WorldWideScience

Sample records for bone morphogenic protein

  1. Positive modulator of bone morphogenic protein-2

    Science.gov (United States)

    Zamora, Paul O.; Pena, Louis A.; Lin, Xinhua; Takahashi, Kazuyuki

    2009-01-27

    Compounds of the present invention of formula I and formula II are disclosed in the specification and wherein the compounds are modulators of Bone Morphogenic Protein activity. Compounds are synthetic peptides having a non-growth factor heparin binding region, a linker, and sequences that bind specifically to a receptor for Bone Morphogenic Protein. Uses of compounds of the present invention in the treatment of bone lesions, degenerative joint disease and to enhance bone formation are disclosed.

  2. Effects of Bone Morphogenic Proteins on Engineered Cartilage

    Science.gov (United States)

    Gooch, Keith, J.; Blunk, Torsten; Courter, Donald L.; Sieminski, Alisha; Vunjak-Novakovic, Gordana; Freed, Lisa E.

    2007-01-01

    A report describes experiments on the effects of bone morphogenic proteins (BMPs) on engineered cartilage grown in vitro. In the experiments, bovine calf articular chondrocytes were seeded onto biodegradable polyglycolic acid scaffolds and cultured in, variously, a control medium or a medium supplemented with BMP-2, BMP-12, or BMP-13 in various concentrations. Under all conditions investigated, cell-polymer constructs cultivated for 4 weeks macroscopically and histologically resembled native cartilage. At a concentration of 100 ng/mL, BMP-2, BMP-12, or BMP-13 caused (1) total masses of the constructs to exceed those of the controls by 121, 80, or 62 percent, respectively; (2) weight percentages of glycosaminoglycans in the constructs to increase by 27, 18, or 15, respectively; and (3) total collagen contents of the constructs to decrease to 63, 89, or 83 percent of the control values, respectively. BMP-2, but not BMP-12 or BMP-13, promoted chondrocyte hypertrophy. These observations were interpreted as suggesting that the three BMPs increase the growth rates and modulate the compositions of engineered cartilage. It was also concluded that in vitro engineered cartilage is a suitable system for studying effects of BMPs on chondrogenesis in a well-defined environment.

  3. Adult neurogenesis requires Smad4-mediated bone morphogenic protein signaling in stem cells.

    NARCIS (Netherlands)

    Colak, D.; Mori, T.; Brill, M.S; Pfeifer, A.; Falk, S.; Deng, C.; Monteiro, R.; Mummery, C.L.; Sommer, L.; Gotz, M.

    2008-01-01

    In the mammalian brain, neurogenesis continues only in few regions of the forebrain. The molecular signals governing neurogenesis in these unique neurogenic niches, however, are still ill defined. Here, we show that bone morphogenic protein (BMP)-mediated signaling is active in adult neural stem cel

  4. Evaluation of bone morphogenic proteins in periodontal practice.

    Science.gov (United States)

    Kaur, Supreet; Grover, Vishakha; Kaur, Harkiran; Malhotra, Ranjan

    2016-01-01

    Forty years ago Marshal R. Urist discovered a substance in bone matrix that had inductive properties for the development of bone and cartilage, until date, at least 20 bone morphogenetic proteins (BMPs) have been identified, some of which have been shown in vitro to stimulate the process of stem cell differentiation into osteoblasts in human and animal models. The purpose of this paper is to give a brief overview of BMPs and to review critically the clinical data currently available on the use of BMPs in various periodontal applications. The literature on BMPs was reviewed. A comprehensive search was designed. The articles were independently screened for eligibility. Articles with authentic controls and proper randomization and pertaining specifically to their role in periodontal applications were included. The available literature was analyzed and compiled. The analysis indicates BMPs to be a promising, as well as an effective novel approach to reconstruct and engineer the periodontal apparatus. Here, we represent several articles, as well as recent texts that make up a special and an in-depth review on the subject. On the basis of the data provided in the studies that were reviewed BMPs provide revolutionary therapies in periodontal practice.

  5. Takotsubo Cardiomyopathy following a L2–L5 Laminectomy and Fusion In Situ with Bone Morphogenic Protein

    Directory of Open Access Journals (Sweden)

    John Weaver

    2013-01-01

    Full Text Available Takotsubo cardiomyopathy (TC is a rare, transient cardiomyopathy, with symptoms mimicking myocardial infarction. It has been reported to typically occur in postmenopausal women and is often triggered by an intense physical or emotional event with stimulation of the sympathetic response; the exact etiology, however, is uncertain. Bone morphogenic protein (BMP is widely used in spinal fusions and has been associated with numerous perioperative complications. BMP is known to stimulate sympathetic pathways. In this paper, we present the case of a patient with a 7-hour episode of TC after a spinal fusion with bone morphogenic protein. The patient's symptoms resolved and long-term followup has been uneventful. This is the first paper to describe TC in the setting of spine or other major orthopaedic surgery and it suggests another possible area for further investigation in peri-operative events potentially associated with the use of bone morphogenic protein.

  6. Public awareness of the bone morphogenic protein controversy: Evidence from news publications

    Directory of Open Access Journals (Sweden)

    Doniel Drazin

    2014-01-01

    Full Text Available Background: Use of recombinant human bone morphogenic protein-2 (rhBMP-2 in spinal fusion has seen a tremendous increase. Public awareness of rhBMP-2 and its complications has not been assessed. The authors studied published news media articles to analyze information provided to the public on this bone graft substitute. Methods: We utilized the academic database, LexisNexis, to locate newspaper articles published between January 2001 and July 2013. All articles were coded by a coder and reviewed by the principal investigator. Results: The search identified 87 national and 99 local newspaper articles. Complications mentioned in national newspapers included cancer (24%, retrograde ejaculation (24%, and abnormal bone growth (14%. Local newspapers cited cancer (14%, inflammation (14%, and retrograde ejaculation (9.2% most frequently. Fifty national (59% and 35 local (54% articles had no mention of complications. Sources of evidence cited by articles were (in order of frequency: Governmental agencies, medical research or published studies, healthcare personnel or patients, and companies or corporations. Conclusions: Only a small percentage of newspaper articles presented potential complications. Despite lack of clear scientific causal relationship between rhBMP-2 and cancer, this risk was disproportionately reported. Additionally, many did not cite scientific sources. Lack of reliable information available to the public reiterates the role of physicians in discussing risks and benefits BMP use in spinal surgery, assuring that patients are making informed decisions. Future news media articles should present risks in an impartial and evidence-based manner. Collaboration between advocacy groups, medical institutions, and media outlets would be beneficial in achieving this goal.

  7. Bone Formation in a Rat Tibial Defect Model Using Carboxymethyl Cellulose/BioC/Bone Morphogenic Protein-2 Hybrid Materials

    Directory of Open Access Journals (Sweden)

    Sang-Heon Song

    2014-01-01

    Full Text Available The objective of this study was to assess whether carboxymethyl cellulose- (CMC- based hydrogel containing BioC (biphasic calcium phosphate (BCP; tricalcium phosphate (TCP : hydroxyapatite (Hap = 70 : 30 and bone morphogenic protein-2 (BMP-2 led to greater bone formation than CMC-based hydrogel containing BioC without BMP-2. In order to demonstrate bone formation at 4 and 8 weeks, plain radiographs, microcomputed tomography (micro-CT evaluation, and histological studies were performed after implantation of all hybrid materials on an 8 mm defect of the right tibia in rats. The plain radiographs and micro-CT analyses revealed that CMC/BioC/BMP-2 (0.5 mg led to much greater mineralization at 4 and 8 weeks than did CMC/BioC or CMC/Bio/BMP-2 (0.1 mg. Likewise, bone formation and bone remodeling studies revealed that CMC/BioC/BMP-2 (0.5 mg led to a significantly greater amount of bone formation and bone remodeling at 4 and 8 weeks than did CMC/BioC or CMC/BioC/BMP-2 (0.1 mg. Histological studies revealed that mineralized bone tissue was present around the whole circumference of the defect site with CMC/BioC/BMP-2 (0.5 mg but not with CMC/BioC or CMC/BioC/BMP-2 (0.1 mg at 4 and 8 weeks. These results suggest that CMC/BioC/BMP-2 hybrid materials induced greater bone formation than CMC/BioC hybrid materials. Thus, CMC/BioC/BMP-2 hybrid materials may be used as an injectable substrate to regenerate bone defects.

  8. Sizn1 is a novel protein that functions as a transcriptional coactivator of bone morphogenic protein signaling.

    Science.gov (United States)

    Cho, Ginam; Lim, Youngshin; Zand, Dina; Golden, Jeffrey A

    2008-03-01

    Bone morphogenic proteins (BMPs) play pleotrophic roles in nervous system development, and their signaling is highly regulated at virtually every step in the pathway. We have cloned a novel gene, Sizn1 (Smad-interacting zinc finger protein), which functions as a transcriptional coactivator of BMP signaling. It positively modulates BMP signaling by interacting with Smad family members and associating with CBP in the transcription complex. Sizn1 is expressed in the ventral embryonic forebrain, where, as we will show, it contributes to BMP-dependent, cholinergic-neuron-specific gene expression. These data indicate that Sizn1 is a positive modulator of BMP signaling and provide further insight into how BMP signaling can be modulated in neuronal progenitor subsets to influence cell-type-specific gene expression and development.

  9. Bone morphogenic protein-2 regulates the myogenic differentiation of PMVECs in CBDL rat serum-induced pulmonary microvascular remodeling

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chang; Chen, Lin; Zeng, Jing; Cui, Jian; Ning, Jiao-nin [Department of Anesthesia, Southwest Hospital, The Third Military Medical University, Chongqing 400038 (China); Wang, Guan-song [Institute of Respiratory Disease, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037 (China); Belguise, Karine; Wang, Xiaobo [Université P. Sabatier Toulouse III and CNRS, LBCMCP, 31062 Toulouse Cedex 9 (France); Qian, Gui-sheng [Institute of Respiratory Disease, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037 (China); Lu, Kai-zhi [Department of Anesthesia, Southwest Hospital, The Third Military Medical University, Chongqing 400038 (China); Yi, Bin, E-mail: yibin1974@163.com [Department of Anesthesia, Southwest Hospital, The Third Military Medical University, Chongqing 400038 (China)

    2015-08-01

    Hepatopulmonary syndrome (HPS) is characterized by an arterial oxygenation defect induced by intrapulmonary vasodilation (IPVD) that increases morbidity and mortality. In our previous study, it was determined that both the proliferation and the myogenic differentiation of pulmonary microvascular endothelial cells (PMVECs) play a key role in the development of IPVD. However, the molecular mechanism underlying the relationship between IPVD and the myogenic differentiation of PMVECs remains unknown. Additionally, it has been shown that bone morphogenic protein-2 (BMP2), via the control of protein expression, may regulate cell differentiation including cardiomyocyte differentiation, neuronal differentiation and odontoblastic differentiation. In this study, we observed that common bile duct ligation (CBDL)-rat serum induced the upregulation of the expression of several myogenic proteins (SM-α-actin, calponin, SM-MHC) and enhanced the expression levels of BMP2 mRNA and protein in PMVECs. We also observed that both the expression levels of Smad1/5 and the activation of phosphorylated Smad1/5 were significantly elevated in PMVECs following exposure to CBDL-rat serum, which was accompanied by the down-regulation of Smurf1. The blockage of the BMP2/Smad signaling pathway with Noggin inhibited the myogenic differentiation of PMVECs, a process that was associated with relatively low expression levels of both SM-α-actin and calponin in the setting of CBDL-rat serum exposure, although SM-MHC expression was not affected. These findings suggested that the BMP2/Smad signaling pathway is involved in the myogenic differentiation of the PMVECs. In conclusion, our data highlight the pivotal role of BMP2 in the CBDL-rat serum-induced myogenic differentiation of PMVECs via the activation of both Smad1 and Smad5 and the down-regulation of Smurf1, which may represent a potential therapy for HPS-induced pulmonary vascular remodeling. - Highlights: • CBDL-rat serum promotes the myogenic

  10. Encapsulation of bone morphogenic protein-2 with Cbfa1-overexpressing osteogenic cells derived from human embryonic stem cells in hydrogel accelerates bone tissue regeneration.

    Science.gov (United States)

    Kim, Min Jung; Park, Ji Sun; Kim, Sinae; Moon, Sung-Hwan; Yang, Han Na; Park, Keun-Hong; Chung, Hyung-Min

    2011-08-01

    Bone tissue defects caused by trauma and disease are significant problems in orthopedic surgery. Human embryonic stem cells (hESCs) hold great promise for the treatment of bone tissue disease in regenerative medicine. In this study, we have established an effective method for the differentiation of osteogenic cells derived from hESCs using a lentiviral vector containing the transcription factor Cbfa1. Differentiation was initiated in embryoid body formation of Cbfa1-expressing hESCs, resulting in a highly purified population of osteogenic cells based on flow cytometric analysis. These cells also showed characteristics of osteogenic cells in vitro, as determined by reverse-transcription (RT)-polymerase chain reaction and immunocytochemistry using osteoblast-specific markers. We also evaluated the regenerative potential of Cbfa1-expressing cells derived from hESCs (hESC-CECs) compared with hESCs and the osteogenic effects of bone morphogenic protein-2 (BMP2) encapsulated in thermoreversible hydrogel in vivo. hESC-CECs were embedded in hydrogel constructs enriched with BMP2 to promote bone regeneration. We observed prominent mineralization and the formation of nodule-like structures using von Kossa and alizarin red S staining. In addition, the expression patterns of osteoblast-specific genes were verified by RT-polymerase chain reaction, and immunohistochemical analysis revealed that collagen type 1 and Cbfa1 were highly expressed in hESC-CECs compared with other cell types. Taken together, our results suggest that encapsulation of hESC-CECs with BMP2 in hydrogel constructs appears to be a promising method to enhance the in vitro osteoblastic differentiation and in vivo osteogenic activity of hESC-CECs.

  11. Fibroblast growth factor 2 inhibits up-regulation of bone morphogenic proteins and their receptors during osteoblastic differentiation of human mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Biver, Emmanuel, E-mail: ebiver@yahoo.fr [Physiopathology of Inflammatory Bone Diseases, EA 4490, University Lille North of France, Quai Masset, Bassin Napoleon, BP120, 62327 Boulogne sur Mer (France); Department of Rheumatology, Lille University Hospital, Roger Salengro Hospital, 59037 Lille cedex (France); Service of Bone Diseases, Department of Internal Medicine Specialties, University Hospital of Geneva, CH-1211 Geneva 14 (Switzerland); Soubrier, Anne-Sophie [Physiopathology of Inflammatory Bone Diseases, EA 4490, University Lille North of France, Quai Masset, Bassin Napoleon, BP120, 62327 Boulogne sur Mer (France); Department of Rheumatology, Lille University Hospital, Roger Salengro Hospital, 59037 Lille cedex (France); Thouverey, Cyril [Service of Bone Diseases, Department of Internal Medicine Specialties, University Hospital of Geneva, CH-1211 Geneva 14 (Switzerland); Cortet, Bernard [Physiopathology of Inflammatory Bone Diseases, EA 4490, University Lille North of France, Quai Masset, Bassin Napoleon, BP120, 62327 Boulogne sur Mer (France); Department of Rheumatology, Lille University Hospital, Roger Salengro Hospital, 59037 Lille cedex (France); Broux, Odile [Physiopathology of Inflammatory Bone Diseases, EA 4490, University Lille North of France, Quai Masset, Bassin Napoleon, BP120, 62327 Boulogne sur Mer (France); Caverzasio, Joseph [Service of Bone Diseases, Department of Internal Medicine Specialties, University Hospital of Geneva, CH-1211 Geneva 14 (Switzerland); Hardouin, Pierre [Physiopathology of Inflammatory Bone Diseases, EA 4490, University Lille North of France, Quai Masset, Bassin Napoleon, BP120, 62327 Boulogne sur Mer (France)

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer FGF modulates BMPs pathway in HMSCs by down-regulating BMP/BMPR expression. Black-Right-Pointing-Pointer This effect is mediated by ERK and JNK MAPKs pathways. Black-Right-Pointing-Pointer Crosstalk between FGF and BMPs must be taken into account in skeletal bioengineering. Black-Right-Pointing-Pointer It must also be considered in the use of recombinant BMPs in orthopedic and spine surgeries. -- Abstract: Understanding the interactions between growth factors and bone morphogenic proteins (BMPs) signaling remains a crucial issue to optimize the use of human mesenchymal stem cells (HMSCs) and BMPs in therapeutic perspectives and bone tissue engineering. BMPs are potent inducers of osteoblastic differentiation. They exert their actions via BMP receptors (BMPR), including BMPR1A, BMPR1B and BMPR2. Fibroblast growth factor 2 (FGF2) is expressed by cells of the osteoblastic lineage, increases their proliferation and is secreted during the healing process of fractures or in surgery bone sites. We hypothesized that FGF2 might influence HMSC osteoblastic differentiation by modulating expressions of BMPs and their receptors. BMP2, BMP4, BMPR1A and mainly BMPR1B expressions were up-regulated during this differentiation. FGF2 inhibited HMSCs osteoblastic differentiation and the up-regulation of BMPs and BMPR. This effect was prevented by inhibiting the ERK or JNK mitogen-activated protein kinases which are known to be activated by FGF2. These data provide a mechanism explaining the inhibitory effect of FGF2 on osteoblastic differentiation of HMSCs. These crosstalks between growth and osteogenic factors should be considered in the use of recombinant BMPs in therapeutic purpose of fracture repair or skeletal bioengineering.

  12. Histological and radiographic evaluation of the muscle tissue of rats after implantation of bone morphogenic protein (rhBMP-2 in a scaffold of inorganic bone and after stimulation with low-power laser light

    Directory of Open Access Journals (Sweden)

    Bengtson Antonio

    2010-01-01

    Full Text Available Objective: The present study histologically and radiologically evaluates the muscle tissue of rats after implantation of bone morphogenic protein (rhBMP-2 in a natural inorganic bone mineral scaffold from a bull calf femur and irradiation with low-power light laser. Materials and Methods: The right and left hind limbs of 16 rats were shaved and an incision was made in the muscle on the face corresponding to the median portion of the tibia, into which rhBMP-2 in a scaffold of inorganic bone was implanted. Two groups of limbs were formed: control (G1 and laser irradiation (G2. G2 received diode laser light applied in the direction of the implant, at a dose of 8 J/cm2 for three minutes. On the 7th, 21st, 40th and 112th days after implantation, hind limbs of 4 animals were radiographed and their implants removed together with the surrounding tissue for study under the microscope. The histological results were graded as 0=absence, 1=slight presence, 2=representative and 3=very representative, with regard to the following events: formation of osteoid structure, acute inflammation, chronic inflammation, fibrin deposition, neovascularization, foreign-body granuloma and fibrosis. Results: There were no statistically significant differences in these events at each evaluation times, between the two groups (P > 0.05; Mann-Whitney test. Nevertheless, it could be concluded that the natural inorganic bone matrix with rhBMP-2, from the femur of a bull calf, is a biocompatible combination. Conclusions: Under these conditions, the inductive capacity of rhBMP-2 for cell differentiation was inhibited. There was a slight acceleration in tissue healing in the group that received irradiation with low-power laser light.

  13. Anti-Müllerian hormone (AMH), inhibin-α, growth differentiation factor 9 (GDF9), and bone morphogenic protein-15 (BMP15) mRNA and protein are influenced by photoperiod-induced ovarian regression and recrudescence in Siberian hamster ovaries.

    Science.gov (United States)

    Shahed, Asha; Young, Kelly A

    2013-11-01

    Exposure of Siberian hamsters to short photoperiod (SD) inhibits ovarian function, including folliculogenesis, whereas function is restored with their transfer to long photoperiods (LD). To investigate the mechanism of photo-stimulated recrudescence, we assessed key folliculogenic factors-anti-Müllerian hormone (AMH), inhibin-α, growth differentiation factor-9 (GDF9), and bone morphogenic protein-15 (BMP15)-across the estrus cycle and in photo-regressed and recrudescing ovaries. Adult hamsters were exposed to either LD or SD for 14 weeks, which respectively represent functional and regressed ovaries. Select regressed hamsters were transferred back to LD for 2 (post-transfer week 2; PTw2) or 8 weeks (PTw8). Ovaries were collected and fixed in formalin for immunohistochemistry or frozen in liquid nitrogen for real-time PCR. AMH, inhibin-α, GDF9, and BMP15 mRNA and protein were detected in all stages of the estrus cycle. Fourteen weeks of SD exposure increased (P hamsters to stimulatory long photoperiod for 8 weeks returned AMH and GDF9 mRNA levels to LD-treated levels, and further increased mRNA levels for inhibin-α and BMP15. Immunostaining for AMH, inhibin-α, GDF9, and BMP15 proteins was most intense in preantral/antral follicles and oocytes. The overall immunostaining extent for AMH and inhibin-α generally mirrored the mRNA data, though no changes were observed for GDF9 or BMP15 immunostaining. Shifts in mRNA and protein levels across photoperiod conditions suggest possible syncretic roles for these folliculogenic factors in photo-stimulated recrudescence via potential regulation of follicle recruitment, preservation, and development.

  14. Morphogenic Peptides in Regeneration of Load Bearing Tissues.

    Science.gov (United States)

    Moeinzadeh, Seyedsina; Jabbari, Esmaiel

    2015-01-01

    Morphogenic proteins due to their short half-life require high doses of growth factors in regeneration of load bearing tissues which leads to undesirable side effects. These side effects include bone overgrowth, tumor formation and immune reaction. An alternative approach to reduce undesirable side effects of proteins in regenerative medicine is to use morphogenic peptides derived from the active domains of morphogenic proteins or soluble and insoluble components of the extracellular matrix of mineralized load bearing tissues to induce differentiation of progenitor cells, mineralization, maturation and bone formation. In that regard, many peptides with osteogenic activity have been discovered. These include peptides derived from bone morphogenic proteins (BMPs), those based on interaction with integrin and heparin-binding receptors, collagen derived peptides, peptides derived from other soluble ECM proteins such as bone sialoprotein and enamel matrix proteins, and those peptides derived from vasculoinductive and neuro-inductive proteins. Although these peptides show significant osteogenic activity in vitro and increase mineralization and bone formation in animal models, they are not widely used in clinical orthopedic applications as an alternative to morphogenic proteins. This is partly due to the limited availability of data on structure and function of morphogenic peptides in physiological medium, particularly in tissue engineered scaffolds. Due to their amphiphilic nature, peptides spontaneously self-assemble and aggregate into micellar structures in physiological medium. Aggregation alters the sequence of amino acids in morphogenic peptides that interact with cell surface receptors thus affecting osteogenic activity of the peptide. Aggregation and micelle formation can dramatically reduce the active concentration of morphogenic peptides with many-fold increase in peptide concentration in physiological medium. Other factors that affect bioactivity are the non

  15. 单核细胞趋化蛋白1和骨形成蛋白7在病理性瘢痕中的表达%Expression of monocyte ehemoattraetant protein-1 and bone morphogenic protein-7 in pathologic scars

    Institute of Scientific and Technical Information of China (English)

    李永涛; 王喜梅; 刘林嶓; 张建文; 袁德品

    2011-01-01

    背景:单核细胞趋化蛋白1 是新近明确的对单核/巨噬细胞有趋化和激活双重作用的趋化因子,骨形成蛋白7 作为一种新发现的纤维化负性调节因子逐渐成为抗组织纤维化治疗的研究热点,但两者对病理性瘢痕形成中组织纤维化作用的研究至今鲜有报道.目的:研究单核细胞趋化蛋白1,骨形成蛋白7 在病理性瘢痕中的表达水平.方法:采用免疫组织化学方法检测单核细胞趋化蛋白1、骨形成蛋白7 在25 例瘢痕疙瘩、30 例增生性瘢痕、24 例非病理瘢痕和20 例正常皮肤组织中的表达水平.所有标本均来自2008-07/2010-01 郑州大学第一附属医院整形外科住院患者,且均无皮肤疾病、结缔组织病、传染病、恶性肿瘤和其他重要脏器疾病,术前无射线治疗、激光治疗及免疫治疗史,其中所取瘢痕组织来自于临床诊断明确的瘢痕患者.结果与结论:单核细胞趋化蛋白1 在瘢痕疙瘩、增生性瘢痕中的阳性表达率均高于非病理性瘢痕与正常皮肤组织(P < 0.05),骨形成蛋白7 阳性表达率均降低(P < 0.05),两者阳性表达率在病理性瘢痕(瘢痕疙瘩和增生性瘢痕)中呈明显负相关(r = -0.639,P < 0.01).结果显示,在病理性瘢痕的形成过程中单核细胞趋化蛋白1 表达上调,而骨形成蛋白7 表达下调.%BACKGROUND: Monocyte ehemoattraetant protein-1 (MCP-1) has been shown chemotaxis and activation effect on mononuclear/macrophage. As a newly found negative-regulatory factor, bone morphogenic protein-7 (BMP-7) has aroused increasing attention in the treatment of tissue fibrosis. However, the effects of MCP-1 and BMP-7 on tissue fibrosis during pathologic scars remain poorly understood.OBJECTIVE: To investigate the expression of MCP-1 and BMP-7 in pathologic scars.METHODS: SP immunohistochemical method was used to detect the expressions of MCP-1 and BMP-7 in 25 cases of keloid, 30 cases of hypertrophic scars, 24 cases of

  16. Yeast Gup1(2 Proteins Are Homologues of the Hedgehog Morphogens Acyltransferases HHAT(L: Facts and Implications

    Directory of Open Access Journals (Sweden)

    Cândida Lucas

    2016-11-01

    Full Text Available In multiple tissues, the Hedgehog secreted morphogen activates in the receiving cells a pathway involved in cell fate, proliferation and differentiation in the receiving cells. This pathway is particularly important during embryogenesis. The protein HHAT (Hedgehog O-acyltransferase modifies Hh morphogens prior to their secretion, while HHATL (Hh O-acyltransferase-like negatively regulates the pathway. HHAT and HHATL are homologous to Saccharomyces cerevisiae Gup2 and Gup1, respectively. In yeast, Gup1 is associated with a high number and diversity of biological functions, namely polarity establishment, secretory/endocytic pathway functionality, vacuole morphology and wall and membrane composition, structure and maintenance. Phenotypes underlying death, morphogenesis and differentiation are also included. Paracrine signalling, like the one promoted by the Hh pathway, has not been shown to occur in microbial communities, despite the fact that large aggregates of cells like biofilms or colonies behave as proto-tissues. Instead, these have been suggested to sense the population density through the secretion of quorum-sensing chemicals. This review focuses on Gup1/HHATL and Gup2/HHAT proteins. We review the functions and physiology associated with these proteins in yeasts and higher eukaryotes. We suggest standardisation of the presently chaotic Gup-related nomenclature, which includes KIAA117, c3orf3, RASP, Skinny, Sightless and Central Missing, in order to avoid the disclosure of otherwise unnoticed information.

  17. Kinetics of receptor occupancy during morphogen gradient formation

    Science.gov (United States)

    Berezhkovskii, Alexander M.; Shvartsman, Stanislav Y.

    2013-06-01

    During embryogenesis, sheets of cells are patterned by concentration profiles of morphogens, molecules that act as dose-dependent regulators of gene expression and cell differentiation. Concentration profiles of morphogens can be formed by a source-sink mechanism, whereby an extracellular protein is secreted from a localized source, diffuses through the tissue and binds to cell surface receptors. A morphogen molecule bound to its receptor can either dissociate or be internalized by the cell. The effects of morphogens on cells depend on the occupancy of surface receptors, which in turn depends on morphogen concentration. In the simplest case, the local concentrations of the morphogen and morphogen-receptor complexes monotonically increase with time from zero to their steady-state values. Here, we derive analytical expressions for the time scales which characterize the formation of the steady-state concentrations of both the diffusible morphogen molecules and morphogen-receptor complexes at a given point in the patterned tissue.

  18. Control of Adult Neurogenesis by Short-Range Morphogenic-Signaling Molecules.

    Science.gov (United States)

    Choe, Youngshik; Pleasure, Samuel J; Mira, Helena

    2015-12-04

    Adult neurogenesis is dynamically regulated by a tangled web of local signals emanating from the neural stem cell (NSC) microenvironment. Both soluble and membrane-bound niche factors have been identified as determinants of adult neurogenesis, including morphogens. Here, we review our current understanding of the role and mechanisms of short-range morphogen ligands from the Wnt, Notch, Sonic hedgehog, and bone morphogenetic protein (BMP) families in the regulation of adult neurogenesis. These morphogens are ideally suited to fine-tune stem-cell behavior, progenitor expansion, and differentiation, thereby influencing all stages of the neurogenesis process. We discuss cross talk between their signaling pathways and highlight findings of embryonic development that provide a relevant context for understanding neurogenesis in the adult brain. We also review emerging examples showing that the web of morphogens is in fact tightly linked to the regulation of neurogenesis by diverse physiologic processes.

  19. Engineering of blood vessel patterns by angio-morphogens [angiotropins]: non-mitogenic copper-ribonucleoprotein cytokins [CuRNP ribokines] with their metalloregulated constituents of RAGE-binding S100-EF-hand proteins and extracellular RNA bioaptamers in vascular remodeling of tissue and angiogenesis in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Wissler, J.H. [ARCONS Applied Research, Bad Nauheim (Germany)

    2001-12-01

    Tissue vascularization is requisite to successful cell-based therapies, biomaterial design and implant integration. Thus, known problems in ossointegration of avascular implants in connection with the generation of bone tissue reflect arrays of general problems of socio-economic relevance existing in reparative medicine still waiting for to be solved. For this purpose, morphogenesis and remodeling of endothelial angio-architectures in tissue and in vitro by isolated non-mitogenic angio-morphogens [angiotropins] are considered in terms of their structure, function and action mechanisms. Extracellular angiotropins are secreted by activated leukocytes/monocytes/macrophages. They are a family of cytokines with morphogen bioactivity selectively directed to endothelial cells. Their structure was deciphered as metalloregulated copper-ribonucleoproteins [CuRNP ribokines]. They are built up of angiotropin-related S100-EF-hand protein [ARP] and highly modified and edited 5'end-phosphorylated RNA [ARNA], complexed together by copper ions. Oxidant-sensitive ARNA and their precursors represent novel types in a RNA world: They are the first isolated and sequenced forms of extracellular RNA [eRNA], may act as cytokine and bioaptamer, contain isoguanosine [crotonoside] as modified nucleoside and show up copper as RNA-structuring transition metal ion. By metalloregulated bioaptamer functions, ARNA impart novel biofunctions to RAGE-binding S100-EF-hand proteins. Angiotropin morphogens were shown suitable for neointiation and remodeling of blood vessel patterns in different, adult, embryonal and artificial tissues. These neovascular patterns manifest regulated hemodynamics for preventing tissue necrosis, supporting tissue functions and promoting wound healing. As evaluated in skin and muscle vascularization, the neovascular patterns are integrated into homeostatic control mechanisms of tissue. Thus, the morphogens show up beneficial perspectives and are suggested useful tools

  20. Bone morphogenetic proteins: Periodontal regeneration

    Directory of Open Access Journals (Sweden)

    Subramaniam M Rao

    2013-01-01

    Full Text Available Periodontitis is an infectious inflammatory disease that results in attachment loss and bone loss. Regeneration of the periodontal tissues entails de novo formation of cementum, periodontal ligament, and alveolar bone. Several different approaches are currently being explored to achieve complete, reliable, and reproducible regeneration of periodontal tissues. The therapeutic management of new bone formation is one of the key issues in successful periodontal regeneration. Bone morphogenetic proteins form a unique group of proteins within the transforming growth factor superfamily of genes and have a vital role in the regulation in the bone induction and maintenance. The activity of bone morphogenetic proteins was first identified in the 1960s, but the proteins responsible for bone induction were unknown until the purification and cloning of human bone morphogenetic proteins in the 1980s, because of their osteoinductive potential. Bone morphogenetic proteins have gained a lot of interest as therapeutic agents for treating periodontal defects. A systematic search for data related to the use of bone morphogenetic proteins for the regeneration of periodontal defects was performed to recognize studies on animals and human (PUBMED, MEDLINE, COCHRANE, and Google search. All the studies included showed noticeable regeneration of periodontal tissues with the use of BMP.

  1. SoxB1-driven transcriptional network underlies neural-specific interpretation of morphogen signals.

    Science.gov (United States)

    Oosterveen, Tony; Kurdija, Sanja; Ensterö, Mats; Uhde, Christopher W; Bergsland, Maria; Sandberg, Magnus; Sandberg, Rickard; Muhr, Jonas; Ericson, Johan

    2013-04-30

    The reiterative deployment of a small cadre of morphogen signals underlies patterning and growth of most tissues during embyogenesis, but how such inductive events result in tissue-specific responses remains poorly understood. By characterizing cis-regulatory modules (CRMs) associated with genes regulated by Sonic hedgehog (Shh), retinoids, or bone morphogenetic proteins in the CNS, we provide evidence that the neural-specific interpretation of morphogen signaling reflects a direct integration of these pathways with SoxB1 proteins at the CRM level. Moreover, expression of SoxB1 proteins in the limb bud confers on mesodermal cells the potential to activate neural-specific target genes upon Shh, retinoid, or bone morphogenetic protein signaling, and the collocation of binding sites for SoxB1 and morphogen-mediatory transcription factors in CRMs faithfully predicts neural-specific gene activity. Thus, an unexpectedly simple transcriptional paradigm appears to conceptually explain the neural-specific interpretation of pleiotropic signaling during vertebrate development. Importantly, genes induced in a SoxB1-dependent manner appear to constitute repressive gene regulatory networks that are directly interlinked at the CRM level to constrain the regional expression of patterning genes. Accordingly, not only does the topology of SoxB1-driven gene regulatory networks provide a tissue-specific mode of gene activation, but it also determines the spatial expression pattern of target genes within the developing neural tube.

  2. Unveiling the Bmp13 Enigma: Redundant Morphogen or Crucial Regulator?

    Directory of Open Access Journals (Sweden)

    Lisa A Williams, Divya Bhargav, Ashish D Diwan

    2008-01-01

    Full Text Available Bone morphogenetic proteins are a diverse group of morphogens with influences not only on bone tissue, as the nomenclature suggests, but on multiple tissues in the body and often at crucial and influential periods in development. The purpose of this review is to identify and discuss current knowledge of one vertebrate BMP, Bone Morphogenetic Protein 13 (BMP13, from a variety of research fields, in order to clarify BMP13's functional contribution to developing and maintaining healthy tissues, and to identify potential future research directions for this intriguing morphogen. BMP13 is highly evolutionarily conserved (active domain >95% across diverse species from Zebrafish to humans, suggesting a crucial function. In addition, mutations in BMP13 have recently been associated with Klippel-Feil Syndrome, causative of numerous skeletal and developmental defects including spinal disc fusion. The specific nature of BMP13's crucial function is, however, not yet known. The literature for BMP13 is focused largely on its activity in the healing of tendon-like tissues, or in comparisons with other BMP family molecules for whom a clear function in embryo development or osteogenic differentiation has been identified. There is a paucity of detailed information regarding BMP13 protein activity, structure or protein processing. Whilst some activity in the stimulation of osteogenic or cartilaginous gene expression has been reported, and BMP13 expression is found in post natal cartilage and tendon tissues, there appears to be a redundancy of function in the BMP family, with several members capable of stimulating similar tissue responses. This review aims to summarise the known or potential role(s for BMP13 in a variety of biological systems.

  3. Neurodegenerative and morphogenic changes in a mouse model of temporal lobe epilepsy do not depend on the expression of the calcium-binding proteins parvalbumin, calbindin, or calretinin.

    Science.gov (United States)

    Bouilleret, V; Schwaller, B; Schurmans, S; Celio, M R; Fritschy, J M

    2000-01-01

    The functional role of the calcium-binding proteins parvalbumin, calretinin, and calbindin D-28k for epileptogenesis and long-term seizure-related alterations of the hippocampal formation was assessed in single- and double-knockout mice, using a kainate model of mesial temporal lobe epilepsy. The effects of a unilateral intrahippocampal injection of kainic acid were assessed at one day, 30 days, and four months post-injection, using various markers of GABAergic interneurons (GABA-transporter type 1, GABA(A)-receptor alpha1 subunit, calretinin, calbindin D-28k, somatostatin, and neuropeptide Y). Parvalbumin-deficient, parvalbumin/calbindin-deficient, and parvalbumin/calretinin-deficient mice exhibited no difference in cytoarchitecture of the hippocampal formation and in the number, distribution, or morphology of interneurons compared to wild-type mice. Likewise, mutant mice were not more vulnerable to acute kainate-induced excitotoxicity or to long-term effects of recurrent focal seizures, and exhibited the same pattern of neurochemical alterations (e.g., bilateral induction of neuropeptide Y in granule cells) and morphogenic changes (enlargement and dispersion of dentate gyrus granule cells) as wild-type animals. Quantification of interneurons revealed no significant difference in neuronal vulnerability among the genotypes.These results indicate that the calcium-binding proteins investigated here are not essential for determining the neurochemical phenotype of interneurons. Furthermore, they are not protective against kainate-induced excitotoxicity in this model, and do not appear to modulate the overall level of excitability of the hippocampus. Finally, seizure-induced changes in gene expression in granule cells, which normally express high levels of calcium-binding proteins, apparently were not affected by the gene deletions analysed.

  4. The classic: Bone morphogenetic protein.

    Science.gov (United States)

    Urist, Marshall R; Strates, Basil S

    2009-12-01

    This Classic Article is a reprint of the original work by Marshall R. Urist and Basil S. Strates, Bone Morphogenetic Protein. An accompanying biographical sketch of Marshall R. Urist, MD is available at DOI 10.1007/s11999-009-1067-4; a second Classic Article is available at DOI 10.1007/s11999-009-1069-2; and a third Classic Article is available at DOI 10.1007/s11999-009-1070-9. The Classic Article is copyright 1971 by Sage Publications Inc. Journals and is reprinted with permission from Urist MR, Strates BS. Bone morphogenetic protein. J Dent Res. 1971;50:1392-1406.

  5. Osseointegration of titanium implants by addition of recombinant bone morphogenetic protein 2 (rhBMP-2)

    Energy Technology Data Exchange (ETDEWEB)

    Lichtinger, T.K.; Mueller, R.T.; Schuermann, N.; Oldenburg, M. [Essen Univ. (Germany). Dept. of Orthopaedic Surgery; Wiemann, M. [Inst. of Physiology, Univ. of Essen (Germany); Chatzinikolaidou, M.; Jennissen, H.P. [Inst. of Physiological Chemistry, Univ. of Essen (Germany); Rumpf, H.M.

    2001-12-01

    The osseointegration of long-term implants is often incomplete such that gaps remain between the implant surface and the surrounding hard tissue. This study examines the effect of soluble recombinant human bone morphogenic protein 2 (rhBMP-2) on gap healing and osseous integration. The effect of a single, intraoperative application of soluble rhBMP-2 on the formation of new bone around titanium implants was studied. A total of 8 titanium-alloy cylinders (Ti-6Al-4V) with a plasma spray coating (TPS; 400 {mu}m thickness) were implanted into femoral condyles of mature sheep: rhBMP-2 solution (1 {mu}g) was pipetted into the 1 mm wide cleft around 4 implants; 4 further implants served as rhBMP-2-free controls. Two of these controls exhibited an additional calciumphosphate-coating. The cleft around the implants served as testing zone to study the formation of new bone by microradiographical and histological analyses. The follow-up periods were 4 and 9 weeks, respectively. A significant amount of new bone contacting the implants' surface was detected where rhBMP-2-solution had been used: In 50% a circumferential osseoinduction occurred within 4 weeks and a nearly complete osseointegration was observed after 9 weeks. In all cases bone formation was exaggerated and filled the spongiosa with compact bone. Time matched TPS-controls and controls with calciumphosphate coating showed no notable formation of new bone. The results suggest that a single administration of soluble rhBMP-2 into a bone cavity can augment bone formation and also osseointegration of titanium implants. Further investigations based on these findings are necessary to develop long-term implants (e.g. joint replacements) with rhBMP-2-biocoating for humans. (orig.)

  6. Management of subtrochanteric femur fractures with internal fixation and recombinant human bone morphogenetic protein-7 in a patient with osteopetrosis: a case report

    Directory of Open Access Journals (Sweden)

    Golden Robert D

    2010-05-01

    Full Text Available Abstract Introduction Osteopetrosis is a group of conditions characterized by defects in the osteoclastic function of the bone resulting in defective bone resorption. Clinically, the condition is characterized by a dense, sclerotic, deformed bone which, despite an increased density observable by radiography, often results in an increased propensity to fracture and delayed union. Case Presentation We report the case of a 27-year-old Asian man presenting with bilateral subtrochanteric femur fractures. He had a displaced right subtrochanteric femur fracture after a low-energy fall, which was treated surgically. The second fracture that our patient endured was diagnosed as a stress fracture ten weeks later when he complained of pain in the contralateral left thigh. By that time, the right-sided fracture exhibited no radiographic evidence of healing, and when the left-sided stress fracture was being treated surgically, bone grafting with recombinant human bone morphogenetic protein-7 was also performed on the right side. Conclusion While there are no data supporting the use of bone morphogenic proteins in the management of delayed healing in patients with osteopetrosis, no other reliable osteoinductive grafting options are available to treat this condition. Both fractures in our patient healed, but based on the serial radiographic assessment it is uncertain to what degree the recombinant human bone morphogenetic protein-7 may have contributed to the successful outcome. It may have also contributed to the formation of heterotopic bone around the fracture site. Further investigation of the effectiveness and indications of bone morphogenic protein use for the management of delayed fracture healing in patients with osteopetrosis is warranted.

  7. Microspectroscopic evidence of cretaceous bone proteins.

    Directory of Open Access Journals (Sweden)

    Johan Lindgren

    Full Text Available Low concentrations of the structural protein collagen have recently been reported in dinosaur fossils based primarily on mass spectrometric analyses of whole bone extracts. However, direct spectroscopic characterization of isolated fibrous bone tissues, a crucial test of hypotheses of biomolecular preservation over deep time, has not been performed. Here, we demonstrate that endogenous proteinaceous molecules are retained in a humerus from a Late Cretaceous mosasaur (an extinct giant marine lizard. In situ immunofluorescence of demineralized bone extracts shows reactivity to antibodies raised against type I collagen, and amino acid analyses of soluble proteins extracted from the bone exhibit a composition indicative of structural proteins or their breakdown products. These data are corroborated by synchrotron radiation-based infrared microspectroscopic studies demonstrating that amino acid containing matter is located in bone matrix fibrils that express imprints of the characteristic 67 nm D-periodicity typical of collagen. Moreover, the fibrils differ significantly in spectral signature from those of potential modern bacterial contaminants, such as biofilms and collagen-like proteins. Thus, the preservation of primary soft tissues and biomolecules is not limited to large-sized bones buried in fluvial sandstone environments, but also occurs in relatively small-sized skeletal elements deposited in marine sediments.

  8. Role of Soy Protein on Bone Turnover

    Directory of Open Access Journals (Sweden)

    A Haghighian roudsari

    2004-03-01

    Full Text Available Bone mass loss is one of the commonest menopause symptoms, resulting from cessation of estrogen production. Compounds which have estrogen – like biological activity similar to “Isoflavones” present in plants especially soy, may reduce bone loss in postmenopausal women, because as they are similar in structure to estrogens. This study, therefore, was undertaken to assess the effect of soy protein on bone metabolism biomarkers in postmenopausal women with osteopenia. This “before and after” clinical trial was carried out, on 15 postmenopausal women with osteopenia, between 45 to 64 years of age. The subjects were asked to consume 35 gram/day of soy protein for 12 weeks. Blood and urine samples, were taken at 0, 6 and 12 weeks of the study. Anthropometric measurements and a 2-day dietary recall were done at the beginning of the study, and at the 6 and 12 weeks. The food consumption data were analyzed by “Food Proccessor” software. Repeated measurement analysis was utilized to determine the changes in biochemical indices, anthropometric and dietary data. P-values less than 0.05 were considered as significant. Comparison of weight, BMI, physical activity and dietary intake of subjects during the study did not show any significant differences. Soy protein consumption, showed significant reductions in deoxypyridinoline (biochemical marker of bone resorption and significant increase in total alkaline phosphatase ( biochemical marker of bone formation.There were no significant differences in serum osteocalcin, C- telopeptide, insulin- like growth factor binding protein 3 (IGFBP3, and type-I- collagen telopeptides. Considering the beneficial effects of soy protein consumption on bone metabolism biomarkers, inclusion of this inexpensive and available food item in postmenopausal women diet, may reduce bone loss and could be recommended for the prevention of osteoporosis.

  9. Role of Soy Protein on Bone Turnover

    Directory of Open Access Journals (Sweden)

    A Haghighian roudsari

    2004-11-01

    Full Text Available Bone mass loss is one of the commonest menopause symptoms, resulting from cessation of estrogen production. Compounds which have estrogen – like biological activity similar to “Isoflavones” present in plants especially soy, may reduce bone loss in postmenopausal women, because as they are similar in structure to estrogens. This study, therefore, was undertaken to assess the effect of soy protein on bone metabolism biomarkers in postmenopausal women with osteopenia. This “before and after” clinical trial was carried out, on 15 postmenopausal women with osteopenia, between 45 to 64 years of age. The subjects were asked to consume 35 gram/day of soy protein for 12 weeks. Blood and urine samples, were taken at 0, 6 and 12 weeks of the study. Anthropometric measurements and a 2-day dietary recall were done at the beginning of the study, and at the 6 and 12 weeks. The food consumption data were analyzed by “Food Proccessor” software. Repeated measurement analysis was utilized to determine the changes in biochemical indices, anthropometric and dietary data. P-values less than 0.05 were considered as significant. Comparison of weight, BMI, physical activity and dietary intake of subjects during the study did not show any significant differences. Soy protein consumption, showed significant reductions in deoxypyridinoline (biochemical marker of bone resorption and significant increase in total alkaline phosphatase ( biochemical marker of bone formation.There were no significant differences in serum osteocalcin, C- telopeptide, insulin- like growth factor binding protein 3 (IGFBP3, and type-I- collagen telopeptides. Considering the beneficial effects of soy protein consumption on bone metabolism biomarkers, inclusion of this inexpensive and available food item in postmenopausal women diet, may reduce bone loss and could be recommended for the prevention of osteoporosis.

  10. Turning Bone Morphogenetic Protein 2 (BMP2) on and off in Mesenchymal Cells.

    Science.gov (United States)

    Rogers, Melissa B; Shah, Tapan A; Shaikh, Nadia N

    2015-10-01

    The concentration, location, and timing of bone morphogenetic protein 2 (BMP2, HGNC:1069, GeneID: 650) gene expression must be precisely regulated. Abnormal BMP2 levels cause congenital anomalies and diseases involving the mesenchymal cells that differentiate into muscle, fat, cartilage, and bone. The molecules and conditions that influence BMP2 synthesis are diverse. Understandably, complex mechanisms control Bmp2 gene expression. This review includes a compilation of agents and conditions that can induce Bmp2. The currently known trans-regulatory factors and cis-regulatory elements that modulate Bmp2 expression are summarized and discussed. Bone morphogenetic protein 2 (BMP2, HGNC:1069, GeneID: 650) is a classical morphogen; a molecule that acts at a distance and whose concentration influences cell behavior. In mesenchymal cells, the concentration of BMP2 influences myogenesis, adipogenesis, chondrogenesis, and osteogenesis. Because the amount, timing, and location of BMP2 synthesis influence the allocation of cells to muscle, fat, cartilage, and bone, the mechanisms that regulate the Bmp2 gene are crucial. Key early mesodermal events that require precise Bmp2 regulation include heart specification and morphogenesis. Originally named for its osteoinductive properties, healing fractures requires BMP2. The human Bmp2 gene also has been linked to osteoporosis and osteoarthritis. In addition, all forms of pathological calcification in the vasculature and in cardiac valves involve the pro-osteogenic BMP2. The diverse tissues, mechanisms, and diseases influenced by BMP2 are too numerous to list here (see OMIM: 112261). However, in all BMP2-influenced pathologies, changes in the behavior and differentiation of pluripotent mesenchymal cells are a recurring theme. Consequently, much effort has been devoted to identifying the molecules and conditions that influence BMP2 synthesis and the complex mechanisms that control Bmp2 gene expression. This review begins with an

  11. Evaluation of heterotopic bone formation induced by squalane and bone morphogenetic protein composite.

    Science.gov (United States)

    Kawakami, T; Kawai, T; Takei, N; Kise, T; Eda, S; Urist, M R

    1997-04-01

    Bone morphogenetic protein is an important molecule whose bioactivity depends on the carrier. Squalane is used in the formulation of various kinds of cosmetics because it is easily emulsified and has the property of spreading well. Thus, squalane might be effective as a bone morphogenetic protein delivery system. As a test for this possibility, gelatin capsules containing squalane and bone morphogenetic protein (bovine derived partially purified) composite were implanted under the hind-quarter perimuscular membrane of ddY mice. Control capsules containing only bone morphogenetic protein were used for controls. The implants were radiographically and histologically examined at 1 to 4 weeks after the operation. According to the radiographic analysis, squalane and bone morphogenetic protein composite and bone morphogenetic protein only control specimens formed widespread heterotopic bone tissues. The amount of heterotopic bone formation in the composite experimental specimens was approximately 40% greater than that in the controls. Histologic examination of experimental and control specimens revealed varying amounts of perichondral ossification by 2 weeks. By 3 and 4 weeks, the bone deposits were colonized by hematopoietic bone marrow. Squalane was effective for the slow local release of bone morphogenetic protein. Furthermore, the squalane and bone morphogenetic protein composite was a reliable osteoinductive biomaterial.

  12. Hedgehog morphogen in cardiovascular disease

    NARCIS (Netherlands)

    Bijlsma, Maarten F.; Peppelenbosch, Maikel P.; Spek, C. Arnold

    2006-01-01

    In this review, we focus on the basic biology of the important developmental Hedgehog ( Hh) protein family, its general function in development, pathway mechanisms, and gene discovery and nomenclature. Hh function in cardiovascular development and recent findings concerning Hh signaling in ischemia

  13. Bone graft substitutes and bone morphogenetic proteins for osteoporotic fractures: What is the evidence?

    NARCIS (Netherlands)

    E.M.M. van Lieshout (Esther); V. Alt (Volker)

    2016-01-01

    textabstractDespite improvements in implants and surgical techniques, osteoporotic fractures remain challenging to treat. Among other major risk factors, decreased expression of morphogenetic proteins has been identified for impaired fracture healing in osteoporosis. Bone grafts or bone graft substi

  14. Erythropoietin Modulates the Structure of Bone Morphogenetic Protein 2–Engineered Cranial Bone

    OpenAIRE

    Sun, Hongli; Jung, Younghun; Shiozawa, Yusuke; Taichman, Russell S.; Krebsbach, Paul H.

    2012-01-01

    The ideally engineered bone should have similar structural and functional properties to the native tissue. Although structural integrity is critical for functional bone regeneration, we know less about modulating the structural properties of the engineered bone elicited by bone morphogenetic protein (BMP) than efficacy and safety. Erythropoietin (Epo), a primary erythropoietic hormone, has been used to augment blood transfusion in orthopedic surgery. However, the effects of Epo on bone regene...

  15. Cross-talk between bone morphogenetic proteins and inflammatory pathways.

    Science.gov (United States)

    van der Kraan, Peter M; Davidson, Esmeralda N Blaney

    2015-11-23

    Pro-inflammatory cytokines and bone morphogenetic proteins are generally studied separately and considered to be elements of different worlds, immunology and developmental biology. Varas and colleagues report that these factors show cross-talk in rheumatoid arthritis synoviocytes. They show that pro-inflammatory cytokines not only stimulate the production of bone morphogenetic proteins but that these endogenously produced bone morphogenetic proteins interfere with the effects of pro-inflammatory cytokines on synoviocytes.

  16. Nuclear variants of bone morphogenetic proteins

    Directory of Open Access Journals (Sweden)

    Meinhart Christopher A

    2010-03-01

    Full Text Available Abstract Background Bone morphogenetic proteins (BMPs contribute to many different aspects of development including mesoderm formation, heart development, neurogenesis, skeletal development, and axis formation. They have previously been recognized only as secreted growth factors, but the present study detected Bmp2, Bmp4, and Gdf5/CDMP1 in the nuclei of cultured cells using immunocytochemistry and immunoblotting of nuclear extracts. Results In all three proteins, a bipartite nuclear localization signal (NLS was found to overlap the site at which the proproteins are cleaved to release the mature growth factors from the propeptides. Mutational analyses indicated that the nuclear variants of these three proteins are produced by initiating translation from downstream alternative start codons. The resulting proteins lack N-terminal signal peptides and are therefore translated in the cytoplasm rather than the endoplasmic reticulum, thus avoiding proteolytic processing in the secretory pathway. Instead, the uncleaved proteins (designated nBmp2, nBmp4, and nGdf5 containing the intact NLSs are translocated to the nucleus. Immunostaining of endogenous nBmp2 in cultured cells demonstrated that the amount of nBmp2 as well as its nuclear/cytoplasmic distribution differs between cells that are in M-phase versus other phases of the cell cycle. Conclusions The observation that nBmp2 localization varies throughout the cell cycle, as well as the conservation of a nuclear localization mechanism among three different BMP family members, suggests that these novel nuclear variants of BMP family proteins play an important functional role in the cell.

  17. Multifunctional Bone Morphogenetic Protein System in Endocrinology

    Directory of Open Access Journals (Sweden)

    Otsuka,Fumio

    2013-04-01

    Full Text Available New biological activities of bone morphogenetic proteins (BMPs in the endocrine system have recently been revealed. The BMP system is composed of approximately 30 ligands and preferential combinations of type I and type II receptors. The BMP system not only induces bone formation but also plays unique tissue-specific roles in various organs. For instance, the ovarian BMP system is a physiological inhibitor of luteinization in growing ovarian follicles. In the ovary, the expression of oocyte-derived BMP-15 is critical for female reproduction. In the pituitary, BMP-4 is a key player for initial development of the anterior pituitary, while it is also functionally involved in some differentiated pituitary tumors, including prolactinoma and Cushingʼs disease. In the adrenal glands, BMP-6 and BMP-4 modulate aldosterone and catecholamine production, respectively, which contributes to a functional interaction between the cortex and medulla. In the present review, recent advances in BMP biology in the field of endocrinology are described and the possibility for clinical application of BMP activity is discussed.

  18. Bone morphogenetic protein-2 gene controls tooth root development in coordination with formation of the periodontium

    Institute of Scientific and Technical Information of China (English)

    Audrey Rakian; Wu-Chen Yang; Jelica Gluhak-Heinrich; Yong Cui; Marie A Harris; Demitri Villarreal; Jerry Q Feng; Mary MacDougall; Stephen E Harris

    2013-01-01

    Formation of the periodontium begins following onset of tooth-root formation in a coordinated manner after birth. Dental follicle progenitor cells are thought to form the cementum, alveolar bone and Sharpey’s fibers of the periodontal ligament (PDL). However, little is known about the regulatory morphogens that control differentiation and function of these progenitor cells, as well as the progenitor cells involved in crown and root formation. We investigated the role of bone morphogenetic protein-2 (Bmp2) in these processes by the conditional removal of the Bmp2 gene using the Sp7-Cre-EGFP mouse model. Sp7-Cre-EGFP first becomes active at E18 in the first molar, with robust Cre activity at postnatal day 0 (P0), followed by Cre activity in the second molar, which occurs after P0. There is robust Cre activity in the periodontium and third molars by 2 weeks of age. When the Bmp2 gene is removed from Sp71 (Osterix1) cells, major defects are noted in root, cellular cementum and periodontium formation. First, there are major cell autonomous defects in root-odontoblast terminal differentiation. Second, there are major alterations in formation of the PDLs and cellular cementum, correlated with decreased nuclear factor IC (Nfic), periostin and a-SMA1 cells. Third, there is a failure to produce vascular endothelial growth factor A (VEGF-A) in the periodontium and the pulp leading to decreased formation of the microvascular and associated candidate stem cells in the Bmp2-cKOSp7-Cre-EGFP. Fourth, ameloblast function and enamel formation are indirectly altered in the Bmp2-cKOSp7-Cre-EGFP. These data demonstrate that the Bmp2 gene has complex roles in postnatal tooth development and periodontium formation.

  19. Novel approaches to bone grafting: porosity, bone morphogenetic proteins, stem cells, and the periosteum.

    Science.gov (United States)

    Petrochenko, Peter; Narayan, Roger J

    2010-01-01

    The disadvantages involving the use of a patient's own bone as graft material have led surgeons to search for alternative materials. In this review, several characteristics of a successful bone graft material are discussed. In addition, novel synthetic materials and natural bone graft materials are being considered. Various factors can determine the success of a bone graft substitute. For example, design considerations such as porosity, pore shape, and interconnection play significant roles in determining graft performance. The effective delivery of bone morphogenetic proteins and the ability to restore vascularization also play significant roles in determining the success of a bone graft material. Among current approaches, shorter bone morphogenetic protein sequences, more efficient delivery methods, and periosteal graft supplements have shown significant promise for use in autograft substitutes or autograft extenders.

  20. A strategy to quantitate global phosphorylation of bone matrix proteins.

    Science.gov (United States)

    Sroga, Grażyna E; Vashishth, Deepak

    2016-04-15

    Current studies of protein phosphorylation focus primarily on the importance of specific phosphoproteins and their landscapes of phosphorylation in the regulation of different cellular functions. However, global changes in phosphorylation of extracellular matrix phosphoproteins measured "in bulk" are equally important. For example, correct global phosphorylation of different bone matrix proteins is critical to healthy tissue biomineralization. To study changes of bone matrix global phosphorylation, we developed a strategy that combines a procedure for in vitro phosphorylation/dephosphorylation of fully mineralized bone in addition to quantitation of the global phosphorylation levels of bone matrix proteins. For the first time, we show that it is possible to enzymatically phosphorylate/dephosphorylate fully mineralized bone originating from either cadaveric human donors or laboratory animals (mice). Using our strategy, we detected the difference in the global phosphorylation levels of matrix proteins isolated from wild-type and osteopontin knockout mice. We also observed that the global phosphorylation levels of matrix proteins isolated from human cortical bone were lower than those isolated from trabecular bone. The developed strategy has the potential to open new avenues for studies on the global phosphorylation of bone matrix proteins and their role in biomineralization as well for other tissues/cells and protein-based materials.

  1. Squalane as a possible carrier of bone morphogenetic protein.

    Science.gov (United States)

    Kawakami, T; Uji, H; Antoh, M; Hasegawa, H; Kise, T; Eda, S

    1993-07-01

    Gelatin capsules containing squalane partially purified bone morphogenetic protein (BMP) complex were placed on the perimuscular membrane of rats. Two kinds of control, gelatin capsules containing only BMP and those bearing squalane only, were used. The embedded areas were histopathologically examined at 3 and 6 wk after the operation. The observations revealed that the squalane/BMP complex elicited wide heterotopic bone formation with bone marrow tissue, suggesting that squalane is a possible carrier of BMP for clinical applications.

  2. Genetic Variants in the Bone Morphogenic Protein Gene Family Modify the Association between Residential Exposure to Traffic and Peripheral Arterial Disease

    Science.gov (United States)

    There is a growing literature indicating that genetic variants modify many of the associations between environmental exposures and clinical outcomes, potentially by increasing susceptibility to these exposures. However, genome-scale investigations of these interactions have been ...

  3. Bone Morphogenetic Protein-2 Nonviral Gene Therapy in a Goat Iliac Crest Model for Bone Formation

    NARCIS (Netherlands)

    Loozen, Loek D.; van der Helm, Yvonne J. M.; Oner, F. Cumhur; Dhert, W.J.A.; Kruyt, Moyo C.; Alblas, Jacqueline

    2015-01-01

    Treatment and reconstruction of large bone defects, delayed unions, and nonunions is challenging and has resulted in an ongoing search for novel tissue-engineered therapies. Bone morphogenetic protein-2 (BMP-2) gene therapy is a promising strategy to provide sustained production of BMP-2 locally. Al

  4. The Structure and Function of Non-Collagenous Bone Proteins

    Science.gov (United States)

    Hook, Magnus; McQuillan, David J.

    1997-01-01

    The research done under the cooperative research agreement for the project titled 'The structure and function of non-collagenous bone proteins' represented the first phase of an ongoing program to define the structural and functional relationships of the principal noncollagenous proteins in bone. An ultimate goal of this research is to enable design and execution of useful pharmacological compounds that will have a beneficial effect in treatment of osteoporosis, both land-based and induced by long-duration space travel. The goals of the now complete first phase were as follows: 1. Establish and/or develop powerful recombinant protein expression systems; 2. Develop and refine isolation and purification of recombinant proteins; 3. Express wild-type non-collagenous bone proteins; 4. Express site-specific mutant proteins and domains of wild-type proteins to enhance likelihood of crystal formation for subsequent solution of structure.

  5. Erythropoietin modulates the structure of bone morphogenetic protein 2-engineered cranial bone.

    Science.gov (United States)

    Sun, Hongli; Jung, Younghun; Shiozawa, Yusuke; Taichman, Russell S; Krebsbach, Paul H

    2012-10-01

    The ideally engineered bone should have similar structural and functional properties to the native tissue. Although structural integrity is critical for functional bone regeneration, we know less about modulating the structural properties of the engineered bone elicited by bone morphogenetic protein (BMP) than efficacy and safety. Erythropoietin (Epo), a primary erythropoietic hormone, has been used to augment blood transfusion in orthopedic surgery. However, the effects of Epo on bone regeneration are not well known. Here, we determined the role of Epo in BMP2-induced bone regeneration using a cranial defect model. Epo administration improved the quality of BMP2-induced bone and more closely resembled natural cranial bone with a higher bone volume (BV) fraction and lower marrow fraction when compared with BMP2 treatment alone. Epo increased red blood cells (RBCs) in peripheral blood and also increased hematopoietic and mesenchymal stem cell (MSC) populations in bone marrow. Consistent with our previous work, Epo increased osteoclastogenesis both in vitro and in vivo. Results from a metatarsal organ culture assay suggested that Epo-promoted osteoclastogenesis contributed to angiogenesis because angiogenesis was blunted when osteoclastogenesis was blocked by alendronate (ALN) or osteoprotegerin (OPG). Earlier calcification of BMP2-induced temporary chondroid tissue was observed in the Epo+BMP group compared to BMP2 alone. We conclude that Epo significantly enhanced the outcomes of BMP2-induced cranial bone regeneration in part through its actions on osteoclastogenesis and angiogenesis.

  6. Novel silk protein barrier membranes for guided bone regeneration.

    Science.gov (United States)

    Smeets, Ralf; Knabe, Christine; Kolk, Andreas; Rheinnecker, Michael; Gröbe, Alexander; Heiland, Max; Zehbe, Rolf; Sachse, Manuela; Große-Siestrup, Christian; Wöltje, Michael; Hanken, Henning

    2016-10-12

    This study assesses the biocompatibility of novel silk protein membranes with and without modification, and evaluates their effect on facilitating bone formation and defect repair in guided bone regeneration. Two calvarian bone defects 12 mm in diameter were created in each of a total of 38 rabbits. Four different types of membranes, (silk-, hydroxyapatite-modified silk-, β-TCP-modified silk- and commonly clinically used collagen-membranes) were implanted to cover one of the two defects in each animal. Histologic analysis did not show any adverse tissue reactions in any of the defect sites indicating good biocompatibility of all silk protein membranes. Histomorphometric and histologic evaluation revealed that collagen and β-TCP modified silk membranes supported bone formation (collagen: bone area fraction p = 0.025; significant; β-TCP modified silk membranes bone area fraction: p = 0.24, not significant), guided bone regeneration and defect bridging. The bone, which had formed in defects covered by β-TCP modified silk membranes, displayed a more advanced stage of bone tissue maturation with restoration of the original calvarial bone microarchitecture when compared to the bone which had formed in defects, for which any of the other test membranes were used. Micro-CT analysis did not reveal any differences in the amount of bone formation between defects with and without membranes. In contrast to the collagen membranes, β-TCP modified silk membranes were visible in all cases and may therefore be advantageous for further supporting bone formation beyond 10 weeks and preventing soft tissue ingrowth from the periphery. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2016.

  7. Dietary protein: an essential nutrient for bone health.

    Science.gov (United States)

    Bonjour, Jean-Philippe

    2005-12-01

    Nutrition plays a major role in the development and maintenance of bone structures resistant to usual mechanical loadings. In addition to calcium in the presence of an adequate vitamin D supply, proteins represent a key nutrient for bone health, and thereby in the prevention of osteoporosis. In sharp opposition to experimental and clinical evidence, it has been alleged that proteins, particularly those from animal sources, might be deleterious for bone health by inducing chronic metabolic acidosis which in turn would be responsible for increased calciuria and accelerated mineral dissolution. This claim is based on an hypothesis that artificially assembles various notions, including in vitro observations on the physical-chemical property of apatite crystal, short term human studies on the calciuric response to increased protein intakes, as well as retrospective inter-ethnic comparisons on the prevalence of hip fractures. The main purpose of this review is to analyze the evidence that refutes a relation of causality between the elements of this putative patho-physiological "cascade" that purports that animal proteins are causally associated with an increased incidence of osteoporotic fractures. In contrast, many experimental and clinical published data concur to indicate that low protein intake negatively affects bone health. Thus, selective deficiency in dietary proteins causes marked deterioration in bone mass, micro architecture and strength, the hallmark of osteoporosis. In the elderly, low protein intakes are often observed in patients with hip fracture. In these patients intervention study after orthopedic management demonstrates that protein supplementation as given in the form of casein, attenuates post-fracture bone loss, increases muscles strength, reduces medical complications and hospital stay. In agreement with both experimental and clinical intervention studies, large prospective epidemiologic observations indicate that relatively high protein intakes

  8. Cortactin mediated morphogenic cell movements during zebrafish (Danio rerio) gastrulation

    Institute of Scientific and Technical Information of China (English)

    YU Dan; ZHANG Peijun; ZHAN Xi

    2005-01-01

    Cell migration is essential to direct embryonic cells to specific sites at which their developmental fates are ultimately determined. However, the mechanism by which cell motility is regulated in embryonic development is largely unknown. Cortactin, a filamentous actin binding protein, is an activator of Arp2/3 complex in the nucleation of actin cytoskeleton at the cell leading edge and acts directly on the machinery of cell motility. To determine whether cortactin and Arp2/3 mediated actin assembly plays a role in the morphogenic cell movements during the early development of zebrafish, we initiated a study of cortactin expression in zebrafish embryos at gastrulating stages when massive cell migrations occur. Western blot analysis using a cortactin specific monoclonal antibody demonstrated that cortactin protein is abundantly present in embryos at the most early developmental stages. Immunostaining of whole-mounted embryo showed that cortactin immunoreactivity was associated with the embryonic shield, predominantly at the dorsal side of the embryos during gastrulation. In addition, cortactin was detected in the convergent cells of the epiblast and hypoblast, and later in the central nervous system. Immunofluorescent staining with cortactin and Arp3 antibodies also revealed that cortactin and Arp2/3 complex colocalized at the periphery and many patches associated with the cell-to-cell junction in motile embryonic cells. Therefore, our data suggest that cortactin and Arp2/3 mediated actin polymerization is implicated in the cell movement during gastrulation and perhaps the development of the central neural system as well.

  9. Bone morphogenetic protein-2-encapsulated grafted-poly-lactic acid-polycaprolactone nanoparticles promote bone repair.

    Science.gov (United States)

    Xu, Xiaojun; Yang, Jun; Ding, Lifeng; Li, Jianjun

    2015-01-01

    The aim of this study is to test the efficacy of a novel tissue-engineered bone in repairing bone defects, using poly-lactic-acid-polycaprolactone (PLA-PCL) scaffolding seeded with PEG-bone morphogenetic protein-2 (BMP-2)-transfected rBMSCs (rabbit bone marrow stromal cells). The rBMSCs were transfected with PEG/BMP-2 or liposome/BMP-2, and then implanted into a PLA-PCL tissue-engineered bone. The protein level of BMP-2 was assessed by Western blot analysis and immunohistochemistry. ELISA was used to measure the amount of BMP-2 secreted in the culture media. The mRNA level of BMP-2 and osteocalcin was assayed quantitatively by real-time PCR. The middle portion of the bilateral radius in New Zealand rabbits was excised and implanted with tissue-engineered bone, and the modified areas were monitored by X-ray, hematoxylin-eosin staining, and immunohistochemistry staining of BMP-2. PEG-BMP-2 nanoparticles (NPs) and BMP-2-loaded PEG-PLA-PCL tissue-engineered bones were successfully constructed. The novel PEG-PLA-PCL NPs/DNA complex was a superior option for transfecting BMP-2 in rBMSCs compared to normal liposomes Moreover, the mRNA level of osteocalcin and alkaline phosphatase activity was also elevated upon transfection of BMP-2-encapsulated NPs. In vivo implants with BMP-2-carried tissue-engineered bone exhibited dramatic augmentation of BMP-2 and effective bone formation in the rabbit ectopic model. The PEG-PLA-PCL NPs/BMP-2 complex had an advantageous effect on bone repair, which provided an important theoretic basis for potential clinical treatments.

  10. Oxidized alginate hydrogels for bone morphogenetic protein-2 delivery in long bone defects.

    Science.gov (United States)

    Priddy, Lauren B; Chaudhuri, Ovijit; Stevens, Hazel Y; Krishnan, Laxminarayanan; Uhrig, Brent A; Willett, Nick J; Guldberg, Robert E

    2014-10-01

    Autograft treatment of large bone defects and fracture non-unions is complicated by limited tissue availability and donor site morbidity. Polymeric biomaterials such as alginate hydrogels provide an attractive tissue engineering alternative due to their biocompatibility, injectability, and tunable degradation rates. Irradiated RGD-alginate hydrogels have been used to deliver proteins such as bone morphogenetic protein-2 (BMP-2), to promote bone regeneration and restoration of function in a critically sized rat femoral defect model. However, slow degradation of irradiated alginate hydrogels may impede integration and remodeling of the regenerated bone to its native architecture. Oxidation of alginate has been used to promote degradation of alginate matrices. The objective of this study was to evaluate the effects of alginate oxidation on BMP-2 release and bone regeneration. We hypothesized that oxidized-irradiated alginate hydrogels would elicit an accelerated release of BMP-2, but degrade faster in vivo, facilitating the formation of higher quality, more mature bone compared to irradiated alginate. Indeed, oxidation of irradiated alginate did accelerate in vitro BMP-2 release. Notably, the BMP-2 retained within both constructs was bioactive at 26days, as observed by induction of alkaline phosphatase activity and positive Alizarin Red S staining of MC3T3-E1 cells. From the in vivo study, robust bone regeneration was observed in both groups through 12weeks by radiography, micro-computed tomography analyses, and biomechanical testing. Bone mineral density was significantly greater for the oxidized-irradiated alginate group at 8weeks. Histological analyses of bone defects revealed enhanced degradation of oxidized-irradiated alginate and suggested the presence of more mature bone after 12weeks of healing.

  11. Altered bone morphogenetic protein signalling in the Helicobacter pylori-infected stomach

    NARCIS (Netherlands)

    Bleuming, S. A.; Kodach, L. L.; Leon, M. J. Garcia; Richel, D. J.; Peppelenbosch, M. P.; Reitsma, P. H.; Hardwick, J. C.; van den Brink, G. R.

    2006-01-01

    Morphogens regulate epithelial cell fate decisions in the adult gastrointestinal tract. The authors hypothesized that influx of inflammatory cells into the lamina propria may disturb the normal expression gradients of morphogens (morphogenetic landscape) in gastrointestinal epithelia. Changes in the

  12. ANA deficiency enhances bone morphogenetic protein-induced ectopic bone formation via transcriptional events.

    Science.gov (United States)

    Miyai, Kentaro; Yoneda, Mitsuhiro; Hasegawa, Urara; Toita, Sayaka; Izu, Yayoi; Hemmi, Hiroaki; Hayata, Tadayoshi; Ezura, Yoichi; Mizutani, Shuki; Miyazono, Kohei; Akiyoshi, Kazunari; Yamamoto, Tadashi; Noda, Masaki

    2009-04-17

    Ectopic bone formation after joint replacement or brain injury in humans is a serious complication that causes immobility of joints and severe pain. However, mechanisms underlying such ectopic bone formation are not fully understood. Bone morphogenetic protein (BMPs) are defined as inducers of ectopic bone formation, and they are regulated by several types of inhibitors. ANA is an antiproliferative molecule that belongs to Tob/BTG family, but its activity in bone metabolism has not been known. Here, we examined the role of ANA on ectopic bone formation activity of BMP. In ANA-deficient and wild-type mice, BMP2 was implanted to induce ectopic bone formation in muscle. ANA deficiency increased mass of newly formed bone in vivo compared with wild-type based on 3D-muCT analyses. ANA mRNA was expressed in bone in vivo as well as in osteoblastic cells in vitro. Such ANA mRNA levels were increased by BMP2 treatment in MC3T3-E1 osteoblastic cells. Overexpression of ANA suppressed BMP-induced expression of luciferase reporter gene linked to BMP response elements in these cells. Conversely, ANA mRNA knockdown by small interference RNA enhanced the BMP-dependent BMP response element reporter expression. It also enhanced BMP-induced osteoblastic differentiation in muscle-derived C2C12 cells. Immunoprecipitation assay indicated that ANA interacts with Smad8. Thus, ANA is a suppressor of ectopic bone formation induced by BMP, and this inhibitory ANA activity is a part of the negative feedback regulation of BMP function.

  13. Salicylic Acid-Based Polymers for Guided Bone Regeneration Using Bone Morphogenetic Protein-2.

    Science.gov (United States)

    Subramanian, Sangeeta; Mitchell, Ashley; Yu, Weiling; Snyder, Sabrina; Uhrich, Kathryn; O'Connor, J Patrick

    2015-07-01

    Bone morphogenetic protein-2 (BMP-2) is used clinically to promote spinal fusion, treat complex tibia fractures, and to promote bone formation in craniomaxillofacial surgery. Excessive bone formation at sites where BMP-2 has been applied is an established complication and one that could be corrected by guided tissue regeneration methods. In this study, anti-inflammatory polymers containing salicylic acid [salicylic acid-based poly(anhydride-ester), SAPAE] were electrospun with polycaprolactone (PCL) to create thin flexible matrices for use as guided bone regeneration membranes. SAPAE polymers hydrolyze to release salicylic acid, which is a nonsteroidal anti-inflammatory drug. PCL was used to enhance the mechanical integrity of the matrices. Two different SAPAE-containing membranes were produced and compared: fast-degrading (FD-SAPAE) and slow-degrading (SD-SAPAE) membranes that release salicylic acid at a faster and slower rate, respectively. Rat femur defects were treated with BMP-2 and wrapped with FD-SAPAE, SD-SAPAE, or PCL membrane or were left unwrapped. The effects of different membranes on bone formation within and outside of the femur defects were measured by histomorphometry and microcomputed tomography. Bone formation within the defect was not affected by membrane wrapping at BMP-2 doses of 12 μg or more. In contrast, the FD-SAPAE membrane significantly reduced bone formation outside the defect compared with all other treatments. The rapid release of salicylic acid from the FD-SAPAE membrane suggests that localized salicylic acid treatment during the first few days of BMP-2 treatment can limit ectopic bone formation. The data support development of SAPAE polymer membranes for guided bone regeneration applications as well as barriers to excessive bone formation.

  14. Stromal cell-derived factor-1 potentiates bone morphogenetic protein-2 induced bone formation.

    Science.gov (United States)

    Higashino, Kosaku; Viggeswarapu, Manjula; Bargouti, Maggie; Liu, Hui; Titus, Louisa; Boden, Scott D

    2011-02-01

    The mechanisms driving bone marrow stem cell mobilization are poorly understood. A recent murine study found that circulating bone marrow-derived osteoprogenitor cells (MOPCs) were recruited to the site of recombinant human bone morphogenetic protein-2 (BMP-2)-induced bone formation. Stromal cell-derived factor-1α (SDF-1α) and its cellular receptor CXCR4 have been shown to mediate the homing of stem cells to injured tissues. We hypothesized that chemokines, such as SDF-1, are also involved with mobilization of bone marrow cells. The CD45(-) fraction is a major source of MOPCs. In this report we determined that the addition of BMP-2 or SDF-1 to collagen implants increased the number of MOPCs in the peripheral blood. BMP-2-induced mobilization was blocked by CXCR4 antibody, confirming the role of SDF-1 in mobilization. We determined for the first time that addition of SDF-1 to implants containing BMP-2 enhances mobilization, homing of MOPCs to the implant, and ectopic bone formation induced by suboptimal BMP-2 doses. These results suggest that SDF-1 increases the number of osteoprogenitor cells that are mobilized from the bone marrow and then home to the implant. Thus, addition of SDF-1 to BMP-2 may improve the efficiency of BMPs in vivo, making their routine use for orthopaedic applications more affordable and available to more patients.

  15. Induction of Bone Matrix Protein Expression by Native Bone Matrix Proteins in C2C12 Culture

    Institute of Scientific and Technical Information of China (English)

    ZHEN-MING HU; SEAN A. F. PEEL; STEPHEN K. C. HO; GEORGE K. B. SANDOR; CAMERON M. L. CLOKIE

    2009-01-01

    Objective To study the expression of bone matrix protein (BMP) induced by bovine bone morphogenetic proteins (BMPs) in vitro. Methods Type I collagen, osteopontin (OPN), osteonectin (ON), osteocalcin (OC), and bone sialoprotein (BSP) were detected by immunohistochemistry in C2C12 cultured from day 1 to day 28. Results The signaling of bone matrix protein expression became weaker except for type I collagen, OC and BSP after 5 days. Fourteen days after culture, the positive signaling of type I collagen, OPN, ON, OC, and BSP was gradually declined, and could be detected significantly as compared with that of the negative control on day 28. BMP assay showed that the Ikaline phosphatase (ALP) activity was higher in C2C12 culture than in the control during the 14-day culture. Also, total protein and DNA significantly increased during the 14-day culture. High levels of ALP were seen in preosteoblasts and osteoblsts in vivo and in differentiating ostcoblasts in vitro. ALP was well recognized as a marker reflecting osteoblastic activity. Conclusion Native bovine BMP induces conversion of myoblasts into osteoblasts, produces type 1 collagen, and plays significantly role in osteoinduction and bone matrix mineralization of C2C12 in vitro.

  16. Physical distribution and characteristics of meat & bone meal protein

    Science.gov (United States)

    Meat & bone meal (MBM) is a high-protein commodity produced by the rendering of fat from unmarketable animal tissue. Concerns related to bovine spongiform encephalopathy have progressively restricted MBM’s conventional use as a feed ingredient. Consequently, significant attention has focused on th...

  17. Enhanced Bone Morphogenetic Protein-2-Induced Ectopic and Orthotopic Bone Formation by Intermittent Parathyroid Hormone (1-34) Administration

    NARCIS (Netherlands)

    Kempen, Diederik H. R.; Lu, Lichun; Hefferan, Theresa E.; Creemers, Laura B.; Heijink, Andras; Maran, Avudaiappan; Dhert, Wouter J. A.; Yaszemski, Michael J.

    2010-01-01

    Bone morphogenetic proteins (BMPs) play a central role in local bone regeneration strategies, whereas the anabolic features of parathyroid hormone (PTH) are particularly appealing for the systemic treatment of generalized bone loss. The aim of the current study was to investigate whether local BMP-2

  18. Effect of the "protein diet" and bone tissue

    Directory of Open Access Journals (Sweden)

    Zoraide Nascimento da Silva

    2014-01-01

    Full Text Available The aim of this study is to evaluate the effect of the hyperproteic diet consumption on bone tissue. Methods: The study was conducted during sixty days. Twenty eight Wistar albinus rats, adults, originated from Laboratory of Experimental Nutrition were divided in four groups: (n = 7; Control 1 (C1, Control 2 (C2, Hyperproteic 1 (HP1 e Hyperproteic 2 (HP2. The C2 and HP2 groups were submitted to 30% of food restriction. The hyperproteic diet was based on the Atkins diet and prepared to simulate the protein diet. At the end of the study the animals were anesthetized to performer bone densitometry analyses by DEXA and blood and tissue collection. Serum and bone minerals analyses were conducted by colorimetric methods in automated equipment. Results: The total bone mineral density (BMD of the pelvis and the spine of the food restriction groups (HP2 e C2 were lower (p < 0.05 than C1 e HP1 groups. While the femur BMD of the HP2 was lower (p < 0.05 related to others groups. It had been observed reduction (p < 0.05 in the medium point of the width of femur diaphysis and in bone calcium level in the hyperproteic groups (HP1 e HP2. It was observed similar effect on the osteocalcin level, that presented lower (p < 0.05 in the hyperproteic groups. The insulin level was lower only in HP2 and serum calcium of the HP1 and HP2 groups was lower than C1. Conclusion: The protein diet promotes significant bone change on femur and in the hormones levels related to bone synthesis and maintenance of this tissue.

  19. Comparative experiment of four different materials as carriers of Bone morphogenetic protein to repair long bone defect

    Institute of Scientific and Technical Information of China (English)

    WEI Kuan-hai; PEI Guo-xian; YANG Run-gong

    2001-01-01

    @@ OBJECTIVE To investigate the effects of four different materials as carriers of bone morphogenetic protein (BMP) to repair long bone defect. METHODS 12 mm radius bone defects were made. They were divided into 4 groups in random and repaired respectively with the vascular muscle flap combined with FS/BMP (group A), vascular muscle flap/BMP (group B), bloodless muscle flap/BMP (group C) and autolyzed antigen-extracted allogeneic bone (AAA)/BMP (group D).Their abilities of bone forming to repair bone defects were observed.

  20. Bone morphogenetic proteins: from structure to clinical use

    Directory of Open Access Journals (Sweden)

    Granjeiro J.M.

    2005-01-01

    Full Text Available Bone morphogenetic proteins (BMPs are multi-functional growth factors belonging to the transforming growth factor ß superfamily. Family members are expressed during limb development, endochondral ossification, early fracture, and cartilage repair. The activity of BMPs was first identified in the 1960s but the proteins responsible for bone induction were unknown until the purification and cloning of human BMPs in the 1980s. To date, about 15 BMP family members have been identified and characterized. The signal triggered by BMPs is transduced through serine/threonine kinase receptors, type I and II subtypes. Three type I receptors have been shown to bind BMP ligands, namely: type IA and IB BMP receptors and type IA activin receptors. BMPs seem to be involved in the regulation of cell proliferation, survival, differentiation and apoptosis, but their hallmark is their ability to induce bone, cartilage, ligament, and tendon formation at both heterotopic and orthotopic sites. This suggests that, in the future, they may play a major role in the treatment of bone diseases. Several animal studies have illustrated the potential of BMPs to enhance spinal fusion, repair critical-size defects, accelerate union, and heal articular cartilage lesions. Difficulties in producing and purifying BMPs from bone tissue have prompted the attempts made by several laboratories, including ours, to express these proteins in the recombinant form in heterologous systems. This review focuses on BMP structure, molecular mechanisms of action and significance and potential applications in medical, dental and veterinary practice for the treatment of cartilage and bone-related diseases.

  1. PROTEIN OF MEAT AND BONE MEAL FOR PIGS

    Directory of Open Access Journals (Sweden)

    Patieva S. V.

    2015-09-01

    Full Text Available The modern requirements of intergovernmental standards to the quality and safety of livestock produce provide for the use of highly productive animals capable under small expenses to produce more the high quality produce. In particular, at the formation of meat productivity at pigs the great significance has an achievement of optimal digestion and assimilability of consumed fodder means. In the connection, the study of digestion of meat and bone meal from slaughterhouse wastes of cattle (MCM and poultry (MCBM presents the scientific interest. In the fodder experience on the growing pigs with the fistula of iliac intestines there was investigated the digestion of two types of meat and bone meal from slaughterhouse wastes of cattle (MCM and poultry (MKBM. The iliac accessibility of amino acids of meat and bone meal found itself too low: 49,3 % - 69,3 %. The accessibility of general protein reliably did not differ from the average accessibility on main amino acids - 61,5 %. To count the real iliac accessibility of raw protein and amino acids of meat and bone meal there was determined an endogenous emission of these substances on the casein diet. The real iliac accessibility of protein and individual amino acids did not leave the limits in 73% on МCM and 69% - on МCBМ. The accessibility of lysine, leucine and isoleucine MCBM is reliably higher than the same in MCM (P

  2. Whey Protein Concentrate Hydrolysate Prevents Bone Loss in Ovariectomized Rats.

    Science.gov (United States)

    Kim, Jonggun; Kim, Hyung Kwan; Kim, Saehun; Imm, Ji-Young; Whang, Kwang-Youn

    2015-12-01

    Milk is known as a safe food and contains easily absorbable minerals and proteins, including whey protein, which has demonstrated antiosteoporotic effects on ovariectomized rats. This study evaluated the antiosteoporotic effect of whey protein concentrate hydrolysate (WPCH) digested with fungal protease and whey protein concentrate (WPC). Two experiments were conducted to determine (1) efficacy of WPCH and WPC and (2) dose-dependent impact of WPCH in ovariectomized rats (10 weeks old). In Experiment I, ovariectomized rats (n=45) were allotted into three dietary treatments of 10 g/kg diet of WPC, 10 g/kg diet of WPCH, and a control diet. In Experiment II, ovariectomized rats (n=60) were fed four different diets (0, 10, 20, and 40 g/kg of WPCH). In both experiments, sham-operated rats (n=15) were also fed a control diet containing the same amount of amino acids and minerals as dietary treatments. After 6 weeks, dietary WPCH prevented loss of bone, physical properties, mineral density, and mineral content, and improved breaking strength of femurs, with similar effect to WPC. The bone resorption enzyme activity (tartrate resistance acid phosphatase) in tibia epiphysis decreased in response to WPCH supplementation, while bone formation enzyme activity (alkaline phosphatase) was unaffected by ovariectomy and dietary treatment. Bone properties and strength increased as the dietary WPCH level increased (10 and 20 g/kg), but there was no difference between the 20 and 40 g/kg treatment. WPCH and WPC supplementation ameliorated bone loss induced by ovariectomy in rats.

  3. Multi-protein delivery by nanodiamonds promotes bone formation.

    Science.gov (United States)

    Moore, L; Gatica, M; Kim, H; Osawa, E; Ho, D

    2013-11-01

    Bone morphogenetic proteins (BMPs) are well-studied regulators of cartilage and bone development that have been Food and Drug Administration (FDA)-approved for the promotion of bone formation in certain procedures. BMPs are seeing more use in oral and maxillofacial surgeries because of recent FDA approval of InFUSE(®) for sinus augmentation and localized alveolar ridge augmentation. However, the utility of BMPs in medical and dental applications is limited by the delivery method. Currently, BMPs are delivered to the surgical site by the implantation of bulky collagen sponges. Here we evaluate the potential of detonation nanodiamonds (NDs) as a delivery vehicle for BMP-2 and basic fibroblast growth factor (bFGF). Nanodiamonds are biocompatible, 4- to 5-nm carbon nanoparticles that have previously been used to deliver a wide variety of molecules, including proteins and peptides. We find that both BMP-2 and bFGF are readily loaded onto NDs by physisorption, forming a stable colloidal solution, and are triggered to release in slightly acidic conditions. Simultaneous delivery of BMP-2 and bFGF by ND induces differentiation and proliferation in osteoblast progenitor cells. Overall, we find that NDs provide an effective injectable alternative for the delivery of BMP-2 and bFGF to promote bone formation.

  4. Mechanistic differences in the transcriptional interpretation of local and long-range Shh morphogen signaling.

    Science.gov (United States)

    Oosterveen, Tony; Kurdija, Sanja; Alekseenko, Zhanna; Uhde, Christopher W; Bergsland, Maria; Sandberg, Magnus; Andersson, Elisabet; Dias, José M; Muhr, Jonas; Ericson, Johan

    2012-11-13

    Morphogens orchestrate tissue patterning in a concentration-dependent fashion during vertebrate embryogenesis, yet little is known of how positional information provided by such signals is translated into discrete transcriptional outputs. Here we have identified and characterized cis-regulatory modules (CRMs) of genes operating downstream of graded Shh signaling and bifunctional Gli proteins in neural patterning. Unexpectedly, we find that Gli activators have a noninstructive role in long-range patterning and cooperate with SoxB1 proteins to facilitate a largely concentration-independent mode of gene activation. Instead, the opposing Gli-repressor gradient is interpreted at transcriptional levels, and, together with CRM-specific repressive input of homeodomain proteins, comprises a repressive network that translates graded Shh signaling into regional gene expression patterns. Moreover, local and long-range interpretation of Shh signaling differs with respect to CRM context sensitivity and Gli-activator dependence, and we propose that these differences provide insight into how morphogen function may have mechanistically evolved from an initially binary inductive event.

  5. Bone protein “extractomics”: comparing the efficiency of bone protein extractions of Gallus gallus in tandem mass spectrometry, with an eye towards paleoproteomics

    Directory of Open Access Journals (Sweden)

    Elena R. Schroeter

    2016-10-01

    Full Text Available Proteomic studies of bone require specialized extraction protocols to demineralize and solubilize proteins from within the bone matrix. Although various protocols exist for bone protein recovery, little is known about how discrete steps in each protocol affect the subset of the bone proteome recovered by mass spectrometry (MS analyses. Characterizing these different “extractomes” will provide critical data for development of novel and more efficient protein extraction methodologies for fossils. Here, we analyze 22 unique sub-extractions of chicken bone and directly compare individual extraction components for their total protein yield and diversity and coverage of bone proteins identified by MS. We extracted proteins using different combinations and ratios of demineralizing reagents, protein-solubilizing reagents, and post-extraction buffer removal methods, then evaluated tryptic digests from 20 µg aliquots of each fraction by tandem MS/MS on a 12T FT-ICR mass spectrometer. We compared total numbers of peptide spectral matches, peptides, and proteins identified from each fraction, the redundancy of protein identifications between discrete steps of extraction methods, and the sequence coverage obtained for select, abundant proteins. Although both alpha chains of collagen I (the most abundant protein in bone were found in all fractions, other collagenous and non-collagenous proteins (e.g., apolipoprotein, osteonectin, hemoglobin were differentially identified. We found that when a standardized amount of extracted proteins was analyzed, extraction steps that yielded the most protein (by weight from bone were often not the ones that produced the greatest diversity of bone proteins, or the highest degree of protein coverage. Generally, the highest degrees of diversity and coverage were obtained from demineralization fractions, and the proteins found in the subsequent solubilization fractions were highly redundant with those in the previous

  6. Harmine promotes osteoblast differentiation through bone morphogenetic protein signaling

    Energy Technology Data Exchange (ETDEWEB)

    Yonezawa, Takayuki [Department of Nutriproteomics, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Research Institute for Biological Functions, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501 (Japan); Lee, Ji-Won [Research Institute for Biological Functions, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501 (Japan); Hibino, Ayaka; Asai, Midori [Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501 (Japan); Hojo, Hironori [Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Cha, Byung-Yoon [Research Institute for Biological Functions, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501 (Japan); Teruya, Toshiaki [Research Institute for Biological Functions, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501 (Japan); Faculty of Education, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213 (Japan); Nagai, Kazuo [Research Institute for Biological Functions, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501 (Japan); Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501 (Japan); Chung, Ung-Il [Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Yagasaki, Kazumi [Department of Nutriproteomics, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Division of Applied Biological Chemistry, Institute of Agriculture, Tokyo Noko University, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509 (Japan); and others

    2011-06-03

    Highlights: {yields} Harmine promotes the activity and mRNA expression of ALP. {yields} Harmine enhances the expressions of osteocalcin mRNA and protein. {yields} Harmine induces osteoblastic mineralization. {yields} Harmine upregulates the mRNA expressions of BMPs, Runx2 and Osterix. {yields} BMP signaling pathways are involved in the actions of harmine. -- Abstract: Bone mass is regulated by osteoblast-mediated bone formation and osteoclast-mediated bone resorption. We previously reported that harmine, a {beta}-carboline alkaloid, inhibits osteoclast differentiation and bone resorption in vitro and in vivo. In this study, we investigated the effects of harmine on osteoblast proliferation, differentiation and mineralization. Harmine promoted alkaline phosphatase (ALP) activity in MC3T3-E1 cells without affecting their proliferation. Harmine also increased the mRNA expressions of the osteoblast marker genes ALP and Osteocalcin. Furthermore, the mineralization of MC3T3-E1 cells was enhanced by treatment with harmine. Harmine also induced osteoblast differentiation in primary calvarial osteoblasts and mesenchymal stem cell line C3H10T1/2 cells. Structure-activity relationship studies using harmine-related {beta}-carboline alkaloids revealed that the C3-C4 double bond and 7-hydroxy or 7-methoxy group of harmine were important for its osteogenic activity. The bone morphogenetic protein (BMP) antagonist noggin and its receptor kinase inhibitors dorsomorphin and LDN-193189 attenuated harmine-promoted ALP activity. In addition, harmine increased the mRNA expressions of Bmp-2, Bmp-4, Bmp-6, Bmp-7 and its target gene Id1. Harmine also enhanced the mRNA expressions of Runx2 and Osterix, which are key transcription factors in osteoblast differentiation. Furthermore, BMP-responsive and Runx2-responsive reporters were activated by harmine treatment. Taken together, these results indicate that harmine enhances osteoblast differentiation probably by inducing the expressions of

  7. Delivery Systems for Bone Morphogenetic Protein (BMP) for Repair of Battle Incurred Bone Injuries.

    Science.gov (United States)

    1987-11-01

    infections, congenital malformations that fail to heal are eligible for BMP treatment. I (my child/my ward) will be one of 50 patients to be treated with...Fusions in Dogs 6. Craniotomy Defects in Sheep t0 7. Craniotomy Defects in Monkeys 10 8. BMP Delivery System of Bone Matrix Non Collagenous 11 Proteins...effects. The most important and indispensptle substitutes for experiments in human beings are adult mongrel dogs, monkeys, and sheep . Experimental .S

  8. ROBUSTNESS OF MORPHOGEN GRADIENTS WITH "BUCKET BRIGADE" TRANSPORT THROUGH MEMBRANE-ASSOCIATED NON-RECEPTORS.

    Science.gov (United States)

    Lei, Jinzhi; Wang, Dongyong; Song, You; Nie, Qing; Wan, Frederic Y M

    2013-05-01

    Robust multiple-fate morphogen gradients are essential for embryo development. Here, we analyze mathematically a model of morphogen gradient (such as Dpp in Drosophila wing imaginal disc) formation in the presence of non-receptors with both diffusion of free morphogens and the movement of morphogens bound to non-receptors. Under the assumption of rapid degradation of unbound morphogen, we introduce a method of functional boundary value problem and prove the existence, uniqueness and linear stability of a biologically acceptable steady-state solution. Next, we investigate the robustness of this steady-state solution with respect to significant changes in the morphogen synthesis rate. We prove that the model is able to produce robust biological morphogen gradients when production and degradation rates of morphogens are large enough and non-receptors are abundant. Our results provide mathematical and biological insight to a mechanism of achieving stable robust long distance morphogen gradients. Key elements of this mechanism are rapid turnover of morphogen to non-receptors of neighoring cells resulting in significant degradation and transport of non-receptor-morphogen complexes, the latter moving downstream through a "bucket brigade" process.

  9. Intrinsic facilitation of adult peripheral nerve regeneration by the Sonic hedgehog morphogen.

    Science.gov (United States)

    Martinez, Jose A; Kobayashi, Masaki; Krishnan, Anand; Webber, Christine; Christie, Kimberly; Guo, GuiFang; Singh, Vandana; Zochodne, Douglas W

    2015-09-01

    Intrinsic molecular determinants of neurodevelopmental outcomes assume new, albeit related roles during adult neural regeneration. Here we studied and identified a facilitatory role for Sonic hedgehog protein (Shh), a morphogen that influences motor neuron floor plate architecture, during adult peripheral neuron regeneration. Shh and its receptors were expressed in adult dorsal root ganglia (DRG) neurons, axons and glia and trended toward higher levels following axotomy injury. Knockdown of Shh in adult sensory neurons resulted in decreased outgrowth and branching in vitro, identifying a role for Shh in facilitating outgrowth. The findings argued for an intrinsic action to support neuron regeneration. Support of advancement and turning however, were not identified in adult sensory neuron growth cones in response to local extrinsic gradients of Shh. That intrinsic Shh supported the regrowth of peripheral nerves after injury was confirmed by the analysis of axon regrowth from the proximal stumps of transected sciatic nerves. By exposing regenerating axons to local infusions of Shh siRNA in vivo within a conduit bridging the transected proximal and distal stumps, we achieved local knockdown of Shh. In response, there was attenuated axonal and Schwann cell outgrowth beyond the transection zone. Unlike its role during neurodevelopment, Shh facilitates but does not confer regenerative outgrowth properties to adult neurons alone. Exploring the differing properties of morphogens and related proteins in the adult nervous system identifies new and important roles for them.

  10. Antibodies to Staphylococcus aureus Bone Sialoprotein-Binding Protein Indicate Infectious Osteomyelitis▿

    OpenAIRE

    Persson, Lena; Johansson, Christian; Rydén, Cecilia

    2009-01-01

    Discrimination of soft tissue infection from osteomyelitis in diabetic foot infections is a common clinical problem. Staphylococcus aureus isolates from patients with osteomyelitis express bone sialoprotein-binding protein (Bbp) that binds the bone matrix protein bone sialoprotein. The serological assay with Bbp discriminated cases of osteomyelitis from soft tissue infections in patients with diabetic foot ulcers.

  11. Role of osteogenic protein-1/bone morphogenetic protein-7 in spinal fusion

    Directory of Open Access Journals (Sweden)

    Justin Munns

    2009-10-01

    Full Text Available Justin Munns, Daniel K Park, Kern SinghDepartment of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, USAAbstract: Osteogenic protein-1 (OP-1, also known as bone morphogenetic protein-7 (BMP-7, is a protein in the TGF-β family of cellular proteins that has shown potential for application in patients undergoing spinal fusion due to its proven osteoinductive effects, particularly in patients with spondylolisthesis. OP-1 initiates numerous processes at the cellular level, acting on mesenchymal stem cells (MSCs, osteoblasts, and osteoclasts to stimulate bone growth. Animal studies of OP-1 have provided strong evidence for the ability of OP-1 to initiate ossification in posterolateral arthrodesis. Promising findings in early clinical trials with OP-1 prompted FDA approval for use in long bone nonunions in 2001 and subsequently for revision posterolateral arthrodesis in 2004 under a conditional Humanitarian Device Exemption. Larger clinical trials have recently shown no notable safety concerns or increases in adverse events associated with OP-1. However, a recent clinical trial has not conclusively demonstrated the noninferiority of OP-1 compared to autograft in revision posterolateral arthrodesis. The future of OP-1 application in patients with spondylolisthesis thus remains uncertain with the recent rejection of Premarket Approval (PMA status by the FDA (April 2009. Further investigation of its treatment success and immunological consequences appears warranted to establish FDA approval for its use in its current form.Keywords: osteogenic protein-1, bone morphogenetic protein-7, spinal fusion

  12. Quantitative multivariate analysis of dynamic multicellular morphogenic trajectories.

    Science.gov (United States)

    White, Douglas E; Sylvester, Jonathan B; Levario, Thomas J; Lu, Hang; Streelman, J Todd; McDevitt, Todd C; Kemp, Melissa L

    2015-07-01

    Interrogating fundamental cell biology principles that govern tissue morphogenesis is critical to better understanding of developmental biology and engineering novel multicellular systems. Recently, functional micro-tissues derived from pluripotent embryonic stem cell (ESC) aggregates have provided novel platforms for experimental investigation; however elucidating the factors directing emergent spatial phenotypic patterns remains a significant challenge. Computational modelling techniques offer a unique complementary approach to probe mechanisms regulating morphogenic processes and provide a wealth of spatio-temporal data, but quantitative analysis of simulations and comparison to experimental data is extremely difficult. Quantitative descriptions of spatial phenomena across multiple systems and scales would enable unprecedented comparisons of computational simulations with experimental systems, thereby leveraging the inherent power of computational methods to interrogate the mechanisms governing emergent properties of multicellular biology. To address these challenges, we developed a portable pattern recognition pipeline consisting of: the conversion of cellular images into networks, extraction of novel features via network analysis, and generation of morphogenic trajectories. This novel methodology enabled the quantitative description of morphogenic pattern trajectories that could be compared across diverse systems: computational modelling of multicellular structures, differentiation of stem cell aggregates, and gastrulation of cichlid fish. Moreover, this method identified novel spatio-temporal features associated with different stages of embryo gastrulation, and elucidated a complex paracrine mechanism capable of explaining spatiotemporal pattern kinetic differences in ESC aggregates of different sizes.

  13. Protein and amino acid quality of meat and bone meal.

    Science.gov (United States)

    Parsons, C M; Castanon, F; Han, Y

    1997-02-01

    The in vivo protein quality of 14 meat and bone meals (MBM) was evaluated in three chick growth assays and a 48-h excreta collection assay using conventional and cecectomized roosters. In addition, in vitro evaluation of protein quality was assessed using pepsin N digestibility (0.2, 0.002, or 0.0002% pepsin), KOH protein solubility, and multi-enzyme pH change. Crude protein, lysine, and SAA in the MBM varied from 48 to 56, 2.32 to 3.01, and 1.0 to 2.13%, respectively. Protein efficiency ratio (weight gain:protein intake) estimated from feeding chicks diets containing 9% protein from a MBM ranged from 0.61 to 2.89 and averaged 1.78. Lysine bioavailability determined by slope-ratio chick assay ranged from 43 to 89%. True amino acid digestibility and TMEn values determined in cecectomized roosters were generally lower (P < 0.05) than those determined in conventional roosters. True digestibility of amino acids (percentage) also varied among MBM, with the mean (and range) for lysine, methionine, and cystine in cecectomized birds being 81 (73 to 88), 85 (77 to 91), and 58% (37 to 72%), respectively. Pepsin N digestibility values determined using 0.002 or 0.0002% pepsin were positively correlated (P < 0.05) with lysine digestibility. Pepsin N digestibility determined using 0.2% pepsin, KOH protein solubility, and multi-enzyme pH change were not significantly correlated with in vivo protein quality. Ash content was negatively correlated (-0.80, P < 0.05) with protein efficiency ratio. These results indicated that there is substantial variation in protein quality among commercial MBM and that pepsin N digestibility and ash content are correlated with some in vivo protein quality measurements.

  14. Calcium Phosphate Scaffolds Combined with Bone Morphogenetic Proteins or Mesenchymal Stem Cells in Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Han Sun

    2015-01-01

    Full Text Available Objective: The purpose of this study was to review the current status of calcium phosphate (CaP scaffolds combined with bone morphogenetic proteins (BMPs or mesenchymal stem cells (MSCs in the field of bone tissue engineering (BTE. Date Sources: Data cited in this review were obtained primarily from PubMed and Medline in publications from 1979 to 2014, with highly regarded older publications also included. The terms BTE, CaP, BMPs, and MSC were used for the literature search. Study Selection: Reviews focused on relevant aspects and original articles reporting in vitro and/or in vivo results concerning the efficiency of CaP/BMPs or CaP/MSCs composites were retrieved, reviewed, analyzed, and summarized. Results: An ideal BTE product contains three elements: Scaffold, growth factors, and stem cells. CaP-based scaffolds are popular because of their outstanding biocompatibility, bioactivity, and osteoconductivity. However, they lack stiffness and osteoinductivity. To solve this problem, composite scaffolds of CaP with BMPs have been developed. New bone formation by CaP/BMP composites can reach levels similar to those of autografts. CaP scaffolds are compatible with MSCs and CaP/MSC composites exhibit excellent osteogenesis and stiffness. In addition, a CaP/MSC/BMP scaffold can repair bone defects more effectively than an autograft. Conclusions: Novel BTE products possess remarkable osteoconduction and osteoinduction capacities, and exhibit balanced degradation with osteogenesis. Further work should yield safe, viable, and efficient materials for the repair of bone lesions.

  15. Calcium Phosphate Scaffolds Combined with Bone Morphogenetic Proteins or Mesenchymal Stem Cells in Bone Tissue Engineering

    Institute of Scientific and Technical Information of China (English)

    Han Sun; Hui-Lin Yang

    2015-01-01

    Objective:The purpose of this study was to review the current status of calcium phosphate (CaP) scaffolds combined with bone morphogenetic proteins (BMPs) or mesenchymal stem cells (MSCs) in the field of bone tissue engineering (BTE).Date Sources:Data cited in this review were obtained primarily from PubMed and Medline in publications from 1979 to 2014,with highly regarded older publications also included.The terms BTE,CaP,BMPs,and MSC were used for the literature search.Study Selection:Reviews focused on relevant aspects and original articles reporting in vitro and/or in vivo results concerning the efficiency of CaP/BMPs or CaP/MSCs composites were retrieved,reviewed,analyzed,and summarized.Results:An ideal BTE product contains three elements:Scaffold,growth factors,and stem cells.CaP-based scaffolds are popular because of their outstanding biocompatibility,bioactivity,and osteoconductivity.However,they lack stiffness and osteoinductivity.To solve this problem,composite scaffolds of CaP with BMPs have been developed.New bone formation by CaP/BMP composites can reach levels similar to those of autografts.CaP scaffolds are compatible with MSCs and CaP/MSC composites exhibit excellent osteogenesis and stiffness.In addition,a CaP/MSC/BMP scaffold can repair bone defects more effectively than an autograft.Conclusions:Novel BTE products possess remarkable osteoconduction and osteoinduction capacities,and exhibit balanced degradation with osteogenesis.Further work should yield safe,viable,and efficient materials for the repair of bone lesions.

  16. Protein and mineral characterisation of rendered meat and bone meal.

    Science.gov (United States)

    Buckley, M; Penkman, K E H; Wess, T J; Reaney, S; Collins, M J

    2012-10-01

    We report the characterisation of meat and bone meal (MBM) standards (Set B-EFPRA) derived from cattle, sheep, pig and chicken, each rendered at four different temperatures (133, 137, 141 and 145 °C). The standards, prepared for an EU programme STRATFEED (to develop new methodologies for the detection and quantification of illegal addition of mammalian tissues in feeding stuffs), have been widely circulated and used to assess a range of methods for identification of the species composition of MBM. The overall state of mineral alteration and protein preservation as a function of temperature was monitored using small angle X-ray diffraction (SAXS), amino acid composition and racemization analyses. Progressive increases in protein damage and mineral alteration in chicken and cattle standards was observed. In the case of sheep and pig, there was greater damage to the proteins and alteration of the minerals at the lowest treatment temperature (133 °C), suggesting that the thermal treatments must have been compromised in some way. This problem has probably impacted upon the numerous studies which tested methods against these heat treatments. We use protein mass spectrometric methods to explore if thermostable proteins could be used to identify rendered MBM. In more thermally altered samples, so-called 'thermostable' proteins such as osteocalcin which has been proposed as a ideal target to speciate MBM were no longer detectable, but the structural protein type I collagen could be used to differentiate all four species, even in the most thermally altered samples.

  17. Comparison between heparin-conjugated fibrin and collagen sponge as bone morphogenetic protein-2 carriers for bone regeneration

    OpenAIRE

    Yang, Hee Seok; La, Wan-Geun; Cho, Yong-Min; Shin, Wangsoo; Yeo, Guw-Dong; Kim, Byung-Soo

    2012-01-01

    Bone morphogenetic protein-2 (BMP-2) is used to promote bone regeneration. However, the bone regeneration ability of BMP-2 relies heavily on the delivery vehicle. Previously, we have developed heparin-conjugated fibrin (HCF), a vehicle for long-term delivery of BMP-2 and demonstrated that long-term delivery of BMP-2 enhanced its osteogenic efficacy as compared to short-term delivery at an equivalent dose. The aim of this study was to compare the bone-forming ability of the BMP-2 delivered by ...

  18. Use of bone morphogenetic proteins in mesenchymal stemcell stimulation of cartilage and bone repair

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    The extracellular matrix-associated bone morphogeneticproteins (BMPs) govern a plethora of biological processes.The BMPs are members of the transforming growthfactor-β protein superfamily, and they actively participateto kidney development, digit and limb formation,angiogenesis, tissue fibrosis and tumor development.Since their discovery, they have attracted attentionfor their fascinating perspectives in the regenerativemedicine and tissue engineering fields. BMPs havebeen employed in many preclinical and clinical studiesexploring their chondrogenic or osteoinductive potentialin several animal model defects and in human diseases.During years of research in particular two BMPs, BMP2and BMP7 have gained the podium for their use inthe treatment of various cartilage and bone defects.In particular they have been recently approved foremployment in non-union fractures as adjunct therapies.On the other hand, thanks to their potentialities inbiomedical applications, there is a growing interest instudying the biology of mesenchymal stem cell (MSC),the rules underneath their differentiation abilities, andto test their true abilities in tissue engineering. In fact,the specific differentiation of MSCs into targeted celltypelineages for transplantation is a primary goal of theregenerative medicine. This review provides an overviewon the current knowledge of BMP roles and signaling inMSC biology and differentiation capacities. In particularthe article focuses on the potential clinical use of BMPsand MSCs concomitantly, in cartilage and bone tissuerepair.

  19. The Role of Source Delocalization in the Development of Morphogen Gradients

    CERN Document Server

    Teimouri, Hamid

    2014-01-01

    Successful biological development via spatial regulation of cell differentiation relies on action of multiple signaling molecules that are known as morphogens. It is now well established that signaling molecules create non-uniform concentration profiles, morphogen gradients, that activate different genes, leading to patterning in the developing embryos. The current view of the formation of morphogen gradients is that it is a result of complex reaction-diffusion processes that include the strongly localized production, diffusion and uniform degradation of signaling molecules. However, multiple experimental studies also suggest that the production of morphogen in many cases is delocalized. We develop a theoretical method that allows us to investigate the role of the delocalization in the formation of morphogen gradients. The approach is based on discrete-state stochastic models that can be solved exactly for arbitrary production lengths and production rates of morphogen molecules. Our analysis shows that the de...

  20. Bone marrow combined with dental bud cells promotes tooth regeneration in miniature pig model.

    Science.gov (United States)

    Kuo, Tzong-Fu; Lin, Hsin-Chi; Yang, Kai-Chiang; Lin, Feng-Huei; Chen, Min-Huey; Wu, Chang-Chin; Chang, Hao-Hueng

    2011-02-01

    Growth factors and morphogens secreted by bone marrow mesenchymal stem cells (BMSCs) of bone marrow fluid may promote tooth regeneration. Accordingly, a tissue engineering approach was utilized to develop an economical strategy for obtaining the growth factors and morphogens from BMSCs. Unerupted second molar tooth buds harvested from miniature pigs were cultured in vitro to obtain dental bud cells (DBCs). Bone marrow fluid, which contains BMSCs, was collected from the porcine mandible before operation. DBCs suspended in bone marrow fluid were seeded into a gelatin/chondoitin-6-sulfate/hyaluronan tri-copolymer scaffold (GCHT scaffold). The DBCs/bone marrow fluid/GCHT scaffold was autografted into the original alveolar sockets of the pigs. Radiographic and histological examinations were applied to identify the structure of regenerated tooth at 40 weeks postimplantation. The present results showed that one pig developed a complete tooth with crown, root, pulp, enamel, dentin, odontoblast, cementum, blood vessel, and periodontal ligament in indiscriminate shape. Three animals had an unerupted tooth that expressed dentin matrix protein-1, vascular endothelial growth factor, and osteopontin; and two other pigs also had dental-like structure with dentin tubules. This study reveals that DBCs adding bone marrow fluid and a suitable scaffold can promote the tooth regeneration in autogenic cell transplantation.

  1. Effects of casein, whey and soy proteins on volumetric bone density and bone strength in immunocompromised piglets

    DEFF Research Database (Denmark)

    Budek, Alicja Zofia; Bjørnvad, Charlotte; Mølgaard, Christian

    2007-01-01

    Summary:Background and aims: Bone-promoting effect of different proteins in early life, under immunocompromised conditions, is unknown. We investigated effects of milk- and plantderived proteins on bone development in immunocompromised piglets. Methods: Newborn, colostrum-deprived piglets were...... assigned to a formula based on either casein (n=11), whey (n=11) or soy (n=10) as the protein source (each 55 g/L), and equal amounts of fat, carbohydrates, calcium and phosphorus. Results & Conclusion: Despite efforts to sustain immuno-protection (sow serum and antibiotic injections), some piglets became...... sick and were early euthanised. After 6 days, bone density (peripheral quantitative computed tomography), bone mechanical strength (three-point bending test) and serum insulin-like growth factor-I (sIGF-I) (immunoassay) were measured in the surviving piglets (casein n=5, whey n=9, soy n=5)....

  2. Relative and combined effects of ethanol and protein deficiency on bone manganese and copper.

    Science.gov (United States)

    González-Pérez, José M; González-Reimers, Emilio; DeLaVega-Prieto, María José; Durán-Castellón, María del Carmen; Viña-Rodríguez, José; Galindo-Martín, Luis; Alvisa-Negrín, Julio; Santolaria-Fernández, Francisco

    2012-06-01

    Both manganese and copper may affect bone synthesis. Bone content of both metals can be altered in alcoholics, although controversy exists regarding this matter. To analyse the relative and combined effects of ethanol and a low protein diet on bone copper and manganese, and their relationships with bone structure and metabolism, including trabecular bone mass (TBM), osteoid area (OA), osteocalcin (OCN), insulin-like growth factor-1 (IGF-1), parathyroid hormone (PTH), urinary hydroxyproline (uHP) and vitamin D. Adult male Sprague-Dawley rats were divided into four groups. The control rats received a 18% protein-containing diet; a second group, an isocaloric, 2% protein-containing diet; a third one, an isocaloric, 36% ethanol-containing diet and a fourth, an isocaloric diet containing 2% protein and 36% ethanol. After sacrifice, TBM and OA were histomorphometrically assessed; bone and serum manganese and copper were determined by atomic absorption spectrophotometry, and serum OCN, IGF-1, PTH, uHP and vitamin D by radioimmunoassay. Ethanol-fed rats showed decreased TBM and bone manganese. Significant relationships existed between bone manganese and TBM, serum IGF-1 and OCN. Ethanol leads to a decrease in bone manganese, related to decreased bone mass and bone synthesis. No alterations were found in bone copper.

  3. Evaluation of cell binding peptide (p15) with silk fibre enhanced hydroxyappatite bone substitute for posterolateral spinal fusion in sheep

    DEFF Research Database (Denmark)

    Axelsen, M.; Jespersen, Stig; Overgaard, Søren;

    2015-01-01

    were assessed with 2D sections and 3D reconstruction images and fusion was defined as intertransverse bridging. Results: Spinal fusion was found in 72 % of levels receiving silk fibre enhanced ABM/P15 graft material. In levels with silk fibre enhanced AMB fusion rate was 41 %. These findings...... on the surface of bone forming cells. The binding initiates natural intra- and extracellular signalling pathways, inducing production of growth factors, bone morphogenic proteins and cytokines. P15 peptide has previously shown to improve osteoinductive properties when coated on graft materials. Purpose...

  4. morphogen: Translation into Morphologically Rich Languages with Synthetic Phrases

    Science.gov (United States)

    2013-10-01

    challenging, due to lex - ical sparsity on account of grammatical features being expressed with morphology. In this paper, we present an open-source Python tool...a stem σ is represented as a tuple of a lemma and its inflectional class. 52 E. Schlinger, V . Chahuneau, C. Dyer morphogen (51–62) она пыталась...sional morphology feature vector function, W is an m× n parameter matrix, and V is an n× n parameter matrix. In our implementation,φ andψ return

  5. Combined intervention of dietary soybean proteins and swim training: effects on bone metabolism in ovariectomized rats.

    Science.gov (United States)

    Figard, Hélène; Mougin, Fabienne; Gaume, Vincent; Berthelot, Alain

    2006-01-01

    Soybean proteins, a rich source of isoflavones, taken immediately after an ovariectomy prevent bone loss in rats. Exercise-induced stimuli are essential for bone growth. Few studies exist about the combined effects of swim training and soybean protein supplementation on bone metabolism. So, the purpose of this study was to investigate, in 48 female Sprague-Dawley rats (12 weeks old) the effects of an 8-week swim-training regimen (1 h/day, 5 days/week) and dietary soybean proteins (200 g/kg diet) on bone metabolism. Rats were randomly assigned to four groups: (1) ovariectomized fed with a semisynthetic control diet; (2) ovariectomized fed with a soybean protein-enriched semisynthetic diet; (3) ovariectomized trained to exercise and fed with control diet; (4) ovariectomized trained to exercise and fed with a soybean protein diet. Following the treatment period, body weight gain was identical in the four groups. Soybean protein supplementation increased bone calcium content, and reduced plasma osteocalcin values, without significant modification of calcium balance and net calcium absorption. Swim training enhanced plasma and bone calcium content and calcium balance and net calcium absorption. It did not modify either plasma osteocalcin values or urinary deoxypyridinoline excretion. Both exercise and soybean protein intake increased plasma on bone calcium without modifying net calcium absorption or bone markers. In conclusion, we demonstrated, in ovariectomized rats, that swimming exercise and dietary supplementation with soy proteins do not have synergistic effects on calcium metabolism and bone markers.

  6. No effect of bone morphogenetic protein-7 (OP-1) on the incorporation of impacted bone grafts in a realistic acetabular model.

    NARCIS (Netherlands)

    Buma, P.; Arts, J.J.C.; Gardeniers, J.W.M.; Verdonschot, N.J.J.; Schreurs, B.W.

    2008-01-01

    Bone morphogenetic proteins (BMPs) accelerate bone repair in experimental and clinical conditions. Impacted Morsellized Cancellous Bone grafts (MCB) are successfully used to reconstruct bone defects after failed hip implants. The main question in this study was if BMP-7 (OP-1) mixed with MCB could a

  7. The effect of enamel matrix proteins and deproteinized bovine bone mineral on heterotopic bone formation.

    Science.gov (United States)

    Donos, Nikolaos; Kostopoulos, Lambros; Tonetti, Maurizio; Karring, Thorkild; Lang, Niklaus P

    2006-08-01

    To evaluate the osteoinductive potential of deproteinized bovine bone mineral (DBBM) and an enamel matrix derivative (EMD) in the muscle of rats. Sixteen rats were used in this study. The animals were divided in three groups. Group A: a pouch was created in one of the pectoralis profundis muscles of the thorax of the rats and DBBM particles (Bio-Oss) were placed into the pouch. Healing: 60 days. Group B: a small pouch was created on both pectoralis profundis muscles at each side of the thorax midline. In one side, a mixture of EMD (Emdogain) mixed with DBBM was placed into one of the pouches, whereas in the contralateral side of the thorax the pouch was implanted with DBBM mixed with the propylene glycol alginate (PGA--carrier for enamel matrix proteins of EMD). Healing: 60 days. Group C: the same procedure as group B, but with a healing period of 120 days. Qualitative histological analysis of the results was performed. At 60 days, the histological appearance of the DBBM particles implanted alone was similar to that of the particles implanted together with EMD or PGA at both 60 and 120 days. The DBBM particles were encapsulated into a connective tissue stroma and an inflammatory infiltrate. At 120 days, the DBBM particles implanted together with EMD or PGA exhibited the presence of resorption lacunae in some cases. Intramuscular bone formation was not encountered in any group. The implantation of DBBM particles alone, combined with EMD or its carrier (PGA) failed to exhibit extraskeletal, bone-inductive properties.

  8. Theoretical analysis of degradation mechanisms in the formation of morphogen gradients

    CERN Document Server

    Bozorgui, Behnaz; Kolomeisky, Anatoly B

    2015-01-01

    The fundamental biological processes of development of tissues and organs in multicellular organisms is governed by various signaling molecules, which are called morphogens. It is known that spatial and temporal variations in concentration profiles of signaling molecules, which are frequently referred as morphogen gradients, lead to cell differentiation via activating specific genes in a concentration-dependent manner. It is widely accepted that the establishment of the morphogen gradients involves multiple biochemical reactions and diffusion processes. One of the critical elements in the formation of morphogen gradients is a degradation of signaling molecules. We develop a new theoretical approach that provides a comprehensive description of the degradation mechanisms. It is based on the idea that the degradation works as an effective potential that drives the signaling molecules away from the source region. Utilizing the method of first-passage processes, the dynamics of the formation of morphogen gradients...

  9. Interpretation of the FGF8 morphogen gradient is regulated by endocytic trafficking.

    Science.gov (United States)

    Nowak, Matthias; Machate, Anja; Yu, Shuizi Rachel; Gupta, Mansi; Brand, Michael

    2011-02-01

    Forty years ago, it was proposed that during embryonic development and organogenesis, morphogen gradients provide positional information to the individual cells within a tissue leading to specific fate decisions. Recently, much insight has been gained into how such morphogen gradients are formed and maintained; however, which cellular mechanisms govern their interpretation within target tissues remains debated. Here we used in vivo fluorescence correlation spectroscopy and automated image analysis to assess the role of endocytic sorting dynamics on fibroblast growth factor 8 (Fgf8) morphogen gradient interpretation. By interfering with the function of the ubiquitin ligase Cbl, we found an expanded range of Fgf target gene expression and a delay of Fgf8 lysosomal transport. However, the extracellular Fgf8 morphogen gradient remained unchanged, indicating that the observed signalling changes are due to altered gradient interpretation. We propose that regulation of morphogen signalling activity through endocytic sorting allows fast feedback-induced changes in gradient interpretation during the establishment of complex patterns.

  10. Stimulation of bone formation and fracture healing with pulsed electromagnetic fields: biologic responses and clinical implications.

    Science.gov (United States)

    Chalidis, B; Sachinis, N; Assiotis, A; Maccauro, G

    2011-01-01

    Pulsed electromagnetic fields (PEMF) have been used for several years to supplement bone healing. However, the mode of action of this non-invasive method is still debated and quantification of its effect on fracture healing is widely varied. At cellular and molecular level, PEMF has been advocated to promote the synthesis of extracellular matrix proteins and exert a direct effect on the production of proteins that regulate gene transcription. Electromagnetic fields may also affect several membrane receptors and stimulate osteoblasts to secrete several growth factors such as bone morphogenic proteins 2 and 4 and TGF-beta. They could also accelerate intramedullary angiogenesis and improve the load to failure and stiffness of the bone. Although healing rates have been reported in up to 87 % of delayed unions and non-unions, the efficacy of the method is significantly varied while patient or fracture related variables could not be clearly associated with a successful outcome.

  11. Novel Approaches to Bone Grafting: Porosity, Bone Morphogenetic Proteins, Stem Cells, and the Periosteum

    OpenAIRE

    Petrochenko, Peter; Narayan, Roger J.

    2010-01-01

    The disadvantages involving the use of a patient’s own bone as graft material have led surgeons to search for alternative materials. In this review, several characteristics of a successful bone graft material are discussed. In addition, novel synthetic materials and natural bone graft materials are being considered. Various factors can determine the success of a bone graft substitute. For example, design considerations such as porosity, pore shape, and interconnection play significant roles i...

  12. In vitro morphogenic response of leaf sheath of Phyllostachys bambusoides

    Institute of Scientific and Technical Information of China (English)

    Yurika H. Komatsu; Katherine Derlene Batagin-Piotto; Gilvano Ebling Brondani; Ant(o)nio Natal Goncalves; Marcilio de Almeida

    2011-01-01

    Nodal segments from secondary branches of saplings of Phyllostachys bambusoides were inoculated in MS medium to assess the in vitro morphogenic response of leaf sheath through the induction to callogenesis by Picloram (4-amino-3,5,6-trichloropicolinic acid) at different concentrations of carbohydrate under the same conditions with presence or absence of luminosity. In our experiment, secondary explants were kept in MS medium containing 8.0 mg·L-1 of Picloram for the callus formation. Calluses were transferred in MS medium supplemented with sucrose, fructose and glucose (control, 2%, 4% and 6%). Results show that Picloram induced the callogenesis in leaf sheath. The secondary embryogenesis was formed in yellow-globular callus. The sucrose as carbohydrate source in the absence of light was more efficient to induce rhizogenesis. Glucose was more efficiency in the presence of light. Callogenic induction and further embryogenesis evidenced the competence and determination of leaf sheath cells.

  13. Successful treatment of a humeral capitulum osteonecrosis with bone morphogenetic protein-7 combined with autologous bone grafting.

    Science.gov (United States)

    Marsell, Richard; Hailer, Nils P

    2014-08-01

    We present the case of a 27-year-old female with subcortical osteonecrosis of the humeral capitulum. Percutaneous retrograde drilling of the lesion and application of recombinant human bone morphogenetic protein (BMP)-7 were combined with autologous bone grafting. At follow-up the patient was almost pain-free, had normalized her range of motion, and radiography showed consolidation of the lesion without any heterotopic bone formation. By timing surgery prior to subchondral collapse, biomechanical stability of the subchondral bone was maintained. To our knowledge, this is the first report on the treatment of an osteonecrosis in this location with a BMP, and this strategy could potentially be applied in other locations with juxta-articular osteonecrosis.

  14. The effect of bone morphogenetic protein-2 on osteosarcoma metastasis

    Science.gov (United States)

    Gill, Jonathan; Connolly, Patrick; Roth, Michael; Chung, So Hak; Zhang, Wendong; Piperdi, Sajida; Hoang, Bang; Yang, Rui; Guzik, Hillary; Gorlick, Richard; Geller, David S.

    2017-01-01

    Purpose Bone Morphogenetic Protein-2 (BMP-2) may offer the potential to enhance allograft-host osseous union in limb-salvage surgery following osteosarcoma resection. However, there is concern regarding the effect of locally applied BMP-2 on tumor recurrence and metastasis. The purpose of this project was to evaluate the effect of exogenous BMP-2 on osteosarcoma migration and invasion across a panel of tumor cell lines in vitro and to characterize the effect of BMP-2 on pulmonary osteosarcoma metastasis within a xenograft model. Experimental design The effect of BMP-2 on in vitro tumor growth and development was assessed across multiple standard and patient-derived xenograft osteosarcoma cell lines. Tumor migration capacity, invasion, and cell proliferation were characterized. In addition, the effect on metastasis was measured using a xenograft model following tail-vein injection. The effect of exogenous BMP-2 on the development of metastases was measured following both single and multiple BMP-2 administrations. Results There was no significant difference in migration capacity, invasion, or cell proliferation between the BMP-2 treated and the untreated osteosarcoma cell lines. There was no significant difference in pulmonary metastases between either the single-dose or multi-dose BMP-2 treated animals and the untreated control animals. Conclusions In the model systems tested, the addition of BMP-2 does not increase osteosarcoma proliferation, migration, invasion, or metastasis to the lungs. PMID:28264040

  15. Bone morphogenetic proteins in multiple sclerosis: Role in neuroinflammation.

    Science.gov (United States)

    Eixarch, Herena; Calvo-Barreiro, Laura; Montalban, Xavier; Espejo, Carmen

    2017-02-27

    Bone morphogenetic proteins (BMPs) are growth factors that represent the largest subgroup of signalling ligands of the transforming growth factor beta (TGF-β) superfamily. Their participation in the proliferation, survival and cell fate of several cell types and their involvement in many pathological conditions are now well known. BMP expression is altered in multiple sclerosis (MS) patients, suggesting that BMPs have a role in the pathogenesis of this disease. MS is a demyelinating and neurodegenerative autoimmune disorder of the central nervous system (CNS). MS is a complex pathological condition in which genetic, epigenetic and environmental factors converge, although its aetiology remains elusive. Multifunctional molecules, such as BMPs, are extremely interesting in the field of MS because they are involved in the regulation of several adult tissues, including the CNS and the immune system. In this review, we discuss the extensive data available regarding the role of BMP signalling in neuronal progenitor/stem cell fate and focus on the participation and expression of BMPs in CNS demyelination. Additionally, we provide an overview of the involvement of BMPs as modulators of the immune system, as this subject has not been thoroughly explored even though it is of great interest in autoimmune disorders. Moreover, we describe the data on BMP signalling in autoimmunity and inflammatory diseases, including MS and its experimental models. Thus, we aim to provide an integrated view of the putative role of BMPs in MS pathogenesis and to open the field for the further development of alternative therapeutic strategies for MS patients.

  16. The effect of statins in colorectal cancer is mediated through the bone morphogenetic protein pathway

    NARCIS (Netherlands)

    Kodach, Liudmila L.; Bleuming, Sylvia A.; Peppelenbosch, Maikel P.; Hommes, Daniel W.; Van Den Brink, Gus R.; Hardwick, James C. H.

    2007-01-01

    Background & Aims: Epidemiological evidence suggests that statins prevent colorectal cancer (CRC), but the biological mechanism remains obscure. Statins induce bone morphogenetic protein (BMP) expression in bone cells. We have previously shown that BMPs act as tumor suppressors in CRC. We hypothesiz

  17. A proteomic study of protein variation between osteopenic and age-matched control bone tissue.

    Science.gov (United States)

    Chaput, Christopher D; Dangott, Lawrence J; Rahm, Mark D; Hitt, Kirby D; Stewart, Donald S; Wayne Sampson, H

    2012-05-01

    The focus of this study was to identify changes in protein expression within the bone tissue environment between osteopenic and control bone tissue of human femoral neck patients with osteoarthritis. Femoral necks were compared from osteopenic patients and age-matched controls. A new method of bone protein extraction was developed to provide a swift, clear view of the bone proteome. Relative changes in protein expression between control and osteopenic samples were quantified using difference gel electrophoresis (DIGE) technology after affinity chromatographic depletion of albumin and IgG. The proteins that were determined to be differentially expressed were identified using standard liquid chromatography mass spectrometry (LC/MS/MS) and database searching techniques. In order to rule out blood contamination, blood from age-matched osteoporotic, osteopenic and controls were analyzed in a similar manner. Image analysis of the DIGE gels indicated that 145 spots in the osteopenic bone samples changed at least ± 1.5-fold from the control samples (P proteins were identified by LC/MS/MS. Of the proteins that increased in the osteopenic femurs, two were especially significant: carbonic anhydrase I and phosphoglycerate kinase 1. Apolipoprotein A-I was the most prominent protein that significantly decreased in the osteopenic femurs. The blood samples revealed no significant differences between groups for any of these proteins. In conclusion, carbonic anhydrase I, phosphoglycerate kinase 1 and apolipoprotein A-I appeared to be the most significant variations of proteins in patients with osteopenia and osteoarthritis.

  18. Bone

    Science.gov (United States)

    Helmberger, Thomas K.; Hoffmann, Ralf-Thorsten

    The typical clinical signs in bone tumours are pain, destruction and destabilization, immobilization, neurologic deficits, and finally functional impairment. Primary malignant bone tumours are a rare entity, accounting for about 0.2% of all malignancies. Also benign primary bone tumours are in total rare and mostly asymptomatic. The most common symptomatic benign bone tumour is osteoid osteoma with an incidence of 1:2000.

  19. Uncovering Molecular Bases Underlying Bone Morphogenetic Protein Receptor Inhibitor Selectivity.

    Directory of Open Access Journals (Sweden)

    Abdelaziz Alsamarah

    Full Text Available Abnormal alteration of bone morphogenetic protein (BMP signaling is implicated in many types of diseases including cancer and heterotopic ossifications. Hence, small molecules targeting BMP type I receptors (BMPRI to interrupt BMP signaling are believed to be an effective approach to treat these diseases. However, lack of understanding of the molecular determinants responsible for the binding selectivity of current BMP inhibitors has been a big hindrance to the development of BMP inhibitors for clinical use. To address this issue, we carried out in silico experiments to test whether computational methods can reproduce and explain the high selectivity of a small molecule BMP inhibitor DMH1 on BMPRI kinase ALK2 vs. the closely related TGF-β type I receptor kinase ALK5 and vascular endothelial growth factor receptor type 2 (VEGFR2 tyrosine kinase. We found that, while the rigid docking method used here gave nearly identical binding affinity scores among the three kinases; free energy perturbation coupled with Hamiltonian replica-exchange molecular dynamics (FEP/H-REMD simulations reproduced the absolute binding free energies in excellent agreement with experimental data. Furthermore, the binding poses identified by FEP/H-REMD led to a quantitative analysis of physical/chemical determinants governing DMH1 selectivity. The current work illustrates that small changes in the binding site residue type (e.g. pre-hinge region in ALK2 vs. ALK5 or side chain orientation (e.g. Tyr219 in caALK2 vs. wtALK2, as well as a subtle structural modification on the ligand (e.g. DMH1 vs. LDN193189 will cause distinct binding profiles and selectivity among BMP inhibitors. Therefore, the current computational approach represents a new way of investigating BMP inhibitors. Our results provide critical information for designing exclusively selective BMP inhibitors for the development of effective pharmacotherapy for diseases caused by aberrant BMP signaling.

  20. Protein malnutrition attenuates bone anabolic response to PTH in female rats.

    Science.gov (United States)

    Ammann, P; Zacchetti, G; Gasser, J A; Lavet, C; Rizzoli, R

    2015-02-01

    PTH is indicated for the treatment of severe osteoporosis. Elderly osteoporotic patients frequently suffer from protein malnutrition, which may contribute to bone loss. It is unknown whether this malnutrition may affect the response to PTH. Therefore, the aim of the present study was to assess whether an isocaloric low-protein (LP) diet may influence the bone anabolic response to intermittent PTH in 6-month-old female rats. Six-month-old female rats were either pair fed an isocaloric LP diet (2.5% casein) or a normal-protein (NP) diet (15% casein) for 2 weeks. The rats continued on their respective diet while being treated with 5- or 40-μg/kg recombinant human PTH amino-terminal fragment 1-34 (PTH-[1-34]) daily, or with vehicle for 4 weeks. At the end of this period, areal bone mineral density, bone mineral content, microstructure, and bone strength in axial compression of proximal tibia or 3-point bending for midshaft tibia tests were measured. Blood was collected for the determination of IGF-I and osteocalcin. After 4 weeks of PTH-(1-34), the dose-dependent increase of proximal tibia bone mineral density, trabecular microstructure variables, and bone strength was attenuated in rats fed a LP diet as compared with rats on a NP intake. At the level of midshaft tibia cortical bone, PTH-(1-34) exerted an anabolic effect only in the NP but not in the LP diet group. Protein malnutrition was associated with lower IGF-I levels. Protein malnutrition attenuates the bone anabolic effects of PTH-(1-34) in rats. These results suggest that a sufficient protein intake should be recommended for osteoporotic patients undergoing PTH therapy.

  1. Increase in bone protein components with healing rat fractures: enhancement by zinc treatment.

    Science.gov (United States)

    Igarashi, A; Yamaguchi, M

    1999-12-01

    The alteration in bone components in the femoral-diaphyseal tissues with fracture healing was investigated. Rats were sacrificed 7 and 14 days after the femoral fracture. Protein content in the femoral-diaphyseal tissues was markedly elevated by fracture healing. Analysis with sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that many protein molecules were induced in the diaphyseal tissues with fracture healing. Moreover, when the femoral-diaphyseal tissues with fracture healing were cultured for 24 and 48 h in a serum-free medium, many proteins in the bone tissues were released into the medium. Also, the culture of the diaphyseal tissues with fracture healing caused a significant increase in bone alkaline phosphatase activity and deoxyribonucleic acid (DNA) content. Meanwhile, the presence of zinc acexamate (10-5 and 10-4 M), a stimulator of bone formation, in a culture medium induced a significant elevation of protein content and alkaline phosphatase activity in the diaphyseal tissues with fracture healing. Such an effect was completely abolished by the presence of cycloheximide (10-6 M), an inhibitor of protein synthesis. The present study suggests that fracture healing induces a newly synthesized bone protein component including stimulatory factor(s) for bone formation. Zinc supplementation may stimulate the healing of femoral fracture.

  2. Recombinant human bone morphogenetic protein-2 suspended in fibrin glue enhances bone formation during distraction osteogenesis in rabbits

    Science.gov (United States)

    Li, Yunfeng; Li, Rui; Hu, Jing; Song, Donghui; Jiang, Xiaowen

    2016-01-01

    Introduction Bone morphogenetic protein-2 (BMP-2) has high potential for bone formation, but its in vivo effects are unpredictable due to the short life time. This study was designed to evaluate the effects of recombinant human (rh) BMP-2 suspended in fibrin on bone formation during distraction osteogenesis (DO) in rabbits. Material and methods The in vitro release kinetics of rhBMP-2 suspended in fibrin was tested using an enzyme-linked immunosorbent assay. Unilateral tibial lengthening for 10 mm was achieved in 48 rabbits. At the completion of osteodistraction, vehicle, fibrin, rhBMP-2 or rhBMP-2 suspended in fibrin (rhBMP-2 + fibrin) was injected into the center of the lengthened gap, with 12 animals in each group. Eight weeks later, the distracted callus was examined by histology, micro-CT and biomechanical testing. Radiographs of the distracted tibiae were taken at both 4 and 8 weeks after drug treatment. Results It was found that fibrin prolonged the life span of rhBMP-2 in vitro with sustained release during 17 days. The rhBMP-2 + fibrin treated animals showed the best results in bone mineral density, bone volume fraction, cortical bone thickness by micro-CT evaluation and mechanical properties by the three-point bending test when compared to the other groups (p < 0.05). In histological images, rhBMP-2 + fibrin treatment showed increased callus formation and better gap bridging compared to the other groups. Conclusions The results of this study suggest that fibrin holds promise to be a good carrier of rhBMP-2, and rhBMP-2 suspended in fibrin showed a stronger promoting effect on bone formation during DO in rabbits. PMID:27279839

  3. Effects of ionizing radiation on proteins in demineralized, lyophilized or frozen human bone

    Energy Technology Data Exchange (ETDEWEB)

    Antebi, Uri; Mathor, Monica B., E-mail: uri@usp.br, E-mail: mathor@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Guimaraes, Rodrigo P., E-mail: clinicaguimaraes@gmail.com [Santa Casa de Sao Paulo (FCM/SCSP), Sao Paulo, SP (Brazil). Faculdade de Ciencias Medicas

    2015-07-01

    The aim is the study of the application of ionizing radiation (gamma and electron) as sterilizing agents at doses of 15 kGy, 25 kGy and 50 kGy, the demineralized bone tissue frozen and freeze-dried for use in transplants. Five human femoral diaphysis of different donors demineralized bone tissues were preserved as lyophilized or frozen at - 80 deg C. The samples were divided into non-irradiated groups (control) and irradiated by gamma rays or electron beam. The bone proteins were extracted and used to determine the concentrations of total protein, BMP 2 and 7. It was observed a decrease in total protein concentrations, and BMP 2 and 7. The decrease in total protein concentrations, as compared to respective control groups was significant in the lyophilized and frozen samples irradiated at a dose of 50 kGy gamma radiation and beam electrons with greater than 30% reduction. The significant decrease in the levels of BMP 2 and 7 were also observed in higher doses and especially by electron beam. The reductions in the concentrations of total protein and osteoinductive proteins (BMP 2 and 7), were related to the radiation dose, i.e., increase with higher doses of ionizing radiation type and the type of preservation of the bones. The largest reductions in concentrations were observed in bone irradiated by electron beam and at a dose of 50 kGy. But this type of radiation and this high dose are not usual practice for the sterilization of bone tissue. Keywords: demineralized bone tissue, ionizing radiation, Tissue Bank, BMP 2, BMP 7, bone proteins. (author)

  4. High Protein Intake Improves Insulin Sensitivity but Exacerbates Bone Resorption in Immobility (WISE Study)

    Science.gov (United States)

    Heer, Martina; Smith, Scott M.; Frings-Meuthen, Petra; Zwart, Sara R.; Baecker, Natalie

    2012-01-01

    Inactivity, like bed rest (BR), causes insulin resistance (IR) and bone loss even in healthy subjects. High protein intake seems to mitigate this IR but might exacerbate bone loss. We hypothesized that high protein intake (animal:vegetable protein ratio: 60:40), isocaloric, compared to the control group plus high potassium intake would prevent IR without affecting bone turnover. After a 20-day ambulatory adaptation to controlled confinement and diet, 16 women participated in a 60-day, 6 deg head-down-tilt BR and were assigned randomly to one of the two groups. Control subjects (CON, n=8) received 1g/kg body mass/d dietary protein. Nutrition subjects (NUT, n=8) received 1.45g/kg body mass/d dietary protein plus 7.2g branched chain amino acids per day during BR. All subjects received 1670 kcal/d. Bed rest decreased glucose disposal by 35% (pprotein intake prevented insulin resistance, but exacerbated bed rest induced increase in bone resorption markers C-telopeptide (> 30%) and Ntelopeptide (>20%) (both: pprotein intake. We conclude from these results that high protein intake might positively affect glucose tolerance, but might also foster bone loss. Further long-duration studies are mandatory before high protein intake for diabetic patients, who have an increased fracture risk, might be recommended.

  5. Effects of resistance training and protein supplementation on bone turnover in young adult women

    Directory of Open Access Journals (Sweden)

    Sinning Wayne E

    2005-08-01

    Full Text Available Abstract Background The strength of aging bone depends on the balance between the resorption and formation phases of the remodeling process. The purpose of this study was to examine the interaction of two factors with the potential to exert opposing influences on bone turnover, resistance exercise training and high dietary protein intake. It was hypothesized that resistance training by young, healthy, untrained women with protein intakes near recommended levels (0.8 g·kg-1·d-1 would promote bone formation and/or inhibit bone resorption, and that subsequent supplementation to provide 2.4 g protein·kg-1·d-1 would reverse these effects. Methods Bone formation was assessed with serum bone-specific alkaline phosphatase (BAP and osteocalcin (OC, and bone resorption with urinary calcium and deoxypyridinoline (DPD. Biochemical, strength, anthropometric, dietary, and physical activity data were obtained from 24 healthy, untrained, eumenorrheic women (18–29y at baseline, after eight weeks of resistance training (3 d·wk-1, ~1 hr·d-1; 3 sets, 6–10 repetitions, 13 exercises, 75–85% maximum voluntary contraction, and after 12 weeks of resistance training and 10 days of protein/placebo supplementation. Subjects were randomized (double-blind to either a high protein (HP or training control (TC group and, during the final 10 days, consumed either enough purified whey protein to bring daily protein intake to 2.4 g·kg-1·d-1, or an equivalent dose of isoenergetic, carbohydrate placebo. Results Strength, lean tissue mass, and DPD increased significantly in both groups over time, while percent body fat and BAP decreased (repeated measures ANOVA, p ≤ 0.05, Bonferroni correction. No significant changes were observed for serum OC or urinary calcium, and no significant group (TC, HP × time (baseline, week 8, week 12 interactions emerged for any of the biochemical measures. Conclusion (1 Twelve weeks of high-intensity resistance training did not appear to

  6. Fos/AP-1 proteins in bone and the immune system.

    Science.gov (United States)

    Wagner, Erwin F; Eferl, Robert

    2005-12-01

    The skeleton and the immune system share a variety of different cytokines and transcription factors, thereby mutually influencing each other. These interactions are not confined to the bone marrow cavity where bone cells and hematopoietic cells exist in proximity but also occur at locations that are target sites for inflammatory bone diseases. The newly established research area termed 'osteoimmunology' attempts to unravel these skeletal/immunological relationships. Studies towards a molecular understanding of inflammatory bone diseases from an immunological as well as a bone-centered perspective have been very successful and led to the identification of several signaling pathways that are causally involved in inflammatory bone loss. Induction of receptor activator of nuclear factor (NF)-kappaB ligand (RANKL) signals by activated T cells and subsequent activation of the key transcription factors Fos/activator protein-1 (AP-1), NF-kappaB, and NF for activation of T cells c1 (NFATc1) are in the center of the signaling networks leading to osteoclast-mediated bone loss. Conversely, nature has employed the interferon system to antagonize excessive osteoclast differentiation, although this counteracting activity appears to be overruled under pathological conditions. Here, we focus on Fos/AP-1 functions in osteoimmunology, because this osteoclastogenic transcription factor plays a central role in inflammatory bone loss by regulating genes like NFATc1 as well as the interferon system. We also attempt to put potential therapeutic strategies for inflammatory bone diseases in perspective.

  7. The role of the BH3-only protein Noxa in bone homeostasis.

    Science.gov (United States)

    Idrus, Erik; Nakashima, Tomoki; Wang, Ling; Hayashi, Mikihito; Okamoto, Kazuo; Kodama, Tatsuhiko; Tanaka, Nobuyuki; Taniguchi, Tadatsugu; Takayanagi, Hiroshi

    2011-07-08

    Bone homeostasis is maintained by a dynamic balance between bone resorption by osteoclasts and bone formation by osteoblasts. Since excessive osteoclast activity is implicated in pathological bone resorption, understanding the mechanism underlying osteoclast differentiation, function and survival is of both scientific and clinical importance. Osteoclasts are monocyte/macrophage lineage cells with a short life span that undergo rapid apoptosis, the rate of which critically determines the level of bone resorption in vivo. However, the molecular basis of rapid osteoclast apoptosis remains obscure. Here we report the role of a BH3-only protein, Noxa (encoded by the Pmaip1 gene), in bone homeostasis using Noxa-deficient mice. Among the Bcl-2 family members, Noxa was selectively induced during osteoclastogenesis. Mice lacking Noxa exhibit a severe osteoporotic phenotype due to an increased number of osteoclasts. Noxa deficiency did not have any effect on the number of osteoclast precursor cells or the expression of osteoclast-specific genes, but led to a prolonged survival of osteoclasts. Furthermore, adenovirus-mediated Noxa overexpression remarkably reduced bone loss in a model of inflammation-induced bone destruction. This study reveals Noxa to be a crucial regulator of osteoclast apoptosis, and may provide a molecular basis for a new therapeutic approach to bone diseases.

  8. Osteoinductivity assay of the variability of repeated extractions of bone morphogenetic proteins from bovine bone at different times

    Institute of Scientific and Technical Information of China (English)

    HU Zhen-ming 胡侦明; Sean AF Peel; Cameron ML Clokie

    2004-01-01

    Objective:To observe the activity of repeated extracts of bone matrix and the production of purified bone morphogenetic proteins (BMPs).Methods: BMPs were extracted 1- 4 times from fresh bovine cortical bone by the modified Urist's method, with each collected precipitate separated and lyophilized as partially purified BMPs. Another fresh bovine bone was extracted three times and the precipitates were mixed and lyophilized. Meanwhile, the alkaline phosphatase (ALP)activity was measured by an in vitro assay employing cultured C2C12 mouse myoblast cells through the osteoinductivity of bovine BMPs extracted four times at days 1, 4, 7, and 14, and the correlation between BMPs quantities and costing during extraction processes was analyzed.Results:The purified and the cost showed a positive correlation(r=0.969).To separate and lyophilize each collected precipitate as partially purified BMPs raised the cost,and mixed precipitates also cost much.ALPactivities of 1st and mixed extractions of BMPs were shown to be highly osteoinductive and keep a significantly high level(P<0.05-0.01)4 days after culturing compared with the 2nd,3rd and 4th extractions,especially the control group.However,the more times the extraction ws done,the less activity of BMPs was shown and more costing was.The x-ray and histological analysis also showed that the 1st extraction of BMPs induced more ossicles and new bone formation.Conclusions:The results indicated that BMPs enhanced the abilities of osteoinductiviyt in C2C12 culture in vitro.The first extraction of BMPsfrom bone is fitfull,4th extractions are unnecessary for they cost more and waste more time,say nothing of mixed extractions.

  9. Formation of the long range Dpp morphogen gradient.

    Directory of Open Access Journals (Sweden)

    Gerald Schwank

    2011-07-01

    Full Text Available The TGF-β homolog Decapentaplegic (Dpp acts as a secreted morphogen in the Drosophila wing disc, and spreads through the target tissue in order to form a long range concentration gradient. Despite extensive studies, the mechanism by which the Dpp gradient is formed remains controversial. Two opposing mechanisms have been proposed: receptor-mediated transcytosis (RMT and restricted extracellular diffusion (RED. In these scenarios the receptor for Dpp plays different roles. In the RMT model it is essential for endocytosis, re-secretion, and thus transport of Dpp, whereas in the RED model it merely modulates Dpp distribution by binding it at the cell surface for internalization and subsequent degradation. Here we analyzed the effect of receptor mutant clones on the Dpp profile in quantitative mathematical models representing transport by either RMT or RED. We then, using novel genetic tools, experimentally monitored the actual Dpp gradient in wing discs containing receptor gain-of-function and loss-of-function clones. Gain-of-function clones reveal that Dpp binds in vivo strongly to the type I receptor Thick veins, but not to the type II receptor Punt. Importantly, results with the loss-of-function clones then refute the RMT model for Dpp gradient formation, while supporting the RED model in which the majority of Dpp is not bound to Thick veins. Together our results show that receptor-mediated transcytosis cannot account for Dpp gradient formation, and support restricted extracellular diffusion as the main mechanism for Dpp dispersal. The properties of this mechanism, in which only a minority of Dpp is receptor-bound, may facilitate long-range distribution.

  10. Immature muscular tissue differentiation into bone-like tissue by bone morphogenetic proteins in vitro, with ossification potential in vivo.

    Science.gov (United States)

    Hayashi, Tatsuhide; Kobayashi, Syuichiro; Asakura, Masaki; Kawase, Mayu; Ueno, Atsuko; Uematsu, Yasuaki; Kawai, Tatsushi

    2014-09-01

    The objective of this study was to induce bone formation from immature muscular tissue (IMT) in vitro, using bone morphogenetic proteins (BMPs) as a cytokine source and an expanded polytetrafluoroethylene (ePTFE) scaffold. In addition, cultured IMTs were implanted subcutaneously into Sprague-Dawley (SD) rats to determine their in vivo ossification potential. BMPs, extracted from bovine cortical bones, were applied to embryonic SD rat IMT cultures, before 2 weeks culture on ePTFE scaffolds. Osteoblast-like cells and osteoid tissues were partially identified by hematoxylin-eosin staining 2 weeks after culture. Collagen type I (Col-I), osteopontin (OP), and osteocalcin (OC) were detected in the osteoid tissues by immunohistochemical staining. OC gene expression remained low, but OP and Col-I were upregulated during the culture period. In vivo implanted IMTs showed slight radiopacity 1 week after implantation and strong radiopacity 2 and 3 weeks after implantation. One week after implantation, migration of numerous capillaries was observed and ossification was detected after 2 weeks by histological observation. These results suggest that IMTs are able to differentiate into bone-like tissue in vitro, with an ossification potential after implantation in vivo.

  11. Osteogenic protein 1 device increases bone formation and bone graft resorption around cementless implants

    DEFF Research Database (Denmark)

    Jensen, Thomas B; Overgaard, Søren; Lind, Martin;

    2002-01-01

    In each femoral condyle of 8 Labrador dogs, a non weight-bearing hydroxyapatite-coated implant was inserted surrounded by a 3 mm gap. Each gap was filled with bone allograft or ProOsteon with or without OP-1 delivered in a bovine collagen type I carrier (OP-1 device). 300 microg OP-1 was used in ...

  12. Associations of total, dairy, and meat protein with markers for bone turnover in healthy, prepubertal boys

    DEFF Research Database (Denmark)

    Budek, Alicja Zofia; Hoppe, Camilla; Michaelsen, Kim Fleischer

    2007-01-01

    We previously reported that high intake of milk, but not meat, equal in protein content, increased serum insulin-like growth factor-I (sIGF-I) in prepubertal boys. sIGF-I plays a key role in bone metabolism. Therefore, the aim of this cross-sectional study was to investigate associations of total......, dairy, and meat protein intake with markers for bone turnover and sIGF-I in prepubertal, healthy boys (n ¼ 81). We measured bone turnover (enzyme-linked immunoassay) in serum osteocalcin (sOC), bone-specific alkaline phosphatase (sBAP), and C-terminal telopeptide of collagen type-I (sCTX); dietary...

  13. The diagnostic and prognostic value of serum bone Gla protein (osteocalcin) in patients with recurrent breast cancer

    DEFF Research Database (Denmark)

    Kamby, C; Egsmose, C; Söletormos, G

    1993-01-01

    bone survey. The sites of recurrence were bone (61%), bone marrow (46%), soft tissue (52%), lung (13%), pleura (11%), liver (4%), and brain (2%). Radiology and bone biopsy served as key diagnoses as to the presence or absence of bone metastases. The diagnostic efficiency of B-scan and S-AP was greater...... than that of S-BGP, and the result of BGP measurement was associated with neither extent nor number of bone metastases. However, the BGP values were significantly lower in patients who had visceral metastases, and the median duration of survival after recurrence was 13 months for patients with low S......Serum bone Gla protein (S-BGP), a marker of bone metabolism, was measured in 60 patients included in a staging programme for recurrent breast cancer. Other diagnostic procedures comprised S-alkaline phosphatase (S-AP), bone scan (B-scan), bilateral iliac crest bone marrow biopsies, and radiological...

  14. Stimulatory effect of puerarin on bone formation through co-activation of nitric oxide and bone morphogenetic protein-2/mitogen-activated protein kinases pathways in mice

    Institute of Scientific and Technical Information of China (English)

    SHEU Shiow-yunn; TSAI Chia-chung; SUN Jui-sheng; CHEN Ming-hong; LIU Man-hai; SUN Man-ger

    2012-01-01

    Background Estrogen deficiency results in loss of bone mass.Phytoestrogens are plant-derived non-steroidal compounds with estrogen-like activity that bind to estrogen receptors.The main aim of this study was to investigate the effect of the phytoestrogen puerarin on adult mouse osteoblasts.Methods Osteoblast cells were harvested from 8-month old female imprinting control region (ICR) mice.The effects of puerarin stimulation on the proliferation,differentiation and maturation of osteoblasts were examined.The production of nitric oxide (NO) and the expression of bone morphogenetic protein-2 (BMP-2),SMAD4,mitogen-activated protein kinases (MAPK),core binding factor α1/runt-related transcription factor 2 (Cbfa1/Runx2),osteoprotegerin (OPG),and receptor activator of NF-kB ligand (RANKL) genes were analyzed.The activation of signal pathways was further confirmed by specific pathway inhibitors.Results The osteoblast viability reached its maximum at 10-8 mol/L puerarin.At this concentration,puerarin increases the proliferation and matrix mineralization of osteoblasts and promotes NO synthesis.With 10-8 mol/L puerarin treatment,BMP-2,SMAD4,Cbfa1/Runx2,and OPG gene expression were up-regulated,while the RANKL gene expression is down-regulated.Concurrent treatment involving the (bone morphogenetic protein) BMP antagonist Noggin or the NOS inhibitor L-NAME diminishes puerarin induced cell proliferation,Alkaline phosphatase (ALP) activity,NO production,as well as the BMP-2,SMAD4,Cbfa1/Runx2,OPG,and RANKL gene expression.Conclusions In this in vitro study,we demonstrate that puerarin is a bone anabolic agent that exerts its osteogenic effects through the induction of BMP-2 and NO synthesis,subsequently regulating Cbfa1/Runx2,OPG,and RANKL gene expression.This effect may contribute to its induction of osteoblast proliferation and differentiation,resulting in bone formation.

  15. Caenorhabditis elegans SMA-10/LRIG is a conserved transmembrane protein that enhances bone morphogenetic protein signaling.

    Directory of Open Access Journals (Sweden)

    Tina L Gumienny

    2010-05-01

    Full Text Available Bone morphogenetic protein (BMP pathways control an array of developmental and homeostatic events, and must themselves be exquisitely controlled. Here, we identify Caenorhabditis elegans SMA-10 as a positive extracellular regulator of BMP-like receptor signaling. SMA-10 acts genetically in a BMP-like (Sma/Mab pathway between the ligand DBL-1 and its receptors SMA-6 and DAF-4. We cloned sma-10 and show that it has fifteen leucine-rich repeats and three immunoglobulin-like domains, hallmarks of an LRIG subfamily of transmembrane proteins. SMA-10 is required in the hypodermis, where the core Sma/Mab signaling components function. We demonstrate functional conservation of LRIGs by rescuing sma-10(lf animals with the Drosophila ortholog lambik, showing that SMA-10 physically binds the DBL-1 receptors SMA-6 and DAF-4 and enhances signaling in vitro. This interaction is evolutionarily conserved, evidenced by LRIG1 binding to vertebrate receptors. We propose a new role for LRIG family members: the positive regulation of BMP signaling by binding both Type I and Type II receptors.

  16. Improving Bone Formation in a Rat Femur Segmental Defect by Controlling Bone Morphogenetic Protein-2 Release

    Science.gov (United States)

    2011-04-01

    delivered on a collagen sponge (INFUSE Bone Graft; Medtronic) has been approved by FDA for posterior-lateral spine fusions, tibial fractures, and sinus...area was defined by drawing a quadrilateral area using the periosteal corners of the four host cortices as points of reference. The relative areas of...section of an FR +BMP scaffold in Figure 8 (the ap- proximate boundary of the implant is denoted by the box) shows a mature and fully bridged periosteal

  17. Ablation of the Sam68 RNA binding protein protects mice from age-related bone loss.

    Directory of Open Access Journals (Sweden)

    Stéphane Richard

    2005-12-01

    Full Text Available The Src substrate associated in mitosis of 68 kDa (Sam68 is a KH-type RNA binding protein that has been shown to regulate several aspects of RNA metabolism; however, its physiologic role has remained elusive. Herein we report the generation of Sam68-null mice by homologous recombination. Aged Sam68-/- mice preserved their bone mass, in sharp contrast with 12-month-old wild-type littermates in which bone mass was decreased up to approximately 75%. In fact, the bone volume of the 12-month-old Sam68-/- mice was virtually indistinguishable from that of 4-month-old wild-type or Sam68-/- mice. Sam68-/- bone marrow stromal cells had a differentiation advantage for the osteogenic pathway. Moreover, the knockdown of Sam68 using short hairpin RNA in the embryonic mesenchymal multipotential progenitor C3H10T1/2 cells resulted in more pronounced expression of the mature osteoblast marker osteocalcin when differentiation was induced with bone morphogenetic protein-2. Cultures of mouse embryo fibroblasts generated from Sam68+/+ and Sam68-/- littermates were induced to differentiate into adipocytes with culture medium containing pioglitazone and the Sam68-/- mouse embryo fibroblasts shown to have impaired adipocyte differentiation. Furthermore, in vivo it was shown that sections of bone from 12-month-old Sam68-/- mice had few marrow adipocytes compared with their age-matched wild-type littermate controls, which exhibited fatty bone marrow. Our findings identify endogenous Sam68 as a positive regulator of adipocyte differentiation and a negative regulator of osteoblast differentiation, which is consistent with Sam68 being a modulator of bone marrow mesenchymal cell differentiation, and hence bone metabolism, in aged mice.

  18. Osteogenic potential of the human bone morphogenetic protein 2 gene activated nanobone putty

    Institute of Scientific and Technical Information of China (English)

    TIAN Xiao-bin; SUN Li; YANG Shu-hua; ZHANG Yu-kun; HU Ru-yin; FU De-hao

    2008-01-01

    Background Nanobone putty is an injectable and bioresorbable bone substitute. The neutral-pH putty resembles hard bone tissue, does not contain polymers or plasticizers, and is self-setting and nearly isothermic, properties which are helpful for the adhesion, proliferation, and function of bone cells. The aim of this study was to investigate the osteogenic potential of human bone morphogenetic protein 2(hBMP2)gene activated nanobone putty in inducing ectopic bone formation, and the effects of the hBMP2 gene activated nanobone putry on repairing bone defects. Methods Twenty four Kunming mice were randomly divided into two groups. The nanobone putty+hBMP2 plasmid was injected into the right thigh muscle pouches of the mice(experiment side). The nanobone putty+blank plasmid or nanobone putty was injected into the left thigh muscle pouches of the group 1(control side 1)or group 2(control side 2), respectively. The effects of ectopic bone formation were evaluated by radiography, histology, and molecular biology analysis at 2 and 4 weeks after operation. Bilateral 15 mm radial defects were made in forty-eight rabbits. These rabbits were randomly divided into three groups: Group A, nanobone putty+hBMP2 plasmid;Group B, putty+blank plasmid; Group C, nanobone putty only. Six rabbits with left radial defects served as blank controls. The effect of bone repairing was evaluated by radiography, histology, molecular biology, and biomechanical analysis at 4, 8, and 12 weeks after operation. Results The tissue from the experimental side of the mice expressed hBMP2. Obvious cartilage and island-distributed immature bone formation in implants of the experiment side were observed at 2 weeks after operation, and massive mature bone observed at 4 weeks. No bone formation was observed in the control side of the mice. The ALP activity in the experiment side of the mice was higher than that in the control side. The tissue of Group A rabbits expressed hBMP2 protein and higher ALP level

  19. Combination of bone morphogenetic protein-2 plasmid DNA with chemokine CXCL12 creates an additive effect on bone formation onset and volume

    NARCIS (Netherlands)

    Wegman, F.; Poldervaart, M. T.; van der Helm, Y. J.; Oner, F. C.; Dhert, W. J.; Alblas, J.

    2015-01-01

    Bone morphogenetic protein-2 (BMP-2) gene delivery has shown to induce bone formation in vivo in cell-based tissue engineering. In addition, the chemoattractant stromal cell-derived factor-1α (SDF-1α, also known as CXCL12) is known to recruit multipotent stromal cells towards its release site where

  20. Proteomic analysis of a pleistocene mammoth femur reveals more than one hundred ancient bone proteins

    DEFF Research Database (Denmark)

    Cappellini, E.; Jensen, L.J.; Szklarczyk, D.;

    2012-01-01

    We used high-sensitivity, high-resolution tandem mass spectrometry to shotgun sequence ancient protein remains extracted from a 43 000 year old woolly mammoth (Mammuthus primigenius) bone preserved in the Siberian permafrost. For the first time, 126 unique protein accessions, mostly low...... evidence was observed of amino acid modifications due to post-mortem hydrolytic and oxidative damage. A consistent subset of this permafrost bone proteome was also identified in more recent Columbian mammoth (Mammuthus columbi) samples from temperate latitudes, extending the potential of the approach...

  1. The importance of the SIBLING family of proteins on skeletal mineralisation and bone remodelling.

    Science.gov (United States)

    Staines, Katherine A; MacRae, Vicky E; Farquharson, Colin

    2012-09-01

    The small integrin-binding ligand N-linked glycoprotein (SIBLING) family consists of osteopontin, bone sialoprotein, dentin matrix protein 1, dentin sialophosphoprotein and matrix extracellular phosphoglycoprotein. These proteins share many structural characteristics and are primarily located in bone and dentin. Accumulating evidence has implicated the SIBLING proteins in matrix mineralisation. Therefore, in this review, we discuss the individual role that each of the SIBLING proteins has in this highly orchestrated process. In particular, we emphasise how the nature and extent of their proteolytic processing and post-translational modification affect their functional role. Finally, we describe the likely roles of the SIBLING proteins in clinical disorders of hypophosphataemia and their potential therapeutic use.

  2. Application of Fractional Calculus to Reaction-Subdiffusion Processes and Morphogen Gradient Formation

    CERN Document Server

    Yuste, S B; Lindenberg, K

    2010-01-01

    It is a well known fact that subdiffusion equations in terms of fractional derivatives can be obtained from Continuous Time Random Walk (CTRW) models with long-tailed waiting time distributions. Over the last years various authors have shown that extensions of such CTRW models incorporating reactive processes to the mesoscopic transport equations may lead to non-intuitive reaction-subdiffusion equations. In particular, one such equation has been recently derived for a subdiffusive random walker subject to a linear (first-order) death process. We take this equation as a starting point to study the developmental biology key problem of morphogen gradient formation, both for the uniform case where the morphogen degradation rate coefficient (reactivity) is constant and for the non-uniform case (position-dependent reactivity). In the uniform case we obtain exponentially decreasing stationary concentration profiles and we study their robustness with respect to perturbations in the incoming morphogen flux. In the non...

  3. Dentin extracellular matrix (ECM) proteins: comparison to bone ECM and contribution to dynamics of dentinogenesis.

    Science.gov (United States)

    Butler, William T; Brunn, Jan C; Qin, Chunlin

    2003-01-01

    Dentinogenesis involves the initial odontoblastic synthesis of a collagen-rich extracellular matrix (ECM) and predentin that is converted to dentin when the collagen fibrils become mineralized. Since the width of predentin is rather uniform, we postulate that extracellular events regulate dentinogenesis. Similarly, osteogenesis involves an initial unmineralized osteoid that is mineralized and converted to bone. To gain insights into these two processes, we compared ECM proteins in bone with those in dentin, focusing upon the sialic acid (SA)-rich proteins. We observed qualitative similarities between the SA-rich proteins, but distinct differences in the amounts of osteopontin (OPN) and dentin sialoprotein (DSP). OPN, a predominant protein in bone, was found in much smaller amounts in dentin. Conversely, DSP was abundant in dentin ECM, but found sparingly in bone. Molecular cloning experiments indicate that coding sequences for DSP and dentin phosphoprotein (DPP) are found on the same mRNA. We believe that the initial form of the precursor protein DSPP is inactive in influencing the mineralization process and that it must be activated by cleavage of peptide bonds in conserved regions. Thus, unknown proteinases would act on DSPP, possibly at the mineralization front, and liberate active DPP, which plays an initiation and regulatory role in the formation of apatite crystals. This post-translational processing reaction would represent an important control point in dentinogenesis. Recently, we identified uncleaved DSPP in dentin extracts, which should allow us to test portions of our hypothesis.

  4. Selective protein depletion impairs bone growth and causes liver fatty infiltration in female rats: prevention by Spirulina alga.

    Science.gov (United States)

    Fournier, C; Rizzoli, R; Bouzakri, K; Ammann, P

    2016-11-01

    Chronic protein malnutrition leads to child mortality in developing countries. Spirulina alga (Spi), being rich in protein and growing easily, is a good candidate as supplementation. We showed that Spi completely prevents bone growth retardation and liver disturbances observed in young rats fed a low protein diet. This supports Spi as a useful source of vegetable protein to fight against protein malnutrition.

  5. Effects of ionizing radiation on proteins in lyophilized or frozen demineralized human bone

    Science.gov (United States)

    Antebi, Uri; Mathor, Monica Beatriz; da Silva, André Ferreira; Guimarães, Rodrigo Pereira; Honda, Emerson Kiyoshi

    2016-01-01

    Objective The aim was to study the effects of application of ionizing radiation (gamma and electrons) as sterilizing agents at doses of 15 kGy, 25 kGy and 50 kGy, on lyophilized or frozen demineralized bone tissue for use in transplants. Methods Five human femoral diaphyses from different donors of musculoskeletal tissue were demineralized and preserved as lyophilized or frozen at −80 °C. The samples were divided into two groups: non-irradiated (control) and irradiated by means of gamma rays or an electron beam. The bone proteins were extracted and used to determine the concentrations of total protein and BMP 2 and 7. Results Decreases in total protein and BMP 2 and 7 concentrations were observed. The decreases in total protein concentrations, in comparison with the respective control groups, were significant in the lyophilized and frozen samples that were irradiated at a dose of 50 kGy of gamma radiation and electron beam, with reductions of more than 30%. Significant decreases in the levels of BMP 2 and 7 were also observed at higher doses and especially through use of the electron beam. Conclusion The reductions in the concentrations of total proteins and osteoinductive proteins (BMP 2 and 7) were related to the radiation dose, i.e. they increased with higher doses of ionizing radiation type and the type of bone preservation. The largest reductions in concentrations were observed in the bones irradiated by means of an electron beam and at a dose of 50 kGy. However, this type of radiation and this high dose are not usual practices for sterilization of bone tissue. PMID:27069893

  6. Inflammatory Cytokines Stimulate Bone Morphogenetic Protein-2 Expression and Release from Pancreatic Beta Cells

    DEFF Research Database (Denmark)

    Urizar, Adriana Ibarra; Friberg, Josefine; Christensen, Dan Ploug;

    2016-01-01

    The proinflammatory cytokines interleukin-1 beta (IL-1β) and interferon gamma (IFN-γ) play important roles in the progressive loss of beta-cell mass and function during development of both type 1 and type 2 diabetes. We have recently showed that bone morphogenetic protein (BMP)-2 and -4...

  7. The bone morphogenetic protein pathway is active in human colon adenomas and inactivated in colorectal cancer

    NARCIS (Netherlands)

    Kodach, Liudmila L.; Bleurning, Sylvia A.; Musler, Alex R.; Peppelenbosch, Maikel R.; Hommes, Daniel W.; van den Brink, Gijs R.; van Noesel, Carel J. M.; Offerhaus, G. Johan A.; Hardwick, James C. H.

    2008-01-01

    BACKGROUND. Transforming growth factor beta (TGF beta) is important in colorectal cancer (CRQ progression. Bone morphogenetic proteins (BMPs), a subgroup within the TGF beta superfamily, recently also have been implicated in CRC, but their precise role in CRC has yet to be investigated. METHODS. The

  8. Bone morphogenetic protein signaling suppresses tumorigenesis at gastric epithelial transition zones in mice

    NARCIS (Netherlands)

    Bleuming, Sylvia A.; He, Xi C.; Kodach, Liudmila L.; Hardwick, James C.; Koopman, Frieda A.; ten Kate, Fiebo J.; van Deventer, Sander J. H.; Hommes, Daniel W.; Peppelenbosch, Maikel P.; Offerhaus, G. Johan; Li, Linheng; van den Brink, Gijs R.

    2007-01-01

    Bone morphogenetic protein (BMP) signaling is known to suppress oncogenesis in the small and large intestine of mice and humans. We examined the role of Bmpr1a signaling in the stomach. On conditional inactivation of Bmpr1a, mice developed neoplastic lesions specifically in the squamocolumnar and ga

  9. Cross talk between insulin and bone morphogenetic protein signaling systems in brown adipogenesis

    DEFF Research Database (Denmark)

    Zhang, Hongbin; Schulz, Tim J; Espinoza, Daniel O;

    2010-01-01

    Both insulin and bone morphogenetic protein (BMP) signaling systems are important for adipocyte differentiation. Analysis of gene expression in BMP7-treated fibroblasts revealed a coordinated change in insulin signaling components by BMP7. To further investigate the cross talk between insulin and...

  10. Bone morphogenetic protein-2 is a negative regulator of hepatocyte proliferation downregulated in the regenerating liver

    NARCIS (Netherlands)

    Xu, Cui-Ping; Ji, Wen-Min; van den Brink, Gijs R.; Peppelenbosch, Maikel P.

    2006-01-01

    AIM: To characterize the expression and dynamic changes of bone morphogenetic protein (BMP)-2 in hepatocytes in the regenerating liver in rats after partial hepatectomy (PH), and examine the effects of BMP-2 on proliferation of human Huh7 hepatoma cells. METHODS: Fifty-four adult male Wistar rats we

  11. Determination of processed animal proteins, including meat and bone meal, in animal feed

    NARCIS (Netherlands)

    Gizzi, G.; Holst, von C.; Baeten, V.; Berben, G.; Raamsdonk, van L.W.D.

    2004-01-01

    The presence of processed animal proteins (PAP), including meat and bone meal (MBM) from various species, in animal feed was investigated. It was demonstrated that microscopy is the most reliable method for enforcing the current total MBM ban in the European Uion (EU). It was shown that near infrare

  12. Construction and characterization of a recombinant human adenovirus vector expressing bone morphogenetic protein 2

    OpenAIRE

    Zhang, Zheng; WANG, GUOXIAN; Li, Chen; Liu, Danping

    2013-01-01

    The aim of this study was to construct and characterize a novel recombinant human adenovirus vector expressing bone morphogenetic protein 2 (BMP2) and green fluorescent protein (GFP). The BMP2 gene in the plasmid pcDNA3-BMP2 was sequenced and the restriction enzyme recognition sites were analyzed. Following mutagenesis using polymerase chain reaction (PCR), the gene sequence after the translation termination codon was removed and new restriction sites were added. The mutated BMP2 gene (BMP2+ ...

  13. Preparation of denatured protein bone sterilized with gamma radiation; Preparacion de hueso desproteinizado esterilizado con radiacion gamma

    Energy Technology Data Exchange (ETDEWEB)

    Luna Z, D. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: dlz@nuclear.inin.mx

    2005-07-01

    The bone is one of the tissues more transplanted in the entire world by that the bone necessity for transplant every day becomes bigger. In the Bank of tissues Radio sterilized of the ININ the amnion and the pig skin are routinely processed. The tissue with which will be continued is with bone. Due to that in our country it doesn't have enough bone of human origin for the necessities required in the bone transplant, an option is the bone of bovine. Of this bone one can obtain denatured protein bone, with the same characteristics of the denatured protein human bone, the one which has been proven that it has good acceptance and incorporation in the human body when is transplanted. The method for the obtaining of the denatured protein bone of bovine, with the confirmation of the final product by means of X-ray diffraction is described. The radiosterilization of this bone with gamma rays and the determination of the lead content. (Author)

  14. TGF-βand BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease

    Institute of Scientific and Technical Information of China (English)

    Mengrui Wu; Guiqian Chen; and Yi-Ping Li

    2016-01-01

    Transforming growth factor-beta (TGF-β) and bone morphogenic protein (BMP) signaling has fundamental roles in both embryonic skeletal development and postnatal bone homeostasis. TGF-βs and BMPs, acting on a tetrameric receptor complex, transduce signals to both the canonical Smad-dependent signaling pathway (that is, TGF-β/BMP ligands, receptors, and Smads) and the non-canonical-Smad-independent signaling pathway (that is, p38 mitogen-activated protein kinase/p38 MAPK) to regulate mesenchymal stem cell differentiation during skeletal development, bone formation and bone homeostasis. Both the Smad and p38 MAPK signaling pathways converge at transcription factors, for example, Runx2 to promote osteoblast differentiation and chondrocyte differentiation from mesenchymal precursor cells. TGF-βand BMP signaling is controlled by multiple factors, including the ubiquitin–proteasome system, epigenetic factors, and microRNA. Dysregulated TGF-βand BMP signaling result in a number of bone disorders in humans. Knockout or mutation of TGF-βand BMP signaling-related genes in mice leads to bone abnormalities of varying severity, which enable a better understanding of TGF-β/BMP signaling in bone and the signaling networks underlying osteoblast differentiation and bone formation. There is also crosstalk between TGF-β/BMP signaling and several critical cytokines’ signaling pathways (for example, Wnt, Hedgehog, Notch, PTHrP, and FGF) to coordinate osteogenesis, skeletal development, and bone homeostasis. This review summarizes the recent advances in our understanding of TGF-β/BMP signaling in osteoblast differentiation, chondrocyte differentiation, skeletal development, cartilage formation, bone formation, bone homeostasis, and related human bone diseases caused by the disruption of TGF-β/BMP signaling.

  15. Secreted Protein Acidic and Rich in Cysteine (SPARC) Mediates Metastatic Dormancy of Prostate Cancer in Bone.

    Science.gov (United States)

    Sharma, Sambad; Xing, Fei; Liu, Yin; Wu, Kerui; Said, Neveen; Pochampally, Radhika; Shiozawa, Yusuke; Lin, Hui-Kuan; Balaji, K C; Watabe, Kounosuke

    2016-09-09

    Prostate cancer is known to frequently recur in bone; however, how dormant cells switch its phenotype leading to recurrent tumor remains poorly understood. We have isolated two syngeneic cell lines (indolent and aggressive) through in vivo selection by implanting PC3mm stem-like cells into tibial bones. We found that indolent cells retained the dormant phenotype, whereas aggressive cells grew rapidly in bone in vivo, and the growth rates of both cells in culture were similar, suggesting a role of the tumor microenvironment in the regulation of dormancy and recurrence. Indolent cells were found to secrete a high level of secreted protein acidic and rich in cysteine (SPARC), which significantly stimulated the expression of BMP7 in bone marrow stromal cells. The secreted BMP7 then kept cancer cells in a dormant state by inducing senescence, reducing "stemness," and activating dormancy-associated p38 MAPK signaling and p21 expression in cancer cells. Importantly, we found that SPARC was epigenetically silenced in aggressive cells by promoter methylation, but 5-azacytidine treatment reactivated the expression. Furthermore, high SPARC promoter methylation negatively correlated with disease-free survival of prostate cancer patients. We also found that the COX2 inhibitor NS398 down-regulated DNMTs and increased expression of SPARC, which led to tumor growth suppression in bone in vivo These findings suggest that SPARC plays a key role in maintaining the dormancy of prostate cancer cells in the bone microenvironment.

  16. BMP2-coprecipitated calcium phosphate granules enhance osteoinductivity of deproteinized bovine bone, and bone formation during critical-sized bone defect healing.

    Science.gov (United States)

    Liu, Tie; Zheng, Yuanna; Wu, Gang; Wismeijer, Daniel; Pathak, Janak L; Liu, Yuelian

    2017-01-31

    Most materials used clinically for filling critical-sized bone defects (CSBD), such as deproteinized bovine bone (DBB), lack osteoinductivity so that their therapeutic effects are far from satisfactory. The effect of bone morphogenic protein 2 (BMP2)-coprecipitated biomimetic calcium phosphate granules (BMP2-cop.BioCaP) on osteoinduction of DBB graft(s) during CSBD healing is still unknown. We investigated whether BMP2-cop.BioCaP affects the osteoinductivity of DBB, bone formation, and foreign body reaction during CSBD healing. DBB + BMP2-cop.BioCaP, DBB, DBB + BMP2, DBB + BioCaP, and autologous bone grafts were implanted in the CSBD of sheep. Bone formation, DBB/BioCaP degradability, foreign body reaction, and osteoinductivity of DBB were analyzed histologically and histomorphometrically at week 4 and 8. Combination of BMP2-cop.BioCaP and DBB healed CSBD as effectively as autologous bone grafts. About 95% of the BMP2-cop.BioCaP had been degraded and replaced by new bone at week 8 in the DBB + BMP2-cop.BioCaP-group. Foreign body reaction was reduced in the DBB + BMP2-cop.BioCaP-group compared to the other groups. The independent use of the BMP2-cop.BioCaP did not achieve a satisfactory bone repair. In conclusion, the BMP2-cop.BioCaP showed good degradability and biocompatibility, and enhanced osteoinductivity of DBB during CSBD healing in sheep, suggesting BMP2-cop.BioCaP as a potential osteoinducer to enhance the therapeutic effects of the graft materials in clinic.

  17. Obif, a Transmembrane Protein, Is Required for Bone Mineralization and Spermatogenesis in Mice.

    Directory of Open Access Journals (Sweden)

    Koji Mizuhashi

    Full Text Available Various kinds of transmembrane and secreted proteins play pivotal roles in development through cell-cell communication. We previously reported that Obif (Osteoblast induction factor, Tmem119, encoding a single transmembrane protein, is expressed in differentiating osteoblasts, and that Obif-/- mice exhibit significantly reduced bone volume in the femur. In the current study, we characterized the Obif protein and further investigated the biological phenotypes of a variety of tissues in Obif-/- mice.First, we found that O-glycosylation of the Obif protein occurs at serine residue 36 in the Obif extracellular domain. Next, we observed that Obif-/- mice exhibit bone dysplasia in association with significantly increased osteoid volume per osteoid surface (OV/OS and osteoid maturation time (Omt, and significantly decreased mineral apposition rate (MAR and bone formation rate per bone surface (BFR/BS. In addition, we observed that Obif-/- mice show a significant decrease in testis weight as well as in sperm number. By histological analysis, we found that Obif is expressed in spermatocytes and spermatids in the developing testis and that spermatogenesis is halted at the round spermatid stage in the Obif-/- testis that lacks sperm. However, the number of litters fathered by male mice was slightly reduced in Obif-/- mice compared with wild-type mice, although this was not statistically significant.Our results, taken together with previous observations, indicate that Obif is a type Ia transmembrane protein whose N-terminal region is O-glycosylated. In addition, we found that Obif is required for normal bone mineralization and late testicular differentiation in vivo. These findings suggest that Obif plays essential roles in the development of multiple tissues.

  18. Morphogenic and tumorigenic potentials of the mammary growth hormone/growth hormone receptor system.

    NARCIS (Netherlands)

    Garderen, E. van; Schalken, J.A.

    2002-01-01

    Due to the characteristics of the luteal phase of the ovarian cycle in the dog, which spans a prolonged time period, this species is a suitable model to study the role of progestins in both normal morphogenic and abnormal tumorigenic processes in the mammary gland. It has been convincingly shown tha

  19. Synergistic effects of dimethyloxallyl glycine and recombinant human bone morphogenetic protein-2 on repair of critical-sized bone defects in rats

    Science.gov (United States)

    Qi, Xin; Liu, Yang; Ding, Zhen-Yu; Cao, Jia-Qing; Huang, Jing-Huan; Zhang, Jie-Yuan; Jia, Wei-Tao; Wang, Jing; Liu, Chang-Sheng; Li, Xiao-Lin

    2017-02-01

    In bone remodeling, osteogenesis is closely coupled to angiogenesis. Bone tissue engineering using multifunctional bioactive materials is a promising technique which has the ability to simultaneously stimulate osteogenesis and angiogenesis for repair of bone defects. We developed mesoporous bioactive glass (MBG)-doped poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) composite scaffolds as delivery vehicle. Two bioactive molecules, dimethyloxalylglycine (DMOG), a small-molecule angiogenic drug, and recombinant human bone morphogenetic protein-2 (rhBMP-2), an osteoinductive growth factor, were co-incorporated into the scaffold. The synergistic effects of DMOG and rhBMP-2 released in the composite scaffolds on osteogenic and angiogenic differentiation of hBMSCs were investigated using real-time quantitative polymerase chain reaction and western blotting. Moreover, in vivo studies were conducted to observe bone regeneration and vascular formation of critical-sized bone defects in rats using micro-computed tomography, histological analyses, Microfil® perfusion, fluorescence labeling, and immunohistochemical analysis. The results showed that DMOG and rhBMP-2 released in the MBG-PHBHHx scaffolds did exert synergistic effects on the osteogenic and angiogenic differentiation of hBMSCs. Moreover, DMOG and rhBMP-2 produced significant increases in newly-formed bone and neovascularization of calvarial bone defects in rats. It is concluded that the co-delivery strategy of both rhBMP-2 and DMOG can significantly improve the critical-sized bone regeneration.

  20. Synergistic effects of dimethyloxallyl glycine and recombinant human bone morphogenetic protein-2 on repair of critical-sized bone defects in rats

    Science.gov (United States)

    Qi, Xin; Liu, Yang; Ding, Zhen-yu; Cao, Jia-qing; Huang, Jing-huan; Zhang, Jie-yuan; Jia, Wei-tao; Wang, Jing; Liu, Chang-sheng; Li, Xiao-lin

    2017-01-01

    In bone remodeling, osteogenesis is closely coupled to angiogenesis. Bone tissue engineering using multifunctional bioactive materials is a promising technique which has the ability to simultaneously stimulate osteogenesis and angiogenesis for repair of bone defects. We developed mesoporous bioactive glass (MBG)-doped poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) composite scaffolds as delivery vehicle. Two bioactive molecules, dimethyloxalylglycine (DMOG), a small-molecule angiogenic drug, and recombinant human bone morphogenetic protein-2 (rhBMP-2), an osteoinductive growth factor, were co-incorporated into the scaffold. The synergistic effects of DMOG and rhBMP-2 released in the composite scaffolds on osteogenic and angiogenic differentiation of hBMSCs were investigated using real-time quantitative polymerase chain reaction and western blotting. Moreover, in vivo studies were conducted to observe bone regeneration and vascular formation of critical-sized bone defects in rats using micro-computed tomography, histological analyses, Microfil® perfusion, fluorescence labeling, and immunohistochemical analysis. The results showed that DMOG and rhBMP-2 released in the MBG-PHBHHx scaffolds did exert synergistic effects on the osteogenic and angiogenic differentiation of hBMSCs. Moreover, DMOG and rhBMP-2 produced significant increases in newly-formed bone and neovascularization of calvarial bone defects in rats. It is concluded that the co-delivery strategy of both rhBMP-2 and DMOG can significantly improve the critical-sized bone regeneration. PMID:28230059

  1. Biomineralization of Engineered Spider Silk Protein-Based Composite Materials for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    John G. Hardy

    2016-07-01

    Full Text Available Materials based on biodegradable polyesters, such as poly(butylene terephthalate (PBT or poly(butylene terephthalate-co-poly(alkylene glycol terephthalate (PBTAT, have potential application as pro-regenerative scaffolds for bone tissue engineering. Herein, the preparation of films composed of PBT or PBTAT and an engineered spider silk protein, (eADF4(C16, that displays multiple carboxylic acid moieties capable of binding calcium ions and facilitating their biomineralization with calcium carbonate or calcium phosphate is reported. Human mesenchymal stem cells cultured on films mineralized with calcium phosphate show enhanced levels of alkaline phosphatase activity suggesting that such composites have potential use for bone tissue engineering.

  2. Mistura de proteínas morfogenéticas ósseas, hidroxiapatita, osso inorgânico e colágeno envolta por membrana de pericárdio no preenchimento de defeito ósseo segmentar em coelhos Mixture of bone morphogenetic protein, hydroxyapatite, inorganic bone and collagen interposed by pericardium barrier membrane in the filling of the segmental bone defect in rabbits

    Directory of Open Access Journals (Sweden)

    R.B. Ciani

    2006-02-01

    Full Text Available Avaliou-se o uso de biomaterial de origem bovina na regeneração de defeitos ósseos segmentares empregando-se 12 coelhos, fêmeas, da raça Norfolk, com idade de seis meses e pesos entre 3 e 4,5kg. Realizou-se falha segmentar bilateral de um centímetro de comprimento na diáfise do rádio, com inclusão do periósteo. No membro direito, o defeito foi delimitado por membrana de pericárdio liofilizada, contendo em seu interior mistura de proteínas morfogenéticas ósseas adsorvidas a hidroxiapatita, colágeno liofilizado e osso inorgânico. No membro esquerdo, o defeito não recebeu tratamento. Radiografias foram obtidas ao término do procedimento cirúrgico e aos sete, 30, 60, 90, 120 e 150 dias de pós-operatório. Após eutanásia de seis coelhos aos 60 dias e seis aos 150 dias de pós-cirúrgico, os resultados radiográficos e histológicos mostraram que a regeneração óssea foi inibida nos defeitos segmentares tratados com o biomaterial.Biomaterials of bovine origin in regenerating segmental bone defects were evaluated. Twelve six-month old Norfolk rabbits, weighting 3 to 4.5kg were used. A 1cm long segmental defect was created in the radial diaphysis, including the periosteum, of both forelimbs. In the right forelimb, the defect was filled using a mixture of bone morphogenic proteins adsorbed to hydroxyapatite, agglutinant of lyophilized collagen in granules and anorganic cortical bone in granules delimited by a pericardial membrane. In the left forelimb, the defect did not receive treatment and served as a control. Radiographies were taken immediately after surgery and at seven, 30, 60, 90, 120 and 150 days post-operatively. Six rabbits were euthanized at 60 days and the other six at 150 days post-surgery for histological evaluation. Radiographic and histological results revealed that bone regeneration was inhibited in the segmental defects receiving biomaterials.

  3. Cell and protein compatible 3D bioprinting of mechanically strong constructs for bone repair.

    Science.gov (United States)

    Sawkins, M J; Mistry, P; Brown, B N; Shakesheff, K M; Bonassar, L J; Yang, J

    2015-07-02

    Rapid prototyping of bone tissue engineering constructs often utilizes elevated temperatures, organic solvents and/or UV light for materials processing. These harsh conditions may prevent the incorporation of cells and therapeutic proteins in the fabrication processes. Here we developed a method for using bioprinting to produce constructs from a thermoresponsive microparticulate material based on poly(lactic-co-glycolic acid) at ambient conditions. These constructs could be engineered with yield stresses of up to 1.22 MPa and Young's moduli of up to 57.3 MPa which are within the range of properties of human cancellous bone. Further study showed that protein-releasing microspheres could be incorporated into the bioprinted constructs. The release of the model protein lysozyme from bioprinted constructs was sustainted for a period of 15 days and a high degree of protein activity could be measured up to day 9. This work suggests that bioprinting is a viable route to the production of mechanically strong constructs for bone repair under mild conditions which allow the inclusion of viable cells and active proteins.

  4. The bone matrix protein secreted phosphoprotein 24 kD (Spp24): bone metabolism regulator and starting material for biotherapeutic materials.

    Science.gov (United States)

    Murray, Samuel S; Wang, Jeffrey C; Duarte, Maria Eugenia Leite; Zhao, Ke-Wei; Tian, Haijun; Francis, Timothy; Brochmann Murray, Elsa J

    2015-05-01

    Secreted phosphoprotein 24 kD (Spp24) is a bone matrix protein that appears to be derived primarily from the liver and delivered to other tissues in a protective complex. A significant role in bone growth and turnover is suggested by genetic studies that associate the gene locus (SPP2) with bone mineral density and bone quality. The function of this protein in the normal bone environment is unknown but clues are given by the fact that Spp24, or proteolytic products of Spp24, bind cytokines of the TGF-β superfamily and also activate intracellular signaling pathways. Several potential biotherapeutics have been engineered from this protein including materials that enhance BMP-induced bone healing and, on the other hand, materials that inhibit BMPs in clinical situations where this is called for such as reducing BMP-induced inflammation and inhibiting tumors dependent on BMP autocrine systems. As understanding of the structure and function of this protein increases, more opportunities for rationally developed therapeutics will become apparent.

  5. Reversibilitas kalsifikasi tulang akibat kekurangan protein pre dan post natal (Reversibility of bone calcification on pre and post natal protein deficiency

    Directory of Open Access Journals (Sweden)

    Pinandi Sri Pudyani

    2005-09-01

    Full Text Available The growth and development play an important role in orthodontics mainly in bone, because it can determine the maturity of the bone. Bone maturity evaluation is very important in orthodontic treatment, because there are many individual variations in growth and development such as time, duration and velocity of the growth. Nutritional status during pregnancy and infant period will influence the growth and the development of bone. Protein diet is an important factor, which will determine the optimal calcification during bone growth and development stages. Bone calcification, in orthodontics, can be used to estimate the bone maturity for diagnosis and treatment planning. The purpose of this study was to recognize ones ability to surpass calcium and phosphor deficiency because of pre and postnatal protein deficiency. There were three groups of samples of Rattus norvegicus rats. The first group was the control group with standard diet, the second was the infant group with pre and postnatal protein deficiency, and the third group was young rat at weaning age with pre and postnatal protein deficiency supplemented with enough protein in the diet. Bone calcification stage was analyzed: 1 Histologically by measuring epiphyseal width on right femur; 2 by measuring calcium and phosphor concentration on left femur with Spectrophotometry Atomic Absorption and spectroscopy ultra light visible. The data were analyzed by one way ANOVA continued by t test. The result showed that: 1 there was significant (p < 0.01 epiphyseal width difference between group I and II, I and III (p < 0,01 but there was not significant difference between group II & III (p > 0.05; 2 there was significant calcium and phosphor concentration on bone between group I, II and III (p < 0.01. It was concluded that bone calcification damage because of pre and post natal protein deficiency was an irreversible process. Protein supplement after bone calcification could not restore the condition.

  6. Nanofibrous yet injectable polycaprolactone-collagen bone tissue scaffold with osteoprogenitor cells and controlled release of bone morphogenetic protein-2

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, Gayathri; Bialorucki, Callan [Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606 (United States); Yildirim-Ayan, Eda, E-mail: eda.yildirimayan@utoledo.edu [Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606 (United States); Department of Orthopaedic Surgery, University of Toledo Medical Center, Toledo, OH 43614 (United States)

    2015-06-01

    In this work, we developed a nanofibrous, yet injectable orthobiologic tissue scaffold that is capable of hosting osteoprogenitor cells and controlling kinetic release profile of the encapsulated pro-osteogenic factor without diminishing its bioactivity over 21 days. This innovative injectable scaffold was synthesized by incorporating electrospun and subsequently O{sub 2} plasma-functionalized polycaprolactone (PCL) nanofibers within the collagen type-I solution along with MC3T3-E1 cells (pre-osteoblasts) and bone morphogenetic protein-2 (BMP2). Through changing the PCL nanofiber concentration within the injectable scaffolds, we were able to tailor the mechanical strength, protein retention capacity, bioactivity preservation, and osteoinductive potential of the scaffolds. The nanofibrous internal structure of the scaffold allowed us to use a low dose of BMP2 (200 ng/ml) to achieve osteoblastic differentiation in in vitro culture. The osteogenesis capacity of the injectable scaffolds were evaluated though measuring MC3T3-E1 cell proliferation, ALP activity, matrix mineralization, and early- and late-osteoblast specific gene expression profiles over 21 days. The results demonstrated that the nanofibrous injectable scaffold provides not only an osteoinductive environment for osteoprogenitor cells to differentiate, but also a suitable biomechanical and biochemical environment to act as a reservoir for osteogenic factors with controlled release profile. - Highlights: • Injectable nanofibrous scaffold with osteoprogenitor cells and BMP2 was synthesized. • PCL nanofiber concentration within collagen scaffold affected the BMP2 retention and bioactivity. • Optimal PCL concentration was identified for mechanical stability, injectability, and osteogenic activity. • Scaffolds exhibited long-term osteoinductive capacity for bone repair and regeneration.

  7. The Effects of Tocotrienol and Lovastatin Co-Supplementation on Bone Dynamic Histomorphometry and Bone Morphogenetic Protein-2 Expression in Rats with Estrogen Deficiency

    OpenAIRE

    Kok-Yong Chin; Saif Abdul-Majeed; Norazlina Mohamed; Soelaiman Ima-Nirwana

    2017-01-01

    Both tocotrienol and statins are suppressors of the mevalonate pathway. Supplementation of tocotrienol among statin users could potentially protect them against osteoporosis. This study aimed to compare the effects of tocotrienol and lovastatin co-supplementation with individual treatments on bone dynamic histomorphometric indices and bone morphogenetic protein-2 (BMP-2) gene expression in ovariectomized rats. Forty-eight female Sprague-Dawley rats were randomized equally into six groups. The...

  8. Parathyroid hormone-related protein (pthrp) is a gravisensor for lung and bone.

    Science.gov (United States)

    Torday, J.

    Parathyroid Hormone-related Protein (PTHrP) and its receptor represent a stretch- sensitive paracrine signaling mechanism (Torday, 1999) that may sense gravity. PTHrP has been shown to be essential for the development and homeostatic regulation of lung (Rubin et al, 2000) and bone (Kronenberg et al, 1994). Since both lung and bone structure and function are affected by microgravity, we hypothesized that microgravity down-regulates PTHrP signaling. To test this hypothesis, we suspended lung and bone cells in the microgravity environment of a rotating wall vessel apparatus, which simulates microgravity, for up to 72 hours. During the first 6-8 hours, PTHrP expression fell precipitously, decreasing by 80-90%; during the subsequent 64-66 hours, PTHrP expression remained at this newly established level. PTHrP production decreased from 5 pmol/ml/3hours to undetectable levels in culture medium from microgravity-exposed cells. The cells were then put back in culture at unit gravity for 24hours, and PTHrP expression and production returned to normal levels. Based on these findings, we have obtained bones from rats flown in space for 2 weeks (mission SLS-2, provided courtesy of the Biospecimen Facility, Ames Research Center, NASA, as a result of a peer-reviewed proposal). Analysis of PTHrP expression by femurs and tibias from these animals (n=5) revealed that PTHrP expression was 60% lower than in bones from ground-based rats. Interestingly, there were no differences in PTHrP exp ression by parietal bones, indicating that the effect of weightlessness on PTHrP expression is due to the unweighting of weight-bearing bones. This finding is consistent with other studies of microgravity-induced osteoporosis. The loss of the PTHrP signaling mechanism may be corrected using chemical agents that up-regulate this pathway.

  9. Osteogenic protein-1 increases the fixation of implants grafted with morcellised bone allograft and ProOsteon bone substitute: an experimental study in dogs

    DEFF Research Database (Denmark)

    Baad-Hansen, Thomas Einer; Overgaard, S; Lind, M;

    2007-01-01

    (ProOsteon) would improve the incorporation of bone and implant fixation. We also compared the response to using ProOsteon alone against bone allograft used in isolation. We implanted two non-weight-bearing hydroxyapatite-coated implants into each proximal humerus of six dogs, with each implant...... surrounded by a concentric 3 mm gap. These gaps were randomly allocated to four different procedures in each dog: 1) bone allograft used on its own; 2) ProOsteon used on its own; 3) allograft and ProOsteon used together; or 4) allograft and ProOsteon with the addition of osteogenic protein-1. After three...

  10. Promoting lumbar spinal fusion by adenovirus-mediated bone morphogenetic protein-4 gene therapy

    Institute of Scientific and Technical Information of China (English)

    ZHAO Jian; ZHAO Dun-yan; SHEN Ai-guo; LIU Fan; ZHANG Feng; SUN Yu; WU Hong-fu; LU Chun-feng; SHI Hong-guang

    2007-01-01

    Objective: To determine whether an adenoviral construct containing bone morphogenetic protein-4 (BMP-4) gene can be used for lumbar spinal fusion. Methods: Twelve New Zealand white rabbits were randomly divided into two groups, 8 in the experimental group and 4 in the control group. Recombinant, replication-defective type 5 adenovirus with the cytomegalovirus (CMV) promoter and BMP-4 gene (Ad-BMP-4) was used. Another adenovirus constructed with the CMV promoter and β-galactosidase gene (Ad-β-gal) was used as control. Using collagen sponge as a carrier, Ad-BMP-4 (2.9×108 pfu/ml ) was directly implanted on the surface of L5-L6 lamina in the experimental group, while Ad-β-gal was implanted simultaneously in the control group. X-ray was obtained at 3, 6, and 12 weeks postoperatively to observe new bone formation. When new bone formation was identified, CT scans and three-dimensional reconstruction were obtained. After that, the animals were killed and underwent histological inspection.Results: In 12 weeks after operation, new bone formation and fusion were observed on CT scans in the experimental group, without the evidence of ectopic calcification in the canal. Negative results were found in the control group. Histological analysis demonstrated endochondral bone formation at the operative site and fusion at early stage was testified.Conclusions: In vivo gene therapy using Ad-BMP-4 for lumbar posterolateral spinal fusion is practicable and effective.

  11. Estrogen modulates the mRNA levels for cancellous bone protein of ovariectomized rats.

    Science.gov (United States)

    Salih, M A; Liu, C C; Arjmandi, B H; Kalu, D N

    1993-12-01

    This study was undertaken to examine the effects of ovariectomy and 17 beta-estradiol (E2) on the gene expression of type 1 collagen, osteocalcin and the protooncogen, c-myc, in cancellous bone. Female Sprague-Dawley rats, aged 95 days, were divided into 4 groups. Group 1 was sham operated and Groups 2-4 were ovariectomized. Groups 3 and 4 received daily injections of 160 ng and 1600 ng E2/kg body weight, respectively. Groups 1 and 2 received the solvent vehicle. All animals were sacrificed after 14 days. The femurs were dissected out and cancellous bone scraped from the distal metaphysis. RNA was isolated from the cancellous bone, immobilized on filters or size-fractionated by agarose gel electrophoresis and adsorbed on filters which were then hybridized with specific cDNA probes. Ovariectomy resulted in a significant increase in the mRNAs of type 1 collagen, osteocalcin and c-myc. The increase was suppressed in animals that received 17 beta-estradiol injections. In addition, ovariectomy caused the expected decrease in cancellous bone in the proximal tibia and increased osteoclast and osteoblast numbers. The ovariectomy-induced changes were prevented by 17 beta-estradiol administration. These findings suggest that the lack of ovarian hormones shortly after ovariectomy up-regulates and estrogen administration down-regulates the expression of important cancellous bone matrix proteins as well as the protooncogen, c-myc.

  12. Binding of integrin α1 to bone morphogenetic protein receptor IA suggests a novel role of integrin α1β1 in bone morphogenetic protein 2 signalling.

    Science.gov (United States)

    Zu, Yan; Liang, Xudong; Du, Jing; Zhou, Shuai; Yang, Chun

    2015-11-01

    Here, we observed that integrin α1β1 and bone morphogenetic protein receptor (BMPR) IA formed a complex and co-localised in several cell types. However, the molecular interaction between these two molecules was not studied in detail to date and the role of the interaction in BMPR signalling remains unknown; thus, these were investigated here. In a steered molecular dynamics (SMD) simulation, the observed development of the rupture force related to the displacement between the A-domain of integrin α1 and the extracellular domain of BMPR IA indicated a strong molecular interaction within the integrin-BMPR complex. Analysis of the intermolecular forces revealed that hydrogen bonds, rather than salt bridges, are the major contributors to these intermolecular interactions. By using Enzyme-linked immunosorbent assay (ELISA) and co-immunoprecipitation (co-IP) experiments with site-directed mutants, we found that residues 85-89 in BMPR IA play the most important role for BMPR IA binding to integrin α1β1. These residues are the same as those responsible for bone morphogenetic protein 2 (BMP-2)/BMPR IA binding. In our experiments, we also found that the interference of integrin α1β1 up regulated the level of phosphorylated Smad1, 5, 8, which is the downstream of BMP/BMPR signalling. Therefore, our results suggest that integrin α1β1/BMPR IA may block BMP-2/BMPR IA complex information and interfere with the BMP-2 signalling pathway in cells.

  13. Effect of rapidly resorbable calcium phosphates and a calcium phosphate bone cement on the expression of bone-related genes and proteins in vitro.

    Science.gov (United States)

    Knabe, C; Berger, G; Gildenhaar, R; Meyer, J; Howlett, C R; Markovic, B; Zreiqat, H

    2004-04-01

    The use of biodegradable bone substitutes is advantageous for alveolar ridge augmentation because it avoids second-site surgery for autograft harvesting. This study examines the effect of novel, rapidly resorbable calcium phosphates and a calcium phosphate bone cement on the expression of bone-related genes and proteins by human bone-derived cells (HBDCs) and compares this behavior to that of tricalciumphosphate (TCP). Test materials were alpha-TCP, two materials with a crystalline phase Ca(2)KNa(PO(4))(2) and with a small amorphous portion containing either magnesium potassium phosphate (material denominated GB14) or silica phosphate (material denominated GB9), and a calcium phosphate bone cement (material denominated Biocement D). HBDCs were grown on the substrata for 3, 7, 14, and 21 days, counted, and probed for various mRNAs and proteins (type I collagen, osteocalcin, osteopontin, osteonectin, alkaline phosphatase, and bone sialoprotein). All substrates supported continuous cellular growth for 21 days. In the presence of GB14 and Biocement D specimens cell proliferation was reduced and cell differentiation increased. At day 21, the greatest number of cells was found on GB9 expressing significantly higher levels of bone-related proteins than cells grown on all other surfaces. Because all novel materials facilitated the expression of the osteoblastic phenotype at least as much as TCP and the polystyrene control, these biomaterials can be regarded as excellent candidate bone substitute materials. GB9 induced the highest proliferation and cellular differentiation after 21 days of incubation, suggesting that this material may possess a higher potency for enhancing osteogenesis than TCP.

  14. Functional assay, expression of growth factors and proteins modulating bone-arrangement in human osteoblasts seeded on an anorganic bovine bone biomaterial

    Directory of Open Access Journals (Sweden)

    O Trubiani

    2010-07-01

    Full Text Available The basic aspects of bone tissue engineering include chemical composition and geometry of the scaffold design, because it is very important to improve not only cell attachment and growth but especially osteodifferentiation, bone tissue formation, and vascularization. Geistlich Bio-Oss® (GBO is a xenograft consisting of deproteinized, sterilized bovine bone, chemically and physically identical to the mineral phase of human bone.In this study, we investigated the growth behaviour and the ability to form focal adhesions on the substrate, using vinculin, a cytoskeletal protein, as a marker. Moreover, the expression of bone specific proteins and growth factors such as type I collagen, osteopontin, bone sialoprotein, bone morphogenetic protein-2 (BMP-2, BMP-7 and de novo synthesis of osteocalcin in normal human osteoblasts (NHOst seeded on xenogenic GBO were evaluated. Our observations suggest that after four weeks of culture in differentiation medium, the NHOst showed a high affinity for the three dimensional biomaterial; in fact, cellular proliferation, migration and colonization were clearly evident. The osteogenic differentiation process, as demonstrated by morphological, histochemical, energy dispersive X-ray microanalysis and biochemical analysis was mostly obvious in the NHOst grown on three-dimensional inorganic bovine bone biomaterial. Functional studies displayed a clear and significant response to calcitonin when the cells were differentiated. In addition, the presence of the biomaterial improved the response, suggesting that it could drive the differentiation of these cells towards a more differentiated osteogenic phenotype. These results encourage us to consider GBO an adequate biocompatible three-dimensional biomaterial, indicating its potential use for the development of tissue-engineering techniques.

  15. Endogenous parathyroid hormone-related protein compensates for the absence of parathyroid hormone in promoting bone accrual in vivo in a model of bone marrow ablation.

    Science.gov (United States)

    Zhu, Qi; Zhou, Xichao; Zhu, Min; Wang, Qian; Goltzman, David; Karaplis, Andrew; Miao, Dengshun

    2013-09-01

    To assess the effect of hypoparathyroidism on osteogenesis and bone turnover in vivo, bone marrow ablation (BMXs) were performed in tibias of 8-week-old wild-type and parathyroid hormone-null (PTH(-/-)) mice and newly formed bone tissue was analyzed from 5 days to 3 weeks after BMX. At 1 week after BMX, trabecular bone volume, osteoblast numbers, alkaline phosphatase-positive areas, type I collagen-positive areas, PTH receptor-positive areas, calcium sensing receptor-positive areas, and expression of bone formation-related genes were all decreased significantly in the diaphyseal regions of bones of PTH(-/-) mice compared to wild-type mice. In contrast, by 2 weeks after BMX, all parameters related to osteoblastic bone accrual were increased significantly in PTH(-/-) mice. At 5 days after BMX, active tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts had appeared in wild-type mice but were undetectable in PTH(-/-) mice, Both the ratio of mRNA levels of receptor activator of NF-κB ligand (RANKL)/osteoprotegerin (OPG) and TRAP-positive osteoclast surface were still reduced in PTH(-/-) mice at 1 week but were increased by 2 weeks after BMX. The expression levels of parathyroid hormone-related protein (PTHrP) at both mRNA and protein levels were upregulated significantly at 1 week and more dramatically at 2 weeks after BMX in PTH(-/-) mice. To determine whether the increased newly formed bones in PTH(-/-) mice at 2 weeks after BMX resulted from the compensatory action of PTHrP, PTH(-/-) PTHrP(+/-) mice were generated and newly formed bone tissue was compared in these mice with PTH(-/-) and wild-type mice at 2 weeks after BMX. All parameters related to osteoblastic bone formation and osteoclastic bone resorption were reduced significantly in PTH(-/-) PTHrP(+/-) mice compared to PTH(-/-) mice. These results demonstrate that PTH deficiency itself impairs osteogenesis, osteoclastogenesis, and osteoclastic bone resorption, whereas subsequent upregulation of PTHr

  16. Creating new functional biomaterials : construction and production of Bone Morphogenetic 2-ELP hybrid proteins

    OpenAIRE

    Silva, J. Azevedo; Machado, Raul; Reis, R.L.; Rodríguez-Cabello, José Carlos; Casal, Margarida

    2010-01-01

    Bone morphogenetic protein 2 (BMP-2) is a potent osteoinductive cytokine from the TGF-β superfamily that triggers the development of stem cells into osteoblasts. Its therapeutic interest has led to the development of various production systems for recombinant variables of BMP-2. Production has been achieved in expression systems ranging from animal cells to bacteria, but is always associated with three major drawbacks: low production rates (in animal cells), low activity (bacterial cells) and...

  17. Protein growth factors loaded highly porous chitosan scaffold: A comparison of bone healing properties

    Energy Technology Data Exchange (ETDEWEB)

    Nandi, Samit K., E-mail: samitnandi1967@gmail.com [Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata (India); Kundu, Biswanath, E-mail: biswa_kundu@rediffmail.com [Bioceramics and Coating Division, CSIR—Central Glass and Ceramic Research Institute, Kolkata (India); Basu, Debabrata [Bioceramics and Coating Division, CSIR—Central Glass and Ceramic Research Institute, Kolkata (India)

    2013-04-01

    Present study aimed to investigate and compare effectiveness of porous chitosan alone and in combination with insulin like growth factor-1 (IGF-1) and bone morphogenetic protein-2 (BMP-2) in bone healing. Highly porous (85 ± 2%) with wide distribution of macroporous (70–900 μm) chitosan scaffolds were fabricated as bone substitutes by employing a simple liquid hardening method using 2% (w/v) chitosan suspension. IGF-1 and BMP-2 were infiltrated using vacuum infiltration with freeze drying method. Adsorption efficiency was found to be 87 ± 2 and 90 ± 2% for BMP-2 and IGF-1 respectively. After thorough material characterization (pore details, FTIR and SEM), samples were used for subsequent in vivo animal trial. Eighteen rabbit models were used to evaluate and compare control (chitosan) (group A), chitosan with IGF-1 (group B) and chitosan with BMP-2 (group C) in the repair of critical size bone defect in tibia. Radiologically, there was evidence of radiodensity in defect area from 60th day (initiated on 30th day) in groups B and C as compared to group A and attaining nearly bony density in most of the part at day 90. Histological results depicted well developed osteoblastic proliferation around haversian canal along with proliferating fibroblast, vascularization and reticular network which was more pronounced in group B followed by groups C and A. Fluorochrome labeling and SEM studies in all groups showed similar outcome. Hence, porous chitosan alone and in combination with growth factors (GFs) can be successfully used for bone defect healing with slight advantage of IGF-1 in chitosan samples. - Highlights: ► Fabrication and characterization of porous chitosan with or without IGF-1 and BMP-2 ► Highly porous growth factor loaded chitosan studied in animal subjects for 3 months ► Parameters studied: histopathology, radiology and fluorochrome labeling ► IGF-1 loaded porous chitosan found to be very effective for bone defect healing.

  18. Discoidin domain receptor 2 facilitates prostate cancer bone metastasis via regulating parathyroid hormone-related protein.

    Science.gov (United States)

    Yan, Zhang; Jin, Su; Wei, Zhang; Huilian, Hou; Zhanhai, Yin; Yue, Teng; Juan, Li; Jing, Li; Libo, Yao; Xu, Li

    2014-09-01

    Prostate cancer frequently metastasizes to the skeleton but the underlying mechanism remains largely undefined. Discoidin domain receptor 2 (DDR2) is a member of receptor tyrosine kinase (RTK) family and is activated by collagen binding. This study aimed to investigate the function and detailed mechanism of DDR2 in prostate cancer bone dissemination. Herein we found that DDR2 was strongly expressed in bone-metastatic prostate cancer cells and tissues compared to that in normal controls. Enhanced expression of constitutively activated DDR2 led to elevation in motility and invasiveness of prostate cancer cells, whereas knockdown of DDR2 through specific shRNA caused a dramatic repression. Knockdown of DDR2 in prostate cancer cells resulted in significant decrease in the proliferation, differentiation and function of osteoblast. Over-expression of DDR2 in prostate cancer cells resulted in notable acceleration of osteoclast differentiation and bone resorption, whereas knockdown of DDR2 exhibited the opposite effects. An intrabone injection bone metastasis animal model demonstrated that DDR2 promoted osteolytic metastasis in vivo. Molecular evidence demonstrated that DDR2 regulated the expression, secretion, and promoter activity of parathyroid hormone-related protein (PTHrP), via modulating Runx2 phosphorylation and transactivity. DDR2 was responsive to TGF-β and involved in TGF-β-mediated osteoclast activation and bone resorption. In addition, DDR2 facilitated prostate cancer cells adhere to type I collagen. This study reveals for the first time that DDR2 plays an essential role in prostate cancer bone metastasis. The mechanism disclosure may provide therapeutic targets for the treatment of prostate cancer.

  19. Preferential preservation of noncollagenous protein during bone diagenesis: Implications for chronometric and stable isotopic measurements

    Science.gov (United States)

    Masters, Patricia M.

    1987-12-01

    Preferential preservation of noncollagenous proteins (NCP) in diagenetically altered bone will affect amino acid compositions, inflate D/L aspartic acid ratios, and increase C/N ratios. Human skeletal remains representing both well preserved (collagenous) and diagenetically altered (noncollagenous) bones were selected from several southern California coastal archaeological sites that date from 8400 to 4100 years B.P. Amino acid compositions of the poorly preserved samples resembled NCP, which are probably retained by adsorption to the hydroxyapatite mineral phase of bone whereas collagen is degraded and lost to the environment over time. Since the racemization rate of aspartic acid in NCP is an order of magnitude faster than in collagen, the conservation of NCP in diagenetically altered bone can explain the high D/L aspartic acid ratios, and the erroneous Upper Pleistocene racemization ages calculated from these ratios, for several California Indian burials. Amino acid compositional analyses also indicated a non-amino acid source of nitrogen in the poorly preserved samples, which may account for their lower C/N ratios despite the acidic amino acid profiles typical of NCP. Preservation of NCP rather than collagen also precludes the extraction of a gelatin residue for radiocarbon dating and stable isotope analyses, but remnant NCP can yield apparently accurate radiocarbon dates. As collagen and phosphoprotein purified from a sample of modern human dentin have the same δ 13C and δ 15N values, remnant NCP may also be useful for paleodiet reconstructions based on stable carbon and nitrogen isotope compositions. Dentin collagen appears to be more resistant to diagenetic changes than does bone collagen. Consequently, dentin promises to be a more reliable material than bone for chronometric and stable isotope measurements.

  20. The Effects of Tocotrienol and Lovastatin Co-Supplementation on Bone Dynamic Histomorphometry and Bone Morphogenetic Protein-2 Expression in Rats with Estrogen Deficiency.

    Science.gov (United States)

    Chin, Kok-Yong; Abdul-Majeed, Saif; Mohamed, Norazlina; Ima-Nirwana, Soelaiman

    2017-02-15

    Both tocotrienol and statins are suppressors of the mevalonate pathway. Supplementation of tocotrienol among statin users could potentially protect them against osteoporosis. This study aimed to compare the effects of tocotrienol and lovastatin co-supplementation with individual treatments on bone dynamic histomorphometric indices and bone morphogenetic protein-2 (BMP-2) gene expression in ovariectomized rats. Forty-eight female Sprague-Dawley rats were randomized equally into six groups. The baseline was sacrificed upon receipt. All other groups were ovariectomized, except for the sham group. The ovariectomized groups were administered orally daily with (1) lovastatin 11 mg/kg/day alone; (2) tocotrienol derived from annatto bean (annatto tocotrienol) 60 mg/kg/day alone; (3) lovastatin 11 mg/kg/day, and annatto tocotrienol 60 mg/kg/day. The sham and ovariectomized control groups were treated with equal volume of vehicle. After eight weeks of treatment, the rats were sacrificed. Their bones were harvested for bone dynamic histomorphometry and BMP-2 gene expression. Rats supplemented with annatto tocotrienol and lovastatin concurrently demonstrated significantly lower single-labeled surface, but increased double-labeled surface, mineralizing surface, mineral apposition rate and bone formation rate compared to individual treatments (p bone parameters. In conclusion, tocotrienol can augment the bone formation and mineralization in rats receiving low-dose statins. Supplementation of tocotrienol in statin users can potentially protect them from osteoporosis.

  1. Effects of dietary protein and glycaemic index on biomarkers of bone turnover in children

    DEFF Research Database (Denmark)

    Dalskov, Stine-Mathilde; Müller, Martha; Ritz, Christian;

    2014-01-01

    For decades, it has been debated whether high protein intake compromises bone mineralisation, but no long-term randomised trial has investigated this in children. In the family-based, randomised controlled trial DiOGenes (Diet, Obesity and Genes), we examined the effects of dietary protein and gl...... group after 6 months of intervention (95 % CI 2·2, 56·1 ng/ml, P= 0·034). The dietary intervention did not affect U-NTx (P= 0·96) or height (P= 0·80). Baseline levels of U-NTx and osteocalcin correlated with changes in height at month 6 across the dietary groups (P......For decades, it has been debated whether high protein intake compromises bone mineralisation, but no long-term randomised trial has investigated this in children. In the family-based, randomised controlled trial DiOGenes (Diet, Obesity and Genes), we examined the effects of dietary protein....../low GI; high protein/high GI; control. They received dietary instructions and were provided all foods for free. Children, who were eligible and willing to participate, were included in the study. In the present analyses, we included children with data on plasma osteocalcin or urinary N...

  2. The application of bone morphogenetic proteins to periodontal and peri-implant tissue regeneration: A literature review

    OpenAIRE

    Karuppanan P Sasikumar; Sugumari Elavarasu; Jayaprakash S Gadagi

    2012-01-01

    Progress in understanding the role of bone morphogenetic proteins (BMPs) in craniofacial and tooth development and the demonstration of stem cells in periodontal ligament have set the stage for periodontal regenerative therapy and tissue engineering. Furthermore, recent approval by the Food and Drug Administration of recombinant human BMPs for accelerating bone fusion in slow-healing fractures indicates that this protein family may prove useful in designing regenerative treatments in periodon...

  3. Molecular aspects of osteopathy in type 1 Gaucher disease: correlation between genetics and bone density.

    Science.gov (United States)

    Arnheim, Efrat; Chicco, Gaya; Phillips, Mici; Lebel, Ehud; Foldes, A Joseph; Itzchaki, Menachem; Elstein, Deborah; Zimran, Ari; Altarescu, Gheona

    2008-07-01

    Bone-related complications in Gaucher disease are considered to be poorly responsive to specific enzyme replacement therapy. Polymorphisms of candidate genes associated with low bone density were investigated to see whether they are correlated with bone mineral density (BMD) and bone involvement in Gaucher disease. Genotyping for polymorphisms in candidate genes (interleukins 1alpha and 1beta, interleukin-1 receptor antagonist; cytochrome P450; collagen 1A1; low-density Lipoprotein Receptor; bone morphogenic protein 4; vitamin D receptor; and estrogen receptor 2beta) were performed using standard methodologies. BMD was measured by dual energy X-ray absorptiometry (DXA). One hundred and ninety-four patients and 100 controls were genotyped for the above polymorphisms. Thirteen haplotypes were obtained, with several correlations with BMD in patients; also, a haplotype (T889-T3954-C511-240VNTR of IL1) was significantly correlated with T-scores and Z-score for femur neck and lumbar spine (p = 0.01) in patients. Haplotypes of bone-specific candidate genes associated with BMD may predict severity of these features in Gaucher disease.

  4. Controversies surrounding high-protein diet intake: satiating effect and kidney and bone health.

    Science.gov (United States)

    Cuenca-Sánchez, Marta; Navas-Carrillo, Diana; Orenes-Piñero, Esteban

    2015-05-01

    Long-term consumption of a high-protein diet could be linked with metabolic and clinical problems, such as loss of bone mass and renal dysfunction. However, although it is well accepted that a high-protein diet may be detrimental to individuals with existing kidney dysfunction, there is little evidence that high protein intake is dangerous for healthy individuals. High-protein meals and foods are thought to have a greater satiating effect than high-carbohydrate or high-fat meals. The effect of high-protein diets on the modulation of satiety involves multiple metabolic pathways. Protein intake induces complex signals, with peptide hormones being released from the gastrointestinal tract and blood amino acids and derived metabolites being released in the blood. Protein intake also stimulates metabolic hormones that communicate information about energy status to the brain. Long-term ingestion of high amounts of protein seems to decrease food intake, body weight, and body adiposity in many well-documented studies. The aim of this article is to provide an extensive overview of the efficacy of high protein consumption in weight loss and maintenance, as well as the potential consequences in human health of long-term intake.

  5. A new biocompatible delivery scaffold containing heparin and bone morphogenetic protein 2

    Directory of Open Access Journals (Sweden)

    Thanyaphoo Suphannee

    2016-09-01

    Full Text Available Silicon-substituted calcium phosphate (Si-CaP was developed in our laboratory as a biomaterial for delivery in bone tissue engineering. It was fabricated as a 3D-construct of scaffolds using chitosan-trisodium polyphosphate (TPP cross-linked networks. In this study, heparin was covalently bonded to the residual -NH2 groups of chitosan on the scaffold applying carbodiimide chemistry. Bonded heparin was not leached away from scaffold surfaces upon vigorous washing or extended storage. Recombinant human bone morphogenetic protein 2 (rhBMP-2 was bound to conjugated scaffolds by ionic interactions between the negatively charged SO42- clusters of heparin and positively charged amino acids of rhBMP-2. The resulting scaffolds were inspected for bone regenerative capacity by subcutaneous implanting in rats. Histological observation and mineralization assay were performed after 4 weeks of implantation. Results from both in vitro and in vivo experiments suggest the potential of the developed scaffolds for bone tissue engineering applications in the future.

  6. TiO2 nanotubes functionalized with regions of bone morphogenetic protein-2 increases osteoblast adhesion.

    Science.gov (United States)

    Balasundaram, Ganesan; Yao, Chang; Webster, Thomas J

    2008-02-01

    Titanium (Ti) and its alloys are widely used in orthopedic and dental applications. However, the native TiO2 layer is not bioactive enough to form a direct bond with bone, which sometimes translates into a lack of osseointegration into juxtaposed bone that might lead to long term implant failure. In this study, the 20 amino acid peptide sequence (the so-called "knuckle epitope") of bone morphogenetic protein-2 (BMP-2) was immobilized onto Ti nanotubes created by electrochemical anodization. Further, human osteoblast (bone-forming cell) responses to such anodic Ti oxides functionalized with the BMP-2 knuckle epitope was examined in vitro. Materials were characterized by scanning electron and atomic force microscopy. Results of this in vitro study continued to provide evidence of increased osteoblast adhesion on Ti anodized to possess nanotubes compared to unanodized Ti. However, for the first time, results also showed that the immobilization of the BMP-2 knuckle epitope onto Ti anodized to possess nanotubes increased osteoblast adhesion compared to non-functionalized anodized Ti, anodized Ti functionalized with amine (NH2) groups, and unanodized Ti after 4 h. Results also showed increased osteoblast adhesion on amine terminated anodized Ti compared to respective non-functionalized anodized Ti and unanodized Ti. In summary, results of this in vitro study provided evidence that Ti anodized to possess nanotubes and then further functionalized with the BMP-2 knuckle epitope should be further studied for improved orthopedic applications.

  7. Bone morphogenetic protein Smads signaling in mesenchymal stem cells affected by osteoinductive calcium phosphate ceramics.

    Science.gov (United States)

    Tang, Zhurong; Wang, Zhe; Qing, Fangzhu; Ni, Yilu; Fan, Yujiang; Tan, Yanfei; Zhang, Xingdong

    2015-03-01

    Porous calcium phosphate ceramics (CaP ceramics) could induce ectopic bone formation which was regulated by various signal molecules. In this work, bone marrow mesenchymal stem cells (MSCs) were cultured on the surface of osteoinductive hydroxyapatite (HA) and biphasic calcium phosphate (BCP) ceramics in comparison with control (culture plate) for up to 14 days to detect the signal molecules which might be affected by the CaP ceramics. Without adding osteogenic factors, MSCs cultured on HA and BCP both expressed higher Runx2, Osterix, collagen type I, osteopontin, bone sialoprotein, and osteocalcin at various stages compared with control, thus confirmed the osteoblastic differentiation of MSCs. Later study demonstrated the messenger RNA level of bone morphogenetic protein 2 (BMP2) and BMP4 were also significantly enhanced by HA and BCP. Furthermore, Smad1, 4, 5, and Dlx5, the main molecules in the BMP/Smads signaling pathway, were upregulated by HA and BCP. Moreover, the higher expression of Smads and BMP2, 4 in BCP over HA, corresponded to the better performance of BCP in stimulating in vitro osteoblastic differentiation of MSCs. This was in accordance with the better osteoinductivity of BCP over HA in vivo. Altogether, these results implied that the CaP ceramics may initiate the osteoblastic differentiation of MSCs by influencing the expression of molecules in BMP/Smads pathway.

  8. Combined effects of soy isoflavones and milk basic protein on bone mineral density in hind-limb unloaded mice.

    Science.gov (United States)

    Matsumoto, Yu; Tousen, Yuko; Nishide, Yoriko; Tadaishi, Miki; Kato, Ken; Ishimi, Yoshiko

    2016-03-01

    We examined whether the combination of isoflavone and milk basic protein both are reported to be effective for bone metabolism, prevents bone loss induced by skeletal hind-limb unloading in mice. Female ddY strain mice, aged 8 weeks, were divided into six groups (n = 6-8 each): (1) normally housed group, (2) loading group, (3) hind-limb unloading group fed a control diet, (4) hind-limb unloading group fed a 0.2% isoflavone conjugates diet, (5) hind-limb unloading group fed a 1.0% milk basic protein diet, and (6) hind-limb unloading group fed a 0.2% isoflavone conjugates and 1.0% milk basic protein diet. After 3 weeks, femoral bone mineral density was markedly reduced in unloading mice. The combination of isoflavone and milk basic protein showed cooperative effects in preventing bone loss and milk basic protein inhibited the increased expression of osteogenic genes in bone marrow cells in unloading mice. These results suggest that the combination of soy isoflavone and milk basic protein may be useful for bone health in subjects with disabling conditions as well as astronauts.

  9. Demineralized bone matrix combined bone marrow mesenchymal stem cells, bone morphogenetic protein-2 and transforming growth factor-β3 gene promoted pig cartilage defect repair.

    Directory of Open Access Journals (Sweden)

    Xin Wang

    Full Text Available OBJECTIVES: To investigate whether a combination of demineralized bone matrix (DBM and bone marrow mesenchymal stem cells (BMSCs infected with adenovirus-mediated- bone morphogenetic protein (Ad-BMP-2 and transforming growth factor-β3 (Ad-TGF-β3 promotes the repair of the full-thickness cartilage lesions in pig model. METHODS: BMSCs isolated from pig were cultured and infected with Ad-BMP-2(B group, Ad-TGF-β3 (T group, Ad-BMP-2 + Ad-TGF-β3(BT group, cells infected with empty Ad served as a negative group(N group, the expression of the BMP-2 and TGF-β3 were confirmed by immunofluorescence, PCR, and ELISA, the expression of SOX-9, type II collagen(COL-2A, aggrecan (ACAN in each group were evaluated by real-time PCR at 1w, 2w, 3w, respectively. The chondrogenic differentiation of BMSCs was evaluated by type II collagen at 21d with immunohistochemical staining. The third-passage BMSCs infected with Ad-BMP-2 and Ad-TGF-β3 were suspended and cultured with DBM for 6 days to construct a new type of tissue engineering scaffold to repair full-thickness cartilage lesions in the femur condyles of pig knee, the regenerated tissue was evaluated at 1,2 and 3 months after surgery by gross appearance, H&E, safranin O staining and O'driscoll score. RESULTS: Ad-BMP-2 and Ad-TGF-β3 (BT group infected cells acquired strong type II collagen staining compared with Ad-BMP-2 (B group and Ad-TGF-β3 (T group along. The Ad-BMP-2 and Ad-TGF-β3 infected BMSCs adhered and propagated well in DBM and the new type of tissue engineering scaffold produced hyaline cartilage morphology containing a stronger type II collagen and safranin O staining, the O'driscoll score was higher than other groups. CONCLUSIONS: The DBM compound with Ad-BMP-2 and Ad-TGF-β3 infected BMSCs scaffold has a good biocompatibility and could well induce cartilage regeneration to repair the defects of joint cartilage. This technology may be efficiently employed for cartilage lesions repair in vivo.

  10. Sulf1 influences the Shh morphogen gradient during the dorsal ventral patterning of the neural tube in Xenopus tropicalis.

    Science.gov (United States)

    Ramsbottom, Simon A; Maguire, Richard J; Fellgett, Simon W; Pownall, Mary Elizabeth

    2014-07-15

    Genetic studies have established that heparan sulphate proteoglycans (HSPGs) are required for signalling by key developmental regulators, including Hedgehog, Wnt/Wg, FGF, and BMP/Dpp. Post-synthetic remodelling of heparan sulphate (HS) by Sulf1 has been shown to modulate these same signalling pathways. Sulf1 codes for an N-acetylglucosamine 6-O-endosulfatase, an enzyme that specifically removes the 6-O sulphate group from glucosamine in highly sulfated regions of HS chains. One striking aspect of Sulf1 expression in all vertebrates is its co-localisation with that of Sonic hedgehog in the floor plate of the neural tube. We show here that Sulf1 is required for normal specification of neural progenitors in the ventral neural tube, a process known to require a gradient of Shh activity. We use single-cell injection of mRNA coding for GFP-tagged Shh in early Xenopus embryos and find that Sulf1 restricts ligand diffusion. Moreover, we find that the endogenous distribution of Shh protein in Sulf1 knockdown embryos is altered, where a less steep ventral to dorsal gradient forms in the absence of Sulf1, resulting in more a diffuse distribution of Shh. These data point to an important role for Sulf1 in the ventral neural tube, and suggests a mechanism whereby Sulf1 activity shapes the Shh morphogen gradient by promoting ventral accumulation of high levels of Shh protein.

  11. Data supporting regulating temporospatial dynamics of morphogen for structure formation of the lacrimal gland by chitosan biomaterials.

    Science.gov (United States)

    Hsiao, Ya-Chuan; Yang, Tsung-Lin

    2017-02-01

    The lacrimal gland is responsible for tear synthesis and secretion, and is derived from the epithelia of ocular surface and generated by branching morphogenesis. The dataset presented in this article is to support the research results of the effect of chitosan biomaterials on facilitating the structure formation of the lacrimal gland by regulating temporospatial dynamics of morphogen. The embryonic lacrimal gland explants were used as the standard experimental model for investigating lacrimal gland branching morphogenesis. Chitosan biomaterials promoted lacrimal gland branching with a dose-dependent effect. It helped in vivo binding of hepatocyte growth factor (HGF) related molecules in the epithelial-mesenchymal boundary of emerging epithelial branches. When mitogen-activated protein kinase (MAPK) or protein kinase B (Akt/PKB) inhibitors applied, the chitosan effects reduced. Nonetheless, the ratios of MAPK and Akt/PKB phosphorylation were still greater in the chitosan group than the control. The data demonstrated here confirm the essential role of HGF-signaling in chitosan-promoted structure formation of the lacrimal gland.

  12. Data supporting regulating temporospatial dynamics of morphogen for structure formation of the lacrimal gland by chitosan biomaterials

    Directory of Open Access Journals (Sweden)

    Ya-Chuan Hsiao

    2017-02-01

    Full Text Available The lacrimal gland is responsible for tear synthesis and secretion, and is derived from the epithelia of ocular surface and generated by branching morphogenesis. The dataset presented in this article is to support the research results of the effect of chitosan biomaterials on facilitating the structure formation of the lacrimal gland by regulating temporospatial dynamics of morphogen. The embryonic lacrimal gland explants were used as the standard experimental model for investigating lacrimal gland branching morphogenesis. Chitosan biomaterials promoted lacrimal gland branching with a dose-dependent effect. It helped in vivo binding of hepatocyte growth factor (HGF related molecules in the epithelial-mesenchymal boundary of emerging epithelial branches. When mitogen-activated protein kinase (MAPK or protein kinase B (Akt/PKB inhibitors applied, the chitosan effects reduced. Nonetheless, the ratios of MAPK and Akt/PKB phosphorylation were still greater in the chitosan group than the control. The data demonstrated here confirm the essential role of HGF-signaling in chitosan-promoted structure formation of the lacrimal gland.

  13. Influence of bone morphogenetic protein type IA receptor conditional knockout in lens on expression of bone morphogenetic protein 4 in lens

    Institute of Scientific and Technical Information of China (English)

    Qi; Zhao; Jiang-Yue; Zhao; Jin-Song; Zhang

    2015-01-01

    AIM: To investigate the influence of bone morphogenetic protein type IA receptor [BMPR-IA(ALK3)] conditional knockout in lens on expression of bone morphogenetic protein 4(BMP4) in lens during the development of the vertebrate eye.METHODS: Cre-positive mice were mated with Crenegative mice to generate 50% Cre-positive(conditional knockout, CKO) 4 embryos, 8 eyes and 50% Cre-negative offspring(wild type, WT) 4 embryos, 8 eyes. The embryos were fixed in 4% paraformaldehyde, embedded in paraffin, and sectioned to a thickness of 4 μm.Removal of paraffin wax and dehydrating for sections,and then the procedure of in situ hybridization was processed, BMP4 MK1784-m(BOSTER) was used, and observed the expression of BMP4 in the lens in experimental group and control group. We selected SPSS11.0 software for statistical analysis, P<0.05 showed that the difference was statistically significant.· RESULTS: Four embryos of each genotype were examined, totally we had 8 embryos, 16 eyes. We got the uniform outcomes in all the embryos. We found ALK3 was required during lens growing, but was not essential for the formation of lens. We observed that the expression of BMP4 in the lens was significantly reduced in all 8 ALK3 CKO lens, BMP4 expression was normal in all the 8 WT lens, P <0.01. This phenomenon became increasingly visible in accordance with embryo development. The most apparent alteration was present at stage E15.5.CONCLUSION: ALK3 is essential for lens growth. The influence of ALK3 on the expression of BMP4 is present during the development of mice lens.

  14. α-Hemoglobin-stabilizing Protein: An Effective Marker for Erythroid Precursors in Bone Marrow Biopsy Specimens.

    Science.gov (United States)

    Yu, Hongbo; Pinkus, Jack L; Pinkus, Geraldine S

    2016-01-01

    Accurate analysis of the erythroid lineage is essential in evaluating bone marrow biopsies and can be particularly challenging in settings of dyserythropoiesis. α-Hemoglobin-stabilizing protein (AHSP) is an erythroid-specific chaperone protein and represents a potential specific marker for erythroid elements. This study defines the immunohistochemical profile of AHSP, as compared with an established erythroid marker CD71, in 101 bone marrow biopsies including normal marrows and cases of acute pure erythroid leukemia, acute erythroid/myeloid leukemia, other types of acute myeloid leukemia, myelodysplastic syndrome, chronic myelogenous leukemia, other types of myeloproliferative neoplasm, chronic myelomonocytic leukemia, acute lymphoblastic leukemia, plasma cell neoplasm, and metastatic carcinoma. In acute pure erythroid leukemia, blasts in 7 of 11 cases showed similar reactivity for CD71 and AHSP, whereas less extensive reactivity was observed for AHSP as compared with CD71 in the remaining 4 cases. In normal marrows and other various disorders, reactivity for AHSP was similar to CD71 and was restricted to the erythroid lineage. Mature erythrocytes were negative for AHSP as were myeloblasts, lymphoblasts, nonerythroid hematopoietic marrow elements, plasma cells, and carcinoma cells. AHSP is an effective marker for detection of normal or abnormal erythroid precursors in bone marrow biopsies and is a useful addition to an immunohistochemical panel for assessment of neoplastic cells of possible erythroid derivation.

  15. Role of ID Proteins in BMP4 Inhibition of Profibrotic Effects of TGF-β2 in Human TM Cells

    Science.gov (United States)

    Mody, Avani A.; Wordinger, Robert J.; Clark, Abbot F.

    2017-01-01

    Purpose Increased expression of TGF-β2 in primary open-angle glaucoma (POAG) aqueous humor (AH) and trabecular meshwork (TM) causes deposition of extracellular matrix (ECM) in the TM and elevated IOP. Bone morphogenetic proteins (BMPs) regulate TGF-β2–induced ECM production. The underlying mechanism for BMP4 inhibition of TGF-β2–induced fibrosis remains undetermined. Bone morphogenic protein 4 induces inhibitor of DNA binding proteins (ID1, ID3), which suppress transcription factor activities to regulate gene expression. Our study will determine whether ID1and ID3 proteins are downstream targets of BMP4, which attenuates TGF-β2 induction of ECM proteins in TM cells. Methods Primary human TM cells were treated with BMP4, and ID1 and ID3 mRNA, and protein expression was determined by quantitative PCR (Q-PCR) and Western immunoblotting. Intracellular ID1 and ID3 protein localization was studied by immunocytochemistry. Transformed human TM cells (GTM3 cells) were transfected with ID1 or ID3 expression vectors to determine their potential inhibitory effects on TGF-β2–induced fibronectin and plasminogen activator inhibitor-I (PAI-1) protein expression. Results Basal expression of ID1-3 was detected in primary human TM cells. Bone morphogenic protein 4 significantly induced early expression of ID1 and ID3 mRNA (P < 0.05) and protein in primary TM cells, and a BMP receptor inhibitor blocked this induction. Overexpression of ID1 and ID3 significantly inhibited TGF-β2–induced expression of fibronectin and PAI-1 in TM cells (P < 0.01). Conclusions Bone morphogenic protein 4 induced ID1 and ID3 expression suppresses TGF-β2 profibrotic activity in human TM cells. In the future, targeting specific regulators may control the TGF-β2 profibrotic effects on the TM, leading to disease modifying IOP lowering therapies. PMID:28159972

  16. Monocyte chemoattractant protein-1 contributes to morphine tolerance in rats with cancer-induced bone pain.

    Science.gov (United States)

    Liu, Lei; Gao, Xiu-Juan; Ren, Chun-Guang; Hu, Ji-Hua; Liu, Xian-Wen; Zhang, Ping; Zhang, Zong-Wang; Fu, Zhi-Jian

    2017-02-01

    Cancer-induced bone pain can severely compromise the life quality of patients, while tolerance limits the use of opioids in the treatment of cancer pain. Monocyte chemoattractant protein-1 (MCP-1) is known to contribute to neuropathic pain. However, the role of spinal MCP-1 in the development of morphine tolerance in patients with cancer-induced bone pain remains unclear. The aim of the present study was to investigate the role of spinal MCP-1 in morphine tolerance in bone cancer pain rats (MTBP rats). Bone cancer pain was induced by intramedullary injection of Walker 256 cells into the tibia of the rats, while morphine tolerance was induced by continuous intrathecal injection of morphine over a period of 9 days. In addition, anti-MCP-1 antibodies were intrathecally injected to rats in various groups in order to investigate the association of MCP-1 with mechanical and heat hyperalgesia using the paw withdrawal threshold (PWT) and thermal withdrawal latency (TWL) tests, respectively. Furthermore, MCP-1 and CCR2 expression levels were measured using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis, and CCR2 expression levels were measured using RT-qPCR. The results indicated that MCP-1 and CCR2 expression levels were significantly increased in the spinal cord of MTBP rats. Intrathecal administration of anti-MCP-1 neutralizing antibodies was observed to attenuate the mechanical and thermal allodynia in MTBP rats. Therefore, the upregulation of spinal MCP-1 and CCR2 expression levels may contribute to the development of mechanical allodynia in MTBP rats. In conclusion, MCP-1/CCR2 signaling may serve a crucial role in morphine tolerance development in rats suffering from cancer-induced bone pain.

  17. Heterotopic ossification after the use of recombinant human bone morphogenetic protein-7

    Science.gov (United States)

    Papanagiotou, Marianthi; Dailiana, Zoe H; Karachalios, Theophilos; Varitimidis, Sokratis; Hantes, Michael; Dimakopoulos, Georgios; Vlychou, Marianna; Malizos, Konstantinos N

    2017-01-01

    AIM To present the incidence of heterotopic ossification after the use of recombinant human bone morphogenetic protein-7 (rhBMP-7) for the treatment of nonunions. METHODS Bone morphogenetic proteins (BMPs) promote bone formation by auto-induction. Recombinant human BMP-7 in combination with bone grafts was used in 84 patients for the treatment of long bone nonunions. All patients were evaluated radiographicaly for the development of heterotopic ossification during the standard assessment for the nonunion healing. In all patients (80.9%) with radiographic signs of heterotopic ossification, a CT scan was performed. Nonunion site palpation and ROM evaluation of the adjacent joints were also carried out. Factors related to the patient (age, gender), the nonunion (location, size, chronicity, number of previous procedures, infection, surrounding tissues condition) and the surgical procedure (graft and fixation type, amount of rhBMP-7) were correlated with the development of heterotopic ossification and statistical analysis with Pearsons χ2 test was performed. RESULTS Eighty point nine percent of the nonunions treated with rhBMP-7, healed with no need for further procedures. Heterotopic bone formation occurred in 15 of 84 patients (17.8%) and it was apparent in the routine radiological evaluation of the nonunion site, in a mean time of 5.5 mo after the rhBMP-7 application (range 3-12). The heterotopic ossification was located at the femur in 8 cases, at the tibia in 6, and at the humerus in οne patient. In 4 patients a palpable mass was present and only in one patient, with a para-articular knee nonunion treated with rhBMP-7, the size of heterotopic ossification affected the knee range of motion. All the patients with heterotopic ossification were male. Statistical analysis proved that patient’s gender was the only important factor for the development of heterotopic ossification (P = 0.007). CONCLUSION Heterotopic ossification after the use of rhBMP-7 in nonunions was

  18. The daf-4 gene encodes a bone morphogenetic protein receptor controlling C. elegans dauer larva development.

    Science.gov (United States)

    Estevez, M; Attisano, L; Wrana, J L; Albert, P S; Massagué, J; Riddle, D L

    1993-10-14

    The bone morphogenetic protein (BMP) family is a conserved group of signalling molecules within the transforming growth factor-beta (TGF-beta) superfamily. This group, including the Drosophila decapentaplegic (dpp) protein and the mammalian BMPs, mediates cellular interactions and tissue differentiation during development. Here we show that a homologue of human BMPs controls a developmental switch in the life cycle of the free-living soil nematode Caenorhabditis elegans. Starvation and overcrowding induce C. elegans to form a developmentally arrested, third-stage dauer larva. The daf-4 gene, which acts to inhibit dauer larva formation and promote growth, encodes a receptor protein kinase similar to the daf-1, activin and TGF-beta receptor serine/threonine kinases. When expressed in monkey COS cells, the daf-4 receptor binds human BMP-2 and BMP-4. The daf-4 receptor is the first to be identified for any growth factor in the BMP family.

  19. Effect of HIP/ribosomal protein L29 deficiency on mineral properties of murine bones and teeth.

    Science.gov (United States)

    Sloofman, Laura G; Verdelis, Kostas; Spevak, Lyudmila; Zayzafoon, Majd; Yamauchi, Mistuo; Opdenaker, Lynn M; Farach-Carson, Mary C; Boskey, Adele L; Kirn-Safran, Catherine B

    2010-07-01

    Mice lacking HIP/RPL29, a component of the ribosomal machinery, display increased bone fragility. To understand the effect of sub-efficient protein synthetic rates on mineralized tissue quality, we performed dynamic and static histomorphometry and examined the mineral properties of both bones and teeth in HIP/RPL29 knock-out mice using Fourier transform infrared imaging (FTIRI). While loss of HIP/RPL29 consistently reduced total bone size, decreased mineral apposition rates were not significant, indicating that short stature is not primarily due to impaired osteoblast function. Interestingly, our microspectroscopic studies showed that a significant decrease in collagen crosslinking during maturation of HIP/RPL29-null bone precedes an overall enhancement in the relative extent of mineralization of both trabecular and cortical adult bones. This report provides strong genetic evidence that ribosomal insufficiency induces subtle organic matrix deficiencies which elevates calcification. Consistent with the HIP/RPL29-null bone phenotype, HIP/RPL29-deficient teeth also showed reduced geometric properties accompanied with relative increased mineral densities of both dentin and enamel. Increased mineralization associated with enhanced tissue fragility related to imperfection in organic phase microstructure evokes defects seen in matrix protein-related bone and tooth diseases. Thus, HIP/RPL29 mice constitute a new genetic model for studying the contribution of global protein synthesis in the establishment of organic and inorganic phases in mineral tissues.

  20. Repair of rat cranial bone defect by using bone morphogenetic protein-2-related peptide combined with microspheres composed of polylactic acid/polyglycolic acid copolymer and chitosan.

    Science.gov (United States)

    Li, Jingfeng; Jin, Lin; Wang, Mingbo; Zhu, Shaobo; Xu, Shuyun

    2015-07-08

    The effects of the transplanted bone morphogenetic protein-2 (BMP2) -related peptide P24 and rhBMP2 combined with poly(lactic-co-glycolic acid) (PLGA)/chitosan (CS) microspheres were investigated in promoting the repair of rat cranial bone defect. Forty white rats were selected and equally divided into four groups (group A: 1 μg of rhBMP2/PLGA/CS composite; group B: 3 mg of P24/PLGA/CS composite; group C: 0.5 μg of rhBMP2 + 1.5 mg of P24/PLGA/CS composite; group D: blank PLGA/CS material), and rat cranial bone defect models with a diameter of 5 mm were established. The materials were transplanted to the cranial bone defects. The animals were sacrificed on weeks 6 and 12 post-operation. Radiographic examinations (x-ray imaging and 3D CT scanning) and histological evaluations were performed. The repaired areas of cranial bone defects were measured, and the osteogenetic abilities of various materials were compared. Cranial histology, imaging, and repaired area measurements showed that the osteogenetic effects at two time points (weeks 6 and 12) in group C were better than those in groups A and B. The effects in groups A and B were similar. Group D achieved the worst repair effect of cranial bone defects, where a large number of fibrous connective tissues were observed. The PLGA/CS composite microspheres loaded with rhBMP2 and P24 had optimal concrescence and could mutually increase their osteogenesis capability. rhBMP2 + P24/PLGA/CS composite is a novel material for bone defect repair with stable activity to induce bone formation.

  1. Lack of Association of Bone Morphogenetic Protein 2 Gene Haplotypes with Bone Mineral Density, Bone Loss, or Risk of Fractures in Men

    Directory of Open Access Journals (Sweden)

    Satya S. Varanasi

    2011-01-01

    Full Text Available Introduction. The association of bone morphogenetic protein 2 (BMP2 with BMD and risk of fracture was suggested by a recent linkage study, but subsequent studies have been contradictory. We report the results of a study of the relationship between BMP2 genotypes and BMD, annual change in BMD, and risk of fracture in male subjects. Materials and Methods. We tested three single-nucleotide polymorphisms (SNPs across the BMP2 gene, including Ser37Ala SNP, in 342 Caucasian Englishmen, comprising 224 control and 118 osteoporotic subjects. Results. BMP2 SNP1 (Ser37Ala genotypes were found to have similar low frequency in control subjects and men with osteoporosis. The major informative polymorphism, BMP2 SNP3 (Arg190Ser, showed no statistically significant association with weight, height, BMD, change in BMD at hip or lumbar spine, and risk of fracture. Conclusion. There were no genotypic or haplotypic effects of the BMP2 candidate gene on BMD, change in BMD, or fracture risk identified in this cohort.

  2. The effect of nicotine on osteoinduction by recombinant human bone morphogenetic protein 2.

    Science.gov (United States)

    Tamura, K; Togo, Y; Kaihara, S; Hussain, A; Takahashi, K; Bessho, K

    2014-08-01

    Nicotine, one of the constituents of tobacco, is known to have an adverse effect on human health. We sought to clarify the interaction between nicotine and recombinant human bone morphogenetic protein 2 (rhBMP-2) in terms of osteogenesis in vitro and osteoinduction in vivo. Nicotine did not inhibit or stimulate alkaline phosphatase (ALP) activity or the amount of osteocalcin in C2C12 cells in the presence of rhBMP-2 in vitro. Ectopic bone formation using a collagen sponge containing rhBMP-2 was evaluated with and without nicotine after 21 days using radiographic, histological, biochemical, and immunohistochemical analyses. ALP activity in the medium-dose group (2.2±0.9IU/mg protein; P=0.047) and the high-dose group (2.0±0.1IU/mg protein; P=0.03) was significantly lower than in the control group. The calcium content in the medium-dose group (35.4±12.9μg/mg tissue; P=0.0099) and high-dose group (34.8±10.5μg/mg tissue; P=0.006) was significantly lower than in the control group. The number of vascular endothelial growth factor-positive cells in the high-dose group (671.9±57.3cells/mm(2); P=0.03) was significantly lower than in the control group. Results showed that nicotine did not inhibit the stimulatory effect of rhBMP-2 in vitro, but a high dose of nicotine inhibited bone formation in vivo by adversely affecting vascularization.

  3. RETINOIC ACID DOWN-REGULATES BONE MORPHOGENETIC PROTEIN 7 EXPRESSION IN RAT WITH CLEFT PALATE

    Institute of Scientific and Technical Information of China (English)

    Lei Guo; Yu-yan Zhao; Shi-liang Zhang; Kui Liu; Xiao-yu Gao

    2008-01-01

    Objective To evaluate the effects of retinoic acid (RA) on expression of bone morphogenetic protein 7 (BMP-7)in rat fetus with cleft palate, and the effects of RA on proliferation and apoptosis of osteoblasts. Methods All-trans RA (ATRA) was used to induce congenital cleft palate in Wistar rat. BMP-7 mRNA expres-sion in maxillary bone tissue of fetal rats was measured by Northern blotting analysis. Flow cytometry and MTT assay were used to measure the apoptosis and proliferation of ATRA-treated MC-3T3-E1 cells. BMP-7 mRNA and protein ex-pressions in ATRA-treated MC-3T3-E1 cells were detected by RT-PCR and Western blotting analysis.Results ATRA could induce cleft palate of rat fetus. The incidence rate of cleft palate induced by 100 mg/kg AT-RA (45.5%) was significantly higher than 50 mg/kg ATRA (12.5%, P<0.05). BMP-7 mRNA expression de-creased in maxillary bone tissue of rat fetus with cleft palate. MC-3T3-E1 cells proliferation treated with 1 × 10-6 mol/L ATRA decreased by 60%, the cell apoptosis increased by 2 times. BMP-7 mR.NA and protein levels in MC-3T3-E1cells treated with 1 × 10-6 mol/L ATRA decreased by 60% and 80%, respectively, compared with ATRA-untreated ceils (P<0.05).Conclusions BMP-7 may play an important role in embryonic palate development RA may possess the ability to down-regulate cell proliferation through regulation of BMP-7 gene expression.

  4. Bone Morphogenetic Protein 4 Signalling in Neural Stem and Progenitor Cells during Development and after Injury

    Directory of Open Access Journals (Sweden)

    Alistair E. Cole

    2016-01-01

    Full Text Available Substantial progress has been made in identifying the extracellular signalling pathways that regulate neural stem and precursor cell biology in the central nervous system (CNS. The bone morphogenetic proteins (BMPs, in particular BMP4, are key players regulating neuronal and glial cell development from neural precursor cells in the embryonic, postnatal, and injured CNS. Here we review recent studies on BMP4 signalling in the generation of neurons, astrocytes, and oligodendroglial cells in the CNS. We also discuss putative mechanisms that BMP4 may utilise to influence glial cell development following CNS injury and highlight some questions for further research.

  5. Bone morphogenetic protein 7 regulates reactive gliosis in retinal astrocytes and Müller glia

    OpenAIRE

    2014-01-01

    Purpose The focus of this study was to determine whether bone morphogenetic proteins (BMPs) trigger reactive gliosis in retinal astrocytes and/or Müller glial cells. Methods Retinal astrocytes and the Müller glial cell line MIO-M1 were treated with vehicle, BMP7, or BMP4. Samples from the treated cells were analyzed for changes in gliosis markers using reverse transcriptase – quantitative PCR (RT-qPCR) and western blotting. To determine potential similarities and differences in gliosis states...

  6. Morphogen and proinflammatory cytokine release kinetics from PRGF-Endoret fibrin scaffolds: evaluation of the effect of leukocyte inclusion.

    Science.gov (United States)

    Anitua, E; Zalduendo, M M; Prado, R; Alkhraisat, M H; Orive, G

    2015-03-01

    The potential influence of leukocyte incorporation in the kinetic release of growth factors from platelet-rich plasma (PRP) may explain the conflicting efficiency of leukocyte platelet-rich plasma (L-PRP) scaffolds in tissue regeneration. To assess this hypothesis, leukocyte-free (PRGF-Endoret) and L-PRP fibrin scaffolds were prepared, and both morphogen and proinflammatory cytokine release kinetics were analyzed. Clots were incubated with culture medium to monitor protein release over 8 days. Furthermore, the different fibrin scaffolds were morphologically characterized. Results show that leukocyte-free fibrin matrices were homogenous while leukocyte-containing ones were heterogeneous, loose and cellular. Leukocyte incorporation produced a significant increase in the contents of proinflammatory cytokines interleukin (IL)-1β and IL-16 but not in the platelet-derived growth factors release (<1.5-fold). Surprisingly, the availability of vascular endothelial growth factor suffered an important decrease after 3 days of incubation in the case of L-PRP matrices. While the release of proinflammatory cytokines was almost absent or very low from PRGF-Endoret, the inclusion of leukocytes induced a major increase in these cytokines, which was characterized by the presence of a latent period. The PRGF-Endoret matrices were stable during the 8 days of incubation. The inclusion of leukocytes alters the growth factors release profile and also increased the dose of proinflammatory cytokines.

  7. Effect of 5-azacytidine on the Protein Expression of Porcine Bone Marrow Mesenchymal Stem Cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Neng-Sheng Ye; Rong-Li Zhang; Yan-Feng Zhao; Xue Feng; Yi-Ming Wang; Guo-An Luo

    2006-01-01

    Bone marrow-derived mesenchymal stem cells (MSCs) are pluripotent stem cells that show a vital potential in the clinical application for cell transplantation. In the present paper, proteomic techniques were used to approach the protein profiles associated with porcine bone marrow MSCs and investigate the regulation of MSC proteins on the effect of 5-azacytidine (5-aza). Over 1,700 protein species were separated from MSCs according to gel analysis. Compared with the expression profiling of control MSCs, there were 11 protein spots up-regulated and 26 downregulated in the protein pattern of 5-aza-treated cells. A total of 21 proteins were successfully identified by MALDI-TOF-MS analysis, among which some interesting proteins, such as alpha B-crystallin, annexin A2, and stathmin 1, had been reported to involve in cell proliferation and differentiation through different signaling pathways. Our data should be useful for the future study of MSC differentiation and apoptosis.

  8. Osteogenic efficiency of in situ gelling poloxamine systems with and without bone morphogenetic protein-2

    Directory of Open Access Journals (Sweden)

    A Rey-Rico

    2011-04-01

    Full Text Available In situ gelling solutions for minimally invasive local application of bone growth factors are attracting increasing attention as efficient and patient-friendly alternative to bone grafts and solid scaffolds for repairing bone defects. Poloxamines, i.e., X-shaped poly(ethylene oxide-poly(propylene oxide block copolymers with an ethylenediamine core (Tetronic®, were evaluated both as an active osteogenic component and as a vehicle for rhBMP-2 injectable implants. After cytotoxicity screening of various poloxamine varieties, Tetronic 908, 1107, 1301 and 1307 solutions were chosen as the most cytocompatible and their sol-to-gel transitions were rheologically characterized. Viscoelastic gels, formed at 37 ºC, sustained protein release under physiological-like conditions. Formulations of rhBMP-2 led to differentiation of mesenchymal stem cells to osteoblasts, quantified as alkaline phosphatase activity with a maximum at day 7, and to mineralized nodules. Interestingly, poloxamine solely gels led to an initial proliferation of the mesenchymal stem cells (first week, followed by differentiation to osteoblasts (second to third week. Histochemical analysis revealed that Tetronic 908 is only osteoinductive; Tetronic 1107 is mostly osteoinductive, although its use leads to a minor differentiation to adipocytes; Tetronic 1307, solely or loaded with rhBMP-2, causes differentiation of both osteoblasts and adipocytes. Enhanced expression levels of CBFA-1 and collagen type I were observed for Tetronic 908, 1107 and 1307, both solely and combined with rhBMP-2. The intrinsic osteogenic activity of poloxamines (not observed for Pluronic F127 offers novel perspectives for bone regeneration using minimally invasive procedures (i.e., injectable scaffolds and overcoming the safety and the cost/effectiveness concerns associated with large scale clinical use of recombinant growth factors.

  9. Effects of bone morphogenetic protein-7 stimulation on osteoblasts cultured on different biomaterials.

    Science.gov (United States)

    Açil, Yahya; Springer, Ingo N G; Broek, Vanessa; Terheyden, Hendrik; Jepsen, Søren

    2002-01-01

    The objective of the present study was to investigate the effects of an in vitro stimulation of human osteoblasts by recombinant human bone morphogenetic protein-7 (rhBMP-7) on the collagen types and the quantity of the collagen cross-links synthesized in a three-dimensional culture on various biomaterials for bone replacement. Trabecular bone chips were harvested from human iliac crests, and cell cultures were established at standard conditions. One hundred and fifty nanograms per milliliter of rhBMP-7 was added. For the second passage a cell scraper was used to bring the cells into suspension, and 100 microl osteoblasts (at a density of 3.3 x 10(5)) were transferred onto nine blocks of either Bio-Oss, Tutoplast, or PepGen p-15. Blocks incubated with cells that were not treated with rhBMP-7 served as controls. Cell colonization of the biomaterials was observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) after a period of 2, 4, and 6 weeks. Throughout the experiment medium, supernatants were collected and collagen was characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Finally, the collagen cross-link residues hydroxylysylpyridinoline (HP) and lysylpyridinoline (LP) were quantified by HPLC. Within 4 weeks the cells became confluent on all of the studied biomaterials. All samples synthesized bone specific LP and collagen type I. However, in rhBMP-7-stimulated samples, the amount of HP and LP found was increased by 45% compared to non-stimulated samples. Cell proliferation and collagen synthesis was similar on the different biomaterials, but was consistently reduced in specimen not stimulated with rhBMP-7. In vitro stimulation of osteoblasts on Bio-Oss, Tutoplast, or PepGen p-15 with rhBMP-7 and subsequent transplantation of the constructs might lead to an enhanced osseointegration of the biomaterials in vivo.

  10. Amino acid δ13C analysis of hair proteins and bone collagen using liquid chromatography/isotope ratio mass spectrometry

    DEFF Research Database (Denmark)

    Raghavan, Maanasa; McCullagh, James S. O.; Lynnerup, Niels

    2010-01-01

    We report a novel method for the chromatographic separation and measurement of stable carbon isotope ratios (delta(13)C) of individual amino acids in hair proteins and bone collagen using the LC-IsoLink system, which interfaces liquid chromatography (LC) with isotope ratio mass spectrometry (IRMS......). This paper provides baseline separation of 15 and 13 of the 18 amino acids in bone collagen and hair proteins, respectively. We also describe an approach to analysing small hair samples for compound-specific analysis of segmental hair sections. The LC/IRMS method is applied in a historical context...... as a proxy for bone collagen at the amino acid level, this validates compound-specific isotope studies using hair as a model for palaeodietary reconstruction. Our results suggest that a small offset observed in the bulk delta(13)C values of the hair and bone samples may be attributed to two factors: (i...

  11. Gallium nitrate increases type I collagen and fibronectin mRNA and collagen protein levels in bone and fibroblast cells.

    Science.gov (United States)

    Bockman, R S; Guidon, P T; Pan, L C; Salvatori, R; Kawaguchi, A

    1993-08-01

    Gallium is a Group IIIa transitional element with therapeutic efficacy in the treatment of metabolic bone disorders. Previously described antiresorptive effects of gallium on osteoclasts are not sufficient to account for the full range of effects of gallium on bone structure and metabolism. We have recently shown that gallium nitrate inhibits osteocalcin gene expression and the synthesis of osteocalcin protein, an osteoblast-specific bone matrix protein that is thought to serve as a signal to trigger osteoclastic resorption. Here we present evidence for an additional mechanism by which gallium may function to augment bone mass by altering matrix protein synthesis by osteoblastic and fibroblastic cells. Rat calvarial explants exposed to gallium nitrate for 48 h showed increased incorporation of 3H-proline into hydroxyproline and collagenase digestible protein. In addition, gallium treatment increased steady-state mRNA levels for fibronectin and type I procollagen chains in primary rat calvarial osteoblast-enriched cultures, the ROS 17/2.8 osteoblastic osteosarcoma line, and nontransformed human dermal fibroblasts. These findings suggest that the exposure of mesenchymally-derived cells to gallium results in an altered pattern of matrix protein synthesis that would favor increased bone formation.

  12. Increased serum cartilage oligomeric matrix protein levels and decreased patellar bone mineral density in patients with chondromalacia patellae.

    OpenAIRE

    2002-01-01

    BACKGROUND: Chondromalacia patellae is a potentially disabling disorder characterised by features of patellar cartilage degradation. OBJECTIVE: To evaluate markers of cartilage and bone turnover in patients with chondromalacia patellae. METHODS: 18 patients with chondromalacia patellae were studied. Serum cartilage oligomeric matrix protein (s-COMP) and bone sialoprotein (s-BSP) levels were measured by enzyme linked immunosorbent assay (ELISA) and compared with those of age and sex matched he...

  13. The Effects of Tocotrienol and Lovastatin Co-Supplementation on Bone Dynamic Histomorphometry and Bone Morphogenetic Protein-2 Expression in Rats with Estrogen Deficiency

    Directory of Open Access Journals (Sweden)

    Kok-Yong Chin

    2017-02-01

    Full Text Available Both tocotrienol and statins are suppressors of the mevalonate pathway. Supplementation of tocotrienol among statin users could potentially protect them against osteoporosis. This study aimed to compare the effects of tocotrienol and lovastatin co-supplementation with individual treatments on bone dynamic histomorphometric indices and bone morphogenetic protein-2 (BMP-2 gene expression in ovariectomized rats. Forty-eight female Sprague-Dawley rats were randomized equally into six groups. The baseline was sacrificed upon receipt. All other groups were ovariectomized, except for the sham group. The ovariectomized groups were administered orally daily with (1 lovastatin 11 mg/kg/day alone; (2 tocotrienol derived from annatto bean (annatto tocotrienol 60 mg/kg/day alone; (3 lovastatin 11 mg/kg/day, and annatto tocotrienol 60 mg/kg/day. The sham and ovariectomized control groups were treated with equal volume of vehicle. After eight weeks of treatment, the rats were sacrificed. Their bones were harvested for bone dynamic histomorphometry and BMP-2 gene expression. Rats supplemented with annatto tocotrienol and lovastatin concurrently demonstrated significantly lower single-labeled surface, but increased double-labeled surface, mineralizing surface, mineral apposition rate and bone formation rate compared to individual treatments (p < 0.05. There was a parallel increase in BMP-2 gene expression in the rats receiving combined treatment (p < 0.05. The combination of annatto tocotrienol and lovastatin exerted either additively or synergistically on selected bone parameters. In conclusion, tocotrienol can augment the bone formation and mineralization in rats receiving low-dose statins. Supplementation of tocotrienol in statin users can potentially protect them from osteoporosis.

  14. SPECIFIC BINDING OF HUMAN BONE MORPHOGENETIC PROTEIN (2A) WITH MOUSE OSTEOBLASTIC CELLS

    Institute of Scientific and Technical Information of China (English)

    刘新平; 陈苏民; 陈南春; 高磊; 赵忠良

    1996-01-01

    Human bone morphogenetic protein 2A (hBMP2A) cDNA terminal 567 nucleotides were cloned and expressed in a phage display vector pCSM2I. Hulnata BMP2A C-terminal peptide displayed on the surface of the phage can bind specifically to the sttrface of mouse osteoblastie cell (MC3T3) membrane. ELISA assay showed a positive signal of the binding by using antibody against M13 phage gene 8 protein. After labeling with 3HTdR,the counts of the binding groups were 3 to 10 times higher than the control groups. It suggests that the'surface of MC3T3 cells exist the recepzor for hBMP2A.

  15. Water-dispersed bone morphogenetic protein nanospheres prepared by co-precipitation method

    Institute of Scientific and Technical Information of China (English)

    江兵兵; 高长有; 胡玲; 沈家骢

    2004-01-01

    A modified complex coacervation-co-precipitation method was used to prepare bone morphogenetic protein(BMP)-loaded nanospheres. Three natural polymers were used as packing materials to obtain nanoscale delivery device for BMP,in the presence of phosphatidylcholine functioning as stabilizer. Positively charged polysaccharide, N,N-diethylaminoethyl dex-tran (DEAE-dextran) tended to form stable, uniform and smaller size particles carrying BMP. Negatively charged bovine serumalbumin (BSA) induced precipitation of the produced BMP particles due to its weak interaction with BMP molecules, although itproduced nanosized BMP spheres. While collagen, a weakly positively charged protein shaped larger particles due to the stronginteraction among themselves. A mechanism of co-precipitation process was also deduced to depict the formation of stablenanospheres.

  16. Water-dispersed bone morphogenetic protein nanospheres prepared by co-precipitation method

    Institute of Scientific and Technical Information of China (English)

    江兵兵; 高长有; 胡玲; 沈家骢

    2004-01-01

    A modified complex coacervation-co-precipitation method was used to prepare bone morphogenetic protein (BMP)-loaded nanospheres. Three natural polymers were used as packing materials to obtain nanoscale delivery device for BMP,in the presence of phosphatidylcholine functioning as stabilizer. Positively charged polysaccharide, N,N-diethylaminoethyl dex-tran (DEAE-dextran) tended to form stable, uniform and smaller size particles carrying BMP. Negatively charged bovine serum albumin (BSA) induced precipitation of the produced BMP particles due to its weak interaction with BMP molecules, although it produced nanosized BMP spheres. While collagen, a weakly positively charged protein shaped larger particles due to the strong interaction among themselves. A mechanism of co-precipitation process was also deduced to depict the formation of stable nanospheres.

  17. The Effects of Tocotrienol and Lovastatin Co-Supplementation on Bone Dynamic Histomorphometry and Bone Morphogenetic Protein-2 Expression in Rats with Estrogen Deficiency

    Science.gov (United States)

    Chin, Kok-Yong; Abdul-Majeed, Saif; Mohamed, Norazlina; Ima-Nirwana, Soelaiman

    2017-01-01

    Both tocotrienol and statins are suppressors of the mevalonate pathway. Supplementation of tocotrienol among statin users could potentially protect them against osteoporosis. This study aimed to compare the effects of tocotrienol and lovastatin co-supplementation with individual treatments on bone dynamic histomorphometric indices and bone morphogenetic protein-2 (BMP-2) gene expression in ovariectomized rats. Forty-eight female Sprague-Dawley rats were randomized equally into six groups. The baseline was sacrificed upon receipt. All other groups were ovariectomized, except for the sham group. The ovariectomized groups were administered orally daily with (1) lovastatin 11 mg/kg/day alone; (2) tocotrienol derived from annatto bean (annatto tocotrienol) 60 mg/kg/day alone; (3) lovastatin 11 mg/kg/day, and annatto tocotrienol 60 mg/kg/day. The sham and ovariectomized control groups were treated with equal volume of vehicle. After eight weeks of treatment, the rats were sacrificed. Their bones were harvested for bone dynamic histomorphometry and BMP-2 gene expression. Rats supplemented with annatto tocotrienol and lovastatin concurrently demonstrated significantly lower single-labeled surface, but increased double-labeled surface, mineralizing surface, mineral apposition rate and bone formation rate compared to individual treatments (p osteoporosis. PMID:28212283

  18. Improved Bone Formation in Osteoporotic Rabbits with the Bone Morphogenetic Protein-2 (rhBMP-2 Coated Titanium Screws Which Were Coated By Using Plasma Polymerization Technique

    Directory of Open Access Journals (Sweden)

    Salih Gulsen

    2014-06-01

    Full Text Available Delaying of bone fusion in osteoporotic patients underwent spinal stabilization surgery leads to screw loosening, and this causes pseudoarticulation, mobility and fibrosis at vertebral segments. To prevent these complications, the screws coated with recombinant bone morphogenetic protein-2 (rhBMP-2 could be used. To verify this hypothesis, we coated 5 Titanium screws with rhBMP-2 using plasma polymerization method, and also used 10 uncoated screws for making comparison between coated and uncoated screws in different groups. And 15 skeletally mature white New Zealand female rabbits were assigned into three different groups: Group 1(N = 5: No osteoporosis induction and insertion of uncoated Titanium screw into right sacrum of each rabbit in group 1; group 2 (N = 5: Osteoporosis induction and insertion of uncoated Titanium screw into right sacrum of each rabbit in group 2; group 3 (N = 5 rhBMP-2 coated Titanium screw inserted into right sacrum of each rabbit in group 3. In summary, using of these coated screws provides new bone formation, but causes less fibrosis and less inflammation than uncoated screws at the interface between the coated screw and bone. Then the plasma polymerization technique provides controlled releasing of rhBMP-2 from the screw to the bone tissue in osteoporotic rabbits.

  19. Activator protein 1 (Fos/Jun) functions in inflammatory bone and skin disease.

    Science.gov (United States)

    Zenz, Rainer; Eferl, Robert; Scheinecker, Clemens; Redlich, Kurt; Smolen, Josef; Schonthaler, Helia B; Kenner, Lukas; Tschachler, Erwin; Wagner, Erwin F

    2008-01-01

    Activator protein 1 (AP-1) (Fos/Jun) is a transcriptional regulator composed of members of the Fos and Jun families of DNA binding proteins. The functions of AP-1 were initially studied in mouse development as well as in the whole organism through conventional transgenic approaches, but also by gene targeting using knockout strategies. The importance of AP-1 proteins in disease pathways including the inflammatory response became fully apparent through conditional mutagenesis in mice, in particular when employing gene inactivation in a tissue-specific and inducible fashion. Besides the well-documented roles of Fos and Jun proteins in oncogenesis, where these genes can function both as tumor promoters or tumor suppressors, AP-1 proteins are being recognized as regulators of bone and immune cells, a research area termed osteoimmunology. In the present article, we review recent data regarding the functions of AP-1 as a regulator of cytokine expression and an important modulator in inflammatory diseases such as rheumatoid arthritis, psoriasis and psoriatic arthritis. These new data provide a better molecular understanding of disease pathways and should pave the road for the discovery of new targets for therapeutic applications.

  20. 3-Dimensional cell-laden nano-hydroxyapatite/protein hydrogels for bone regeneration applications

    Energy Technology Data Exchange (ETDEWEB)

    Sadat-Shojai, Mehdi, E-mail: msadatshojai@gmail.com [Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of); Department of Biomaterials, Iran Polymer and Petrochemical Institute, Tehran (Iran, Islamic Republic of); Khorasani, Mohammad-Taghi [Department of Biomaterials, Iran Polymer and Petrochemical Institute, Tehran (Iran, Islamic Republic of); Jamshidi, Ahmad [Department of Novel Drug Delivery Systems, Iran Polymer and Petrochemical Institute, Tehran (Iran, Islamic Republic of)

    2015-04-01

    The ability to encapsulate cells in three-dimensional (3D) protein-based hydrogels is potentially of benefit for tissue engineering and regenerative medicine. However, as a result of their poor mechanical strength, protein-based hydrogels have traditionally been considered for soft tissue engineering only. Hence, in this study we tried to render these hydrogels suitable for hard tissue regeneration, simply by incorporation of bioactive nano-hydroxyapatite (HAp) into a photocrosslinkable gelatin hydrogel. Different cell types were also encapsulated in three dimensions in the resulting composites to prepare cell-laden constructs. According to the results, HAp significantly improves the stiffness of gelatin hydrogels, while it maintains their structural integrity and swelling ratio. It was also found that while the bare hydrogel (control) was completely inert in terms of bioactivity, a homogeneous 3D mineralization occurs throughout the nanocomposites after incubation in simulated body fluid. Moreover, encapsulated cells readily elongated, proliferated, and formed a 3D interconnected network with neighboring cells in the nanocomposite, showing the suitability of the nano-HAp/protein hydrogels for cellular growth in 3D. Therefore, the hydrogel nanocomposites developed in this study may be promising candidates for preparing cell-laden tissue-like structures with enhanced stiffness and increased osteoconductivity to induce bone formation in vivo. - Highlights: • We tried to render protein-based hydrogels suitable for hard tissue regeneration. • We developed a three-component system comprising hydrogel, nano-HAp, and cells. • Nano-HAp significantly improved the mechanical strength of hydrogel. • Encapsulated cells readily elongated and proliferated in 3D cell-laden nanocomposite. • 3D deposition of bone crystals occurred in the hydrogel nanocomposites.

  1. Deletion of the sequence encoding the tail domain of the bone morphogenetic protein type 2 receptor reveals a bone morphogenetic protein 7-specific gain of function.

    Science.gov (United States)

    Leyton, Patricio A; Beppu, Hideyuki; Pappas, Alexandra; Martyn, Trejeeve M; Derwall, Matthias; Baron, David M; Galdos, Rita; Bloch, Donald B; Bloch, Kenneth D

    2013-01-01

    The bone morphogenetic protein (BMP) type II receptor (BMPR2) has a long cytoplasmic tail domain whose function is incompletely elucidated. Mutations in the tail domain of BMPR2 are found in familial cases of pulmonary arterial hypertension. To investigate the role of the tail domain of BMPR2 in BMP signaling, we generated a mouse carrying a Bmpr2 allele encoding a non-sense mediated decay-resistant mutant receptor lacking the tail domain of Bmpr2. We found that homozygous mutant mice died during gastrulation, whereas heterozygous mice grew normally without developing pulmonary arterial hypertension. Using pulmonary artery smooth muscle cells (PaSMC) from heterozygous mice, we determined that the mutant receptor was expressed and retained its ability to transduce BMP signaling. Heterozygous PaSMCs exhibited a BMP7‑specific gain of function, which was transduced via the mutant receptor. Using siRNA knockdown and cells from conditional knockout mice to selectively deplete BMP receptors, we observed that the tail domain of Bmpr2 inhibits Alk2‑mediated BMP7 signaling. These findings suggest that the tail domain of Bmpr2 is essential for normal embryogenesis and inhibits Alk2‑mediated BMP7 signaling in PaSMCs.

  2. Great increase in bone 66 kDa protein and osteocalcin at later stages with healing rat fractures: effect of zinc treatment.

    Science.gov (United States)

    Igarashi, Aki; Yamaguchi, Masayoshi

    2003-02-01

    Fracture healing has been demonstrated to increase production of bone growth factors, and this elevation has been shown to be enhanced by zinc treatment. Moreover, the effect of zinc treatment on production of bone osteocalcin, which is a kind of Ca2+-binding protein localized in bone matrix, at the later stages with bone fracture was investigated. Rats were sacrificed 7 (earlier stage) or 21 (later stage) days after fracture of femoral diaphysis. Femoral-diaphyseal tissues with fracture healing were cultured in a serum-free medium for 24 h. Many proteins in the bone tissues were released into the medium. Bone protein production was markedly elevated 21 days after bone fracture as compared with that of 7 days. A approximately 66 kDa protein molecule, a major protein component which was produced by the diaphyseal tissues during fracture healing, was predominantly increased at the later stages with fracture healing. Bone osteocalcin production was significantly increased during fracture healing. This increase was enhanced at the later stages with fracture healing. The presence of zinc acexamate (10(-4) M) in culture medium caused a significant increase in bone protein and osteocalcin production at 7 or 21 days after bone fracture. The effect of zinc acexamate in increasing bone total protein and osteocalcin production was remarkable at the later stages with fracture healing. Moreover, zinc treatment caused a significant increase in alkaline phosphatase activity, deoxyribonucleic acid (DNA) and calcium content in the femoral-diaphyseal tissues of the later stages with fracture healing in vitro. The present study demonstrates that bone protein production is markedly increased at the later stages with fracture healing, and that zinc treatment can enhance production of bone protein components including osteocalcin in vitro. Zinc treatment may stimulate the healing of femoral fracture at earlier and later stages.

  3. Protein expression profile in the differentiation of rat bone marrow stromal cells into Schwann cell-like cells

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    During the last decade,increasing evidence suggested that bone marrow stromal cells(MSCs) have the potential to differentiate into neural lineages.Many studies have reported that MSCs showed morphological changes and expressed a limited number of neural proteins under experimental conditions.However,no proteomic studies on MSCs differentiated into Schwann cell-like cells have been reported.In this study,we isolated MSCs from adult Sprague-Dawley rat femur and tibia bone marrows and induced the cells in vitro under specific conditions.By using two-dimensional gel electrophoresis(2-DE),we compared the protein profiles of MSCs before and after induced differentiation.We obtained 792 protein spots in the protein profile by 2-DE,and found that 74 spots changed significantly before and after the differentiation using PDQuest software,with 43 up-regulated and 31 down-regulated.We analyzed these 74 spots by a matrix assisted laser desorption ionization-time of flight mass spectrometry(MALDI-TOF-MS) and by database searching,and found that they could be grouped into various classes,including cytoskeleton and structure proteins,growth factors,metabolic proteins,chaperone proteins,receptor proteins,cell cycle proteins,calcium binding proteins,and other proteins.These proteins also include neural and glial proteins,such as BDNF,CNTF and GFAP.The results may provide valuable proteomic information about the differentiation of MSCs into Schwann cell-like cells.

  4. Protein expression profile in the differentiation of rat bone marrow stromal cells into Schwann cell-like cells

    Institute of Scientific and Technical Information of China (English)

    LI WenTing; SUN HuaLin; XU ZengLu; DING Fei; GU XiaoSong

    2009-01-01

    During the last decade, increasing evidence suggested that bone marrow stromal cells (MSCs) have the potential to differentiate into neural lineages. Many studies have reported that MSCs showed morpho-logical changes and expressed a limited number of neural proteins under experimental conditions. However, no proteomic studies on MSCs differentiated into Schwann cell-like cells have been reported. In this study, we isolated MSCs from adult Sprague-Dawley rat femur and tibia bone marrows and in-duced the cells in vitro under specific conditions. By using two-dimensional gel electrophoresis (2-DE), we compared the protein profiles of MSCs before and after induced differentiation. We obtained 792 protein spots in the protein profile by 2-DE, and found that 74 spots changed significantly before and after the differentiation using PDQuest software, with 43 up-regulated and 31 down-regulated. We ana-lyzed these 74 spots by a matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS) and by database searching, and found that they could be grouped into various classes, including cytoskeleton and structure proteins, growth factors, metabolic proteins, chaperone proteins, receptor proteins, cell cycle proteins, calcium binding proteins, and other proteins. These proteins also include neural and glial proteins, such as BDNF, CNTF and GFAP. The results may provide valuable proteomic information about the differentiation of MSCs into Schwann cell-like cells.

  5. Sequence preservation of osteocalcin protein and mitochondrial DNA in bison bones older than 55 ka

    Science.gov (United States)

    Nielsen-Marsh, Christina M.; Ostrom, Peggy H.; Gandhi, Hasand; Shapiro, Beth; Cooper, Alan; Hauschka, Peter V.; Collins, Matthew J.

    2002-12-01

    We report the first complete sequences of the protein osteocalcin from small amounts (20 mg) of two bison bone (Bison priscus) dated to older than 55.6 ka and older than 58.9 ka. Osteocalcin was purified using new gravity columns (never exposed to protein) followed by microbore reversed-phase high-performance liquid chromatography. Sequencing of osteocalcin employed two methods of matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS): peptide mass mapping (PMM) and post-source decay (PSD). The PMM shows that ancient and modern bison osteocalcin have the same mass to charge (m/z) distribution, indicating an identical protein sequence and absence of diagenetic products. This was confirmed by PSD of the m/z 2066 tryptic peptide (residues 1 19); the mass spectra from ancient and modern peptides were identical. The 129 mass unit difference in the molecular ion between cow (Bos taurus) and bison is caused by a single amino-acid substitution between the taxa (Trp in cow is replaced by Gly in bison at residue 5). Bison mitochondrial control region DNA sequences were obtained from the older than 55.6 ka fossil. These results suggest that DNA and protein sequences can be used to directly investigate molecular phylogenies over a considerable time period, the absolute limit of which is yet to be determined.

  6. [Experimental study on application recombinant human bone morphogenetic protein 2(rhBMP-2)/poly-lactide-co-glycolic acid (PLGA)/fibrin sealant(FS) on repair of rabbit radial bone defect].

    Science.gov (United States)

    Fan, Zhongkai; Cao, Yang; Zhang, Zhe; Zhang, Mingchao; Lu, Wei; Tang, Lei; Yao, Qi; Lu, Gang

    2012-10-01

    This paper is aimed to investigate the repair of rabbit radial bone defect by the recombinant human bone morphogenetic protein 2/poly-lactideco-glycolic acid microsphere with fibrin sealant (rhBMP-2/PLGA/FS). The radial bone defect models were prepared using New Zealand white rabbits, which were randomly divided into 3 groups, experiment group which were injected with eMP-2/PLGA/FS at bone defect location, control group which were injected with FS at bone defect location, and blank control group without treatment. The ability of repairing bone defect was evaluated with X-ray radiograph. Bone mineral density in the defect regions was analysed using the level of ossification. The osteogenetic ability of repairing bone defect, the degradation of the material, the morphologic change and the bone formation were assessed by HE staining and Masson staining. The result showed that rhBMP-2/PLGA/FS had overwhelming superiority in the osteogenetic ability and quality of bone defect over the control group, and it could promote the repair of bone defect and could especially repair the radial bone defect of rabbit well. It may be a promising and efficient synthetic bone graft.

  7. The application of bone morphogenetic proteins to periodontal and peri-implant tissue regeneration: A literature review

    Directory of Open Access Journals (Sweden)

    Karuppanan P Sasikumar

    2012-01-01

    Full Text Available Progress in understanding the role of bone morphogenetic proteins (BMPs in craniofacial and tooth development and the demonstration of stem cells in periodontal ligament have set the stage for periodontal regenerative therapy and tissue engineering. Furthermore, recent approval by the Food and Drug Administration of recombinant human BMPs for accelerating bone fusion in slow-healing fractures indicates that this protein family may prove useful in designing regenerative treatments in periodontics. In the near term, these advances are likely to be applied to periodontal surgery; ultimately, they may facilitate approaches to regenerating whole lost periodontal structures.

  8. Bone morphogenetic protein 2 promotes osteogenesis of bone marrow stromal cells in type 2 diabetic rats via the Wnt signaling pathway.

    Science.gov (United States)

    Qian, Chao; Zhu, Chenyuan; Yu, Weiqiang; Jiang, Xinquan; Zhang, Fuqiang; Sun, Jian

    2016-11-01

    Type 2 diabetes mellitus impairs osteogenesis in bone marrow stromal cells (BMSCs). Bone morphogenetic protein 2 (BMP2) has been extensively applied for bone defect restoration and has been shown to activate the Wnt signaling pathway. The objective of this study was to investigate the effects of BMP2 on the cell proliferation and osteogenesis of type 2 diabetic BMSCs in rats and explore whether BMP2 induced osteogenesis via the stimulation of Wnt signaling pathway. The cell experiments were divided into DM (diabetic BMSCs), BMP25 (induced with 25ng/ml BMP2), BMP100 (induced with 100ng/ml BMP2) and BMP25 +XAV groups. All cells with or without the different concentrations of BMP2 were cultured under the same experimental conditions. The in vitro results indicated that BMP2 enhanced cell proliferation by 130%-157% and osteogenic differentiation by approximately two-fold in type 2 diabetic BMSCs. The expression levels of β-catenin, cyclin D1, Runx2 and c-myc related to the Wnt signaling pathway were also upregulated from 180% to 212% in BMP2-induced type 2 diabetic rat BMSCs, while the level of GSK3β decreased to 43%. In BMP2-induced type 2 diabetic BMSCs with calcium phosphate cement (CPC) scaffolds for osteoblast study in vivo, the appearance of newly formed bone dramatically increased to 175% compared with type 2 diabetic BMSCs. These data demonstrated that BMP2 enhanced bone regeneration in diabetic BMSCs by stimulating the Wnt signaling pathway with the accumulation of β-catenin and the depressed expression of GSK3β. Diabetic BMSCs associated with BMP2 might be a potential tissue-engineered construct for bone defects in type 2 diabetes mellitus.

  9. Induction of bone formation in biphasic calcium phosphate scaffolds by bone morphogenetic protein-2 and primary osteoblasts.

    Science.gov (United States)

    Strobel, L A; Rath, S N; Maier, A K; Beier, J P; Arkudas, A; Greil, P; Horch, R E; Kneser, U

    2014-03-01

    Bone tissue engineering strategies mainly depend on porous scaffold materials. In this study, novel biphasic calcium phosphate (BCP) matrices were generated by 3D-printing. High porosity was achieved by starch consolidation. This study aimed to characterise the porous BCP-scaffold properties and interactions of osteogenic cells and growth factors under in vivo conditions. Five differently treated constructs were implanted subcutaneously in syngeneic rats: plain BCP constructs (group A), constructs pre-treated with BMP-2 (group B; 1.6 µg BMP-2 per scaffold), seeded with primary osteoblasts (OB) (group C), seeded with OB and BMP-2 (group D) and constructs seeded with OB and pre-cultivated in a flow bioreactor for 6 weeks (group E). After 2, 4 and 6 weeks, specimens were explanted and subjected to histological and molecular biological analyses. Explanted scaffolds were invaded by fibrovascular tissue without significant foreign body reactions. Morphometric analysis demonstrated significantly increased bone formation in samples from group D (OB + BMP-2) compared to all other groups. Samples from groups B-E displayed significant mRNA expression of bone-specific genes after 6 weeks. Pre-cultivation in the flow bioreactor (group E) induced bone formation comparable with group B. In this study, differences in bone distribution between samples with BMP-2 or osteoblasts could be observed. In conclusion, combination of osteoblasts and BMP-2 synergistically enhanced bone formation in novel ceramic scaffolds. These results provide the basis for further experiments in orthotopic defect models with a focus on future applications in orthopaedic and reconstructive surgery.

  10. The structure and morphogenic changes of antennae of Matsucoccus matsumurae (Hemiptera: Coccoidea: Matsucoccidae) in different instars.

    Science.gov (United States)

    Wang, Xu; Xie, Yingping; Zhang, Yanfeng; Liu, Weimin; Wu, Jun

    2016-05-01

    To better understand the functioning and morphogenic changes of the antennae of Matsucoccus matsumurae (Kuwana) in different instars, the antennae are examined using light microscopy, scanning and transmission electron microscopy. The results show that the antennae of M. matsumurae display three different styles in morphology and sensillar distribution in different instars. The antennae of first instar nymphs are relatively simple, including one campaniform sensillum (Ca), four smooth aporous trichoid sensilla (SAt), two intersegmental sensilla (Ins), two coeloconic sensilla (Co), three multiporous pegs (Mp) and four uniporous pegs (Up). The antennae of adult females and third instar male nymphs both possess similar antennae, and exhibit seven types of sensilla. Adult female antennae have in total 82-108 sensilla, including 9-16 Böhm's bristle (Bb), 3-7 Ca, 50-75 SAt, 0-3 Ins, 3-10 Co, 8 Mp and 5 Up, whereas third instar male nymph antennae possess approximately 62-79 sensilla. Adult male antennae are the most developed, possessing 259-312 sensilla, including 7-15 Bb, 2-5 Ca, 7-11 grooved aporous trichoid sensilla, 4-9 SAt, 0-3 Ins, 2-7 Co, 23-29 knobbed seta sensilla, 179-230 multiporous trichoid sensilla and 8 Mp. Based on these results, the main functions and morphogenic changes of antennae M. matsumurae in different instars are discussed.

  11. Effect of human bone morphogenetic protein 2 implant on tooth eruption in an experimental design.

    Science.gov (United States)

    Steinberg, B; Chiego, D J; Huizinga, P J; Wozney, J M; Wikesjö, U M

    1999-07-01

    This study evaluated the influence of recombinant human bone morphogenetic protein 2 (rhBMP-2) on the development and eruption of the secondary dentition. Primary premolar tooth extraction sockets in 12 16-week-old felines were implanted with either rhBMP-2, in collagen sponge or with buffer/absorbable collagen sponge (ACS). Unoperated jaw quadrants served as controls. Experimental conditions were randomized between jaw quadrants in all animals. Two animals receiving rhBMP-2/ACS and buffer/ACS in two quadrants per implant were sacrificed at 4 weeks postsurgery. Ten animals receiving rhBMP-2/ACS (two quadrants), buffer/ACS implants (one quadrant), and one quadrant serving as an unoperated control were evaluated at 12 weeks postsurgery. Clinical assessments included healing, eruption patterns, and crown development. Radiographic assessments included tooth development, eruption patterns, and bone formation. Histological observations were also made from the 4-week animals. The secondary dentition remained unerupted at 4 weeks postsurgery. Histological analysis showed normal alveolar bone coronal to the erupting teeth in rhBMP-2/ACS-implanted quadrants. At 12 weeks postsurgery, all teeth were erupted without differences between quadrants. Clinically, the crowns of all teeth were normal. Radiographs suggested that teeth in rhBMP-2/ACS- and buffer/ACS-implanted jaw quadrants exhibited similar tooth development and eruption patterns as the normal control. The evidence from this study suggests that surgical implantation of rh-BMP-2/ACS in the pathway of the developing and erupting secondary dentition does not interfere with the normal development and eruption patterns of the teeth.

  12. Bone morphogenetic protein 6 polymorphisms are associated with radiographic progression in ankylosing spondylitis.

    Directory of Open Access Journals (Sweden)

    Young Bin Joo

    Full Text Available Nearly 25 genetic loci associated with susceptibility to ankylosing spondylitis (AS have been identified by several large studies. However, there have been limited studies to identify the genes associated with radiographic severity of the disease. Thus we investigated which genes involved in bone formation pathways might be associated with radiographic severity in AS.A total of 417 Korean AS patients were classified into two groups based on the radiographic severity as defined by the modified Stoke' Ankylosing Spondylitis Spinal Score (mSASSS system. Severe AS was defined by the presence of syndesmophytes and/or fusion in the lumbar or cervical spine (n = 195. Mild AS was defined by the absence of any syndesmophyte or fusion (n = 170. A total of 251 single nucleotide polymorphisms (SNPs within 52 genes related to bone formation were selected and genotyped. Odds ratios (OR and 95% confidence interval (95% CI were analysed by multivariate logistic regression controlling for age at onset of symptoms, sex, disease duration, and smoking status as covariates.We identified new loci of bone morphogenetic protein 6 (BMP6 associated with radiographic severity in patients with AS that passed false discovery rate threshold. Two SNPs in BMP6 were significantly associated with radiologic severity [rs270378 (OR 1.97, p = 6.74 × 10(-4 and rs1235192 [OR 1.92, p = 1.17 × 10(-3] adjusted by covariates.This is the first study to demonstrate that BMP6 is associated with radiographic severity in AS, supporting the role wingless-type like/BMP pathway on radiographic progression in AS.

  13. Enhanced healing of rabbit segmental radius defects with surface-coated calcium phosphate cement/bone morphogenetic protein-2 scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yi; Hou, Juan; Yin, ManLi [Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Wang, Jing, E-mail: biomatwj@163.com [Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Liu, ChangSheng, E-mail: csliu@sh163.net [Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237 (China); Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China)

    2014-11-01

    Large osseous defects remain a difficult clinical problem in orthopedic surgery owing to the limited effective therapeutic options, and bone morphogenetic protein-2 (BMP-2) is useful for its potent osteoinductive properties in bone regeneration. Here we build a strategy to achieve prolonged duration time and help inducting new bone formation by using water-soluble polymers as a protective film. In this study, calcium phosphate cement (CPC) scaffolds were prepared as the matrix and combined with sodium carboxymethyl cellulose (CMC-Na), hydroxypropylmethyl cellulose (HPMC), and polyvinyl alcohol (PVA) respectively to protect from the digestion of rhBMP-2. After being implanted in the mouse thigh muscles, the surface-modified composite scaffolds evidently induced ectopic bone formation. In addition, we further evaluated the in vivo effects of surface-modified scaffolds in a rabbit radius critical defect by radiography, three dimensional micro-computed tomographic (μCT) imaging, synchrotron radiation-based micro-computed tomographic (SRμCT) imaging, histological analysis, and biomechanical measurement. The HPMC-modified CPC scaffold was regarded as the best combination for segmental bone regeneration in rabbit radius. - Highlights: • A simple surface-coating method was used to fabricate composite scaffolds. • Growth factor was protected from rapid depletion via superficial coating. • Significant promotion of bone regeneration was achieved. • HPMC-modification displayed optimal effect of bone regeneration.

  14. The Hypoxia-Inducible Factor Pathway, Prolyl Hydroxylase Domain Protein Inhibitors, and Their Roles in Bone Repair and Regeneration

    Directory of Open Access Journals (Sweden)

    Lihong Fan

    2014-01-01

    Full Text Available Hypoxia-inducible factors (HIFs are oxygen-dependent transcriptional activators that play crucial roles in angiogenesis, erythropoiesis, energy metabolism, and cell fate decisions. The group of enzymes that can catalyse the hydroxylation reaction of HIF-1 is prolyl hydroxylase domain proteins (PHDs. PHD inhibitors (PHIs activate the HIF pathway by preventing degradation of HIF-α via inhibiting PHDs. Osteogenesis and angiogenesis are tightly coupled during bone repair and regeneration. Numerous studies suggest that HIFs and their target gene, vascular endothelial growth factor (VEGF, are critical regulators of angiogenic-osteogenic coupling. In this brief perspective, we review current studies about the HIF pathway and its role in bone repair and regeneration, as well as the cellular and molecular mechanisms involved. Additionally, we briefly discuss the therapeutic manipulation of HIFs and VEGF in bone repair and bone tumours. This review will expand our knowledge of biology of HIFs, PHDs, PHD inhibitors, and bone regeneration, and it may also aid the design of novel therapies for accelerating bone repair and regeneration or inhibiting bone tumours.

  15. Constructive interactions among nutrients and bone-active pharmacologic agents with principal emphasis on calcium, phosphorus, vitamin D and protein.

    Science.gov (United States)

    Heaney, R P

    2001-10-01

    Current and emerging bone active pharmacologic agents are capable of producing substantial gains in bone mass. However, nutrition must be adequate if this potential is to be realized. Calcium and vitamin D supplementation, for example, have both been demonstrated to augment substantially the skeletal response to estrogen therapy in postmenopausal women. The bisphosphonates and selective estrogen receptor modulator (SERMs) have all been tested only in the context of supplemental calcium and vitamin D. Therefore, it cannot be assumed that these bone active agents would be effective in the absence of these nutrients. Adequate protein intake has also been demonstrated to protect bone mass in the elderly and to improve recovery from osteoporotic fractures. Phosphorus intake, less extensively studied, may be more important than currently recognized, particularly in elderly individuals living alone, eating little meat, and receiving anti-osteoporosis treatment agents.

  16. Molecular Actions of Ovarian Cancer G Protein-Coupled Receptor 1 Caused by Extracellular Acidification in Bone

    Directory of Open Access Journals (Sweden)

    Feng-Lai Yuan

    2014-12-01

    Full Text Available Extracellular acidification occurs under physiologic and pathologic conditions, such as exercise, ischemia, and inflammation. It has been shown that acidosis has various adverse effects on bone. In recent years there has been increasing evidence which indicates that ovarian cancer G protein-coupled receptor 1 (OGR1 is a pH-sensing receptor and mediates a variety of extracellular acidification-induced actions on bone cells and other cell types. Recent studies have shown that OGR1 is involved in the regulation of osteoclast differentiation, survival, and function, as well as osteoblast differentiation and bone formation. Moreover, OGR1 also regulates acid-induced apoptosis of endplate chondrocytes in intervertebral discs. These observations demonstrate the importance of OGR1 in skeletal development and metabolism. Here, we provide an overview of OGR1 regulation ofosteoclasts, osteoblasts, and chondrocytes, and the molecular actions of OGR1 induced by extracellular acidification in the maintenance of bone health.

  17. Construction of Adeno-associated Virus System for Human Bone Morphogenetic Protein 7 Gene

    Institute of Scientific and Technical Information of China (English)

    Ke SONG; Nianjing RAO; Meiling CHEN; Yingguang CAO

    2008-01-01

    To construct the recombinant adeno-associated virus (rAAV) vector with human bone morphogenetic protein 7 (BMP7) and observe the BMP7 mRNA expression in vitro, BMP7 CDS se- quence was cloned into expression plasmid pAAV-MCS of AAV Helper Free System. The recombi- nant plasmid was identified with enzyme digestion and sequencing. The recombinant plasmid, pAAV-RC, pHelper were co-transfected into AAV-293 cells according to the calcium phosphate-based protocol. The viral stock was collected by 4 rounds of freeze/thaw. After purified and concentrated,the recombinant virus titer was determined by dot-blot assay. HEK293 cells were transfected with the recombinant virus at different MOI, and the expression of BMP7 mRNA was detected by RT-PCR. The results showed rAAV-BMP7 was constructed and packaged successfully. The physical particle titer was 2.5×1011 vector genomes/mL. There was different expression level of BMP7 mRNA after transfecton. These data suggested that recombinant AAV mediated a stable expression of hBMP7 mRNA in 293 cells. The AAV production method may pave the way of an effective strategy for the jaw bone defection around dental implants.

  18. The importance and the differences of bone morphogenetic proteins for osteoporotic hip fractures.

    Science.gov (United States)

    Dincel, V Ercan; Sepici-Dincel, Aylin

    2014-06-01

    Bone morphogenetic proteins (BMPs), major contributors to tissue repair, have become one of the most exciting fields in rheumatic and orthopaedic research. In our study we aimed to evaluate the relationship between osteoporotic hip fractures and the serum levels of BMPs to reveal their potential roles in the diagnosis of patients. The study group included 62 patients with osteoporotic hip fracture (Group 1; intertrochanteric fracture, Group 2; collum femoris fracture) and the control group. All fractures were due to low energy trauma, simple falls. For all subjects BMD measurements were in agreement for osteoporosis and no significant differences were observed between the two fracture groups. Biochemical markers; BMP-4 and BMP-7 (pg/mL) were determined by commercial Elisa kits from the serum samples. The mean and standard error values of serum samples for BMP-4 and BMP-7 in Group 1 (100.70 +/- 10.03, 74.41 +/- 6.31 respectively) and in Group 2 (112.34 +/- 11.52, 81.91 +/- 10.14 respectively) were not statistically different however for both groups only BMP-7 values increased statistically when compared to the control group. BMP-7 measurements may not only serve as potential biochemical markers for determining disease severity but also the increased levels, an osteogenic factor and bone stimulating agent in vivo, after trauma elevated levels are adaptive or protective and therefore may reduce the severity of the fracture.

  19. Sustained release of bone morphogenetic protein 2 via coacervate improves the osteogenic potential of muscle-derived stem cells.

    Science.gov (United States)

    Li, Hongshuai; Johnson, Noah Ray; Usas, Arvydas; Lu, Aiping; Poddar, Minakshi; Wang, Yadong; Huard, Johnny

    2013-09-01

    Muscle-derived stem cells (MDSCs) isolated from mouse skeletal muscle by a modified preplate technique exhibit long-term proliferation, high self-renewal, and multipotent differentiation capabilities in vitro. MDSCs retrovirally transduced to express bone morphogenetic proteins (BMPs) can differentiate into osteocytes and chondrocytes and enhance bone and articular cartilage repair in vivo, a feature that is not observed with nontransduced MDSCs. These results emphasize that MDSCs require prolonged exposure to BMPs to undergo osteogenic and chondrogenic differentiation. A sustained BMP protein delivery approach provides a viable and potentially more clinically translatable alternative to genetic manipulation of the cells. A unique growth factor delivery platform comprised of native heparin and a synthetic polycation, poly(ethylene argininylaspartate diglyceride) (PEAD), was used to bind, protect, and sustain the release of bone morphogenetic protein-2 (BMP2) in a temporally and spatially controlled manner. Prolonged exposure to BMP2 released by the PEAD:heparin delivery system promoted the differentiation of MDSCs to an osteogenic lineage in vitro and induced the formation of viable bone at an ectopic site in vivo. This new strategy represents an alternative approach for bone repair mediated by MDSCs while bypassing the need for gene therapy.

  20. Targeting G-Protein Signaling for the Therapeutics of Prostate Tumor Bone Metastases and the Associated Chronic Bone Pain

    Science.gov (United States)

    2015-09-01

    and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202- 4302. Respondents should be aware that notwithstanding any...It is the major cause of mortality and morbidities, due to the development of bone pain, hypercalcemia, fractures , spinal cord compression and

  1. Regulators of G protein signaling 12 (Rgs12) promotes osteoclastogenesis in bone remodeling and pathologic bone loss

    Science.gov (United States)

    Calcium (Ca2+) signaling plays a pivotal role in controlling various cellular processes such as secretion, differentiation, proliferation, motility, and cell death through the release of Ca2+ from internal stores and entry from extracellular fluid. In bone, receptor activator of NF-kB ligand (RANKL)...

  2. Structure of protein related to Dan and Cerberus: insights into the mechanism of bone morphogenetic protein antagonism.

    Science.gov (United States)

    Nolan, Kristof; Kattamuri, Chandramohan; Luedeke, David M; Deng, Xiaodi; Jagpal, Amrita; Zhang, Fuming; Linhardt, Robert J; Kenny, Alan P; Zorn, Aaron M; Thompson, Thomas B

    2013-08-06

    The bone morphogenetic proteins (BMPs) are secreted ligands largely known for their functional roles in embryogenesis and tissue development. A number of structurally diverse extracellular antagonists inhibit BMP ligands to regulate signaling. The differential screening-selected gene aberrative in neuroblastoma (DAN) family of antagonists represents the largest group of BMP inhibitors; however, little is known of how they mechanistically inhibit BMP ligands. Here, we present the structure of the DAN family member, protein related to Dan and Cerberus (PRDC), solved by X-ray crystallography. The structure reveals a growth factor-like appearance with an unexpected dimerization mechanism that is formed through extensive β strand contacts. Using site-directed mutagenesis coupled with in vitro and in vivo activity assays, we identified a BMP-binding epitope on PRDC. We also determined that PRDC binds heparin with high affinity and that heparin binding to PRDC interferes with BMP antagonism. These results offer insight for how DAN family antagonists functionally inhibit BMP ligands.

  3. Expression and regulation of the decoy bone morphogenetic protein receptor BAMBI in the developing avian face.

    Science.gov (United States)

    Higashihori, Norihisa; Song, Yiping; Richman, Joy M

    2008-05-01

    Here, we examine the expression and regulation of the gene BAMBI, a kinase-deficient decoy receptor capable of interacting with type I bone morphogenetic protein (BMP) receptors in avian embryos. Initially, expression was limited to the endoderm during neurula and pharyngula stages. From embryonic day 3.5 (stage 20) and onward, BAMBI expression almost perfectly overlapped with known expression patterns for BMP4, particularly in the face and limbs. We performed bead implant experiments in the face to see which signals could be repressing or promoting expression of BAMBI. Our data point to retinoids and BMPs as being major positive regulators of BAMBI expression; however, fibroblast growth factor 2 acts to repress BAMBI. Furthermore, retinoic acid is likely to act directly on BAMBI as induction occurs in the presence of cycloheximide. The data suggested that BAMBI could be used to regulate Bmp signaling during tissue interactions that are an integral part of facial morphogenesis.

  4. Establishment and identification of fibroblast clones expressing human bone morphogenetic protein 2

    Institute of Scientific and Technical Information of China (English)

    Juan Wang; Weibin Sun; Chun Lu; Guixia Tang

    2005-01-01

    Objective:To establish fibroblasts stably expressing human bone morphogenetic protein 2 (hBMP2). Methods:Eukaryonic expression vector(pcDNA3.1-B2) was transduced into NIH3T3 cells using SofastTM, a new generation cationic polymer gene transfection reagent. The positive cell clones were selected with G418. The stable transfection and expression of BMP2 in the NIH3T3 cells were determined by RT-PCR and immunohistochemical stain. Results: BMP2 mRNA was transcripted and expressed in the transfected NIH3T3 cells. Conclusion: With positive compound transfection, outside human BMP2 gene can be successfully transducted into NIH3T3 cells, which is the key step to induce periodontal cells to osseous phenotypes.

  5. Microdialysis Sampling from Wound Fluids Enables Quantitative Assessment of Cytokines, Proteins, and Metabolites Reveals Bone Defect-Specific Molecular Profiles.

    Directory of Open Access Journals (Sweden)

    Yvonne Förster

    Full Text Available Bone healing involves a variety of different cell types and biological processes. Although certain key molecules have been identified, the molecular interactions of the healing progress are not completely understood. Moreover, a clinical routine for predicting the quality of bone healing after a fracture in an early phase is missing. This is mainly due to a lack of techniques to comprehensively screen for cytokines, growth factors and metabolites at their local site of action. Since all soluble molecules of interest are present in the fracture hematoma, its in-depth assessment could reveal potential markers for the monitoring of bone healing. Here, we describe an approach for sampling and quantification of cytokines and metabolites by using microdialysis, combined with solid phase extractions of proteins from wound fluids. By using a control group with an isolated soft tissue wound, we could reveal several bone defect-specific molecular features. In bone defect dialysates the neutrophil chemoattractants CXCL1, CXCL2 and CXCL3 were quantified with either a higher or earlier response compared to dialysate from soft tissue wound. Moreover, by analyzing downstream adaptions of the cells on protein level and focusing on early immune response, several proteins involved in the immune cell migration and activity could be identified to be specific for the bone defect group, e.g. immune modulators, proteases and their corresponding inhibitors. Additionally, the metabolite screening revealed different profiles between the bone defect group and the control group. In summary, we identified potential biomarkers to indicate imbalanced healing progress on all levels of analysis.

  6. A high mixed protein diet reduces body fat without altering the mechanical properties of bone in female rats.

    Science.gov (United States)

    Pye, Kathleen M; Wakefield, Andrew P; Aukema, Harold M; House, James D; Ogborn, Malcolm R; Weiler, Hope A

    2009-11-01

    Long-term consumption of high-protein (HP) diets at 35% of energy is postulated to negatively influence bone health. Previous studies have not comprehensively examined the biochemical, physical, and biomechanical properties of bone required to arrive at this conclusion. Our objective in this study was to examine the long-term effect of a HP diet on bone metabolism, mass, and strength in rats. Adult female Sprague-Dawley rats (n = 80) were randomized to receive for 4, 8, 12, or 17 mo a normal-protein (NP) control diet (15% of energy) or a HP diet (35% of energy). Diets were balanced for calcium because the protein sources were rich in calcium. At each time point, measurements included weight, body composition, and bone mass using dual-energy X-ray absorptiometry, mechanical strength at the mid-diaphysis of femur and tibia, microarchitecture of femurs using microcomputerized tomography and serum osteocalcin, carboxy-terminal crosslinks of type I collagen (CTX), insulin-like growth factor-1 (IGF-1), leptin, and adiponectin. Effects of diet, time, and their interaction were tested using factorial ANOVA. The HP diet resulted in lower body weight, total body, and abdominal fat and higher lean mass. Serum leptin and adiponectin were greater in HP-fed than in NP-fed rats, but IGF-1 did not differ between the groups. Whereas the HP diet resulted in higher relative bone mineral content (g/kg) in the femur, tibia, and vertebrae, serum osteocalcin and CTX and bone internal architecture and biomechanical strength were unaffected. In conclusion, HP diets at 35% of energy lower body fat content without hindering the mechanical and weight-bearing properties of bone.

  7. The interactions between rat-adipose-derived stromal cells, recombinant human bone morphogenetic protein-2, and beta-tricalcium phosphate play an important role in bone tissue engineering.

    Science.gov (United States)

    E, Ling-Ling; Xu, Lu-Lu; Wu, Xia; Wang, Dong-Sheng; Lv, Yan; Wang, Jia-Zhu; Liu, Hong-Chen

    2010-09-01

    Cells, scaffolds, and growth factors are the three main factors for creating a stem-cell-based tissue-engineered construct, but the interactions between three factors are not very clear. We hereby explored the interactions between rat-adipose-derived stromal cells (rASCs), recombinant human bone morphogenetic protein-2 (rhBMP-2), and beta-tricalcium phosphate (beta-TCP) to provide evidence for their application in bone tissue engineering by evaluating the protein adsorption of beta-TCP, the cell attachment, alkaline phosphatase (ALP) activity/protein, osteocalcin (OCN) content, mineral formation, calcium content, phosphonium content, cell vitality, gene expression, and implantation in the backs of severe combined immunodeficient mice of rhBMP-2 preinducing rASCs seeded onto beta-TCP. The results showed that beta-TCP could adsorb the proteins from the media. The attachment, proliferation, and osteogenic properties of rASCs were supported by beta-TCP, as revealed using scanning electron microscopy. Compared with rASCs cultured on the culture plate, rASCs cultured on beta-TCP had significantly higher ALP activity/protein, OCN content, and mineral formation. These values for rASCs cultured on beta-TCP with rhBMP-2 increased most significantly. The rhBMP-2 significantly increased the calcium content, phosphonium content, and ALP, type I collagen, and OCN mRNA levels of rASCs cultured on beta-TCP. The methylthiazol tetrazolium method revealed that the vitality of rASCs cultured on beta-TCP with or without rhBMP-2 for 4, 7, and 28 days in vitro was insignificantly different. After 8 and 12 weeks of implantation, each group displayed increased bone formation over the 12-week period. The percentage of the new bone formed areas for beta-TCP/rhBMP-2 and beta-TCP was not significantly different. This value for rASCs/beta-TCP construct was significantly higher than that for beta-TCP group, but the maximal and robust bone formation was presented in rASCs/beta-TCP with rhBMP-2

  8. Stable expression and characterization of N-terminal tagged recombinant human bone morphogenetic protein 15

    Science.gov (United States)

    Li, Qinglei; Rajanahally, Saneal; Edson, Mark A.; Matzuk, Martin M.

    2009-01-01

    Oocyte-derived growth factors are critically involved in multiple ovarian processes via paracrine actions. Although recombinant proteins have been applied to dissect the physiological functions of these factors, variation of activities among different protein preparations remains an issue. To further elucidate the roles of one of these growth factors, bone morphogenetic protein 15 (BMP15), in mediating oocyte-regulated molecular and cellular events and to explore its potential clinical application, we engineered the human BMP15 sequence to efficiently produce bioactive recombinant human BMP15 (rhBMP15). The proteolytic cleavage site of the hBMP15 precursor was optimized to facilitate the production of the mature protein, and a FLAG-tag was placed at the N-terminus of the mature region to ease purification and avoid potential interference of the tag with the cystine knot structure. The rhBMP15 protein was purified using anti-FLAG M2 affinity gel. Our results demonstrated that the N-terminal tagged rhBMP15 was efficiently processed in HEK-293 cells. Furthermore, the purified rhBMP15 could activate SMAD1/5/8 and induce the transcription of genes encoding cumulus expansion-related transcripts (Ptx3, Has2, Tnfaip6 and Ptgs2), inhibitory SMADs (Smad6 and Smad7), BMP antagonists (Grem1 and Fst), activin/inhibin βA (Inhba) and βB (Inhbb) subunits, etc. Thus, our rhBMP15 containing a genetically modified cleavage sequence and an N-terminal FLAG-tag can be efficiently produced, processed and secreted in a mammalian expression system. The purified rhBMP15 is also biologically active and very stable, and can induce the expression of a variety of mouse granulosa cell genes. PMID:19651638

  9. Effect of ash content on protein quality of meat and bone meal.

    Science.gov (United States)

    Shirley, R B; Parsons, C M

    2001-05-01

    The effect of ash concentration on amino acid (AA) composition, true AA digestibility, and protein efficiency ratio (PER; weight gain per unit of protein intake) of meat and bone meal (MBM) was evaluated. Commercially rendered MBM samples containing 16 to 44% ash were obtained from two sources. Additional samples of MBM varying in ash from 9 to 63% were obtained by chloroform floatation or lab screening of a beef crax sample. Protein quality of selected MBM samples was assessed by determining true AA digestibility using the precision-fed cecectomized rooster assay and by a PER chick growth assay wherein chicks were fed 10% CP diets containing a MBM as the only source of dietary protein from 8 to 18 d of age. Increases in Ala, Pro, Gly, and Arg as a percentage of CP were observed in all MBM samples as ash percentage increased, with Pro and Gly accounting for most of the increase. In contrast, the levels (% of CP) of all essential AA, other than Arg, decreased as ash level increased. For example, Lys concentrations per unit of CP decreased from 5.7 to 4.0% as ash increased from 9 to 63%. There was little or no effect of ash content on AA digestibility of MBM varying in ash from 9 to 44%. The PER of MBM markedly decreased from 3.34 to 0.72 as ash increased from 16 to 44%, and most of the effects of ash on PER were not due to differences in dietary Ca and P levels. The results indicate that the reduction in protein quality of MBM as ash content increases is almost entirely due to a decrease in analyzed essential AA per unit of CP, not a decrease in digestibility of AA.

  10. Ectopic bone formation cannot occur by hydroxyapatite/{beta}-tricalcium phosphate bioceramics in green fluorescent protein chimeric mice

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Lijia [Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu (China); Duan Xin [Department of Orthopaedics, Chengdu Second People' s Hospital, Chengdu (China); Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu (China); Xiang Zhou [Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu (China); Shi Yujun; Lu Xiaofeng; Ye Feng [Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu (China); Bu Hong, E-mail: hongbu@scu.edu.cn [Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu (China); Department of Pathology, West China Hospital, Sichuan University, Chengdu (China)

    2012-12-01

    Highlights: Black-Right-Pointing-Pointer Firstly, chimeric mouse model could be established successfully by bone marrow transplantation after irradiation. Black-Right-Pointing-Pointer Secondly, bone induction can occur in wild-type mice 90 days after implantation, but not occur in chimeric mice. Black-Right-Pointing-Pointer Thirdly, destruction of immune function will block osteoinduction by calcium phosphate ceramics. - Abstract: Many studies have shown that calcium phosphate ceramics (CP) have osteoconductive and osteoinductive properties; however, the exact mechanism of bone induction has not yet been reported. This study was performed to investigate if destroying immunological function will influence osteogenesis, to explain the mechanism which is unclear. In this study, twenty C57BL/6 mice were divided into two groups (n = 10), in group 1, a hydroxyapatite/{beta}-tricalcium phosphate (HA/{beta}-TCP) ceramic was implanted into both the left and right leg muscles of each mouse; in group 2, ten mice experienced lethal irradiation, then were injected bone marrow (BM) cells from green fluorescent protein (GFP) transgenic mice by tail veil, after bone marrow transplantation (BMT), heart, liver, spleen, lung, kidney, and muscle were harvested for biological analysis, after the GFP chimera model was established successfully, the same HA/{beta}-TCP ceramic was implanted into both leg muscles of each mouse immediately after irradiation. 45 and 90 days after implantation, the ceramics of the two groups were harvested to perform with hematoxylin and eosin (HE) and immunohistochemistry (IHC) staining; the results showed that there was no bone formation in group 2, while new bone tissues were detected in group 1. Our findings suggest that the BM cell from GFP transgenic mice is a good biomarker and it could set a good platform for chimera model; it also shows that BM cell is one of cell resources of bone induction, and destruction of immune function will impede

  11. Model-based Comparative Prediction of Transcription-Factor Binding Motifs in Anabolic Responses in Bone

    Institute of Scientific and Technical Information of China (English)

    Andy; B.; Chen; Kazunori; Hamamura; Guohua; Wang; Weirong; Xing; Subburaman; Mohan; Hiroki; Yokota; Yunlong; Liu

    2007-01-01

    Understanding the regulatory mechanism that controls the alteration of global gene expression patterns continues to be a challenging task in computational biology. We previously developed an ant algorithm, a biologically-inspired computational technique for microarray data, and predicted putative transcription-factor binding motifs (TFBMs) through mimicking interactive behaviors of natural ants. Here we extended the algorithm into a set of web-based software, Ant Modeler, and applied it to investigate the transcriptional mechanism underlying bone formation. Mechanical loading and administration of bone morphogenic proteins (BMPs) are two known treatments to strengthen bone. We addressed a question: Is there any TFBM that stimulates both "anabolic responses of mechanical loading" and "BMP-mediated osteogenic signaling"? Although there is no significant overlap among genes in the two responses, a comparative model-based analysis suggests that the two independent osteogenic processes employ common TFBMs, such as a stress responsive element and a motif for peroxisome proliferator-activated recep- tor (PPAR). The post-modeling in vitro analysis using mouse osteoblast cells sup- ported involvements of the predicted TFBMs such as PPAR, Ikaros 3, and LMO2 in response to mechanical loading. Taken together, the results would be useful to derive a set of testable hypotheses and examine the role of specific regulators in complex transcriptional control of bone formation.

  12. Non-viral bone morphogenetic protein 2 transfection of rat dental pulp stem cells using calcium phosphate nanoparticles as carriers.

    NARCIS (Netherlands)

    Yang, X.; Walboomers, X.F.; Dolder, J. van den; Yang, F.; Bian, Z.; Fan, M.; Jansen, J.A.

    2008-01-01

    Calcium phosphate nanoparticles have shown potential as non-viral vectors for gene delivery. The aim of this study was to induce bone morphogenetic protein (Bmp)2 transfection in rat dental pulp stem cells using calcium phosphate nanoparticles as a gene vector and then to evaluate the efficiency and

  13. Reconstitution of bone-like matrix in osteogenically differentiated mesenchymal stem cell–collagen constructs: A three-dimensional in vitro model to study hematopoietic stem cell niche

    Directory of Open Access Journals (Sweden)

    WY Lai

    2013-10-01

    Full Text Available Mesenchymal stem/stromal cells (MSCs and osteoblasts are important niche cells for hematopoietic stem cells (HSCs in bone marrow osteoblastic niche. Here, we aim to partially reconstitute the bone marrow HSC niche in vitro using collagen microencapsulation for investigation of the interactions between HSCs and MSCs. Mouse MSCs (mMSCs microencapsulated in collagen were osteogenically differentiated to derive a bone-like matrix consisting of osteocalcin, osteopontin, and calcium deposits and secreted bone morphogenic protein 2 (BMP2. Decellularized bone-like matrix was seeded with fluorescence-labeled human MSCs and HSCs. Comparing with pure collagen scaffold, significantly more HSCs and HSC–MSC pairs per unit area were found in the decellularized bone-like matrix. Moreover, incubation with excess neutralizing antibody of BMP2 resulted in a significantly higher number of HSC per unit area than that without in the decellularized matrix. This work suggests that the osteogenic differentiated MSC–collagen microsphere is a valuable three-dimensional in vitro model to elucidate cell–cell and cell–matrix interactions in HSC niche.

  14. Biologic effect and immunoisolating behavior of BMP-2 gene-transfected bone marrow-derived mesenchymal stem cells in APA microcapsules.

    Science.gov (United States)

    Ding, H F; Liu, R; Li, B G; Lou, J R; Dai, K R; Tang, T T

    2007-11-03

    We investigated the encapsulation of BMP-2 gene-modified mesenchymal stem cells (MSCs) in alginate-poly-L-lysine (APA) microcapsules for the persistent delivery of bone morphogenic protein-2 (BMP-2) to induce bone formation. An electrostatic droplet generator was employed to produce APA microcapsules containing encapsulated beta-gal or BMP-2 gene-transfected bone marrow-derived MSCs. We found that X-gal staining was still positive 28 days after encapsulation. Encapsulated BMP-2 gene-transfected cells were capable of constitutive delivery of BMP-2 proteins for at least 30 days. The encapsulated BMP-2 gene-transfected MSCs or the encapsulated non-gene transfer MSCs (control group) were cocultured with the undifferentiated MSCs. The gene products from the encapsulated BMP-2 cells could induce the undifferentiated MSCs to become osteoblasts that had higher alkaline phosphatase (ALP) activity than those in the control group (pAPA microcapsules could inhibit the permeation of fluorescein isothiocyanate-conjuncted immunoglobulin G. Mixed lymphocyte reaction also indicates that the APA microcapsules could prevent the encapsulated BMP-2 gene-transfected MSCs from initiating the cellular immune response. These results demonstrated that the nonautologous BMP-2 gene-transfected stem cells are of potential utility for enhancement of bone repair and bone regeneration in vivo.

  15. The Effect of Altering the Mechanical Loading Environment on the Expression of Bone Regenerating Molecules in Cases of Distraction Osteogenesis

    Directory of Open Access Journals (Sweden)

    Mohammad M Alzahrani

    2014-12-01

    Full Text Available Distraction osteogenesis (DO is a surgical technique where gradual and controlled separation of two bony fragments following an osteotomy leads to the induction of new bone formation in the distracted gap. DO is used for limb lengthening, correction of bony deformities and the replacement of bone loss secondary to infection, trauma and tumors. Although DO gives satisfactory results in most cases, one major drawback of this technique is the prolonged period of time the external fixator has to be kept on until the newly formed bone consolidates thus leading to numerous complications. Numerous attempts at accelerating bone formation during DO have been reported. One specific approach is manipulation of the mechanical environment during DO by applying changes in the standard protocol of distraction. Attempts at changing this mechanical environment led to mixed results. Increasing the rate or applying acute distraction, led to poor bone formation in the distracted zone. On the other hand, the addition of compressive forces (such as weight bearing, alternating distraction with compression or by over-lengthening and then shortening has been reported to increase bone formation. It still remains unclear why these alterations may lead to changes in bone formation. While the cellular and molecular changes occurring during the standard DO protocol, specifically increased expression of transforming growth factor-β1, platelet derived growth factor, insulin-like growth factor, basic fibroblast growth factor, vascular endothelial growth factor, and bone morphogenic proteins have been extensively investigated, the literature is sparse on the changes occurring when this protocol is altered. It is the purpose of this article to review the pertinent literature on the changes in the expression of various proteins and molecules as a result of changes in the mechanical loading technique in DO and try to define potential future research directions.

  16. Bone morphogenetic protein signaling protects against cerulein-induced pancreatic fibrosis.

    Directory of Open Access Journals (Sweden)

    Xuxia Gao

    Full Text Available Bone morphogenetic proteins (BMPs have an anti-fibrogenic function in the kidney, lung, and liver. However, their role in chronic pancreatitis (CP is unknown. The aim of this study was to define the anti-fibrogenic role of BMP signaling in the pancreas in vivo under CP induction. Mice with a deletion of BMP type II receptor (BMPR2(+/- were used in this study in comparison with wild-type mice. CP was induced by repetitive cerulein injection intraperitoneally for 4 weeks, and the severity of CP was evaluated. Pancreatic stellate cells (PSCs were isolated from the mice and treated with BMP2 and TGF-β in vitro, and extracellular matrix protein (ECM production was measured. Smad and mitogen-activated protein kinase (MAPK signaling was also evaluated. BMPR2(+/- mice revealed a greater pancreatic fibrosis, PSC activation and leukocyte infiltration after CP induction compared to wild-type mice (P<0.05. Under CP induction, phospho (pSmad1/5/8 was elevated in wild-type mice and this effect was abolished in BMPR2(+/- mice; pSmad2 and pp38(MAPK were further enhanced in BMPR2(+/- mice compared to wild-type mice (P<0.05. In vitro, BMP2 inhibited TGF-β-induced ECM protein fibronectin production in wild-type PSCs; this effect was abolished in BMPR2(+/- PSCs (P<0.05. In BMPR2(+/- PSCs, pSmad1/5/8 level was barely detectable upon BMP2 stimulation, while pSmad2 level was further enhanced by TGF-β stimulation, compared to wild-type PSCs (P<0.05. BMPR2/Smad1/5/8 signaling plays a protective role against cerulein-induced pancreatic fibrosis by inhibiting Smad2 and p38(MAPK signaling pathways.

  17. Short communication: Proteins in heat-processed skim milk powder have no positive effects on bone loss of ovariectomized rats.

    Science.gov (United States)

    Du, M; Kong, Y; Wang, C; Gao, H; Han, X; Yi, H; Zhang, L

    2011-06-01

    Milk has positive effects on bone growth. However, the effect of skim milk powder (SMP) on bone properties has not been reported. This study investigated the effect of SMP on bone loss in ovariectomized (OVX) rats. Forty female Sprague-Dawley rats were ovariectomized and another 10 rats received a sham operation. The OVX rats were randomly separated into 4 groups: OVX control, OVX SMP1 (SMP at 0.04 g/d), OVX SMP2 (SMP at 0.20 g/d), and OVX SMP3 (SMP at 0.40 g/d). Skim milk powder was supplied in the rat diet for 12 wk, and the rats were gavaged once per day. The effects of SMP on calcium content and bone mineral density of femur were determined by atomic absorption spectrophotometry and dual-energy x-ray absorptiometry, respectively. Compared with the control, SMP at all dose levels tested had no particular effect on weight:length, calcium content, or bone mineral density of femurs. It was demonstrated that SMP (0.04 to 0.40 g/d) had no positive effect on bone loss in OVX rats, probably because the heat treatment used during SMP processing caused a loss of biological activity in the protein.

  18. Metformin revisited: Does this regulator of AMP-activated protein kinase secondarily affect bone metabolism and prevent diabetic osteopathy?

    Institute of Scientific and Technical Information of China (English)

    Antonio; Desmond; McCarthy; Ana; María; Cortizo; Claudia; Sedlinsky

    2016-01-01

    Patients with long-term type 1 and type 2 diabetes mellitus(DM) can develop skeletal complications or "diabetic osteopathy". These include osteopenia, osteoporosis and an increased incidence of low-stress fractures. In this context, it is important to evaluate whether current anti-diabetic treatments can secondarily affect bone metabolism. Adenosine monophosphateactivated protein kinase(AMPK) modulates multiple metabolic pathways and acts as a sensor of the cellular energy status; recent evidence suggests a critical role for AMPK in bone homeostasis. In addition, AMPK activation is believed to mediate most clinical effects of the insulin-sensitizer metformin. Over the past decade, several research groups have investigated the effects of metformin on bone, providing a considerable body of pre-clinical(in vitro, ex vivo and in vivo) as well as clinical evidence for an anabolic action of metformin on bone. However, two caveats should be kept in mind when considering metformin treatment for a patient with type 2 DM at risk for diabetic osteopathy. In the first place, metformin should probably not be considered an antiosteoporotic drug; it is an insulin sensitizer with proven macrovascular benefits that can secondarily improve bone metabolism in the context of DM. Secondly, we are still awaiting the results of randomized placebo-controlled studies in humans that evaluate the effects of metformin on bone metabolism as a primary endpoint.

  19. Osteoblast Differentiation and Bone: Relevant proteins, regulatory processes and the vascular connection

    OpenAIRE

    2012-01-01

    textabstractBone is a highly specialized form of connective tissue present in most vertebrate animals as part of the endoskeleton. Structurally speaking, bone is mainly constituted by an organic extracellular matrix (ECM) hardened by deposited mineral. The blending between the organic and inorganic parts originates two main types of osseous tissue. The outer part of the tissue, the cortex, is hard compact bone and surrounds the inner trabecular bone, a spongy-like structure. In terms of funct...

  20. Actin-binding protein coronin 1A controls osteoclastic bone resorption by regulating lysosomal secretion of cathepsin K

    Science.gov (United States)

    Ohmae, Saori; Noma, Naruto; Toyomoto, Masayasu; Shinohara, Masahiro; Takeiri, Masatoshi; Fuji, Hiroaki; Takemoto, Kenji; Iwaisako, Keiko; Fujita, Tomoko; Takeda, Norihiko; Kawatani, Makoto; Aoyama, Mineyoshi; Hagiwara, Masatoshi; Ishihama, Yasushi; Asagiri, Masataka

    2017-01-01

    Osteoclasts degrade bone matrix proteins via the secretion of lysosomal enzymes. However, the precise mechanisms by which lysosomal components are transported and fused to the bone-apposed plasma membrane, termed ruffled border membrane, remain elusive. Here, we identified coronin 1A as a negative regulator of exocytotic release of cathepsin K, one of the most important bone-degrading enzymes in osteoclasts. The modulation of coronin 1A expression did not alter osteoclast differentiation and extracellular acidification, but strongly affected the secretion of cathepsin K and osteoclast bone-resorption activity, suggesting the coronin 1A-mediated regulation of lysosomal trafficking and protease exocytosis. Further analyses suggested that coronin 1A prevented the lipidation-mediated sorting of the autophagy-related protein LC3 to the ruffled border and attenuated lysosome–plasma membrane fusion. In this process, the interactions between coronin 1A and actin were crucial. Collectively, our findings indicate that coronin 1A is a pivotal component that regulates lysosomal fusion and the secretion pathway in osteoclast-lineage cells and may provide a novel therapeutic target for bone diseases. PMID:28300073

  1. [A Complex Morpho-Histological Approach to the In Vitro Study of Morphogenic Structures in a Wheat Anther Culture].

    Science.gov (United States)

    Seldimirova, O A; Titova, G E; Kruglova, N N

    2016-01-01

    The external morphological and internal histological features of morphogenic structures (embryoids, calli with embryoids, and calli with buds and roots) have been studied in vitro in a wheat anther culture by light microscopy. The results of this study have been compared with data obtained earlier by scanning electron microscopy.

  2. Inhibitory regulation of osteoclast bone resorption by signal regulatory protein alpha

    NARCIS (Netherlands)

    E.M. van Beek; T.J. de Vries; L. Mulder; T. Schoenmaker; K.A. Hoeben; T. Matozaki; G.E.J. Langenbach; G. Kraal; V. Everts; T.K. van den Berg

    2009-01-01

    Osteoclasts mediate bone resorption, which is critical for bone development, maintenance, and repair. Proper control of osteoclast development and function is important and deregulation of these processes may lead to bone disease, such as osteoporosis. Previous studies have shown that the cytosolic

  3. Regulation of Oligodendrocyte Progenitor Cell Maturation by PPARδ: Effects on Bone Morphogenetic Proteins

    Directory of Open Access Journals (Sweden)

    Maria Vittoria Simonini

    2009-12-01

    Full Text Available In EAE (experimental autoimmune encephalomyelitis, agonists of PPARs (peroxisome proliferator-activated receptors provide clinical benefit and reduce damage. In contrast with PPARγ, agonists of PPARδ are more effective when given at later stages of EAE and increase myelin gene expression, suggesting effects on OL (oligodendrocyte maturation. In the present study we examined effects of the PPARδ agonist GW0742 on OPCs (OL progenitor cells, and tested whether the effects involve modulation of BMPs (bone morphogenetic proteins. We show that effects of GW0742 are mediated through PPARδ since no amelioration of EAE clinical scores was observed in PPARδ-null mice. In OPCs derived from E13 mice (where E is embryonic day, GW0742, but not the PPARγ agonist pioglitazone, increased the number of myelin-producing OLs. This was due to activation of PPARδ since process formation was reduced in PPARδ-null compared with wild-type OPCs. In both OPCs and enriched astrocyte cultures, GW0742 increased noggin protein expression; however, noggin mRNA was only increased in astrocytes. In contrast, GW0742 reduced BMP2 and BMP4 mRNA levels in OPCs, with lesser effects in astrocytes. These findings demonstrate that PPARδ plays a role in OPC maturation, mediated, in part, by regulation of BMP and BMP antagonists.

  4. Purification of bone morphogenetic protein-2 from refolding mixtures using mixed-mode membrane chromatography.

    Science.gov (United States)

    Gieseler, Gesa; Pepelanova, Iliyana; Stuckenberg, Lena; Villain, Louis; Nölle, Volker; Odenthal, Uwe; Beutel, Sascha; Rinas, Ursula; Scheper, Thomas

    2017-01-01

    In this study, we present the development of a process for the purification of recombinant human bone morphogenetic protein-2 (rhBMP-2) using mixed-mode membrane chromatography. RhBMP-2 was produced as inclusion bodies in Escherichia coli. In vitro refolding using rapid dilution was carried out according to a previously established protocol. Different membrane chromatography phases were analyzed for their ability to purify BMP-2. A membrane phase with salt-tolerant properties resulting from mixed-mode ligand chemistry was able to selectively purify BMP-2 dimer from refolding mixtures. No further purification or polishing steps were necessary and high product purity was obtained. The produced BMP-2 exhibited a biological activity of 7.4 × 10(5) U/mg, comparable to commercial preparations. Mixed-mode membrane chromatography can be a valuable tool for the direct purification of proteins from solutions with high-conductivity, for example refolding buffers. In addition, in this particular case, it allowed us to circumvent the use of heparin-affinity chromatography, thus allowing the design of an animal-component-free process.

  5. Imaging bone morphogenetic protein 7 induced cell cycle arrest in experimental gliomas.

    Science.gov (United States)

    Klose, Anke; Waerzeggers, Yannic; Monfared, Parisa; Vukicevic, Slobodan; Kaijzel, Eric L; Winkeler, Alexandra; Wickenhauser, Claudia; Löwik, Clemens W G M; Jacobs, Andreas H

    2011-03-01

    Bone morphogenetic protein 7 (BMP-7) belongs to the superfamily of transforming growth factor β-like cytokines, which can act either as tumor suppressors or as tumor promoters depending on cell type and differentiation. Our investigations focused on analyzing the effects of BMP-7 during glioma cell proliferation in vitro and in vivo. BMP-7 treatment decreased the proliferation of Gli36ΔEGFR-LITG glioma cells up to 50%through a cell cycle arrest in the G(1) phase but not by induction of apoptosis. This effect was mediated by the modulation of the expression and phosphorylation of cyclin-dependent kinase 2, cyclin-dependent kinase inhibitor p21, and downstream retinoblastoma protein. Furthermore, in vivo optical imaging of luciferase activity of Gli36ΔEGFR-LITG cells implanted intracranially into nude mice in the presence or absence of BMP-7 treatment corroborated the antiproliferative effects of this cytokine. This report clearly underlines the tumor-suppressive role of BMP-7 in glioma-derived cells. Taken together, our results indicate that manipulating the BMP/transforming growth factor β signaling cascade may serve as a new strategy for imaging-guided molecular-targeted therapy of malignant gliomas.

  6. Imaging Bone Morphogenetic Protein 7 Induced Cell Cycle Arrest in Experimental Gliomas

    Directory of Open Access Journals (Sweden)

    Anke Klose

    2011-03-01

    Full Text Available Bone morphogenetic protein 7 (BMP-7 belongs to the superfamily of transforming growth factor β-like cytokines, which can act either as tumor suppressors or as tumor promoters depending on cell type and differentiation. Our investigations focused on analyzing the effects of BMP-7 during glioma cell proliferation in vitro and in vivo. BMP-7 treatment decreased the proliferation of Gli36ΔEGFR-LITG glioma cells up to 50%through a cell cycle arrest in the G1 phase but not by induction of apoptosis. This effect was mediated by the modulation of the expression and phosphorylation of cyclin-dependent kinase 2, cyclin-dependent kinase inhibitor p21, and downstream retinoblastoma protein. Furthermore, in vivo optical imaging of luciferase activity of Gli36ΔEGFR-LITG cells implanted intracranially into nude mice in the presence or absence of BMP-7 treatment corroborated the antiproliferative effects of this cytokine. This report clearly underlines the tumor-suppressive role of BMP-7 in glioma-derived cells. Taken together, our results indicate that manipulating the BMP/transforming growth factor β signaling cascade may serve as a new strategy for imaging-guided molecular-targeted therapy of malignant gliomas.

  7. Bone morphogenetic protein-4 enhances vascular endothelial growth factor secretion by human retinal pigment epithelial cells.

    Science.gov (United States)

    Vogt, Rhonda R; Unda, Richard; Yeh, Lee-Chuan C; Vidro, Eileen K; Lee, John C; Tsin, Andrew T

    2006-08-01

    Retinal pigment epithelial (RPE) cells secrete vascular endothelial growth factor (VEGF), a cytokine known to promote angiogenesis. Results from RNase protection assays (RPAs) show that RPE from non-diabetic human donors and from adult retinal pigment epithelium-19 (ARPE-19) cells expressed significant bone morphogenetic protein-4 (BMP-4) message. In addition, ARPE-19 cells cultured in high glucose (25 mM), compared to those in physiological glucose (5.5 mM) released significantly more BMP-4 into the conditioned media (CM). However, the effect of BMP-4 on the release of VEGF by ARPE-19 cells has not been studied. Accordingly, ARPE-19 cells were treated with BMP-4 to determine VEGF secretion. BMP-4 and VEGF levels in the CM and cell lysates were measured by enzyme-linked immunosorbent assay (ELISA). Cells treated with exogenous BMP-4 had higher VEGF in the CM and this treatment effect was dose- and time-dependent, while cell lysates had low levels of VEGF. Addition of cycloheximide (CHX) or actinomycin-D (ACT) significantly reduced VEGF secretion from cells treated with BMP-4, suggesting that the BMP-4-induced secretion of VEGF requires new RNA and protein synthesis. Our results suggest that BMP-4 may play a role in the regulation of ocular angiogenesis associated with diabetic retinopathy (DR) by stimulating VEGF release from RPE cells.

  8. Using poly(lactic-co-glycolic acid microspheres to encapsulate plasmid of bone morphogenetic protein 2/polyethylenimine nanoparticles to promote bone formation in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Qiao C

    2013-08-01

    Full Text Available Chunyan Qiao,1,* Kai Zhang,2,* Han Jin,1 Leiying Miao,3 Ce Shi,1 Xia Liu,1 Anliang Yuan,1 Jinzhong Liu,1 Daowei Li,1 Changyu Zheng,4 Guirong Zhang,5 Xiangwei Li,1 Bai Yang,2 Hongchen Sun11Department of Pathology, School of Stomatology, Jilin University, Changchun, 2State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 3Institute and Hospital of Stomatology, Nanjing University Medical School, Nanjing, People's Republic of China; 4Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA; 5Department of Biochemistry, School of Basic Medicine, Jilin University, Changchun, People's Republic of China*These authors contributed equally to this workAbstract: Repair of large bone defects is a major challenge, requiring sustained stimulation to continually promote bone formation locally. Bone morphogenetic protein 2 (BMP-2 plays an important role in bone development. In an attempt to overcome this difficulty of bone repair, we created a delivery system to slowly release human BMP-2 cDNA plasmid locally, efficiently transfecting local target cells and secreting functional human BMP-2 protein. For transfection, we used polyethylenimine (PEI to create pBMP-2/PEI nanoparticles, and to ensure slow release we used poly(lactic-co-glycolic acid (PLGA to create microsphere encapsulated pBMP-2/PEI nanoparticles, PLGA@pBMP-2/PEI. We demonstrated that pBMP-2/PEI nanoparticles could slowly release from the PLGA@pBMP-2/PEI microspheres for a long period of time. The 3–15 µm diameter of the PLGA@pBMP-2/PEI further supported this slow release ability of the PLGA@pBMP-2/PEI. In vitro transfection assays demonstrated that pBMP-2/PEI released from PLGA@pBMP-2/PEI could efficiently transfect MC3T3-E1 cells, causing MC3T3-E1 cells to secrete human BMP-2 protein, increase calcium deposition and gene expressions of alkaline

  9. Compound soft regenerated skull material for repairing dog skull defects using bone morphogenetic protein as an inductor and nanohydroxyapatite as a scaffold

    Institute of Scientific and Technical Information of China (English)

    Zhidong Shi; Mingwang Liu; Zhongzong Qin; Qinmei Wang; Ying Guo; Haiyong He; Zhonghe Yu

    2008-01-01

    BACKGROUND: In previous studies of skull defects and regeneration, bone morphogenetic protein as an inductor and nanohydroxyapatite as a scaffold have been cocultured with osteoblasts.OBJECTIVE: To verify the characteristics of the new skull regenerated material after compound soft regenerated skull material implantatiom.DESIGN, TIME AND SETTING: The self-control and inter-group control animal experiment was perfurmed at the Sun Yat-sen University, China from February to July 2007.MATERIALS: Twenty-tour healthy adult dogs of both genders weighing 15-20 kg were used in this study. Nanohydroxyapatite as a scaffold was cocultured with osteoblasts. Using demineralized canine bone matrix as a carrier, recombinant human bone morphogenetic protein-2 was employed to prepare compound soft regenerated skull material. Self-designed compound soft regenerated skull material was implanted in models of skull defects.METHODS: Animals were randomly assigned into two groups, Group A (n = 16) and Group B (n = 8).Bilateral 2.5-cm-diameter full-thickness parietal skull defects were made in all animals. In Group A, the right side was reconstructed with calcium alginate gel, osteoblasts, and nanomcter bone meal composite;the left side was reconstructed with calcium alginate gel, osteoblasts, nanometer bone meal and recombinant human bone morphogenetic protein-2 composite. In Group B, the right side was kept as a simple skull detect, and the left side was reconstructed with calcium alginate gel, osteoblasts, nanometer bone meal and recombinant human bone morphogenetic protein-2 composite.MAIN OUTCOME MEASURES: Bone regeneration and histopathological changes at the site of the skull defect were observed with an optical microscope and a scanning electron microscope after surgery.The ability to form bone was measured by alizarin red S staining. In vitro cultured osteoblasts were observed for morphology.RESULTS: One month following surgery, newly formed bone trabeculae mostly covered the

  10. A cascade of morphogenic signaling initiated by the meninges controls corpus callosum formation.

    Science.gov (United States)

    Choe, Youngshik; Siegenthaler, Julie A; Pleasure, Samuel J

    2012-02-23

    The corpus callosum is the most prominent commissural connection between the cortical hemispheres, and numerous neurodevelopmental disorders are associated with callosal agenesis. By using mice either with meningeal overgrowth or selective loss of meninges, we have identified a cascade of morphogenic signals initiated by the meninges that regulates corpus callosum development. The meninges produce BMP7, an inhibitor of callosal axon outgrowth. This activity is overcome by the induction of expression of Wnt3 by the callosal pathfinding neurons, which antagonize the inhibitory effects of BMP7. Wnt3 expression in the cingulate callosal pathfinding axons is developmentally regulated by another BMP family member, GDF5, which is produced by the adjacent Cajal-Retzius neurons and turns on before outgrowth of the callosal axons. The effects of GDF5 are in turn under the control of a soluble GDF5 inhibitor, Dan, made by the meninges. Thus, the meninges and medial neocortex use a cascade of signals to regulate corpus callosum development.

  11. Controlled delivery of sonic hedgehog morphogen and its potential for cardiac repair.

    Directory of Open Access Journals (Sweden)

    Noah Ray Johnson

    Full Text Available The morphogen Sonic hedgehog (Shh holds great promise for repair or regeneration of tissues suffering ischemic injury, however clinical translation is limited by its short half-life in the body. Here, we describe a coacervate delivery system which incorporates Shh, protects it from degradation, and sustains its release for at least 3 weeks. Shh released from the coacervate stimulates cardiac fibroblasts to upregulate the expression of multiple trophic factors including VEGF, SDF-1α, IGF-1, and Shh itself, for at least 48 hours. Shh coacervate also demonstrates cytoprotective effects for cardiomyocytes in a hydrogen peroxide-induced oxidative stress environment. In each of these studies the bioactivity of the Shh coacervate is enhanced compared to free Shh. These results warrant further investigation of the in vivo efficacy of Shh coacervate for cardiac repair.

  12. Controlled delivery of sonic hedgehog morphogen and its potential for cardiac repair.

    Science.gov (United States)

    Johnson, Noah Ray; Wang, Yadong

    2013-01-01

    The morphogen Sonic hedgehog (Shh) holds great promise for repair or regeneration of tissues suffering ischemic injury, however clinical translation is limited by its short half-life in the body. Here, we describe a coacervate delivery system which incorporates Shh, protects it from degradation, and sustains its release for at least 3 weeks. Shh released from the coacervate stimulates cardiac fibroblasts to upregulate the expression of multiple trophic factors including VEGF, SDF-1α, IGF-1, and Shh itself, for at least 48 hours. Shh coacervate also demonstrates cytoprotective effects for cardiomyocytes in a hydrogen peroxide-induced oxidative stress environment. In each of these studies the bioactivity of the Shh coacervate is enhanced compared to free Shh. These results warrant further investigation of the in vivo efficacy of Shh coacervate for cardiac repair.

  13. Does LED phototherapy influence the repair of bone defects grafted with MTA, bone morphogenetic proteins, and guided bone regeneration? A description of the repair process on rodents.

    Science.gov (United States)

    Pinheiro, Antonio L B; Soares, Luiz G P; Barbosa, Artur F S; Ramalho, Luciana M P; dos Santos, Jean N

    2012-09-01

    This work carried out a histological analysis on bone defects grafted (MTA) treated or not with LED, BMPs, and membrane (GBR). Benefits of their isolated or combined usage on bone repair were reported, but not their association. Ninety rats were divided into ten groups and each subdivided into three. Defects on G II and I were filled with the blood clot. G II was further LED irradiated. G III and IV were filled with MTA; G IV was further LED irradiated. In G V and VI, the defects were filled with MTA and covered with a membrane (GBR). G VI was further LED irradiated. In G VII and VIII, BMPs were added to the MTA and group VIII was further LED irradiated. In G IX and X, the MTA + BMP graft was covered with a membrane (GBR). G X was further LED irradiated. LED was applied over the defect at 48-h intervals and repeated for 15 days. Specimens were processed, cut, and stained with H&E and Sirius red and underwent histological analysis. The use of LED light alone dramatically reduced inflammation. However, its use on MTA associated with BMP and/or GBR increased the severity of the inflammatory reaction. Regarding bone reabsorption, the poorest result was seen when the LED light was associated with the MTA + BMP graft. In the groups Clot and MTA + GBR, no bone reabsorption was detectable. Increased collagen deposition was observed when the LED light was associated with the use of the MTA associated with BMP and/or GBR. Increased new bone formation was observed when the LED light was used alone or associated with the use of MTA + GBR, MTA + BMP, on association of MTA + BMP + GBR and when BMP was added to the MTA. Our results indicate that the use of LED light alone or in association with MTA, MTA + BMP, MTA + GBR, and MTA + BMP + GBR caused less inflammation, and an increase of both collagen deposition and bone deposition as seen on both histological and morphometric analysis.

  14. Self-construction of supramolecular polyrotaxane films by an electrotriggered morphogen-driven process.

    Science.gov (United States)

    Rydzek, Gaulthier; Garnier, Tony; Schaaf, Pierre; Voegel, Jean-Claude; Senger, Bernard; Frisch, Benoît; Haikel, Youssef; Petit, Corinne; Schlatter, Guy; Jierry, Loïc; Boulmedais, Fouzia

    2013-08-27

    The design of films using a one-pot process has recently attracted increasing interest in the field of polymer thin film formation. Herein we describe the preparation of one-pot supramolecular polyrotaxane (PRX) films using the morphogen-driven self-construction process. This one-pot buildup strategy where the film growth is triggered by the electrochemical formation and diffusion of a catalyst in close vicinity of the substrate has recently been introduced by our group. A one-pot mixture was used that contained (i) poly(acrylic acid) (PAA) functionalized by azide groups grafted on the polymer chain through oligo(ethylene glycol) (EG) arms, leading to PAA-EG13-N3, (ii) cyclodextrins (α and β CD), as macrocycles that can be threaded along EG arms, (iii) alkyne-functionalized stoppers (ferrocene or adamantane), to cap the PRX assembly by click chemistry, and (iv) copper sulfate. The one-pot mixture solution was brought into contact with a gold electrode. Cu(I), the morphogen, was generated electrochemically from Cu(II) at the electrode/one-pot solution interface. This electrotriggered click reaction leads to the capping of polypseudorotaxane yielding to PRXs. The PRXs can self-assemble through lateral supramolecular interactions to form aggregates and ensure the cohesion of the film. The film buildup was investigated using different types of CD and alkyne functionalized stoppers. Supramolecular PRX aggregates were characterized by X-ray diffraction measurements. The film topographies were imaged by atomic force microscopy. The influence of the concentration in CD and the presence of a competitor were studied as well. The stability of the resulting film was tested in contact with 8 M urea and during the electrochemical oxidation of ferrocene.

  15. Potential Roles of Bone Morphogenetic Protein (BMP-9 in Human Liver Diseases

    Directory of Open Access Journals (Sweden)

    Blanca Herrera

    2014-03-01

    Full Text Available Bone morphogenetic proteins (BMP-2 to BMP-15 belong to the Transforming Growth Factor (TGF-β superfamily and, besides their well-documented roles during embryogenesis and bone formation, some of them have recently been described to be involved in the pathogenesis of different organs, including the liver. The role of BMPs in liver damage responses including hepatocellular carcinoma (HCC development has only begun to be addressed and strong evidence supports the concept of a pro-tumorigenic role of BMP signaling in HCC cells. BMP-9 (also termed Growth and Differentiation Factor (GDF-2 represents the most recently discovered member of the BMP family. We have previously demonstrated that in HCC patient samples BMP-9 expression was positively associated with the tumor seize (“T stage” and that it enhanced cell migration and induced epithelial to mesenchymal transition (EMT in HCC cells in vitro. In another study we recently found that BMP-9 promotes growth in HCC cells, but not in non-transformed hepatocytes. Published as well as unpublished results obtained with primary hepatocytes support the concept of a dual function of BMP-9 in the liver: while in primary, non-malignant cells BMP-9 stabilizes the epithelial phenotype and inhibits proliferation, in HCC cells it induces cell growth and the acquisition of a migratory phenotype. In this review article we summarize current knowledge about BMPs in liver diseases, with special focus on the role of BMP-9 in HCC development and progression, that may provide new clues for a better understanding of the contribution of BMP-signaling to chronic liver diseases.

  16. Potential Roles of Bone Morphogenetic Protein (BMP)-9 in Human Liver Diseases

    Science.gov (United States)

    Herrera, Blanca; Dooley, Steven; Breitkopf-Heinlein, Katja

    2014-01-01

    Bone morphogenetic proteins (BMP-2 to BMP-15) belong to the Transforming Growth Factor (TGF)-β superfamily and, besides their well-documented roles during embryogenesis and bone formation, some of them have recently been described to be involved in the pathogenesis of different organs, including the liver. The role of BMPs in liver damage responses including hepatocellular carcinoma (HCC) development has only begun to be addressed and strong evidence supports the concept of a pro-tumorigenic role of BMP signaling in HCC cells. BMP-9 (also termed Growth and Differentiation Factor (GDF)-2) represents the most recently discovered member of the BMP family. We have previously demonstrated that in HCC patient samples BMP-9 expression was positively associated with the tumor seize (“T stage”) and that it enhanced cell migration and induced epithelial to mesenchymal transition (EMT) in HCC cells in vitro. In another study we recently found that BMP-9 promotes growth in HCC cells, but not in non-transformed hepatocytes. Published as well as unpublished results obtained with primary hepatocytes support the concept of a dual function of BMP-9 in the liver: while in primary, non-malignant cells BMP-9 stabilizes the epithelial phenotype and inhibits proliferation, in HCC cells it induces cell growth and the acquisition of a migratory phenotype. In this review article we summarize current knowledge about BMPs in liver diseases, with special focus on the role of BMP-9 in HCC development and progression, that may provide new clues for a better understanding of the contribution of BMP-signaling to chronic liver diseases. PMID:24670474

  17. Basic science and spine literature document bone morphogenetic protein increases cancer risk

    Directory of Open Access Journals (Sweden)

    Nancy E Epstein

    2014-01-01

    Full Text Available Background: Increasingly, clinical articles document that bone morphogenetic protein (BMP/INFUSE: Medtronic, Memphis, TN, USA and its derivatives utilized in spinal surgery increase the risk of developing cancer. However, there is also a large body of basic science articles that also document that various types of BMP and other members of the TGF-Beta (transforming growth factor beta family promote the growth of different types of cancers. Methods: This review looks at many clinical articles citing BMP/INFUSE′s role, largely "off-label", in contributing to complications encountered during spinal surgery. Next, however, specific attention is given to the clinical and basic science literature regarding how BMP and its derivatives (e.g. members of the TGF-beta family may also impact the development of breast and other cancers. Results: Utilizing BMP/INFUSE in spine surgery increased the risk of cancers/new malignancy as documented in several studies. For example, Carragee et al. found that for single-level instrumented posterolateral fusions (PLF using high-dose rhBMP-2 (239 patients vs. autograft (control group; n = 224, the risks of new cancers at 2 and 5 years postoperatively were increased. In laboratory studies, BMP′s along with other members of the TGF-Beta family also modulated/contributed to the proliferation/differentiation of breast cancer (e.g. bone formation/turnover, breast cancer-related solid tumors, and metastases, lung, adrenal, and colon cancer. Conclusions: BMP/INFUSE when utilized clinically in spinal fusion surgery appears to promote cancer at higher rates than observed in the overall population. Furthermore, BMP and TGF-beta are correlated with increased cancer growth both in the clinic and the laboratory.

  18. Mode of heparin attachment to nanocrystalline hydroxyapatite affects its interaction with bone morphogenetic protein-2.

    Science.gov (United States)

    Goonasekera, Chandhi S; Jack, Kevin S; Bhakta, Gajadhar; Rai, Bina; Luong-Van, Emma; Nurcombe, Victor; Cool, Simon M; Cooper-White, Justin J; Grøndahl, Lisbeth

    2015-12-16

    Heparin has a high affinity for bone morphogenetic protein-2 (BMP-2), which is a key growth factor in bone regeneration. The aim of this study was to investigate how the rate of release of BMP-2 was affected when adsorbed to nanosized hydroxyapatite (HAP) particles functionalized with heparin by different methods. Heparin was attached to the surface of HAP, either via adsorption or covalent coupling, via a 3-aminopropyltriethoxysilane (APTES) layer. The chemical composition of the particles was evaluated using X-ray photoelectron spectroscopy and elemental microanalysis, revealing that the heparin grafting densities achieved were dependent on the curing temperature used in the fabrication of APTES-modified HAP. Comparable amounts of heparin were attached via both covalent coupling and adsorption to the APTES-modified particles, but characterization of the particle surfaces by zeta potential and Brunauer-Emmett-Teller measurements indicated that the conformation of the heparin on the surface was dependent on the method of attachment, which in turn affected the stability of heparin on the surface. The release of BMP-2 from the particles after 7 days in phosphate-buffered saline found that 31% of the loaded BMP-2 was released from the APTES-modified particles with heparin covalently attached, compared to 16% from the APTES-modified particles with the heparin adsorbed. Moreover, when heparin was adsorbed onto pure HAP, it was found that the BMP-2 released after 7 days was 5% (similar to that from unmodified HAP). This illustrates that by altering the mode of attachment of heparin to HAP the release profile and total release of BMP-2 can be manipulated. Importantly, the BMP-2 released from all the heparin particle types was found by the SMAD 1/5/8 phosphorylation assay to be biologically active.

  19. Anodic oxidized nanotubular titanium implants enhance bone morphogenetic protein-2 delivery.

    Science.gov (United States)

    Bae, In-Ho; Yun, Kwi-Dug; Kim, Hyun-Seung; Jeong, Byung-Chul; Lim, Hyun-Pil; Park, Sang-Won; Lee, Kwang-Min; Lim, Young-Chai; Lee, Kyung-Ku; Yang, Yunzhi; Koh, Jeong-Tae

    2010-05-01

    Implant failure has been attributed to loosening of an implant from the host bone possibly due to poor osseointegration. One promising strategy for improving osseointegration is to develop a functional implant surface that promotes osteoblast differentiation. In this study, a titanium (Ti) surface was functionalized by an anodic oxidation process and was loaded with recombinant human bone morphogenetic protein-2 (rhBMP-2). The following four groups of Ti surfaces were prepared: machined (M), anodized machined (MA), resorbable blast medium (RBM), and anodized RBM (RBMA). The surfaces were characterized by scanning electron microscopy and contact angle measurements. The results showed that a Ti oxide layer (TiO(2)) was observed in the anodized surfaces in the form of nanotubes, approximately 100 nm in diameter and 500 nm in length. The hydrophilic properties of the anodized surfaces were significantly improved. The adsorbed rhBMP-2 loaded on the nonanodized surfaces and lyophilized showed spherical particle morphology. However, the adsorbed rhBMP-2 showed a dispersed pattern over the anodized surfaces. The velocity of the rhBMP-2 released from the surfaces was measured to determine if the anodized surface can improve in delivery efficiency. The results showed that the release velocity of the rhBMP-2 from the anodized surfaces was sustained when compared with that of the nonanodized surfaces. In addition, the rhBMP-2 released from the surface was found to be bioactive according to the alkaline phosphatase activity and the level of calcium mineral deposition. These results suggest that the TiO(2) nanotubular structure formed by anodizing is a promising configuration for sustained rhBMP-2 delivery.

  20. Influence of heating and cyclic tension on the induction of heat shock proteins and bone-related proteins by MC3T3-E1 cells.

    Science.gov (United States)

    Chung, Eunna; Sampson, Alana Cherrell; Rylander, Marissa Nichole

    2014-01-01

    Stress conditioning (e.g., thermal, shear, and tensile stress) of bone cells has been shown to enhance healing. However, prior studies have not investigated whether combined stress could synergistically promote bone regeneration. This study explored the impact of combined thermal and tensile stress on the induction of heat shock proteins (HSPs) and bone-related proteins by a murine preosteoblast cell line (MC3T3-E1). Cells were exposed to thermal stress using a water bath (44°C for 4 or 8 minutes) with postheating incubation (37°C for 4 hours) followed by exposure to cyclic strain (equibiaxial 3%, 0.2 Hz, cycle of 10-second tensile stress followed by 10-second rest). Combined thermal stress and tensile stress induced mRNA expression of HSP27 (1.41 relative fold induction (RFI) compared to sham-treated control), HSP70 (5.55 RFI), and osteopontin (1.44 RFI) but suppressed matrix metalloproteinase-9 (0.6 RFI) compared to the control. Combined thermal and tensile stress increased vascular endothelial growth factor (VEGF) secretion into the culture supernatant (1.54-fold increase compared to the control). Therefore, combined thermal and mechanical stress preconditioning can enhance HSP induction and influence protein expression important for bone tissue healing.

  1. An Overview of the Medical Applications of Marine Skeletal Matrix Proteins

    Directory of Open Access Journals (Sweden)

    M. Azizur Rahman

    2016-09-01

    Full Text Available In recent years, the medicinal potential of marine organisms has attracted increasing attention. This is due to their immense diversity and adaptation to unique ecological niches that has led to vast physiological and biochemical diversification. Among these organisms, marine calcifiers are an abundant source of novel proteins and chemical entities that can be used for drug discovery. Studies of the skeletal organic matrix proteins of marine calcifiers have focused on biomedical applications such as the identification of growth inducing proteins that can be used for bone regeneration, for example, 2/4 bone morphogenic proteins (BMP. Although a few reports on the functions of proteins derived from marine calcifiers can be found in the literature, marine calcifiers themselves remain an untapped source of proteins for the development of innovative pharmaceuticals. Following an overview of the current knowledge of skeletal organic matrix proteins from marine calcifiers, this review will focus on various aspects of marine skeletal protein research including sources, biosynthesis, structures, and possible strategies for chemical or physical modification. Special attention will be given to potential medical applications and recent discoveries of skeletal proteins and polysaccharides with biologically appealing characteristics. In addition, I will introduce an effective protocol for sample preparation and protein purification that includes isolation technology for biopolymers (of both soluble and insoluble organic matrices from coralline algae. These algae are a widespread but poorly studied group of shallow marine calcifiers that have great potential for marine drug discovery.

  2. An Overview of the Medical Applications of Marine Skeletal Matrix Proteins.

    Science.gov (United States)

    Rahman, M Azizur

    2016-09-12

    In recent years, the medicinal potential of marine organisms has attracted increasing attention. This is due to their immense diversity and adaptation to unique ecological niches that has led to vast physiological and biochemical diversification. Among these organisms, marine calcifiers are an abundant source of novel proteins and chemical entities that can be used for drug discovery. Studies of the skeletal organic matrix proteins of marine calcifiers have focused on biomedical applications such as the identification of growth inducing proteins that can be used for bone regeneration, for example, 2/4 bone morphogenic proteins (BMP). Although a few reports on the functions of proteins derived from marine calcifiers can be found in the literature, marine calcifiers themselves remain an untapped source of proteins for the development of innovative pharmaceuticals. Following an overview of the current knowledge of skeletal organic matrix proteins from marine calcifiers, this review will focus on various aspects of marine skeletal protein research including sources, biosynthesis, structures, and possible strategies for chemical or physical modification. Special attention will be given to potential medical applications and recent discoveries of skeletal proteins and polysaccharides with biologically appealing characteristics. In addition, I will introduce an effective protocol for sample preparation and protein purification that includes isolation technology for biopolymers (of both soluble and insoluble organic matrices) from coralline algae. These algae are a widespread but poorly studied group of shallow marine calcifiers that have great potential for marine drug discovery.

  3. An Overview of the Medical Applications of Marine Skeletal Matrix Proteins

    Science.gov (United States)

    Rahman, M. Azizur

    2016-01-01

    In recent years, the medicinal potential of marine organisms has attracted increasing attention. This is due to their immense diversity and adaptation to unique ecological niches that has led to vast physiological and biochemical diversification. Among these organisms, marine calcifiers are an abundant source of novel proteins and chemical entities that can be used for drug discovery. Studies of the skeletal organic matrix proteins of marine calcifiers have focused on biomedical applications such as the identification of growth inducing proteins that can be used for bone regeneration, for example, 2/4 bone morphogenic proteins (BMP). Although a few reports on the functions of proteins derived from marine calcifiers can be found in the literature, marine calcifiers themselves remain an untapped source of proteins for the development of innovative pharmaceuticals. Following an overview of the current knowledge of skeletal organic matrix proteins from marine calcifiers, this review will focus on various aspects of marine skeletal protein research including sources, biosynthesis, structures, and possible strategies for chemical or physical modification. Special attention will be given to potential medical applications and recent discoveries of skeletal proteins and polysaccharides with biologically appealing characteristics. In addition, I will introduce an effective protocol for sample preparation and protein purification that includes isolation technology for biopolymers (of both soluble and insoluble organic matrices) from coralline algae. These algae are a widespread but poorly studied group of shallow marine calcifiers that have great potential for marine drug discovery. PMID:27626432

  4. Influence of bone morphogenetic protein-2 on spiral ganglion neurite growth in vitro.

    Science.gov (United States)

    Volkenstein, Stefan; Brors, D; Hansen, S; Minovi, A; Laub, M; Jennissen, H P; Dazert, S; Neumann, A

    2009-09-01

    Recombinant human bone morphogenetic protein-2 (rhBMP-2) is a growth factor of the transforming growth factor-beta superfamily. Members of this protein family are involved in the development of various mammalian tissues, including the inner ear. As their notations indicate, they also have well-known effects on bone formation and regeneration. In this study, we examined the influence of rhBMP-2 on spiral ganglion (SG) neurite growth in vitro and showed the presence of its most preferred receptor BMPR-IB in spiral ganglion cells both in vitro and in vivo. SG explants of postnatal day 4 rats were analysed for neurite length and number after organotypical cell culture for 72 h, fixation and immunolabeling. Different concentrations of rhBMP-2 were used in a serum-free culture media. Neurite growth was compared with control groups that lacked stimulative effects; with neutrophin-3 (NT-3), which is a well-established positive stimulus on neurite length and number; and with combinations of these parameters. The results display that neurite number and total neurite length per explant in particular concentrations of rhBMP-2 increased by a maximum factor of two, while the mean neurite length was not affected. NT-3 demonstrated a much more potent effect, delivering a maximum increase of a factor of five. Furthermore, a combination of both growth factors shows a predominant effect on NT-3. Immunohistological detection of BMPR-IB was successful both in cell culture explants and in paraffin-embedded sections of animals of different ages. The results show that rhBMP-2 is, among other growth factors, a positive stimulus for SG neurite growth in vitro. Most growth factors are unstable and cannot be attached to surfaces without loss of their biological function. In contrast, rhBMP-2 can be attached to metal surfaces without loss of activity. Our findings suggest in vivo studies and a future clinical application of rhBMP-2 in cochlear implant technology to improve the tissue

  5. The Effects of Bone Morphogenetic Protein 2 Gene Transfection on Fibroblasts

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    目的:探讨骨形成蛋白2(bone morphogenetic protein 2,BMP2)基因转染对成纤维细胞成骨表型的调控作用.方法:利用脂质体将包含BMP2 cDNA全长编码序列的表达载体转染至NIH3T3细胞,原位杂交和免疫组化分别检测BMP2在NIH3T3细胞内的稳定转染和表达,同时观察转染细胞的增殖能力及成骨标志物包括碱性磷酸酶(alkaline phosphatase,ALP)活力和骨钙素(osteocalcin,OC)含量的变化.结果:BMP2只在转染细胞内表达.与未转染细胞相比,BMP2基因转染细胞的增殖能力降低,而ALP活力和OC含量增加.结论:结果表明BMP2基因转染能够衣导成纤维细胞的体外成骨潜能.%Objective: To explore the regulatory effects of Bone Morphogenetic Protein 2 (BMP2) gene transfection on the phenotype of fibroblasts. Methods: A phagemid expression vector containing the full length of human BMP2 cDNA coding sequence was transfected into NIH3T3 cells by using LipofectAMINE. The stable transfection and expression of BMP2 in NIH3T3 cells were determined by in situ hybridization and immunohistochemistry, respectively. The proliferation and the markers for osteogenic features, including alkaline phosphatase (碱性磷酸酶, ALP) activity and osteocalcin (骨钙素, OC) production were also investigated in the transfected cells. Results: The results showed that BMP2 was only expressed in the transfected cells. Compared with the non-transfected cells, the BMP2 gene transfected cells showed decreased proliferative ability, but enhanced both ALP activity and OC production (P < 0.05). Conclusions: The results indicate that BMP2 gene transfection can induce the osteogenic potential of fibroblasts in vitro.

  6. Immunization with FSHβ fusion protein antigen prevents bone loss in a rat ovariectomy-induced osteoporosis model

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Wenxin; Yan, Xingrong; Du, Huicong; Cui, Jihong; Li, Liwen, E-mail: liven@nwu.edu.cn; Chen, Fulin, E-mail: chenfl@nwu.edu.cn

    2013-05-03

    Highlights: •A GST-FSH fusion protein was successfully expressed in E. coli. •Immunization with GST-FSH antigen can raise high-titer anti-FSH polyclonal sera. •Anti-FSH polyclonal sera can neutralize osteoclastogenic effect of FSH in vitro. •FSH immunization can prevent bone loss in a rat osteoporosis model. -- Abstract: Osteoporosis, a metabolic bone disease, threatens postmenopausal women globally. Hormone replacement therapy (HTR), especially estrogen replacement therapy (ERT), is used widely in the clinic because it has been generally accepted that postmenopausal osteoporosis is caused by estrogen deficiency. However, hypogonadal α and β estrogen receptor null mice were only mildly osteopenic, and mice with either receptor deleted had normal bone mass, indicating that estrogen may not be the only mediator that induces osteoporosis. Recently, follicle-stimulating hormone (FSH), the serum concentration of which increases from the very beginning of menopause, has been found to play a key role in postmenopausal osteoporosis by promoting osteoclastogenesis. In this article, we confirmed that exogenous FSH can enhance osteoclast differentiation in vitro and that this effect can be neutralized by either an anti-FSH monoclonal antibody or anti-FSH polyclonal sera raised by immunizing animals with a recombinant GST-FSHβ fusion protein antigen. Moreover, immunizing ovariectomized rats with the GST-FSHβ antigen does significantly prevent trabecular bone loss and thereby enhance the bone strength, indicating that a FSH-based vaccine may be a promising therapeutic strategy to slow down bone loss in postmenopausal women.

  7. Expression of genes for bone morphogenetic proteins BMP-2, BMP-4 and BMP-6 in various parts of the human skeleton

    Directory of Open Access Journals (Sweden)

    Włodarski Krzysztof

    2007-12-01

    Full Text Available Abstract Background Differences in duration of bone healing in various parts of the human skeleton are common experience for orthopaedic surgeons. The reason for these differences is not obvious and not clear. Methods In this paper we decided to measure by the use of real-time RT-PCR technique the level of expression of genes for some isoforms of bone morphogenetic proteins (BMPs, whose role is proven in bone formation, bone induction and bone turnover. Seven bone samples recovered from various parts of skeletons from six cadavers of young healthy men who died in traffic accidents were collected. Activity of genes for BMP-2, -4 and -6 was measured by the use of fluorescent SYBR Green I. Results It was found that expression of m-RNA for BMP-2 and BMP-4 is higher in trabecular bone in epiphyses of long bones, cranial flat bones and corpus mandibulae then in the compact bone of diaphyses of long bones. In all samples examined the expression of m-RNA for BMP-4 was higher than for BMP-2. Conclusion It was shown that m-RNA for BMP-6 is not expressed in the collected samples at all. It is postulated that differences in the level of activation of genes for BMPs is one of the important factors which determine the differences in duration of bone healing of various parts of the human skeleton.

  8. Ectopic bone formation cannot occur by hydroxyapatite/β-tricalcium phosphate bioceramics in green fluorescent protein chimeric mice

    Science.gov (United States)

    Cheng, Lijia; Duan, Xin; Xiang, Zhou; Shi, Yujun; Lu, Xiaofeng; Ye, Feng; Bu, Hong

    2012-12-01

    Many studies have shown that calcium phosphate ceramics (CP) have osteoconductive and osteoinductive properties; however, the exact mechanism of bone induction has not yet been reported. This study was performed to investigate if destroying immunological function will influence osteogenesis, to explain the mechanism which is unclear. In this study, twenty C57BL/6 mice were divided into two groups (n = 10), in group 1, a hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) ceramic was implanted into both the left and right leg muscles of each mouse; in group 2, ten mice experienced lethal irradiation, then were injected bone marrow (BM) cells from green fluorescent protein (GFP) transgenic mice by tail veil, after bone marrow transplantation (BMT), heart, liver, spleen, lung, kidney, and muscle were harvested for biological analysis, after the GFP chimera model was established successfully, the same HA/β-TCP ceramic was implanted into both leg muscles of each mouse immediately after irradiation. 45 and 90 days after implantation, the ceramics of the two groups were harvested to perform with hematoxylin and eosin (HE) and immunohistochemistry (IHC) staining; the results showed that there was no bone formation in group 2, while new bone tissues were detected in group 1. Our findings suggest that the BM cell from GFP transgenic mice is a good biomarker and it could set a good platform for chimera model; it also shows that BM cell is one of cell resources of bone induction, and destruction of immune function will impede osteoinduction by CP. Overall, our results may shed light on clear mechanism study of bone induction in the future.

  9. In situ osteogenesis: regeneration of 10-cm mandibular defect in porcine model using recombinant human bone morphogenetic protein-2 (rhBMP-2) and Helistat absorbable collagen sponge.

    Science.gov (United States)

    Carstens, Michael H; Chin, Martin; Li, X Jian

    2005-11-01

    Traditional bone grafting relies upon the incorporation of a bone-cell bearing structure into a recipient site. The graft serves as a scaffold that is eventually replaced and remodeled. This process is known as osteoconduction. Recombinant human bone morphogenetic protein-2 (rhBMP-2) is commercially available as an acellular implant in which the protein is bound to an absorbable collagen sponge (ACS). The rhBMP-2/ACS implant converts undifferentiated mesenchymal stem cells into osteoblasts and promotes an intense local neovascular response. This process, known as osteoinduction, produces bone via membranous, chondroid, or endochondral ossification. The type of bone synthesis depends upon the mesenchymal substrate and the local cellular environment. Using this simple technique, bone defects can be resynthesized with good outcomes and a significant reduction in donor site morbidity. Repair of a critical-sized mandibular resection defect with ISO is described. Basic science concepts of rhBMP-2, relevant histopathologic findings, and clinical application are described.

  10. Screening of protein kinase inhibitors identifies PKC inhibitors as inhibitors of osteoclastic acid secretion and bone resorption

    Directory of Open Access Journals (Sweden)

    Boutin Jean A

    2010-10-01

    Full Text Available Abstract Background Bone resorption is initiated by osteoclastic acidification of the resorption lacunae. This process is mediated by secretion of protons through the V-ATPase and chloride through the chloride antiporter ClC-7. To shed light on the intracellular signalling controlling extracellular acidification, we screened a protein kinase inhibitor library in human osteoclasts. Methods Human osteoclasts were generated from CD14+ monocytes. The effect of different kinase inhibitors on lysosomal acidification in human osteoclasts was investigated using acridine orange for different incubation times (45 minutes, 4 and 24 hours. The inhibitors were tested in an acid influx assay using microsomes isolated from human osteoclasts. Bone resorption by human osteoclasts on bone slices was measured by calcium release. Cell viability was measured using AlamarBlue. Results Of the 51 compounds investigated only few inhibitors were positive in both acidification and resorption assays. Rottlerin, GF109203X, Hypericin and Ro31-8220 inhibited acid influx in microsomes and bone resorption, while Sphingosine and Palmitoyl-DL-carnitine-Cl showed low levels of inhibition. Rottlerin inhibited lysosomal acidification in human osteoclasts potently. Conclusions In conclusion, a group of inhibitors all indicated to inhibit PKC reduced acidification in human osteoclasts, and thereby bone resorption, indicating that acid secretion by osteoclasts may be specifically regulated by PKC in osteoclasts.

  11. Kartogenin, transforming growth factor-β1 and bone morphogenetic protein-7 coordinately enhance lubricin accumulation in bone-derived mesenchymal stem cells.

    Science.gov (United States)

    Liu, Chun; Ma, Xueqin; Li, Tao; Zhang, Qiqing

    2015-09-01

    Osteoarthritis, a common joint degeneration, can cause breakdown of articular cartilage with the presence of lubricin metabolic abnormalities. Lubricin is a multi-level chondroprotective mucinous glycoprotein in articular joints. Joint defect and infection is elevated and accompanied by accelerated cartilage lesions involving degradation and loss of lubricin. However, a novel, heterocyclic compound called kartogenin (KGN) was discovered to stimulate chondrogenic differentiation of bone-derived mesenchymal stem cells (BMSCs). And the synergistic effect of transforming growth factor-β1 (TGF-β1) and bone morphogenetic protein-7 (BMP-7) could provoke lubricin accumulation. This paper attempted to explore the connection between accumulation of lubricin and the effect of TGF-β1, BMP-7 and/or KGN. Hence, we investigated the expression and secretion of lubricin in BMSCs treated with different combinations of TGF-β1, BMP-7, and/or KGN. Using an in vitro BMSCs system, we observed the content of lubricin from BMSCs treated with TGF-β1, BMP-7, and KGN was the highest at both the protein level and the gene level. The accumulation of lubricin was enhanced coordinately by the increase of synthesis and decrease of degradation possibly via c-Myc and adamts5 pathway. These results further suggested that supplementation of the defect parts with lubricin by using growth factors and small molecules showed a promising potential on preventing joint deterioration in patients with acquired or genetic deficiency of lubricin in the future of regenerative medicine.

  12. The effect of serum magnesium levels and serum endothelin-1 levels on bone mineral density in protein energy malnutrition.

    Science.gov (United States)

    Ozturk, C F; Karakelleoglu, C; Orbak, Z; Yildiz, L

    2012-06-01

    An inadequate and imbalanced intake of protein and energy results in protein-energy malnutrition (PEM). It is known that bone mineral density and serum magnesium levels are low in malnourished children. However, the roles of serum magnesium and endothelin-1 (ET-1) levels in the pathophysiology of bone mineralization are obscure. Thus, the relationships between serum magnesium and ET-1 levels and the changes in bone mineral density were investigated in this study. There was a total of 32 subjects, 25 of them had PEM and seven were controls. While mean serum ET-1 levels of the children with kwashiorkor and marasmus showed no statistically significant difference, mean serum ET-1 levels of both groups were significantly higher than that of the control group. Serum magnesium levels were lower than normal value in 9 (36%) of 25 malnourished children. Malnourished children included in this study were divided into two subgroups according to their serum magnesium levels. While mean serum ET-1 levels in the group with low magnesium levels were significantly higher than that of the group with normal magnesium levels (p malnutrition. Our study suggested that lower magnesium levels and higher ET-1 levels might be important factors in changes of bone mineral density in malnutrition. We recommend that the malnourished patients, especially with hypomagnesaemia, should be treated with magnesium early.

  13. Repair of radius defect with bone-morphogenetic-protein loaded hydroxyapatite/collagen-poly(L-lactic acid) composite

    Institute of Scientific and Technical Information of China (English)

    胡蕴玉; 张超; 吕荣; 徐建强; 李丹

    2003-01-01

    Objective: To explore the method to repair bone defect with bone-morphogenetic-protein loaded hydroxyapatite/collagen-poly(L-lactic acid) composite. Methods: 18 adult beagle dogs were randomly divided into 3 groups. In Group A, bone-morphogenetic-protein (BMP) loaded hydroxyapatite/collagen-poly(L-lactic acid) (HAC-PLA) scaffold was implanted in a 2 cm diaphyseal defect in the radius. In Group B, unloaded pure HAC-PLA scaffold was implanted in the defects. No material was implanted in Group C (control group). The dogs were sacrificed 6 months postoperatively. Features of biocompatibility, biodegradability and osteoinduction were evaluated with histological, radiological examinations and bone mineral density (BMD) measurements.Results: In Group A, the radius defect healed after the treatment with BMP loaded HAC-PLA. BMD at the site of the defect was higher than that of the contralateral radius. Fibrous union developed in the animals of the control group. Conclusions: BMP not only promotes osteogenesis but also accelerates degradation of the biomaterials. Optimized design parameters of a three-dimensional porous biomaterial would give full scope to the role of BMP as an osteoinductive growth factor.

  14. DSP-PP precursor protein cleavage by tolloid-related-1 protein and by bone morphogenetic protein-1.

    Science.gov (United States)

    Ritchie, Helena H; Yee, Colin T; Tang, Xu-Na; Dong, Zhihong; Fuller, Robert S

    2012-01-01

    Dentin sialoprotein (DSP) and phosphophoryn (PP), acidic proteins critical to dentin mineralization, are translated from a single transcript as a DSP-PP precursor that undergoes specific proteolytic processing to generate DSP and PP. The cleavage mechanism continues to be controversial, in part because of the difficulty of obtaining DSP-PP from mammalian cells and dentin matrix. We have infected Sf9 cells with a recombinant baculovirus to produce large amounts of secreted DSP-PP(240), a variant form of rat DSP-PP. Mass spectrometric analysis shows that DSP-PP(240) secreted by Sf9 cells undergoes specific cleavage at the site predicted from the N-terminal sequence of PP extracted from dentin matrix: SMQG(447)↓D(448)DPN. DSP-PP(240) is cleaved after secretion by a zinc-dependent activity secreted by Sf9 cells, generating DSP(430) and PP(240) products that are stable in the medium. DSP-PP processing activity is constitutively secreted by Sf9 cells, but secretion is diminished 3 days after infection. Using primers corresponding to the highly conserved catalytic domain of Drosophila melanogaster tolloid (a mammalian BMP1 homolog), we isolated a partial cDNA for a Spodopotera frugiperda tolloid-related-1 protein (TLR1) that is 78% identical to Drosophila TLR1 but only 65% identical to Drosophila tolloid. Tlr1 mRNA decreased rapidly in Sf9 cells after baculovirus infection and was undetectable 4d after infection, paralleling the observed decrease in secretion of the DSP-PP(240) processing activity after infection. Human BMP1 is more similar to Sf9 and Drosophila TLR1 than to tolloid, and Sf9 TLR1 is more similar to BMP1 than to other mammalian homologs. Recombinant human BMP1 correctly processed baculovirus-expressed DSP-PP(240) in a dose-dependent manner. Together, these data suggest that the physiologically accurate cleavage of mammalian DSP-PP(240) in the Sf9 cell system represents the action of a conserved processing enzyme and support the proposed role of BMP1 in

  15. DSP-PP precursor protein cleavage by tolloid-related-1 protein and by bone morphogenetic protein-1.

    Directory of Open Access Journals (Sweden)

    Helena H Ritchie

    Full Text Available Dentin sialoprotein (DSP and phosphophoryn (PP, acidic proteins critical to dentin mineralization, are translated from a single transcript as a DSP-PP precursor that undergoes specific proteolytic processing to generate DSP and PP. The cleavage mechanism continues to be controversial, in part because of the difficulty of obtaining DSP-PP from mammalian cells and dentin matrix. We have infected Sf9 cells with a recombinant baculovirus to produce large amounts of secreted DSP-PP(240, a variant form of rat DSP-PP. Mass spectrometric analysis shows that DSP-PP(240 secreted by Sf9 cells undergoes specific cleavage at the site predicted from the N-terminal sequence of PP extracted from dentin matrix: SMQG(447↓D(448DPN. DSP-PP(240 is cleaved after secretion by a zinc-dependent activity secreted by Sf9 cells, generating DSP(430 and PP(240 products that are stable in the medium. DSP-PP processing activity is constitutively secreted by Sf9 cells, but secretion is diminished 3 days after infection. Using primers corresponding to the highly conserved catalytic domain of Drosophila melanogaster tolloid (a mammalian BMP1 homolog, we isolated a partial cDNA for a Spodopotera frugiperda tolloid-related-1 protein (TLR1 that is 78% identical to Drosophila TLR1 but only 65% identical to Drosophila tolloid. Tlr1 mRNA decreased rapidly in Sf9 cells after baculovirus infection and was undetectable 4d after infection, paralleling the observed decrease in secretion of the DSP-PP(240 processing activity after infection. Human BMP1 is more similar to Sf9 and Drosophila TLR1 than to tolloid, and Sf9 TLR1 is more similar to BMP1 than to other mammalian homologs. Recombinant human BMP1 correctly processed baculovirus-expressed DSP-PP(240 in a dose-dependent manner. Together, these data suggest that the physiologically accurate cleavage of mammalian DSP-PP(240 in the Sf9 cell system represents the action of a conserved processing enzyme and support the proposed role of BMP

  16. Areal and Volumetric Bone Mineral Density and Geometry at Two Levels of Protein Intake During Caloric Restriction: A Randomized, Controlled Trial

    OpenAIRE

    Sukumar, Deeptha; Ambia-Sobhan, Hasina; Zurfluh, Robert; Schlussel, Yvette; Stahl, Theodore J; Gordon, Chris L; SHAPSES, SUE A.

    2010-01-01

    Weight reduction induces bone loss by several factors, and the effect of higher protein (HP) intake during caloric restriction on bone mineral density (BMD) is not known. Previous study designs examining the longer-term effects of HP diets have not controlled for total calcium intake between groups and have not examined the relationship between bone and endocrine changes. In this randomized, controlled study, we examined how BMD (areal and volumetric), turnover markers, and hormones [insulin-...

  17. Mutual regulation of growth hormone and bone morphogenetic protein system in steroidogenesis by rat granulosa cells.

    Science.gov (United States)

    Nakamura, Eri; Otsuka, Fumio; Inagaki, Kenichi; Miyoshi, Tomoko; Matsumoto, Yoshinori; Ogura, Kanako; Tsukamoto, Naoko; Takeda, Masaya; Makino, Hirofumi

    2012-01-01

    GH induces preantral follicle growth and differentiation with oocyte maturation. However, the effects of GH on ovarian steroidogenesis and the mechanisms underlying its effects have yet to be elucidated. In this study, we investigated the actions of GH on steroidogenesis by rat granulosa cells isolated from early antral follicles by focusing on the ovarian bone morphogenetic protein (BMP) system. We found that GH suppressed FSH-induced estradiol production with reduction in aromatase expression and, in contrast, GH increased FSH-induced progesterone level with induction of steroidogenic acute regulatory protein, side chain cleavage cytochrome P450, and 3β-hydroxysteroid dehydrogenase. The effects of GH on steroidogenesis by granulosa cells were enhanced in the presence of the BMP antagonist noggin. Coculture of GH with oocytes did not alter GH regulation of steroidogenesis. Steroid production induced by cAMP donors was not affected by GH treatment and the GH effects on FSH-induced steroid production were not accompanied by changes in cAMP synthesis, suggesting that GH actions were not directly mediated by the cAMP-protein kinase A pathway. GH exerted synergistic effects on MAPK activation elicited by FSH, which regulated FSH-induced steroidogenesis. In addition, GH-induced signal transducer and activator of transcription phosphorylation was involved in the induction of IGF-I expression. GH increased IGF-I, IGF-I receptor, and FSH receptor expression in granulosa cells, and inhibition of IGF-I signaling restored GH stimulation of FSH-induced progesterone production, suggesting that endogenous IGF-I is functionally involved in GH effects on progesterone induction. BMP inhibited IGF-I effects that increased FSH-induced estradiol production with suppression of expression of the GH/IGF-I system, whereas GH/IGF-I actions impaired BMP-Sma and Mad related protein 1/5/8 signaling through down-regulation of the expression of BMP receptors. Thus, GH acts to modulate estrogen

  18. Bone Morphogenetic Proteins stimulate mammary fibroblasts to promote mammary carcinoma cell invasion.

    Directory of Open Access Journals (Sweden)

    Philip Owens

    Full Text Available Bone Morphogenetic Proteins (BMPs are secreted cytokines that are part of the Transforming Growth Factor β (TGFβ superfamily. BMPs have been shown to be highly expressed in human breast cancers, and loss of BMP signaling in mammary carcinomas has been shown to accelerate metastases. Interestingly, other work has indicated that stimulation of dermal fibroblasts with BMP can enhance secretion of pro-tumorigenic factors. Furthermore, treatment of carcinoma-associated fibroblasts (CAFs derived from a mouse prostate carcinoma with BMP4 was shown to stimulate angiogenesis. We sought to determine the effect of BMP treatment on mammary fibroblasts. A large number of secreted pro-inflammatory cytokines and matrix-metallo proteases (MMPs were found to be upregulated in response to BMP4 treatment. Fibroblasts that were stimulated with BMP4 were found to enhance mammary carcinoma cell invasion, and these effects were inhibited by a BMP receptor kinase antagonist. Treatment with BMP in turn elevated pro-tumorigenic secreted factors such as IL-6 and MMP-3. These experiments demonstrate that BMP may stimulate tumor progression within the tumor microenvironment.

  19. Effective Inhibition of Bone Morphogenetic Protein Function by Highly Specific Llama-Derived Antibodies.

    Science.gov (United States)

    Calpe, Silvia; Wagner, Koen; El Khattabi, Mohamed; Rutten, Lucy; Zimberlin, Cheryl; Dolk, Edward; Verrips, C Theo; Medema, Jan Paul; Spits, Hergen; Krishnadath, Kausilia K

    2015-11-01

    Bone morphogenetic proteins (BMP) have important but distinct roles in tissue homeostasis and disease, including carcinogenesis and tumor progression. A large number of BMP inhibitors are available to study BMP function; however, as most of these antagonists are promiscuous, evaluating specific effects of individual BMPs is not feasible. Because the oncogenic role of the different BMPs varies for each neoplasm, highly selective BMP inhibitors are required. Here, we describe the generation of three types of llama-derived heavy chain variable domains (VHH) that selectively bind to either BMP4, to BMP2 and 4, or to BMP2, 4, 5, and 6. These generated VHHs have high affinity to their targets and are able to inhibit BMP signaling. Epitope binning and docking modeling have shed light into the basis for their BMP specificity. As opposed to the wide structural reach of natural inhibitors, these small molecules target the grooves and pockets of BMPs involved in receptor binding. In organoid experiments, specific inhibition of BMP4 does not affect the activation of normal stem cells. Furthermore, in vitro inhibition of cancer-derived BMP4 noncanonical signals results in an increase of chemosensitivity in a colorectal cancer cell line. Therefore, because of their high specificity and low off-target effects, these VHHs could represent a therapeutic alternative for BMP4(+) malignancies.

  20. Bone morphogenetic protein receptor II regulates pulmonary artery endothelial cell barrier function.

    Science.gov (United States)

    Burton, Victoria J; Ciuclan, Loredana I; Holmes, Alan M; Rodman, David M; Walker, Christoph; Budd, David C

    2011-01-06

    Mutations in bone morphogenetic protein receptor II (BMPR-II) underlie most heritable cases of pulmonary arterial hypertension (PAH). However, less than half the individuals who harbor mutations develop the disease. Interestingly, heterozygous null BMPR-II mice fail to develop PAH unless an additional inflammatory insult is applied, suggesting that BMPR-II plays a fundamental role in dampening inflammatory signals in the pulmonary vasculature. Using static- and flow-based in vitro systems, we demonstrate that BMPR-II maintains the barrier function of the pulmonary artery endothelial monolayer suppressing leukocyte transmigration. Similar findings were also observed in vivo using a murine model with loss of endothelial BMPR-II expression. In vitro, the enhanced transmigration of leukocytes after tumor necrosis factor α or transforming growth factor β1 stimulation was CXCR2 dependent. Our data define how loss of BMPR-II in the endothelial layer of the pulmonary vasculature could lead to a heightened susceptibility to inflammation by promoting the extravasation of leukocytes into the pulmonary artery wall. We speculate that this may be a key mechanism involved in the initiation of the disease in heritable PAH that results from defects in BMPR-II expression.

  1. In anemia of multiple myeloma, hepcidin is induced by increased bone morphogenetic protein 2

    Science.gov (United States)

    Maes, Ken; Nemeth, Elizabeta; Roodman, G. David; Huston, Alissa; Esteve, Flavia; Freytes, Cesar; Callander, Natalie; Katodritou, Eirini; Tussing-Humphreys, Lisa; Rivera, Seth; Vanderkerken, Karin; Lichtenstein, Alan

    2010-01-01

    Hepcidin is the principal iron-regulatory hormone and a pathogenic factor in anemia of inflammation. Patients with multiple myeloma (MM) frequently present with anemia. We showed that MM patients had increased serum hepcidin, which inversely correlated with hemoglobin, suggesting that hepcidin contributes to MM-related anemia. Searching for hepcidin-inducing cytokines in MM, we quantified the stimulation of hepcidin promoter-luciferase activity in HuH7 cells by MM sera. MM sera activated the hepcidin promoter significantly more than did normal sera. We then examined the role of bone morphogenetic proteins (BMPs) and interleukin-6 (IL-6), the major transcriptional regulators of hepcidin. Mutations in both BMP-responsive elements abrogated the activation dramatically, while mutations in the IL-6–responsive signal transducer and activator of transcription 3-binding site (STAT3-BS) had only a minor effect. Cotreatment with anti–BMP-2/4 or noggin-Fc blocked the promoter induction with all MM sera, anti–IL-6 blocked it with a minority of sera, whereas anti–BMP-4, -6, or -9 antibodies had no effect. BMP-2–immunodepleted MM sera had decreased promoter stimulatory capacity, and BMP-2 concentrations in MM sera were significantly higher than in normal sera. Our results demonstrate that BMP-2 is a major mediator of the hepcidin stimulatory activity of MM sera. PMID:20679527

  2. Pharmacological Inhibition of Protein Kinase G1 Enhances Bone Formation by Human Skeletal Stem Cells Through Activation of RhoA-Akt Signaling

    DEFF Research Database (Denmark)

    Jafari, Abbas; Siersbæk, Majken; Chen, Li;

    2015-01-01

    for several malignant and nonmalignant conditions. We screened a library of kinase inhibitors to identify small molecules that enhance bone formation by human skeletal (stromal or mesenchymal) stem cells (hMSC). We identified H-8 (known to inhibit protein kinases A, C, and G) as a potent enhancer of ex vivo......Development of novel approaches to enhance bone regeneration is needed for efficient treatment of bone defects. Protein kinases play a key role in regulation of intracellular signal transduction pathways, and pharmacological targeting of protein kinases has led to development of novel treatments...

  3. Growth differentiation factor 9:bone morphogenetic protein 15 heterodimers are potent regulators of ovarian functions

    Science.gov (United States)

    Peng, Jia; Li, Qinglei; Wigglesworth, Karen; Rangarajan, Adithya; Kattamuri, Chandramohan; Peterson, Randall T.; Eppig, John J.; Thompson, Thomas B.; Matzuk, Martin M.

    2013-01-01

    The TGF-β superfamily is the largest family of secreted proteins in mammals, and members of the TGF-β family are involved in most developmental and physiological processes. Growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15), oocyte-secreted paralogs of the TGF-β superfamily, have been shown genetically to control ovarian physiology. Although previous studies found that GDF9 and BMP15 homodimers can modulate ovarian pathways in vitro, the functional species-specific significance of GDF9:BMP15 heterodimers remained unresolved. Therefore, we engineered and produced purified recombinant mouse and human GDF9 and BMP15 homodimers and GDF9:BMP15 heterodimers to compare their molecular characteristics and physiological functions. In mouse granulosa cell and cumulus cell expansion assays, mouse GDF9 and human BMP15 homodimers can up-regulate cumulus expansion-related genes (Ptx3, Has2, and Ptgs2) and promote cumulus expansion in vitro, whereas mouse BMP15 and human GDF9 homodimers are essentially inactive. However, we discovered that mouse GDF9:BMP15 heterodimer is ∼10- to 30-fold more biopotent than mouse GDF9 homodimer, and human GDF9:BMP15 heterodimer is ∼1,000- to 3,000-fold more bioactive than human BMP15 homodimer. We also demonstrate that the heterodimers require the kinase activities of ALK4/5/7 and BMPR2 to activate SMAD2/3 but unexpectedly need ALK6 as a coreceptor in the signaling complex in granulosa cells. Our findings that GDF9:BMP15 heterodimers are the most bioactive ligands in mice and humans compared with homodimers explain many puzzling genetic and physiological data generated during the last two decades and have important implications for improving female fertility in mammals. PMID:23382188

  4. Bone morphogenetic protein-2 is a negative regulator of hepatocyte proliferation downregulated in the regenerating liver

    Institute of Scientific and Technical Information of China (English)

    Cui-Ping Xu; Wen-Min Ji; Gijs R van den Brink; Maikel P Peppelenbosch

    2006-01-01

    AIM: To characterize the expression and dynamic changes of bone morphogenetic protein (BMP)-2 in hepatocytes in the regenerating liver in rats after partial hepatectomy (PH), and examine the effects of BMP-2 on proliferation of human Huh7 hepatoma cells.METHODS: Fifty-four adult male Wistar rats were randomly divided into three groups: A normal control (NC) group, a partial hepatectomized (PH) group and a sham operated (SO) group. To study the effect of liver regeneration on BMP-2 expression, rats were sacrificed before and at different time points after PH or the sham intervention (6, 12, 24 and 48 h). For each time point, six rats were used in parallel. Expression and distribution of BMP-2 protein were determined in regenerating liver tissue by Western blot analysis and immunohistochemistry. Effects of BMP-2 on cell proliferation of human Huh7 hepatoma cell line were assessed using an MTT assay.RESULTS: In the normal liver strong BMP-2 expression was observed around the central and portal veins. The expression of BMP-2 decreased rapidly as measured by both immunohistochemistry and Western blot analysis.This decrease was at a maximum of 3.22 fold after 12 h and returned to normal levels at 48 h after PH. No significant changes in BMP-2 immunoreactivity were observed in the SO group. BMP-2 inhibited serum induced Huh7 cell proliferation.CONCLUSION: BMP-2 is expressed in normal adult rat liver and negatively regulates hepatocyte proliferation.The observed down regulation of BMP-2 following partial hepatectomy suggests that such down regulation may be necessary for hepatocyte proliferation.

  5. Effect of soy isolate protein and resistance exercises on muscle performance and bone health of osteopenic/osteoporotic post-menopausal women.

    Science.gov (United States)

    Shenoy, Shweta; Bedi, Reecha; Sandhu, Jaspal S

    2013-01-01

    There are contradictory reports regarding the effect of soy protein isolate on bone health in menopause. The main objective of this study was to assess the influence of soy isolate protein intake and resistance exercises on isokinetic muscle strength, endurance, power, and bone health parameters in osteopenic/osteoporotic postmenopausal women. Sixty osteoporotic sedentary women (mean age 54.55 years) were randomly assigned to three groups: soy isolate protein (Group A), soy + exercise group (Group B), and control group (Group C). Group B performed supervised progressive resistance exercises 4 times/week for 12 weeks. Muscle performance was measured by isokinetic dynamometry, and bone health was measured by ultrasound densitometry. Analysis of variance showed significant bone and muscle strength gains (p < .05) both in Group A and B, with the improvements more pronounced in Group B. Significant muscle performance changes, after intervention, were evident and bone strength increases may parallel changes in muscle strength.

  6. Regeneration of a Compromized Masticatory Unit in a Large Mandibular Defect Caused by a Huge Solitary Bone Cyst: A Case Report and Review of the Regenerative Literature.

    Science.gov (United States)

    Muhammad, Joseph Kamal; Akhtar, Shakeel; Abu Al Nassar, Hiba; Al Khoury, Nabil

    2016-07-01

    The reconstructive options for large expansive cystic lesion affecting the jaws are many. The first stage of treatment may involve enucleation or marsupialization of the cyst. Attempted reconstruction of large osseous defects arising from the destruction of local tissue can present formidable challenges. The literature reports the use of bone grafts, free tissue transfer, bone morphogenic protein and reconstruction plates to assist in the healing and rehabilitation process. The management of huge mandibular cysts needs to take into account the preservation of existing intact structures, removal of the pathology and the reconstructive objectives which focus both on aesthetic and functional rehabilitation. The planning and execution of such treatment requires not only the compliance of the patient and family but also their assent as customers with a voice in determining their surgical destiny. The authors would like to report a unique case of a huge solitary bone cyst that had reduced the ramus, angle and part of the body of one side of the mandible to a pencil-thin-like strut of bone. A combination of decompression through marsupialization, serial packing, and the fabrication of a custom made obturator facilitated the regeneration of the myo-osseous components of the masticatory unit of this patient. Serial CT scans showed evidence of concurrent periosteal and endosteal bone formation and, quite elegantly, the regeneration of the first branchial arch components of the right myo-osseous masticatory complex. The microenvironmental factors that may have favored regeneration of these complex structures are discussed.

  7. Monocyte chemotactic protein-1 attenuates and high-fat diet exacerbates bone loss in mice with pulmonary metastasis of Lewis lung carcinoma

    Science.gov (United States)

    Bone can be adversely affected by obesity and cancer-associated complications including wasting. The objective of this study was to determine whether a high-fat diet and a deficiency in monocyte chemotactic protein-1 (MCP-1) altered bone structural defects found in male C57BL/6 mice with Lewis lung...

  8. High-fat diet enhances and monocyte chemoattractant protein-1 deficiency reduces bone loss in mice with pulmonary metastases of Lewis lung carcinoma

    Science.gov (United States)

    Bone is adversely affected by metastasis and metastasis-associated complications. Obesity is a risk factor for both bone and cancer. Adipose tissue is an endocrine organ that produces pro-inflammatory adipokines, such as monocyte chemotactic protein-1 (MCP-1), that contribute to obesity and obesit...

  9. Osteoblast Differentiation and Bone: Relevant proteins, regulatory processes and the vascular connection

    NARCIS (Netherlands)

    R.D.A.M. Alves (Rodrigo)

    2012-01-01

    textabstractBone is a highly specialized form of connective tissue present in most vertebrate animals as part of the endoskeleton. Structurally speaking, bone is mainly constituted by an organic extracellular matrix (ECM) hardened by deposited mineral. The blending between the organic and inorganic

  10. Bone regeneration with osteogenically enhanced mesenchymal stem cells and their extracellular matrix proteins.

    Science.gov (United States)

    Clough, Bret H; McCarley, Matthew R; Krause, Ulf; Zeitouni, Suzanne; Froese, Jeremiah J; McNeill, Eoin P; Chaput, Christopher D; Sampson, H Wayne; Gregory, Carl A

    2015-01-01

    Although bone has remarkable regenerative capacity, about 10% of long bone fractures and 25% to 40% of vertebral fusion procedures fail to heal. In such instances, a scaffold is employed to bridge the lesion and accommodate osteoprogenitors. Although synthetic bone scaffolds mimic some of the characteristics of bone matrix, their effectiveness can vary because of biological incompatibility. Herein, we demonstrate that a composite prepared with osteogenically enhanced mesenchymal stem cells (OEhMSCs) and their extracellular matrix (ECM) has an unprecedented capacity for the repair of critical-sized defects of murine femora. Furthermore, OEhMSCs do not cause lymphocyte activation, and ECM/OEhMSC composites retain their in vivo efficacy after cryopreservation. Finally, we show that attachment to the ECM by OEhMSCs stimulates the production of osteogenic and angiogenic factors. These data demonstrate that composites of OEhMSCs and their ECM could be utilized in the place of autologous bone graft for complex orthopedic reconstructions.

  11. Reinforcing effect of calcium sulfate cement bovine bone morphogenetic protein on vertebral in the rabbit model of osteoporosis

    Institute of Scientific and Technical Information of China (English)

    Jie Zhang; Yu-Ming Chen; Chen Sheng-Guo; Kaken Habaerxi; Shawuti Alimujiang; Yu Chen; Ming-Zhen Peng; Rong Yue; Yu-Lian Wu; De-Quan Wang

    2014-01-01

    Objective:To observe reinforcing effect of calcium sulfate cement(CSC) bovine bone morphogenetic protein(bBMP) on vertebral in the rabbit model of osteoporosis.Methods:A total of48NewZealand white rabbits were randomly divided into groupⅠ(blank control group), group Ⅱ(CSC injection group), group Ⅲ(CSC/bBMP injection group) and control group.White rabbit osteoporosis model was established rapidly by using castration method+methylprednisolone candidate.After modeling, groups Ⅱ, Ⅲ were given corresponding vertebral body injection material, and4 animals were sacrificed respectively at24 h,6 weeks,12 weeks after vertebral plasty.Tissue pathological status, vertebral mineral density and vertebral body bone mechanical strength were observed.Results:Vertebral body structure form was normal in the groups Ⅱand Ⅲ.Trabecular bone coarsens, connection and repair were observed in micro fracture and bone defects, bone trabecular connectivity was superior to group Ⅰ significantly; vertebral body compression strength in the groupⅠ was on the decline, vertebral compression strength in the groups Ⅱand Ⅲ was on the rise, the largest vertebra.PostoperativeBMC andBMD in groups Ⅱand Ⅲ were incresed, andsignificantly higher than group Ⅰ after6 weeks(P<0.05),BMC and BMD in group Ⅲ after12 weeks were higher than the other three groups.Conclusion:Compound bBMPCSC has good bone induction.It can improve the three-dimensional construction effect for osteoporosis vertebral trabecula, and can significantly improve the vertebral strength, as a vertebral packing material with good application prospect.

  12. Low dose BMP-2 treatment for bone repair using a PEGylated fibrinogen hydrogel matrix.

    Science.gov (United States)

    Ben-David, Dror; Srouji, Samer; Shapira-Schweitzer, Keren; Kossover, Olga; Ivanir, Eran; Kuhn, Gisela; Müller, Ralph; Seliktar, Dror; Livne, Erella

    2013-04-01

    Bone repair strategies utilizing resorbable biomaterial implants aim to stimulate endogenous cells in order to gradually replace the implant with functional repair tissue. These biomaterials should therefore be biodegradable, osteoconductive, osteoinductive, and maintain their integrity until the newly formed host tissue can contribute proper function. In recent years there has been impressive clinical outcomes for this strategy when using osteoconductive hydrogel biomaterials in combination with osteoinductive growth factors such as human recombinant bone morphogenic protein (hrBMP-2). However, the success of hrBMP-2 treatments is not without risks if the factor is delivered too rapidly and at very high doses because of a suboptimal biomaterial. Therefore, the aim of this study was to evaluate the use of a PEGylated fibrinogen (PF) provisional matrix as a delivery system for low-dose hrBMP-2 treatment in a critical size maxillofacial bone defect model. PF is a semi-synthetic hydrogel material that can regulate the release of physiological doses of hrBMP-2 based on its controllable physical properties and biodegradation. hrBMP-2 release from the PF material and hrBMP-2 bioactivity were validated using in vitro assays and a subcutaneous implantation model in rats. Critical size calvarial defects in mice were treated orthotopically with PF containing 8 μg/ml hrBMP-2 to demonstrate the capacity of these bioactive implants to induce enhanced bone formation in as little as 6 weeks. Control defects treated with PF alone or left empty resulted in far less bone formation when compared to the PF/hrBMP-2 treated defects. These results demonstrate the feasibility of using a semi-synthetic biomaterial containing small doses of osteoinductive hrBMP-2 as an effective treatment for maxillofacial bone defects.

  13. Characterization of the increase in bone 66 kDa protein component with healing rat fractures: stimulatory effect of zinc.

    Science.gov (United States)

    Igarashi, A; Yamaguchi, M

    2002-05-01

    The characterization of protein components produced from bone tissues with fracture healing was investigated. Weanling rats were sacrificed between 1 and 7 days after the femoral fracture. Protein content in the femoral-diaphyseal tissues was markedly elevated by fracture healing. Moreover, when the femoral-diaphyseal tissues with fracture healing were cultured for 24 h in a serum-free medium, many proteins in the bone tissues were released into the medium. Analysis with sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) showed that many protein molecules were released from the diaphyseal tissues with fracture healing. Especially, a protein molecule of approximately 66 kDa was markedly increased by fracture healing. This protein molecule was significantly increased, when the diaphyseal tissues with fracture healing were cultured in the presence of zinc acexamate (10(-6)-10(-4) M). Zinc acexamate (10(-4) M)-induced increase in medium 66 kDa protein molecule was significantly inhibited in the presence of actinomycin D (10(-7) M) or cycloheximide (10(-6) M). The zinc effect was completely blocked in the presence of PD98059 (10(-5) M), an inhibitor of MAPK kinase, or staurosporine (10(-6) M), an inhibitor of protein kinase C. The medium 66 kDa protein molecule was significantly elevated in the presence of parathyroid hormone (1-34) (10(-7) M), insulin-like growth factor-I (10(-8) M) or transforming growth factor-beta (10(-11) M), while 17beta-estradiol (10(-9) M) did not have an effect. The effect of these bone-stimulating factors was equal to the zinc effect. Zinc did not significantly enhance the effect of insulin-like growth factor-I in increasing medium 66 kDa protein molecule. The present study demonstrates that fracture healing increases production of the approximately 66 kDa protein molecule which is a major component produced from femoral-diaphyseal tissues of weanling rats, and that this elevation is enhanced by zinc treatment.

  14. Data supporting regulating temporospatial dynamics of morphogen for structure formation of the lacrimal gland by chitosan biomaterials

    OpenAIRE

    Ya-Chuan Hsiao; Tsung-Lin Yang

    2016-01-01

    The lacrimal gland is responsible for tear synthesis and secretion, and is derived from the epithelia of ocular surface and generated by branching morphogenesis. The dataset presented in this article is to support the research results of the effect of chitosan biomaterials on facilitating the structure formation of the lacrimal gland by regulating temporospatial dynamics of morphogen. The embryonic lacrimal gland explants were used as the standard experimental model for investigating lacrimal...

  15. [Effects of phosphatidylinositol-3 kinase/protein kinase b/bone morphogenetic protein-15 pathway on the follicular development in the mammalian ovary].

    Science.gov (United States)

    Wu, Yan-qing; Chen, Li-yun; Zhang, Zheng-hong; wang, Zheng-chao

    2013-04-01

    In mammals, ovarian follicle is made of an oocyte with its surrounding granulosa cells and theca cells. Follicular growth and development is a highly coordinated programmable process, which guarantees the normal oocyte maturation and makes it having the fertilizing capacity. The paracrine and autocrine between oocytes and granulosa cells are essential for the follicular development to provide a suitable microenvironment. Phosphatidylinositol-3 kinase /protein kinase B is one of these important regulatory signaling pathways during this developmental process, and bone morphogenetic protein-15 an oocyte-specific secreted signal molecule, which regulates the follicular development by paracrine in the mammalian ovary. The present article overviewed the role of phosphatidylinositol-3 kinase / protein kinase B signaling during the follicular development based on our previous investigation about protein kinase B /forkhead transcription factor forkhead family of transcription factors -3a, and then focused on the regulatory effects of bone morphogenetic protein-15, as a downstream signal molecule of phosphatidylinositol-3 kinase / forkhead family of transcription factors -3a pathway, on ovarian follicular development, which helped to further understand the molecular mechanism regulating the follicular development and to treat ovarian diseases like infertility.

  16. Inhibitory Smads and bone morphogenetic protein (BMP) modulate anterior photoreceptor cell number during planarian eye regeneration.

    Science.gov (United States)

    González-Sastre, Alejandro; Molina, Ma Dolores; Saló, Emili

    2012-01-01

    Planarians represent an excellent model to study the processes of body axis and organ re-specification during regeneration. Previous studies have revealed a conserved role for the bone morphogenetic protein (BMP) pathway and its intracellular mediators Smad1/5/8 and Smad4 in planarian dorsoventral (DV) axis re-establishment. In an attempt to gain further insight into the role of this signalling pathway in planarians, we have isolated and functionally characte-rized the inhibitory Smads (I-Smads) in Schmidtea mediterranea. Two I-Smad homologues have been identified: Smed-smad6/7-1 and Smed-smad6/7-2. Expression of smad6/7-1 was detected in the parenchyma, while smad6/7-2 was found to be ex-pressed in the central nervous system and the eyes. Neither single smad6/7-1 and smad6/7-2 nor double smad6/7-1,-2 silencing gave rise to any apparent disruption of the DV axis. However, both regenerating and intact smad6/7-2 (RNAi) planarians showed defects in eye morphogenesis and displayed small, rounded eyes that lacked the anterior subpopulation of photoreceptor cells. The number of pigment cells was also reduced in these animals at later stages of regeneration. In contrast, after low doses of Smed-bmp(RNAi), planarians regenerated larger eyes in which the anterior subpopulation of photoreceptor cells was expanded. Our results suggest that Smed-smad6/7-2 and Smed-bmp control the re-specification and maintenance of anterior photoreceptor cell number in S. mediterranea.

  17. Dynamic assignment and maintenance of positional identity in the ventral neural tube by the morphogen sonic hedgehog.

    Directory of Open Access Journals (Sweden)

    Eric Dessaud

    Full Text Available Morphogens are secreted signalling molecules that act in a graded manner to control the pattern of cellular differentiation in developing tissues. An example is Sonic hedgehog (Shh, which acts in several developing vertebrate tissues, including the central nervous system, to provide positional information during embryonic patterning. Here we address how Shh signalling assigns the positional identities of distinct neuronal subtype progenitors throughout the ventral neural tube. Assays of intracellular signal transduction and gene expression indicate that the duration as well as level of signalling is critical for morphogen interpretation. Progenitors of the ventral neuronal subtypes are established sequentially, with progressively more ventral identities requiring correspondingly higher levels and longer periods of Shh signalling. Moreover, cells remain sensitive to changes in Shh signalling for an extended time, reverting to antecedent identities if signalling levels fall below a threshold. Thus, the duration of signalling is important not only for the assignment but also for the refinement and maintenance of positional identity. Together the data suggest a dynamic model for ventral neural tube patterning in which positional information corresponds to the time integral of Shh signalling. This suggests an alternative to conventional models of morphogen action that rely solely on the level of signalling.

  18. Arsenic-induced morphogenic response in roots of arsenic hyperaccumulator fern Pteris vittata.

    Science.gov (United States)

    Forino, Laura Maria Costantina; Ruffini Castiglione, Monica; Bartoli, Giacomo; Balestri, Mirko; Andreucci, Andrea; Tagliasacchi, Anna Maria

    2012-10-15

    On the assumption that arsenic induces stress morphogenetic responses involved in As tolerance and hyperaccumulation in the Pteris vittata fern, we analyzed the root system of young sporophytes grown in 250, 334, and 500 μM As for five days and for 14 days. Anatomical and histological analyses were performed in plants grown for five days to evaluate the number, position, length and differentiation pattern of root hairs. AgNOR staining, employed to study nucleolus behavior in root apices, showed that arsenic influences nucleolar activity (evaluated by nucleolus size, number and absorbance) in the root meristem. In plants treated with 250 and 334 μM As an acropetal shift of root hair development and an increase in hair length and density were observed, linked to an ectopic pattern of differentiation. The opposite trend was recorded in plants treated with 500 μM As. It is worth noting the presence of living border-like cells, not yet observed in ferns, and their increase following As treatments. Analysis and vitality of border-like cells were surveyed after 14 days of treatments. In conclusion As treatments elicited a stress-induced morphogenic response which, by modifying the differentiation pattern, number and length of root hairs, modulating nucleolar activity and interacting with the rhizosphere by inducing border-like cell production, may adjust the rate of root uptake and its metabolic activity.

  19. [Morpho-functional characteristics of the lingual epithelium after administration of hydra peptide morphogen].

    Science.gov (United States)

    Kulaeva, V V; Bykov, V L

    2007-01-01

    Using histological, morphometric and quantitative histoenzymological methods, the changes of lingual epithelium were studied in 40 outbred albino mice after 5 intraperitoneal injections of 100 micrograms of hydra peptide morphogen (HPM) per 1 kg of body weight. Administration of HPM was found to increase the total thickness of epithelial layer on the dorsal tongue surface in the interpapillary regions, while in the area of filiform papillae these changes were not significant. On the ventral tongue surface HPM induced a marked increase of total thickness of the epithelial layer as compared to that in control animals. Mitotic activity was increased in the epithelium covering the ventral surface and in the interpapillary regions on the dorsal tongue surface. Histoenzymologic study which involved the demonstration of NADH-diaphorase, succinate- and lactate-dehydrogenase (LDH) activities, followed by a cytophotometric evaluation of enzyme activity, has shown a stimulatory effect of HPM on the activity of all the enzymes studied, which was most pronounced in respect to LDH and was maximally expressed on the dorsal tongue surface. These findings collectively suggest that HPM exerts a stimulatory effect on proliferation activity and metabolism of lingual epithelium, which is differentially expressed in its variuoe topographical zones.

  20. Sustained and promoter dependent bone morphogenetic protein expression by rat mesenchymal stem cells after BMP-2 transgene electrotransfer

    Directory of Open Access Journals (Sweden)

    E Ferreira

    2012-07-01

    Full Text Available Transplantation of mesenchymal stem cells (MSCs with electrotransferred bone morphogenetic protein-2 (BMP-2 transgene is an attractive therapeutic modality for the treatment of large bone defects: it provides both stem cells with the ability to form bone and an effective bone inducer while avoiding viral gene transfer. The objective of the present study was to determine the influence of the promoter driving the human BMP-2 gene on the level and duration of BMP-2 expression after transgene electrotransfer into rat MSCs. Cytomegalovirus, elongation factor-1α, glyceraldehyde 3-phosphate dehydrogenase, and beta-actin promoters resulted in a BMP-2 secretion rate increase of 11-, 78-, 66- and 36-fold over respective controls, respectively. In contrast, the osteocalcin promoter had predictable weak activity in undifferentiated MSCs but induced the strongest BMP-2 secretion rates in osteoblastically-differentiated MSCs. Regardless of the promoter driving the transgene, a plateau of maximal BMP-2 secretion persisted for at least 21 d after the hBMP-2 gene electrotransfer. The present study demonstrates the feasibility of gene electrotransfer for efficient BMP-2 transgene delivery into MSCs and for a three-week sustained BMP-2 expression. It also provides the first in vitro evidence for a safe alternative to viral methods that permit efficient BMP-2 gene delivery and expression in MSCs but raise safety concerns that are critical when considering clinical applications.

  1. Depot injectable biodegradable nanoparticles loaded with recombinant human bone morphogenetic protein-2: preparation, characterization, and in vivo evaluation

    Directory of Open Access Journals (Sweden)

    Hassan AH

    2015-07-01

    Full Text Available Ali Habiballah Hassan,1 Khaled Mohamed Hosny,2,3 Zuahir A Murshid,1 Adel Alhadlaq,4 Ahmed Alyamani,5 Ghada Naguib6 1Department of Orthodontics, Faculty of Dentistry, 2Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; 3Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni Suef University, Beni Suef, Egypt; 4Department of Pediatric Dentistry and Orthodontics, College of Dentistry, King Saud University, Riyadh, 5Department of Oral Surgery, 6Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia Objective: The aim of this study is to utilize the biocompatibility characteristics of biodegradable polymers, viz, poly lactide-co-glycolide (PLGA and polycaprolactone (PCL, to prepare sustained-release injectable nanoparticles (NPs of bone morphogenetic protein-2 (BMP-2 for the repair of alveolar bone defects in rabbits. The influence of formulation parameters on the functional characteristics of the prepared NPs was studied to develop a new noninvasive injectable recombinant human BMP-2 (rhBMP-2 containing grafting material for the repair of alveolar bone clefts.Materials and methods: BMP-2 NPs were prepared using a water-in-oil-in-water double-emulsion solvent evaporation/extraction method. The influence of molar ratio of PLGA to PCL on a suitable particle size, encapsulation efficiency, and sustained drug release was studied. Critical size alveolar defects were created in the maxilla of 24 New Zealand rabbits divided into three groups, one of them treated with 5 µg/kg of rhBMP-2 NP formulations.Results: The results found that NPs formula prepared using blend of PLGA and PCL in 4:2 (w/w ratio showed the best sustained-release pattern with lower initial burst, and showed up to 62.7% yield, 64.5% encapsulation efficiency, 127 nm size, and more than 90% in vitro release. So, this formula was selected for

  2. Effect of nano-hydroxyapatite/collagen composite and bone morphogenetic protein-2 on lumbar intertransverse fusion in rabbits

    Institute of Scientific and Technical Information of China (English)

    孙天胜; 关凯; 时述山; 朱兵; 郑永军; 崔福斋; 张伟; 廖素三

    2004-01-01

    Objective: To investigate the effect of nano-hydroxyapatite/collagen (nHA/collagen) composite as a graft extender and enhancer when combined with recombinant human bone morphogenetic protein-2 (rhBMP-2) on lumbar intertransverse fusion in rabbits.Methods: Sixty-four adult female New Zealand white rabbits, aged 1 year and weighing 3.5-4.5 kg, underwent similar posterolateral intertransverse process arthrodesis and were randomly divided into 4 groups based on different grafts: autogenous cancellous bone alone (ACB group), nHA/collagen alone (HAC group), half autogenous cancellous bone and half nHA/collagen (ACB+HAC group) and nHA/collagen combined with rhBMP-2 (HAC+BMP group). The fusion masses were analyzed by manual palpation, radiography, biomechanical testing and histological examination. Results: Fusion was observed in 4 cases in the 6th week and in 5 cases in the 10th week after surgery in ACB group. No case showed fusion in HAC group. In ACB+HAC group, there was fusion in 3 cases in the 6th week and in 4 cases in the 10th week after surgery. In HAC+BMP group, fusion in 1 case was found in the 4th week, in 5 cases in the 6th week and in 6 cases in the 10th week after surgery. It suggested that ACB, ACB+HAC and HAC+BMP groups showed similar fusion ratio and mechanical strength in the 6th and 10th week after surgery. According to the microstructure analysis of the samples, nHA/collagen had no negative effect when implanted together with ilium autograft. In HAC+BMP group, new bone-like tissue was observed in the 2nd week postoperatively, and nearly all of the implanted composites were replaced by mature bone matrix and new bones in 10th week postoperatively.Conclusions: The nHA/collagen, especially combined with rhBMP-2, is a promising bone substitute, for it has quick biodegradation, fine bone-bending ability, and high osteoconductivity on posterolateral spinal fusion in rabbits.

  3. Bone Morphogenetic Protein-9 Enhances Osteogenic Differentiation of Human Periodontal Ligament Stem Cells via the JNK Pathway

    Science.gov (United States)

    Wang, Xingxing; Pang, Yanan; Yang, Su; Wei, Yibo; Gao, Haochen; Wang, Dalin; Cao, Zhizhong

    2017-01-01

    Bone morphogenetic protein-9 (BMP9) shows great osteoinductive potential in bone regeneration. Periodontal ligament stem cells (PDLSCs) with multi-differentiation capability and low immunogenicity are increasingly used as seed cells for periodontal regenerative therapies. In the present study, we investigated the potent osteogenic activity of BMP9 on human PDLSCs (hPDLSCs), in which the c-Jun N-terminal kinase (JNK) pathway is possibly involved. Our results showed that JNK inhibition by the specific inhibitor SP600125 or adenovirus expressing small interfering RNA (siRNA) targeting JNK (AdR-si-JNK) significantly decreased BMP9-induced gene and protein expression of early and late osteogenic markers, such as runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP), osteopontin (OPN), and osteocalcin (OCN), in hPDLSCs. We also confirmed the in-vivo positive effect of JNKs on ectopic bone formation induced by hPDLSCs injected into the musculature of athymic nude mice and BMP9 ex vivo gene delivery. For the cellular mechanism, we found that BMP9 activated the phosphorylation of JNKs and Smad2/3, and that JNKs may engage in cross-talk with the Smad2/3 pathway in BMP9-mediated osteogenesis. PMID:28052093

  4. Involvement of spinal monocyte chemoattractant protein-1 (MCP-1) in cancer-induced bone pain in rats.

    Science.gov (United States)

    Hu, Ji-Hua; Zheng, Xiao-Yan; Yang, Jian-Ping; Wang, Li-Na; Ji, Fu-Hai

    2012-05-23

    In this study, we examined the involvement of chemokine monocyte chemoattractant protein-1 (MCP-1) in the spinal cord of a rat model of cancer-induced bone pain (CIBP). In this model, CIBP was established by an intramedullary injection of Walker 256 cells into the tibia of rats. We observed a significant increase in expression levels of MCP-1 and its receptor CCR2 in the spinal cord of CIBP rats. Furthermore, the intrathecal administration of an anti-MCP-1 neutralizing antibody attenuated the mechanical allodynia established in CIBP rats. Likewise, an intrathecal injection of exogenous recombinant MCP-1 induced a striking mechanical allodynia in naïve rats. These results suggest that increases in spinal MCP-1 and CCR2 expression are involved in the development of mechanical allodynia associated with bone cancer rats.

  5. Parathyroid hormone-related protein (PTHrP) modulates adhesion, migration and invasion in bone tumor cells.

    Science.gov (United States)

    Mak, Isabella W Y; Turcotte, Robert E; Ghert, Michelle

    2013-07-01

    Parathyroid-hormone-related protein (PTHrP) has been shown to be an important factor in osteolysis in the setting of metastatic carcinoma to the bone. However, PTHrP may also be central in the setting of primary bone tumors. Giant cell tumor of bone (GCT) is an aggressive osteolytic bone tumor characterized by osteoclast-like giant cells that are recruited by osteoblast-like stromal cells. The stromal cells of GCT are well established as the only neoplastic element of the tumor, and we have previously shown that PTHrP is highly expressed by these cells both in vitro and in vivo. We have also found that the stromal cells exposed to a monoclonal antibody to PTHrP exhibited rapid plate detachment and quickly died in vitro. Therefore, PTHrP may serve in an autocrine manner to increase cell proliferation and promote invasive properties in GCT. The purpose of this study was to use transcriptomic microarrays and functional assays to examine the effects of PTHrP neutralization on cell adhesion, migration and invasion. Microarray and proteomics data identified genes that were differentially expressed in GCT stromal cells under various PTHrP treatment conditions. Treatment of GCT stromal cells with anti-PTHrP antibodies showed a change in the expression of 13 genes from the integrin family relative to the IgG control. Neutralization of PTHrP reduced cell migration and invasion as evidenced by functional assays. Adhesion and anoikis assays demonstrated that although PTHrP neutralization inhibits cell adhesion properties, cell detachment related to PTHrP neutralization did not result in associated cell death, as expected in mesenchymal stromal cells. Based on the data presented herein, we conclude that PTHrP excreted by GCT stromal cells increases bone tumor cell local invasiveness and migration.

  6. Low calcium-phosphate intakes modulate the low-protein diet-related effect on peak bone mass acquisition: a hormonal and bone strength determinants study in female growing rats.

    Science.gov (United States)

    Fournier, C; Rizzoli, R; Ammann, P

    2014-11-01

    Peak bone mass acquisition is influenced by environmental factors including dietary intake. A low-protein diet delays body and skeletal growth in association with a reduction in serum IGF-1 whereas serum FGF21 is increased by selective amino acid deprivation. Calcium (Ca) and phosphorous (P) are also key nutrients for skeletal health, and inadequate intakes reduce bone mass accrual in association with calciotropic hormone modulation. Besides, the effect of calcium supplementation on bone mass in prepubertal children appears to be influenced by protein intake. To further explore the interaction of dietary protein and Ca-P intake on bone growth, 1-month-old female rats were fed with an isocaloric 10%, 7.5%, or 5% casein diet containing normal or low Ca-P for an 8-week period (6 groups). Changes in tibia geometry, mineral content, microarchitecture, strength, and intrinsic bone quality were analyzed. At the hormonal level, serum IGF-1, fibroblast growth factor 21 (FGF21), PTH, 1,25-dihydroxyvitamin D3 (calcitriol), and FGF23 were investigated as well as the Ghr hepatic gene expression. In normal dietary Ca-P conditions, bone mineral content, trabecular and cortical bone volume, and bone strength were lower in the 5% casein group in association with a decrease in serum IGF-1 and an increase in FGF21 levels. Unexpectedly, the low-Ca-P diet attenuated the 5% casein diet-related reduction of serum IGF-1 and Ghr hepatic gene expression, as well as the low-protein diet-induced decrease in bone mass and strength. However, this was associated with lower cortical bone material level properties. The low-Ca-P diet increased serum calcitriol but decreased FGF23 levels. Calcitriol levels positively correlated with Ghr hepatic mRNA levels. These results suggest that hormonal modulation in response to a low-Ca-P diet may modify the low-protein diet-induced effect on Ghr hepatic mRNA levels and consequently the impact of low protein intakes on IGF-1 circulating levels and skeletal

  7. Stimulation of a Gs-like G protein in the osteoclast inhibits bone resorption but enhances tartrate-resistant acid phosphatase secretion.

    Science.gov (United States)

    Moonga, B S; Pazianas, M; Alam, A S; Shankar, V S; Huang, C L; Zaidi, M

    1993-01-29

    Previous studies have demonstrated that G-protein agonists induce quiescence (Q effect) or retraction (R effect) in isolated osteoclasts. We now report the functional effects of such agonists on osteoclastic bone resorption and enzyme release. Exposure of osteoclasts to tetrafluoro-aluminate anions (AlF4-), a universal G protein stimulator, resulted in a marked concentration-dependent inhibition of bone resorption. This was associated with a dramatic increase in the secretion of the osteoclast-specific enzyme, tartrate-resistant acid phosphatase (TRAP). Cholera toxin, a Gs stimulator and a selective Q effect agonist, similarly abolished bone resorption and enhanced TRAP secretion. In contrast, pertussis toxin, a Gi inhibitor and a selective R effect agonist, inhibited bone resorption significantly, but slightly reduced enzyme release. The results suggest an involvement of a Gs-like G protein in TRAP secretion from the osteoclast, possibly through a cyclic AMP-dependent mechanism.

  8. Activation of bone morphogenetic protein-6 gene transcription in MCF-7 cells by estrogen

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ming; YAN Ji-dong; HANG Lei; WANG Qing; L(U) Shu-jun; ZHANG Jie; ZHU Tian-hui

    2005-01-01

    Background Bone morphogenetic protein-6 (BMP-6) is closely correlated with tumor differentiation and skeletal metastasis. Estrogen is considered as a stimulant for the initiation and promotion of breast cancer. Previous studies demonstrated that 17β-estadiol (E2) can selectively increase the expression of BMP-6. This experiment is designed to detect the molecular mechanism of estrogen activating BMP-6 gene transcription in human estrogen receptor positive (ER+) breast cancer cell line MCF-7. Methods After the treatment of MCF-7 cells with E2 at different concentrations (10-11 mol/L, 10-9 mol/L, 10-7 mol/L), the BMP-6 expression level was examined through real-time polymerase chain reaction. Through restriction enzyme digestion, human BMP-6 1.2 kb long promoter, BMP-6 0.7 kb long promoter was cloned into pGL-3 basic vector; after the treatment with 10-7 mol/L E2, luciferase activities of the two promoters were detected. Site-directed mutagenesis was performed to obtain the mutant forms of estrogen response element half-site (1/2 ERE) element and Sp1 sites in the BMP-6 promoter, the activities of these mutant form promoters were detected following the methods mentioned above. Chromatin immunoprecipitation (ChIP) assay was also used to confirm the binding of estrogen receptor α (Erα) on BMP-6 promoter in the presence of E2. Results E2 dose dependently increased BMP-6 mRNA expression in human ER+ breast cancer cell line MCF-7. At a dose of 10-7 mol/L E2, human BMP-6 1.2 kb promoter activity was increased by 90% compared with the control group treated with ethanol (P<0.05). Both the 1/2 ERE response element mutant form and the Sp1 site mutant form of the BMP-6 promoter abolished the activation of the BMP-6 promoter's response to E2. Through ChIP assay, the binding of Erα on 1/2 ERE response element in BMP-6 promoter was further validated. Conclusion Estrogen induces BMP-6 expression in human ER+ breast cancer cell line MCF-7 through its receptor Erα binding on 1

  9. Preparation of recombinant human bone morphogenetic protein-2 loaded dextran-based microspheres and their characteristics

    Institute of Scientific and Technical Information of China (English)

    Fa-ming CHEN; Zhi-fen WU; Qin-tao WANG; Hong WU; Yong-jie ZHANG; Xin NIE; Yan JIN

    2005-01-01

    Aim: To prepare new pharmaceutical forms with sustained delivery properties of recombinant human bone morphogenetic protein-2 (rhBMP2) for tissue engineering and guided tissue regeneration (GTR) use. Methods: rhBMP2-1oaded dextranbased hydrogel microspheres (rhBMP2-MPs), which aimed to keep rhBMP2 bioactivity and to achieve long-term sustained release of rhBMP2, were prepared by double-phase emulsified condensation polymerization. The physical, chemical performances and biological characteristics of those microspheres were studied both in vitro and in vivo. Results: The microspheres' average diameter was 30.33±4.32 μm with 75.4% ranging from 20 μm to 40 μm and the drug loading and encapsulation efficiency were 7.82% and 82.25%, respectively. The rhBMP2-releasing profiles in vitro showed that rhBMP2 release could be maintained more than 10 d. The rhBMP2-MPs, with good swelling and biodegradation behavior,could be kept for 6 months at below 4 ℃ without significant characteristic change or bioactivity loss. Cytology studies showed that rhBMP2-MPs could promote the proliferation of periodontal ligament cells (PDLCs) approximately 10 d, while the bioactivity of concentrated rhBMP2 solution could keep no more than 3 d.Scanning electron microscope showed that rhBMP2-MPs could be enchased into the porous structure of calcium phosphate ceremic (CPC) and the eugonic growth of PDLCs in CPC/rhBMP2-MPs scaffolds. Animal experiments indicated that using CPC/rhBMP2-MPs scaffolds could gain more periodontal tissue regeneration than using rhBMP2 compound firsthand with CPC (CPC/rhBMP2). Conclusion:By encapsulating rhBMP2 into dextran-based microspheres, a small quantity of rhBMP2 could achieve equivalent effects to the concentrated rhBMP2 solution and at the same time, could prolong rhBMP2 retention both in vitro and in vivo.

  10. Bone Morphogenetic Protein (BMP-7 expression is decreased in human hypertensive nephrosclerosis

    Directory of Open Access Journals (Sweden)

    Cohen Clemens D

    2010-11-01

    Full Text Available Abstract Background Bone Morphogenetic Protein (BMP-7 is protective in different animal models of acute and chronic kidney disease. Its role in human kidneys, and in particular hypertensive nephrosclerosis, has thus far not been described. Methods BMP-7 mRNA was quantified using real-time PCR and localised by immunostaining in tissue samples from normal and nephrosclerotic human kidneys. The impact of angiotensin (AT-II and the AT-II receptor antagonist telmisartan on BMP-7 mRNA levels and phosphorylated Smad 1/5/8 (pSmad 1/5/8 expression was quantified in proximal tubular cells (HK-2. Functional characteristics of BMP-7 were evaluated by testing its influence on TGF-β induced epithelial-to-mesenchymal transition (EMT, expression of TGF-β receptor type I (TGF-βRI and phosphorylated Smad 2 (pSmad 2 as well as on TNF-α induced apoptosis of proximal tubular cells. Results BMP-7 was predominantly found in the epithelia of the distal tubule and the collecting duct and was less abundant in proximal tubular cells. In sclerotic kidneys, BMP-7 was significantly decreased as demonstrated by real-time PCR and immunostaining. AT-II stimulation in HK-2 cells led to a significant decrease of BMP-7 and pSmad 1/5/8, which was partially ameliorated upon co-incubation with telmisartan. Only high concentrations of BMP-7 (100 ng/ml were able to reverse TNF-α-induced apoptosis and TGF-β-induced EMT in human proximal tubule cells possibly due to a decreased expression of TGF-βRI. In addition, BMP-7 was able to reverse TGF-β-induced phosphorylation of Smad 2. Conclusions The findings suggest a protective role for BMP-7 by counteracting the TGF-β and TNF-α-induced negative effects. The reduced expression of BMP-7 in patients with hypertensive nephrosclerosis may imply loss of protection and regenerative potential necessary to counter the disease.

  11. Characterization and expression of bone morphogenetic protein 4 gene in postnatal pigs.

    Science.gov (United States)

    Li, Ming; Chen, Qixin; Sun, Guirong; Shi, Xiaowei; Zhao, Qiaohui; Zhang, Chi; Zhou, Jianshe; Qin, Nan

    2010-06-01

    Bone morphogenetic protein 4 (BMP4) is involved in animal embryonic development and reproductive physiology. The human and murine BMP4 genes have been isolated and characterized. The objectives of this study were to: (1) characterize the full mRNA and genomic sequence for porcine BMP4, and (2) examine BMP4 gene expression in 10 tissues of postnatal female pigs. Using RT-PCR, RACE and general PCR techniques, a 1,626 bp DNA including the full coding region of BMP4 was isolated and identified as a homologue of human BMP4 transcript variant (TV)-c. The porcine TV-c contained 3 exons and astride 3.6 kb in the isolated 7.8 kb porcine BMP4 genome. The In silicon cloning identified other three forms of mRNAs, including the homologues of human TV-1, TV-a and a novel variant related to human TV-3 (TV-3p). The porcine TV-c, TV-1 and TV-3p bear internal ribosome entry sites (IRES) in 5' untranslated region (UTR), while there are two ARE elements in the 3'UTR. The full genomic sequence of porcine BMP4 gene showed 81.38, 76.23 and 64.00% identity with that of bovine, human and murine, respectively. The expression of BMP4 mRNA was determined by RT-PCR in 7, 14, and 28 day old female piglets and non-gestational sows. The results showed that porcine BMP4 occurred in all 10 examined tissues (heart, lung, liver, kidney, ovary, spleen, spinal medulla, brain, duodenum and thymus). The mRNA expression levels were relatively higher in lung and kidney in 7 day old piglets, thymus in 14 day old piglets, and spleen in 28 day old piglets, respectively, while the higher expressions were detected in liver of non-gestational pigs (P < 0.05). Moreover, the mRNA amounts both in 7 day old piglets and sows were generally higher than those in 14 and 28 day old piglets in nearly all examined tissues, except in thymus. It is concluded that the structure of porcine BMP4 gene is highly conservative with other mammalian BMP4 genes, but some differences may present in the regulation of gene expression

  12. Determination of processed animal proteins, including meat and bone meal, in animal feed.

    Science.gov (United States)

    Gizzi, Giséile; von Holst, Christoph; Baeten, Vincent; Berben, Gilbert; van Raamsdonk, Leo

    2004-01-01

    An intercomparison study was conducted to determine the presence of processed animal proteins (PAPs), including meat and bone meal (MBM) from various species, in animal feed. The performances of different methods, such as microscopy, polymerase chain reaction (PCR), immunoassays, and a protocol based on iquid chromatography (LC), were compared. Laboratories were asked to analyze for PAPs from all terrestrial animals and fish (total PAPs); mammalian PAPs; ruminant PAPs; and porcine PAPs. They were free to use their method of choice. In addition, laboratories using microscopy were asked to determine the presence of PAPs from terrestrial animals, which is applicable only to microscopy. For total PAPs microscopy, LC and some immunoassays showed sufficient results at a concentration as low as 0.1% MBM in the feed. In contrast, PCR was not fit for purpose. In differentiating between MBM from terrestrial animals and fishmeal, microscopy detected 0.5% of terrestrial MBM in feed in the presence of 5% fishmeal, but was less successful when the concentration of MBM from terrestrial animals was 0.1%. The animal-specific determination of MBM from mammals or, more specifically from either ruminants or pigs, by PCR showed poor results, as indicated by a high number of false-positive and false-negative results. The only PCR method that scored quite well was applied by a member of the organizer team of the study. Immunoassays scored much better than PCR, showing sufficient sensitivity but some deficiency in terms of specificity. The results also demonstrated that the reliable determination of MBM from ruminants has not been resolved, especially for low concentrations of MBM (0.1%) in feed. Comparison of the results for mammalian MBM from all methods indicated that, for control purposes, the immunoassay method, especially when applied as dipsticks, could be used as a rapid screening method combined with microscopy to confirm the positive samples. However, implementation of such a

  13. Morphogen Electrochemically Triggered Self-Construction of Polymeric Films Based on Mussel-Inspired Chemistry.

    Science.gov (United States)

    Maerten, Clément; Garnier, Tony; Lupattelli, Paolo; Chau, Nguyet Trang Thanh; Schaaf, Pierre; Jierry, Loïc; Boulmedais, Fouzia

    2015-12-15

    Inspired by the strong chemical adhesion mechanism of mussels, we designed a catechol-based electrochemically triggered self-assembly of films based on ethylene glycol molecules bearing catechol groups on both sides and denoted as bis-catechol molecules. These molecules play the role of morphogens and, in contrast to previously investigated systems, they are also one of the constituents, after reaction, of the film. Unable to interact together, commercially available poly(allylamine hydrochloride) (PAH) chains and bis-catechol molecules are mixed in an aqueous solution and brought in contact with an electrode. By application of defined potential cycles, bis-catechol molecules undergo oxidation leading to molecules bearing "reactive" quinone groups which diffuse toward the solution. In this active state, the quinones react with amino groups of PAH through Michael addition and Schiff's base condensation reaction. The application of cyclic voltammetry (CV) between 0 and 500 mV (vs Ag/AgCl, scan rate of 50 mV/s) of a PAH/bis-catechol solution results in a fast self-construction of a film that reaches a thickness of 40 nm after 60 min. The films present a spiky structure which is attributed to the use of bis-functionalized molecules as one component of the films. XPS measurements show the presence of both PAH and bis-catechol cross-linked together in a covalent way. We show that the amine/catechol ratio is an important parameter which governs the film buildup. For a given amine/catechol ratio, it does exist an optimum CV scan rate leading to a maximum of the film thickness as a function of the scan rate.

  14. The radioprotective efficacy of the rat acute-phase protein alpha2-macroglobulin on bone marrow cells

    Directory of Open Access Journals (Sweden)

    Mihailović Mirjana

    2009-01-01

    Full Text Available The rat acute phase protein α2-macroglobulin (α2M plays an important role in the restoration of disrupted homeostasis by inhibiting different types of non-specific proteases and facilitating the transport of cytokines, growth factors and hormones. Previously, we observed that administration of α2M to experimental animals prior to the infliction of life- threatening trauma in the form of scalding or total-body irradiation, significantly improved their survival rates. The aim of the present work was to evaluate the radioprotective effect on blood cells of α2M that, when administered 30 min before irradiation with 6.7 Gy (LD50/30, provides 100% survival of experimental animals where in unprotected irradiated rats the said dose results in 50% lethality. We observed that rats pretreated with α2M, after an initial decline, exhibited complete recovery of the leukocyte count due to the preservation of bone marrow cells, observed as a stable mitotic index. In untreated irradiated rats the decrease of the mitotic index reflected the significant destruction of bone marrow cells that resulted in a protracted decline in the leukocyte count. We conclude that the radioprotection provided by α2M was in part mediated through cytoprotection of new blood cells produced in the bone marrow.

  15. Vitamin D Binding Protein Genotype Is Associated with Serum 25-Hydroxyvitamin D and PTH Concentrations, as Well as Bone Health in Children and Adolescents in Finland

    DEFF Research Database (Denmark)

    Pekkinen, Minna; Saarnio, Elisa; Viljakainen, Heli T.

    2014-01-01

    Vitamin D binding protein (DBP)/group-specific component (Gc), correlates positively with serum vitamin D metabolites, and phenotype influences serum 25-hydroxyvitamin D (S-25(OH)D) concentration. The protein isoform has been associated with decreased bone mineral density (BMD) and increased frac...

  16. Expression of human bone morphogenetic protein (BMP-2 and BMP-4 genes in transgenic bovine fibroblasts Expressão dos genes bone morphogenetic protein (BMP-2 e BMP-4 em fibroblastos bovinos transgênicos

    Directory of Open Access Journals (Sweden)

    C. Oleskovicz

    2004-08-01

    Full Text Available cDNAs dos genes bone morphogenetic protein-2 (BMP-2 e bone morphogenetic protein-4 (BMP-4 foram sintetizados a partir de RNA total extraído de tecidos ósseos de pacientes que apresentavam trauma facial (fraturas do maxilar entre o 7º e o 10º dia pós-trauma e clonados num vetor para expressão em células mamíferas, sob controle do promotor de citomegalovírus (CMV. Os vetores contendo os genes BMP-2 e o BMP-4 foram utilizados para a transfecção de fibroblastos bovinos. mRNAs foram indiretamente detectados por RT-PCR nas células transfectadas. As proteínas BMP-2 e BMP-4 foram detectadas mediante análises de Western blot. Os resultados demonstram a possibilidade de produção desses fatores de crescimento celular em fibroblastos bovinos. Essas células poderão ser utilizadas como fontes doadoras de material genético para a técnica de transferência nuclear na geração de animais transgênicos.

  17. Relationship between Coronary Risk Factors, C-Reactive Protein, Bone Mineral Density and Carotid Circulation Among Frail Elderly

    Directory of Open Access Journals (Sweden)

    Moatassem S. Amer1, Tamer M. Farid1, Ekrami E. Abdel-rahman1,

    2014-06-01

    Full Text Available Background: Frailty may now be regarded as a geriatric syndrome of decreased reserve and resistance to stressors, resulting from cumulative declines across multiple physiologic systems, causing vulnerability to adverse health outcomes including falls, hospitalisation, institutionalisation and mortality. The inflammatory mediators as C-reactive protein have been associated with the development of the geriatric frailty. Several studies have pointed out increased level of homocystiene in frail elderly Increasing frailty was associated with lower bone mineral density, as both bone mass and muscle strength decrease during ageing and this has also been associated with higher risk of osteoporotic fractures in frail elderly. Objective: To compare frail and non-frail elderly regarding Bone mineral density, carotid circulation and serum levels of Homocysteine, coronary risk factors and CRP. Methods: 104 elderly patients, who were assigned to 2 groups. Group A (52 frail participants: diagnosed by Fried’s criteria as applied by Avila-Funes et al., 2008. Group B (52 non-frail participants.All participants were subjected to the following: through history, physical examination, ADL, IADL assessment, MMSE ,GDS, laboratory investigations including; CRP, homocystiene and total lipid profile, measurement of bone mineral density by DEXA and carotid intima-media thickness by carotid duplex. Results: There was no statistically significant difference in age, sex, among both groups.Frail participants had higher ADL and IADL dependence, higher incidence of depression, cognitive impairment and osteoprosis.They also had higher levels of homocystiene , CRP , CIMT and lower levels of HDL cholesterol. Conclusion: Osteoporosis is more prevalent among frail elderly also frailty is associated with more ADL & IADL dependence, higher GDS scores & lower MMSE score in addition to higher mean level of homocystiene, CRP & triglycerides in addition to low serum HDL & higher CIMT

  18. Stimulation of porcine bone marrow stromal cells by hyaluronan, dexamethasone and rhBMP-2

    DEFF Research Database (Denmark)

    Zou, Xuenong; Li, Haisheng; Chen, Li

    2004-01-01

    In the interest of optimizing osteogenesis in in vitro, the present study sought to determine how porcine bone marrow stromal cell (BMSc) would respond to different concentrations of hyaluronan (HY) and its different combinations with dexamethasone (Dex) and recombinant human bone morphogenic...... protein-2 (rhBMP-2). Cellular proliferation was determined by 3H-thymidine incorporation into DNA at both Days 2 and 7 when BMSc was cultivated with HY at concentrations of 0, 0.5, 1.0, 2.0 and 4.0 mg/ml. HY accelerated cellular proliferation when compared with cultures in the absence of HY at both Days 2...... and 7. BMSc proliferation under the high HY concentration of 4 mg/ml was significantly higher than under the other, lower HY concentrations of 0.5, 1.0 and 2.0 mg/ml. When BMSc were cultivated under HY at concentrations of 0, 1.0 and 4.0 mg/ml and its 12 combinations with rhBMP-2 at concentrations of 0...

  19. Chemical composition and biological value of spray dried porcine blood by-products and bone protein hydrolysate for young chickens.

    Science.gov (United States)

    Jamroz, D; Wiliczkiewicz, A; Orda, J; Skorupińska, J; Słupczyńska, M; Kuryszko, J

    2011-10-01

    The chemical composition of spray dried porcine blood by-products is characterised by wide variation in crude protein contents. In spray dried porcine blood plasma (SDBP) it varied between 670-780 g/kg, in spray dried blood cells (SDBC) between 830-930 g/kg, and in bone protein hydrolysate (BPH) in a range of 740-780 g/kg. Compared with fish meal, these feeds are poor in Met and Lys. Moreover, in BPH deep deficits of Met, Cys, Thr and other amino acids were found. The experiment comprised 7 dietary treatments: SDBP, SDBC, and BPH, each at an inclusion rate of 20 or 40 g/kg diet, plus a control. The addition of 20 or 40 g/kg of the analysed meals into feeds for very young chickens (1-28 d post hatch) significantly decreased the body weight (BW) of birds. Only the treatments with 40 g/kg of SDBP and SDBC showed no significant difference in BW as compared with the control. There were no significant differences between treatments and type of meal for feed intake, haematocrit and haemoglobin concentrations in blood. Addition of bone protein and blood cell meals to feed decreased the IgG concentration in blood and caused shortening of the femur and tibia bones. However, changes in the mineral composition of bones were not significantly affected by the type of meal used. The blood by-products, which are rich in microelements, improved retention of Ca and Cu only. In comparison to control chickens, significantly better accretion of these minerals was found in treatments containing 20 g/kg of SDBP or 40 g/kg of SDBC. Great variability in apparent ileal amino acid digestibility in chickens was determined. In this respect, some significant differences related to the type of meal fed were confirmed for Asp, Pro, Val, Tyr and His. In general, the apparent ileal digestibility of amino acids was about 2-3 percentage units better in chickens fed on diets containing the animal by products than in control birds.

  20. Dietary protein derived from dried bonito fish improves type-2 diabetes mellitus-induced bone frailty in Goto-Kakizaki rats.

    Science.gov (United States)

    Ochiai, Masaru; Kuroda, Takashi; Gohtani, Shoichi; Matsuo, Tatsuhiro

    2015-04-01

    Type-2 diabetes mellitus (T2DM) induces bone frailty. Protein and polyunsaturated fatty acids (PUFA) contained in fish can be effective in enhancing bone quality, but the bone developing effect of fish protein containing less PUFA has not been evaluated in young animals with T2DM. We prepared a bonito fish (BF) and defatted BF (DBF) and hypothesized that protein contained in BF and DBF would be effective for mitigating the effects of T2DM-induced bone frailty. We mainly evaluated the effect of dietary BF and DBF on bone and apparent calcium absorption in young Goto-Kakizaki (GK) rats with T2DM. GK rats were divided into 3 groups based on diets (casein, BF, and DBF) and fed with each diet for 6 wk. Wistar rats were fed with the casein diet as a non-T2DM control. Bone mass, bone strength, apparent calcium absorption, and serum biochemical parameters were determined. The dry weight and strength of the femurs were lower in the GK rats than in the Wistar rats fed with the casein diet. Dietary intake of the BF and DBF diets enhanced the maximum load and dry weight of the femurs and suppressed the serum alkaline phosphatase activity although the apparent calcium absorption was lower in the GK rats fed with the BF and DBF diets than in those fed with the casein diet. These parameters were not different between the rats fed with the BF and DBF diets. Our data suggest that protein contained in the BF and DBF diets improved T2DM-induced bone frailty.

  1. Computer modelling integrated with micro-CT and material testing provides additional insight to evaluate bone treatments: Application to a beta-glycan derived whey protein mice model.

    Science.gov (United States)

    Sreenivasan, D; Tu, P T; Dickinson, M; Watson, M; Blais, A; Das, R; Cornish, J; Fernandez, J

    2016-01-01

    The primary aim of this study was to evaluate the influence of a whey protein diet on computationally predicted mechanical strength of murine bones in both trabecular and cortical regions of the femur. There was no significant influence on mechanical strength in cortical bone observed with increasing whey protein treatment, consistent with cortical tissue mineral density (TMD) and bone volume changes observed. Trabecular bone showed a significant decline in strength with increasing whey protein treatment when nanoindentation derived Young׳s moduli were used in the model. When microindentation, micro-CT phantom density or normalised Young׳s moduli were included in the model a non-significant decline in strength was exhibited. These results for trabecular bone were consistent with both trabecular bone mineral density (BMD) and micro-CT indices obtained independently. The secondary aim of this study was to characterise the influence of different sources of Young׳s moduli on computational prediction. This study aimed to quantify the predicted mechanical strength in 3D from these sources and evaluate if trends and conclusions remained consistent. For cortical bone, predicted mechanical strength behaviour was consistent across all sources of Young׳s moduli. There was no difference in treatment trend observed when Young׳s moduli were normalised. In contrast, trabecular strength due to whey protein treatment significantly reduced when material properties from nanoindentation were introduced. Other material property sources were not significant but emphasised the strength trend over normalised material properties. This shows strength at the trabecular level was attributed to both changes in bone architecture and material properties.

  2. Les premiers textes de René Thom sur la morphogenèse et la linguistique : 1966-1970.

    OpenAIRE

    Petitot, Jean

    2015-01-01

    Au milieu des années 1960, René Thom commença à rédiger ses premiers textes sur les applications à la morphogenèse en biologie et à la syntaxe actantielle en linguistique de la théorie des déploiements universels de singularités de fonctions differentiables et de la stabilité structurelle. Cette note présente et commente ses cinq premiers articles dans ces domaines.

  3. Bone tumor

    Science.gov (United States)

    Tumor - bone; Bone cancer; Primary bone tumor; Secondary bone tumor; Bone tumor - benign ... The cause of bone tumors is unknown. They often occur in areas of the bone that grow rapidly. Possible causes include: Genetic defects ...

  4. Design and Use of Chimeric Proteins Containing a Collagen-Binding Domain for Wound Healing and Bone Regeneration.

    Science.gov (United States)

    Addi, Cyril; Murschel, Frederic; De Crescenzo, Gregory

    2016-12-12

    Collagen-based biomaterials are widely used in the field of tissue engineering; they can be loaded with biomolecules such as growth factors (GFs) to modulate the biological response of the host and thus improve its potential for regeneration. Recombinant chimeric GFs fused to a collagen-binding domain (CBD) have been reported to improve their bioavailability and the host response, especially when combined with an appropriate collagen-based biomaterial. This review first provides an extensive description of the various CBDs that have been fused to proteins, with a focus on the need for accurate characterization of their interaction with collagen. The second part of the review highlights the benefits of various CBD/GF fusion proteins that have been designed for wound healing and bone regeneration.

  5. The 18 kDa translocator protein (peripheral benzodiazepine receptor) expression in the bone of normal, osteoprotegerin or low calcium diet treated mice.

    Science.gov (United States)

    Kam, Winnie Wai-Ying; Meikle, Steven R; Zhou, Hong; Zheng, Yu; Blair, Julie M; Seibel, Marcus; Dunstan, Colin R; Banati, Richard B

    2012-01-01

    The presence of the translocator protein (TSPO), previously named as the mitochondrial or peripheral benzodiazepine receptor, in bone cells was studied in vitro and in situ using RT-qPCR, and receptor autoradiography using the selective TSPO ligand PK11195.In vitro, the TSPO is highly expressed in osteoblastic and osteoclastic cells.In situ, constitutive expression of TSPO is found in bone marrow and trabecular bone, e.g., spongiosa. Mice with a reduction of bone turnover induced by a 4-day treatment of osteoprotegerin reduces [(3)H]PK11195 binding in the spongiosa (320±128 Bq x mg(-1), 499±106 Bq x mg(-1) in saline-treated controls). In contrast, mice with an increase in bone turnover caused by a 4-day low calcium diet increases [(3)H]PK11195 binding in the spongiosa (615±90 Bq x mg(-1)). Further, our study includes technical feasibility data on [(18)F]fluoride microPET imaging of rodent bone with altered turnover. Despite [(18)F]fluoride having high uptake, the in vivo signal differences were small. Using a phantom model, we describe the spillover effect and partial volume loss that affect the quantitative microPET imaging of the small bone structures in experimental mouse models. In summary, we demonstrate the expression of TSPO in small rodent bone tissues, including osteoblasts and osteoclasts. A trend increase in TSPO expression was observed in the spongiosa from low to high bone turnover conditions. However, despite the potential utility of TSPO expression as an in vivo biomarker of bone turnover in experimental rodent models, our small animal PET imaging data using [(18)F]fluoride show that even under the condition of a good biological signal-to-noise ratio and high tracer uptake, the currently achievable instrument sensitivity and spatial resolution is unlikely to be sufficient to detect subtle differences in small structures, such as mouse bone.

  6. The 18 kDa translocator protein (peripheral benzodiazepine receptor expression in the bone of normal, osteoprotegerin or low calcium diet treated mice.

    Directory of Open Access Journals (Sweden)

    Winnie Wai-Ying Kam

    Full Text Available The presence of the translocator protein (TSPO, previously named as the mitochondrial or peripheral benzodiazepine receptor, in bone cells was studied in vitro and in situ using RT-qPCR, and receptor autoradiography using the selective TSPO ligand PK11195.In vitro, the TSPO is highly expressed in osteoblastic and osteoclastic cells.In situ, constitutive expression of TSPO is found in bone marrow and trabecular bone, e.g., spongiosa. Mice with a reduction of bone turnover induced by a 4-day treatment of osteoprotegerin reduces [(3H]PK11195 binding in the spongiosa (320±128 Bq x mg(-1, 499±106 Bq x mg(-1 in saline-treated controls. In contrast, mice with an increase in bone turnover caused by a 4-day low calcium diet increases [(3H]PK11195 binding in the spongiosa (615±90 Bq x mg(-1. Further, our study includes technical feasibility data on [(18F]fluoride microPET imaging of rodent bone with altered turnover. Despite [(18F]fluoride having high uptake, the in vivo signal differences were small. Using a phantom model, we describe the spillover effect and partial volume loss that affect the quantitative microPET imaging of the small bone structures in experimental mouse models. In summary, we demonstrate the expression of TSPO in small rodent bone tissues, including osteoblasts and osteoclasts. A trend increase in TSPO expression was observed in the spongiosa from low to high bone turnover conditions. However, despite the potential utility of TSPO expression as an in vivo biomarker of bone turnover in experimental rodent models, our small animal PET imaging data using [(18F]fluoride show that even under the condition of a good biological signal-to-noise ratio and high tracer uptake, the currently achievable instrument sensitivity and spatial resolution is unlikely to be sufficient to detect subtle differences in small structures, such as mouse bone.

  7. Effects of Escherichia Coli-derived Recombinant Human Bone Morphogenetic Protein-2 Loaded Porous Hydroxyaptite-based Ceramics on Calvarial Defect in Rabbits

    Science.gov (United States)

    Kim, Shin-Young; Lee, Youngkyun; Seo, Seung-Jun; Lim, Jae-Hong

    2017-01-01

    Background Recombinant human bone morphogenetic proteins (rhBMPs) have been widely used in regenerative therapies to promote bone formation. The production of rhBMPs using bacterial systems such as Escherichia coli (E. coli) is estimated to facilitate clinical applications by lowering the cost without compromising biological activity. In clinical practice, rhBMP-2 and osteoconductive carriers (e.g., hydroxyapatite [HA] and bovine bone xenograft) are used together. This study examined the effect of E. coli-derived rhBMP-2 combined with porous HA-based ceramics on calvarial defect in rabbits. Methods Six adult male New Zealand white rabbits were used in this study. The experimental groups were divided into the following 4 groups: untreated (NC), bovine bone graft (BO), porous HA (HA) and porous HA with rhBMP-2 (HA-BMP). Four transosseous defects of 8 mm in diameter were prepared using stainless steel trephine bur in the frontal and parietal bones. Histological and histomorphometric analyses at 4 weeks after surgery revealed significant new bone formation by porous HA alone. Results HA-BMP showed significantly higher degree of bone formation compared with BO and HA group (Pceramics can promote new bone formation. PMID:28326298

  8. Increased osteoinductivity and mineralization by minimal concentration of bone morphogenetic protein-2 loaded onto biphasic calcium phosphate in a rabbit sinus

    Science.gov (United States)

    2016-01-01

    Purpose The purpose of the present study was to evaluate the effectiveness of a minimal concentration of bone morphogenetic protein-2 (BMP-2) in terms of quantitative and qualitative analyses of newly formed bone in a rabbit maxillary sinus model. Methods In 7 rabbits, sinus windows were prepared bilaterally. Biphasic calcium phosphate (BCP) loaded with 0.05 mg/mL BMP-2 was grafted into one sinus (the BMP group) and saline-soaked BCP was placed into the other (the control group) in each animal. The animals were allowed an 8-week healing period before being sacrificed. Specimens including the augmented area and surrounding tissues were then removed and evaluated both radiographically and histologically. Results There was a difference in the mineralization of new bone between the groups. In the BMP group, the greater part of the new bone consisted of mature lamellar bone with an evident trabecular pattern, whereas the control group showed mostly woven bone, consisting only partially of lamellar bone. Histometrically, the area of new bone was significantly greater (4.55±1.35 mm2 vs. 2.99±0.86 mm2) in the BMP group than in the control group (Pmineralization in a rabbit sinus model using a BCP carrier. PMID:27800217

  9. Hydrolysis of the amyloid prion protein and nonpathogenic meat and bone meal by anaerobic thermophilic prokaryotes and streptomyces subspecies.

    Science.gov (United States)

    Tsiroulnikov, Kirill; Rezai, Human; Bonch-Osmolovskaya, Elisaveta; Nedkov, Peter; Gousterova, Adriana; Cueff, Valérie; Godfroy, Anne; Barbier, Georges; Métro, François; Chobert, Jean-Marc; Clayette, Pascal; Dormont, Dominique; Grosclaude, Jeanne; Haertlé, Thomas

    2004-10-06

    Transmissible spongiform encephalopathies are caused by accumulation of highly resistant misfolded amyloid prion protein PrPres and can be initiated by penetration of such pathogen molecules from infected tissue to intact organism. Decontamination of animal meal containing amyloid prion protein is proposed thanks to the use of proteolytic enzymes secreted by thermophilic bacteria Thermoanaerobacter, Thermosipho, and Thermococcus subsp. and mesophilic soil bacteria Streptomyces subsp. Keratins alpha and beta, which resemble amyloid structures, were used as the substrates for the screening for microorganisms able to grow on keratins and producing efficient proteases specific for hydrolysis of beta-sheeted proteic structures, hence amyloids. Secretion of keratin-degrading proteases was evidenced by a zymogram method. Enzymes from thermophilic strains VC13, VC15, and S290 and Streptomyces subsp. S6 were strongly active against amyloid recombinant ovine prion protein and animal meal proteins. The studied proteases displayed broad primary specificities hydrolyzing low molecular mass peptide model substrates. Strong amyloidolytic activity of detected proteases was confirmed by experiments of hydrolysis of PrPres in SAFs produced from brain homogenates of mice infected with the 6PB1 BSE strain. The proteases from Thermoanaerobacter subsp. S290 and Streptomyces subsp. S6 are the best candidates for neutralization/elimination of amyloids in meat and bone meal and other protein-containing substances and materials.

  10. Synergistic actions of olomoucine and bone morphogenetic protein-4 in axonal repair after acute spinal cord contusion

    Institute of Scientific and Technical Information of China (English)

    Liang Chen; Jianjun Li; Liang Wu; Mingliang Yang; Feng Gao; Li Yuan

    2014-01-01

    To determine whether olomoucine acts synergistically with bone morphogenetic protein-4 in the treatment of spinal cord injury, we established a rat model of acute spinal cord contusion by impacting the spinal cord at the T8 vertebra. We injected a suspension of astrocytes derived from glial-restricted precursor cells exposed to bone morphogenetic protein-4 (GDAsBMP) into the spinal cord around the site of the injury, and/or olomoucine intraperitoneally. Olomoucine effectively inhibited astrocyte proliferation and the formation of scar tissue at the injury site, but did not prevent proliferation of GDAsBMP or inhibit their effects in reducing the spinal cord lesion cavity. Furthermore, while GDAsBMP and olomoucine independently resulted in small improve-ments in locomotor function in injured rats, combined administration of both treatments had a signiifcantly greater effect on the restoration of motor function. These data indicate that the combined use of olomoucine and GDAsBMP creates a better environment for nerve regeneration than the use of either treatment alone, and contributes to spinal cord repair after injury.

  11. Engineering of bone marrow cells with fas-ligand protein-enhances donor-specific tolerance to solid organs.

    Science.gov (United States)

    Askenasy, E M; Shushlav, Y; Sun, Z; Shirwan, H; Yolcu, E S; Askenasy, N

    2011-11-01

    Effective immunomodulation to induce tolerance to tissue/organ allografts is attained by infusion of donor lymphocytes endowed with killing capacity through ectopic expression of a short-lived Fas-ligand (FasL) protein. The same approach has proven effective in improving hematopoietic stem and progenitor cell engraftment. This study evaluates the possibility of substitution of immune cells for bone marrow cells (BMC) to induce FasL-mediated tolerance to solid organ grafts. Expression of FasL protein on BMC increased the survival of simultaneously grafted vascularized heterotopic cardiac grafts to 90%, as compared to 30% in recipients of naïve BMC. Similar results were obtained for skin allografts implanted into radiation chimeras at 1 week after bone marrow transplantation. Further reduction of preparative conditioning to busulfan resulted in acceptance of donor skin implanted at 2 weeks after transplantation of naïve and FasL-coated BMC, whereas third-party grafts were acutely rejected. The levels of donor chimerism were in the range of 0.7% to 12% at the time of skin grafting, with higher levels in recipients of FasL-coated BMC. It is concluded that FasL-mediated abrogation of alloimmune responses can be effectively attained with BMC. There is no threshold of donor chimerism, but tolerance to solid organs evolves during the process of donor-host mutual acceptance.

  12. Bone morphogenetic protein 2-induced human dental pulp cell differentiation involves p38 mitogen-activated protein kinase-activated canonical WNT pathway

    Institute of Scientific and Technical Information of China (English)

    Jing Yang; Ling Ye; Tian-Qian Hui; Dong-Mei Yang; Ding-Ming Huang; Xue-Dong Zhou; Jeremy J Mao; Cheng-Lin Wang

    2015-01-01

    Both bone morphogenetic protein 2 (BMP2) and the wingless-type MMTV integration site (WNT)/b-catenin signalling pathway play important roles in odontoblast differentiation and dentinogenesis. Cross-talk between BMP2 and WNT/b-catenin in osteoblast differentiation and bone formation has been identified. However, the roles and mechanisms of the canonical WNT pathway in the regulation of BMP2 in dental pulp injury and repair remain largely unknown. Here, we demonstrate that BMP2 promotes the differentiation of human dental pulp cells (HDPCs) by activating WNT/b-catenin signalling, which is further mediated by p38 mitogen-activated protein kinase (MAPK) in vitro. BMP2 stimulation upregulated the expression of b-catenin in HDPCs, which was abolished by SB203580 but not by Noggin or LDN193189. Furthermore, BMP2 enhanced cell differentiation, which was not fully inhibited by Noggin or LDN193189. Instead, SB203580 partially blocked BMP2-induced b-catenin expression and cell differentiation. Taken together, these data suggest a possible mechanism by which the elevation of b-catenin resulting from BMP2 stimulation is mediated by the p38 MAPK pathway, which sheds light on the molecular mechanisms of BMP2-mediated pulp reparative dentin formation.

  13. Differential effects of bone morphogenetic protein-2 and transforming growth factor-β1 on gene expression of collagen-modifying enzymes in human adipose tissue-derived mesenchymal stem cells

    NARCIS (Netherlands)

    Knippenberg, M.; Helder, M.N.; Doulabi, B.Z.; Bank, R.A.; Wuisman, P.I.J.M.; Klein-Nulend, J.

    2009-01-01

    Adipose tissue-derived mesenchymal stem cells (AT-MSCs) in combination with bone morphogenetic protein-2 (BMP-2) or transforming growth factor-β1 (TGF-β1) are under evaluation for bone tissue engineering. Posttranslational modification of type I collagen is essential for functional bone tissue with

  14. Validation of a Non-Targeted LC-MS Approach for Identifying Ancient Proteins: Method Development on Bone to Improve Artifact Residue Analysis

    Directory of Open Access Journals (Sweden)

    Andrew Barker

    2015-09-01

    Full Text Available Identification of protein residues from prehistoric cooking pottery using mass spectrometry is challenging because proteins are removed from original tissues, are degraded from cooking, may be poorly preserved due to diagenesis, and occur in a palimpsest of exogenous soil proteins. In contrast, bone proteins are abundant and well preserved. This research is part of a larger method-development project for innovation and improvement of liquid chromatography – mass spectrometry analysis of protein residues from cooking pottery; here we validate the potential of our extraction and characterization approach via application to ancient bone proteins. Because of its preservation potential for proteins and given that our approach is destructive, ancient bone identified via skeletal morphology represents an appropriate verification target. Proteins were identified from zooarchaeological turkey (Meleagris gallopavo Linnaeus Phasianidae, rabbit (Lagomorpha, and squirrel (Sciuridae remains excavated from ancient pueblo archaeological sites in southwestern Colorado using a non-targeted LC-MS/MS approach. The data have been deposited to the ProteomeXchange Consortium with the dataset identifier PXD002440. Improvement of highly sensitive targeted LC-MS/MS approaches is an avenue for future method development related to the study of protein residues from artifacts such as stone tools and pottery.

  15. Recombinant human bone morphogenetic protein-2 promotes the proliferation of mesenchymal stem cells in vivo and in vitro

    Institute of Scientific and Technical Information of China (English)

    LIU Shui-bing; HU Pei-zhen; HOU Ying; LI Peng; CAO Wei; TIAN Qiong

    2009-01-01

    Background Bone morphogenetic protein (BMP) is a member of the superfamily of transforming growth factor-β.Recent studies show that it is an indispensable factor in hematopoiesis.To better characterize the effect of recombinant human BMP (rhBMP)-2 in hematopoiesis,we set out to determine whether rhBMP-2 could promote the proliferation of mesenchymal stem cells (MSCs) and increase the levels of hematopoietic cytokines in MSCs.Methods 2,3-bis (2-methoxy-4-nitro-5-sulfophenyl)-5-((phenylamino) carbonyl)-2H-tetrazolium hydroxide (XTT),real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA) were used to deteMP-2 on the proliferation and hematopoietic cytokine levels of MSCs.In addition,MSCs marked with Hoechst33342 were transplanted into BALB/c mice by the intravenous route or intra-bone marrow transplantation,and cluster numbers were counted.Results The XTT test revealed that rhBMP-2 significantly induced proliferation of MSCs in doses ranging from 10 ng/ml to 0.1 mg/ml in a dose-dependent manner.The experiments in vivo showed that there were more clusters of donor cells in bone marrow,spleen,liver and lung of the BMP group than those in the control group after both intra-bone marrow transplantation (P<0.001,P <0.001,P <0.001,and P=0.001,respectively) and intravenous transplantation (P <0.001,P <0.001,and P <0.001 respectively).The results of real-time PCR and ELISA revealed that rhBMP-2 significantly increased mRNA expressions and protein levels of IL-6,IL-7,IL-11,G-CSF,M-CSF and SCF.Conclusions The treatment with rhBMP-2 promotes the proliferation of MSCs in vivo and in vitro and increases the levels of hematopoietic cytokines in MSCs,which may contribute to the improvement of hematopoietic function.

  16. Expression analysis of bone morphogenetic protein 4 between fat and lean birds in adipose tissue and serum.

    Science.gov (United States)

    Cheng, B H; Leng, L; Wu, M Q; Zhang, Q; Zhang, X Y; Xu, S S; Cao, Z P; Li, Y M; Luan, P; Li, H

    2016-07-01

    The objectives of the present study were to characterize the tissue expression of chicken (Gallus gallus) bone morphogenetic protein 4 (BMP4) and compare differences in its expression in abdominal fat tissue and serum between fat and lean birds and to determine a potential relationship between the expression of BMP4 and abdominal fat tissue growth and development. The results showed that chicken BMP4 messenger RNA (mRNA) and protein were expressed in various tissues, and the expression levels of BMP4 transcript and protein were relatively higher in adipose tissues. In addition, the mRNA and protein expression levels of BMP4 in abdominal fat tissue of fat males were lower than those of lean males at 1, 2, 5, and 7 wk of age (P fat males was lower than that of lean males at 7 wk of age (P fat deposition through differences in its expression level. The results of this study will provide basic molecular information for studying the role of BMP4 in the regulation of adipogenesis in avian species.

  17. Structure of neuroblastoma suppressor of tumorigenicity 1 (NBL1): insights for the functional variability across bone morphogenetic protein (BMP) antagonists.

    Science.gov (United States)

    Nolan, Kristof; Kattamuri, Chandramohan; Luedeke, David M; Angerman, Elizabeth B; Rankin, Scott A; Stevens, Mariana L; Zorn, Aaron M; Thompson, Thomas B

    2015-02-20

    Bone morphogenetic proteins (BMPs) are antagonized through the action of numerous extracellular protein antagonists, including members from the differential screening-selected gene aberrative in neuroblastoma (DAN) family. In vivo, misregulation of the balance between BMP signaling and DAN inhibition can lead to numerous disease states, including cancer, kidney nephropathy, and pulmonary arterial hypertension. Despite this importance, very little information is available describing how DAN family proteins effectively inhibit BMP ligands. Furthermore, our understanding for how differences in individual DAN family members arise, including affinity and specificity, remains underdeveloped. Here, we present the structure of the founding member of the DAN family, neuroblastoma suppressor of tumorigenicity 1 (NBL1). Comparing NBL1 to the structure of protein related to Dan and Cerberus (PRDC), a more potent BMP antagonist within the DAN family, a number of differences were identified. Through a mutagenesis-based approach, we were able to correlate the BMP binding epitope in NBL1 with that in PRDC, where introduction of specific PRDC amino acids in NBL1 (A58F and S67Y) correlated with a gain-of-function inhibition toward BMP2 and BMP7, but not GDF5. Although NBL1(S67Y) was able to antagonize BMP7 as effectively as PRDC, NBL1(S67Y) was still 32-fold weaker than PRDC against BMP2. Taken together, this data suggests that alterations in the BMP binding epitope can partially account for differences in the potency of BMP inhibition within the DAN family.

  18. The interplay of matrix metalloproteinases, morphogens and growth factors is necessary for branching of mammary epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Simian, M.; Harail, Y.; Navre, M.; Werb, Z.; Lochter, A.; Bissell, M.J.

    2002-03-06

    The mammary gland develops its adult form by a process referred to as branching morphogenesis. Many factors have been reported to affect this process. We have used cultured primary mammary epithelial organoids and mammary epithelial cell lines in three-dimensional collagen gels to elucidate which growth factors, matrix metalloproteinases (MMPs) and mammary morphogens interact in branching morphogenesis. Branching stimulated by stromal fibroblasts, epidermal growth factor, fibroblast growth factor 7, fibroblast growth factor 2 and hepatocyte growth factor was strongly reduced by inhibitors of MMPs, indicating the requirement of MMPs for three-dimensional growth involved in morphogenesis. Recombinant stromelysin 1/MMP-3 alone was sufficient to drive branching in the absence of growth factors in the organoids. Plasmin also stimulated branching; however, plasmin-dependent branching was abolished by both inhibitors of plasmin and MMPs, suggesting that plasmin activates MMPs. To differentiate between signals for proliferation and morphogenesis, we used a cloned mammary epithelial cell line that lacks epimorphin, an essential mammary morphogen. Both epimorphin and MMPs were required for morphogenesis, but neither was required for epithelial cell proliferation. These results provide direct evidence for a critical role of MMPs in branching in mammary epithelium and suggest that, in addition to epimorphin, MMP activity is a minimum requirement for branching morphogenesis in the mammary gland.

  19. Effects of LED phototherapy on bone defects grafted with MTA, bone morphogenetic proteins, and guided bone regeneration in a rodent model: a description of the bone repair by light microscopy

    Science.gov (United States)

    Pinheiro, Antonio Luiz B.; Aciole, Gilberth T. S.; Soares, Luiz G. P.; Correia, Neandder A.; N. dos Santos, Jean

    2011-03-01

    We carried out a histological analysis on surgical bone defects grafted or not with MTA, treated or not with LED, BMPs and GBR. We have used several models to assess the effects of laser on bone. Benefits of the isolated or combined use them on bone healing has been suggested. There is no previous report on their association with LED light. 90 rats were divided into 10 groups. On Groups II and I the defect were filled with the clot. On Group II, were further irradiated. On groups III-VI, defect was filled with MTA + Collagen gel (III); animals of group IV were further irradiated. On groups V and VI, the defects filled with the MTA were covered with a membrane. Animals of Group VI were further irradiated. On Groups VII and VIII a pool of BMPs was added to the MTA and was further irradiated. On groups IX and X, the MTA + BMP graft was covered with a membrane. On group X, the defect was further irradiated. LED (λ850 +/- 10nm, 150mW, A= 0.5cm2, 54s, 0.3W/cm2, 16 J/cm2) was applied at 48 h intervals during 15 days. Specimens were taken, processed, cut and stained with H&E and Sirius red and underwent histological analysis. The results showed that MTA seemed not being affected by LED light. However, its use positively affected healing around the graft. It is concluded that MTA is not affected by the LED light due to it characteristics, but beneficial results with LED usage was found.

  20. The Hedgehog signalling pathway in bone formation

    Institute of Scientific and Technical Information of China (English)

    Jing Yang; Philipp Andre; Ling Ye; Ying-Zi Yang

    2015-01-01

    The Hedgehog (Hh) signalling pathway plays many important roles in development, homeostasis and tumorigenesis. The critical function of Hh signalling in bone formation has been identified in the past two decades. Here, we review the evolutionarily conserved Hh signalling mechanisms with an emphasis on the functions of the Hh signalling pathway in bone development, homeostasis and diseases. In the early stages of embryonic limb development, Sonic Hedgehog (Shh) acts as a major morphogen in patterning the limb buds. Indian Hedgehog (Ihh) has an essential function in endochondral ossification and induces osteoblast differentiation in the perichondrium. Hh signalling is also involved intramembrane ossification. Interactions between Hh and Wnt signalling regulate cartilage development, endochondral bone formation and synovial joint formation. Hh also plays an important role in bone homeostasis, and reducing Hh signalling protects against age-related bone loss. Disruption of Hh signalling regulation leads to multiple bone diseases, such as progressive osseous heteroplasia. Therefore, understanding the signalling mechanisms and functions of Hh signalling in bone development, homeostasis and diseases will provide important insights into bone disease prevention, diagnoses and therapeutics.

  1. Mitogen activated protein kinase signaling pathways participate in the active principle region of Buyang Huanwu decoction-induced differentiation of bone marrow mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Jinghui Zheng; Jian Liang; Xin Deng; Xiaofeng Chen; Fasheng Wu; Xiaofang Zhao; Yuan Luo; Lei Fu; Zuling Jiang

    2012-01-01

    Our preliminary studies confirmed that an active principle region of Buyang Huanwu decoction, comprising alkaloid, polysaccharide, aglycon, glucoside and volatile oil, can induce bone marrow mesenchymal stem cell differentiation into neurons. Mitogen-activated protein kinase signaling was identified as one of the key pathways underlying this differentiation process. The present study shows phosphorylated extracellular signal-regulated protein kinase and phosphorylated p38 protein expression was increased after differentiation. Cellular signaling pathway blocking agents, PD98059 and SB203580, inhibited extracellular signal-regulated protein kinase and p38 in mitogen-activated protein kinase signaling pathways respectively. mRNA and protein expression of the neuronal marker, neuron specific enolase, and neural stem cell marker, nestin, were decreased in bone marrow mesenchymal stem cells after treatment with the active principle region of Buyang Huanwu decoction. Experimental findings indicate that, extracellular signal-regulated protein kinase and p38 in mitogen-activated protein kinase signaling pathways participate in bone marrow mesenchymal stem cell differentiation into neuron-like cells, induced by the active principle region of Buyang Huanwu decoction.

  2. Bone morphogenetic protein-1 and its related metalloproteinase%骨形态发生蛋白-1及其相关金属蛋白酶

    Institute of Scientific and Technical Information of China (English)

    陈冬瑛; 朱全胜; 丘钜世

    2004-01-01

    Bone morphogenetic protein-1(BMP-1) and its related molecules are members of metalloendoproteinase astacin family, including BMP-1, mTLD, mTLL-1 and mTLL-2. Even though all of them lack of the ability to induce bone or cartilage formation directly, they play key roles in numerable activities in ECM from embryo to adult, then affect the procedure and the result of osteogenesis and bone remodeling directly or indirectly. They are critical in maturation and deposition of some major collagen types, and in regulating the signaling of some growth factors in TGF-β superfamily by degradation of TGF-β inhibitor such as Chordin. The investigations about tissue distribution of BMP-1 and its related proteinases and also gene knock-out studies strongly indicate that they play key roles in osteogenesis and bone development.

  3. The bone morphogenetic protein antagonist gremlin 1 is overexpressed in human cancers and interacts with YWHAH protein

    Directory of Open Access Journals (Sweden)

    Hur Soo

    2006-03-01

    Full Text Available Abstract Background Basic studies of oncogenesis have demonstrated that either the elevated production of particular oncogene proteins or the occurrence of qualitative abnormalities in oncogenes can contribute to neoplastic cellular transformation. The purpose of our study was to identify an unique gene that shows cancer-associated expression, and characterizes its function related to human carcinogenesis. Methods We used the differential display (DD RT-PCR method using normal cervical, cervical cancer, metastatic cervical tissues, and cervical cancer cell lines to identify genes overexpressed in cervical cancers and identified gremlin 1 which was overexpressed in cervical cancers. We determined expression levels of gremlin 1 using Northern blot analysis and immunohistochemical study in various types of human normal and cancer tissues. To understand the tumorigenesis pathway of identified gremlin 1 protein, we performed a yeast two-hybrid screen, GST pull down assay, and immunoprecipitation to identify gremlin 1 interacting proteins. Results DDRT-PCR analysis revealed that gremlin 1 was overexpressed in uterine cervical cancer. We also identified a human gremlin 1 that was overexpressed in various human tumors including carcinomas of the lung, ovary, kidney, breast, colon, pancreas, and sarcoma. PIG-2-transfected HEK 293 cells exhibited growth stimulation and increased telomerase activity. Gremlin 1 interacted with homo sapiens tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, eta polypeptide (14-3-3 eta; YWHAH. YWHAH protein binding site for gremlin 1 was located between residues 61–80 and gremlin 1 binding site for YWHAH was found to be located between residues 1 to 67. Conclusion Gremlin 1 may play an oncogenic role especially in carcinomas of the uterine cervix, lung, ovary, kidney, breast, colon, pancreas, and sarcoma. Over-expressed gremlin 1 functions by interaction with YWHAH. Therefore, Gremlin 1 and its binding

  4. Bone formation induced by strontium modified calcium phosphate cement in critical-size metaphyseal fracture defects in ovariectomized rats.

    Science.gov (United States)

    Thormann, Ulrich; Ray, Seemun; Sommer, Ursula; Elkhassawna, Thaqif; Rehling, Tanja; Hundgeburth, Marvin; Henß, Anja; Rohnke, Marcus; Janek, Jürgen; Lips, Katrin S; Heiss, Christian; Schlewitz, Gudrun; Szalay, Gabor; Schumacher, Matthias; Gelinsky, Michael; Schnettler, Reinhard; Alt, Volker

    2013-11-01

    The first objective was to investigate new bone formation in a critical-size metaphyseal defect in the femur of ovariectomized rats filled with a strontium modified calcium phosphate cement (SrCPC) compared to calcium phosphate cement (CPC) and empty defects. Second, detection of strontium release from the materials as well as calcium and collagen mass distribution in the fracture defect should be targeted by time of flight secondary ion mass spectrometry (TOF-SIMS). 45 female Sprague-Dawley rats were randomly assigned to three different treatment groups: (1) SrCPC (n = 15), (2) CPC (n = 15), and (3) empty defect (n = 15). Bilateral ovariectomy was performed and three months after multi-deficient diet, the left femur of all animals underwent a 4 mm wedge-shaped metaphyseal osteotomy that was internally fixed with a T-shaped plate. The defect was then either filled with SrCPC or CPC or was left empty. After 6 weeks, histomorphometric analysis showed a statistically significant increase in bone formation of SrCPC compared to CPC (p = 0.005) and the empty defect (p = 0.002) in the former fracture defect zone. Furthermore, there was a statistically significant higher bone formation at the tissue-implant interface in the SrCPC group compared to the CPC group (p < 0.0001). These data were confirmed by immunohistochemistry revealing an increase in bone-morphogenic protein 2, osteocalcin and osteoprotegerin expression and a statistically significant higher gene expression of alkaline phosphatase, collagen10a1 and osteocalcin in the SrCPC group compared to CPC. TOF-SIMS analysis showed a high release of Sr from the SrCPC into the interface region in this area compared to CPC suggesting that improved bone formation is attributable to the released Sr from the SrCPC.

  5. Co-stimulation with bone morphogenetic protein-9 and FK506 induces remarkable osteoblastic differentiation in rat dedifferentiated fat cells.

    Science.gov (United States)

    Nakamura, Toshiaki; Shinohara, Yukiya; Momozaki, Sawako; Yoshimoto, Takehiko; Noguchi, Kazuyuki

    2013-10-18

    Dedifferentiated fat (DFAT) cells, which are isolated from mature adipocytes using the ceiling culture method, exhibit similar characteristics to mesenchymal stem cells, and possess adipogenic, osteogenic, chondrogenic, and myogenic potentials. Bone morphogenetic protein (BMP)-2 and -9, members of the transforming growth factor-β superfamily, exhibit the most potent osteogenic activity of this growth factor family. However, the effects of BMP-2 and BMP-9 on the osteogenic differentiation of DFAT remain unknown. Here, we examined the effects of BMP-2 and BMP-9 on osteoblastic differentiation of rat DFAT (rDFAT) cells in the presence or absence of FK506, an immunosuppressive agent. Co-stimulation with BMP-9 and FK506 induced gene expression of runx2, osterix, and bone sialoprotein, and ALP activity compared with BMP-9 alone, BMP-2 alone and BMP-2+FK506 in rDFAT cells. Furthermore, it caused mineralization of cultures and phosphorylation of smad1/5/8, compared with BMP-9 alone. The ALP activity induced by BMP-9+FK506 was not influenced by addition of noggin, a BMP antagonist. Our data suggest that the combination of BMP-9 and FK506 potently induces osteoblastic differentiation of rDFAT cells.

  6. Implanting hydroxyapatite-coated porous titanium with bone morphogenetic protein-2 and hyaluronic acid into distal femoral metaphysis of rabbits

    Institute of Scientific and Technical Information of China (English)

    PENG Lei; BIAN Wei-guo; LIANG Fang-hui; XU Hua-zi

    2008-01-01

    Objective: To assess the osseointegration capability of hydroxyapatite-coated porous titanium with bone morphogenetic protein-2 (BMP-2) and hyaluronic acid to repair defects in the distal femur metaphysis in rabbits. Methods: Porous titanium implants were made by sintering titanium powder at high temperature, which were coated with hydroxyapatite by alkali and heat treatment and with BMP-2 combined with bone regeneration materials. And hyaluronic acid was further used as delivery system to prolong the effect of BMP-2. The implants were inserted into the metaphysis of the distal femur of rabbits. The animals were killed at 6, 12 and 24 weeks to accomplish histological and biomechanical analyses. Results: According to the result of histological analysis, the osseointegration in BMP-2 group was better than that of the HA-coated porous titanium group. In push-out test, all the samples had bigger shear stress as time passed by. There was statistical difference between the two groups in 6 and 12 weeks but not in 24 weeks. Conclusion: Hydroxyapatite-coated porous titanium with BMP-2 and hyaluronic acid has a good effect in repairing defects of distal fumur in rabbits, which is a fine biotechnology for future clinical application.

  7. Osteomimicry of mammary adenocarcinoma cells in vitro; increased expression of bone matrix proteins and proliferation within a 3D collagen environment.

    Directory of Open Access Journals (Sweden)

    Rachel F Cox

    Full Text Available Bone is the most common site of metastasis for breast cancer, however the reasons for this remain unclear. We hypothesise that under certain conditions mammary cells possess osteomimetic capabilities that may allow them to adapt to, and flourish within, the bone microenvironment. Mammary cells are known to calcify within breast tissue and we have recently reported a novel in vitro model of mammary mineralization using murine mammary adenocarcinoma 4T1 cells. In this study, the osteomimetic properties of the mammary adenocarcinoma cell line and the conditions required to induce mineralization were characterized extensively. It was found that exogenous organic phosphate and inorganic phosphate induce mineralization in a dose dependent manner in 4T1 cells. Ascorbic acid and dexamethasone alone have no effect. 4T1 cells also show enhanced mineralization in response to bone morphogenetic protein 2 in the presence of phosphate supplemented media. The expression of several bone matrix proteins were monitored throughout the process of mineralization and increased expression of collagen type 1 and bone sialoprotein were detected, as determined by real-time RT-PCR. In addition, we have shown for the first time that 3D collagen glycosaminoglycan scaffolds, bioengineered to represent the bone microenvironment, are capable of supporting the growth and mineralization of 4T1 adenocarcinoma cells. These 3D scaffolds represent a novel model system for the study of mammary mineralization and bone metastasis. This work demonstrates that mammary cells are capable of osteomimicry, which may ultimately contribute to their ability to preferentially metastasize to, survive within and colonize the bone microenvironment.

  8. Ultra-low-dose recombinant human bone morphogenetic protein-2 for 3-level anterior cervical diskectomy and fusion.

    Science.gov (United States)

    Pourtaheri, Sina; Hwang, Ki; Faloon, Michael; Issa, Kimona; Mease, Samuel J; Mangels, Daniel; Sinha, Kumar; Emami, Arash

    2015-04-01

    This study evaluated the safety of 3-level anterior cervical diskectomy and fusion (ACDF) with ultra-low-dose recombinant bone morphogenetic protein-2 (rhBMP-2). Thirty-seven consecutive patients with cervical spondylotic myelopathy who were treated with 3-level ACDF and rhBMP-2 were evaluated. Complications such as airway or cervical swelling or hematoma were not observed. The rate of dysphagia was no different at 1, 2, and 6 months postoperatively compared with reports in the literature without rhBMP-2. There were significant improvements in VAS neck/arm pain, Oswestry Neck Disability Index, and cervical lordosis. The use of ultra-low-dose rhBMP-2 for 3-level ACDF may be efficacious for surgically addressing 3-level spondylotic myelopathy.

  9. Cell multiplication, apoptosis and p-Akt protein expression of bone mesenchymal stem cells of rat under hypoxia environment

    Institute of Scientific and Technical Information of China (English)

    Hongliang Kong; Ningning Liu; Xin Huo; Bo Wang; Haipeng Zhang; Mingyu Gao; Guoxian Qi

    2007-01-01

    Objective :To elucidate whether cell multiplication, apoptosis, glucose intake and p-Akt protein expression of bone Mesenchymal Stem Cells(MSCs) of rats is influenced by a hypoxic environment ex vivo. Methods:Passage 3 of bone marrow MSCs taken from Wistar rats, were cultured in a culturing chamber with 94%N2,1%O2, 5%CO2 at 37℃. At different hypoxia time points, 0,0.5,1,4 and 8 h, glucose uptake was assayed by using radiation isotope 3H-G, Apoptotic Rate(AR) and dead rate(DR) were analyzed by flow cytometry(FCM) after Annexin V/PI staining, cell multiplication(by MTT methods) and p-Akt protein by immunocytochemistry and western blot. Results:Assay for CD29+,CD44+,CD71+,CD34-, Tn T+(after 5-azacytidine agent inducing) and ALP+(after bone differentiation agent inducing) suggested these bone-derived cells were MSCs. The 3H-G intaking ratio (CPM/flask value:157 ± 11,110 ± 11,107 ± 13,103 ± 10,100 ± 9 and 98 ± 10) of MSCs at different hypoxia time points, significantly decreased compared to that of normoxia(P < 0.01) and tended to descend slowly with hypoxia time duration, for which there was no statistical significance(P > 0.05). The AR(0.09 ± 2.03%,12.9 ± 1.72%,13.7 ± 2.26%,13.8 ± 3.01% ,14.1 ± 2.78% and 14.7 ±4.01% at 0,0.5,1,4 and 8 h,respectively,P < 0.01) and DR (0.04 ± 1.79% ,0.93 ± 1.85% ,3.11 ± 2.14%,4.09 ± 2.36% ,4.72 ±2.05% and 4.91 ± 3.72% at 0,0.5,1,4 and 8 h, respectively, P < 0.05) at different hypoxia time points significantly increased compared to those time in normoxia; The AR further went up with time (P < 0.05), however there was no statistical significance(P > 0.05) for the DR. Optical absorption value of MTT methods at different hypoxia time points significantly decreased compared to those with a corresponding normoxia time (P < 0.01 ) and degraded with time (in an hypoxic environment -P < 0.01 ).IOD of p-Akt protein of MSCs at different hypoxia time points significantly increased (0.367 ± 0.031,0.556 ± 0

  10. Human bone morphogenetic protein-2 gene transfer induces human mesenchymal stem cell proliferation and differentiation in vitro

    Institute of Scientific and Technical Information of China (English)

    李军; 范清宇; 钱济先; 马保安; 周勇; 张明华

    2004-01-01

    Objective: To identify eukaryotic expression vector of human bone morphogenetic protein 2 pcDNA3/BMP2, verify its expression in transfected human mesenchymal stem cells (hMSCs) and the effect on hMSCs differentiation.Methods: The BMP2 gene was cloned into a eukaryotic expression vector pcDNA3. Transfected the recombinant into hMSCs by liposome. Immunnohistochemistry and in situ hybridization methods were used to identify the expression of BMP2 mRNA and protein; ALP and Von Kossa stains were performed to identify the BMP2 gene differentiated effect on the hMSCs. Results: The pcDNA3/BMP2 fragments were as large as theory. BMP2 mRNA and protein were expressed and synthesized both in 48 h and 4 weeks after transfection, the ALP and Ca deposit exhibition, which marked the osteogenic lineage of hMSCs,were enhanced and sped. Conclusion: Transfection of pcDNA3/BMP2 is able to provide transient and persistent expression in hMSCs, and promote the MSCs differentiation to osteogenic lineage.

  11. Bone marrow-infiltrating human neuroblastoma cells express high levels of calprotectin and HLA-G proteins.

    Directory of Open Access Journals (Sweden)

    Fabio Morandi

    Full Text Available Metastases in the bone marrow (BM are grim prognostic factors in patients with neuroblastoma (NB. In spite of extensive analysis of primary tumor cells from high- and low-risk NB patients, a characterization of freshly isolated BM-infiltrating metastatic NB cells is still lacking. Our aim was to identify proteins specifically expressed by metastatic NB cells, that may be relevant for prognostic and therapeutic purposes. Sixty-six Italian children over 18 months of age, diagnosed with stage 4 NB, were included in the study. Metastatic NB cells were freshly isolated from patients' BM by positive immunomagnetic bead manipulation using anti-GD2 monoclonal antibody. Gene expression profiles were compared with those obtained from archived NB primary tumors from patients with 5 y-follow-up. After validation by RT-qPCR, expression/secretion of the proteins encoded by the up-regulated genes in the BM-infiltrating NB cells was evaluated by flow cytometry and ELISA. Compared to primary tumor cells, BM-infiltrating NB cells down-modulated the expression of CX3CL1, AGT, ATP1A2 mRNAs, whereas they up-regulated several genes commonly expressed by various lineages of BM resident cells. BM-infiltrating NB cells expressed indeed the proteins encoded by the top-ranked genes, S100A8 and A9 (calprotectin, CD177 and CD3, and secreted the CXCL7 chemokine. BM-infiltrating NB cells also expressed CD271 and HLA-G. We have identified proteins specifically expressed by BM-infiltrating NB cells. Among them, calprotectin, a potent inflammatory protein, and HLA-G, endowed with tolerogenic properties facilitating tumor escape from host immune response, may represent novel biomarkers and/or targets for therapeutic intervention in high-risk NB patients.

  12. Identification of Proteins and Peptide Biomarkers for Detecting Banned Processed Animal Proteins (PAPs) in Meat and Bone Meal by Mass Spectrometry.

    Science.gov (United States)

    Marbaix, Hélène; Budinger, Dimitri; Dieu, Marc; Fumière, Olivier; Gillard, Nathalie; Delahaut, Philippe; Mauro, Sergio; Raes, Martine

    2016-03-23

    The outbreak of bovine spongiform encephalopathy (BSE) in the United Kingdom in 1986, with processed animal proteins (PAPs) as the main vector of the disease, has led to their prohibition in feed. The progressive release of the feed ban required the development of new analytical methods to determine the exact origin of PAPs from meat and bone meal. We set up a promising MS-based method to determine the species and the source (legal or not) present in PAPs: a TCA-acetone protein extraction followed by a cleanup step, an in-solution tryptic digestion of 5 h (with a 1:20 protein/trypsin ratio), and mass spectrometry analyses, first without any a priori, with a Q-TOF, followed by a targeted triple-quadrupole analysis. Using this procedure, we were able to overcome some of the major limitations of the official methods to analyze PAPs, detecting and identifying prohibited animal products in feedstuffs by the monitoring of peptides specific for cows, pigs, and sheep in PAPs.

  13. Wnt5a signaling is a substantial constituent in bone morphogenetic protein-2-mediated osteoblastogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Nemoto, Eiji, E-mail: e-nemoto@dent.tohoku.ac.jp [Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Ebe, Yukari; Kanaya, Sousuke [Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Tsuchiya, Masahiro [Department of Aging and Geriatric Dentistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Nakamura, Takashi [Department of Pediatric Dentistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Tamura, Masato [Department of Biochemistry and Molecular Biology, Hokkaido University Graduate School of Dentistry, Sapporo 060-8586 (Japan); Shimauchi, Hidetoshi [Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Wnt5a is identified in osteoblasts in tibial growth plate and bone marrow. Black-Right-Pointing-Pointer Osteoblastic differentiation is associated with increased expression of Wnt5a/Ror2. Black-Right-Pointing-Pointer Wnt5a/Ror2 signaling is important for BMP-2-mediated osteoblastic differentiation. Black-Right-Pointing-Pointer Wnt5a/Ror2 operates independently of BMP-Smad pathway. -- Abstract: Wnts are secreted glycoproteins that mediate developmental and post-developmental physiology by regulating cellular processes including proliferation, differentiation, and apoptosis through {beta}-catenin-dependent canonical and {beta}-catenin-independent noncanonical pathway. It has been reported that Wnt5a activates noncanonical Wnt signaling through receptor tyrosine kinase-like orphan receptor 2 (Ror2). Although it appears that Wnt5a/Ror2 signaling supports normal bone physiology, the biological significance of noncanonical Wnts in osteogenesis is essentially unknown. In this study, we identified expression of Wnt5a in osteoblasts in the ossification zone of the tibial growth plate as well as bone marrow of the rat tibia as assessed by immunohistochemistry. In addition, we show that osteoblastic differentiation mediated by BMP-2 is associated with increased expression of Wnt5a and Ror2 using cultured pre-osteoblasts, MC3T3-E1 cells. Silencing gene expression of Wnt5a and Ror2 in MC3T3-E1 cells results in suppression of BMP-2-mediated osteoblastic differentiation, suggesting that Wnt5a and Ror2 signaling are of substantial importance for BMP-2-mediated osteoblastic differentiation. BMP-2 stimulation induced phosphorylation of Smad1/5/8 in a similar fashion in both siWnt5a-treated cells and control cells, suggesting that Wnt5a was dispensable for the phosphorylation of Smads by BMP-2. Taken together, our results suggest that Wnt5a/Ror2 signaling appears to be involved in BMP-2-mediated osteoblast differentiation in a Smad independent

  14. Cold water cleaning of brain proteins, biofilm and bone - harnessing an ultrasonically activated stream.

    Science.gov (United States)

    Birkin, P R; Offin, D G; Vian, C J B; Howlin, R P; Dawson, J I; Secker, T J; Hervé, R C; Stoodley, P; Oreffo, R O C; Keevil, C W; Leighton, T G

    2015-08-28

    In the absence of sufficient cleaning of medical instruments, contamination and infection can result in serious consequences for the health sector and remains a significant unmet challenge. In this paper we describe a novel cleaning system reliant on cavitation action created in a free flowing fluid stream where ultrasonic transmission to a surface, through the stream, is achieved using careful design and control of the device architecture, sound field and the materials employed. Cleaning was achieved with purified water at room temperature, moderate fluid flow rates and without the need for chemical additives or the high power consumption associated with conventional strategies. This study illustrates the potential in harnessing an ultrasonically activated stream to remove biological contamination including brain tissue from surgical stainless steel substrates, S. epidermidis biofilms from glass, and fat/soft tissue matter from bone structures with considerable basic and clinical applications.

  15. Collagen osteoid-like model allows kinetic gene expression studies of non-collagenous proteins in relation with mineral development to understand bone biomineralization.

    Science.gov (United States)

    Silvent, Jérémie; Nassif, Nadine; Helary, Christophe; Azaïs, Thierry; Sire, Jean-Yves; Guille, Marie Madeleine Giraud

    2013-01-01

    Among persisting questions on bone calcification, a major one is the link between protein expression and mineral deposition. A cell culture system is here proposed opening new integrative studies on biomineralization, improving our knowledge on the role played by non-collagenous proteins in bone. This experimental in vitro model consisted in human primary osteoblasts cultured for 60 days at the surface of a 3D collagen scaffold mimicking an osteoid matrix. Various techniques were used to analyze the results at the cellular and molecular level (adhesion and viability tests, histology and electron microscopy, RT- and qPCR) and to characterize the mineral phase (histological staining, EDX, ATG, SAED and RMN). On long term cultures human bone cells seeded on the osteoid-like matrix displayed a clear osteoblast phenotype as revealed by the osteoblast-like morphology, expression of specific protein such as alkaline phosphatase and expression of eight genes classically considered as osteoblast markers, including BGLAP, COL1A1, and BMP2. Von Kossa and alizarine red allowed us to identify divalent calcium ions at the surface of the matrix, EDX revealed the correct Ca/P ratio, and SAED showed the apatite crystal diffraction pattern. In addition RMN led to the conclusion that contaminant phases were absent and that the hydration state of the mineral was similar to fresh bone. A temporal correlation was established between quantified gene expression of DMP1 and IBSP, and the presence of hydroxyapatite, confirming the contribution of these proteins to the mineralization process. In parallel a difference was observed in the expression pattern of SPP1 and BGLAP, which questioned their attributed role in the literature. The present model opens new experimental possibilities to study spatio-temporal relations between bone cells, dense collagen scaffolds, NCPs and hydroxyapatite mineral deposition. It also emphasizes the importance of high collagen density environment in bone cell

  16. Wnt5a signaling is a substantial constituent in bone morphogenetic protein-2-mediated osteoblastogenesis.

    Science.gov (United States)

    Nemoto, Eiji; Ebe, Yukari; Kanaya, Sousuke; Tsuchiya, Masahiro; Nakamura, Takashi; Tamura, Masato; Shimauchi, Hidetoshi

    2012-06-15

    Wnts are secreted glycoproteins that mediate developmental and post-developmental physiology by regulating cellular processes including proliferation, differentiation, and apoptosis through β-catenin-dependent canonical and β-catenin-independent noncanonical pathway. It has been reported that Wnt5a activates noncanonical Wnt signaling through receptor tyrosine kinase-like orphan receptor 2 (Ror2). Although it appears that Wnt5a/Ror2 signaling supports normal bone physiology, the biological significance of noncanonical Wnts in osteogenesis is essentially unknown. In this study, we identified expression of Wnt5a in osteoblasts in the ossification zone of the tibial growth plate as well as bone marrow of the rat tibia as assessed by immunohistochemistry. In addition, we show that osteoblastic differentiation mediated by BMP-2 is associated with increased expression of Wnt5a and Ror2 using cultured pre-osteoblasts, MC3T3-E1 cells. Silencing gene expression of Wnt5a and Ror2 in MC3T3-E1 cells results in suppression of BMP-2-mediated osteoblastic differentiation, suggesting that Wnt5a and Ror2 signaling are of substantial importance for BMP-2-mediated osteoblastic differentiation. BMP-2 stimulation induced phosphorylation of Smad1/5/8 in a similar fashion in both siWnt5a-treated cells and control cells, suggesting that Wnt5a was dispensable for the phosphorylation of Smads by BMP-2. Taken together, our results suggest that Wnt5a/Ror2 signaling appears to be involved in BMP-2-mediated osteoblast differentiation in a Smad independent pathway.

  17. Prolonged propagation of rat neural stem cells relies on inhibiting autocrine/paracrine bone morphogenetic protein and platelet derived growth factor signals

    Institute of Scientific and Technical Information of China (English)

    Yirui Sun; Liangfu Zhou; Xing Wu; Hua Liu; Qiang Yuan; Ying Mao; Jin Hu

    2011-01-01

    Continuous expansion of rat neural stem cell lines has not been achieved due to proliferation arrest and spontaneous differentiation in vitro. In the current study, neural precursor cells derived from the subventricular zone of adult rats spontaneously underwent astroglial and oligodendroglial differentiation after limited propagation. This differentiation was largely induced by autocrine or paracrine bone morphogenetic protein and platelet derived growth factor signals. The results showed that, by inhibiting bone morphogenetic protein and platelet derived growth factor signals, adult rat neural precursor cells could be extensively cultured in vitro as tripotent stem cell lines. In addition to adult rat neural stem cells, we found that bone morphogenetic protein antagonists can promote the proliferation of human neural stem cells. Therefore, the present findings illustrated the role of autocrine or paracrine bone morphogenetic protein and platelet derived growth factor signaling in determining neural stem cell self-renewal and differentiation. By antagonizing both signals, the long-term propagation of rat neural stem cell lines can be achieved.

  18. Protein-containing nutrient supplementation following strength training enhances the effect on muscle mass, strength, and bone formation in postmenopausal women

    DEFF Research Database (Denmark)

    Holm, Lars; Olesen, J.L.; Matsumoto, K.

    2008-01-01

    We evaluated the response of various muscle and bone adaptation parameters with 24 wk of strength training in healthy, early postmenopausal women when a nutrient supplement (protein, carbohydrate, calcium, and vitamin D) or a placebo supplement (a minimum of energy) was ingested immediately follo...

  19. Expression of neural cell adhesion molecules and neurofilament protein isoforms in Ewing's sarcoma of bone and soft tissue sarcomas of other than rhabdomyosarcoma

    NARCIS (Netherlands)

    Molenaar, W.M.; Muntinghe, F.L.H.

    1999-01-01

    In a previous study, it was shown that rhabdomyosarcomas widely express "neural" markers, such as neural cell adhesion molecules (N-CAM) and neurofilament protein isoforms, In the current study, a series of Ewing's sarcomas of bone and soft tissue sarcomas other than rhabdomyosarcoma was probed for

  20. Bone morphogenetic protein 4 inhibits insulin secretion from rodent beta cells through regulation of calbindin1 expression and reduced voltage-dependent calcium currents

    DEFF Research Database (Denmark)

    Christensen, Gitte L.; Jacobsen, Maria L. B.; Wendt, Anna

    2015-01-01

    AIMS/HYPOTHESIS: Type 2 diabetes is characterised by progressive loss of pancreatic beta cell mass and function. Therefore, it is of therapeutic interest to identify factors with the potential to improve beta cell proliferation and insulin secretion. Bone morphogenetic protein 4 (BMP4) expression...

  1. 血管内皮生长因子和骨形态发生蛋白在骨组织工程中的作用%Vascular endothelial growth factor and bone morphogenetic protein in the bone tissue engineering

    Institute of Scientific and Technical Information of China (English)

    纪经涛; 胡永成; 夏群; 苗军; 陈晓鹏; 方程

    2015-01-01

    and progressive bone disorder are very common, and bone tissue engineering provides a new approach to bone defect repair. Growth factors related to bone tissue engineering bone have been reported a lot and have achieved some results. How to mimick the natural timing of different growth factors with different bioactivities has become the current hotspot in bone repair. OBJECTIVE: To review the new developments in vascular endothelial growth factor and bone morphogenetic protein in bone tissue engineering. METHODS: The first author searched CNKI (1990/2015) and Medline database (1990/2015) for related articles using the key words of “osteogenic factors, angiogenic factors, tissue engineering bone, bone repair, vascularization, vascular endothelial growth factor, bone morphogenetic protein, sequential release, seed cels, cytoskeleton” in Chinese and English, respectively. Mechanism of action and research direction about vascular endothelial growth factor and bone morphogenetic protein were summarized. RESULTS AND CONCLUSION:Totaly 313 papers were searched initialy, and finaly 87 papers were enroled in result analysis. The results show that different growth factors play different roles in bone repair. Vascularization and osteogenesis are the most important processes in bone repair. The osteogenic factors play an important role in maintaining bone structure and bone formation. The angiogenic factors can provide oxygen and nutrients for tissue growth, differentiation and functionalization. The combination of osteogenic and angiogenic factors has a better osteogenic effect than osteogenic or angiogenic factors used alone. However, the most important problem is how to control the exogenous osteogenesis and the release dosage of angiogenic factors in bone repair.

  2. Regulation of Bone Metabolism.

    Science.gov (United States)

    Shahi, Maryam; Peymani, Amir; Sahmani, Mehdi

    2017-04-01

    Bone is formed through the processes of endochondral and intramembranous ossification. In endochondral ossification primary mesenchymal cells differentiate to chondrocytes and then are progressively substituted by bone, while in intramembranous ossification mesenchymal stem cells (MSCs) differentiate directly into osteoblasts to form bone. The steps of osteogenic proliferation, differentiation, and bone homeostasis are controlled by various markers and signaling pathways. Bone needs to be remodeled to maintain integrity with osteoblasts, which are bone-forming cells, and osteoclasts, which are bone-degrading cells.In this review we considered the major factors and signaling pathways in bone formation; these include fibroblast growth factors (FGFs), bone morphogenetic proteins (BMPs), wingless-type (Wnt) genes, runt-related transcription factor 2 (RUNX2) and osteoblast-specific transcription factor (osterix or OSX).

  3. Regulation of Bone Metabolism

    Science.gov (United States)

    Shahi, Maryam; Peymani, Amir; Sahmani, Mehdi

    2017-01-01

    Bone is formed through the processes of endochondral and intramembranous ossification. In endochondral ossification primary mesenchymal cells differentiate to chondrocytes and then are progressively substituted by bone, while in intramembranous ossification mesenchymal stem cells (MSCs) differentiate directly into osteoblasts to form bone. The steps of osteogenic proliferation, differentiation, and bone homeostasis are controlled by various markers and signaling pathways. Bone needs to be remodeled to maintain integrity with osteoblasts, which are bone-forming cells, and osteoclasts, which are bone-degrading cells.In this review we considered the major factors and signaling pathways in bone formation; these include fibroblast growth factors (FGFs), bone morphogenetic proteins (BMPs), wingless-type (Wnt) genes, runt-related transcription factor 2 (RUNX2) and osteoblast-specific transcription factor (osterix or OSX). PMID:28367467

  4. Linkage between stature and a region on chromosome 20 and analysis of a candidate gene, bone morphogenetic protein 2

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, D.B.; Ossowski, V.; Janssen, R.C.; Knowler, W.C.; Bogardus, C. [National Inst. of Health, Phoenix, AZ (United States)

    1995-12-04

    Sib-pair linkage analysis of the quantitative trait, stature, in over 500 Pima Indians indicates that a genetic determinant of governing stature is located on chromosome 20. Analysis of 10 short tandem repeat polymorphisms localized this linkage to a 3. cM region that includes D20S98 and D20S66. Using all possible sib-pair combinations, linkage was detected to both stature (P = 0.0001) and to leg length (P = 0.001), but not to sitting height. Single-strand conformational polymorphism analysis of exon 3 of the bone morphogenetic protein 2 (BMP2) gene, a candidate gene in this region, in genomic DNA of 20 of the tallest and 20 of the shortest individuals did not show any consistent differences associated with leg length or height. Sequence analysis of the region encoding the mature protein revealed a single nucleotide substitution, a T to G transversion, not detected by single-strand conformational polymorphism (SSCP) analysis. This transversion results in a conservative amino acid substitution of glycine for valine at codon 80 of BMP2. The frequency of this allele was 0.23 in the sample. No significant differences in height were noted in persons carrying either allele. This indicates that this structural alteration in the mature BMP2 protein does not contribute to the differences in stature observed in the Pima Indians, nor is this structural change in the mature protein likely to be responsible for the linkage observed with stature on chromosome 20. 33 refs., 2 figs., 2 tabs.

  5. The NH2-terminal and COOH-terminal fragments of dentin matrix protein 1 (DMP1) localize differently in the compartments of dentin and growth plate of bone.

    Science.gov (United States)

    Maciejewska, Izabela; Cowan, Cameron; Svoboda, Kathy; Butler, William T; D'Souza, Rena; Qin, Chunlin

    2009-02-01

    Multiple studies have shown that dentin matrix protein 1 (DMP1) is essential for bone and dentin mineralization. After post-translational proteolytic cleavage, DMP1 exists within the extracellular matrix of bone and dentin as an NH2-terminal fragment, a COOH-terminal fragment, and the proteoglycan form of the NH2-terminal fragment (DMP1-PG). To begin to assess the biological function of each fragment, we evaluated the distribution of both fragments in the rat tooth and bone using antibodies specific to the NH2-terminal and COOH-terminal regions of DMP1 and confocal microscopy. In rat first molar organs, the NH2-terminal fragment localized to predentin, whereas the COOH-terminal fragment was mainly restricted to mineralized dentin. In the growth plate of bone, the NH2-terminal fragment appeared in the proliferation and hypertrophic zones, whereas the COOH-terminal fragment occupied the ossification zone. Forster resonance energy transfer analysis showed colocalization of both fragments of DMP1 in odontoblasts and predentin, as well as hypertrophic chondrocytes within the growth plates of bone. The biochemical analysis of bovine teeth showed that predentin is rich in DMP1-PG, whereas mineralized dentin primarily contains the COOH-terminal fragment. We conclude that the differential patterns of expression of NH2-terminal and COOH-terminal fragments of DMP1 reflect their potentially distinct roles in the biomineralization of dentin and bone matrices.

  6. Bone morphogenetic proteins in inflammation, glucose homeostasis and adipose tissue energy metabolism

    DEFF Research Database (Denmark)

    Grgurevic, Lovorka; Christensen, Gitte Lund; Schulz, Tim J;

    2016-01-01

    Bore morphogenetic proteins (BMPs) are members of the transforming growth factor (TGF)-β superfamily, a group of secreted proteins that regulate embryonic development. This review summarizes the effects of BMPs on physiological processes not exclusively linked to the musculoskeletal system....... Specifically, we focus on the involvement of BMPs in inflammatory disorders, e.g. fibrosis, inflammatory bowel disease, anchylosing spondylitis, rheumatoid arthritis. Moreover, we discuss the role of BMPs in the context of vascular disorders, and explore the role of these signalling proteins in iron...... homeostasis (anaemia, hemochromatosis) and oxidative damage. The second and third parts of this review focus on BMPs in the development of metabolic pathologies such as type-2 diabetes mellitus and obesity. The pancreatic beta cells are the sole source of the hormone insulin and BMPs have recently been...

  7. Apoplastic reactive oxygen species transiently decrease auxin signaling and cause stress-induced morphogenic response in Arabidopsis.

    Science.gov (United States)

    Blomster, Tiina; Salojärvi, Jarkko; Sipari, Nina; Brosché, Mikael; Ahlfors, Reetta; Keinänen, Markku; Overmyer, Kirk; Kangasjärvi, Jaakko

    2011-12-01

    Reactive oxygen species (ROS) are ubiquitous signaling molecules in plant stress and development. To gain further insight into the plant transcriptional response to apoplastic ROS, the phytotoxic atmospheric pollutant ozone was used as a model ROS inducer in Arabidopsis (Arabidopsis thaliana) and gene expression was analyzed with microarrays. In contrast to the increase in signaling via the stress hormones salicylic acid, abscisic acid, jasmonic acid (JA), and ethylene, ROS treatment caused auxin signaling to be transiently suppressed, which was confirmed with a DR5-uidA auxin reporter construct. Transcriptomic data revealed that various aspects of auxin homeostasis and signaling were modified by apoplastic ROS. Furthermore, a detailed analysis of auxin signaling showed that transcripts of several auxin receptors and Auxin/Indole-3-Acetic Acid (Aux/IAA) transcriptional repressors were reduced in response to apoplastic ROS. The ROS-derived changes in the expression of auxin signaling genes partially overlapped with abiotic stress, pathogen responses, and salicylic acid signaling. Several mechanisms known to suppress auxin signaling during biotic stress were excluded, indicating that ROS regulated auxin responses via a novel mechanism. Using mutants defective in various auxin (axr1, nit1, aux1, tir1 afb2, iaa28-1, iaa28-2) and JA (axr1, coi1-16) responses, ROS-induced cell death was found to be regulated by JA but not by auxin. Chronic ROS treatment resulted in altered leaf morphology, a stress response known as "stress-induced morphogenic response." Altered leaf shape of tir1 afb2 suggests that auxin was a negative regulator of stress-induced morphogenic response in the rosette.

  8. Bone Morphogenetic Protein-7 Ameliorates Cerebral Ischemia and Reperfusion Injury via Inhibiting Oxidative Stress and Neuronal Apoptosis

    Directory of Open Access Journals (Sweden)

    Haitao Pei

    2013-11-01

    Full Text Available Previous studies have indicated that bone morphogenetic protein-7 (BMP-7 is neuroprotective against cerebral ischemia/reperfusion (IR injury. The present study was undertaken to determine the molecular mechanisms involved in this effect. Adult male Wistar rats were subjected to 2 h of transient middle cerebral artery occlusion (MCAO, followed by 24 h of reperfusion. BMP-7 (10−4 g/kg or vehicle was infused into rats at the onset of reperfusion via the tail vein. Neurological deficits, infarct volume, histopathological changes, oxidative stress-related biochemical parameters, neuronal apoptosis, and apoptosis-related proteins were assessed. BMP-7 significantly improved neurological and histological deficits, reduced the infarct volume, and decreased apoptotic cells after cerebral ischemia. BMP-7 also markedly enhanced the activities of antioxidant enzymes superoxide dismutase (SOD and glutathione peroxidase (GSH-PX, and reduced the level of malondialdehyde (MDA in IR rats. In addition, Western blot analysis indicated that BMP-7 prevented cytochrome c release, inhibited activation of caspase-3, caspase-9 and caspase-8. Our data suggested that BMP-7 has protective effects against cerebral IR injury in rats, and the neuroprotective effects may be attributed to attenuating oxidative stress and inhibiting neuronal apoptosis.

  9. Mice with ribosomal protein S19 deficiency develop bone marrow failure and symptoms like patients with Diamond-Blackfan anemia.

    Science.gov (United States)

    Jaako, Pekka; Flygare, Johan; Olsson, Karin; Quere, Ronan; Ehinger, Mats; Henson, Adrianna; Ellis, Steven; Schambach, Axel; Baum, Christopher; Richter, Johan; Larsson, Jonas; Bryder, David; Karlsson, Stefan

    2011-12-01

    Diamond-Blackfan anemia (DBA) is a congenital erythroid hypoplasia caused by a functional haploinsufficiency of genes encoding for ribosomal proteins. Among these genes, ribosomal protein S19 (RPS19) is mutated most frequently. Generation of animal models for diseases like DBA is challenging because the phenotype is highly dependent on the level of RPS19 down-regulation. We report the generation of mouse models for RPS19-deficient DBA using transgenic RNA interference that allows an inducible and graded down-regulation of Rps19. Rps19-deficient mice develop a macrocytic anemia together with leukocytopenia and variable platelet count that with time leads to the exhaustion of hematopoietic stem cells and bone marrow failure. Both RPS19 gene transfer and the loss of p53 rescue the DBA phenotype implying the potential of the models for testing novel therapies. This study demonstrates the feasibility of transgenic RNA interference to generate mouse models for human diseases caused by haploinsufficient expression of a gene.

  10. Different temporal patterns in the expressions of bone morphogenetic proteins and noggin during astroglial scar formation after ischemic stroke.

    Science.gov (United States)

    Shin, Jin A; Kang, Jihee Lee; Lee, Kyung-Eun; Park, Eun-Mi

    2012-05-01

    Bone morphogenetic proteins (BMPs) and their antagonists have roles in scar formation and regeneration after central nervous system injuries. However, temporal changes in their expression during astroglial scar formation in the ischemic brain are unknown. Here, we examined protein levels of BMP2, BMP7, and their antagonist noggin in the ischemic brain up to 4 weeks after experimental stroke in mice. BMP2 and BMP7 levels were increased from 1 to 4 weeks in the ischemic brain, and their expression was associated with astrogliosis. BMP7 expression was more intense and co-localized in reactive astrocytes in the ischemic subcortex at 1 week. Noggin expression began to increase after 2 weeks and was further increased at 4 weeks only in the ischemic subcortex, but the intensity was weak compared to the intensity of BMPs. Noggin was co-localized mainly in activated microglia. These findings show that expression of BMPs and noggin differed over time, in intensity and in types of cell, and suggest that BMPs and noggin have different roles in the processes of glial scar formation and neurorestoration in the ischemic brain.

  11. Electrostatics and N-glycan-mediated membrane tethering of SCUBE1 is critical for promoting bone morphogenetic protein signalling.

    Science.gov (United States)

    Liao, Wei-Ju; Tsao, Ku-Chi; Yang, Ruey-Bing

    2016-03-01

    SCUBE1 (S1), a secreted and membrane-bound glycoprotein, has a modular protein structure composed of an N-terminal signal peptide sequence followed by nine epidermal growth factor (EGF)-like repeats, a spacer region and three cysteine-rich (CR) motifs with multiple potential N-linked glycosylation sites, and one CUB domain at the C-terminus. Soluble S1 is a biomarker of platelet activation but an active participant of thrombosis via its adhesive EGF-like repeats, whereas its membrane-associated form acts as a bone morphogenetic protein (BMP) co-receptor in promoting BMP signal activity. However, the mechanism responsible for the membrane tethering and the biological importance of N-glycosylation of S1 remain largely unknown. In the present study, molecular mapping analysis identified a polycationic segment (amino acids 501-550) in the spacer region required for its membrane tethering via electrostatic interactions possibly with the anionic heparan sulfate proteoglycans. Furthermore, deglycosylation by peptide N-glycosidase F treatment revealed that N-glycans within the CR motif are essential for membrane recruitment through lectin-mediated surface retention. Injection of mRNA encoding zebrafish wild-type but not N-glycan-deficient scube1 restores the expression of haematopoietic and erythroid markers (scl and gata1) in scube1-knockdown embryos. We describe novel mechanisms in targeting S1 to the plasma membrane and demonstrate that N-glycans are required for S1 functions during primitive haematopoiesis in zebrafish.

  12. The cellular prion protein negatively regulates phagocytosis and cytokine expression in murine bone marrow-derived macrophages.

    Directory of Open Access Journals (Sweden)

    Min Wang

    Full Text Available The cellular prion protein (PrP(C is a glycosylphosphatidylinositol (GPI-anchored glycoprotein on the cell surface. Previous studies have demonstrated contradictory roles for PrP(C in connection with the phagocytic ability of macrophages. In the present work, we investigated the function of PrP(C in phagocytosis and cytokine expression in bone marrow-derived macrophages infected with Escherichia coli. E. coli infection induced an increase in the PRNP mRNA level. Knockout of PrP(C promoted bacterial uptake; upregulated Rab5, Rab7, and Eea1 mRNA expression; and increased the recruitment of lysosomal-associated membrane protein-2 to phagosomes, suggesting enhanced microbicidal activity. Remarkably, knockout of PrP(C suppressed the proliferation of internalized bacteria and increased the expression of cytokines such as interleukin-1β. Collectively, our data reveal an important role of PrP(C as a negative regulator for phagocytosis, phagosome maturation, cytokine expression, and macrophage microbicidal activity.

  13. Brown fat determination and development from muscle precursor cells by novel action of bone morphogenetic protein 6.

    Directory of Open Access Journals (Sweden)

    Ankur Sharma

    Full Text Available Brown adipose tissue (BAT plays a pivotal role in promoting energy expenditure by the virtue of uncoupling protein-1 (UCP-1 that differentiates BAT from its energy storing white adipose tissue (WAT counterpart. The clinical implication of "classical" BAT (originates from Myf5 positive myoblastic lineage or the "beige" fat (originates through trans-differentiation of WAT activation in improving metabolic parameters is now becoming apparent. However, the inducers and endogenous molecular determinants that govern the lineage commitment and differentiation of classical BAT remain obscure. We report here that in the absence of any forced gene expression, stimulation with bone morphogenetic protein 6 (BMP6 induces brown fat differentiation from skeletal muscle precursor cells of murine and human origins. Through a comprehensive transcriptional profiling approach, we have discovered that two days of BMP6 stimulation in C2C12 myoblast cells is sufficient to induce genes characteristic of brown preadipocytes. This developmental switch is modulated in part by newly identified regulators, Optineurin (Optn and Cyclooxygenase-2 (Cox2. Furthermore, pathway analyses using the Causal Reasoning Engine (CRE identified additional potential causal drivers of this BMP6 induced commitment switch. Subsequent analyses to decipher key pathway that facilitates terminal differentiation of these BMP6 primed cells identified a key role for Insulin Like Growth Factor-1 Receptor (IGF-1R. Collectively these data highlight a therapeutically innovative role for BMP6 by providing a means to enhance the amount of myogenic lineage derived brown fat.

  14. EFEK KOLAGEN DARI BERBAGAI JENIS TULANG IKAN TERHADAP KUALITAS MIOFIBRIL PROTEIN IKAN SELAMA PROSES DEHIDRASI [Effect of Various Fish Bone Collagens on the Quality of Myofibril Fish Protein During Dehydration Process

    Directory of Open Access Journals (Sweden)

    Yudhomenggolo Sastro Darmanto*

    2012-06-01

    Full Text Available Increase in fish fillet export in Indonesia has caused an increase in its waste such as bones, spines, skin and entrails of fish. Fish bones can be processed by demineralization to produce collagen, an important food additive. The effect of addition of 5% of collagen obtained from fresh water, brackish water and sea water fish bone on the fish protein miofibril of grouper was investigated in this research. Water sorption isotherm, Ca-ATPase activity, gel strength, water holding capacity, folding test and viscosity during dehydration process were evaluated. The results showed that collagens made from various fish bones have different Ca-ATPase activity. The reduction rate of Ca-ATPase activity were in accordance with the reduction of water sorbtion isotherm, gel forming ability, water holding capacity, viscosity and folding test during dehydration process.

  15. Association between low density lipoprotein receptor-related protein 2 gene polymorphisms and bone mineral density variation in Chinese population.

    Directory of Open Access Journals (Sweden)

    Chun Wang

    Full Text Available Low density lipoprotein receptor-related protein 2 gene (LRP2 is located next to the genomic region showing suggestive linkage with both hip and wrist bone mineral density (BMD phenotypes. LRP2 knockout mice showed severe vitamin D deficiency and bone disease, indicating the involvement of LRP2 in the preservation of vitamin D metabolites and delivery of the precursor to the kidney for the generation of 1α,25(OH(2D(3. In order to investigate the contribution of LRP2 gene polymorphisms to the variation of BMD in Chinese population, a total of 330 Chinese female-offspring nuclear families with 1088 individuals and 400 Chinese male-offspring nuclear families with 1215 individuals were genotyped at six tagSNPs of the LRP2 gene (rs2389557, rs2544381, rs7600336, rs10210408, rs2075252 and rs4667591. BMD values at the lumbar spine 1-4 (L1-4 and hip sites were measured by DXA. The association between LRP2 polymorphisms and BMD phenotypes was assessed by quantitative transmission disequilibrium tests (QTDTs in female- and male-offspring nuclear families separately. In the female-offspring nuclear families, rs2075252 and haplotype GA of rs4667591 and rs2075252 were identified in the nominally significant total association with peak BMD at L1-4; however, no significant within-family association was found between peak BMD at the L1-4 and hip sites and six tagSNPs or haplotypes. In male-offspring nuclear families, neither the six tagSNPs nor the haplotypes was in total association or within-family association with the peak BMD variation at the L1-4 and hip sites by QTDT analysis. Our findings suggested that the polymorphisms of LRP2 gene is not a major factor that contributes to the peak BMD variation in Chinese population.

  16. Posterior maxillary sandwich osteotomy combined with sinus grafting with bone morphogenetic protein-2 for alveolar reconstruction for dental implants: report of four cases.

    Science.gov (United States)

    Jensen, Ole T; Cottam, Jared

    2013-01-01

    Four patients underwent posterior sandwich osteotomy combined with sinus floor grafting using bone morphogenetic protein-2 and other grafting materials. The patients were treated over a period of 4 years. Two to four implants were placed in each site subsequently. Of the 12 implants placed, none failed. Alveolar crest bone levels appeared to be stable over time, with an average vertical gain of about 5 mm. Overall vertical gain, including the sinus graft, exceeded 13 mm in all patients. The procedure appears to hold promise for combined vertical alveolar defects and prominent pneumatization of the posterior maxilla.

  17. A Fusion between Domains of the Human Bone Morphogenetic Protein-2 and Maize 27 kD γ-Zein Accumulates to High Levels in the Endoplasmic Reticulum without Forming Protein Bodies in Transgenic Tobacco.

    Science.gov (United States)

    Ceresoli, Valentina; Mainieri, Davide; Del Fabbro, Massimo; Weinstein, Roberto; Pedrazzini, Emanuela

    2016-01-01

    Human Bone Morphogenetic Protein-2 (hBMP2) is an osteoinductive agent physiologically involved in bone remodeling processes. A commercialized recombinant hBMP2 produced in mammalian cell lines is available in different clinical applications where bone regeneration is needed, but widespread use has been hindered due to an unfavorable cost/effective ratio. Protein bodies are very large insoluble protein polymers that originate within the endoplasmic reticulum by prolamine accumulation during the cereal seed development. The N-terminal domain of the maize prolamin 27 kD γ-zein is able to promote protein body biogenesis when fused to other proteins. To produce high yield of recombinant hBMP2 active domain (ad) in stably transformed tobacco plants we have fused it to the γ-zein domain. We show that this zein-hBMP2ad fusion is retained in the endoplasmic reticulum without forming insoluble protein bodies. The accumulation levels are above 1% of total soluble leaf proteins, indicating that it could be a rapid and suitable strategy to produce hBMP2ad at affordable costs.

  18. A fusion between domains of the human bone morphogenetic protein-2 and maize 27 kD gamma-zein accumulates to high levels in the endoplasmic reticulum without forming protein bodies in transgenic tobacco

    Directory of Open Access Journals (Sweden)

    Valentina eCeresoli

    2016-03-01

    Full Text Available Human Bone Morphogenetic Protein-2 (hBMP2 is an osteoinductive agent physiologically involved in bone remodelling processes. A commercialized recombinant hBMP2 produced in mammalian cell lines is available in different clinical applications where bone regeneration is needed, but widespread use has been hindered due to an unfavorable cost/effective ratio. Protein bodies are very large insoluble protein polymers that originate within the endoplasmic reticulum by prolamine accumulation during the cereal seed development. The N-terminal domain of the maize prolamin 27 kD -zein is able to promote protein body biogenesis when fused to other proteins. To produce high yield of recombinant hBMP2 active domain (ad in stably transformed tobacco plants we have fused it to the γ-zein domain. We show that this zein-hBMP2ad fusion is retained in the endoplasmic reticulum without forming insoluble protein bodies. The accumulation levels are above 1% of total soluble leaf proteins, indicating that it could be a rapid and suitable strategy to produce hBMP2ad at affordable costs.

  19. Form-deprivation myopia induces decreased expression of bone morphogenetic protein-2, 5 in guinea pig sclera

    Institute of Scientific and Technical Information of China (English)

    Qing; Wang; Mei-Lan; Xue; Gui-Qiu; Zhao; Mei-Guang; Liu; Yu-Na; Ma; Yan; Ma

    2015-01-01

    AIM: To identify the presence of various bone morphogenetic proteins(BMPs) and their receptors in normal sclera of human, rat and guinea pigs, and to determine whether their expression changed with form-deprivation myopia(FDM) in guinea pig sclera.METHODS: The expression of BMPs and BMP receptors were detected using reverse transcription polymerase chain reaction(RT-PCR) and immunofluorescence. Two-week-old guinea pigs were monocularly form-deprived with a translucent lens. After fourteen days induction of FDM, total RNA was isolated and subjected to RT-PCR to examine the changes of BMPs and BMP receptors in tissues from the posterior sclera. Western blotting analysis was used to investigate their changes in protein levels.RESULTS: Human sclera expressed m RNAs for BMP-2,-4,-5,-7,-RIA,-RIB and BMP-RII. Conversely, rat sclera only expressed m RNA for BMP-7 and BMP-RIB,while the expression of BMPs and BMP receptors in guinea pigs were similar to that of humans. Human sclera also expresses BMP-2,-4,-5,-7 in protein level.Fourteen days after the induction of myopia, significant decreased expressions for BMP-2 and BMP-5 in the posterior sclera of FDM-affected eyes(P <0.05 vs internal control eyes).· CONCLUSION: Various BMPs were expressed in human and guinea pig sclera. In the posterior sclera,expressions of BMP-2 and BMP-5 significantly decreased in FDM eyes. This finding indicates that various BMPs as components of the scleral cytokines regulating tissue homeostasis and provide evidence that alterations in the expression of BMP-2 and BMP-5 are associated with sclera remodeling during myopia induction.

  20. Bone Biopsy

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Bone Biopsy Bone biopsy uses a needle and imaging ... the limitations of Bone Biopsy? What is a Bone Biopsy? A bone biopsy is an image-guided ...

  1. The effect of a high-protein, high-sodium diet on calcium and bone metabolism in postmenopausal women stratified by hormone replacement therapy use

    DEFF Research Database (Denmark)

    Harrington, M.; Bennett, T.; Jakobsen, Jette;

    2004-01-01

    randomly assigned to a diet high in protein ( 90 g/day) and sodium (180 mmol/day) ( calciuric diet) or a diet moderate in protein ( 70 g/day) and low in sodium ( 65 mmol/day) for 4 weeks followed by crossover to alternative dietary regimen for a further 4 weeks. The calciuric diet significantly (P......The objective of this study was to investigate the influence of a high-sodium, high-protein diet on bone metabolism in postmenopausal women ( aged 49 - 60 y) stratified by hormone replacement therapy (HRT) use. In a crossover trial, 18 women (n = 8 HRT users (+HRT) and n = 10 nonusers (-HRT)) were...

  2. Protein-containing nutrient supplementation following strength training enhances the effect on muscle mass, strength, and bone formation in postmenopausal women

    DEFF Research Database (Denmark)

    Holm, Lars; Olesen, Jens L; Matsumoto, Keitaro;

    2008-01-01

    following each training session. At inclusion, each woman was randomly and double-blindedly assigned to a nutrient group or a placebo (control) group. Muscle hypertrophy was evaluated from biopsies, MRI, and dual-energy X-ray absorptiometry (DEXA) scans, and muscle strength was determined in a dynamometer......We evaluated the response of various muscle and bone adaptation parameters with 24 wk of strength training in healthy, early postmenopausal women when a nutrient supplement (protein, carbohydrate, calcium, and vitamin D) or a placebo supplement (a minimum of energy) was ingested immediately....... Bone mineral density (BMD) was measured using DEXA scans, and bone turnover was determined from serum osteocalcin and collagen type I cross-linked carboxyl terminal peptide. The nutrient group improved concentric and isokinetic (60 degrees /s) muscle strength from 6 to 24 wk by 9 +/- 3% (P

  3. Bone Densitometry (Bone Density Scan)

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Bone Densitometry (DEXA) Bone densitometry, also called dual-energy ... limitations of DEXA Bone Densitometry? What is a Bone Density Scan (DEXA)? Bone density scanning, also called ...

  4. The Macrophage Inflammatory Proteins MIP1α (CCL3 and MIP2α (CXCL2 in Implant-Associated Osteomyelitis: Linking Inflammation to Bone Degradation

    Directory of Open Access Journals (Sweden)

    Ulrike Dapunt

    2014-01-01

    Full Text Available Bacterial infections of bones remain a serious complication of endoprosthetic surgery. These infections are difficult to treat, because many bacterial species form biofilms on implants, which are relatively resistant towards antibiotics. Bacterial biofilms elicit a progressive local inflammatory response, resulting in tissue damage and bone degradation. In the majority of patients, replacement of the prosthesis is required. To address the question of how the local inflammatory response is linked to bone degradation, tissue samples were taken during surgery and gene expression of the macrophage inflammatory proteins MIP1α (CCL3 and MIP2α (CXCL2 was assessed by quantitative RT-PCR. MIPs were expressed predominantly at osteolytic sites, in close correlation with CD14 which was used as marker for monocytes/macrophages. Colocalisation of MIPs with monocytic cells could be confirmed by histology. In vitro experiments revealed that, aside from monocytic cells, also osteoblasts were capable of MIP production when stimulated with bacteria; moreover, CCL3 induced the differentiation of monocytes to osteoclasts. In conclusion, the multifunctional chemokines CCL3 and CXCL2 are produced locally in response to bacterial infection of bones. In addition to their well described chemokine activity, these cytokines can induce generation of bone resorbing osteoclasts, thus providing a link between bacterial infection and osteolysis.

  5. The use of recombinant human bone morphogenetic protein-2 for the treatment of a delayed union following femoral neck open-wedge osteotomy

    Directory of Open Access Journals (Sweden)

    Axel W.A. Baltzer

    2012-03-01

    Full Text Available Although the clinical potential of bone morphogenetic proteins (BMPs has been known for decades, their use in humans has only been approved for a limited number of orthopaedic conditions. Promising results in animals demonstrate the utility of BMP-2 in regional bone repair without using osteoconductors. To our knowledge, no comparable human case has been described. We report the case of a 50- year-old who suffered a femoral neck fracture. After 9 months of extensive treatment, he was still not pain-free. The following open-wedge osteotomy resulted in a therapy-resistant delayed union. We therefore conducted 4 computer tomography-guided injections of recombinant human (rh BMP-2 into the bone gap. No osteoconductor was employed. Six weeks later, there was a 55-60% defect filling. Followup examination showed a complete union of the bone defect. Our case report shows that in a complicated delayed union rhBMP-2 can be successfully used to induce bone formation without any osteoconductor.

  6. Molecular mechanism of bone formation and regeneration

    Institute of Scientific and Technical Information of China (English)

    Akira Yamaguchi

    2008-01-01

    @@ Bone formation and regeneration are mediated by the coordinate action of various factors. Among these, bone morphogenetic protein (BMP) and runt-related gene 2 (Runx2) play crucial roles in bone formation.

  7. Inhibition of beta cell growth and function by bone morphogenetic proteins

    DEFF Research Database (Denmark)

    Bruun, Christine; Christensen, Gitte Lund; Jacobsen, Marie L B;

    2014-01-01

    : BMP2 and -4 were found to inhibit basal as well as growth factor-stimulated proliferation of primary beta cells from rats and mice. Bmp2 and Bmp4 mRNA and protein were expressed in islets and regulated by inflammatory cytokines. Neutralisation of endogenous BMP activity resulted in enhanced....../INTERPRETATION: These data show that BMP2 and -4 exert inhibitory actions on beta cells in vitro and suggest that BMPs exert regulatory roles of beta cell growth and function.......AIMS/HYPOTHESIS: Impairment of beta cell mass and function is evident in both type 1 and type 2 diabetes. In healthy physiological conditions pancreatic beta cells adapt to the body's increasing insulin requirements by proliferation and improved function. We hypothesised that during the development...

  8. Bone morphogenetic protein-5 (BMP-5 promotes dendritic growth in cultured sympathetic neurons

    Directory of Open Access Journals (Sweden)

    Higgins Dennis

    2001-09-01

    Full Text Available Abstract Background BMP-5 is expressed in the nervous system throughout development and into adulthood. However its effects on neural tissues are not well defined. BMP-5 is a member of the 60A subgroup of BMPs, other members of which have been shown to stimulate dendritic growth in central and peripheral neurons. We therefore examined the possibility that BMP-5 similarly enhances dendritic growth in cultured sympathetic neurons. Results Sympathetic neurons cultured in the absence of serum or glial cells do not form dendrites; however, addition of BMP-5 causes these neurons to extend multiple dendritic processes, which is preceded by an increase in phosphorylation of the Smad-1 transcription factor. The dendrite-promoting activity of BMP-5 is significantly inhibited by the BMP antagonists noggin and follistatin and by a BMPR-IA-Fc chimeric protein. RT-PCR and immunocytochemical analyses indicate that BMP-5 mRNA and protein are expressed in the superior cervical ganglia (SCG during times of initial growth and rapid expansion of the dendritic arbor. Conclusions These data suggest a role for BMP-5 in regulating dendritic growth in sympathetic neurons. The signaling pathway that mediates the dendrite-promoting activity of BMP-5 may involve binding to BMPR-IA and activation of Smad-1, and relative levels of BMP antagonists such as noggin and follistatin may modulate BMP-5 signaling. Since BMP-5 is expressed at relatively high levels not only in the developing but also the adult nervous system, these findings suggest the possibility that BMP-5 regulates dendritic morphology not only in the developing, but also the adult nervous system.

  9. Profile of serum alkaline phosphatase after inoculation of mononuclear cells and bone morphogenetic protein in the repair of osteochondral defects in rabbits

    Directory of Open Access Journals (Sweden)

    Luiz Augusto de Souza

    2011-12-01

    Full Text Available In this study, serum alkaline phosphatase activity was measured in response to the repair of osteochondral defects in twenty-four New Zealand rabbits. The animals were divided into three groups: a control (GC, those treated with bone marrow mononuclear cells (GCM and those that received mononuclear cells with autologous bone morphogenetic protein (BMP + GCM. After exposing the trochlear groove of the left stifle joint, a wedge-shaped segment was removed. Later, the defect was filled with an osteochondral autograft preserved in 98% glycerin. For the GC group, only the bone graft was performed. For the GCM, in addition to the graft, 2x106 seed mononuclear cells were implanted. For the GCM + BMP, the same number of cells, associated with 1μg of bone morphogenetic protein, were intraarticularly administered. The osteoblastic response was measured by analyzing the serum alkaline phosphatase on day 0 (preoperative 3, 15, 30, and 45 after surgery, and by radiographic examinations. Analysis of variance in randomized blocks, factorial and Tukey’s test (p = 0.05 were made. The overall mean GCM was superior to the other groups and the highest rates were among the 15th and 45th days postoperatively. The discrepancy in values between individuals of the same group casts doubts on the veracity of the test.

  10. Skeletal growth after oral administration of demineralized bone matrix.

    Science.gov (United States)

    Martínez, J A; Elorriaga, M; Marquínez, M; Larralde, J

    1993-03-01

    Oral administration of bone extracts obtained from bovine demineralized bone matrix to rats has a direct effect on bone metabolism, affecting bone proportions and some markers of bone formation such as bone malate dehydrogenase, serum alkaline phosphatase and serum osteocalcin. Furthermore collagen deposition, bone protein synthesis and nucleic acids content were significantly increased by the treatment.

  11. Effect of transforming growth factor beta and bone morphogenetic proteins on rat hepatic stellate cell proliferation and trans-differentiation

    Institute of Scientific and Technical Information of China (English)

    Hong Shen; Guo-Jiang Huang; Yue-Wen Gong

    2003-01-01

    AIM: To explore different roles of TGF-β (transforming growth factor beta) and bone morphogenetic proteins (BMPs)in hepatic stellate cell proliferation and trans-differentiation.METHODS: Hepatic stellate cells were isolated from male Sprague-Dawley rats. Sub-cultured hepatic stellate cells were employed for cell proliferation assay with WST-1 reagent and Western blot analysis with antibody against smooth muscle alpha actin (SMA).RESULTS: The results indicated that TGF-β1 significantly inhibited cell proliferation at concentration as low as 0.1 ng/ml, but both BMP-2 and BMP-4 did not affect cell proliferation at concentration as high as 10 ng/ml. The effect on hepatic stellate cell trans-differentiation was similar between TGFβ1 and BMPs. However, BMPs was more potent at transdifferentiation of hepatic stellate cells than TGF-β1. In addition, we observed that TGF-β1 transient reduced the abundance of SMA in hepatic stellate cells.CONCLUSION: TGF-β may be more important in regulation of hepatic stellate cell proliferation while BMPs may be the major cytokines regulating hepatic stellate cell transdifferentiation.

  12. Coleusin factor, a novel anticancer diterpenoid, inhibits osteosarcoma growth by inducing bone morphogenetic protein-2-dependent differentiation.

    Science.gov (United States)

    Geng, Shuo; Sun, Bo; Lu, Ran; Wang, Jingze

    2014-06-01

    Coleusin factor is a diterpenoid compound isolated from the root of a tropical plant, Coleus forskohlii. Although Coleusin factor has been reported to suppress proliferation of and induce apoptosis in several types of cancer cells, the effects of Coleusin factor on osteosarcoma and the underlying mechanism are still not fully understood. In this study, we show that Coleusin factor treatment potently inhibits the growth of osteosarcoma cells associated with G(1) cell-cycle arrest. Interestingly, apoptosis and cell death are not induced. Instead, Coleusin factor causes osteosarcoma cells to exhibit typical properties of differentiated osteoblasts, including a morphologic alteration resembling osteoblasts, the expression of osteoblast differentiation markers, elevated alkaline phosphatase activity, and increased cellular mineralization. Coleusin factor treatment significantly increases the expression of bone morphogenetic protein-2 (BMP-2), a crucial osteogenic regulator, and runt-related transcription factor 2 (RUNX2), one of the key transcription factors of the BMP pathway. When BMP-2 signaling is blocked, Coleusin factor fails to inhibit cell proliferation and to induce osteoblast differentiation. Thus, upregulation of BMP-2 autocrine is critical for Coleusin factor to induce osteoblast differentiation and exert its anticancer effects on osteosarcoma. Importantly, administration of Coleusin factor inhibits the growth of osteosarcoma xenografted in nude mice without systemic or immunologic toxicity. Osteosarcoma is a highly aggressive cancer marked by the loss of normal differentiation. Coleusin factor represents a new type of BMP-2 inducer that restores differentiation in osteosarcoma cells. It may provide a promising therapeutic strategy against osteosarcoma with minimal side effects.

  13. Characterization of the interface of the bone marrow stromal cell antigen 2-Vpu protein complex via computational chemistry.

    Science.gov (United States)

    Zhou, Jinming; Zhang, Zhixin; Mi, Zeyun; Wang, Xin; Zhang, Quan; Li, Xiaoyu; Liang, Chen; Cen, Shan

    2012-02-14

    Bone marrow stromal cell antigen 2 (BST-2) inhibits the release of enveloped viruses from the cell surface. Various viral counter measures have been discovered, which allow viruses to escape BST-2 restriction. Human immunodeficiency virus type 1 (HIV-1) encodes viral protein U (Vpu) that interacts with BST-2 through their transmembrane domains and causes the downregulation of cell surface BST-2. In this study, we used a computer modeling method to establish a molecular model to investigate the binding interface of the transmembrane domains of BST-2 and Vpu. The model predicts that the interface is composed of Vpu residues I6, A10, A14, A18, V25, and W22 and BST-2 residues L23, I26, V30, I34, V35, L41, I42, and T45. Introduction of mutations that have been previously reported to disrupt the Vpu-BST-2 interaction led to a calculated higher binding free energy (MMGBSA), which supports our molecular model. A pharmacophore was also generated on the basis of this model. Our results provide a precise model that predicts the detailed interaction occurring between the transmembrane domains of Vpu and BST-2 and should facilitate the design of anti-HIV agents that are able to disrupt this interaction.

  14. EFFECTS OF TRANSFORMING GROWTH FACTOR β AND RECOMBINANT HUMAN BONE MORPHOGENETIC PROTEIN 2 ON HUMAN PERIODONTAL LIGAMENT FIBROBLASTS

    Institute of Scientific and Technical Information of China (English)

    司晓辉; 刘正

    2001-01-01

    Objective To evaluate the effects of transforming growth factor β(TGF-β) and recombinant human bone morphogenetic protein 2 (rhBMP2) on human periodontal ligament fibroblasts ( HPDLFs ). Methods HPDLFs were done primary culture to detect the distinct concentrations of TGF-β and rhBMP2 on its proliferation, alkaline phosphatase (ALP) activity, osteocalcin ( OC) synthesis and formation of the mineralized nodules, respectively. Results TGF-β(5~100ng /ml) significantly stimulated the proliferation of HPDLFs. The ALP activity of HPDLFs was evaluated evidently by 5ng /ml TGF-β. TGF-β(0.5~100ng /ml) had no effects on OC synthesis and formation of the mineralized nodules of HPDLFs. rhBMP2 (0.25~2mg/ ml) had no rernarkable effect on the proliferation of HPDLFs. The ALP activity, OC synthesis and formation of the mineralized nodules of HPDLFs were significantly stimulated by 0.5~2mg/ml rhBMP2. Conclusion The effects of TGF-β and rhBMP2 on HPDLFs are dose-dependent. TGF-β can stimulate HPDLFs to express the early marker of osteoblastic phenotype , and it lacks the ability to promote maturation of the osteogenic phenotype. rhBMP2 can not only stimulate the expression but also promote the maturation of osteoblastic phenotype of HPDLFs.

  15. Upregulation of Bone Morphogenetic Protein-2 Synthesis and Consequent Collagen II Expression in Leptin-stimulated Human Chondrocytes.

    Directory of Open Access Journals (Sweden)

    Shun-Fu Chang

    Full Text Available Bone morphogenetic proteins (BMPs play positive roles in cartilage development, but they can barely be detected in healthy articular cartilage. However, recent evidence has indicated that BMPs could be detected in osteoarthritic and damaged cartilage and their precise roles have not been well defined. Extremely high amounts of leptin have been reported in obese individuals, which can be associated with osteoarthritis (OA development. The aim of this study was to investigate whether BMPs could be induced in human primary chondrocytes during leptin-stimulated OA development and the underlying mechanism. We found that expression of BMP-2 mRNA, but not BMP-4, BMP-6, or BMP-7 mRNA, could be increased in human primary chondrocytes under leptin stimulation. Moreover, this BMP-2 induction was mediated through transcription factor-signal transducer and activator of transcription (STAT 3 activation via JAK2-ERK1/2-induced Ser727-phosphorylation. Of note, histone deacetylases (HDACs 3 and 4 were both involved in modulating leptin-induced BMP-2 mRNA expression through different pathways: HDAC3, but not HDAC4, associated with STAT3 to form a complex. Our results further demonstrated that the role of BMP-2 induction under leptin stimulation is to increase collagen II expression. The findings in this study provide new insights into the regulatory mechanism of BMP-2 induction in leptin-stimulated chondrocytes and suggest that BMP-2 may play a reparative role in regulating leptin-induced OA development.

  16. Identification of bone morphogenetic protein 7 (BMP7) as an instructive factor for human epidermal Langerhans cell differentiation.

    Science.gov (United States)

    Yasmin, Nighat; Bauer, Thomas; Modak, Madhura; Wagner, Karin; Schuster, Christopher; Köffel, Rene; Seyerl, Maria; Stöckl, Johannes; Elbe-Bürger, Adelheid; Graf, Daniel; Strobl, Herbert

    2013-11-18

    Human Langerhans cell (LC) precursors populate the epidermis early during prenatal development and thereafter undergo massive proliferation. The prototypic antiproliferative cytokine TGF-β1 is required for LC differentiation from human CD34(+) hematopoietic progenitor cells and blood monocytes in vitro. Similarly, TGF-β1 deficiency results in LC loss in vivo. However, immunohistology studies revealed that human LC niches in early prenatal epidermis and adult basal (germinal) keratinocyte layers lack detectable TGF-β1. Here we demonstrated that these LC niches express high levels of bone morphogenetic protein 7 (BMP7) and that Bmp7-deficient mice exhibit substantially diminished LC numbers, with the remaining cells appearing less dendritic. BMP7 induces LC differentiation and proliferation by activating the BMP type-I receptor ALK3 in the absence of canonical TGF-β1-ALK5 signaling. Conversely, TGF-β1-induced in vitro LC differentiation is mediated via ALK3; however, co-induction of ALK5 diminished TGF-β1-driven LC generation. Therefore, selective ALK3 signaling by BMP7 promotes high LC yields. Within epidermis, BMP7 shows an inverse expression pattern relative to TGF-β1, the latter induced in suprabasal layers and up-regulated in outer layers. We observed that TGF-β1 inhibits microbial activation of BMP7-generated LCs. Therefore, TGF-β1 in suprabasal/outer epidermal layers might inhibit LC activation, resulting in LC network maintenance.

  17. Estimated glomerular filtration rate in sickle cell anemia is associated with polymorphisms of bone morphogenetic protein receptor 1B.

    Science.gov (United States)

    Nolan, Vikki G; Ma, Qianli; Cohen, Herbert T; Adewoye, Adeboye; Rybicki, Anne C; Baldwin, Clinton; Mahabir, Rhea N; Homan, Erica P; Wyszynski, Diego F; Fabry, Mary E; Nagel, Ronald L; Farrer, Lindsay A; Steinberg, Martin H

    2007-03-01

    Renal disease is common in sickle cell anemia. In this exploratory work, we used data from a longitudinal study of the natural history of sickle cell disease to examine the hypothesis that polymorphisms (SNPs) in selected candidate genes are associated with glomerular filtration rate (GFR). DNA samples and clinical and laboratory data were available for 1,140 patients with sickle cell anemia. GFR was estimated using the Cockcroft-Gault and Schwartz formulas for adults and children, respectively. We examined approximately 175 haplotype tagging (ht) SNPs in about 70 genes of the TGFbeta/BMP pathway for their association with GFR using linear regression. Four SNPs in BMPR1B, a bone morphogenetic protein (BMP) receptor gene, yielded statistically significant associations (P values ranging from 0.015 to 0.046). Three haplotypes in this gene were also associated with GFR. The TGF-beta/BMP pathway has been associated with the development of diabetic nephropathy, which has some features in common with sickle cell nephropathy. Our results suggest that, as with other subphenotypes of sickle cell disease, renal function may be genetically modulated.

  18. Clonal distribution of bone sialoprotein-binding protein gene among Staphylococcus aureus isolates associated with bloodstream infections.

    Science.gov (United States)

    Wiśniewska, Katarzyna; Piórkowska, Anna; Kasprzyk, Joanna; Bronk, Marek; Świeć, Krystyna

    2014-11-01

    Staphylococcus aureus is a leading cause of bloodstream infections (BSI) and diseases that may be caused by hematogenous spread. The staphylococcal adhesin, for which the association with the infections emerging as a complication of septicemia has been well documented, is a bone sialoprotein-binding protein (Bbp). The aim of the study was to assess the prevalence of a bbp gene in S. aureus bloodstream isolates associated with BSI and to investigate to what degree the distribution of this gene is linked to the clonality of the population. Spa typing, used in order to explore the genetic population structure of the isolates, yielded 29 types. Six spa clusters and seven singletons were identified. The most frequent was spa clonal complex CC021 associated with MLST CC30 (38%). The bbp gene was found in 47% of isolates. Almost all isolates (95%) clustered in spa clonal complex CC021 were positive for this gene. All isolates carrying the bbp gene were sensitive to methicillin, and if clustered in the spa CC021, belonged to agr group III. Our study shows that Bbp is not strictly associated with BSI. However, one may conclude that for clonally related S. aureus strains most commonly causing BSI, the risk of Bbp-mediated complications of septicemia is expected to be higher than for other strains.

  19. Bone morphogenetic protein antagonist noggin promotes skin tumorigenesis via stimulation of the Wnt and Shh signaling pathways.

    Science.gov (United States)

    Sharov, Andrey A; Mardaryev, Andrei N; Sharova, Tatyana Y; Grachtchouk, Marina; Atoyan, Ruzanna; Byers, H Randolph; Seykora, John T; Overbeek, Paul; Dlugosz, Andrzej; Botchkarev, Vladimir A

    2009-09-01

    Bone morphogenetic proteins (BMPs) play pivotal roles in the regulation of skin development. To study the role of BMPs in skin tumorigenesis, BMP antagonist noggin was used to generate keratin 14-targeted transgenic mice. In contrast to wild-type mice, transgenic mice developed spontaneous hair follicle-derived tumors, which resemble human trichofolliculoma. Global gene expression profiles revealed that in contrast to anagen hair follicles of wild-type mice, tumors of transgenic mice showed stage-dependent increases in the expression of genes encoding the selected components of Wnt and Shh pathways. Specifically, expression of the Wnt ligands increased at the initiation stage of tumor formation, whereas expression of the Wnt antagonist and tumor suppressor Wnt inhibitory factor-1 decreased, as compared with fully developed tumors. In contrast, expression of the components of Shh pathway increased in fully developed tumors, as compared with the tumor placodes. Consistent with the expression data, pharmacological treatment of transgenic mice with Wnt and Shh antagonists resulted in the stage-dependent inhibition of tumor initiation, and progression, respectively. Furthermore, BMP signaling stimulated Wnt inhibitory factor-1 expression and promoter activity in cultured tumor cells and HaCaT keratinocytes, as well as inhibited Shh expression, as compared with the corresponding controls. Thus, tumor suppressor activity of the BMPs in skin epithelium depends on the local concentrations of noggin and is mediated at least in part via stage-dependent antagonizing of Wnt and Shh signaling pathways.

  20. Heparan sulfate acts as a bone morphogenetic protein coreceptor by facilitating ligand-induced receptor hetero-oligomerization.

    Science.gov (United States)

    Kuo, Wan-Jong; Digman, Michelle A; Lander, Arthur D

    2010-11-15

    Cell surface heparan sulfate (HS) not only binds several major classes of growth factors but also sometimes potentiates their activities--an effect usually termed "coreception." A view that coreception is due to the stabilization of growth factor-receptor interactions has emerged primarily from studies of the fibroblast growth factors (FGFs). Recent in vivo studies have strongly suggested that HS also plays an important role in regulating signaling by the bone morphogenetic proteins (BMPs). Here, we provide evidence that the mechanism of coreception for BMPs is markedly different from that established for FGFs. First, we demonstrate a direct, stimulatory role for cell surface HS in the immediate signaling activities of BMP2 and BMP4, and we provide evidence that HS-BMP interactions are required for this effect. Next, using several independent assays of ligand binding and receptor assembly, including coimmunoprecipitation, cross-linking, and fluorescence fluctuation microscopy, we show that HS does not affect BMP binding to type I receptor subunits but instead enhances the subsequent recruitment of type II receptor subunits to BMP-type I receptor complexes. This suggests a view of HS as a catalyst of the formation of signaling complexes, rather than as a stabilizer of growth factor binding.

  1. Mutation in bone morphogenetic protein receptor-IB is associated with increased ovulation rate in Booroola Mérino ewes

    Science.gov (United States)

    Mulsant, Philippe; Lecerf, Frédéric; Fabre, Stéphane; Schibler, Laurent; Monget, Philippe; Lanneluc, Isabelle; Pisselet, Claudine; Riquet, Juliette; Monniaux, Danielle; Callebaut, Isabelle; Cribiu, Edmond; Thimonier, Jacques; Teyssier, Jacques; Bodin, Loys; Cognié, Yves; Chitour, Nour; Elsen, Jean-Michel

    2001-01-01

    Ewes from the Booroola strain of Australian Mérino sheep are characterized by high ovulation rate and litter size. This phenotype is due to the action of the FecBB allele of a major gene named FecB, as determined by statistical analysis of phenotypic data. By genetic analysis of 31 informative half-sib families from heterozygous sires, we showed that the FecB locus is situated in the region of ovine chromosome 6 corresponding to the human chromosome 4q22–23 that contains the bone morphogenetic protein receptor IB (BMPR-IB) gene encoding a member of the transforming growth factor-β (TGF-β) receptor family. A nonconservative substitution (Q249R) in the BMPR-IB coding sequence was found to be associated fully with the hyperprolificacy phenotype of Booroola ewes. In vitro, ovarian granulosa cells from FecBB/FecBB ewes were less responsive than granulosa cells from FecB+/FecB+ ewes to the inhibitory effect on steroidogenesis of GDF-5 and BMP-4, natural ligands of BMPR-IB. It is suggested that in FecBB/FecBB ewes, BMPR-IB would be inactivated partially, leading to an advanced differentiation of granulosa cells and an advanced maturation of ovulatory follicles. PMID:11320249

  2. Positive Selection in Bone Morphogenetic Protein 15 Targets a Natural Mutation Associated with Primary Ovarian Insufficiency in Human

    Science.gov (United States)

    Meslin, Camille; Monestier, Olivier; Di Pasquale, Elisa; Pascal, Géraldine; Persani, Luca; Fabre, Stéphane

    2013-01-01

    Bone Morphogenetic Protein 15 (BMP15) is a TGFβ-like oocyte-derived growth factor involved in ovarian folliculogenesis as a critical regulator of many granulosa cell processes. Alterations of the BMP15 gene have been found associated with different ovarian phenotypic effects depending on the species, from sterility to increased prolificacy in sheep, slight subfertility in mouse or associated with primary ovarian insufficiency (POI) in women. To investigate the evolving role of BMP15, a phylogenetic analysis of this particular TGFβ family member was performed. A maximum likelihood phylogenetic tree of several TGFβ/BMP family members expressed by the ovary showed that BMP15 has a very strong divergence and a rapid evolution compared to others. Moreover, among 24 mammalian species, we detected signals of positive selection in the hominidae clade corresponding to F146, L189 and Y235 residues in human BMP15. The biological importance of these residues was tested functionally after site directed-mutagenesis in a COV434 cells luciferase assay. By replacing the positively selected amino acid either by alanine or the most represented residue in other studied species, only L189A, Y235A and Y235C mutants showed a significant increase of BMP15 signaling when compared to wild type. Additionally, the Y235C mutant was more potent than wild type in inhibiting progesterone secretion of ovine granulosa cells in primary culture. Interestingly, the Y235C mutation was previously identified in association with POI in women. In conclusion, this study evidences that the BMP15 gene has evolved faster than other members of the TGFß family and was submitted to a positive selection pressure in the hominidae clade. Some residues under positive selection are of great importance for the normal function of the protein and thus for female fertility. Y235 represents a critical residue in the determination of BMP15 biological activity, thus indirectly confirming its role in the onset of POI in

  3. Fibroblast activation protein (FAP is essential for the migration of bone marrow mesenchymal stem cells through RhoA activation.

    Directory of Open Access Journals (Sweden)

    Kuei-Min Chung

    Full Text Available BACKGROUND: The ability of human bone marrow mesenchymal stem cells (BM-MSCs to migrate and localize specifically to injured tissues is central in developing therapeutic strategies for tissue repair and regeneration. Fibroblast activation protein (FAP is a cell surface serine protease expressed at sites of tissue remodeling during embryonic development. It is also expressed in BM-MSCs, but not in normal tissues or cells. The function of FAP in BM-MSCs is not known. PRINCIPAL FINDINGS: We found that depletion of FAP proteins significantly inhibited the migration of BM-MSCs in a transwell chemotaxis assay. Such impaired migration ability of BM-MSCs could be rescued by re-expressing FAP in these cells. We then demonstrated that depletion of FAP activated intracellular RhoA GTPase. Consistently, inhibition of RhoA activity using a RhoA inhibitor rescued its migration ability. Inhibition of FAP activity with an FAP-specific inhibitor did not affect the activation of RhoA or the migration of BM-MSCs. Furthermore, the inflammatory cytokines interleukin-1beta (IL-1β and transforming growth factor-beta (TGF-β upregulated FAP expression, which coincided with better BM-MSC migration. CONCLUSIONS: Our results indicate FAP plays an important role in the migration of BM-MSCs through modulation of RhoA GTPase activity. The peptidase activity of FAP is not essential for such migration. Cytokines IL-1β and TGF-β upregulate the expression level of FAP and thus enhance BM-MSC migration.

  4. A novel link between the proteasome pathway and the signal transduction pathway of the Bone Morphogenetic Proteins (BMPs

    Directory of Open Access Journals (Sweden)

    Kim Richard H

    2002-06-01

    Full Text Available Abstract Background The intracellular signaling events of the Bone Morphogenetic Proteins (BMPs involve the R-Smad family members Smad1, Smad5, Smad8 and the Co-Smad, Smad4. Smads are currently considered to be DNA-binding transcriptional modulators and shown to recruit the master transcriptional co-activator CBP/p300 for transcriptional activation. SNIP1 is a recently discovered novel repressor of CBP/p300. Currently, the detailed molecular mechanisms that allow R-Smads and Co-Smad to co-operatively modulate transcription events are not fully understood. Results Here we report a novel physical and functional link between Smad1 and the 26S proteasome that contributes to Smad1- and Smad4-mediated transcriptional regulation. Smad1 forms a complex with a proteasome β subunit HsN3 and the ornithine decarboxylase antizyme (Az. The interaction is enhanced upon BMP type I receptor activation and occur prior to the incorporation of HsN3 into the mature 20S proteasome. Furthermore, BMPs trigger the translocation of Smad1, HsN3 and Az into the nucleus, where the novel CBP/p300 repressor protein SNIP1 is further recruited to Smad1/HsN3/Az complex and degraded in a Smad1-, Smad4- and Az-dependent fashion. The degradation of the CBP/p300 repressor SNIP1 is likely an essential step for Smad1-, Smad4-mediated transcriptional activation, since increased SNIP1 expression inhibits BMP-induced gene responses. Conclusions Our studies thus add two additional important functional partners of Smad1 into the signaling web of BMPs and also suggest a novel mechanism for Smad1 and Smad4 to co-modulate transcription via regulating proteasomal degradation of CBP/p300 repressor SNIP1.

  5. Bone morphogenetic protein 2 promotes transforming growth factor β3-induced chondrogenesis of human osteoarthritic synovium-derived stem cells

    Institute of Scientific and Technical Information of China (English)

    RUI Yun-feng; DU Lin; WANG You; WANG Yang; LUI Pauline po-yee; TANG Ting-ting; CHAN Kai-ming; DAI Ke-rong

    2010-01-01

    Background Synovium-derived stem cells (SDSCs) with higher chondrogenic potential are attracting considerable attention as a cell source for cartilage regeneration. We investigated the effect of bone morphogenetic protein 2 (BMP-2) on transforming growth factor beta3 (TGF-β3)-induced chondrogenesis of SDSCs isolated from human osteoarthritic synovium in a pellet culture system. Methods The clonogenicity, stem cell marker expression and multi-differentiation potential of isolated SDSCs were determined by colony forming unit assay, flow cytometry and specific staining including alizarin red S, Oil red O and alcian blue staining, respectively. SDSCs pellet was cultured in chondrogenic medium with or without TGF-β3 or/and BMP-2. At day 21, the diameter and the weight of the pellets were measured. Chondrogenic differentiation of SDSCs was evaluated by Safranin O staining, immunohistochemical staining of collagen type Ⅱ, sulfated glycosaminoglycan (sGAG) synthesis and mRNA expression of collagen type Ⅱ, aggrecan, SOX9, link-protein, collagen type X and BMP receptor Ⅱ. Results Cells isolated under the optimized culturing density (104/60 cm2) showed clonogenicity and multi-differentiation potential. These cells were positive (>99%) for CD44, CD90, CD105 and negative (<10%) for CD34 and CD71. SDSCs differentiated to a chondrocytic phenotype in chondrogenic medium containing TGF-β3 with or without BMP-2. Safranin O staining of the extracellular matrix was positive and the expression of collagen type Ⅱ was detected. Cell pellets treated with TGF-β3 and BMP-2 were larger in diameter and weight, produced more sGAGs, and expressed higher levels of collagen type Ⅱ and other chondrogenic markers, except COL10A1, than medium with TGF-β3 alone. Conclusions SDSCs could be isolated from human osteoarthritic synovium. Supplementation with BMP-2 significantly promoted the in vitro TGF-β3-induced chondrogenic differentiation of SDSCs.

  6. Paget disease of bone-associated UBA domain mutations of SQSTM1 exert distinct effects on protein structure and function

    Science.gov (United States)

    Goode, Alice; Long, Jed E.; Shaw, Barry; Ralston, Stuart H.; Visconti, Micaela Rios; Gianfrancesco, Fernando; Esposito, Teresa; Gennari, Luigi; Merlotti, Daniela; Rendina, Domenico; Rea, Sarah L.; Sultana, Melanie; Searle, Mark S.; Layfield, Robert

    2014-01-01

    SQSTM1 mutations are common in patients with Paget disease of bone (PDB), with most affecting the C-terminal ubiquitin-associated (UBA) domain of the SQSTM1 protein. We performed structural and functional analyses of two UBA domain mutations, an I424S mutation relatively common in UK PDB patients, and an A427D mutation associated with a severe phenotype in Southern Italian patients. Both impaired SQSTM1's ubiquitin-binding function in pull-down assays and resulted in activation of basal NF-κB signalling, compared to wild-type, in reporter assays. We found evidence for a relationship between the ability of different UBA domain mutants to activate NF-κB signalling in vitro and number of affected sites in vivo in 1152 PDB patients from the UK and Italy, with A427D-SQSTM1 producing the greatest level of activation (relative to wild-type) of all PDB mutants tested to date. NMR and isothermal titration calorimetry studies were able to demonstrate that I424S is associated with global structural changes in the UBA domain, resulting in 10-fold weaker UBA dimer stability than wild-type and reduced ubiquitin-binding affinity of the UBA monomer. Our observations provide insights into the role of SQSTM1-mediated NF-κB signalling in PDB aetiology, and demonstrate that different mutations in close proximity within loop 2/helix 3 of the SQSTM1 UBA domain exert distinct effects on protein structure and stability, including indirect effects at the UBA/ubiquitin-binding interface. PMID:24642144

  7. Comparative, osteochondral defect repair: Stem cells versus chondrocytes versus Bone Morphogenetic Protein-2, solely or in combination

    Directory of Open Access Journals (Sweden)

    R Reyes

    2013-07-01

    Full Text Available Full-thickness articular cartilage damage does not resolve spontaneously. Studies with growth factors, implantation of autologous chondrocytes and mesenchymal stem cells have led to variable, to some extent inconsistent, results. This work compares osteochondral knee-defect repair in rabbits upon implantation of a previously described alginate/(poly(lactic-co-glycolic acid (PLGA osteochondral scaffold in distinct conditions. Systems were either in vitro pre-cultured with a small number of allogeneic chondrocytes under fibroblast growth factor (FGF-2 stimulation or the same amount of allogeneic, marrow derived, mesenchymal stem cells (without any pre-differentiation, or loaded with microsphere-encapsulated bone morphogenetic protein (BMP-2 within the alginate layer, or holding combinations of one or the other cell type with BMP-2. The experimental limit was 12 weeks, because a foregoing study with this release system had shown a maintained tissue response for at least 24 weeks post-operation. After only 6 weeks, histological analyses revealed newly formed cartilage-like tissue, which resembled the adjacent, normal cartilage in cell as well as BMP-2 treated defects, but cell therapy gave higher histological scores. This advantage evened out until 12 weeks. Combinations of cells and BMP-2 did not result in any additive or synergistic effect. Equally efficient osteochondral defect repair was achieved with chondrocyte, stem cell, and BMP-2 treatment. Expression of collagen X and collagen I, signs of ongoing ossification, were histologically undetectable, and the presence of aggrecan protein indicated cartilage-like tissue. In conclusion, further work should demonstrate whether spatiotemporally controlled, on-site BMP-2 release alone could become a feasible therapeutic approach to repair large osteochondral defects.

  8. Bioavailability of the digestible lysine and total sulfur amino acids in meat and bone meals varying in protein quality.

    Science.gov (United States)

    Wang, X; Parsons, C M

    1998-07-01

    Experiments were conducted to determine whether the digestible Lys, Met, and TSAA in a high and low quality meat and bone meal (MBM) were totally bioavailable for protein synthesis in chicks. True digestibility of amino acids (AA) in the two MBM was determined by the precision-fed cecectomized rooster assay. Bioavailability of the digestible AA was then assessed in three slope-ratio chick growth assays using Lys-, Met-, or TSAA-deficient crystalline AA basal diets that were supplemented with varying levels of the test AA, high or low quality MBM, or AA mixtures simulating the mean digestible AA composition of the high and low quality MBM. Response parameters were weight gain, feed efficiency, body N gain, and body Lys gain in the Lys assay and weight gain and feed efficiency in the Met and TSAA assays. Bioavailability values for the digestible Lys, Met, and TSAA in the MBM and AA mixtures simulating MBM varied depending on response parameter, with values based on feed efficiency generally being highest. No consistent differences in bioavailability of the digestible AA were observed between the two MBM when all AA were considered; however, the bioavailability of the digestible Lys in the low quality MBM was lower than that in the high quality MBM for two of four performance criteria. When considering all response parameters and the AA mixture results, bioavailability of the digestible Lys and Met in the two MBM was generally 90% or greater, whereas bioavailability of the digestible TSAA was only 80% or less. The results of this study indicated that essentially all of the digestible Lys and Met in MBM were bioavailable for protein synthesis and metabolism but suggested that a significant amount of the TSAA, particularly Cys, was not bioavailable.

  9. Assessing the osteoblast transcriptome in a model of enhanced bone formation due to constitutive G{sub s}–G protein signaling in osteoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Wattanachanya, Lalita, E-mail: lalita_md@yahoo.com [Endocrine Research Unit, Veterans Affairs Medical Center and Departments of Medicine and Physiology, University of California, San Francisco, CA (United States); Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok (Thailand); Wang, Liping, E-mail: lipingwang05@yahoo.com [Endocrine Research Unit, Veterans Affairs Medical Center and Departments of Medicine and Physiology, University of California, San Francisco, CA (United States); Millard, Susan M., E-mail: susan.millard@mater.uq.edu.au [Endocrine Research Unit, Veterans Affairs Medical Center and Departments of Medicine and Physiology, University of California, San Francisco, CA (United States); Lu, Wei-Dar, E-mail: weidar_lu@yahoo.com [Endocrine Research Unit, Veterans Affairs Medical Center and Departments of Medicine and Physiology, University of California, San Francisco, CA (United States); O’Carroll, Dylan, E-mail: dylancocarroll@gmail.com [Endocrine Research Unit, Veterans Affairs Medical Center and Departments of Medicine and Physiology, University of California, San Francisco, CA (United States); Hsiao, Edward C., E-mail: Edward.Hsiao@ucsf.edu [Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Francisco, CA (United States); Conklin, Bruce R., E-mail: bconklin@gladstone.ucsf.edu [Gladstone Institute of Cardiovascular Disease, San Francisco, CA (United States); Department of Medicine, University of California, San Francisco, CA (United States); Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA (United States); Nissenson, Robert A., E-mail: Robert.Nissenson@ucsf.edu [Endocrine Research Unit, Veterans Affairs Medical Center and Departments of Medicine and Physiology, University of California, San Francisco, CA (United States)

    2015-05-01

    G protein-coupled receptor (GPCR) signaling in osteoblasts (OBs) is an important regulator of bone formation. We previously described a mouse model expressing Rs1, an engineered constitutively active G{sub s}-coupled GPCR, under the control of the 2.3 kb Col I promoter. These mice showed a dramatic age-dependent increase in trabecular bone of femurs. Here, we further evaluated the effects of enhanced G{sub s} signaling in OBs on intramembranous bone formation by examining calvariae of 1- and 9-week-old Col1(2.3)/Rs1 mice and characterized the in vivo gene expression specifically occurring in osteoblasts with activated G{sub s} G protein-coupled receptor signaling, at the cellular level rather than in a whole bone. Rs1 calvariae displayed a dramatic increase in bone volume with partial loss of cortical structure. By immunohistochemistry, Osterix was detected in cells throughout the inter-trabecular space while Osteocalcin was expressed predominantly in cells along bone surfaces, suggesting the role of paracrine mediators secreted from OBs driven by 2.3 kb Col I promoter could influence early OB commitment, differentiation, and/or proliferation. Gene expression analysis of calvarial OBs revealed that genes affected by Rs1 signaling include those encoding proteins important for cell differentiation, cytokines and growth factors, angiogenesis, coagulation, and energy metabolism. The set of G{sub s}-GPCRs and other GPCRs that may contribute to the observed skeletal phenotype and candidate paracrine mediators of the effect of G{sub s} signaling in OBs were also determined. Our results identify novel detailed in vivo cellular changes of the anabolic response of the skeleton to G{sub s} signaling in mature OBs. - Highlights: • OB expression of an engineered G{sub s}-coupled receptor dramatically increases bone mass. • We investigated the changes in gene expression in vivo in enhanced OB G{sub s} signaling. • Genes in cell cycle and transcription were increased in

  10. Comparison of Demineralized Dentin and Demineralized Freeze Dried Bone as Carriers for Enamel Matrix Proteins in a Rat Critical Size Defect

    Science.gov (United States)

    2005-05-01

    usually requires resorption prior to the formation of new bone. At this early two weeks stage it is possible that there was insufficient time for the... resorptive and formative processes to be completed. At eight weeks the mean RIDIT values for all groups were greater than 0.5, 49 indicating that the...non-collageous proteins of rat incisors dentin. Calcified Tissue Research 1978;25:169-178. Finkelman R., Mohan S., Jennings J., Taylor A., Jepsen S

  11. Maternal protein restriction during pregnancy and lactation alters central leptin signalling, increases food intake, and decreases bone mass in 1 year old rat offspring.

    Science.gov (United States)

    Qasem, Rani J; Li, Jing; Tang, Hee Man; Pontiggia, Laura; D'mello, Anil P

    2016-04-01

    The effects of perinatal nutrition on offspring physiology have mostly been examined in young adult animals. Aging constitutes a risk factor for the progressive loss of metabolic flexibility and development of disease. Few studies have examined whether the phenotype programmed by perinatal nutrition persists in aging offspring. Persistence of detrimental phenotypes and their accumulative metabolic effects are important for disease causality. This study determined the effects of maternal protein restriction during pregnancy and lactation on food consumption, central leptin sensitivity, bone health, and susceptibility to high fat diet-induced adiposity in 1-year-old male offspring. Sprague-Dawley rats received either a control or a protein restricted diet throughout pregnancy and lactation and pups were weaned onto laboratory chow. One-year-old low protein (LP) offspring exhibited hyperphagia. The inability of an intraperitoneal (i.p.) leptin injection to reduce food intake indicated that the hyperphagia was mediated by decreased central leptin sensitivity. Hyperphagia was accompanied by lower body weight suggesting increased energy expenditure in LP offspring. Bone density and bone mineral content that are negatively regulated by leptin acting via the sympathetic nervous system (SNS), were decreased in LP offspring. LP offspring did not exhibit increased susceptibility to high fat diet induced metabolic effects or adiposity. The results presented here indicate that the programming effects of perinatal protein restriction are mediated by specific decreases in central leptin signalling to pathways involved in the regulation of food intake along with possible enhancement of different CNS leptin signalling pathways acting via the SNS to regulate bone mass and energy expenditure.

  12. Aldosterone breakthrough caused by chronic blockage of angiotensin II type 1 receptors in human adrenocortical cells: Possible involvement of bone morphogenetic protein-6 actions

    OpenAIRE

    Otani, Hiroyuki; Otsuka, Fumio; Inagaki, Kenichi; Suzuki, Jiro; Miyoshi, Tomoko; KANO, YOSHIHIRO; GOTO, Junko; Ogura, Toshio; Makino, Hirofumi

    2008-01-01

    Circulating aldosterone concentrations occasionally increase after initial suppression with angiotensin II (Ang II) converting enzyme inhibitors or Ang II type 1 receptor blockers (ARBs), a phenomenon referred to as aldosterone breakthrough. However, the underlying mechanism causing the aldosterone breakthrough remains unknown. Here we investigated whether aldosterone breakthrough occurs in human adrenocortical H295R cells in vitro. We recently reported that bone morphogenetic protein (BMP)-6...

  13. Osteogenic potential of icariin compared with recombinant human bone morphogenetic protein 2 in vitro: a preliminary study

    NARCIS (Netherlands)

    Zhang, X.; Liu, T.; Huang, Y.; Zheng, Y.; Liu, T.; Wismeijer, D.; Liu, Y.

    2015-01-01

    Icariin, the primary active ingredient of Herba Epimedii which has been used for decades to treat bone related maladies in China, has the ability to support bone regeneration. In this study, we investigated icariin's potential to stimulate osteogenesis using an in vitro studies to compare icariin's

  14. Improved osseointegration of dental titanium implants by TiO2 nanotube arrays with recombinant human bone morphogenetic protein-2: a pilot in vivo study

    Science.gov (United States)

    Lee, Jae-Kwan; Choi, Dong-Soon; Jang, Insan; Choi, Won-Youl

    2015-01-01

    TiO2 nanotube arrays on the surface of dental implants were fabricated by two-step anodic oxidation. Their effects on bone-implant contact were researched by a pilot in vivo study. The implants were classified into four groups. An implant group with TiO2 nanotube arrays and recombinant human bone morphogenetic protein-2 (rhBMP-2) was compared with various surface implants, including machined surface, sandblasted large-grit and acid-etched surface, and TiO2 nanotube array surface groups. The diameter of the TiO2 nanotube window and TiO2 nanotube were ~70 nm and ~110 nm, respectively. The rhBMP-2 was loaded into TiO2 nanotube arrays and elution was detected by an interferometric biosensing method. A change in optical thickness of ~75 nm was measured by flow cell testing for 9 days, indicating elution of rhBMP-2 from the TiO2 nanotube arrays. For the in vivo study, the four groups of implants were placed into the proximal tibia of New Zealand White rabbits. In the implant group with TiO2 nanotube arrays and rhBMP-2, the bone-to-implant contact ratio was 29.5% and the bone volume ratio was 77.3%. Bone remodeling was observed not only in the periosteum but also in the interface between the bone and implant threads. These values were higher than in the machined surface, sandblasted large-grit and acid-etched surface, and TiO2 nanotube array surface groups. Our results suggest that TiO2 nanotube arrays could potentially be used as a reservoir for rhBMP-2 to reinforce osseointegration on the surface of dental implants. PMID:25709438

  15. In vivo local co-delivery of recombinant human bone morphogenetic protein-7 and pamidronate via poly-D, L-lactic acid

    Directory of Open Access Journals (Sweden)

    NYC Yu

    2010-12-01

    Full Text Available The effects of bone anabolic agents such as bone morphogenetic proteins (BMPs have the potential to be augmented by co-treatment with an anti-catabolic such as a bisphosphonate. We hypothesised that the effects of bisphosphonates on BMP-induced bone anabolism would be dose dependent, and we aimed to test this in a small animal model. Agents were delivered locally using a biodegradable poly-d, l-lactic-acid (PDLLA polymer delivery system. Recombinant human BMP-7 (25 µg was tested with a range of doses of the bisphosphonate pamidronate (0.02 mg, 0.2 mg and 2 mg local PAM; 0.3 mg/kg and 3 mg/kg thrice-weekly systemic PAM versus BMP-7 alone. Polymer pellets were surgically implanted in the hind limbs of female C57BL6/J mice (8-10 week and ectopic bone nodules were harvested at 3 and 8 weeks post-operatively. At 3 weeks, local low dose PAM (0.02 mg induced a 102% increase in rhBMP-7 induced bone volume (p<0.01 as measured by miroCT, and this was comparable to systemic PAM (0.3 mg/kg thrice-weekly. In contrast, local high dose PAM (2 mg resulted in a 97% decrease in bone volume (p<0.01. Radiography and histology indicated that the polymer vehicle was still largely present at 8 weeks indicating inefficient biodegradation. This is the first study to validate the utility of local co-delivery of BMP/bisphosphonate via biodegradable polymer and supports the continued refinement of more advanced bioresorbable delivery systems for clinical applications.

  16. Effects of Resistive Vibration Exercise Combined with Whey Protein and KHCO3 on Bone Tturnover Markers in Head-down Tilt Bed Rest (MTBR-MNX Study)

    Science.gov (United States)

    Graf, Sonja; Baecker, Natalie; Buehlmeier, Judith; Fischer, Annelie; Smith, Scott M.; Heer, Martina

    2014-01-01

    High protein intake further increases bone resorption markers in head-down tilt bed rest (HDBR), most likely induced by low-grade metabolic acidosis. Adding an alkaline salt to a diet with high protein content prevents this additional rise of bone resorption markers in HDBR. In addition, high protein intake, specifically whey protein, increases muscle protein synthesis and improves glucose tolerance, which both are affected by HDBR. Resistive vibration exercise (RVE) training counteracts the inactivity-induced bone resorption during HDBR. To test the hypothesis that WP plus alkaline salt (KHCO3) together with RVE during HDBR will improve bone turnover markers, we conducted a randomized, three-campaign crossover design study with 12 healthy, moderately fit male subjects (age 34+/-8 y, body mass [BM] 70 +/- 8 kg). All study campaigns consisted of a 7-d ambulatory period, 21days of -6 deg. head-down tilt bed rest (HDBR), and a 6-d recovery period. Diet was standardized and identical across phases. In the control (CON) campaign, subjects received no supplement or RVE. In the intervention campaigns, subjects received either RVE alone or combined with WP and KHCO3 (NEX). WP was applied in 3 doses per day of 0.6 g WP/kg BM together with 6 doses of 15 mmol KHCO3 per day. Eleven subjects completed the RVE and CON campaign, 8 subjects completed all three campaigns. On day 21 of HDBR excretion of the bone resorption marker C-telopeptide (CTX) was 80+/-28% (p<0.001) higher than baseline, serum calcium concentrations increased by 12 +/- 29% (p<0.001) and serum osteocalcin concentrations decreased by 6+/-12% (p=0.001). Urinary CTX excretion was 11+/- 25% (p=0.02) lower on day 21 of HDBR in the RVE- and tended to decrease by 3+/- 22% (p=0.06) in the NEX campaign compared to CON. Urinary calcium excretion was higher on day 21 in HDBR in the RVE and NEX (24+/- 43% p=0.01; 25+/- 37% p=0.03) compared to the CON campaign. We conclude that combination of RVE with WP/KHCO3 was not

  17. Mutation analysis of exon1 of bone morphogenetic protein-15 gene in Iranian patients with polycystic ovarian syndrome

    Science.gov (United States)

    Mehdizadeh, Anahita; Sheikhha, Mohammad Hasan; Kalantar, Seyed Mehdi; Aali, Bibi Shahnaz; Ghanei, Azam

    2016-01-01

    Background: With the prevalence of 6-10%, polycystic ovarian syndrome (PCOS) is considered the most common endocrinological disorder affecting women in their reproductive age. It has been suggested that genetic factors participate in the development of PCOS. Follicular development has been considered as one of the impaired processes in PCOS. Bone morphogenetic protein-15 (BMP-15) gene is a candidate gene in follicular development and its variants may play role in pathogenesis of PCOS. Objective: To investigate whether BMP-15 gene mutations are present in Iranian women with PCOS. Materials and Methods: In this cross-sectional study 5 ml venous blood samples was taken from 70 PCOS women referring to Afzalipour Hospital, Kerman University of Medical Sciences, Kerman, Iran, between January to December 2014. Genomic DNA was extracted from the blood sample by salting out method. Then a set of PCR reactions for exon1 of BMP-15 gene was performed using specific primers followed by genotyping with direct sequencing. Results: Two different polymorphisms were found in the gene under study. In total 20 patients (28.6%) were heterozygote (C/G), and 2 patients (2.86%) were homozygous (G/G) for c.-9C>G in 5´UTR promoter region of BMP-15 gene (rs3810682). In addition, in the coding region of exon1, three patients (4.3%) were heterozygote (G/A) for c.A308G (rs41308602). Two PCOS patients (2.86%) appeared to have both c.-9C>G (C/G) and c.A308G (G/A) variants simultaneously. Conclusion: Our research detected two polymorphisms of BMP-15 gene among PCOS patients, indicating that even though it cannot be concluded that variants of BMP-15 gene are the principal cause of polycystic ovarian syndrome; they could be involved in pathogenic process in development of PCOS. PMID:27679828

  18. Bone morphogenetic protein 4 (BMP4) induces buffalo (Bubalus bubalis) embryonic stem cell differentiation into germ cells.

    Science.gov (United States)

    Shah, Syed Mohmad; Saini, Neha; Ashraf, Syma; Singh, Manoj Kumar; Manik, Radhey Sham; Singla, Suresh Kumar; Palta, Prabhat; Chauhan, Manmohan Singh

    2015-12-01

    The aim of the present study was to investigate the effect of Bone morphogenetic protein 4 (BMP4) stimulation on differentiation of buffalo embryonic stem (ES) cells into germ lineage cells. ES cells were subjected to in vitro differentiation in floating and adherent cultures, under different BMP4 concentrations (20, 50 and 100 ngml(-1)) for different culture intervals (4, 8 and 14 days). qPCR analysis revealed that BMP4 at a concentration of 50-100 ngml(-1) for a culture period of 14 days led to maximum induction of germ lineage genes like DAZL, VASA, PLZF (PGC-specific); SYCP3, MLH1, TNP1/2 and PRM2 (Meiotic genes); BOULE and TEKT1 (Spermatocyte markers); GDF9, ZP2 and 3 (Oocyte markers). The expression levels of all the genes were significantly higher under BMP4 differentiation as compared to BMP4 + NOGGIN and spontaneously differentiated cultures. Immunocytochemical analysis of embryoid bodies (EBs) and monolayer adherent cultures revealed expression of PGC- (c-KIT, DAZL and VASA); Meiotic- (SYCP3, MLH1 and PROTAMINE1); Spermatocyte- (ACROSIN and HAPRIN); and Oocyte- markers (GDF9 and ZP4). Western blotting was positive for VASA, GDF9 and ZP4. Oocyte-like structures (OLS) obtained in monolayer differentiated cultures harbored a big nucleus and a ZP4 coat. They showed embryonic development and progressed through 2-cell, 4-cell, 8-cell and blastocyst-like structures. Global DNA methylation analysis showed significantly (p < 0.05) decreased levels of 5-methyl-2-deoxycytidine in EBs obtained in optimum differentiation medium. The expression of meiotic markers coupled with expression of spermatocyte and oocyte markers is an indication of post-meiotic progression into spermatogenesis and oogenesis, respectively.

  19. Endoglin-mediated suppression of prostate cancer invasion is regulated by activin and bone morphogenetic protein type II receptors.

    Directory of Open Access Journals (Sweden)

    Michael J Breen

    Full Text Available Mortality from prostate cancer (PCa is due to the formation of metastatic disease. Understanding how that process is regulated is therefore critical. We previously demonstrated that endoglin, a type III transforming growth factor β (TGFβ superfamily receptor, suppresses human PCa cell invasion and metastasis. Endoglin-mediated suppression of invasion was also shown by us to be dependent upon the type I TGFβ receptor, activin receptor-like kinase 2 (ALK2, and the downstream effector, Smad1. In this study we demonstrate for the first time that two type II TGFβ receptors are required for endoglin-mediated suppression of invasion: activin A receptor type IIA (ActRIIA and bone morphogenetic protein receptor type II (BMPRII. Downstream signaling through these receptors is predominantly mediated by Smad1. ActRIIA stimulates Smad1 activation in a kinase-dependent manner, and this is required for suppression of invasion. In contrast BMPRII regulates Smad1 in a biphasic manner, promoting Smad1 signaling through its kinase domain but suppressing it through its cytoplasmic tail. BMPRII's Smad1-regulatory effects are dependent upon its expression level. Further, its ability to suppress invasion is independent of either kinase function or tail domain. We demonstrate that ActRIIA and BMPRII physically interact, and that each also interacts with endoglin. The current findings demonstrate that both BMPRII and ActRIIA are necessary for endoglin-mediated suppression of human PCa cell invasion, that they have differential effects on Smad1 signaling, that they make separate contributions to regulation of invasion, and that they functionally and physically interact.

  20. The hedgehog signal induced modulation of bone morphogenetic protein signaling: an essential signaling relay for urinary tract morphogenesis.

    Directory of Open Access Journals (Sweden)

    Ryuma Haraguchi

    Full Text Available BACKGROUND: Congenital diseases of the urinary tract are frequently observed in infants. Such diseases present a number of developmental anomalies such as hydroureter and hydronephrosis. Although some genetically-modified mouse models of growth factor signaling genes reproduce urinary phenotypes, the pathogenic mechanisms remain obscure. Previous studies suggest that a portion of the cells in the external genitalia and bladder are derived from peri-cloacal mesenchymal cells that receive Hedgehog (Hh signaling in the early developmental stages. We hypothesized that defects in such progenitor cells, which give rise to urinary tract tissues, may be a cause of such diseases. METHODOLOGY/PRINCIPAL FINDINGS: To elucidate the pathogenic mechanisms of upper urinary tract malformations, we analyzed a series of Sonic hedgehog (Shh deficient mice. Shh(-/- displayed hydroureter and hydronephrosis phenotypes and reduced expression of several developmental markers. In addition, we suggested that Shh modulation at an early embryonic stage is responsible for such phenotypes by analyzing the Shh conditional mutants. Tissue contribution assays of Hh-responsive cells revealed that peri-cloacal mesenchymal cells, which received Hh signal secreted from cloacal epithelium, could contribute to the ureteral mesenchyme. Gain- and loss-of-functional mutants for Hh signaling revealed a correlation between Hh signaling and Bone morphogenetic protein (Bmp signaling. Finally, a conditional ablation of Bmp receptor type IA (BmprIA gene was examined in Hh-responsive cell lineages. This system thus made it possible to analyze the primary functions of the growth factor signaling relay. The defective Hh-to-Bmp signaling relay resulted in severe urinary tract phenotypes with a decrease in the number of Hh-responsive cells. CONCLUSIONS/SIGNIFICANCE: This study identified the essential embryonic stages for the pathogenesis of urinary tract phenotypes. These results suggested that Hh

  1. Soluble Jagged 1/Fc chimera protein induces the differentiation and maturation of bone marrow-derived dendritic cells

    Institute of Scientific and Technical Information of China (English)

    XING FeiYue; LIU Jing; YU Zhe; JI YuHua

    2008-01-01

    A soluble Jagged 1/Fc chimera protein (Jagged 1/Fc) was directly used to induce differentiation and maturation of bone marrow-derived dendritic cells (DCs) in mice in vitro. A model of inducing and am-plifying DCs in vitro was established. The effect of Jagged 1/Fc on morphology of DCs induced by both rmGM-CSF and rmlL-4 was observed under a confocal microscope. A fluorescein-labeled monoclonal antibody staining combined with flow cytometry was applied to detect the effect of Jagged 1/Fc on the expression of CD11c, MHC-Ⅱ, CD86, CD80 and CD40 molecules on the surface of DCs. The results showed that Jagged 1/Fc did not affect the morphological properties of DC differentiation induced by both rmGM-CSF and rmlL-4. But it could promote the differentiation and maturation of DCs induced by both. The effect of it was strikingly different in the expression profile of co-stimulating molecules and the morphologic properties of DCs from lipopolysaccharide (LPS). The levels of MHC-Ⅱ and CD40 molecule expression on the surface of DCs stimulated by Jagged 1/Fc were significantly lower than those stimulated by LPS, and the level of CD80 expression on the surface of DCs induced by Jagged 1/Fc was near to that induced by LPS. Jagged 1/Fc had no influence on the expression of CD86 mole-cule on the surface of DCs. Jagged 1/Fc when used alone could not maintain the growth, differentiation and maturation of DCs. All the findings indicate that Jagged 1/Fc influences the differentiation and maturation of DCs, which is not markedly similar to LPS, providing important evidence for its devel-opment and application as a novel immunosuppressant.

  2. Furin is the major processing enzyme of the cardiac-specific growth factor bone morphogenetic protein 10.

    Science.gov (United States)

    Susan-Resiga, Delia; Essalmani, Rachid; Hamelin, Josée; Asselin, Marie-Claude; Benjannet, Suzanne; Chamberland, Ann; Day, Robert; Szumska, Dorota; Constam, Daniel; Bhattacharya, Shoumo; Prat, Annik; Seidah, Nabil G

    2011-07-01

    Bone morphogenetic protein 10 (BMP10) is a member of the TGF-β superfamily and plays a critical role in heart development. In the postnatal heart, BMP10 is restricted to the right atrium. The inactive pro-BMP10 (∼60 kDa) is processed into active BMP10 (∼14 kDa) by an unknown protease. Proteolytic cleavage occurs at the RIRR(316)↓ site (human), suggesting the involvement of proprotein convertase(s) (PCs). In vitro digestion of a 12-mer peptide encompassing the predicted cleavage site with furin, PACE4, PC5/6, and PC7, showed that furin cleaves the best, whereas PC7 is inactive on this peptide. Ex vivo studies in COS-1 cells, a cell line lacking PC5/6, revealed efficient processing of pro-BMP10 by endogenous PCs other than PC5/6. The lack of processing of overexpressed pro-BMP10 in the furin- and PACE4-deficient cell line, CHO-FD11, and in furin-deficient LoVo cells, was restored by stable (CHO-FD11/Fur cells) or transient (LoVo cells) expression of furin. Use of cell-permeable and cell surface inhibitors suggested that endogenous PCs process pro-BMP10 mostly intracellularly, but also at the cell surface. Ex vivo experiments in mouse primary hepatocytes (wild type, PC5/6 knock-out, and furin knock-out) corroborated the above findings that pro-BMP10 is a substrate for endogenous furin. Western blot analyses of heart right atria extracts from wild type and PACE4 knock-out adult mice showed no significant difference in the processing of pro-BMP10, implying no in vivo role of PACE4. Overall, our in vitro, ex vivo, and in vivo data suggest that furin is the major convertase responsible for the generation of BMP10.

  3. Furin Is the Major Processing Enzyme of the Cardiac-specific Growth Factor Bone Morphogenetic Protein 10*

    Science.gov (United States)

    Susan-Resiga, Delia; Essalmani, Rachid; Hamelin, Josée; Asselin, Marie-Claude; Benjannet, Suzanne; Chamberland, Ann; Day, Robert; Szumska, Dorota; Constam, Daniel; Bhattacharya, Shoumo; Prat, Annik; Seidah, Nabil G.

    2011-01-01

    Bone morphogenetic protein 10 (BMP10) is a member of the TGF-β superfamily and plays a critical role in heart development. In the postnatal heart, BMP10 is restricted to the right atrium. The inactive pro-BMP10 (∼60 kDa) is processed into active BMP10 (∼14 kDa) by an unknown protease. Proteolytic cleavage occurs at the RIRR316↓ site (human), suggesting the involvement of proprotein convertase(s) (PCs). In vitro digestion of a 12-mer peptide encompassing the predicted cleavage site with furin, PACE4, PC5/6, and PC7, showed that furin cleaves the best, whereas PC7 is inactive on this peptide. Ex vivo studies in COS-1 cells, a cell line lacking PC5/6, revealed efficient processing of pro-BMP10 by endogenous PCs other than PC5/6. The lack of processing of overexpressed pro-BMP10 in the furin- and PACE4-deficient cell line, CHO-FD11, and in furin-deficient LoVo cells, was restored by stable (CHO-FD11/Fur cells) or transient (LoVo cells) expression of furin. Use of cell-permeable and cell surface inhibitors suggested that endogenous PCs process pro-BMP10 mostly intracellularly, but also at the cell surface. Ex vivo experiments in mouse primary hepatocytes (wild type, PC5/6 knock-out, and furin knock-out) corroborated the above findings that pro-BMP10 is a substrate for endogenous furin. Western blot analyses of heart right atria extracts from wild type and PACE4 knock-out adult mice showed no significant difference in the processing of pro-BMP10, implying no in vivo role of PACE4. Overall, our in vitro, ex vivo, and in vivo data suggest that furin is the major convertase responsible for the generation of BMP10. PMID:21550985

  4. Surface functionalization of nanoporous alumina with bone morphogenetic protein 2 for inducing osteogenic differentiation of mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yuanhui; Ju, Yang; Morita, Yasuyuki; Xu, Baiyao [Department of Mechanical Science and Engineering, Nagoya University, Nagoya 464-8603 (Japan); Song, Guanbin [Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China)

    2014-04-01

    Many studies have demonstrated the possibility to regulate cellular behavior by manipulating the specific characteristics of biomaterials including the physical features and chemical properties. To investigate the synergistic effect of chemical factors and surface topography on the growth behavior of mesenchymal stem cells (MSCs), bone morphorgenic protein 2 (BMP2) was immobilized onto porous alumina substrates with different pore sizes. The BMP2-immobilized alumina substrates were characterized with scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Growth behavior and osteogenic differentiation of MSCs cultured on the different substrates were investigated. Cell adhesion and morphological changes were observed with SEM, and the results showed that the BMP2-immobilized alumina substrate was able to promote adhesion and spreading of MSCs. MTT assay and immunofluorescence staining of integrin β1 revealed that the BMP2-immobilized alumina substrates were favorable for cell growth. To evaluate the differentiation of MSCs, osteoblastic differentiation markers, such as alkaline phosphatase (ALP) activity and mineralization, were investigated. Compared with those of untreated alumina substrates, significantly higher ALP activities and mineralization were detected in cells cultured on BMP2-immobilized alumina substrates. The results suggested that surface functionalization of nanoporous alumina substrates with BMP2 was beneficial for cell growth and osteogenic differentiation. With the approach of immobilizing growth factors onto material substrates, it provided a new insight to exploit novel biofunctional materials for tissue engineering. - Highlights: • BMP2 was immobilized onto nanoporous alumina substrates with different pore sizes. • BMP2-immobilized substrates were able to promote adhesion and spreading of MSCs. • BMP2-immobilized substrates were favorable for cell growth of MSCs. • BMP2-immobilized substrates promoted osteogenic

  5. Neuropeptide Y, substance P, and human bone morphogenetic protein 2 stimulate human osteoblast osteogenic activity by enhancing gap junction intercellular communication

    Energy Technology Data Exchange (ETDEWEB)

    Ma, W.H.; Liu, Y.J.; Wang, W.; Zhang, Y.Z. [The Third Hospital of Hebei Medical University, The Provincial Key Laboratory for Orthopedic Biomechanics of Hebei, Shijiazhuang, Hebei Province (China)

    2015-02-13

    Bone homeostasis seems to be controlled by delicate and subtle “cross talk” between the nervous system and “osteo-neuromediators” that control bone remodeling. The purpose of this study was to evaluate the effect of interactions between neuropeptides and human bone morphogenetic protein 2 (hBMP2) on human osteoblasts. We also investigated the effects of neuropeptides and hBMP2 on gap junction intercellular communication (GJIC). Osteoblasts were treated with neuropeptide Y (NPY), substance P (SP), or hBMP2 at three concentrations. At various intervals after treatment, cell viability was measured by the MTT assay. In addition, cellular alkaline phosphatase (ALP) activity and osteocalcin were determined by colorimetric assay and radioimmunoassay, respectively. The effects of NPY, SP and hBMP on GJIC were determined by laser scanning confocal microscopy. The viability of cells treated with neuropeptides and hBMP2 increased significantly in a time-dependent manner, but was inversely associated with the concentration of the treatments. ALP activity and osteocalcin were both reduced in osteoblasts exposed to the combination of neuropeptides and hBMP2. The GJIC of osteoblasts was significantly increased by the neuropeptides and hBMP2. These results suggest that osteoblast activity is increased by neuropeptides and hBMP2 through increased GJIC. Identification of the GJIC-mediated signal transduction capable of modulating the cellular activities of bone cells represents a novel approach to studying the biology of skeletal innervation.

  6. Bone within a bone

    Energy Technology Data Exchange (ETDEWEB)

    Williams, H.J.; Davies, A.M. E-mail: wendy.turner@roh.nhs.uk; Chapman, S

    2004-02-01

    The 'bone within a bone' appearance is a well-recognized radiological term with a variety of causes. It is important to recognize this appearance and also to be aware of the differential diagnosis. A number of common conditions infrequently cause this appearance. Other causes are rare and some remain primarily of historical interest, as they are no longer encountered in clinical practice. In this review we illustrate some of the conditions that can give the bone within a bone appearance and discuss the physiological and pathological aetiology of each where known.

  7. Effects of dietary crude protein on the growth performance, carcass characteristics and serum biochemical indexes of Lueyang black-boned chickens from seven to twelve weeks of age

    Directory of Open Access Journals (Sweden)

    SK Liu

    2015-03-01

    Full Text Available This study was undertaken to assess dietary crude protein (CP concentration for optimum growth performance and carcass characteristics of Lueyang black-boned chicken. In total, six hundred 42-day-old Lueyang black-boned chicks were randomly assigned to five treatments, each with six replicate pens with ten males and ten females. The birds fed experimental diets with different levels of protein concentration of 120, 140, 160, 180 and 200 g kg-1 from seven to twelve weeks of age respectively. On day of 84, weight gain, feed intake, and feed:gain ratio were measured, and two chickens (one male and one female close to the average weight of all birds in each treatment were selected from each pen and sacrificed to evaluate carcass traits and selected serum biochemical indexes. Dietary CP concentration did not have any significant influence on feed intake (p>0.05. The birds fed the diet with 180 or 160 g kg-1 CP concentration exhibited greater (p<0.05 growth rate, better feed conversion ratio, relative breast weight and albumin concentration in serum than that of those fed other dietary CP concentrations. According to the results of regression analysis, the CP requirements of Lueyang black-boned chicken from seven to twelve weeks of age for optimal weight gain and feed:gain ratio were 174 and 170 g kg-1, respectively.

  8. A Novel Human TGF-β1 Fusion Protein in Combination with rhBMP-2 Increases Chondro-Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells

    Science.gov (United States)

    Claros, Silvia; Rico-Llanos, Gustavo A.; Becerra, José; Andrades, José A.

    2014-01-01

    Transforming growth factor-beta (TGF-β) is involved in processes related to the differentiation and maturation of osteoprogenitor cells into osteoblasts. Rat bone marrow (BM) cells were cultured in a collagen-gel containing 0.5% fetal bovine serum (FBS) for 10 days in the presence of rhTGF (recombinant human TGF)-β1-F2, a fusion protein engineered to include a high-affinity collagen-binding decapeptide derived from von Willebrand factor. Subsequently, cells were moderately expanded in medium with 10% FBS for 4 days and treated with a short pulse of rhBMP (recombinant human bone morphogenetic protein)-2 for 4 h. During the last 2 days, dexamethasone and β-glycerophosphate were added to potentiate osteoinduction. Concomitant with an up-regulation of cell proliferation, DNA synthesis levels were determined. Polymerase chain reaction was performed to reveal the possible stemness of these cells. Osteogenic differentiation was evaluated in terms of alkaline phosphatase activity and mineralized matrix formation as well as by mRNA expression of osteogenic marker genes. Moreover, cells were placed inside diffusion chambers and implanted subcutaneously into the backs of adult rats for 4 weeks. Histological study provided evidence of cartilage and bone-like tissue formation. This experimental procedure is capable of selecting cell populations from BM that, in the presence of rhTGF-β1-F2 and rhBMP-2, achieve skeletogenic potential in vitro and in vivo. PMID:24968268

  9. A Novel Human TGF-β1 Fusion Protein in Combination with rhBMP-2 Increases Chondro-Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Silvia Claros

    2014-06-01

    Full Text Available Transforming growth factor-beta (TGF-β is involved in processes related to the differentiation and maturation of osteoprogenitor cells into osteoblasts. Rat bone marrow (BM cells were cultured in a collagen-gel containing 0.5% fetal bovine serum (FBS for 10 days in the presence of rhTGF (recombinant human TGF-β1-F2, a fusion protein engineered to include a high-affinity collagen-binding decapeptide derived from von Willebrand factor. Subsequently, cells were moderately expanded in medium with 10% FBS for 4 days and treated with a short pulse of rhBMP (recombinant human bone morphogenetic protein-2 for 4 h. During the last 2 days, dexamethasone and β-glycerophosphate were added to potentiate osteoinduction. Concomitant with an up-regulation of cell proliferation, DNA synthesis levels were determined. Polymerase chain reaction was performed to reveal the possible stemness of these cells. Osteogenic differentiation was evaluated in terms of alkaline phosphatase activity and mineralized matrix formation as well as by mRNA expression of osteogenic marker genes. Moreover, cells were placed inside diffusion chambers and implanted subcutaneously into the backs of adult rats for 4 weeks. Histological study provided evidence of cartilage and bone-like tissue formation. This experimental procedure is capable of selecting cell populations from BM that, in the presence of rhTGF-β1-F2 and rhBMP-2, achieve skeletogenic potential in vitro and in vivo.

  10. Three-dimensional Fabrication of Bio-derived Bone Compounded with Osteoblasts Transfected by Green Fluorescent Protein

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    1 Introduction Tissue engineering has emerged as a possible alternative strategy to regenerate bone. Three components are essential: isolation and expansion of osteoprogenitors or mesenchymal stem cells, provision of appropriate osteoinductive factors and an appropriately designed scaffold that mimics the structural environment to promote bone regeneration~([1]). By enabling reproducible and controlled changes of specific environmental factors, rotating wall vessel bioreactor (RWVB) systems provide both the...

  11. In vitro differentiation of bone marrow stromal cells into neurons and glial cells and differential protein expression in a two-compartment bone marrow stromal cell/neuron co-culture system.

    Science.gov (United States)

    Qi, Xu; Shao, Ming; Peng, Haisheng; Bi, Zhenggang; Su, Zhiqiang; Li, Hulun

    2010-07-01

    This study was performed to establish a bone marrow stromal cell (BMSC)/neuron two-compartment co-culture model in which differentiation of BMSCs into neurons could occur without direct contact between the two cell types, and to investigate protein expression changes during differentiation of this entirely BMSC-derived population. Cultured BMSCs isolated from Wistar rats were divided into three groups: BMSC culture, BMSC/neuron co-culture and BMSC/neuron two-compartment co-culture. Cells were examined for neuron-specific enolase (NSE) and glial fibrillary acidic protein (GFAP) expression. The electrophysiological behavior of the BMSCs was examined using patch clamping. Proteins that had significantly different expression levels in BMSCs cultured alone and co-cultured with neurons were studied using a protein chip-mass spectroscopy technique. Expression of NSE and GFAP were significantly higher in co-culture cells than in two-compartment co-culture cells, and significantly higher in both co-culture groups than in BMSCs cultured alone. Five proteins showed significant changes in expression during differentiation: TIP39_RAT and CALC_RAT underwent increases, and INSL6_RAT, PNOC_RAT and PCSK1_RAT underwent decreases in expression. We conclude that BMSCs can differentiate into neurons during both contact co-culture with neurons and two-compartment co-culture with neurons. The rate at which BMSCs differentiated into neurons was higher in contact co-culture than in non-contact co-culture.

  12. Comparative role of phosphotyrosine kinase domains of c-ros and c-ret protooncogenes in metanephric development with respect to growth factors and matrix morphogens.

    Science.gov (United States)

    Liu, Z Z; Wada, J; Kumar, A; Carone, F A; Takahashi, M; Kanwar, Y S

    1996-08-25

    Receptor-like protooncogenes, with tyrosine kinase catalytic domains, are expressed in neoplastic and fetal tissues and potentially have a role in embryonic development. Which protooncogene may have the dominant role in embryonic renal development during the "postinductive" period, i.e., Day 10 onward, was addressed in this study by utilizing an in vitro organ culture system. The role of various receptor-like protooncogenes, with the emphasis on c-ros and c-ret, was investigated by antisense-oligodeoxynucleotide (ODN) gene-targeting strategies at a point in metanephric development when reciprocal-inductive interactions between the epithelium and mesenchyme have already been initiated and are rampant. Also, their relationship with other morphogens, like extracellular matrix (ECM) proteins and growth factors, was studied. Initial in situ hybridization and RT-PCR analyses revealed a similar spatiotemporal expression for both c-ros and c-ret in the embryonic kidneys. At Day 13, they were mainly expressed in the developing nephrons in the nephrogenic zone and ureteric bud branches, where the signals from the mesenchymal ligands are transduced to the epithelial cell surface receptors. Minimal expression was observed in the newborn kidneys. Inclusion of antisense ODNs, derived from the phosphotyrosine kinase domains, inhibited metanephric growth in the organ culture; the most dramatic effects were observed with the c-ret antisense ODN. The c-ret-induced dysmorphogenetic effects were characterized as a decrease in the population of nephrons, atrophy of the mesenchymal cells, and loss of acuteness of the tips of ureteric bud branches. Interestingly, the ureteric bud branches continue to grow in the atrophic mesenchyme. Both c-ros and c-ret antisense ODNs reduced the gene expression and biosynthesis of various ECM proteins. The proteoglycans, expressed at the epithelial:mesenchymal interface, were most adversely affected, especially by the c-ret antisense. The treatment of

  13. Altering adsorbed proteins or cellular gene expression in bone-metastatic cancer cells affects PTHrP and Gli2 without altering cell growth

    Directory of Open Access Journals (Sweden)

    Jonathan M. Page

    2015-09-01

    Full Text Available The contents of this data in brief are related to the article titled “Matrix Rigidity Regulates the Transition of Tumor Cells to a Bone-Destructive Phenotype through Integrin β3 and TGF-β Receptor Type II”. In this DIB we will present our supplemental data investigating Integrin expression, attachment of cells to various adhesion molecules, and changes in gene expression in multiple cancer cell lines. Since the interactions of Integrins with adsorbed matrix proteins are thought to affect the ability of cancer cells to interact with their underlying substrates, we examined the expression of Integrin β1, β3, and β5 in response to matrix rigidity. We found that only Iβ3 increased with increasing substrate modulus. While it was shown that fibronectin greatly affects the expression of tumor-produced factors associated with bone destruction (parathyroid hormone-related protein, PTHrP, and Gli2, poly-l-lysine, vitronectin and type I collagen were also analyzed as potential matrix proteins. Each of the proteins was independently adsorbed on both rigid and compliant polyurethane films which were subsequently used to culture cancer cells. Poly-l-lysine, vitronectin and type I collagen all had negligible effects on PTHrP or Gli2 expression, but fibronectin was shown to have a dose dependent effect. Finally, altering the expression of Iβ3 demonstrated that it is required for tumor cells to respond to the rigidity of the matrix, but does not affect other cell growth or viability. Together these data support the data presented in our manuscript to show that the rigidity of bone drives Integrinβ3/TGF-β crosstalk, leading to increased expression of Gli2 and PTHrP.

  14. Spinal IFN-γ-induced protein-10 (CXCL10) mediates metastatic breast cancer-induced bone pain by activation of microglia in rat models.

    Science.gov (United States)

    Bu, Huilian; Shu, Bin; Gao, Feng; Liu, Cheng; Guan, Xuehai; Ke, Changbin; Cao, Fei; Hinton, Antentor Othrell; Xiang, Hongbing; Yang, Hui; Tian, Xuebi; Tian, Yuke

    2014-01-01

    Cancer-induced bone pain (CIBP) is a common clinical problem in breast cancer patients with bone metastasis. Recent studies shows chemokines are novel targets for treatment of CIBP. In this study, we intra-tibial inoculated with Walker 256 rat mammary gland carcinoma cells into rat bone to established metastatic breast cancer. Then we measured the expression of CXCL10 in the spinal cord of metastatic bone cancer rats, investigated the role of CXCL10 in the development of CIBP, and the underlying mechanism. Results revealed that after intra-tibial inoculation with Walker 256 cells, rats showed up-regulation of CXCL10 and its receptor CXCR3 in the spinal cord. Interestingly, intrathecally injection of recombinant CXCL10 protein induced mechanical allodynia in naïve rats. Blocking the function of CXCL10/CXCR3 pathway via anti-CXCL10 antibody or CXCR3 antagonist prevented the development of CIBP and microglial activation. Moreover, CXCL10-induced mechanical allodynia was rescued by minocycline treatment during the late-stage of CIBP, days 10-14. The regulation of CXCL10 expression involved microglial activation in a manner of autocrine positive feedback. These results suggest that CXCL10 may be a necessary algogenic molecule, especially in the development of CIBP. Its function was partly mediated via spinal microglial activation. This study provides a novel insight into the biological function of chemokine CXCL10 in the molecular mechanism underlying cancer pain. It also provides new target for clinical treatment of metastatic breast cancer-induced bone pain in future.

  15. Staphylococcus aureus protein A binding to osteoblast tumour necrosis factor receptor 1 results in activation of nuclear factor kappa B and release of interleukin-6 in bone infection.

    Science.gov (United States)

    Claro, Tânia; Widaa, Amro; McDonnell, Cormac; Foster, Timothy J; O'Brien, Fergal J; Kerrigan, Steven W

    2013-01-01

    Staphylococcus aureus is the major pathogen among the staphylococci and the most common cause of bone infections. These infections are mainly characterized by bone destruction and inflammation, and are often debilitating and very difficult to treat. Previously we demonstrated that S. aureus protein A (SpA) can bind to osteoblasts, which results in inhibition of osteoblast proliferation and mineralization, apoptosis, and activation of osteoclasts. In this study we used small interfering RNA (siRNA) to demonstrate that osteoblast tumour necrosis factor receptor-1 (TNFR-1) is responsible for the recognition of and binding to SpA. TNFR-1 binding to SpA results in the activation of nuclear factor kappa B (NFκB). In turn, NFκB translocates to the nucleus of the osteoblast, which leads to release of interleukin 6 (IL-6). Silencing TNFR-1 in osteoblasts or disruption of the spa gene in S. aureus prevented both NFκB activation and IL-6 release. As well as playing a key role in proinflammatory reactions, IL-6 is also an important osteotropic factor. Release of IL-6 from osteoblasts results in the activation of the bone-resorbing cells, the osteoclasts. Consistent with our results described above, both silencing TNFR-1 in osteoblasts and disruption of spa in S. aureus prevented osteoclast activation. These studies are the first to demonstrate the importance of the TNFR-1-SpA interaction in bone infection, and may help explain the mechanism through which osteoclasts become overactivated, leading to bone destruction. Anti-inflammatory drug therapy could be used either alone or in conjunction with antibiotics to treat osteomyelitis or for prophylaxis in high-risk patients.

  16. Pregnancy associated plasma protein A2 (PAPP-A2) affects bone size and shape and contributes to natural variation in postnatal growth in mice.

    Science.gov (United States)

    Christians, Julian Kenneth; de Zwaan, Devin Rhys; Fung, Sunny Ho Yeung

    2013-01-01

    Pregnancy associated plasma protein A2 (PAPP-A2) is a protease of insulin-like growth factor binding protein 5 and is receiving increasing attention for its roles in pregnancy and postnatal growth. The goals of the present study were to characterize the effects of PAPP-A2 deletion on bone size and shape in mice at 10 weeks of age, and to determine whether Pappa2 is the gene responsible for a previously-identified quantitative trait locus (QTL) contributing to natural variation in postnatal growth in mice. Mice homozygous for constitutive PAPP-A2 deletion were lighter than wild-type littermates, and had smaller mandible dimensions and shorter skull, humerus, femur, tibia, pelvic girdle, and tail bone. Furthermore, PAPP-A2 deletion reduced mandible dimensions and the lengths of the skull, femur, pelvic girdle, and tail bone more than would be expected due to the effect on body mass. In addition to its effects on bone size, PAPP-A2 deficiency also altered the shape of the mandible and pelvic girdle, as assessed by geometric morphometrics. Mice homozygous for the PAPP-A2 deletion had less deep mandibles, and pelvic girdles with a more feminine shape. Using a quantitative complementation test, we confirmed that Pappa2 is responsible for the effects of the previously-identified QTL, demonstrating that natural variation in the Pappa2 gene contributes to variation in postnatal growth in mice. If similar functional variation in the Pappa2 gene exists in other species, effects of this variation on the shape of the pelvic girdle might explain the previously-reported associations between Pappa2 SNPs and developmental dysplasia of the hip in humans, and birthing in cattle.

  17. Advances in Bone Morphogenetic Protein-Mediated Gene Therapy%骨形成蛋白介导的基因治疗研究进展

    Institute of Scientific and Technical Information of China (English)

    司晓辉; 杨连君; 冯志军; 刘艳琳; 吕晶; 张雪

    2011-01-01

    Gene therapy is a technique that draws on the introduction of new genes into cells for the purpose of treating disease by restoring or adding gene expression. Bone morphogenetic proteins (BMP) can be delivered in bone defect or fracture local site by means of gene therapy without using heterogeneous carrier. At present, there are two alternative approaches for gene therapy in vivo and ex vivo, which is useful in the healing of the bone and cartilage defect, spinal fusion, craniofacial and dental repair, tendon and ligament formation,and in the treatment of degenerative disc disease. In conclusion, BMP gene therapy is an efficient, economic and promising strategy.%基因治疗是指通过导入基因的功能片段改善机体生理状况或者治疗疾病.利用基因治疗可在骨缺损或骨折局部释放骨形成蛋白(bone morphogenetic proteins,BMP),并且无需异体载体,方法包括体内法和离体法.BMP基因治疗可以促进骨和软骨形成、脊柱融合、颌面骨和牙齿修复、肌腱韧带形成,此外对椎间盘退变性疾病也可采用BMP基因治疗.总之BMP基因治疗方法经济有效,是有前景的治疗手段.

  18. Bone morphogenetic protein-15 in follicle fluid combined with age may differentiate between successful and unsuccessful poor ovarian responders

    Directory of Open Access Journals (Sweden)

    Wu Yan-Ting

    2012-12-01

    Full Text Available Abstract Background The counselling of poor ovarian responders about the probability of pregnancy remains a puzzle for gynaecologists. The aim of this study was to optimise the management of poor responders by investigating the role of the oocyte-derived factor bone morphogenetic protein-15 (BMP-15 combined with chronological age in the prediction of the outcome of in-vitro fertilisation-embryo transfer (IVF-ET in poor responders. Methods A retrospective study conducted in a university hospital. A total of 207 poor ovarian responders who reached the ovum pick-up stage undergoing IVF/intracytoplasmic sperm injection (ICSI with three or fewer follicles no less than 14 mm on the day of oocyte retrieval were recruited from July 1, 2008 to December 31, 2009. Another 215 coinstantaneous cycles with normal responses were selected as controls. The BMP-15 levels in the follicular fluid (FF of the 207 poor responders were analysed by western blot. Based on the FF BMP-15 level and age, poor responders were sub-divided into four groups. The main outcome measures were the FF BMP-15 level, implantation rate, pregnancy rate, and live birth rate. Results The implantation rate (24.2% vs. 15.3%, chemical pregnancy rate (40% vs. 23.7%, clinical pregnancy rate (36.5% vs. 20.4% and live birth rate (29.4% vs. 15.1% in the high BMP-15 group were significantly higher than those in the low BMP-15 group. Furthermore, poor responders aged less than or equal to 35 years with a higher FF BMP-15 level had the best implantation, pregnancy and live birth rates, which were comparable with those of normal responders. Conclusions Our study suggests a potential role of BMP-15 in the prediction of the IVF outcome. A high FF BMP-15 combined with an age less than or equal to 35 years may be used as a potential indicator for repeating IVF cycles in poor ovarian responders.

  19. Expression of bone morphogenetic protein 7 in the cerebral cortex of rats after ischemic-hypoxic injury

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    BACKGROUND: Some researches demonstrate that exogenous bone morphogenetic protein 7 (BMP-7) can protect ischemic cerebral nerve tissue and promote recovery of motor energy function; however, there is lack of direct evidences of endogenous BMP-7 effect.OBJECTIVE: To observe the expression of endogenous BMP-7 in nerve tissue with ischemic-hypoxic injury and investigate the possible effects on damaged nerve tissue.DESIGN: Observational contrast animal study.SETTING: Department of Anatomy and Histoembryology, Peking University Health Science Center.MATERIALS: The experiment was carried out in the Nerve Researching Laboratory of Anatomy Department, Peking University Health Science Center from October 2006 to March 2007. A total of 25 adult male SD rats weighing 250 - 300 g and several newborn SD rats were selected from Experimental Animal Center, Peking University Health Science Center. Rabbit-anti-BMP-7 polyclonal antibody was provided by Wuhan Boster Company.METHODS: ① Adult rats were randomly divided into ischemia group (n =10), sham operation group (n =10) and normal group (n =5). Right external-internal carotid artery occlusion was used to infarct middle cerebral artery of adult rats in the ischemia group so as to copy focal cerebral infarction models. Line cork was inserted in crotch of internal and external carotid artery of adult rats in the sham operation group, while adult rats in the normal group were not given any treatments. ② Cerebral cortex of newborn rats was separated to obtain cell suspension. Cells which were cultured for 10 days were divided into control group and hypoxia/reoxygenation group. And then, cells in the hypoxia/reoxygenation group were cultured in hypoxic incubator for 4 hours and given reoxygenation for 24 hours.MAIN OUTCOME MEASURES: Immunohistochemical method was used to measure expression of BMP-7 in cerebral cortex at 24 hours after ischemia/reperfusion culture and in primary hypoxic culture.RESULTS: ① At 24 hours after

  20. The association of matrix Gla protein isomers with calcification in capsules surrounding silicone breast implants.

    Science.gov (United States)

    Hunter, Larry W; Lieske, John C; Tran, Nho V; Miller, Virginia M

    2011-11-01

    Implanted silicone medical prostheses induce a dynamic sequence of histologic events in adjacent tissue resulting in the formation of a fibrotic peri-prosthetic capsule. In some cases, capsular calcification occurs, requiring surgical intervention. In this study we investigated capsules from silicone gel-filled breast prostheses to test the hypothesis that this calcification might be regulated by the small vitamin K-dependent protein, matrix Gla protein (MGP), a potent inhibitor of arterial calcification, or by Fetuin-A, a hepatocyte-derived glycoprotein also implicated as a regulator of pathologic calcification. Immunolocalization studies of explanted capsular tissue, using conformation-specific antibodies, identified the mineralization-protective γ-carboxylated MGP isomer (cMGP) within cells of uncalcified capsules, whereas the non-functional undercarboxylated isomer (uMGP) was typically absent. Both were upregulated in calcific capsules and co-localized with mineral plaque and adjacent fibers. Synovial-like metaplasia was present in one uncalcified capsule in which MGP species were differentially localized within the pseudosynovium. Fetuin-A was localized to cells within uncalcified capsules and to mineral deposits within calcific capsules. The osteoinductive cytokine bone morphogenic protein-2 localized to collagen fibers in uncalcified capsules. These findings demonstrate that MGP, in its vitamin K-activated conformer, may represent a pharmacological target to sustain the health of the peri-prosthetic tissue which encapsulates silicone breast implants as well as other implanted silicone medical devices.

  1. Investigation of gene expressions in differentiated cell derived bone marrow stem cells during bone morphogenetic protein-4 treatments with Fourier transform infrared spectroscopy

    Science.gov (United States)

    Zafari, Jaber; Jouni, Fatemeh Javani; Ahmadvand, Ali; Abdolmaleki, Parviz; Soodi, Malihe; Zendehdel, Rezvan

    2017-02-01

    A model was set up to predict the differentiation patterns based on the data extracted from FTIR spectroscopy. For this reason, bone marrow stem cells (BMSCs) were differentiated to primordial germ cells (PGCs). Changes in cellular macromolecules in the time of 0, 24, 48, 72, and 96 h of differentiation, as different steps of the differentiation procedure were investigated by using FTIR spectroscopy. Also, the expression of pluripotency (Oct-4, Nanog and c-Myc) and specific genes (Mvh, Stella and Fragilis) were investigated by real-time PCR. However, the expression of genes in five steps of differentiation was predicted by FTIR spectroscopy. FTIR spectra showed changes in the template of band intensities at different differentiation steps. There are increasing changes in the stepwise differentiation procedure for the ratio area of CH2, which is symmetric to CH2 asymmetric stretching. An ensemble of expert methods, including regression tree (RT), boosting algorithm (BA), and generalized regression neural network (GRNN), was the best method to predict the gene expression by FTIR spectroscopy. In conclusion, the model was able to distinguish the pattern of different steps from cell differentiation by using some useful features extracted from FTIR spectra.

  2. Reliable and inexpensive expression of large, tagged, exogenous proteins in murine bone marrow-derived macrophages using a second generation lentiviral system

    Directory of Open Access Journals (Sweden)

    Matthew R. Miller

    2015-08-01

    Full Text Available Over the past two decades, researchers have struggled to efficiently express foreign DNA in primary macrophages, impeding research progress. The applications of lipofection, electroporation, microinjection, and viral-mediated transfer typically result in disruptions in macrophage differentiation and function, low expression levels of exogenous proteins, limited efficiency and high cell mortality. In this report, after extensive optimization, we present a method of expressing large tagged proteins at high efficiency, consistency, and low cost using lentiviral infection. This method utilizes laboratory-propagated second generation plasmids to produce efficient virus that can be stored for later use. The expression of proteins up to 150 kDa in size is achieved in 30–70% of cells while maintaining normal macrophage differentiation and morphology as determined by fluorescence microscopy and Western blot analysis. This manuscript delineates the reagents and methods used to produce lentivirus to express exogenous DNA in murine bone marrow-derived macrophages sufficient for single cell microscopy as well as functional assays requiring large numbers of murine bone marrow-derived macrophages.

  3. Effect of dietary energy and protein on the performance, egg quality, bone mineral density, blood properties and yolk fatty acid composition of organic laying hens

    Directory of Open Access Journals (Sweden)

    Md. Rakibul Hassan

    2013-02-01

    Full Text Available An experiment was conducted to evaluate the effect of dietary metabolizable energy (ME and crude protein (CP on the performance, egg quality, blood properties, bone characteristics and yolk fatty acid composition of organic laying hens. At 23 weeks, a total of 600 Brown nick laying hens were randomly distributed into 24 outdoor pens (4 replicate pens/treatment; 25 birds/pen and were given (2750, 2775 and 2800 kcal of ME/kg and CP (16 and 17% resulting in a 3×2 factorial arrangement of organic dietary treatments. The experiment lasted 23 weeks. The performance of laying hens were not affected by the dietary treatment while the egg weight was increased with energy and CP levels in the diet (P<0.05. Serum total protein was not affected by dietary energy and protein level. Total cholesterol and triglyceride tend to reduce with the increasing amount of CP in the diet. Thereafter, bone and egg quality characteristics were numerically increased in dietary 2775 kcal of ME/kg and 16% CP treatment. On the other hand, docosahexanoic acid content in egg yolk was higher (P<0.01 in 2750 kcal of ME/kg and 17% CP treatment. As a result, the performance, blood and fatty acid composition were maximized in 2750 kcal of ME/kg and 16% CP treatment. Thus, dietary 2750-2775 kcal of ME/kg and 16% CP may enhance performance, blood and fatty acid composition of organic laying hens.

  4. Recombinant human bone morphogenetic protein 2-induced heterotopic ossification of the retroperitoneum, psoas muscle, pelvis and abdominal wall following lumbar spinal fusion

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Raj K. [The George Washington University School of Medicine, Washington, DC (United States); Moncayo, Valeria M.; Pierre-Jerome, Claude; Terk, Michael R. [Emory University School of Medicine, Radiology Department, Musculoskeletal Division, Atlanta, GA (United States); Smitson, Robert D. [Emory University School of Medicine, Atlanta, GA (United States)

    2010-05-15

    A 45-year-old man presented with vertebral collapse at L5 as an initial manifestation of multiple myeloma and underwent spinal fusion surgery using recombinant human bone morphogenetic protein-2 (rhBMP-2). Subsequent computed tomography (CT) scans and X-rays revealed heterotopic ossification of the left psoas muscle, pelvis, and anterior abdominal wall. While the occurrence of heterotopic ossification has previously been reported when rhBMP-2 has been used for spinal fusion surgery, this case demonstrates that it can occur to a much greater degree than previously seen. (orig.)

  5. Evaluation of an injectable silk fibroin enhanced calcium phosphate cement loaded with human recombinant bone morphogenetic protein-2 in ovine lumbar interbody fusion.

    Science.gov (United States)

    Gu, Yong; Chen, Liang; Yang, Hui-Lin; Luo, Zong-Ping; Tang, Tian-Si

    2011-05-01

    The objective of this study was to investigate the efficacy of an injectable calcium phosphate cement/silk fibroin/human recombinant bone morphogenetic protein-2 composite (CPC/SF/rhBMP-2) in an ovine interbody fusion model. Twenty-four mature sheep underwent anterior lumbar interbody fusion at the levels of L1/2, L3/4, and L5/6 with random implantation of CPC/SF, CPC/rhBMP-2, CPC/SF/rhBMP-2, or autogenous iliac bone. After the sheep were sacrificed, the fusion segments were evaluated by manual palpation, CT scan, undestructive biomechanical testing, undecalcified histology, and histomorphology. The fusion rates of CPC/SF/rhBMP-2 were 55.56% and 77.78% at 6 and 12 months, respectively. The fusion was superior to all the biomaterial grafts in stiffness, and reached the same stiffness as the autograft at 12 months. The new bone formation was less than autograft at 6 months, but similar with that at 12 months. However, the ceramic residue volume of CPC/SF/rhBMP-2 was significantly decreased compared with CPC/SF and CPC/rhBMP-2 at both times. The results indicated that CPC/SF/rhBMP-2 composite had excellent osteoconduction and osteoinduction, and balanced degradation and osteogenesis.

  6. Interplay between self-assembled structure of bone morphogenetic protein-2 (BMP-2) and osteoblast functions in three-dimensional titanium alloy scaffolds: Stimulation of osteogenic activity.

    Science.gov (United States)

    Nune, K C; Kumar, A; Murr, L E; Misra, R D K

    2016-02-01

    Three-dimensional cellular scaffolds are receiving significant attention in bone tissue engineering to treat segmental bone defects. However, there are indications of lack of significant osteoinductive ability of three-dimensional cellular scaffolds. In this regard, the objective of the study is to elucidate the interplay between bone morphogenetic protein (BMP-2) and osteoblast functions on 3D mesh structures with different porosities and pore size that were fabricated by electron beam melting. Self-assembled dendritic microstructure with interconnected cellular-type morphology of BMP-2 on 3D scaffolds stimulated osteoblast functions including adhesion, proliferation, and mineralization, with prominent effect on 2-mm mesh. Furthermore, immunofluorescence studies demonstrated higher density and viability of osteoblasts on lower porosity mesh structure (2 mm) as compared to 3- and 4-mm mesh structures. Enhanced filopodia cellular extensions with extensive cell spreading was observed on BMP-2 treated mesh structures, a behavior that is attributed to the unique self-assembled structure of BMP-2 that effectively communicates with the cells. The study underscores the potential of BMP-2 in imparting osteoinductive capability to the 3D printed scaffolds.

  7. Cold-batter mincing of hot-boned and crust-frozen air-chilled turkey breast allows for reduced sodium content in protein gels.

    Science.gov (United States)

    Lee, H C; Medellin-Lopez, M; Singh, P; Sansawat, T; Chin, K B; Kang, I

    2014-09-01

    The purpose of this research was to evaluate sodium reduction in the protein gels that were prepared with turkey breasts after hot boning (HB), quarter (¼) sectioning, crust-frozen air-chilling (CFAC), and cold temperature mincing. For each of 4 replications, 36 turkeys were slaughtered and eviscerated. One-half of the carcasses were randomly assigned to water immersion chilling for chill boning (CB), whereas the remaining carcasses were immediately HB and quarter-sectioned/crust-frozen air-chilled (HB-¼CFAC) in a freezing room (-12°C, 1.0 m/s). After deboning, CB fillets were conventionally minced, whereas HB-¼CFAC fillets were cold minced up to 27 min with 1 or 2% salt. From the beginning of mincing, the batter temperatures of HB-¼CFAC were lower (P batters up to 12 and 21 min for 2 and 1% salts, respectively. Upon mincing, the batter pH of the HB-¼CFAC (P 0.05) from the pH of CB batters, except for the 1% salt HB-¼CFAC batter after 15 min of mincing. The pattern of pH was not changed when the batters were stored overnight. The protein of 2% salt HB-¼CFAC fillets was more extractable (P batter appears to have more open space, less protein aggregation, and more protein-coated fat particles than those of postrigor batters. Based on these results, the combination of HB-¼CFAC and cold-batter-mincing technologies appear to improve protein functionality and sodium reduction capacity.

  8. Crystallization and preliminary X-ray analysis of the complex of the first von Willebrand type C domain bound to bone morphogenetic protein 2

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Li-yan; Zhang, Jin-li [Lehrstuhl für Physiologische Chemie II, Th