH normalized body weight and bone length, while not affecting uterine weight in hypophysectomized animals. Estrogen increased uterine weight, while not impacting longitudinal bone growth and reduced body weight. Hypophysectomy diminished tibial cortical bone area through reductions in both mineral appositional rate (MAR) and bone formation rate (BFR). While E had no effect, GH increased both MAR and BFR, though not to sham-operated (control) levels. Hypophysectomy reduced proximal tibial trabecular number and cancellous bone

  19. Effects of pioglitazone and fenofibrate co-administration on bone biomechanics and histomorphometry in ovariectomized rats.

    Science.gov (United States)

    Smith, Susan Y; Samadfam, Rana; Chouinard, Luc; Awori, Malaika; Bénardeau, Agnes; Bauss, Frieder; Guldberg, Robert E; Sebokova, Elena; Wright, Matthew B

    2015-11-01

    Pioglitazone, the peroxisome proliferator-activated receptor-gamma (PPAR-γ) agonist is an effective therapy for type 2 diabetes, but has been associated with increased risk for bone fracture. Preclinical studies suggest that PPAR-α agonists (e.g., fenofibrate) increase bone mineral density/content, although clinical data on bone effects of fibrates are lacking. We investigated the effects of pioglitazone (10 mg/kg/day) and fenofibrate (25 mg/kg/day) on bone strength and bone histomorphometric parameters in osteopenic ovariectomized (OVX) rats. An additional group of rats received a combination of pioglitazone + fenofibrate to mimic the effects of a dual PPAR-α/γ agonist. The study consisted of a 13-week treatment phase followed by a 6-week treatment-free recovery period. Pioglitazone significantly reduced biomechanical strength at the lumbar spine and femoral neck compared with rats administered fenofibrate. Co-treatment with pioglitazone + fenofibrate had no significant effect on bone strength in comparison with OVX vehicle controls. Histomorphometric analysis of the proximal tibia revealed that pioglitazone suppressed bone formation and increased bone resorption at both cancellous and cortical bone sites relative to OVX vehicle controls. In contrast, fenofibrate did not affect bone resorption and only slightly suppressed bone formation. Discontinuation of pioglitazone treatment, both in the monotherapy and in the combination therapy arms, resulted in restoration of bone formation and resorption rates, demonstrating reversibility of effects. The above data support the concept that dual activation of PPAR-γ and PPAR-α attenuates the negative effects of PPAR-γ agonism on bone strength.

  20. Analysis of Regen Cooling in Rocket Combustors

    Science.gov (United States)

    Harper, Brent (Technical Monitor); Merkle, C. L.; Li, D.; Sankaran, V.

    2004-01-01

    The use of detailed CFD modeling for the description of cooling in rocket chambers is discussed. The overall analysis includes a complete three-dimensional analysis of the flow in the regenerative cooling passages, conjugate heat transfer in the combustor walls, and the effects of film cooling on the inside chamber. The results in the present paper omit the effects of film cooling and include only regen cooling and the companion conjugate heat transfer. The hot combustion gases are replaced by a constant temperature wall boundary condition. Load balancing for parallel cluster computations is ensured by using single-block unstructured grids for both fluids and solids, and by using a 'multiple physical zones' to account for differences in the number of equations. Validation of the method is achieved by comparing simple two-dimensional solutions with analytical results. Representative results for cooling passages are presents showing the effects of heat conduction in the copper walls with tube aspect ratios of 1.5:l.

  1. Stem cells have the potential to rejuvenate regenerative medicine research.

    Science.gov (United States)

    Eve, David J; Fillmore, Randolph; Borlongan, Cesar V; Sanberg, Paul R

    2010-10-01

    The increasing number of publications featuring the use of stem cells in regenerative processes supports the idea that they are revolutionizing regenerative medicine research. In an analysis of the articles published in the journal Cell Transplantation - The Regenerative Medicine Journal between 2008 and 2009, which reveals the topics and categories that are on the cutting edge of regenerative medicine research, stem cells are becoming increasingly relevant as the "runner-up" category to "neuroscience" related articles. The high volume of stem cell research casts a bright light on the hope for stem cells and their role in regenerative medicine as a number of reports deal with research using stem cells entering, or seeking approval for, clinical trials. The "methods and new technologies" and "tissue engineering" sections were almost equally as popular, and in part, reflect attempts to maximize the potential of stem cells and other treatments for the repair of damaged tissue. Transplantation studies were again more popular than non-transplantation, and the contribution of stem cell-related transplants was greater than other types of transplants. The non-transplantation articles were predominantly related to new methods for the preparation, isolation and manipulation of materials for transplant by specific culture media, gene therapy, medicines, dietary supplements, and co-culturing with other cells and further elucidation of disease mechanisms. A sizeable proportion of the transplantation articles reported on how previously new methods may have aided the ability of the cells or tissue to exert beneficial effects following transplantation.

  2. Regenerative endodontics: A way forward.

    Science.gov (United States)

    Diogenes, Anibal; Ruparel, Nikita B; Shiloah, Yoav; Hargreaves, Kenneth M

    2016-05-01

    Immature teeth are susceptible to infections due to trauma, anatomic anomalies, and caries. Traditional endodontic therapies for immature teeth, such as apexification procedures, promote resolution of the disease and prevent future infections. However, these procedures fail to promote continued root development, leaving teeth susceptible to fractures. Regenerative endodontic procedures (REPs) have evolved in the past decade, being incorporated into endodontic practice and becoming a viable treatment alternative for immature teeth. The authors have summarized the status of regenerative endodontics on the basis of the available published studies and provide insight into the different levels of clinical outcomes expected from these procedures. Substantial advances in regenerative endodontics are allowing a better understanding of a multitude of factors that govern stem cell-mediated regeneration and repair of the damaged pulp-dentin complex. REPs promote healing of apical periodontitis, continued radiographic root development, and, in certain cases, vitality responses. Despite the clinical success of these procedures, they appear to promote a guided endodontic repair process rather than a true regeneration of physiological-like tissue. Immature teeth with pulpal necrosis with otherwise poor prognosis can be treated with REPs. These procedures do not preclude the possibility of apexification procedures if attempts are unsuccessful. Therefore, REPs may be considered first treatment options for immature teeth with pulpal necrosis. Copyright © 2016 American Dental Association. Published by Elsevier Inc. All rights reserved.

  3. Regenerative endodontics: regeneration or repair?

    Science.gov (United States)

    Simon, Stéphane R J; Tomson, Phillip L; Berdal, Ariane

    2014-04-01

    Recent advances in biotechnology and translational research have made it possible to provide treatment modalities that protect the vital pulp, allow manipulation of reactionary and reparative dentinogenesis, and, more recently, permit revascularization of an infected root canal space. These approaches are referred to as regenerative procedures. The method currently used to determine the origin of the tissue secreted during the repair/regeneration process is largely based on the identification of cellular markers (usually proteins) left by cells that were responsible for this tissue production. The presence of these proteins in conjunction with other indicators of cellular behavior (especially biomineralization) and analysis of the structure of the newly generated tissue allow conclusions to be made of how it was formed. Thus far, it has not been possible to truly establish the biological mechanism controlling tertiary dentinogenesis. This article considers current therapeutic techniques to treat the dentin-pulp complex and contextualize them in terms of reparative and regenerative processes. Although it may be considered a semantic argument rather than a biological one, the definitions of regeneration and repair are explored to clarify our position in this era of regenerative endodontics. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  4. Effects of Vitamin E on Bone Biomechanical and Histomorphometric Parameters in Ovariectomized Rats

    Directory of Open Access Journals (Sweden)

    Rafaela G. Feresin

    2013-01-01

    Full Text Available The present study examined the dose-dependent effect of vitamin E in reversing bone loss in ovariectomized (Ovx rats. Sprague-Dawley rats were either Sham-operated (Sham or Ovx and fed control diet for 120 days to lose bone. Subsequently, rats were divided into 5 groups (n=12/group: Sham, Ovx-control, low dose (Ovx + 300 mg/kg diet; LD, medium dose (Ovx + 525 mg/kg diet; MD, and high dose (Ovx + 750 mg/kg diet; HD of vitamin E and sacrificed after 100 days. Animals receiving MD and HD of vitamin E had increased serum alkaline phosphatase compared to the Ovx-control group. Bone histomorphometry analysis indicated a decrease in bone resorption as well as increased bone formation and mineralization in the Ovx groups supplemented with MD and HD of vitamin E. Microcomputed tomography findings indicated no effects of vitamin E on trabecular bone of fifth lumbar vertebrae. Animals receiving HD of vitamin E had enhanced fourth lumbar vertebra quality as evidenced by improved ultimate and yield load and stress when compared to Ovx-control group. These findings demonstrate that vitamin E improves bone quality, attenuates bone resorption, and enhances the rate of bone formation while being unable to restore bone density and trabecular bone structure.

  5. Regenerative medicine for the kidney: renotropic factors, renal stem/progenitor cells, and stem cell therapy.

    Science.gov (United States)

    Maeshima, Akito; Nakasatomi, Masao; Nojima, Yoshihisa

    2014-01-01

    The kidney has the capacity for regeneration and repair after a variety of insults. Over the past few decades, factors that promote repair of the injured kidney have been extensively investigated. By using kidney injury animal models, the role of intrinsic and extrinsic growth factors, transcription factors, and extracellular matrix in this process has been examined. The identification of renal stem cells in the adult kidney as well as in the embryonic kidney is an active area of research. Cell populations expressing putative stem cell markers or possessing stem cell properties have been found in the tubules, interstitium, and glomeruli of the normal kidney. Cell therapies with bone marrow-derived hematopoietic stem cells, mesenchymal stem cells, endothelial progenitor cells, and amniotic fluid-derived stem cells have been highly effective for the treatment of acute or chronic renal failure in animals. Embryonic stem cells and induced pluripotent stem cells are also utilized for the construction of artificial kidneys or renal components. In this review, we highlight the advances in regenerative medicine for the kidney from the perspective of renotropic factors, renal stem/progenitor cells, and stem cell therapies and discuss the issues to be solved to realize regenerative therapy for kidney diseases in humans.

  6. Effect of copper on liver and bone metabolism in malnutrition.

    Science.gov (United States)

    Güler, A H; Sapan, N; Ediz, B; Genç, Z; Ozkan, K

    1994-01-01

    This study was planned to investigate the effects of copper (Cu) deficiency on liver and bone metabolism in malnourished children. Serum total calcium (Ca), inorganic phosphorus (P), Ca/P, Cu/Ca, Cu/P ratios and alkaline phosphatase (ALP) activity values were analyzed. Aspartate aminotransferase (AST), alanine aminotransferase (ALT), gamma glutamyltransferase (GGT) enzyme activities and the ALT/AST (De Ritis) ratio as well as their correlations with Cu were tested to determine liver function. The results of the study showed that Cu deficiency directly affects the organic matrix formation, and by the suppression of ALP activity, indirectly causes decalcification. In the liver, however, no direct effect of Cu deficiency was seen. Deterioration in liver function and Cu deficiency increased parallel with the severity of malnutrition. Thus we concluded that a correlation exists between Cu and the parameters that indicate liver function.

  7. Effect of specimen geometry on tensile strength of cortical bone.

    Science.gov (United States)

    Feng, Liang; Jasiuk, Iwona

    2010-11-01

    We investigate the effect of specimen geometry on the ultimate tensile strength of cortical bone measured by a tensile test. This article is motivated by the fact that there is no clear consensus in the literature on a suitable specimen shape for cortical bone testing. We consider three commonly used tensile test specimen shapes: strip, dumbbell with sharp junctions, and dumbbell with rounded junctions. We conduct this study computationally, using a finite element method, and experimentally by testing porcine femurs. Our results show that local stress concentration factors in the specimen lead to reduced values in the measured tensile strength. The higher the stress concentrations are, the lower is the measured strength. We find that the strip specimens are not a good choice due to high stress concentrations. For the same reason, dumbbell specimens with sharp junctions between the grip and gage sections should also be avoided. The dumbbell shaped tensile test specimens with an arc transition and a maximized radius of fillet are a better choice because such geometry lowers stress concentrations.

  8. Osteoarthritis year in review 2014: highlighting innovations in basic research and clinical applications in regenerative medicine.

    Science.gov (United States)

    van Osch, G J V M

    2014-12-01

    Regenerative medicine is an emerging area that will influence the treatment of joint diseases in the future. It involves the use of biomaterials, cell therapy, and bioactive factors such as growth factors, drugs and small molecules, to regenerate damaged tissues. This "year in review" highlights a personal selection of promising studies published between March 2013 and March 2014 that inform on the direction in which this field is moving. This multidisciplinary field has been very active, with rapid development of new technologies that emerge from basic sciences such as the possibility to generate pluripotent stem cells without genetic modification and genetic engineering of growth factors to enhance their capacity to induce tissue repair. The increasing knowledge of the interaction between all tissues in the joint, such as the effect of bone remodeling and synovial inflammation on cartilage repair, will eventually make tissue regeneration in a compromised joint environment possible.

  9. Effects of adrenal steroids on the bone metabolism of children with congenital adrenal hyperplasia.

    Science.gov (United States)

    Lin-Su, Karen; New, Maria I

    2007-11-01

    The primary treatment for patients with congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency (21OHD) is glucocorticoid replacement therapy, which at supraphysiologic levels can result in diminished bone accrual and lead to osteopenia and osteoporosis. Unlike other diseases treated with chronic glucocorticoid therapy, previous studies of patients with 21OHD have not demonstrated a detrimental effect of glucocorticoid treatment on bone mineral density (BMD). It has been postulated that the elevated androgens typically found in these patients have a protective effect on bone integrity, but the precise mechanism remains unknown. We propose that the inhibitory effect of corticosteroid therapy on bone formation is counteracted by estrogen's effect on bone resorption through the RANK-L/osteoprotegerin (OPG) system. A better understanding of the mechanism by which patients with 21OHD are protected against bone loss may lead to novel therapeutic measures to prevent or treat osteopenia and osteoporosis in other conditions, including postmenopausal women.

  10. Degradability of injectable calcium sulfate/mineralized collagen-based bone repair material and its effect on bone tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zonggang, E-mail: chenzg@sdu.edu.cn [National Glycoengineering Research Center, Shandong University, Jinan 250100 (China); Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Kang, Lingzhi [National Glycoengineering Research Center, Shandong University, Jinan 250100 (China); Meng, Qing-Yuan [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Liu, Huanye [Department of Prosthodontics, School of Stomatology, China Medical University, Shenyang 110001 (China); Wang, Zhaoliang [Jinan Military General Hospital of PLA, Jinan 250031 (China); Guo, Zhongwu, E-mail: zwguo@sdu.edu.cn [National Glycoengineering Research Center, Shandong University, Jinan 250100 (China); Cui, Fu-Zhai, E-mail: cuifz@mail.tsinghua.edu.cn [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2014-12-01

    The nHAC/CSH composite is an injectable bone repair material with controllable injectability and self-setting properties prepared by introducing calcium sulfate hemihydrate (CSH) into mineralized collagen (nHAC). When mixed with water, the nHAC/CSH composites can be transformed into mineralized collagen/calcium sulfate dihydrate (nHAC/CSD) composites. The nHAC/CSD composites have good biocompatibility and osteogenic capability. Considering that the degradation behavior of bone repair material is another important factor for its clinical applications, the degradability of nHAC/CSD composites was studied. The results showed that the degradation ratio of the nHAC/CSD composites with lower nHAC content increased with the L/S ratio increase of injectable materials, but the variety of L/S ratio had no significant effect on the degradation ratio of the nHAC/CSD composites with higher nHAC content. Increasing nHAC content in the composites could slow down the degradation of nHAC/CSD composite. Setting accelerator had no significant effect on the degradability of nHAC/CSD composites. In vivo histological analysis suggests that the degradation rate of materials can match the growth rate of new mandibular bone tissues in the implanted site of rabbit. The regulable degradability of materials resulting from the special prescriptions of injectable nHAC/CSH composites will further improve the workability of nHAC/CSD composites. - Highlights: • The nHAC/CSH composite can be as an injectable bone repair material. • The L/S ratio and nHAC content have a significant effect on material degradability. • The degradability of bone materials can be regulated to match tissue repair. • The regulable degradability will further improve the workability of bone materials.

  11. The Effect of Skeletal Unloading on Bone Formation: Role of IGF-I

    Science.gov (United States)

    Bikle, D. D.; Kostenuik, P.; Holton, E. M.; Halloran, B. P.

    1999-01-01

    The best documented change in bone during space flight is the near cessation of bone formation. Space flight leads to a decrease in osteoblast number and activity, likely the result of altered differentiation of osteoblast precursors. The net result of these space flight induced changes is weaker bone. To understand the mechanism for these changes poses a challenge. Space flight studies must overcome enormous technical problems, and are necessarily limited in size and frequency. Therefore, ground based models have been developed to evaluate the effects of skeletal unloading. The hindlimb elevation (tail suspension) model simulates space flight better than other models because it reproduces the fluid shifts seen in space travel, is reversible, and is well tolerated by the animals with minimal evidence of stress as indicated by continued weight gain and normal levels and circadian rhythms of corticosterone. This is the model we have used for our experiments. Skeletal unloading by the hindlimb elevation method simulates a number of features of space flight in that bone formation, mineralization, and maturation are inhibited, osteoblast number is decreased, serum and skeletal osteocalcin levels fall, the ash content of bone decreases, and bone strength diminishes. We and others have shown that when osteoblasts or osteoprogenitor cells from the bones of the unloaded limbs are cultured in vitro they proliferate and differentiate more slowly, suggesting that skeletal unloading causes a persistent change in cell function which can be assessed in vitro. In contrast to the unweighted bones of the hindlimbs, no significant change in bone mass or bone formation is observed in the humeri, mandible, and cervical vertebrae during hindlimb elevation. The lack of effect of hindlimb elevation on bones like the humeri, mandible, and cervical vertebrae which are not unloaded by this procedure suggests that local factors rather than systemic effects dominate the response of bone to

  12. PTH prevents the adverse effects of focal radiation on bone architecture in young rats

    Science.gov (United States)

    Chandra, Abhishek; Lan, Shenghui; Zhu, Ji; Lin, Tiao; Zhang, Xianrong; Siclari, Valerie A.; Altman, Allison R.; Cengel, Keith A.; Liu, X. Sherry; Qin, Ling

    2013-01-01

    Radiation therapy is a common treatment regimen for cancer patients. However, its adverse effects on the neighboring bone could lead to fractures with a great impact on quality of life. The underlying mechanism is still elusive and there is no preventive or curative solution for this bone loss. Parathyroid hormone (PTH) is a current therapy for osteoporosis that has potent anabolic effects on bone. In this study, we found that focal radiation from frequent scans of the right tibiae in 1-month-old rats by micro-computed tomography severely decreased trabecular bone mass and deteriorated bone structure. Interestingly, PTH daily injections remarkably improved trabecular bone in the radiated tibiae with increases in trabecular number, thickness, connectivity, structure model index and stiffness, and a decrease in trabecular separation. Histomorphometric analysis revealed that radiation mainly decreased the number of osteoblasts and impaired their mineralization activity but had little effects on osteoclasts. PTH reversed these adverse effects and greatly increased bone formation to a similar level in both radiated and non-radiated bones. Furthermore, PTH protects bone marrow mesenchymal stem cells from radiation-induced damage, including a decrease in number and an increase in adipogenic differentiation. While radiation generated the same amount of free radicals in the bone marrow of vehicle-treated and PTH-treated animals, the percentage of apoptotic bone marrow cells was significantly attenuated in the PTH group. Taken together, our data demonstrate a radioprotective effect of PTH on bone structure and bone marrow and shed new light on a possible clinical application of anabolic treatment in radiotherapy. PMID:23466454

  13. Engineering growth factors for regenerative medicine applications.

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Aaron C.; Briquez, Priscilla S.; Hubbell, Jeffrey A.; Cochran, Jennifer R.

    2016-01-15

    Growth factors are important morphogenetic proteins that instruct cell behavior and guide tissue repair and renewal. Although their therapeutic potential holds great promise in regenerative medicine applications, translation of growth factors into clinical treatments has been hindered by limitations including poor protein stability, low recombinant expression yield, and suboptimal efficacy. This review highlights current tools, technologies, and approaches to design integrated and effective growth factor-based therapies for regenerative medicine applications. The first section describes rational and combinatorial protein engineering approaches that have been utilized to improve growth factor stability, expression yield, biodistribution, and serum half-life, or alter their cell trafficking behavior or receptor binding affinity. The second section highlights elegant biomaterial-based systems, inspired by the natural extracellular matrix milieu, that have been developed for effective spatial and temporal delivery of growth factors to cell surface receptors. Although appearing distinct, these two approaches are highly complementary and involve principles of molecular design and engineering to be considered in parallel when developing optimal materials for clinical applications.

  14. Translational science in disinfection for regenerative endodontics.

    Science.gov (United States)

    Diogenes, Anibal R; Ruparel, Nikita B; Teixeira, Fabricio B; Hargreaves, Kenneth M

    2014-04-01

    The endodontic management of permanent immature teeth is fraught with challenges. Although treatment modalities for vital pulp therapy in these teeth provide long-term favorable outcome, the outcomes from the treatment of pulp necrosis and apical periodontitis are significantly less predictable. Immature teeth diagnosed with pulp necrosis have been traditionally treated with apexification or apexogenesis approaches. Unfortunately, these treatments provide little to no benefit in promoting continued root development. Regenerative endodontic procedures have emerged as an important alternative in treating teeth with otherwise questionable long-term prognosis because of thin, fragile dentinal walls and a lack of immunocompetency. These procedures rely heavily on root canal chemical disinfection of the root canal system. Traditionally, irrigants and medicaments have been chosen for their maximum antimicrobial effect without consideration for their effects on stem cells and the dentinal microenvironment. Translational research has been crucial to provide evidence for treatment modifications that aim to increase favorable outcome while steering away from common pitfalls in the currently used protocols. In this review, recent advances learned from translational research related to disinfection in regenerative endodontics are presented and discussed. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  15. Iron overload increases osteoclastogenesis and aggravates the effects of ovariectomy on bone mass.

    Science.gov (United States)

    Xiao, Wang; Beibei, Fei; Guangsi, Shen; Yu, Jiang; Wen, Zhang; Xi, Huang; Youjia, Xu

    2015-09-01

    Postmenopausal osteoporosis is a metabolic disease associated with estrogen deficiency. The results of numerous studies have revealed the positive correlation between iron accumulation and postmenopausal osteoporotic status. Although the results of previous studies have indicated that estrogen or iron alone have an effect on bone metabolism, their combined effects are not well defined. Using an in vivo mouse model, we found that bone mass was minimally affected by an excess of iron in the presence of estrogen. Once the source of estrogen was removed (ovariectomy), iron accumulation significantly decreased bone mass. These effects were accompanied by fluctuations in the level of oxidative stress. To determine whether these effects were related to bone formation or bone resorption, primary osteoblasts (OBs), RAW264.7 cells, and bone-marrow-derived macrophages were used for in vitro experiments. We found that iron accumulation did inhibit the activity of OBs. However, estrogen had little effect on this inhibition. In contrast, iron promoted osteoclast differentiation through the production of reactive oxygen species. Estrogen, a powerful reactive oxygen scavenger, suppressed this effect in osteoclasts. Our data provided direct evidence that iron affected the bone mass only in the absence of estrogen. The inhibitory effect of estrogen on iron-induced osteopenia was particularly relevant to bone resorption rather than bone formation. © 2015 Society for Endocrinology.

  16. Approach to reducing the effect of bone-coal power station on radiation environment

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The effect of two bone-coal power stations (6 MWe) on environment wasinvestigated within the scope of the dose contribution caused by various radionucildes in different ways. It is found that the best measures to reduce the effect of bone-coal power station on radiation environment include to select a fine boiler system and a comprehensive utilization of the bone-coal cinder (BCC), soot and ash in the catchers.

  17. The application of an enamel matrix protein derivative (Emdogain) in regenerative periodontal therapy: a review.

    NARCIS (Netherlands)

    Sculean, A.; Schwarz, F.; Becker, J.; Brecx, M.

    2007-01-01

    Regenerative periodontal therapy aims at reconstitution of the lost periodontal structures such as new formation of root cementum, periodontal ligament and alveolar bone. Findings from basic research indicate that enamel matrix protein derivative (EMD) has a key role in periodontal wound healing. Hi

  18. Effect of Microstructure on Fatigue Strength of Bovine Compact Bones

    Science.gov (United States)

    Kim, Jong Heon; Niinomi, Mitsuo; Akahori, Toshikazu; Takeda, Junji; Toda, Hiroyuki

    Despite its clinical importance in developing artificial bone, limited information is available regarding the microstructure with respect to the fatigue characteristics of bones. In this study, the fatigue characteristics of the bovine humerus and femur were investigated with respect to microstructures. Fatigue tests were conducted on the bovine humerus and femur at a stress ratio of 0.1 and a frequency of 10Hz. The fatigue strength of the plexiform bone is slightly greater than that of the haversian bone. This is because the volume fraction of voids in the haversian bone, which is the site of stress concentration, is higher than that of voids in the plexiform bone. Several microcracks are observed on the fatigue fracture surface of the haversian bone. The microcracks are short and their propagation directions are random. However, the number of the microcracks in the plexiform bone is very small. The microcracks are relatively long and their propagation directions are parallel to the longitudinal direction of the lamellar bone. Therefore, the crack requires relatively more energy to propagate across the lamella in the plexiform bone.

  19. Effect of Clothing on Measurement of Bone Mineral Density.

    Science.gov (United States)

    McNamara, Elizabeth A; Feldman, Anna Z; Malabanan, Alan O; Abate, Ejigayehu G; Whittaker, LaTarsha G; Yano-Litwin, Amanda; Dorazio, Jolene; Rosen, Harold N

    2016-01-01

    It is unknown whether allowing patients to have BMD (bone mineral density) studies acquired while wearing radiolucent clothing adlib contributes appreciably to the measurement error seen. To examine this question, a spine phantom was scanned 30 times without any clothing, while draped with a gown, and while draped with heavy winter clothing. The effect on mean BMD and on SD (standard deviation) was assessed. The effect of clothing on mean or SD of the area was not significant. The effect of clothing on mean and SD for BMD was small but significant and was around 1.6% for the mean. However, the effect on BMD precision was much more clinically important. Without clothing the spine phantom had an least significant change of 0.0077 gm/cm(2), while when introducing variability of clothing the least significant change rose as high as 0.0305 gm/cm(2). We conclude that, adding clothing to the spine phantom had a small but statistically significant effect on the mean BMD and on variance of the measurement. It is unlikely that the effect on mean BMD has any clinical significance, but the effect on the reproducibility (precision) of the result is likely clinically significant.

  20. The effect of weight bearing on bone mineral density and bone growth in children with cerebral palsy

    Science.gov (United States)

    Han, Eun Young; Choi, Jung Hwa; Kim, Sun-Hyun; Im, Sang Hee

    2017-01-01

    Abstract Background: The present study aims to explore the effect of weight bearing exercise on bone mineral density (BMD) and bone growth in children with cerebral palsy (CP). Methods: Twelve children with CP of functional level of gross motor functional classification scale (GMFCS) V and 6 healthy children (control group) were included in the study. Participants underwent a dual-energy X-ray absorptiometry scan to measure the BMD of the femur and full-length anteroposterior radiography to measure the bone length of the femur and tibia at baseline and after 6 months. Patients were randomly divided into 2 groups: group A with programmed standing exercises and assisted standing for more than 2 hours a day, more than 5 days a week; and group B with conventional physiotherapy with a standing program for 20 minutes a day, 2 to 3 days a week. Results: A 6-month follow-up showed significantly increased BMD on the femur neck in the control group. Although the changes in BMD were not significant in both groups, group A demonstrated an increased trend of BMD, whereas group B showed a decreased trend. Bone length was significantly increased in all 3 groups at the 6-month follow-up. Although this increase was not significant, the change in bone length was greatest in the control group. The smallest changes were observed in group B. Conclusions: Weight bearing exercise may play an important role in increasing or maintaining BMD in children with CP and is also expected to promote bone growth. Programmed standing may be used as an effective treatment method to increase BMD in children with CP. However, further studies with a larger cohort and longer follow-up period are required to reveal further information on the benefit of weight bearing exercise and to develop a detailed program. PMID:28272197

  1. Application study of complex control algorithm for regenerative furnace temperature

    Institute of Scientific and Technical Information of China (English)

    Lusheng GE

    2004-01-01

    Altemative switch combustion mode of air and gas is adopted on the two sides of the regenerative furnace, its temperature is in uncontrolled state in the switching process and the switch period is generally 3 ~ 5 min. Thus, the conventional bi-cross limited combustion control method is no longer applicable to the object. This paper makes use of neutral network algorithm to adjust the static operating point. On this basis, fuzzy control strategy is used for the furnace temperature control. The actual application result shows that the control strategy is effective to solve the problem of the combustion control for regenerative furnace.

  2. Temperature Distribution and Heat Saturating Time of Regenerative Heat Transfer

    Institute of Scientific and Technical Information of China (English)

    Li JIA; Ying MAO; Lixin YANG

    2006-01-01

    In this paper, heat transfer of the ceramic honeycomb regenerator was numerically simulated based on the computational fluid dynamics numerical analysis software CFX5. The longitudinal temperature distribution of regenerator and gas were obtained. The variation of temperature with time was discussed. In addition, the effects of some parameters such as switching time, gas temperature at the inlet of regenerator, height of regenerator and specific heat of the regenerative materials on heat saturating time were discussed. It provided primarily theoretic basis for further study of regenerative heat transfer mechanism.

  3. Regenerative endodontics and tissue engineering: what the future holds?

    Science.gov (United States)

    Goodis, Harold E; Kinaia, Bassam Michael; Kinaia, Atheel M; Chogle, Sami M A

    2012-07-01

    The work performed by researchers in regenerative endodontics and tissue engineering over the last decades has been superb; however, many questions remain to be answered. The basic biologic mechanisms must be elucidated that will allow the development of dental pulp and dentin in situ. Stress must be placed on the many questions that will lead to the design of effective, safe treatment options and therapies. This article discusses those questions, the answers to which may become the future of regenerative endodontics. The future remains bright, but proper support and patience are required.

  4. Comparative assessment of bone regeneration by histometry and a histological scoring system / Evaluarea comparativă a regenerării osoase utilizând histometria și un scor de vindecare histologică

    Directory of Open Access Journals (Sweden)

    Lucaciu Ondine

    2015-03-01

    Full Text Available Obiective: Scopul studiului de față a constat în evaluarea valorii scorului de vindecare histologică, comparativ cu histometria în monitorizarea vindecării osose la nivelul calotei. Material și metodă: Am realizat un studiu cazcontrol cu un lot control și unul de studiu. La un număr de 60 de șoareci CD1 incluși în lotul de studiu am indus chirurgical un defect osos la nivelul calotei și am realizat reconstrucția defectului utilizând grefe obținute prin inginerie tisulară. Ingineria tisulară a grefonului osos s-a realizat utilizând celule stem embrionare poziționate pe suport matriceal -corn caduc de cerb, iar ca inductor al diferențierii am utilizat mediu osteogenetic bazal și complex. La cei 30 de șoareci CD1 incluși în lotul control am indus chirurgical același defect osos la nivelul calotei, dar nu am realizat reconstrucția osoasă a acestuia. Procesul de regenerare osoasă a fost evaluat la 2 și respectiv la 4 luni utilizând scorul de vindecare și histometria. Rezultate: Scorul de vindecare histologică s-a corelat statistic semnificativ cu dimeniunea defectului obtinută la histometrie (p<0.001. Evaluarea parametrilor în baza cărora s-a stabilit scorul de vindecare histologică indică regenerarea cea mai avansată la subiecții din lotul de studiu sacrificați la 4 luni, la care s-a utilizat pentru ingineria grefonului osos celule stem embrionare, suport matriceal corn caduc de cerb și mediu osteogenetic complex ca inductor. Concluzii: scorul de vindecare histologică este o metoda valoroasă de cuantificare a procesului de regenerare osoasă. Relevanță clinică: Acest studiu demonstrează că scorul de vindecare histologică prezentat este un instrument util pentru clinician în procesul de evaluare a regenerării osoase.

  5. Changes in total body bone mineral density following a common bone health plan with two versions of a unique bone health supplement: a comparative effectiveness research study

    Directory of Open Access Journals (Sweden)

    Dapilmoto Monika

    2011-04-01

    Full Text Available Abstract Background The US Surgeon General's Report on Bone Health suggests America's bone-health is in jeopardy and issued a "call to action" to develop bone-health plans that: (1 improve nutrition, (2 increase health literacy and, (3 increase physical activity. This study is a response to this call to action. Methods After signing an informed consent, 158 adults agreed to follow an open-label bone-health plan for six months after taking a DXA test of bone density, a 43-chemistry blood test panel and a quality of life inventory (AlgaeCal 1. Two weeks after the last subject completed, a second group of 58 was enrolled and followed the identical plan, but with a different bone-health supplement (AlgaeCal 2. Results There were no significant differences between the two groups in baseline bone mineral density (BMD or in variables related to BMD (age, sex, weight, percent body fat, fat mass, or fat-free mass. In both groups, no significant differences in BMD or related variables were found between volunteers and non-volunteers or between those who completed per protocol and those who were lost to attrition. Both groups experienced a significant positive mean annualized percent change (MAPC in BMD compared to expectation [AlgaeCal 1: 1.15%, p = 0.001; AlgaeCal 2: 2.79%, p = 0.001]. Both groups experienced a positive MAPC compared to baseline, but only AlgaeCal 2 experienced a significant change [AlgaeCal 1: 0.48%, p = 0.14; AlgaeCal 2: 2.18%, p p = 0.005. The MAPC contrast between compliant and partially compliant subjects was significant for both plans (p = 0.001 and p = 0.003 respectively. No clinically significant changes in a 43-panel blood chemistry test were found nor were there any changes in self-reported quality of life in either group. Conclusions Following The Plan for six months with either version of the bone health supplement was associated with significant increases in BMD as compared to expected and, in AlgaeCal 2, the increase from

  6. The effect of bone morphogenetic protein-2 on osteosarcoma metastasis

    Science.gov (United States)

    Gill, Jonathan; Connolly, Patrick; Roth, Michael; Chung, So Hak; Zhang, Wendong; Piperdi, Sajida; Hoang, Bang; Yang, Rui; Guzik, Hillary; Gorlick, Richard; Geller, David S.

    2017-01-01

    Purpose Bone Morphogenetic Protein-2 (BMP-2) may offer the potential to enhance allograft-host osseous union in limb-salvage surgery following osteosarcoma resection. However, there is concern regarding the effect of locally applied BMP-2 on tumor recurrence and metastasis. The purpose of this project was to evaluate the effect of exogenous BMP-2 on osteosarcoma migration and invasion across a panel of tumor cell lines in vitro and to characterize the effect of BMP-2 on pulmonary osteosarcoma metastasis within a xenograft model. Experimental design The effect of BMP-2 on in vitro tumor growth and development was assessed across multiple standard and patient-derived xenograft osteosarcoma cell lines. Tumor migration capacity, invasion, and cell proliferation were characterized. In addition, the effect on metastasis was measured using a xenograft model following tail-vein injection. The effect of exogenous BMP-2 on the development of metastases was measured following both single and multiple BMP-2 administrations. Results There was no significant difference in migration capacity, invasion, or cell proliferation between the BMP-2 treated and the untreated osteosarcoma cell lines. There was no significant difference in pulmonary metastases between either the single-dose or multi-dose BMP-2 treated animals and the untreated control animals. Conclusions In the model systems tested, the addition of BMP-2 does not increase osteosarcoma proliferation, migration, invasion, or metastasis to the lungs. PMID:28264040

  7. The effect of bone morphogenetic protein-2 on osteosarcoma metastasis.

    Science.gov (United States)

    Gill, Jonathan; Connolly, Patrick; Roth, Michael; Chung, So Hak; Zhang, Wendong; Piperdi, Sajida; Hoang, Bang; Yang, Rui; Guzik, Hillary; Morris, Jonathan; Gorlick, Richard; Geller, David S

    2017-01-01

    Bone Morphogenetic Protein-2 (BMP-2) may offer the potential to enhance allograft-host osseous union in limb-salvage surgery following osteosarcoma resection. However, there is concern regarding the effect of locally applied BMP-2 on tumor recurrence and metastasis. The purpose of this project was to evaluate the effect of exogenous BMP-2 on osteosarcoma migration and invasion across a panel of tumor cell lines in vitro and to characterize the effect of BMP-2 on pulmonary osteosarcoma metastasis within a xenograft model. The effect of BMP-2 on in vitro tumor growth and development was assessed across multiple standard and patient-derived xenograft osteosarcoma cell lines. Tumor migration capacity, invasion, and cell proliferation were characterized. In addition, the effect on metastasis was measured using a xenograft model following tail-vein injection. The effect of exogenous BMP-2 on the development of metastases was measured following both single and multiple BMP-2 administrations. There was no significant difference in migration capacity, invasion, or cell proliferation between the BMP-2 treated and the untreated osteosarcoma cell lines. There was no significant difference in pulmonary metastases between either the single-dose or multi-dose BMP-2 treated animals and the untreated control animals. In the model systems tested, the addition of BMP-2 does not increase osteosarcoma proliferation, migration, invasion, or metastasis to the lungs.

  8. Osteostatin-coated porous titanium can improve early bone regeneration of cortical bone defects in rats

    NARCIS (Netherlands)

    Van Der Stok, Johan; Lozano, Daniel; Chai, Yoke Chin; Amin Yavari, Saber; Bastidas Coral, Angela P.; Verhaar, Jan A N; Gómez-Barrena, Enrique; Schrooten, Jan; Jahr, Holger; Zadpoor, Amir A.; Esbrit, Pedro; Weinans, Harrie

    2015-01-01

    A promising bone graft substitute is porous titanium. Porous titanium, produced by selective laser melting (SLM), can be made as a completely open porous and load-bearing scaffold that facilitates bone regeneration through osteoconduction. In this study, the bone regenerative capacity of porous tita

  9. Late health effects of chronic radiation exposure of bone marrow

    Energy Technology Data Exchange (ETDEWEB)

    Yarmoshenko, Ilia V.; Malinovsky, Georgy P.; Konshina, Lidia G.; Zhukovsky, Michael V. [Institute of Industrial Ecology UB RAS, 620219, 20, Sophy Kovalevskoy St., Ekaterinburg (Russian Federation); Tuzankina, Irina A. [Institute of Immunology and Physiology UB RAS, 620049, 106, Pervomayskaya St., Ekaterinburg (Russian Federation)

    2014-07-01

    Accidental explosion of waste storage tank at former soviet plutonium production plant 'Mayak' in 1957 resulted in emission of considerable amount of radioactive substances to the atmosphere. Atmospheric transfer and fallout caused contamination of the environment by Sr-90 and short-lived radionuclides (East-Ural Radioactive Trace, EURT). Due to consumption of contaminated food and milk some internal organs were affected to relatively high radiation exposure. Archive data of causes of deaths of rural population of EURT northern part for period 1957-2000 were used to create the Register on causes of deaths. Register records related to the settlements where initial surface contamination by Sr-90 was above and below 3.7 kBq/m2 were included to exposed (4 844 records) and unexposed (6 158 records) group respectively. Basing on the Register the analysis of cancer and non-cancer health effects of radiation exposure was conducted. By estimating proportionate mortality ratios statistically significant excess mortality due to the groups of causes of death as follow was observed in exposed population: stomach, liver and cervix cancers; group consisted only of stomach cancer; non-cancer deceases of infectious etiology. Non-significant but remarkably high risk was observed for the following groups of causes of death: bone cancer; leukemia; liver cancer; cervix cancer. Insignificant, virtually zero risk was found for: non-gastrointestinal solid cancers; colon and lung cancers; non-infectious non-cancer deceases. At the same time, considerable radiation doses were absorbed in bone (mean bone surface dose about 0.1 Gy) and colon (mean dose about 0.07 Gy). Doses absorbed in other organs and tissues were negligible and amounted less than 0.01 Gy for most tissues. It can be seen that some disagreement between observed effects and absorbed doses is revealed. Most remarkable is the high excess risks of stomach, liver and cervix cancers as well as non-cancer deceases of

  10. Effect of GH/IGF-1 on Bone Metabolism and Osteoporsosis

    Directory of Open Access Journals (Sweden)

    Vittorio Locatelli

    2014-01-01

    Full Text Available Background. Growth hormone (GH and insulin-like growth factor (IGF-1 are fundamental in skeletal growth during puberty and bone health throughout life. GH increases tissue formation by acting directly and indirectly on target cells; IGF-1 is a critical mediator of bone growth. Clinical studies reporting the use of GH and IGF-1 in osteoporosis and fracture healing are outlined. Methods. A Pubmed search revealed 39 clinical studies reporting the effects of GH and IGF-1 administration on bone metabolism in osteopenic and osteoporotic human subjects and on bone healing in operated patients with normal GH secretion. Eighteen clinical studies considered the effect with GH treatment, fourteen studies reported the clinical effects with IGF-1 administration, and seven related to the GH/IGF-1 effect on bone healing. Results. Both GH and IGF-1 administration significantly increased bone resorption and bone formation in the most studies. GH/IGF-1 administration in patients with hip or tibial fractures resulted in increased bone healing, rapid clinical improvements. Some conflicting results were evidenced. Conclusions. GH and IGF-1 therapy has a significant anabolic effect. GH administration for the treatment of osteoporosis and bone fractures may greatly improve clinical outcome. GH interacts with sex steroids in the anabolic process. GH resistance process is considered.

  11. Extracellular Vesicles: potential roles in Regenerative Medicine

    Directory of Open Access Journals (Sweden)

    Olivier G de Jong

    2014-12-01

    Full Text Available Extracellular vesicles (EV consist of exosomes, which are released upon fusion of the multivesicular body with the cell membrane, and microvesicles, which are released directly from the cell membrane. EV can mediate cell-cell communication and are involved in many processes, including immune signaling, angiogenesis, stress response, senescence, proliferation, and cell differentiation. The vast amount of processes that EV are involved in and the versatility of manner in which they can influence the behavior of recipient cells make EV an interesting source for both therapeutic and diagnostic applications. Successes in the fields of tumor biology and immunology sparked the exploration of the potential of EV in the field of regenerative medicine. Indeed, EV are involved in restoring tissue and organ damage, and may partially explain the paracrine effects observed in stem cell based therapeutic approaches. The function and content of EV may also harbor information that can be used in tissue engineering, in which paracrine signaling is employed to modulate cell recruitment, differentiation, and proliferation. In this review, we discuss the function and role of EV in regenerative medicine and elaborate on potential applications in tissue engineering.

  12. Occlusal effects on longitudinal bone alterations of the temporomandibular joint.

    Science.gov (United States)

    Zhang, J; Jiao, K; Zhang, M; Zhou, T; Liu, X-D; Yu, S-B; Lu, L; Jing, L; Yang, T; Zhang, Y; Chen, D; Wang, M-Q

    2013-03-01

    The pathological changes of subchondral bone during osteoarthritis (OA) development in the temporomandibular joint (TMJ) are poorly understood. In the present study, we investigated the longitudinal alterations of subchondral bone using a rat TMJ-OA model developed in our laboratory. Changes in bone mass were examined by micro-CT, and changes in osteoblast and osteoclast activities were analyzed by real-time PCR, immunohistochemistry, and TRAP staining. Subchondral bone loss was detected from 8 weeks after dental occlusion alteration and reached the maximum at 12 weeks, followed by a repair phase until 32 weeks. Although bone mass increased at late stages, poor mechanical structure and lower bone mineral density (BMD) were found in these rats. The numbers of TRAP-positive cells were increased at 12 weeks, while the numbers of osteocalcin-expressing cells were increased at both 12 and 32 weeks. Levels of mRNA expression of TRAP and cathepsin K were increased at 12 weeks, while levels of ALP and osteocalcin were increased at both 12 and 32 weeks. These findings demonstrated that there is an active bone remodeling in subchondral bone in TMJs in response to alteration in occlusion, although new bone was formed with lower BMD and poor mechanical properties.

  13. Introduction to stem cells and regenerative medicine.

    Science.gov (United States)

    Kolios, George; Moodley, Yuben

    2013-01-01

    Stem cells are a population of undifferentiated cells characterized by the ability to extensively proliferate (self-renewal), usually arise from a single cell (clonal), and differentiate into different types of cells and tissue (potent). There are several sources of stem cells with varying potencies. Pluripotent cells are embryonic stem cells derived from the inner cell mass of the embryo and induced pluripotent cells are formed following reprogramming of somatic cells. Pluripotent cells can differentiate into tissue from all 3 germ layers (endoderm, mesoderm, and ectoderm). Multipotent stem cells may differentiate into tissue derived from a single germ layer such as mesenchymal stem cells which form adipose tissue, bone, and cartilage. Tissue-resident stem cells are oligopotent since they can form terminally differentiated cells of a specific tissue. Stem cells can be used in cellular therapy to replace damaged cells or to regenerate organs. In addition, stem cells have expanded our understanding of development as well as the pathogenesis of disease. Disease-specific cell lines can also be propagated and used in drug development. Despite the significant advances in stem cell biology, issues such as ethical controversies with embryonic stem cells, tumor formation, and rejection limit their utility. However, many of these limitations are being bypassed and this could lead to major advances in the management of disease. This review is an introduction to the world of stem cells and discusses their definition, origin, and classification, as well as applications of these cells in regenerative medicine.

  14. Adipose Tissue-Derived Stem Cells in Regenerative Medicine.

    Science.gov (United States)

    Frese, Laura; Dijkman, Petra E; Hoerstrup, Simon P

    2016-07-01

    In regenerative medicine, adult stem cells are the most promising cell types for cell-based therapies. As a new source for multipotent stem cells, human adipose tissue has been introduced. These so called adipose tissue-derived stem cells (ADSCs) are considered to be ideal for application in regenerative therapies. Their main advantage over mesenchymal stem cells derived from other sources, e.g. from bone marrow, is that they can be easily and repeatable harvested using minimally invasive techniques with low morbidity. ADSCs are multipotent and can differentiate into various cell types of the tri-germ lineages, including e.g. osteocytes, adipocytes, neural cells, vascular endothelial cells, cardiomyocytes, pancreatic β-cells, and hepatocytes. Interestingly, ADSCs are characterized by immunosuppressive properties and low immunogenicity. Their secretion of trophic factors enforces the therapeutic and regenerative outcome in a wide range of applications. Taken together, these particular attributes of ADSCs make them highly relevant for clinical applications. Consequently, the therapeutic potential of ADSCs is enormous. Therefore, this review will provide a brief overview of the possible therapeutic applications of ADSCs with regard to their differentiation potential into the tri-germ lineages. Moreover, the relevant advancements made in the field, regulatory aspects as well as other challenges and obstacles will be highlighted.

  15. Assessment of gene-by-sex interaction effect on bone mineral density

    DEFF Research Database (Denmark)

    Liu, Ching-Ti; Estrada, Karol; Yerges-Armstrong, Laura M;

    2012-01-01

    Sexual dimorphism in various bone phenotypes, including bone mineral density (BMD), is widely observed; however, the extent to which genes explain these sex differences is unclear. To identify variants with different effects by sex, we examined gene-by-sex autosomal interactions genome-wide, and ......Sexual dimorphism in various bone phenotypes, including bone mineral density (BMD), is widely observed; however, the extent to which genes explain these sex differences is unclear. To identify variants with different effects by sex, we examined gene-by-sex autosomal interactions genome...

  16. The Anabolic Effect of PTH on Bone is Attenuated by Simultaneous Glucocorticoid Treatment

    DEFF Research Database (Denmark)

    Oxlund, Hans; Ørtoft, Gitte; Thomsen, Jesper Skovhus;

    2006-01-01

    a pronounced increase in the endocortical bone formation rate (BFR) and a smaller increase in periosteal BFR. The combination of PTH + GC resulted in a partial inhibition of the PTH-induced increase in bone formation. Serum-osteocalcin was increased by 65% in the PTH group and reduced by 39% in the GC group....... The pronounced anabolic effect of PTH injections on the endocortical and trabecular bone surfaces and less pronounced anabolic effect on periosteal surfaces were partially inhibited, but not prevented, by simultaneous GC treatment in old rats. Both cortical and cancellous bone possessed full mechanical...

  17. Assessment of the Effects of Zoledronic Acid Therapy on Bone Metabolic Indicators in Hormone-Resistant Prostate Cancer Patients with Bone Metastatasis

    Science.gov (United States)

    Demirtas, Abdullah; Sahin, Nurettin; Caniklioglu, Mehmet; Kula, Mustafa; Ekmekcioglu, Oguz; Tatlisen, Atila

    2011-01-01

    Purpose. Assessment of effects of zoledronic acid therapy on bone metabolic indicators in hormone-resistant prostate cancer patients with bone metastasis. Material and Methods. Hormone-resistant prostate cancer patients who were identified to have metastases in their bone scintigraphy were taken to trial group. Before administration of zoledronic acid, routine tests for serum calcium, total alkalen phosphates were studied. Sample sera for bone metabolic indicators BALP, PINP, and ICTP were collected. Bone pain was assessed via visual analogue scale and performance via Karnofsky performance scale. Four mg zoledronic acid was administered intravenously once a month. Results. When serum levels of bone forming indicators PINP; BALP were compared before and after therapy, there were insignificant decreases (P = .33, P = .21, resp.). Serum levels of bone destruction indicator ICTP was compared, and there was a significant decrease after zoledronic acid therapy (P = .04). When performances of the patients were compared during therapy period, performances decreased significantly due to progress of illness (P = .01). All patients had ostalgia caused by bone metastases at various degrees. Significant decrease in pain scores was observed (P < .01). Conclusion. Zoledronic acid therapy decreased bone destruction and was effective in palliation of pain in patient with bone metastasis. Using bone metabolic indicators during followup of zoledronic acid therapy might be useful. PMID:22084798

  18. Low-level laser therapy on bone repair: is there any effect outside the irradiated field?

    Science.gov (United States)

    Batista, Jonas Dantas; Sargenti-Neto, Sérgio; Dechichi, Paula; Rocha, Flaviana Soares; Pagnoncelli, Rogério Miranda

    2015-07-01

    The biological effects of local therapy with laser on bone repair have been well demonstrated; however, this possible effect on bone repair outside the irradiated field has not been evaluated. The aim of this study was to investigate the effect of low-level laser therapy (LLLT) (λ = 830 nm) on repair of surgical bone defects outside the irradiated field, in rats. Sixty Wistar rats were submitted to osteotomy on the left femur and randomly separated into four groups (n = 15): group I, control, bone defect only; group II, laser applied on the right femur (distant dose); group III, laser applied locally on the bone defect and also on the right femur (local and distant doses); and group IV, laser applied locally on the left femur (local dose). Laser groups received applications within a 48-h interval in one point per session of density energy (DE) = 210 J/cm(2), P = 50 mW, t = 120 s, and beam diameter of 0.028 cm. Five animals of each group were euthanized 7, 15, and 21 days after surgery. Histologic analysis in all groups showed new bone formation in the region of interest (ROI) at 7 days. After 15 days, bone remodeling with a decrease of bone neoformation in the marrow area was observed in all groups. After 21 days, advanced bone remodeling with new bone mostly located in the cortical area was observed. The histomorphometric analysis showed at 7 days a significant increase of bone formation in groups III and IV compared to groups I and II. At days 15 and 21, histomorphometric analysis showed no significant differences between them. Laser therapy presented a positive local biostimulative effect in the early stage of bone healing, but the LLLT effect was not observed a long distance from the evaluated area.

  19. Effect of Alendronate on Bone Formation during Tooth Extraction Wound Healing.

    Science.gov (United States)

    Tanoue, R; Koi, K; Yamashita, J

    2015-09-01

    Alendronate (ALN) is an antiresorptive agent widely used for the treatment of osteoporosis. Its suppressive effect on osteoclasts has been extensively studied. However, the effect of ALN on bone formation is not as clear as its effect on resorption. The objective was to determine the effect of short-term ALN on bone formation and tooth extraction wound healing. Molar tooth extractions were performed in mice. ALN, parathyroid hormone (PTH), or saline (vehicle control) was administered. PTH was used as the bone anabolic control. Mice were euthanized at 3, 5, 7, 10, and 21 d after extractions. Hard tissue healing was determined histomorphometrically. Neutrophils and lymphatic and blood vessels were quantified to evaluate soft tissue healing. Gene expression in the wounds was assessed at the RNA level. Furthermore, the vossicle bone transplant system was used to verify findings from extraction wound analysis. Alkaline phosphatase (ALP) was visualized in the vossicles to assess osteoblast activity. ALN exhibited no negative effect on bone formation. In intact tibiae, ALN increased bone mass significantly more than PTH did. Consistently, significantly elevated osteoblast numbers were noted. In the extraction sockets, bone fill in the ALN-treated mice was equivalent to the control. Genes associated with bone morphogenetic protein signaling, such as bmp2, nog, and dlx5, were activated in the extraction wounds of the ALN-treated animals. Bone formation in vossicles was significantly enhanced in the ALN versus PTH group. In agreement with this, ALN upregulated ALP activity considerably in vossicles. Neutrophil aggregation and suppressed lymphangiogenesis were evident in the soft tissue at 21 d after extraction, although gross healing of extraction wounds was uneventful. Bone formation was not impeded by short-term ALN treatment. Rather, short-term ALN treatment enhanced bone formation. ALN did not alter bone fill in extraction sockets.

  20. Effects of a perfusion bioreactor activated novel bone substitute in spine fusion in sheep

    DEFF Research Database (Denmark)

    Sørensen, Jesper Roed; Koroma, Kariatta Ester; Ding, Ming

    2012-01-01

    To evaluate the effect of a large perfusion-bioreactor cell-activated bone substitute, on a two-level large posterolateral spine fusion sheep model.......To evaluate the effect of a large perfusion-bioreactor cell-activated bone substitute, on a two-level large posterolateral spine fusion sheep model....

  1. Spaceflight effects on cultured embryonic chick bone cells

    Science.gov (United States)

    Landis, W. J.; Hodgens, K. J.; Block, D.; Toma, C. D.; Gerstenfeld, L. C.

    2000-01-01

    A model calcifying system of primary osteoblast cell cultures derived from normal embryonic chicken calvaria has been flown aboard the shuttle, Endeavour, during the National Aeronautics and Space Administration (NASA) mission STS-59 (April 9-20, 1994) to characterize unloading and other spaceflight effects on the bone cells. Aliquots of cells (approximately 7 x 10(6)) grown in Dulbecco's modified Eagle's medium (DMEM) + 10% fetal bovine serum (FBS) were mixed with microcarrier beads, inoculated into cartridge culture units of artificial hollow fiber capillaries, and carried on the shuttle. To promote cell differentiation, cartridge media were supplemented with 12.5 microg/ml ascorbate and 10 mM beta-glycerophosphate for varying time periods before and during flight. Four cartridges contained cells from 17-day-old embryos grown for 5 days in the presence of ascorbate prior to launch (defined as flight cells committed to the osteoblastic lineage) and four cartridges supported cells from 14-day-old embryos grown for 10 days with ascorbate before launch (uncommitted flight cells). Eight cartridges prepared in the same manner were maintained under normal gravity throughout the flight (control cells) and four additional identical cartridges under normal gravity were terminated on the day of launch (basal cells). From shuttle launch to landing, all cartridges were contained in closed hardware units maintaining 5% CO2, 37 degrees C, and media delivery at a rate of approximately 1.5 ml/6 h. During day 3 and day 5 of flight, duplicate aliquots of conditioned media and accumulated cell products were collected in both the flight and the control hardware units. At the mission end, comparisons among flight, basal, and control samples were made in cell metabolism, gene expression for type I collagen and osteocalcin, and ultrastructure. Both committed and uncommitted flight cells were metabolically active, as measured by glucose uptake and lactate production, at approximately the

  2. Octacalcium phosphate combined with collagen orthotopically enhances bone regeneration.

    Science.gov (United States)

    Kamakura, Shinji; Sasaki, Kazuo; Honda, Yoshitomo; Anada, Takahisa; Suzuki, Osamu

    2006-11-01

    Octacalcium phosphate (OCP) is resorbable bone regenerative material, but its brittleness makes it difficult to maintain its shape without restraint. We have engineered a scaffold constructed of synthetic OCP and porcine collagen sponge (OCP/Collagen) and investigated whether OCP/Collagen composite could improve bone regeneration. To examine this hypothesis, bone regeneration by the implantation of OCP/Collagen was compared with those by OCP and collagen. Radiographic and histological examination was performed and the percentage of newly formed bone (n-Bone%) in the defect was determined by a histomorphometrical analysis. OCP/Collagen, OCP, or collagen was implanted into the critical-sized defects in rat crania and fixed at 2, 4, or 8 weeks after implantation. OCP/Collagen improved the handling performance than the granules of OCP, and synergistically enhanced the bone regeneration beyond expectation, which were composed of bone nucleation by OCP and cell infiltration by collagen. Histomorphometrical analysis showed that n-Bone% +/- standard error treated with OCP/Collagen (48.4 +/- 5.14) was significantly higher than those with OCP (27.6 +/- 4.04) or collagen (27.4 +/- 5.69) in week 8. The present study suggests that the combination OCP with collagen elicited the synergistic effect for bone regeneration.

  3. Regenerative medicine in dental and oral tissues: Dental pulp mesenchymal stem cell

    Directory of Open Access Journals (Sweden)

    Janti Sudiono

    2017-08-01

    Full Text Available Background. Regenerative medicine is a new therapeutic modality using cell, stem cell and tissue engineering technologies. Purpose. To describe the regenerative capacity of dental pulp mesenchymal stem cell. Review. In dentistry, stem cell and tissue engineering technologies develop incredibly and attract great interest, due to the capacity to facilitate innovation in dental material and regeneration of dental and oral tissues. Mesenchymal stem cells derived from dental pulp, periodontal ligament and dental follicle, can be isolated, cultured and differentiated into various cells, so that can be useful for regeneration of dental, nerves, periodontal and bone tissues. Tissue engineering is a technology in reconstructive biology, which utilizes mechanical, cellular, or biological mediators to facilitate regeneration or reconstruction of a particular tissue. The multipotency, high proliferation rates and accessibility, make dental pulp as an attractive source of mesenchymal stem cells for tissue regeneration. Revitalized dental pulp and continued root development is the focus of regenerative endodontic while biological techniques that can restore lost alveolar bone, periodontal ligament, and root cementum is the focus of regenerative periodontic. Conclucion. Dentin-derived morphogens such as BMP are known to be involved in the regulation of odontogenesis. The multipotency and angiogenic capacity of DPSCs as the regenerative capacity of human dentin / pulp complex indicated that dental pulp may contain progenitors that are responsible for dentin repair. The human periodontal ligament is a viable alternative source for possible primitive precursors to be used in stem cell therapy.

  4. Regenerative Engineering and Bionic Limbs

    Science.gov (United States)

    James, Roshan; Laurencin, Cato T.

    2015-01-01

    Amputations of the upper extremity are severely debilitating, current treatments support very basic limb movement, and patients undergo extensive physiotherapy and psychological counselling. There is no prosthesis that allows the amputees near-normal function. With increasing number of amputees due to injuries sustained in accidents, natural calamities and international conflicts, there is a growing requirement for novel strategies and new discoveries. Advances have been made in technological, material and in prosthesis integration where researchers are now exploring artificial prosthesis that integrate with the residual tissues and function based on signal impulses received from the residual nerves. Efforts are focused on challenging experts in different disciplines to integrate ideas and technologies to allow for the regeneration of injured tissues, recording on tissue signals and feed-back to facilitate responsive movements and gradations of muscle force. A fully functional replacement and regenerative or integrated prosthesis will rely on interface of biological process with robotic systems to allow individual control of movement such as at the elbow, forearm, digits and thumb in the upper extremity. Regenerative engineering focused on the regeneration of complex tissue and organ systems will be realized by the cross-fertilization of advances over the past thirty years in the fields of tissue engineering, nanotechnology, stem cell science, and developmental biology. The convergence of toolboxes crated within each discipline will allow interdisciplinary teams from engineering, science, and medicine to realize new strategies, mergers of disparate technologies, such as biophysics, smart bionics, and the healing power of the mind. Tackling the clinical challenges, interfacing the biological process with bionic technologies, engineering biological control of the electronic systems, and feed-back will be the important goals in regenerative engineering over the next

  5. Regenerative Engineering and Bionic Limbs.

    Science.gov (United States)

    James, Roshan; Laurencin, Cato T

    2015-03-01

    Amputations of the upper extremity are severely debilitating, current treatments support very basic limb movement, and patients undergo extensive physiotherapy and psychological counselling. There is no prosthesis that allows the amputees near-normal function. With increasing number of amputees due to injuries sustained in accidents, natural calamities and international conflicts, there is a growing requirement for novel strategies and new discoveries. Advances have been made in technological, material and in prosthesis integration where researchers are now exploring artificial prosthesis that integrate with the residual tissues and function based on signal impulses received from the residual nerves. Efforts are focused on challenging experts in different disciplines to integrate ideas and technologies to allow for the regeneration of injured tissues, recording on tissue signals and feed-back to facilitate responsive movements and gradations of muscle force. A fully functional replacement and regenerative or integrated prosthesis will rely on interface of biological process with robotic systems to allow individual control of movement such as at the elbow, forearm, digits and thumb in the upper extremity. Regenerative engineering focused on the regeneration of complex tissue and organ systems will be realized by the cross-fertilization of advances over the past thirty years in the fields of tissue engineering, nanotechnology, stem cell science, and developmental biology. The convergence of toolboxes crated within each discipline will allow interdisciplinary teams from engineering, science, and medicine to realize new strategies, mergers of disparate technologies, such as biophysics, smart bionics, and the healing power of the mind. Tackling the clinical challenges, interfacing the biological process with bionic technologies, engineering biological control of the electronic systems, and feed-back will be the important goals in regenerative engineering over the next

  6. Studies on the effect of low level laser therapy on bone repair

    Energy Technology Data Exchange (ETDEWEB)

    Clingen-Vance, H.J

    1997-05-01

    The speed and quality of bone repair has direct clinical relevance. It has been suggested that Low Level Laser Therapy (LLLT) accelerates bone healing and that neuropeptides play a role in bone metabolism. This study investigated LLLT effects (using a GaAlAs semiconductor laser, 830 nm wavelength, 70 mW output power at an energy density of 4J/cm2) on the repair of pinned immobilised femoral osteotomies in male Sprague Dawley rats randomly assigned to 3 experimental groups: a control group, group A (osteotomised limb irradiated) and group B (non-osteotomised limb irradiated). Specimens were retrieved from 1-5 weeks post-trauma for histology, immunohistochemical investigation of neuropeptide expression (NPY, CGRP, SP, VIP), radioimmunoassay, bone mineral density (BMD) and biomechanical strength testing studies. Histology suggested accelerated bone repair in group B by 3 weeks, while by 5 weeks the control group was more advanced displaying bony union. Distinct differences were detected in the pattern and level of neuropeptide expression in repairing fractures between groups with several novel and discrete peptide localisations being reported for bone and cartilage cell types and bone marrow megakaryocytes. A role for neuropeptides in bone metabolism is supported. Bone densitometry showed no significant difference between groups for in vivo BMD data but did on more accurate in vitro assessment. Biomechanical studies demonstrated stronger osteotomies in the control group compared to irradiated groups at 5 weeks post-osteotomy suggesting that bone quality may be poorer after LLLT. The initial acceleration of bone repair after laser therapy indicates that it is biostimulatory to repair (a systemic effect was detected), however as the control group was more advanced by 5 weeks post-fracture further investigation of different treatment schedules is indicated. This research confirms that BMD is not the sole determinant of bone strength but that bone quality is clearly

  7. Effects of low intensity vibration on bone and muscle in rats with spinal cord injury.

    Science.gov (United States)

    Bramlett, H M; Dietrich, W D; Marcillo, A; Mawhinney, L J; Furones-Alonso, O; Bregy, A; Peng, Y; Wu, Y; Pan, J; Wang, J; Guo, X E; Bauman, W A; Cardozo, C; Qin, W

    2014-09-01

    Spinal cord injury (SCI) causes rapid and marked bone loss. The present study demonstrates that low-intensity vibration (LIV) improves selected biomarkers of bone turnover and gene expression and reduces osteoclastogenesis, suggesting that LIV may be expected to benefit to bone mass, resorption, and formation after SCI. Sublesional bone is rapidly and extensively lost following spinal cord injury (SCI). Low-intensity vibration (LIV) has been suggested to reduce loss of bone in children with disabilities and osteoporotic women, but its efficacy in SCI-related bone loss has not been tested. The purpose of this study was to characterize effects of LIV on bone and bone cells in an animal model of SCI. The effects of LIV initiated 28 days after SCI and provided for 15 min twice daily 5 days each week for 35 days were examined in female rats with moderate severity contusion injury of the mid-thoracic spinal cord. Bone mineral density (BMD) of the distal femur and proximal tibia declined by 5 % and was not altered by LIV. Serum osteocalcin was reduced after SCI by 20 % and was increased by LIV to a level similar to that of control animals. The osteoclastogenic potential of bone marrow precursors was increased after SCI by twofold and associated with 30 % elevation in serum CTX. LIV reduced the osteoclastogenic potential of marrow precursors by 70 % but did not alter serum CTX. LIV completely reversed the twofold elevation in messenger RNA (mRNA) levels for SOST and the 40 % reduction in Runx2 mRNA in bone marrow stromal cells resulting from SCI. The findings demonstrate an ability of LIV to improve selected biomarkers of bone turnover and gene expression and to reduce osteoclastogenesis. The study indicates a possibility that LIV initiated earlier after SCI and/or continued for a longer duration would increase bone mass.

  8. No effect of ketoprofen and meloxicam on bone graft ingrowth: a bone chamber study in goats.

    NARCIS (Netherlands)

    Heide, H.J. van der; Hannink, G.; Buma, P.; Schreurs, B.W.

    2008-01-01

    BACKGROUND AND PURPOSE: There is increasing awareness that non-steroidal anti-inflammatory drugs (NSAIDs), and especially the cyclooxygenase-2 (COX-2) selective ones, may retard bone healing. We have used NSAIDs (indomethacin for at least 7 days) to prevent heterotopic ossification after acetabular

  9. Effects of oestrogen deficiency on the alveolar bone of rats with experimental periodontitis

    OpenAIRE

    Xu, Xin-chen; Chen, Hui; Zhang, Xi; ZHAI, ZAN-JING; Liu, Xu-qiang; ZHENG, XIN-YI; Zhang, Jun; Qin, An; Lu, Er-yi

    2015-01-01

    Periodontitis is an inflammatory disease characterized by loss of connective tissue and alveolar bone, and osteoporosis is a common disease characterized by a systemic impairment of bone mass and microarchitecture. To date, the association between periodontitis and osteoporosis has remained to be fully elucidated. In the present study, an experimental rat model of periodontitis was used to explore the effects of oestrogen deficiency-induced osteoporosis on the maxillary alveolar bone. Forty-f...

  10. Effect of GH/IGF-1 on Bone Metabolism and Osteoporsosis

    OpenAIRE

    Vittorio Locatelli; Vittorio E. Bianchi

    2014-01-01

    Background. Growth hormone (GH) and insulin-like growth factor (IGF-1) are fundamental in skeletal growth during puberty and bone health throughout life. GH increases tissue formation by acting directly and indirectly on target cells; IGF-1 is a critical mediator of bone growth. Clinical studies reporting the use of GH and IGF-1 in osteoporosis and fracture healing are outlined. Methods. A Pubmed search revealed 39 clinical studies reporting the effects of GH and IGF-1 administration on bone ...

  11. Regenerative superheated steam turbine cycles

    Science.gov (United States)

    Fuller, L. C.; Stovall, T. K.

    1980-01-01

    PRESTO computer program was developed to analyze performance of wide range of steam turbine cycles with special attention given to regenerative superheated steam turbine cycles. It can be used to model standard turbine cycles, including such features as process steam extraction, induction and feedwater heating by external sources, peaking, and high back pressure. Expansion line efficiencies, exhaust loss, leakages, mechanical losses, and generator losses are used to calculate cycle heat rate and generator output. Program provides power engineer with flexible aid for design and analysis of steam turbine systems.

  12. Entropy Generation in Regenerative Systems

    Science.gov (United States)

    Kittel, Peter

    1995-01-01

    Heat exchange to the oscillating flows in regenerative coolers generates entropy. These flows are characterized by oscillating mass flows and oscillating temperatures. Heat is transferred between the flow and heat exchangers and regenerators. In the former case, there is a steady temperature difference between the flow and the heat exchangers. In the latter case, there is no mean temperature difference. In this paper a mathematical model of the entropy generated is developed for both cases. Estimates of the entropy generated by this process are given for oscillating flows in heat exchangers and in regenerators. The practical significance of this entropy is also discussed.

  13. Effects of Raloxifene Hydrochloride on Bone Mineral Density and ...

    African Journals Online (AJOL)

    While, changes in high‑density lipoprotein cholesterol and triglycerides after treatment were ... KEY WORDS: Bone mineral density, lipid metabolism, osteoporosis, postmenopausal, raloxifene ... bone loss. ... total hip BMD and serum lipids before and after raloxifene ... 64.4 (6.5) years (range: 58.5‑68.5 years), mean weight.

  14. Effect of bone-soft tissue friction on ultrasound axial shear strain elastography

    Science.gov (United States)

    Tang, Songyuan; Chaudhry, Anuj; Kim, Namhee; Reddy, J. N.; Righetti, Raffaella

    2017-08-01

    Bone-soft tissue friction is an important factor affecting several musculoskeletal disorders, frictional syndromes and the ability of a bone fracture to heal. However, this parameter is difficult to determine using non-invasive imaging modalities, especially in clinical settings. Ultrasound axial shear strain elastography is a non-invasive imaging modality that has been used in the recent past to estimate the bonding between different tissue layers. As most elastography methods, axial shear strain elastography is primarily used in soft tissues. More recently, this technique has been proposed to assess the bone-soft tissue interface. In this paper, we investigate the effect of a variation in bone-soft tissue friction coefficient in the resulting axial shear strain elastograms. Finite element poroelastic models of bone specimens exhibiting different bone-soft tissue friction coefficients were created and mechanically analyzed. These models were then imported to an ultrasound elastography simulation module to assess the presence of axial shear strain patterns. In vitro experiments were performed to corroborate selected simulation results. The results of this study show that the normalized axial shear strain estimated at the bone-soft tissue interface is statistically correlated to the bone-soft tissue coefficient of friction. This information may prove useful to better interpret ultrasound elastography results obtained in bone-related applications and, possibly, monitor bone healing.

  15. Effect of tetracalcium dimagnesium phytate on bone characteristics in ovariectomized rats.

    Science.gov (United States)

    Grases, Félix; Sanchis, Pilar; Prieto, Rafael M; Perelló, Joan; López-González, Ángel A

    2010-12-01

    The aim was to evaluate the influence of dietary Ca-Mg-phytate consumption on the bone characteristics of ovariectomized rats, an animal model for postmenopausal osteoporosis. Twenty ovariectomized female Wistar rats were randomly assigned to two groups fed, respectively, with a non-phytate diet (AIN-76A) or the same diet enriched with 1% phytate (as the calcium magnesium salt, phytin). After 12 weeks of feeding the rats were sacrificed, and both femoral bones and L4 vertebra were removed from each rat. Bone mass, length, width, volume, and mineral density were measured, and the phosphorus, calcium, magnesium, and zinc contents of bones were determined. Deoxypyridinoline (a bone resorption marker) was measured in urine, and osteocalcin (a bone formation marker) was measured in serum. The calcium and phosphorus contents and bone mineral density were significantly higher in both femoral bones and L4 vertebra for phytate-treated rats in comparison to rats in the non-phytate group. Deoxypyridinoline was significantly increased in rats in the non-phytate treatment group. Ca-Mg-phytate consumption reduces bone mineral density loss due to estrogen deficiency. Thus, phytate exhibits effects similar to those of bisphosphonates on bone resorption and may be of use in the primary prevention of osteoporosis if larger studies in humans confirm these findings.

  16. Low bone turnover and low BMD in Down syndrome: effect of intermittent PTH treatment.

    Directory of Open Access Journals (Sweden)

    Tristan W Fowler

    Full Text Available Trisomy 21 affects virtually every organ system and results in the complex clinical presentation of Down syndrome (DS. Patterns of differences are now being recognized as patients' age and these patterns bring about new opportunities for disease prevention and treatment. Low bone mineral density (BMD has been reported in many studies of males and females with DS yet the specific effects of trisomy 21 on the skeleton remain poorly defined. Therefore we determined the bone phenotype and measured bone turnover markers in the murine DS model Ts65Dn. Male Ts65Dn DS mice are infertile and display a profound low bone mass phenotype that deteriorates with age. The low bone mass was correlated with significantly decreased osteoblast and osteoclast development, decreased bone biochemical markers, a diminished bone formation rate and reduced mechanical strength. The low bone mass observed in 3 month old Ts65Dn mice was significantly increased after 4 weeks of intermittent PTH treatment. These studies provide novel insight into the cause of the profound bone fragility in DS and identify PTH as a potential anabolic agent in the adult low bone mass DS population.

  17. Effects of loading frequency on the functional adaptation of trabeculae predicted by bone remodeling simulation.

    Science.gov (United States)

    Kameo, Yoshitaka; Adachi, Taiji; Hojo, Masaki

    2011-08-01

    The process of bone remodeling is regulated by metabolic activities of many bone cells. While osteoclasts and osteoblasts are responsible for bone resorption and formation, respectively, activities of these cells are believed to be controlled by a mechanosensory system of osteocytes embedded in the extracellular bone matrix. Several experimental and theoretical studies have suggested that the strain-derived interstitial fluid flow in lacuno-canalicular porosity serves as the prime mover for bone remodeling. Previously, we constructed a mathematical model for trabecular bone remodeling that interconnects the microscopic cellular activities with the macroscopic morphological changes in trabeculae through the mechanical hierarchy. This model assumes that fluid-induced shear stress acting on osteocyte processes is a driving force for bone remodeling. The validity of this model has been demonstrated with a remodeling simulation using a two-dimensional trabecular model. In this study, to investigate the effects of loading frequency, which is thought to be a significant mechanical factor in bone remodeling, we simulated morphological changes of a three-dimensional single trabecula under cyclic uniaxial loading with various frequencies. The results of the simulation show the trabecula reoriented to the loading direction with the progress of bone remodeling. Furthermore, as the imposed loading frequency increased, the diameter of the trabecula in the equilibrium state was enlarged by remodeling. These results indicate that our simulation model can successfully evaluate the relationship between loading frequency and trabecular bone remodeling. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Effects of Nrf2 Deficiency on Bone Microarchitecture in an Experimental Model of Osteoporosis

    Directory of Open Access Journals (Sweden)

    Lidia Ibáñez

    2014-01-01

    Full Text Available Objective. Redox imbalance contributes to bone fragility. We have evaluated the in vivo role of nuclear factor erythroid derived 2-related factor-2 (Nrf2, an important regulator of cellular responses to oxidative stress, in bone metabolism using a model of postmenopausal osteoporosis. Methods. Ovariectomy was performed in both wild-type and mice deficient in Nrf2 (Nrf2−/−. Bone microarchitecture was analyzed by μCT. Serum markers of bone metabolism were also measured. Reactive oxygen species production was determined using dihydrorhodamine 123. Results. Sham-operated or ovariectomized Nrf2−/− mice exhibit a loss in trabecular bone mineral density in femur, accompanied by a reduction in cortical area in vertebrae. Nrf2 deficiency tended to increase osteoblastic markers and significantly enhanced osteoclastic markers in sham-operated animals indicating an increased bone turnover with a main effect on bone resorption. We have also shown an increased production of oxidative stress in bone marrow-derived cells from sham-operated or ovariectomized Nrf2−/− mice and a higher responsiveness of bone marrow-derived cells to osteoclastogenic stimuli in vitro. Conclusion. We have demonstrated in vivo a key role of Nrf2 in the maintenance of bone microarchitecture.

  19. Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure on bone material properties.

    Science.gov (United States)

    Finnilä, Mikko A J; Zioupos, Peter; Herlin, Maria; Miettinen, Hanna M; Simanainen, Ulla; Håkansson, Helen; Tuukkanen, Juha; Viluksela, Matti; Jämsä, Timo

    2010-04-19

    Dioxins are known to decrease bone strength, architecture and density. However, their detailed effects on bone material properties are unknown. Here we used nanoindentation methods to characterize the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on nanomechanical behaviour of bone matrix. Pregnant rats were treated with a single intragastric dose of TCDD (1 microg/kg) or vehicle on gestational day 11. Tibias of female offspring were sampled on postnatal day (PND) 35 or 70, scanned at mid-diaphysis with pQCT, and evaluated by three-point bending and nanoindentation. TCDD treatment decreased bone mineralization (p<0.05), tibial length (p<0.01), cross-sectional geometry (p<0.05) and bending strength (p<0.05). Controls showed normal maturation pattern between PND 35 and 70 with decreased plasticity by 5.3% and increased dynamic hardness, storage and complex moduli by 26%, 13% and 12% respectively (p<0.05), while similar maturation was not observed in TCDD-exposed pups. In conclusion, for the first time, we demonstrate retardation of bone matrix maturation process in TCDD-exposed animals. In addition, the study confirms that developmental TCDD exposure has adverse effects on bone size, strength and mineralization. The current results in conjunction with macromechanical behaviour suggest that reduced bone strength caused by TCDD is more associated with the mineralization and altered geometry of bones than with changes at the bone matrix level.

  20. Combined intervention of dietary soybean proteins and swim training: effects on bone metabolism in ovariectomized rats.

    Science.gov (United States)

    Figard, Hélène; Mougin, Fabienne; Gaume, Vincent; Berthelot, Alain

    2006-01-01

    Soybean proteins, a rich source of isoflavones, taken immediately after an ovariectomy prevent bone loss in rats. Exercise-induced stimuli are essential for bone growth. Few studies exist about the combined effects of swim training and soybean protein supplementation on bone metabolism. So, the purpose of this study was to investigate, in 48 female Sprague-Dawley rats (12 weeks old) the effects of an 8-week swim-training regimen (1 h/day, 5 days/week) and dietary soybean proteins (200 g/kg diet) on bone metabolism. Rats were randomly assigned to four groups: (1) ovariectomized fed with a semisynthetic control diet; (2) ovariectomized fed with a soybean protein-enriched semisynthetic diet; (3) ovariectomized trained to exercise and fed with control diet; (4) ovariectomized trained to exercise and fed with a soybean protein diet. Following the treatment period, body weight gain was identical in the four groups. Soybean protein supplementation increased bone calcium content, and reduced plasma osteocalcin values, without significant modification of calcium balance and net calcium absorption. Swim training enhanced plasma and bone calcium content and calcium balance and net calcium absorption. It did not modify either plasma osteocalcin values or urinary deoxypyridinoline excretion. Both exercise and soybean protein intake increased plasma on bone calcium without modifying net calcium absorption or bone markers. In conclusion, we demonstrated, in ovariectomized rats, that swimming exercise and dietary supplementation with soy proteins do not have synergistic effects on calcium metabolism and bone markers.

  1. Effect of low-level laser therapy on repair of the bone compromised by radiotherapy.

    Science.gov (United States)

    Batista, Jonas D; Zanetta-Barbosa, Darceny; Cardoso, Sérgio V; Dechichi, Paula; Rocha, Flaviana S; Pagnoncelli, Rogério M

    2014-11-01

    Radiotherapy (RDT) is commonly used for cancer treatment, but high doses of ionizing radiation can directly affect healthy tissues. Positive biological effects of low-level laser therapy (LLLT) on bone repair have been demonstrated; however, this effect on surgical defects of bone previously compromised by radiotherapy has not been evaluated. The aim of this study was to investigate the influence of LLLT (λ = 830 nm) in femur repair after ionizing radiation. Twenty Wistar rats were divided into four groups: control group (GC, n = 5) creation of bone defects (BDs) only; laser group (GL), with BD and LLLT (n = 5); radiotherapy group (GR), submitted to RDT and BD (n = 5); and radiotherapy and laser group (GRL), submitted to RDT, BD, and LLLT (n = 5). GL and GRL received punctual laser application (DE = 210 J/cm(2), P = 50 mW, t = 120 s, and beam diameter of 0.04 cm(2)) immediately after surgery, with 48-h interval during 7 days. Animals were euthanized at 7 days after surgery, and bone sections were evaluated morphometrically with conventional microscopy. Bone repair was only observed in nonirradiated bone, with significant improvement in GL in comparison to GC. GR and GRL did not present any bone neoformation. The result demonstrated a positive local biostimulative effect of LLLT in normal bone. However, LLLT was not able to revert the bone metabolic damage due to ionizing radiation.

  2. Pharmacologic inhibition of the TGF-beta type I receptor kinase has anabolic and anti-catabolic effects on bone.

    Directory of Open Access Journals (Sweden)

    Khalid S Mohammad

    Full Text Available During development, growth factors and hormones cooperate to establish the unique sizes, shapes and material properties of individual bones. Among these, TGF-beta has been shown to developmentally regulate bone mass and bone matrix properties. However, the mechanisms that control postnatal skeletal integrity in a dynamic biological and mechanical environment are distinct from those that regulate bone development. In addition, despite advances in understanding the roles of TGF-beta signaling in osteoblasts and osteoclasts, the net effects of altered postnatal TGF-beta signaling on bone remain unclear. To examine the role of TGF-beta in the maintenance of the postnatal skeleton, we evaluated the effects of pharmacological inhibition of the TGF-beta type I receptor (TbetaRI kinase on bone mass, architecture and material properties. Inhibition of TbetaRI function increased bone mass and multiple aspects of bone quality, including trabecular bone architecture and macro-mechanical behavior of vertebral bone. TbetaRI inhibitors achieved these effects by increasing osteoblast differentiation and bone formation, while reducing osteoclast differentiation and bone resorption. Furthermore, they induced the expression of Runx2 and EphB4, which promote osteoblast differentiation, and ephrinB2, which antagonizes osteoclast differentiation. Through these anabolic and anti-catabolic effects, TbetaRI inhibitors coordinate changes in multiple bone parameters, including bone mass, architecture, matrix mineral concentration and material properties, that collectively increase bone fracture resistance. Therefore, TbetaRI inhibitors may be effective in treating conditions of skeletal fragility.

  3. The Effect of Osteoporosis Risk Factors on Bone Mineral Density

    Directory of Open Access Journals (Sweden)

    Ebru Umay

    2011-08-01

    Full Text Available Introduction: This study aimed to evaluate whether osteoporosis (OP risk factors have any effect on bone mineral density in patients receiving OP treatment. Material and method: The study included 73 postmenopausal women with OP who had been using bisphosphonate treatment for one year, with at least one of either total lumbar or femoral neck T-score still <-2.5 and whose total lumbar and/or femoral neck T-scores showed no improvement compared to one year earlier. Demographic characteristics and OP risk factors were recorded. Mini-mental test (MMT, Beck Depression and Anxiety Scales were used in the evaluation of the cognitive status of patients. The assessed parameters of patients were compared with the current total lumbar and femoral neck T-scores. Results: Being underweight, illiteracy, high gravidity, inadequate calcium intake, and cognitive dysfunction were found to be effective on lumbar and femoral neck T- scores, while tea and coffee consumption, smoking status and the presence of additional comorbidity and drug use were found to be effective on femoral neck T-scores. Conclusion: Some OP risk factors may contribute to the ineffectiveness in patients receiving regular OP treatment who fail to show adequate response. (Turkish Journal of Osteoporosis 2011;17:44-50

  4. Effects of short-term testosterone replacement on areal bone mineral density and bone turnover in young hypogonadal males

    Directory of Open Access Journals (Sweden)

    Prasun Deb

    2012-01-01

    Full Text Available Context: Effect of parenteral testosterone esters administration on bone-mineral density (BMD and bone turnover in young age onset male hypogonadism is not studied in Indian subjects. Aims: To prospectively study the effect of short-term (6 months replacement therapy with parenteral testosterone enanthate-propionate combination on BMD and bone turnover markers in hypogonadal adult patients. Settings and Design: Prospective, tertiary care academic center. Materials and Methods: Thirteen young, otherwise healthy hypogonadal males (age 25.5 ± 4.9 yrs, serum testosterone 2.56 ± 4.29 nmol/l were subjected to BMD measurements (DXA and estimation of urinary Crosslaps™ and serum osteocalcin at baseline. Twelve healthy age and BMI-matched males served as controls for BMD measurements. The hypogonadal patients were administered parenteral testosterone esters (as mixed enanthate and propionate 250 mg i.m. every 2-3 weeks, and prospectively followed for 6 months. BMD and bone markers were studied at the end of 6 months. Statistical Analysis Used: Mann-Whitney nonparametric test, paired t-test and Pearson′s test of two-tail significance. Results: At baseline, BMD was significantly lower in hypogonadal males as compared to that in controls. With testosterone replacement, there was significant improvement in BMD, both at trabecular and cortical sites, There was a decline in bone turnover with treatment (Ur Crosslaps™:creatinine ratio: pretreatment 72.8 ± 40.4, post-treatment 35.5 ± 23.8 μg/mmol, P = 0.098; serum osteocalcin: pre-treatment 41.0 ± 16.8, post-treatment 31.7 ± 2.1 ng/ml, P = 0.393. Conclusions: Short-term parenteral testosterone replacement significantly improves BMD at the hip, lumbar spine and forearm in hypogonadal young males.

  5. Effect of Denosumab on Bone Mineral Density and Markers of Bone Turnover among Postmenopausal Women with Osteoporosis

    Science.gov (United States)

    Salerni, H.; González, D.; Bagur, A.; Oliveri, B.; Farías, V.; Maffei, L.; Mansur, J. L.; Larroudé, M. S.; Pavlove, M. M.; Karlsbrum, S.

    2016-01-01

    The aim of this study was to evaluate the effect of denosumab (Dmab) on bone mineral density (BMD) and bone turnover markers after 1 year of treatment. Additionally, the effect of Dmab in bisphosphonate-naïve patients (BP-naïve) compared to patients previously treated with bisphosphonates (BP-prior) was analyzed. This retrospective study included 425 postmenopausal women treated with Dmab for 1 year in clinical practice conditions in specialized centers from Argentina. Participants were also divided according to previous bisphosphonate treatment into BP-naïve and BP-prior. A control group of patients treated with BP not switched to Dmab matched by sex, age, and body mass index was used. Data are expressed as mean ± SEM. After 1 year of treatment with Dmab the bone formation markers total alkaline phosphatase and osteocalcin were significantly decreased (23.36% and 43.97%, resp.), as was the bone resorption marker s-CTX (69.61%). Significant increases in BMD were observed at the lumbar spine, femoral neck, and total hip without differences between BP-naïve and BP-prior. A better BMD response was found in BP-prior group compared with BP treated patients not switched to Dmab. Conclusion. Dmab treatment increased BMD and decreased bone turnover markers in the whole group, with similar response in BP-naïve and BP-prior patients. A better BMD response in BP-prior patients versus BP treated patients not switched to Dmab was observed. PMID:27579211

  6. Effect of Denosumab on Bone Mineral Density and Markers of Bone Turnover among Postmenopausal Women with Osteoporosis

    Directory of Open Access Journals (Sweden)

    A. Sánchez

    2016-01-01

    Full Text Available The aim of this study was to evaluate the effect of denosumab (Dmab on bone mineral density (BMD and bone turnover markers after 1 year of treatment. Additionally, the effect of Dmab in bisphosphonate-naïve patients (BP-naïve compared to patients previously treated with bisphosphonates (BP-prior was analyzed. This retrospective study included 425 postmenopausal women treated with Dmab for 1 year in clinical practice conditions in specialized centers from Argentina. Participants were also divided according to previous bisphosphonate treatment into BP-naïve and BP-prior. A control group of patients treated with BP not switched to Dmab matched by sex, age, and body mass index was used. Data are expressed as mean ± SEM. After 1 year of treatment with Dmab the bone formation markers total alkaline phosphatase and osteocalcin were significantly decreased (23.36% and 43.97%, resp., as was the bone resorption marker s-CTX (69.61%. Significant increases in BMD were observed at the lumbar spine, femoral neck, and total hip without differences between BP-naïve and BP-prior. A better BMD response was found in BP-prior group compared with BP treated patients not switched to Dmab. Conclusion. Dmab treatment increased BMD and decreased bone turnover markers in the whole group, with similar response in BP-naïve and BP-prior patients. A better BMD response in BP-prior patients versus BP treated patients not switched to Dmab was observed.

  7. Paradoxical effects of partial leptin deficiency on bone in growing female mice.

    Science.gov (United States)

    Philbrick, Kenneth A; Turner, Russell T; Branscum, Adam J; Wong, Carmen P; Iwaniec, Urszula T

    2015-12-01

    Morbidly obese, leptin-deficient ob/ob mice display low bone mass, mild osteoclast-rich osteopetrosis, and increased bone marrow adiposity. While partial leptin deficiency results in increased weight, the skeletal manifestations of partial leptin deficiency are less well defined. We therefore analyzed femora and lumbar vertebrae in growing (7-week-old) female C57BL/6 wildtype (WT) mice, partial leptin-deficient ob/+ mice, and leptin-deficient ob/ob mice. The bones were evaluated by dual energy absorptiometry, microcomputed tomography and histomorphometry. As expected, ob/+ mice were heavier, had more white adipose tissue, and lower serum leptin than WT mice, but were lighter and had less white adipose tissue than ob/ob mice. With a few exceptions, cancellous bone architecture, cell (osteoblast, osteoclast, and adipocyte), and dynamic measurements did not differ between WT and ob/+ mice. In contrast, compared to WT and ob/+ mice, ob/ob mice had lower cancellous bone volume fraction, and higher bone marrow adiposity in the femur metaphysis, and higher cancellous bone volume fraction in lumbar vertebra. Paradoxically, ob/+ mice had greater femoral bone volume than either WT or ob/ob mice. There was a positive correlation between body weight and femur volume in all three genotypes. However, the positive effect of weight on bone occurred with lower body weight in leptin-producing mice. The paradoxical differences in bone size among WT, ob/+, and ob/ob mice may be explained if leptin, in addition to stimulating bone growth and cancellous bone turnover, acts to lower the set-point at which increased body weight leads to a commensurate increase in bone size. © 2015 Wiley Periodicals, Inc.

  8. The effect of micro-gravity and bioactive surfaces on the mineralization of bone

    Science.gov (United States)

    Maroothynaden, J.; Hench, J. J.

    2006-07-01

    The loss of bone density with age especially for women, is one of the most serious health complications affecting humans An increased incidence of fractured hips and long bones, and collapse of vertebrae are all due to loss of bone density. Demineralization of bone also poses one of the most severe limitations on long-duration manned space flight. This study investigates the hypothesis that chemical effects responsible for enhanced osteoblast differentiation and proliferation observed in-vitro and in-vivo at 1-gravity with bioactive glasses may be sufficient to prevent the turn-off of bone cells that occurs in μ-g or other reduced loading environments as a consequence of age or immobility. To conduct this work, the authors developed an embryonic mouse long-bone model to examine the interaction of bioactive surfaces and ions with the influence of a simulated μ-g environment.

  9. Inhibitory Effects of Morinda officinalis Extract on Bone Loss in Ovariectomized Rats

    Directory of Open Access Journals (Sweden)

    Qiao-Yan Zhang

    2009-06-01

    Full Text Available The present study was undertaken to investigate the protective effects of ethanol extract from the root of Morinda Officinalis (RMO on ovariectomy-induced bone loss. Administration of RMO extract increased trabecular bone mineral content and bone mineral density of tibia, improved the levels of phosphorus (P, calcium (Ca and OPG, decreased the levels of DPD/Cr, TRAP, ACTH and corticosterone, but did not reverse the levels of ALP, TNF-α and IL-6 in serum of ovariectomized rats. These findings demonstrated that RMO extract reduced bone loss in ovariectomized rats, probably via the inhibition of bone resorption, but was not involved with bone formation. Anthraquinones and polysaccharides from Morinda officinals could be responsible for their antiosteoporotic activity, and the action mechanism of these constituents needs to be further studied. Therefore, RMO has the potential to develop a clinically useful antiosteoporotic agent.

  10. Optimal performance of regenerative cryocoolers

    Science.gov (United States)

    de Boer, P. C. T.

    2011-02-01

    The key component of a regenerative cryocooler is its regenerative heat exchanger. This device is subject to losses due to imperfect heat transfer between the regenerator material and the gas, as well as due to viscous dissipation. The relative magnitudes of these losses can be characterized by the ratio of the Stanton number St to the Fanning friction factor f. Using available data for the ratio St/ f, results are developed for the optimal cooling rate and Carnot efficiency. The variations of pressure and temperature are taken to be sinusoidal in time, and to have small amplitudes. The results are applied to the case of the Stirling cryocooler, with flow being generated by pistons at both sides of the regenerator. The performance is found to be close to optimal at large ratio of the warm space volume to the regenerator void volume. The results are also applied to the Orifice Pulse Tube Refrigerator. In this case, optimal performance additionally requires a large ratio of the regenerator void volume to the cold space volume.

  11. Effects of increased hypothalamic leptin gene expression on ovariectomy-induced bone loss in rats.

    Science.gov (United States)

    Jackson, M A; Iwaniec, U T; Turner, R T; Wronski, T J; Kalra, S P

    2011-08-01

    Estrogen deficiency results in accelerated bone turnover with a net increase in bone resorption. Subcutaneous administration of leptin attenuates bone loss in ovariectomized (ovx) rats by reducing bone resorption. However, in addition to its direct beneficial effects, leptin has been reported to have indirect (central nervous system-mediated) antiosteogenic effects on bone, which may limit the efficacy of elevated serum leptin to prevent estrogen deficiency-associated bone loss. The present study evaluated the long-term effects of increased hypothalamic leptin transgene expression, using recombinant adeno-associated virus-leptin (rAAV-Lep) gene therapy, on bone mass, architecture, and cellular endpoints in sexually mature ovx Sprague-Dawley rats. Ovx rats were implanted with cannulae in the 3rd ventricle of the hypothalamus and injected with either rAAV-Lep or rAAV-GFP (control vector encoding green fluorescent protein) and maintained for 10 weeks. Additional controls consisted of ovary-intact rats and ovx rats pair-fed to rAAV-Lep rats. Lumbar vertebrae were analyzed by micro-computed tomography and tibiae by histomorphometry. Cancellous bone volume was lower and osteoclast perimeter, osteoblast perimeter, and bone marrow adipocyte density were greater in ovx rats compared to ovary-intact controls. In contrast, differences among ovx groups were not detected for any endpoint evaluated. In conclusion, whereas estrogen deficiency resulted in marked cancellous osteopenia, increased bone turnover and marrow adiposity, increasing hypothalamic leptin transgene expression in ovx rats had neither detrimental nor beneficial effects on bone mass, architecture, or cellular endpoints. These findings demonstrate that the antiresorptive effects of subcutaneous leptin administration in ovx rats are mediated through leptin targets in the periphery. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Alendronate Can Improve Bone Alterations in Experimental Diabetes by Preventing Antiosteogenic, Antichondrogenic, and Proadipocytic Effects of AGEs on Bone Marrow Progenitor Cells

    Science.gov (United States)

    2016-01-01

    Bisphosphonates such as alendronate are antiosteoporotic drugs that inhibit the activity of bone-resorbing osteoclasts and secondarily promote osteoblastic function. Diabetes increases bone-matrix-associated advanced glycation end products (AGEs) that impair bone marrow progenitor cell (BMPC) osteogenic potential and decrease bone quality. Here we investigated the in vitro effect of alendronate and/or AGEs on the osteoblastogenic, adipogenic, and chondrogenic potential of BMPC isolated from nondiabetic untreated rats. We also evaluated the in vivo effect of alendronate (administered orally to rats with insulin-deficient Diabetes) on long-bone microarchitecture and BMPC multilineage potential. In vitro, the osteogenesis (Runx2, alkaline phosphatase, type 1 collagen, and mineralization) and chondrogenesis (glycosaminoglycan production) of BMPC were both decreased by AGEs, while coincubation with alendronate prevented these effects. The adipogenesis of BMPC (PPARγ, intracellular triglycerides, and lipase) was increased by AGEs, and this was prevented by coincubation with alendronate. In vivo, experimental Diabetes (a) decreased femoral trabecular bone area, osteocyte density, and osteoclastic TRAP activity; (b) increased bone marrow adiposity; and (c) deregulated BMPC phenotypic potential (increasing adipogenesis and decreasing osteogenesis and chondrogenesis). Orally administered alendronate prevented all these Diabetes-induced effects on bone. Thus, alendronate could improve bone alterations in diabetic rats by preventing the antiosteogenic, antichondrogenic, and proadipocytic effects of AGEs on BMPC. PMID:27840829

  13. Alendronate Can Improve Bone Alterations in Experimental Diabetes by Preventing Antiosteogenic, Antichondrogenic, and Proadipocytic Effects of AGEs on Bone Marrow Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Sara Rocío Chuguransky

    2016-01-01

    Full Text Available Bisphosphonates such as alendronate are antiosteoporotic drugs that inhibit the activity of bone-resorbing osteoclasts and secondarily promote osteoblastic function. Diabetes increases bone-matrix-associated advanced glycation end products (AGEs that impair bone marrow progenitor cell (BMPC osteogenic potential and decrease bone quality. Here we investigated the in vitro effect of alendronate and/or AGEs on the osteoblastogenic, adipogenic, and chondrogenic potential of BMPC isolated from nondiabetic untreated rats. We also evaluated the in vivo effect of alendronate (administered orally to rats with insulin-deficient Diabetes on long-bone microarchitecture and BMPC multilineage potential. In vitro, the osteogenesis (Runx2, alkaline phosphatase, type 1 collagen, and mineralization and chondrogenesis (glycosaminoglycan production of BMPC were both decreased by AGEs, while coincubation with alendronate prevented these effects. The adipogenesis of BMPC (PPARγ, intracellular triglycerides, and lipase was increased by AGEs, and this was prevented by coincubation with alendronate. In vivo, experimental Diabetes (a decreased femoral trabecular bone area, osteocyte density, and osteoclastic TRAP activity; (b increased bone marrow adiposity; and (c deregulated BMPC phenotypic potential (increasing adipogenesis and decreasing osteogenesis and chondrogenesis. Orally administered alendronate prevented all these Diabetes-induced effects on bone. Thus, alendronate could improve bone alterations in diabetic rats by preventing the antiosteogenic, antichondrogenic, and proadipocytic effects of AGEs on BMPC.

  14. Safety and Potential Effect of a Single Intracavernous Injection of Autologous Adipose-Derived Regenerative Cells in Patients with Erectile Dysfunction Following Radical Prostatectomy

    DEFF Research Database (Denmark)

    Haahr, Martha Kirstine; Jensen, Charlotte Harken; Toyserkani, Navid Mohamadpour

    2016-01-01

    and this condition presents an unmet medical need. Preclinical studies using adipose-derived stem cells to treat ED have shown promising results. Herein, we report the results of a human phase 1 trial with autologous adipose-derived regenerative cells (ADRCs) freshly isolated after a liposuction. METHODS: Seventeen...... men suffering from post RP ED, with no recovery using conventional therapy, were enrolled in a prospective phase 1 open-label and single-arm study. All subjects had RP performed 5-18 months before enrolment, and were followed for 6 months after intracavernosal transplantation. ADRCs were analyzed...... for the presence of stem cell surface markers, viability and ability to differentiate. Primary endpoint was the safety and tolerance of the cell therapy while the secondary outcome was improvement of erectile function. Any adverse events were reported and erectile function was assessed by IIEF-5 scores. The study...

  15. The clinical use of regenerative therapy in COPD.

    Science.gov (United States)

    Lipsi, Roberto; Rogliani, Paola; Calzetta, Luigino; Segreti, Andrea; Cazzola, Mario

    2014-01-01

    Regenerative or stem cell therapy is an emerging field of treatment based on stimulation of endogenous resident stem cells or administration of exogenous stem cells to treat diseases or injury and to replace malfunctioning or damaged tissues. Current evidence suggests that in the lung, these cells may participate in tissue homeostasis and regeneration after injury. Animal and human studies have demonstrated that tissue-specific stem cells and bone marrow-derived cells contribute to lung tissue regeneration and protection, and thus administration of exogenous stem/progenitor cells or humoral factors responsible for the activation of endogenous stem/progenitor cells may be a potent next-generation therapy for chronic obstructive pulmonary disease. The use of bone marrow-derived stem cells could allow repairing and regenerate the damaged tissue present in chronic obstructive pulmonary disease by means of their engraftment into the lung. Another approach could be the stimulation of resident stem cells by means of humoral factors or photobiostimulation.

  16. Protective effect of Pycnogenol® on ovariectomy-induced bone loss in rats.

    Science.gov (United States)

    Mei, Lin; Mochizuki, Miyako; Hasegawa, Noboru

    2012-01-01

    Pycnogenol® (PYC) is a natural plant extract from the bark of Pinus pinaster and has potent antioxidant activities. The protective effect of PYC on bone loss was studied in multiparous ovariectomized (OVX) female rats. Pycnogenol® (30 or 15 mg/kg body weight/day) was administered orally to 8-month-old OVX rats for 3 months. At the end of the experiment, bone strength was measured by a three-point bending test and bone mineral density was estimated by peripheral quantitative computed tomography. Ovariectomy significantly decreased femur bone strength and bone density. Supplementation with PYC suppressed the bone loss induced by OVX. The OVX treatment significantly increased serum osteocalcin (OC) and C-terminal telopeptide of type I collagen (CTx). Supplementation with PYC reduced the serum OC and CTx in OVX rats to a level similar to that of the sham-operated group. The results indicated that orally administered PYC can decrease the bone turnover rate in OVX rats, resulting in positive effects on the biomechanical strength of bone and bone mineral density. Copyright © 2011 John Wiley & Sons, Ltd.

  17. The effects of freezing, boiling and degreasing on the microstructure of bone.

    Science.gov (United States)

    Lander, S L; Brits, D; Hosie, M

    2014-04-01

    The histology of bone has been a useful tool in research. It is commonly used to estimate the age of an individual at death, to assess if the bone is of human or non-human origin and in trauma analysis. Factors that affect the histology of bone include age, sex, population affinity and burning to name but a few. Other factors expected to affect bone histology are freezing, boiling and degreasing but very little information is available for freezing and the effect thereof, and it is unknown if boiling and degreasing affects bone histology. The aim of this study was to assess the effects of freezing, freezing and boiling, and freezing, boiling and degreasing on the histological structure of compact bone. Five cadaver tibiae were frozen at -20°C for 21 days followed by segments being boiled in water for three days and degreased in trichloroethylene at 82°C for three days. Anterior midshaft sections were prepared as ground sections and for Scanning Electron Microscopy (SEM). Quantitatively, there were no significant differences between freezing, boiling and degreasing; however, qualitative differences were observed using SEM. After being frozen the bone displayed cracks and after boiling the bones displayed erosion pits on the surface. It is suggested that further research, using different durations and temperatures for boiling and freezing be undertaken on bone samples representing different ages and various skeletal elements. Copyright © 2013 Elsevier GmbH. All rights reserved.

  18. Effect of the types of dietary fats and non-dietary oils on bone metabolism.

    Science.gov (United States)

    El-Sayed, Eman; Ibrahim, Khadiga

    2017-03-04

    Nutrients beyond calcium and vitamin D have a role on bone health, and in treatment and prevention of osteoporosis. Quality and quantity of dietary fat may have consequences on skeletal health. Diets with highly saturated fat content produce deleterious effects on bone mineralization in growing animals. Conversely, dietary n-3-long chain polyunsaturated fatty acids play an important role in bone metabolism and may help in prevention and treatment of bone disease. Some reports suggest a correlation between the dietary ratio of n-6 and n-3 polyunsaturated fatty acids and bone formation. Specific dietary fatty acids were found to modulate prostanoid synthesis in bone tissue and improve bone formation in both animal and clinical trials. The skeletal benefits of dietary isoprenoids are extremely documented. Higher isoprenoids intake may relate to higher bone mineral density. Dietary supplements containing fish oil, individual polyunsaturated fatty acids, and isoprenoids could be used as adjuvant with bone medications in osteoportic conditions but their doses must be considered to avoid detrimental effect of over dosages.

  19. Bone repair inhibited by indomethacin. Effects on bone metabolism and strength of rabbit osteotomies

    Energy Technology Data Exchange (ETDEWEB)

    Keller, J.; Buenger, C.; Andreassen, T.T.; Bak, B.; Lucht, U.

    1987-01-01

    We measured mineral content, maximum bending strength, and regional blood flow after tibial osteotomy fixed with a small metal plate in 38 rabbits. Half of the animals were treated with indomethacin (10 mg/kg/day) while the other half served as controls. After 2 and 6 weeks, the bone mineral content and maximum bending strength were lower in the indomethacin group when compared with the controls. Compared with the controls, the blood flow at the osteotomy site was decreased after 2 weeks and increased after 6 weeks in the indomethacintreated animals. Inhibition of blood flow increase by indomethacin medication in the early period following osteotomy, as well as retarded bone healing, are probably caused by inhibition of the inflammatory reaction.

  20. Effect of collagen sponge and fibrin glue on bone repair

    Directory of Open Access Journals (Sweden)

    Thiago de Santana SANTOS

    2015-12-01

    Full Text Available ABSTRACT The ability of hemostatic agents to promote bone repair has been investigated using in vitro and in vivo models but, up to now, the results are inconclusive. Objective In this context, the aim of this study was to compare the potential of bone repair of collagen sponge with fibrin glue in a rat calvarial defect model. Material and Methods Defects of 5 mm in diameter were created in rat calvariae and treated with either collagen sponge or fibrin glue; untreated defects were used as control. At 4 and 8 weeks, histological analysis and micro-CT-based histomorphometry were carried out and data were compared by two-way ANOVA followed by Student-Newman-Keuls test when appropriated (p≤0.05. Results Three-dimensional reconstructions showed increased bone formation in defects treated with either collagen sponge or fibrin glue compared with untreated defects, which was confirmed by the histological analysis. Morphometric parameters indicated the progression of bone formation from 4 to 8 weeks. Additionally, fibrin glue displayed slightly higher bone formation rate when compared with collagen sponge. Conclusion Our results have shown the benefits of using collagen sponge and fibrin glue to promote new bone formation in rat calvarial bone defects, the latter being discreetly more advantageous.

  1. Effects of a prolonged submersion on bone strength and metabolism in young healthy submariners.

    Science.gov (United States)

    Luria, Tal; Matsliah, Yinnon; Adir, Yochai; Josephy, Noam; Moran, Daniel S; Evans, Rachel K; Abramovich, Amir; Eliakim, Alon; Nemet, Dan

    2010-01-01

    Submariners taking part in prolonged missions are exposed to environmental factors that may adversely affect bone health. Among these, relatively high levels of CO(2), lack of sunlight exposure affecting vitamin D metabolism, limited physical activity, and altered dietary habits. The aims of this study were to examine the effect of a prolonged submersion (30 days) on changes in bone strength using quantitative bone speed of sound and in markers of bone metabolism that include bone turnover (BAP, PINP, TRAP5b, and CTx) and endocrine regulators (serum calcium, PTH, and 25[OH]D) in a group of 32 young healthy male submariners. The prolonged submersion led to increases in body weight and BMI and to a decrease in fitness level. There was a significant decrease in bone strength following the submersion. Speed of sound exhibited continued decline at 4 weeks after return to shore and returned to baseline levels at the 6-month follow-up. There was a significant increase in circulating calcium level. PTH and 25(OH)D levels decreased significantly. Significant decreases were observed in both TRAP5b and CTx levels, markers of bone resorption, as well as in N-terminal propeptide of type I collagen (PINP), a bone formation marker. Prolonged submersion led to a significant decrease in bone strength, accompanied by an overall decrease in bone metabolism. Bone strength was regained only 6 months after return to shore. Prevention and/or rehabilitation programs should be developed following periods of relative disuse even for young submariners. The effects of repeated prolonged submersions on bone health are yet to be determined.

  2. Bone mineral density and bone markers in patients with a recent low-energy fracture: effect of 1 y of treatment with calcium and vitamin D

    DEFF Research Database (Denmark)

    Hitz, Mette F; Jensen, Jens-Erik B; Eskildsen, Peter C

    2007-01-01

    BACKGROUND: Low-energy fractures of the hip, forearm, shoulder, and spine are known consequences of osteoporosis. OBJECTIVE: We evaluated the effect of 1 y of treatment with calcium and vitamin D on bone mineral density (BMD) and bone markers in patients with a recent low-energy fracture. DESIGN...... significantly related to physical performance. CONCLUSIONS: A 1-y intervention with calcium and vitamin D reduced bone turnover, significantly increased BMD in patients younger than 70 y, and decreased bone loss in older patients. The effect of treatment was related to physical performance....... with 0.848 +/- 0.194 (Pbone turnover. PTH was significantly lower in the intervention group (P

  3. Bone mineral measurement, experiment M078. [space flight effects on human bone composition

    Science.gov (United States)

    Rambaut, P. C.; Vogel, J. M.; Ullmann, J.; Brown, S.; Kolb, F., III

    1973-01-01

    Measurement tests revealed few deviations from baseline bone mineral measurements after 56 days in a Skylab-type environment. No mineral change was observed in the right radius. One individual, however, showed a possible mineral loss in the left os calcis and another gained mineral in the right ulna. The cause of the gain is unclear but may be attributable to the heavy exercise routines engaged in by the crewmember in question. Equipment problems were identified during the experiment and rectified.

  4. The application of an enamel matrix protein derivative (Emdogain) in regenerative periodontal therapy: a review.

    Science.gov (United States)

    Sculean, Anton; Schwarz, Frank; Becker, Jurgen; Brecx, Michel

    2007-01-01

    Regenerative periodontal therapy aims at reconstitution of the lost periodontal structures such as new formation of root cementum, periodontal ligament and alveolar bone. Findings from basic research indicate that enamel matrix protein derivative (EMD) has a key role in periodontal wound healing. Histological results from animal and human studies have shown that treatment with EMD promotes periodontal regeneration. Moreover, clinical studies have indicated that treatment with EMD positively influences periodontal wound healing in humans. This review aims to present an overview of evidence-based clinical indications for regenerative therapy with EMD.

  5. Effects of Bone Morphogenic Proteins on Engineered Cartilage

    Science.gov (United States)

    Gooch, Keith, J.; Blunk, Torsten; Courter, Donald L.; Sieminski, Alisha; Vunjak-Novakovic, Gordana; Freed, Lisa E.

    2007-01-01

    A report describes experiments on the effects of bone morphogenic proteins (BMPs) on engineered cartilage grown in vitro. In the experiments, bovine calf articular chondrocytes were seeded onto biodegradable polyglycolic acid scaffolds and cultured in, variously, a control medium or a medium supplemented with BMP-2, BMP-12, or BMP-13 in various concentrations. Under all conditions investigated, cell-polymer constructs cultivated for 4 weeks macroscopically and histologically resembled native cartilage. At a concentration of 100 ng/mL, BMP-2, BMP-12, or BMP-13 caused (1) total masses of the constructs to exceed those of the controls by 121, 80, or 62 percent, respectively; (2) weight percentages of glycosaminoglycans in the constructs to increase by 27, 18, or 15, respectively; and (3) total collagen contents of the constructs to decrease to 63, 89, or 83 percent of the control values, respectively. BMP-2, but not BMP-12 or BMP-13, promoted chondrocyte hypertrophy. These observations were interpreted as suggesting that the three BMPs increase the growth rates and modulate the compositions of engineered cartilage. It was also concluded that in vitro engineered cartilage is a suitable system for studying effects of BMPs on chondrogenesis in a well-defined environment.

  6. Maximum Safety Regenerative Power Tracking for DC Traction Power Systems

    Directory of Open Access Journals (Sweden)

    Guifu Du

    2017-02-01

    Full Text Available Direct current (DC traction power systems are widely used in metro transport systems, with running rails usually being used as return conductors. When traction current flows through the running rails, a potential voltage known as “rail potential” is generated between the rails and ground. Currently, abnormal rises of rail potential exist in many railway lines during the operation of railway systems. Excessively high rail potentials pose a threat to human life and to devices connected to the rails. In this paper, the effect of regenerative power distribution on rail potential is analyzed. Maximum safety regenerative power tracking is proposed for the control of maximum absolute rail potential and energy consumption during the operation of DC traction power systems. The dwell time of multiple trains at each station and the trigger voltage of the regenerative energy absorbing device (READ are optimized based on an improved particle swarm optimization (PSO algorithm to manage the distribution of regenerative power. In this way, the maximum absolute rail potential and energy consumption of DC traction power systems can be reduced. The operation data of Guangzhou Metro Line 2 are used in the simulations, and the results show that the scheme can reduce the maximum absolute rail potential and energy consumption effectively and guarantee the safety in energy saving of DC traction power systems.

  7. Effects of COLIA1 polymorphisms and haplotypes on perimenopausal bone mass, postmenopausal bone loss and fracture risk

    DEFF Research Database (Denmark)

    González-Bofill, N; Husted, L B; Harsløf, T;

    2011-01-01

    : lumbar spine BMD 1.030 +/- 0.137 g/cm(2), 1.016 +/- 0.147 g/cm(2) and 0.988 +/- 0.124 g/cm(2) in women with the GG, GT and TT genotypes, respectively (p ..., respectively (p = 0.01). The effect remained after 10 years although statistical significance was lost. Haplotype 3 (-1997T-1663ins+1245G) was associated with lower bone mass and higher levels of bone turnover. Compared with haplotype 1, haplotype 3 carriers had lower BMD at the lumbar spine, femoral neck...... and total hip by 0.016 +/- 0.007 g/cm(2), 0.015 +/- 0.006 g/cm(2) and 0.017 +/- 0.006 g/cm(2), respectively (p risk and no overall interaction with the effects of hormone therapy could be demonstrated for any...

  8. Effect of freezing rate and storage time on shelf-life quality of hot boned and conventionally boned ground beef

    Energy Technology Data Exchange (ETDEWEB)

    Gapud, V.G.; Schlimme, D.V.

    1986-01-01

    Commercially processed, 80% lean, chub packaged ground beef (both conventionally boned and hot boned) was frozen to O F (-18/sup 0/C) at three rates: 72, 96, and 120 hours before storage at O F (-18/sup 0/C). The meat was examined after 0, 1.5, 3, 6, 9, and 12 months storage for the following attributes: psychrophile and aerobic plate counts, free fatty acid (FFA) and thiobarbituric acid (TBA) values, niacin content, raw and cooked color, moisture, fat and protein contents, and cook shrink and texture of cooked patties. Freezing rates had no significant effect on microbial load, niacin content, color, or cook shrink and texture. Freezing rate had a significant effect upon TBA and FFA values. Niacin, cook shrink and moisture values declined and TBA and FFA values increased with storage. Raw meat Hunter L value increased and Hunter a/b value declined during storage. Substantial quality differences between meat types were found.

  9. Effect of Combined Calcium Hydroxide and Accelerated Portland Cement on Bone Formation and Soft Tissue Healing in Dog Bone Lesions

    Directory of Open Access Journals (Sweden)

    Khorshidi H

    2015-09-01

    amount of bone formation was observed in APC group which was significantly different with all other groups (p < 0.05. Conclusions: Despite acceptable soft tissue response of Ca (OH2 , this additive material could not be suggested because of negative effects on bone formation results.

  10. The clinical use of regenerative therapy in COPD

    Directory of Open Access Journals (Sweden)

    Lipsi R

    2014-12-01

    Full Text Available Roberto Lipsi,1 Paola Rogliani,1 Luigino Calzetta,2 Andrea Segreti,1 Mario Cazzola1 1Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; 2Department of Pulmonary Rehabilitation, San Raffaele Pisana Hospital, Istituti di Ricovero e Cura a Carattere Scientifico, Rome, Italy Abstract: Regenerative or stem cell therapy is an emerging field of treatment based on stimulation of endogenous resident stem cells or administration of exogenous stem cells to treat diseases or injury and to replace malfunctioning or damaged tissues. Current evidence suggests that in the lung, these cells may participate in tissue homeostasis and regeneration after injury. Animal and human studies have demonstrated that tissue-specific stem cells and bone marrow-derived cells contribute to lung tissue regeneration and protection, and thus administration of exogenous stem/progenitor cells or humoral factors responsible for the activation of endogenous stem/progenitor cells may be a potent next-generation therapy for chronic obstructive pulmonary disease. The use of bone marrow-derived stem cells could allow repairing and regenerate the damaged tissue present in chronic obstructive pulmonary disease by means of their engraftment into the lung. Another approach could be the stimulation of resident stem cells by means of humoral factors or photobiostimulation. Keywords: chronic obstructive pulmonary disease, stem cells, regenerative therapy, all-trans retinoic acid, photobiostimulation

  11. Effect of simvastatin versus low level laser therapy (LLLT) on bone regeneration in rabbit's tibia

    Science.gov (United States)

    Gheith, Mostafa E.; Khairy, Maggie A.

    2014-02-01

    Simvastatin is a cholesterol lowering drug which proved effective on promoting bone healing. Recently low level laser therapy (LLLT) proved its effect as a biostimulator promoting bone regeneration. This study aims to compare the effect of both Simvastatin versus low level laser on bone healing in surgically created bone defects in rabbit's tibia. Material and methods: The study included 12 New Zealand white rabbits. Three successive 3mm defects were created in rabbits tibia first defect was left as control, second defect was filled with Simvastatin while the third defect was acted on with Low Level Laser (optical fiber 320micrometer). Rabbits were sacrificed after 48 hours, 1 week and 2 weeks intervals. Histopathology was conducted on the three defects Results: The histopathologic studies showed that the bony defects treated with the Low Level Laser showed superior healing patterns and bone regeneration than those treated with Simvastatin. While the control defect showed the least healing pattern.

  12. Emdogain in regenerative periodontal therapy. A review of the literature.

    Science.gov (United States)

    Sculean, Anton; Windisch, Péter; Döri, Ferenc; Keglevich, Tibor; Molnár, Balint; Gera, István

    2007-10-01

    The goal of regenerative periodontal therapy is the reconstitution of the lost periodontal structures (i.e. the new formation of root cementum, periodontal ligament and alveolar bone). Results from basic research have pointed to the important role of the enamel matrix protein derivative (EMD) in the periodontal wound healing. Histological results from animal and human studies have shown that treatment with EMD promotes periodontal regeneration. Moreover, clinical studies have indicated that treatment with EMD positively influences periodontal wound healing in humans. The goal of the current overview is to present, based on the existing evidence, the clinical indications for regenerative therapy with EMD. Surgical periodontal treatment of deep intrabony defects with EMD promotes periodontal regeneration. The application of EMD in the context of non-surgical periodontal therapy has failed to result in periodontal regeneration. Surgical periodontal therapy of deep intrabony defects with EMD may lead to significantly higher improvements of the clinical parameters than open flap debridement alone. The results obtained following treatment with EMD are comparable to those following treatment with GTR and can be maintained over a longer period. Treatment of intrabony defects with a combination of EMD + GTR does not seem to additionally improve the results compared to treatment with EMD alone or GTR alone. The combination of EMD and some types of bone grafts/bone substitutes may result in certain improvements in the soft and hard tissue parameters compared to treatment with EMD alone. Treatment of recession-type defects with coronally repositioned flaps and EMD may promote formation of cementum, periodontal ligament and bone, and may significantly increase the width of the keratinized tissue. Application of EMD seems to provide better long-term results than coronally repositioned flaps alone. Application of EMD may enhance periodontal regeneration in mandibular Class II

  13. Wnt/RANKL-mediated bone growth promoting effects of blueberries in weanling rats

    Science.gov (United States)

    We studied the effects of dietary blueberry supplementation on bone growth in weanling rats. Weanling male and female rats were fed AIN-93G semi-purified diets supplemented with 10% whole blueberry powder for 14 and 30 days beginning on PND 21. In both sexes tibial bone mineral density and content a...

  14. The mechanical effects of different levels of cement penetration at the cement-bone interface.

    NARCIS (Netherlands)

    Waanders, D.; Janssen, D.; Mann, K.A.; Verdonschot, N.J.J.

    2010-01-01

    The mechanical effects of varying the depth of cement penetration in the cement-bone interface were investigated using finite element analysis (FEA) and validated using companion experimental data. Two FEA models of the cement-bone interface were created from micro-computed tomography data and the p

  15. The mechanical effects of different levels of cement penetration at the cement–bone interface

    NARCIS (Netherlands)

    Waanders, D.; Janssen, D.W.; Mann, K.A.; Verdonschot, N.J.J.

    2010-01-01

    The mechanical effects of varying the depth of cement penetration in the cement–bone interface were investigated using finite element analysis (FEA) and validated using companion experimental data. Two FEA models of the cement–bone interface were created from micro-computed tomography data and the p

  16. Effect of biomaterial properties on bone healing in a rabbit tooth extraction socket model

    NARCIS (Netherlands)

    Fisher, J.P.; Lalani, Z.; Bossano, C.M.; Brey, E.M.; Demian, N.; Johnston, C.M.; Dean, D.; Jansen, J.A.; Wong, M.E.; Mikos, A.G.

    2004-01-01

    In this work we sought to understand the effect of biomaterial properties upon healing bone tissue. We hypothesized that a hydrophilic polymer gel implanted into a bone tissue defect would impede the healing process owing to the biomaterial's prevention of protein adsorption and thus cell adhesion.

  17. [Ultrasonography and Doppler effect, an original method for the early and dynamic evaluation of bone callus].

    Science.gov (United States)

    Elanga, M; Bouche, B; Putz, P; Dumont, N

    1997-12-01

    The authors describe an original and simple method for monitoring bone healing, based upon ultrasonography and the Doppler effect. They present four cases of diaphyseal fractures followed by this method and correlated with clinical findings. This noninvasive and inexpensive method of investigation is full of prospect for the monitoring of bone healing after fracture.

  18. Unique effects of energy versus estrogen deficiency on multiple components of bone strength in exercising women.

    Science.gov (United States)

    Southmayd, E A; Mallinson, R J; Williams, N I; Mallinson, D J; De Souza, M J

    2017-04-01

    Many female athletes are energy and/or estrogen deficient, but the independent effects on bone health have not been isolated. Energy deficiency was detrimental at the tibia while estrogen deficiency was detrimental at the radius. Nutrition must be considered alongside menstrual recovery when addressing compromised bone health in female athletes.

  19. Effect of biomaterial properties on bone healing in a rabbit tooth extraction socket model

    NARCIS (Netherlands)

    Fisher, J.P.; Lalani, Z.; Bossano, C.M.; Brey, E.M.; Demian, N.; Johnston, C.M.; Dean, D.; Jansen, J.A.; Wong, M.E.; Mikos, A.G.

    2004-01-01

    In this work we sought to understand the effect of biomaterial properties upon healing bone tissue. We hypothesized that a hydrophilic polymer gel implanted into a bone tissue defect would impede the healing process owing to the biomaterial's prevention of protein adsorption and thus cell adhesion.

  20. The effect of storage on the nutritional quality of meat and bone meal

    NARCIS (Netherlands)

    Hendriks, W.H.; Cottam, Y.H.; Thomas, D.V.

    2006-01-01

    The effect of storage on the nutritional quality of meat and bone meal was investigated. Three meat and bone meal samples were stored for 1, 2, 3, 6 and 9 months, with or without the addition of the antioxidants (butylatedhydroxytoluene and butylatedhydroxyanisole). Gross composition, thiobarbituric

  1. Short-term administration of glucagon-like peptide-2. Effects on bone mineral density and markers of bone turnover in short-bowel patients with no colon

    DEFF Research Database (Denmark)

    Haderslev, K V; Jeppesen, P B; Hartmann, B

    2002-01-01

    Glucagon-like peptide 2 (GLP-2) is a newly discovered intestinotrophic hormone. We have recently reported that a 5-week GLP-2 treatment improved the intestinal absorptive capacity of short-bowel patients with no colon. Additionally, GLP-2 treatment was associated with changes in body composition ...... that included a significant increase in total body bone mass. This article describes the effect of GLP-2 on spinal and hip bone mineral density (BMD) and biochemical markers of bone turnover in these patients....

  2. Changes in Regenerative Capacity through Lifespan

    Directory of Open Access Journals (Sweden)

    Maximina H. Yun

    2015-10-01

    Full Text Available Most organisms experience changes in regenerative abilities through their lifespan. During aging, numerous tissues exhibit a progressive decline in homeostasis and regeneration that results in tissue degeneration, malfunction and pathology. The mechanisms responsible for this decay are both cell intrinsic, such as cellular senescence, as well as cell-extrinsic, such as changes in the regenerative environment. Understanding how these mechanisms impact on regenerative processes is essential to devise therapeutic approaches to improve tissue regeneration and extend healthspan. This review offers an overview of how regenerative abilities change through lifespan in various organisms, the factors that underlie such changes and the avenues for therapeutic intervention. It focuses on established models of mammalian regeneration as well as on models in which regenerative abilities do not decline with age, as these can deliver valuable insights for our understanding of the interplay between regeneration and aging.

  3. Effect of resistance and aerobic exercises on bone mineral density ...

    African Journals Online (AJOL)

    Mohamed A. Eid

    2014-01-07

    Jan 7, 2014 ... Children with hemophilia, who are less physically active than healthy peers, often .... stretch followed by 20s relaxation and repeated five times per ..... weight bearing, this weight bearing provides stress on bone that in turn ...

  4. Analysis of room temperature magnetic regenerative refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    Shir, F.; Mavriplis, C.; Bennett, L.H.; Torre, E.D. [George Washington University, Washington, DC (United States). Institute for Magnetics Research

    2005-06-01

    Results of a room temperature magnetic refrigeration test bed and an analysis using a computational model are presented. A detailed demonstration of the four sequential processes in the transient magnetocaloric regeneration process of a magnetic material is presented. The temperature profile during the transient approach to steady state operation was measured in detail. A 5 {sup o}C evolution of the difference of temperature between the hot end and the cold end of the magnetocaloric bed due to regeneration is reported. A model is developed for the heat transfer and fluid mechanics of the four sequential processes in each cycle of thermal wave propagation in the regenerative bed combined with the magnetocaloric effect. The basic equations that can be used in simulation of magnetic refrigeration systems are derived and the design parameters are discussed. (author)

  5. Tissue Engineering and Regenerative Medicine

    Science.gov (United States)

    2006-11-01

    Vessels - 5 years; Heart Valves – in progress Respiratory: Trachea – in progress Orthopedic : Cartilage, Bone, Skeletal Muscle, Digits Nephrology...interactions (bio-engineers) Small & large animal models (physiologists, biochemists, veterinarians ) Clinical trials (physicians, epidemiologists

  6. Noninvasive markers of bone metabolism in the rhesus monkey: normal effects of age and gender

    Science.gov (United States)

    Cahoon, S.; Boden, S. D.; Gould, K. G.; Vailas, A. C.

    1996-01-01

    Measurement of bone turnover in conditions such as osteoporosis has been limited by the need for invasive iliac bone biopsy to reliably determine parameters of bone metabolism. Recent advances in the area of serum and urinary markers of bone metabolism have raised the possibility for noninvasive measurements; however, little nonhuman primate data exist for these parameters. The purpose of this experiment was to define the normal range and variability of several of the newer noninvasive bone markers which are currently under investigation in humans. The primary intent was to determine age and gender variability, as well as provide some normative data for future experiments in nonhuman primates. Twenty-four rhesus macaques were divided into equal groups of male and female according to the following age groupings: 3 years, 5-10 years, 15-20 years, and > 25 years. Urine was collected three times daily for a four-day period and measured for several markers of bone turnoverm including pyridinoline (PYD), deoxypyrodinoline (DPD), hydroxyproline, and creatinine. Bone mineral density measurements of the lumbar spine were performed at the beginning and end of the study period. Serum was also obtained at the time of bone densitometry for measurement of osteocalcin levels by radioimmunoassay. There were no significant differences in bone mineral density, urine PYD, or urine DPD based on gender. Bone density was lowest in the youngest animals, peaked in the 15-20-year group, but again decreased in the oldest animals. The osteocalcin, PYD, and DPD levels followed an inversely related pattern to bone density. The most important result was the relative age insensitivity of the ratio of PYD:DPD in monkeys up to age 20 years. Since bone density changes take months or years to become measurable and iliac biopsies are invasive, the PYD/DPD marker ratio may have important implications for rapid noninvasive measurement of the effects of potential treatments for osteoporosis in the non

  7. Osteoporotic-like effects of cadmium on bone mineral density and content in aged ovariectomized beagles

    Energy Technology Data Exchange (ETDEWEB)

    Sacco-Gibson, N.; Abrams, J.; Chaudhry, S.; Hurst, D.; Peterson, D.; Bhattacharyya, M.

    1992-12-31

    Our purpose was to evaluate the effects of ovariectomy in conjunction with cadmium (Cd) exposure on bone. Aged female beagles with {sup 45}Ca-labeled skeletons ovariectomized and exposed to Cd. Successive vertebral scans by dual photon absorptiometry monitored changes in bone mineral density (BMD) in each dog with time. Results showed that ovariectomy or Cd exposure alone caused significant decreases in BMD; ovariectomy with Cd exposure caused the greatest decrease. Ovariectomy alone did not decrease BMD in the distal end or mid-shaft of the tibia while BMD of the distal tibia decreased significantly due to Cd exposure alone. Combination treatment resulted in significant decreases in BMD of both tibial regions. At necropsy, tibiae, humeri, lumbar vertebrae and ribs were obtained for biochemical analysis. No group-to-group differences in bone weights (wet, dry, ash), in ash/dry ratios, or in long bone and vertebral Ca/dry or Ca/ash ratios were observed. Significantly higher total {sup 45}Ca content and {sup 45}Ca/dry and {sup 45}Ca/ash ratios were observed in long bones and vertebrae of OV- and OV+ groups. In contrast, intact ribs showed significantly decreased Ca/dry and Ca/ash ratios compared to the SO-group. Quartered ribs demonstrated regional responses to specific treatment; decreases in total Ca content were greatest in the mid-rib region ({minus}36 to {minus}46%). Results suggest that in the aged female beagle, bone mineral loss associated with estrogen depletion is not only related to bone type (trabecular versus cortical) but also to bone Ca pools. Our results also suggest that a regional heterogeneity of bone plays a role in responsiveness to ovariectomy and Cd exposure. These aspects suggest that Cd is an exogenous factor affecting bone mineral loss independently of estrogen depletion. However, estrogen depletion primes bone for responsiveness to Cd-induced bone mineral loss.

  8. An In Vitro Assay to Study Induction of the Regenerative State in Sensory Neurons

    Science.gov (United States)

    Frey, E.; Valakh, V.; Karney-Grobe, S.; Shi, Y.; Milbrandt, J.; DiAntonio, A.

    2014-01-01

    After injury, peripheral neurons activate a pro-regenerative program that facilitates axon regeneration. While many regeneration-associated genes have been identified, the mechanism by which injury activates this program is less well understood. Furthermore, identifying pharmacological methods to induce a pro-regenerative state could lead to novel treatments to repair the injured nervous system. Therefore, we have developed an in vitro assay to study induction of the pro-regenerative state following injury or pharmacological treatment. First, we took advantage of the observation that dissociating and culturing sensory neurons from dorsal root ganglia activates a pro-regenerative program. We show that cultured neurons activate transcription factors and upregulate regeneration-associated genes common to the pro-regenerative program within the first hours after dissection. In a paradigm similar to pre-conditioning, neurons injured by dissociation display enhanced neurite outgrowth when replated as early as 12 hours after being removed from the animal. Furthermore, stimulation of the pro-regenerative state improves growth on inhibitory substrates and requires DLK/JNK signaling, both hallmarks of the pro-regeneration response in vivo. Finally, we modified this assay in order to identify new methods to activate the pro-regenerative state in an effort to mimic the pre-conditioning effect. We report that after several days in culture, neurons down-regulate many molecular hallmarks of injury and no longer display enhanced neurite outgrowth after replating. Hence, these neurons are functionally naïve and are a useful tool for identifying methods to induce the pro-regenerative state. We show that both injury and pre-treatment with forskolin reactivate the pro-regenerative state in this paradigm. Hence, this assay is useful for identifying pharmacological agents that induce the pro-regenerative state in the absence of injury. PMID:25447942

  9. Effects of deleting cannabinoid receptor-2 on mechanical and material properties of cortical and trabecular bone

    Directory of Open Access Journals (Sweden)

    Aysha B. Khalid

    2015-12-01

    Full Text Available Cnr2 is one of two cannabinoid receptors known to regulate bone metabolism. Here, we compared the whole bone properties of femora and tibiae from three-month-old Cnr2−/- mice with wild-type controls using a C57BL/6 background. Bending stiffness was measured by three-point bending. The elastic modulus, density and mineral content were measured using ultrasound, Archimedes’ principle and ashing. Micro-CT was used to measure the second moment of area, inner and outer perimeters of the cortical shaft and trabecular parameters. Deleting Cnr2 increased the bending stiffness by increasing the second moment of area. Bone from affected male mice had a greater modulus than controls, although no difference was observed in females. The fractional volume of trabecular bone was greater in Cnr2−/- females than controls, while no difference was seen in males. These data indicate that inactivating Cnr2 increases the amount of cortical bone in both males and females at 3 months of age, but the effect on trabecular bone is different in the two sexes. These findings extend previous studies looking only at trabecular bone and provide further support for the possible use of Cnr2 antagonists for improving bone properties that may be of value in the treatment of bone disorders.

  10. Correlation between longitudinal, circumferential, and radial moduli in cortical bone: effect of mineral content.

    Science.gov (United States)

    Macione, J; Depaula, C A; Guzelsu, N; Kotha, S P

    2010-07-01

    Previous studies indicate that changes in the longitudinal elastic properties of bone due to changes in mineral content are related to the longitudinal strength of bone tissue. Changes in mineral content are expected to affect bone tissue mechanical properties along all directions, albeit to different extents. However, changes in tissue mechanical properties along the different directions are expected to be correlated to one another. In this study, we investigate if radial, circumferential, and longitudinal moduli are related in bone tissue with varying mineral content. Plexiform bovine femoral bone samples were treated in fluoride ion solutions for a period of 3 and 12 days to obtain bones with 20% and 32% lower effective mineral contents. Transmission ultrasound velocities were obtained in the radial, circumferential, and longitudinal axes of bone and combined with measured densities to obtain corresponding tensorial moduli. Results indicate that moduli decreased with fluoride ion treatments and were significantly correlated to one another (r(2) radial vs. longitudinal = 0.80, r(2) circumferential vs. longitudinal = 0.90, r(2) radial vs. circumferential = 0.85). Densities calculated from using ultrasound parameters, acoustic impedance and transmission velocities, were moderately correlated to those measured by the Archimedes principle (r(2)=0.54, p<0.01). These results suggest that radial and circumferential ultrasound measurements could be used to determine the longitudinal properties of bone and that ultrasound may not be able to predict in vitro densities of bones containing unbonded mineral. Published by Elsevier Ltd.

  11. Effect of Physical Forces on the Metastatic Bone Microenvironment

    Science.gov (United States)

    2014-12-01

    concerning the alterations of ImP, we were unable to complete this aim of the project. For example, we determined that extraction of fluid was not...enhancement of intramedullary pressure increases interstitial fluid flow and inhibits bone loss in hindlimb suspended mice. Journal of bone and mineral...PVDFmembrane (Bio-Rad Laboratories, Hercules, CA) and blocked using 5% instant milk (Biorad) or 5% bovine serum albumin (BSA; Celliance, Kankakee, IL

  12. 基于最佳制动效果的并联式混合动力汽车再生制动控制策略%Regenerative Braking Control Strategy for PHEV Based on Optimal Braking Effect

    Institute of Scientific and Technical Information of China (English)

    高爱云; 邓效忠; 张明柱; 付主木

    2015-01-01

    Based on the principles of the braking force distribution,a regenerative braking control strategy was proposed on the basis of the optimal braking effect and fuzzy control,where mechanical braking could cooperate with regenerative braking and front and rear wheel braking force were distribG uted reasonably.Taking the braking strength and the state of charge of batteries as inputs,and reG garding the expected regenerative braking force as an output,a fuzzy controller was designed.The control strategy designed was simulated from parts performance,braking energy recovery and braking sense compared with the default control strategy in ADVISOR.At the same time,the hardwareintheloop simulation was developed to prove the simulation results in ADVISOR effective.The results show that the control strategy presented can assure the driver of satisfactory braking sense based on the braking stability,and improve energy efficiency at the same time and at last achieve optimal braG king effect.%在遵循制动力分配原则的基础上,提出了基于最佳制动效果和模糊控制的再生制动控制策略,使机械制动和再生制动可以很好地协同工作,实现前后轮制动力合理分配。设计了以制动强度和蓄电池荷电状态为输入变量,以期望再生制动力为输出变量的模糊控制器。利用仿真软件 ADVISOR,对所设计的控制策略进行了部件性能、制动能量回收、制动感觉三方面仿真分析。同时,为验证ADVISOR仿真结果的有效性,搭建了硬件在环仿真实验平台。结果表明,所设计的控制策略在保证汽车制动稳定性的前提下,能够使驾驶员获得满意的制动感觉,同时有效提高了汽车能量利用率,最终达到了最佳制动效果。

  13. The unsolved case of “bone-impairing analgesics”: the endocrine effects of opioids on bone metabolism

    Directory of Open Access Journals (Sweden)

    Coluzzi F

    2015-03-01

    Full Text Available Flaminia Coluzzi,1,2 Joseph Pergolizzi,3,4 Robert B Raffa,5 Consalvo Mattia1,2 1Department of Medical and Surgical Sciences and Biotechnologies, Unit of Anesthesiology, Intensive Care Medicine and Pain Therapy, Faculty of Pharmacy and Medicine – Polo Pontino, Sapienza University of Rome, Latina, Italy; 2SIAARTI Study Group on Acute and Chronic Pain, Rome, Italy; 3Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 4Naples Anesthesia and Pain Associates, Naples, FL, 5Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA Abstract: The current literature describes the possible risks for bone fracture in chronic analgesics users. There are three main hypotheses that could explain the increased risk of fracture associated with central analgesics, such as opioids: 1 the increased risk of falls caused by central nervous system effects, including sedation and dizziness; 2 reduced bone mass density caused by the direct opioid effect on osteoblasts; and 3 chronic opioid-induced hypogonadism. The impact of opioids varies by sex and among the type of opioid used (less, for example, for tapentadol and buprenorphine. Opioid-associated androgen deficiency is correlated with an increased risk of osteoporosis; thus, despite that standards have not been established for monitoring and treating opioid-induced hypogonadism or hypoadrenalism, all patients chronically taking opioids (particularly at doses ≥100 mg morphine daily should be monitored for the early detection of hormonal impairment and low bone mass density. Keywords: opioids side effects, bone metabolism, fractures, OPIAD, endocrine system, chronic pain

  14. A combined regenerative approach for the treatment of aggressive periodontitis: long-term follow-up of a familial case.

    Science.gov (United States)

    Sant'Ana, Adriana Campos Passanezi; Passanezi, Euloir; Todescan, Sylvia Maria Correia; de Rezende, Maria Lúcia Rubo; Greghi, Sebastião Luiz Aguiar; Ribeiro, Mônica Garcia

    2009-02-01

    This article reports the longitudinal follow-up of a familial case of aggressive periodontitis treated by a combined regenerative approach that consisted of root conditioning, bone grafting, and membrane positioning. Treatment resulted in attachment level gain, reduction of probing depth, absence of bleeding on probing, and complete bone filling of the defect. The short-term results obtained after surgery were maintained after 6 years, suggesting that the combined regenerative approach is able to completely arrest the disease with long-term stability.

  15. Effects of remifemin treatment on bone integrity and remodeling in rats with ovariectomy-induced osteoporosis.

    Directory of Open Access Journals (Sweden)

    Guangxia Cui

    Full Text Available This study aims to evaluate the effects of Remifemin (isopropanolic extract of Cimicifuga Racemosa on postmenopausal osteoporosis. 120 female Sprague-Dawley rats were randomly assigned to four groups: sham surgery with vehicle, ovariectomy with vehicle, ovariectomy with estradiol valerate, or ovariectomy with Remifemin. Daily oral administrations of the vehicle, estradiol valerate, or Remifemin began 2 weeks after surgery and lasted to 4, 8, or 12 weeks. Ten rats in each group were sacrificed at each timestep with assessment of bone mineral density, trabecular bone structure, and biomechanical parameters of the femur and lumbar vertebra. Bone turnover markers were evaluated 12 weeks after surgery. Both drugs prevented bone density loss in the distal end of the femur and preserved the trabecular bone structure in both the lumbar vertebra and distal end of the femur following ovariectomy. Both drugs protected bone stiffness at the tested regions and reduced bone reabsorption in ovariectomized rats. The preventive effects of Remifemin against bone-loss can rival those of estradiol valerate if treatment duration is adequately extended. In conclusion, Remifemin may demonstrate equivalent effects to estradiol valerate in terms of preventing postmenopausal osteoporosis.

  16. Effects of remifemin treatment on bone integrity and remodeling in rats with ovariectomy-induced osteoporosis.

    Science.gov (United States)

    Cui, Guangxia; Leng, Huijie; Wang, Ke; Wang, Jianwei; Zhu, Sainan; Jia, Jing; Chen, Xing; Zhang, Weiguang; Qin, Lihua; Bai, Wenpei

    2013-01-01

    This study aims to evaluate the effects of Remifemin (isopropanolic extract of Cimicifuga Racemosa) on postmenopausal osteoporosis. 120 female Sprague-Dawley rats were randomly assigned to four groups: sham surgery with vehicle, ovariectomy with vehicle, ovariectomy with estradiol valerate, or ovariectomy with Remifemin. Daily oral administrations of the vehicle, estradiol valerate, or Remifemin began 2 weeks after surgery and lasted to 4, 8, or 12 weeks. Ten rats in each group were sacrificed at each timestep with assessment of bone mineral density, trabecular bone structure, and biomechanical parameters of the femur and lumbar vertebra. Bone turnover markers were evaluated 12 weeks after surgery. Both drugs prevented bone density loss in the distal end of the femur and preserved the trabecular bone structure in both the lumbar vertebra and distal end of the femur following ovariectomy. Both drugs protected bone stiffness at the tested regions and reduced bone reabsorption in ovariectomized rats. The preventive effects of Remifemin against bone-loss can rival those of estradiol valerate if treatment duration is adequately extended. In conclusion, Remifemin may demonstrate equivalent effects to estradiol valerate in terms of preventing postmenopausal osteoporosis.

  17. Histopathological and Histomorphometrical Effects of Atorvastatin on Experimental Femoral Cortical Bone Defect Healing in Rats

    Directory of Open Access Journals (Sweden)

    M Valilu

    2012-05-01

    Full Text Available Background: Bone remodeling has always been the goal of surgeons for a long time. Recently, it was shown that statins that are commonly prescribed for lowering cholesterol also have beneficial effects on bone healing. Therefore, the present study was undertaken to evaluate the probable effects of atorvastatin on osteogenesis in the rat femur. Methods: This experimental study was conducted on 30 male Sprague-Dawley (SD rats. The animals were divided randomly into one control and two experiment groups. After induction of anesthesia, a hole of 2 mm in diameter was made in femur width. The control group received physiological serum but the experiment groups one and two, respectively, received 10 and 20 mg/kg/PO of atorvastatin on daily basis. After euthanizing the rats, histopathological and histomorphometrical evaluations of the bones were performed 45 days after the intervention. Results: In the control group, the defects seemed to be filled with woven bone and bone marrow, depictive of a poor osteogenic activity. In the experiment groups, many osteoblast groupings and young bone trabeculae had been formed and bone trabeculae were more organized. Histomorphometric results, showed that atorvastatin had significantly promoted bone healing in the experiment groups compared with the controls (P<0.001. Moreover, the analysis showed that atorvastatin had more significant effects in group three receiving high doses of the medication in comparison with group two (P<0.001. Conclusion: The findings of this study showed that atorvastatin is capable of stimulating osteogenesis in rats.

  18. Effect of Multiparity and Prolonged Lactation on Bone Mineral Density

    Science.gov (United States)

    Natung, Tanie; Barooah, Rituparna; Ahanthem, Santa Singh

    2016-01-01

    Objectives This study was done to determine the effect of multiparity and prolonged lactation on bone mineral density (BMD). Methods This cross-sectional study included 196 perimenopausal and postmenopausal women aged 40 to 60 years old. Age, body mass index (BMI), menopausal status, duration of menopause, parity and total duration of lactation, nutritional history were recorded. Lumbar spine (LS; L2-L4) and femur neck (FN) BMD were measured using dual energy X-ray absorptiometry. Correlation of parity and lactation with BMD were investigated using multiple regression analysis. Results Parity was inversely correlated to BMD for LS (β = −0.266, P = 0.001) and FN (β = −0.380, P = 0.000). This relation remained significant even after adjusting for age, BMI and duration of menopause. Duration of lactation was inversely correlated with BMD for LS (β = −0.271, P = 0.001) but no for FN (β = −0.124, P = 0.130). Conclusions Multiparity and prolonged lactation have negative impact on BMD especially with in a socioeconomic group whose nutritional intake is borderline. Our data support that parity and duration of lactation can be associated with future osteoporosis. PMID:28119896

  19. Effect of defatting on quality of meat and bone meal.

    Science.gov (United States)

    Chang, Ming; Xiao, Jun; Liu, Ruijie; Lu, Liangzhong; Jin, Qingzhe; Wang, Xingguo

    2015-03-01

    Meat and bone meal (MBM), a type of protein feed source, with high nutritional value, has been widely used as feed in China. In order to study the effect of defatting on the quality of MBM, MBM were defatted by hexane, and their basic nutritional components, color, flavor, protein characteristics, freshness indexes before and after defatting, were investigated. The crude protein content of the defatted MBM was increased from 54.5% to 61.2%, lysine content increased from 1.83 to 1.96%, pure protein content and in vitro digestibility of MBM were increased to 50.7% and 90.45%, respectively. Acid value decreased from 9.0 to 2.6 mg potassium hydroxide/g, and the color and flavor were also improved after defatting. Furthermore, volatile basic nitrogen content decreased from 60 to 40 mg/100 g and histamine content did not change significantly (decreasing from 20.1 to 19.6 mg/kg). Therefore, defatting treatment was good for the quality improvement of MBM.

  20. Adult Bone Marrow: Which Stem Cells for Cellular Therapy Protocols in Neurodegenerative Disorders?

    Directory of Open Access Journals (Sweden)

    Sabine Wislet-Gendebien

    2012-01-01

    Full Text Available The generation of neuronal cells from stem cells obtained from adult bone marrow is of significant clinical interest in order to design new cell therapy protocols for several neurological disorders. The recent identification in adult bone marrow of stem cells derived from the neural crests (NCSCs might explain the neuronal phenotypic plasticity shown by bone marrow cells. However, little information is available about the nature of these cells compared to mesenchymal stem cells (MSCs. In this paper, we will review all information available concerning NCSC from adult tissues and their possible use in regenerative medicine. Moreover, as multiple recent studies showed the beneficial effect of bone marrow stromal cells in neurodegenerative diseases, we will discuss which stem cells isolated from adult bone marrow should be more suitable for cell replacement therapy.

  1. Bone regeneration with osteogenically enhanced mesenchymal stem cells and their extracellular matrix proteins.

    Science.gov (United States)

    Clough, Bret H; McCarley, Matthew R; Krause, Ulf; Zeitouni, Suzanne; Froese, Jeremiah J; McNeill, Eoin P; Chaput, Christopher D; Sampson, H Wayne; Gregory, Carl A

    2015-01-01

    Although bone has remarkable regenerative capacity, about 10% of long bone fractures and 25% to 40% of vertebral fusion procedures fail to heal. In such instances, a scaffold is employed to bridge the lesion and accommodate osteoprogenitors. Although synthetic bone scaffolds mimic some of the characteristics of bone matrix, their effectiveness can vary because of biological incompatibility. Herein, we demonstrate that a composite prepared with osteogenically enhanced mesenchymal stem cells (OEhMSCs) and their extracellular matrix (ECM) has an unprecedented capacity for the repair of critical-sized defects of murine femora. Furthermore, OEhMSCs do not cause lymphocyte activation, and ECM/OEhMSC composites retain their in vivo efficacy after cryopreservation. Finally, we show that attachment to the ECM by OEhMSCs stimulates the production of osteogenic and angiogenic factors. These data demonstrate that composites of OEhMSCs and their ECM could be utilized in the place of autologous bone graft for complex orthopedic reconstructions.

  2. Effect of long-term treatment with strontium ranelate on bone strontium content

    DEFF Research Database (Denmark)

    Bärenholdt, Olaf; Kolthoff, Niels; Nielsen, Stig Pors

    2009-01-01

    in a 3 years open study of the effect on bone Sr. The group was treated with 2 g SrR/day, 17 of the group had received active treatment for 4-5 years before the study. DXA BMD measurements and DPA measurements of the relative bone strontium hydroxy apatite termed %Sr (SrHA/(CaHA+SrHA)) were done...... at the end of treatment. No effect was demonstrated on distal radius relative bone Ca hydroxy apatite. Bone strontium uptake and retention data were compatible with a power function model. Withdrawal of SrR resulted in a decline in bone Sr, but 73 %Sr and 67 %Sr, respectively remained in UD-radius three...

  3. The Effects of Surface Properties of Nanostructured Bone Repair Materials on Their Performances

    Directory of Open Access Journals (Sweden)

    Feng Zhao

    2015-01-01

    Full Text Available Nanotechnology has been expected to be an extraordinarily promising method for bone repair. Meanwhile, the promise of nanobiomaterials for therapeutic applications has been widely reported, and a lot of studies have been made in terms of repairing bone using nanomaterials accompanied by rapid development of nanotechnology. Compared with conventional biomaterials, nanostructured implants have been shown to possess positive effects on cellular functions because of their unique surface properties, such as nanotopography, increased wettability, larger surface area, and microenvironment similar to extracellular matrix. Moreover, many positive cellular responses have been found to take place at the interface between nanostructured implants and host bone. In this paper, we will give a review about the effects of surface properties of nanostructured bone repair materials on their performances in terms of several aspects and a detailed interpretation or introduction on the specific cellular recognitions at the interface between nanostructured implants and host bone.

  4. Effect of Electromagnetic Wave on Bone Healing in Fixed and Unfixed Conditions.

    Science.gov (United States)

    Onger, Mehmet Emin; Göçer, Hasan; Çirakli, Alper; Büyükceran, Ismail; Kiliç, Mesut; Kaplan, Süleyman

    2016-09-01

    Mobile phones have come into daily life and are now one of the most frequently used devices for communication. The aim of this study was to evaluate possible effect of electromagnetic wave (EMW) with and without fixation material on bone healing.Forty male rats were exposed to fracture on tibia bone and were randomly divided into 4 groups as E(+)K(+), E(+)K(-), E(-)K(+), and E(-)K(-) where E(+) means EMW exposure and K(+) means Kirschner wire fixation. At the end of study tibia samples were taken from all the groups for the quantitative evaluation of regeneration.Significant difference was found between Group E(+)K(+) and E(-)K(+) in terms of both new bone and capillary volume.Electromagnetic wave may be harmful for bone healing with fixation whereas it has no same effect on bone regeneration without fixation.

  5. The effect of enamel matrix proteins and deproteinized bovine bone mineral on heterotopic bone formation.

    Science.gov (United States)

    Donos, Nikolaos; Kostopoulos, Lambros; Tonetti, Maurizio; Karring, Thorkild; Lang, Niklaus P

    2006-08-01

    To evaluate the osteoinductive potential of deproteinized bovine bone mineral (DBBM) and an enamel matrix derivative (EMD) in the muscle of rats. Sixteen rats were used in this study. The animals were divided in three groups. Group A: a pouch was created in one of the pectoralis profundis muscles of the thorax of the rats and DBBM particles (Bio-Oss) were placed into the pouch. Healing: 60 days. Group B: a small pouch was created on both pectoralis profundis muscles at each side of the thorax midline. In one side, a mixture of EMD (Emdogain) mixed with DBBM was placed into one of the pouches, whereas in the contralateral side of the thorax the pouch was implanted with DBBM mixed with the propylene glycol alginate (PGA--carrier for enamel matrix proteins of EMD). Healing: 60 days. Group C: the same procedure as group B, but with a healing period of 120 days. Qualitative histological analysis of the results was performed. At 60 days, the histological appearance of the DBBM particles implanted alone was similar to that of the particles implanted together with EMD or PGA at both 60 and 120 days. The DBBM particles were encapsulated into a connective tissue stroma and an inflammatory infiltrate. At 120 days, the DBBM particles implanted together with EMD or PGA exhibited the presence of resorption lacunae in some cases. Intramuscular bone formation was not encountered in any group. The implantation of DBBM particles alone, combined with EMD or its carrier (PGA) failed to exhibit extraskeletal, bone-inductive properties.

  6. Bone printing: new frontiers in the treatment of bone defects.

    Science.gov (United States)

    Arealis, Georgios; Nikolaou, Vasileios S

    2015-12-01

    Bone defects can be congenital or acquired resulting from trauma, infection, neoplasm and failed arthroplasty. The osseous reconstruction of these defects is challenging. Unfortunately, none of the current techniques for the repair of bone defects has proven to be fully satisfactory. Bone tissue engineering (BTE) is the field of regenerative medicine (RM) that focuses on alternative treatment options for bone defects that will ideally address all the issues of the traditional techniques in treating large bone defects. However, current techniques of BTE is laborious and have their own shortcomings. More recently, 2D and 3D bone printing has been introduced to overcome most of the limitations of bone grafts and BTE. So far, results are extremely promising, setting new frontiers in the management of bone defects.

  7. Regenerative Electroless Etching of Silicon.

    Science.gov (United States)

    Kolasinski, Kurt W; Gimbar, Nathan J; Yu, Haibo; Aindow, Mark; Mäkilä, Ermei; Salonen, Jarno

    2017-01-09

    Regenerative electroless etching (ReEtching), described herein for the first time, is a method of producing nanostructured semiconductors in which an oxidant (Ox1 ) is used as a catalytic agent to facilitate the reaction between a semiconductor and a second oxidant (Ox2 ) that would be unreactive in the primary reaction. Ox2 is used to regenerate Ox1 , which is capable of initiating etching by injecting holes into the semiconductor valence band. Therefore, the extent of reaction is controlled by the amount of Ox2 added, and the rate of reaction is controlled by the injection rate of Ox2 . This general strategy is demonstrated specifically for the production of highly luminescent, nanocrystalline porous Si from the reaction of V2 O5 in HF(aq) as Ox1 and H2 O2 (aq) as Ox2 with Si powder and wafers.

  8. Towards personalized regenerative cell therapy

    DEFF Research Database (Denmark)

    Lin, Lin; Bolund, Lars; Luo, Yonglun

    2015-01-01

    Mesenchymal stem cells (MSCs) are adult stem cells with the capacity of self-renewal and multilineage differentiation, and can be isolated from several adult tissues. However, isolating MSCs from adult tissues for cell therapy is hampered by the invasive procedure, the rarity of the cells...... and their attenuated proliferation capacity when cultivated and expanded in vitro. Human MSCs derived from induced pluripotent stem cells (iPSC-MSCs) have now evolved as a promising alternative cell source for MSCs and regenerative medicine. Several groups, including ours, have reported successful derivation...... of functional iPSC-MSCs and applied these cells in MSC-based therapeutic testing. Still, the current experience and understanding of iPSC-MSCs with respect to production methods, safety and efficacy are primitive. In this review, we highlight the methodological progress in iPSC-MSC research, describing...

  9. Synergistic effects of dimethyloxallyl glycine and recombinant human bone morphogenetic protein-2 on repair of critical-sized bone defects in rats

    Science.gov (United States)

    Qi, Xin; Liu, Yang; Ding, Zhen-Yu; Cao, Jia-Qing; Huang, Jing-Huan; Zhang, Jie-Yuan; Jia, Wei-Tao; Wang, Jing; Liu, Chang-Sheng; Li, Xiao-Lin

    2017-02-01

    In bone remodeling, osteogenesis is closely coupled to angiogenesis. Bone tissue engineering using multifunctional bioactive materials is a promising technique which has the ability to simultaneously stimulate osteogenesis and angiogenesis for repair of bone defects. We developed mesoporous bioactive glass (MBG)-doped poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) composite scaffolds as delivery vehicle. Two bioactive molecules, dimethyloxalylglycine (DMOG), a small-molecule angiogenic drug, and recombinant human bone morphogenetic protein-2 (rhBMP-2), an osteoinductive growth factor, were co-incorporated into the scaffold. The synergistic effects of DMOG and rhBMP-2 released in the composite scaffolds on osteogenic and angiogenic differentiation of hBMSCs were investigated using real-time quantitative polymerase chain reaction and western blotting. Moreover, in vivo studies were conducted to observe bone regeneration and vascular formation of critical-sized bone defects in rats using micro-computed tomography, histological analyses, Microfil® perfusion, fluorescence labeling, and immunohistochemical analysis. The results showed that DMOG and rhBMP-2 released in the MBG-PHBHHx scaffolds did exert synergistic effects on the osteogenic and angiogenic differentiation of hBMSCs. Moreover, DMOG and rhBMP-2 produced significant increases in newly-formed bone and neovascularization of calvarial bone defects in rats. It is concluded that the co-delivery strategy of both rhBMP-2 and DMOG can significantly improve the critical-sized bone regeneration.

  10. Synergistic effects of dimethyloxallyl glycine and recombinant human bone morphogenetic protein-2 on repair of critical-sized bone defects in rats

    Science.gov (United States)

    Qi, Xin; Liu, Yang; Ding, Zhen-yu; Cao, Jia-qing; Huang, Jing-huan; Zhang, Jie-yuan; Jia, Wei-tao; Wang, Jing; Liu, Chang-sheng; Li, Xiao-lin

    2017-01-01

    In bone remodeling, osteogenesis is closely coupled to angiogenesis. Bone tissue engineering using multifunctional bioactive materials is a promising technique which has the ability to simultaneously stimulate osteogenesis and angiogenesis for repair of bone defects. We developed mesoporous bioactive glass (MBG)-doped poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) composite scaffolds as delivery vehicle. Two bioactive molecules, dimethyloxalylglycine (DMOG), a small-molecule angiogenic drug, and recombinant human bone morphogenetic protein-2 (rhBMP-2), an osteoinductive growth factor, were co-incorporated into the scaffold. The synergistic effects of DMOG and rhBMP-2 released in the composite scaffolds on osteogenic and angiogenic differentiation of hBMSCs were investigated using real-time quantitative polymerase chain reaction and western blotting. Moreover, in vivo studies were conducted to observe bone regeneration and vascular formation of critical-sized bone defects in rats using micro-computed tomography, histological analyses, Microfil® perfusion, fluorescence labeling, and immunohistochemical analysis. The results showed that DMOG and rhBMP-2 released in the MBG-PHBHHx scaffolds did exert synergistic effects on the osteogenic and angiogenic differentiation of hBMSCs. Moreover, DMOG and rhBMP-2 produced significant increases in newly-formed bone and neovascularization of calvarial bone defects in rats. It is concluded that the co-delivery strategy of both rhBMP-2 and DMOG can significantly improve the critical-sized bone regeneration. PMID:28230059

  11. The effect of calcium and vitamin D supplementation on osteoporotic rabbit bones studied by vibrational spectroscopy.

    Science.gov (United States)

    Lani, Athina; Kourkoumelis, Nikolaos; Baliouskas, Gerasimos; Tzaphlidou, Margaret

    2014-09-01

    Fourier transform infrared spectroscopy is utilized to examine the effects of increased calcium, vitamin D, and combined calcium-vitamin D supplementation on osteoporotic rabbit bones with induced inflammation. The study includes different bone sites (femur, tibia, humerus, vertebral rib) in an effort to explore possible differences among the sites. We evaluate the following parameters: mineral-to-matrix ratio, carbonate content, and non-apatitic species (labile acid phosphate and labile carbonate) contribution to bone mineral. Results show that a relatively high dose of calcium or calcium with vitamin D supplementation increases the bone mineralization index significantly. On the other hand, vitamin D alone is not as effective in promoting mineralization even with high intake. Mature B-type apatite was detected for the group with calcium supplementation similar to that of aged bone. High vitamin D intake led to increased labile species concentration revealing bone formation. This is directly associated with the suppression of pro-inflammatory cytokines linked to induced inflammation. The latter is known to adversely alter bone metabolism, contributing to the aetiopathogenesis of osteoporosis. Thus, a high intake of vitamin D under inflammation-induced osteoporosis does not promote mineralization but suppresses bone resorption and restores metabolic balance.

  12. Effect of water on nanomechanics of bone is different between tension and compression.

    Science.gov (United States)

    Samuel, Jitin; Park, Jun-Sang; Almer, Jonathan; Wang, Xiaodu

    2016-04-01

    Water, an important constituent in bone, resides in different compartments in bone matrix and may impose significant effects on its bulk mechanical properties. However, a clear understanding of the mechanistic role of water in toughening bone is yet to emerge. To address this issue, this study used a progressive loading protocol, coupled with measurements of in situ mineral and collagen fibril deformations using synchrotron X-ray diffraction techniques. Using this unique approach, the contribution of water to the ultrastructural behavior of bone was examined by testing bone specimens in different loading modes (tension and compression) and hydration states (wet and dehydrated). The results indicated that the effect of water on the mechanical behavior of mineral and collagen phases at the ultrastructural level was loading-mode dependent and correlated with the bulk behavior of bone. Tensile loading elicited a transitional drop followed by an increase in load bearing by the mineral phase at the ultrastructural level, which was correlated with a strain hardening behavior of bone at the bulk level. Compression loading caused a continuous loss of load bearing by the mineral phase, which was reflected at the bulk level as a strain softening behavior. In addition, viscous strain relaxation and pre-strain reduction were observed in the mineral phase in the presence of water. Taken together, the results of this study suggest that water dictates the bulk behavior of bone by altering the interaction between mineral crystals and their surrounding matrix.

  13. The Biological Effects of Dickkopf1 on Small Cell Lung Cancer Cells and Bone Metastasis.

    Science.gov (United States)

    Pang, Hailin; Ma, Ningqiang; Jiao, Mi; Shen, Weiwei; Xin, Bo; Wang, Tongfei; Zhang, Feng; Liu, Lili; Zhang, Helong

    2017-01-02

    The bone is among the most common sites of metastasis in patients with lung cancer. Over 30%-40% of lung cancers can develop bone metastasis, and no effective therapeutic methods exist in clinic cases. Wnt/β-catenin signaling and Dickkopf1 (DKK1) play important roles in the progression of lung cancer, which preferentially metastasizes to the skeleton. However, the role of DKK1 in osteotropism of small cell lung cancer (SCLC) remains to be elucidated. This study aimed to define the role of DKK1 in SCLC bone metastasis and investigate the underlying mechanisms. Our results demonstrated that the expression level of DKK1 was dramatically higher in bone metastatic SCLC cells (SBC-5 cell line) compared with that in cells without bone metastatic ability (SBC-3 cell line). Therefore, we hypothesized that DKK1 was involved in the bone metastasis of SCLC. We then suppressed the DKK1 expression in SBC-5 cells by RNAi and found that downregulation of DKK1 can inhibit cell proliferation, colony formation, cell migration, and invasion, but increase the apoptosis rate. Downregulation of DKK1 did not affect the cell cycle progression of SBC-5 cells in vitro. In vivo, downregulated DKK1 in SBC-5 cells resulted in attenuated bone metastasis. These results indicated that DKK1 may be an important regulator in bone metastases of SCLC, and targeting DKK1 may be an effective method to prevent and treat skeleton metastases in SCLC cases.

  14. Effect of water on nanomechanics of bone is different between tension and compression

    Energy Technology Data Exchange (ETDEWEB)

    Samuel, Jitin; Park, Jun-Sang; Almer, Jonathan; Wang, Xiaodu

    2016-04-01

    Water, an important constituent in bone, resides in different compartments in bone matrix and may impose significant effects on its bulk mechanical properties. However, a clear understanding of the mechanistic role of water in toughening bone is yet to emerge. To address this issue, this study used a progressive loading protocol, coupled with measurements of in situ mineral and collagen fibril deformations using synchrotron X-ray diffraction techniques. Using this unique approach, the contribution of water to the ultrastructural behavior of bone was examined by testing bone specimens in different loading modes (tension and compression) and hydration states (wet and dehydrated). The results indicated that the effect of water on the mechanical behavior of mineral and collagen phases at the ultrastructural level was loading mode dependent and correlated with the bulk behavior of bone. Tensile loading elicited a transitional drop followed by an increase in load bearing by the mineral phase at the ultrastructural level, which was correlated with a strain hardening behavior of bone at the bulk level. Compression loading caused a continuous loss of load bearing by the mineral phase, which was reflected at the bulk level as a strain softening behavior. In addition, viscous strain relaxation and pre-strain reduction were observed in the mineral phase in the presence of water. Taken together, the results of this study suggest that water dictates the bulk behavior of bone by altering the interaction between mineral crystals and their surrounding matrix.

  15. The effect of high voltage, high frequency pulsed electric field on slain ovine cortical bone.

    Science.gov (United States)

    Asgarifar, Hajarossadat; Oloyede, Adekunle; Zare, Firuz

    2014-04-01

    High power, high frequency pulsed electric fields known as pulsed power (PP) has been applied recently in biology and medicine. However, little attention has been paid to investigate the application of pulse power in musculoskeletal system and its possible effect on functional behavior and biomechanical properties of bone tissue. This paper presents the first research investigating whether or not PP can be applied safely on bone tissue as a stimuli and what will be the possible effect of these signals on the characteristics of cortical bone by comparing the mechanical properties of this type of bone pre and post expose to PP and in comparison with the control samples. A positive buck-boost converter was applied to generate adjustable high voltage, high frequency pulses (up to 500 V and 10 kHz). The functional behavior of bone in response to pulse power excitation was elucidated by applying compressive loading until failure. The stiffness, failure stress (strength) and the total fracture energy (bone toughness) were determined as a measure of the main bone characteristics. Furthermore, an ultrasonic technique was applied to determine and comprise bone elasticity before and after pulse power stimulation. The elastic property of cortical bone samples appeared to remain unchanged following exposure to pulse power excitation for all three orthogonal directions obtained from ultrasonic technique and similarly from the compression test. Nevertheless, the compressive strength and toughness of bone samples were increased when they were exposed to 66 h of high power pulsed electromagnetic field compared to the control samples. As the toughness and the strength of the cortical bone tissue are directly associated with the quality and integrity of the collagen matrix whereas its stiffness is primarily related to bone mineral content these overall results may address that although, the pulse power stimulation can influence the arrangement or the quality of the collagen network

  16. Effects of odanacatib on the radius and tibia of postmenopausal women: improvements in bone geometry, microarchitecture, and estimated bone strength.

    Science.gov (United States)

    Cheung, Angela M; Majumdar, Sharmila; Brixen, Kim; Chapurlat, Roland; Fuerst, Thomas; Engelke, Klaus; Dardzinski, Bernard; Cabal, Antonio; Verbruggen, Nadia; Ather, Shabana; Rosenberg, Elizabeth; de Papp, Anne E

    2014-08-01

    The cathepsin K inhibitor odanacatib (ODN), currently in phase 3 development for postmenopausal osteoporosis, has a novel mechanism of action that reduces bone resorption while maintaining bone formation. In phase 2 studies, odanacatib increased areal bone mineral density (aBMD) at the lumbar spine and total hip progressively over 5 years. To determine the effects of ODN on cortical and trabecular bone and estimate changes in bone strength, we conducted a randomized, double-blind, placebo-controlled trial, using both quantitative computed tomography (QCT) and high-resolution peripheral (HR-p)QCT. In