WorldWideScience

Sample records for bone morphogenic protein

  1. Positive modulator of bone morphogenic protein-2

    Science.gov (United States)

    Zamora, Paul O.; Pena, Louis A.; Lin, Xinhua; Takahashi, Kazuyuki

    2009-01-27

    Compounds of the present invention of formula I and formula II are disclosed in the specification and wherein the compounds are modulators of Bone Morphogenic Protein activity. Compounds are synthetic peptides having a non-growth factor heparin binding region, a linker, and sequences that bind specifically to a receptor for Bone Morphogenic Protein. Uses of compounds of the present invention in the treatment of bone lesions, degenerative joint disease and to enhance bone formation are disclosed.

  2. Bone Morphogenic Proteins: Applications in Spinal Surgery

    OpenAIRE

    Jeong, Gerard K.; Sandhu, Harvinder S.; Farmer, James

    2005-01-01

    The prospect of predictable and reliable oseteogenesis without the need for secondary bone grafting to treat a wide spectrum of spinal disorders is tremendously appealing. Recombinant human bone morphogenic proteins (rhBMP) have been the subject of extensive basic science, animal, and clinical research as a potential therapeutic modality to promote bony fusion. Animal studies and prospective, randomized clinical trials have demonstrated the efficacy of rhBMPs as an adjunct or substitute to au...

  3. Sinonasal Schwannoma with New Bone Formation Expressing Bone Morphogenic Protein

    OpenAIRE

    Satoru Kodama; Tomoyo Okamoto; Masashi Suzuki

    2010-01-01

    Schwannoma is a benign tumor that arises from the sheath of myelinated nerve fibers and may occur in any part of the body. Osteogenesis in schwannoma is extremely rare and, to date, new bone formation in sinonasal schwannoma has not yet been reported. Here, we describe the first reported case of sinonasal schwannoma with new bone formation. The tumor was successfully treated by endoscopic sinus surgery, and the patient showed no evidence of recurrence 24 months postoperatively. Immunohistoche...

  4. Public awareness of the bone morphogenic protein controversy: Evidence from news publications

    Directory of Open Access Journals (Sweden)

    Doniel Drazin

    2014-01-01

    Full Text Available Background: Use of recombinant human bone morphogenic protein-2 (rhBMP-2 in spinal fusion has seen a tremendous increase. Public awareness of rhBMP-2 and its complications has not been assessed. The authors studied published news media articles to analyze information provided to the public on this bone graft substitute. Methods: We utilized the academic database, LexisNexis, to locate newspaper articles published between January 2001 and July 2013. All articles were coded by a coder and reviewed by the principal investigator. Results: The search identified 87 national and 99 local newspaper articles. Complications mentioned in national newspapers included cancer (24%, retrograde ejaculation (24%, and abnormal bone growth (14%. Local newspapers cited cancer (14%, inflammation (14%, and retrograde ejaculation (9.2% most frequently. Fifty national (59% and 35 local (54% articles had no mention of complications. Sources of evidence cited by articles were (in order of frequency: Governmental agencies, medical research or published studies, healthcare personnel or patients, and companies or corporations. Conclusions: Only a small percentage of newspaper articles presented potential complications. Despite lack of clear scientific causal relationship between rhBMP-2 and cancer, this risk was disproportionately reported. Additionally, many did not cite scientific sources. Lack of reliable information available to the public reiterates the role of physicians in discussing risks and benefits BMP use in spinal surgery, assuring that patients are making informed decisions. Future news media articles should present risks in an impartial and evidence-based manner. Collaboration between advocacy groups, medical institutions, and media outlets would be beneficial in achieving this goal.

  5. A Biphasic Calcium Sulphate/Hydroxyapatite Carrier Containing Bone Morphogenic Protein-2 and Zoledronic Acid Generates Bone

    Science.gov (United States)

    Raina, Deepak Bushan; Isaksson, Hanna; Hettwer, Werner; Kumar, Ashok; Lidgren, Lars; Tägil, Magnus

    2016-01-01

    In orthopedic surgery, large amount of diseased or injured bone routinely needs to be replaced. Autografts are mainly used but their availability is limited. Commercially available bone substitutes allow bone ingrowth but lack the capacity to induce bone formation. Thus, off-the-shelf osteoinductive bone substitutes that can replace bone grafts are required. We tested the carrier properties of a biphasic, calcium sulphate and hydroxyapatite ceramic material, containing a combination of recombinant human bone morphogenic protein-2 (rhBMP-2) to induce bone, and zoledronic acid (ZA) to delay early resorption. In-vitro, the biphasic material released 90% of rhBMP-2 and 10% of ZA in the first week. No major changes were found in the surface structure using scanning electron microscopy (SEM) or in the mechanical properties after adding rhBMP-2 or ZA. In-vivo bone formation was studied in an abdominal muscle pouch model in rats (n = 6/group). The mineralized volume was significantly higher when the biphasic material was combined with both rhBMP-2 and ZA (21.4 ± 5.5 mm3) as compared to rhBMP-2 alone (10.9 ± 2.1 mm3) when analyzed using micro computed tomography (μ-CT) (p < 0.01). In the clinical setting, the biphasic material combined with both rhBMP-2 and ZA can potentially regenerate large volumes of bone. PMID:27189411

  6. Plasma Surface Modification for Immobilization of Bone Morphogenic Protein-2 on Polycaprolactone Scaffolds

    Science.gov (United States)

    Kim, Byung Hoon; Myung, Sung Woon; Jung, Sang Chul; Ko, Yeong Mu

    2013-11-01

    The immobilization of recombinant human bone formation protein-2 (rhBMP-2) on polycaprolactone (PCL) scaffolds was performed by plasma polymerization. RhBMP-2, which induces osteoblast differentiation in various cell types, is a growth factor that plays an important role in bone formation and repair. The surface of the PCL scaffold was functionalized with the carboxyl groups of plasma-polymerized acrylic acid (PPAA) thin films. Plasma polymerization was carried out at a discharge power of 60 W at an acrylic acid flow rate of 7 sccm for 5 min. The PPAA thin film exhibited moderate hydrophilic properties and possessed a high density of carboxyl groups. Carboxyl groups and rhBMP-2 on the PCL scaffolds surface were identified by attenuated total reflection Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy, respectively. The alkaline phosphatase activity assay showed that the rhBMP-2 immobilized PCL scaffold increased the level of MG-63 cell differentiation. Plasma surface modification for the preparation of biomaterials, such as biofunctionalized polymer scaffolds, can be used for the binding of bioactive molecules in tissue engineering.

  7. Sequential injection immunoassay for human bone morphogenic protein-7 using an immunoreactor immobilized with anti-human bone morphogenic protein-7 antibody–CdSe/ZnS quantum dot conjugates

    International Nuclear Information System (INIS)

    Graphical abstract: -- Highlights: •A sequential injection immunoassay based on the binding between BMP-7 and the AbBMP7–QD conjugates. •Immobilization of the AbBMP7–QD conjugates onto a glass disk or an optical fiber. •Characterization of the analytical performance of the SIIA system. •Application of the SIIA system to determination of BMP-7 in spiked real samples. -- Abstract: The detection of human bone morphogenic protein-7 (BMP-7) was achieved using a sequential injection immunoassay (SIIA) system. The SIIA system is based on the binding between BMP-7 and anti-human BMP-7 (AbBMP7)–CdSe/ZnS quantum dot (QD) conjugates immobilized onto a glass disk or an optical fiber, using fluorescence detection at excitation and emission wavelengths of 470 nm and 580 nm, respectively. The AbBMP7–QD conjugates were prepared by conjugating anti-human BMP-7 antibody (AbBMP7) to hydrophilic CdSe/ZnS core/shell quantum dots (QDs). The SIIA system was fully automated using software written in the LabVIEW™ development environment. The analytical performance of the SIIA system was characterized with a number of variables such as carrier flow rate and elution buffer. Under partially optimized operating conditions, the SIIA system had a linear calibration graph at up to 10.0 ng mL−1 BMP-7 (R2 ≥ 0.975) and a sample frequency of two samples per hour. The SIIA system with an optical fiber immunosensor was used to detect and quantify BMP-7 in spiked real samples obtained from a biological process with recoveries in the range of 95–102%

  8. Bone morphogenic protein-2 regulates the myogenic differentiation of PMVECs in CBDL rat serum-induced pulmonary microvascular remodeling

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chang; Chen, Lin; Zeng, Jing; Cui, Jian; Ning, Jiao-nin [Department of Anesthesia, Southwest Hospital, The Third Military Medical University, Chongqing 400038 (China); Wang, Guan-song [Institute of Respiratory Disease, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037 (China); Belguise, Karine; Wang, Xiaobo [Université P. Sabatier Toulouse III and CNRS, LBCMCP, 31062 Toulouse Cedex 9 (France); Qian, Gui-sheng [Institute of Respiratory Disease, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037 (China); Lu, Kai-zhi [Department of Anesthesia, Southwest Hospital, The Third Military Medical University, Chongqing 400038 (China); Yi, Bin, E-mail: yibin1974@163.com [Department of Anesthesia, Southwest Hospital, The Third Military Medical University, Chongqing 400038 (China)

    2015-08-01

    Hepatopulmonary syndrome (HPS) is characterized by an arterial oxygenation defect induced by intrapulmonary vasodilation (IPVD) that increases morbidity and mortality. In our previous study, it was determined that both the proliferation and the myogenic differentiation of pulmonary microvascular endothelial cells (PMVECs) play a key role in the development of IPVD. However, the molecular mechanism underlying the relationship between IPVD and the myogenic differentiation of PMVECs remains unknown. Additionally, it has been shown that bone morphogenic protein-2 (BMP2), via the control of protein expression, may regulate cell differentiation including cardiomyocyte differentiation, neuronal differentiation and odontoblastic differentiation. In this study, we observed that common bile duct ligation (CBDL)-rat serum induced the upregulation of the expression of several myogenic proteins (SM-α-actin, calponin, SM-MHC) and enhanced the expression levels of BMP2 mRNA and protein in PMVECs. We also observed that both the expression levels of Smad1/5 and the activation of phosphorylated Smad1/5 were significantly elevated in PMVECs following exposure to CBDL-rat serum, which was accompanied by the down-regulation of Smurf1. The blockage of the BMP2/Smad signaling pathway with Noggin inhibited the myogenic differentiation of PMVECs, a process that was associated with relatively low expression levels of both SM-α-actin and calponin in the setting of CBDL-rat serum exposure, although SM-MHC expression was not affected. These findings suggested that the BMP2/Smad signaling pathway is involved in the myogenic differentiation of the PMVECs. In conclusion, our data highlight the pivotal role of BMP2 in the CBDL-rat serum-induced myogenic differentiation of PMVECs via the activation of both Smad1 and Smad5 and the down-regulation of Smurf1, which may represent a potential therapy for HPS-induced pulmonary vascular remodeling. - Highlights: • CBDL-rat serum promotes the myogenic

  9. Bone morphogenic protein-2 regulates the myogenic differentiation of PMVECs in CBDL rat serum-induced pulmonary microvascular remodeling

    International Nuclear Information System (INIS)

    Hepatopulmonary syndrome (HPS) is characterized by an arterial oxygenation defect induced by intrapulmonary vasodilation (IPVD) that increases morbidity and mortality. In our previous study, it was determined that both the proliferation and the myogenic differentiation of pulmonary microvascular endothelial cells (PMVECs) play a key role in the development of IPVD. However, the molecular mechanism underlying the relationship between IPVD and the myogenic differentiation of PMVECs remains unknown. Additionally, it has been shown that bone morphogenic protein-2 (BMP2), via the control of protein expression, may regulate cell differentiation including cardiomyocyte differentiation, neuronal differentiation and odontoblastic differentiation. In this study, we observed that common bile duct ligation (CBDL)-rat serum induced the upregulation of the expression of several myogenic proteins (SM-α-actin, calponin, SM-MHC) and enhanced the expression levels of BMP2 mRNA and protein in PMVECs. We also observed that both the expression levels of Smad1/5 and the activation of phosphorylated Smad1/5 were significantly elevated in PMVECs following exposure to CBDL-rat serum, which was accompanied by the down-regulation of Smurf1. The blockage of the BMP2/Smad signaling pathway with Noggin inhibited the myogenic differentiation of PMVECs, a process that was associated with relatively low expression levels of both SM-α-actin and calponin in the setting of CBDL-rat serum exposure, although SM-MHC expression was not affected. These findings suggested that the BMP2/Smad signaling pathway is involved in the myogenic differentiation of the PMVECs. In conclusion, our data highlight the pivotal role of BMP2 in the CBDL-rat serum-induced myogenic differentiation of PMVECs via the activation of both Smad1 and Smad5 and the down-regulation of Smurf1, which may represent a potential therapy for HPS-induced pulmonary vascular remodeling. - Highlights: • CBDL-rat serum promotes the myogenic

  10. Macrophage bone morphogenic protein receptor 2 depletion in idiopathic pulmonary fibrosis and Group III pulmonary hypertension.

    Science.gov (United States)

    Chen, Ning-Yuan; D Collum, Scott; Luo, Fayong; Weng, Tingting; Le, Thuy-Trahn; M Hernandez, Adriana; Philip, Kemly; Molina, Jose G; Garcia-Morales, Luis J; Cao, Yanna; Ko, Tien C; Amione-Guerra, Javier; Al-Jabbari, Odeaa; Bunge, Raquel R; Youker, Keith; Bruckner, Brian A; Hamid, Rizwan; Davies, Jonathan; Sinha, Neeraj; Karmouty-Quintana, Harry

    2016-08-01

    Idiopathic pulmonary fibrosis (IPF) is a lethal lung disease of unknown etiology. The development of pulmonary hypertension (PH) is considered the single most significant predictor of mortality in patients with chronic lung diseases. The processes that govern the progression and development of fibroproliferative and vascular lesions in IPF are not fully understood. Using human lung explant samples from patients with IPF with or without a diagnosis of PH as well as normal control tissue, we report reduced BMPR2 expression in patients with IPF or IPF+PH. These changes were consistent with dampened P-SMAD 1/5/8 and elevated P-SMAD 2/3, demonstrating reduced BMPR2 signaling and elevated TGF-β activity in IPF. In the bleomycin (BLM) model of lung fibrosis and PH, we also report decreased BMPR2 expression compared with control animals that correlated with vascular remodeling and PH. We show that genetic abrogation or pharmacological inhibition of interleukin-6 leads to diminished markers of fibrosis and PH consistent with elevated levels of BMPR2 and reduced levels of a collection of microRNAs (miRs) that are able to degrade BMPR2. We also demonstrate that isolated bone marrow-derived macrophages from BLM-exposed mice show reduced BMPR2 levels upon exposure with IL6 or the IL6+IL6R complex that are consistent with immunohistochemistry showing reduced BMPR2 in CD206 expressing macrophages from lung sections from IPF and IPF+PH patients. In conclusion, our data suggest that depletion of BMPR2 mediated by a collection of miRs induced by IL6 and subsequent STAT3 phosphorylation as a novel mechanism participating to fibroproliferative and vascular injuries in IPF. PMID:27317687

  11. In vitro and in vivo evaluation of bone formation using solid freeform fabrication-based bone morphogenic protein-2 releasing PCL/PLGA scaffolds

    International Nuclear Information System (INIS)

    The aim of this study was to develop novel polycaprolactone/poly(lactic-co-glycolic acid) (PCL/PLGA) scaffolds with a heparin–dopamine (Hep–DOPA) conjugate for controlled release of bone morphogenic protein-2 (BMP-2) to enhance osteoblast activity in vitro and also bone formation in vivo. PCL/PLGA scaffolds were prepared by a solid freeform fabrication method. The PCL/PLGA scaffolds were functionalized with Hep–DOPA and then BMP-2 was sequentially coated onto the Hep–DOPA/PCL/PLGA scaffolds. The characterization and surface elemental composition of all scaffolds were evaluated by scanning electron microscope and x-ray photoelectron spectroscopy. The osteoblast activities on all scaffolds were assessed by cell proliferation, alkaline phosphatase (ALP) activity and calcium deposition in vitro. To demonstrate bone formation in vivo, plain radiograph, micro-computed tomography (micro-CT) evaluation and histological studies were performed after the implantation of all scaffolds on a rat femur defect. Hep–DOPA/PCL/PLGA had more controlled release of BMP-2, which was quantified by enzyme-linked immunosorbent assay, compared with Hep/PCL/PLGA. The in vitro results showed that osteoblast-like cells (MG-63 cells) grown on BMP-2/Hep–DOPA/PCL/PLGA had significantly enhanced ALP activity and calcium deposition compared with those on BMP-2/Hep/PCL/PLGA and PCL/PLGA. In addition, the plain radiograph, micro-CT evaluation and histological studies demonstrated that the implanted BMP-2/Hep–DOPA/PCL/PLGA on rat femur had more bone formation than BMP-2/Hep/PCL/PLGA and PCL/PLGA in vivo. (paper)

  12. Fibroblast growth factor 2 inhibits up-regulation of bone morphogenic proteins and their receptors during osteoblastic differentiation of human mesenchymal stem cells

    International Nuclear Information System (INIS)

    Highlights: ► FGF modulates BMPs pathway in HMSCs by down-regulating BMP/BMPR expression. ► This effect is mediated by ERK and JNK MAPKs pathways. ► Crosstalk between FGF and BMPs must be taken into account in skeletal bioengineering. ► It must also be considered in the use of recombinant BMPs in orthopedic and spine surgeries. -- Abstract: Understanding the interactions between growth factors and bone morphogenic proteins (BMPs) signaling remains a crucial issue to optimize the use of human mesenchymal stem cells (HMSCs) and BMPs in therapeutic perspectives and bone tissue engineering. BMPs are potent inducers of osteoblastic differentiation. They exert their actions via BMP receptors (BMPR), including BMPR1A, BMPR1B and BMPR2. Fibroblast growth factor 2 (FGF2) is expressed by cells of the osteoblastic lineage, increases their proliferation and is secreted during the healing process of fractures or in surgery bone sites. We hypothesized that FGF2 might influence HMSC osteoblastic differentiation by modulating expressions of BMPs and their receptors. BMP2, BMP4, BMPR1A and mainly BMPR1B expressions were up-regulated during this differentiation. FGF2 inhibited HMSCs osteoblastic differentiation and the up-regulation of BMPs and BMPR. This effect was prevented by inhibiting the ERK or JNK mitogen-activated protein kinases which are known to be activated by FGF2. These data provide a mechanism explaining the inhibitory effect of FGF2 on osteoblastic differentiation of HMSCs. These crosstalks between growth and osteogenic factors should be considered in the use of recombinant BMPs in therapeutic purpose of fracture repair or skeletal bioengineering.

  13. Fibroblast growth factor 2 inhibits up-regulation of bone morphogenic proteins and their receptors during osteoblastic differentiation of human mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Biver, Emmanuel, E-mail: ebiver@yahoo.fr [Physiopathology of Inflammatory Bone Diseases, EA 4490, University Lille North of France, Quai Masset, Bassin Napoleon, BP120, 62327 Boulogne sur Mer (France); Department of Rheumatology, Lille University Hospital, Roger Salengro Hospital, 59037 Lille cedex (France); Service of Bone Diseases, Department of Internal Medicine Specialties, University Hospital of Geneva, CH-1211 Geneva 14 (Switzerland); Soubrier, Anne-Sophie [Physiopathology of Inflammatory Bone Diseases, EA 4490, University Lille North of France, Quai Masset, Bassin Napoleon, BP120, 62327 Boulogne sur Mer (France); Department of Rheumatology, Lille University Hospital, Roger Salengro Hospital, 59037 Lille cedex (France); Thouverey, Cyril [Service of Bone Diseases, Department of Internal Medicine Specialties, University Hospital of Geneva, CH-1211 Geneva 14 (Switzerland); Cortet, Bernard [Physiopathology of Inflammatory Bone Diseases, EA 4490, University Lille North of France, Quai Masset, Bassin Napoleon, BP120, 62327 Boulogne sur Mer (France); Department of Rheumatology, Lille University Hospital, Roger Salengro Hospital, 59037 Lille cedex (France); Broux, Odile [Physiopathology of Inflammatory Bone Diseases, EA 4490, University Lille North of France, Quai Masset, Bassin Napoleon, BP120, 62327 Boulogne sur Mer (France); Caverzasio, Joseph [Service of Bone Diseases, Department of Internal Medicine Specialties, University Hospital of Geneva, CH-1211 Geneva 14 (Switzerland); Hardouin, Pierre [Physiopathology of Inflammatory Bone Diseases, EA 4490, University Lille North of France, Quai Masset, Bassin Napoleon, BP120, 62327 Boulogne sur Mer (France)

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer FGF modulates BMPs pathway in HMSCs by down-regulating BMP/BMPR expression. Black-Right-Pointing-Pointer This effect is mediated by ERK and JNK MAPKs pathways. Black-Right-Pointing-Pointer Crosstalk between FGF and BMPs must be taken into account in skeletal bioengineering. Black-Right-Pointing-Pointer It must also be considered in the use of recombinant BMPs in orthopedic and spine surgeries. -- Abstract: Understanding the interactions between growth factors and bone morphogenic proteins (BMPs) signaling remains a crucial issue to optimize the use of human mesenchymal stem cells (HMSCs) and BMPs in therapeutic perspectives and bone tissue engineering. BMPs are potent inducers of osteoblastic differentiation. They exert their actions via BMP receptors (BMPR), including BMPR1A, BMPR1B and BMPR2. Fibroblast growth factor 2 (FGF2) is expressed by cells of the osteoblastic lineage, increases their proliferation and is secreted during the healing process of fractures or in surgery bone sites. We hypothesized that FGF2 might influence HMSC osteoblastic differentiation by modulating expressions of BMPs and their receptors. BMP2, BMP4, BMPR1A and mainly BMPR1B expressions were up-regulated during this differentiation. FGF2 inhibited HMSCs osteoblastic differentiation and the up-regulation of BMPs and BMPR. This effect was prevented by inhibiting the ERK or JNK mitogen-activated protein kinases which are known to be activated by FGF2. These data provide a mechanism explaining the inhibitory effect of FGF2 on osteoblastic differentiation of HMSCs. These crosstalks between growth and osteogenic factors should be considered in the use of recombinant BMPs in therapeutic purpose of fracture repair or skeletal bioengineering.

  14. Vasohibin-1 Expression Is Regulated by Transforming Growth Factor-β/Bone Morphogenic Protein Signaling Pathway Between Tumor-Associated Macrophages and Pancreatic Cancer Cells

    Science.gov (United States)

    Seppänen, Hanna; Kauttu, Tuuli; Vainionpää, Sanna; Ye, Yingjiang; Mustonen, Harri

    2013-01-01

    Vasohibin-1 has been detected in endothelial cells as an intrinsic angiogenesis inhibitor. Both tumor-associated macrophages (TAMs) and transforming growth factor-β (TGF-β)/bone morphogenic protein (BMP) signaling have been reported to promote angiogenesis in cancer. However, whether vasohibin-1 expression is regulated by TGF-β/BMP signaling between TAMs and cancer cells remains unclear. The expression of TGF-β1, TGF-β2, BMP-4, and BMP-7 in TAMs and the expression of vasohibin-1, vascular endothelial growth factor-A (VEGF-A), and VEGF-C in two pancreatic cancer cell lines (a nonmetastatic cell line Panc-1 and a distant metastatic cell line HPAF-II) were measured by real-time reverse transcription-polymerase chain reaction (RT-PCR). The TGF-β receptor 1 and BMP receptor 1 were inhibited by the inhibitor SB-431542 and LDN193189, respectively. Thereafter, vasohibin-1, VEGF-A, and VEGF-C expression was detected by real-time RT-PCR. We found that the expression of TGF-β1, TGF-β2, BMP-4, and BMP-7 was upregulated in TAMs cocultured with pancreatic cancer cells. Vasohibin-1, VEGF-A, and VEGF-C mRNA expression in pancreatic cancer cells was upregulated by TAMs. Vasohibin-1 expression in pancreatic cancer cells cocultured with TAMs was upregulated significantly when TGF-β receptors or BMP receptors were inhibited, but VEGF-C expression was downregulated. Therefore, Vasohibin-1 expression is regulated by the TGF-β/BMP signaling between TAMs and pancreatic cancer cells. These results might shed a new light on the antiangiogenesis therapy in the pancreatic cancer. PMID:23651239

  15. Enhanced response of granulosa and theca cells from sheep carriers of the FecB mutation in vitro to gonadotropins and bone morphogenic protein-2, -4, and -6.

    Science.gov (United States)

    Campbell, B K; Souza, C J H; Skinner, A J; Webb, R; Baird, D T

    2006-04-01

    The FecB (Booroola) mutation, which leads to increased ovulation rates and multiple births in sheep, is now known to occur in the signaling domain of the bone morphogenic protein (BMP)-1B receptor. We examined the effect of the mutation on the responsiveness of granulosa (GC) and theca cells (TC) to BMPs and other local regulators using tissue from animals with (Fec(B/B)) and without (Fec(+/+)) the FecB mutation. Experiments examined the effect of BMP-2, -4, and -6 (0.005-50 ng/ml), and their interaction with IGF-I (0.1-10 ng/ml LR3 analog) and gonadotropins, on the proliferation and differentiation of GCs and TCs isolated from small (<2 mm) antral follicles and maintained in serum-free culture for up to 8 d. Dose-finding studies using ovaries from wild-type sheep obtained from the abbattoir showed no difference among the different BMPs in stimulating (P < 0.001) estradiol (E2) production by GCs cultured with FSH (10 ng/ml), but there was a clear interaction (P < 0.001) with IGF-I. BMPs had no effect on GC proliferation or the sensitivity of GCs to FSH. In contrast, higher doses of BMPs (5-50 ng/ml) inhibited LH-stimulated androstenedione production by TCs, whereas lower doses (0.005-0.05 ng/ml) stimulated TC proliferation (P < 0.01). Regardless of dose of IGF-I, at the end of culture (96-192 h) hormone production by GCs (E2, inhibin A) and TCs (androstenedione) was 4- to 5-fold greater (P < 0.001) by cells from Fec(B/B), compared with Fec(+/+) ewes exposed to the same dose of gonadotropin. In the presence of low concentrations of IGF-I (0.1 ng/ml), the maximum increase in the production of E2 and inhibin A by GCs from FF ewes in response to BMPs was observed at doses that were 3- to 10-fold lower (3-10 ng/ml) than ++ (30 ng/ml; P < 0.001). Low doses of BMPs stimulated proliferation of TCs from ++ (P < 0.01) but not FF ewes. Immunohistochemistry confirmed BMP-6 protein expression in the oocyte, granulosa, and thecal layers of antral follicles from both genotypes

  16. Histological and radiographic evaluation of the muscle tissue of rats after implantation of bone morphogenic protein (rhBMP-2 in a scaffold of inorganic bone and after stimulation with low-power laser light

    Directory of Open Access Journals (Sweden)

    Bengtson Antonio

    2010-01-01

    Full Text Available Objective: The present study histologically and radiologically evaluates the muscle tissue of rats after implantation of bone morphogenic protein (rhBMP-2 in a natural inorganic bone mineral scaffold from a bull calf femur and irradiation with low-power light laser. Materials and Methods: The right and left hind limbs of 16 rats were shaved and an incision was made in the muscle on the face corresponding to the median portion of the tibia, into which rhBMP-2 in a scaffold of inorganic bone was implanted. Two groups of limbs were formed: control (G1 and laser irradiation (G2. G2 received diode laser light applied in the direction of the implant, at a dose of 8 J/cm2 for three minutes. On the 7th, 21st, 40th and 112th days after implantation, hind limbs of 4 animals were radiographed and their implants removed together with the surrounding tissue for study under the microscope. The histological results were graded as 0=absence, 1=slight presence, 2=representative and 3=very representative, with regard to the following events: formation of osteoid structure, acute inflammation, chronic inflammation, fibrin deposition, neovascularization, foreign-body granuloma and fibrosis. Results: There were no statistically significant differences in these events at each evaluation times, between the two groups (P > 0.05; Mann-Whitney test. Nevertheless, it could be concluded that the natural inorganic bone matrix with rhBMP-2, from the femur of a bull calf, is a biocompatible combination. Conclusions: Under these conditions, the inductive capacity of rhBMP-2 for cell differentiation was inhibited. There was a slight acceleration in tissue healing in the group that received irradiation with low-power laser light.

  17. Transforming growth factor β1 inhibits bone morphogenic protein (BMP-2 and BMP-7 signaling via upregulation of Ski-related novel protein N (SnoN: possible mechanism for the failure of BMP therapy?

    Directory of Open Access Journals (Sweden)

    Ehnert Sabrina

    2012-09-01

    Full Text Available Abstract Background Bone morphogenic proteins (BMPs play a key role in bone formation. Consequently, it was expected that topical application of recombinant human (rhBMP-2 and rhBMP-7 would improve the healing of complex fractures. However, up to 36% of fracture patients do not respond to this therapy. There are hints that a systemic increase in transforming growth factor β1 (TGFβ1 interferes with beneficial BMP effects. Therefore, in the present work we investigated the influence of rhTGFβ1 on rhBMP signaling in primary human osteoblasts, with the aim of more specifically delineating the underlying regulatory mechanisms. Methods BMP signaling was detected by adenoviral Smad-binding-element-reporter assays. Gene expression was determined by reverse transcription polymerase chain reaction (RT-PCR and confirmed at the protein level by western blot. Histone deacetylase (HDAC activity was determined using a test kit. Data sets were compared by one-way analysis of variance. Results Our findings showed that Smad1/5/8-mediated rhBMP-2 and rhBMP-7 signaling is completely blocked by rhTGFβ1. We then investigated expression levels of genes involved in BMP signaling and regulation (for example, Smad1/5/8, TGFβ receptors type I and II, noggin, sclerostin, BMP and activin receptor membrane bound inhibitor (BAMBI, v-ski sarcoma viral oncogene homolog (Ski, Ski-related novel protein N (SnoN and Smad ubiquitination regulatory factors (Smurfs and confirmed the expression of regulated genes at the protein level. Smad7 and SnoN were significantly induced by rhTGFβ1 treatment while expression of Smad1, Smad6, TGFβRII and activin receptor-like kinase 1 (Alk1 was reduced. Elevated SnoN expression was accompanied by increased HDAC activity. Addition of an HDAC inhibitor, namely valproic acid, fully abolished the inhibitory effect of rhTGFβ1 on rhBMP-2 and rhBMP-7 signaling. Conclusions rhTGFβ1 effectively blocks rhBMP signaling in osteoblasts. As possible

  18. Expression of bone morphogenic protein 2/4, transforming growth factor-β1, and bone matrix protein expression in healing area between vascular tibia grafts and irradiated bone-experimental model of osteonecrosis

    International Nuclear Information System (INIS)

    Purpose: For the surgical treatment of osteoradionecrosis after multimodal therapy of head-and-neck cancers, free vascular bone grafts are used to reconstruct osseous structures in the previously irradiated graft bed. Reduced, or even absent osseous healing in the transition area between the vascular graft and the irradiated graft bed represents a clinical problem. Inflammatory changes and fibrosis lead to delayed healing, triggered by bone morphogentic protein 2/4 (BMP2/4) and transforming growth factor (TGF)-β1. Given the well-known fibrosis-inducing activity of TGF-β1, an osteoinductive effect has been reported for BMP2/4. However, the influence of irradiation (RT) on this cytokine expression remains elusive. Therefore, the aim of the present in vivo study was to analyze the expression of BMP2/4, TGF-β1, collagen I, and osteocalcin in the transition area between the bone graft and the graft bed after RT. Methods and materials: Twenty Wistar rats (male, weight 300-500 g) were used in this study. A free vascular tibia graft was removed in all rats and maintained pedicled in the groin region. Ten rats underwent RT with 5 x 10 Gy to the right tibia, the remainder served as controls. After 4 weeks, the previously removed tibia grafts were regrafted into the irradiated (Group 1) and nonirradiated (Group 2) graft beds. The interval between RT and grafting was 4 weeks. After a 4-week osseous healing period, the bone grafts were removed, and the transition area between the nonirradiated graft and the irradiated osseous graft bed was examined histomorphometrically (National Institutes of Health imaging program) and immunohistochemically (avidin-biotin-peroxidase complex) for the expression of BMP2/4, TGF-β1, collagen I, and osteocalcin. Results: Absent or incomplete osseous healing of the graft was found in 9 of 10 rats after RT with 50 Gy and in 1 of 10 of the rats with nonirradiated osseous grafts. Histomorphometrically, the proportion of osseous healing in the

  19. Vaccinia virus A12L protein and its AG/A proteolysis play an important role in viral morphogenic transition

    Directory of Open Access Journals (Sweden)

    Hruby Dennis E

    2007-07-01

    Full Text Available Abstract Like the major vaccinia virus (VV core protein precursors, p4b and p25K, the 25 kDa VV A12L late gene product (p17K is proteolytically maturated at the conserved Ala-Gly-Ala motif. However, the association of the precursor and its cleavage product with the core of mature virion suggests that both of the A12L proteins may be required for virus assembly. Here, in order to test the requirement of the A12L protein and its proteolysis in viral replication, a conditional lethal mutant virus (vvtetOA12L was constructed to regulate A12L expression by the presence or absence of an inducer, tetracycline. In the absence of tetracycline, replication of vvtetOA12L was inhibited by 80% and this inhibition could be overcome by transient expression of the wild-type copy of the A12L gene. In contrast, mutation of the AG/A site abrogated the ability of the transfected A12L gene to rescue, indicating that A12L proteolysis plays an important role in viral replication. Electron microscopy analysis of the A12L deficient virus demonstrated the aberrant virus particles, which were displayed by the AG/A site mutation. Thus, we concluded that the not only A12L protein but also its cleavage processing plays an essential role in virus morphogenic transition.

  20. The history and histology of bone morphogenetic protein.

    Science.gov (United States)

    Murray, Samuel S; Brochmann Murray, Elsa J; Wang, Jeffrey C; Duarte, Maria Eugenia Leite

    2016-07-01

    Bone morphogenetic proteins are a group of structurally related proteins within the TGF-β superfamily of proteins with a diverse repertoire of functions in embryonic and adult organisms. As is apparent from the name, the members first characterized participate in bone growth, development, and remodeling. The "morphogenic" activity per se is defined as the induction of a recapitulation of endochondral bone formation by appropriate stem cells. The regenerative capacity of bone has been recognized since ancient times. The mechanism, applications, and conceptual basis of bone transplantation, bone implantation, ectopic bone formation, and exogenously induced bone formation have been studied by many investigators for more than a century. This review examines the efforts to characterize this activity in the European and American literature over approximately the last century. Because of the inherently complex nature of the process induced by these molecules (inflammation, stem cell proliferation, cartilage differentiation, replacement of cartilage with bone) it is important to evaluate previous investigations through a histological perspective. The cellular basis of the contemporary bioassay for BMP activity is illustrated and discussed from the histological point of view. PMID:26907674

  1. Engineering of blood vessel patterns by angio-morphogens [angiotropins]: non-mitogenic copper-ribonucleoprotein cytokins [CuRNP ribokines] with their metalloregulated constituents of RAGE-binding S100-EF-hand proteins and extracellular RNA bioaptamers in vascular remodeling of tissue and angiogenesis in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Wissler, J.H. [ARCONS Applied Research, Bad Nauheim (Germany)

    2001-12-01

    Tissue vascularization is requisite to successful cell-based therapies, biomaterial design and implant integration. Thus, known problems in ossointegration of avascular implants in connection with the generation of bone tissue reflect arrays of general problems of socio-economic relevance existing in reparative medicine still waiting for to be solved. For this purpose, morphogenesis and remodeling of endothelial angio-architectures in tissue and in vitro by isolated non-mitogenic angio-morphogens [angiotropins] are considered in terms of their structure, function and action mechanisms. Extracellular angiotropins are secreted by activated leukocytes/monocytes/macrophages. They are a family of cytokines with morphogen bioactivity selectively directed to endothelial cells. Their structure was deciphered as metalloregulated copper-ribonucleoproteins [CuRNP ribokines]. They are built up of angiotropin-related S100-EF-hand protein [ARP] and highly modified and edited 5'end-phosphorylated RNA [ARNA], complexed together by copper ions. Oxidant-sensitive ARNA and their precursors represent novel types in a RNA world: They are the first isolated and sequenced forms of extracellular RNA [eRNA], may act as cytokine and bioaptamer, contain isoguanosine [crotonoside] as modified nucleoside and show up copper as RNA-structuring transition metal ion. By metalloregulated bioaptamer functions, ARNA impart novel biofunctions to RAGE-binding S100-EF-hand proteins. Angiotropin morphogens were shown suitable for neointiation and remodeling of blood vessel patterns in different, adult, embryonal and artificial tissues. These neovascular patterns manifest regulated hemodynamics for preventing tissue necrosis, supporting tissue functions and promoting wound healing. As evaluated in skin and muscle vascularization, the neovascular patterns are integrated into homeostatic control mechanisms of tissue. Thus, the morphogens show up beneficial perspectives and are suggested useful tools

  2. Osseointegration by bone morphogenetic protein-2 and transforming growth factor beta2 coated titanium implants in femora of New Zealand white rabbits

    OpenAIRE

    Fritz Thorey; Henning Menzel; Corinna Lorenz; Gerhard Gross; Andrea Hoffmann; Henning Windhagen

    2011-01-01

    Background: Intramembranous bone formation is essential in uncemented joint replacement to provide a mechanical anchorage of the implant. Since the discovery of bone morphogenic proteins (BMPs) by Urist in 1965, many studies have been conducted to show the influence of growth factors on implant ingrowth. In this study, the influence of bone morphogenetic protein-2 (rhBMP-2) and transforming growth factor β2 (TGF-β2) on implant osseointegration was investigated. Materials and Methods: Thir...

  3. Bone morphogenetic proteins: Periodontal regeneration

    Directory of Open Access Journals (Sweden)

    Subramaniam M Rao

    2013-01-01

    Full Text Available Periodontitis is an infectious inflammatory disease that results in attachment loss and bone loss. Regeneration of the periodontal tissues entails de novo formation of cementum, periodontal ligament, and alveolar bone. Several different approaches are currently being explored to achieve complete, reliable, and reproducible regeneration of periodontal tissues. The therapeutic management of new bone formation is one of the key issues in successful periodontal regeneration. Bone morphogenetic proteins form a unique group of proteins within the transforming growth factor superfamily of genes and have a vital role in the regulation in the bone induction and maintenance. The activity of bone morphogenetic proteins was first identified in the 1960s, but the proteins responsible for bone induction were unknown until the purification and cloning of human bone morphogenetic proteins in the 1980s, because of their osteoinductive potential. Bone morphogenetic proteins have gained a lot of interest as therapeutic agents for treating periodontal defects. A systematic search for data related to the use of bone morphogenetic proteins for the regeneration of periodontal defects was performed to recognize studies on animals and human (PUBMED, MEDLINE, COCHRANE, and Google search. All the studies included showed noticeable regeneration of periodontal tissues with the use of BMP.

  4. Unveiling the Bmp13 Enigma: Redundant Morphogen or Crucial Regulator?

    Directory of Open Access Journals (Sweden)

    Lisa A Williams, Divya Bhargav, Ashish D Diwan

    2008-01-01

    Full Text Available Bone morphogenetic proteins are a diverse group of morphogens with influences not only on bone tissue, as the nomenclature suggests, but on multiple tissues in the body and often at crucial and influential periods in development. The purpose of this review is to identify and discuss current knowledge of one vertebrate BMP, Bone Morphogenetic Protein 13 (BMP13, from a variety of research fields, in order to clarify BMP13's functional contribution to developing and maintaining healthy tissues, and to identify potential future research directions for this intriguing morphogen. BMP13 is highly evolutionarily conserved (active domain >95% across diverse species from Zebrafish to humans, suggesting a crucial function. In addition, mutations in BMP13 have recently been associated with Klippel-Feil Syndrome, causative of numerous skeletal and developmental defects including spinal disc fusion. The specific nature of BMP13's crucial function is, however, not yet known. The literature for BMP13 is focused largely on its activity in the healing of tendon-like tissues, or in comparisons with other BMP family molecules for whom a clear function in embryo development or osteogenic differentiation has been identified. There is a paucity of detailed information regarding BMP13 protein activity, structure or protein processing. Whilst some activity in the stimulation of osteogenic or cartilaginous gene expression has been reported, and BMP13 expression is found in post natal cartilage and tendon tissues, there appears to be a redundancy of function in the BMP family, with several members capable of stimulating similar tissue responses. This review aims to summarise the known or potential role(s for BMP13 in a variety of biological systems.

  5. Special Morphological Features at the Interface of the Renal Stem/Progenitor Cell Niche Force to Reinvestigate Transport of Morphogens During Nephron Induction.

    Science.gov (United States)

    Minuth, Will W; Denk, Lucia

    2016-01-01

    Formation of a nephron depends on reciprocal signaling of different morphogens between epithelial and mesenchymal cells within the renal stem/progenitor cell niche. Previously, it has been surmised that a close proximity exists between both involved cell types and that morphogens are transported between them by diffusion. However, actual morphological data illustrate that mesenchymal and epithelial stem/progenitor cell bodies are separated by a striking interface. Special fixation of specimens by glutaraldehyde (GA) solution including cupromeronic blue, ruthenium red, or tannic acid for electron microscopy depicts that the interface is not void but filled in extended areas by textured extracellular matrix. Surprisingly, projections of mesenchymal cells cross the interface to contact epithelial cells. At those sites the plasma membranes of a mesenchymal and an epithelial cell are connected via tunneling nanotubes. Regarding detected morphological features in combination with involved morphogens, their transport cannot longer be explained solely by diffusion. Instead, it has to be sorted according to biophysical properties of morphogens and to detected environment. Thus, the new working hypothesis is that morphogens with good solubility such as glial cell line-derived neurotrophic factor (GDNF) or fibroblast growth factors (FGFs) are transported by diffusion. Morphogens with minor solubility such as bone morphogenetic proteins (BMPs) are secreted and stored for delivery on demand in illustrated extracellular matrix. In contrast, morphogens with poor solubility such as Wnts are transported in mesenchymal cell projections along the plasma membrane or via illustrated tunneling nanotubes. However, the presence of an intercellular route between mesenchymal and epithelial stem/progenitor cells by tunneling nanotubes also makes it possible that all morphogens are transported this way. PMID:26862472

  6. EMBRYO DEVELOPMENT. BMP gradients: A paradigm for morphogen-mediated developmental patterning.

    Science.gov (United States)

    Bier, Ethan; De Robertis, Edward M

    2015-06-26

    Bone morphogenetic proteins (BMPs) act in dose-dependent fashion to regulate cell fate choices in a myriad of developmental contexts. In early vertebrate and invertebrate embryos, BMPs and their antagonists establish epidermal versus central nervous system domains. In this highly conserved system, BMP antagonists mediate the neural-inductive activities proposed by Hans Spemann and Hilde Mangold nearly a century ago. BMPs distributed in gradients subsequently function as morphogens to subdivide the three germ layers into distinct territories and act to organize body axes, regulate growth, maintain stem cell niches, or signal inductively across germ layers. In this Review, we summarize the variety of mechanisms that contribute to generating reliable developmental responses to BMP gradients and other morphogen systems. PMID:26113727

  7. The classic: Bone morphogenetic protein.

    Science.gov (United States)

    Urist, Marshall R; Strates, Basil S

    2009-12-01

    This Classic Article is a reprint of the original work by Marshall R. Urist and Basil S. Strates, Bone Morphogenetic Protein. An accompanying biographical sketch of Marshall R. Urist, MD is available at DOI 10.1007/s11999-009-1067-4; a second Classic Article is available at DOI 10.1007/s11999-009-1069-2; and a third Classic Article is available at DOI 10.1007/s11999-009-1070-9. The Classic Article is copyright 1971 by Sage Publications Inc. Journals and is reprinted with permission from Urist MR, Strates BS. Bone morphogenetic protein. J Dent Res. 1971;50:1392-1406. PMID:19727989

  8. Recombinant human bone morphogenetic protein induces bone formation

    International Nuclear Information System (INIS)

    The authors have purified and characterized active recombinant human bone morphogenetic protein (BMP) 2A. Implantation of the recombinant protein in rats showed that a single BMP can induce bone formation in vivo. A dose-response and time-course study using the rat ectopic bone formation assay revealed that implantation of 0.5-115 μg of partially purified recombinant human BMP-2A resulted in cartilage by day 7 and bone formation by day 14. The time at which bone formation occurred was dependent on the amount of BMP-2A implanted; at high doses bone formation could be observed at 5 days. The cartilage- and bone-inductive activity of the recombinant BMP-2A is histologically indistinguishable from that of bone extracts. Thus, recombinant BMP-2A has therapeutic potential to promote de novo bone formation in humans

  9. Bone Regeneration Using Bone Morphogenetic Proteins and Various Biomaterial Carriers

    Directory of Open Access Journals (Sweden)

    Zeeshan Sheikh

    2015-04-01

    Full Text Available Trauma and disease frequently result in fractures or critical sized bone defects and their management at times necessitates bone grafting. The process of bone healing or regeneration involves intricate network of molecules including bone morphogenetic proteins (BMPs. BMPs belong to a larger superfamily of proteins and are very promising and intensively studied for in the enhancement of bone healing. More than 20 types of BMPs have been identified but only a subset of BMPs can induce de novo bone formation. Many research groups have shown that BMPs can induce differentiation of mesenchymal stem cells and stem cells into osteogenic cells which are capable of producing bone. This review introduces BMPs and discusses current advances in preclinical and clinical application of utilizing various biomaterial carriers for local delivery of BMPs to enhance bone regeneration.

  10. The Sclerostin-Bone Protein Interactome

    OpenAIRE

    Devarajan-Ketha, Hemamalini; Craig, Theodore A.; Madden, Benjamin J.; Bergen, H. Robert; Kumar, Rajiv

    2011-01-01

    The secreted glycoprotein, sclerostin alters bone formation. To gain insights into the mechanism of action of sclerostin, we examined the interactions of sclerostin with bone proteins using a sclerostin affinity capture technique. Proteins from decalcified rat bone were captured on sclerostin-maltose binding protein (MBP) amylose column, or on a MBP amylose column. The columns were extensively washed with low ionic strength buffer, and bound proteins were eluted with buffer containing 1M sodi...

  11. Wnt and Wnt inhibitors in bone metastasis

    OpenAIRE

    Sottnik, Joseph L; Christopher L. Hall; Zhang, Jian; Evan T. Keller

    2012-01-01

    Bone metastasis is a clinically devastating development of progressive cancers including prostate carcinoma, breast carcinoma and multiple myeloma. Bone metastases are typically painful, lead to adverse skeletal-related events, such as fracture, and are highly resistant to therapy. A major contribution to the ability of cancers to successfully establish bone metastases is their ability to exploit mechanisms of normal bone remodeling. Wnts are a large family of morphogenic proteins that are cr...

  12. The Wnt and BMP Families of Signaling Morphogens at the Vertebrate Neuromuscular Junction

    Directory of Open Access Journals (Sweden)

    Juan P. Henríquez

    2011-12-01

    Full Text Available The neuromuscular junction has been extensively employed in order to identify crucial determinants of synaptogenesis. At the vertebrate neuromuscular synapse, extracellular matrix and signaling proteins play stimulatory and inhibitory roles on the assembly of functional synapses. Studies in invertebrate species have revealed crucial functions of early morphogens during the assembly and maturation of the neuromuscular junction. Here, we discuss growing evidence addressing the function of Wnt and Bone morphogenetic protein (BMP signaling pathways at the vertebrate neuromuscular synapse. We focus on the emerging role of Wnt proteins as positive and negative regulators of postsynaptic differentiation. We also address the possible involvement of BMP pathways on motor neuron behavior for the assembly and/or regeneration of the neuromuscular junction.

  13. Management of subtrochanteric femur fractures with internal fixation and recombinant human bone morphogenetic protein-7 in a patient with osteopetrosis: a case report

    Directory of Open Access Journals (Sweden)

    Golden Robert D

    2010-05-01

    Full Text Available Abstract Introduction Osteopetrosis is a group of conditions characterized by defects in the osteoclastic function of the bone resulting in defective bone resorption. Clinically, the condition is characterized by a dense, sclerotic, deformed bone which, despite an increased density observable by radiography, often results in an increased propensity to fracture and delayed union. Case Presentation We report the case of a 27-year-old Asian man presenting with bilateral subtrochanteric femur fractures. He had a displaced right subtrochanteric femur fracture after a low-energy fall, which was treated surgically. The second fracture that our patient endured was diagnosed as a stress fracture ten weeks later when he complained of pain in the contralateral left thigh. By that time, the right-sided fracture exhibited no radiographic evidence of healing, and when the left-sided stress fracture was being treated surgically, bone grafting with recombinant human bone morphogenetic protein-7 was also performed on the right side. Conclusion While there are no data supporting the use of bone morphogenic proteins in the management of delayed healing in patients with osteopetrosis, no other reliable osteoinductive grafting options are available to treat this condition. Both fractures in our patient healed, but based on the serial radiographic assessment it is uncertain to what degree the recombinant human bone morphogenetic protein-7 may have contributed to the successful outcome. It may have also contributed to the formation of heterotopic bone around the fracture site. Further investigation of the effectiveness and indications of bone morphogenic protein use for the management of delayed fracture healing in patients with osteopetrosis is warranted.

  14. Osseointegration of titanium implants by addition of recombinant bone morphogenetic protein 2 (rhBMP-2)

    Energy Technology Data Exchange (ETDEWEB)

    Lichtinger, T.K.; Mueller, R.T.; Schuermann, N.; Oldenburg, M. [Essen Univ. (Germany). Dept. of Orthopaedic Surgery; Wiemann, M. [Inst. of Physiology, Univ. of Essen (Germany); Chatzinikolaidou, M.; Jennissen, H.P. [Inst. of Physiological Chemistry, Univ. of Essen (Germany); Rumpf, H.M.

    2001-12-01

    The osseointegration of long-term implants is often incomplete such that gaps remain between the implant surface and the surrounding hard tissue. This study examines the effect of soluble recombinant human bone morphogenic protein 2 (rhBMP-2) on gap healing and osseous integration. The effect of a single, intraoperative application of soluble rhBMP-2 on the formation of new bone around titanium implants was studied. A total of 8 titanium-alloy cylinders (Ti-6Al-4V) with a plasma spray coating (TPS; 400 {mu}m thickness) were implanted into femoral condyles of mature sheep: rhBMP-2 solution (1 {mu}g) was pipetted into the 1 mm wide cleft around 4 implants; 4 further implants served as rhBMP-2-free controls. Two of these controls exhibited an additional calciumphosphate-coating. The cleft around the implants served as testing zone to study the formation of new bone by microradiographical and histological analyses. The follow-up periods were 4 and 9 weeks, respectively. A significant amount of new bone contacting the implants' surface was detected where rhBMP-2-solution had been used: In 50% a circumferential osseoinduction occurred within 4 weeks and a nearly complete osseointegration was observed after 9 weeks. In all cases bone formation was exaggerated and filled the spongiosa with compact bone. Time matched TPS-controls and controls with calciumphosphate coating showed no notable formation of new bone. The results suggest that a single administration of soluble rhBMP-2 into a bone cavity can augment bone formation and also osseointegration of titanium implants. Further investigations based on these findings are necessary to develop long-term implants (e.g. joint replacements) with rhBMP-2-biocoating for humans. (orig.)

  15. Recombinant Human Bone Morphogenetic Protein-2 in Development and Progression of Oral Squamous Cell Carcinoma.

    Science.gov (United States)

    Zaid, Khaled Waleed; Chantiri, Mansour; Bassit, Ghassan

    2016-01-01

    Bone morphogenetic proteins (BMPs), belonging to the transforming growth factor-β superfamily, regulate many cellular activities including cell migration, differentiation, adhesion, proliferation and apoptosis. Use of recombinant human bone morphogenic protein?2 (rhBMP?2) in oral and maxillofacial surgery has seen a tremendous increase. Due to its role in many cellular pathways, the influence of this protein on carcinogenesis in different organs has been intensively studied over the past decade. BMPs also have been detected to have a role in the development and progression of many tumors, particularly disease-specific bone metastasis. In oral squamous cell carcinoma - the tumor type accounting for more than 90% of head and neck malignancies- aberrations of both BMP expression and associated signaling pathways have a certain relation with the development and progression of the disease by regulating a range of biological functions in the altered cells. In the current review, we discuss the influence of BMPs -especially rhBMP-2- in the development and progression of oral squamous cell carcinoma. PMID:27039814

  16. Ameloblasts serum-free conditioned medium: bone morphogenic protein 4-induced odontogenic differentiation of mouse induced pluripotent stem cells.

    Science.gov (United States)

    Liu, Li; Liu, Ying-Feng; Zhang, Jing; Duan, Yin-Zhong; Jin, Yan

    2016-06-01

    Induced pluripotent stem (iPS) cells possess the ability of self-renewal and can differentiate into cells of the three germ layers, both in vitro and in vivo. Here we report a new method to efficiently induce differentiation of mouse iPS cells into the odontogenic lineage. Using ameloblasts serum-free conditioned medium (ASF-CM), we successfully generated ameloblast-like cells from mouse iPS cells. Importantly, culturing mouse iPS cells in ASF-CM supplemented with BMP4 (ASF-BMP4) promoted odontogenic differentiation, which was evident by the upregulation of ameloblast-specific as well as odontoblast-specific genes. On the other hand, culturing mouse iPS cells in ASF-CM supplemented with noggin (ASF-noggin), an inhibitor of BMP4, abrogated this effect. These results suggest that mouse iPS cells can be induced by ASF-BMP4 to differentiate into ameloblast-like and odontoblast-like cells. The results of our study raise the possibility of using patient-specific iPS cells for tooth regeneration in the future. Copyright © 2016 John Wiley & Sons, Ltd. PMID:23606575

  17. Extracellular interactions and ligand degradation shape the nodal morphogen gradient

    Science.gov (United States)

    Wang, Yin; Wang, Xi; Wohland, Thorsten; Sampath, Karuna

    2016-01-01

    The correct distribution and activity of secreted signaling proteins called morphogens is required for many developmental processes. Nodal morphogens play critical roles in embryonic axis formation in many organisms. Models proposed to generate the Nodal gradient include diffusivity, ligand processing, and a temporal activation window. But how the Nodal morphogen gradient forms in vivo remains unclear. Here, we have measured in vivo for the first time, the binding affinity of Nodal ligands to their major cell surface receptor, Acvr2b, and to the Nodal inhibitor, Lefty, by fluorescence cross-correlation spectroscopy. We examined the diffusion coefficient of Nodal ligands and Lefty inhibitors in live zebrafish embryos by fluorescence correlation spectroscopy. We also investigated the contribution of ligand degradation to the Nodal gradient. We show that ligand clearance via degradation shapes the Nodal gradient and correlates with its signaling range. By computational simulations of gradient formation, we demonstrate that diffusivity, extra-cellular interactions, and selective ligand destruction collectively shape the Nodal morphogen gradient. DOI: http://dx.doi.org/10.7554/eLife.13879.001 PMID:27101364

  18. Chordin forms a self-organizing morphogen gradient in the extracellular space between ectoderm and mesoderm in the Xenopus embryo

    Science.gov (United States)

    Plouhinec, Jean-Louis; Zakin, Lise; Moriyama, Yuki; De Robertis, Edward M.

    2013-01-01

    The vertebrate body plan follows stereotypical dorsal–ventral (D-V) tissue differentiation controlled by bone morphogenetic proteins (BMPs) and secreted BMP antagonists, such as Chordin. The three germ layers—ectoderm, mesoderm, and endoderm—are affected coordinately by the Chordin–BMP morphogen system. However, extracellular morphogen gradients of endogenous proteins have not been directly visualized in vertebrate embryos to date. In this study, we improved immunolocalization methods in Xenopus embryos and analyzed the distribution of endogenous Chordin using a specific antibody. Chordin protein secreted by the dorsal Spemann organizer was found to diffuse along a narrow region that separates the ectoderm from the anterior endoderm and mesoderm. This Fibronectin-rich extracellular matrix is called “Brachet’s cleft” in the Xenopus gastrula and is present in all vertebrate embryos. Chordin protein formed a smooth gradient that encircled the embryo, reaching the ventral-most Brachet cleft. Depletion with morpholino oligos showed that this extracellular gradient was regulated by the Chordin protease Tolloid and its inhibitor Sizzled. The Chordin gradient, as well as the BMP signaling gradient, was self-regulating and, importantly, was able to rescale in dorsal half-embryos. Transplantation of Spemann organizer tissue showed that Chordin diffused over long distances along this signaling highway between the ectoderm and mesoderm. Chordin protein must reach very high concentrations in this narrow region. We suggest that as ectoderm and mesoderm undergo morphogenetic movements during gastrulation, cells in both germ layers read their positional information coordinately from a single morphogen gradient located in Brachet’s cleft. PMID:24284174

  19. Bone graft substitutes and bone morphogenetic proteins for osteoporotic fractures: What is the evidence?

    NARCIS (Netherlands)

    E.M.M. van Lieshout (Esther); V. Alt (Volker)

    2016-01-01

    textabstractDespite improvements in implants and surgical techniques, osteoporotic fractures remain challenging to treat. Among other major risk factors, decreased expression of morphogenetic proteins has been identified for impaired fracture healing in osteoporosis. Bone grafts or bone graft substi

  20. Multifunctional Bone Morphogenetic Protein System in Endocrinology

    Directory of Open Access Journals (Sweden)

    Otsuka,Fumio

    2013-04-01

    Full Text Available New biological activities of bone morphogenetic proteins (BMPs in the endocrine system have recently been revealed. The BMP system is composed of approximately 30 ligands and preferential combinations of type I and type II receptors. The BMP system not only induces bone formation but also plays unique tissue-specific roles in various organs. For instance, the ovarian BMP system is a physiological inhibitor of luteinization in growing ovarian follicles. In the ovary, the expression of oocyte-derived BMP-15 is critical for female reproduction. In the pituitary, BMP-4 is a key player for initial development of the anterior pituitary, while it is also functionally involved in some differentiated pituitary tumors, including prolactinoma and Cushingʼs disease. In the adrenal glands, BMP-6 and BMP-4 modulate aldosterone and catecholamine production, respectively, which contributes to a functional interaction between the cortex and medulla. In the present review, recent advances in BMP biology in the field of endocrinology are described and the possibility for clinical application of BMP activity is discussed.

  1. Bone morphogenetic protein-2 gene controls tooth root development in coordination with formation of the periodontium

    Institute of Scientific and Technical Information of China (English)

    Audrey Rakian; Wu-Chen Yang; Jelica Gluhak-Heinrich; Yong Cui; Marie A Harris; Demitri Villarreal; Jerry Q Feng; Mary MacDougall; Stephen E Harris

    2013-01-01

    Formation of the periodontium begins following onset of tooth-root formation in a coordinated manner after birth. Dental follicle progenitor cells are thought to form the cementum, alveolar bone and Sharpey’s fibers of the periodontal ligament (PDL). However, little is known about the regulatory morphogens that control differentiation and function of these progenitor cells, as well as the progenitor cells involved in crown and root formation. We investigated the role of bone morphogenetic protein-2 (Bmp2) in these processes by the conditional removal of the Bmp2 gene using the Sp7-Cre-EGFP mouse model. Sp7-Cre-EGFP first becomes active at E18 in the first molar, with robust Cre activity at postnatal day 0 (P0), followed by Cre activity in the second molar, which occurs after P0. There is robust Cre activity in the periodontium and third molars by 2 weeks of age. When the Bmp2 gene is removed from Sp71 (Osterix1) cells, major defects are noted in root, cellular cementum and periodontium formation. First, there are major cell autonomous defects in root-odontoblast terminal differentiation. Second, there are major alterations in formation of the PDLs and cellular cementum, correlated with decreased nuclear factor IC (Nfic), periostin and a-SMA1 cells. Third, there is a failure to produce vascular endothelial growth factor A (VEGF-A) in the periodontium and the pulp leading to decreased formation of the microvascular and associated candidate stem cells in the Bmp2-cKOSp7-Cre-EGFP. Fourth, ameloblast function and enamel formation are indirectly altered in the Bmp2-cKOSp7-Cre-EGFP. These data demonstrate that the Bmp2 gene has complex roles in postnatal tooth development and periodontium formation.

  2. Preparation of denatured protein bone sterilized with gamma radiation

    International Nuclear Information System (INIS)

    The bone is one of the tissues more transplanted in the entire world by that the bone necessity for transplant every day becomes bigger. In the Bank of tissues Radio sterilized of the ININ the amnion and the pig skin are routinely processed. The tissue with which will be continued is with bone. Due to that in our country it doesn't have enough bone of human origin for the necessities required in the bone transplant, an option is the bone of bovine. Of this bone one can obtain denatured protein bone, with the same characteristics of the denatured protein human bone, the one which has been proven that it has good acceptance and incorporation in the human body when is transplanted. The method for the obtaining of the denatured protein bone of bovine, with the confirmation of the final product by means of X-ray diffraction is described. The radiosterilization of this bone with gamma rays and the determination of the lead content. (Author)

  3. A strategy to quantitate global phosphorylation of bone matrix proteins.

    Science.gov (United States)

    Sroga, Grażyna E; Vashishth, Deepak

    2016-04-15

    Current studies of protein phosphorylation focus primarily on the importance of specific phosphoproteins and their landscapes of phosphorylation in the regulation of different cellular functions. However, global changes in phosphorylation of extracellular matrix phosphoproteins measured "in bulk" are equally important. For example, correct global phosphorylation of different bone matrix proteins is critical to healthy tissue biomineralization. To study changes of bone matrix global phosphorylation, we developed a strategy that combines a procedure for in vitro phosphorylation/dephosphorylation of fully mineralized bone in addition to quantitation of the global phosphorylation levels of bone matrix proteins. For the first time, we show that it is possible to enzymatically phosphorylate/dephosphorylate fully mineralized bone originating from either cadaveric human donors or laboratory animals (mice). Using our strategy, we detected the difference in the global phosphorylation levels of matrix proteins isolated from wild-type and osteopontin knockout mice. We also observed that the global phosphorylation levels of matrix proteins isolated from human cortical bone were lower than those isolated from trabecular bone. The developed strategy has the potential to open new avenues for studies on the global phosphorylation of bone matrix proteins and their role in biomineralization as well for other tissues/cells and protein-based materials. PMID:26851341

  4. Hedgehog morphogen in cardiovascular disease

    NARCIS (Netherlands)

    Bijlsma, Maarten F.; Peppelenbosch, Maikel P.; Spek, C. Arnold

    2006-01-01

    In this review, we focus on the basic biology of the important developmental Hedgehog ( Hh) protein family, its general function in development, pathway mechanisms, and gene discovery and nomenclature. Hh function in cardiovascular development and recent findings concerning Hh signaling in ischemia

  5. Hepatoregenerative role of bone morphogenetic protein-9

    Science.gov (United States)

    Sosa, Ivan; Cvijanovic, Olga; Celic, Tanja; Cuculic, Drazen; Crncevic-Orlic, Zeljka; Vukelic, Lucian; Cvek, Sanja Zoricic; Dudaric, Luka; Bosnar, Alan; Bobinac, Dragica

    2011-01-01

    Summary Bone morphogenetic protein-9 (BMP-9) is a member of the transforming growth factor beta (TGF-β) superfamily of cytokines, which regulate cell growth and differentiation during embryogenesis. Apart of that, the hypoglycemic potential of BMP-9 is of great interest. It has been confirmed that BMP-9, like insulin, improves glycemia in diabetic mice and regulates directional glucose metabolism in hepatocytes; therefore it is proposed to be a candidate hepatic insulin-sensitizing substance (HISS). In liver fibrosis, due to the portocaval shunt, insulin bypasses the organ and the liver undergoes atrophy. Parenteral administration of insulin reverses atrophy by stimulating mitogenic activity of the hepatocytes. Because BMP-9 has a signaling pathway similar to other BMPs and insulin, it is to be expected that BMP-9 has a certain regenerative role in the liver, supporting the above-mentioned is evidence of BMP-9 expression in Dissè’s spaces and BMP-7’s mitogenic activity in mucosal cells. However, further studies are needed to confirm the possible regenerative role of BMP-9. PMID:22129908

  6. The Structure and Function of Non-Collagenous Bone Proteins

    Science.gov (United States)

    Hook, Magnus; McQuillan, David J.

    1997-01-01

    The research done under the cooperative research agreement for the project titled 'The structure and function of non-collagenous bone proteins' represented the first phase of an ongoing program to define the structural and functional relationships of the principal noncollagenous proteins in bone. An ultimate goal of this research is to enable design and execution of useful pharmacological compounds that will have a beneficial effect in treatment of osteoporosis, both land-based and induced by long-duration space travel. The goals of the now complete first phase were as follows: 1. Establish and/or develop powerful recombinant protein expression systems; 2. Develop and refine isolation and purification of recombinant proteins; 3. Express wild-type non-collagenous bone proteins; 4. Express site-specific mutant proteins and domains of wild-type proteins to enhance likelihood of crystal formation for subsequent solution of structure.

  7. A model of morphogen transport II

    OpenAIRE

    Małogrosz, Marcin

    2014-01-01

    A model of morphogen transport consisting of two evolutionary PDEs of reaction-diffusion type and three ODEs posed on a rectangular domain is analysed. We prove that the problem is globally well-posed and that the corresponding solutions converge, as the width of the rectangle tends to zero, to the unique solution of the one dimensional system which was analyzed in the first paper of the series. Main difficulties in the analysis stem from the presence of a singular source term - a Dirac Delta...

  8. Bone morphogenetic protein-2: a potential regulator in scleral remodeling

    OpenAIRE

    Hu, Jianmin; Cui, Dongmei; Yang, Xiao; Wang, Shaowei; Hu, Shoulong; Li, Chuanxu; Zeng, Junwen

    2008-01-01

    Purpose Bone morphogenetic protein 2 (BMP-2) is a member of the main subgroup of bone morphogenetic proteins within the transforming growth factor-β superfamily. BMP-2 is involved in numerous cellular functions including development, cell proliferation, apoptosis, and extracellular matrix synthesis. We examined BMP-2 expression in human scleral fibroblasts (HSF) and assessed the effects of recombinant human BMP-2 (rhBMP-2) on HSF proliferation, matrix metalloproteinase-2 (MMP-2), and tissue i...

  9. Effects of bone morphogenic protein 4 (BMP4) and its inhibitor, Noggin, on in vitro maturation and culture of bovine preimplantation embryos

    OpenAIRE

    Fernandez-Martin Rafael; Pereira Michele M; Camargo Luiz SA; La Rosa Isabel; Paz Dante A; Salamone Daniel F

    2011-01-01

    Abstract Background BMP4 is a member of the transforming growth factor beta (TGFbeta) superfamily and Noggin is a potent BMP inhibitor that exerts its function by binding to BMPs preventing interactions with its receptors. The aim of this work was to investigate the role of BMP4 and Noggin, on oocytes in vitro maturation (m experiments) and embryos in vitro development (c experiments) of bovine. Methods For m experiments, COCs were collected from slaughterhouse ovaries and in vitro matured in...

  10. Effects of bone morphogenic protein 4 (BMP4 and its inhibitor, Noggin, on in vitro maturation and culture of bovine preimplantation embryos

    Directory of Open Access Journals (Sweden)

    Fernandez-Martin Rafael

    2011-02-01

    Full Text Available Abstract Background BMP4 is a member of the transforming growth factor beta (TGFbeta superfamily and Noggin is a potent BMP inhibitor that exerts its function by binding to BMPs preventing interactions with its receptors. The aim of this work was to investigate the role of BMP4 and Noggin, on oocytes in vitro maturation (m experiments and embryos in vitro development (c experiments of bovine. Methods For m experiments, COCs were collected from slaughterhouse ovaries and in vitro matured in TCM with 100 ng/ml of either BMP4 or Noggin. After 24 h, the nuclear stage of the oocytes was determined by staining with Hoechst 33342. In addition, RT-qPCR was performed on MII oocytes to study the relative concentration of ZAR1, GDF9, BAX, MATER and HSP70 transcripts. Treated oocytes were submitted to parthenogenic activation (PA or in vitro fertilization (IVF and cultured in CR2. For c experiments, non-treated matured oocytes were submitted to PA or IVF to generate embryos that were exposed to 100 ng/ml of BMP4 or Noggin in CR2 until day nine of culture. Cleavage, blastocyst and hatching rates, expression pattern of the transcription factor Oct-4 in blastocysts and embryo cell number at day two and nine post-activation or fertilization were evaluated. Results We found that Noggin, as BMP4, did not affect oocyte nuclear maturation. Noggin supplementation up-regulated the expression of HSP70 and MATER genes in matured oocytes. Moreover, BMP4 during maturation increased the proportion of Oct-4 positive cells in parthenogenic embryos. On the other hand, when Noggin was added to embryo culture medium, developmental rates of parthenogenic and in vitro fertilized embryos were reduced. However, BMP4 addition decreases the development only for in vitro fertilized embryos. BMP4 and Noggin during culture reduced the proportion of Oct-4-expressing cells. Conclusions Our results show that BMP4 is implicated in bovine oocytes maturation and embryo development. Moreover, our findings demonstrate, for the first time, that a correct balance of BMP signaling is needed for proper pre-implantation development of bovine embryos.

  11. Genetic Variants in the Bone Morphogenic Protein Gene Family Modify the Association between Residential Exposure to Traffic and Peripheral Arterial Disease cardiovascular disease cohort.

    Science.gov (United States)

    There is a growing literature indicating that genetic variants modify many of the associations between environmental exposures and clinical outcomes, potentially by increasing susceptibility to these exposures. However, genome-scale investigations of these interactions have been ...

  12. Expression of human bone-related proteins in the hematopoietic microenvironment.

    OpenAIRE

    Long, M W; Williams, J.L.; Mann, K G

    1990-01-01

    Given the intimate relationship between bone and bone marrow, we hypothesized that the human bone marrow may function as a source (or reservoir) of bone-forming progenitor cells. We observed a population of cells within the bone marrow which produce bone-specific or bone-related proteins. The production of these proteins was developmentally regulated in human long-term bone marrow cell cultures; the bone protein-producing cells (BPPC) are observed under serum-free, short-term culture conditio...

  13. TRANSCRIPTIONAL REGULATION OF BONE MARROW THROMBOPOIETIN BY PLATELET PROTEINS

    OpenAIRE

    McIntosh, Bryan; Kaushansky, Kenneth

    2008-01-01

    Platelet production is regulated primarily by the cytokine thrombopoietin (TPO). Although TPO is expressed in several different tissues, only in the bone marrow has the level of expression been reported to increase in response to reduced numbers of platelets. In these studies we demonstrate that platelet granule proteins are able to transcriptionally repress TPO mRNA expression in a marrow stromal cell line as well as in primary bone marrow stromal cell cultures. Like TPO mRNA, secretion of T...

  14. Patterning the cerebral cortex: traveling with morphogens.

    Science.gov (United States)

    Borello, Ugo; Pierani, Alessandra

    2010-08-01

    The neocortex represents the brain structure that has been subjected to a major expansion in its relative size during the course of mammalian evolution. An exquisite coordination of appropriate growth of competent territories along multiple axes and their spatial patterning is required for regionalization of the cortical primordium and the formation of functional areas. The achievement of such a highly complex architecture relies on a precise orchestration of the proliferation of progenitors, onset of neurogenesis, spatio-temporal generation of distinct cell types and control of their migration. We will review recent work on alternative molecular mechanisms that, via the migration of signaling cells/structures, participate in coordinating growth and spatial patterning in the developing cerebral cortex. By integrating temporal and spatial parameters as well as absolute levels of signaling this novel strategy might represent a general mechanism for long-range patterning in large structures, in addition to the passive diffusion of morphogens. PMID:20542680

  15. Enhanced release of bone morphogenetic proteins from demineralized bone matrix by gamma irradiation

    International Nuclear Information System (INIS)

    Gamma irradiation is a useful method for sterilizing demineralized bone matrix (DBM), but its effect on the osteoinductivity of DBM is still controversial. In this study, the osteoinductive activity of gamma-irradiated DBM was examined using a mouse myoblastic cell line (C2C12). DBM was extracted from adult bovine bone and was irradiated at a dose of 25 kGy using a 60cobalt gamma-irradiator. Cell proliferation with DBM was not affected by gamma-irradiation, but alkaline phosphatase and osteocalcin productions were significantly increased in C2C12 cell groups treated with gamma-irradiated DBM. It was reasoned that bone morphogenetic proteins were more efficiently released from gamma-irradiated DBM than from the non-irradiated control. This result suggests the effectiveness of radiation sterilization of bone implants - Highlights: • Demineralized bone matrix (DBM) was gamma-irradiated for sterilization. • Irradiated DBM had higher alkaline phosphatase and osteocalcin production. • It was reasoned the more released bone morphogenetic proteins by irradiation. • This result supports the application of radiation sterilization for bone implants

  16. The synergistic induction of bone formation by the osteogenic proteins of the TGF-β supergene family.

    Science.gov (United States)

    Ripamonti, Ugo; Parak, Ruqayya; Klar, Roland M; Dickens, Caroline; Dix-Peek, Thérèse; Duarte, Raquel

    2016-10-01

    haematopoietic bone marrow that forms by day 15 in heterotopic rectus abdominis sites. Synergistic binary applications also induce the morphogenesis of rudimentary embryonic growth plates indicating that the "memory" of developmental events in embryo can be redeployed postnatally by the application of morphogen combinations. Synergistic binary applications or single relatively high doses of hTGF-β3 have shown that hTGF-β3 induces bone by expressing a variety of inductive morphogenetic proteins that result in the rapid induction of bone formation. Tissue induction thus invocated singly by hTGF-β3 recapitulates the synergistic induction of bone formation by binary applications of hTGF-β1 and -β3 isoforms with hOP-1. Both synergistic strategies result in the rapid induction and expansion of the transformed mesenchymal tissue into large corticalized heterotopic ossicles with osteoblast-like cell differentiation at the periphery of the implanted reconstituted specimens with "tissue transfiguration" in vivo. Molecularly, the rapid induction of bone formation by binary applications of hOP-1 and hTGF-β3 or by hTGF-β3 applied singly resides in the up-regulation of selected genes involved in tissue induction and morphogenesis, Osteocalcin, RUNX-2, OP-1, TGF-β1 and -β3 with however the noted lack of TGF-β2 up-regulation. PMID:27474964

  17. Induction of Bone Matrix Protein Expression by Native Bone Matrix Proteins in C2C12 Culture

    Institute of Scientific and Technical Information of China (English)

    ZHEN-MING HU; SEAN A. F. PEEL; STEPHEN K. C. HO; GEORGE K. B. SANDOR; CAMERON M. L. CLOKIE

    2009-01-01

    Objective To study the expression of bone matrix protein (BMP) induced by bovine bone morphogenetic proteins (BMPs) in vitro. Methods Type I collagen, osteopontin (OPN), osteonectin (ON), osteocalcin (OC), and bone sialoprotein (BSP) were detected by immunohistochemistry in C2C12 cultured from day 1 to day 28. Results The signaling of bone matrix protein expression became weaker except for type I collagen, OC and BSP after 5 days. Fourteen days after culture, the positive signaling of type I collagen, OPN, ON, OC, and BSP was gradually declined, and could be detected significantly as compared with that of the negative control on day 28. BMP assay showed that the Ikaline phosphatase (ALP) activity was higher in C2C12 culture than in the control during the 14-day culture. Also, total protein and DNA significantly increased during the 14-day culture. High levels of ALP were seen in preosteoblasts and osteoblsts in vivo and in differentiating ostcoblasts in vitro. ALP was well recognized as a marker reflecting osteoblastic activity. Conclusion Native bovine BMP induces conversion of myoblasts into osteoblasts, produces type 1 collagen, and plays significantly role in osteoinduction and bone matrix mineralization of C2C12 in vitro.

  18. Dynamics and precision in retinoic acid morphogen gradients

    OpenAIRE

    SCHILLING, THOMAS F.; Nie, Qing; Lander, Arthur D.

    2012-01-01

    Retinoic acid (RA) regulates many cellular behaviors during embryonic development and adult homeostasis. Like other morphogens, RA forms gradients through the use of localized sources and sinks, feedback, and interactions with other signals; this has been particularly well studied in the context of hindbrain segmentation in vertebrate embryos. Yet, as a small lipophilic molecule derived from a dietary source—vitamin A—RA differs markedly from better-studied polypeptide morphogens in its mecha...

  19. Cortactin mediated morphogenic cell movements during zebrafish (Danio rerio) gastrulation

    Institute of Scientific and Technical Information of China (English)

    YU Dan; ZHANG Peijun; ZHAN Xi

    2005-01-01

    Cell migration is essential to direct embryonic cells to specific sites at which their developmental fates are ultimately determined. However, the mechanism by which cell motility is regulated in embryonic development is largely unknown. Cortactin, a filamentous actin binding protein, is an activator of Arp2/3 complex in the nucleation of actin cytoskeleton at the cell leading edge and acts directly on the machinery of cell motility. To determine whether cortactin and Arp2/3 mediated actin assembly plays a role in the morphogenic cell movements during the early development of zebrafish, we initiated a study of cortactin expression in zebrafish embryos at gastrulating stages when massive cell migrations occur. Western blot analysis using a cortactin specific monoclonal antibody demonstrated that cortactin protein is abundantly present in embryos at the most early developmental stages. Immunostaining of whole-mounted embryo showed that cortactin immunoreactivity was associated with the embryonic shield, predominantly at the dorsal side of the embryos during gastrulation. In addition, cortactin was detected in the convergent cells of the epiblast and hypoblast, and later in the central nervous system. Immunofluorescent staining with cortactin and Arp3 antibodies also revealed that cortactin and Arp2/3 complex colocalized at the periphery and many patches associated with the cell-to-cell junction in motile embryonic cells. Therefore, our data suggest that cortactin and Arp2/3 mediated actin polymerization is implicated in the cell movement during gastrulation and perhaps the development of the central neural system as well.

  20. Read-Out of Dynamic Morphogen Gradients on Growing Domains.

    Directory of Open Access Journals (Sweden)

    Patrick Fried

    Full Text Available Quantitative data from the Drosophila wing imaginal disc reveals that the amplitude of the Decapentaplegic (Dpp morphogen gradient increases continuously. It is an open question how cells can determine their relative position within a domain based on a continuously increasing gradient. Here we show that pre-steady state diffusion-based dispersal of morphogens results in a zone within the growing domain where the concentration remains constant over the patterning period. The position of the zone that is predicted based on quantitative data for the Dpp morphogen corresponds to where the Dpp-dependent gene expression boundaries of spalt (sal and daughters against dpp (dad emerge. The model also suggests that genes that are scaling and are expressed at lateral positions are either under the control of a different read-out mechanism or under the control of a different morphogen. The patterning mechanism explains the extraordinary robustness that is observed for variations in Dpp production, and offers an explanation for the dual role of Dpp in controlling patterning and growth. Pre-steady-state dynamics are pervasive in morphogen-controlled systems, thus making this a probable general mechanism for the scaled read-out of morphogen gradients in growing developmental systems.

  1. Use of bone morphogenetic proteins in mesenchymal stem cell stimulation of cartilage and bone repair

    OpenAIRE

    Scarfì, Sonia

    2016-01-01

    The extracellular matrix-associated bone morphogenetic proteins (BMPs) govern a plethora of biological processes. The BMPs are members of the transforming growth factor-β protein superfamily, and they actively participate to kidney development, digit and limb formation, angiogenesis, tissue fibrosis and tumor development. Since their discovery, they have attracted attention for their fascinating perspectives in the regenerative medicine and tissue engineering fields. BMPs have been employed i...

  2. Tracheal cartilage regeneration and new bone formation by slow release of bone morphogenetic protein (BMP)-2.

    Science.gov (United States)

    Igai, Hitoshi; Chang, Sung Soo; Gotoh, Masashi; Yamamoto, Yasumichi; Yamamoto, Masaya; Tabata, Yasuhiko; Yokomise, Hiroyasu

    2008-01-01

    We investigated the efficiency of bone morphogenetic protein (BMP)-2 released slowly from gelatin sponge for tracheal cartilage regeneration. A 1-cm gap was made in the mid-ventral portion of each of 10 consecutive tracheal cartilages. In the control group (n = 4), the resulting gap was left untreated. In the gelatin group (n = 4), plain gelatin was implanted in the gap. In the BMP-2 group (n = 4), gelatin containing 100 microg BMP-2 was implanted. We euthanatized all dogs in each group at 1, 3, 6, and 12 months after the implantation, respectively, and then examined the implant site macro- and microscopically. In the BMP-2 group, regenerated fibrous cartilage and newly formed bone were observed at 1 and 12 months. Regenerated cartilage was observed at the ends of the host cartilage stumps, with newly formed bone in the middle portion. The gaps were filled with regenerated cartilage and newly formed bone. At 3 and 6 months, regenerated cartilage, but not newly formed bone, was evident. The regenerated cartilage was covered with perichondrium and showed continuity with the host cartilage. We succeeded in inducing cartilage regeneration and new bone formation in canine trachea by slow release of 100 microg BMP-2 from gelatin. PMID:18204324

  3. Effect of the "protein diet" and bone tissue

    Directory of Open Access Journals (Sweden)

    Zoraide Nascimento da Silva

    2014-01-01

    Full Text Available The aim of this study is to evaluate the effect of the hyperproteic diet consumption on bone tissue. Methods: The study was conducted during sixty days. Twenty eight Wistar albinus rats, adults, originated from Laboratory of Experimental Nutrition were divided in four groups: (n = 7; Control 1 (C1, Control 2 (C2, Hyperproteic 1 (HP1 e Hyperproteic 2 (HP2. The C2 and HP2 groups were submitted to 30% of food restriction. The hyperproteic diet was based on the Atkins diet and prepared to simulate the protein diet. At the end of the study the animals were anesthetized to performer bone densitometry analyses by DEXA and blood and tissue collection. Serum and bone minerals analyses were conducted by colorimetric methods in automated equipment. Results: The total bone mineral density (BMD of the pelvis and the spine of the food restriction groups (HP2 e C2 were lower (p < 0.05 than C1 e HP1 groups. While the femur BMD of the HP2 was lower (p < 0.05 related to others groups. It had been observed reduction (p < 0.05 in the medium point of the width of femur diaphysis and in bone calcium level in the hyperproteic groups (HP1 e HP2. It was observed similar effect on the osteocalcin level, that presented lower (p < 0.05 in the hyperproteic groups. The insulin level was lower only in HP2 and serum calcium of the HP1 and HP2 groups was lower than C1. Conclusion: The protein diet promotes significant bone change on femur and in the hormones levels related to bone synthesis and maintenance of this tissue.

  4. Comparative experiment of four different materials as carriers of Bone morphogenetic protein to repair long bone defect

    Institute of Scientific and Technical Information of China (English)

    WEI Kuan-hai; PEI Guo-xian; YANG Run-gong

    2001-01-01

    @@ OBJECTIVE To investigate the effects of four different materials as carriers of bone morphogenetic protein (BMP) to repair long bone defect. METHODS 12 mm radius bone defects were made. They were divided into 4 groups in random and repaired respectively with the vascular muscle flap combined with FS/BMP (group A), vascular muscle flap/BMP (group B), bloodless muscle flap/BMP (group C) and autolyzed antigen-extracted allogeneic bone (AAA)/BMP (group D).Their abilities of bone forming to repair bone defects were observed.

  5. Bone morphogenetic proteins: from structure to clinical use

    Directory of Open Access Journals (Sweden)

    Granjeiro J.M.

    2005-01-01

    Full Text Available Bone morphogenetic proteins (BMPs are multi-functional growth factors belonging to the transforming growth factor ß superfamily. Family members are expressed during limb development, endochondral ossification, early fracture, and cartilage repair. The activity of BMPs was first identified in the 1960s but the proteins responsible for bone induction were unknown until the purification and cloning of human BMPs in the 1980s. To date, about 15 BMP family members have been identified and characterized. The signal triggered by BMPs is transduced through serine/threonine kinase receptors, type I and II subtypes. Three type I receptors have been shown to bind BMP ligands, namely: type IA and IB BMP receptors and type IA activin receptors. BMPs seem to be involved in the regulation of cell proliferation, survival, differentiation and apoptosis, but their hallmark is their ability to induce bone, cartilage, ligament, and tendon formation at both heterotopic and orthotopic sites. This suggests that, in the future, they may play a major role in the treatment of bone diseases. Several animal studies have illustrated the potential of BMPs to enhance spinal fusion, repair critical-size defects, accelerate union, and heal articular cartilage lesions. Difficulties in producing and purifying BMPs from bone tissue have prompted the attempts made by several laboratories, including ours, to express these proteins in the recombinant form in heterologous systems. This review focuses on BMP structure, molecular mechanisms of action and significance and potential applications in medical, dental and veterinary practice for the treatment of cartilage and bone-related diseases.

  6. Master equation simulation analysis of immunostained Bicoid morphogen gradient

    Directory of Open Access Journals (Sweden)

    Reinitz John

    2007-11-01

    Full Text Available Abstract Background The concentration gradient of Bicoid protein which determines the developmental pathways in early Drosophila embryo is the best characterized morphogen gradient at the molecular level. Because different developmental fates can be elicited by different concentrations of Bicoid, it is important to probe the limits of this specification by analyzing intrinsic fluctuations of the Bicoid gradient arising from small molecular number. Stochastic simulations can be applied to further the understanding of the dynamics of Bicoid morphogen gradient formation at the molecular number level, and determine the source of the nucleus-to-nucleus expression variation (noise observed in the Bicoid gradient. Results We compared quantitative observations of Bicoid levels in immunostained Drosophila embryos with a spatially extended Master Equation model which represents diffusion, decay, and anterior synthesis. We show that the intrinsic noise of an autonomous reaction-diffusion gradient is Poisson distributed. We demonstrate how experimental noise can be identified in the logarithm domain from single embryo analysis, and then separated from intrinsic noise in the normalized variance domain of an ensemble statistical analysis. We show how measurement sensitivity affects our observations, and how small amounts of rescaling noise can perturb the noise strength (Fano factor observed. We demonstrate that the biological noise level in data can serve as a physical constraint for restricting the model's parameter space, and for predicting the Bicoid molecular number and variation range. An estimate based on a low variance ensemble of embryos suggests that the steady-state Bicoid molecular number in a nucleus should be larger than 300 in the middle of the embryo, and hence the gradient should extend to the posterior end of the embryo, beyond the previously assumed background limit. We exhibit the predicted molecular number gradient together with

  7. Up-regulation of bone marrow stromal protein 2 (BST2) in breast cancer with bone metastasis

    OpenAIRE

    Zheng Xin; Li Zhen; Cao Jie; Cai Dongqing; Yao Yao; Li Wanglin; Yuan Ziqiang

    2009-01-01

    Abstract Background Bone metastases are frequent complications of breast cancer. Recent literature implicates multiple chemokines in the formation of bone metastases in breast cancer. However, the molecular mechanism of metastatic bone disease in breast cancer remains unknown. We have recently made the novel observation of the BST2 protein expression in human breast cancer cell lines. The purpose of our present study is to investigate the expression and the role of BST2 in bone metastatic bre...

  8. PROTEIN OF MEAT AND BONE MEAL FOR PIGS

    Directory of Open Access Journals (Sweden)

    Patieva S. V.

    2015-09-01

    Full Text Available The modern requirements of intergovernmental standards to the quality and safety of livestock produce provide for the use of highly productive animals capable under small expenses to produce more the high quality produce. In particular, at the formation of meat productivity at pigs the great significance has an achievement of optimal digestion and assimilability of consumed fodder means. In the connection, the study of digestion of meat and bone meal from slaughterhouse wastes of cattle (MCM and poultry (MCBM presents the scientific interest. In the fodder experience on the growing pigs with the fistula of iliac intestines there was investigated the digestion of two types of meat and bone meal from slaughterhouse wastes of cattle (MCM and poultry (MKBM. The iliac accessibility of amino acids of meat and bone meal found itself too low: 49,3 % - 69,3 %. The accessibility of general protein reliably did not differ from the average accessibility on main amino acids - 61,5 %. To count the real iliac accessibility of raw protein and amino acids of meat and bone meal there was determined an endogenous emission of these substances on the casein diet. The real iliac accessibility of protein and individual amino acids did not leave the limits in 73% on МCM and 69% - on МCBМ. The accessibility of lysine, leucine and isoleucine MCBM is reliably higher than the same in MCM (P

  9. Whey Protein Concentrate Hydrolysate Prevents Bone Loss in Ovariectomized Rats.

    Science.gov (United States)

    Kim, Jonggun; Kim, Hyung Kwan; Kim, Saehun; Imm, Ji-Young; Whang, Kwang-Youn

    2015-12-01

    Milk is known as a safe food and contains easily absorbable minerals and proteins, including whey protein, which has demonstrated antiosteoporotic effects on ovariectomized rats. This study evaluated the antiosteoporotic effect of whey protein concentrate hydrolysate (WPCH) digested with fungal protease and whey protein concentrate (WPC). Two experiments were conducted to determine (1) efficacy of WPCH and WPC and (2) dose-dependent impact of WPCH in ovariectomized rats (10 weeks old). In Experiment I, ovariectomized rats (n=45) were allotted into three dietary treatments of 10 g/kg diet of WPC, 10 g/kg diet of WPCH, and a control diet. In Experiment II, ovariectomized rats (n=60) were fed four different diets (0, 10, 20, and 40 g/kg of WPCH). In both experiments, sham-operated rats (n=15) were also fed a control diet containing the same amount of amino acids and minerals as dietary treatments. After 6 weeks, dietary WPCH prevented loss of bone, physical properties, mineral density, and mineral content, and improved breaking strength of femurs, with similar effect to WPC. The bone resorption enzyme activity (tartrate resistance acid phosphatase) in tibia epiphysis decreased in response to WPCH supplementation, while bone formation enzyme activity (alkaline phosphatase) was unaffected by ovariectomy and dietary treatment. Bone properties and strength increased as the dietary WPCH level increased (10 and 20 g/kg), but there was no difference between the 20 and 40 g/kg treatment. WPCH and WPC supplementation ameliorated bone loss induced by ovariectomy in rats. PMID:26367331

  10. A novel method of isolation of a bone-morphogenetic-protein-like protein from ossein.

    Science.gov (United States)

    Mythili, J; Padmavathy, S; Chandrakasan, G

    2001-08-01

    A new bone-morphogenetic-protein (BMP)-like protein has been isolated through a new protocol from a novel source, ossein. The BMP-like protein was hydrophilic and characterized through Fourier-transform IR studies, SDS/PAGE and coupled with a neutral binder, hydroxypropylmethylcellulose (HPMC) for control release. The IR spectrum of the protein showed peaks in tandem with BMP from bone matrix, and its molecular mass was in the range 18-21 kDa. Sustained release from the surface of HPMC was achieved for a period of 3 days. PMID:11483152

  11. AMP-activated protein kinase (AMPK) activation regulates in vitro bone formation and bone mass.

    Science.gov (United States)

    Shah, M; Kola, B; Bataveljic, A; Arnett, T R; Viollet, B; Saxon, L; Korbonits, M; Chenu, C

    2010-08-01

    Adenosine 5'-monophosphate-activated protein kinase (AMPK), a regulator of energy homeostasis, has a central role in mediating the appetite-modulating and metabolic effects of many hormones and antidiabetic drugs metformin and glitazones. The objective of this study was to determine if AMPK can be activated in osteoblasts by known AMPK modulators and if AMPK activity is involved in osteoblast function in vitro and regulation of bone mass in vivo. ROS 17/2.8 rat osteoblast-like cells were cultured in the presence of AMPK activators (AICAR and metformin), AMPK inhibitor (compound C), the gastric peptide hormone ghrelin and the beta-adrenergic blocker propranolol. AMPK activity was measured in cell lysates by a functional kinase assay and AMPK protein phosphorylation was studied by Western Blotting using an antibody recognizing AMPK Thr-172 residue. We demonstrated that treatment of ROS 17/2.8 cells with AICAR and metformin stimulates Thr-172 phosphorylation of AMPK and dose-dependently increases its activity. In contrast, treatment of ROS 17/2.8 cells with compound C inhibited AMPK phosphorylation. Ghrelin and propranolol dose-dependently increased AMPK phosphorylation and activity. Cell proliferation and alkaline phosphatase activity were not affected by metformin treatment while AICAR significantly inhibited ROS 17/2.8 cell proliferation and alkaline phosphatase activity at high concentrations. To study the effect of AMPK activation on bone formation in vitro, primary osteoblasts obtained from rat calvaria were cultured for 14-17days in the presence of AICAR, metformin and compound C. Formation of 'trabecular-shaped' bone nodules was evaluated following alizarin red staining. We demonstrated that both AICAR and metformin dose-dependently increase trabecular bone nodule formation, while compound C inhibits bone formation. When primary osteoblasts were co-treated with AICAR and compound C, compound C suppressed the stimulatory effect of AICAR on bone nodule formation

  12. Human Cementum Protein 1 induces expression of bone and cementum proteins by human gingival fibroblasts

    International Nuclear Information System (INIS)

    We recently presented evidence showing that a human cementoblastoma-derived protein, named Cementum Protein 1 (CEMP1) may play a role as a local regulator of cementoblast differentiation and cementum-matrix mineralization. This protein was shown to be expressed by cementoblasts and progenitor cells localized in the periodontal ligament. In this study we demonstrate that transfection of CEMP1 into human gingival fibroblasts (HGF) induces mineralization and expression of bone and cementum-matrix proteins. The transfected HGF cells had higher alkaline phosphatase activity and proliferation rate and they expressed genes for alkaline phosphatase, bone sialoprotein, osteocalcin, osteopontin, the transcription factor Runx2/Cbfa1, and cementum attachment protein (CAP). They also produced biological-type hydroxyapatite. These findings indicate that the CEMP1 might participate in differentiation and mineralization of nonosteogenic cells, and that it might have a potential function in cementum and bone formation

  13. Ectopic bone induction in porous apatite-wollastonite-containing glass ceramic combined with bone morphogenetic protein.

    Science.gov (United States)

    Ijiri, S; Nakamura, T; Fujisawa, Y; Hazama, M; Komatsudani, S

    1997-06-15

    To accelerate the integration of ceramic implants with the surrounding bone and to search for a suitable carrier for bone morphogenetic protein (BMP), we studied ectopic bone induction in porous apatite-wollastonite-containing glass ceramic (A-W GC) combined with partially purified bovine BMP (bBMP) and recombinant Xenopus BMP-4/7 (rxBMP-4/7). Porous A-W GC rods [4 mm in diameter, 5 mm in height, 70% porosity, 200 microns mean pore size, 17.54 +/- 3.82 MPa (mean +/- SD) compressive strength] were used. An apatite coating formed on the surface of porous A-W GC that had been immersed in simulated body fluid at 36.5 degrees C for 7 days. In experiment 1, porous A-W GC rods were combined with either bBMP, collagen, or with both bBMP and collagen. The rods were implanted into subcutaneous pouches in rats and were harvested 4 weeks after implantation. Low-energy radiographic, scanning electron microscopic (SEM), and histological examinations showed ectopic bone formation and within the rods only in the porous A-W GC combined with the bBMP and collagen group. Quantitative analysis also revealed that this group alone showed a significant increase in bone formation. In experiment 2, porous A-W GC rods were combined with rxBMP and collagen, implanted into rats, and harvested as described above. SEM and histological examination showed ectopic bone formation around and within the rods. Because of its relatively high mechanical strength, ease of handling, and good osteoinductivity, porous A-W GC combined with BMP and collagen may be clinically useful in patients with large cancellous bone defects or craniomaxillofacial lesions. PMID:9189820

  14. Calcium Sulfate with Stearic Acid as an Encouraging Carrier for Reindeer Bone Protein Extract

    Directory of Open Access Journals (Sweden)

    Pekka Jalovaara

    2011-07-01

    Full Text Available Various bone proteins and growth factors in specific concentrations are required for bone formation. If the body cannot produce sufficient quantities of these factors, bone trauma can be healed with an implant that includes the required factors in a carrier. This study was designed to evaluate various calcium salt candidates that can be used as carrier with reindeer bone protein extract to induce ectopic bone formation in the muscle pouch model of mouse. The bone protein extract was either impregnated into the disc form of carrier or mixed with carrier powder before implantation. The radiographic analysis indicated increased bone formation in all of the active groups containing the bone protein extract compared to the controls within 21 days follow-up. The highest bone formation was seen in the group with calcium sulfate with stearic acid where new bone and calcified cartilage were clearly visible. The greatest bone formation occurred in the groups that had bone protein extract readily available. This indicates that the bone forming factors in sufficient concentrations are required at the early stage of bone formation. The calcium sulfate with stearic acid was the most suitable and effective carrier for reindeer bone protein extract.

  15. Multi-protein delivery by nanodiamonds promotes bone formation.

    Science.gov (United States)

    Moore, L; Gatica, M; Kim, H; Osawa, E; Ho, D

    2013-11-01

    Bone morphogenetic proteins (BMPs) are well-studied regulators of cartilage and bone development that have been Food and Drug Administration (FDA)-approved for the promotion of bone formation in certain procedures. BMPs are seeing more use in oral and maxillofacial surgeries because of recent FDA approval of InFUSE(®) for sinus augmentation and localized alveolar ridge augmentation. However, the utility of BMPs in medical and dental applications is limited by the delivery method. Currently, BMPs are delivered to the surgical site by the implantation of bulky collagen sponges. Here we evaluate the potential of detonation nanodiamonds (NDs) as a delivery vehicle for BMP-2 and basic fibroblast growth factor (bFGF). Nanodiamonds are biocompatible, 4- to 5-nm carbon nanoparticles that have previously been used to deliver a wide variety of molecules, including proteins and peptides. We find that both BMP-2 and bFGF are readily loaded onto NDs by physisorption, forming a stable colloidal solution, and are triggered to release in slightly acidic conditions. Simultaneous delivery of BMP-2 and bFGF by ND induces differentiation and proliferation in osteoblast progenitor cells. Overall, we find that NDs provide an effective injectable alternative for the delivery of BMP-2 and bFGF to promote bone formation. PMID:24045646

  16. Harmine promotes osteoblast differentiation through bone morphogenetic protein signaling

    International Nuclear Information System (INIS)

    Highlights: → Harmine promotes the activity and mRNA expression of ALP. → Harmine enhances the expressions of osteocalcin mRNA and protein. → Harmine induces osteoblastic mineralization. → Harmine upregulates the mRNA expressions of BMPs, Runx2 and Osterix. → BMP signaling pathways are involved in the actions of harmine. -- Abstract: Bone mass is regulated by osteoblast-mediated bone formation and osteoclast-mediated bone resorption. We previously reported that harmine, a β-carboline alkaloid, inhibits osteoclast differentiation and bone resorption in vitro and in vivo. In this study, we investigated the effects of harmine on osteoblast proliferation, differentiation and mineralization. Harmine promoted alkaline phosphatase (ALP) activity in MC3T3-E1 cells without affecting their proliferation. Harmine also increased the mRNA expressions of the osteoblast marker genes ALP and Osteocalcin. Furthermore, the mineralization of MC3T3-E1 cells was enhanced by treatment with harmine. Harmine also induced osteoblast differentiation in primary calvarial osteoblasts and mesenchymal stem cell line C3H10T1/2 cells. Structure-activity relationship studies using harmine-related β-carboline alkaloids revealed that the C3-C4 double bond and 7-hydroxy or 7-methoxy group of harmine were important for its osteogenic activity. The bone morphogenetic protein (BMP) antagonist noggin and its receptor kinase inhibitors dorsomorphin and LDN-193189 attenuated harmine-promoted ALP activity. In addition, harmine increased the mRNA expressions of Bmp-2, Bmp-4, Bmp-6, Bmp-7 and its target gene Id1. Harmine also enhanced the mRNA expressions of Runx2 and Osterix, which are key transcription factors in osteoblast differentiation. Furthermore, BMP-responsive and Runx2-responsive reporters were activated by harmine treatment. Taken together, these results indicate that harmine enhances osteoblast differentiation probably by inducing the expressions of BMPs and activating BMP and Runx2

  17. Optimizing bone health in older adults: the importance of dietary protein

    OpenAIRE

    Surdykowski, Anna K; Kenny, Anne M.; Insogna, Karl L.; Kerstetter, Jane E

    2010-01-01

    Age-related bone loss is progressive and can lead to osteoporosis. While it is accepted that both dietary calcium and vitamin D are important and beneficial for skeletal health, the impact of dietary protein on calcium metabolism and bone balance remains controversial. Contrary to the hypothesis that increasing dietary protein contributes to bone loss, research supports the notion that protein may play a pivotal role in maintenance of bone health by several mechanisms; for example, increasing...

  18. Bone Morphogenetic Protein 4 Mediates Human Embryonic Germ Cell Derivation

    OpenAIRE

    Hiller, Marc; Liu, Cyndi; Blumenthal, Paul D; John D Gearhart; Kerr, Candace L.

    2010-01-01

    Human primordial germ cells (PGCs) have proven to be a source of pluripotent stem cells called embryonic germ cells (EGCs). Unlike embryonic stem cells, virtually little is known regarding the factors that regulate EGC survival and maintenance. In mice, the growth factor bone morphogenetic protein 4 (BMP4) has been shown to be required for maintaining mouse embryonic stem cells, and disruptions in this gene lead to defects in mouse PGC specification. Here, we sought to determine whether recom...

  19. The Structure and Function of Non-Collagenous Bone Proteins

    Science.gov (United States)

    Hook, Magnus

    1997-01-01

    The long-term goal for this program is to determine the structural and functional relationships of bone proteins and proteins that interact with bone. This information will used to design useful pharmacological compounds that will have a beneficial effect in osteoporotic patients and in the osteoporotic-like effects experienced on long duration space missions. The first phase of this program, funded under a cooperative research agreement with NASA through the Texas Medical Center, aimed to develop powerful recombinant expression systems and purification methods for production of large amounts of target proteins. Proteins expressed in sufficient'amount and purity would be characterized by a variety of structural methods, and made available for crystallization studies. In order to increase the likelihood of crystallization and subsequent high resolution solution of structures, we undertook to develop expression of normal and mutant forms of proteins by bacterial and mammalian cells. In addition to the main goals of this program, we would also be able to provide reagents for other related studies, including development of anti-fibrotic and anti-metastatic therapeutics.

  20. Imaging symptomatic bone morphogenetic protein-2-induced heterotopic bone formation within the spinal canal: case report.

    Science.gov (United States)

    Chryssikos, Timothy; Crandall, Kenneth M; Sansur, Charles A

    2016-05-01

    Heterotopic bone formation within the spinal canal is a known complication of bone morphogenetic protein-2 (BMP-2) and presents a clinical and surgical challenge. Imaging modalities are routinely used for operative planning in this setting. Here, the authors present the case of a 59-year-old woman with cauda equina syndrome following intraoperative BMP-2 administration. Plain film myelographic studies showed a region of severe stenosis that was underappreciated on CT myelography due to a heterotopic bony lesion mimicking the dorsal aspect of a circumferentially patent thecal sac. When evaluating spinal stenosis under these circumstances, it is important to carefully consider plain myelographic images in addition to postmyelography CT images as the latter may underestimate the true degree of stenosis due to the potentially similar radiographic appearances of evolving BMP-2-induced heterotopic bone and intrathecal contrast. Alternatively, comparison of sequentially acquired noncontrast CT scans with CT myelographic images may also assist in distinguishing BMP-2-induced heterotopic bony lesions from the thecal sac. Further studies are needed to elucidate the roles of the available imaging techniques in this setting and to characterize the connection between the radiographic and histological appearances of BMP-2-induced heterotopic bone. PMID:26824586

  1. Successful treatment of a humeral capitulum osteonecrosis with bone morphogenetic protein-7 combined with autologous bone grafting

    OpenAIRE

    Marsell, Richard; Hailer, Nils P

    2014-01-01

    We present the case of a 27-year-old female with subcortical osteonecrosis of the humeral capitulum. Percutaneous retrograde drilling of the lesion and application of recombinant human bone morphogenetic protein (BMP)-7 were combined with autologous bone grafting. At follow-up the patient was almost pain-free, had normalized her range of motion, and radiography showed consolidation of the lesion without any heterotopic bone formation. By timing surgery prior to subchondral collapse, biomechan...

  2. Calcium Phosphate Scaffolds Combined with Bone Morphogenetic Proteins or Mesenchymal Stem Cells in Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Han Sun

    2015-01-01

    Full Text Available Objective: The purpose of this study was to review the current status of calcium phosphate (CaP scaffolds combined with bone morphogenetic proteins (BMPs or mesenchymal stem cells (MSCs in the field of bone tissue engineering (BTE. Date Sources: Data cited in this review were obtained primarily from PubMed and Medline in publications from 1979 to 2014, with highly regarded older publications also included. The terms BTE, CaP, BMPs, and MSC were used for the literature search. Study Selection: Reviews focused on relevant aspects and original articles reporting in vitro and/or in vivo results concerning the efficiency of CaP/BMPs or CaP/MSCs composites were retrieved, reviewed, analyzed, and summarized. Results: An ideal BTE product contains three elements: Scaffold, growth factors, and stem cells. CaP-based scaffolds are popular because of their outstanding biocompatibility, bioactivity, and osteoconductivity. However, they lack stiffness and osteoinductivity. To solve this problem, composite scaffolds of CaP with BMPs have been developed. New bone formation by CaP/BMP composites can reach levels similar to those of autografts. CaP scaffolds are compatible with MSCs and CaP/MSC composites exhibit excellent osteogenesis and stiffness. In addition, a CaP/MSC/BMP scaffold can repair bone defects more effectively than an autograft. Conclusions: Novel BTE products possess remarkable osteoconduction and osteoinduction capacities, and exhibit balanced degradation with osteogenesis. Further work should yield safe, viable, and efficient materials for the repair of bone lesions.

  3. A Computational Analysis of Bone Formation in the Cranial Vault in the Mouse

    Directory of Open Access Journals (Sweden)

    Chanyoung eLee

    2015-03-01

    Full Text Available Bones of the cranial vault are formed by the differentiation of mesenchymal cells into osteoblasts on a surface that surrounds the brain, eventually forming mineralized bone. Signaling pathways causative for the cell differentiation include the actions of extracellular proteins driven by information from genes. We assume that the interaction of cells and extracellular molecules which are associated with cell differentiation can be modeled using Turing’s reaction-diffusion model, a mathematical model for pattern formation controlled by two interacting molecules (activator and inhibitor. In this study we hypothesize that regions of high concentration of an activator develop into primary centers of ossification, the earliest sites of cranial vault bone. In addition to the Turing model, we use another diffusion equation to model a morphogen (potentially the same as the morphogen associated with formation of ossification centers associated with bone growth. These mathematical models were solved using the finite volume method. The computational domain and model parameters are determined using a large collection of experimental data showing skull bone formation in mouse at different embryonic days in both of normal and defect conditions. The results show that the relative locations of the five ossification centers that form in our model occur at the same position as those identified in experimental data. As bone grows from these ossification centers, sutures form between the bones.

  4. AMP-activated protein kinase (AMPK) activation regulates in vitro bone formation and bone mass

    OpenAIRE

    Shah, M; Kola, B; Bataveljic, A.; Arnett, T. R.; Viollet, B.; Saxon, L.; Korbonits, M.; C. Chenu

    2010-01-01

    Adenosine 5′-monophosphate-activated protein kinase (AMPK), a regulator of energy homeostasis, has a central role in mediating the appetite-modulating and metabolic effects of many hormones and antidiabetic drugs metformin and glitazones. The objective of this study was to determine if AMPK can be activated in osteoblasts by known AMPK modulators and if AMPK activity is involved in osteoblast function in vitro and regulation of bone mass in vivo. ROS 17/2.8 rat osteoblast-like cells were cult...

  5. Gene gun transferring-bone morphogenetic protein 2 (BMP-2) gene enhanced bone fracture healing in rabbits

    OpenAIRE

    Li, Wenju; Wei, Haifeng; Xia, Chunmei; Zhu, Xiaomeng; Hou, Guozhu; Xu, Feng; Xinghua SONG; Zhan, Yulin

    2015-01-01

    Purpose: Transferring the bone morphogenetic protein 2 (BMP-2) genes into the tissues or cells can improve the bone healing of the fracture has been widely accepted. We evaluated the efficiency of using gene gun to transfer the BMP-2 gene thereby affected the healing of a fractured bone. Methods: The vector coding for BMP-2 was constructed by a non-replicating encephalo-myocarditis virus (ECMV)-based vector. The segmental bone defect (1.5 cm) model was created by a wire-saw at the middle part...

  6. Biochemical Characterization of Major Bone-Matrix Proteins Using Nanoscale-Size Bone Samples and Proteomics Methodology*

    OpenAIRE

    Grażyna E Sroga; Karim, Lamya; Colón, Wilfredo; Vashishth, Deepak

    2011-01-01

    There is growing evidence supporting the need for a broad scale investigation of the proteins and protein modifications in the organic matrix of bone and the use of these measures to predict fragility fractures. However, limitations in sample availability and high heterogeneity of bone tissue cause unique experimental and/or diagnostic problems. We addressed these by an innovative combination of laser capture microscopy with our newly developed liquid chromatography separation methods, follow...

  7. Bone graft substitutes and bone morphogenetic proteins for osteoporotic fractures: what is the evidence?

    Science.gov (United States)

    Van Lieshout, Esther M M; Alt, Volker

    2016-01-01

    Despite improvements in implants and surgical techniques, osteoporotic fractures remain challenging to treat. Among other major risk factors, decreased expression of morphogenetic proteins has been identified for impaired fracture healing in osteoporosis. Bone grafts or bone graft substitutes are often used for stabilizing the implant and for providing a scaffold for ingrowth of new bone. Both synthetic and naturally occurring biomaterials are available. Products generally contain hydroxyapatite, tricalcium phosphate, dicalcium phosphate, calcium phosphate cement, calcium sulfate (plaster of Paris), or combinations of the above. Products have been used for the treatment of osteoporotic fractures of the proximal humerus, distal radius, vertebra, hip, and tibia plateau. Although there is generally consensus that screw augmentation increased the biomechanical properties and implant stability, the results of using these products for void filling are not unequivocal. In osteoporotic patients, Bone Morphogenetic Proteins (BMPs) have the potential impact to improve fracture healing by augmenting the impaired molecular and cellular mechanisms. However, the clinical evidence on the use of BMPs in patients with osteoporotic fractures is poor as there are no published clinical trials, case series or case studies. Even pre-clinical literature on in vitro and in vivo data is weak as most articles focus on the beneficial role for BMPs for restoration of the underlying pathophysiological factors of osteoporosis but do not look at the specific effects on osteoporotic fracture healing. Limited data on animal experiments suggest stimulation of fracture healing in ovariectomized rats by the use of BMPs. In conclusion, there is only limited data on the clinical relevance and optimal indications for the use of bone graft substitute materials and BMPs on the treatment of osteoporotic fractures despite the clinical benefits of these materials in other clinical indications. Given the

  8. Up-regulation of bone marrow stromal protein 2 (BST2 in breast cancer with bone metastasis

    Directory of Open Access Journals (Sweden)

    Zheng Xin

    2009-04-01

    Full Text Available Abstract Background Bone metastases are frequent complications of breast cancer. Recent literature implicates multiple chemokines in the formation of bone metastases in breast cancer. However, the molecular mechanism of metastatic bone disease in breast cancer remains unknown. We have recently made the novel observation of the BST2 protein expression in human breast cancer cell lines. The purpose of our present study is to investigate the expression and the role of BST2 in bone metastatic breast cancer. Methods cDNA microarray analysis was used to compare the BST2 gene expression between a metastatic to bone human breast cancer cell line (MDA-231BO and a primary human breast cancer cell line (MDA-231. The BST2 expression in one bone metastatic breast cancer and seven non-bone metastatic breast cancer cell lines were also determined using real-time RT-PCR and Western blot assays. We then employed tissue array to further study the BST2 expression in human breast cancer using array slides containing 20 independent breast cancer tumors that formed metastatic bone lesions, 30 non-metastasis-forming breast cancer tumors, and 8 normal breast tissues. In order to test the feasibility of utilizing BST2 as a serum marker for the presence of bone metastasis in breast cancer, we had measured the BST2 expression levels in human serums by using ELISA on 43 breast cancer patients with bone metastasis, 43 breast cancer patients without bone metastasis, and 14 normal healthy controls. The relationship between cell migration and proliferation and BST2 expression was also studied in a human breast recombinant model system using migration and FACS analysis. Results The microarray demonstrated over expression of the BST2 gene in the bone metastatic breast cancer cell line (MDA-231BO compared to the primary human breast cancer cell line (MDA-231. The expression of the BST2 gene was significantly increased in the bone metastatic breast cancer cell lines and tumor

  9. Up-regulation of bone marrow stromal protein 2 (BST2) in breast cancer with bone metastasis

    International Nuclear Information System (INIS)

    Bone metastases are frequent complications of breast cancer. Recent literature implicates multiple chemokines in the formation of bone metastases in breast cancer. However, the molecular mechanism of metastatic bone disease in breast cancer remains unknown. We have recently made the novel observation of the BST2 protein expression in human breast cancer cell lines. The purpose of our present study is to investigate the expression and the role of BST2 in bone metastatic breast cancer. cDNA microarray analysis was used to compare the BST2 gene expression between a metastatic to bone human breast cancer cell line (MDA-231BO) and a primary human breast cancer cell line (MDA-231). The BST2 expression in one bone metastatic breast cancer and seven non-bone metastatic breast cancer cell lines were also determined using real-time RT-PCR and Western blot assays. We then employed tissue array to further study the BST2 expression in human breast cancer using array slides containing 20 independent breast cancer tumors that formed metastatic bone lesions, 30 non-metastasis-forming breast cancer tumors, and 8 normal breast tissues. In order to test the feasibility of utilizing BST2 as a serum marker for the presence of bone metastasis in breast cancer, we had measured the BST2 expression levels in human serums by using ELISA on 43 breast cancer patients with bone metastasis, 43 breast cancer patients without bone metastasis, and 14 normal healthy controls. The relationship between cell migration and proliferation and BST2 expression was also studied in a human breast recombinant model system using migration and FACS analysis. The microarray demonstrated over expression of the BST2 gene in the bone metastatic breast cancer cell line (MDA-231BO) compared to the primary human breast cancer cell line (MDA-231). The expression of the BST2 gene was significantly increased in the bone metastatic breast cancer cell lines and tumor tissues compared to non-bone metastatic breast cancer

  10. Chlorpyrifos and chlorpyrifos-oxon inhibit axonal growth by interfering with the morphogenic activity of acetylcholinesterase

    International Nuclear Information System (INIS)

    A primary role of acetylcholinesterase (AChE) is regulation of cholinergic neurotransmission by hydrolysis of synaptic acetylcholine. In the developing nervous system, however, AChE also functions as a morphogenic factor to promote axonal growth. This raises the question of whether organophosphorus pesticides (OPs) that are known to selectively bind to and inactivate the enzymatic function of AChE also interfere with its morphogenic function to perturb axonogenesis. To test this hypothesis, we exposed primary cultures of sensory neurons derived from embryonic rat dorsal root ganglia (DRG) to chlorpyrifos (CPF) or its oxon metabolite (CPFO). Both OPs significantly decreased axonal length at concentrations that had no effect on cell viability, protein synthesis or the enzymatic activity of AChE. Comparative analyses of the effects of CPF and CPFO on axonal growth in DRG neurons cultured from AChE nullizygous (AChE-/-) versus wild type (AChE+/+) mice indicated that while these OPs inhibited axonal growth in AChE+/+ DRG neurons, they had no effect on axonal growth in AChE-/- DRG neurons. However, transfection of AChE-/- DRG neurons with cDNA encoding full-length AChE restored the wild type response to the axon inhibitory effects of OPs. These data indicate that inhibition of axonal growth by OPs requires AChE, but the mechanism involves inhibition of the morphogenic rather than enzymatic activity of AChE. These findings suggest a novel mechanism for explaining not only the functional deficits observed in children and animals following developmental exposure to OPs, but also the increased vulnerability of the developing nervous system to OPs

  11. Intrinsic facilitation of adult peripheral nerve regeneration by the Sonic hedgehog morphogen.

    Science.gov (United States)

    Martinez, Jose A; Kobayashi, Masaki; Krishnan, Anand; Webber, Christine; Christie, Kimberly; Guo, GuiFang; Singh, Vandana; Zochodne, Douglas W

    2015-09-01

    Intrinsic molecular determinants of neurodevelopmental outcomes assume new, albeit related roles during adult neural regeneration. Here we studied and identified a facilitatory role for Sonic hedgehog protein (Shh), a morphogen that influences motor neuron floor plate architecture, during adult peripheral neuron regeneration. Shh and its receptors were expressed in adult dorsal root ganglia (DRG) neurons, axons and glia and trended toward higher levels following axotomy injury. Knockdown of Shh in adult sensory neurons resulted in decreased outgrowth and branching in vitro, identifying a role for Shh in facilitating outgrowth. The findings argued for an intrinsic action to support neuron regeneration. Support of advancement and turning however, were not identified in adult sensory neuron growth cones in response to local extrinsic gradients of Shh. That intrinsic Shh supported the regrowth of peripheral nerves after injury was confirmed by the analysis of axon regrowth from the proximal stumps of transected sciatic nerves. By exposing regenerating axons to local infusions of Shh siRNA in vivo within a conduit bridging the transected proximal and distal stumps, we achieved local knockdown of Shh. In response, there was attenuated axonal and Schwann cell outgrowth beyond the transection zone. Unlike its role during neurodevelopment, Shh facilitates but does not confer regenerative outgrowth properties to adult neurons alone. Exploring the differing properties of morphogens and related proteins in the adult nervous system identifies new and important roles for them. PMID:26210874

  12. A novel, truncated human bone morphogenetic protein-2:construction, expression ,functions and clinical potential

    Institute of Scientific and Technical Information of China (English)

    XU Fang

    2001-01-01

    @@ Introduction As a member of the bone morphogenetic protein (BMP) family, BMP-2 plays important roles not only in bone regeneration and bone repair but also in cell proliferation, apoptosis, differentiation and morphogenesis. The BMP-2 remarkable ability to stimulate new bone growth results in the development of a novel therapy strategy for bone mass defect due to accidents or diseases. Because the BMP-2 itself, in conjunction with a suitable matrix, is sufficient to stimulate genesis of new bone, the genetically engineered BMP-2 has good applied prospects.

  13. Bone morphogenetic protein-2: a potential regulator in scleral remodeling

    Science.gov (United States)

    Hu, Jianmin; Cui, Dongmei; Yang, Xiao; Wang, Shaowei; Hu, Shoulong; Li, Chuanxu

    2008-01-01

    Purpose Bone morphogenetic protein 2 (BMP-2) is a member of the main subgroup of bone morphogenetic proteins within the transforming growth factor-β superfamily. BMP-2 is involved in numerous cellular functions including development, cell proliferation, apoptosis, and extracellular matrix synthesis. We examined BMP-2 expression in human scleral fibroblasts (HSF) and assessed the effects of recombinant human BMP-2 (rhBMP-2) on HSF proliferation, matrix metalloproteinase-2 (MMP-2), and tissue inhibitor of metalloproteinase-2 (TIMP-2). Methods We used confocal fluorescence microscopy (CFM) to study BMP-2 distribution in HSF cells and frozen human scleral sections. The influence of rhBMP-2 on cell proliferation at different concentrations (0 ng/ml, 1 ng/ml, 10 ng/ml, and 100 ng/ml) was evaluated by the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The effects of rhBMP-2 on the cell cycle were investigated with flow cytometric analysis. Reverse transcription polymerase chain reaction (RT–PCR) and enzyme-linked immunosorbent assay (ELISA) were used to examine MMP-2 and TIMP-2 mRNAs and secreted proteins in HSF that were incubated with rhBMP-2. Results BMP-2 protein expression from human sclera was confirmed by CFM. Cell proliferation was significantly increased with 100 ng/ml rhBMP-2 in a time-dependent manner (p<0.05). The HSF cell cycle moved to the S and S+G2M phases after rhBMP-2 stimulation at 100 ng/ml compared to normal cells (p<0.05). TIMP-2 mRNA levels were significantly increased in HSF incubated for 24 h with 100 ng/ml rhBMP-2 (p<0.01). A 48 h incubation with 10 ng/ml or 100 ng/ml rhBMP-2 resulted in significantly increased TIMP-2 mRNA and protein expression and significantly decreased MMP-2 mRNA expression (p<0.01) while MMP-2 protein expression significantly decreased at 100 ng/ml rhBMP-2 (p<0.01). Conclusions Human sclera fibroblasts expressed BMP-2, which promoted cell proliferation, and elicited changes in MMP-2 and TIMP-2

  14. Effects of casein, whey and soy proteins on volumetric bone density and bone strength in immunocompromised piglets

    DEFF Research Database (Denmark)

    Budek, Alicja Zofia; Bjørnvad, Charlotte; Mølgaard, Christian;

    2007-01-01

    Summary:Background and aims: Bone-promoting effect of different proteins in early life, under immunocompromised conditions, is unknown. We investigated effects of milk- and plantderived proteins on bone development in immunocompromised piglets. Methods: Newborn, colostrum-deprived piglets were...... assigned to a formula based on either casein (n=11), whey (n=11) or soy (n=10) as the protein source (each 55 g/L), and equal amounts of fat, carbohydrates, calcium and phosphorus. Results & Conclusion: Despite efforts to sustain immuno-protection (sow serum and antibiotic injections), some piglets became...

  15. Effect of Escherichia coli Morphogene bolA on Biofilms

    OpenAIRE

    Vieira, Helena L. A.; Freire, Patrick; Arraiano, Cecília M.

    2004-01-01

    Biofilm physiology is established under a low growth rate. The morphogene bolA is mostly expressed under stress conditions or in stationary phase, suggesting that bolA could be implicated in biofilm development. In order to verify this hypothesis, we tested the effect of bolA on biofilm formation. Overexpression of bolA induces biofilm development, while bolA deletion decreases biofilms.

  16. Regulation of Bone Morphogenetic Protein Signaling by ADP-ribosylation.

    Science.gov (United States)

    Watanabe, Yukihide; Papoutsoglou, Panagiotis; Maturi, Varun; Tsubakihara, Yutaro; Hottiger, Michael O; Heldin, Carl-Henrik; Moustakas, Aristidis

    2016-06-10

    We previously established a mechanism of negative regulation of transforming growth factor β signaling mediated by the nuclear ADP-ribosylating enzyme poly-(ADP-ribose) polymerase 1 (PARP1) and the deribosylating enzyme poly-(ADP-ribose) glycohydrolase (PARG), which dynamically regulate ADP-ribosylation of Smad3 and Smad4, two central signaling proteins of the pathway. Here we demonstrate that the bone morphogenetic protein (BMP) pathway can also be regulated by the opposing actions of PARP1 and PARG. PARG positively contributes to BMP signaling and forms physical complexes with Smad5 and Smad4. The positive role PARG plays during BMP signaling can be neutralized by PARP1, as demonstrated by experiments where PARG and PARP1 are simultaneously silenced. In contrast to PARG, ectopic expression of PARP1 suppresses BMP signaling, whereas silencing of endogenous PARP1 enhances signaling and BMP-induced differentiation. The two major Smad proteins of the BMP pathway, Smad1 and Smad5, interact with PARP1 and can be ADP-ribosylated in vitro, whereas PARG causes deribosylation. The overall outcome of this mode of regulation of BMP signal transduction provides a fine-tuning mechanism based on the two major enzymes that control cellular ADP-ribosylation. PMID:27129221

  17. Discontinuous release of bone morphogenetic protein-2 loaded within interconnected pores of honeycomb-like polycaprolactone scaffold promotes bone healing in a large bone defect of rabbit ulna.

    Science.gov (United States)

    Bae, Ji-Hoon; Song, Hae-Ryong; Kim, Hak-Jun; Lim, Hong-Chul; Park, Jung-Ho; Liu, Yuchun; Teoh, Swee-Hin

    2011-10-01

    The choice of an appropriate carrier and its microarchitectural design is integral in directing bone ingrowth into the defect site and determining its subsequent rate of bone formation and remodeling. We have selected a three-dimensional polycaprolactone (PCL) scaffold with an interconnected honeycomb-like porous structure to provide a conduit for vasculature ingrowth as well as an osteoconductive pathway to guide recruited cells responding to a unique triphasic release of osteoinductive bone morphogenetic proteins (BMP) from these PCL scaffolds. We hypothesize that the use of recombinant human bone morphogenetic protein 2 (rhBMP2)-PCL constructs promotes rapid union and bone regeneration of a large defect. Results of our pilot study on a unilateral 15 mm mid-diaphyseal segmental rabbit ulna defect demonstrated enhanced bone healing with greater amount of bone formation and bridging under plain radiography and microcomputed tomography imaging when compared with an empty PCL and untreated group after 8 weeks postimplantation. Quantitative measurements showed significantly higher bone volume fraction and trabecular thickness, with lower trabecular separation in the rhBMP2-treated groups. Histology evaluation also revealed greater mature bone formation spanning across the entire scaffold region compared with other groups, which showed no bone regeneration within the central defect zone. We highlight that it is the uniqueness of the scaffold having a highly porous network of channels that promoted vascular integration and allowed for cellular infiltration, leading to a discontinuous triphasic BMP2 release profile that mimicked the release profile during natural repair mechanisms in vivo. This study serves as preclinical evidence demonstrating the potential of combining osteoinductive rhBMP2 with our PCL constructs for the repair of large defects in a large animal model. PMID:21682591

  18. Ectopic bone formation of human bone morphogenetic protein-2 gene transfected goat bone marrow-derived mesenchymal stem cells in nude mice

    Institute of Scientific and Technical Information of China (English)

    汤亭亭; 徐小良; 戴尅戎; 郁朝锋; 岳冰; 楼觉人

    2005-01-01

    Objective: To evaluate the osteogenic potential of bone morphogenetic protein (BMP)-2 gene transfected goat bone marrow-derived mesenchymal stem cells (MSCs). Methods: Goat bone marrow- derived MSCs were transfected by Adv-human bone morphogenetic protein (hBMP)-2 gene(Group 1), Adv-beta gal transfected MSCs (Group 2)and uninfected MSCs(Group 3). Western blot analysis, alkaline phosphatase staining, Von Kossa staining and transmission electron microscopy were adopted to determine the phenotype of MSCs. Then the cells were injected into thigh muscles of the nude mice. Radiographical and histological evaluations were performed at different intervals. Results: Only Adv-hBMP-2 transfected MSCs produced hBMP-2. These cells were positive for alkaline phosphatase staining at the 12th day and were positive for Von Kossa staining at the 16th day after gene transfer. Electron microscopic observation showed that there were more rough endoplasmic reticulum, mitochondria and lysosomes in Adv-hBMP-2 transfected MSCs compared to MSCs of other two groups. At the 3rd and 6th weeks after cell injection, ectopic bones were observed in muscles of nude mice of Group 1. Only fibrous tissue or a little bone was found in other two groups. Conclusions: BMP-2 gene transfected MSCs can differentiate into osteoblasts in vitro and induce bone formation in vivo.

  19. Simvastatin enhances bone morphogenetic protein receptor type II expression

    International Nuclear Information System (INIS)

    Statins confer therapeutic benefits in systemic and pulmonary vascular diseases. Bone morphogenetic protein (BMP) receptors serve essential signaling functions in cardiovascular development and skeletal morphogenesis. Mutations in BMP receptor type II (BMPR2) are associated with human familial and idiopathic pulmonary arterial hypertension, and pathologic neointimal proliferation of vascular endothelial and smooth muscle cells within small pulmonary arteries. In severe experimental pulmonary hypertension, simvastatin reversed disease and conferred a 100% survival advantage. Here, modulation of BMPR2 gene expression by simvastatin is characterized in human embryonic kidney (HEK) 293T, pulmonary artery smooth muscle, and lung microvascular endothelial cells (HLMVECs). A 1.4 kb BMPR2 promoter containing Egr-1 binding sites confers reporter gene activation in 293T cells which is partially inhibited by simvastatin. Simvastatin enhances steady-state BMPR2 mRNA and protein expression in HLMVEC, through posttranscriptional mRNA stabilization. Simvastatin induction of BMPR2 expression may improve BMP-BMPR2 signaling thereby enhancing endothelial differentiation and function

  20. Bone Tissue Engineering Using High Permeability Poly-epsilon-caprolactone Scaffolds Conjugated with Bone Morphogenetic Protein-2

    Science.gov (United States)

    Mitsak, Anna Guyer

    Bone is the second most commonly transplanted tissue in the United States. Limitations of current bone defect treatment options include morbidity at the autograft harvest site, mechanical failure, and poorly controlled growth factor delivery. Combining synthetic scaffolds with biologics may address these issues and reduce dependency on autografts. The ideal scaffolding system should promote tissue in-growth and nutrient diffusion, control delivery of biologics and maintain mechanical integrity during bone formation. This dissertation evaluates how scaffold permeability, conjugated bone morphogenetic protein-2 (BMP-2) and differentiation medium affect osteogenesis in vitro and bone growth in vivo.. "High" and "low" permeability polycaprolactone (PCL) scaffolds with regular architectures were manufactured using solid free form fabrication. Bone growth in vivo was evaluated in an ectopic mouse model. High permeability scaffolds promoted better 8 week bone growth, supported tissue penetration into the scaffold core, and demonstrated increased mechanical properties due to newly formed bone. Next, the effects of differentiation medium and conjugated BMP-2 on osteogenesis were compared. Conjugation may improve BMP-2 loading efficiency, help localize bone growth and control release. High permeability scaffolds were conjugated with BMP-2 using the crosslinker, sulfo-SMCC. When adipose-derived and bone marrow stromal cells were seeded onto constructs (with or without BMP-2), BMSC expressed more differentiation markers, and differentiation medium affected differentiation more than BMP-2. In vivo, scaffolds with ADSC pre-differentiated in osteogenic medium (with and without BMP-2) and scaffolds with only BMP-2 grew the most bone. Bone volume did not differ among these groups, but constructs with ADSC had evenly distributed, scaffold-guided bone growth. Analysis of two additional BMP-2 attachment methods (heparin and adsorption) showed highest conjugation efficiency for the

  1. Effects of bone morphogenetic protein-2 on bone cells in primary culture: immunohistochemical and electronmicroscopical studies

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, I.; Prochnow, N.; Mueller, K.M. [Berufsgenossenschaftliche Kliniken Bergmannsheil, Bochum (Germany). Inst. fuer Pathologie; Wiemann, M.; Schirrmacher, K.; Bingmann, D. [Essen Univ. (Germany). Inst. fuer Physiologie; Sebald, W. [Wuerzburg Univ. (Germany). Inst. fuer Physiologische Chemie II

    2001-02-01

    Bone morphogenetic protein 2 (BMP-2), among other morphogenetic effects on non osseous tissues, promotes bone formation in vivo. Therefore, BMP-2 may accelerate the integration of osseous implants. Although the effects of BMPs on cell proliferation have been studied extensively in vivo or in cell lines, little is published about effects on bone cells in primary cultures, especially on cell differentiation. As such information is a prerequisite to understand and to control effects of BMPs on cells at the surface of implant materials, the present experiments aimed to describe effects of BMP-2 on primary cultures derived from calvarial fragments of neonatal rats. The cells were stimulated with 50 nM BMP-2 added to the nutrient medium for 3 or 6 days. Light- and electronmicroscopical studies showed that cells in the sprouting zones were larger and more often spindle shaped. Stimulated cells had more nucleoli than control cells and the endoplasmic reticulum was widened. They retained properties of typical bone cells: An immunhistochemical analysis showed that stimulated cells increased the activity of alkaline phosphatase, they secreted collagen type I and to a minor extent collagen type III. In BMP-2 treated cells the pattern of cells stained for actin, desmin and vimentin hardly changed whereas extracellular fibronectin appeared to be less cross-linked in BMP-2 treated cultures. The distribution and labeling strength of osteocalcin, a specific marker protein of bone cells did not change markedly. After exposure to BMP-2 cells tended to detach from the cover slips. Electron microscopy showed a reduced number of cell processes possibly facilitating the detachment and/or mobility. Stimulated cells contained an increased number of lamellar bodies which may reflect an increased synthesis and/or membrane turnover. Staining of non-osseous cells with anti-CD68-or anti-myeloid antibodies revealed that the small percentage of these cells regularly occurring in primary cultures

  2. Bone marrow transplantation restores epidermal basement membrane protein expression and rescues epidermolysis bullosa model mice

    OpenAIRE

    Fujita, Yasuyuki; Abe, Riichiro; Inokuma, Daisuke; Sasaki, Mikako; Hoshina, Daichi; Natsuga, Ken; Nishie, Wataru; McMillan, James R.; Nakamura, Hideki; Shimizu, Tadamichi; Akiyama, Masashi; Sawamura, Daisuke; Shimizu, Hiroshi

    2010-01-01

    Attempts to treat congenital protein deficiencies using bone marrow-derived cells have been reported. These efforts have been based on the concepts of stem cell plasticity. However, it is considered more difficult to restore structural proteins than to restore secretory enzymes. This study aims to clarify whether bone marrow transplantation (BMT) treatment can rescue epidermolysis bullosa (EB) caused by defects in keratinocyte structural proteins. BMT treatment of adult collagen XVII (Col17) ...

  3. Effect of protein malnutrition on the metabolism of bone collagen in albino rats

    International Nuclear Information System (INIS)

    The effect of protein malnutrition on the metabolism of collagen in bone was studied in young female albino rats after a single injection of 3H-proline. Both specific and total radioactivities of hydroxyproline in the total collagen of the bone were found to decrease in the protein-deficient animals, indicating decreased rate of collagen synthesis. In the urine the amount of hydroxyproline excreted and total radioactivity of 3H-hydroxyproline were greatly decreased. The results of the present investigation therefore clearly indicate decreased synthesis and catabolism of collagen in bones of protein deficient animals compared to controls. (auth.)

  4. Isolation of bovine corneal keratan sulfate and its growth factor and morphogen binding.

    Science.gov (United States)

    Weyers, Amanda; Yang, Bo; Solakyildirim, Kemal; Yee, Vienna; Li, Lingyun; Zhang, Fuming; Linhardt, Robert J

    2013-05-01

    Keratan sulfate (KS) is an important glycosaminoglycan that is found in cartilage, reproductive tissues, and neural tissues. Corneal KS glycosaminoglycan is found N-linked to lumican, keratocan and mimecan proteoglycans, and has been widely studied by investigators interested in corneal development and diseases. Recently, the availability of corneal KS has become severely limited, owing to restrictions on the shipment of bovine central nervous system byproducts across international borders in an effort to prevent additional cases of mad cow disease. We report a simple method for the purification of multi-milligram quantities of bovine corneal KS, and characterize its structural properties. We also examined its protein-binding properties, and discovered that corneal KS bound with high affinity to fibroblast growth factor-2 and sonic hedgehog, a growth factor and a morphogen involved in corneal development and healing. PMID:23402351

  5. Short term effects on bone quality associated with consumption of soy protein isolate and other dietary protein sources in rapidly growing female rats

    Science.gov (United States)

    Beneficial effects of soy protein consumption on bone quality have been reported. The effects of other dietary protein sources such as whey protein hydrolysate (WPH) and rice protein isolate (RPI) on bone growth has been less well examined. The current study compared effects of feeding soy protein i...

  6. Bone morphogenetic protein 4 mediates human embryonic germ cell derivation.

    Science.gov (United States)

    Hiller, Marc; Liu, Cyndi; Blumenthal, Paul D; Gearhart, John D; Kerr, Candace L

    2011-02-01

    Human primordial germ cells (PGCs) have proven to be a source of pluripotent stem cells called embryonic germ cells (EGCs). Unlike embryonic stem cells, virtually little is known regarding the factors that regulate EGC survival and maintenance. In mice, the growth factor bone morphogenetic protein 4 (BMP4) has been shown to be required for maintaining mouse embryonic stem cells, and disruptions in this gene lead to defects in mouse PGC specification. Here, we sought to determine whether recombinant human BMP4 could influence EGC derivation and/or human PGC survival. We found that the addition of recombinant BMP4 increased the number of human PGCs after 1 week of culture in a dose-responsive manner. The efficiency of EGC derivation and maintenance in culture was also enhanced by the presence of recombinant BMP4 based on alkaline phosphatase and OCT4 staining. In addition, an antagonist of the BMP4 pathway, Noggin, decreased PGC proliferation and led to an increase in cystic embryoid body formation. Quantitative real-time (qRT)-polymerase chain reaction analyses and immunostaining confirmed that the constituents of the BMP4 pathway were upregulated in EGCs versus PGCs. Downstream activators of the BMP4 pathway such as ID1 and phosphorylated SMADs 1 and 5 were also expressed, suggesting a role of this growth factor in EGC pluripotency. PMID:20486775

  7. The influence of dietary crude protein intake on bone and mineral metabolism in sheep

    Directory of Open Access Journals (Sweden)

    T.S. Brand

    1999-07-01

    Full Text Available Increased dietary protein consumption is thought to cause calciuresis, a negative calcium balance and increased bone loss that may result in skeletal deformities and fracture. To explore this hypothesis, 40 approximately 100-day-old meat-type Merino ram lambs were fed, for 6 months, diets with an increasing crude protein (CP content (114, 142, 171 and 190 g/kg DM but approximately on an iso-nutrient basis with regard to metabolisable energy, calcium and phosphorus. Increased protein consumption modestly (NS enhanced calciuresis and resulted in significant (P < 0.01 limb skewness. This could not, however, be ascribed to osteopaenic bones, and compared with animals consuming lower protein rations, the bone mineral density (BMD and vertebral trabecular bone volume of animals fed high protein diets were significantly increased: theBMDof thoracic vertebrae was positively related to the CP intake (r=0.62; P < 0.001. In animals consuming higher protein diets, skeletal radiology and quantitative bone histology revealed no evidence of increased bone turnover as would be expected in animals that are in negative calcium balance. No relationship existed between limb skewness and the growth rate of lambs. However, the ratio of Ca:P in the forelimb (r = -0.98, vertebrae (r = -0.72 and rib (r = -0.42 was found to be inversely correlated with increased protein intake and resulted from an increase in the phosphorus content of bone, while the amount of bone calcium was unaffected. We conclude that qualitative micro-architectural abnormalities, and not mere bone loss, may underlie the skeletal deformities induced by increased protein consumption in sheep.

  8. The role of bone marrow-derived cells in bone fracture repair in a green fluorescent protein chimeric mouse model

    International Nuclear Information System (INIS)

    We investigated the role of bone marrow cells in bone fracture repair using green fluorescent protein (GFP) chimeric model mice. First, the chimeric model mice were created: bone marrow cells from GFP-transgenic C57BL/6 mice were injected into the tail veins of recipient wild-type C57BL/6 mice that had been irradiated with a lethal dose of 10 Gy from a cesium source. Next, bone fracture models were created from these mice: closed transverse fractures of the left femur were produced using a specially designed device. One, three, and five weeks later, fracture lesions were extirpated for histological and immunohistochemical analyses. In the specimens collected 3 and 5 weeks after operation, we confirmed calluses showing intramembranous ossification peripheral to the fracture site. The calluses consisted of GFP- and osteocalcin-positive cells at the same site, although the femur consisted of only osteocalcin-positive cells. We suggest that bone marrow cells migrated outside of the bone marrow and differentiated into osteoblasts to make up the calluses

  9. Recombinant human bone morphogenetic protein-2 in debridement and impacted bone graft for the treatment of femoral head osteonecrosis.

    Directory of Open Access Journals (Sweden)

    Wei Sun

    Full Text Available The purpose of this study was to compare the clinical outcomes of impacted bone graft with or without recombinant human bone morphogenetic protein-2 (rhBMP-2 for osteonecrosis of the femoral head (ONFH. We examined the effect of bone-grafting through a window at the femoral head-neck junction, known as the "light bulb" approach, for the treatment of ONFH with a combination of artificial bone (Novobone mixed with or without rhBMP-2. A total of 42 patients (72 hips were followed-up from 5 to 7.67 years (average of 6.1 years. The patients with and without BMP were the first group (IBG+rhBMP-2 and the second group (IBG, respectively. The clinical effectiveness was evaluated by Harris hip score (HHS. The radiographic follow-up was evaluated by pre-and postoperative X-ray and CT scan. Excellent, good, and fair functions were obtained in 36, 12, and 7 hips, respectively. The survival rate was 81.8% and 71.8% in the first and second group, respectively. However, the survival rate was 90.3% in ARCO stage IIb, c, and only 34.6% in ARCO stage IIIa (P<0.05. It was concluded that good and excellent mid-term follow-up could be achieved in selected patients with ONFH treated with impacted bone graft operation. The rhBMP-2 might improve the clinical efficacy and quality of bone repair.

  10. Relationship of Circulating Total Homocysteine and C-Reactive Protein to Trabecular Bone in Postmenopausal Women

    Science.gov (United States)

    Homocysteine (Hcy) and C-reactive protein (CRP) are novel risk factors for osteoporosis. The purpose of this analysis was to determine the relationship of Hcy and CRP to volumetric trabecular bone, but also to assess their relationship to areal composite bone in healthy postmenopausal women (N=184)....

  11. The Inhibiting Effect of Bone Protein Hydrolysates on Lipid Oxidation in Pork Patties

    Institute of Scientific and Technical Information of China (English)

    DIAO Jingjing; DIAO Xinping; KONG Baohua; CHEN Hongsheng

    2009-01-01

    Bone protein hydrolysates were prepared by limited alcalase hydrolysis (5 h). The hydrolysates were formulated (0-3%,w/w) into pork patties to determine the antioxidant efficacy. 0.02% BHA (butylated hydroxyanisole) was used as a positive control.Lipid oxidation in patties during storage was analyzed by measuring the TBARS and protein carbonyl content. The results showed that bone protein hydrolysates possessed significant antioxidant activity, and antioxidant activity increased with the increasing hydrolysates concentration. Sensory evaluation indicated that bone protein hydrolysates improved the color and decreased lipid oxidation flavor of pork patties. The 2% bone hydrolysates possessed the highest antioxidant activity and better sensory quality, and its effect was closed to 0.02% BHA.

  12. Effect of sterilization and delivery systems on the osteoinductivity of reindeer bone morphogenetic protein extract

    OpenAIRE

    Pekkarinen, T. (Tarmo)

    2005-01-01

    Abstract Bone morphogenetic proteins (BMPs) constitute a large family of osteoinductive proteins. Different BMPs are widely used in animal experiments and increasingly in the field of bone surgery. However, the sterilization of BMPs and the choice of a suitable mode of delivery, which binds and slowly releases BMP molecules, are still under intensive investigation. The aims of this study were to evaluate the effects of ethylene oxide and gamma sterilizations and different delivery syst...

  13. Theoretical analysis of degradation mechanisms in the formation of morphogen gradients

    CERN Document Server

    Bozorgui, Behnaz; Kolomeisky, Anatoly B

    2015-01-01

    The fundamental biological processes of development of tissues and organs in multicellular organisms is governed by various signaling molecules, which are called morphogens. It is known that spatial and temporal variations in concentration profiles of signaling molecules, which are frequently referred as morphogen gradients, lead to cell differentiation via activating specific genes in a concentration-dependent manner. It is widely accepted that the establishment of the morphogen gradients involves multiple biochemical reactions and diffusion processes. One of the critical elements in the formation of morphogen gradients is a degradation of signaling molecules. We develop a new theoretical approach that provides a comprehensive description of the degradation mechanisms. It is based on the idea that the degradation works as an effective potential that drives the signaling molecules away from the source region. Utilizing the method of first-passage processes, the dynamics of the formation of morphogen gradients...

  14. Promotion of bone growth by dietary soy protein isolate: Comparision with dietary casein, whey hydrolysate and rice protein isolate in growing female rats

    Science.gov (United States)

    The effects of different dietary protein sources(casein (CAS), soy protein isolate (SPI), whey protein hydrolysate (WPH) and rice protein isolate (RPI)) on bone were studied in intact growing female rats and in ovarectomized (OVX) rats showing sex steroid deficiency-induced bone loss. In addition, S...

  15. Effects of ionizing radiation on proteins in demineralized, lyophilized or frozen human bone

    International Nuclear Information System (INIS)

    The aim is the study of the application of ionizing radiation (gamma and electron) as sterilizing agents at doses of 15 kGy, 25 kGy and 50 kGy, the demineralized bone tissue frozen and freeze-dried for use in transplants. Five human femoral diaphysis of different donors demineralized bone tissues were preserved as lyophilized or frozen at - 80 deg C. The samples were divided into non-irradiated groups (control) and irradiated by gamma rays or electron beam. The bone proteins were extracted and used to determine the concentrations of total protein, BMP 2 and 7. It was observed a decrease in total protein concentrations, and BMP 2 and 7. The decrease in total protein concentrations, as compared to respective control groups was significant in the lyophilized and frozen samples irradiated at a dose of 50 kGy gamma radiation and beam electrons with greater than 30% reduction. The significant decrease in the levels of BMP 2 and 7 were also observed in higher doses and especially by electron beam. The reductions in the concentrations of total protein and osteoinductive proteins (BMP 2 and 7), were related to the radiation dose, i.e., increase with higher doses of ionizing radiation type and the type of preservation of the bones. The largest reductions in concentrations were observed in bone irradiated by electron beam and at a dose of 50 kGy. But this type of radiation and this high dose are not usual practice for the sterilization of bone tissue. Keywords: demineralized bone tissue, ionizing radiation, Tissue Bank, BMP 2, BMP 7, bone proteins. (author)

  16. Effects of ionizing radiation on proteins in demineralized, lyophilized or frozen human bone

    Energy Technology Data Exchange (ETDEWEB)

    Antebi, Uri; Mathor, Monica B., E-mail: uri@usp.br, E-mail: mathor@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Guimaraes, Rodrigo P., E-mail: clinicaguimaraes@gmail.com [Santa Casa de Sao Paulo (FCM/SCSP), Sao Paulo, SP (Brazil). Faculdade de Ciencias Medicas

    2015-07-01

    The aim is the study of the application of ionizing radiation (gamma and electron) as sterilizing agents at doses of 15 kGy, 25 kGy and 50 kGy, the demineralized bone tissue frozen and freeze-dried for use in transplants. Five human femoral diaphysis of different donors demineralized bone tissues were preserved as lyophilized or frozen at - 80 deg C. The samples were divided into non-irradiated groups (control) and irradiated by gamma rays or electron beam. The bone proteins were extracted and used to determine the concentrations of total protein, BMP 2 and 7. It was observed a decrease in total protein concentrations, and BMP 2 and 7. The decrease in total protein concentrations, as compared to respective control groups was significant in the lyophilized and frozen samples irradiated at a dose of 50 kGy gamma radiation and beam electrons with greater than 30% reduction. The significant decrease in the levels of BMP 2 and 7 were also observed in higher doses and especially by electron beam. The reductions in the concentrations of total protein and osteoinductive proteins (BMP 2 and 7), were related to the radiation dose, i.e., increase with higher doses of ionizing radiation type and the type of preservation of the bones. The largest reductions in concentrations were observed in bone irradiated by electron beam and at a dose of 50 kGy. But this type of radiation and this high dose are not usual practice for the sterilization of bone tissue. Keywords: demineralized bone tissue, ionizing radiation, Tissue Bank, BMP 2, BMP 7, bone proteins. (author)

  17. Parathyroid Hormone-Related Protein, Its Regulation of Cartilage and Bone Development, and Role in Treating Bone Diseases.

    Science.gov (United States)

    Martin, T John

    2016-07-01

    Although parathyroid hormone-related protein (PTHrP) was discovered as a cancer-derived hormone, it has been revealed as an important paracrine/autocrine regulator in many tissues, where its effects are context dependent. Thus its location and action in the vasculature explained decades-long observations that injection of PTH into animals rapidly lowered blood pressure by producing vasodilatation. Its roles have been specified in development and maturity in cartilage and bone as a crucial regulator of endochondral bone formation and bone remodeling, respectively. Although it shares actions with parathyroid hormone (PTH) through the use of their common receptor, PTHR1, PTHrP has other actions mediated by regions within the molecule beyond the amino-terminal sequence that resembles PTH, including the ability to promote placental transfer of calcium from mother to fetus. A striking feature of the physiology of PTHrP is that it possesses structural features that equip it to be transported in and out of the nucleus, and makes use of a specific nuclear import mechanism to do so. Evidence from mouse genetic experiments shows that PTHrP generated locally in bone is essential for normal bone remodeling. Whereas the main physiological function of PTH is the hormonal regulation of calcium metabolism, locally generated PTHrP is the important physiological mediator of bone remodeling postnatally. Thus the use of intermittent injection of PTH as an anabolic therapy for bone appears to be a pharmacological application of the physiological function of PTHrP. There is much current interest in the possibility of developing PTHrP analogs that might enhance the therapeutic anabolic effects. PMID:27142453

  18. Recombinant human bone morphogenetic protein-2 suspended in fibrin glue enhances bone formation during distraction osteogenesis in rabbits

    Science.gov (United States)

    Li, Yunfeng; Li, Rui; Hu, Jing; Song, Donghui; Jiang, Xiaowen

    2016-01-01

    Introduction Bone morphogenetic protein-2 (BMP-2) has high potential for bone formation, but its in vivo effects are unpredictable due to the short life time. This study was designed to evaluate the effects of recombinant human (rh) BMP-2 suspended in fibrin on bone formation during distraction osteogenesis (DO) in rabbits. Material and methods The in vitro release kinetics of rhBMP-2 suspended in fibrin was tested using an enzyme-linked immunosorbent assay. Unilateral tibial lengthening for 10 mm was achieved in 48 rabbits. At the completion of osteodistraction, vehicle, fibrin, rhBMP-2 or rhBMP-2 suspended in fibrin (rhBMP-2 + fibrin) was injected into the center of the lengthened gap, with 12 animals in each group. Eight weeks later, the distracted callus was examined by histology, micro-CT and biomechanical testing. Radiographs of the distracted tibiae were taken at both 4 and 8 weeks after drug treatment. Results It was found that fibrin prolonged the life span of rhBMP-2 in vitro with sustained release during 17 days. The rhBMP-2 + fibrin treated animals showed the best results in bone mineral density, bone volume fraction, cortical bone thickness by micro-CT evaluation and mechanical properties by the three-point bending test when compared to the other groups (p < 0.05). In histological images, rhBMP-2 + fibrin treatment showed increased callus formation and better gap bridging compared to the other groups. Conclusions The results of this study suggest that fibrin holds promise to be a good carrier of rhBMP-2, and rhBMP-2 suspended in fibrin showed a stronger promoting effect on bone formation during DO in rabbits. PMID:27279839

  19. Urinary deoxypyridinoline (DPD), serum bone glia protein (BGP) and bone metabolism change in hyperthyroidism

    International Nuclear Information System (INIS)

    Objective: To study the effect of thyroid function on bone metabolism. Methods: Urinary DPD, Serum FT3, FT4 and BGP levels were determined with chemiluminescence assay and RIA in 41 patients with hyperthyroidism and 47 healthy controls. Results: Urinary DPD and serum FT3, FT4, BGP levels were significantly higher in patients with hyperthyroidism than those in healthy controls (p < 0.01). Conclusion: The data showed that hyperthyroidism was correlated with bone metabolism

  20. High Protein Intake Improves Insulin Sensitivity but Exacerbates Bone Resorption in Immobility (WISE Study)

    Science.gov (United States)

    Heer, Martina; Smith, Scott M.; Frings-Meuthen, Petra; Zwart, Sara R.; Baecker, Natalie

    2012-01-01

    Inactivity, like bed rest (BR), causes insulin resistance (IR) and bone loss even in healthy subjects. High protein intake seems to mitigate this IR but might exacerbate bone loss. We hypothesized that high protein intake (animal:vegetable protein ratio: 60:40), isocaloric, compared to the control group plus high potassium intake would prevent IR without affecting bone turnover. After a 20-day ambulatory adaptation to controlled confinement and diet, 16 women participated in a 60-day, 6 deg head-down-tilt BR and were assigned randomly to one of the two groups. Control subjects (CON, n=8) received 1g/kg body mass/d dietary protein. Nutrition subjects (NUT, n=8) received 1.45g/kg body mass/d dietary protein plus 7.2g branched chain amino acids per day during BR. All subjects received 1670 kcal/d. Bed rest decreased glucose disposal by 35% (pprotein intake prevented insulin resistance, but exacerbated bed rest induced increase in bone resorption markers C-telopeptide (> 30%) and Ntelopeptide (>20%) (both: pprotein intake. We conclude from these results that high protein intake might positively affect glucose tolerance, but might also foster bone loss. Further long-duration studies are mandatory before high protein intake for diabetic patients, who have an increased fracture risk, might be recommended.

  1. Effects of resistance training and protein supplementation on bone turnover in young adult women

    Directory of Open Access Journals (Sweden)

    Sinning Wayne E

    2005-08-01

    Full Text Available Abstract Background The strength of aging bone depends on the balance between the resorption and formation phases of the remodeling process. The purpose of this study was to examine the interaction of two factors with the potential to exert opposing influences on bone turnover, resistance exercise training and high dietary protein intake. It was hypothesized that resistance training by young, healthy, untrained women with protein intakes near recommended levels (0.8 g·kg-1·d-1 would promote bone formation and/or inhibit bone resorption, and that subsequent supplementation to provide 2.4 g protein·kg-1·d-1 would reverse these effects. Methods Bone formation was assessed with serum bone-specific alkaline phosphatase (BAP and osteocalcin (OC, and bone resorption with urinary calcium and deoxypyridinoline (DPD. Biochemical, strength, anthropometric, dietary, and physical activity data were obtained from 24 healthy, untrained, eumenorrheic women (18–29y at baseline, after eight weeks of resistance training (3 d·wk-1, ~1 hr·d-1; 3 sets, 6–10 repetitions, 13 exercises, 75–85% maximum voluntary contraction, and after 12 weeks of resistance training and 10 days of protein/placebo supplementation. Subjects were randomized (double-blind to either a high protein (HP or training control (TC group and, during the final 10 days, consumed either enough purified whey protein to bring daily protein intake to 2.4 g·kg-1·d-1, or an equivalent dose of isoenergetic, carbohydrate placebo. Results Strength, lean tissue mass, and DPD increased significantly in both groups over time, while percent body fat and BAP decreased (repeated measures ANOVA, p ≤ 0.05, Bonferroni correction. No significant changes were observed for serum OC or urinary calcium, and no significant group (TC, HP × time (baseline, week 8, week 12 interactions emerged for any of the biochemical measures. Conclusion (1 Twelve weeks of high-intensity resistance training did not appear to

  2. In vitro morphogenic response of leaf sheath of Phyllostachys bambusoides

    Institute of Scientific and Technical Information of China (English)

    Yurika H. Komatsu; Katherine Derlene Batagin-Piotto; Gilvano Ebling Brondani; Ant(o)nio Natal Goncalves; Marcilio de Almeida

    2011-01-01

    Nodal segments from secondary branches of saplings of Phyllostachys bambusoides were inoculated in MS medium to assess the in vitro morphogenic response of leaf sheath through the induction to callogenesis by Picloram (4-amino-3,5,6-trichloropicolinic acid) at different concentrations of carbohydrate under the same conditions with presence or absence of luminosity. In our experiment, secondary explants were kept in MS medium containing 8.0 mg·L-1 of Picloram for the callus formation. Calluses were transferred in MS medium supplemented with sucrose, fructose and glucose (control, 2%, 4% and 6%). Results show that Picloram induced the callogenesis in leaf sheath. The secondary embryogenesis was formed in yellow-globular callus. The sucrose as carbohydrate source in the absence of light was more efficient to induce rhizogenesis. Glucose was more efficiency in the presence of light. Callogenic induction and further embryogenesis evidenced the competence and determination of leaf sheath cells.

  3. Osteoinductivity assay of the variability of repeated extractions of bone morphogenetic proteins from bovine bone at different times

    Institute of Scientific and Technical Information of China (English)

    HU Zhen-ming 胡侦明; Sean AF Peel; Cameron ML Clokie

    2004-01-01

    Objective:To observe the activity of repeated extracts of bone matrix and the production of purified bone morphogenetic proteins (BMPs).Methods: BMPs were extracted 1- 4 times from fresh bovine cortical bone by the modified Urist's method, with each collected precipitate separated and lyophilized as partially purified BMPs. Another fresh bovine bone was extracted three times and the precipitates were mixed and lyophilized. Meanwhile, the alkaline phosphatase (ALP)activity was measured by an in vitro assay employing cultured C2C12 mouse myoblast cells through the osteoinductivity of bovine BMPs extracted four times at days 1, 4, 7, and 14, and the correlation between BMPs quantities and costing during extraction processes was analyzed.Results:The purified and the cost showed a positive correlation(r=0.969).To separate and lyophilize each collected precipitate as partially purified BMPs raised the cost,and mixed precipitates also cost much.ALPactivities of 1st and mixed extractions of BMPs were shown to be highly osteoinductive and keep a significantly high level(P<0.05-0.01)4 days after culturing compared with the 2nd,3rd and 4th extractions,especially the control group.However,the more times the extraction ws done,the less activity of BMPs was shown and more costing was.The x-ray and histological analysis also showed that the 1st extraction of BMPs induced more ossicles and new bone formation.Conclusions:The results indicated that BMPs enhanced the abilities of osteoinductiviyt in C2C12 culture in vitro.The first extraction of BMPsfrom bone is fitfull,4th extractions are unnecessary for they cost more and waste more time,say nothing of mixed extractions.

  4. Bone

    International Nuclear Information System (INIS)

    Bone scanning provides information on the extent of primary bone tumors, on possible metastatic disease, on the presence of osteomyelitis prior to observation of roentgenographic changes so that earlier therapy is possible, on the presence of collagen diseases, on the presence of fractures not disclosed by x-ray films, and on the evaluation of aseptic necrosis. However, the total effect and contribution of bone scanning to the diagnosis, treatment, and ultimate prognosis of pediatric skeletal diseases is, as yet, unknown. (auth)

  5. Osteogenic protein-1 increases the fixation of implants grafted with morcellised bone allograft and ProOsteon bone substitute: an experimental study in dogs

    DEFF Research Database (Denmark)

    Baad-Hansen, Thomas Einer; Overgaard, S; Lind, M;

    2007-01-01

    weeks osteogenic protein-1 increased bone formation and the energy absorption of implants grafted with allograft and ProOsteon. A composite of allograft, ProOsteon and osteogenic protein-1 was comparable, but not superior to, allograft used on its own. ProOsteon alone cannot be recommended as a......Impacted bone allograft is often used in revision joint replacement. Hydroxyapatite granules have been suggested as a substitute or to enhance morcellised bone allograft. We hypothesised that adding osteogenic protein-1 to a composite of bone allograft and non-resorbable hydroxyapatite granules...... surrounded by a concentric 3 mm gap. These gaps were randomly allocated to four different procedures in each dog: 1) bone allograft used on its own; 2) ProOsteon used on its own; 3) allograft and ProOsteon used together; or 4) allograft and ProOsteon with the addition of osteogenic protein-1. After three...

  6. GPCR kinase 2 interacting protein 1 (GIT1) regulates osteoclast function and bone mass

    OpenAIRE

    Menon, Prashanthi; Yin, Guoyong; Smolock, Elaine M.; Zuscik, Michael J.; Yan, Chen; Berk, Bradford C.

    2010-01-01

    G-protein coupled receptor (GPCR) kinase 2 interacting protein-1 (GIT1) is a scaffold protein expressed in various cell types including neurons, endothelial and vascular smooth muscle cells. The GIT1 knockout (KO) mouse has a pulmonary phenotype due to impaired endothelial function. Because GIT1 is tyrosine phosphorylated by Src kinase, we anticipated that GIT1 KO should have a bone phenotype similar to Src KO. Microcomputed tomography of the long bones revealed that GIT1 KO mice have a 2.3-f...

  7. Bone induction at physiological doses of BMP through localization by clay nanoparticle gels.

    Science.gov (United States)

    Gibbs, D M R; Black, C R M; Hulsart-Billstrom, G; Shi, P; Scarpa, E; Oreffo, R O C; Dawson, J I

    2016-08-01

    Bone Morphogenic Protein 2 (BMP2) can induce ectopic bone. This ability, which first motivated the widespread application of BMP2 in fracture healing and spinal arthrodesis has, more recently, been indicated as one of several serious adverse effects associated with the supra-physiological doses of BMP2 relied upon for clinical efficacy. Key to harnessing BMPs and other agents safely and effectively will be the ability to localize activity at a target site at substantially reduced doses. Clay (Laponite) nanoparticles can self assemble into gels under physiological conditions and bind growth factors for enhanced and localized efficacy. Here we show the ability to localize and enhance the activity of BMP2 to achieve ectopic bone formation at doses within the sub-microgram per ml range of concentrations sufficient to induce differentiation of responsive cell populations in vitro and at approximately 3000 fold lower than those employed in clinical practice. PMID:27209259

  8. Osteogenic protein 1 device increases bone formation and bone graft resorption around cementless implants

    DEFF Research Database (Denmark)

    Jensen, Thomas B; Overgaard, Søren; Lind, Martin;

    2002-01-01

    In each femoral condyle of 8 Labrador dogs, a non weight-bearing hydroxyapatite-coated implant was inserted surrounded by a 3 mm gap. Each gap was filled with bone allograft or ProOsteon with or without OP-1 delivered in a bovine collagen type I carrier (OP-1 device). 300 microg OP-1 was used in ...

  9. The retinoblastoma protein tumor suppressor is important for appropriate osteoblast differentiation and bone development

    OpenAIRE

    Berman, Seth D.; Yuan, Tina L.; Miller, Emily S.; Lee, Eunice; Caron, Alicia; Lees, Jacqueline A

    2008-01-01

    Mutation of the Rb tumor suppressor gene is strongly linked to osteosarcoma formation. This observation, and the documented interaction between the retinoblastoma protein (pRb) and Runx2, suggests that pRb is important in bone development. To assess this hypothesis, we used a conditional knockout strategy to generate pRb-deficient embryos that survive to birth. Analysis of these embryos shows that Rb-inactivation causes the abnormal development and impaired ossification of several bones, corr...

  10. Effects of dietary protein and glycaemic index on biomarkers of bone turnover in children

    DEFF Research Database (Denmark)

    Dalskov, Stine-Mathilde; Müller, Martha; Ritz, Christian;

    2014-01-01

    For decades, it has been debated whether high protein intake compromises bone mineralisation, but no long-term randomised trial has investigated this in children. In the family-based, randomised controlled trial DiOGenes (Diet, Obesity and Genes), we examined the effects of dietary protein and...... glycaemic index (GI) on biomarkers of bone turnover and height in children aged 5-18 years. In two study centres, families with overweight parents were randomly assigned to one of five ad libitum-energy, low-fat (25-30 % energy (E%)) diets for 6 months: low protein/low GI; low protein/high GI; high protein....../low GI; high protein/high GI; control. They received dietary instructions and were provided all foods for free. Children, who were eligible and willing to participate, were included in the study. In the present analyses, we included children with data on plasma osteocalcin or urinary N...

  11. Demineralized dentin matrix combined with recombinant human bone morphogenetic protein-2 in rabbit calvarial defects

    Science.gov (United States)

    2016-01-01

    Objectives The aim of this study was to compare the osteogenic effects of demineralized dentin matrix (DDM) combined with recombinant human bone morphogenetic protein-2 (rhBMP-2) in rabbit calvarial defects with DDM and anorganic bovine bone (ABB) combined with rhBMP-2. Materials and Methods Four round defects with 8-mm diameters were created in each rabbit calvaria. Each defect was treated with one of the following: 1) DDM, 2) ABB/rhBMP-2, or 3) DDM/rhBMP-2. The rhBMP-2 was combined with DDM and ABB according to a stepwise dry and dip lyophilizing protocol. Histological and microcomputed tomography (µCT) analyses were performed to measure the amount of bone formation and bone volume after 2- and 8-week healing intervals. Results Upon histological observation at two weeks, the DDM and ABB/rhBMP-2 groups showed osteoconductive bone formation, while the DDM/rhBMP-2 group showed osteoconductive and osteoinductive bone formation. New bone formation was higher in DDM/rhBMP-2, DDM and ABB decreasing order. The amounts of bone formation were very similar at two weeks; however, at eight weeks, the DDM/rhBMP-2 group showed a two-fold greater amount of bone formation compared to the DDM and ABB/rhBMP-2 groups. The µCT analysis showed markedly increased bone volume in the DDM/rhBMP-2 group at eight weeks compared with that of the DDM group. Notably, there was a slight decrease in bone volume in the ABB/rhBMP-2 group at eight weeks. There were no significant differences among the DDM, ABB/rhBMP-2, and DDM/rhBMP-2 groups at two or eight weeks. Conclusion Within the limitations of this study, DDM appears to be a suitable carrier for rhBMP-2 in orthotopic sites. PMID:27162749

  12. CCAAT/enhancer binding protein β-deficiency enhances type 1 diabetic bone phenotype by increasing marrow adiposity and bone resorption

    OpenAIRE

    Motyl, Katherine J.; Raetz, Michelle; Tekalur, Srinivasan Arjun; Schwartz, Richard C.; McCabe, Laura R.

    2011-01-01

    Bone loss in type 1 diabetes is accompanied by increased marrow fat, which could directly reduce osteoblast activity or result from altered bone marrow mesenchymal cell lineage selection (adipocyte vs. osteoblast). CCAAT/enhancer binding protein beta (C/EBPβ) is an important regulator of both adipocyte and osteoblast differentiation. C/EBPβ-null mice have delayed bone formation and defective lipid accumulation in brown adipose tissue. To examine the balance of C/EBPβ functions in the diabetic...

  13. Recombinant human bone morphogenetic protein-7 expressed from CHO cells possessing the activity of bone-induced in vitro

    Institute of Scientific and Technical Information of China (English)

    LI Xiaoyan; WANG Hao; YANG Yang; TAN Min; XUE Jingya; NI Haidong; GUO Yajun

    2006-01-01

    Objective To express the recombinant human bone morphogenetic protein-7 (rhBMP-7) in Chinese hamster ovary (CHO) cells and to establish the in vitro biological activity assay of rhBMP-7. Methods Human BMP-7 cDNA was subcloned into pcDNA3.1 mammalian expression vector and transfected to CHO cells by using the lipofectin transfection method. BMP-7 expression cell culture supernatants were harvested and purified for target protein. To analyze the bioactivity of the secreted rhBMP-7, a novel in vitro assay was established by measuring its alkaline phosphatase (ALP) stimulating of osteoblast cell line, W-20-17. Results BMP-7 stably expressing cell clone was selected, which secreted mature disulfide-linked homodimer form of hBMP-7 and had an apparent molecular weight of 36kDa. rhBMP-7 with >95% purity was obtained using 3 step chromatography method. Bioactivity assay showed that the purified protein specifically stimulated W-20-17 cell producing ALP, with a 4-fold increase of ALP activity at 100ng/ml or more, and the EC50 of 15.6ng/ml. Conclusion Purified rhBMP-7 from this CHO expression system has significant biological activity in induction of osteoblast phenotype, which demonstrates potential bone regeneration activity.

  14. Effect of the "protein diet" and bone tissue

    OpenAIRE

    Zoraide Nascimento da Silva; Vanessa Azevedo de Jesuz; Eduardo de Salvo Castro; Carlos Alberto Soares da Costa; Gilson Teles Boaventura; Vilma Blondet de Azeredo

    2014-01-01

    The aim of this study is to evaluate the effect of the hyperproteic diet consumption on bone tissue. Methods: The study was conducted during sixty days. Twenty eight Wistar albinus rats, adults, originated from Laboratory of Experimental Nutrition were divided in four groups: (n = 7); Control 1 (C1), Control 2 (C2), Hyperproteic 1 (HP1) e Hyperproteic 2 (HP2). The C2 and HP2 groups were submitted to 30% of food restriction. The hyperproteic diet was based on the Atkins diet and prepared to si...

  15. Mandibular bone repair by implantation of rhBMP-2 in a slow release carrier of polylactic acid--an experimental study in rats.

    OpenAIRE

    Schliephake, Henning; Weich, Herbert A.; Dullin, Christian; Gruber, Rudolf; Frahse, Sarah

    2008-01-01

    The aim of the present study was to test the hypothesis that human recombinant bone morphogenic protein 2 (rhBMP-2) implanted in a slow release carrier of polylactic acid (PLA) can repair a non-healing defect in the rat mandible and maintain the thickness of an augmented volume. p-DL-lactic acid discs were produced and loaded with 48 and 96 microg rhBMP-2 and inserted into non-healing defects of the mandible of 45 Wistar rats. Fifteen rats received implants with 96 microg rhBMP-2 (Group 2), 4...

  16. Mechanical microenvironments and protein expression associated with formation of different skeletal tissues during bone healing.

    Science.gov (United States)

    Miller, Gregory J; Gerstenfeld, Louis C; Morgan, Elise F

    2015-11-01

    Uncovering the mechanisms of the sensitivity of bone healing to mechanical factors is critical for understanding the basic biology and mechanobiology of the skeleton, as well as for enhancing clinical treatment of bone injuries. This study refined an experimental method of measuring the strain microenvironment at the site of a bone injury during bone healing. This method used a rat model in which a well-controlled bending motion was applied to an osteotomy to induce the formation of pseudarthrosis that is composed of a range of skeletal tissues, including woven bone, cartilage, fibrocartilage, fibrous tissue, and clot tissue. The goal of this study was to identify both the features of the strain microenvironment associated with formation of these different tissues and the expression of proteins frequently implicated in sensing and transducing mechanical cues. By pairing the strain measurements with histological analyses that identified the regions in which each tissue type formed, we found that formation of the different tissue types occurs in distinct strain microenvironments and that the type of tissue formed is correlated most strongly to the local magnitudes of extensional and shear strains. Weaker correlations were found for dilatation. Immunohistochemical analyses of focal adhesion kinase and rho family proteins RhoA and CDC42 revealed differences within the cartilaginous tissues in the calluses from the pseudarthrosis model as compared to fracture calluses undergoing normal endochondral bone repair. These findings suggest the involvement of these proteins in the way by which mechanical stimuli modulate the process of cartilage formation during bone healing. PMID:25822264

  17. Effects of ionizing radiation on proteins in lyophilized or frozen demineralized human bone

    Science.gov (United States)

    Antebi, Uri; Mathor, Monica Beatriz; da Silva, André Ferreira; Guimarães, Rodrigo Pereira; Honda, Emerson Kiyoshi

    2016-01-01

    Objective The aim was to study the effects of application of ionizing radiation (gamma and electrons) as sterilizing agents at doses of 15 kGy, 25 kGy and 50 kGy, on lyophilized or frozen demineralized bone tissue for use in transplants. Methods Five human femoral diaphyses from different donors of musculoskeletal tissue were demineralized and preserved as lyophilized or frozen at −80 °C. The samples were divided into two groups: non-irradiated (control) and irradiated by means of gamma rays or an electron beam. The bone proteins were extracted and used to determine the concentrations of total protein and BMP 2 and 7. Results Decreases in total protein and BMP 2 and 7 concentrations were observed. The decreases in total protein concentrations, in comparison with the respective control groups, were significant in the lyophilized and frozen samples that were irradiated at a dose of 50 kGy of gamma radiation and electron beam, with reductions of more than 30%. Significant decreases in the levels of BMP 2 and 7 were also observed at higher doses and especially through use of the electron beam. Conclusion The reductions in the concentrations of total proteins and osteoinductive proteins (BMP 2 and 7) were related to the radiation dose, i.e. they increased with higher doses of ionizing radiation type and the type of bone preservation. The largest reductions in concentrations were observed in the bones irradiated by means of an electron beam and at a dose of 50 kGy. However, this type of radiation and this high dose are not usual practices for sterilization of bone tissue. PMID:27069893

  18. The CCN Family Proteins: Modulators of Bone Development and Novel Targets in Bone-Associated Tumors

    OpenAIRE

    Po-Chun Chen; Hsu-Chen Cheng; Shun-Fa Yang; Chiao-Wen Lin; Chih-Hsin Tang

    2014-01-01

    The CCN family of proteins is composed of six extracellular matrix-associated proteins that play crucial roles in skeletal development, wound healing, fibrosis, and cancer. Members of the CCN family share four conserved cysteine-rich modular domains that trigger signal transduction in cell adhesion, migration, proliferation, differentiation, and survival through direct binding to specific integrin receptors and heparan sulfate proteoglycans. In the present review, we discuss the roles of the ...

  19. Bone morphogenetic protein-2 is a negative regulator of hepatocyte proliferation downregulated in the regenerating liver

    NARCIS (Netherlands)

    Xu, Cui-Ping; Ji, Wen-Min; van den Brink, Gijs R.; Peppelenbosch, Maikel P.

    2006-01-01

    AIM: To characterize the expression and dynamic changes of bone morphogenetic protein (BMP)-2 in hepatocytes in the regenerating liver in rats after partial hepatectomy (PH), and examine the effects of BMP-2 on proliferation of human Huh7 hepatoma cells. METHODS: Fifty-four adult male Wistar rats we

  20. On one method of fat and protein extraction from bone mass

    International Nuclear Information System (INIS)

    This article describes the actual technological task of the food industry. The problem of the extraction of fat and protein from the bone mass can be solved by different methods. The work offers one of the more effective modes. Results are presented as diagrams. (author)

  1. Associations of total, dairy, and meat protein with markers for bone turnover in healthy, prepubertal boys

    DEFF Research Database (Denmark)

    Budek, Alicja Zofia; Hoppe, Camilla; Michaelsen, Kim Fleischer;

    2007-01-01

    We previously reported that high intake of milk, but not meat, equal in protein content, increased serum insulin-like growth factor-I (sIGF-I) in prepubertal boys. sIGF-I plays a key role in bone metabolism. Therefore, the aim of this cross-sectional study was to investigate associations of total......, dairy, and meat protein intake with markers for bone turnover and sIGF-I in prepubertal, healthy boys (n ¼ 81). We measured bone turnover (enzyme-linked immunoassay) in serum osteocalcin (sOC), bone-specific alkaline phosphatase (sBAP), and C-terminal telopeptide of collagen type-I (sCTX); dietary...... intake was estimated from a 3-d weighed food record. sIGF-I and its binding protein-3 were assessed (immunoassay) in a subgroup of 56 boys. All statistical models included effects of age, BMI, and energy intake. Dairy protein was negatively associated with sOC (P ¼ 0.05) but not significantly associated...

  2. The expression of bone morphogenetic proteins in osteosarcoma and its relevance as a prognostic parameter

    OpenAIRE

    Sulzbacher, I; Birner, P; Trieb, K; Pichlbauer, E; Lang, S.

    2002-01-01

    Aims: The expression of bone morphogenetic proteins (BMPs) was analysed in 47 osteosarcomas to determine differences in the expression of BMP subtypes and to correlate expression with response to chemotherapy, in addition to the disease free and overall survival of patients.

  3. Estrogens increase expression of bone morphogenetic protein 8b in brown adipose tissue of mice

    NARCIS (Netherlands)

    A. Grefhorst (Aldo); J.C. van den Beukel (Johanna); A.F. van Houten (A.); J. Steenbergen (Jacobie); J.A. Visser (Jenny); A.P.N. Themmen (Axel)

    2015-01-01

    textabstractBackground: In mammals, white adipose tissue (WAT) stores fat and brown adipose tissue (BAT) dissipates fat to produce heat. Several studies showed that females have more active BAT. Members of the bone morphogenetic protein (BMP) and fibroblast growth factor (FGF) families are expressed

  4. Effects of Osseointegration by Bone Morphogenetic Protein-2 on Titanium Implants In Vitro and In Vivo

    OpenAIRE

    Fu-Yuan Teng; Wen-Cheng Chen; Yin-Lai Wang; Chun-Cheng Hung; Chun-Chieh Tseng

    2016-01-01

    This study designed a biomimetic implant for reducing healing time and achieving early osseointegration to create an active surface. Bone morphogenetic protein-2 (BMP-2) is a strong regulator protein in osteogenic pathways. Due to hardly maintaining BMP-2 biological function and specificity, BMP-2 efficient delivery on implant surfaces is the main challenge for the clinic application. In this study, a novel method for synthesizing functionalized silane film for superior modification with BMP-...

  5. Preparation of denatured protein bone sterilized with gamma radiation; Preparacion de hueso desproteinizado esterilizado con radiacion gamma

    Energy Technology Data Exchange (ETDEWEB)

    Luna Z, D. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: dlz@nuclear.inin.mx

    2005-07-01

    The bone is one of the tissues more transplanted in the entire world by that the bone necessity for transplant every day becomes bigger. In the Bank of tissues Radio sterilized of the ININ the amnion and the pig skin are routinely processed. The tissue with which will be continued is with bone. Due to that in our country it doesn't have enough bone of human origin for the necessities required in the bone transplant, an option is the bone of bovine. Of this bone one can obtain denatured protein bone, with the same characteristics of the denatured protein human bone, the one which has been proven that it has good acceptance and incorporation in the human body when is transplanted. The method for the obtaining of the denatured protein bone of bovine, with the confirmation of the final product by means of X-ray diffraction is described. The radiosterilization of this bone with gamma rays and the determination of the lead content. (Author)

  6. EFFECT OF TEMPERATURE AND PARTICLE SIZE ON THE ALKALINE EXTRACTION OF PROTEIN FROM CHICKEN BONE WASTE

    Directory of Open Access Journals (Sweden)

    Andri Cahyo Kumoro

    2012-02-01

    Full Text Available Chicken bone is a waste of chicken meat processing industry and restaurants that has not been used widely, even though it contains valuable organic compounds that are functionals, such as collagenous and non collagenous protein. This research was conducted to investigate the effect of temperature and particle size on the protein extraction from chicken bones using dilute sodium hydroxide solution. Controlled parameters in this study were the solvent in the form of sodium hydroxide solution, extraction time for 1 hour, pH 10.5, the ratio of chicken bone powder: solvent (1:4 w/v, and stirring speed 200 rpm. While the operating variables included the extraction temperature of 30oC, 55oC, and 80oC, and particle size of 150 and 250 μm. Experiments were carried out by heating of 300 mL of sodium hydroxide solution with pH 10.5 in a three-necked flask equipped with Leibig condenser, thermometer, mechanical agitator and sampling device to reach the desired temperature (30oC, 55oC, and 80oC. Then, a total of 75 g of chicken bone powders with desired particle size (150μm and 250μm was introduced into the sodium hydroxide solution and the stirrer was operated at speed of 200rpm. At every 10 minutes interval, as much as 10 mL samples were withdrawn for total protein analysis using Lowry-Folin method. The experiment was terminated after 1 hour. The results show that both increase in temperature and particle size caused an increase in the amount of extracted protein. Highest concentration of protein extracted was achieved at 630.99 mg/L, when the extraction was carried out using 250mm bone particles and temperature 80oC.

  7. Obif, a Transmembrane Protein, Is Required for Bone Mineralization and Spermatogenesis in Mice.

    Directory of Open Access Journals (Sweden)

    Koji Mizuhashi

    Full Text Available Various kinds of transmembrane and secreted proteins play pivotal roles in development through cell-cell communication. We previously reported that Obif (Osteoblast induction factor, Tmem119, encoding a single transmembrane protein, is expressed in differentiating osteoblasts, and that Obif-/- mice exhibit significantly reduced bone volume in the femur. In the current study, we characterized the Obif protein and further investigated the biological phenotypes of a variety of tissues in Obif-/- mice.First, we found that O-glycosylation of the Obif protein occurs at serine residue 36 in the Obif extracellular domain. Next, we observed that Obif-/- mice exhibit bone dysplasia in association with significantly increased osteoid volume per osteoid surface (OV/OS and osteoid maturation time (Omt, and significantly decreased mineral apposition rate (MAR and bone formation rate per bone surface (BFR/BS. In addition, we observed that Obif-/- mice show a significant decrease in testis weight as well as in sperm number. By histological analysis, we found that Obif is expressed in spermatocytes and spermatids in the developing testis and that spermatogenesis is halted at the round spermatid stage in the Obif-/- testis that lacks sperm. However, the number of litters fathered by male mice was slightly reduced in Obif-/- mice compared with wild-type mice, although this was not statistically significant.Our results, taken together with previous observations, indicate that Obif is a type Ia transmembrane protein whose N-terminal region is O-glycosylated. In addition, we found that Obif is required for normal bone mineralization and late testicular differentiation in vivo. These findings suggest that Obif plays essential roles in the development of multiple tissues.

  8. [Ectopic osteogenesis in vivo using bone morphogenetic protein-2 derived peptide loaded biodegradable hydrogel].

    Science.gov (United States)

    Zhao, Jingjing; Fang, Zhenhua; Huang, Ruokun; Xiao, Kai; Li, Jing; Xie, Ming; Kan, Wusheng

    2014-08-01

    We investigated the development of an injectable, biodegradable hydrogel composite of poly(trimethylene carbonate)-F127-poly(trimethylene carbonate)(PTMC11-F127-PTMC11 )loaded with bone morphogenetic protein-2 (BMP-2) derived peptide P24 for ectopic bone formation in vivo and evaluated its release kinetics in vitro. Then we evaluated P24 peptide release kinetics from different concentration of PTMC11-F127-PTMC11 hydrogel in vitro using bicinchoninic acid (BCA)assay. P24/ PTMC11-F127-PTMC11 hydrogel was implanted into each rat's erector muscle of spine and ectopic bone formation of the implanted gel in vivo was detected by hematoxylin and eosin stain (HE). PTMC11-F127-PTMC11 hydrogel with concentration more than 20 percent showed sustained slow release for one month after the initial burst release. Bone trabeculae surround the P24/ PTMC11-F127-PTMC11 hydrogel was shown at the end of six weeks by hematoxylin and eosin stain. These results indicated that encapsulated bone morphogenetic protein (BMP-2) derived peptide P24 remained viable in vivo, thus suggesting the potential of PTMC11-F127-PT- MC11 composite hydrogels as part of a novel strategy for localized delivery of bioactive molecules. PMID:25508424

  9. TGF-βand BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease

    Institute of Scientific and Technical Information of China (English)

    Mengrui Wu; Guiqian Chen; and Yi-Ping Li

    2016-01-01

    Transforming growth factor-beta (TGF-β) and bone morphogenic protein (BMP) signaling has fundamental roles in both embryonic skeletal development and postnatal bone homeostasis. TGF-βs and BMPs, acting on a tetrameric receptor complex, transduce signals to both the canonical Smad-dependent signaling pathway (that is, TGF-β/BMP ligands, receptors, and Smads) and the non-canonical-Smad-independent signaling pathway (that is, p38 mitogen-activated protein kinase/p38 MAPK) to regulate mesenchymal stem cell differentiation during skeletal development, bone formation and bone homeostasis. Both the Smad and p38 MAPK signaling pathways converge at transcription factors, for example, Runx2 to promote osteoblast differentiation and chondrocyte differentiation from mesenchymal precursor cells. TGF-βand BMP signaling is controlled by multiple factors, including the ubiquitin–proteasome system, epigenetic factors, and microRNA. Dysregulated TGF-βand BMP signaling result in a number of bone disorders in humans. Knockout or mutation of TGF-βand BMP signaling-related genes in mice leads to bone abnormalities of varying severity, which enable a better understanding of TGF-β/BMP signaling in bone and the signaling networks underlying osteoblast differentiation and bone formation. There is also crosstalk between TGF-β/BMP signaling and several critical cytokines’ signaling pathways (for example, Wnt, Hedgehog, Notch, PTHrP, and FGF) to coordinate osteogenesis, skeletal development, and bone homeostasis. This review summarizes the recent advances in our understanding of TGF-β/BMP signaling in osteoblast differentiation, chondrocyte differentiation, skeletal development, cartilage formation, bone formation, bone homeostasis, and related human bone diseases caused by the disruption of TGF-β/BMP signaling.

  10. Bone morphogenetic protein 2 and decorin expression in old fracture fragments and surrounding tissues.

    Science.gov (United States)

    Han, X G; Wang, D K; Gao, F; Liu, R H; Bi, Z G

    2015-01-01

    Bone morphogenetic protein 2 (BMP-2) can promote fracture healing. Although the complex role BMP-2 in bone formation is increasingly understood, the role of endogenous BMP-2 in nonunion remains unclear. Decorin (DCN) can promote the formation of bone matrix and calcium deposition to control bone morphogenesis. In this study, tissue composition and expression of BMP-2 and DCN were detected in different parts of old fracture zones to explore inherent anti-fibrotic ability and osteogenesis. Twenty-three patients were selected, including eight cases of delayed union and 15 cases of nonunion. Average duration of delayed union or nonunion was 15 months. Fracture fragments and surrounding tissues, including bone grafts, marrow cavity contents, and sticking scars, were categorically sampled during surgery. Through observation and histological testing, component comparisons were made between fracture fragments and surrounding tissue. The expression levels of DCN and BMP-2 in different tissues were detected by immunohistochemical staining and real-time polymerase chain reaction. The expression of DCN and BMP- 2 in different parts of the nonunion area showed that, compared with bone graft and marrow cavity contents, sticking scars had the highest expression of BMP-2. Compared with the marrow cavity contents and sticking scars, bone grafts had the highest expression of DCN. The low antifibrotic and osteogenic activity of the nonunion area was associated with non-co-expression of BMP-2 and DCN. Therefore, the co-injection of osteogenic factor BMP and DCN into the nonunion area can improve the induction of bone formation and enhance the conversion of the old scar, thereby achieving better nonunion treatment. PMID:26400336

  11. Hydrolyzing Condition and Immunocompetence of Sheep Bone Protein Enzymatic Lysates

    Institute of Scientific and Technical Information of China (English)

    YANG Hua; LIU Yu-hua; MA Li-zhen; KONG Bao-hua

    2009-01-01

    Utilizing collagen of sheep bone as material to get immunocompetent peptide, enzymatic hydrolysis conditions were optimized using quadratic regression general rotation design. The effect of temperature (T), time (t), enzyme/substrate (E/S) ratio, and substrate concentration (S) on the amount of tricarboxylix acid cycle (TCA) soluble peptides were investigated. The content of soluble peptide in the acquisition was measured by Folin-hydrozybebzebe method, and the correlation between soluble peptide content and immunocompetence was analyzed by SAS software. The best enzymatic hydrolysis condition was gotten from Design Expert 7.1.2 software. The optimal condition under which immunocompetent peptides could be prepared was 1 576 U g-1 (E/S), 64.05℃ (T), 0.271 kg L-1(S), and 7.22 h (t). The correlation coefficient between TCA soluble peptides and the immuneocompetence was 0.045 < r0.05= 0.355, which indicated that they had no significant correlation. The result showed that the soluble peptide contained immunocompetent peptides which content was independent of immunocompetence in the hydrolasates.

  12. Demineralized dentin matrix combined with recombinant human bone morphogenetic protein-2 in rabbit calvarial defects

    OpenAIRE

    Um, In-Woong; Hwang, Suk-Hyun; Kim, Young-Kyun; Kim, Moon-Young; Jun, Sang-Ho; Ryu, Jae-Jun; Jang, Hyon-Seok

    2016-01-01

    Objectives The aim of this study was to compare the osteogenic effects of demineralized dentin matrix (DDM) combined with recombinant human bone morphogenetic protein-2 (rhBMP-2) in rabbit calvarial defects with DDM and anorganic bovine bone (ABB) combined with rhBMP-2. Materials and Methods Four round defects with 8-mm diameters were created in each rabbit calvaria. Each defect was treated with one of the following: 1) DDM, 2) ABB/rhBMP-2, or 3) DDM/rhBMP-2. The rhBMP-2 was combined with DDM...

  13. Influence of ethylene oxide sterilization on the activity of native reindeer bone morphogenetic protein

    OpenAIRE

    Pekkarinen, T. (Tarmo); Hietala, O.; Lindholm, T. S.; Jalovaara, P.

    2003-01-01

    We studied the effects of ethylene oxide sterilization (Steri-Vac 4XL, temperature 29°C, exposure time 4 h 10 min, ethylene oxide concentration 860 mg/l) on the osteoinductivity of partially purified native reindeer bone morphogenetic protein (BMP) in a hind leg muscle pouch model of male NMRI mice. BMP was administered in implants containing 3 mg in a collagen carrier. Implants without sterilization and without BMP served as controls. New bone formation was evaluated based on the calcium yie...

  14. Biomineralization of Engineered Spider Silk Protein-Based Composite Materials for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    John G. Hardy

    2016-07-01

    Full Text Available Materials based on biodegradable polyesters, such as poly(butylene terephthalate (PBT or poly(butylene terephthalate-co-poly(alkylene glycol terephthalate (PBTAT, have potential application as pro-regenerative scaffolds for bone tissue engineering. Herein, the preparation of films composed of PBT or PBTAT and an engineered spider silk protein, (eADF4(C16, that displays multiple carboxylic acid moieties capable of binding calcium ions and facilitating their biomineralization with calcium carbonate or calcium phosphate is reported. Human mesenchymal stem cells cultured on films mineralized with calcium phosphate show enhanced levels of alkaline phosphatase activity suggesting that such composites have potential use for bone tissue engineering.

  15. Proteomic analysis of a pleistocene mammoth femur reveals more than one hundred ancient bone proteins

    DEFF Research Database (Denmark)

    Cappellini, E.; Jensen, L.J.; Szklarczyk, D.; Ginolhac, A.; Da Fonseca, R.A.R.; Stafford, Thomas; Holen, S.R.; Collins, M.J.; Orlando, L.; Willerslev, E.; Gilbert, M Thomas P; Olsen, J.V.

    2012-01-01

    described beyond subpolar environments. Mass spectrometry-based ancient protein sequencing offers new perspectives for future molecular phylogenetic inference and physiological studies on samples not amenable to ancient DNA investigation. This approach therefore represents a further step into the ongoing......We used high-sensitivity, high-resolution tandem mass spectrometry to shotgun sequence ancient protein remains extracted from a 43 000 year old woolly mammoth (Mammuthus primigenius) bone preserved in the Siberian permafrost. For the first time, 126 unique protein accessions, mostly low...... evidence was observed of amino acid modifications due to post-mortem hydrolytic and oxidative damage. A consistent subset of this permafrost bone proteome was also identified in more recent Columbian mammoth (Mammuthus columbi) samples from temperate latitudes, extending the potential of the approach...

  16. Bone Marrow Mesenchymal Stem Cells Expressing Baculovirus-Engineered Bone Morphogenetic Protein-7 Enhance Rabbit Posterolateral Fusion.

    Science.gov (United States)

    Liao, Jen-Chung

    2016-01-01

    Previous studies have suggested that bone marrow-derived mesenchymal stem cells (BMDMSCs) genetically modified with baculoviral bone morphogenetic protein-2 (Bac-BMP-2) vectors could achieve successful fusion in a femur defect model or in a spinal fusion model. In this study, BMDMSCs expressing BMP-7 (Bac-BMP-7-BMDMSCs) were generated. We hypothesized that Bac-BMP-7-BMDMSCs could secrete more BMP-7 than untransduced BMDMSCs in vitro and achieve spinal posterolateral fusion in a rabbit model. Eighteen rabbits underwent posterolateral fusion at L4-5. Group I (n = 6) was implanted with collagen-β-tricalcium phosphate (TCP)-hydroxyapatite (HA), Group II (n = 6) was implanted with collagen-β-TCP-HA plus BMDMSCs, and Group III (n = 6) was implanted with collagen-β-TCP-HA plus Bac-BMP-7-BMDMSCs. In vitro production of BMP-7 was quantified with an enzyme-linked immunosorbent assay (ELISA). Spinal fusion was examined using computed tomography (CT), manual palpation, and histological analysis. ELISA demonstrated that Bac-BMP-7-BMDMSCs produced four-fold to five-fold more BMP-7 than did BMDMSCs. In the CT results, 6 fused segments were observed in Group I (50%, 6/12), 8 in Group II (67%, 8/12), and 12 in Group III (100%, 12/12). The fusion rate, determined by manual palpation, was 0% (0/6) in Group I, 0% (0/6) in Group II, and 83% (5/6) in Group III. Histology showed that Group III had more new bone and matured marrow formation. In conclusion, BMDMSCs genetically transduced with the Bac-BMP-7 vector could express more BMP-7 than untransduced BMDMSCs. These Bac-BMP-7-BMDMSCs on collagen-β-TCP-HA scaffolds were able to induce successful spinal fusion in rabbits. PMID:27399674

  17. Bone Marrow Mesenchymal Stem Cells Expressing Baculovirus-Engineered Bone Morphogenetic Protein-7 Enhance Rabbit Posterolateral Fusion

    Directory of Open Access Journals (Sweden)

    Jen-Chung Liao

    2016-07-01

    Full Text Available Previous studies have suggested that bone marrow-derived mesenchymal stem cells (BMDMSCs genetically modified with baculoviral bone morphogenetic protein-2 (Bac-BMP-2 vectors could achieve successful fusion in a femur defect model or in a spinal fusion model. In this study, BMDMSCs expressing BMP-7 (Bac-BMP-7-BMDMSCs were generated. We hypothesized that Bac-BMP-7-BMDMSCs could secrete more BMP-7 than untransduced BMDMSCs in vitro and achieve spinal posterolateral fusion in a rabbit model. Eighteen rabbits underwent posterolateral fusion at L4-5. Group I (n = 6 was implanted with collagen-β-tricalcium phosphate (TCP-hydroxyapatite (HA, Group II (n = 6 was implanted with collagen-β-TCP-HA plus BMDMSCs, and Group III (n = 6 was implanted with collagen-β-TCP-HA plus Bac-BMP-7-BMDMSCs. In vitro production of BMP-7 was quantified with an enzyme-linked immunosorbent assay (ELISA. Spinal fusion was examined using computed tomography (CT, manual palpation, and histological analysis. ELISA demonstrated that Bac-BMP-7-BMDMSCs produced four-fold to five-fold more BMP-7 than did BMDMSCs. In the CT results, 6 fused segments were observed in Group I (50%, 6/12, 8 in Group II (67%, 8/12, and 12 in Group III (100%, 12/12. The fusion rate, determined by manual palpation, was 0% (0/6 in Group I, 0% (0/6 in Group II, and 83% (5/6 in Group III. Histology showed that Group III had more new bone and matured marrow formation. In conclusion, BMDMSCs genetically transduced with the Bac-BMP-7 vector could express more BMP-7 than untransduced BMDMSCs. These Bac-BMP-7-BMDMSCs on collagen-β-TCP-HA scaffolds were able to induce successful spinal fusion in rabbits.

  18. Mistura de proteínas morfogenéticas ósseas, hidroxiapatita, osso inorgânico e colágeno envolta por membrana de pericárdio no preenchimento de defeito ósseo segmentar em coelhos Mixture of bone morphogenetic protein, hydroxyapatite, inorganic bone and collagen interposed by pericardium barrier membrane in the filling of the segmental bone defect in rabbits

    Directory of Open Access Journals (Sweden)

    R.B. Ciani

    2006-02-01

    Full Text Available Avaliou-se o uso de biomaterial de origem bovina na regeneração de defeitos ósseos segmentares empregando-se 12 coelhos, fêmeas, da raça Norfolk, com idade de seis meses e pesos entre 3 e 4,5kg. Realizou-se falha segmentar bilateral de um centímetro de comprimento na diáfise do rádio, com inclusão do periósteo. No membro direito, o defeito foi delimitado por membrana de pericárdio liofilizada, contendo em seu interior mistura de proteínas morfogenéticas ósseas adsorvidas a hidroxiapatita, colágeno liofilizado e osso inorgânico. No membro esquerdo, o defeito não recebeu tratamento. Radiografias foram obtidas ao término do procedimento cirúrgico e aos sete, 30, 60, 90, 120 e 150 dias de pós-operatório. Após eutanásia de seis coelhos aos 60 dias e seis aos 150 dias de pós-cirúrgico, os resultados radiográficos e histológicos mostraram que a regeneração óssea foi inibida nos defeitos segmentares tratados com o biomaterial.Biomaterials of bovine origin in regenerating segmental bone defects were evaluated. Twelve six-month old Norfolk rabbits, weighting 3 to 4.5kg were used. A 1cm long segmental defect was created in the radial diaphysis, including the periosteum, of both forelimbs. In the right forelimb, the defect was filled using a mixture of bone morphogenic proteins adsorbed to hydroxyapatite, agglutinant of lyophilized collagen in granules and anorganic cortical bone in granules delimited by a pericardial membrane. In the left forelimb, the defect did not receive treatment and served as a control. Radiographies were taken immediately after surgery and at seven, 30, 60, 90, 120 and 150 days post-operatively. Six rabbits were euthanized at 60 days and the other six at 150 days post-surgery for histological evaluation. Radiographic and histological results revealed that bone regeneration was inhibited in the segmental defects receiving biomaterials.

  19. Potential bone-inducing activity in vitro of recombinant human bone morphogenetic protein-7 from a CHO expression system

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-yan; SHI Wei-wei; WANG Hao; LI Bo-hua; YANG Yang; TAN Min; XUE Jing-ya; GUO Ya-jun

    2005-01-01

    Objective: To express the recombinant human bone morphogenetic protein-7 (rhBMP-7) in Chinese hamster ovary(CHO) cells, and to establish the in vitro biological activity assay of rhBMP-7.Methods: Human BMP-7 cDNA was subcloned into p114 mammalian expression vector and transfected to CHO cells by using the Lipofectamine2000 transfection method. CHO cell supernatants were harvested and analyzed to identify the molecule mass of secreted rhBMP-7 and examine its biological activity in vitro to stimulate the synthesis of alkaline phophatase(ALP), a characteristic of osteoblast phenotypes. Results:rhBMP-7 was produced stably in CHO cells, as a processed mature disulfide-linked homodimer, with an apparent molecular mass of 36 000. Examination of the rhBMP-7 biological activity showed that rhBMP-7 specifically stimulated the production of ALP(4-fold increase at 100 ng of rhBMP-7/ml). Conclusion: The rhBMP-7 from CHO expression system has significant biological activity in induction of osteoblast phenotype, which demonstrates rhBMP-7 has the potential bone regeneration activity.

  20. Anterior Cervical Discectomy and Fusion with Plating

    Medline Plus

    Full Text Available ... is going to be a hormone bone morphogenic protein that will -- it's actually good to have some ... of the cage. This is the bone morphogenic protein, which has been mixed up on a sponge ...

  1. Nanofibrous yet injectable polycaprolactone-collagen bone tissue scaffold with osteoprogenitor cells and controlled release of bone morphogenetic protein-2

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, Gayathri; Bialorucki, Callan [Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606 (United States); Yildirim-Ayan, Eda, E-mail: eda.yildirimayan@utoledo.edu [Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606 (United States); Department of Orthopaedic Surgery, University of Toledo Medical Center, Toledo, OH 43614 (United States)

    2015-06-01

    In this work, we developed a nanofibrous, yet injectable orthobiologic tissue scaffold that is capable of hosting osteoprogenitor cells and controlling kinetic release profile of the encapsulated pro-osteogenic factor without diminishing its bioactivity over 21 days. This innovative injectable scaffold was synthesized by incorporating electrospun and subsequently O{sub 2} plasma-functionalized polycaprolactone (PCL) nanofibers within the collagen type-I solution along with MC3T3-E1 cells (pre-osteoblasts) and bone morphogenetic protein-2 (BMP2). Through changing the PCL nanofiber concentration within the injectable scaffolds, we were able to tailor the mechanical strength, protein retention capacity, bioactivity preservation, and osteoinductive potential of the scaffolds. The nanofibrous internal structure of the scaffold allowed us to use a low dose of BMP2 (200 ng/ml) to achieve osteoblastic differentiation in in vitro culture. The osteogenesis capacity of the injectable scaffolds were evaluated though measuring MC3T3-E1 cell proliferation, ALP activity, matrix mineralization, and early- and late-osteoblast specific gene expression profiles over 21 days. The results demonstrated that the nanofibrous injectable scaffold provides not only an osteoinductive environment for osteoprogenitor cells to differentiate, but also a suitable biomechanical and biochemical environment to act as a reservoir for osteogenic factors with controlled release profile. - Highlights: • Injectable nanofibrous scaffold with osteoprogenitor cells and BMP2 was synthesized. • PCL nanofiber concentration within collagen scaffold affected the BMP2 retention and bioactivity. • Optimal PCL concentration was identified for mechanical stability, injectability, and osteogenic activity. • Scaffolds exhibited long-term osteoinductive capacity for bone repair and regeneration.

  2. Nanofibrous yet injectable polycaprolactone-collagen bone tissue scaffold with osteoprogenitor cells and controlled release of bone morphogenetic protein-2

    International Nuclear Information System (INIS)

    In this work, we developed a nanofibrous, yet injectable orthobiologic tissue scaffold that is capable of hosting osteoprogenitor cells and controlling kinetic release profile of the encapsulated pro-osteogenic factor without diminishing its bioactivity over 21 days. This innovative injectable scaffold was synthesized by incorporating electrospun and subsequently O2 plasma-functionalized polycaprolactone (PCL) nanofibers within the collagen type-I solution along with MC3T3-E1 cells (pre-osteoblasts) and bone morphogenetic protein-2 (BMP2). Through changing the PCL nanofiber concentration within the injectable scaffolds, we were able to tailor the mechanical strength, protein retention capacity, bioactivity preservation, and osteoinductive potential of the scaffolds. The nanofibrous internal structure of the scaffold allowed us to use a low dose of BMP2 (200 ng/ml) to achieve osteoblastic differentiation in in vitro culture. The osteogenesis capacity of the injectable scaffolds were evaluated though measuring MC3T3-E1 cell proliferation, ALP activity, matrix mineralization, and early- and late-osteoblast specific gene expression profiles over 21 days. The results demonstrated that the nanofibrous injectable scaffold provides not only an osteoinductive environment for osteoprogenitor cells to differentiate, but also a suitable biomechanical and biochemical environment to act as a reservoir for osteogenic factors with controlled release profile. - Highlights: • Injectable nanofibrous scaffold with osteoprogenitor cells and BMP2 was synthesized. • PCL nanofiber concentration within collagen scaffold affected the BMP2 retention and bioactivity. • Optimal PCL concentration was identified for mechanical stability, injectability, and osteogenic activity. • Scaffolds exhibited long-term osteoinductive capacity for bone repair and regeneration

  3. Chemically-Conjugated Bone Morphogenetic Protein-2 on Three-Dimensional Polycaprolactone Scaffolds Stimulates Osteogenic Activity in Bone Marrow Stromal Cells

    OpenAIRE

    Zhang, Huina; Migneco, Francesco; Lin, Chia-Ying; Hollister, Scott J.

    2010-01-01

    Poly(ε-caprolactone) (PCL) has received considerable attention in bone tissue engineering. However, the lack of osteoinductive ability of PCL limits its application. The aim of this study was to directly attach bone morphogenetic protein-2 (BMP-2) to PCL scaffolds by a crosslinking conjugation method and to investigate whether the bound BMP-2 maintained bioactivity in vitro. Immunofluorescent staining against BMP-2 and quantitative enzyme-linked immunosorbent assay measurements demonstrated t...

  4. Improved Bone Formation in Osteoporotic Rabbits with the Bone Morphogenetic Protein-2 (rhBMP-2) Coated Titanium Screws Which Were Coated By Using Plasma Polymerization Technique

    OpenAIRE

    Salih Gulsen; Dilek Cokeliler; Hilal Goktas; Aysu Kucukturhan; Bilgehan Ozcil; Hakan Caner

    2014-01-01

    Delaying of bone fusion in osteoporotic patients underwent spinal stabilization surgery leads to screw loosening, and this causes pseudoarticulation, mobility and fibrosis at vertebral segments. To prevent these complications, the screws coated with recombinant bone morphogenetic protein-2 (rhBMP-2) could be used. To verify this hypothesis, we coated 5 Titanium screws with rhBMP-2 using plasma polymerization method, and also used 10 uncoated screws for making comparison between coated and unc...

  5. Bone Morphogenetic Proteins in Craniofacial Surgery: Current Techniques, Clinical Experiences, and the Future of Personalized Stem Cell Therapy

    Directory of Open Access Journals (Sweden)

    Kristofer E. Chenard

    2012-01-01

    Full Text Available Critical-size osseous defects cannot heal without surgical intervention and can pose a significant challenge to craniofacial reconstruction. Autologous bone grafting is the gold standard for repair but is limited by a donor site morbidity and a potentially inadequate supply of autologous bone. Alternatives to autologous bone grafting include the use of alloplastic and allogenic materials, mesenchymal stem cells, and bone morphogenetic proteins. Bone morphogenetic proteins (BMPs are essential mediators of bone formation involved in the regulation of differentiation of osteoprogenitor cells into osteoblasts. Here we focus on the use of BMPs in experimental models of craniofacial surgery and clinical applications of BMPs in the reconstruction of the cranial vault, palate, and mandible and suggest a model for the use of BMPs in personalized stem cell therapies.

  6. Estrogen modulates the mRNA levels for cancellous bone protein of ovariectomized rats.

    Science.gov (United States)

    Salih, M A; Liu, C C; Arjmandi, B H; Kalu, D N

    1993-12-01

    This study was undertaken to examine the effects of ovariectomy and 17 beta-estradiol (E2) on the gene expression of type 1 collagen, osteocalcin and the protooncogen, c-myc, in cancellous bone. Female Sprague-Dawley rats, aged 95 days, were divided into 4 groups. Group 1 was sham operated and Groups 2-4 were ovariectomized. Groups 3 and 4 received daily injections of 160 ng and 1600 ng E2/kg body weight, respectively. Groups 1 and 2 received the solvent vehicle. All animals were sacrificed after 14 days. The femurs were dissected out and cancellous bone scraped from the distal metaphysis. RNA was isolated from the cancellous bone, immobilized on filters or size-fractionated by agarose gel electrophoresis and adsorbed on filters which were then hybridized with specific cDNA probes. Ovariectomy resulted in a significant increase in the mRNAs of type 1 collagen, osteocalcin and c-myc. The increase was suppressed in animals that received 17 beta-estradiol injections. In addition, ovariectomy caused the expected decrease in cancellous bone in the proximal tibia and increased osteoclast and osteoblast numbers. The ovariectomy-induced changes were prevented by 17 beta-estradiol administration. These findings suggest that the lack of ovarian hormones shortly after ovariectomy up-regulates and estrogen administration down-regulates the expression of important cancellous bone matrix proteins as well as the protooncogen, c-myc. PMID:8148671

  7. Healing patterns of critical size bony defects in rats after grafting with bone substitutes soaked in recombinant human bone morphogenetic protein-2: histological and histometric evaluation.

    Science.gov (United States)

    Mokbel, N; Naaman, N; Nohra, J; Badawi, N

    2013-09-01

    The aim of the study was to evaluate the effect of different bone substitutes soaked in recombinant human bone morphogenetic protein-2 (rhBMP-2) on the healing of critical size defects in calvarial bone. Defects were created in 24 Sprague Dawley rats. The rhBMP-2 was diluted to obtain a final concentration of 0.2mg/ml. Rats were divided into four groups and treated as follows: in the first group the defect was filled with anorganic bovine bone mineral (ABBM) and rhBMP-2, the second group was treated with freeze-dried bone allograft (FDBA) and rhBMP-2, and the third group was treated with autogenous bone (AUTO). In the control group the defects were left untreated. Animals were killed after 8weeks and calcified histological sections prepared. Histometric measurements showed that mean (SD) bone formation was 4.00 (1.69)mm(2) in the ABBM group, 2.56 (1.06)mm(2) in the FDBA group, and 2.30 (0.34)mm(2) in the AUTO group. The difference between the ABBM group and the other 3 groups was significant (p<0.0001) with a mean bone formation of 0.82 (0.25)mm(2) in the control group. There was no significant difference between the FDBA and the AUTO groups (p=0.96). Within the limits of this study we concluded that the addition of rhBMP-2 to bone substitutes was efficacious in regenerating bone in critical size bone defects in calveria in rats. PMID:22939894

  8. Point-counter-point debate: the association between recombinant human bone morphogenetic protein utilization and complications in spine surgery

    OpenAIRE

    Siemionow, Kris; Sundberg, Eric; Tyrakowski, Marcin; Nandyala, Sreeharsha V.; Singh, Kern

    2014-01-01

    Bone morphogenetic proteins (BMPs) have been utilized in spine surgery for over 10 years as a bone graft substitute. Potential BMP-related adverse effects including retrograde ejaculation and heterotopic neuroforaminal bone formation have been described. Additionally, some studies have suggested an association between BMP and cancer. Inconsistencies exist in the published spine literature with regards to the incidence and association of complications with BMP utilization. In a point-counterpo...

  9. Epidemiologic trends in the utilization, demographics, and cost of bone morphogenetic protein in spinal fusions

    OpenAIRE

    Louie, Philip K.; Hassanzadeh, Hamid; Singh, Kern

    2014-01-01

    Bone morphogenetic protein (BMP) utilization as an adjunct for spinal arthrodesis has gained considerable momentum among spine surgeons. Despite carrying Food and Drug Administration approval for only single level anterior lumbar interbody fusion from L4-S1, the majority of BMP administration is in “off label” settings. Over the last decade, BMP utilization has increased in all facets of spine surgery with the only exception being the anterior cervical spine, in which a downward trend resulte...

  10. Estrogens increase expression of bone morphogenetic protein 8b in brown adipose tissue of mice

    OpenAIRE

    Grefhorst, Aldo; van den Beukel, Johanna C; van Houten, E Leonie AF; Steenbergen, Jacobie; Visser, Jenny A.; Themmen, Axel PN

    2015-01-01

    Background In mammals, white adipose tissue (WAT) stores fat and brown adipose tissue (BAT) dissipates fat to produce heat. Several studies showed that females have more active BAT. Members of the bone morphogenetic protein (BMP) and fibroblast growth factor (FGF) families are expressed in BAT and are involved in BAT activity. We hypothesized that differential expression of BMPs and FGFs might contribute to sex differences in BAT activity. Methods We investigated the expression of BMPs and FG...

  11. Functional assay, expression of growth factors and proteins modulating bone-arrangement in human osteoblasts seeded on an anorganic bovine bone biomaterial

    Directory of Open Access Journals (Sweden)

    O Trubiani

    2010-07-01

    Full Text Available The basic aspects of bone tissue engineering include chemical composition and geometry of the scaffold design, because it is very important to improve not only cell attachment and growth but especially osteodifferentiation, bone tissue formation, and vascularization. Geistlich Bio-Oss® (GBO is a xenograft consisting of deproteinized, sterilized bovine bone, chemically and physically identical to the mineral phase of human bone.In this study, we investigated the growth behaviour and the ability to form focal adhesions on the substrate, using vinculin, a cytoskeletal protein, as a marker. Moreover, the expression of bone specific proteins and growth factors such as type I collagen, osteopontin, bone sialoprotein, bone morphogenetic protein-2 (BMP-2, BMP-7 and de novo synthesis of osteocalcin in normal human osteoblasts (NHOst seeded on xenogenic GBO were evaluated. Our observations suggest that after four weeks of culture in differentiation medium, the NHOst showed a high affinity for the three dimensional biomaterial; in fact, cellular proliferation, migration and colonization were clearly evident. The osteogenic differentiation process, as demonstrated by morphological, histochemical, energy dispersive X-ray microanalysis and biochemical analysis was mostly obvious in the NHOst grown on three-dimensional inorganic bovine bone biomaterial. Functional studies displayed a clear and significant response to calcitonin when the cells were differentiated. In addition, the presence of the biomaterial improved the response, suggesting that it could drive the differentiation of these cells towards a more differentiated osteogenic phenotype. These results encourage us to consider GBO an adequate biocompatible three-dimensional biomaterial, indicating its potential use for the development of tissue-engineering techniques.

  12. A fucoidan from Nemacystus decipiens disrupts angiogenesis through targeting bone morphogenetic protein 4.

    Science.gov (United States)

    Wang, Wucheng; Chen, Huanjun; Zhang, Lei; Qin, Yi; Cong, Qifei; Wang, Peipei; Ding, Kan

    2016-06-25

    A sulfated and acetylated fucoidan, named NDH01, was extracted from seaweed Nemacystus decipiens. NDH01 was composed of mannose, glucuronic acid, fucose, sulfate group and acetyl group in the molar ratio of 3.0: 14.4: 82.6: 34.3: 13.9. The backbone of NDH01 was fucose-free core, composed of α-d-1,2-Manp and β-d-1,4-GlcpA disaccharide repeat unit. The branches were attached at the C3, C4 and C6 of α-d-1,2-Manp. The sidechain was composed of α-l-1,3,4-Fucp, α-l-1,4-Fucp, α-l-1,3-Fucp and α-l-1,4-GlcpA. The sulfate group was linked to C4 of α-l-1,3,4-Fucp, whereas, acetyl group was branched on C2 of α-l-1,2,3-Fucp. NDH01 could disrupt tube formation and inhibit the migration as well as cell growth of human microvascular endothelial cells. Besides, phosphorylation of Smad/1/5/8, Erk and FAK was significantly inhibited by NDH01. Further studies uncovered that NDH01 blocked Smad1/5/8 signaling via interacting with bone morphogenetic protein 4 and downregulating bone morphogenetic protein 4 expression. The results suggested that NDH01 might be an angiogenesis inhibitor through targeting bone morphogenetic protein 4. PMID:27083822

  13. Protein growth factors loaded highly porous chitosan scaffold: A comparison of bone healing properties

    Energy Technology Data Exchange (ETDEWEB)

    Nandi, Samit K., E-mail: samitnandi1967@gmail.com [Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata (India); Kundu, Biswanath, E-mail: biswa_kundu@rediffmail.com [Bioceramics and Coating Division, CSIR—Central Glass and Ceramic Research Institute, Kolkata (India); Basu, Debabrata [Bioceramics and Coating Division, CSIR—Central Glass and Ceramic Research Institute, Kolkata (India)

    2013-04-01

    Present study aimed to investigate and compare effectiveness of porous chitosan alone and in combination with insulin like growth factor-1 (IGF-1) and bone morphogenetic protein-2 (BMP-2) in bone healing. Highly porous (85 ± 2%) with wide distribution of macroporous (70–900 μm) chitosan scaffolds were fabricated as bone substitutes by employing a simple liquid hardening method using 2% (w/v) chitosan suspension. IGF-1 and BMP-2 were infiltrated using vacuum infiltration with freeze drying method. Adsorption efficiency was found to be 87 ± 2 and 90 ± 2% for BMP-2 and IGF-1 respectively. After thorough material characterization (pore details, FTIR and SEM), samples were used for subsequent in vivo animal trial. Eighteen rabbit models were used to evaluate and compare control (chitosan) (group A), chitosan with IGF-1 (group B) and chitosan with BMP-2 (group C) in the repair of critical size bone defect in tibia. Radiologically, there was evidence of radiodensity in defect area from 60th day (initiated on 30th day) in groups B and C as compared to group A and attaining nearly bony density in most of the part at day 90. Histological results depicted well developed osteoblastic proliferation around haversian canal along with proliferating fibroblast, vascularization and reticular network which was more pronounced in group B followed by groups C and A. Fluorochrome labeling and SEM studies in all groups showed similar outcome. Hence, porous chitosan alone and in combination with growth factors (GFs) can be successfully used for bone defect healing with slight advantage of IGF-1 in chitosan samples. - Highlights: ► Fabrication and characterization of porous chitosan with or without IGF-1 and BMP-2 ► Highly porous growth factor loaded chitosan studied in animal subjects for 3 months ► Parameters studied: histopathology, radiology and fluorochrome labeling ► IGF-1 loaded porous chitosan found to be very effective for bone defect healing.

  14. Protein growth factors loaded highly porous chitosan scaffold: A comparison of bone healing properties

    International Nuclear Information System (INIS)

    Present study aimed to investigate and compare effectiveness of porous chitosan alone and in combination with insulin like growth factor-1 (IGF-1) and bone morphogenetic protein-2 (BMP-2) in bone healing. Highly porous (85 ± 2%) with wide distribution of macroporous (70–900 μm) chitosan scaffolds were fabricated as bone substitutes by employing a simple liquid hardening method using 2% (w/v) chitosan suspension. IGF-1 and BMP-2 were infiltrated using vacuum infiltration with freeze drying method. Adsorption efficiency was found to be 87 ± 2 and 90 ± 2% for BMP-2 and IGF-1 respectively. After thorough material characterization (pore details, FTIR and SEM), samples were used for subsequent in vivo animal trial. Eighteen rabbit models were used to evaluate and compare control (chitosan) (group A), chitosan with IGF-1 (group B) and chitosan with BMP-2 (group C) in the repair of critical size bone defect in tibia. Radiologically, there was evidence of radiodensity in defect area from 60th day (initiated on 30th day) in groups B and C as compared to group A and attaining nearly bony density in most of the part at day 90. Histological results depicted well developed osteoblastic proliferation around haversian canal along with proliferating fibroblast, vascularization and reticular network which was more pronounced in group B followed by groups C and A. Fluorochrome labeling and SEM studies in all groups showed similar outcome. Hence, porous chitosan alone and in combination with growth factors (GFs) can be successfully used for bone defect healing with slight advantage of IGF-1 in chitosan samples. - Highlights: ► Fabrication and characterization of porous chitosan with or without IGF-1 and BMP-2 ► Highly porous growth factor loaded chitosan studied in animal subjects for 3 months ► Parameters studied: histopathology, radiology and fluorochrome labeling ► IGF-1 loaded porous chitosan found to be very effective for bone defect healing

  15. The application of bone morphogenetic proteins to periodontal and peri-implant tissue regeneration: A literature review

    OpenAIRE

    Sasikumar, Karuppanan P.; Sugumari Elavarasu; Jayaprakash S Gadagi

    2012-01-01

    Progress in understanding the role of bone morphogenetic proteins (BMPs) in craniofacial and tooth development and the demonstration of stem cells in periodontal ligament have set the stage for periodontal regenerative therapy and tissue engineering. Furthermore, recent approval by the Food and Drug Administration of recombinant human BMPs for accelerating bone fusion in slow-healing fractures indicates that this protein family may prove useful in designing regenerative treatments in periodon...

  16. Glucocorticoid-induced differentiation of fetal rat calvarial osteoblasts is mediated by bone morphogenetic protein-6.

    Science.gov (United States)

    Boden, S D; Hair, G; Titus, L; Racine, M; McCuaig, K; Wozney, J M; Nanes, M S

    1997-07-01

    Glucocorticoids (GCs) at physiological concentrations promote osteoblast differentiation from fetal calvarial cells, calvarial organ cultures, and bone marrow stromal cells; however, the cellular pathways involved are not known. Bone morphogenetic proteins (BMPs) are recognized as important mediators of osteoblast differentiation. Specific roles for individual BMPs during postembryonic membranous bone formation have yet to be determined. We recently reported that GC potentiated the osteoblast differentiation effects of BMP-2 and BMP-4, but not of BMP-6, which, by itself, was the most potent of the three. In the present study, we used fetal rat secondary calvarial cultures to study the role of BMP-6 during early osteoblast differentiation. Treatment with the GC triamcinolone (10(-9) M) resulted in a 5- to 8-fold increase in BMP-6 steady-state messenger RNA levels, peaking at 12 h. In contrast, BMPs -2, -4, -5, -7, and transforming growth factor (TGF)-beta1 messenger RNA levels increased by less than 2-fold, after GC treatment, compared with untreated control cultures at 24 h. BMP-6 protein secretion increased 6- to 7-fold by 12 h and 12-fold (from 7.5 to 90 ng/ml) by 24 h, as measured by quantitative Western analysis. Treatment of cells with oligodeoxynucleotides antisense to BMP-6 diminished secretion of BMP-6 protein and significantly inhibited the GC-induced differentiation, as determined by a 10-fold decrease in the number of mineralized bone nodules, compared with controls that were treated with sense oligonucleotides or no oligonucleotides (ANOVA, P < 0.05). The antisense oligonucleotide inhibition of differentiation was rescued by treatment with exogenous recombinant human BMP-6. We conclude that GC-induced differentiation of osteoblasts from the pluripotent precursors is mediated, in part, by BMP-6. These results suggest that BMP-6 has an important and unique role during early osteoblast differentiation. PMID:9202223

  17. Nucleic Acids and Protein Metabolism of Bone Marrow Cells Studied by Means of Tritiumlabelled Precursors

    International Nuclear Information System (INIS)

    The advantages of the use of tritium-labelled compounds in radioautographic technique are discussed. Tritium electrons have a maximal energy of 0.018 MeV, corresponding to about 1μm range in a photographic emulsion, and consequently they allow the highest possible resolution at a cellular and subcellular level. This is particularly useful for studying metabolic phenomena of tissues which are composed, as in the case of bone marrow, of different cellular types at various stages of differentiation. This technique has been used for investigating nucleic acids and protein metabolism of normal and leukaemic bone marrow cells. DNA metabolism has been studied utilizing a specific precursor, H3-thymidine. Some significant differences of the percentages of labelled cells have been detected by comparing the normal and leukaemic elements belonging to the same stage of maturation. In acute leukaemia cells, particularly, a strikingly lower incorporation of thymidine was found and these results have been taken as evidence of a decreased proliferative capacity of these cells, as compared to normal myeloblasts. With the same technique, RNA and protein metabolism have been investigated utilizing H3- uridine, H3-leucine and H3-phenylalanine as precursors. The existence of a strict interrelationship between RNA and protein metabolism is now fully accepted in cellular biology. The existence of a constant ratio between uridine and amino acids incorporation has also been demonstrated in normal bone marrow cells. In acute leukaemia cells the incorporation of RNA and protein precursors, although different from case to case, is constantly and significantly lower. Furthermore, the ratio between uridine and amino acids incorporation is constantly altered in these cells. The lower RNA and protein metabolism and its dissociation in acute leukaemia cells is discussed in relation to the well-known maturation defect of these cells. (author)

  18. A new biocompatible delivery scaffold containing heparin and bone morphogenetic protein 2

    Directory of Open Access Journals (Sweden)

    Thanyaphoo Suphannee

    2016-09-01

    Full Text Available Silicon-substituted calcium phosphate (Si-CaP was developed in our laboratory as a biomaterial for delivery in bone tissue engineering. It was fabricated as a 3D-construct of scaffolds using chitosan-trisodium polyphosphate (TPP cross-linked networks. In this study, heparin was covalently bonded to the residual -NH2 groups of chitosan on the scaffold applying carbodiimide chemistry. Bonded heparin was not leached away from scaffold surfaces upon vigorous washing or extended storage. Recombinant human bone morphogenetic protein 2 (rhBMP-2 was bound to conjugated scaffolds by ionic interactions between the negatively charged SO42- clusters of heparin and positively charged amino acids of rhBMP-2. The resulting scaffolds were inspected for bone regenerative capacity by subcutaneous implanting in rats. Histological observation and mineralization assay were performed after 4 weeks of implantation. Results from both in vitro and in vivo experiments suggest the potential of the developed scaffolds for bone tissue engineering applications in the future.

  19. A new biocompatible delivery scaffold containing heparin and bone morphogenetic protein 2.

    Science.gov (United States)

    Thanyaphoo, Suphannee; Kaewsrichan, Jasadee

    2016-09-01

    Silicon-substituted calcium phosphate (Si-CaP) was developed in our laboratory as a biomaterial for delivery in bone tissue engineering. It was fabricated as a 3D-construct of scaffolds using chitosan-trisodium polyphosphate (TPP) cross-linked networks. In this study, heparin was covalently bonded to the residual -NH2 groups of chitosan on the scaffold applying carbodiimide chemistry. Bonded heparin was not leached away from scaffold surfaces upon vigorous washing or extended storage. Recombinant human bone morphogenetic protein 2 (rhBMP-2) was bound to conjugated scaffolds by ionic interactions between the negatively charged SO42- clusters of heparin and positively charged amino acids of rhBMP-2. The resulting scaffolds were inspected for bone regenerative capacity by subcutaneous implanting in rats. Histological observation and mineralization assay were performed after 4 weeks of implantation. Results from both in vitro and in vivo experiments suggest the potential of the developed scaffolds for bone tissue engineering applications in the future. PMID:27383886

  20. Ameloblastin, an Extracellular Matrix Protein, Affects Long Bone Growth and Mineralization.

    Science.gov (United States)

    Lu, Xuanyu; Fukumoto, Satoshi; Yamada, Yoshihiko; Evans, Carla A; Diekwisch, Thomas Gh; Luan, Xianghong

    2016-06-01

    Matrix molecules such as the enamel-related calcium-binding phosphoprotein ameloblastin (AMBN) are expressed in multiple tissues, including teeth, bones, and cartilage. Here we have asked whether AMBN is of functional importance for timely long bone development and, if so, how it exerts its function related to osteogenesis. Adolescent AMBN-deficient mice (AMBN(Δ5-6) ) suffered from a 33% to 38% reduction in femur length and an 8.4% shorter trunk spinal column when compared with WT controls, whereas there was no difference between adult animals. On a cellular level, AMBN truncation resulted in a shortened growth plate and a 41% to 49% reduction in the number of proliferating tibia chondrocytes and osteoblasts. Bone marrow stromal cells (BMSCs) isolated from AMBN mutant mice displayed defects in proliferation and differentiation potential as well as cytoskeleton organization. Osteogenesis-related growth factors, such as insulin-like growth factor 1 (IGF1) and BMP7, were also significantly (46% to 73%) reduced in AMBN-deficient BMSCs. Addition of exogenous AMBN restored cytoskeleton structures in AMBN mutant BMSCs and resulted in a dramatic 400% to 600% increase in BMP2, BMP7, and Col1A expression. Block of RhoA diminished the effect of AMBN on osteogenic growth factor and matrix protein gene expression. Addition of exogenous BMP7 and IGF1 rescued the proliferation and differentiation potential of AMBN-deficient BMSCs. Confirming the effects of AMBN on long bone growth, back-crossing of mutant mice with full-length AMBN overexpressors resulted in a complete rescue of AMBN(Δ5-6) bone defects. Together, these data indicate that AMBN affects extracellular matrix production and cell adhesion properties in the long bone growth plate, resulting in altered cytoskeletal dynamics, increased osteogenesis-related gene expression, as well as osteoblast and chondrocyte proliferation. We propose that AMBN facilitates rapid long bone growth and an important growth spurt during the

  1. The use of morphogenic suspension cultures for the development of a protoplast regeneration system in lily

    NARCIS (Netherlands)

    Famelaer, L.; Bordas, M.; Baliu', E.; Ennik, E.; Meijer, H.; Tuyl, van J.M.; Creemers-Molenaar, J.

    1997-01-01

    The present study reports data on the development of a protoplast regeneration procedure in lily. Established morphogenic suspension cultures were obtained from callus cultures induced on mature embryos from crosses between cultivars of L. longiflorum. The effect on the frequency of protoplast divis

  2. Cardiovascular Calcification and Bone : A Comparison of the Effects of Dietary and Serum Vitamin K and its Dependent Proteins

    OpenAIRE

    Nicoll, Rachel; McLaren Howard, John; Michael Y. Henein

    2015-01-01

    This review compares the effect of vitamin K on cardiovascular (CV) calcification and bone health and shows that, in principal, the γ-carboxylation of the vitamin K-dependent proteins matrix Gla protein (MGP) and its bone equivalent osteocalcin (OC), generally ensures that hydroxyapatite is kept out of the CV system and is deposited in bone. This is an important finding, since there is currently no reliable treatment for CV calcification.Vitamin K2 (menaquinone) may be more effective in the a...

  3. Effects of Osseointegration by Bone Morphogenetic Protein-2 on Titanium Implants In Vitro and In Vivo.

    Science.gov (United States)

    Teng, Fu-Yuan; Chen, Wen-Cheng; Wang, Yin-Lai; Hung, Chun-Cheng; Tseng, Chun-Chieh

    2016-01-01

    This study designed a biomimetic implant for reducing healing time and achieving early osseointegration to create an active surface. Bone morphogenetic protein-2 (BMP-2) is a strong regulator protein in osteogenic pathways. Due to hardly maintaining BMP-2 biological function and specificity, BMP-2 efficient delivery on implant surfaces is the main challenge for the clinic application. In this study, a novel method for synthesizing functionalized silane film for superior modification with BMP-2 on titanium surfaces is proposed. Three groups were compared with and without BMP-2 on modified titanium surfaces in vitro and in vivo: mechanical grinding; electrochemical modification through potentiostatic anodization (ECH); and sandblasting, alkali heating, and etching (SMART). Cell tests indicated that the ECH and SMART groups with BMP-2 markedly promoted D1 cell activity and differentiation compared with the groups without BMP-2. Moreover, the SMART group with a BMP-2 surface markedly promoted early alkaline phosphatase expression in the D1 cells compared with the other surface groups. Compared with these groups in vivo, SMART silaning with BMP-2 showed superior bone quality and created contact areas between implant and surrounding bones. The SMART group with BMP-2 could promote cell mineralization in vitro and osseointegration in vivo, indicating potential clinical use. PMID:26977141

  4. Effects of Osseointegration by Bone Morphogenetic Protein-2 on Titanium Implants In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Fu-Yuan Teng

    2016-01-01

    Full Text Available This study designed a biomimetic implant for reducing healing time and achieving early osseointegration to create an active surface. Bone morphogenetic protein-2 (BMP-2 is a strong regulator protein in osteogenic pathways. Due to hardly maintaining BMP-2 biological function and specificity, BMP-2 efficient delivery on implant surfaces is the main challenge for the clinic application. In this study, a novel method for synthesizing functionalized silane film for superior modification with BMP-2 on titanium surfaces is proposed. Three groups were compared with and without BMP-2 on modified titanium surfaces in vitro and in vivo: mechanical grinding; electrochemical modification through potentiostatic anodization (ECH; and sandblasting, alkali heating, and etching (SMART. Cell tests indicated that the ECH and SMART groups with BMP-2 markedly promoted D1 cell activity and differentiation compared with the groups without BMP-2. Moreover, the SMART group with a BMP-2 surface markedly promoted early alkaline phosphatase expression in the D1 cells compared with the other surface groups. Compared with these groups in vivo, SMART silaning with BMP-2 showed superior bone quality and created contact areas between implant and surrounding bones. The SMART group with BMP-2 could promote cell mineralization in vitro and osseointegration in vivo, indicating potential clinical use.

  5. Nanoscale control of silica particle formation via silk-silica fusion proteins for bone regeneration.

    Science.gov (United States)

    Mieszawska, Aneta J; Nadkarni, Lauren D; Perry, Carole C; Kaplan, David L

    2010-10-26

    The biomimetic design of silk/silica fusion proteins was carried out, combining the self assembling domains of spider dragline silk (Nephila clavipes) and silaffin derived R5 peptide of Cylindrotheca fusiformis that is responsible for silica mineralization. Genetic engineering was used to generate the protein-based biomaterials incorporating the physical properties of both components. With genetic control over the nanodomain sizes and chemistry, as well as modification of synthetic conditions for silica formation, controlled mineralized silk films with different silica morphologies and distributions were successfully generated; generating 3D porous networks, clustered silica nanoparticles (SNPs), or single SNPs. Silk serves as the organic scaffolding to control the material stability and multiprocessing makes silk/silica biomaterials suitable for different tissue regenerative applications. The influence of these new silk-silica composite systems on osteogenesis was evaluated with human mesenchymal stem cells (hMSCs) subjected to osteogenic differentiation. hMSCs adhered, proliferated, and differentiated towards osteogenic lineages on the silk/silica films. The presence of the silica in the silk films influenced osteogenic gene expression, with the upregulation of alkaline phosphatase (ALP), bone sialoprotein (BSP), and collagen type 1 (Col 1) markers. Evidence for early bone formation as calcium deposits was observed on silk films with silica. These results indicate the potential utility of these new silk/silica systems towards bone regeneration. PMID:20976116

  6. Influence of bone morphogenetic protein type IA receptor conditional knockout in lens on expression of bone morphogenetic protein 4 in lens

    Institute of Scientific and Technical Information of China (English)

    Qi; Zhao; Jiang-Yue; Zhao; Jin-Song; Zhang

    2015-01-01

    AIM: To investigate the influence of bone morphogenetic protein type IA receptor [BMPR-IA(ALK3)] conditional knockout in lens on expression of bone morphogenetic protein 4(BMP4) in lens during the development of the vertebrate eye.METHODS: Cre-positive mice were mated with Crenegative mice to generate 50% Cre-positive(conditional knockout, CKO) 4 embryos, 8 eyes and 50% Cre-negative offspring(wild type, WT) 4 embryos, 8 eyes. The embryos were fixed in 4% paraformaldehyde, embedded in paraffin, and sectioned to a thickness of 4 μm.Removal of paraffin wax and dehydrating for sections,and then the procedure of in situ hybridization was processed, BMP4 MK1784-m(BOSTER) was used, and observed the expression of BMP4 in the lens in experimental group and control group. We selected SPSS11.0 software for statistical analysis, P<0.05 showed that the difference was statistically significant.· RESULTS: Four embryos of each genotype were examined, totally we had 8 embryos, 16 eyes. We got the uniform outcomes in all the embryos. We found ALK3 was required during lens growing, but was not essential for the formation of lens. We observed that the expression of BMP4 in the lens was significantly reduced in all 8 ALK3 CKO lens, BMP4 expression was normal in all the 8 WT lens, P <0.01. This phenomenon became increasingly visible in accordance with embryo development. The most apparent alteration was present at stage E15.5.CONCLUSION: ALK3 is essential for lens growth. The influence of ALK3 on the expression of BMP4 is present during the development of mice lens.

  7. Stimulation of porcine bone marrow stromal cells by hyaluronan, dexamethasone and rhBMP-2

    DEFF Research Database (Denmark)

    Zou, Xuenong; Li, Haisheng; Chen, Li;

    2004-01-01

    In the interest of optimizing osteogenesis in in vitro, the present study sought to determine how porcine bone marrow stromal cell (BMSc) would respond to different concentrations of hyaluronan (HY) and its different combinations with dexamethasone (Dex) and recombinant human bone morphogenic pro...

  8. Sonic Hedgehog-activated engineered blood vessels enhance bone tissue formation

    OpenAIRE

    N C Rivron; Raiss, C.C.; Liu, J.; Nandakumar, A.; Sticht, C; Gretz, N; Truckenmuller, R.K.; Rouwkema, J.; Blitterswijk, van, W.J.

    2012-01-01

    Large bone defects naturally regenerate via a highly vascularized tissue which progressively remodels into cartilage and bone. Current approaches in bone tissue engineering are restricted by delayed vascularization and fail to recapitulate this stepwise differentiation toward bone tissue. Here, we use the morphogen Sonic Hedgehog (Shh) to induce the in vitro organization of an endothelial capillary network in an artificial tissue. We show that endogenous Hedgehog activity regulates angiogenic...

  9. Effect of 5-azacytidine on the Protein Expression of Porcine Bone Marrow Mesenchymal Stem Cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Neng-Sheng Ye; Rong-Li Zhang; Yan-Feng Zhao; Xue Feng; Yi-Ming Wang; Guo-An Luo

    2006-01-01

    Bone marrow-derived mesenchymal stem cells (MSCs) are pluripotent stem cells that show a vital potential in the clinical application for cell transplantation. In the present paper, proteomic techniques were used to approach the protein profiles associated with porcine bone marrow MSCs and investigate the regulation of MSC proteins on the effect of 5-azacytidine (5-aza). Over 1,700 protein species were separated from MSCs according to gel analysis. Compared with the expression profiling of control MSCs, there were 11 protein spots up-regulated and 26 downregulated in the protein pattern of 5-aza-treated cells. A total of 21 proteins were successfully identified by MALDI-TOF-MS analysis, among which some interesting proteins, such as alpha B-crystallin, annexin A2, and stathmin 1, had been reported to involve in cell proliferation and differentiation through different signaling pathways. Our data should be useful for the future study of MSC differentiation and apoptosis.

  10. Parathyroid hormone-related protein (PTHrP) expression and bone invasion by oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Parathyroid hormone-related protein (PTHrP) indirectly stimulates osteoclastic bone resorption through osteoblasts in humoral hypercalcemia of malignancy. We reported that the serum concentration of PTHrP elevated in terminal stage patients with oral squamous cell carcinoma (SCC) in 1996. Therefore, PTHrP is a candidate for direct bone resorption factor released from the tumor tissue. The purpose of this study was to elucidate the correlation between the direct bone invasion by oral SCC and PTHrP expression. The serum C-PTHrP concentration was measured in 53 patients with oral SCC. The immunohistochemical study using PTHrP (labeled streptoavidin-biotin method, 38-64 monoclonal and 1-34 polyclonal antibody) was performed in 53 biopsy specimens. The bone invasion was assessed by using panoramic radiographs and bone scintigrams (99mTc-MDP). The mean serum C-PTHrP concentration in the bone invasion identified group was 43.1±17.2 pmol/1. In the non-bone invasion group it was 42.0±18.0 pmol/1. No significant correlation was found between serum C-PTHrP levels and bone invasion or between PTHrP (1-34) and (38-64) expression in tumors and bone invasion. These results showed that there is no relationship between PTHrP expression in the biopsy specimen and direct bone invasion. Since the expression of PTHrP in the tumor tissue attached to the bone or surgical specimens has not been investigated, it is still unclear if PTHrP plays a role in direct bone resorption by oral SCC. (author)

  11. Bone morphogenetic protein in complex cervical spine surgery: A safe biologic adjunct?

    OpenAIRE

    Lebl, Darren R.

    2013-01-01

    The advent of recombinant DNA technology has substantially increased the intra-operative utilization of biologic augmentation in spine surgery over the past several years after the Food and Drug Administration approval of the bone morphogenetic protein (BMP) class of molecules for indications in the lumbar spine. Much less is known about the potential benefits and risks of the “off-label” use of BMP in the cervical spine. The history and relevant literature pertaining to the use of the “off-l...

  12. Soy protein is beneficial but high-fat diet and voluntary running are detrimental to bone structure in mice

    Science.gov (United States)

    We investigated the effects of diet (AIN93G or high-fat), physical activity (sedentary or voluntary running) and protein source (casein or soy protein isolate) and their interactions on bone microstructural changes in distal femurs in male C57BL/6 mice by using micro-computed tomography. After 14 w...

  13. Effect of nicotine on bone healing in rats - A histological study

    Directory of Open Access Journals (Sweden)

    Dilip Kumar Rayapati

    2014-04-01

    Full Text Available Background & Objectives: Nicotine is the major alkaloid in tobacco products (Nicotiona tabacum and a psychoactive ingredient responsible for the Central Nervous System (CNS effects and tobacco addiction. It’s been reported to have effects directly on the small blood vessels in producing vasoconstriction and increased vascular resistance that exerts on the microvasculature inhibiting the angioblastic response during re-vascularization and limits the recruitment of cytokines, Bone Morphogenic Proteins (BMPs, Transforming Growth Factor – β (TGF – β, Platelet Derived Growth Factor (PDGF and the basic Fibroblast Growth Factor (FGF. This leads to inhibition of re-epithelialization, osteogenesis and cellular healing. This study intends to demonstrate histologically the effect of nicotine on bone healing and the healing of bone defects incorporated with autogenous bone graft in an animal model. Methods: 60 female Wistar rats were used in the study. Nicotine hemisulfate at a dose of 3mg/kg body weight of the animal given twice daily for 4 weeks prior to creation of a bone defect. The defect on the ramus of the mandible and the healing in the defect was evaluated at weekly intervals for four weeks for both the quality and quantity of new bone formation by histological and histomorphometric analysis. Results: Significant impairment of healing of bone both in the early and late stages due to the influence of Nicotine was seen. Conclusion: In our study, incorporation of autogenous bone did significantly improve the bone healing process in the end stages of healing while nicotine significantly impaired the healing of bone in early stages.

  14. Abnormal IGF-Binding Protein Profile in the Bone Marrow of Multiple Myeloma Patients.

    Directory of Open Access Journals (Sweden)

    Liesbeth Bieghs

    Full Text Available Insulin-like growth factor (IGF signalling plays a key role in homing, progression, and treatment resistance in multiple myeloma (MM. In the extracellular environment, the majority of IGF molecules are bound to one of six IGF-binding proteins (IGFBP1-6, leaving a minor fraction of total IGF free and accessible for receptor activation. In MM, high IGF-receptor type 1 expression levels correlate with a poor prognosis, but the status and role of IGF and IGFBPs in the pathobiology of MM is unknown. Here we measured total IGF1, IGF2, and intact IGFBP levels in blood and bone marrow samples from MM (n = 17, monoclonal gammopathy of undetermined significance (MGUS (n = 37, and control individuals (n = 15, using ELISA (IGFs and 125I-IGF1 Western Ligand Blotting (IGFBPs. MGUS and MM patients displayed a significant increase in intact IGFBP-2 (2.5-3.8 fold and decrease in intact IGFBP-3 (0.6-0.5 fold in the circulation compared to control individuals. Further, IGFBP-2 as well as total IGFBP levels were significantly lower in bone marrow compared to circulation in MM and MGUS only, whereas IGF1, IGF2, and IGFBP-3 were equally distributed between the two compartments. In conclusion, the profound change in IGFBP profile strongly suggests an increased IGF bioavailability in the bone marrow microenvironment in MGUS and MM, despite no change in growth factor concentration.

  15. Abnormal IGF-Binding Protein Profile in the Bone Marrow of Multiple Myeloma Patients.

    Science.gov (United States)

    Bieghs, Liesbeth; Brohus, Malene; Kristensen, Ida B; Abildgaard, Niels; Bøgsted, Martin; Johnsen, Hans E; Conover, Cheryl A; De Bruyne, Elke; Vanderkerken, Karin; Overgaard, Michael T; Nyegaard, Mette

    2016-01-01

    Insulin-like growth factor (IGF) signalling plays a key role in homing, progression, and treatment resistance in multiple myeloma (MM). In the extracellular environment, the majority of IGF molecules are bound to one of six IGF-binding proteins (IGFBP1-6), leaving a minor fraction of total IGF free and accessible for receptor activation. In MM, high IGF-receptor type 1 expression levels correlate with a poor prognosis, but the status and role of IGF and IGFBPs in the pathobiology of MM is unknown. Here we measured total IGF1, IGF2, and intact IGFBP levels in blood and bone marrow samples from MM (n = 17), monoclonal gammopathy of undetermined significance (MGUS) (n = 37), and control individuals (n = 15), using ELISA (IGFs) and 125I-IGF1 Western Ligand Blotting (IGFBPs). MGUS and MM patients displayed a significant increase in intact IGFBP-2 (2.5-3.8 fold) and decrease in intact IGFBP-3 (0.6-0.5 fold) in the circulation compared to control individuals. Further, IGFBP-2 as well as total IGFBP levels were significantly lower in bone marrow compared to circulation in MM and MGUS only, whereas IGF1, IGF2, and IGFBP-3 were equally distributed between the two compartments. In conclusion, the profound change in IGFBP profile strongly suggests an increased IGF bioavailability in the bone marrow microenvironment in MGUS and MM, despite no change in growth factor concentration. PMID:27111220

  16. cAMP-response-element-binding protein positively regulates breast cancer metastasis and subsequent bone destruction

    Energy Technology Data Exchange (ETDEWEB)

    Son, Jieun; Lee, Jong-Ho; Kim, Ha-Neui; Ha, Hyunil, E-mail: hyunil74@hotmail.com; Lee, Zang Hee, E-mail: zang1959@snu.ac.kr

    2010-07-23

    Research highlights: {yields} CREB is highly expressed in advanced breast cancer cells. {yields} Tumor-related factors such as TGF-{beta} further elevate CREB expression. {yields} CREB upregulation stimulates metastatic potential of breast cancer cells. {yields} CREB signaling is required for breast cancer-induced bone destruction. -- Abstract: cAMP-response-element-binding protein (CREB) signaling has been reported to be associated with cancer development and poor clinical outcome in various types of cancer. However, it remains to be elucidated whether CREB is involved in breast cancer development and osteotropism. Here, we found that metastatic MDA-MB-231 breast cancer cells exhibited higher CREB expression than did non-metastatic MCF-7 cells and that CREB expression was further increased by several soluble factors linked to cancer progression, such as IL-1, IGF-1, and TGF-{beta}. Using wild-type CREB and a dominant-negative form (K-CREB), we found that CREB signaling positively regulated the proliferation, migration, and invasion of MDA-MB-231 cells. In addition, K-CREB prevented MDA-MB-231 cell-induced osteolytic lesions in a mouse model of cancer metastasis. Furthermore, CREB signaling in cancer cells regulated the gene expression of PTHrP, MMPs, and OPG, which are closely involved in cancer metastasis and bone destruction. These results indicate that breast cancer cells acquire CREB overexpression during their development and that this CREB upregulation plays an important role in multiple steps of breast cancer bone metastasis.

  17. Immune targeting of fibroblast activation protein triggers recognition of multipotent bone marrow stromal cells and cachexia

    Science.gov (United States)

    Chinnasamy, Dhanalakshmi; Yu, Zhiya; Morgan, Richard A.; Lee, Chyi-Chia Richard; Restifo, Nicholas P.

    2013-01-01

    Fibroblast activation protein (FAP) is a candidate universal target antigen because it has been reported to be selectively expressed in nearly all solid tumors by a subset of immunosuppressive tumor stromal fibroblasts. We verified that 18/18 human tumors of various histologies contained pronounced stromal elements staining strongly for FAP, and hypothesized that targeting tumor stroma with FAP-reactive T cells would inhibit tumor growth in cancer-bearing hosts. T cells genetically engineered with FAP-reactive chimeric antigen receptors (CARs) specifically degranulated and produced effector cytokines upon stimulation with FAP or FAP-expressing cell lines. However, adoptive transfer of FAP-reactive T cells into mice bearing a variety of subcutaneous tumors mediated limited antitumor effects and induced significant cachexia and lethal bone toxicities in two mouse strains. We found that FAP was robustly expressed on PDGFR-α+, Sca-1+ multipotent bone marrow stromal cells (BMSCs) in mice, as well as on well-characterized, clinical-grade multipotent human BMSCs. Accordingly, both mouse and human multipotent BMSCs were recognized by FAP-reactive T cells. The lethal bone toxicity and cachexia observed after cell-based immunotherapy targeting FAP cautions against its use as a universal target. Moreover, the expression of FAP by multipotent BMSCs may point toward the cellular origins of tumor stromal fibroblasts. PMID:23712432

  18. Osteogenic efficiency of in situ gelling poloxamine systems with and without bone morphogenetic protein-2

    Directory of Open Access Journals (Sweden)

    A Rey-Rico

    2011-04-01

    Full Text Available In situ gelling solutions for minimally invasive local application of bone growth factors are attracting increasing attention as efficient and patient-friendly alternative to bone grafts and solid scaffolds for repairing bone defects. Poloxamines, i.e., X-shaped poly(ethylene oxide-poly(propylene oxide block copolymers with an ethylenediamine core (Tetronic®, were evaluated both as an active osteogenic component and as a vehicle for rhBMP-2 injectable implants. After cytotoxicity screening of various poloxamine varieties, Tetronic 908, 1107, 1301 and 1307 solutions were chosen as the most cytocompatible and their sol-to-gel transitions were rheologically characterized. Viscoelastic gels, formed at 37 ºC, sustained protein release under physiological-like conditions. Formulations of rhBMP-2 led to differentiation of mesenchymal stem cells to osteoblasts, quantified as alkaline phosphatase activity with a maximum at day 7, and to mineralized nodules. Interestingly, poloxamine solely gels led to an initial proliferation of the mesenchymal stem cells (first week, followed by differentiation to osteoblasts (second to third week. Histochemical analysis revealed that Tetronic 908 is only osteoinductive; Tetronic 1107 is mostly osteoinductive, although its use leads to a minor differentiation to adipocytes; Tetronic 1307, solely or loaded with rhBMP-2, causes differentiation of both osteoblasts and adipocytes. Enhanced expression levels of CBFA-1 and collagen type I were observed for Tetronic 908, 1107 and 1307, both solely and combined with rhBMP-2. The intrinsic osteogenic activity of poloxamines (not observed for Pluronic F127 offers novel perspectives for bone regeneration using minimally invasive procedures (i.e., injectable scaffolds and overcoming the safety and the cost/effectiveness concerns associated with large scale clinical use of recombinant growth factors.

  19. The Use of Bone Morphogenetic Protein in Pediatric Cervical Spine Fusion Surgery: Case Reports and Review of the Literature

    OpenAIRE

    Molinari, Robert W.; Molinari, Christine

    2015-01-01

    Study Design Case report. Objective There is a paucity of literature describing the use of bone graft substitutes to achieve fusion in the pediatric cervical spine. The outcomes and complications involving the off-label use of bone morphogenetic protein (BMP)-2 in the pediatric cervical spine are not clearly defined. The purpose of this article is to report successful fusion without complications in two pediatric patients who had instrumented occipitocervical fusion using low-dose BMP-2. Meth...

  20. Altered protein secretions during interactions between adipose tissue- or bone marrow-derived stromal cells and inflammatory cells

    OpenAIRE

    Hattori, Hidemi; Ishihara, Masayuki

    2015-01-01

    Introduction Paracrine effects can be exploited in cell-based therapies that secrete factors, such as chemokines and cytokines, and can recruit inflammatory cells to transplants. In this study, mouse adipose tissue-derived stromal cells (ASCs) and bone marrow-derived stromal cells (ST2 cells) were used to examine changes in paracrine interactions with inflammation cells. Methods Green fluorescent protein positive (GFP+) bone marrow cells (BMCs) were injected into an irradiated mouse via the f...

  1. Bone morphogenetic proteins regulate osteoprotegerin and its ligands in human vascular smooth muscle cells

    DEFF Research Database (Denmark)

    Knudsen, Kirsten Quyen Nguyen; Olesen, Ping; Ledet, Thomas;

    2007-01-01

    ) and TNF-related apoptosis-inducing ligand (TRAIL) in HVSMC. All three growth factors decreased OPG protein production significantly; these results were paralleled by reduced OPG mRNA expression. TRAIL mRNA levels were also decreased. RANKL mRNA expression declined when treated with TGF-beta1 but were......The bone-related protein osteoprotegerin (OPG) may be involved in the development of vascular calcifications, especially in diabetes, where it has been found in increased amounts in the arterial wall. Experimental studies suggest that members of the TGF-superfamily are involved in the...... transformation of human vascular smooth muscle cells (HVSMC) to osteoblast-like cells. In this study, we evaluated the effect of BMP-2, BMP-7 and transforming growth factor beta (TGF-beta1) on the secretion and mRNA expression of OPG and its ligands receptor activator of nuclear factor-kappabeta ligand (RANKL...

  2. Makings of a brittle bone: Unexpected lessons from a low protein diet study of a mouse OI model.

    Science.gov (United States)

    Mertz, E L; Makareeva, E; Mirigian, L S; Koon, K Y; Perosky, J E; Kozloff, K M; Leikin, S

    2016-01-01

    Glycine substitutions in type I collagen appear to cause osteogenesis imperfecta (OI) by disrupting folding of the triple helix, the structure of which requires Gly in every third position. It is less clear, however, whether the resulting bone malformations and fragility are caused by effects of intracellular accumulation of misfolded collagen on differentiation and function of osteoblasts, effects of secreted misfolded collagen on the function of bone matrix, or both. Here we describe a study originally conceived for testing how reducing intracellular accumulation of misfolded collagen would affect mice with a Gly610 to Cys substitution in the triple helical region of the α2(I) chain. To stimulate degradation of misfolded collagen by autophagy, we utilized a low protein diet. The diet had beneficial effects on osteoblast differentiation and bone matrix mineralization, but also affected bone modeling and suppressed overall animal growth. Our more important observations, however, were not related to the diet. They revealed how altered osteoblast function and deficient bone formation by each cell caused by the G610C mutation combined with increased osteoblastogenesis might make the bone more brittle, all of which are common OI features. In G610C mice, increased bone formation surface compensated for reduced mineral apposition rate, resulting in normal cortical area and thickness at the cost of altering cortical modeling process, retaining woven bone, and reducing the ability of bone to absorb energy through plastic deformation. Reduced collagen and increased mineral density in extracellular matrix of lamellar bone compounded the problem, further reducing bone toughness. The latter observations might have particularly important implications for understanding OI pathophysiology and designing more effective therapeutic interventions. PMID:27039252

  3. Cross talk between insulin and bone morphogenetic protein signaling systems in brown adipogenesis

    DEFF Research Database (Denmark)

    Zhang, Hongbin; Schulz, Tim J; Espinoza, Daniel O;

    2010-01-01

    Both insulin and bone morphogenetic protein (BMP) signaling systems are important for adipocyte differentiation. Analysis of gene expression in BMP7-treated fibroblasts revealed a coordinated change in insulin signaling components by BMP7. To further investigate the cross talk between insulin and...... BMP7's suppressive effect on pref-1 transcription. Together, these data suggest cross talk between the insulin and BMP signaling systems by which BMP7 can rescue brown adipogenesis in cells with insulin resistance.......Both insulin and bone morphogenetic protein (BMP) signaling systems are important for adipocyte differentiation. Analysis of gene expression in BMP7-treated fibroblasts revealed a coordinated change in insulin signaling components by BMP7. To further investigate the cross talk between insulin and...... BMP signaling systems in brown adipogenesis, we examined the effect of BMP7 in insulin receptor substrate 1 (IRS-1)-deficient brown preadipocytes, which exhibit a severe defect in differentiation. Treatment of these cells with BMP7 for 3 days prior to adipogenic induction restored differentiation and...

  4. 3-Dimensional cell-laden nano-hydroxyapatite/protein hydrogels for bone regeneration applications

    Energy Technology Data Exchange (ETDEWEB)

    Sadat-Shojai, Mehdi, E-mail: msadatshojai@gmail.com [Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of); Department of Biomaterials, Iran Polymer and Petrochemical Institute, Tehran (Iran, Islamic Republic of); Khorasani, Mohammad-Taghi [Department of Biomaterials, Iran Polymer and Petrochemical Institute, Tehran (Iran, Islamic Republic of); Jamshidi, Ahmad [Department of Novel Drug Delivery Systems, Iran Polymer and Petrochemical Institute, Tehran (Iran, Islamic Republic of)

    2015-04-01

    The ability to encapsulate cells in three-dimensional (3D) protein-based hydrogels is potentially of benefit for tissue engineering and regenerative medicine. However, as a result of their poor mechanical strength, protein-based hydrogels have traditionally been considered for soft tissue engineering only. Hence, in this study we tried to render these hydrogels suitable for hard tissue regeneration, simply by incorporation of bioactive nano-hydroxyapatite (HAp) into a photocrosslinkable gelatin hydrogel. Different cell types were also encapsulated in three dimensions in the resulting composites to prepare cell-laden constructs. According to the results, HAp significantly improves the stiffness of gelatin hydrogels, while it maintains their structural integrity and swelling ratio. It was also found that while the bare hydrogel (control) was completely inert in terms of bioactivity, a homogeneous 3D mineralization occurs throughout the nanocomposites after incubation in simulated body fluid. Moreover, encapsulated cells readily elongated, proliferated, and formed a 3D interconnected network with neighboring cells in the nanocomposite, showing the suitability of the nano-HAp/protein hydrogels for cellular growth in 3D. Therefore, the hydrogel nanocomposites developed in this study may be promising candidates for preparing cell-laden tissue-like structures with enhanced stiffness and increased osteoconductivity to induce bone formation in vivo. - Highlights: • We tried to render protein-based hydrogels suitable for hard tissue regeneration. • We developed a three-component system comprising hydrogel, nano-HAp, and cells. • Nano-HAp significantly improved the mechanical strength of hydrogel. • Encapsulated cells readily elongated and proliferated in 3D cell-laden nanocomposite. • 3D deposition of bone crystals occurred in the hydrogel nanocomposites.

  5. Regulation of the embryonic morphogen Nodal by Notch4 facilitates manifestation of the aggressive melanoma phenotype

    OpenAIRE

    Hardy, Katharine M.; Kirschmann, Dawn A; Seftor, Elisabeth A.; Margaryan, Naira v.; Postovit, Lynne-Marie; Strizzi, Luigi; Hendrix, Mary J.C.

    2010-01-01

    Metastatic melanoma is an aggressive skin cancer associated with poor prognosis. The reactivation of the embryonic morphogen Nodal in metastatic melanoma has previously been shown to regulate the aggressive behavior of these tumor cells. During the establishment of left-right asymmetry in early vertebrate development, Nodal expression is specifically regulated by a Notch signaling pathway. We hypothesize that a similar relationship between Notch and Nodal may be re-established in melanoma. In...

  6. Changes of Morphogenic Competence in Mature Pinus sylvestris L. Buds in vitro

    OpenAIRE

    ANDERSONE, UNA; IEVINSH, GEDERTS

    2002-01-01

    The effects of season and cold storage on morphogenic competence in mature Pinus sylvestris buds were investigated. Peroxidase and polyphenol oxidase activity were measured as markers of oxidative metabolism. No growth in vitro was observed on explants detached from the end of January until the beginning of March. Brachioblasts, each with a couple of needles, formed on 11 % of the buds without macrostrobili that were detached in early April and introduced immediately into culture. Of the expl...

  7. Protein expression profile in the differentiation of rat bone marrow stromal cells into Schwann cell-like cells

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    During the last decade,increasing evidence suggested that bone marrow stromal cells(MSCs) have the potential to differentiate into neural lineages.Many studies have reported that MSCs showed morphological changes and expressed a limited number of neural proteins under experimental conditions.However,no proteomic studies on MSCs differentiated into Schwann cell-like cells have been reported.In this study,we isolated MSCs from adult Sprague-Dawley rat femur and tibia bone marrows and induced the cells in vitro under specific conditions.By using two-dimensional gel electrophoresis(2-DE),we compared the protein profiles of MSCs before and after induced differentiation.We obtained 792 protein spots in the protein profile by 2-DE,and found that 74 spots changed significantly before and after the differentiation using PDQuest software,with 43 up-regulated and 31 down-regulated.We analyzed these 74 spots by a matrix assisted laser desorption ionization-time of flight mass spectrometry(MALDI-TOF-MS) and by database searching,and found that they could be grouped into various classes,including cytoskeleton and structure proteins,growth factors,metabolic proteins,chaperone proteins,receptor proteins,cell cycle proteins,calcium binding proteins,and other proteins.These proteins also include neural and glial proteins,such as BDNF,CNTF and GFAP.The results may provide valuable proteomic information about the differentiation of MSCs into Schwann cell-like cells.

  8. Cationized gelatin hydrogels mixed with plasmid DNA induce stronger and more sustained gene expression than atelocollagen at calvarial bone defects in vivo.

    Science.gov (United States)

    Komatsu, K; Shibata, T; Shimada, A; Ideno, H; Nakashima, K; Tabata, Y; Nifuji, A

    2016-01-01

    Gene transduction of exogenous factors at local sites in vivo is a promising approach to promote regeneration of tissue defects owing to its simplicity and capacity for expression of a variety of genes. Gene transduction by viral vectors is highly efficient; however, there are safety concerns associated with viruses. As a method for nonviral gene transduction, plasmid DNA delivery is safer and simpler, but requires an efficient carrier substance. Here, we aimed to develop a simple, efficient method for bone regeneration by gene transduction and to identify optimal conditions for plasmid DNA delivery at bone defect sites. We focused on carrier substances and compared the efficiencies of two collagen derivatives, atelocollagen, and gelatin hydrogel, as substrates for plasmid DNA delivery in vivo. To assess the efficiencies of these substrates, we examined exogenous expression of green fluorescence protein (GFP) by fluorescence microscopy, polymerase chain reaction, and immunohistochemistry. GFP expression at the bone defect site was higher when gelatin hydrogel was used as a substrate to deliver plasmids than when atelocollagen was used. Moreover, the gelatin hydrogel was almost completely absorbed at the defect site, whereas some atelocollagen remained. When a plasmid harboring bone morphogenic protein 2 was delivered with the substrate to bony defect sites, more new bone formation was observed in the gelatin group than in the atelocollagen group. These results suggested that the gelatin hydrogel was more efficient than atelocollagen as a substrate for local gene delivery and may be a superior material for induction of bone regeneration. PMID:26848778

  9. Controlled trial of the effects of milk basic protein (MBP) supplementation on bone metabolism in healthy adult women.

    Science.gov (United States)

    Aoe, S; Toba, Y; Yamamura, J; Kawakami, H; Yahiro, M; Kumegawa, M; Itabashi, A; Takada, Y

    2001-04-01

    Milk has more beneficial effects on bone health compared to other food sources. Recent in vitro and in vivo studies showed that milk whey protein, especially its basic protein fraction, contains several components capable of both promoting bone formation and inhibiting bone resorption. However, the effects of milk basic protein (MBP) on bone metabolism of humans are not known. The object of this study was to examine the effects of MBP on bone metabolism of healthy adult women. Thirty-three normal healthy women were randomly assigned to treatment with either placebo or MBP (40 mg per day) for six months. The bone mineral density (BMD) of the left calcaneus of each subject was measured at the beginning of the study and after six months of treatment, by dual-energy x-ray absorptiometry. Serum and urine indices of bone metabolism were measured at the base line, three-month intervals, and the end of the study. Daily intake of nutrients was monitored by a three-day food record made at three and six months. The mean (+/- SD) rate of left calcaneus BMD gain of women in the MBP group (3.42 +/- 2.05%) was significantly higher than that of women in the placebo group (2.01 +/- 1.75%, P = 0.042). As compared with the placebo group, urinary cross-linked N-teleopeptides of type-I collagen/creatinine and deoxypyridinoline/creatinine were significantly decreased in the MBP group (p supplementation of 40 mg in healthy adult women can significantly increase their BMD independent of dietary intake of minerals and vitamins. This increase in BMD might be primarily mediated through inhibition of osteoclast-mediated bone resorption by the MBP supplementation. PMID:11388472

  10. Antigen-free bovine cancellous bone loaded with recombinant human bone morphogenetic protein-2 for the repair of tibial bone defects in goat model.

    Science.gov (United States)

    Li, Donghai; Deng, Liqing; Yang, Zhouyuan; Xie, Xiaowei; Kang, Pengde; Tan, Zhen

    2016-04-01

    Antigen-free bovine cancellous bone has good performances of porous network structures and mechanics with antigen extracted. To develop a bioactive scaffold for enhancing bone repair and evaluate its biological property, rhBMP-2 loaded with antigen-free bovine cancellous bone was used to treat tibial bone defect. Twenty-four healthy adult goats were chosen to establish goat defects model and randomly divided into four groups. The goats were treated with rhBMP-2/antigen-free bovine cancellous bone scaffolds (group A), autogenous cancellous bone graft (group B), porous tricalciumphosphate scaffolds (group C) and nothing (group D). Animals were evaluated with radiological and histological methods at 4, 8 and 12 weeks after surgery. The gray value of radiographs was used to evaluate the healing of the defects, which revealed that the group A had a better outcome of defect healing compared with group C at 4, 8 and 12 weeks, respectively (p difference between groups A and B was without significance at each time (p > 0.05). The newly formed bone area was calculated from histological sections, and the results indicated that the amount of new bone in group A increased significantly compared with that in group C (p  0.05) at 4, 8 and 12 weeks, respectively. In addition, the expression of collagen I and vascular endothelial growth factor by real-time polymerase chain reaction at 12 weeks in group A was significantly higher than that in group C (p = 0.034, p = 0.032, respectively), but no significant differences were found when compared with that in group B (p = 0.36, p = 0.54, respectively). At the same time, group C presented better results than group D on bone defects healing. Therefore, the composites of antigen-free bovine cancellous bone loaded with rhBMP-2 have a good osteoinductive activity and capacity to promote the repair of bone defects. PMID:26801475

  11. Bone morphogenetic protein 6 polymorphisms are associated with radiographic progression in ankylosing spondylitis.

    Directory of Open Access Journals (Sweden)

    Young Bin Joo

    Full Text Available Nearly 25 genetic loci associated with susceptibility to ankylosing spondylitis (AS have been identified by several large studies. However, there have been limited studies to identify the genes associated with radiographic severity of the disease. Thus we investigated which genes involved in bone formation pathways might be associated with radiographic severity in AS.A total of 417 Korean AS patients were classified into two groups based on the radiographic severity as defined by the modified Stoke' Ankylosing Spondylitis Spinal Score (mSASSS system. Severe AS was defined by the presence of syndesmophytes and/or fusion in the lumbar or cervical spine (n = 195. Mild AS was defined by the absence of any syndesmophyte or fusion (n = 170. A total of 251 single nucleotide polymorphisms (SNPs within 52 genes related to bone formation were selected and genotyped. Odds ratios (OR and 95% confidence interval (95% CI were analysed by multivariate logistic regression controlling for age at onset of symptoms, sex, disease duration, and smoking status as covariates.We identified new loci of bone morphogenetic protein 6 (BMP6 associated with radiographic severity in patients with AS that passed false discovery rate threshold. Two SNPs in BMP6 were significantly associated with radiologic severity [rs270378 (OR 1.97, p = 6.74 × 10(-4 and rs1235192 [OR 1.92, p = 1.17 × 10(-3] adjusted by covariates.This is the first study to demonstrate that BMP6 is associated with radiographic severity in AS, supporting the role wingless-type like/BMP pathway on radiographic progression in AS.

  12. Enhanced healing of rabbit segmental radius defects with surface-coated calcium phosphate cement/bone morphogenetic protein-2 scaffolds

    International Nuclear Information System (INIS)

    Large osseous defects remain a difficult clinical problem in orthopedic surgery owing to the limited effective therapeutic options, and bone morphogenetic protein-2 (BMP-2) is useful for its potent osteoinductive properties in bone regeneration. Here we build a strategy to achieve prolonged duration time and help inducting new bone formation by using water-soluble polymers as a protective film. In this study, calcium phosphate cement (CPC) scaffolds were prepared as the matrix and combined with sodium carboxymethyl cellulose (CMC-Na), hydroxypropylmethyl cellulose (HPMC), and polyvinyl alcohol (PVA) respectively to protect from the digestion of rhBMP-2. After being implanted in the mouse thigh muscles, the surface-modified composite scaffolds evidently induced ectopic bone formation. In addition, we further evaluated the in vivo effects of surface-modified scaffolds in a rabbit radius critical defect by radiography, three dimensional micro-computed tomographic (μCT) imaging, synchrotron radiation-based micro-computed tomographic (SRμCT) imaging, histological analysis, and biomechanical measurement. The HPMC-modified CPC scaffold was regarded as the best combination for segmental bone regeneration in rabbit radius. - Highlights: • A simple surface-coating method was used to fabricate composite scaffolds. • Growth factor was protected from rapid depletion via superficial coating. • Significant promotion of bone regeneration was achieved. • HPMC-modification displayed optimal effect of bone regeneration

  13. Enhanced healing of rabbit segmental radius defects with surface-coated calcium phosphate cement/bone morphogenetic protein-2 scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yi; Hou, Juan; Yin, ManLi [Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Wang, Jing, E-mail: biomatwj@163.com [Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Liu, ChangSheng, E-mail: csliu@sh163.net [Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237 (China); Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China)

    2014-11-01

    Large osseous defects remain a difficult clinical problem in orthopedic surgery owing to the limited effective therapeutic options, and bone morphogenetic protein-2 (BMP-2) is useful for its potent osteoinductive properties in bone regeneration. Here we build a strategy to achieve prolonged duration time and help inducting new bone formation by using water-soluble polymers as a protective film. In this study, calcium phosphate cement (CPC) scaffolds were prepared as the matrix and combined with sodium carboxymethyl cellulose (CMC-Na), hydroxypropylmethyl cellulose (HPMC), and polyvinyl alcohol (PVA) respectively to protect from the digestion of rhBMP-2. After being implanted in the mouse thigh muscles, the surface-modified composite scaffolds evidently induced ectopic bone formation. In addition, we further evaluated the in vivo effects of surface-modified scaffolds in a rabbit radius critical defect by radiography, three dimensional micro-computed tomographic (μCT) imaging, synchrotron radiation-based micro-computed tomographic (SRμCT) imaging, histological analysis, and biomechanical measurement. The HPMC-modified CPC scaffold was regarded as the best combination for segmental bone regeneration in rabbit radius. - Highlights: • A simple surface-coating method was used to fabricate composite scaffolds. • Growth factor was protected from rapid depletion via superficial coating. • Significant promotion of bone regeneration was achieved. • HPMC-modification displayed optimal effect of bone regeneration.

  14. Three-Dimensional Upper Lip and Nostril Sill Changes After Cleft Alveolus Reconstruction Using Autologous Bone Grafting Versus Recombinant Human Bone Morphogenetic Protein-2.

    Science.gov (United States)

    Raposo-Amaral, Cassio Eduardo; Denadai, Rafael; Alonso, Nivaldo

    2016-06-01

    Cleft alveolus in patients with unilateral complete cleft lip and palate has been alternatively reconstructed with recombinant human bone morphogenetic protein (rhBMP)-2. However, its effects on upper lip and nostril sill anatomy are not known. Thus, the objective of this investigation was to assess and compare upper lip and nostril sill changes after cleft alveolus reconstruction with autologous bone from the iliac crest region and rhBMP-2. Patients were randomly allocated into 2 groups. In group 1, autologous bone from the iliac crest region was used to fill the cleft alveolus (n = 4), and in group 2, rhBMP-2 was used to fill the cleft alveolus (n = 8). Preoperatively and at one after the surgery, computerized tomography (CT) was performed. Reformatted CT imaging was used to perform cephalometric linear measurements of the upper lip and nostril sill regions. Inter- and intragroup data of the pre and postoperative reformatted CT measurements of the upper lip and nostril sill regions did not show differences (P >0.05) in cutaneous upper lip height and projection, nostril sill elevation, and subnasale projection. There were no significant upper lip and nostril sill anatomical changes after cleft alveolus reconstruction using autologous bone grafting and rhBMP-2. PMID:27244210

  15. Testosterone delivered with a scaffold is as effective as bone morphologic protein-2 in promoting the repair of critical-size segmental defect of femoral bone in mice.

    Directory of Open Access Journals (Sweden)

    Bi-Hua Cheng

    Full Text Available Loss of large bone segments due to fracture resulting from trauma or tumor removal is a common clinical problem. The goal of this study was to evaluate the use of scaffolds containing testosterone, bone morphogenetic protein-2 (BMP-2, or a combination of both for treatment of critical-size segmental bone defects in mice. A 2.5-mm wide osteotomy was created on the left femur of wildtype and androgen receptor knockout (ARKO mice. Testosterone, BMP-2, or both were delivered locally using a scaffold that bridged the fracture. Results of X-ray imaging showed that in both wildtype and ARKO mice, BMP-2 treatment induced callus formation within 14 days after initiation of the treatment. Testosterone treatment also induced callus formation within 14 days in wildtype but not in ARKO mice. Micro-computed tomography and histological examinations revealed that testosterone treatment caused similar degrees of callus formation as BMP-2 treatment in wildtype mice, but had no such effect in ARKO mice, suggesting that the androgen receptor is required for testosterone to initiate fracture healing. These results demonstrate that testosterone is as effective as BMP-2 in promoting the healing of critical-size segmental defects and that combination therapy with testosterone and BMP-2 is superior to single therapy. Results of this study may provide a foundation to develop a cost effective and efficient therapeutic modality for treatment of bone fractures with segmental defects.

  16. The combined mechanism of bone morphogenetic protein- and calcium phosphate-induced skeletal tissue formation by human periosteum derived cells.

    Science.gov (United States)

    Bolander, J; Ji, W; Geris, L; Bloemen, V; Chai, Y C; Schrooten, J; Luyten, F P

    2016-01-01

    When combining osteogenic progenitor cells such as human periosteum derived cells (hPDCs) with osteoconductive biomaterials like calcium phosphate (CaP)-scaffolds, in vivo bone formation can be achieved. This process is dependent on the early activation of Bone morphogenetic protein (BMP)-signalling. However, the bone forming process is slow and routinely only a limited amount of bone and bone marrow is formed. Therefore, we hypothesised that a robust clinically relevant outcome could be achieved by adding more physiological levels of potent BMP-ligands to these cell- and CaP-based constructs. For this, hPDCs were characterised for their responsiveness to BMP-ligands upon in vitro 2D stimulation. BMP-2, -4, -6 and -9 robustly induced osteochondrogenic differentiation. Subsequently, these ligands were coated onto clinically approved CaP-scaffolds, BioOss® and CopiOs®, followed by hPDC-seeding. Protein lysates and conditioned media were investigated for activation of BMP signalling pathways. Upon in vivo implantation, the most abundant bone formation was found in BMP-2 and BMP-6-coated scaffolds. Implanted cells actively contributed to the newly formed bone. Remnants of cartilage could be observed in BMP-coated CopiOs®-constructs. Computational analysis displayed that the type of BMP-ligand as well as the CaP-scaffold affects skeletal tissue formation, observed in a qualitative as well as quantitative manner. Furthermore, the in vitro mechanism appears to predict the in vivo outcome. This study presents further evidence for the potential of BMP-technology in the development of clinically relevant cell-based constructs for bone regenerative strategies. PMID:26728496

  17. Microdialysis Sampling from Wound Fluids Enables Quantitative Assessment of Cytokines, Proteins, and Metabolites Reveals Bone Defect-Specific Molecular Profiles

    Science.gov (United States)

    Wissenbach, Dirk K.; Pfeiffer, Susanne E. M.; Baumann, Sven; Hofbauer, Lorenz C.; von Bergen, Martin; Kalkhof, Stefan; Rammelt, Stefan

    2016-01-01

    Bone healing involves a variety of different cell types and biological processes. Although certain key molecules have been identified, the molecular interactions of the healing progress are not completely understood. Moreover, a clinical routine for predicting the quality of bone healing after a fracture in an early phase is missing. This is mainly due to a lack of techniques to comprehensively screen for cytokines, growth factors and metabolites at their local site of action. Since all soluble molecules of interest are present in the fracture hematoma, its in-depth assessment could reveal potential markers for the monitoring of bone healing. Here, we describe an approach for sampling and quantification of cytokines and metabolites by using microdialysis, combined with solid phase extractions of proteins from wound fluids. By using a control group with an isolated soft tissue wound, we could reveal several bone defect-specific molecular features. In bone defect dialysates the neutrophil chemoattractants CXCL1, CXCL2 and CXCL3 were quantified with either a higher or earlier response compared to dialysate from soft tissue wound. Moreover, by analyzing downstream adaptions of the cells on protein level and focusing on early immune response, several proteins involved in the immune cell migration and activity could be identified to be specific for the bone defect group, e.g. immune modulators, proteases and their corresponding inhibitors. Additionally, the metabolite screening revealed different profiles between the bone defect group and the control group. In summary, we identified potential biomarkers to indicate imbalanced healing progress on all levels of analysis. PMID:27441377

  18. Ectopic bone formation cannot occur by hydroxyapatite/β-tricalcium phosphate bioceramics in green fluorescent protein chimeric mice

    International Nuclear Information System (INIS)

    Highlights: ► Firstly, chimeric mouse model could be established successfully by bone marrow transplantation after irradiation. ► Secondly, bone induction can occur in wild-type mice 90 days after implantation, but not occur in chimeric mice. ► Thirdly, destruction of immune function will block osteoinduction by calcium phosphate ceramics. - Abstract: Many studies have shown that calcium phosphate ceramics (CP) have osteoconductive and osteoinductive properties; however, the exact mechanism of bone induction has not yet been reported. This study was performed to investigate if destroying immunological function will influence osteogenesis, to explain the mechanism which is unclear. In this study, twenty C57BL/6 mice were divided into two groups (n = 10), in group 1, a hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) ceramic was implanted into both the left and right leg muscles of each mouse; in group 2, ten mice experienced lethal irradiation, then were injected bone marrow (BM) cells from green fluorescent protein (GFP) transgenic mice by tail veil, after bone marrow transplantation (BMT), heart, liver, spleen, lung, kidney, and muscle were harvested for biological analysis, after the GFP chimera model was established successfully, the same HA/β-TCP ceramic was implanted into both leg muscles of each mouse immediately after irradiation. 45 and 90 days after implantation, the ceramics of the two groups were harvested to perform with hematoxylin and eosin (HE) and immunohistochemistry (IHC) staining; the results showed that there was no bone formation in group 2, while new bone tissues were detected in group 1. Our findings suggest that the BM cell from GFP transgenic mice is a good biomarker and it could set a good platform for chimera model; it also shows that BM cell is one of cell resources of bone induction, and destruction of immune function will impede osteoinduction by CP. Overall, our results may shed light on clear mechanism study of bone

  19. Ectopic bone formation cannot occur by hydroxyapatite/{beta}-tricalcium phosphate bioceramics in green fluorescent protein chimeric mice

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Lijia [Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu (China); Duan Xin [Department of Orthopaedics, Chengdu Second People' s Hospital, Chengdu (China); Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu (China); Xiang Zhou [Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu (China); Shi Yujun; Lu Xiaofeng; Ye Feng [Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu (China); Bu Hong, E-mail: hongbu@scu.edu.cn [Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu (China); Department of Pathology, West China Hospital, Sichuan University, Chengdu (China)

    2012-12-01

    Highlights: Black-Right-Pointing-Pointer Firstly, chimeric mouse model could be established successfully by bone marrow transplantation after irradiation. Black-Right-Pointing-Pointer Secondly, bone induction can occur in wild-type mice 90 days after implantation, but not occur in chimeric mice. Black-Right-Pointing-Pointer Thirdly, destruction of immune function will block osteoinduction by calcium phosphate ceramics. - Abstract: Many studies have shown that calcium phosphate ceramics (CP) have osteoconductive and osteoinductive properties; however, the exact mechanism of bone induction has not yet been reported. This study was performed to investigate if destroying immunological function will influence osteogenesis, to explain the mechanism which is unclear. In this study, twenty C57BL/6 mice were divided into two groups (n = 10), in group 1, a hydroxyapatite/{beta}-tricalcium phosphate (HA/{beta}-TCP) ceramic was implanted into both the left and right leg muscles of each mouse; in group 2, ten mice experienced lethal irradiation, then were injected bone marrow (BM) cells from green fluorescent protein (GFP) transgenic mice by tail veil, after bone marrow transplantation (BMT), heart, liver, spleen, lung, kidney, and muscle were harvested for biological analysis, after the GFP chimera model was established successfully, the same HA/{beta}-TCP ceramic was implanted into both leg muscles of each mouse immediately after irradiation. 45 and 90 days after implantation, the ceramics of the two groups were harvested to perform with hematoxylin and eosin (HE) and immunohistochemistry (IHC) staining; the results showed that there was no bone formation in group 2, while new bone tissues were detected in group 1. Our findings suggest that the BM cell from GFP transgenic mice is a good biomarker and it could set a good platform for chimera model; it also shows that BM cell is one of cell resources of bone induction, and destruction of immune function will impede

  20. Model-based Comparative Prediction of Transcription-Factor Binding Motifs in Anabolic Responses in Bone

    Institute of Scientific and Technical Information of China (English)

    Andy B. Chen; Kazunori Hamamura; Guohua Wang; Weirong Xing; Subburaman Mohan; Hiroki Yokota; Yunlong Liu

    2007-01-01

    Understanding the regulatory mechanism that controls the alteration of global gene expression patterns continues to be a challenging task in computational biology. We previously developed an ant algorithm, a biologically-inspired computational technique for microarray data, and predicted putative transcription-factor binding motifs (TFBMs) through mimicking interactive behaviors of natural ants. Here we extended the algorithm into a set of web-based software, Ant Modeler, and applied it to investigate the transcriptional mechanism underlying bone formation. Mechanical loading and administration of bone morphogenic proteins (BMPs) are two known treatments to strengthen bone. We addressed a question: Is there any TFBM that stimulates both "anabolic responses of mechanical loading" and "BMP-mediated osteogenic signaling"? Although there is no significant overlap among genes in the two responses, a comparative model-based analysis suggests that the two independent osteogenic processes employ common TFBMs, such as a stress responsive element and a motif for peroxisome proliferator-activated recep- tor (PPAR). The post-modeling in vitro analysis using mouse osteoblast cells sup- ported involvements of the predicted TFBMs such as PPAR, Ikaros 3, and LMO2 in response to mechanical loading. Taken together, the results would be useful to derive a set of testable hypotheses and examine the role of specific regulators in complex transcriptional control of bone formation.

  1. A new heterologous fibrin sealant as scaffold to recombinant human bone morphogenetic protein-2 (rhBMP-2) and natural latex proteins for the repair of tibial bone defects.

    Science.gov (United States)

    Machado, Eduardo Gomes; Issa, João Paulo Mardegan; Figueiredo, Fellipe Augusto Tocchini de; Santos, Geovane Ribeiro Dos; Galdeano, Ewerton Alexandre; Alves, Mariana Carla; Chacon, Erivelto Luis; Ferreira Junior, Rui Seabra; Barraviera, Benedito; Cunha, Marcelo Rodrigues da

    2015-04-01

    Tissue engineering has special interest in bone tissue aiming at future medical applications Studies have focused on recombinant human bone morphogenetic protein-2 (rhBMP-2) and natural latex proteins due to the osteogenic properties of rhBMP-2 and the angiogenic characteristic of fraction 1 protein (P-1) extracted from the rubber tree Hevea brasiliensis. Furthermore, heterologous fibrin sealant (FS) has been shown as a promising alternative in regenerative therapies. The aim of this study was to evaluate these substances for the repair of bone defects in rats. A bone defect measuring 3mm in diameter was created in the proximal metaphysis of the left tibia of 60 rats and was implanted with rhBMP-2 or P-1 in combination with a new heterologous FS derived from snake venom. The animals were divided into six groups: control (unfilled bone defect), rhBMP-2 (defect filled with 5μg rhBMP-2), P-1 (defect filled with 5μg P-1), FS (defect filled with 8μg FS), FS/rhBMP-2 (defect filled with 8μg FS and 5μg rhBMP-2), FS/P-1 (defect filled with 8μg FS and 5μg P-1). The animals were sacrificed 2 and 6 weeks after surgery. The newly formed bone projected from the margins of the original bone and exhibited trabecular morphology and a disorganized arrangement of osteocyte lacunae. Immunohistochemical analysis showed intense expression of osteocalcin in all groups. Histometric analysis revealed a significant difference in all groups after 2 weeks (p0.05). A statistically significant difference (p<0.05) was observed in all groups after 6 weeks in relation to the volume of newly formed bone in the surgical area. In conclusion, the new heterologous fibrin sealant was found to be biocompatible and the combination with rhBMP-2 showed the highest osteogenic and osteoconductive capacity for bone healing. These findings suggest a promising application of this combination in the regeneration surgery. PMID:25825118

  2. Bone morphogenetic protein 7 induces cementogenic differentiation of human periodontal ligament-derived mesenchymal stem cells.

    Science.gov (United States)

    Torii, D; Tsutsui, T W; Watanabe, N; Konishi, K

    2016-01-01

    Bone morphogenetic protein 7 (BMP-7) is a multifunctional differentiation factor that belongs to the transforming growth factor superfamily. BMP-7 induces gene expression of protein tyrosine phosphatase-like, member A/cementum attachment protein (PTPLA/CAP) and cementum protein 1 (CEMP1), both of which are markers of cementoblasts and cementocytes. In the previous study, we reported that BMP-7 treatment enhanced PTPLA/CAP and CEMP1 expression in both normal and immortal human periodontal ligament (PDL) cells. To elucidate the molecular mechanisms of the gene expression of these molecules, in this study, we identified a functional transcription activator binding region in the promoter region of PTPLA/CAP and CEMP1 that is responsive to BMP signals. Here, we report that some short motifs termed GC-rich Smad-binding elements (GC-SBEs) that are located in the human PTPLA/CAP promoter and CEMP1 promoter are BMP-7 responsive as analyzed with luciferase promoter assays. On the other hand, we found that transcription of Sp7/Osterix and PTPLA/CAP was up-regulated after 1 week of BMP-7 treatment on purified normal human PDL cells as a result of gene expression microarray analysis. Furthermore, transcription of Sp7/Osterix, runt-related transcription factor 2 (RUNX2), and alkaline phosphatase (ALP) was up-regulated after 2 weeks of BMP-7 treatment, whereas gene expression of osteo/odontogenic markers such as integrin-binding sialoprotein (IBSP), collagen, type I, alpha 1 (COL1A1), dentin matrix acidic phosphoprotein 1 (DMP1), and dentin sialophosphoprotein (DSPP) was not up-regulated in purified normal or immortal human PDL cells as a result of qRT-PCR. The results suggest that BMP-7 mediates cementogenesis via GC-SBEs in human PDL cells and that its molecular mechanism is different from that for osteo/odontogenesis. PMID:25464857

  3. Identification of bone morphogenetic protein 9 (BMP9) as a novel profibrotic factor in vitro.

    Science.gov (United States)

    Muñoz-Félix, José M; Cuesta, Cristina; Perretta-Tejedor, Nuria; Subileau, Mariela; López-Hernández, Francisco J; López-Novoa, José M; Martínez-Salgado, Carlos

    2016-09-01

    Upregulated synthesis of extracellular matrix (ECM) proteins by myofibroblasts is a common phenomenon in the development of fibrosis. Although the role of TGF-β in fibrosis development has been extensively studied, the involvement of other members of this superfamily of cytokines, the bone morphogenetic proteins (BMPs) in organ fibrosis has given contradictory results. BMP9 is the main ligand for activin receptor-like kinase-1 (ALK1) TGF-β1 type I receptor and its effect on fibrosis development is unknown. Our purpose was to study the effect of BMP9 in ECM protein synthesis in fibroblasts, as well as the involved receptors and signaling pathways. In cultured mice fibroblasts, BMP9 induces an increase in collagen, fibronectin and connective tissue growth factor expression, associated with Smad1/5/8, Smad2/3 and Erk1/2 activation. ALK5 inhibition with SB431542 or ALK1/2/3/6 with dorsomorphin-1, inhibition of Smad3 activation with SIS3, and inhibition of the MAPK/Erk1/2 with U0126, demonstrates the involvement of these pathways in BMP9-induced ECM synthesis in MEFs. Whereas BMP9 induced Smad1/5/8 phosphorylation through ALK1, it also induces Smad2/3 phosphorylation through ALK5 but only in the presence of ALK1. Summarizing, this is the first study that accurately identifies BMP9 as a profibrotic factor in fibroblasts that promotes ECM protein expression through ALK1 and ALK5 receptors. PMID:27208502

  4. Influence of dietary protein, energy and corticosteroids on protein turnover, proteoglycan sulphation and growth of long bone and skeletal muscle in the rat.

    Science.gov (United States)

    Yahya, Z A; Tirapegui, J O; Bates, P C; Millward, D J

    1994-11-01

    1. We report here the extent to which changes in protein turnover contribute to the previously described inhibition of growth of rat tibial length and skeletal muscle mass in response to protein deficiency [1], energy restriction and corticosterone treatment [2]. Measurements of 35S uptake in vivo also enabled the qualitative pattern of changes in proteoglycan synthesis in bone and muscle to be established. 2. Protein deficiency was examined by ad libitum feeding of 20%, 7%, 3.5% and 0.5% protein diets with measurements at 1, 3 and 7 days (all diets), and 14 and 21 days (0.5% protein). In bone this induced delayed inhibition of tibial growth with parallel inhibition of protein synthesis, as measured by the phenylalanine flooding dose method. This was mediated by reductions in both ribosomal capacity (RNA/protein ratio) and activity (protein synthesis/RNA) in the 0.5% protein group. The pattern of inhibition of proteoglycan sulphation, measured as 35S uptake 60 min after injection of a tracer dose of labelled sulphate, was similar to that of protein synthesis. 3. In muscle there was an intermediate graded inhibition of protein synthesis by protein deficiency, mediated by reductions in both ribosomal capacity and activity in the 0.5% protein group, which preceded growth inhibition in the 7% and 3.5% groups, and which was progressive with time. Transient increases in proteolysis contributed to the growth inhibition is some groups, but the rate fell eventually in the 0.5% group. The pattern of response of proteoglycan sulphation differed from protein synthesis with a delayed inhibition, but with subsequent marked reduction. 4. Energy restriction was induced by diets fed for 4 or 8 days at 75%, 50% and 25% ad libitum intakes with protein intakes held constant, and corticosterone treatment involved a dose of 10 mg day-1 100-1 g (subcutaneous) with ad libitum feeding. In bone this induced a pattern of length growth inhibition which was dissociated from inhibition of

  5. Effectiveness and safety of recombinant human bone morphogenetic protein-2 for adults with lumbar spine pseudarthrosis following spinal fusion surgery

    Science.gov (United States)

    Balaji, V.; Kaila, R.; Wilson, L.

    2016-01-01

    Objectives We performed a systematic review of the literature to determine the safety and efficacy of bone morphogenetic protein (BMP) compared with bone graft when used specifically for revision spinal fusion surgery secondary to pseudarthrosis. Methods The MEDLINE, EMBASE and Cochrane Library databases were searched using defined search terms. The primary outcome measure was spinal fusion, assessed as success or failure in accordance with radiograph, MRI or CT scan review at 24-month follow-up. The secondary outcome measure was time to fusion. Results A total of six studies (three prospective and three retrospective) reporting on the use of BMP2 met the inclusion criteria (203 patients). Of these, four provided a comparison of BMP2 and bone graft whereas the other two solely investigated the use of BMP2. The primary outcome was seen in 92.3% (108/117) of patients following surgery with BMP2. Although none of the studies showed superiority of BMP2 to bone graft for fusion, its use was associated with a statistically quicker time to achieving fusion. BMP2 did not appear to increase the risk of complication. Conclusion The use of BMP2 is both safe and effective within the revision setting, ideally in cases where bone graft is unavailable or undesirable. Further research is required to define its optimum role. Cite this article: Mr P. Bodalia. Effectiveness and safety of recombinant human bone morphogenetic protein-2 for adults with lumbar spine pseudarthrosis following spinal fusion surgery: A systematic review. Bone Joint Res 2016;5:145–152. DOI: 10.1302/2046-3758.54.2000418. PMID:27121215

  6. Imaging Bone Morphogenetic Protein 7 Induced Cell Cycle Arrest in Experimental Gliomas

    Directory of Open Access Journals (Sweden)

    Anke Klose

    2011-03-01

    Full Text Available Bone morphogenetic protein 7 (BMP-7 belongs to the superfamily of transforming growth factor β-like cytokines, which can act either as tumor suppressors or as tumor promoters depending on cell type and differentiation. Our investigations focused on analyzing the effects of BMP-7 during glioma cell proliferation in vitro and in vivo. BMP-7 treatment decreased the proliferation of Gli36ΔEGFR-LITG glioma cells up to 50%through a cell cycle arrest in the G1 phase but not by induction of apoptosis. This effect was mediated by the modulation of the expression and phosphorylation of cyclin-dependent kinase 2, cyclin-dependent kinase inhibitor p21, and downstream retinoblastoma protein. Furthermore, in vivo optical imaging of luciferase activity of Gli36ΔEGFR-LITG cells implanted intracranially into nude mice in the presence or absence of BMP-7 treatment corroborated the antiproliferative effects of this cytokine. This report clearly underlines the tumor-suppressive role of BMP-7 in glioma-derived cells. Taken together, our results indicate that manipulating the BMP/transforming growth factor β signaling cascade may serve as a new strategy for imaging-guided molecular-targeted therapy of malignant gliomas.

  7. Regulation of oligodendrocyte progenitor cell maturation by PPARδ: effects on bone morphogenetic proteins

    Directory of Open Access Journals (Sweden)

    Jill C Richardson

    2010-01-01

    Full Text Available In EAE (experimental autoimmune encephalomyelitis, agonists of PPARs (peroxisome proliferator-activated receptors provide clinical benefit and reduce damage. In contrast with PPARγ, agonists of PPARδ are more effective when given at later stages of EAE and increase myelin gene expression, suggesting effects on OL (oligodendrocyte maturation. In the present study we examined effects of the PPARδ agonist GW0742 on OPCs (OL progenitor cells, and tested whether the effects involve modulation of BMPs (bone morphogenetic proteins. We show that effects of GW0742 are mediated through PPARδ since no amelioration of EAE clinical scores was observed in PPARδ-null mice. In OPCs derived from E13 mice (where E is embryonic day, GW0742, but not the PPARγ agonist pioglitazone, increased the number of myelin-producing OLs. This was due to activation of PPARδ since process formation was reduced in PPARδ-null compared with wild-type OPCs. In both OPCs and enriched astrocyte cultures, GW0742 increased noggin protein expression; however, noggin mRNA was only increased in astrocytes. In contrast, GW0742 reduced BMP2 and BMP4 mRNA levels in OPCs, with lesser effects in astrocytes. These findings demonstrate that PPARδ plays a role in OPC maturation, mediated, in part, by regulation of BMP and BMP antagonists.

  8. Compound soft regenerated skull material for repairing dog skull defects using bone morphogenetic protein as an inductor and nanohydroxyapatite as a scaffold

    Institute of Scientific and Technical Information of China (English)

    Zhidong Shi; Mingwang Liu; Zhongzong Qin; Qinmei Wang; Ying Guo; Haiyong He; Zhonghe Yu

    2008-01-01

    BACKGROUND: In previous studies of skull defects and regeneration, bone morphogenetic protein as an inductor and nanohydroxyapatite as a scaffold have been cocultured with osteoblasts.OBJECTIVE: To verify the characteristics of the new skull regenerated material after compound soft regenerated skull material implantatiom.DESIGN, TIME AND SETTING: The self-control and inter-group control animal experiment was perfurmed at the Sun Yat-sen University, China from February to July 2007.MATERIALS: Twenty-tour healthy adult dogs of both genders weighing 15-20 kg were used in this study. Nanohydroxyapatite as a scaffold was cocultured with osteoblasts. Using demineralized canine bone matrix as a carrier, recombinant human bone morphogenetic protein-2 was employed to prepare compound soft regenerated skull material. Self-designed compound soft regenerated skull material was implanted in models of skull defects.METHODS: Animals were randomly assigned into two groups, Group A (n = 16) and Group B (n = 8).Bilateral 2.5-cm-diameter full-thickness parietal skull defects were made in all animals. In Group A, the right side was reconstructed with calcium alginate gel, osteoblasts, and nanomcter bone meal composite;the left side was reconstructed with calcium alginate gel, osteoblasts, nanometer bone meal and recombinant human bone morphogenetic protein-2 composite. In Group B, the right side was kept as a simple skull detect, and the left side was reconstructed with calcium alginate gel, osteoblasts, nanometer bone meal and recombinant human bone morphogenetic protein-2 composite.MAIN OUTCOME MEASURES: Bone regeneration and histopathological changes at the site of the skull defect were observed with an optical microscope and a scanning electron microscope after surgery.The ability to form bone was measured by alizarin red S staining. In vitro cultured osteoblasts were observed for morphology.RESULTS: One month following surgery, newly formed bone trabeculae mostly covered the

  9. Mode of heparin attachment to nanocrystalline hydroxyapatite affects its interaction with bone morphogenetic protein-2.

    Science.gov (United States)

    Goonasekera, Chandhi S; Jack, Kevin S; Bhakta, Gajadhar; Rai, Bina; Luong-Van, Emma; Nurcombe, Victor; Cool, Simon M; Cooper-White, Justin J; Grøndahl, Lisbeth

    2015-01-01

    Heparin has a high affinity for bone morphogenetic protein-2 (BMP-2), which is a key growth factor in bone regeneration. The aim of this study was to investigate how the rate of release of BMP-2 was affected when adsorbed to nanosized hydroxyapatite (HAP) particles functionalized with heparin by different methods. Heparin was attached to the surface of HAP, either via adsorption or covalent coupling, via a 3-aminopropyltriethoxysilane (APTES) layer. The chemical composition of the particles was evaluated using X-ray photoelectron spectroscopy and elemental microanalysis, revealing that the heparin grafting densities achieved were dependent on the curing temperature used in the fabrication of APTES-modified HAP. Comparable amounts of heparin were attached via both covalent coupling and adsorption to the APTES-modified particles, but characterization of the particle surfaces by zeta potential and Brunauer-Emmett-Teller measurements indicated that the conformation of the heparin on the surface was dependent on the method of attachment, which in turn affected the stability of heparin on the surface. The release of BMP-2 from the particles after 7 days in phosphate-buffered saline found that 31% of the loaded BMP-2 was released from the APTES-modified particles with heparin covalently attached, compared to 16% from the APTES-modified particles with the heparin adsorbed. Moreover, when heparin was adsorbed onto pure HAP, it was found that the BMP-2 released after 7 days was 5% (similar to that from unmodified HAP). This illustrates that by altering the mode of attachment of heparin to HAP the release profile and total release of BMP-2 can be manipulated. Importantly, the BMP-2 released from all the heparin particle types was found by the SMAD 1/5/8 phosphorylation assay to be biologically active. PMID:26474791

  10. The expression and potential function of bone morphogenetic proteins 2 and 4 in bovine trophectoderm

    Directory of Open Access Journals (Sweden)

    Pennington Kathleen A

    2012-02-01

    Full Text Available Abstract Background Bone morphogenetic proteins (BMPs were first described for their roles in bone formation, but they now also are known to possess additional activities, including those relating to embryogenesis. The objectives of this work were to 1 determine if peri-attachment bovine conceptuses and bovine trophoblast cells (CT1 contain transcripts for BMP2 and 4, an innate inhibitor noggin (NOG, and BMP2/4 receptors (BMPRII, ACVR1, BMPR1A, BMPR1B, and 2 determine if BMP2 or 4 supplementation to CT1 cells affects cell proliferation, differentiation or trophoblast-specific gene expression. Methods RNA was isolated from day 17 bovine conceptuses and CT1 cells. After RT-PCR, amplified products were cloned and sequenced. In other studies CT1 cells were treated with BMP2 or 4 at various concentrations and effects on cell viability, cell differentiation and abundance of IFNT and CSH1 mRNA were evaluated. Results Transcripts for BMP2 and 4 were detected in bovine conceptuses and CT1 cells. Also, transcripts for each BMP receptor were detected in conceptuses and CT1 cells. Transcripts for NOG were detected in conceptuses but not CT1 cells. Cell proliferation was reduced by BMP4 but not BMP2 supplementation. Both factors reduced IFNT mRNA abundance but had no effect on CSH1 mRNA abundance in CT1 cells. Conclusions The BMP2/4 ligand and receptor system presides within bovine trophectoderm prior to uterine attachment. BMP4 negatively impacts CT1 cell growth and both BMPs affect IFNT mRNA abundance.

  11. Basic science and spine literature document bone morphogenetic protein increases cancer risk

    Directory of Open Access Journals (Sweden)

    Nancy E Epstein

    2014-01-01

    Full Text Available Background: Increasingly, clinical articles document that bone morphogenetic protein (BMP/INFUSE: Medtronic, Memphis, TN, USA and its derivatives utilized in spinal surgery increase the risk of developing cancer. However, there is also a large body of basic science articles that also document that various types of BMP and other members of the TGF-Beta (transforming growth factor beta family promote the growth of different types of cancers. Methods: This review looks at many clinical articles citing BMP/INFUSE′s role, largely "off-label", in contributing to complications encountered during spinal surgery. Next, however, specific attention is given to the clinical and basic science literature regarding how BMP and its derivatives (e.g. members of the TGF-beta family may also impact the development of breast and other cancers. Results: Utilizing BMP/INFUSE in spine surgery increased the risk of cancers/new malignancy as documented in several studies. For example, Carragee et al. found that for single-level instrumented posterolateral fusions (PLF using high-dose rhBMP-2 (239 patients vs. autograft (control group; n = 224, the risks of new cancers at 2 and 5 years postoperatively were increased. In laboratory studies, BMP′s along with other members of the TGF-Beta family also modulated/contributed to the proliferation/differentiation of breast cancer (e.g. bone formation/turnover, breast cancer-related solid tumors, and metastases, lung, adrenal, and colon cancer. Conclusions: BMP/INFUSE when utilized clinically in spinal fusion surgery appears to promote cancer at higher rates than observed in the overall population. Furthermore, BMP and TGF-beta are correlated with increased cancer growth both in the clinic and the laboratory.

  12. Immunization with FSHβ fusion protein antigen prevents bone loss in a rat ovariectomy-induced osteoporosis model

    International Nuclear Information System (INIS)

    Highlights: •A GST-FSH fusion protein was successfully expressed in E. coli. •Immunization with GST-FSH antigen can raise high-titer anti-FSH polyclonal sera. •Anti-FSH polyclonal sera can neutralize osteoclastogenic effect of FSH in vitro. •FSH immunization can prevent bone loss in a rat osteoporosis model. -- Abstract: Osteoporosis, a metabolic bone disease, threatens postmenopausal women globally. Hormone replacement therapy (HTR), especially estrogen replacement therapy (ERT), is used widely in the clinic because it has been generally accepted that postmenopausal osteoporosis is caused by estrogen deficiency. However, hypogonadal α and β estrogen receptor null mice were only mildly osteopenic, and mice with either receptor deleted had normal bone mass, indicating that estrogen may not be the only mediator that induces osteoporosis. Recently, follicle-stimulating hormone (FSH), the serum concentration of which increases from the very beginning of menopause, has been found to play a key role in postmenopausal osteoporosis by promoting osteoclastogenesis. In this article, we confirmed that exogenous FSH can enhance osteoclast differentiation in vitro and that this effect can be neutralized by either an anti-FSH monoclonal antibody or anti-FSH polyclonal sera raised by immunizing animals with a recombinant GST-FSHβ fusion protein antigen. Moreover, immunizing ovariectomized rats with the GST-FSHβ antigen does significantly prevent trabecular bone loss and thereby enhance the bone strength, indicating that a FSH-based vaccine may be a promising therapeutic strategy to slow down bone loss in postmenopausal women

  13. Immunization with FSHβ fusion protein antigen prevents bone loss in a rat ovariectomy-induced osteoporosis model

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Wenxin; Yan, Xingrong; Du, Huicong; Cui, Jihong; Li, Liwen, E-mail: liven@nwu.edu.cn; Chen, Fulin, E-mail: chenfl@nwu.edu.cn

    2013-05-03

    Highlights: •A GST-FSH fusion protein was successfully expressed in E. coli. •Immunization with GST-FSH antigen can raise high-titer anti-FSH polyclonal sera. •Anti-FSH polyclonal sera can neutralize osteoclastogenic effect of FSH in vitro. •FSH immunization can prevent bone loss in a rat osteoporosis model. -- Abstract: Osteoporosis, a metabolic bone disease, threatens postmenopausal women globally. Hormone replacement therapy (HTR), especially estrogen replacement therapy (ERT), is used widely in the clinic because it has been generally accepted that postmenopausal osteoporosis is caused by estrogen deficiency. However, hypogonadal α and β estrogen receptor null mice were only mildly osteopenic, and mice with either receptor deleted had normal bone mass, indicating that estrogen may not be the only mediator that induces osteoporosis. Recently, follicle-stimulating hormone (FSH), the serum concentration of which increases from the very beginning of menopause, has been found to play a key role in postmenopausal osteoporosis by promoting osteoclastogenesis. In this article, we confirmed that exogenous FSH can enhance osteoclast differentiation in vitro and that this effect can be neutralized by either an anti-FSH monoclonal antibody or anti-FSH polyclonal sera raised by immunizing animals with a recombinant GST-FSHβ fusion protein antigen. Moreover, immunizing ovariectomized rats with the GST-FSHβ antigen does significantly prevent trabecular bone loss and thereby enhance the bone strength, indicating that a FSH-based vaccine may be a promising therapeutic strategy to slow down bone loss in postmenopausal women.

  14. Soy protein is beneficial but high-fat diet and voluntary running are detrimental to bone structure in mice.

    Science.gov (United States)

    Yan, Lin; Graef, George L; Nielsen, Forrest H; Johnson, LuAnn K; Cao, Jay

    2015-06-01

    Physical activity and soy protein isolate (SPI) augmentation have been reported to be beneficial for bone health. We hypothesized that combining voluntary running and SPI intake would alleviate detrimental changes in bone induced by a high-fat diet. A 2 × 2 × 2 experiment was designed with diets containing 16% or 45% of energy as corn oil and 20% SPI or casein fed to sedentary or running male C57BL/6 mice for 14 weeks. Distal femurs were assessed for microstructural changes. The high-fat diet significantly decreased trabecular number (Tb.N) and bone mineral density (BMD) and increased trabecular separation (Tb.Sp). Soy protein instead of casein, regardless of fat content, in the diet significantly increased bone volume fraction, Tb.N, connectivity density, and BMD and decreased Tb.Sp. Voluntary running, regardless of fat content, significantly decreased bone volume fraction, Tb.N, connectivity density, and BMD and increased Tb.Sp. The high-fat diet significantly decreased osteocalcin and increased tartrate-resistant acid phosphatase 5b (TRAP 5b) concentrations in plasma. Plasma concentrations of osteocalcin were increased by both SPI and running. Running alleviated the increase in TRAP 5b induced by the high-fat diet. These findings demonstrate that a high-fat diet is deleterious, and SPI is beneficial to trabecular bone properties. The deleterious effect of voluntary running on trabecular structural characteristics indicates that there may be a maximal threshold of running beyond which beneficial effects cease and detrimental effects occur. Increases in plasma osteocalcin and decreases in plasma TRAP 5b in running mice suggest that a compensatory response occurs to counteract the detrimental effects of excessive running. PMID:25957968

  15. Expression of genes for bone morphogenetic proteins BMP-2, BMP-4 and BMP-6 in various parts of the human skeleton

    Directory of Open Access Journals (Sweden)

    Włodarski Krzysztof

    2007-12-01

    Full Text Available Abstract Background Differences in duration of bone healing in various parts of the human skeleton are common experience for orthopaedic surgeons. The reason for these differences is not obvious and not clear. Methods In this paper we decided to measure by the use of real-time RT-PCR technique the level of expression of genes for some isoforms of bone morphogenetic proteins (BMPs, whose role is proven in bone formation, bone induction and bone turnover. Seven bone samples recovered from various parts of skeletons from six cadavers of young healthy men who died in traffic accidents were collected. Activity of genes for BMP-2, -4 and -6 was measured by the use of fluorescent SYBR Green I. Results It was found that expression of m-RNA for BMP-2 and BMP-4 is higher in trabecular bone in epiphyses of long bones, cranial flat bones and corpus mandibulae then in the compact bone of diaphyses of long bones. In all samples examined the expression of m-RNA for BMP-4 was higher than for BMP-2. Conclusion It was shown that m-RNA for BMP-6 is not expressed in the collected samples at all. It is postulated that differences in the level of activation of genes for BMPs is one of the important factors which determine the differences in duration of bone healing of various parts of the human skeleton.

  16. Kartogenin, transforming growth factor-β1 and bone morphogenetic protein-7 coordinately enhance lubricin accumulation in bone-derived mesenchymal stem cells.

    Science.gov (United States)

    Liu, Chun; Ma, Xueqin; Li, Tao; Zhang, Qiqing

    2015-09-01

    Osteoarthritis, a common joint degeneration, can cause breakdown of articular cartilage with the presence of lubricin metabolic abnormalities. Lubricin is a multi-level chondroprotective mucinous glycoprotein in articular joints. Joint defect and infection is elevated and accompanied by accelerated cartilage lesions involving degradation and loss of lubricin. However, a novel, heterocyclic compound called kartogenin (KGN) was discovered to stimulate chondrogenic differentiation of bone-derived mesenchymal stem cells (BMSCs). And the synergistic effect of transforming growth factor-β1 (TGF-β1) and bone morphogenetic protein-7 (BMP-7) could provoke lubricin accumulation. This paper attempted to explore the connection between accumulation of lubricin and the effect of TGF-β1, BMP-7 and/or KGN. Hence, we investigated the expression and secretion of lubricin in BMSCs treated with different combinations of TGF-β1, BMP-7, and/or KGN. Using an in vitro BMSCs system, we observed the content of lubricin from BMSCs treated with TGF-β1, BMP-7, and KGN was the highest at both the protein level and the gene level. The accumulation of lubricin was enhanced coordinately by the increase of synthesis and decrease of degradation possibly via c-Myc and adamts5 pathway. These results further suggested that supplementation of the defect parts with lubricin by using growth factors and small molecules showed a promising potential on preventing joint deterioration in patients with acquired or genetic deficiency of lubricin in the future of regenerative medicine. PMID:25857705

  17. The Use of Platelet Rich Plasma, Bone Morphogenetic Protein-2 and Different Scaffolds in Oral and Maxillofacial Surgery - Literature Review in Comparison with Own Clinical Experience

    OpenAIRE

    Karl-Heinz Schuckert; Stefan Jopp; Magdalena Osadnik

    2011-01-01

    ABSTRACT Objectives The purpose of this article was to review and critically assess the use of platelet rich plasma, recombinant human bone morphogenetic protein-2 and different scaffolds (i.e. tricalciumphosphate, polycaprolactone, demineralized bone matrix and anorganic bovine bone mineral) in oral and maxillofacial surgery comparing the relevant literature and own clinical experience. Material and Methods A literature review was conducted using MEDLINE, MEDPILOT and COCHRANE DATABASE OF SY...

  18. Pharmacological Inhibition of Protein Kinase G1 Enhances Bone Formation by Human Skeletal Stem Cells Through Activation of RhoA-Akt Signaling

    DEFF Research Database (Denmark)

    Kermani, Abbas Jafari; Siersbaek, Majken S; Chen, Li;

    2015-01-01

    for several malignant and nonmalignant conditions. We screened a library of kinase inhibitors to identify small molecules that enhance bone formation by human skeletal (stromal or mesenchymal) stem cells (hMSC). We identified H-8 (known to inhibit protein kinases A, C, and G) as a potent enhancer of...... differentiation and suggest that pharmacological inhibition of PRKG1 in hMSC implanted at the site of bone defect can enhance bone regeneration. Stem Cells 2015....

  19. DSP-PP precursor protein cleavage by tolloid-related-1 protein and by bone morphogenetic protein-1.

    Directory of Open Access Journals (Sweden)

    Helena H Ritchie

    Full Text Available Dentin sialoprotein (DSP and phosphophoryn (PP, acidic proteins critical to dentin mineralization, are translated from a single transcript as a DSP-PP precursor that undergoes specific proteolytic processing to generate DSP and PP. The cleavage mechanism continues to be controversial, in part because of the difficulty of obtaining DSP-PP from mammalian cells and dentin matrix. We have infected Sf9 cells with a recombinant baculovirus to produce large amounts of secreted DSP-PP(240, a variant form of rat DSP-PP. Mass spectrometric analysis shows that DSP-PP(240 secreted by Sf9 cells undergoes specific cleavage at the site predicted from the N-terminal sequence of PP extracted from dentin matrix: SMQG(447↓D(448DPN. DSP-PP(240 is cleaved after secretion by a zinc-dependent activity secreted by Sf9 cells, generating DSP(430 and PP(240 products that are stable in the medium. DSP-PP processing activity is constitutively secreted by Sf9 cells, but secretion is diminished 3 days after infection. Using primers corresponding to the highly conserved catalytic domain of Drosophila melanogaster tolloid (a mammalian BMP1 homolog, we isolated a partial cDNA for a Spodopotera frugiperda tolloid-related-1 protein (TLR1 that is 78% identical to Drosophila TLR1 but only 65% identical to Drosophila tolloid. Tlr1 mRNA decreased rapidly in Sf9 cells after baculovirus infection and was undetectable 4d after infection, paralleling the observed decrease in secretion of the DSP-PP(240 processing activity after infection. Human BMP1 is more similar to Sf9 and Drosophila TLR1 than to tolloid, and Sf9 TLR1 is more similar to BMP1 than to other mammalian homologs. Recombinant human BMP1 correctly processed baculovirus-expressed DSP-PP(240 in a dose-dependent manner. Together, these data suggest that the physiologically accurate cleavage of mammalian DSP-PP(240 in the Sf9 cell system represents the action of a conserved processing enzyme and support the proposed role of BMP

  20. Icariine stimulates proliferation and differentiation of human osteoblasts by increasing production of bone morphogenetic protein 2

    Institute of Scientific and Technical Information of China (English)

    YIN Xiao-xue; CHEN Zhong-qiang; LIU Zhong-jun; MA Qing-jun; DANG Geng-ting

    2007-01-01

    Background lcariine is a flavonoid isolated from a traditional Chinese medicine Epimedium pubescens and is the main active compound of it. Recently, Epimedium pubescens was found to have a therapeutic effect on osteoporosis. But the mechanism is unclear. The aim of the study was to research the effect of lcariine on the proliferation and differentiation of human osteoblasts.Methods Human osteoblasts were obtained byinducing human marrow mesenchymal stem cells (hMSCs) directionally and were cultured in the presence of various concentrations of lcariine. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test was used to observe the effect of lcariine on cell proliferation. The activity of alkaline phosphatase (ALP) and the amount of calcified nodules were assayed to observe the effect on cell differentiation.The expression of bone morphogenetic protein 2 (BMP-2) mRNA was detected by reverse transcriptase-polymerase chain reaction (RT-PCR).Results Icariine (20 μg/ml) increased significantly the proliferation of human osteoblasts. And, lcariine (10 μg/ml and 20μg/ml) increased the activity of ALP and the amount of calcified nodules of human osteoblasts significantly (P<0.05).BMP-2 mRNA synthesis was elevated significantly in response to lcariine (20 μg/ml).Conclusions lcariine has a direct stimulatory effect on the proliferation and differentiation of cultured human osteoblastcells in vitro, which may be mediated by increasing production of BMP-2 in osteoblasts.

  1. Bone Morphogenetic Proteins stimulate mammary fibroblasts to promote mammary carcinoma cell invasion.

    Directory of Open Access Journals (Sweden)

    Philip Owens

    Full Text Available Bone Morphogenetic Proteins (BMPs are secreted cytokines that are part of the Transforming Growth Factor β (TGFβ superfamily. BMPs have been shown to be highly expressed in human breast cancers, and loss of BMP signaling in mammary carcinomas has been shown to accelerate metastases. Interestingly, other work has indicated that stimulation of dermal fibroblasts with BMP can enhance secretion of pro-tumorigenic factors. Furthermore, treatment of carcinoma-associated fibroblasts (CAFs derived from a mouse prostate carcinoma with BMP4 was shown to stimulate angiogenesis. We sought to determine the effect of BMP treatment on mammary fibroblasts. A large number of secreted pro-inflammatory cytokines and matrix-metallo proteases (MMPs were found to be upregulated in response to BMP4 treatment. Fibroblasts that were stimulated with BMP4 were found to enhance mammary carcinoma cell invasion, and these effects were inhibited by a BMP receptor kinase antagonist. Treatment with BMP in turn elevated pro-tumorigenic secreted factors such as IL-6 and MMP-3. These experiments demonstrate that BMP may stimulate tumor progression within the tumor microenvironment.

  2. Bone morphogenetic protein-2 is a negative regulator of hepatocyte proliferation downregulated in the regenerating liver

    Institute of Scientific and Technical Information of China (English)

    Cui-Ping Xu; Wen-Min Ji; Gijs R van den Brink; Maikel P Peppelenbosch

    2006-01-01

    AIM: To characterize the expression and dynamic changes of bone morphogenetic protein (BMP)-2 in hepatocytes in the regenerating liver in rats after partial hepatectomy (PH), and examine the effects of BMP-2 on proliferation of human Huh7 hepatoma cells.METHODS: Fifty-four adult male Wistar rats were randomly divided into three groups: A normal control (NC) group, a partial hepatectomized (PH) group and a sham operated (SO) group. To study the effect of liver regeneration on BMP-2 expression, rats were sacrificed before and at different time points after PH or the sham intervention (6, 12, 24 and 48 h). For each time point, six rats were used in parallel. Expression and distribution of BMP-2 protein were determined in regenerating liver tissue by Western blot analysis and immunohistochemistry. Effects of BMP-2 on cell proliferation of human Huh7 hepatoma cell line were assessed using an MTT assay.RESULTS: In the normal liver strong BMP-2 expression was observed around the central and portal veins. The expression of BMP-2 decreased rapidly as measured by both immunohistochemistry and Western blot analysis.This decrease was at a maximum of 3.22 fold after 12 h and returned to normal levels at 48 h after PH. No significant changes in BMP-2 immunoreactivity were observed in the SO group. BMP-2 inhibited serum induced Huh7 cell proliferation.CONCLUSION: BMP-2 is expressed in normal adult rat liver and negatively regulates hepatocyte proliferation.The observed down regulation of BMP-2 following partial hepatectomy suggests that such down regulation may be necessary for hepatocyte proliferation.

  3. Hypermethylation leads to bone morphogenetic protein 6 downregulation in hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Yinghua He

    Full Text Available BACKGROUND: In the liver, bone morphogenetic protein 6 (BMP-6 maintains balanced iron metabolism. However, the mechanism that underlies greater BMP-6 expression in hepatocellular carcinoma (HCC tissue than adjacent non-cancerous tissue is unclear. This study sought to investigate the epigenetic mechanisms of BMP-6 expression by analysing the relationship between the DNA methylation status of BMP-6 and the expression of BMP-6. METHODS: Methylation-specific polymerase chain reaction (PCR, bisulphite sequencing PCR, the MethyLight assay, and quantitative real-time PCR were performed to examine BMP-6 methylation and mRNA expression levels. Immunohistochemistry (IHC was performed on tissue arrays to evaluate the BMP-6 protein level. RESULTS: BMP-6 mRNA expression was approximately 84.09% lower in HCC tissues than in adjacent non-cancerous tissues, and this low level of expression was associated with a poor prognosis. Moreover, the hypermethylation observed in HCC cell lines and HCC tissues was correlated with the BMP-6 mRNA expression level, and this correlation was validated following treatment with 5-aza-CdR, a demethylation agent. In addition, BMP-6 DNA methylation was upregulated by 68.42% in 114 clinical HCC tissue samples compared to adjacent normal tissues, whereas the BMP-6 staining intensity was downregulated by 77.03% in 75 clinical HCC tissue samples in comparison to adjacent normal tissues. Furthermore, elevated expression of BMP-6 in HCC cell lines inhibited cell colony formation. CONCLUSIONS: Our results suggest that BMP-6 CpG island hypermethylation leads to decreased BMP-6 expression in HCC tissues.

  4. Bone morphogenetic protein 15 may promote follicle selection in the hen.

    Science.gov (United States)

    Stephens, C S; Johnson, P A

    2016-09-01

    In the hen, optimal ovulation rate depends on selection of a single follicle into the pre-ovulatory hierarchy. Follicle selection is associated with increased oocyte growth and changes in gene expression in granulosa cells surrounding the oocyte, in preparation for ovulation. This study investigated the expression, function and regulation of bone morphogenetic protein-15 (BMP15) during follicle development in the hen. BMP15 mRNA expression was analyzed in the ooplasm and granulosa cells of 3mm follicles and was confirmed to be primarily in the ooplasm. BMP15 was detected by immunoblotting in 6 and 8mm follicles near the time of follicle selection. Expression of mRNA for BMP15 receptors (BMPR1B and BMPR2) in granulosa cells increased with follicle size, indicating that BMP15 may play an important role around follicle selection. The function of BMP15 was examined by culturing granulosa cells from 3-5mm and 6-8mm follicles with recombinant human BMP15 (rhBMP15). BMP15 increased expression of follicle stimulating hormone receptor (FSHR) mRNA and decreased anti-Müllerian hormone (AMH) mRNA and occludin (OCLN), factors associated with follicle maturation and growth in the hen. Hormonal regulation of BMP15 was assessed by whole follicle culture with estradiol (E2) which increased BMP15 mRNA expression. The distinct expression pattern of BMP15 and its receptors, coupled with the effects of BMP15 to increase FSHR mRNA and decrease AMH mRNA and OCLN mRNA and protein expression suggest that the oocyte may have a role in follicle selection in the chicken. PMID:27340039

  5. The Use of Platelet Rich Plasma, Bone Morphogenetic Protein-2 and Different Scaffolds in Oral and Maxillofacial Surgery - Literature Review in Comparison with Own Clinical Experience

    Directory of Open Access Journals (Sweden)

    Karl-Heinz Schuckert

    2011-01-01

    Full Text Available Objectives: The purpose of this article was to review and critically assess the use of platelet rich plasma, recombinant human bone morphogenetic protein-2 and different scaffolds (i.e. tricalciumphosphate, polycaprolactone, demineralized bone matrix and anorganic bovine bone mineral in oral and maxillofacial surgery comparing the relevant literature and own clinical experience.Material and Methods: A literature review was conducted using MEDLINE, MEDPILOT and COCHRANE DATABASE OF SYSTEMATIC REVIEWS. It concentrated on manuscripts and overviews published in the last five years (2006-2010. The key terms employed were platelet rich plasma, bone morphogenetic proteins and their combinations with the above mentioned scaffolds. The results of clinical studies and animal trials were especially emphasized. The statements from the literature were compared with authors’ own clinical data.Results: New publications and overviews demonstrate the advantages of platelet rich plasma in bone regeneration. The results from the literature review were discussed and compared with the publications detailing authors’ own experiences.Conclusions: A favourable outcome concerning newly grown bone was achieved combining platelet rich plasma in addition to optimal matrices with or without recombinant human bone morphogenetic protein-2, depending on the clinical case. As a consequence, the paradigm shift from transplantation of autogenous bone to bone tissue engineering appears promising.

  6. Injectable calcium phosphate cement and fibrin sealant recombined human bone morphogenetic protein-2 composite in vertebroplasty: an animal study

    OpenAIRE

    Qian, Guang; Dong, Youhai; Yang, Wencheng; Wang, Minghai

    2012-01-01

    Polymethylmethacrylate (PMMA) is currently the most commonly-used material, but it may induce adjacent vertebral fracture due to low degradation and high strength. Our study evaluated the feasibility of injectable calcium phosphate cement (ICPC) and fibrin sealant (FS) as an injectable compound carrier of human bone morphogenetic protein-2 (rhBMP-2) in New Zealand rabbits for vertebroplasty. Results showed ICPC/FS/rhBMP-2 composites induced alkaline phosphatase most effectively at 2 and 4 wee...

  7. Bone Morphogenetic Protein-2-Induced Signaling and Osteogenesis Is Regulated by Cell Shape, RhoA/ROCK, and Cytoskeletal Tension

    OpenAIRE

    Wang, Yang-Kao; Yu, Xiang; Cohen, Daniel M.; Wozniak, Michele A.; Yang, Michael T.; Gao, Lin; Eyckmans, Jeroen; Chen, Christopher S.

    2011-01-01

    Osteogenic differentiation of human mesenchymal stem cells (hMSCs) is classically thought to be mediated by different cytokines such as the bone morphogenetic proteins (BMPs). Here, we report that cell adhesion to extracellular matrix (ECM), and its effects on cell shape and cytoskeletal mechanics, regulates BMP-induced signaling and osteogenic differentiation of hMSCs. Using micropatterned substrates to progressively restrict cell spreading and flattening against ECM, we demonstrated that BM...

  8. Metformin revisited: Does this regulator of AMP-activated protein kinase secondarily affect bone metabolism and prevent diabetic osteopathy

    OpenAIRE

    McCarthy, Antonio Desmond; Cortizo, Ana María; Sedlinsky, Claudia

    2016-01-01

    Patients with long-term type 1 and type 2 diabetes mellitus (DM) can develop skeletal complications or “diabetic osteopathy”. These include osteopenia, osteoporosis and an increased incidence of low-stress fractures. In this context, it is important to evaluate whether current anti-diabetic treatments can secondarily affect bone metabolism. Adenosine monophosphate-activated protein kinase (AMPK) modulates multiple metabolic pathways and acts as a sensor of the cellular energy status; recent e...

  9. The bone morphogenetic protein receptor-1A pathway is required for lactogenic differentiation of mammary epithelial cells in vitro

    OpenAIRE

    Perotti, C.; Karayazi, Ö.; Moffat, S.; Shemanko, C. S.

    2012-01-01

    Bone morphogenetic proteins (BMPs) have been implicated in the control of proliferation, tissue formation, and differentiation. BMPs regulate the biology of stem and progenitor cells and can promote cellular differentiation, depending on the cell type and context. Although the BMP pathway is known to be involved in early embryonic development of the mammary gland via mesenchymal cells, its role in later epithelial cellular differentiation has not been examined. The majority of the mammary gla...

  10. A CASE OF EXTRA ARTICULAR ANKYLOSIS OF HIP DUE TO HETEROTOPIC OSSIFICATION TREATED BY EXCISION OF BONE BLOCK

    Directory of Open Access Journals (Sweden)

    Srinivas

    2013-12-01

    Full Text Available Heterotrophic ossification (HO is the formation of lamellar bone in soft tissue. HO is a common complication in patients with spinal cord and head injury. HO is no trivial complication. A limitation of functional range of joint motion has serious consequences for the activities of daily living of people who are already severely incapacitated because of their original injury. Movement limitation of the hip joint is challenging to treat. Surgical excision of bone blo ck can be a formidable exercise , but will give gratifying results if done carefully.We report a case of HO involving left hip joint following head injury. A twenty - five year old male patient sustained head injury one and half year s ago. At that time there was no evidence of injury to hip joints. He was noted to have severe restriction of range of motion (ROM of left hip joint with a mass around the hip joint.Radiographs and 3D CT reconstruction revealed HO involving anterior , lateral , posterior and medial aspects of left hip joint ensheathing femoral neurovascular bundle with extra - articular HO. The joint space was well preserved. Blood investigations showed erythrocyte sedimentation rate (ESR alkaline phosphatase levels within normal limits.After complete evaluation , surgical excision of bone block was done and functional range of movements of left hip achieved. KEY WORDS : heterotrophic ossification , hip joint , spinal cord injury , head injury ; indomethacin ; BMP - bone morphogenic protein ; range of motion

  11. Regeneration of a Compromized Masticatory Unit in a Large Mandibular Defect Caused by a Huge Solitary Bone Cyst: A Case Report and Review of the Regenerative Literature.

    Science.gov (United States)

    Muhammad, Joseph Kamal; Akhtar, Shakeel; Abu Al Nassar, Hiba; Al Khoury, Nabil

    2016-07-01

    The reconstructive options for large expansive cystic lesion affecting the jaws are many. The first stage of treatment may involve enucleation or marsupialization of the cyst. Attempted reconstruction of large osseous defects arising from the destruction of local tissue can present formidable challenges. The literature reports the use of bone grafts, free tissue transfer, bone morphogenic protein and reconstruction plates to assist in the healing and rehabilitation process. The management of huge mandibular cysts needs to take into account the preservation of existing intact structures, removal of the pathology and the reconstructive objectives which focus both on aesthetic and functional rehabilitation. The planning and execution of such treatment requires not only the compliance of the patient and family but also their assent as customers with a voice in determining their surgical destiny. The authors would like to report a unique case of a huge solitary bone cyst that had reduced the ramus, angle and part of the body of one side of the mandible to a pencil-thin-like strut of bone. A combination of decompression through marsupialization, serial packing, and the fabrication of a custom made obturator facilitated the regeneration of the myo-osseous components of the masticatory unit of this patient. Serial CT scans showed evidence of concurrent periosteal and endosteal bone formation and, quite elegantly, the regeneration of the first branchial arch components of the right myo-osseous masticatory complex. The microenvironmental factors that may have favored regeneration of these complex structures are discussed. PMID:27408457

  12. Facilitated receptor-recognition and enhanced bioactivity of bone morphogenetic protein-2 on magnesium-substituted hydroxyapatite surface

    Science.gov (United States)

    Huang, Baolin; Yuan, Yuan; Li, Tong; Ding, Sai; Zhang, Wenjing; Gu, Yuantong; Liu, Changsheng

    2016-04-01

    Biomaterial surface functionalized with bone morphogenetic protein-2 (BMP-2) is a promising approach to fabricating successful orthopedic implants/scaffolds. However, the bioactivity of BMP-2 on material surfaces is still far from satisfactory and the mechanism of related protein-surface interaction remains elusive. Based on the most widely used bone-implants/scaffolds material, hydroxyapatite (HAP), we developed a matrix of magnesium-substituted HAP (Mg-HAP, 2.2 at% substitution) to address these issues. Further, we investigated the adsorption dynamics, BMPRs-recruitment, and bioactivity of recombinant human BMP-2 (rhBMP-2) on the HAP and Mg-HAP surfaces. To elucidate the mechanism, molecular dynamic simulations were performed to calculate the preferred orientations, conformation changes, and cysteine-knot stabilities of adsorbed BMP-2 molecules. The results showed that rhBMP-2 on the Mg-HAP surface exhibited greater bioactivity, evidenced by more facilitated BMPRs-recognition and higher ALP activity than on the HAP surface. Moreover, molecular simulations indicated that BMP-2 favoured distinct side-on orientations on the HAP and Mg-HAP surfaces. Intriguingly, BMP-2 on the Mg-HAP surface largely preserved the active protein structure evidenced by more stable cysteine-knots than on the HAP surface. These findings explicitly clarify the mechanism of BMP-2-HAP/Mg-HAP interactions and highlight the promising application of Mg-HAP/BMP-2 matrixes in bone regeneration implants/scaffolds.

  13. Osteoblast Differentiation and Bone: Relevant proteins, regulatory processes and the vascular connection

    NARCIS (Netherlands)

    R.D.A.M. Alves (Rodrigo)

    2012-01-01

    textabstractBone is a highly specialized form of connective tissue present in most vertebrate animals as part of the endoskeleton. Structurally speaking, bone is mainly constituted by an organic extracellular matrix (ECM) hardened by deposited mineral. The blending between the organic and inorganic

  14. Low dose BMP-2 treatment for bone repair using a PEGylated fibrinogen hydrogel matrix.

    Science.gov (United States)

    Ben-David, Dror; Srouji, Samer; Shapira-Schweitzer, Keren; Kossover, Olga; Ivanir, Eran; Kuhn, Gisela; Müller, Ralph; Seliktar, Dror; Livne, Erella

    2013-04-01

    Bone repair strategies utilizing resorbable biomaterial implants aim to stimulate endogenous cells in order to gradually replace the implant with functional repair tissue. These biomaterials should therefore be biodegradable, osteoconductive, osteoinductive, and maintain their integrity until the newly formed host tissue can contribute proper function. In recent years there has been impressive clinical outcomes for this strategy when using osteoconductive hydrogel biomaterials in combination with osteoinductive growth factors such as human recombinant bone morphogenic protein (hrBMP-2). However, the success of hrBMP-2 treatments is not without risks if the factor is delivered too rapidly and at very high doses because of a suboptimal biomaterial. Therefore, the aim of this study was to evaluate the use of a PEGylated fibrinogen (PF) provisional matrix as a delivery system for low-dose hrBMP-2 treatment in a critical size maxillofacial bone defect model. PF is a semi-synthetic hydrogel material that can regulate the release of physiological doses of hrBMP-2 based on its controllable physical properties and biodegradation. hrBMP-2 release from the PF material and hrBMP-2 bioactivity were validated using in vitro assays and a subcutaneous implantation model in rats. Critical size calvarial defects in mice were treated orthotopically with PF containing 8 μg/ml hrBMP-2 to demonstrate the capacity of these bioactive implants to induce enhanced bone formation in as little as 6 weeks. Control defects treated with PF alone or left empty resulted in far less bone formation when compared to the PF/hrBMP-2 treated defects. These results demonstrate the feasibility of using a semi-synthetic biomaterial containing small doses of osteoinductive hrBMP-2 as an effective treatment for maxillofacial bone defects. PMID:23375953

  15. Inhibitory Smads and bone morphogenetic protein (BMP) modulate anterior photoreceptor cell number during planarian eye regeneration.

    Science.gov (United States)

    González-Sastre, Alejandro; Molina, Ma Dolores; Saló, Emili

    2012-01-01

    Planarians represent an excellent model to study the processes of body axis and organ re-specification during regeneration. Previous studies have revealed a conserved role for the bone morphogenetic protein (BMP) pathway and its intracellular mediators Smad1/5/8 and Smad4 in planarian dorsoventral (DV) axis re-establishment. In an attempt to gain further insight into the role of this signalling pathway in planarians, we have isolated and functionally characte-rized the inhibitory Smads (I-Smads) in Schmidtea mediterranea. Two I-Smad homologues have been identified: Smed-smad6/7-1 and Smed-smad6/7-2. Expression of smad6/7-1 was detected in the parenchyma, while smad6/7-2 was found to be ex-pressed in the central nervous system and the eyes. Neither single smad6/7-1 and smad6/7-2 nor double smad6/7-1,-2 silencing gave rise to any apparent disruption of the DV axis. However, both regenerating and intact smad6/7-2 (RNAi) planarians showed defects in eye morphogenesis and displayed small, rounded eyes that lacked the anterior subpopulation of photoreceptor cells. The number of pigment cells was also reduced in these animals at later stages of regeneration. In contrast, after low doses of Smed-bmp(RNAi), planarians regenerated larger eyes in which the anterior subpopulation of photoreceptor cells was expanded. Our results suggest that Smed-smad6/7-2 and Smed-bmp control the re-specification and maintenance of anterior photoreceptor cell number in S. mediterranea. PMID:22451003

  16. Bone morphogenetic protein 15 in the pro-mature complex form enhances bovine oocyte developmental competence.

    Directory of Open Access Journals (Sweden)

    Jaqueline Sudiman

    Full Text Available Developmental competence of in vitro matured (IVM oocytes needs to be improved and this can potentially be achieved by adding recombinant bone morphogenetic protein 15 (BMP15 or growth differentiation factor (GDF9 to IVM. The aim of this study was to determine the effect of a purified pro-mature complex form of recombinant human BMP15 versus the commercially available bioactive forms of BMP15 and GDF9 (both isolated mature regions during IVM on bovine embryo development and metabolic activity. Bovine cumulus oocyte complexes (COCs were matured in vitro in control medium or treated with 100 ng/ml pro-mature BMP15, mature BMP15 or mature GDF9 +/- FSH. Metabolic measures of glucose uptake and lactate production from COCs and autofluorescence of NAD(PH, FAD and GSH were measured in oocytes after IVM. Following in vitro fertilisation and embryo culture, day 8 blastocysts were stained for cell numbers. COCs matured in medium +/- FSH containing pro-mature BMP15 displayed significantly improved blastocyst development (57.7±3.9%, 43.5±4.2% compared to controls (43.3±2.4%, 28.9±3.7% and to mature GDF9+FSH (36.1±3.0%. The mature form of BMP15 produced intermediate levels of blastocyst development; not significantly different to control or pro-mature BMP15 levels. Pro-mature BMP15 increased intra-oocyte NAD(PH, and reduced glutathione (GSH levels were increased by both forms of BMP15 in the absence of FSH. Exogenous BMP15 in its pro-mature form during IVM provides a functional source of oocyte-secreted factors to improve bovine blastocyst development. This form of BMP15 may prove useful for improving cattle and human artificial reproductive technologies.

  17. Failure of bone morphogenetic protein receptor trafficking in pulmonary arterial hypertension: potential for rescue.

    Science.gov (United States)

    Sobolewski, Anastasia; Rudarakanchana, Nung; Upton, Paul D; Yang, Jun; Crilley, Trina K; Trembath, Richard C; Morrell, Nicholas W

    2008-10-15

    Heterozygous germline mutations in the gene encoding the bone morphogenetic protein type II receptor cause familial pulmonary arterial hypertension (PAH). We previously demonstrated that the substitution of cysteine residues in the ligand-binding domain of this receptor prevents receptor trafficking to the cell membrane. Here we demonstrate the potential for chemical chaperones to rescue cell-surface expression of mutant BMPR-II and restore function. HeLa cells were transiently transfected with BMPR-II wild type or mutant (C118W) receptor constructs. Immunolocalization studies confirmed the retention of the cysteine mutant receptor mainly in the endoplasmic reticulum. Co-immunoprecipitation studies of Myc-tagged BMPR-II confirmed that the cysteine-substituted ligand-binding domain mutation, C118W, is able to associate with BMP type I receptors. Furthermore, following treatment with a panel of chemical chaperones (thapsigargin, glycerol or sodium 4-phenylbutyrate), we demonstrated a marked increase in cell-surface expression of mutant C118W BMPR-II by FACS analysis and confocal microscopy. These agents also enhanced the trafficking of wild-type BMPR-II, though to a lesser extent. Increased cell-surface expression of mutant C118W BMPR-II was associated with enhanced Smad1/5 phosphorylation in response to BMPs. These findings demonstrate the potential for rescue of mutant BMPR-II function from the endoplasmic reticulum. For the C118W mutation in the ligand-binding domain of BMPR-II, cell-surface rescue leads to at least partial restoration of BMP signalling. We conclude that enhancement of cell-surface trafficking of mutant and wild-type BMPR-II may have therapeutic potential in familial PAH. PMID:18647753

  18. Iron carrier proteins facilitate engraftment of allogeneic bone marrow and enduring hemopoietic chimerism in the lethally irradiated host

    International Nuclear Information System (INIS)

    Cell-free supernatants of rabbit bone marrow were fractionated, separated, and purified by Ultrogel and Superose chromatography. A single fraction promoted engraftment of allogeneic bone marrow and enduring hemopoietic chimerism across the H-2 barrier in lethally irradiated mice. This 'bio-active' fraction, analyzed by reducing SDS-PAGE electrophoresis, and transblotted on PVDF membrane, and purified by reverse-phase HPLC and SDS-PAGE electrophoresis yielded a main prealbumin band that when examined for primary structure by Edman degradation, proved to be rabbit transferrin. This was also attested by highly specific precipitation of the prealbumin band with polyclonal antibodies to rabbit transferrin. Iron-saturated human transferrin, lactotransferrin, and egg transferrin (conalbumin) were assayed in irradiated C57BL/6 mice infused with bone marrow from histoincompatible BALB/c donors. Mice treated with iron-loaded transferrins survive and develop enduring allogeneic chimerism with no discernible signs of graft-versus-host disease. Iron carrier proteins thus provide an unique means of achieving successful engraftment of allogeneic bone marrow in immunologically hostile murine H-2 combinations

  19. Bone morphogenetic protein-9 suppresses growth of myeloma cells by signaling through ALK2 but is inhibited by endoglin

    International Nuclear Information System (INIS)

    Multiple myeloma is a malignancy of plasma cells predominantly located in the bone marrow. A number of bone morphogenetic proteins (BMPs) induce apoptosis in myeloma cells in vitro, and with this study we add BMP-9 to the list. BMP-9 has been found in human serum at concentrations that inhibit cancer cell growth in vitro. We here show that the level of BMP-9 in serum was elevated in myeloma patients (median 176 pg/ml, range 8–809) compared with healthy controls (median 110 pg/ml, range 8–359). BMP-9 was also present in the bone marrow and was able to induce apoptosis in 4 out of 11 primary myeloma cell samples by signaling through ALK2. BMP-9-induced apoptosis in myeloma cells was associated with c-MYC downregulation. The effects of BMP-9 were counteracted by membrane-bound (CD105) or soluble endoglin present in the bone marrow microenvironment, suggesting a mechanism for how myeloma cells can evade the tumor suppressing activity of BMP-9 in multiple myeloma

  20. Sustained and promoter dependent bone morphogenetic protein expression by rat mesenchymal stem cells after BMP-2 transgene electrotransfer

    Directory of Open Access Journals (Sweden)

    E Ferreira

    2012-07-01

    Full Text Available Transplantation of mesenchymal stem cells (MSCs with electrotransferred bone morphogenetic protein-2 (BMP-2 transgene is an attractive therapeutic modality for the treatment of large bone defects: it provides both stem cells with the ability to form bone and an effective bone inducer while avoiding viral gene transfer. The objective of the present study was to determine the influence of the promoter driving the human BMP-2 gene on the level and duration of BMP-2 expression after transgene electrotransfer into rat MSCs. Cytomegalovirus, elongation factor-1α, glyceraldehyde 3-phosphate dehydrogenase, and beta-actin promoters resulted in a BMP-2 secretion rate increase of 11-, 78-, 66- and 36-fold over respective controls, respectively. In contrast, the osteocalcin promoter had predictable weak activity in undifferentiated MSCs but induced the strongest BMP-2 secretion rates in osteoblastically-differentiated MSCs. Regardless of the promoter driving the transgene, a plateau of maximal BMP-2 secretion persisted for at least 21 d after the hBMP-2 gene electrotransfer. The present study demonstrates the feasibility of gene electrotransfer for efficient BMP-2 transgene delivery into MSCs and for a three-week sustained BMP-2 expression. It also provides the first in vitro evidence for a safe alternative to viral methods that permit efficient BMP-2 gene delivery and expression in MSCs but raise safety concerns that are critical when considering clinical applications.

  1. Depot injectable biodegradable nanoparticles loaded with recombinant human bone morphogenetic protein-2: preparation, characterization, and in vivo evaluation

    Directory of Open Access Journals (Sweden)

    Hassan AH

    2015-07-01

    Full Text Available Ali Habiballah Hassan,1 Khaled Mohamed Hosny,2,3 Zuahir A Murshid,1 Adel Alhadlaq,4 Ahmed Alyamani,5 Ghada Naguib6 1Department of Orthodontics, Faculty of Dentistry, 2Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; 3Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni Suef University, Beni Suef, Egypt; 4Department of Pediatric Dentistry and Orthodontics, College of Dentistry, King Saud University, Riyadh, 5Department of Oral Surgery, 6Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia Objective: The aim of this study is to utilize the biocompatibility characteristics of biodegradable polymers, viz, poly lactide-co-glycolide (PLGA and polycaprolactone (PCL, to prepare sustained-release injectable nanoparticles (NPs of bone morphogenetic protein-2 (BMP-2 for the repair of alveolar bone defects in rabbits. The influence of formulation parameters on the functional characteristics of the prepared NPs was studied to develop a new noninvasive injectable recombinant human BMP-2 (rhBMP-2 containing grafting material for the repair of alveolar bone clefts.Materials and methods: BMP-2 NPs were prepared using a water-in-oil-in-water double-emulsion solvent evaporation/extraction method. The influence of molar ratio of PLGA to PCL on a suitable particle size, encapsulation efficiency, and sustained drug release was studied. Critical size alveolar defects were created in the maxilla of 24 New Zealand rabbits divided into three groups, one of them treated with 5 µg/kg of rhBMP-2 NP formulations.Results: The results found that NPs formula prepared using blend of PLGA and PCL in 4:2 (w/w ratio showed the best sustained-release pattern with lower initial burst, and showed up to 62.7% yield, 64.5% encapsulation efficiency, 127 nm size, and more than 90% in vitro release. So, this formula was selected for

  2. Self-construction of supramolecular polyrotaxane films by an electrotriggered morphogen-driven process.

    Science.gov (United States)

    Rydzek, Gaulthier; Garnier, Tony; Schaaf, Pierre; Voegel, Jean-Claude; Senger, Bernard; Frisch, Benoît; Haikel, Youssef; Petit, Corinne; Schlatter, Guy; Jierry, Loïc; Boulmedais, Fouzia

    2013-08-27

    The design of films using a one-pot process has recently attracted increasing interest in the field of polymer thin film formation. Herein we describe the preparation of one-pot supramolecular polyrotaxane (PRX) films using the morphogen-driven self-construction process. This one-pot buildup strategy where the film growth is triggered by the electrochemical formation and diffusion of a catalyst in close vicinity of the substrate has recently been introduced by our group. A one-pot mixture was used that contained (i) poly(acrylic acid) (PAA) functionalized by azide groups grafted on the polymer chain through oligo(ethylene glycol) (EG) arms, leading to PAA-EG13-N3, (ii) cyclodextrins (α and β CD), as macrocycles that can be threaded along EG arms, (iii) alkyne-functionalized stoppers (ferrocene or adamantane), to cap the PRX assembly by click chemistry, and (iv) copper sulfate. The one-pot mixture solution was brought into contact with a gold electrode. Cu(I), the morphogen, was generated electrochemically from Cu(II) at the electrode/one-pot solution interface. This electrotriggered click reaction leads to the capping of polypseudorotaxane yielding to PRXs. The PRXs can self-assemble through lateral supramolecular interactions to form aggregates and ensure the cohesion of the film. The film buildup was investigated using different types of CD and alkyne functionalized stoppers. Supramolecular PRX aggregates were characterized by X-ray diffraction measurements. The film topographies were imaged by atomic force microscopy. The influence of the concentration in CD and the presence of a competitor were studied as well. The stability of the resulting film was tested in contact with 8 M urea and during the electrochemical oxidation of ferrocene. PMID:23895332

  3. 5-Azacytidine-induced protein 2 (AZI2) regulates bone mass by fine-tuning osteoclast survival.

    Science.gov (United States)

    Maruyama, Kenta; Fukasaka, Masahiro; Uematsu, Satoshi; Takeuchi, Osamu; Kondo, Takeshi; Saitoh, Tatsuya; Martino, Mikaël M; Akira, Shizuo

    2015-04-10

    5-Azacytidine-induced protein 2 (AZI2) is a TNF receptor (TNFR)-associated factor family member-associated NF-κB activator-binding kinase 1-binding protein that regulates the production of IFNs. A previous in vitro study showed that AZI2 is involved in dendritic cell differentiation. However, the roles of AZI2 in immunity and its pleiotropic functions are unknown in vivo. Here we report that AZI2 knock-out mice exhibit normal dendritic cell differentiation in vivo. However, we found that adult AZI2 knock-out mice have severe osteoporosis due to increased osteoclast longevity. We revealed that the higher longevity of AZI2-deficient osteoclasts is due to an augmented activation of proto-oncogene tyrosine-protein kinase Src (c-Src), which is a critical player in osteoclast survival. We found that AZI2 inhibits c-Src activity by regulating the activation of heat shock protein 90 (Hsp90), a chaperone involved in c-Src dephosphorylation. Furthermore, we demonstrated that AZI2 indirectly inhibits c-Src by interacting with the Hsp90 co-chaperone Cdc37. Strikingly, administration of a c-Src inhibitor markedly prevented bone loss in AZI2 knock-out mice. Together, these findings indicate that AZI2 regulates bone mass by fine-tuning osteoclast survival. PMID:25691576

  4. 5-Azacytidine-induced Protein 2 (AZI2) Regulates Bone Mass by Fine-tuning Osteoclast Survival*

    Science.gov (United States)

    Maruyama, Kenta; Fukasaka, Masahiro; Uematsu, Satoshi; Takeuchi, Osamu; Kondo, Takeshi; Saitoh, Tatsuya; Martino, Mikaël M.; Akira, Shizuo

    2015-01-01

    5-Azacytidine-induced protein 2 (AZI2) is a TNF receptor (TNFR)-associated factor family member-associated NF-κB activator-binding kinase 1-binding protein that regulates the production of IFNs. A previous in vitro study showed that AZI2 is involved in dendritic cell differentiation. However, the roles of AZI2 in immunity and its pleiotropic functions are unknown in vivo. Here we report that AZI2 knock-out mice exhibit normal dendritic cell differentiation in vivo. However, we found that adult AZI2 knock-out mice have severe osteoporosis due to increased osteoclast longevity. We revealed that the higher longevity of AZI2-deficient osteoclasts is due to an augmented activation of proto-oncogene tyrosine-protein kinase Src (c-Src), which is a critical player in osteoclast survival. We found that AZI2 inhibits c-Src activity by regulating the activation of heat shock protein 90 (Hsp90), a chaperone involved in c-Src dephosphorylation. Furthermore, we demonstrated that AZI2 indirectly inhibits c-Src by interacting with the Hsp90 co-chaperone Cdc37. Strikingly, administration of a c-Src inhibitor markedly prevented bone loss in AZI2 knock-out mice. Together, these findings indicate that AZI2 regulates bone mass by fine-tuning osteoclast survival. PMID:25691576

  5. Mandibular defect reconstruction using three-dimensional polycaprolactone scaffold in combination with platelet-rich plasma and recombinant human bone morphogenetic protein-2: de novo synthesis of bone in a single case.

    Science.gov (United States)

    Schuckert, Karl-Heinz; Jopp, Stefan; Teoh, Swee-Hin

    2009-03-01

    This publication describes the clinical case of a 71-year-old female patient. Using polycaprolactone (PCL) scaffold, platelet-rich plasma (PRP) and recombinant human bone morphogenetic protein-2 (rhBMP-2), a critical-sized defect in the anterior mandible was regenerated using de novo-grown bone. A bacterial infection had caused a periimplantitis in two dental implants leading to a large destruction in the anterior mandible. Both implants were removed under antibiotic prophylaxis. A PCL scaffold was prepared especially for this clinical case. In a second procedure with antibiotic prophylaxis, the bony defect was reopened. The PCL scaffold was fitted and charged with PRP and rhBMP-2 (1.2 mg). After complication-free wound healing, the radiological control demonstrated de novo-grown bone in the anterior mandible 6 months postoperatively. Dental implants were inserted in a third operation. A bone biopsy of the newly grown bone, as well as of the bordering local bone, was taken and histologically examined. The bone samples were identical and presented vital laminar bone. PMID:18767969

  6. Increased expression of osteonectin and osteopontin, two bone matrix proteins, in human breast cancer.

    OpenAIRE

    Bellahcène, A.; Castronovo, V.

    1995-01-01

    Microcalcifications are a common phenomenon associated with breast cancer and are often the only mammographic sign of a malignant breast disease. Although microcalcifications are not restricted to breast cancer and can be also associated with benign lesions, it is noteworthy that they are composed exclusively of hydroxyapatite in breast carcinoma. Hydroxyapatite is the bone-associated phosphocalcic crystal the deposition of which in bone tissue requires the coordinated expression of several m...

  7. The Use of Bone Morphogenetic Protein in Pediatric Cervical Spine Fusion Surgery: Case Reports and Review of the Literature.

    Science.gov (United States)

    Molinari, Robert W; Molinari, Christine

    2016-02-01

    Study Design Case report. Objective There is a paucity of literature describing the use of bone graft substitutes to achieve fusion in the pediatric cervical spine. The outcomes and complications involving the off-label use of bone morphogenetic protein (BMP)-2 in the pediatric cervical spine are not clearly defined. The purpose of this article is to report successful fusion without complications in two pediatric patients who had instrumented occipitocervical fusion using low-dose BMP-2. Methods A retrospective review of the medical records was performed, and the patients were followed for 5 years. Two patients under 10 years of age with upper cervical instability were treated with occipitocervical instrumented fusion using rigid occipitocervical fixation techniques along with conventionally available low-dose BMP-2. A Medline and PubMed literature search was conducted using the terms "bone morphogenetic protein," "BMP," "rh-BMP2," "bone graft substitutes," and "pediatric cervical spine." Results Solid occipitocervical fusion was achieved in both pediatric patients. There were no reported perioperative or follow-up complications. At 5-year follow-up, radiographs in both patients showed successful occipital cervical fusion without evidence of instrumentation failure or changes in the occipitocervical alignment. To date, there are few published reports on this topic. Complications and the appropriate dosage application in the pediatric posterior cervical spine remain unknown. Conclusions We describe two pediatric patients with upper cervical instability who achieved successful occipital cervical fusion without complication using off-label BMP-2. This report underscores the potential for BMP-2 to achieve successful arthrodesis of the posterior occipitocervical junction in pediatric patients. Use should be judicious as complications and long-term outcomes of pediatric BMP-2 use remain undefined in the existing literature. PMID:26835215

  8. Environmental pH-controlled loading and release of protein on mesoporous hydroxyapatite nanoparticles for bone tissue engineering.

    Science.gov (United States)

    Zhang, Ning; Gao, Tianlin; Wang, Yu; Wang, Zongliang; Zhang, Peibiao; Liu, Jianguo

    2015-01-01

    To explore the controlled delivery of protein drugs in micro-environment established by osteoblasts or osteoclasts, the loading/release properties of bovine serum albumin (BSA) depending on pH environment were assessed. The adsorption amounts over mesoporous hydroxyapatite (MHA) or hydroxyapatite (HA) decreased as the pH increased, negatively correlating with zeta-potential values. The adsorption behavior over MHA fits well with the Freundlich and Langmuir models at different pHs. The results suggest that the adsorbed amount of protein on MHA or HA depended on the pH of protein solution. MHA adsorbed BSA at basic pH (MHApH 8.4) exhibited a different release kinetics compared with those in acid and neutral environments (MHApH 4.7 and MHApH 7.4), indicating that the release of protein could be regulated by environmental pH at which MHAs adsorb protein. MHApH 8.4 showed a sustained release for 6h before a gradual release when immersing in acidic environment, which is 2h longer than that in neutral environment. This suggests that MHApH 8.4 showed a more sustained release in acidic environment, which can be established by osteoclasts. The variation of adsorption strength between protein and MHA may be responsible for these behaviors. Our findings may be very useful for the development of MHA applications on both bone repair and protein delivery. PMID:25491972

  9. Validation of a Non-Targeted LC-MS Approach for Identifying Ancient Proteins: Method Development on Bone to Improve Artifact Residue Analysis

    OpenAIRE

    Andrew Barker; Jonathan Dombrosky; Dale Chaput; Barney Venbles; Steve Wolverton; Stevens, Stanley M.

    2015-01-01

    Identification of protein residues from prehistoric cooking pottery using mass spectrometry is challenging because proteins are removed from original tissues, are degraded from cooking, may be poorly preserved due to diagenesis, and occur in a palimpsest of exogenous soil proteins. In contrast, bone proteins are abundant and well preserved. This research is part of a larger method-development project for innovation and improvement of liquid chromatography – mass spectrometry analysis of prote...

  10. Functional assay, expression of growth factors and proteins modulating bone-arrangement in human osteoblasts seeded on an anorganic bovine bone biomaterial

    OpenAIRE

    O Trubiani; Fulle, S.; T Traini; M Paludi; La Rovere, R.; M Orciani; S. Caputi; Piattelli, A.

    2010-01-01

    The basic aspects of bone tissue engineering include chemical composition and geometry of the scaffold design, because it is very important to improve not only cell attachment and growth but especially osteodifferentiation, bone tissue formation, and vascularization. Geistlich Bio-Oss® (GBO) is a xenograft consisting of deproteinized, sterilized bovine bone, chemically and physically identical to the mineral phase of human bone.In this study, we investigated the growth behaviour and the abili...

  11. Abnormal IGF-Binding Protein Profile in the Bone Marrow of Multiple Myeloma Patients

    DEFF Research Database (Denmark)

    Bieghs, Liesbeth; Brohus, Malene; Kristensen, Ida B;

    2016-01-01

    and accessible for receptor activation. In MM, high IGF-receptor type 1 expression levels correlate with a poor prognosis, but the status and role of IGF and IGFBPs in the pathobiology of MM is unknown. Here we measured total IGF1, IGF2, and intact IGFBP levels in blood and bone marrow samples from MM.......6-0.5 fold) in the circulation compared to control individuals. Further, IGFBP-2 as well as total IGFBP levels were significantly lower in bone marrow compared to circulation in MM and MGUS only, whereas IGF1, IGF2, and IGFBP-3 were equally distributed between the two compartments. In conclusion, the...... profound change in IGFBP profile strongly suggests an increased IGF bioavailability in the bone marrow microenvironment in MGUS and MM, despite no change in growth factor concentration....

  12. Determination of protein content in chicken bone extract%鸡骨素中蛋白质含量的测定

    Institute of Scientific and Technical Information of China (English)

    魏永义; 胡凯

    2015-01-01

    对鸡骨素中的蛋白质含量进行测定,结果表明所测样品中蛋白质含量为24.8g/100g,该方法简单、准确度高,适用于鸡骨素中的蛋白质含量的测定。%The protein content of chicken bone extracts was determined. The result showed that the protein content of the sample was 24. 8g/100g. This method was simple, high accuracy and suitable for the determination of protein content in chicken bone extract.

  13. The impact of bone morphogenetic protein 4 (BMP4) on breast cancer metastasis in a mouse xenograft model.

    Science.gov (United States)

    Ampuja, M; Alarmo, E L; Owens, P; Havunen, R; Gorska, A E; Moses, H L; Kallioniemi, A

    2016-06-01

    Bone morphogenetic protein 4 (BMP4) is a key regulator of cell proliferation and differentiation. In breast cancer cells, BMP4 has been shown to reduce proliferation in vitro and interestingly, in some cases, also to induce migration and invasion. Here we investigated whether BMP4 influences breast cancer metastasis formation by using a xenograft mouse model. MDA-MB-231 breast cancer cells were injected intracardially into mice and metastasis formation was monitored using bioluminescence imaging. Mice treated with BMP4 developed metastases slightly earlier as compared to control animals but the overall number of metastases was similar in both groups (13 in the BMP4 group vs. 12 in controls). In BMP4-treated mice, bone metastases were more common (10 vs. 7) but adrenal gland metastases were less frequent (1 vs. 5) than in controls. Immunostaining revealed no differences in signaling activation, proliferation rate, blood vessel formation, EMT markers or the number of cancer-associated fibroblasts between the treatment groups. In conclusion, BMP4 caused a trend towards accelerated metastasis formation, especially in bone. More work is needed to uncover the long-term effects of BMP4 and the clinical relevance of these findings. PMID:26970275

  14. Expression of human bone morphogenetic protein (BMP-2 and BMP-4 genes in transgenic bovine fibroblasts Expressão dos genes bone morphogenetic protein (BMP-2 e BMP-4 em fibroblastos bovinos transgênicos

    Directory of Open Access Journals (Sweden)

    C. Oleskovicz

    2004-08-01

    Full Text Available cDNAs dos genes bone morphogenetic protein-2 (BMP-2 e bone morphogenetic protein-4 (BMP-4 foram sintetizados a partir de RNA total extraído de tecidos ósseos de pacientes que apresentavam trauma facial (fraturas do maxilar entre o 7º e o 10º dia pós-trauma e clonados num vetor para expressão em células mamíferas, sob controle do promotor de citomegalovírus (CMV. Os vetores contendo os genes BMP-2 e o BMP-4 foram utilizados para a transfecção de fibroblastos bovinos. mRNAs foram indiretamente detectados por RT-PCR nas células transfectadas. As proteínas BMP-2 e BMP-4 foram detectadas mediante análises de Western blot. Os resultados demonstram a possibilidade de produção desses fatores de crescimento celular em fibroblastos bovinos. Essas células poderão ser utilizadas como fontes doadoras de material genético para a técnica de transferência nuclear na geração de animais transgênicos.

  15. Special Morphological Features at the Interface of the Renal Stem/Progenitor Cell Niche Force to Reinvestigate Transport of Morphogens During Nephron Induction

    OpenAIRE

    Minuth, Will W.; Denk, Lucia

    2016-01-01

    Abstract Formation of a nephron depends on reciprocal signaling of different morphogens between epithelial and mesenchymal cells within the renal stem/progenitor cell niche. Previously, it has been surmised that a close proximity exists between both involved cell types and that morphogens are transported between them by diffusion. However, actual morphological data illustrate that mesenchymal and epithelial stem/progenitor cell bodies are separated by a striking interface. Special fixation of...

  16. Modeling digits. Digit patterning is controlled by a Bmp-Sox9-Wnt Turing network modulated by morphogen gradients.

    Science.gov (United States)

    Raspopovic, J; Marcon, L; Russo, L; Sharpe, J

    2014-08-01

    During limb development, digits emerge from the undifferentiated mesenchymal tissue that constitutes the limb bud. It has been proposed that this process is controlled by a self-organizing Turing mechanism, whereby diffusible molecules interact to produce a periodic pattern of digital and interdigital fates. However, the identities of the molecules remain unknown. By combining experiments and modeling, we reveal evidence that a Turing network implemented by Bmp, Sox9, and Wnt drives digit specification. We develop a realistic two-dimensional simulation of digit patterning and show that this network, when modulated by morphogen gradients, recapitulates the expression patterns of Sox9 in the wild type and in perturbation experiments. Our systems biology approach reveals how a combination of growth, morphogen gradients, and a self-organizing Turing network can achieve robust and reproducible pattern formation. PMID:25082703

  17. Relationship between Coronary Risk Factors, C-Reactive Protein, Bone Mineral Density and Carotid Circulation Among Frail Elderly

    Directory of Open Access Journals (Sweden)

    Moatassem S. Amer1, Tamer M. Farid1, Ekrami E. Abdel-rahman1,

    2014-06-01

    Full Text Available Background: Frailty may now be regarded as a geriatric syndrome of decreased reserve and resistance to stressors, resulting from cumulative declines across multiple physiologic systems, causing vulnerability to adverse health outcomes including falls, hospitalisation, institutionalisation and mortality. The inflammatory mediators as C-reactive protein have been associated with the development of the geriatric frailty. Several studies have pointed out increased level of homocystiene in frail elderly Increasing frailty was associated with lower bone mineral density, as both bone mass and muscle strength decrease during ageing and this has also been associated with higher risk of osteoporotic fractures in frail elderly. Objective: To compare frail and non-frail elderly regarding Bone mineral density, carotid circulation and serum levels of Homocysteine, coronary risk factors and CRP. Methods: 104 elderly patients, who were assigned to 2 groups. Group A (52 frail participants: diagnosed by Fried’s criteria as applied by Avila-Funes et al., 2008. Group B (52 non-frail participants.All participants were subjected to the following: through history, physical examination, ADL, IADL assessment, MMSE ,GDS, laboratory investigations including; CRP, homocystiene and total lipid profile, measurement of bone mineral density by DEXA and carotid intima-media thickness by carotid duplex. Results: There was no statistically significant difference in age, sex, among both groups.Frail participants had higher ADL and IADL dependence, higher incidence of depression, cognitive impairment and osteoprosis.They also had higher levels of homocystiene , CRP , CIMT and lower levels of HDL cholesterol. Conclusion: Osteoporosis is more prevalent among frail elderly also frailty is associated with more ADL & IADL dependence, higher GDS scores & lower MMSE score in addition to higher mean level of homocystiene, CRP & triglycerides in addition to low serum HDL & higher CIMT

  18. In vitro morphogenic response of different explants of Gentiana kurroo Royle from Western Himalayas—an endangered medicinal plant

    OpenAIRE

    Sharma, Anshu; Kaur, Rajinder; Sharma, Neha

    2014-01-01

    Micropropagation offers a great potential to produce millions of clonal individuals through tissue culture via induction of morphogenesis. The aim of this work was to obtain an efficient protocol for callus regeneration for Gentiana kurroo Royle. The morphogenic response of different explants (leaves, petioles, roots) varied and responded differently for regeneration according to combinations of growth regulators. The petiole explants were best responding for callus induction and subsequently...

  19. Hypoxia and vitamin D differently contribute to leptin and dickkopf-related protein 2 production in human osteoarthritic subchondral bone osteoblasts

    OpenAIRE

    Bouvard, Béatrice; Abed, Elie; Yéléhé-Okouma, Mélissa; Bianchi, Arnaud; Mainard, Didier; Netter, Patrick; Jouzeau, Jean-Yves; Lajeunesse, Daniel; Reboul, Pascal

    2014-01-01

    Introduction Bone remodelling and increased subchondral densification are important in osteoarthritis (OA). Modifications of bone vascularization parameters, which lead to ischemic episodes associated with hypoxic conditions, have been suspected in OA. Among several factors potentially involved, leptin and dickkopf-related protein 2 (DKK2) are good candidates because they are upregulated in OA osteoblasts (Obs). Therefore, in the present study, we investigated the hypothesis that hypoxia may ...

  20. Computer modelling integrated with micro-CT and material testing provides additional insight to evaluate bone treatments: Application to a beta-glycan derived whey protein mice model.

    Science.gov (United States)

    Sreenivasan, D; Tu, P T; Dickinson, M; Watson, M; Blais, A; Das, R; Cornish, J; Fernandez, J

    2016-01-01

    The primary aim of this study was to evaluate the influence of a whey protein diet on computationally predicted mechanical strength of murine bones in both trabecular and cortical regions of the femur. There was no significant influence on mechanical strength in cortical bone observed with increasing whey protein treatment, consistent with cortical tissue mineral density (TMD) and bone volume changes observed. Trabecular bone showed a significant decline in strength with increasing whey protein treatment when nanoindentation derived Young׳s moduli were used in the model. When microindentation, micro-CT phantom density or normalised Young׳s moduli were included in the model a non-significant decline in strength was exhibited. These results for trabecular bone were consistent with both trabecular bone mineral density (BMD) and micro-CT indices obtained independently. The secondary aim of this study was to characterise the influence of different sources of Young׳s moduli on computational prediction. This study aimed to quantify the predicted mechanical strength in 3D from these sources and evaluate if trends and conclusions remained consistent. For cortical bone, predicted mechanical strength behaviour was consistent across all sources of Young׳s moduli. There was no difference in treatment trend observed when Young׳s moduli were normalised. In contrast, trabecular strength due to whey protein treatment significantly reduced when material properties from nanoindentation were introduced. Other material property sources were not significant but emphasised the strength trend over normalised material properties. This shows strength at the trabecular level was attributed to both changes in bone architecture and material properties. PMID:26599826

  1. Repetitive recombinant human bone morphogenetic protein 2 injections improve the callus microarchitecture and mechanical stiffness in a sheep model of distraction osteogenesis

    OpenAIRE

    Marc-Frederic Pastor; Thilo Floerkemeier; Frank Witte; Jens Nellesen; Fritz Thorey; Henning Windhagen; Mathias Wellmann

    2012-01-01

    Evidence suggests that recombinant human bone morphogenetic protein 2 (rhBMP-2) increases the mechanical integrity of callus tissue during bone healing. This effect may be either explained by an increase of callus formation or a modification of the trabecular microarchitecture. Therefore the purpose of the study was to evaluate the potential benefit of rhBMP-2 on the trabecular microarchitecture and on multidirectional callus stiffness. Further we asked, whether microarchitecture changes corr...

  2. Chemical composition and biological value of spray dried porcine blood by-products and bone protein hydrolysate for young chickens.

    Science.gov (United States)

    Jamroz, D; Wiliczkiewicz, A; Orda, J; Skorupińska, J; Słupczyńska, M; Kuryszko, J

    2011-10-01

    The chemical composition of spray dried porcine blood by-products is characterised by wide variation in crude protein contents. In spray dried porcine blood plasma (SDBP) it varied between 670-780 g/kg, in spray dried blood cells (SDBC) between 830-930 g/kg, and in bone protein hydrolysate (BPH) in a range of 740-780 g/kg. Compared with fish meal, these feeds are poor in Met and Lys. Moreover, in BPH deep deficits of Met, Cys, Thr and other amino acids were found. The experiment comprised 7 dietary treatments: SDBP, SDBC, and BPH, each at an inclusion rate of 20 or 40 g/kg diet, plus a control. The addition of 20 or 40 g/kg of the analysed meals into feeds for very young chickens (1-28 d post hatch) significantly decreased the body weight (BW) of birds. Only the treatments with 40 g/kg of SDBP and SDBC showed no significant difference in BW as compared with the control. There were no significant differences between treatments and type of meal for feed intake, haematocrit and haemoglobin concentrations in blood. Addition of bone protein and blood cell meals to feed decreased the IgG concentration in blood and caused shortening of the femur and tibia bones. However, changes in the mineral composition of bones were not significantly affected by the type of meal used. The blood by-products, which are rich in microelements, improved retention of Ca and Cu only. In comparison to control chickens, significantly better accretion of these minerals was found in treatments containing 20 g/kg of SDBP or 40 g/kg of SDBC. Great variability in apparent ileal amino acid digestibility in chickens was determined. In this respect, some significant differences related to the type of meal fed were confirmed for Asp, Pro, Val, Tyr and His. In general, the apparent ileal digestibility of amino acids was about 2-3 percentage units better in chickens fed on diets containing the animal by products than in control birds. PMID:22029787

  3. Dynamic assignment and maintenance of positional identity in the ventral neural tube by the morphogen sonic hedgehog.

    Directory of Open Access Journals (Sweden)

    Eric Dessaud

    Full Text Available Morphogens are secreted signalling molecules that act in a graded manner to control the pattern of cellular differentiation in developing tissues. An example is Sonic hedgehog (Shh, which acts in several developing vertebrate tissues, including the central nervous system, to provide positional information during embryonic patterning. Here we address how Shh signalling assigns the positional identities of distinct neuronal subtype progenitors throughout the ventral neural tube. Assays of intracellular signal transduction and gene expression indicate that the duration as well as level of signalling is critical for morphogen interpretation. Progenitors of the ventral neuronal subtypes are established sequentially, with progressively more ventral identities requiring correspondingly higher levels and longer periods of Shh signalling. Moreover, cells remain sensitive to changes in Shh signalling for an extended time, reverting to antecedent identities if signalling levels fall below a threshold. Thus, the duration of signalling is important not only for the assignment but also for the refinement and maintenance of positional identity. Together the data suggest a dynamic model for ventral neural tube patterning in which positional information corresponds to the time integral of Shh signalling. This suggests an alternative to conventional models of morphogen action that rely solely on the level of signalling.

  4. miRNA-mediated feedback inhibition of JAK/STAT morphogen signalling establishes a cell fate threshold.

    Science.gov (United States)

    Yoon, Wan Hee; Meinhardt, Hans; Montell, Denise J

    2011-09-01

    Patterns of cell fates generated by morphogens are critically important for normal development; however, the mechanisms by which graded morphogen signals are converted into all-or-none cell fate responses are incompletely understood. In the Drosophila ovary, high and sustained levels of the secreted morphogen Unpaired (Upd) specify the migratory border-cell population by activating the signal transducer and activator of transcription (STAT). A lower or transient level of STAT activity specifies a non-migratory population of follicle cells. Here we identify miR-279 as a component of a feedback pathway that further dampens the response in cells with low levels of JAK/STAT activity. miR-279 directly repressed STAT, and loss of miR-279 mimicked STAT gain-of-function or loss of Apontic (Apt), a known feedback inhibitor of STAT. Apt was essential for miR-279 expression in non-migratory follicle cells, whereas another STAT target, Ken and Barbie (Ken), downregulated miR-279 in border cells. Mathematical modelling and simulations of this regulatory circuit including miR-279, Apt and Ken supported key roles for miR-279 and Apt in generating threshold responses to the Upd gradient. PMID:21857668

  5. Millennium recurrence interval of morphogenic earthquakes on the Qingchuan fault, northeastern segment of the Longmen Shan Thrust Belt, China

    Science.gov (United States)

    Lin, Aiming; Yan, Bing; Rao, Gang

    2016-04-01

    The 2008 M w 7.9 Wenchuan produced a ˜285-300-km-long coseismic surface rupture zone, including a 60-km-long segment along the Qingchuan fault, the northeastern segment of the Longmen Shan Thrust Belt (LSTB), Sichuan Basin, central China. Field investigations, trench excavations, and radiocarbon dating results reveal that (i) the Qingchuan fault is currently active as a seismogenic fault, along which four morphogenic earthquakes including the 2008 Wenchuan earthquake occurred in the past ca. 3500 years, suggesting an average millennium recurrence interval of morphogenic earthquakes in the late Holocene; (ii) the most recent event prior to the 2008 Wenchuan earthquake took place in the period between AD 1400 and AD 1100; (iii) the penultimate paleoseismic event occurred in the period around 2000 years BP in the Han Dynasty (206 BC-AD 220); (iv) the third paleoseismic event occurred in the period between 900 and 1800 BC; and (v) at least three seismic faulting events occurred in the early Holocene. The present results are comparable with those inferred in the central and southwestern segments of the LSTB within which the Wenchuan magnitude earthquakes occurred in a millennium recurrence interval, that are in contrast with previous estimates of 2000-10,000 years for the recurrence interval of morphogenic earthquakes within the LSTB and thereby necessitating substantial modifications to existing seismic hazard models for the densely populated region at the Sichuan region.

  6. The 18 kDa translocator protein (peripheral benzodiazepine receptor expression in the bone of normal, osteoprotegerin or low calcium diet treated mice.

    Directory of Open Access Journals (Sweden)

    Winnie Wai-Ying Kam

    Full Text Available The presence of the translocator protein (TSPO, previously named as the mitochondrial or peripheral benzodiazepine receptor, in bone cells was studied in vitro and in situ using RT-qPCR, and receptor autoradiography using the selective TSPO ligand PK11195.In vitro, the TSPO is highly expressed in osteoblastic and osteoclastic cells.In situ, constitutive expression of TSPO is found in bone marrow and trabecular bone, e.g., spongiosa. Mice with a reduction of bone turnover induced by a 4-day treatment of osteoprotegerin reduces [(3H]PK11195 binding in the spongiosa (320±128 Bq x mg(-1, 499±106 Bq x mg(-1 in saline-treated controls. In contrast, mice with an increase in bone turnover caused by a 4-day low calcium diet increases [(3H]PK11195 binding in the spongiosa (615±90 Bq x mg(-1. Further, our study includes technical feasibility data on [(18F]fluoride microPET imaging of rodent bone with altered turnover. Despite [(18F]fluoride having high uptake, the in vivo signal differences were small. Using a phantom model, we describe the spillover effect and partial volume loss that affect the quantitative microPET imaging of the small bone structures in experimental mouse models. In summary, we demonstrate the expression of TSPO in small rodent bone tissues, including osteoblasts and osteoclasts. A trend increase in TSPO expression was observed in the spongiosa from low to high bone turnover conditions. However, despite the potential utility of TSPO expression as an in vivo biomarker of bone turnover in experimental rodent models, our small animal PET imaging data using [(18F]fluoride show that even under the condition of a good biological signal-to-noise ratio and high tracer uptake, the currently achievable instrument sensitivity and spatial resolution is unlikely to be sufficient to detect subtle differences in small structures, such as mouse bone.

  7. Synergistic actions of olomoucine and bone morphogenetic protein-4 in axonal repair after acute spinal cord contusion

    Institute of Scientific and Technical Information of China (English)

    Liang Chen; Jianjun Li; Liang Wu; Mingliang Yang; Feng Gao; Li Yuan

    2014-01-01

    To determine whether olomoucine acts synergistically with bone morphogenetic protein-4 in the treatment of spinal cord injury, we established a rat model of acute spinal cord contusion by impacting the spinal cord at the T8 vertebra. We injected a suspension of astrocytes derived from glial-restricted precursor cells exposed to bone morphogenetic protein-4 (GDAsBMP) into the spinal cord around the site of the injury, and/or olomoucine intraperitoneally. Olomoucine effectively inhibited astrocyte proliferation and the formation of scar tissue at the injury site, but did not prevent proliferation of GDAsBMP or inhibit their effects in reducing the spinal cord lesion cavity. Furthermore, while GDAsBMP and olomoucine independently resulted in small improve-ments in locomotor function in injured rats, combined administration of both treatments had a signiifcantly greater effect on the restoration of motor function. These data indicate that the combined use of olomoucine and GDAsBMP creates a better environment for nerve regeneration than the use of either treatment alone, and contributes to spinal cord repair after injury.

  8. Bone morphogenetic protein 2-induced human dental pulp cell differentiation involves p38 mitogen-activated protein kinase-activated canonical WNT pathway

    Institute of Scientific and Technical Information of China (English)

    Jing Yang; Ling Ye; Tian-Qian Hui; Dong-Mei Yang; Ding-Ming Huang; Xue-Dong Zhou; Jeremy J Mao; Cheng-Lin Wang

    2015-01-01

    Both bone morphogenetic protein 2 (BMP2) and the wingless-type MMTV integration site (WNT)/b-catenin signalling pathway play important roles in odontoblast differentiation and dentinogenesis. Cross-talk between BMP2 and WNT/b-catenin in osteoblast differentiation and bone formation has been identified. However, the roles and mechanisms of the canonical WNT pathway in the regulation of BMP2 in dental pulp injury and repair remain largely unknown. Here, we demonstrate that BMP2 promotes the differentiation of human dental pulp cells (HDPCs) by activating WNT/b-catenin signalling, which is further mediated by p38 mitogen-activated protein kinase (MAPK) in vitro. BMP2 stimulation upregulated the expression of b-catenin in HDPCs, which was abolished by SB203580 but not by Noggin or LDN193189. Furthermore, BMP2 enhanced cell differentiation, which was not fully inhibited by Noggin or LDN193189. Instead, SB203580 partially blocked BMP2-induced b-catenin expression and cell differentiation. Taken together, these data suggest a possible mechanism by which the elevation of b-catenin resulting from BMP2 stimulation is mediated by the p38 MAPK pathway, which sheds light on the molecular mechanisms of BMP2-mediated pulp reparative dentin formation.

  9. Morphogenic regulator EFG1 affects the drug susceptibilities of pathogenic Candida albicans.

    Science.gov (United States)

    Prasad, Tulika; Hameed, Saif; Manoharlal, Raman; Biswas, Sudipta; Mukhopadhyay, Chinmay K; Goswami, Shyamal K; Prasad, Rajendra

    2010-08-01

    This study shows that the morphogenic regulator EFG1 level affects the drug susceptibilities of Candida albicans when grown on solid growth media. The Deltaefg1 mutant showed sensitivity particularly to those drugs that target ergosterol or its metabolism. Efg1p disruption showed a gene-dosage effect on drug susceptibilities and resulted in enhanced susceptibility to drugs in the homozygous mutant as compared with the wild type, heterozygous and revertant strains. The enhanced sensitivity to drugs was independent of the status of ATP-binding cassette and MFS multidrug efflux pumps of C. albicans. The Deltaefg1 mutant displayed increased membrane fluidity that coincided with the downregulation of ERG11 and upregulation of OLE1 and ERG3, leading to enhanced passive diffusion of drugs. Interestingly, Deltaefg1 mutant cells displayed enhanced levels of endogenous ROS levels. Notably, the higher levels of ROS in the Deltaefg1 mutant could be reversed by the addition of antioxidants. However, the restoration of ROS levels did not reverse the drug sensitivities of the Deltaefg1 mutant. Taken together, we, for the first time, establish a new role to EFG1 in affecting the drug susceptibilities of C. albicans cells, independent of ROS and known drug efflux mechanisms. PMID:20491944

  10. Validation of a Non-Targeted LC-MS Approach for Identifying Ancient Proteins: Method Development on Bone to Improve Artifact Residue Analysis

    Directory of Open Access Journals (Sweden)

    Andrew Barker

    2015-09-01

    Full Text Available Identification of protein residues from prehistoric cooking pottery using mass spectrometry is challenging because proteins are removed from original tissues, are degraded from cooking, may be poorly preserved due to diagenesis, and occur in a palimpsest of exogenous soil proteins. In contrast, bone proteins are abundant and well preserved. This research is part of a larger method-development project for innovation and improvement of liquid chromatography – mass spectrometry analysis of protein residues from cooking pottery; here we validate the potential of our extraction and characterization approach via application to ancient bone proteins. Because of its preservation potential for proteins and given that our approach is destructive, ancient bone identified via skeletal morphology represents an appropriate verification target. Proteins were identified from zooarchaeological turkey (Meleagris gallopavo Linnaeus Phasianidae, rabbit (Lagomorpha, and squirrel (Sciuridae remains excavated from ancient pueblo archaeological sites in southwestern Colorado using a non-targeted LC-MS/MS approach. The data have been deposited to the ProteomeXchange Consortium with the dataset identifier PXD002440. Improvement of highly sensitive targeted LC-MS/MS approaches is an avenue for future method development related to the study of protein residues from artifacts such as stone tools and pottery.

  11. [Investigation of the role of Zn2+ and zinc-containing proteins in the pathogenesis of bone inflammmation (the case of periodontitis)].

    Science.gov (United States)

    Petrovich, Iu A; Ramazanov, T D; Kichenko, S M; Lebedev, V K

    2011-01-01

    The levels of Ag, Al, Bi, Co, Cr, Fe, Mo, Si in osseous tissue of periodontium of domestic cats decreased in case of periodontitis in comparision with those of a healthy animals. At the same time the level of Zn increased dramatically. The level of tagged [14C] glycine in protein of bones of periodontium increased twofold and [35S] methionine 1,54 times which is explained by the fact of predominance of I type collagen in which one third of amino acids is represented by glycine while sulfur-containing amino acids are virtually absent. The latter are contained in non-collagenous proteins of bones of periodontium contributing for its metabolism. The difference in tagged aminoacids inclusion in bones of periodontium is mainly provoked by redistribution of the collagen and non-collagenous proteins. PMID:22359934

  12. Evolving New Skeletal Traits by cis-Regulatory Changes in Bone Morphogenetic Proteins.

    Science.gov (United States)

    Indjeian, Vahan B; Kingman, Garrett A; Jones, Felicity C; Guenther, Catherine A; Grimwood, Jane; Schmutz, Jeremy; Myers, Richard M; Kingsley, David M

    2016-01-14

    Changes in bone size and shape are defining features of many vertebrates. Here we use genetic crosses and comparative genomics to identify specific regulatory DNA alterations controlling skeletal evolution. Armor bone-size differences in sticklebacks map to a major effect locus overlapping BMP family member GDF6. Freshwater fish express more GDF6 due in part to a transposon insertion, and transgenic overexpression of GDF6 phenocopies evolutionary changes in armor-plate size. The human GDF6 locus also has undergone distinctive regulatory evolution, including complete loss of an enhancer that is otherwise highly conserved between chimps and other mammals. Functional tests show that the ancestral enhancer drives expression in hindlimbs but not forelimbs, in locations that have been specifically modified during the human transition to bipedalism. Both gain and loss of regulatory elements can localize BMP changes to specific anatomical locations, providing a flexible regulatory basis for evolving species-specific changes in skeletal form. PMID:26774823

  13. Bone and soft tissue components of the leg in infants with protein calorie malnutrition

    International Nuclear Information System (INIS)

    The measurements of muscle, fat and cortical thickness were made on leg radiographs of 40 kwashiorkhor infants and were compared with those of 32 normal infants. There is a significant decrease in muscle cylinder ratio, an index of the contribution of muscle to calf thickness in kwashiorkhor. The loss of bone cortex in kwashiorkhor is due mainly to failure of appositional growth. The muscle cylinder ratio in normal Nigerian infants in much higher than has been reported amongst Caucasians. (orig.)

  14. Subcutaneous administration of insulin-like growth factor (IGF)-II/IGF binding protein-2 complex stimulates bone formation and prevents loss of bone mineral density in a rat model of disuse osteoporosis

    Science.gov (United States)

    Conover, Cheryl A.; Johnstone, Edward W.; Turner, Russell T.; Evans, Glenda L.; John Ballard, F. John; Doran, Patrick M.; Khosla, Sundeep

    2002-01-01

    Elevated serum levels of insulin-like growth factor binding protein-2 (IGFBP-2) and a precursor form of IGF-II are associated with marked increases in bone formation and skeletal mass in patients with hepatitis C-associated osteosclerosis. In vitro studies indicate that IGF-II in complex with IGFBP-2 has high affinity for bone matrix and is able to stimulate osteoblast proliferation. The purpose of this study was to determine the ability of the IGF-II/IGFBP-2 complex to increase bone mass in vivo. Osteopenia of the femur was induced by unilateral sciatic neurectomy in rats. At the time of surgery, 14-day osmotic minipumps containing vehicle or 2 microg IGF-II+9 microg IGFBP-2/100g body weight/day were implanted subcutaneously in the neck. Bone mineral density (BMD) measurements were taken the day of surgery and 14 days later using a PIXImus small animal densitometer. Neurectomy of the right hindlimb resulted in a 9% decrease in right femur BMD (PIGFBP-2. On the control limb, there was no loss of BMD over the 14 days and IGF-II/IGFBP-2 treatment resulted in a 9% increase in left femur BMD (PIGFBP-2 complex can prevent loss of BMD associated with disuse osteoporosis and stimulate bone formation in adult rats. Furthermore, they provide proof of concept for a novel anabolic approach to increasing bone mass in humans with osteoporosis.

  15. Expression analysis of bone morphogenetic protein 4 between fat and lean birds in adipose tissue and serum.

    Science.gov (United States)

    Cheng, B H; Leng, L; Wu, M Q; Zhang, Q; Zhang, X Y; Xu, S S; Cao, Z P; Li, Y M; Luan, P; Li, H

    2016-07-01

    The objectives of the present study were to characterize the tissue expression of chicken (Gallus gallus) bone morphogenetic protein 4 (BMP4) and compare differences in its expression in abdominal fat tissue and serum between fat and lean birds and to determine a potential relationship between the expression of BMP4 and abdominal fat tissue growth and development. The results showed that chicken BMP4 messenger RNA (mRNA) and protein were expressed in various tissues, and the expression levels of BMP4 transcript and protein were relatively higher in adipose tissues. In addition, the mRNA and protein expression levels of BMP4 in abdominal fat tissue of fat males were lower than those of lean males at 1, 2, 5, and 7 wk of age (P < 0.05). Furthermore, the serum BMP4 content of fat males was lower than that of lean males at 7 wk of age (P < 0.05). BMP4 mRNA expression levels were significantly higher in preadipocytes than those in mature adipocytes (P < 0.05), and the expression level decreased during differentiation in vitro (P < 0.05). These results suggested that chicken BMP4 might affect abdominal fat deposition through differences in its expression level. The results of this study will provide basic molecular information for studying the role of BMP4 in the regulation of adipogenesis in avian species. PMID:26945137

  16. Acute-phase protein serum amyloid A3 is a novel paracrine coupling factor that controls bone homeostasis.

    Science.gov (United States)

    Thaler, Roman; Sturmlechner, Ines; Spitzer, Silvia; Riester, Scott M; Rumpler, Monika; Zwerina, Jochen; Klaushofer, Klaus; van Wijnen, Andre J; Varga, Franz

    2015-04-01

    Serum amyloid A (A-SAA/Saa3) was shown before to affect osteoblastic metabolism. Here, using RT-quantitative PCR and/or immunoblotting, we show that expression of mouse Saa3 and human SAA1 and SAA2 positively correlates with increased cellular maturation toward the osteocyte phenotype. Expression is not detected in C3H10T1/2 embryonic fibroblasts but is successively higher in preosteoblastic MC3T3-E1 cells, late osteoblastic MLO-A5 cells, and MLO-Y4 osteocytes, consistent with findings using primary bone cells from newborn mouse calvaria. Recombinant Saa3 protein functionally inhibits osteoblast differentiation as reflected by reductions in the expression of osteoblast markers and decreased mineralization in newborn mouse calvaria. Yet, Saa3 protein enhances osteoclastogenesis in mouse macrophages/monocytes based on the number of multinucleated and tartrate-resistant alkaline phosphatase-positive cells and Calcr mRNA expression. Depletion of Saa3 in MLO osteocytes results in the loss of the mature osteocyte phenotype. Recombinant osteocalcin, which is reciprocally regulated with Saa3 at the osteoblast/osteocyte transition, attenuates Saa3 expression in MLO-Y4 osteocytes. Mechanistically, Saa3 produced by MLO-Y4 osteocytes is integrated into the extracellular matrix of MC3T3-E1 osteoblasts, where it associates with the P2 purinergic receptor P2rx7 to stimulate Mmp13 expression via the P2rx7/MAPK/ERK/activator protein 1 axis. Our data suggest that Saa3 may function as an important coupling factor in bone development and homeostasis. PMID:25491310

  17. Amino acid delta13C analysis of hair proteins and bone collagen using liquid chromatography/isotope ratio mass spectrometry: paleodietary implications from intra-individual comparisons

    DEFF Research Database (Denmark)

    Raghavan, Maanasa; McCullagh, James S O; Lynnerup, Niels;

    2010-01-01

    We report a novel method for the chromatographic separation and measurement of stable carbon isotope ratios (delta(13)C) of individual amino acids in hair proteins and bone collagen using the LC-IsoLink system, which interfaces liquid chromatography (LC) with isotope ratio mass spectrometry (IRMS......). This paper provides baseline separation of 15 and 13 of the 18 amino acids in bone collagen and hair proteins, respectively. We also describe an approach to analysing small hair samples for compound-specific analysis of segmental hair sections. The LC/IRMS method is applied in a historical context by...

  18. Local delivery of parathyroid hormone-related protein-derived peptides coated onto a hydroxyapatite-based implant enhances bone regeneration in old and diabetic rats.

    Science.gov (United States)

    Ardura, Juan A; Portal-Núñez, Sergio; Lozano, Daniel; Gutiérrez-Rojas, Irene; Sánchez-Salcedo, Sandra; López-Herradón, Ana; Mulero, Francisca; Villanueva-Peñacarrillo, María L; Vallet-Regí, María; Esbrit, Pedro

    2016-08-01

    Diabetes mellitus (DM) and aging are associated with bone fragility and increased fracture risk. Both (1-37) N- and (107-111) C-terminal parathyroid hormone-related protein (PTHrP) exhibit osteogenic properties. We here aimed to evaluate and compare the efficacy of either PTHrP (1-37) or PTHrP (107-111) loaded into gelatin-glutaraldehyde-coated hydroxyapatite (HA-Gel) foams to improve bone repair of a transcortical tibial defect in aging rats with or without DM, induced by streptozotocin injection at birth. Diabetic old rats showed bone structural deterioration compared to their age-matched controls. Histological and μ-computerized tomography studies showed incomplete bone repair at 4 weeks after implantation of unloaded Ha-Gel foams in the transcortical tibial defects, mainly in old rats with DM. However, enhanced defect healing, as shown by an increase of bone volume/tissue volume and trabecular and cortical thickness and decreased trabecular separation, occurred in the presence of either PTHrP peptide in the implants in old rats with or without DM. This was accompanied by newly formed bone tissue around the osteointegrated HA-Gel implant and increased gene expression of osteocalcin and vascular endothelial growth factor (bone formation and angiogenic markers, respectively), and decreased expression of Sost gene, a negative regulator of bone formation, in the healing bone area. Our findings suggest that local delivery of PTHrP (1-37) or PTHrP (107-111) from a degradable implant is an attractive strategy to improve bone regeneration in aged and diabetic subjects. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2060-2070, 2016. PMID:27086979

  19. The role of heat shock protein (HSP as inhibitor apoptosis in hypoxic conditions of bone marrow stem cell culture

    Directory of Open Access Journals (Sweden)

    Sri Wigati Mardi Mulyani

    2014-03-01

    Full Text Available Background: The concept of stem cell therapy is one of the new hope as a medical therapy on salivary gland defect. However, the lack of viability of the transplanted stem cells survival rate led to the decrease of effectiveness of stem cell therapy. The underlying assumption in the decrease of viability and function of stem cells is an increase of apoptosis incidence. It suggests that the microenvironment in the area of damaged tissues is not conducive to support stem cell viability. One of the microenvironment is the hypoxia condition. Several scientific journals revealed that the administration of hypoxic cell culture can result in stress cells but on the other hand the stress condition of the cells also stimulates heat shock protein 27 (HSP 27 as antiapoptosis through inhibition of caspase 9. Purpose: The purpose of this study was to examine the role of heat shock protein 27 as inhibitor apoptosis in hypoxic conditions of bone marrow stem cell culture. Methods: Stem cell culture was performed in hypoxic conditions (O2 1% and measured the resistance to apoptosis through HSP 27 and caspase 9 expression of bone marrow mesenchymal stem cells by using immunoflorecence and real time PCR. Results: The result of study showed that preconditioning hypoxia could inhibit apoptosis through increasing HSP 27 and decreasing level of caspase 9. Conclusion: The study suggested that hypoxic precondition could reduce apoptosis by increasing amount of heat shock protein 27 and decreasing caspase 9.Latar belakang: Konsep terapi stem cell merupakan salah satu harapan baru sebagai terapi medis kelainan kelenjar ludah. Namun, rendahnya viabilitas stem cell yang ditransplantasikan menyebabkan penurunan efektivitas terapi. Asumsi yang mendasari rendahnya viabilitas dan fungsi stem cell adalah tingginya kejadian apoptosis. Hal ini menunjukkan bahwa lingkungan mikro di daerah jaringan yang rusak tidak kondusif untuk mendukung viabilitas stem cell. Salah satu lingkungan

  20. Mitogen activated protein kinase signaling pathways participate in the active principle region of Buyang Huanwu decoction-induced differentiation of bone marrow mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Jinghui Zheng; Jian Liang; Xin Deng; Xiaofeng Chen; Fasheng Wu; Xiaofang Zhao; Yuan Luo; Lei Fu; Zuling Jiang

    2012-01-01

    Our preliminary studies confirmed that an active principle region of Buyang Huanwu decoction, comprising alkaloid, polysaccharide, aglycon, glucoside and volatile oil, can induce bone marrow mesenchymal stem cell differentiation into neurons. Mitogen-activated protein kinase signaling was identified as one of the key pathways underlying this differentiation process. The present study shows phosphorylated extracellular signal-regulated protein kinase and phosphorylated p38 protein expression was increased after differentiation. Cellular signaling pathway blocking agents, PD98059 and SB203580, inhibited extracellular signal-regulated protein kinase and p38 in mitogen-activated protein kinase signaling pathways respectively. mRNA and protein expression of the neuronal marker, neuron specific enolase, and neural stem cell marker, nestin, were decreased in bone marrow mesenchymal stem cells after treatment with the active principle region of Buyang Huanwu decoction. Experimental findings indicate that, extracellular signal-regulated protein kinase and p38 in mitogen-activated protein kinase signaling pathways participate in bone marrow mesenchymal stem cell differentiation into neuron-like cells, induced by the active principle region of Buyang Huanwu decoction.

  1. Effects of LED phototherapy on bone defects grafted with MTA, bone morphogenetic proteins, and guided bone regeneration in a rodent model: a description of the bone repair by light microscopy

    Science.gov (United States)

    Pinheiro, Antonio Luiz B.; Aciole, Gilberth T. S.; Soares, Luiz G. P.; Correia, Neandder A.; N. dos Santos, Jean

    2011-03-01

    We carried out a histological analysis on surgical bone defects grafted or not with MTA, treated or not with LED, BMPs and GBR. We have used several models to assess the effects of laser on bone. Benefits of the isolated or combined use them on bone healing has been suggested. There is no previous report on their association with LED light. 90 rats were divided into 10 groups. On Groups II and I the defect were filled with the clot. On Group II, were further irradiated. On groups III-VI, defect was filled with MTA + Collagen gel (III); animals of group IV were further irradiated. On groups V and VI, the defects filled with the MTA were covered with a membrane. Animals of Group VI were further irradiated. On Groups VII and VIII a pool of BMPs was added to the MTA and was further irradiated. On groups IX and X, the MTA + BMP graft was covered with a membrane. On group X, the defect was further irradiated. LED (λ850 +/- 10nm, 150mW, A= 0.5cm2, 54s, 0.3W/cm2, 16 J/cm2) was applied at 48 h intervals during 15 days. Specimens were taken, processed, cut and stained with H&E and Sirius red and underwent histological analysis. The results showed that MTA seemed not being affected by LED light. However, its use positively affected healing around the graft. It is concluded that MTA is not affected by the LED light due to it characteristics, but beneficial results with LED usage was found.

  2. Mechanism of recombinant human bone morphogenetic protein-2 in repairing hematopoietic injury in mice exposed to γ-rays

    International Nuclear Information System (INIS)

    Objective: To investigate the mechanism of recombinant human bone morphogenetic protein-2 (rhBMP-2) in repairing hematopoietic injury in mice irradiated with γ-ray. To prepare SRY gene probe and study the effect of rhBMP-2 in repairing hematopoietic injury in mice by in situ hybridization. Methods: Twenty-two BALB/c female mice were randomly divided into the irradiated group and BMP treated group, respectively. Bone marrow cells of normal male mice were transplanted into 22 female mice post-irradiation to 8.5 Gy of 60Co γ rays. The left femurs of the survived female mice were re-irradiated with 9 Gy 14 days later. Mice in BMP treated group were given rhBMP-2 20 mg/kg while those in control group were treated with 0.9% saline by intraperitoneal injection every day for 6 days. These mice were killed 14 days later and paraffin sections of femurs were made. The SRY gene was detected with in situ hybridization. Results: There were more positive blots in the left femurs of the mice in irradiated group than those in BMP treated group (T=155.0, P0.05). The number of positive blots in the left femurs of the mice in BMPtreated group was significantly less than those in the right femurs of the mice in two groups (T=155.0, 55.0, P<0.05). Conclusions: No donor cell of male mice was detected in the left femurs of BMP treated group, suggesting that rhBMP-2 promoted the restoration of residuary bone marrow cells. Thus, rhBMP-2 promotes the proliferation or differentiation of residuary mesenchymal stem cells, improves hematopoietic microenvironment and accelerates the hematopoietic restoration. (authors)

  3. Developmentally regulated monocyte recruitment and bone resorption are modulated by functional deletion of the monocytic chemoattractant protein-1 gene.

    Science.gov (United States)

    Graves, D T; Alsulaimani, F; Ding, Y; Marks, S C

    2002-08-01

    Tooth eruption involves the movement of a tooth from its site of development within the alveolar bone to its functional position in the oral cavity. Because this process is dependent upon monocytes and formation of osteoclasts, it represents an excellent model for examination of these processes under developmental regulation. We investigated the functional role of monocyte chemoattractant protein-1 (MCP-1) in monocyte recruitment and its impact on bone resorption by examining each parameter in MCP-1(-/-) mice as compared with wild-type controls during tooth eruption. The peak number of monocytes occurred on day 5 in the MCP-1(-/-) mice and on day 9 in the wild-type mice. The peak number of osteoclasts followed the same pattern, occurring sooner in the MCP-1(-/-) (day 5) than in wild-type mice (day 9). Consistent with this, MCP-1(-/-) mice had an accelerated rate of tooth eruption in the early phase when the teeth first entered the oral cavity as compared with the wild-type mice. However, there was accelerated eruption in the wild-type group in the later phase of tooth eruption. When examined at the molecular level, inducible nitric oxide synthase (iNOS) and interleukin-11 and -6 were expressed at considerably higher levels in the experimental group with accelerated tooth eruption. This is the first report identifying these factors as potential modulators of bone resorption that can accelerate the rate of tooth eruption. We conclude that, at early timepoints, monocyte recruitment occurs by MCP-1-independent mechanisms. However, at a later timepoint, MCP-1 may play a contributory role in the recruitment of monocytic cells, allowing the wild-type animals to catch up. PMID:12151080

  4. Enhanced healing of rat calvarial defects with sulfated chitosan-coated calcium-deficient hydroxyapatite/bone morphogenetic protein 2 scaffolds.

    Science.gov (United States)

    Zhao, Jun; Shen, Gang; Liu, Changsheng; Wang, Shaoyi; Zhang, Wenjie; Zhang, Xiaochen; Zhang, Xiuli; Ye, Dongxia; Wei, Jie; Zhang, Zhiyuan; Jiang, Xinquan

    2012-01-01

    Calcium phosphate cements (CPCs), which are widely used in bone regeneration, possess good biocompatibility and osteoconductivity and have been demonstrated to be candidate carriers for bone growth factors. However, limited release of growth factors from CPCs and slow degradation of the materials are not desirable for certain clinical applications. Previous studies have shown that calcium-deficient hydroxyapatite (CDHA) from CPCs presents more rapid degradation rate than CPCs. In this study, a hybrid growth factor delivery system was prepared by using bone morphogenetic protein 2 (BMP-2) loaded CDHA porous scaffold with sulfated chitosan (SCS) coating for improved release profile. We tested the BMP-2 release characteristic of CDHA/BMP-2/SCS composite in vitro and its ability to repair rat calvarial bone defects. A higher percentage of BMP-2 was released when sulfated chitosan coating was present compared with CDHA/BMP-2 group. Eight weeks postoperation, the repaired crania were evaluated by microcomputed tomography, sequential fluorescent labeling, histological analysis, and immunohistochemistry. CDHA/BMP-2/SCS group promoted the most extensive new bone formation than CDHA/BMP-2 and CDHA groups. Our observations suggest that sulfated chitosan coating could enhance the release profile of CDHA/BMP-2 composite in vitro and promote new bone formation in vivo. The hybrid CDHA/BMP-2/SCS system is a promising growth factor delivery strategy for bone regeneration. PMID:21830854

  5. Endothelial protein C receptor (CD201) explicitly identifies hematopoietic stem cells in murine bone marrow

    OpenAIRE

    Balazs, Alejandro B.; Fabian, Attila J.; Esmon, Charles T.; Mulligan, Richard C.

    2006-01-01

    The hematopoietic stem cell (HSC) is a unique cell type found in bone marrow, which has the capacity for both self-renewal and differentiation into all blood lineages. The identification of genes expressed specifically in HSCs may help identify gene products vital to the control of self-renewal and/or differentiation, as well as antigens capable of forming the basis for improved methods of stem cell isolation. In previous studies, we identified a number of genes that appeared to be differenti...

  6. Microsphere-based scaffolds encapsulating tricalcium phosphate and hydroxyapatite for bone regeneration.

    Science.gov (United States)

    Gupta, Vineet; Lyne, Dina V; Barragan, Marilyn; Berkland, Cory J; Detamore, Michael S

    2016-07-01

    Bioceramic mixtures of tricalcium phosphate (TCP) and hydroxyapatite (HAp) are widely used for bone regeneration because of their excellent cytocompatibility, osteoconduction, and osteoinduction. Therefore, we hypothesized that incorporation of a mixture of TCP and HAp in microsphere-based scaffolds would enhance osteogenesis of rat bone marrow stromal cells (rBMSCs) compared to a positive control of scaffolds with encapsulated bone-morphogenic protein-2 (BMP-2). Poly(D,L-lactic-co-glycolic acid) (PLGA) microsphere-based scaffolds encapsulating TCP and HAp mixtures in two different ratios (7:3 and 1:1) were fabricated with the same net ceramic content (30 wt%) to evaluate how incorporation of these ceramic mixtures would affect the osteogenesis in rBMSCs. Encapsulation of TCP/HAp mixtures impacted microsphere morphologies and the compressive moduli of the scaffolds. Additionally, TCP/HAp mixtures enhanced the end-point secretion of extracellular matrix components relevant to bone tissue compared to the "blank" (PLGA-only) microsphere-based scaffolds as evidenced by the biochemical, gene expression, histology, and immunohistochemical characterization. Moreover, the TCP/HAp mixture groups even surpassed the BMP-2 positive control group in some instances in terms of matrix synthesis and gene expression. Lastly, gene expression data suggested that the rBMSCs responded differently to different TCP/HAp ratios presented to them. Altogether, it can be concluded that TCP/HAp mixtures stimulated the differentiation of rBMSCs toward an osteoblastic phenotype, and therefore may be beneficial in gradient microsphere-based scaffolds for osteochondral regeneration. PMID:27272903

  7. The bone morphogenetic protein antagonist gremlin 1 is overexpressed in human cancers and interacts with YWHAH protein

    International Nuclear Information System (INIS)

    Basic studies of oncogenesis have demonstrated that either the elevated production of particular oncogene proteins or the occurrence of qualitative abnormalities in oncogenes can contribute to neoplastic cellular transformation. The purpose of our study was to identify an unique gene that shows cancer-associated expression, and characterizes its function related to human carcinogenesis. We used the differential display (DD) RT-PCR method using normal cervical, cervical cancer, metastatic cervical tissues, and cervical cancer cell lines to identify genes overexpressed in cervical cancers and identified gremlin 1 which was overexpressed in cervical cancers. We determined expression levels of gremlin 1 using Northern blot analysis and immunohistochemical study in various types of human normal and cancer tissues. To understand the tumorigenesis pathway of identified gremlin 1 protein, we performed a yeast two-hybrid screen, GST pull down assay, and immunoprecipitation to identify gremlin 1 interacting proteins. DDRT-PCR analysis revealed that gremlin 1 was overexpressed in uterine cervical cancer. We also identified a human gremlin 1 that was overexpressed in various human tumors including carcinomas of the lung, ovary, kidney, breast, colon, pancreas, and sarcoma. PIG-2-transfected HEK 293 cells exhibited growth stimulation and increased telomerase activity. Gremlin 1 interacted with homo sapiens tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, eta polypeptide (14-3-3 eta; YWHAH). YWHAH protein binding site for gremlin 1 was located between residues 61–80 and gremlin 1 binding site for YWHAH was found to be located between residues 1 to 67. Gremlin 1 may play an oncogenic role especially in carcinomas of the uterine cervix, lung, ovary, kidney, breast, colon, pancreas, and sarcoma. Over-expressed gremlin 1 functions by interaction with YWHAH. Therefore, Gremlin 1 and its binding protein YWHAH could be good targets for developing diagnostic and

  8. Implanting hydroxyapatite-coated porous titanium with bone morphogenetic protein-2 and hyaluronic acid into distal femoral metaphysis of rabbits

    Institute of Scientific and Technical Information of China (English)

    PENG Lei; BIAN Wei-guo; LIANG Fang-hui; XU Hua-zi

    2008-01-01

    Objective: To assess the osseointegration capability of hydroxyapatite-coated porous titanium with bone morphogenetic protein-2 (BMP-2) and hyaluronic acid to repair defects in the distal femur metaphysis in rabbits. Methods: Porous titanium implants were made by sintering titanium powder at high temperature, which were coated with hydroxyapatite by alkali and heat treatment and with BMP-2 combined with bone regeneration materials. And hyaluronic acid was further used as delivery system to prolong the effect of BMP-2. The implants were inserted into the metaphysis of the distal femur of rabbits. The animals were killed at 6, 12 and 24 weeks to accomplish histological and biomechanical analyses. Results: According to the result of histological analysis, the osseointegration in BMP-2 group was better than that of the HA-coated porous titanium group. In push-out test, all the samples had bigger shear stress as time passed by. There was statistical difference between the two groups in 6 and 12 weeks but not in 24 weeks. Conclusion: Hydroxyapatite-coated porous titanium with BMP-2 and hyaluronic acid has a good effect in repairing defects of distal fumur in rabbits, which is a fine biotechnology for future clinical application.

  9. The Hedgehog signalling pathway in bone formation

    Institute of Scientific and Technical Information of China (English)

    Jing Yang; Philipp Andre; Ling Ye; Ying-Zi Yang

    2015-01-01

    The Hedgehog (Hh) signalling pathway plays many important roles in development, homeostasis and tumorigenesis. The critical function of Hh signalling in bone formation has been identified in the past two decades. Here, we review the evolutionarily conserved Hh signalling mechanisms with an emphasis on the functions of the Hh signalling pathway in bone development, homeostasis and diseases. In the early stages of embryonic limb development, Sonic Hedgehog (Shh) acts as a major morphogen in patterning the limb buds. Indian Hedgehog (Ihh) has an essential function in endochondral ossification and induces osteoblast differentiation in the perichondrium. Hh signalling is also involved intramembrane ossification. Interactions between Hh and Wnt signalling regulate cartilage development, endochondral bone formation and synovial joint formation. Hh also plays an important role in bone homeostasis, and reducing Hh signalling protects against age-related bone loss. Disruption of Hh signalling regulation leads to multiple bone diseases, such as progressive osseous heteroplasia. Therefore, understanding the signalling mechanisms and functions of Hh signalling in bone development, homeostasis and diseases will provide important insights into bone disease prevention, diagnoses and therapeutics.

  10. Osteomimicry of mammary adenocarcinoma cells in vitro; increased expression of bone matrix proteins and proliferation within a 3D collagen environment.

    Directory of Open Access Journals (Sweden)

    Rachel F Cox

    Full Text Available Bone is the most common site of metastasis for breast cancer, however the reasons for this remain unclear. We hypothesise that under certain conditions mammary cells possess osteomimetic capabilities that may allow them to adapt to, and flourish within, the bone microenvironment. Mammary cells are known to calcify within breast tissue and we have recently reported a novel in vitro model of mammary mineralization using murine mammary adenocarcinoma 4T1 cells. In this study, the osteomimetic properties of the mammary adenocarcinoma cell line and the conditions required to induce mineralization were characterized extensively. It was found that exogenous organic phosphate and inorganic phosphate induce mineralization in a dose dependent manner in 4T1 cells. Ascorbic acid and dexamethasone alone have no effect. 4T1 cells also show enhanced mineralization in response to bone morphogenetic protein 2 in the presence of phosphate supplemented media. The expression of several bone matrix proteins were monitored throughout the process of mineralization and increased expression of collagen type 1 and bone sialoprotein were detected, as determined by real-time RT-PCR. In addition, we have shown for the first time that 3D collagen glycosaminoglycan scaffolds, bioengineered to represent the bone microenvironment, are capable of supporting the growth and mineralization of 4T1 adenocarcinoma cells. These 3D scaffolds represent a novel model system for the study of mammary mineralization and bone metastasis. This work demonstrates that mammary cells are capable of osteomimicry, which may ultimately contribute to their ability to preferentially metastasize to, survive within and colonize the bone microenvironment.

  11. Latexin is involved in bone morphogenetic protein-2-induced chondrocyte differentiation

    International Nuclear Information System (INIS)

    Latexin is the only known carboxypeptidase A inhibitor in mammals. We previously demonstrated that BMP-2 significantly induced latexin expression in Runx2-deficient mesenchymal cells (RD-C6 cells), during chondrocyte and osteoblast differentiation. In this study, we investigated latexin expression in the skeleton and its role in chondrocyte differentiation. Immunohistochemical studies revealed that proliferating and prehypertrophic chondrocytes expressed latexin during skeletogenesis and bone fracture repair. In the early phase of bone fracture, latexin mRNA expression was dramatically upregulated. BMP-2 upregulated the expression of the mRNAs of latexin, Col2a1, and the gene encoding aggrecan (Agc1) in a micromass culture of C3H10T1/2 cells. Overexpression of latexin additively stimulated the BMP-2-induced expression of the mRNAs of Col2a, Agc1, and Col10a1. BMP-2 treatment upregulated Sox9 expression, and Sox9 stimulated the promoter activity of latexin. These results indicate that latexin is involved in BMP-2-induced chondrocyte differentiation and plays an important role in skeletogenesis and skeletal regeneration.

  12. Human osteoblast-like cells respond to mechanical strain with increased bone matrix protein production independent of hormonal regulation

    Science.gov (United States)

    Harter, L. V.; Hruska, K. A.; Duncan, R. L.

    1995-01-01

    Exposure of osteosarcoma cell lines to chronic intermittent strain increases the activity of mechano-sensitive cation (SA-cat) channels. The impact of mechano-transduction on osteoblast function has not been well studied. We analyzed the expression and production of bone matrix proteins in human osteoblast-like osteosarcoma cells, OHS-4, in response to chronic intermittent mechanical strain. The OHS-4 cells exhibit type I collagen production, 1,25-Dihydroxyvitamin D-inducible osteocalcin, and mineralization of the extracellular matrix. The matrix protein message level was determined from total RNA isolated from cells exposed to 1-4 days of chronic intermittent strain. Northern analysis for type I collagen indicated that strain increased collagen message after 48 h. Immunofluorescent labeling of type I collagen demonstrated that secretion was also enhanced with mechanical strain. Osteopontin message levels were increased several-fold by the application of mechanical load in the absence of vitamin D, and the two stimuli together produced an additive effect. Osteocalcin secretion was also increased with cyclic strain. Osteocalcin levels were not detectable in vitamin D-untreated control cells. However, after 4 days of induced load, significant levels of osteocalcin were observed in the medium. With vitamin D present, osteocalcin levels were 4 times higher in the medium of strained cells compared to nonstrained controls. We conclude that mechanical strain of osteoblast-like cells is sufficient to increase the transcription and secretion of matrix proteins via mechano-transduction without hormonal induction.

  13. Human bone morphogenetic protein-2 gene transfer induces human mesenchymal stem cell proliferation and differentiation in vitro

    Institute of Scientific and Technical Information of China (English)

    李军; 范清宇; 钱济先; 马保安; 周勇; 张明华

    2004-01-01

    Objective: To identify eukaryotic expression vector of human bone morphogenetic protein 2 pcDNA3/BMP2, verify its expression in transfected human mesenchymal stem cells (hMSCs) and the effect on hMSCs differentiation.Methods: The BMP2 gene was cloned into a eukaryotic expression vector pcDNA3. Transfected the recombinant into hMSCs by liposome. Immunnohistochemistry and in situ hybridization methods were used to identify the expression of BMP2 mRNA and protein; ALP and Von Kossa stains were performed to identify the BMP2 gene differentiated effect on the hMSCs. Results: The pcDNA3/BMP2 fragments were as large as theory. BMP2 mRNA and protein were expressed and synthesized both in 48 h and 4 weeks after transfection, the ALP and Ca deposit exhibition, which marked the osteogenic lineage of hMSCs,were enhanced and sped. Conclusion: Transfection of pcDNA3/BMP2 is able to provide transient and persistent expression in hMSCs, and promote the MSCs differentiation to osteogenic lineage.

  14. Cell multiplication, apoptosis and p-Akt protein expression of bone mesenchymal stem cells of rat under hypoxia environment

    Institute of Scientific and Technical Information of China (English)

    Hongliang Kong; Ningning Liu; Xin Huo; Bo Wang; Haipeng Zhang; Mingyu Gao; Guoxian Qi

    2007-01-01

    Objective :To elucidate whether cell multiplication, apoptosis, glucose intake and p-Akt protein expression of bone Mesenchymal Stem Cells(MSCs) of rats is influenced by a hypoxic environment ex vivo. Methods:Passage 3 of bone marrow MSCs taken from Wistar rats, were cultured in a culturing chamber with 94%N2,1%O2, 5%CO2 at 37℃. At different hypoxia time points, 0,0.5,1,4 and 8 h, glucose uptake was assayed by using radiation isotope 3H-G, Apoptotic Rate(AR) and dead rate(DR) were analyzed by flow cytometry(FCM) after Annexin V/PI staining, cell multiplication(by MTT methods) and p-Akt protein by immunocytochemistry and western blot. Results:Assay for CD29+,CD44+,CD71+,CD34-, Tn T+(after 5-azacytidine agent inducing) and ALP+(after bone differentiation agent inducing) suggested these bone-derived cells were MSCs. The 3H-G intaking ratio (CPM/flask value:157 ± 11,110 ± 11,107 ± 13,103 ± 10,100 ± 9 and 98 ± 10) of MSCs at different hypoxia time points, significantly decreased compared to that of normoxia(P < 0.01) and tended to descend slowly with hypoxia time duration, for which there was no statistical significance(P > 0.05). The AR(0.09 ± 2.03%,12.9 ± 1.72%,13.7 ± 2.26%,13.8 ± 3.01% ,14.1 ± 2.78% and 14.7 ±4.01% at 0,0.5,1,4 and 8 h,respectively,P < 0.01) and DR (0.04 ± 1.79% ,0.93 ± 1.85% ,3.11 ± 2.14%,4.09 ± 2.36% ,4.72 ±2.05% and 4.91 ± 3.72% at 0,0.5,1,4 and 8 h, respectively, P < 0.05) at different hypoxia time points significantly increased compared to those time in normoxia; The AR further went up with time (P < 0.05), however there was no statistical significance(P > 0.05) for the DR. Optical absorption value of MTT methods at different hypoxia time points significantly decreased compared to those with a corresponding normoxia time (P < 0.01 ) and degraded with time (in an hypoxic environment -P < 0.01 ).IOD of p-Akt protein of MSCs at different hypoxia time points significantly increased (0.367 ± 0.031,0.556 ± 0

  15. Bone tumor

    Science.gov (United States)

    Tumor - bone; Bone cancer; Primary bone tumor; Secondary bone tumor ... The cause of bone tumors is unknown. They often occur in areas of the bone that grow rapidly. Possible causes include: Genetic defects ...

  16. Bone Grafts

    Science.gov (United States)

    A bone graft transplants bone tissue. Surgeons use bone grafts to repair and rebuild diseased bones in your hips, knees, spine, and sometimes other bones and joints. Grafts can also repair bone loss caused by some ...

  17. Identification of Proteins and Peptide Biomarkers for Detecting Banned Processed Animal Proteins (PAPs) in Meat and Bone Meal by Mass Spectrometry.

    Science.gov (United States)

    Marbaix, Hélène; Budinger, Dimitri; Dieu, Marc; Fumière, Olivier; Gillard, Nathalie; Delahaut, Philippe; Mauro, Sergio; Raes, Martine

    2016-03-23

    The outbreak of bovine spongiform encephalopathy (BSE) in the United Kingdom in 1986, with processed animal proteins (PAPs) as the main vector of the disease, has led to their prohibition in feed. The progressive release of the feed ban required the development of new analytical methods to determine the exact origin of PAPs from meat and bone meal. We set up a promising MS-based method to determine the species and the source (legal or not) present in PAPs: a TCA-acetone protein extraction followed by a cleanup step, an in-solution tryptic digestion of 5 h (with a 1:20 protein/trypsin ratio), and mass spectrometry analyses, first without any a priori, with a Q-TOF, followed by a targeted triple-quadrupole analysis. Using this procedure, we were able to overcome some of the major limitations of the official methods to analyze PAPs, detecting and identifying prohibited animal products in feedstuffs by the monitoring of peptides specific for cows, pigs, and sheep in PAPs. PMID:26943838

  18. Transforming growth factor-β inhibits CCAAT/enhancer-binding protein expression and PPARγ activity in unloaded bone marrow stromal cells

    International Nuclear Information System (INIS)

    The molecular mechanisms regulating the adipogenic differentiation of bone marrow stromal cells in vivo remain largely unknown. In this study, we investigated the regulatory effects of transforming growth factor beta-2 (TGF-β2) on transcription factors involved in adipogenic differentiation induced by hind limb suspension in rat bone marrow stromal cells in vivo. Time course real-time quantitative reverse-transcription polymerase chain reaction (RT-PCR) analysis of gene expression showed that skeletal unloading progressively increases the expression of CCAAT/enhancer-binding protein (C/EBP)α and C/EBPβ α at 5 days in bone marrow stromal cells resulting in increased peroxisome proliferator-activated receptor γ (PPARγ2) transcripts at 7 days. TGF-β2 administration in unloaded rats corrected the rise in C/EBPα and C/EBPβ transcripts induced by unloading in bone marrow stromal cells. This resulted in inhibition of PPARγ2 expression that was associated with increased Runx2 expression. Additionally, the inhibition of C/EBPα and C/EBPβ expression by TGF-β2 was associated with increased PPARγ serine phosphorylation in bone marrow stromal cells, a mechanism that inhibits PPARγ transactivating activity. The sequential inhibitory effect of TGF-β2 on C/EBPα, C/EBPβ, and PPARγ2 resulted in reduced LPL expression and abolition of bone marrow stromal cell adipogenic differentiation, which contributed to prevent bone loss induced by skeletal unloading. We conclude that TGF-β2 inhibits the excessive adipogenic differentiation of bone marrow stromal cells induced by skeletal unloading by inhibiting C/EBPα, C/EBPβ, and PPARγ expression and activity, which provides a sequential mechanism by which TGF-β2 regulates adipogenic differentiation of bone marrow stromal cells in vivo

  19. Wnt5a signaling is a substantial constituent in bone morphogenetic protein-2-mediated osteoblastogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Nemoto, Eiji, E-mail: e-nemoto@dent.tohoku.ac.jp [Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Ebe, Yukari; Kanaya, Sousuke [Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Tsuchiya, Masahiro [Department of Aging and Geriatric Dentistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Nakamura, Takashi [Department of Pediatric Dentistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Tamura, Masato [Department of Biochemistry and Molecular Biology, Hokkaido University Graduate School of Dentistry, Sapporo 060-8586 (Japan); Shimauchi, Hidetoshi [Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Wnt5a is identified in osteoblasts in tibial growth plate and bone marrow. Black-Right-Pointing-Pointer Osteoblastic differentiation is associated with increased expression of Wnt5a/Ror2. Black-Right-Pointing-Pointer Wnt5a/Ror2 signaling is important for BMP-2-mediated osteoblastic differentiation. Black-Right-Pointing-Pointer Wnt5a/Ror2 operates independently of BMP-Smad pathway. -- Abstract: Wnts are secreted glycoproteins that mediate developmental and post-developmental physiology by regulating cellular processes including proliferation, differentiation, and apoptosis through {beta}-catenin-dependent canonical and {beta}-catenin-independent noncanonical pathway. It has been reported that Wnt5a activates noncanonical Wnt signaling through receptor tyrosine kinase-like orphan receptor 2 (Ror2). Although it appears that Wnt5a/Ror2 signaling supports normal bone physiology, the biological significance of noncanonical Wnts in osteogenesis is essentially unknown. In this study, we identified expression of Wnt5a in osteoblasts in the ossification zone of the tibial growth plate as well as bone marrow of the rat tibia as assessed by immunohistochemistry. In addition, we show that osteoblastic differentiation mediated by BMP-2 is associated with increased expression of Wnt5a and Ror2 using cultured pre-osteoblasts, MC3T3-E1 cells. Silencing gene expression of Wnt5a and Ror2 in MC3T3-E1 cells results in suppression of BMP-2-mediated osteoblastic differentiation, suggesting that Wnt5a and Ror2 signaling are of substantial importance for BMP-2-mediated osteoblastic differentiation. BMP-2 stimulation induced phosphorylation of Smad1/5/8 in a similar fashion in both siWnt5a-treated cells and control cells, suggesting that Wnt5a was dispensable for the phosphorylation of Smads by BMP-2. Taken together, our results suggest that Wnt5a/Ror2 signaling appears to be involved in BMP-2-mediated osteoblast differentiation in a Smad independent

  20. Wnt5a signaling is a substantial constituent in bone morphogenetic protein-2-mediated osteoblastogenesis

    International Nuclear Information System (INIS)

    Highlights: ► Wnt5a is identified in osteoblasts in tibial growth plate and bone marrow. ► Osteoblastic differentiation is associated with increased expression of Wnt5a/Ror2. ► Wnt5a/Ror2 signaling is important for BMP-2-mediated osteoblastic differentiation. ► Wnt5a/Ror2 operates independently of BMP-Smad pathway. -- Abstract: Wnts are secreted glycoproteins that mediate developmental and post-developmental physiology by regulating cellular processes including proliferation, differentiation, and apoptosis through β-catenin-dependent canonical and β-catenin-independent noncanonical pathway. It has been reported that Wnt5a activates noncanonical Wnt signaling through receptor tyrosine kinase-like orphan receptor 2 (Ror2). Although it appears that Wnt5a/Ror2 signaling supports normal bone physiology, the biological significance of noncanonical Wnts in osteogenesis is essentially unknown. In this study, we identified expression of Wnt5a in osteoblasts in the ossification zone of the tibial growth plate as well as bone marrow of the rat tibia as assessed by immunohistochemistry. In addition, we show that osteoblastic differentiation mediated by BMP-2 is associated with increased expression of Wnt5a and Ror2 using cultured pre-osteoblasts, MC3T3-E1 cells. Silencing gene expression of Wnt5a and Ror2 in MC3T3-E1 cells results in suppression of BMP-2-mediated osteoblastic differentiation, suggesting that Wnt5a and Ror2 signaling are of substantial importance for BMP-2-mediated osteoblastic differentiation. BMP-2 stimulation induced phosphorylation of Smad1/5/8 in a similar fashion in both siWnt5a-treated cells and control cells, suggesting that Wnt5a was dispensable for the phosphorylation of Smads by BMP-2. Taken together, our results suggest that Wnt5a/Ror2 signaling appears to be involved in BMP-2-mediated osteoblast differentiation in a Smad independent pathway.

  1. Prolonged propagation of rat neural stem cells relies on inhibiting autocrine/paracrine bone morphogenetic protein and platelet derived growth factor signals

    Institute of Scientific and Technical Information of China (English)

    Yirui Sun; Liangfu Zhou; Xing Wu; Hua Liu; Qiang Yuan; Ying Mao; Jin Hu

    2011-01-01

    Continuous expansion of rat neural stem cell lines has not been achieved due to proliferation arrest and spontaneous differentiation in vitro. In the current study, neural precursor cells derived from the subventricular zone of adult rats spontaneously underwent astroglial and oligodendroglial differentiation after limited propagation. This differentiation was largely induced by autocrine or paracrine bone morphogenetic protein and platelet derived growth factor signals. The results showed that, by inhibiting bone morphogenetic protein and platelet derived growth factor signals, adult rat neural precursor cells could be extensively cultured in vitro as tripotent stem cell lines. In addition to adult rat neural stem cells, we found that bone morphogenetic protein antagonists can promote the proliferation of human neural stem cells. Therefore, the present findings illustrated the role of autocrine or paracrine bone morphogenetic protein and platelet derived growth factor signaling in determining neural stem cell self-renewal and differentiation. By antagonizing both signals, the long-term propagation of rat neural stem cell lines can be achieved.

  2. Important role for bone marrow-derived cholesteryl ester transfer protein in lipoprotein cholesterol redistribution and atherosclerotic lesion development in LDL receptor knockout mice

    NARCIS (Netherlands)

    Van Eck, Miranda; Ye, Dan; Hildebrand, Reeni B.; Kruijt, J. Kar; de Haan, Willeke; Hoekstra, Menno; Rensen, Patrick C. N.; Ehnholm, Christian; Jauhiainen, Matti; Van Berkel, Theo J. C.

    2007-01-01

    Abundant amounts of cholesteryl ester transfer protein (CETP) are found in macrophage-derived foam cells in the arterial wall, but its function in atherogenesis is unknown. To investigate the role of macrophage CETP in atherosclerosis, LDL receptor knockout mice were transplanted with bone marrow fr

  3. Protein-containing nutrient supplementation following strength training enhances the effect on muscle mass, strength, and bone formation in postmenopausal women

    DEFF Research Database (Denmark)

    Holm, Lars; Olesen, J.L.; Matsumoto, K.;

    2008-01-01

    We evaluated the response of various muscle and bone adaptation parameters with 24 wk of strength training in healthy, early postmenopausal women when a nutrient supplement (protein, carbohydrate, calcium, and vitamin D) or a placebo supplement (a minimum of energy) was ingested immediately follo...

  4. The effect of a high-protein, high-sodium diet on calcium and bone metabolism in postmenopausal women stratified by hormone replacement therapy use

    DEFF Research Database (Denmark)

    Harrington, M.; Bennett, T.; Jakobsen, Jette; Ovesen, L.; Brot, C.; Flynn, A.; Cashman, K. D.

    2004-01-01

    The objective of this study was to investigate the influence of a high-sodium, high-protein diet on bone metabolism in postmenopausal women ( aged 49 - 60 y) stratified by hormone replacement therapy (HRT) use. In a crossover trial, 18 women (n = 8 HRT users (+HRT) and n = 10 nonusers (-HRT)) were...

  5. Controlled spatial and conformational display of immobilised bone morphogenetic protein-2 and osteopontin signalling motifs regulates osteoblast adhesion and differentiation in vitro

    Directory of Open Access Journals (Sweden)

    McCaskie Andrew W

    2010-05-01

    Full Text Available Abstract Background The interfacial molecular mechanisms that regulate mammalian cell growth and differentiation have important implications for biotechnology (production of cells and cell products and medicine (tissue engineering, prosthetic implants, cancer and developmental biology. We demonstrate here that engineered protein motifs can be robustly displayed to mammalian cells in vitro in a highly controlled manner using a soluble protein scaffold designed to self assemble on a gold surface. Results A protein was engineered to contain a C-terminal cysteine that would allow chemisorption to gold, followed by 12 amino acids that form a water soluble coil that could switch to a hydrophobic helix in the presence of alkane thiols. Bioactive motifs from either bone morphogenetic protein-2 or osteopontin were added to this scaffold protein and when assembled on a gold surface assessed for their ability to influence cell function. Data demonstrate that osteoblast adhesion and short-term responsiveness to bone morphogenetic protein-2 is dependent on the surface density of a cell adhesive motif derived from osteopontin. Furthermore an immobilised cell interaction motif from bone morphogenetic protein supported bone formation in vitro over 28 days (in the complete absence of other osteogenic supplements. In addition, two-dimensional patterning of this ligand using a soft lithography approach resulted in the spatial control of osteogenesis. Conclusion These data describe an approach that allows the influence of immobilised protein ligands on cell behaviour to be dissected at the molecular level. This approach presents a durable surface that allows both short (hours or days and long term (weeks effects on cell activity to be assessed. This widely applicable approach can provide mechanistic insight into the contribution of immobilised ligands in the control of cell activity.

  6. Cold water cleaning of brain proteins, biofilm and bone - harnessing an ultrasonically activated stream.

    Science.gov (United States)

    Birkin, P R; Offin, D G; Vian, C J B; Howlin, R P; Dawson, J I; Secker, T J; Hervé, R C; Stoodley, P; Oreffo, R O C; Keevil, C W; Leighton, T G

    2015-08-28

    In the absence of sufficient cleaning of medical instruments, contamination and infection can result in serious consequences for the health sector and remains a significant unmet challenge. In this paper we describe a novel cleaning system reliant on cavitation action created in a free flowing fluid stream where ultrasonic transmission to a surface, through the stream, is achieved using careful design and control of the device architecture, sound field and the materials employed. Cleaning was achieved with purified water at room temperature, moderate fluid flow rates and without the need for chemical additives or the high power consumption associated with conventional strategies. This study illustrates the potential in harnessing an ultrasonically activated stream to remove biological contamination including brain tissue from surgical stainless steel substrates, S. epidermidis biofilms from glass, and fat/soft tissue matter from bone structures with considerable basic and clinical applications. PMID:26200694

  7. The cellular prion protein negatively regulates phagocytosis and cytokine expression in murine bone marrow-derived macrophages.

    Directory of Open Access Journals (Sweden)

    Min Wang

    Full Text Available The cellular prion protein (PrP(C is a glycosylphosphatidylinositol (GPI-anchored glycoprotein on the cell surface. Previous studies have demonstrated contradictory roles for PrP(C in connection with the phagocytic ability of macrophages. In the present work, we investigated the function of PrP(C in phagocytosis and cytokine expression in bone marrow-derived macrophages infected with Escherichia coli. E. coli infection induced an increase in the PRNP mRNA level. Knockout of PrP(C promoted bacterial uptake; upregulated Rab5, Rab7, and Eea1 mRNA expression; and increased the recruitment of lysosomal-associated membrane protein-2 to phagosomes, suggesting enhanced microbicidal activity. Remarkably, knockout of PrP(C suppressed the proliferation of internalized bacteria and increased the expression of cytokines such as interleukin-1β. Collectively, our data reveal an important role of PrP(C as a negative regulator for phagocytosis, phagosome maturation, cytokine expression, and macrophage microbicidal activity.

  8. Effects of anticonvulsant drugs on the synthesis of DNA and protein by human bone marrow cells in vitro

    International Nuclear Information System (INIS)

    Suspensions of human bone marrow cells were incubated with various concentrations of phenobarbitone or phenytoin sodium for 2 h, and the effects of this incubation on the subsequent incorporation of 3H-thymidine and 3H-leucine into DNA and protein, respectively, were studied. Both drugs caused a depression of 3H-thymidine incorporation and this phenomenon was not prevented by the addition of 100 μg of pteroylglutamic acid, folinic acid or 5-methyltetrahydrofolate per ml of marrow culture. The lowest concentration of drug which caused a statistically significant depression of 3H-thymidine incorporation was 200μg per ml for phenobarbitone and 50 μg per ml for phenytoin sodium. Both phenobarbitone and phenytoin sodium also caused an increase in the incorporation of 3H-leucine at concentrations of 50 and 20 μg per ml., respectively, suggesting the possibility that a stimulation of protein synthesis within erythropoietic cells may play an important role in the development of anticonvulsant-induced macrocytosis. (authod)

  9. Bone morphogenetic protein 4 and retinoic acid trigger bovine VASA homolog expression in differentiating bovine induced pluripotent stem cells.

    Science.gov (United States)

    Malaver-Ortega, Luis F; Sumer, Huseyin; Jain, Kanika; Verma, Paul J

    2016-02-01

    Primordial germ cells (PGCs) are the earliest identifiable and completely committed progenitors of female and male gametes. They are obvious targets for genome editing because they assure the transmission of desirable or introduced traits to future generations. PGCs are established at the earliest stages of embryo development and are difficult to propagate in vitro--two characteristics that pose a problem for their practical application. One alternative method to enrich for PGCs in vitro is to differentiate them from pluripotent stem cells derived from adult tissues. Here, we establish a reporter system for germ cell identification in bovine pluripotent stem cells based on green fluorescent protein expression driven by the minimal essential promoter of the bovine Vasa homolog (BVH) gene, whose regulatory elements were identified by orthologous modelling of regulatory units. We then evaluated the potential of bovine induced pluripotent stem cell (biPSC) lines carrying the reporter construct to differentiate toward the germ cell lineage. Our results showed that biPSCs undergo differentiation as embryoid bodies, and a fraction of the differentiating cells expressed BVH. The rate of differentiation towards BVH-positive cells increased up to tenfold in the presence of bone morphogenetic protein 4 or retinoic acid. Finally, we determined that the expression of key PGC genes, such as BVH or SOX2, can be modified by pre-differentiation cell culture conditions, although this increase is not necessarily mirrored by an increase in the rate of differentiation. PMID:26660942

  10. Application of Ionizing Radiations to Produce New Polysaccharides and Proteins with Enhanced Functionality

    International Nuclear Information System (INIS)

    Treatment of polysaccharides with ionizing radiation either in the solid state or in aqueous solution leads to degradation, whereas application of radiation to process synthetic polymers to introduce structural changes and special performance characteristics is now a thriving industry. Using a mediating gas associated during the radiation treatment prevents the degradation of natural polymers and enables the introduction of different molecular and functional characteristics, as previously achieved with synthetic polymers. For example, the molecular weight can be increased and standardised, protein distribution reorganised and modified to ensure better emulsification, viscosity and viscoelasticity enhanced, leading when required to hydrogel formation. More than one hydrocolloid can also be integrated into a single matrix using this process. Protein, within demineralised bone, too can be modified to give enhanced osteoinductive capacity. This experience has led to additional patented and proprietary processes, using standard food processing techniques, to promote changes in a wide range of hydrocolloids which emulates and extend those which occur naturally. The lecture will describe these structural changes and their functional role by reference to several hydrocolloids, including acacia gums, pectin, ispaghula and hyaluronan, bone morphogenic protein. Applications in food products, dietary fibre and medical products will be illustrated

  11. Bone Morphogenetic Protein 4,Bone Morphogenetic Protein 7 and Polycystic Ovary Syndrome%骨形态蛋白4和骨形态蛋白7与多囊卵巢综合征

    Institute of Scientific and Technical Information of China (English)

    黄晓; 金洁雯; 王勇

    2014-01-01

    多囊卵巢综合征(PCOS)是育龄妇女最常见的生殖内分泌紊乱疾病之一。以稀发排卵或不排卵、高雄激素血症以及形态学上的多囊卵巢为主要表现特征。迄今为止,其病因和病理机制尚不清楚。有研究显示,PCOS的形成与卵源性的某些转录因子有关,如转化生长因子β(TGF-β)。骨形态蛋白4(BMP4)和BMP7是TGF-β超家族的重要成员,在卵泡的形成、排卵、颗粒细胞的生长成熟和凋亡中发挥重要作用。因此了解BMP4和BMP7在女性生殖系统的调节作用,对研究PCOS的病因机制以及治疗有重要价值。%Polycystic ovary syndrome (PCOS) is one of the common endocrine disorder affecting women of reproductive age,and is characterized by oligo-or anovulation,hyperandrogenism and polycystic ovaries. Some findings show that the cause of PCOS has something to do with the abnormal regulation of transcription factors ,such as the Transforming Growth Factor-beta (TGF-β) superfamily. Bone Morphogenetic Protein 4 (BMP4) and Bone Morphogenetic Protein 7 (BMP7) are both important members in TGF-βsuperfamily, and play an significant role in the folliculogenesis、ovulation and the development and apotosis of granulosa cells in ovary. As a result,in order to know more about the pathogenesis and treatment of PCOS, it is necessary to make clear the regulation function of BMP4 and BMP7 in female reproductive system.

  12. Association between alveolar bone loss and serum C-reactive protein levels in aggressive and chronic periodontitis patients

    Directory of Open Access Journals (Sweden)

    Rahul Chopra

    2012-01-01

    Full Text Available Background: C-reactive protein (CRP is an acute phase reactant that is produced in response to diverse inflammatory stimuli, and is known predictor of cardiovascular disease risk. Aggressive and chronic periodontitis are two main forms of periodontal disease, which differ mainly in the method of disease progression. This study aims at determining and comparing the relative levels of serum CRP and alveolar bone loss in aggressive and chronic periodontitis patients. Materials and Methods: A total of 45 subjects, which were divided into 3 groups diagnosed as having generalized aggressive periodontitis (GAP, chronic generalized periodontitis (CGP and non-periodontitis controls (NP, were selected for the study. Venous blood samples were collected for quantitative CRP analysis using Turbidimetric immunoassay. Alveolar bone loss (ABL was measured at proximal sites of posterior teeth on a panoramic radiograph. The relationship between the mean ratio of ABL to root length and serum CRP levels was statistically analyzed using Student unpaired t-test, analysis of variance (ANOVA and Pearson′s correlation coefficient. Results: Mean CRP levels were significantly greater in both GAP (7.49±2.31 mg/l and CGP (4.88±1.80 mg/l groups as compared to NP (0.68±0.23 mg/l with P value <0.0001. The mean value of ABL (% was 31.58 in CGP group and 36.77 in the GAP group, the difference being statistically significant (P=0.0079. Correlation coefficient between CRP and ABL is 0.9310 in CGP, and 0.9252 in GAP, which indicates a positive correlation between both variables. Conclusion: Both forms of periodontitis are associated with increased systemic inflammatory response with aggressiveness of disease progression determining the degree of response.

  13. A Fusion between Domains of the Human Bone Morphogenetic Protein-2 and Maize 27 kD γ-Zein Accumulates to High Levels in the Endoplasmic Reticulum without Forming Protein Bodies in Transgenic Tobacco

    Science.gov (United States)

    Ceresoli, Valentina; Mainieri, Davide; Del Fabbro, Massimo; Weinstein, Roberto; Pedrazzini, Emanuela

    2016-01-01

    Human Bone Morphogenetic Protein-2 (hBMP2) is an osteoinductive agent physiologically involved in bone remodeling processes. A commercialized recombinant hBMP2 produced in mammalian cell lines is available in different clinical applications where bone regeneration is needed, but widespread use has been hindered due to an unfavorable cost/effective ratio. Protein bodies are very large insoluble protein polymers that originate within the endoplasmic reticulum by prolamine accumulation during the cereal seed development. The N-terminal domain of the maize prolamin 27 kD γ-zein is able to promote protein body biogenesis when fused to other proteins. To produce high yield of recombinant hBMP2 active domain (ad) in stably transformed tobacco plants we have fused it to the γ-zein domain. We show that this zein-hBMP2ad fusion is retained in the endoplasmic reticulum without forming insoluble protein bodies. The accumulation levels are above 1% of total soluble leaf proteins, indicating that it could be a rapid and suitable strategy to produce hBMP2ad at affordable costs. PMID:27047526

  14. Form-deprivation myopia induces decreased expression of bone morphogenetic protein-2, 5 in guinea pig sclera

    Institute of Scientific and Technical Information of China (English)

    Qing; Wang; Mei-Lan; Xue; Gui-Qiu; Zhao; Mei-Guang; Liu; Yu-Na; Ma; Yan; Ma

    2015-01-01

    AIM: To identify the presence of various bone morphogenetic proteins(BMPs) and their receptors in normal sclera of human, rat and guinea pigs, and to determine whether their expression changed with form-deprivation myopia(FDM) in guinea pig sclera.METHODS: The expression of BMPs and BMP receptors were detected using reverse transcription polymerase chain reaction(RT-PCR) and immunofluorescence. Two-week-old guinea pigs were monocularly form-deprived with a translucent lens. After fourteen days induction of FDM, total RNA was isolated and subjected to RT-PCR to examine the changes of BMPs and BMP receptors in tissues from the posterior sclera. Western blotting analysis was used to investigate their changes in protein levels.RESULTS: Human sclera expressed m RNAs for BMP-2,-4,-5,-7,-RIA,-RIB and BMP-RII. Conversely, rat sclera only expressed m RNA for BMP-7 and BMP-RIB,while the expression of BMPs and BMP receptors in guinea pigs were similar to that of humans. Human sclera also expresses BMP-2,-4,-5,-7 in protein level.Fourteen days after the induction of myopia, significant decreased expressions for BMP-2 and BMP-5 in the posterior sclera of FDM-affected eyes(P <0.05 vs internal control eyes).· CONCLUSION: Various BMPs were expressed in human and guinea pig sclera. In the posterior sclera,expressions of BMP-2 and BMP-5 significantly decreased in FDM eyes. This finding indicates that various BMPs as components of the scleral cytokines regulating tissue homeostasis and provide evidence that alterations in the expression of BMP-2 and BMP-5 are associated with sclera remodeling during myopia induction.

  15. Transient brown adipocyte-like cells derive from peripheral nerve progenitors in response to bone morphogenetic protein 2.

    Science.gov (United States)

    Salisbury, Elizabeth A; Lazard, Zawaunyka W; Ubogu, Eroboghene E; Davis, Alan R; Olmsted-Davis, Elizabeth A

    2012-12-01

    Perineurial-associated brown adipocyte-like cells were rapidly generated during bone morphogenetic protein 2 (BMP2)-induced sciatic nerve remodeling in the mouse. Two days after intramuscular injection of transduced mouse fibroblast cells expressing BMP2 into wild-type mice, there was replication of beta-3 adrenergic receptor(+) (ADRB3(+)) cells within the sciatic nerve perineurium. Fluorescence-activated cell sorting and analysis of cells isolated from these nerves confirmed ADRB3(+) cell expansion and their expression of the neural migration marker HNK1. Similar analysis performed 4 days after BMP2 delivery revealed a significant decrease in ADRB3(+) cells from isolated sciatic nerves, with their concurrent appearance within the adjacent soft tissue, suggesting migration away from the nerve. These soft tissue-derived cells also expressed the brown adipose marker uncoupling protein 1 (UCP1). Quantification of ADRB3-specific RNA in total hind limb tissue revealed a 3-fold increase 2 days after delivery of BMP2, followed by a 70-fold increase in UCP1-specific RNA after 3 days. Expression levels then rapidly returned to baseline by 4 days. Interestingly, these ADRB3(+) UCP1(+) cells also expressed the neural guidance factor reelin. Reelin(+) cells demonstrated distinct patterns within the injected muscle, concentrated toward the area of BMP2 release. Blocking mast cell degranulation-induced nerve remodeling resulted in the complete abrogation of UCP1-specific RNA and protein expression within the hind limbs following BMP2 injection. The data collectively suggest that local BMP2 administration initiates a cascade of events leading to the expansion, migration, and differentiation of progenitors from the peripheral nerve perineurium to brown adipose-like cells in the mouse, a necessary prerequisite for associated nerve remodeling. PMID:23283549

  16. Immune targeting of fibroblast activation protein triggers recognition of multipotent bone marrow stromal cells and cachexia

    OpenAIRE

    Tran, Eric; Chinnasamy, Dhanalakshmi; Yu, Zhiya; Morgan, Richard A.; Lee, Chyi-Chia Richard; Restifo, Nicholas P; Rosenberg, Steven A.

    2013-01-01

    Fibroblast activation protein (FAP) is a candidate universal target antigen because it has been reported to be selectively expressed in nearly all solid tumors by a subset of immunosuppressive tumor stromal fibroblasts. We verified that 18/18 human tumors of various histologies contained pronounced stromal elements staining strongly for FAP, and hypothesized that targeting tumor stroma with FAP-reactive T cells would inhibit tumor growth in cancer-bearing hosts. T cells genetically engineered...

  17. The interplay of matrix metalloproteinases, morphogens and growth factors is necessary for branching of mammary epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Simian, M.; Harail, Y.; Navre, M.; Werb, Z.; Lochter, A.; Bissell, M.J.

    2002-03-06

    The mammary gland develops its adult form by a process referred to as branching morphogenesis. Many factors have been reported to affect this process. We have used cultured primary mammary epithelial organoids and mammary epithelial cell lines in three-dimensional collagen gels to elucidate which growth factors, matrix metalloproteinases (MMPs) and mammary morphogens interact in branching morphogenesis. Branching stimulated by stromal fibroblasts, epidermal growth factor, fibroblast growth factor 7, fibroblast growth factor 2 and hepatocyte growth factor was strongly reduced by inhibitors of MMPs, indicating the requirement of MMPs for three-dimensional growth involved in morphogenesis. Recombinant stromelysin 1/MMP-3 alone was sufficient to drive branching in the absence of growth factors in the organoids. Plasmin also stimulated branching; however, plasmin-dependent branching was abolished by both inhibitors of plasmin and MMPs, suggesting that plasmin activates MMPs. To differentiate between signals for proliferation and morphogenesis, we used a cloned mammary epithelial cell line that lacks epimorphin, an essential mammary morphogen. Both epimorphin and MMPs were required for morphogenesis, but neither was required for epithelial cell proliferation. These results provide direct evidence for a critical role of MMPs in branching in mammary epithelium and suggest that, in addition to epimorphin, MMP activity is a minimum requirement for branching morphogenesis in the mammary gland.

  18. Discontinuous lines on the radial face of wavy-grained xylem as a manifestation of morphogenic waves in the cambium

    Directory of Open Access Journals (Sweden)

    Beata Zagórska-Marek

    2014-02-01

    Full Text Available There appear in the wood of Entandrophragma, beside the basic interlocked grain, local minute undulations of grain the manifestation of which are checkered figures, either slanting or horizontal, on the radial face of boards. In reference to the model the slanting checkered figure is interpreted as the result of sudden appearance in the cambium of a wave of orientational tendency (morphogenetic wave of relatively short wavelengths and stabilized amplitude from the moment of its appearance, moving vertically. This wave induces undulations in the arrangement of cambial initials. The undulation pattern also moves, however, its rate is half that of the morphogenic wave rate. The amplitude of the undulations oscillates between a maximal value and null which means that in successive wood layers there is wavy grain alternating with straight grain. The horizontal checkered figure may be explained by a local shift of the prase by one half of the period of the morphogenic wave of relatively long wavelengths underlying the interlocked grain formation.

  19. The interplay of matrix metalloproteinases, morphogens and growth factors is necessary for branching of mammary epithelial cells

    International Nuclear Information System (INIS)

    The mammary gland develops its adult form by a process referred to as branching morphogenesis. Many factors have been reported to affect this process. We have used cultured primary mammary epithelial organoids and mammary epithelial cell lines in three-dimensional collagen gels to elucidate which growth factors, matrix metalloproteinases (MMPs) and mammary morphogens interact in branching morphogenesis. Branching stimulated by stromal fibroblasts, epidermal growth factor, fibroblast growth factor 7, fibroblast growth factor 2 and hepatocyte growth factor was strongly reduced by inhibitors of MMPs, indicating the requirement of MMPs for three-dimensional growth involved in morphogenesis. Recombinant stromelysin 1/MMP-3 alone was sufficient to drive branching in the absence of growth factors in the organoids. Plasmin also stimulated branching; however, plasmin-dependent branching was abolished by both inhibitors of plasmin and MMPs, suggesting that plasmin activates MMPs. To differentiate between signals for proliferation and morphogenesis, we used a cloned mammary epithelial cell line that lacks epimorphin, an essential mammary morphogen. Both epimorphin and MMPs were required for morphogenesis, but neither was required for epithelial cell proliferation. These results provide direct evidence for a critical role of MMPs in branching in mammary epithelium and suggest that, in addition to epimorphin, MMP activity is a minimum requirement for branching morphogenesis in the mammary gland

  20. Healing of segmental ulnar defects in dog using bioresorbable calcium phosphate cement added with recombinant human bone morphogenetic protein-2

    Energy Technology Data Exchange (ETDEWEB)

    Ohura, K.; Hamanishi, C. [Kinki Univ. School of Medicine, Osaka (Japan). Dept. of Orthopaedic Surgery; Irie, H. [Olympus Optical Co., Ltd., Tokyo (Japan)

    2001-07-01

    Bioresorbable calcium phosphate cement (BCPC) cylinders soaked with 100 {mu}g of rhBMP-2 were implanted into 21 mm segmental ulnar defects in dogs. New bone induced around cylinders united both bone segments in 3 weeks. As the cylinder dissolved, the induced bone was remodeled into the compact bone by 9 weeks. However, the cement cylinder implanted without BMP did not dissolve and that defect did not recover bone continuity in 9 weeks. Mechanical test at 9 weeks showed that the BMP group achieved 71% union and 63% of bone strength compared to normal ulna. However, other two groups, the implantation of the cylinder alone and no implantation, did not unite any case. The implantation of thin cylinders of BCPC soaked with small amount of rhBMP-2 repaired large bone defects of high mammal fast. Added with more BMP, it will be possible to apply this biocompatible composite even in clinical cases. (orig.)

  1. Time-sequential changes of differentially expressed miRNAs during the process of anterior lumbar interbody fusion using equine bone protein extract, rhBMP-2 and autograft

    Science.gov (United States)

    Chen, Da-Fu; Zhou, Zhi-Yu; Dai, Xue-Jun; Gao, Man-Man; Huang, Bao-Ding; Liang, Tang-Zhao; Shi, Rui; Zou, Li-Jin; Li, Hai-Sheng; Bünger, Cody; Tian, Wei; Zou, Xue-Nong

    2014-03-01

    The precise mechanism of bone regeneration in different bone graft substitutes has been well studied in recent researches. However, miRNAs regulation of the bone formation has been always mysterious. We developed the anterior lumbar interbody fusion (ALIF) model in pigs using equine bone protein extract (BPE), recombinant human bone morphogenetic protein-2 (rhBMP-2) on an absorbable collagen sponge (ACS), and autograft as bone graft substitute, respectively. The miRNA and gene expression profiles of different bone graft materials were examined using microarray technology and data analysis, including self-organizing maps, KEGG pathway and Biological process GO analyses. We then jointly analyzed miRNA and mRNA profiles of the bone fusion tissue at different time points respectively. Results showed that miRNAs, including let-7, miR-129, miR-21, miR-133, miR-140, miR-146, miR-184, and miR-224, were involved in the regulation of the immune and inflammation response, which provided suitable inflammatory microenvironment for bone formation. At late stage, several miRNAs directly regulate SMAD4, Estrogen receptor 1 and 5-hydroxytryptamine (serotonin) receptor 2C for bone formation. It can be concluded that miRNAs play important roles in balancing the inflammation and bone formation.

  2. Enhancement of the Regenerative Potential of Anorganic Bovine Bone Graft Utilizing a Polyglutamate-Modified BMP2 Peptide with Improved Binding to Calcium-Containing Materials.

    Science.gov (United States)

    Bain, Jennifer L; Bonvallet, Paul P; Abou-Arraj, Ramzi V; Schupbach, Peter; Reddy, Michael S; Bellis, Susan L

    2015-09-01

    Autogenous bone is the gold standard material for bone grafting in craniofacial and orthopedic regenerative medicine. However, due to complications associated with harvesting donor bone, clinicians often use commercial graft materials that may lose their osteoinductivity due to processing. This study was aimed to functionalize one of these materials, anorganic bovine bone (ABB), with osteoinductive peptides to enhance regenerative capacity. Two peptides known to induce osteoblastic differentiation of mesenchymal stem cells were evaluated: (1) DGEA, an amino acid motif within collagen I and (2) a biomimetic peptide derived from bone morphogenic protein 2 (BMP2pep). To achieve directed coupling of the peptides to the graft surface, the peptides were engineered with a heptaglutamate domain (E7), which confers specific binding to calcium moieties within bone mineral. Peptides with the E7 domain exhibited greater anchoring to ABB than unmodified peptides, and E7 peptides were retained on ABB for at least 8 weeks in vivo. To assess the osteoinductive potential of the peptide-conjugated ABB, ectopic bone formation was evaluated utilizing a rat subcutaneous pouch model. ABB conjugated with full-length recombinant BMP2 (rBMP2) was also implanted as a model for current clinical treatments utilizing rBMP2 passively adsorbed to carriers. These studies showed that E7BMP2pep/ABB samples induced more new bone formation than all other peptides, and an equivalent amount of new bone as compared with rBMP2/ABB. A mandibular defect model was also used to examine intrabony healing of peptide-conjugated ABB. Bone healing was monitored at varying time points by positron emission tomography imaging with (18)F-NaF, and it was found that the E7BMP2pep/ABB group had greater bone metabolic activity than all other groups, including rBMP2/ABB. Importantly, animals implanted with rBMP2/ABB exhibited complications, including inflammation and formation of cataract-like lesions in the eye, whereas

  3. Bone Biopsy

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z Bone Biopsy Bone biopsy uses a needle and imaging guidance ... limitations of Bone Biopsy? What is a Bone Biopsy? A bone biopsy is an image-guided procedure ...

  4. Simultaneous gene transfer of bone morphogenetic protein (BMP) -2 and BMP-7 by in vivo electroporation induces rapid bone formation and BMP-4 expression

    OpenAIRE

    Kawai, Mariko; Bessho, Kazuhisa; Maruyama, Hiroki; Miyazaki, Jun-ichi; Yamamoto, Toshio

    2006-01-01

    Background: Transcutaneous in vivo electroporation is expected to be an effective gene-transfer method for promoting bone regeneration using the BMP-2 plasmid vector. To promote enhanced osteoinduction using this method, we simultaneously transferred cDNAs for BMP-2 and BMP-7, as inserts in the non-viral vector pCAGGS.

  5. Function and Regulation of Bone Morphogenetic Protein 7 (BMP7) in Cerebral Cortex Development

    OpenAIRE

    Ortega Cano, Juan Alberto

    2011-01-01

    [eng] Brain derived neurotrophic factor (BDNF) is a chemokine which levels are regulated by neuronal activity and could act as a sensor in front of distinct physiologic stimulus, activating the transcription of specific group of genes. In this work we show that BDNF induces the expression of BMP7 in neurons through TrkB receptor and MAPK/ERK pathways, an induction mechanism that is mediated in part by the release of the transcriptional repression exerted by p53 family proteins. BMP member...

  6. Titanium With Nanotopography Induces Osteoblast Differentiation by Regulating Endogenous Bone Morphogenetic Protein Expression and Signaling Pathway.

    Science.gov (United States)

    M S Castro-Raucci, Larissa; S Francischini, Marcelo; N Teixeira, Lucas; P Ferraz, Emanuela; B Lopes, Helena; T de Oliveira, Paulo; Hassan, Mohammad Q; Losa, Adalberto L; Beloti, Marcio M

    2016-07-01

    We aimed at evaluating the effect of titanium (Ti) with nanotopography (Nano) on the endogenous expression of BMP-2 and BMP-4 and the relevance of this process to the nanotopography-induced osteoblast differentiation. MC3T3-E1 cells were grown on Nano and machined (Machined) Ti surfaces and the endogenous BMP-2/4 expression and the effect of BMP receptor BMPR1A silencing in both osteoblast differentiation and expression of genes related to TGF-β/BMP signaling were evaluated. Nano supported higher BMP-2 gene and protein expression and upregulated the osteoblast differentiation compared with Machined Ti surface. The BMPR1A silencing inhibited the osteogenic potential induced by Nano Ti surface as indicated by reduced alkaline phosphatase (ALP), osteocalcin and RUNX2 gene expression, RUNX2 protein expression and ALP activity. In addition, the expression of genes related to TGF-β/BMP signaling was deeply affected by BMPR1A-silenced cells grown on Nano Ti surface. In conclusion, we have demonstrated for the first time that nanotopography induces osteoblast differentiation, at least in part, by upregulating the endogenous production of BMP-2 and modulating BMP signaling pathway. J. Cell. Biochem. 117: 1718-1726, 2016. © 2015 Wiley Periodicals, Inc. PMID:26681207

  7. Molecular mechanism of bone formation and regeneration

    Institute of Scientific and Technical Information of China (English)

    Akira Yamaguchi

    2008-01-01

    @@ Bone formation and regeneration are mediated by the coordinate action of various factors. Among these, bone morphogenetic protein (BMP) and runt-related gene 2 (Runx2) play crucial roles in bone formation.

  8. The Macrophage Inflammatory Proteins MIP1α (CCL3 and MIP2α (CXCL2 in Implant-Associated Osteomyelitis: Linking Inflammation to Bone Degradation

    Directory of Open Access Journals (Sweden)

    Ulrike Dapunt

    2014-01-01

    Full Text Available Bacterial infections of bones remain a serious complication of endoprosthetic surgery. These infections are difficult to treat, because many bacterial species form biofilms on implants, which are relatively resistant towards antibiotics. Bacterial biofilms elicit a progressive local inflammatory response, resulting in tissue damage and bone degradation. In the majority of patients, replacement of the prosthesis is required. To address the question of how the local inflammatory response is linked to bone degradation, tissue samples were taken during surgery and gene expression of the macrophage inflammatory proteins MIP1α (CCL3 and MIP2α (CXCL2 was assessed by quantitative RT-PCR. MIPs were expressed predominantly at osteolytic sites, in close correlation with CD14 which was used as marker for monocytes/macrophages. Colocalisation of MIPs with monocytic cells could be confirmed by histology. In vitro experiments revealed that, aside from monocytic cells, also osteoblasts were capable of MIP production when stimulated with bacteria; moreover, CCL3 induced the differentiation of monocytes to osteoclasts. In conclusion, the multifunctional chemokines CCL3 and CXCL2 are produced locally in response to bacterial infection of bones. In addition to their well described chemokine activity, these cytokines can induce generation of bone resorbing osteoclasts, thus providing a link between bacterial infection and osteolysis.

  9. Degradability, biocompatibility, and osteogenesis of biocomposite scaffolds containing nano magnesium phosphate and wheat protein both in vitro and in vivo for bone regeneration.

    Science.gov (United States)

    Xia, Yan; Zhou, Panyu; Wang, Fei; Qiu, Chao; Wang, Panfeng; Zhang, Yuntong; Zhao, Liming; Xu, Shuogui

    2016-01-01

    In this study, bioactive scaffold of nano magnesium phosphate (nMP)/wheat protein (WP) composite (MWC) was fabricated. The results revealed that the MWC scaffolds had interconnected not only macropores (sized 400-600 μm) but also micropores (sized 10-20 μm) on the walls of macropores. The MWC scaffolds containing 40 w% nMP had an appropriate degradability in phosphate-buffered saline and produced a weak alkaline microenvironment. In cell culture experiments, the results revealed that the MWC scaffolds significantly promoted the MC3T3-E1 cell proliferation, differentiation, and growth into the scaffolds. The results of synchrotron radiation microcomputed tomography and analysis of the histological sections of the in vivo implantation revealed that the MWC scaffolds evidently improved the new bone formation and bone defects repair as compared with WP scaffolds. Moreover, it was found that newly formed bone tissue continued to increase with the gradual reduction of materials residual in the MWC scaffolds. Furthermore, the immunohistochemical analysis further offered the evidence of the stimulatory effects of MWC scaffolds on osteogenic-related cell differentiation and new bone regeneration. The results indicated that MWC scaffolds with good biocompability and degradability could promote osteogenesis in vivo, which would have potential for bone tissue repair. PMID:27555766

  10. Degradability, biocompatibility, and osteogenesis of biocomposite scaffolds containing nano magnesium phosphate and wheat protein both in vitro and in vivo for bone regeneration

    Science.gov (United States)

    Xia, Yan; Zhou, Panyu; Wang, Fei; Qiu, Chao; Wang, Panfeng; Zhang, Yuntong; Zhao, Liming; Xu, Shuogui

    2016-01-01

    In this study, bioactive scaffold of nano magnesium phosphate (nMP)/wheat protein (WP) composite (MWC) was fabricated. The results revealed that the MWC scaffolds had interconnected not only macropores (sized 400–600 μm) but also micropores (sized 10–20 μm) on the walls of macropores. The MWC scaffolds containing 40 w% nMP had an appropriate degradability in phosphate-buffered saline and produced a weak alkaline microenvironment. In cell culture experiments, the results revealed that the MWC scaffolds significantly promoted the MC3T3-E1 cell proliferation, differentiation, and growth into the scaffolds. The results of synchrotron radiation microcomputed tomography and analysis of the histological sections of the in vivo implantation revealed that the MWC scaffolds evidently improved the new bone formation and bone defects repair as compared with WP scaffolds. Moreover, it was found that newly formed bone tissue continued to increase with the gradual reduction of materials residual in the MWC scaffolds. Furthermore, the immunohistochemical analysis further offered the evidence of the stimulatory effects of MWC scaffolds on osteogenic-related cell differentiation and new bone regeneration. The results indicated that MWC scaffolds with good biocompability and degradability could promote osteogenesis in vivo, which would have potential for bone tissue repair. PMID:27555766

  11. Dissociation of bone formation markers in bone metastasis of prostate cancer.

    OpenAIRE

    Koizumi, M; Maeda, H.; Yoshimura, K; Yamauchi, T.; Kawai, T.; Ogata, E

    1997-01-01

    To clarify the meaning and clinical value of bone formation markers in bone metastasis from prostate cancer, we investigated the bone formation markers carboxy-terminal propeptide of type I procollagen (PICP), bone-specific alkaline phosphatase (BA1-p) and osteocalcin, so-called bone gla protein (BGP) in 43 prostate cancer patients with and 46 patients without overt bone metastasis. Patients with bone metastasis were evaluated repeatedly by bone scan at intervals of 3-6 months. The expression...

  12. Profile of serum alkaline phosphatase after inoculation of mononuclear cells and bone morphogenetic protein in the repair of osteochondral defects in rabbits

    Directory of Open Access Journals (Sweden)

    Luiz Augusto de Souza

    2011-12-01

    Full Text Available In this study, serum alkaline phosphatase activity was measured in response to the repair of osteochondral defects in twenty-four New Zealand rabbits. The animals were divided into three groups: a control (GC, those treated with bone marrow mononuclear cells (GCM and those that received mononuclear cells with autologous bone morphogenetic protein (BMP + GCM. After exposing the trochlear groove of the left stifle joint, a wedge-shaped segment was removed. Later, the defect was filled with an osteochondral autograft preserved in 98% glycerin. For the GC group, only the bone graft was performed. For the GCM, in addition to the graft, 2x106 seed mononuclear cells were implanted. For the GCM + BMP, the same number of cells, associated with 1μg of bone morphogenetic protein, were intraarticularly administered. The osteoblastic response was measured by analyzing the serum alkaline phosphatase on day 0 (preoperative 3, 15, 30, and 45 after surgery, and by radiographic examinations. Analysis of variance in randomized blocks, factorial and Tukey’s test (p = 0.05 were made. The overall mean GCM was superior to the other groups and the highest rates were among the 15th and 45th days postoperatively. The discrepancy in values between individuals of the same group casts doubts on the veracity of the test.

  13. The X-Linked Inhibitor of Apoptosis Protein Inhibitor Embelin Suppresses Inflammation and Bone Erosion in Collagen Antibody Induced Arthritis Mice

    Directory of Open Access Journals (Sweden)

    Anak A. S. S. K. Dharmapatni

    2015-01-01

    Full Text Available Objective. To investigate the effect of Embelin, an inhibitor of X-Linked Inhibitor of Apoptosis Protein (XIAP, on inflammation and bone erosion in a collagen antibody induced arthritis (CAIA in mice. Methods. Four groups of mice (n=6 per group were allocated: CAIA untreated mice, CAIA treated with Prednisolone (10 mg/kg/day, CAIA treated with low dose Embelin (30 mg/kg/day, and CAIA treated with high dose Embelin (50 mg/kg/day. Joint inflammation was evaluated using clinical paw score and histological assessments. Bone erosion was assessed using micro-CT, tartrate resistant acid phosphatase (TRAP staining, and serum carboxy-terminal collagen crosslinks (CTX-1 ELISA. Immunohistochemistry was used to detect XIAP protein. TUNEL was performed to identify apoptotic cells. Results. Low dose, but not high dose Embelin, suppressed inflammation as reflected by lower paw scores (P<0.05 and lower histological scores for inflammation. Low dose Embelin reduced serum CTX-1 (P<0.05 and demonstrated lower histological score and TRAP counting, and slightly higher bone volume as compared to CAIA untreated mice. XIAP expression was not reduced but TUNEL positive cells were more abundant in Embelin treated CAIA mice. Conclusion. Low dose Embelin suppressed inflammation and serum CTX-1 in CAIA mice, indicating a potential use for Embelin to treat pathological bone loss.

  14. Mandibular bone repair by implantation of rhBMP-2 in a slow release carrier of polylactic acid--an experimental study in rats.

    Science.gov (United States)

    Schliephake, Henning; Weich, Herbert A; Dullin, Christian; Gruber, Rudolf; Frahse, Sarah

    2008-01-01

    The aim of the present study was to test the hypothesis that human recombinant bone morphogenic protein 2 (rhBMP-2) implanted in a slow release carrier of polylactic acid (PLA) can repair a non-healing defect in the rat mandible and maintain the thickness of an augmented volume. p-DL-lactic acid discs were produced and loaded with 48 and 96 microg rhBMP-2 and inserted into non-healing defects of the mandible of 45 Wistar rats. Fifteen rats received implants with 96 microg rhBMP-2 (Group 2), 48 microg rhBMP-2 (Group 1) and blank implants without BMP (Group 0) each on one side of the mandible. Unfilled defects of the same size on the contralateral sides of the mandibles served as empty controls. After 6, 13 and 26 weeks, implants of each group were retrieved from five animals each and submitted to flat panel detector computed tomography. Bone formation and thickness of augmentation was assessed by computer-assisted histomorphometry. In Group 2 significantly more bone was produced than in Group 1. Implants of Group 1 induced significantly more bone than the blank controls only after 6 weeks, whereas the difference was not significant after 13 and 26 weeks. Differences between Group 2 and Group 1 were clearly significant after 26 weeks. The thickness of bone tissue was maintained in Group 2 whereas it decreased in Group 1 and was negligible in Group 0. It is concluded that the PLA implants with 96 microg rhBMP-2 were able to bridge a non-healing defect in the rat mandible and maintained the thickness of an augmented volume. However, continuous supply of osteogenic signals appears to be required to compensate for adverse effects during polymer degradation. PMID:17936352

  15. EFFECTS OF TRANSFORMING GROWTH FACTOR β AND RECOMBINANT HUMAN BONE MORPHOGENETIC PROTEIN 2 ON HUMAN PERIODONTAL LIGAMENT FIBROBLASTS

    Institute of Scientific and Technical Information of China (English)

    司晓辉; 刘正

    2001-01-01

    Objective To evaluate the effects of transforming growth factor β(TGF-β) and recombinant human bone morphogenetic protein 2 (rhBMP2) on human periodontal ligament fibroblasts ( HPDLFs ). Methods HPDLFs were done primary culture to detect the distinct concentrations of TGF-β and rhBMP2 on its proliferation, alkaline phosphatase (ALP) activity, osteocalcin ( OC) synthesis and formation of the mineralized nodules, respectively. Results TGF-β(5~100ng /ml) significantly stimulated the proliferation of HPDLFs. The ALP activity of HPDLFs was evaluated evidently by 5ng /ml TGF-β. TGF-β(0.5~100ng /ml) had no effects on OC synthesis and formation of the mineralized nodules of HPDLFs. rhBMP2 (0.25~2mg/ ml) had no rernarkable effect on the proliferation of HPDLFs. The ALP activity, OC synthesis and formation of the mineralized nodules of HPDLFs were significantly stimulated by 0.5~2mg/ml rhBMP2. Conclusion The effects of TGF-β and rhBMP2 on HPDLFs are dose-dependent. TGF-β can stimulate HPDLFs to express the early marker of osteoblastic phenotype , and it lacks the ability to promote maturation of the osteogenic phenotype. rhBMP2 can not only stimulate the expression but also promote the maturation of osteoblastic phenotype of HPDLFs.

  16. Convergence of bone morphogenetic protein and laminin-1 signaling pathways promotes proliferation and colony formation by fetal mouse pancreatic cells

    International Nuclear Information System (INIS)

    We previously reported that bone morphogenetic proteins (BMPs), members of the transforming growth factor superfamily, together with the basement membrane glycoprotein laminin-1 (Ln-1), promote proliferation of fetal pancreatic cells and formation of colonies containing peripheral insulin-positive cells. Here, we further investigate the cross-talk between BMP and Ln-1 signals. By RT-PCR, receptors for BMP (BMPR) (excepting BMPR-1B) and Ln-1 were expressed in the fetal pancreas between E13.5 and E17.5. Specific blocking antibodies to BMP-4 and -6 and selective BMP antagonists partially inhibited colony formation by fetal pancreas cells. Colony formation induced by BMP-6 and Ln-1 was completely abolished in a dose-dependent manner by blocking Ln-1 binding to its α6 integrin and α-dystroglycan receptors or by blocking the Ln-1 signaling molecules, phosphatidyl-inositol-3-kinase (P13K) and MAP kinase kinase-1. These results demonstrate a convergence of BMP and Ln-1 signaling through P13K and MAP kinase pathways to induce proliferation and colony formation in E15.5 fetal mouse pancreatic cells

  17. Effect of transforming growth factor beta and bone morphogenetic proteins on rat hepatic stellate cell proliferation and trans-differentiation

    Institute of Scientific and Technical Information of China (English)

    Hong Shen; Guo-Jiang Huang; Yue-Wen Gong

    2003-01-01

    AIM: To explore different roles of TGF-β (transforming growth factor beta) and bone morphogenetic proteins (BMPs)in hepatic stellate cell proliferation and trans-differentiation.METHODS: Hepatic stellate cells were isolated from male Sprague-Dawley rats. Sub-cultured hepatic stellate cells were employed for cell proliferation assay with WST-1 reagent and Western blot analysis with antibody against smooth muscle alpha actin (SMA).RESULTS: The results indicated that TGF-β1 significantly inhibited cell proliferation at concentration as low as 0.1 ng/ml, but both BMP-2 and BMP-4 did not affect cell proliferation at concentration as high as 10 ng/ml. The effect on hepatic stellate cell trans-differentiation was similar between TGFβ1 and BMPs. However, BMPs was more potent at transdifferentiation of hepatic stellate cells than TGF-β1. In addition, we observed that TGF-β1 transient reduced the abundance of SMA in hepatic stellate cells.CONCLUSION: TGF-β may be more important in regulation of hepatic stellate cell proliferation while BMPs may be the major cytokines regulating hepatic stellate cell transdifferentiation.

  18. In vitro and in vivo evaluation of bone morphogenetic protein-2 (BMP-2) immobilized collagen-coated polyetheretherketone (PEEK)

    Science.gov (United States)

    Du, Ya-Wei; Zhang, Li-Nan; Ye, Xin; Nie, He-Min; Hou, Zeng-Tao; Zeng, Teng-Hui; Yan, Guo-Ping; Shang, Peng

    2015-03-01

    Polyetheretherketone (PEEK) is regarded as one of the most potential candidates of biomaterials in spinal implant applications. However, as a bioinert material, PEEK plays a limited role in osteoconduction and osseointegration. In this study, recombinant human bone morphogenetic protein-2 (rhBMP-2) was immobilized onto the surface of collagen-coated PEEK in order to prepare a multi-functional material. After adsorbed onto the PEEK surface by hydrophobic interaction, collagen was cross-linked with N-(3-dimethylaminopropyl)-N'-ethyl carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS). EDC/NHS system also contributed to the immobilization of rhBMP-2. Water contact angle tests, XPS and SEM clearly demonstrated the surface changes. ELISA tests quantified the amount of rhBMP-2 immobilized and the release over a period of 30 d. In vitro evaluation proved that the osteogenesis differentiation rate was higher when cells were cultured on modified PEEK discs than on regular ones. In vivo tests were conducted and positive changes of major parameters were presented. This report demonstrates that the rhBMP-2 immobilized method for PEEK modification increase bioactivity in vitro and in vivo, suggesting its practicability in orthopedic and spinal clinical applications.

  19. Fibroblast activation protein (FAP is essential for the migration of bone marrow mesenchymal stem cells through RhoA activation.

    Directory of Open Access Journals (Sweden)

    Kuei-Min Chung

    Full Text Available BACKGROUND: The ability of human bone marrow mesenchymal stem cells (BM-MSCs to migrate and localize specifically to injured tissues is central in developing therapeutic strategies for tissue repair and regeneration. Fibroblast activation protein (FAP is a cell surface serine protease expressed at sites of tissue remodeling during embryonic development. It is also expressed in BM-MSCs, but not in normal tissues or cells. The function of FAP in BM-MSCs is not known. PRINCIPAL FINDINGS: We found that depletion of FAP proteins significantly inhibited the migration of BM-MSCs in a transwell chemotaxis assay. Such impaired migration ability of BM-MSCs could be rescued by re-expressing FAP in these cells. We then demonstrated that depletion of FAP activated intracellular RhoA GTPase. Consistently, inhibition of RhoA activity using a RhoA inhibitor rescued its migration ability. Inhibition of FAP activity with an FAP-specific inhibitor did not affect the activation of RhoA or the migration of BM-MSCs. Furthermore, the inflammatory cytokines interleukin-1beta (IL-1β and transforming growth factor-beta (TGF-β upregulated FAP expression, which coincided with better BM-MSC migration. CONCLUSIONS: Our results indicate FAP plays an important role in the migration of BM-MSCs through modulation of RhoA GTPase activity. The peptidase activity of FAP is not essential for such migration. Cytokines IL-1β and TGF-β upregulate the expression level of FAP and thus enhance BM-MSC migration.

  20. Sequence analysis of bone morphogenetic protein receptor type II mRNA from ascitic and nonascitic commercial broilers.

    Science.gov (United States)

    Cisar, C R; Balog, J M; Anthony, N B; Donoghue, A M

    2003-10-01

    Ascites syndrome, also known as pulmonary hypertension syndrome (PHS), is a common metabolic disorder in rapidly growing meat-type chickens. Environmental factors, such as cold, altitude, and diet, play significant roles in development of the disease, but there is also an important genetic component to PHS susceptibility. The human disease familial primary pulmonary hypertension (FPPH) is similar to PHS in broilers both genetically and physiologically. Several recent studies have shown that mutations in the bone morphogenetic protein receptor type II (BMPR2) gene are a cause of FPPH in humans. To determine whether mutations in the chicken BMPR2 gene play a similar role in PHS susceptibility, BMPR-II mRNA from ascitic and nonascitic commercial broilers were sequenced and compared with the published Leghorn chicken BMPR-II mRNA sequence. Fourteen single nucleotide polymorphisms (SNP) were identified in the commercial broiler BMPR-II mRNA. No mutations unique to ascites-susceptible broilers were present in the coding, 5' untranslated or 3' untranslated regions of BMPR-II mRNA. The twelve SNP present within the coding region of BMPR-II mRNA were synonymous substitutions and did not alter the BMPR-II protein sequence. In addition, analysis of BMPR2 gene expression by reverse transcriptase-PCR indicated that there were no differences in BMPR-II mRNA levels in ascitic and nonascitic birds. Therefore, it appears unlikely that mutations in the BMPR2 gene were responsible for susceptibility to PHS in these commercial broilers. PMID:14601724

  1. Multiscale imaging of bone microdamage

    OpenAIRE

    Poundarik, Atharva A.; Vashishth, Deepak

    2015-01-01

    Bone is a structural and hierarchical composite that exhibits remarkable ability to sustain complex mechanical loading and resist fracture. Bone quality encompasses various attributes of bone matrix from the quality of its material components (type-I collagen, mineral and non-collagenous matrix proteins) and cancellous microarchitecture, to the nature and extent of bone microdamage. Microdamage, produced during loading, manifests in multiple forms across the scales of hierarchy in bone and fu...

  2. Multifunctional Thin Film Biomatrice Biosensor in a Degradable Scaffold Containing Bone Morphogenetic Protein-2 (BMP-2) for Controlled Release in Skeletal Tissue Engineering

    Science.gov (United States)

    McDaniel, Harvey; Lomax, Linda

    2001-03-01

    Bone morphonogenetic proteins (BMP-2) have been under investigation for three decades. Deminerialized bone and extracts of deminerialized bone are o steoinductive with a temporal sequence of bone induction. Native and recombi nant BMP's have shown the ability, thru growth and differentiative factors t o induce de novo bone formation both invitro and invivo. Their principle fun ction is to induce transformation of undifferentiated mesenchymal cells into osteoblasts. Native and recombinant BMP's, when purified and used without carrier disp erse after implantation and exert no effect on bone induction. The delivery system provides the missing component to successsfully applying osteogenic p roteins for clinical need. Biological and physio-chemical properties are str ictly adhered tofor a successful delivery system. The BMP delivery system ca rrier for osteo inductive payload provided; 1)non tumorgenic genecity, 2) no n immunogenecity, 3) water insoluble, 4) biosorbability with predictable enz ymatic degradation, and 5) an optimized surface for compatibility, cell migr ation and attachment with a negative surface change that encouraged target c ell attachment. Being a controlled Release System, it binded the proteins wi th predictible BMP released kinetics. Porosity with interconnecting voids pr otected the BMP from noon specific proteolysis and promoted rapid vascular a nd mesenchymal invasion. Far wide ranging clinical applications of mechanica l and biofunctional requirements were met with the BMP delivery system. Cohe sion and malleability were reqiured forcontour augmentation, and reconstruct ion of the discontinuity defects, prevented dislocation and retained the sha pe and bone replaced the system. Biological systems have elastic activity associated with them. The activi ty was current associated with a time dependant biological/biochemical react ion (enzymic activity). Bioelectric phoenomena associated with charged molec ules in a biologic structure caused

  3. Use of recombinant human bone morphogenetic protein-2 as an adjunct for instrumented posterior arthrodesis in the occipital cervical region: An analysis of safety, efficacy, and dosing

    OpenAIRE

    D Kojo Hamilton; Smith, Justin S.; Reames, Davis L.; Williams, Brian J.; Shaffrey, Christopher I.

    2010-01-01

    Background: There have been few reports on the use of recombinant human bone morphogenetic protein (rhBMP)-2 in posterior spine. However, no study has investigated the dosing, safety, and efficacy of its use in the posterior atlantoaxial, and/or craniovertebral junction. Recent case report of the cytokine-mediated inflammatory reaction, following off label use of rhBMP-2 as an adjunct for cervical fusion, particularly in complex cases, has increased concern about complications associated with...

  4. Tribulus terrestris Alters the Expression of Growth Differentiation Factor 9 and Bone Morphogenetic Protein 15 in Rabbit Ovaries of Mothers and F1 Female Offspring

    OpenAIRE

    Desislava Abadjieva; Elena Kistanova

    2016-01-01

    Although previous research has demonstrated the key role of the oocyte-derived factors, bone morphogenetic protein (BMP) 15 and growth differentiation factor (GDF) 9, in follicular development and ovulation, there is a lack of knowledge on the impact of external factors, which females are exposed to during folliculogenesis, on their expression. The present study investigated the effect of the aphrodisiac Tribulus terrestris on the GDF9 and BMP15 expression in the oocytes and cumulus cells at ...

  5. Autocrine Bone Morphogenetic Protein-9 signals via Activin Receptor Like Kinase-2/Smad1/Smad4 to promote ovarian cancer cell proliferation

    OpenAIRE

    Herrera, Blanca; van Dinther, Maarten; ten Dijke, Peter; Inman, Gareth J.

    2009-01-01

    Bone morphogenetic proteins (BMPs) act as central regulators of ovarian physiology and may be involved in ovarian cancer development. In an effort to understand these processes we characterized TGFβ/BMP receptor and Smad expression in immortalised ovarian surface epithelial cells (IOSE) and a panel of ovarian cancer cell lines. These studies prompted us to evaluate the potential role of BMP9 signalling in ovarian cancer. Using siRNA, ligand trap, inhibitor and ligand stimulation approaches we...

  6. Maternal protein restriction during pregnancy and lactation alters central leptin signalling, increases food intake, and decreases bone mass in 1 year old rat offspring.

    Science.gov (United States)

    Qasem, Rani J; Li, Jing; Tang, Hee Man; Pontiggia, Laura; D'mello, Anil P

    2016-04-01

    The effects of perinatal nutrition on offspring physiology have mostly been examined in young adult animals. Aging constitutes a risk factor for the progressive loss of metabolic flexibility and development of disease. Few studies have examined whether the phenotype programmed by perinatal nutrition persists in aging offspring. Persistence of detrimental phenotypes and their accumulative metabolic effects are important for disease causality. This study determined the effects of maternal protein restriction during pregnancy and lactation on food consumption, central leptin sensitivity, bone health, and susceptibility to high fat diet-induced adiposity in 1-year-old male offspring. Sprague-Dawley rats received either a control or a protein restricted diet throughout pregnancy and lactation and pups were weaned onto laboratory chow. One-year-old low protein (LP) offspring exhibited hyperphagia. The inability of an intraperitoneal (i.p.) leptin injection to reduce food intake indicated that the hyperphagia was mediated by decreased central leptin sensitivity. Hyperphagia was accompanied by lower body weight suggesting increased energy expenditure in LP offspring. Bone density and bone mineral content that are negatively regulated by leptin acting via the sympathetic nervous system (SNS), were decreased in LP offspring. LP offspring did not exhibit increased susceptibility to high fat diet induced metabolic effects or adiposity. The results presented here indicate that the programming effects of perinatal protein restriction are mediated by specific decreases in central leptin signalling to pathways involved in the regulation of food intake along with possible enhancement of different CNS leptin signalling pathways acting via the SNS to regulate bone mass and energy expenditure. PMID:26763577

  7. Conversion of the Nipple to Hair-Bearing Epithelia by Lowering Bone Morphogenetic Protein Pathway Activity at the Dermal-Epidermal Interface

    OpenAIRE

    Mayer, Julie Ann; Foley, John; de la Cruz, Damon; Chuong, Cheng-ming; Widelitz, Randall

    2008-01-01

    Epithelial appendages, such as mammary glands and hair, arise as a result of epithelial-mesenchymal interactions. Bone morphogenetic proteins (BMPs) are important for hair follicle morphogenesis and cycling and are known to regulate a wide variety of developmental processes. For example, overexpression of BMPs inhibits hair follicle formation. We hypothesized that the down-regulation of the BMP signaling pathway in the basal epidermis expands regions that are competent to form hair follicles ...

  8. The Expression of Bone Morphogenetic Protein 2 and Matrix Metalloproteinase 2 through Retinoic Acid Receptor Beta Induced by All-Trans Retinoic Acid in Cultured ARPE-19 Cells

    OpenAIRE

    Zhenya Gao; Lijun Huo; Dongmei Cui; Xiao Yang; Junwen Zeng

    2016-01-01

    Purpose All-trans retinoic acid (ATRA) plays an important role in ocular development. Previous studies found that retinoic acid could influence the metabolism of scleral remodeling by promoting retinal pigment epithelium (RPE) cells to secrete secondary signaling factors. The purpose of this study was to investigate whether retinoic acid affected secretion of bone morphogenetic protein 2 (BMP-2) and matrix metalloproteinase 2 (MMP-2) and to explore the signaling pathway of retinoic acid in cu...

  9. Comparison of Cell Viability and Embryoid Body Size of Two Embryonic Stem Cell Lines After Different Exposure Times to Bone Morphogenetic Protein 4

    OpenAIRE

    Nehleh Zarei Fard; Tahereh Talaei-Khozani; Soghra Bahmanpour; Tahereh Esmaeilpour

    2015-01-01

    Background: Activation of bone morphogenetic protein 4 (BMP4) signaling pathway in embryonic stem (ES) cells plays an important role in controlling cell proliferation, differentiation, and apoptosis. Adverse effects of BMP4 occur in a time dependent manner; however, little is known about the effect of different time exposure of this growth factor on cell number in culture media. In this study, we investigated the role of two different exposure times to BMP4 in cell viability, embryoid body (E...

  10. Assessing the osteoblast transcriptome in a model of enhanced bone formation due to constitutive Gs–G protein signaling in osteoblasts

    International Nuclear Information System (INIS)

    G protein-coupled receptor (GPCR) signaling in osteoblasts (OBs) is an important regulator of bone formation. We previously described a mouse model expressing Rs1, an engineered constitutively active Gs-coupled GPCR, under the control of the 2.3 kb Col I promoter. These mice showed a dramatic age-dependent increase in trabecular bone of femurs. Here, we further evaluated the effects of enhanced Gs signaling in OBs on intramembranous bone formation by examining calvariae of 1- and 9-week-old Col1(2.3)/Rs1 mice and characterized the in vivo gene expression specifically occurring in osteoblasts with activated Gs G protein-coupled receptor signaling, at the cellular level rather than in a whole bone. Rs1 calvariae displayed a dramatic increase in bone volume with partial loss of cortical structure. By immunohistochemistry, Osterix was detected in cells throughout the inter-trabecular space while Osteocalcin was expressed predominantly in cells along bone surfaces, suggesting the role of paracrine mediators secreted from OBs driven by 2.3 kb Col I promoter could influence early OB commitment, differentiation, and/or proliferation. Gene expression analysis of calvarial OBs revealed that genes affected by Rs1 signaling include those encoding proteins important for cell differentiation, cytokines and growth factors, angiogenesis, coagulation, and energy metabolism. The set of Gs-GPCRs and other GPCRs that may contribute to the observed skeletal phenotype and candidate paracrine mediators of the effect of Gs signaling in OBs were also determined. Our results identify novel detailed in vivo cellular changes of the anabolic response of the skeleton to Gs signaling in mature OBs. - Highlights: • OB expression of an engineered Gs-coupled receptor dramatically increases bone mass. • We investigated the changes in gene expression in vivo in enhanced OB Gs signaling. • Genes in cell cycle and transcription were increased in enhanced OB Gs signaling. • GPCRs and paracrine

  11. Assessing the osteoblast transcriptome in a model of enhanced bone formation due to constitutive G{sub s}–G protein signaling in osteoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Wattanachanya, Lalita, E-mail: lalita_md@yahoo.com [Endocrine Research Unit, Veterans Affairs Medical Center and Departments of Medicine and Physiology, University of California, San Francisco, CA (United States); Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok (Thailand); Wang, Liping, E-mail: lipingwang05@yahoo.com [Endocrine Research Unit, Veterans Affairs Medical Center and Departments of Medicine and Physiology, University of California, San Francisco, CA (United States); Millard, Susan M., E-mail: susan.millard@mater.uq.edu.au [Endocrine Research Unit, Veterans Affairs Medical Center and Departments of Medicine and Physiology, University of California, San Francisco, CA (United States); Lu, Wei-Dar, E-mail: weidar_lu@yahoo.com [Endocrine Research Unit, Veterans Affairs Medical Center and Departments of Medicine and Physiology, University of California, San Francisco, CA (United States); O’Carroll, Dylan, E-mail: dylancocarroll@gmail.com [Endocrine Research Unit, Veterans Affairs Medical Center and Departments of Medicine and Physiology, University of California, San Francisco, CA (United States); Hsiao, Edward C., E-mail: Edward.Hsiao@ucsf.edu [Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Francisco, CA (United States); Conklin, Bruce R., E-mail: bconklin@gladstone.ucsf.edu [Gladstone Institute of Cardiovascular Disease, San Francisco, CA (United States); Department of Medicine, University of California, San Francisco, CA (United States); Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA (United States); Nissenson, Robert A., E-mail: Robert.Nissenson@ucsf.edu [Endocrine Research Unit, Veterans Affairs Medical Center and Departments of Medicine and Physiology, University of California, San Francisco, CA (United States)

    2015-05-01

    G protein-coupled receptor (GPCR) signaling in osteoblasts (OBs) is an important regulator of bone formation. We previously described a mouse model expressing Rs1, an engineered constitutively active G{sub s}-coupled GPCR, under the control of the 2.3 kb Col I promoter. These mice showed a dramatic age-dependent increase in trabecular bone of femurs. Here, we further evaluated the effects of enhanced G{sub s} signaling in OBs on intramembranous bone formation by examining calvariae of 1- and 9-week-old Col1(2.3)/Rs1 mice and characterized the in vivo gene expression specifically occurring in osteoblasts with activated G{sub s} G protein-coupled receptor signaling, at the cellular level rather than in a whole bone. Rs1 calvariae displayed a dramatic increase in bone volume with partial loss of cortical structure. By immunohistochemistry, Osterix was detected in cells throughout the inter-trabecular space while Osteocalcin was expressed predominantly in cells along bone surfaces, suggesting the role of paracrine mediators secreted from OBs driven by 2.3 kb Col I promoter could influence early OB commitment, differentiation, and/or proliferation. Gene expression analysis of calvarial OBs revealed that genes affected by Rs1 signaling include those encoding proteins important for cell differentiation, cytokines and growth factors, angiogenesis, coagulation, and energy metabolism. The set of G{sub s}-GPCRs and other GPCRs that may contribute to the observed skeletal phenotype and candidate paracrine mediators of the effect of G{sub s} signaling in OBs were also determined. Our results identify novel detailed in vivo cellular changes of the anabolic response of the skeleton to G{sub s} signaling in mature OBs. - Highlights: • OB expression of an engineered G{sub s}-coupled receptor dramatically increases bone mass. • We investigated the changes in gene expression in vivo in enhanced OB G{sub s} signaling. • Genes in cell cycle and transcription were increased in

  12. The Effects of Irradiation and Calcium-deficient Diet on the Expression of Bone Morphogenetic Protein-2/4 during Early Tooth Development

    International Nuclear Information System (INIS)

    To investigate the expression of bone morphogenetic protein (BMP)-2/4 during early tooth development after irradiation and calcium-deficient diet. The pregnant three-week-old Sprague-Dawley rats were used for the study. The control group was non-irradiation/normal diet group (Group 1), and the experimental groups were irradiation/normal diet group (Group 2) and irradiation/calcium-diet group (Group 3). The abdomen of the rats at the 9th day of pregnancy were irradiated with single dose of 350 cGy. The rat pups were sacrificed at embryonic 18 days, 3 days and 14 days after delivery and the maxillae tooth germs were taken. The tissue sections of specimen were stained immunohistochemically with anti-BMP-2/4 antibody. At embryo-18 days, immunoreacivity for BMP-2/4 of the Group 1 was modetate in stratum intermedium of dental organ and weak in dental papilla and dental follicle, but that of Group 2 was weak in cell layer of dental organ, and no immunoreacivity was shown in dental papilla and dental follice of Group 2 and in all tissue components of the Group 3. At postnatal-3 days, immunoreacivity for BMP-2/4 of the Group 1 was strong in cell layer of dental organ, odontoblasts and developing alveolar bone, but that of Group of 2 and Group 3 was weak in odontoblasts and developing alveolar bone. At postnatal-14 days, immunoreacivity for BMP-2/4 of the Group 1 was strong in newly formed cementum, alveolar bone and odontoblasts, but that of Group 2 was weaker than that of Group 1. In the Group 3, tooth forming cell layer showed weak immunoreactivity, but other cell layers showed no immunoreactivity. The expression of bone morphogenetic protein (BMP)-2/4 during early tooth development was disturbed after irradiation and calcium-deficient diet.

  13. The Effects of Irradiation and Calcium-deficient Diet on the Expression of Bone Morphogenetic Protein-2/4 during Early Tooth Development

    Energy Technology Data Exchange (ETDEWEB)

    Park, Dai Hee; Hwang, Eui Hwan; Lee, Sang Rae [Dept. of Oral and Maxillofacial Radiology, College of Dentistry, Kyunghee University, Seoul (Korea, Republic of)

    2000-09-15

    To investigate the expression of bone morphogenetic protein (BMP)-2/4 during early tooth development after irradiation and calcium-deficient diet. The pregnant three-week-old Sprague-Dawley rats were used for the study. The control group was non-irradiation/normal diet group (Group 1), and the experimental groups were irradiation/normal diet group (Group 2) and irradiation/calcium-diet group (Group 3). The abdomen of the rats at the 9th day of pregnancy were irradiated with single dose of 350 cGy. The rat pups were sacrificed at embryonic 18 days, 3 days and 14 days after delivery and the maxillae tooth germs were taken. The tissue sections of specimen were stained immunohistochemically with anti-BMP-2/4 antibody. At embryo-18 days, immunoreacivity for BMP-2/4 of the Group 1 was modetate in stratum intermedium of dental organ and weak in dental papilla and dental follicle, but that of Group 2 was weak in cell layer of dental organ, and no immunoreacivity was shown in dental papilla and dental follice of Group 2 and in all tissue components of the Group 3. At postnatal-3 days, immunoreacivity for BMP-2/4 of the Group 1 was strong in cell layer of dental organ, odontoblasts and developing alveolar bone, but that of Group of 2 and Group 3 was weak in odontoblasts and developing alveolar bone. At postnatal-14 days, immunoreacivity for BMP-2/4 of the Group 1 was strong in newly formed cementum, alveolar bone and odontoblasts, but that of Group 2 was weaker than that of Group 1. In the Group 3, tooth forming cell layer showed weak immunoreactivity, but other cell layers showed no immunoreactivity. The expression of bone morphogenetic protein (BMP)-2/4 during early tooth development was disturbed after irradiation and calcium-deficient diet.

  14. In vivo local co-delivery of recombinant human bone morphogenetic protein-7 and pamidronate via poly-D, L-lactic acid

    Directory of Open Access Journals (Sweden)

    NYC Yu

    2010-12-01

    Full Text Available The effects of bone anabolic agents such as bone morphogenetic proteins (BMPs have the potential to be augmented by co-treatment with an anti-catabolic such as a bisphosphonate. We hypothesised that the effects of bisphosphonates on BMP-induced bone anabolism would be dose dependent, and we aimed to test this in a small animal model. Agents were delivered locally using a biodegradable poly-d, l-lactic-acid (PDLLA polymer delivery system. Recombinant human BMP-7 (25 µg was tested with a range of doses of the bisphosphonate pamidronate (0.02 mg, 0.2 mg and 2 mg local PAM; 0.3 mg/kg and 3 mg/kg thrice-weekly systemic PAM versus BMP-7 alone. Polymer pellets were surgically implanted in the hind limbs of female C57BL6/J mice (8-10 week and ectopic bone nodules were harvested at 3 and 8 weeks post-operatively. At 3 weeks, local low dose PAM (0.02 mg induced a 102% increase in rhBMP-7 induced bone volume (p<0.01 as measured by miroCT, and this was comparable to systemic PAM (0.3 mg/kg thrice-weekly. In contrast, local high dose PAM (2 mg resulted in a 97% decrease in bone volume (p<0.01. Radiography and histology indicated that the polymer vehicle was still largely present at 8 weeks indicating inefficient biodegradation. This is the first study to validate the utility of local co-delivery of BMP/bisphosphonate via biodegradable polymer and supports the continued refinement of more advanced bioresorbable delivery systems for clinical applications.

  15. Effects of Resistive Vibration Exercise Combined with Whey Protein and KHCO3 on Bone Tturnover Markers in Head-down Tilt Bed Rest (MTBR-MNX Study)

    Science.gov (United States)

    Graf, Sonja; Baecker, Natalie; Buehlmeier, Judith; Fischer, Annelie; Smith, Scott M.; Heer, Martina

    2014-01-01

    High protein intake further increases bone resorption markers in head-down tilt bed rest (HDBR), most likely induced by low-grade metabolic acidosis. Adding an alkaline salt to a diet with high protein content prevents this additional rise of bone resorption markers in HDBR. In addition, high protein intake, specifically whey protein, increases muscle protein synthesis and improves glucose tolerance, which both are affected by HDBR. Resistive vibration exercise (RVE) training counteracts the inactivity-induced bone resorption during HDBR. To test the hypothesis that WP plus alkaline salt (KHCO3) together with RVE during HDBR will improve bone turnover markers, we conducted a randomized, three-campaign crossover design study with 12 healthy, moderately fit male subjects (age 34+/-8 y, body mass [BM] 70 +/- 8 kg). All study campaigns consisted of a 7-d ambulatory period, 21days of -6 deg. head-down tilt bed rest (HDBR), and a 6-d recovery period. Diet was standardized and identical across phases. In the control (CON) campaign, subjects received no supplement or RVE. In the intervention campaigns, subjects received either RVE alone or combined with WP and KHCO3 (NEX). WP was applied in 3 doses per day of 0.6 g WP/kg BM together with 6 doses of 15 mmol KHCO3 per day. Eleven subjects completed the RVE and CON campaign, 8 subjects completed all three campaigns. On day 21 of HDBR excretion of the bone resorption marker C-telopeptide (CTX) was 80+/-28% (p<0.001) higher than baseline, serum calcium concentrations increased by 12 +/- 29% (p<0.001) and serum osteocalcin concentrations decreased by 6+/-12% (p=0.001). Urinary CTX excretion was 11+/- 25% (p=0.02) lower on day 21 of HDBR in the RVE- and tended to decrease by 3+/- 22% (p=0.06) in the NEX campaign compared to CON. Urinary calcium excretion was higher on day 21 in HDBR in the RVE and NEX (24+/- 43% p=0.01; 25+/- 37% p=0.03) compared to the CON campaign. We conclude that combination of RVE with WP/KHCO3 was not

  16. Attenuation of bone morphogenetic protein signaling during amphibian limb development results in the generation of stage-specific defects.

    Science.gov (United States)

    Jones, Tamsin E M; Day, Robert C; Beck, Caroline W

    2013-11-01

    The vertebrate limb is one of the most intensively studied organs in the field of developmental biology. Limb development in tetrapod vertebrates is highly conserved and dependent on the interaction of several important molecular pathways. The bone morphogenetic protein (BMP) signaling cascade is one of these pathways and has been shown to be crucial for several aspects of limb development. Here, we have used a Xenopus laevis transgenic line, in which expression of the inhibitor Noggin is under the control of the heat-shock promoter hsp70 to examine the effects of attenuation of BMP signaling at different stages of limb development. Remarkably different phenotypes were produced at different stages, illustrating the varied roles of BMP in development of the limb. Very early limb buds appeared to be refractory to the effects of BMP attenuation, developing normally in most cases. Ectopic limbs were produced by overexpression of Noggin corresponding to a brief window of limb development at about stage 49/50, as recently described by Christen et al. (2012). Attenuation of BMP signaling in stage 51 or 52 tadpoles lead to a reduction in the number of digits formed, resulting in hypodactyly or ectrodactyly, as well as occasional defects in the more proximal tibia-fibula. Finally, inhibition at stage 54 (paddle stage) led to the formation of dramatically shortened digits resulting from loss of distal phalanges. Transcriptome analysis has revealed the possibility that more Noggin-sensitive members of the BMP family could be involved in limb development than previously suspected. Our analysis demonstrates the usefulness of heat-shock-driven gene expression as an effective method for inhibiting a developmental pathway at different times during limb development. PMID:23981117

  17. Patterns of bone morphogenetic protein-2 expression in smooth muscle tumors of the uterine corpus and other uterine tissues.

    Science.gov (United States)

    Fadare, Oluwole; Renshaw, Idris L; Liang, Sharon X

    2011-07-01

    Bone morphogenetic proteins (BMPs) are extracellular, multifunctional growth factors that constitute the largest subset of the transforming growth factor β superfamily. BMP2 is involved in cardiovascular embryogenesis, in addition to a variety of other postnatal functions, such as neovascularization, osteoinduction, tumor signaling, and in the uterus, stromal decidualization at the implantation site. Estrogen receptor signaling is common in smooth muscle tumors of the uterus, and preclinical models suggest significant interactions between BMP2 and estrogen receptor-mediated signaling. The purpose of this study is to define the patterns of BMP2 expression, as assessed by immunohistochemistry, in smooth muscle tumors and other tissues of the uterine corpus, and to establish whether BMP2 expression has any prognostic significance in uterine leiomyosarcomas. BMP2 was positive (cytoplasmic pattern, typically focal) in 24% of leiomyosarcomas and 20.7% of leiomyomata, but was either infrequently expressed or not expressed in all other tissues evaluated, including normal myometrium and endometrium, endometrial stromal tumors, typical adenomyoma, adenomyosis, and serosal endometriosis. The endothelial cells of small, thin-walled vessels were frequently, but not invariably immunoreactive for BMP2. There was no significant difference between BMP2⁺ and BMP⁻ leiomyosarcomas regarding average tumor size, average patient age, microvessel density, and proportions with high tumor grade, advanced stage and frequency of death from disease on follow-up. Two (29%) of 7 BMP2⁺ leiomyosarcomas were estrogen receptor+, compared with 5 (50%) of 10 BMP2⁻ leiomyosarcomas, a statistically insignificant difference (P=0.62). It is concluded that BMP2 is only expressed in a minority of smooth muscle tumors of the uterine corpus, and lacks prognostic significance in leiomyosarcomas. BMP2 is rarely expressed in the other nonendothelial tissues of the human uterine corpus that were

  18. Smad5 determines murine amnion fate through the control of bone morphogenetic protein expression and signalling levels.

    Science.gov (United States)

    Bosman, Erika A; Lawson, Kirstie A; Debruyn, Joke; Beek, Lisette; Francis, Annick; Schoonjans, Luc; Huylebroeck, Danny; Zwijsen, An

    2006-09-01

    Smad5 is an intracellular mediator of bone morphogenetic protein (Bmp) signalling. It is essential for primordial germ cell (PGC) development, for the development of the allantois and for amnion closure, as demonstrated by loss of Bmp signalling. By contrast, the appearance of ectopic PGC-like cells and regionalized ectopic vasculogenesis and haematopoiesis in thickened Smad5(m1/m1) amnion are amnion defects that have not been associated with loss of Bmp signalling components. We show that defects in amnion and allantois can already be detected at embryonic day (E) 7.5 in Smad5 mutant mice. However, ectopic Oct4-positive (Oct4(+)) and alkaline phosphatase-positive (AP(+)) cells appear suddenly in thickened amnion at E8.5, and at a remote distance from the allantois and posterior primitive streak, suggesting a change of fate in situ. These ectopic Oct4(+), AP(+) cells appear to be Stella negative and hence cannot be called bona fide PGCs. We demonstrate a robust upregulation of Bmp2 and Bmp4 expression, as well as of Erk and Smad activity, in the Smad5 mutant amnion. The ectopic expression of several Bmp target genes in different domains and the regionalized presence of cells of several Bmp-sensitive lineages in the mutant amnion suggest that different levels of Bmp signalling may determine cell fate. Injection of rBMP4 in the exocoelom of wild-type embryos can induce thickening of amnion, mimicking the early amnion phenotype in Smad5 mutants. These results support a model in which loss of Smad5 results paradoxically in gain of Bmp function defects in the amnion. PMID:16887830

  19. Union Rate and Complications in Spine Fusion with Recombinant Human Bone Morphogenetic Protein-7: Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Vavken, Julia; Vavken, Patrick; Mameghani, Alexander; Schaeren, Stefan

    2016-03-01

    Study Design Systematic review and meta-analysis. Objective The objective of this meta-analysis was to evaluate the current best evidence to assess effectiveness and safety of recombinant human bone morphogenetic protein-7 (rhBMP-7) as a biological stimulant in spine fusion. Methods Studies were included if they reported on outcomes after spine fusion with rhBMP-7. The data was synthesized using Mantel-Haenszel pooled risk ratios (RRs) with 95% confidence intervals (CIs). Main end points were union rate, overall complications, postoperative back and leg pain, revision rates, and new-onset cancer. Results Our search produced 796 studies, 6 of which were eligible for inclusion. These studies report on a total of 442 patients (328 experimental, 114 controls) with a mean age of 59 ± 11 years. Our analysis showed no statistically significant differences in union rates (RR 0.97, 95% CI 0.84 to 1.11, p = 0.247), overall complications (RR 0.92, 95% CI 0.71 to 1.20, p = 0.545), postoperative back and leg pain (RR 1.03, 95% CI 0.48 to 2.19, p = 0.941), or revision rate (RR 0.81, 95% CI 0.47 to 1.40, p = 0.449). There was a mathematical indicator of increased tumor rates, but with only one case, the clinical meaningfulness of this finding is questionable. Conclusion We were not able to find data in support of the use of rhBMP-7 for spine fusion. We found no evidence for increased complication or revision rates with rhBMP-7. On the other hand, we also found no evidence in support of improved union rates. PMID:26933613

  20. Surface functionalization of nanoporous alumina with bone morphogenetic protein 2 for inducing osteogenic differentiation of mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yuanhui; Ju, Yang; Morita, Yasuyuki; Xu, Baiyao [Department of Mechanical Science and Engineering, Nagoya University, Nagoya 464-8603 (Japan); Song, Guanbin [Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China)

    2014-04-01

    Many studies have demonstrated the possibility to regulate cellular behavior by manipulating the specific characteristics of biomaterials including the physical features and chemical properties. To investigate the synergistic effect of chemical factors and surface topography on the growth behavior of mesenchymal stem cells (MSCs), bone morphorgenic protein 2 (BMP2) was immobilized onto porous alumina substrates with different pore sizes. The BMP2-immobilized alumina substrates were characterized with scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Growth behavior and osteogenic differentiation of MSCs cultured on the different substrates were investigated. Cell adhesion and morphological changes were observed with SEM, and the results showed that the BMP2-immobilized alumina substrate was able to promote adhesion and spreading of MSCs. MTT assay and immunofluorescence staining of integrin β1 revealed that the BMP2-immobilized alumina substrates were favorable for cell growth. To evaluate the differentiation of MSCs, osteoblastic differentiation markers, such as alkaline phosphatase (ALP) activity and mineralization, were investigated. Compared with those of untreated alumina substrates, significantly higher ALP activities and mineralization were detected in cells cultured on BMP2-immobilized alumina substrates. The results suggested that surface functionalization of nanoporous alumina substrates with BMP2 was beneficial for cell growth and osteogenic differentiation. With the approach of immobilizing growth factors onto material substrates, it provided a new insight to exploit novel biofunctional materials for tissue engineering. - Highlights: • BMP2 was immobilized onto nanoporous alumina substrates with different pore sizes. • BMP2-immobilized substrates were able to promote adhesion and spreading of MSCs. • BMP2-immobilized substrates were favorable for cell growth of MSCs. • BMP2-immobilized substrates promoted osteogenic

  1. Soluble Jagged 1/Fc chimera protein induces the differentiation and maturation of bone marrow-derived dendritic cells

    Institute of Scientific and Technical Information of China (English)

    XING FeiYue; LIU Jing; YU Zhe; JI YuHua

    2008-01-01

    A soluble Jagged 1/Fc chimera protein (Jagged 1/Fc) was directly used to induce differentiation and maturation of bone marrow-derived dendritic cells (DCs) in mice in vitro. A model of inducing and am-plifying DCs in vitro was established. The effect of Jagged 1/Fc on morphology of DCs induced by both rmGM-CSF and rmlL-4 was observed under a confocal microscope. A fluorescein-labeled monoclonal antibody staining combined with flow cytometry was applied to detect the effect of Jagged 1/Fc on the expression of CD11c, MHC-Ⅱ, CD86, CD80 and CD40 molecules on the surface of DCs. The results showed that Jagged 1/Fc did not affect the morphological properties of DC differentiation induced by both rmGM-CSF and rmlL-4. But it could promote the differentiation and maturation of DCs induced by both. The effect of it was strikingly different in the expression profile of co-stimulating molecules and the morphologic properties of DCs from lipopolysaccharide (LPS). The levels of MHC-Ⅱ and CD40 molecule expression on the surface of DCs stimulated by Jagged 1/Fc were significantly lower than those stimulated by LPS, and the level of CD80 expression on the surface of DCs induced by Jagged 1/Fc was near to that induced by LPS. Jagged 1/Fc had no influence on the expression of CD86 mole-cule on the surface of DCs. Jagged 1/Fc when used alone could not maintain the growth, differentiation and maturation of DCs. All the findings indicate that Jagged 1/Fc influences the differentiation and maturation of DCs, which is not markedly similar to LPS, providing important evidence for its devel-opment and application as a novel immunosuppressant.

  2. Surface functionalization of nanoporous alumina with bone morphogenetic protein 2 for inducing osteogenic differentiation of mesenchymal stem cells

    International Nuclear Information System (INIS)

    Many studies have demonstrated the possibility to regulate cellular behavior by manipulating the specific characteristics of biomaterials including the physical features and chemical properties. To investigate the synergistic effect of chemical factors and surface topography on the growth behavior of mesenchymal stem cells (MSCs), bone morphorgenic protein 2 (BMP2) was immobilized onto porous alumina substrates with different pore sizes. The BMP2-immobilized alumina substrates were characterized with scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Growth behavior and osteogenic differentiation of MSCs cultured on the different substrates were investigated. Cell adhesion and morphological changes were observed with SEM, and the results showed that the BMP2-immobilized alumina substrate was able to promote adhesion and spreading of MSCs. MTT assay and immunofluorescence staining of integrin β1 revealed that the BMP2-immobilized alumina substrates were favorable for cell growth. To evaluate the differentiation of MSCs, osteoblastic differentiation markers, such as alkaline phosphatase (ALP) activity and mineralization, were investigated. Compared with those of untreated alumina substrates, significantly higher ALP activities and mineralization were detected in cells cultured on BMP2-immobilized alumina substrates. The results suggested that surface functionalization of nanoporous alumina substrates with BMP2 was beneficial for cell growth and osteogenic differentiation. With the approach of immobilizing growth factors onto material substrates, it provided a new insight to exploit novel biofunctional materials for tissue engineering. - Highlights: • BMP2 was immobilized onto nanoporous alumina substrates with different pore sizes. • BMP2-immobilized substrates were able to promote adhesion and spreading of MSCs. • BMP2-immobilized substrates were favorable for cell growth of MSCs. • BMP2-immobilized substrates promoted osteogenic

  3. Bone Grafts

    Science.gov (United States)

    ... repair and rebuild diseased bones in your hips, knees, spine, and sometimes other bones and joints. Grafts can also repair bone loss caused by some types of fractures or cancers. Once your body accepts the bone ...

  4. Neuropeptide Y, substance P, and human bone morphogenetic protein 2 stimulate human osteoblast osteogenic activity by enhancing gap junction intercellular communication

    Energy Technology Data Exchange (ETDEWEB)

    Ma, W.H.; Liu, Y.J.; Wang, W.; Zhang, Y.Z. [The Third Hospital of Hebei Medical University, The Provincial Key Laboratory for Orthopedic Biomechanics of Hebei, Shijiazhuang, Hebei Province (China)

    2015-02-13

    Bone homeostasis seems to be controlled by delicate and subtle “cross talk” between the nervous system and “osteo-neuromediators” that control bone remodeling. The purpose of this study was to evaluate the effect of interactions between neuropeptides and human bone morphogenetic protein 2 (hBMP2) on human osteoblasts. We also investigated the effects of neuropeptides and hBMP2 on gap junction intercellular communication (GJIC). Osteoblasts were treated with neuropeptide Y (NPY), substance P (SP), or hBMP2 at three concentrations. At various intervals after treatment, cell viability was measured by the MTT assay. In addition, cellular alkaline phosphatase (ALP) activity and osteocalcin were determined by colorimetric assay and radioimmunoassay, respectively. The effects of NPY, SP and hBMP on GJIC were determined by laser scanning confocal microscopy. The viability of cells treated with neuropeptides and hBMP2 increased significantly in a time-dependent manner, but was inversely associated with the concentration of the treatments. ALP activity and osteocalcin were both reduced in osteoblasts exposed to the combination of neuropeptides and hBMP2. The GJIC of osteoblasts was significantly increased by the neuropeptides and hBMP2. These results suggest that osteoblast activity is increased by neuropeptides and hBMP2 through increased GJIC. Identification of the GJIC-mediated signal transduction capable of modulating the cellular activities of bone cells represents a novel approach to studying the biology of skeletal innervation.

  5. Neuropeptide Y, substance P, and human bone morphogenetic protein 2 stimulate human osteoblast osteogenic activity by enhancing gap junction intercellular communication

    International Nuclear Information System (INIS)

    Bone homeostasis seems to be controlled by delicate and subtle “cross talk” between the nervous system and “osteo-neuromediators” that control bone remodeling. The purpose of this study was to evaluate the effect of interactions between neuropeptides and human bone morphogenetic protein 2 (hBMP2) on human osteoblasts. We also investigated the effects of neuropeptides and hBMP2 on gap junction intercellular communication (GJIC). Osteoblasts were treated with neuropeptide Y (NPY), substance P (SP), or hBMP2 at three concentrations. At various intervals after treatment, cell viability was measured by the MTT assay. In addition, cellular alkaline phosphatase (ALP) activity and osteocalcin were determined by colorimetric assay and radioimmunoassay, respectively. The effects of NPY, SP and hBMP on GJIC were determined by laser scanning confocal microscopy. The viability of cells treated with neuropeptides and hBMP2 increased significantly in a time-dependent manner, but was inversely associated with the concentration of the treatments. ALP activity and osteocalcin were both reduced in osteoblasts exposed to the combination of neuropeptides and hBMP2. The GJIC of osteoblasts was significantly increased by the neuropeptides and hBMP2. These results suggest that osteoblast activity is increased by neuropeptides and hBMP2 through increased GJIC. Identification of the GJIC-mediated signal transduction capable of modulating the cellular activities of bone cells represents a novel approach to studying the biology of skeletal innervation

  6. Evaluation of osteogenic cell differentiation in response to bone morphogenetic protein or demineralized bone matrix in a critical sized defect model using GFP reporter mice.

    Science.gov (United States)

    Alaee, Farhang; Hong, Seung-Hyun; Dukas, Alex G; Pensak, Michael J; Rowe, David W; Lieberman, Jay R

    2014-09-01

    We evaluated the osteoprogenitor response to rhBMP-2 and DBM in a transgenic mouse critical sized defect. The mice expressed Col3.6GFPtopaz (a pre-osteoblastic marker), Col2.3GFPemerald (an osteoblastic marker) and α-smooth muscle actin (α-SMA-Cherry, a pericyte/myofibroblast marker). We assessed defect healing at various time points using radiographs, frozen, and conventional histologic analyses. GFP signal in regions of interest corresponding to the areas of new bone formation was quantified using a novel computer assisted algorithm. All defects treated with rhBMP-2 healed. In contrast, the majority of the defects in the DBM (27/30) and control (28/30) groups did not heal. Quantitation of pre-osteoblasts demonstrated a maximal response (% GFP + cells/TV) in the Col3.6GFPtopaz mice at day 7 (7.2% ± 6.0, p Col2.3GFP cells was seen at days 14 (8.04% ± 5.0) and 21 (8.31% ± 4.32), p < 0.05. In contrast, DBM and control groups showed a limited osteogenic response at all time points. In conclusion, we demonstrated that the BMP and DBM induce vastly different osteogenic responses which should influence their clinical application as bone graft substitutes. PMID:24888702

  7. Bone morphogenetic protein-2 functions as a negative regulator in the differentiation of myoblasts, but not as an inducer for the formations of cartilage and bone in mouse embryonic tongue

    Directory of Open Access Journals (Sweden)

    Suzuki Erika

    2011-07-01

    Full Text Available Abstract Background In vitro studies using the myogenic cell line C2C12 demonstrate that bone morphogenetic protein-2 (BMP-2 converts the developmental pathway of C2C12 from a myogenic cell lineage to an osteoblastic cell lineage. Further, in vivo studies using null mutation mice demonstrate that BMPs inhibit the specification of the developmental fate of myogenic progenitor cells. However, the roles of BMPs in the phases of differentiation and maturation in skeletal muscles have yet to be determined. The present study attempts to define the function of BMP-2 in the final stage of differentiation of mouse tongue myoblast. Results Recombinant BMP-2 inhibited the expressions of markers for the differentiation of skeletal muscle cells, such as myogenin, muscle creatine kinase (MCK, and fast myosin heavy chain (fMyHC, whereas BMP-2 siRNA stimulated such markers. Neither the recombinant BMP-2 nor BMP-2 siRNA altered the expressions of markers for the formation of cartilage and bone, such as osteocalcin, alkaline phosphatase (ALP, collagen II, and collagen X. Further, no formation of cartilage and bone was observed in the recombinant BMP-2-treated tongues based on Alizarin red and Alcian blue stainings. Neither recombinant BMP-2 nor BMP-2 siRNA affected the expression of inhibitor of DNA binding/differentiation 1 (Id1. The ratios of chondrogenic and osteogenic markers relative to glyceraldehyde-3-phosphate dehydrogenase (GAPDH, a house keeping gene were approximately 1000-fold lower than those of myogenic markers in the cultured tongue. Conclusions BMP-2 functions as a negative regulator for the final differentiation of tongue myoblasts, but not as an inducer for the formation of cartilage and bone in cultured tongue, probably because the genes related to myogenesis are in an activation mode, while the genes related to chondrogenesis and osteogenesis are in a silencing mode.

  8. A Novel Human TGF-β1 Fusion Protein in Combination with rhBMP-2 Increases Chondro-Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells

    Science.gov (United States)

    Claros, Silvia; Rico-Llanos, Gustavo A.; Becerra, José; Andrades, José A.

    2014-01-01

    Transforming growth factor-beta (TGF-β) is involved in processes related to the differentiation and maturation of osteoprogenitor cells into osteoblasts. Rat bone marrow (BM) cells were cultured in a collagen-gel containing 0.5% fetal bovine serum (FBS) for 10 days in the presence of rhTGF (recombinant human TGF)-β1-F2, a fusion protein engineered to include a high-affinity collagen-binding decapeptide derived from von Willebrand factor. Subsequently, cells were moderately expanded in medium with 10% FBS for 4 days and treated with a short pulse of rhBMP (recombinant human bone morphogenetic protein)-2 for 4 h. During the last 2 days, dexamethasone and β-glycerophosphate were added to potentiate osteoinduction. Concomitant with an up-regulation of cell proliferation, DNA synthesis levels were determined. Polymerase chain reaction was performed to reveal the possible stemness of these cells. Osteogenic differentiation was evaluated in terms of alkaline phosphatase activity and mineralized matrix formation as well as by mRNA expression of osteogenic marker genes. Moreover, cells were placed inside diffusion chambers and implanted subcutaneously into the backs of adult rats for 4 weeks. Histological study provided evidence of cartilage and bone-like tissue formation. This experimental procedure is capable of selecting cell populations from BM that, in the presence of rhTGF-β1-F2 and rhBMP-2, achieve skeletogenic potential in vitro and in vivo. PMID:24968268

  9. A Novel Human TGF-β1 Fusion Protein in Combination with rhBMP-2 Increases Chondro-Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Silvia Claros

    2014-06-01

    Full Text Available Transforming growth factor-beta (TGF-β is involved in processes related to the differentiation and maturation of osteoprogenitor cells into osteoblasts. Rat bone marrow (BM cells were cultured in a collagen-gel containing 0.5% fetal bovine serum (FBS for 10 days in the presence of rhTGF (recombinant human TGF-β1-F2, a fusion protein engineered to include a high-affinity collagen-binding decapeptide derived from von Willebrand factor. Subsequently, cells were moderately expanded in medium with 10% FBS for 4 days and treated with a short pulse of rhBMP (recombinant human bone morphogenetic protein-2 for 4 h. During the last 2 days, dexamethasone and β-glycerophosphate were added to potentiate osteoinduction. Concomitant with an up-regulation of cell proliferation, DNA synthesis levels were determined. Polymerase chain reaction was performed to reveal the possible stemness of these cells. Osteogenic differentiation was evaluated in terms of alkaline phosphatase activity and mineralized matrix formation as well as by mRNA expression of osteogenic marker genes. Moreover, cells were placed inside diffusion chambers and implanted subcutaneously into the backs of adult rats for 4 weeks. Histological study provided evidence of cartilage and bone-like tissue formation. This experimental procedure is capable of selecting cell populations from BM that, in the presence of rhTGF-β1-F2 and rhBMP-2, achieve skeletogenic potential in vitro and in vivo.

  10. Vitamin K2 supplementation improves hip bone geometry and bone strength indices in postmenopausal women

    OpenAIRE

    Knapen, M. H. J.; Schurgers, L.J.; Vermeer, C

    2007-01-01

    Summary Vitamin K mediates the synthesis of proteins regulating bone metabolism. We have tested whether high vitamin K2 intake promotes bone mineral density and bone strength. Results showed that K2 improved BMC and femoral neck width, but not DXA-BMD. Hence high vitamin K2 intake may contribute to preventing postmenopausal bone loss. Introduction Vitamin K is involved in the synthesis of several proteins in bone. The importance of K vitamins for optimal bone health has been suggested by popu...

  11. Three-dimensional Fabrication of Bio-derived Bone Compounded with Osteoblasts Transfected by Green Fluorescent Protein

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    1 Introduction Tissue engineering has emerged as a possible alternative strategy to regenerate bone. Three components are essential: isolation and expansion of osteoprogenitors or mesenchymal stem cells, provision of appropriate osteoinductive factors and an appropriately designed scaffold that mimics the structural environment to promote bone regeneration~([1]). By enabling reproducible and controlled changes of specific environmental factors, rotating wall vessel bioreactor (RWVB) systems provide both the...

  12. Simultaneous gene transfer of bone morphogenetic protein (BMP -2 and BMP-7 by in vivo electroporation induces rapid bone formation and BMP-4 expression

    Directory of Open Access Journals (Sweden)

    Miyazaki Jun-ichi

    2006-08-01

    Full Text Available Abstract Background Transcutaneous in vivo electroporation is expected to be an effective gene-transfer method for promoting bone regeneration using the BMP-2 plasmid vector. To promote enhanced osteoinduction using this method, we simultaneously transferred cDNAs for BMP-2 and BMP-7, as inserts in the non-viral vector pCAGGS. Methods First, an in vitro study was carried out to confirm the expression of BMP-2 and BMP-7 following the double-gene transfer. Next, the individual BMP-2 and BMP-7 plasmids or both together were injected into rat calf muscles, and transcutaneous electroporation was applied 8 times at 100 V, 50 msec. Results In the culture system, the simultaneous transfer of the BMP-2 and BMP-7 genes led to a much higher ALP activity in C2C12 cells than did the transfer of either gene alone. In vivo, ten days after the treatment, soft X-ray analysis showed that muscles that received both pCAGGS-BMP-2 and pCAGGS-BMP-7 had better-defined opacities than those receiving a single gene. Histological examination showed advanced ossification in calf muscles that received the double-gene transfer. BMP-4 mRNA was also expressed, and RT-PCR showed that its level increased for 3 days in a time-dependent manner in the double-gene transfer group. Immunohistochemistry confirmed that BMP-4-expressing cells resided in the matrix between muscle fibers. Conclusion The simultaneous transfer of BMP-2 and BMP-7 genes using in vivo electroporation induces more rapid bone formation than the transfer of either gene alone, and the increased expression of endogenous BMP-4 suggests that the rapid ossification is related to the induction of BMP-4.

  13. Protein-containing nutrient supplementation following strength training enhances the effect on muscle mass, strength, and bone formation in postmenopausal women

    DEFF Research Database (Denmark)

    Holm, Lars; Olesen, Jens L; Matsumoto, Keitaro;

    2008-01-01

    We evaluated the response of various muscle and bone adaptation parameters with 24 wk of strength training in healthy, early postmenopausal women when a nutrient supplement (protein, carbohydrate, calcium, and vitamin D) or a placebo supplement (a minimum of energy) was ingested immediately...... following each training session. At inclusion, each woman was randomly and double-blindedly assigned to a nutrient group or a placebo (control) group. Muscle hypertrophy was evaluated from biopsies, MRI, and dual-energy X-ray absorptiometry (DEXA) scans, and muscle strength was determined in a dynamometer...... nutrient supplementation results in superior improvements in muscle mass, muscle strength, femoral neck BMD, and bone formation during 24 wk of strength training. The observed differences following such a short intervention emphasize the significance of postexercise nutrient supply on musculoskeletal...

  14. Effect of recombinant human bone morphogenetic protein 2/polylactide-co-glycolic acid (rhBMP-2/PLGA) with core decompression on repair of rabbit femoral head necrosis

    Institute of Scientific and Technical Information of China (English)

    Zhao-Xun; Pan; Hong-Xin; Zhang; Ye-Xin; Wang; Long-Di; Zhai; Wei; Du

    2014-01-01

    Objective:To observe the effect of recombinant human bone morphogenetic protein 2/polylactide-co-glycolic acid(rhBMP-2/PLGA) with core decompression on repair of rabbit femoral head necrosis.Methods:Bilateral femoral head necrosis models of rabbit were established by steroid injection.A total of 48 rabbits(96 femoral head necrosis) were randomly divided into 4groups:Group A,control group with12 rabbits,24 femoral head necrosis;Group B,treated with rhBMP-2/PLCA implantation after core depression,with 12 rabbits,24 femoral head necrosis;Group C,treated with rhBMP-2 implantation after core depression,with 12 rabbits,24 femoral head necrosis;Croup D treated with core depression group without implantation,with 12 rabbits,24 femoral head necrosis.All animals were sacrificed after 12 weeks.The ability of repairing bone defect was evaluated by X-ray radiograph.Bone mineral density analysis of the defect regions were used to evaluate the level of ossification.The morphologic change and bone formation was assessed by HE staining.The angiogenesis was evaluated by VEGF immunohistochemistry.Results:The osteogenetic ability and quality of femoral head necrosis in group B were better than those of other groups after 12 weeks by X-ray radiograph and morphologic investigation.And the angiogenesis in group B was better than other groups.Group C had similar osteogenetic quality of femoral head necrosis and angiogenesis with group D.Conclusions:The treatment of rhBMP-2/PLCA implantation after core depression can promote the repair of rabbit femoral head necrosis.It is a promising and efficient synthetic bone material to treat the femoral head necrosis.

  15. Bone morphogenetic protein-15 in follicle fluid combined with age may differentiate between successful and unsuccessful poor ovarian responders

    Directory of Open Access Journals (Sweden)

    Wu Yan-Ting

    2012-12-01

    Full Text Available Abstract Background The counselling of poor ovarian responders about the probability of pregnancy remains a puzzle for gynaecologists. The aim of this study was to optimise the management of poor responders by investigating the role of the oocyte-derived factor bone morphogenetic protein-15 (BMP-15 combined with chronological age in the prediction of the outcome of in-vitro fertilisation-embryo transfer (IVF-ET in poor responders. Methods A retrospective study conducted in a university hospital. A total of 207 poor ovarian responders who reached the ovum pick-up stage undergoing IVF/intracytoplasmic sperm injection (ICSI with three or fewer follicles no less than 14 mm on the day of oocyte retrieval were recruited from July 1, 2008 to December 31, 2009. Another 215 coinstantaneous cycles with normal responses were selected as controls. The BMP-15 levels in the follicular fluid (FF of the 207 poor responders were analysed by western blot. Based on the FF BMP-15 level and age, poor responders were sub-divided into four groups. The main outcome measures were the FF BMP-15 level, implantation rate, pregnancy rate, and live birth rate. Results The implantation rate (24.2% vs. 15.3%, chemical pregnancy rate (40% vs. 23.7%, clinical pregnancy rate (36.5% vs. 20.4% and live birth rate (29.4% vs. 15.1% in the high BMP-15 group were significantly higher than those in the low BMP-15 group. Furthermore, poor responders aged less than or equal to 35 years with a higher FF BMP-15 level had the best implantation, pregnancy and live birth rates, which were comparable with those of normal responders. Conclusions Our study suggests a potential role of BMP-15 in the prediction of the IVF outcome. A high FF BMP-15 combined with an age less than or equal to 35 years may be used as a potential indicator for repeating IVF cycles in poor ovarian responders.

  16. Expression of bone morphogenetic protein 7 in the cerebral cortex of rats after ischemic-hypoxic injury

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    BACKGROUND: Some researches demonstrate that exogenous bone morphogenetic protein 7 (BMP-7) can protect ischemic cerebral nerve tissue and promote recovery of motor energy function; however, there is lack of direct evidences of endogenous BMP-7 effect.OBJECTIVE: To observe the expression of endogenous BMP-7 in nerve tissue with ischemic-hypoxic injury and investigate the possible effects on damaged nerve tissue.DESIGN: Observational contrast animal study.SETTING: Department of Anatomy and Histoembryology, Peking University Health Science Center.MATERIALS: The experiment was carried out in the Nerve Researching Laboratory of Anatomy Department, Peking University Health Science Center from October 2006 to March 2007. A total of 25 adult male SD rats weighing 250 - 300 g and several newborn SD rats were selected from Experimental Animal Center, Peking University Health Science Center. Rabbit-anti-BMP-7 polyclonal antibody was provided by Wuhan Boster Company.METHODS: ① Adult rats were randomly divided into ischemia group (n =10), sham operation group (n =10) and normal group (n =5). Right external-internal carotid artery occlusion was used to infarct middle cerebral artery of adult rats in the ischemia group so as to copy focal cerebral infarction models. Line cork was inserted in crotch of internal and external carotid artery of adult rats in the sham operation group, while adult rats in the normal group were not given any treatments. ② Cerebral cortex of newborn rats was separated to obtain cell suspension. Cells which were cultured for 10 days were divided into control group and hypoxia/reoxygenation group. And then, cells in the hypoxia/reoxygenation group were cultured in hypoxic incubator for 4 hours and given reoxygenation for 24 hours.MAIN OUTCOME MEASURES: Immunohistochemical method was used to measure expression of BMP-7 in cerebral cortex at 24 hours after ischemia/reperfusion culture and in primary hypoxic culture.RESULTS: ① At 24 hours after

  17. Cancer to bone: a fatal attraction

    OpenAIRE

    Weilbaecher, Katherine N.; Guise, Theresa A.; McCauley, Laurie K

    2011-01-01

    When cancer metastasizes to bone, considerable pain and deregulated bone remodelling occurs, greatly diminishing the possibility of cure. Metastasizing tumour cells mobilize and sculpt the bone microenvironment to enhance tumour growth and to promote bone invasion. Understanding the crucial components of the bone microenvironment that influence tumour localization, along with the tumour-derived factors that modulate cellular and protein matrix components of bone to favour tumour expansion and...

  18. Effect of dietary energy and protein on the performance, egg quality, bone mineral density, blood properties and yolk fatty acid composition of organic laying hens

    Directory of Open Access Journals (Sweden)

    Md. Rakibul Hassan

    2013-02-01

    Full Text Available An experiment was conducted to evaluate the effect of dietary metabolizable energy (ME and crude protein (CP on the performance, egg quality, blood properties, bone characteristics and yolk fatty acid composition of organic laying hens. At 23 weeks, a total of 600 Brown nick laying hens were randomly distributed into 24 outdoor pens (4 replicate pens/treatment; 25 birds/pen and were given (2750, 2775 and 2800 kcal of ME/kg and CP (16 and 17% resulting in a 3×2 factorial arrangement of organic dietary treatments. The experiment lasted 23 weeks. The performance of laying hens were not affected by the dietary treatment while the egg weight was increased with energy and CP levels in the diet (P<0.05. Serum total protein was not affected by dietary energy and protein level. Total cholesterol and triglyceride tend to reduce with the increasing amount of CP in the diet. Thereafter, bone and egg quality characteristics were numerically increased in dietary 2775 kcal of ME/kg and 16% CP treatment. On the other hand, docosahexanoic acid content in egg yolk was higher (P<0.01 in 2750 kcal of ME/kg and 17% CP treatment. As a result, the performance, blood and fatty acid composition were maximized in 2750 kcal of ME/kg and 16% CP treatment. Thus, dietary 2750-2775 kcal of ME/kg and 16% CP may enhance performance, blood and fatty acid composition of organic laying hens.

  19. Cold-batter mincing of hot-boned and crust-frozen air-chilled turkey breast allows for reduced sodium content in protein gels.

    Science.gov (United States)

    Lee, H C; Medellin-Lopez, M; Singh, P; Sansawat, T; Chin, K B; Kang, I

    2014-09-01

    The purpose of this research was to evaluate sodium reduction in the protein gels that were prepared with turkey breasts after hot boning (HB), quarter (¼) sectioning, crust-frozen air-chilling (CFAC), and cold temperature mincing. For each of 4 replications, 36 turkeys were slaughtered and eviscerated. One-half of the carcasses were randomly assigned to water immersion chilling for chill boning (CB), whereas the remaining carcasses were immediately HB and quarter-sectioned/crust-frozen air-chilled (HB-¼CFAC) in a freezing room (-12°C, 1.0 m/s). After deboning, CB fillets were conventionally minced, whereas HB-¼CFAC fillets were cold minced up to 27 min with 1 or 2% salt. From the beginning of mincing, the batter temperatures of HB-¼CFAC were lower (P mincing, the batter pH of the HB-¼CFAC (P 0.05) from the pH of CB batters, except for the 1% salt HB-¼CFAC batter after 15 min of mincing. The pattern of pH was not changed when the batters were stored overnight. The protein of 2% salt HB-¼CFAC fillets was more extractable (P mincing technologies appear to improve protein functionality and sodium reduction capacity. PMID:25012854

  20. 带血供肌瓣作为骨形态发生蛋白载体修复骨缺损的实验研究%Vascular muscle flap combined with bone morphogenetic protein for forming bone bridge to repair bone defect: experimental study

    Institute of Scientific and Technical Information of China (English)

    裴国献; 杨润功; 魏宽海; 金丹

    2001-01-01

    Objective To investigate the effect of vascular muscle flap as a carrier of bone morphogenetic protein (BMP) to repair long bone defect. Methods Vascular muscle flap with BMP and BMP alone were implanted into the experimental models. Their conditions of new bone formation were observed and compared. Additionally, bone defects were divided into 4 groups in random and repaired respectively with the vascular muscle flap combined with FS/BMP (group A), vascular muscle flap/BMP (group B), bloodless muscle flap/BMP (group C), and autolyzed antigen-extracted allogeneic bone (AAA)/BMP (group D). Their abilities of bone forming were observed. Results In the group of vascular muscle flap combined with BMP, a large amount of cartilage was formed in the gaps of muscles by 3 weeks. The cartilage was absorbed and replaced by normal bone containing hematopoietic bone marrow by 6 weeks with obvious muscle cell atrophy. The wet bone weight of the new bone was (253.52±20.63) mg,which was significantly larger than that of the control group (172.22±13.95) mg (P<0.01).In group A,the cartilage formed by 3 weeks and woven bone formed by 6 weeks;the haversion system formed and muscle cells disappeared by 9 weeks.Natural bone was found and the Tmax measured with torsion test was (0.82±0.04) N*m.The calcium content was (174.55±5.11) μg/g by 12 weeks.The ability of new bone formation in the 4 groups was in the following order: group A was similar to group D, group A>group B>group C. Conclusions Vascular muscle flap can serve as an effective carrier for BMP. Vascular muscle flap combined with FS as carrier is better than vascular muscle flap as a carrier alone.%目的探讨带血供肌瓣作为骨形态发生蛋白(BMP)载体修复骨缺损的可行性。方法观察带血供肌瓣复合BMP和单纯BMP组修复骨缺损时的成骨情况;对纤维蛋白粘合剂、带血供肌瓣、无血运肌瓣、同种异体脱钙骨4种不同BMP载体的成骨能力进行

  1. Microtubule nucleation in mouse bone marrow-derived mast cells is regulated by the concerted action of GIT1/βPIX proteins and calcium

    Czech Academy of Sciences Publication Activity Database

    Sulimenko, Vadym; Hájková, Zuzana; Černohorská, Markéta; Sulimenko, Tetyana; Sládková, Vladimíra; Dráberová, Lubica; Vinopal, Stanislav; Dráberová, Eduarda; Dráber, Pavel

    2015-01-01

    Roč. 194, č. 9 (2015), s. 4099-4111. ISSN 0022-1767 R&D Projects: GA ČR GAP302/12/1673; GA ČR GPP302/11/P709; GA ČR(CZ) GA14-09807S; GA ČR GA15-22194S; GA MŠk(CZ) LD13015; GA MŠk LH12050; GA MZd NT14467 Institutional support: RVO:68378050 Keywords : Bone Marrow-Derived Mast Cells * Microtubule Nucleation * GIT1/beta PIX Proteins * Calcium Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.922, year: 2014

  2. Recombinant human bone morphogenetic protein 2-induced heterotopic ossification of the retroperitoneum, psoas muscle, pelvis and abdominal wall following lumbar spinal fusion

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Raj K. [The George Washington University School of Medicine, Washington, DC (United States); Moncayo, Valeria M.; Pierre-Jerome, Claude; Terk, Michael R. [Emory University School of Medicine, Radiology Department, Musculoskeletal Division, Atlanta, GA (United States); Smitson, Robert D. [Emory University School of Medicine, Atlanta, GA (United States)

    2010-05-15

    A 45-year-old man presented with vertebral collapse at L5 as an initial manifestation of multiple myeloma and underwent spinal fusion surgery using recombinant human bone morphogenetic protein-2 (rhBMP-2). Subsequent computed tomography (CT) scans and X-rays revealed heterotopic ossification of the left psoas muscle, pelvis, and anterior abdominal wall. While the occurrence of heterotopic ossification has previously been reported when rhBMP-2 has been used for spinal fusion surgery, this case demonstrates that it can occur to a much greater degree than previously seen. (orig.)

  3. Modulation of ornithine decarboxylase activity in the normal and regenerating rat liver by various doses of the peptide morphogen of Hydra

    International Nuclear Information System (INIS)

    In this investigation, changes in ornithine decarboxylase (ODC) activity were studied in the normal and regenerating liver of rats receiving injections of various doses of Hydra peptide morphogen (HPM). Activity of ODC was determined by a radioisotope method based on liberation of 14CO2 from L-(1-14C)-ornithine. The results indicate in the author's opinion that HPM may have a role in the regulation of anabolic processes and, in particular, of regenerative processes in mammals

  4. Effect on cochlea function of guinea pig after controlled release recombinant human bone morphogenetic protein 2 transplanted into the middle ear

    Institute of Scientific and Technical Information of China (English)

    LI Xue-sheng; SUN Jian-jun; JIANG Wei; LIU Xiao

    2010-01-01

    Background The recombinant human bone morphogenetic protein 2 (rhBMP-2) has been used to induce osteogenesis in animals' middle ear and this technique is possible to be used to reconstruct the defects of ossicles. The side effects of the rhBMP-2 in middle ear should be observed before using in clinic. Thus we prepared the controlled release rhBMP-2 and implanted it into the acoustic bulla of guinea pigs. The effect on the cochlea was observed. Methods We prepared the acellular cancellous bone, accompanied with rhBMP-2. The material accompanied with rhBMP-2 was implanted into one acoustic bulla of the animal and the opposite side of the acoustic bulla was implanted with acellular cancellous bone without rhBMP-2. Totally 20 guinea pigs were undergone this procedure. After the operation, the auditory brainstem response (ABR) of the animals was tested according to the time sequence. Three months after the operation, the animals were sacrificed. The osteogenesis induced by rhBMP-2, the acoustic bulla and cochlea affected by rhBMP-2 were observed. The structures of hair cells were observed after silver nitrate staining. Results The animals were recovered soon after surgery. The hearing thresholds of the animals were declined slightly just after the surgery and come back completely after 3 months. Also, the bulla and cochlea were normal in shape. The osteogenesis occurred in the pore of the acellular cancellous bone with rhBMP-2. There was not any abnormal hyperplasia of bone in the bulla and cochlea. The articulation between the stapes and oval window was not merged. The shapes of the hair cells were normal and there was no obvious deletion of the hair cells compared with control group. Conclusions The controlled release rhBMP-2 transplanted into the middle ear could induce osteogenesis in the bulla of the animals. It did not affect the shape of the bulla and the hearing threshold of the animal, and did not induce the abnormal hyperplasia of bone in the bulla and might

  5. Retinoic acid differentially affects in vitro proliferation, differentiation and mineralization of two fish bone-derived cell lines: different gene expression of nuclear receptors and ECM proteins.

    Science.gov (United States)

    Fernández, Ignacio; Tiago, Daniel M; Laizé, Vincent; Leonor Cancela, M; Gisbert, Enric

    2014-03-01

    Retinoic acid (RA), the main active metabolite of vitamin A, regulates vertebrate morphogenesis through signaling pathways not yet fully understood. Such process involves the specific activation of retinoic acid and retinoid X receptors (RARs and RXRs), which are nuclear receptors of the steroid/thyroid hormone receptor superfamily. Teleost fish are suitable models to study vertebrate development, such as skeletogenesis. Cell systems capable of in vitro mineralization have been developed for several fish species and may provide new insights into the specific cellular and molecular events related to vitamin A activity in bone, complementary to in vivo studies. This work aims at investigating the in vitro effects of RA (0.5 and 12.5 μM) on proliferation, differentiation and extracellular matrix (ECM) mineralization of two gilthead seabream bone-derived cell lines (VSa13 and VSa16), and at identifying molecular targets of its action through gene expression analysis. RA induced phenotypic changes and cellular proliferation was inhibited in both cell lines in a cell type-dependent manner (36-59% in VSa13 and 17-46% in VSa16 cells). While RA stimulated mineral deposition in VSa13 cell cultures (50-62% stimulation), it inhibited the mineralization of extracellular matrix in VSa16 cells (11-57% inhibition). Expression of hormone receptor genes (rars and rxrs), and extracellular matrix-related genes such as matrix and bone Gla proteins (mgp and bglap), osteopontin (spp1) and type I collagen (col1a1) were differentially regulated upon exposure to RA in proliferating, differentiating and mineralizing cultures of VSa13 and VSa16 cells. Altogether, our results show: (i) RA affects proliferative and mineralogenic activities in two fish skeletal cell types and (ii) that during phenotype transitions, specific RA nuclear receptors and bone-related genes are differentially expressed in a cell type-dependent manner. PMID:24291400

  6. In vitro morphogenic response of different explants of Gentiana kurroo Royle from Western Himalayas-an endangered medicinal plant.

    Science.gov (United States)

    Sharma, Anshu; Kaur, Rajinder; Sharma, Neha

    2014-04-01

    Micropropagation offers a great potential to produce millions of clonal individuals through tissue culture via induction of morphogenesis. The aim of this work was to obtain an efficient protocol for callus regeneration for Gentiana kurroo Royle. The morphogenic response of different explants (leaves, petioles, roots) varied and responded differently for regeneration according to combinations of growth regulators. The petiole explants were best responding for callus induction and subsequently for indirect and direct regeneration. The callus induction was achieved on MS basal + 1.0 mg/l benzyladenine (BA) and 3.00 mg/l naphthalene acetic acid (NAA). MS medium supplemented with 0.10 mg/l NAA and 1.0 mg/l thidiazuron (TDZ) was recorded as the best medium for indirect regeneration. However, for direct regeneration the maximum number of shoot emergence was observed on MS basal fortified with 0.10 mg/l NAA + 0.75 mg/l TDZ. Half strength MS basal supplemented with indole-3-butyric acid (IBA) 1.00 mg/l gave best response for root induction. Subsequently, the plantlets were transferred and 100 % survival rate was recorded only on autoclaved cocopeat. No morphological variations were recorded in the callus regenerated plantlets. PMID:24757329

  7. Bone Cancer

    Science.gov (United States)

    Cancer that starts in a bone is uncommon. Cancer that has spread to the bone from another ... more common. There are three types of bone cancer: Osteosarcoma - occurs most often between ages 10 and ...

  8. Bone Cancer

    Science.gov (United States)

    Cancer that starts in a bone is uncommon. Cancer that has spread to the bone from another part of the body is more common. There are three types of bone cancer: Osteosarcoma - occurs most often between ages 10 ...

  9. Bone Diseases

    Science.gov (United States)

    Your bones help you move, give you shape and support your body. They are living tissues that rebuild constantly ... childhood and your teens, your body adds new bone faster than it removes old bone. After about ...

  10. Transfection of bone marrow mesenchymal stem cells using green fluorescence protein labeled hVEGF165 recombinant plasmid mediated by liposome

    Institute of Scientific and Technical Information of China (English)

    Tao Wang; Tian-An Liao; Shao-Bo Zhong

    2013-01-01

    Objective:To study the role of bone marrow mesenchymal stem cells (BMSCs) in construction of vascularized engineered tissue. Methods: hVEGF165 was amplified via RT-PCR before recombinant with pShuttle-green fluorescence protein;green fluorescent protein (GFP)-CMV. Then the recombinant shuttle plasmid was transfected into BMSCs with LipofectamineTM 2000 for packaging and amplifying. hVEGF165 mRNA expression in BMSCs cells was tested. Results:The sequence of hVEGF165 in pShuttle-GFP-hVEGF165 plasmid was confirmed by double-enzyme cleavage method and sequencing. hVEGF165 was highly expressed in BMSCs. Conclusions:The GFP/hVEGF165 recombinant plasmid vector was constructed successfully and expressed effectively in host cells, which may be helpful for discussing the possibility of the application of VEGF165-BMSCs in tissue engineering and ischemic disease cure.

  11. Sonic hedgehog protein promotes bone marrow-derived endothelial progenitor cell proliferation, migration and VEGF production via PI 3-kinase/ Akt signaling pathways

    Institute of Scientific and Technical Information of China (English)

    Jin-rong FU; Wen-li LIU; Jian-feng ZHOU; Han-ying SUN; Hui-zhen XU; Li LUO; Heng ZHANG; Yu-feng ZHOU

    2006-01-01

    Aim: To investigate the effects of Sonic hedgehog (shh) protein on bone marrowderived endothelial progenitor cells (BM-EPC) proliferation, migration and vascular endothelial growth factor (VEGF) production, and the potential signaling pathways involved in these effects. Methods: Bone marrow-derived Flk-l+ cells were enriched using the MACS system from adult Kunming mice and then BM-EPC was cultured in gelatin-coated culture dishes. The effects of shh N-terminal peptide on BM-EPC proliferation were evaluated using the MTT colorimetric assay. Cell migration was assayed using a modified Boyden chamber technique. The production of VEGF was determined by ELIS A and immunofluorescence analysis. The potential involvement of PKC and PI3K signaling pathways was explored using selective inhibitor or Western blot. Results: The proliferation, migration and VEGF production in BM-EPC could be promoted by endogenous shh Nterminal peptide at concentrations of 0.1 μg/mL to 10 ug/mL, and could be inhibited by anti-shh antibodies. Shh-mediated proliferation and migration in BM-EPC could be partly attenuated by anti-VEGF. Phospho-PI3-kinase expression in newly separated BM-EPC was low, and it increased significantly when exogenous shh N-terminal peptide was added, but could be attenuated by anti-human/mouse shh N-terminal peptide antibody. Moreover, the inhibitor of the PI3-kinase, but not the inhibitor of the PKC, significantly inhibited the shh-mediated proliferation, migration and VEGF production. Conclusion: Shh protein can stimulate bone marrow-derived BM-EPC proliferation, migration and VEGF production, which may promote neovascularization to ischemic tissues. This results also suggests that the PI3-kinase/Akt signaling pathways are involved in the angiogenic effects of shh.

  12. Vitamin D binding protein genotype is associated with serum 25-hydroxyvitamin D and PTH concentrations, as well as bone health in children and adolescents in Finland.

    Directory of Open Access Journals (Sweden)

    Minna Pekkinen

    Full Text Available Vitamin D binding protein (DBP/group-specific component (Gc, correlates positively with serum vitamin D metabolites, and phenotype influences serum 25-hydroxyvitamin D (S-25(OHD concentration. The protein isoform has been associated with decreased bone mineral density (BMD and increased fracture risk. We examined the role of GC genotypes in S-25(OHD status and BMD in 231 Finnish children and adolescents aged 7-19 yr. BMD was measured with DXA from lumbar spine (LS, total hip, and whole body, and for 175 subjects, radial volumetric BMD was measured with pQCT. Background characteristic and total dietary intakes of vitamin D and calcium were collected. The concentrations of 25(OHD, parathyroid hormone (PTH, calcium and other markers of calcium homeostasis were determined from blood and urine. Genotyping was based on single-nucleotide polymorphism (rs4588 in the GC gene. The genotype distribution was: GC 1/1 68%, GC 1/2 26% and GC 2/2 6%. A significant difference emerged in 25(OHD and PTH concentrations between the genotypes, (p = 0.001 and 0.028 respectively, ANCOVA. There was also a linear trend in: Gc 2/2 had the lowest 25(OHD and PTH concentrations (p = 0.025 and 0.012, respectively. Total hip bone mineral content was associated with GC genotype (BMC (p = 0.05, ANCOVA in boys. In regression analysis, after adjusting for relevant covariates, GC genotype was associated with LS BMC and strength and strain index (SSI Z-score in both genders, and LS BMD in boys. In conclusion, the present study demonstrates the association between GC genotypes and S-25(OHD and PTH concentrations. The results show the influence of DBP genetic variation on bone mass accrual in adolescence.

  13. A new concept for implant fixation: bone-to-bone biologic fixation

    OpenAIRE

    D-Y Kim; J-R Kim; KY Jang; K-B Lee

    2015-01-01

    Many attempts have been made to reduce complications of bone implant, such as pedicle screw loosening. To address this problem, the authors suggest a new concept of bone-to-bone biologic fixation using recombinant human bone morphogenetic protein-2 (rhBMP-2)-loaded cannulated pedicle screws. Recombinant human bone morphogenetic protein-2 is an osteoinductive cytokine. Four types of titanium pedicle screws were tested (uncannulated, cannulated with no loading, beta-tricalcium phosphate (TCP)-l...

  14. High cholesterol diet increases osteoporosis risk via inhibiting bone formation in rats

    Institute of Scientific and Technical Information of China (English)

    Li YOU; Zheng-yan SHENG; Chuan-ling TANG; Lin CHEN; Ling PAN; Jin-yu CHEN

    2011-01-01

    To investigate the effects of high cholesterol diet on the development of osteoporosis and the underlying mechanisms in rats.Methods:Female Sprague-Dawley rats were randomly separated into 3 groups:(1) the high cholesterol fed rats were fed a high cholesterol diet containing 77% normal diet food,3% cholesterol and 20% lard for 3 months; (2) ovariectomised (OVX) rats were bilaterally ovariectomised and fed a standard diet; and (3) the control rats were fed the standard diet.Bone mineral density (BMD) of the rats was measured using dual-energy X-ray absorptiometry.Serum levels of oestradiol (E2),osteocalcin (BGP) and carboxy-terminal collagen crosslinks (CTX) were measured using ELISA.Gene expression profile was determined with microarray.Mouse osteoblast cells (MC3T3-E1) were used for in vitro study.Proliferation,differentiation and oxidative stress of the osteoblasts were investigated using MTT,qRT-PCR and biochemical methods.Results:In high cholesterol fed rats,the femur BMD and serum BGP level were significantly reduced,while the CTX level was significantly increased.DNA microarray analysis showed that 2290 genes were down-regulated and 992 genes were up-regulated in this group of rats.Of these genes,1626 were also down-regulated and 1466 were up-regulated in OVX rats.In total,370 genes were up-regulated in both groups,and 976 genes were down-regulated.Some of the down-regulated genes were found to code for proteins involved in the transforming growth factor beta (TGF-β)/bone morphogenic protein (BMP) and Wnt signaling pathways.The up-regulated genes were found to code for IL-6 and Ager with bone-resorption functions.Treatment of MC3T3-E1 cells with cholesterol (12.5-50μg/mL) inhibited the cell proliferation and differentiation in vitro in a concentration-dependent manner.The treatment also concentration-dependently reduced the expression of BMP2 and Cbfa1,and increased the oxidative injury in MC3T3-E1 cells.Conclusion:The results suggest a close

  15. Drosophila 60A gene, another transforming growth factor beta family member, is closely related to human bone morphogenetic proteins.

    OpenAIRE

    Wharton, K. A.; Thomsen, G H; Gelbart, W. M.

    1991-01-01

    The 60A gene, a member of the transforming growth factor beta superfamily of signaling proteins, has been identified in Drosophila melanogaster. From its inferred protein sequence we predict the precursor is secreted and processed to release a growth factor-like molecule. The 60A gene is expressed throughout development with peaks of transcription during early embryogenesis, in pupae, and in adult males. The putative 60A protein shows greater sequence similarity to three vertebrate family mem...

  16. Multiscale imaging of bone microdamage.

    Science.gov (United States)

    Poundarik, Atharva A; Vashishth, Deepak

    2015-04-01

    Bone is a structural and hierarchical composite that exhibits remarkable ability to sustain complex mechanical loading and resist fracture. Bone quality encompasses various attributes of bone matrix from the quality of its material components (type-I collagen, mineral and non-collagenous matrix proteins) and cancellous microarchitecture, to the nature and extent of bone microdamage. Microdamage, produced during loading, manifests in multiple forms across the scales of hierarchy in bone and functions to dissipate energy and avert fracture. Microdamage formation is a key determinant of bone quality, and through a range of biological and physical mechanisms, accumulates with age and disease. Accumulated microdamage in bone decreases bone strength and increases bone's propensity to fracture. Thus, a thorough assessment of microdamage, across the hierarchical levels of bone, is crucial to better understand bone quality and bone fracture. This review article details multiple imaging modalities that have been used to study and characterize microdamage; from bulk staining techniques originally developed by Harold Frost to assess linear microcracks, to atomic force microscopy, a modality that revealed mechanistic insights into the formation diffuse damage at the ultrastructural level in bone. New automated techniques using imaging modalities, such as microcomputed tomography are also presented for a comprehensive overview. PMID:25664772

  17. Comparative study of osteogenic potential of a composite scaffold incorporating either endogenous bone morphogenetic protein-2 or exogenous phytomolecule icaritin: an in vitro efficacy study.

    Science.gov (United States)

    Chen, S-H; Wang, X-L; Xie, X-H; Zheng, L-Z; Yao, D; Wang, D-P; Leng, Y; Zhang, G; Qin, L

    2012-08-01

    A local delivery system with sustained and efficient release of therapeutic agents from an appropriate carrier is desirable for orthopedic applications. Novel composite scaffolds made of poly (lactic-co-glycolic acid) with tricalcium phosphate (PLGA/TCP) were fabricated by an advanced low-temperature rapid prototyping technique, which incorporated either endogenous bone morphogenetic protein-2 (BMP-2) (PLGA/TCP/BMP-2) or phytomolecule icaritin (ICT) (PLGA/TCP/ICT) at low, middle and high doses. PLGA/TCP served as control. In vitro degradation, osteogenesis and release tests showed statistical differences among PLGA/TCP/ICT, PLGA/TCP and PLGA/TCP/BMP-2 groups, where PLGA/TCP/ICT had the desired slow release of bioactive icaritin in a dose-dependent manner, whereas there was almost no BMP-2 release from the PLGA/TCP/BMP-2 scaffolds. PLGA/TCP/ICT significantly increased more ALP activity, upregulated mRNA expression of osteogenic genes and enhanced calcium deposition and mineralization in rabbit bone marrow stem cells cultured on scaffolds compared with the other two groups. These results indicate the desired degradation rate, osteogenic capability and release property in PLGA/TCP/ICT composite scaffold, as icaritin preserved its bioactivity and structure after incorporation, while PLGA/TCP/BMP-2 did not show an initially expected osteogenic potential, owing to loss of the original bioactivity of BMP-2 during its incorporation and fabrication procedure. The results suggest that PLGA/TCP composite scaffolds incorporating osteogenic ICT might be a promising approach for bone tissue bioengineering and regeneration. PMID:22543006

  18. Bone Densitometry (Bone Density Scan)

    Science.gov (United States)

    ... of DXA Bone Densitometry? What is a Bone Density Scan (DXA)? Bone density scanning, also called dual-energy x-ray absorptiometry ( ... is today's established standard for measuring bone mineral density (BMD). An x-ray (radiograph) is a noninvasive ...

  19. Effects of secretive bone morphogenetic protein 2 induced by gene transfection on the biological changes of NIH3T3 cells

    Institute of Scientific and Technical Information of China (English)

    SUN Wei-bin; WANG Juan; LU Chun; TANG Gui-xia

    2005-01-01

    Background Bone morphogenetic proteins (BMPs), which belong to the transforming growth factor beta superfamily, are powerful regulators of cartilage and bone formation. This study investigated the biological changes of NIH3T3 cells incubated with secretive BMP2 that was induced by gene transfection through transwell. Methods Eukaryonic expression vector (pcDNA3.1-B2) was transfered into NIH3T3 cells with SofastTM,a positive compound transfection agent. The positive cell clones were selected with G418. The cytoplasmic and extracellular expressions of BMP2 were determined by immunohistochemical stain and enzyme-linked immunosorbent assay. NIH3T3 cells were co-cultured with hBMP2 gene transfecting cells through transwell, and the ultrastructure, alkaline phosphatase activity and the expression of osteocalcin (the marker of osteogenetic differentiation) changes were observed. Results There were cytoplasmic and extracellular expressions of BMP2 in transfecting NIH3T3 cells. The ultrastructural changes, the high activity of alkaline phosphatase and the positive stain of osteocalcin suggested the osteogenetic differentiation tendency of NIH3T3 cells co-cultured with transfecting NIH3T3 cells. Conclusion Secretive BMP2 that is induced by gene transfection could promote the osteogenetic differentiation of fibroblast cells.

  20. Cytotoxic Effects and Osteogenic Activity of Calcium Sulfate with and without Recombinant Human Bone Morphogenetic Protein 2 and Nano-Hydroxyapatite Adjacent to MG-63 Cell Line

    Directory of Open Access Journals (Sweden)

    Abdollah Ghorbanzadeh

    2015-10-01

    Full Text Available Objectives: The aim of this study was to assess the cytotoxic effects and osteogenic activity of recombinant human bone morphogenetic protein (rhBMP2 and nano-hydroxyapatite (n- HA adjacent to MG-63 cell line.Materials and Methods: To assess cytotoxicity, the 4,5-dimethyl thiazolyl-2,5-diphenyl tetrazolium bromide (MTT assay was used. Alkaline phosphatase (ALP activity and oste- ogenic activity were evaluated using Alizarin red and the von Kossa staining and analyzed by one-way ANOVA followed by Tukey’s post hoc test.Results: The n-HA/CS mixture significantly promoted cell growth in comparison to pure calcium sulfate (CS. Moreover, addition of rhBMP2 to CS (P=0.02 and also mixing CS with n-HA led to further increase in extracellular calcium production and ALP activity (P=0.03.Conclusion: This in vitro study indicates that a scaffold material in combination with an osteoinductive material is effective for bone matrix formation.

  1. Bone nutrients for vegetarians.

    Science.gov (United States)

    Mangels, Ann Reed

    2014-07-01

    The process of bone mineralization and resorption is complex and is affected by numerous factors, including dietary constituents. Although some dietary factors involved in bone health, such as calcium and vitamin D, are typically associated with dairy products, plant-based sources of these nutrients also supply other key nutrients involved in bone maintenance. Some research suggests that vegetarian diets, especially vegan diets, are associated with lower bone mineral density (BMD), but this does not appear to be clinically significant. Vegan diets are not associated with an increased fracture risk if calcium intake is adequate. Dietary factors in plant-based diets that support the development and maintenance of bone mass include calcium, vitamin D, protein, potassium, and soy isoflavones. Other factors present in plant-based diets such as oxalic acid and phytic acid can potentially interfere with absorption and retention of calcium and thereby have a negative effect on BMD. Impaired vitamin B-12 status also negatively affects BMD. The role of protein in calcium balance is multifaceted. Overall, calcium and protein intakes in accord with Dietary Reference Intakes are recommended for vegetarians, including vegans. Fortified foods are often helpful in meeting recommendations for calcium and vitamin D. Plant-based diets can provide adequate amounts of key nutrients for bone health. PMID:24898231

  2. Tumor necrosis factor alpha promotes the expression of immunosuppressive proteins and enhances the cell growth in a human bone marrow-derived stem cell culture

    Energy Technology Data Exchange (ETDEWEB)

    Miettinen, Johanna A., E-mail: johanna.miettinen@oulu.fi [Institute of Clinical Medicine, Department of Internal Medicine, University of Oulu, P.O. Box 5000, FIN-90014 Oulu (Finland); Pietilae, Mika [Institute of Biomedicine, Department of Anatomy and Cell Biology, University of Oulu, P.O. Box 5000, FIN-90014 Oulu (Finland); Salonen, Riikka J. [Institute of Clinical Medicine, Department of Internal Medicine, University of Oulu, P.O. Box 5000, FIN-90014 Oulu (Finland); Institute of Biomedicine, Department of Anatomy and Cell Biology, University of Oulu, P.O. Box 5000, FIN-90014 Oulu (Finland); Ohlmeier, Steffen [Proteomics Core Facility, Biocenter Oulu, Department of Biochemistry, University of Oulu, P.O. Box 3000, FIN-90014 Oulu (Finland); Ylitalo, Kari; Huikuri, Heikki V. [Institute of Clinical Medicine, Department of Internal Medicine, University of Oulu, P.O. Box 5000, FIN-90014 Oulu (Finland); Lehenkari, Petri [Institute of Biomedicine, Department of Anatomy and Cell Biology, University of Oulu, P.O. Box 5000, FIN-90014 Oulu (Finland)

    2011-04-01

    Mesenchymal stem cells (MSCs) are widely used in experimental treatments for various conditions that involve normal tissue regeneration via inflammatory repair. It is known that MSCs can secrete multiple soluble factors and suppress inflammation. Even though the effect of MSCs on inflammation has been extensively studied, the effect of inflammation on MSCs is poorly understood. One of the major cytokines released at the site of inflammation is tumor necrosis factor alpha (TNF-{alpha}) which is known to induce MSC invasion and proliferation. Therefore, we wanted to test the effects of TNF-{alpha} exposure on MSCs derived from human bone marrow. We found, as expected, that cell proliferation was significantly enhanced during TNF-{alpha} exposure. However, according to the cell surface marker analysis, the intensity of several antigens in the minimum criteria panel for MSCs proposed by International Society of Cellular Therapy (ISCT) was decreased dramatically, and in certain cases, the criteria for MSCs were not fulfilled. In addition, TNF-{alpha} exposure resulted in a significant but transient increase in human leukocyte antigen and CD54 expression. Additional proteomic analysis by two-dimensional difference gel electrophoresis and mass spectrometry revealed three proteins whose expression levels decreased and 8 proteins whose expression levels increased significantly during TNF-{alpha} exposure. The majority of these proteins could be linked to immunosuppressive and signalling pathways. These results strongly support reactive and immunosuppressive activation of MSCs during TNF-{alpha} exposure, which might influence MSC differentiation stage and capacity.

  3. Tumor necrosis factor alpha promotes the expression of immunosuppressive proteins and enhances the cell growth in a human bone marrow-derived stem cell culture.

    Science.gov (United States)

    Miettinen, Johanna A; Pietilä, Mika; Salonen, Riikka J; Ohlmeier, Steffen; Ylitalo, Kari; Huikuri, Heikki V; Lehenkari, Petri

    2011-04-01

    Mesenchymal stem cells (MSCs) are widely used in experimental treatments for various conditions that involve normal tissue regeneration via inflammatory repair. It is known that MSCs can secrete multiple soluble factors and suppress inflammation. Even though the effect of MSCs on inflammation has been extensively studied, the effect of inflammation on MSCs is poorly understood. One of the major cytokines released at the site of inflammation is tumor necrosis factor alpha (TNF-α) which is known to induce MSC invasion and proliferation. Therefore, we wanted to test the effects of TNF-α exposure on MSCs derived from human bone marrow. We found, as expected, that cell proliferation was significantly enhanced during TNF-α exposure. However, according to the cell surface marker analysis, the intensity of several antigens in the minimum criteria panel for MSCs proposed by International Society of Cellular Therapy (ISCT) was decreased dramatically, and in certain cases, the criteria for MSCs were not fulfilled. In addition, TNF-α exposure resulted in a significant but transient increase in human leukocyte antigen and CD54 expression. Additional proteomic analysis by two-dimensional difference gel electrophoresis and mass spectrometry revealed three proteins whose expression levels decreased and 8 proteins whose expression levels increased significantly during TNF-α exposure. The majority of these proteins could be linked to immunosuppressive and signalling pathways. These results strongly support reactive and immunosuppressive activation of MSCs during TNF-α exposure, which might influence MSC differentiation stage and capacity. PMID:21182837

  4. Tumor necrosis factor alpha promotes the expression of immunosuppressive proteins and enhances the cell growth in a human bone marrow-derived stem cell culture

    International Nuclear Information System (INIS)

    Mesenchymal stem cells (MSCs) are widely used in experimental treatments for various conditions that involve normal tissue regeneration via inflammatory repair. It is known that MSCs can secrete multiple soluble factors and suppress inflammation. Even though the effect of MSCs on inflammation has been extensively studied, the effect of inflammation on MSCs is poorly understood. One of the major cytokines released at the site of inflammation is tumor necrosis factor alpha (TNF-α) which is known to induce MSC invasion and proliferation. Therefore, we wanted to test the effects of TNF-α exposure on MSCs derived from human bone marrow. We found, as expected, that cell proliferation was significantly enhanced during TNF-α exposure. However, according to the cell surface marker analysis, the intensity of several antigens in the minimum criteria panel for MSCs proposed by International Society of Cellular Therapy (ISCT) was decreased dramatically, and in certain cases, the criteria for MSCs were not fulfilled. In addition, TNF-α exposure resulted in a significant but transient increase in human leukocyte antigen and CD54 expression. Additional proteomic analysis by two-dimensional difference gel electrophoresis and mass spectrometry revealed three proteins whose expression levels decreased and 8 proteins whose expression levels increased significantly during TNF-α exposure. The majority of these proteins could be linked to immunosuppressive and signalling pathways. These results strongly support reactive and immunosuppressive activation of MSCs during TNF-α exposure, which might influence MSC differentiation stage and capacity.

  5. Recombinant Bone Morphogenetic Protein 2 Stimulates the Remodeling Chitosan-Based Porous Scaffold Into Hyaline-like Cartilage: Study in Heterotopic Implantation

    Directory of Open Access Journals (Sweden)

    Nurshat M. Gaifullin

    2013-09-01

    Full Text Available To study the morphology of remodeling the chitosan-based three-dimensional porous scaffold, containing bone morphogenetic protein-2 (BMP-2 for chondroinduction, the experiments with heterotopic implantation using 28 Wistar rats were carried out. Scaffolds with growth factor (n=12 or without it (n=12, against intact control (n=4 were implanted subcutaneously. Classical methods of histology and morphometry as well as immune histochemical markers (CD-68, CD-31, MMP-9, TIMP-1, and osteonectin expression, one used to investigate zone of remodeling in euthanized animals at 4 and 8 weeks after implantation. The BMP-2 application provides more intensive and rapid new cartilage formation from the scaffold matter. The additional chondroinductive effect proved more intensive settlement and proliferation of chondral cells in the regenerate, expression of chondral phenotype with the building the hyaline-like matrix, and the supporting necessary balance between the matrix metalloproteinases and their tissue inhibitors.

  6. Murine Hind Limb Long Bone Dissection and Bone Marrow Isolation.

    Science.gov (United States)

    Amend, Sarah R; Valkenburg, Kenneth C; Pienta, Kenneth J

    2016-01-01

    Investigation of the bone and the bone marrow is critical in many research fields including basic bone biology, immunology, hematology, cancer metastasis, biomechanics, and stem cell biology. Despite the importance of the bone in healthy and pathologic states, however, it is a largely under-researched organ due to lack of specialized knowledge of bone dissection and bone marrow isolation. Mice are a common model organism to study effects on bone and bone marrow, necessitating a standardized and efficient method for long bone dissection and bone marrow isolation for processing of large experimental cohorts. We describe a straightforward dissection procedure for the removal of the femur and tibia that is suitable for downstream applications, including but not limited to histomorphologic analysis and strength testing. In addition, we outline a rapid procedure for isolation of bone marrow from the long bones via centrifugation with limited handling time, ideal for cell sorting, primary cell culture, or DNA, RNA, and protein extraction. The protocol is streamlined for rapid processing of samples to limit experimental error, and is standardized to minimize user-to-user variability. PMID:27168390

  7. Low Bone Density

    Science.gov (United States)

    ... Density Exam/Testing › Low Bone Density Low Bone Density Low bone density is when your bone density ... people with normal bone density. Detecting Low Bone Density A bone density test will determine whether you ...

  8. Modulation of ornithine decarboxylase activity in the normal and regenerating rat liver by various doses of the peptide morphogen of Hydra

    Energy Technology Data Exchange (ETDEWEB)

    Yarygin, K.N.; Kazimirskii, A.N.; Kositskii, G.I.; Rubina, A.Yu.; Vinogradov, V.A.; Pylaev, A.S.

    1986-11-01

    In this investigation, changes in ornithine decarboxylase (ODC) activity were studied in the normal and regenerating liver of rats receiving injections of various doses of Hydra peptide morphogen (HPM). Activity of ODC was determined by a radioisotope method based on liberation of /sup 14/CO/sub 2/ from L-(1-/sup 14/C)-ornithine. The results indicate in the author's opinion that HPM may have a role in the regulation of anabolic processes and, in particular, of regenerative processes in mammals.

  9. Human Bone-Forming Chondrocytes Cultured in the Hydrodynamic Focusing Bioreactor Retain Matrix Proteins: Similarities to Spaceflight Results

    Science.gov (United States)

    Duke, P. J.; Hecht, J.; Montufar-Solis, D.

    2006-01-01

    Fracture healing, crucial to a successful Mars mission, involves formation of a cartilaginous fracture callus which differentiates, mineralizes, ossifies and remodels via the endochondral process. Studies of spaceflown and tailsuspended rats found that, without loading, fracture callus formation and cartilage differentiation within the callus were minimal. We found delayed differentiation of chondrocytes within the rat growth plate on Cosmos 1887, 2044, and Spacelab 3. In the current study, differentiation of human bone-forming chondrocytes cultured in the hydrodynamic focusing bioreactor (HFB) was assessed. Human costochondral chondrocytes in suspension were aggregated overnight, then cultured in the HFB for 25 days. Collagen Type II, aggrecan and unsulfated chondroitin were found extracellularly and chondroitin sulfates 4 and 6 within the cell. Lack of secretion was also found in pancreatic cells of spaceflown rats, and in our SL3 studies. The HFB can be used to study cartilage differentiation in simulated microgravity.

  10. Multifunctional and stable bone mimic proteinaceous matrix for bone tissue engineering

    OpenAIRE

    Won, J. E.; Yun, Y. R.; Jang, J. H.; S. H. Yang; Kim, J. H.; W. Chrzanowski; Wall, I. B.; Knowles, J. C.; Kim, H. W.

    2015-01-01

    Biomaterial surface design with biomimetic proteins holds great promise for successful regeneration of tissues including bone. Here we report a novel proteinaceous hybrid matrix mimicking bone extracellular matrix that has multifunctional capacity to promote stem cell adhesion and osteogenesis with excellent stability. Osteocalcin-fibronectin fusion protein holding collagen binding domain was networked with fibrillar collagen, featuring bone extracellular matrix mimic, to provide multifunctio...

  11. Bone tumor

    Science.gov (United States)

    ... physical exam. Tests that may be done include: Alkaline phosphatase blood level Bone biopsy Bone scan Chest x- ... also affect the results of the following tests: Alkaline phosphatase isoenzyme Blood calcium level Parathyroid hormone Blood phosphorus ...

  12. Quantitative analysis of protein and gene expression in salivary glands of Sjogren's-like disease NOD mice treated by bone marrow soup.

    Directory of Open Access Journals (Sweden)

    Kaori Misuno

    Full Text Available BACKGROUND: Bone marrow cell extract (termed as BM Soup has been demonstrated to repair irradiated salivary glands (SGs and restore saliva secretion in our previous study. In the present study, we aim to investigate if the function of damaged SGs in non-obese diabetic (NOD mice can be restored by BM Soup treatment and the molecular alterations associated with the treatment. METHODS: Whole BM cells were lysed and soluble intracellular contents ("BM Soup" were injected I.V. into NOD mice. Tandem mass tagging with 2-D liquid chromatography-mass spectrometry was used to quantify proteins in the submandibular glands (SMGs between untreated and BM Soup-treated mice. Quantitative PCR was used to identify genes with altered expression in the treated mice. RESULTS BM SOUP: restored salivary flow rates to normal levels and significantly reduced the focus scores of SMGs in NOD mice. More than 1800 proteins in SMG cells were quantified by the proteomic approach. Many SMG proteins involved in inflammation and apoptosis were found to be down-regulated whereas those involved in salivary gland biology and development/regeneration were up-regulated in the BM Soup-treated mice. qPCR analysis also revealed expression changes of growth factors and cytokines in the SMGs of the treated NOD mice. CONCLUSION: BM Soup treatment is effective to restore the function of damaged SGs in NOD mice. Through gene/protein expression analysis, we have found that BM Soup treatment might effectuate via inhibiting apoptosis, focal adhesion and inflammation whereas promoting development, regeneration and differentiation of the SG cells in NOD mice. These findings provide important insights on the potential mechanisms underlying the BM Soup treatment for functional restoration of damaged SGs in NOD mice. Additional studies are needed to further confirm the identified target genes and their related signaling pathways that are responsible for the BM Soup treatment.

  13. Double-stranded RNA-dependent protein kinase is required for bone calcification in MC3T3-E1 cells in vitro.

    Science.gov (United States)

    Yoshida, Kaya; Okamura, Hirohiko; Amorim, Bruna Rabelo; Ozaki, Akiko; Tanaka, Hiroaki; Morimoto, Hiroyuki; Haneji, Tatsuji

    2005-11-15

    In this study, we demonstrated that double-stranded RNA-dependent protein kinase (PKR) is required for the calcification of osteoblasts via the signal transducers and activators of transcription 1alpha (STAT1alpha) signaling in vitro. A dominant-negative mutant PKR cDNA, in which the amino acid lysine at 296 was replaced with arginine and which does not have catalytic activity, was transfected into mouse osteoblastic MC3T3-E1 cells; thereby, we established cells that stably expressed the PKR mutant gene (PKR-K/R). Phosphorylation of PKR was not stimulated by polyinosic-polycytidylic acid in the mutant cells. The PKR-K/R mutant cells exhibited up-regulated cell growth and had low alkaline phosphatase (ALP) activity. The PKR-K/R mutant cells were not able to form bone nodules in vitro. In the PKR-K/R mutant cells, runt-related gene 2 (Runx2)-mediated transcription decreased compared with the levels in the control cells. The expression of STAT1alpha protein increased and the protein was translocated to the nucleus in the PKR-K/R mutant cells. When the expression of STAT1alpha protein in PKR mutant cells was suppressed using RNAi, the activity of Runx2-mediated transcription recovered to the control level. Our results indicate that PKR is a stimulator of Runx2 transcription and is a negative modulator of STAT1alpha expression. Our findings also suggest that PKR plays important roles in the differentiation and calcification of osteoblasts by modulating STAT1alpha and/or Runx2 expression. PMID:16216244

  14. 骨形态发生蛋白-9对兔骨髓间充质干细胞诱导分化作用%Differentiation induced by bone morphogenetic protein-9 of rabbit bone marrow mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    谭富强; 刘渤; 刘浠; 欧东; 易威威; 温亚枫

    2015-01-01

    目的 分离、培养并鉴定新西兰兔骨髓间充质干细胞(BMSCs),观察BMSCs经腺病毒重组人骨形态发生蛋白-9(AdBMP-9)诱导后的成骨分化及其在明胶海绵上的生长.方法 采用全骨髓培养分离提取兔BMSCs,噻唑蓝(MTT)检测第2、3、4、5代细胞的增殖.流式细胞仪检测兔BMSCs表面抗原CD44和CD34.利用AdBMP-9转染第3代BMSCs,分别于诱导后7、14 d行碱性磷酸酶(ALP)染色、茜素红S染色和免疫荧光染色检测早期和晚期成骨标志物碱性磷酸酶、钙结节及骨钙素(OC)的表达.同时在14 d行油红O染色观察其成脂分化能力,荧光显微镜下观察BMSCs与明胶海绵复合生长.结果 成功分离提取兔BMSCs,经传代,细胞由长梭形变为短梭形,第3代形态、大小趋于稳定.MTT检测发现第2、3、4、5代细胞均呈对数生长,生长曲线近似“S”型,第2代细胞生长最慢,第4代生长最快(P<0.05).流式细胞仪检测显示,CD44和CD34的阳性率分别为94.38%和2.63%.AdBMP-9诱导后,可检测到早期和晚期成骨标志物及脂滴的生成,转染后的BMSCs可较好地与明胶海绵复合生长.结论 采用全骨髓培养法可分离得到较纯的兔BMSCs,在AdBMP-9诱导下,其可向成骨、成脂分化,且能较好地与明胶海绵复合生长.%Objective To isolate,culture and purify the New Zealand rabbit bone marrow mesenchymal stem cells (BMSCs),research the osteogenic differentiation ability of BMSCs induced by recombinant adenovirus bone morphogenetic protein-9 (AdBMP-9) and the growth of BMSCs on absorbable gelatin sponge,expect to provide cytology basis for the study of bone tissue engineering.Methods Separated and obtained BMSCs by whole bone marrow culture method,the proliferation of the 2nd,3rd,4th,and 5th cell passages were analyzed by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT).Flow cytometry was used to confirm the expression of surface antigen marker CD34 and CD44.Take the

  15. Vitamin k2, a g-carboxylating factor of gla-proteins, normalizes the bone crystal nucleation impaired by Mg-insufficiency

    OpenAIRE

    Norio Amizuka; Minqi Li; Masatoshi Kobayashi; Kuniko Hara; Shoji Akahane; Kiichi Takeuchi; Paulo H.L.; Freitas PHL, s Amizuka N; Hidehiro Ozawa; Takeyasu Maeda; Yasuhiro Akiyama

    2008-01-01

    Summary. It has been reported that the Mg-insufficient bone is fragile upon mechanical loading, despite its high bone mineral density, while vitamin K2 (MK-4: menatetrenone) improved the mechanical strength of Mg-insufficient bone. Therefore, we aimed to elucidate the ultrastructural properties of bone in rats with dietary Mg insufficiency with and without MK-4 supplementation. Morphological examinations including histochemistry, transmission electron microscopy, el...

  16. Dual delivery of active antibactericidal agents and bone morphogenetic protein at sustainable high concentrations using biodegradable sheath-core-structured drug-eluting nanofibers.

    Science.gov (United States)

    Hsu, Yung-Hen; Lin, Chang-Tun; Yu, Yi-Hsun; Chou, Ying-Chao; Liu, Shih-Jung; Chan, Err-Cheng

    2016-01-01

    In this study, we developed biodegradable sheath-core-structured drug-eluting nanofibers for sustainable delivery of antibiotics (vancomycin and ceftazidime) and recombinant human bone morphogenetic protein (rhBMP-2) via electrospinning. To prepare the biodegradable sheath-core nanofibers, we first prepared solutions of poly(d,l)-lactide-co-glycolide, vancomycin, and ceftazidime in 1,1,1,3,3,3-hexafluoro-2-propanol and rhBMP-2 in phosphate-buffered solution. The poly(d,l)-lactide-co-glycolide/antibiotics and rhBMP-2 solutions were then fed into two different capillary tubes controlled by two independent pumps for coaxial electrospinning. The electrospun nanofiber morphology was observed under a scanning electron microscope. We further characterized the in vitro antibiotic release from the nanofibers via high-performance liquid chromatography and that of rhBMP-2 via enzyme-linked immunosorbent assay and alkaline phosphatase activity. We showed that the biodegradable coaxially electrospun nanofibers could release high vancomycin/ceftazidime concentrations (well above the minimum inhibition concentration [MIC]90) and rhBMP-2 for >4 weeks. These experimental results demonstrate that novel biodegradable nanofibers can be constructed with various pharmaceuticals and proteins for long-term drug deliveries. PMID:27574423

  17. Role of Growth Differentiation Factor 9 and Bone Morphogenetic Protein 15 in Ovarian Function and Their Importance in Mammalian Female Fertility - A Review.

    Science.gov (United States)

    de Castro, Fernanda Cavallari; Cruz, Maria Helena Coelho; Leal, Claudia Lima Verde

    2016-08-01

    Growth factors play an important role during early ovarian development and folliculogenesis, since they regulate the migration of germ cells to the gonadal ridge. They also act on follicle recruitment, proliferation/atresia of granulosa cells and theca, steroidogenesis, oocyte maturation, ovulation and luteinization. Among the growth factors, the growth differentiation factor 9 (GDF9) and the bone morphogenetic protein 15 (BMP15), belong to the transforming growth factor beta (TGF-β) superfamily, have been implicated as essential for follicular development. The GDF9 and BMP15 participate in the evolution of the primordial follicle to primary follicle and play an important role in the later stages of follicular development and maturation, increasing the steroidogenic acute regulatory protein expression, plasminogen activator and luteinizing hormone receptor (LHR). These factors are also involved in the interconnections between the oocyte and surrounding cumulus cells, where they regulate absorption of amino acids, glycolysis and biosynthesis of cholesterol cumulus cells. Even though the mode of action has not been fully established, in vitro observations indicate that the factors GDF9 and BMP15 stimulate the growth of ovarian follicles and proliferation of cumulus cells through the induction of mitosis in cells and granulosa and theca expression of genes linked to follicular maturation. Thus, seeking greater understanding of the action of these growth factors on the development of oocytes, the role of GDF9 and BMP15 in ovarian function is summarized in this brief review. PMID:26954112

  18. Possible Involvement of Smad Signaling Pathways in Induction of Odontoblastic Properties in KN-3 Cells by Bone Morphogenetic Protein-2: A Growth Factor to Induce Dentin Regeneration

    Directory of Open Access Journals (Sweden)

    Ayako Washio

    2012-01-01

    Full Text Available We examined the effects of bone morphogenetic protein-2 (BMP-2 on growth, differentiation, and intracellular signaling pathways of odontoblast-like cells, KN-3 cells, to clarify molecular mechanisms of odontoblast differentiation during pulp regeneration process. After treatment with BMP-2, the cell morphology, growth, alkaline phosphatase (ALP activity, and the activation and expression of BMP-induced intracellular signaling molecules, such as Smad1/5/8 and Smad6/7, as well as activities of dentin sialoprotein (DSP and dentin matrix protein 1 (DMP1, were examined. BMP-2 had no effects on the morphology, growth, or ALP activity of KN-3 cells, whereas it induced the phosphorylation of Smad1/5/8 and expression of Smad6/7. BMP-2 also induced the expressions of DSP and DMP-1. Our results suggest that KN-3 cells may express an odontoblastic phenotype with the addition of BMP-2 through the activation of Smad signaling pathways.

  19. A novel method for beef bone protein extraction by lipase-pretreatment and its application in the Maillard reaction.

    Science.gov (United States)

    Song, Shiqing; Li, Sisi; Fan, Li; Hayat, Khizar; Xiao, Zuobing; Chen, Lihua; Tang, Qi

    2016-10-01

    Five beef bone hydrolysates were obtained by different enzyme treatment schemes, including papain (M), combination of porcine pancreatic lipase and papain (Z+M, combination of lipase and papain (Y+M), Protamex (F), combination of porcine pancreatic lipase and Protamex (Z+F). The degree of hydrolysis (DH), free amino acids and molecular weight distribution of these hydrolysates were evaluated. To further explore the differences between these five hydrolysates, Maillard reaction products (MRPs) were prepared using a xylose/cysteine/hydrolysate model. It was found that the DH, content of low molecular weight peptides and amino acids of hydrolysates increased significantly after lipase pre-treatment. GC-MS showed that the total content of furans, pyrroles and thioethers in MRPs Y+M increased by 78.0% compared with MRPs M, while in MRPs Z+F, pyrazines increased by 44.1% compared with MRPs F. Examining the sensory characteristics of the MRPs, the MRP from the hydrolysate of Y+M had the best mouthful, umami and meaty characteristics. The correlation analysis further confirmed that an appropriate lipase pre-treatment could improve the flavour of MRPs. PMID:27132826

  20. Single nucleotide polymorphism of bone morphogenetic protein 4 gene: A risk factor of non-syndromic cleft lip with or without palate

    Science.gov (United States)

    Savitha, Sathyaprasad; Sharma, S. M.; Veena, Shetty; Rekha, R.

    2015-01-01

    Background: The bone morphogenetic protein (BMP) signalling pathway is crucial in a number of developmental processes and is critical in the formation of variety of craniofacial elements including cranial neural crest, facial primordium, tooth, lip and palate. It is an important mediator in regulation of lip and palate fusion, cartilage and bone formation. Aim: To study the role of mutation of BMP4 genes in the aetiology of non-syndromic cleft lip with or without palate (NSCL ± P) and identify it directly from human analyses. Materials and Methods: A case-control study was done to evaluate whether BMP4T538C polymorphism, resulting in an amino acid change of Val=Ala (V152A) in the polypeptide, is associated with NSCL ± P in an Indian paediatric population. Genotypes of 100 patients with NSCL ± P and 100 controls (in whom absence of CL ± P was confirmed in three generations) were detected using a polymerase chain reaction-restriction fragment length polymorphism strategy. Logistic regression was performed to evaluate allele and genotype association with NSCLP. Results: Results showed significant association between homozygous CC genotype with CL ± P (odds ratio [OR]-5.59 and 95% confidence interval [CI] = 2.85-10.99). The 538C allele carriers showed an increased risk of NSCL ± P as compared with 538 T allele (OR - 4.2% CI = 2.75-6.41). Conclusion: This study suggests an association between SNP of BMP4 gene among carriers of the C allele and increased risk for NSCLP in an Indian Population. Further studies on this aspect can scale large heights in preventive strategies for NSCLP that may soon become a reality. PMID:26424979

  1. Single nucleotide polymorphism of bone morphogenetic protein 4 gene: A risk factor of non-syndromic cleft lip with or without palate

    Directory of Open Access Journals (Sweden)

    Sathyaprasad Savitha

    2015-01-01

    Full Text Available Background: The bone morphogenetic protein (BMP signalling pathway is crucial in a number of developmental processes and is critical in the formation of variety of craniofacial elements including cranial neural crest, facial primordium, tooth, lip and palate. It is an important mediator in regulation of lip and palate fusion, cartilage and bone formation. Aim: To study the role of mutation of BMP4 genes in the aetiology of non-syndromic cleft lip with or without palate (NSCL ± P and identify it directly from human analyses. Materials and Methods: A case-control study was done to evaluate whether BMP4T538C polymorphism, resulting in an amino acid change of Val=Ala (V152A in the polypeptide, is associated with NSCL ± P in an Indian paediatric population. Genotypes of 100 patients with NSCL ± P and 100 controls (in whom absence of CL ± P was confirmed in three generations were detected using a polymerase chain reaction-restriction fragment length polymorphism strategy. Logistic regression was performed to evaluate allele and genotype association with NSCLP. Results: Results showed significant association between homozygous CC genotype with CL ± P (odds ratio [OR]-5.59 and 95% confidence interval [CI] = 2.85-10.99. The 538C allele carriers showed an increased risk of NSCL ± P as compared with 538 T allele (OR - 4.2% CI = 2.75-6.41. Conclusion: This study suggests an association between SNP of BMP4 gene among carriers of the C allele and increased risk for NSCLP in an Indian Population. Further studies on this aspect can scale large heights in preventive strategies for NSCLP that may soon become a reality.

  2. Chondrogenesis of periodontal ligament stem cells by transforming growth factor-β3 and bone morphogenetic protein-6 in a normal healthy impacted third molar

    Institute of Scientific and Technical Information of China (English)

    Sunyoung Choi; Tae-Jun Cho; Soon-Keun Kwon; Gene Lee; Jaejin Cho

    2013-01-01

    The periodontal ligament-derived mesenchymal stem cell is regarded as a source of adult stem cells due to its multipotency. However, the proof of chondrogenic potential of the cells is scarce. Therefore, we investigated the chondrogenic differentiation capacity of periodontal ligament derived mesenchymal stem cells induced by transforming growth factor (TGF)-β3 and bone morphogenetic protein (BMP)-6. After isolation of periodontal ligament stem cells (PDLSCs) from human periodontal ligament, the cells were cultured in Dulbecco's modified Eagle's medium (DMEM) with 20% fetal bovine serum (FBS). A mechanical force initiated chondrogenic differentiation of the cells. For chondrogenic differentiation, 10 μg ·L-1 TGF-β3 or 100 μg ·L-1 BMP-6 and the combination treating group for synergistic effect of the growth factors. We analyzed the PDLSCs by fluorescence-activated cell sorting and chondrogenesis were evaluated by glycosaminoglycans assay, histology, immunohistochemistry and genetic analysis. PDLSCs showed mesenchymal stem cell properties proved by FACS analysis. Glycosaminoglycans contents were increased 217% by TGF-β3 and 220% by BMP-6. The synergetic effect of TGF-β3 and BMP-6 were shown up to 281% compared to control. The combination treatment increased Sox9, aggrecan and collagen II expression compared with not only controls, but also TGF-β3 or BMP-6 single treatment dramatically. The histological analysis also indicated the chondrogenic differentiation of PDLSCs in our conditions. The results of the present study demonstrate the potential of the dental stem cell as a valuable cell source for chondrogenesis, which may be applicable for regeneration of cartilage and bone fracture in the field of cell therapy.

  3. Expression of Bone Morphogenetic Protein-2 in the Chondrogenic and Ossifying Sites of Calcific Tendinopathy and Traumatic Tendon Injury Rat Models

    Directory of Open Access Journals (Sweden)

    Chan Lai

    2009-07-01

    Full Text Available Abstract Background Ectopic chondrogenesis and ossification were observed in a degenerative collagenase-induced calcific tendinopathy model and to a lesser extent, in a patellar tendon traumatic injury model. We hypothesized that expression of bone morphogenetic protein-2 (BMP-2 contributed to ectopic chondrogenesis and ossification. This study aimed to study the spatial and temporal expression of BMP-2 in our animal models. Methods Seventy-two rats were used, with 36 rats each subjected to central one-third patellar tendon window injury (C1/3 group and collagenase-induced tendon injury (CI group, respectively. The contralateral limb served as controls. At week 2, 4 and 12, 12 rats in each group were sacrificed for immunohistochemistry and RT-PCR of BMP-2. Results For CI group, weak signal was observed at the tendon matrix at week 2. At week 4, matrix around chondrocyte-like cells was also stained in some samples. In one sample, calcification was observed and the BMP-2 signal was observed both in the calcific matrix and the embedded chondrocyte-like cells. At week 12, the staining was observed mainly in the calcific matrix. Similar result was observed in C1/3 group though the immunopositive staining of BMP-2 was generally weaker. There was significant increase in BMP-2 mRNA compared to that in the contralateral side at week 2 and the level became insignificantly different at week 12 in CI group. No significant increase in BMP-2 mRNA was observed in C1/3 group at all time points. Conclusion Ectopic expression of BMP-2 might induce tissue transformation into ectopic bone/cartilage and promoted structural degeneration in calcific tendinopathy.

  4. Nuclear inclusions mimicking poly(A)-binding protein nuclear 1 inclusions in a case of inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia with a novel mutation in the valosin-containing protein gene.

    Science.gov (United States)

    Matsubara, Shiro; Shimizu, Toshio; Komori, Takashi; Mori-Yoshimura, Madoka; Minami, Narihiro; Hayashi, Yukiko K

    2016-07-01

    A middle-aged Japanese man presented with slowly progressive asymmetric weakness of legs and arm but had neither ptosis nor dysphagia. He had a family history of similar condition suggestive of autosomal dominant inheritance. A muscle biopsy showed mixture of neurogenic atrophy and myopathy with rimmed vacuoles. Furthermore we found intranuclear inclusions that had a fine structure mimicking that of inclusions reported in oculopharyngeal muscular dystrophy (OPMD). Immunohistochemical staining for polyadenylate-binding nuclear protein 1, which is identified within the nuclear inclusions of OPMD, demonstrated nuclear positivity in this case. However, OPMD was thought unlikely based on the clinical features and results of genetic analyses. Instead, a novel mutation in valosin-containing protein, c.376A>T (p.Ile126Phe), was revealed. A diagnosis of inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia was made. This is the first report of polyadenylate-binding nuclear protein 1-positive nuclear inclusions in the muscle of this condition. PMID:27209344

  5. Preservação da proteína verde fluorescente no tecido ósseo descalcificado Preservation of the green fluorescent protein on decalcified bone tissue

    Directory of Open Access Journals (Sweden)

    Jankerle Neves Boeloni

    2010-10-01

    Full Text Available A proteína verde fluorescente (GFP foi originalmente descoberta no cnidário Aequorea victoria. Células-tronco GFP positivas podem ser rastreadas in vivo quando usadas na terapia de doenças. No entanto, no osso, a fluorescência gerada pela GFP pode ser perdida durante o processo de descalcificação, dificultando o rastreamento das células-tronco usadas no tratamento de doenças ou defeitos ósseos. O objetivo deste estudo foi comparar diferentes técnicas de preservação da GFP no tecido ósseo descalcificado. Foram utilizados fêmures de ratas GFP Lewis distribuídos em quatro grupos: 1 descalcificado em ácido fórmico e incluído em parafina; 2 descalcificado em ácido fórmico e submetido à criomicrotomia; 3 descalcificado em EDTA e incluído em parafina; e 4 descalcificado em EDTA com criomicrotomia. Secções de tecido ósseo de todos os grupos foram analisadas para identificação da fluorescência natural e posteriormente submetidas à imunofluorescência, sendo utilizados anti-GFP e Alexa Flúor 555. As imagens foram obtidas por microscopia confocal. Osteócitos, osteoblastos e células da medula óssea de ratos GFP somente tiveram sua fluorescência natural preservada no tecido ósseo descalcificado em EDTA e submetido à microtomia por congelação. Nos demais grupos, houve perda da fluorescência natural, e as células GFP somente puderam ser identificadas com o uso da reação de imunofluorescência com anti-GFP. Conclui-se que a descalcificação em EDTA e a criomicrotomia são as melhores técnicas para preservar a fluorescência natural das células GFP no tecido ósseo e que a visualização de células GFP em tecido ósseo descalcificado em ácido fórmico e incluído em parafina somente pode ser realizada com o uso da técnica de imunofluorescência.Green fluorescent protein (GFP was originally derived from the cnidarians Aequorea victoria. GFP-positive stem cells can be tracked in vivo when used in the therapy of

  6. Tribulus terrestris Alters the Expression of Growth Differentiation Factor 9 and Bone Morphogenetic Protein 15 in Rabbit Ovaries of Mothers and F1 Female Offspring.

    Directory of Open Access Journals (Sweden)

    Desislava Abadjieva

    Full Text Available Although previous research has demonstrated the key role of the oocyte-derived factors, bone morphogenetic protein (BMP 15 and growth differentiation factor (GDF 9, in follicular development and ovulation, there is a lack of knowledge on the impact of external factors, which females are exposed to during folliculogenesis, on their expression. The present study investigated the effect of the aphrodisiac Tribulus terrestris on the GDF9 and BMP15 expression in the oocytes and cumulus cells at mRNA and protein levels during folliculogenesis in two generations of female rabbits. The experiment was conducted with 28 New Zealand rabbits. Only the diet of the experimental mothers group was supplemented with a dry extract of T. terrestris for the 45 days prior to insemination. The expression of BMP15 and GDF9 genes in the oocytes and cumulus cells of mothers and F1 female offspring was analyzed using real-time polymerase chain reaction (RT-PCR. The localization of the GDF9 and BMP15 proteins in the ovary tissues was determined by immunohistochemical analysis. The BMP15 and GDF9 transcripts were detected in the oocytes and cumulus cells of rabbits from all groups. T. terrestris caused a decrease in the BMP15 mRNA level in the oocytes and an increase in the cumulus cells. The GDF9 mRNA level increased significantly in both oocytes and cumulus cells. The downregulated expression of BMP15 in the treated mothers' oocytes was inherited in the F1 female offspring born to treated mothers. BMP15 and GDF9 show a clearly expressed sensitivity to the bioactive compounds of T. terrestris.

  7. Tribulus terrestris Alters the Expression of Growth Differentiation Factor 9 and Bone Morphogenetic Protein 15 in Rabbit Ovaries of Mothers and F1 Female Offspring.

    Science.gov (United States)

    Abadjieva, Desislava; Kistanova, Elena

    2016-01-01

    Although previous research has demonstrated the key role of the oocyte-derived factors, bone morphogenetic protein (BMP) 15 and growth differentiation factor (GDF) 9, in follicular development and ovulation, there is a lack of knowledge on the impact of external factors, which females are exposed to during folliculogenesis, on their expression. The present study investigated the effect of the aphrodisiac Tribulus terrestris on the GDF9 and BMP15 expression in the oocytes and cumulus cells at mRNA and protein levels during folliculogenesis in two generations of female rabbits. The experiment was conducted with 28 New Zealand rabbits. Only the diet of the experimental mothers group was supplemented with a dry extract of T. terrestris for the 45 days prior to insemination. The expression of BMP15 and GDF9 genes in the oocytes and cumulus cells of mothers and F1 female offspring was analyzed using real-time polymerase chain reaction (RT-PCR). The localization of the GDF9 and BMP15 proteins in the ovary tissues was determined by immunohistochemical analysis. The BMP15 and GDF9 transcripts were detected in the oocytes and cumulus cells of rabbits from all groups. T. terrestris caused a decrease in the BMP15 mRNA level in the oocytes and an increase in the cumulus cells. The GDF9 mRNA level increased significantly in both oocytes and cumulus cells. The downregulated expression of BMP15 in the treated mothers' oocytes was inherited in the F1 female offspring born to treated mothers. BMP15 and GDF9 show a clearly expressed sensitivity to the bioactive compounds of T. terrestris. PMID:26928288

  8. Tribulus terrestris Alters the Expression of Growth Differentiation Factor 9 and Bone Morphogenetic Protein 15 in Rabbit Ovaries of Mothers and F1 Female Offspring

    Science.gov (United States)

    2016-01-01

    Although previous research has demonstrated the key role of the oocyte-derived factors, bone morphogenetic protein (BMP) 15 and growth differentiation factor (GDF) 9, in follicular development and ovulation, there is a lack of knowledge on the impact of external factors, which females are exposed to during folliculogenesis, on their expression. The present study investigated the effect of the aphrodisiac Tribulus terrestris on the GDF9 and BMP15 expression in the oocytes and cumulus cells at mRNA and protein levels during folliculogenesis in two generations of female rabbits. The experiment was conducted with 28 New Zealand rabbits. Only the diet of the experimental mothers group was supplemented with a dry extract of T. terrestris for the 45 days prior to insemination. The expression of BMP15 and GDF9 genes in the oocytes and cumulus cells of mothers and F1 female offspring was analyzed using real-time polymerase chain reaction (RT-PCR). The localization of the GDF9 and BMP15 proteins in the ovary tissues was determined by immunohistochemical analysis. The BMP15 and GDF9 transcripts were detected in the oocytes and cumulus cells of rabbits from all groups. T. terrestris caused a decrease in the BMP15 mRNA level in the oocytes and an increase in the cumulus cells. The GDF9 mRNA level increased significantly in both oocytes and cumulus cells. The downregulated expression of BMP15 in the treated mothers’ oocytes was inherited in the F1 female offspring born to treated mothers. BMP15 and GDF9 show a clearly expressed sensitivity to the bioactive compounds of T. terrestris. PMID:26928288

  9. Acerogenin A, a natural compound isolated from Acer nikoense Maxim, stimulates osteoblast differentiation through bone morphogenetic protein action

    International Nuclear Information System (INIS)

    Research highlights: → Acerogenin A stimulated osteoblast differentiation in osteogenic cells. → Acerogenin A-induced osteoblast differentiation was inhibited by noggin. → Acerogenin A increased Bmp-2, Bmp-4 and Bmp-7 mRNA expression in MC3T3-E1 cells. → Acerogenin A is a candidate agent for stimulating bone formation. -- Abstract: We investigated the effects of acerogenin A, a natural compound isolated from Acer nikoense Maxim, on osteoblast differentiation by using osteoblastic cells. Acerogenin A stimulated the cell proliferation of MC3T3-E1 osteoblastic cells and RD-C6 osteoblastic cells (Runx2-deficient cell line). It also increased alkaline phosphatase activity in MC3T3-E1 and RD-C6 cells and calvarial osteoblastic cells isolated from the calvariae of newborn mice. Acerogenin A also increased the expression of mRNAs related to osteoblast differentiation, including Osteocalcin, Osterix and Runx2 in MC3T3-E1 cells and primary osteoblasts: it also stimulated Osteocalcin and Osterix mRNA expression in RD-C6 cells. The acerogenin A treatment for 3 days increased Bmp-2, Bmp-4, and Bmp-7 mRNA expression levels in MC3T3-E1 cells. Adding noggin, a BMP specific-antagonist, inhibited the acerogenin A-induced increase in the Osteocalcin, Osterix and Runx2 mRNA expression levels. These results indicated that acerogenin A stimulates osteoblast differentiation through BMP action, which is mediated by Runx2-dependent and Runx2-independent pathways.

  10. Effects of Different Doses of Bone Morphogenetic Protein 4 on Viability and Proliferation Rates of Mouse Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Zohreh Makoolati

    2009-01-01

    Full Text Available Objective: In this study, we examined the effect of different doses of bone morphogeneticprotein 4 (BMP4 on CCE mouse embryonic stem cells (ESCs viability andproliferation rates in order to improve the outcome of induction processes and make asystem with highest viability and proliferation rates for further studies on BMP4 roles inmultiple developmental stages.Materials and Methods: Expression of Oct-4 was studied and confirmed in this cellline immunocytochemically. Also, in order to evaluate the proliferation and viabilityrates in BMP4-treated cells, ESCs were cultured in Dulbecco's Modified Eagle Medium(DMEM containing different doses of BMP4 (0, 0.01, 0.1, 1, 5, 25, 50 and 100ng/ml.The mean number of whole cells and living cells were considered as proliferation andsurvival rates respectively. Data analysis was done with ANOVA test.Results: The results showed that there were significant differences between the meanpercent of viability between 1ng/ml and 0 ng/ml (control and 50 and 100 ng/ml BMP4(p≤0.01, as well as between 5 ng/ml and 0, 0.01, 0.1, 25, 50 and 100 ng/ml BMP4(p≤ 0.02. Also, significant differences were observed in proliferation rates between 5ng/ml and 0, 0.01, 0.1, 1, 25 and 100 ng/ml BMP4 (p≤0.01, 25 ng/ml and 0.01, 1 and5 ng/ml BMP4 (p≤0.01, as well as between 50 ng/ml and 0.01 and 0.1 ng/ml BMP4(p≤0.001.Conclusion: The results suggest that addition of 5ng/ml BMP4 had the best effects onthe proliferation and viability rates of CCE mouse ESCs.

  11. Acerogenin A, a natural compound isolated from Acer nikoense Maxim, stimulates osteoblast differentiation through bone morphogenetic protein action

    Energy Technology Data Exchange (ETDEWEB)

    Kihara, Tasuku [Section of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Section of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Global Center of Excellence (GCOE) Program, International Research Center for Molecular Science in Tooth and Bone Diseases, Tokyo Medical and Dental University, Tokyo (Japan); Ichikawa, Saki [Section of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Yonezawa, Takayuki; Lee, Ji-Won [Research Institute for Biological Functions, Chubu University, Kasugai, Aichi (Japan); Akihisa, Toshihiro [College of Science and Technology, Nihon University, Tokyo (Japan); Woo, Je Tae [Research Institute for Biological Functions, Chubu University, Kasugai, Aichi (Japan); Michi, Yasuyuki; Amagasa, Teruo [Section of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Yamaguchi, Akira, E-mail: akira.mpa@tmd.ac.jp [Section of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Global Center of Excellence (GCOE) Program, International Research Center for Molecular Science in Tooth and Bone Diseases, Tokyo Medical and Dental University, Tokyo (Japan)

    2011-03-11

    Research highlights: {yields} Acerogenin A stimulated osteoblast differentiation in osteogenic cells. {yields} Acerogenin A-induced osteoblast differentiation was inhibited by noggin. {yields} Acerogenin A increased Bmp-2, Bmp-4 and Bmp-7 mRNA expression in MC3T3-E1 cells. {yields} Acerogenin A is a candidate agent for stimulating bone formation. -- Abstract: We investigated the effects of acerogenin A, a natural compound isolated from Acer nikoense Maxim, on osteoblast differentiation by using osteoblastic cells. Acerogenin A stimulated the cell proliferation of MC3T3-E1 osteoblastic cells and RD-C6 osteoblastic cells (Runx2-deficient cell line). It also increased alkaline phosphatase activity in MC3T3-E1 and RD-C6 cells and calvarial osteoblastic cells isolated from the calvariae of newborn mice. Acerogenin A also increased the expression of mRNAs related to osteoblast differentiation, including Osteocalcin, Osterix and Runx2 in MC3T3-E1 cells and primary osteoblasts: it also stimulated Osteocalcin and Osterix mRNA expression in RD-C6 cells. The acerogenin A treatment for 3 days increased Bmp-2, Bmp-4, and Bmp-7 mRNA expression levels in MC3T3-E1 cells. Adding noggin, a BMP specific-antagonist, inhibited the acerogenin A-induced increase in the Osteocalcin, Osterix and Runx2 mRNA expression levels. These results indicated that acerogenin A stimulates osteoblast differentiation through BMP action, which is mediated by Runx2-dependent and Runx2-independent pathways.

  12. Combinatorial Analysis of Growth Factors Reveals the Contribution of Bone Morphogenetic Proteins to Chondrogenic Differentiation of Human Periosteal Cells.

    Science.gov (United States)

    Mendes, Luis Filipe; Tam, Wai Long; Chai, Yoke Chin; Geris, Liesbet; Luyten, Frank P; Roberts, Scott J

    2016-05-01

    Successful application of cell-based strategies in cartilage and bone tissue engineering has been hampered by the lack of robust protocols to efficiently differentiate mesenchymal stem cells into the chondrogenic lineage. The development of chemically defined culture media supplemented with growth factors (GFs) has been proposed as a way to overcome this limitation. In this work, we applied a fractional design of experiment (DoE) strategy to screen the effect of multiple GFs (BMP2, BMP6, GDF5, TGF-β1, and FGF2) on chondrogenic differentiation of human periosteum-derived mesenchymal stem cells (hPDCs) in vitro. In a micromass culture (μMass) system, BMP2 had a positive effect on glycosaminoglycan deposition at day 7 (p cultured for 7 days with a medium formulation supplemented with 100 ng/mL of BMP2 and BMP6 and a low concentration of GDF5, TGF-β1, and FGF2 showed increased expression of Sox9 (1.7-fold) and the matrix molecules aggrecan (7-fold increase) and COL2A1 (40-fold increase) compared to nonstimulated control μMasses. The DoE analysis indicated that in GF combinations, BMP2 was the strongest effector for chondrogenic differentiation of hPDCs. When transplanted ectopically in nude mice, the in vitro-differentiated μMasses showed maintenance of the cartilaginous phenotype after 4 weeks in vivo. This study indicates the power of using the DoE approach for the creation of new medium formulations for skeletal tissue engineering approaches. PMID:27018617

  13. Effect of recombinant human bone morphogenetic protein-2 on a novel lung cancer spine metastasis model in rodents.

    Science.gov (United States)

    Sonn, Kevin A; Kannan, Abhishek S; Bellary, Sharath S; Yun, Chawon; Hashmi, Sohaib Z; Nelson, John T; Ghodasra, Jason H; Nickoli, Michael S; Parimi, Vamsi; Ghosh, Anjan; Shawen, Nicholas; Ashtekar, Amruta; Stock, Stuart R; Hsu, Erin L; Hsu, Wellington K

    2016-07-01

    Lung cancer is the second most prevalent cancer. Spinal metastases are found in 30-90% of patients with death attributed to cancer. Due to bony destruction caused by metastases, surgical intervention is often required to restore spinal alignment and stability. While some research suggests that BMP-2 may possess tumorigenic effects, other studies show possible inhibition of cancer growth. Thirty-six athymic rats underwent intraosseous injection of lung adenocarcinoma cells into the L5 vertebral body. Cells were pre-treated with vehicle control (Group A) or rhBMP-2 (Group B) prior to implantation. At 4 weeks post-implantation, in vivo bioluminescent imaging (BLI) was performed to confirm presence of tumor and quantify signal. Plain radiographs and microComputed Tomography (microCT) were employed to establish and quantitate osteolysis. Histological analysis characterized pathologic changes in the vertebral body. At 4 weeks post-implantation, BLI showed focal signal in the L5 vertebral body in 93% of Group A animals and 89% of Group B animals. Average tumor burden by BLI radiance was 7.43 × 10(3)  p/s/cm(2) /sr (Group A) and 1.11 × 10(4)  p/s/cm(2) /sr (Group B). Radiographs and microCT demonstrated osteolysis in 100% of animals showing focal BLI signal. MicroCT demonstrated significant bone loss in both groups compared to age-matched controls but no difference between study groups. Histological analysis confirmed tumor invasion in the L5 vertebral body. These findings provide a reliable in vivo model to study isolated spinal metastases from lung cancer. Statement of Clinical Significance: The data support the notion that exposure to rhBMP-2 does not promote the growth of A549 lung cancer spine lesions. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1274-1281, 2016. PMID:26694749

  14. Skeleton and Glucose Metabolism: A Bone-Pancreas Loop

    OpenAIRE

    2015-01-01

    Bone has been considered a structure essential for mobility, calcium homeostasis, and hematopoietic function. Recent advances in bone biology have highlighted the importance of skeleton as an endocrine organ which regulates some metabolic pathways, in particular, insulin signaling and glucose tolerance. This review will point out the role of bone as an endocrine “gland” and, specifically, of bone-specific proteins, as the osteocalcin (Ocn), and proteins involved in bone remodeling, as osteopr...

  15. Pregnancy-associated plasma protein-a production in rat granulosa cells: stimulation by follicle-stimulating hormone and inhibition by the oocyte-derived bone morphogenetic protein-15.

    Science.gov (United States)

    Matsui, Motozumi; Sonntag, Barbara; Hwang, Seong Soo; Byerly, Tara; Hourvitz, Ariel; Adashi, Eli Y; Shimasaki, Shunichi; Erickson, Gregory F

    2004-08-01

    Pregnancy-associated plasma protein-A (PAPP-A) is the major IGF binding protein-4 (IGFBP-4) protease in follicular fluid, consistent with its proposed role in folliculogenesis. Despite growing interest, almost nothing is known about how PAPP-A expression is regulated in any tissue. Here we show that FSH and oocytes regulate PAPP-A expression in granulosa cells (GCs). By in situ hybridization, ovary PAPP-A mRNA was markedly increased by pregnant mare serum gonadotropin treatment, and the message was localized to the membrana GCs but not cumulus GCs (CGCs) of dominant follicles. To explore the mechanism, we used primary cultures of rat GCs. Control (untreated) cells produced little or no PAPP-A spontaneously. Conversely, FSH markedly stimulated PAPP-A mRNA and protein in a dose- and time-dependent fashion. Interestingly, PAPP-A expression in isolated CGCs was also strongly induced by FSH, and the induction was inhibited by added oocytes. To investigate the nature of the inhibition, we tested the effect of oocyte-derived bone morphogenetic protein-15 (BMP-15). BMP-15 alone had no effect on basal levels of PAPP-A expression by cultures of membrana GCs or CGCs. However, BMP-15 markedly inhibited the FSH stimulation of PAPP-A production in a dose-dependent manner. The cleavage of IGFBP-4 by conditioned media from FSH-treated GCs was completely inhibited by anti-PAPP-A antibody, indicating the IGFBP-4 protease secreted by GCs is PAPP-A. These results demonstrate stimulatory and inhibitory roles for FSH and BMP-15, respectively, in regulating PAPP-A production by GCs. We propose that FSH and oocyte-derived BMP-15 form a controlling network that ensures the spatiotemporal pattern of GC PAPP-A expression in the dominant follicle. PMID:15087430

  16. [Bone diseases].

    Science.gov (United States)

    Uebelhart, Brigitte; Rizzoli, René

    2016-01-13

    Calcium intake shows a small impact on bone mineral density and fracture risk. Denosumab is a more potent inhibitor of bone resorption than zoledronate. Abaloparatide, PTHrP analog, increases bone mineral density and decreases fracture incidence. Teriparatide could be delivered via a transdermic device. Romosozumab and odanacatib improve calculated bone strength. Sequential or combined treatments with denosumab and teriparatide could be of interest, but not denosumab followed by teriparatide. Fibrous dysplasia, Paget disease and hypophosphatasia are updated, as well as atypical femoral fracture and osteonecrosis of the jaw. PMID:26946704

  17. Growth hormone (GH) treatment increases serum insulin-like growth factor binding protein-3, bone isoenzyme alkaline phosphatase and forearm bone mineral content in young adults with GH deficiency of childhood onset

    DEFF Research Database (Denmark)

    Juul, A; Pedersen, S A; Sørensen, S; Winkler, K; Jørgensen, J O; Christiansen, J S; Skakkebaek, N E

    1994-01-01

    the effect of GH treatment on a marker of bone formation (bone alkaline phosphatase), hepatic excretory function and distal forearm bone mineral content in GH-deficient adults. Growth hormone was administered subcutaneously in 21 adults (13 males and 8 females) with GH deficiency of childhood onset....../l after 4 months of GH treatment (p <0.0001). In addition, the molar ratio between IGF-I and IGFBP-3 increased significantlyfrom 0.22 to 0.33 after GH treatment (p <0.0001). Bone alkaline phosphatase increased significantly from 38.6 to 92.9 U/l during GH therapy in male patients (p <0.0001), whereas...... liver-derived alkaline phosphatase was unaltered by GH. In the females, the increase in bone alkaline phosphatase did not reach statistical significance (19.1 vs 40.0 U/l, p = 0.06). The GH-induced increase in bone alkaline phosphatase correlated significantly with the increase in serum IGFBP-3 (r = 0...

  18. [Therapeutical effect of growth-associated protein 43 (GAP43) gene-modified bone marrow mesenchymal stem cell transplantation on rat retinal degenerative diseases].

    Science.gov (United States)

    Yang, Juan; Xie, Maosong; Zheng, Weidong; Hu, Jianzhang; Qu, Qiang

    2016-08-01

    Objective To investigate the potential of the treatment of growth-associated protein 43 (GAP43) gene-modified bone marrow-derived mesenchymal stem cells (BMSCs) for retinitis pigmentosa (RP). Methods BMSCs were isolated and cultured by adherence method. By transfecting GAP43 gene into BMSCs via a lentivirus vector, we got GAP43 gene-modified BMSCs. Sixty-three Royal College of Surgeons (RCS) rats were randomly divided into three groups: experimental group, negative control group and blank control group. The experimental rats received subretinal injection of GAP43 gene-modified BMSCs. The negative control rats received subretinal injection of BMSCs. The control rats received subretinal injection of PBS. Thirty days after transplanting, the retinal thickness was detected by optical coherence tomography (OCT), and the expression of rhodopsin in RCS rat retinas was examined by Western blotting. Results Compared with the blank control group and the negative control group, 30 days after GAP43 gene-modified BMSC transplantation, the retinal thickness of the experimental group remarkably increased and the expression of rhodopsin significantly rose. Conclusion GAP43 gene-modified BMSC transplantation can increase survival photoreceptor cells and delay retinal degeneration. PMID:27412933

  19. Immobilization of cross linked Col-I-OPN bone matrix protein on aminolysed PCL surfaces enhances initial biocompatibility of human adipogenic mesenchymal stem cells (hADMSC)

    Science.gov (United States)

    Kim, Young-Hee; Jyoti, Md. Anirban; Song, Ho-Yeon

    2014-06-01

    In bone tissue engineering surface modification is considered as one of the important ways of fabricating successful biocompatible material. Addition of biologically active functionality on the surfaces has been tried for improving the overall biocompatibility of the system. In this study poly-ɛ-caprolactone film surfaces have been modified through aminolysis and immobilization process. Collagen type I (COL-I) and osteopontin (OPN), which play an important role in osteogenesis, was immobilized onto PCL films followed by aminolysis treatment using 1,6-hexanediamine. Characterization of animolysed and immobilized surfaces were done by a number techniques using scanning electron microscopy (SEM), FT-IR, XPS, ninhydrin staining, SDS-PAGE and confocal microscopy and compared between the modified and un-modified surfaces. Results of the successive experiments showed that aminolysis treatment was homogeneously achieved which helped to entrap or immobilize Col-I-OPN proteins on surfaces of PCL film. In vitro studies with human adipogenic mesenchymal stem cells (hADMSC) also confirmed the attachment and proliferation of cells was better in modified PCL surfaces than the unmodified surfaces. SEM, confocal microscopy and MTT assay showed a significant increase in cell spreading, attachment and proliferations on the biofunctionalized surfaces compared to the unmodified PCL surfaces at all-time points indicating the success of surface biofunctionalization.

  20. Recombinant human bone morphogenetic protein-2 released from polyurethane-based scaffolds promotes early osteogenic differentiation of human mesenchymal stem cells

    International Nuclear Information System (INIS)

    The purposes of this study were to determine the pharmacokinetics of recombinant human bone morphogenetic protein-2 (rhBMP-2) from a polyurethane (PUR)-based porous scaffold and to determine the biological responses of human mesenchymal stem cells (hMSCs) to the rhBMP-2 released from those scaffolds. The rhBMP-2 was incorporated into the PUR three-dimensional (3D) porous scaffolds and release profiles were determined using enzyme-linked immunosorbent assay. The bioactivity of the rhBMP-2 containing releasates was determined using hMSCs and compared with exogenous rhBMP-2. Release of rhBMP-2 from PUR-based systems was bi-phasic and characterized by an initial burst followed by a sustained release for up to 21 days. Expression of alkaline phosphatase activity by hMSCs treated with the rhBMP-2 releasates was significantly greater than the cells alone (control) throughout the time periods. Furthermore, after 14 days of culture, the hMSCs cultured with rhBMP-2 releasate had a greater amount of mineralization compared to exogenous rhBMP-2. Overall, the rhBMP-2 release from the PUR-based scaffolds was sustained for 21 days and the releasates appeared to be bioactive and promoted earlier osteogenic differentiation and mineralization of hMSCs than the exogenous rhBMP-2. (paper)

  1. Experimental study of bone morphogenetic proteins-2 slow release from an artificial trachea made of biodegradable materials: evaluation of stenting time.

    Science.gov (United States)

    Yamamoto, Yasumichi; Okamoto, Taku; Goto, Masashi; Yokomise, Hiroyasu; Yamamoto, Masaya; Tabata, Yasuhiko

    2003-01-01

    We manufactured an artificial trachea that slowly releases bone morphogenetic protein 2 (BMP-2) and used it to replace a section of the canine trachea. We made a three-layered prosthesis composed of an outer layer of gelatin sponge, a middle layer of collagen sponge, and an inner silicone tube. BMP-2 solution was soaked into the gelatin sponge layer. An approximately 3 cm length of the canine trachea was resected, and the artificial trachea was inserted into the resulting gap and anastomosed. The implanted portion was covered by periosteum. At 2, 4, and 8 weeks after surgery, the inner silicone tube was removed. Soon after removal of the silicone tube at 2 and 4 weeks, the dogs died of choking because of collapse of the trachea. One dog whose silicone tube was removed at 8 weeks was able to survive without choking. At 6 months after removal of the silicone tube, the bronchoscopic findings revealed that the gap in the trachea had been closed by regenerated tissue and covered by mucosa. We have demonstrated that our artificial trachea slowly releasing BMP-2 requires at least 8 weeks to achieve regeneration of solid tissue to support the tracheal gap. PMID:14524559

  2. Vascular Calcification in Chronic Kidney Disease is Induced by Bone Morphogenetic Protein-2 via a Mechanism Involving the Wnt/β-Catenin Pathway

    Directory of Open Access Journals (Sweden)

    Shu Rong

    2014-11-01

    Full Text Available Background: Vascular calcification (VC, in which vascular smooth muscle cells (VSMCs undergo a phenotypic transformation into osteoblast-like cells, is one of the emergent risk factors for the accelerated atherosclerosis process characteristic of chronic kidney disease (CKD. Phosphate is an important regulator of VC. Methods: The expression of different smooth muscle cell or osteogenesis markers in response to high concentrations of phosphate or exogenous bone morphogenetic protein 2 (BMP-2 was examined by qRT-PCR and western blotting in rat VSMCs. Osteocalcin secretion was measured by radioimmunoassay. Differentiation and calcification of VSMCs were examined by alkaline phosphatase (ALP activity assay and Alizarin staining. Short hairpin RNA-mediated silencing of β-catenin was performed to examine the involvement of Wnt/β-catenin signaling in VSMC calcification and osteoblastic differentiation induced by high phosphate or BMP-2. Apoptosis was determined by TUNEL assay and immunofluorescence imaging. Results: BMP-2 serum levels were significantly higher in CKD patients than in controls. High phosphate concentrations and BMP-2 induced VSMC apoptosis and upregulated the expression of β-catenin, Msx2, Runx2 and the phosphate cotransporter Pit1, whereas a BMP-2 neutralization antibody reversed these effects. Knockdown of β-catenin abolished the effect of high phosphate and BMP-2 on VSMC apoptosis and calcification. Conclusions: BMP-2 plays a crucial role in calcium deposition in VSMCs and VC in CKD patients via a mechanism involving the Wnt/β-catenin pathway.

  3. Immobilization of cross linked Col-I–OPN bone matrix protein on aminolysed PCL surfaces enhances initial biocompatibility of human adipogenic mesenchymal stem cells (hADMSC)

    International Nuclear Information System (INIS)

    In bone tissue engineering surface modification is considered as one of the important ways of fabricating successful biocompatible material. Addition of biologically active functionality on the surfaces has been tried for improving the overall biocompatibility of the system. In this study poly-ε-caprolactone film surfaces have been modified through aminolysis and immobilization process. Collagen type I (COL-I) and osteopontin (OPN), which play an important role in osteogenesis, was immobilized onto PCL films followed by aminolysis treatment using 1,6-hexanediamine. Characterization of animolysed and immobilized surfaces were done by a number techniques using scanning electron microscopy (SEM), FT-IR, XPS, ninhydrin staining, SDS-PAGE and confocal microscopy and compared between the modified and un-modified surfaces. Results of the successive experiments showed that aminolysis treatment was homogeneously achieved which helped to entrap or immobilize Col-I–OPN proteins on surfaces of PCL film. In vitro studies with human adipogenic mesenchymal stem cells (hADMSC) also confirmed the attachment and proliferation of cells was better in modified PCL surfaces than the unmodified surfaces. SEM, confocal microscopy and MTT assay showed a significant increase in cell spreading, attachment and proliferations on the biofunctionalized surfaces compared to the unmodified PCL surfaces at all-time points indicating the success of surface biofunctionalization.

  4. Immobilization of cross linked Col-I–OPN bone matrix protein on aminolysed PCL surfaces enhances initial biocompatibility of human adipogenic mesenchymal stem cells (hADMSC)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young-Hee; Jyoti, Md. Anirban; Song, Ho-Yeon, E-mail: songmic@sch.ac.kr

    2014-06-01

    In bone tissue engineering surface modification is considered as one of the important ways of fabricating successful biocompatible material. Addition of biologically active functionality on the surfaces has been tried for improving the overall biocompatibility of the system. In this study poly-ε-caprolactone film surfaces have been modified through aminolysis and immobilization process. Collagen type I (COL-I) and osteopontin (OPN), which play an important role in osteogenesis, was immobilized onto PCL films followed by aminolysis treatment using 1,6-hexanediamine. Characterization of animolysed and immobilized surfaces were done by a number techniques using scanning electron microscopy (SEM), FT-IR, XPS, ninhydrin staining, SDS-PAGE and confocal microscopy and compared between the modified and un-modified surfaces. Results of the successive experiments showed that aminolysis treatment was homogeneously achieved which helped to entrap or immobilize Col-I–OPN proteins on surfaces of PCL film. In vitro studies with human adipogenic mesenchymal stem cells (hADMSC) also confirmed the attachment and proliferation of cells was better in modified PCL surfaces than the unmodified surfaces. SEM, confocal microscopy and MTT assay showed a significant increase in cell spreading, attachment and proliferations on the biofunctionalized surfaces compared to the unmodified PCL surfaces at all-time points indicating the success of surface biofunctionalization.

  5. Effects of Treatment with Bone Morphogenetic Protein 4 and Co-culture on Expression of Piwil2 Gene in Mouse Differentiated Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Mehdi Forouzandeh-Moghadam

    2009-01-01

    Full Text Available Background: Specific growth factors and feeder layers seem to have important roles in in vitroembryonic stem cells (ESCs differentiation. In this study,the effects of bone morphogenetic protein4 (BMP4 and mouse embryonic fibroblasts (MEFs co-culture system on germ cell differentiationfrom mouse ESCs were studied.Materials and Methods: Cell suspension was prepared from one-day-old embryoid body (EBand cultured for four days in DMEM medium containing 20% fetal bovine serum (FBS in thefollowing groups: simple culture (SC, simple culture with BMP4 (SCB, co-culture (CO-C andco-culture with BMP4 (CO-CB. Expression of piwi-like homolog 2 (Piwil2, the germ cell-specificgene, was evaluated in the different study groups by using quantitative real time polymerase chainreaction (RT-PCR. Testis was used as a positive control.Results: The maximum and minimum Piwil2 expression was observed in SC and SCB groups,respectively. A significant difference was observed in Piwil2 expression between SCB and otherstudy groups (p<0.05.Conclusion: The findings of this study showed that neither the addition of BMP4 in culture mediumnor the use of MEFs as a feeder layer have a positive effect on late germ cell induction from mouseESCs.

  6. Effect of different levels of crude protein and electrolyte balance on performance, blood parameters and bone characteristics for broiler chickens in phase of 36 to 42 days old

    Directory of Open Access Journals (Sweden)

    Franciele Clenice Navarini Giacobbo

    2014-09-01

    Full Text Available The aim of this study was to evaluate the effect of different levels of crude protein (CP and electrolyte balance (EB of the feed of broilers. 480 male broiler of Cobb 500 strain were fed in the period 36 to 42 days of age with two basal diets, one with EB 200 and another with 240 mEq. kg-1, combined with CP levels of 18.00, 17.28, 16.56 and 15.84%. The reduction in CP levels had growing linear effect (P <0.01 on feed conversion of birds (BE 200 and 240 even with the supplementation of industrial amino acids. For weight gain, reduced levels of CP had decreasing linear effect (P <0.01 to birds consuming diets with EB of 240 mEq. kg-1 and quadratic effect (P <0.05 for those who consumed ration with EB than 200 mEq. kg-1 being the level of 17.54%, which resulted in better weight gain of birds. There was linear effect (P <0.05 of reduction in CP levels on the plasmatic values of sodium (EB200 and chlorine (EB240 and quadratic effect (P <0.05 on plasmatic concentration of potassium (EB200 of birds, being the level of 17.05%, which provided the lower potassium values. For the plasma levels of uric acid, total protein and calcium, and bone development, reduction in the levels of CP had no effect on neither one of EB levels studied. Supplementation with bicarbonate salts of sodium and potassium chloride was not effective in improving the performance characteristics the birds, in the values of electrolyte balance studied, since there were no performance improvements with increase the electrolytic balance of the diets of 200 to 240 mEq.kg-1.

  7. Bcl-2/adenovirus E1B 19 kDa interacting protein-3 knockdown enables growth of breast cancer metastases in the lung, liver, and bone.

    Science.gov (United States)

    Manka, David; Spicer, Zachary; Millhorn, David E

    2005-12-15

    The mouse breast cancer cell lines 4T1, 4T07, and 67NR are highly tumorigenic but vary in metastatic potential: 4T1 widely disseminates, resulting in secondary tumors in the lung, liver, bone, and brain; 4T07 spreads to the lung and liver but is unable to establish metastatic nodules; 67NR is unable to metastasize. The Bcl-2/adenovirus E1B 19 kDa interacting protein-3 (Bnip-3) was recently shown to be absent after hypoxia in pancreatic cancer cell lines whereas its overexpression restored hypoxia-induced cell death. We found that Bnip-3 expression increased after 6 hours of hypoxia in all cell lines tested but was highest in the nonmetastatic 67NR cells and lowest in the highly metastatic 4T1 cells. Hypoxia-induced expression of Bnip-3 in the disseminating but nonmetastatic 4T07 cells was intermediate compared with 4T1 and 67NR cells. Cleaved caspase-3, a key downstream effector of cell death, increased after 6 hours of hypoxia in the 67NR and 4T07 cells by 1.9- and 2.5-fold, respectively. Conversely, cleaved caspase-3 decreased by 45% in the highly metastatic 4T1 cells after hypoxia. Small interfering RNA oligonucleotides targeting endogenous Bnip-3 blocked cell death and increased clonigenic survival after hypoxic challenge in vitro and increased primary tumor size and enabled metastasis to the lung, liver, and sternum of mice inoculated with 4T07 cells in vivo. These data inversely correlate the hypoxia-induced expression of the cell death protein Bnip-3 to metastatic potential and suggest that loss of Bnip-3 expression is critical for malignant and metastatic evasion of hypoxia-induced cell death. PMID:16357180

  8. Relationship between C-reactive protein concentration, bone mineral density and cardiovascular disturbances in patients with rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    T. N. Gavva

    2008-01-01

    Full Text Available Objective. To study relationship between serum level of hs-CRP, bone mineral density (BMD and cardiovascular disturbances in patients with rheumatoid arthritis (RA. Material and methods. 132 pts with RA with mean age 50 years (45-53 years and mean disease duration 132 months (48-216 months were examined. BMD was evaluated by dichroic X-ray densitometry in femur neck with Gologic apparatus. CRP concentration was assessed by high sensitivity nephelometric immunoassay with latex amplification with BN 100 analyzer (Dade Behring, Germany. Results. Mean BMD value in pts with RA was lower than in control group —1,4 SD and -0,45 SD respectively (p=0,00001. Normal BMD, osteoporosis and osteopenia were revealed in 38%, 47% and 15% of pts respectively. Clinical and subclinical signs of atherosclerosis in RA were more frequent than in control: coronary heart disease (CHD and stroke (ST in 25% and in 6% respectively (p=0,004, plaques (P and intima-media complex (IMC thickening in 65% and 35% respectively (p=0,003. In groups with osteopenia and osteoporosis ST and CHD revealed after RA development were more frequent, (p<0,05, RA duration was longer (p=0,02, hs CRP concentration was higher (p=0.001. Frequency of subclinical signs of atherosclerosis (P and IMC thickening in groups with normal and decreased BMD was similar. Pts with combination of osteopenia and osteoporosis (n=81 had higher frequency of CHD and high hs-CRP than pts with normal BMD (p<0,05. Mean hs-CRP level in RA was significantly higher than in control. Mean hs-CRP values in normal BMD, osteopenia and osteoporosis were 7,02 (2,4-14,5 mg/1, 9,3 (4,4-22 mg/1, 15,3 (8,6-36,2 mg/l respectively (p=0,001. 65 pts with mean hs- CRP level 3,9 (1,8-7,02 mg/l had higher BMD value than 67 pts with mean hs-CRP level 22 (12,6-34 mg/l (-1,75 SD and -1,0 SD respectively, p=0,016. Frequency of clinical, subclinical signs of atherosclerosis and traditional risk factors did not differ in different groups. The

  9. Mechanical properties, biological activity and protein controlled release by poly(vinyl alcohol)–bioglass/chitosan–collagen composite scaffolds: A bone tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Pon-On, Weeraphat, E-mail: fsciwpp@ku.ac.th [Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand); Charoenphandhu, Narattaphol; Teerapornpuntakit, Jarinthorn; Thongbunchoo, Jirawan; Krishnamra, Nateetip [Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University (Thailand); Department of Physiology, Faculty of Science, Mahidol University (Thailand); Tang, I-Ming [ThEP Center, Commission of Higher Education, 328 Si Ayutthaya Rd. (Thailand); Department of Materials Science, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand)

    2014-05-01

    In the present study, composite scaffolds made with different weight ratios (0.5:1, 1:1 and 2:1) of bioactive glass (15Ca:80Si:5P) (BG)/polyvinyl alcohol (PVA) (PVABG) and chitosan (Chi)/collagen (Col) (ChiCol) were prepared by three mechanical freeze–thaw followed by freeze-drying to obtain the porous scaffolds. The mechanical properties and the in vitro biocompatibility of the composite scaffolds to simulated body fluid (SBF) and to rat osteoblast-like UMR-106 cells were investigated. The results from the studies indicated that the porosity and compressive strength were controlled by the weight ratio of PVABG:ChiCol. The highest compressive modulus of the composites made was 214.64 MPa which was for the 1:1 weight ratio PVABG:ChiCol. Mineralization study in SBF showed the formation of apatite crystals on the PVABG:ChiCol surface after 7 days of incubation. In vitro cell availability and proliferation tests confirmed the osteoblast attachment and growth on the PVABG:ChiCol surface. MTT and ALP tests on the 1:1 weight ratio PVABG:ChiCol composite indicated that the UMR-106 cells were viable. Alkaline phosphatase activity was found to increase with increasing culturing time. In addition, we showed the potential of PVABG:ChiCol drug delivery through PBS solution studies. 81.14% of BSA loading had been achieved and controlled release for over four weeks was observed. Our results indicated that the PVABG:ChiCol composites, especially the 1:1 weight ratio composite exhibited significantly improved mechanical, mineral deposition, biological properties and controlled release. This made them potential candidates for bone tissue engineering applications. - Graphical abstract: Mechanical properties, biological activity and protein controlled release by poly(vinyl alcohol)–bioglass/chitosan–collagen composite scaffolds: A bone tissue engineering applications. - Highlights: • Preparation of PVABG:ChiCol hybrid composites and their bioactivities • Mechanical

  10. Mechanical properties, biological activity and protein controlled release by poly(vinyl alcohol)–bioglass/chitosan–collagen composite scaffolds: A bone tissue engineering applications

    International Nuclear Information System (INIS)

    In the present study, composite scaffolds made with different weight ratios (0.5:1, 1:1 and 2:1) of bioactive glass (15Ca:80Si:5P) (BG)/polyvinyl alcohol (PVA) (PVABG) and chitosan (Chi)/collagen (Col) (ChiCol) were prepared by three mechanical freeze–thaw followed by freeze-drying to obtain the porous scaffolds. The mechanical properties and the in vitro biocompatibility of the composite scaffolds to simulated body fluid (SBF) and to rat osteoblast-like UMR-106 cells were investigated. The results from the studies indicated that the porosity and compressive strength were controlled by the weight ratio of PVABG:ChiCol. The highest compressive modulus of the composites made was 214.64 MPa which was for the 1:1 weight ratio PVABG:ChiCol. Mineralization study in SBF showed the formation of apatite crystals on the PVABG:ChiCol surface after 7 days of incubation. In vitro cell availability and proliferation tests confirmed the osteoblast attachment and growth on the PVABG:ChiCol surface. MTT and ALP tests on the 1:1 weight ratio PVABG:ChiCol composite indicated that the UMR-106 cells were viable. Alkaline phosphatase activity was found to increase with increasing culturing time. In addition, we showed the potential of PVABG:ChiCol drug delivery through PBS solution studies. 81.14% of BSA loading had been achieved and controlled release for over four weeks was observed. Our results indicated that the PVABG:ChiCol composites, especially the 1:1 weight ratio composite exhibited significantly improved mechanical, mineral deposition, biological properties and controlled release. This made them potential candidates for bone tissue engineering applications. - Graphical abstract: Mechanical properties, biological activity and protein controlled release by poly(vinyl alcohol)–bioglass/chitosan–collagen composite scaffolds: A bone tissue engineering applications. - Highlights: • Preparation of PVABG:ChiCol hybrid composites and their bioactivities • Mechanical

  11. Addition of bone morphogenetic protein type 2 to ascorbate and β-glycerophosphate supplementation did not enhance osteogenic differentiation of human adipose-derived stem cells

    Directory of Open Access Journals (Sweden)

    Ariadne Cristiane Cabral Cruz

    2012-12-01

    Full Text Available Bone morphogenetic protein type 2 (BMP-2 is a potent local factor, which promotes bone formation and has been used as an osteogenic supplement for mesenchymal stem cells. OBJECTIVES: This study evaluated the effect of a recombinant BMP-2 as well as the endogenous BMP-4 and BMP-7 in the osteogenic differentiation of adipose-derived stem cells (ASCs in medium supplemented with ascorbate and β-glycerophosphate. MATERIAL AND METHODS: Human ASCs were treated with osteogenic medium in the presence (ASCs+OM+BMP-2 or absence (ASCs+OM of BMP-2. The alkaline phosphatase (ALP activity was determined and the extracellular matrix mineralization was evaluated by Von Kossa staining and calcium quantification. The expressions of BMP-4, BMP-7, Smad1, Smad4, and phosphorylated Smad1/5/8 were analyzed by western blotting. Relative mRNA expressions of Smad1, BMP receptor type II (BMPR-II, osteonectin, and osteocalcin were evaluated by qPCR. Results: ASCs+OM demonstrated the highest expression of BMP-4 and BMP-7 at days 21 and 7, respectively, the highest levels of BMPR-II mRNA expression at day 28, and the highest levels of Smad1 mRNA at days 14 and 28. ASCs+OM+BMP-2 demonstrated the highest levels of Smad1 mRNA expression at days 1, 7, and 21, the highest expression of Smad1 at day 7, the highest expression of Smad4 at day 14, the highest ALP activity at days 14 and 21, and expression of phosphorylated Smad1/5/8 at day 7. ASCs+OM and ASCs+OM+BMP2 showed similar ALP activity at days 7 and 28, similar osteonectin and osteocalcin mRNA expression at all time periods, and similar calcium depositions at all time periods. CONCLUSIONS: We concluded that human ASCs expressed endogenous BMP-4 and BMP-7. Moreover, the supplementation of ASCs with BMP-2 did not increase the level of osteogenic markers in the initial (ALP activity, intermediate (osteonectin and osteocalcin, or final (calcium deposition phases, suggesting that the exogenous addition of BMP-2 did not improve

  12. Talking Bones.

    Science.gov (United States)

    Johnson, Jaclyn; Kassing, Sharon

    2002-01-01

    Describes cooperation with the Saint Louis Zoo to provide opportunities for elementary school students to learn about bones, how animals move, what they eat, and how much they grow. Uses biofacts which include bones, skulls, and other parts to make the laboratory a hands-on experience for students. (YDS)

  13. Bone Markers

    Science.gov (United States)

    ... bone turnover: C-telopeptide (C-terminal telopeptide of type 1 collagen (CTx)) – a marker for bone resorption. It is ... resorption include: N-telopeptide (N-terminal telopeptide of type 1 collagen (NTx)) – a peptide fragment from the amino terminal ...

  14. Bone densitometry

    DEFF Research Database (Denmark)

    Ravn, Pernille; Alexandersen, P; Møllgaard, A

    1999-01-01

    The bisphosphonates have been introduced as alternatives to hormone replacement therapy (HRT) for the treatment and prevention of postmenopausal osteoporosis. The expected increasing application in at clinical practice demands cost-effective and easily handled methods to monitor the effect on bone....... The weak response at the distal forearm during antiresorptive treatment has restricted the use of bone densitometry at this region. We describe a new model for bone densitometry at the distal forearm, by which the response obtained is comparable to the response in other regions where bone densitometry...... is much more expensive and technically complicated. By computerized iteration of single X-ray absorptiometry forearm scans we defined a region with 65% trabecular bone. The region was analyzed in randomized, double-masked, placebo- controlled trials: a 2-year trial with alendronate (n = 69), a 1-year...

  15. Hydroxyapatite/ovalbumin composite particles as model protein carriers for bone tissue engineering: I. Synthesis and characterization

    International Nuclear Information System (INIS)

    Hydroxyapatite (HAp) nanoparticles were synthesized from the co-precipitation reaction between calcium oxide from discarded egg shells and phosphoric acid in the absence and the presence of ovalbumin (OVA). 2-Amino-2-hydroxymethyl-propane-1,3-diol (tris-base) was used to control the pH during the co-precipitation (i.e., 7–9). The formation of HAp was confirmed by X-ray diffraction analysis, while both the Fourier-transform infrared spectroscopy and the thermogravimetric analysis confirmed the existence of OVA within the HAp–OVA particles. The crystallite sizes of the individual crystalline entities within the HAp and the HAp–OVA particles were approximated from the (002) reflection peaks by means of the Scherrer's equation. The average particle sizes of the HAp and the HAp–OVA particles were measured by particle size analysis. Transmission electron microscopy revealed that these particles were aggregates of rod-like HAp nanocrystals, whereas scanning electron microscopy revealed that these particles ultimately formed into larger aggregates. Lastly, the decrease in the pH during the precipitation process and the presence of OVA were responsible for the observed increase in the values of pore size, BET specific surface area, and pore volume of the resulting HAp particles. Highlights: ► CaO from discarded egg shells was used as the source of calcium. ► Precipitation of CaO with H3PO4 into HAp was achieved with tris-base ► Precipitation was done with or without ovalbumin (OVA) ► HAp–OVA composite particles are envisioned as model carriers of proteins ► 2nd work in the series showed that release of OVA was good for up to 21 days

  16. The Expression of Bone Morphogenetic Protein 2 and Matrix Metalloproteinase 2 through Retinoic Acid Receptor Beta Induced by All-Trans Retinoic Acid in Cultured ARPE-19 Cells.

    Directory of Open Access Journals (Sweden)

    Zhenya Gao

    Full Text Available All-trans retinoic acid (ATRA plays an important role in ocular development. Previous studies found that retinoic acid could influence the metabolism of scleral remodeling by promoting retinal pigment epithelium (RPE cells to secrete secondary signaling factors. The purpose of this study was to investigate whether retinoic acid affected secretion of bone morphogenetic protein 2 (BMP-2 and matrix metalloproteinase 2 (MMP-2 and to explore the signaling pathway of retinoic acid in cultured acute retinal pigment epithelial 19 (ARPE-19 cells.The effects of ATRA (concentrations from 10-9 to 10-5 mol/l on the expression of retinoic acid receptors (RARs in ARPE-19 cells were examined at the mRNA and protein levels using reverse transcription-polymerase chain reaction (RT-PCR and western blot assay, respectively. The effects of treating ARPE-19 cells with ATRA concentrations ranging from 10-9 to 10-5 mol/l for 24 h and 48 h or with 10-6mol/l ATRA at different times ranging from 6h to 72h were assessed using real-time quantitative PCR (qPCR and enzyme-linked immunosorbent assay (ELISA. The contribution of RARβ-induced activation of ARPE-19 cells was confirmed using LE135, an antagonist of RARβ.RARβ mRNA levels significantly increased in the ARPE-19 cells treated with ATRA for 24h and 48h. These increases in RARβ mRNA levels were dose dependent (at concentrations of 10-9 to 10-5 mol/l with a maximum effect observed at 10-6 mol/l. There were no significant changes in the mRNA levels of RARα and RARγ. Western blot assay revealed that RARβ protein levels were increased significantly in a time-dependent manner in ARPE-19 cells treated with 10-6 mol/l ATRA from 12 h to 72 h, with a marked increase observed at 24 h and 48 h. The upregulation of RARβ and the ATRA-induced secretion in ARPE-19 cells could be inhibited by the RARβ antagonist LE135.ATRA induced upregulation of RARβ in ARPE-19 cells and stimulated these cells to secrete BMP-2 and MMP-2.

  17. Osthole-mediated cell differentiation through bone morphogenetic protein-2/p38 and extracellular signal-regulated kinase 1/2 pathway in human osteoblast cells.

    Science.gov (United States)

    Kuo, Po-Lin; Hsu, Ya-Ling; Chang, Cheng-Hsiung; Chang, Jiunn-Kae

    2005-09-01

    The survival of osteoblast cells is one of the determinants of the development of osteoporosis in patients. Osthole (7-methoxy-8-isopentenoxycoumarin) is a coumarin derivative present in many medicinal plants. By means of alkaline phosphatase (ALP) activity, osteocalcin, osteopontin, and type I collagen, enzyme-linked immunosorbent assay, we have shown that osthole exhibits a significant induction of differentiation in two human osteoblast-like cell lines, MG-63 and hFOB. Induction of differentiation by osthole was associated with increased bone morphogenetic protein (BMP)-2 production and the activations of SMAD1/5/8 and p38 and extracellular signal-regulated kinase (ERK) 1/2 kinases. Addition of purified BMP-2 protein did not increase the up-regulation of ALP activity and osteocalcin by osthole, whereas the BMP-2 antagonist noggin blocked both osthole and BMP-2-mediated ALP activity enhancement, indicating that BMP-2 production is required in osthole-mediated osteoblast maturation. Pretreatment of osteoblast cells with noggin abrogated p38 activation but only partially decreased ERK1/2 activation, suggesting that BMP-2 signaling is required in p38 activation and is partially involved in ERK1/2 activation in osthole-treated osteoblast cells. Cotreatment of p38 inhibitor SB203580 [4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-1H-imidazole] or p38 small interfering RNA (siRNA) expression inhibited osthole-mediated activation of ALP but only slightly affected osteocalcin production. In contrast, the production of osteocalcin induced by osthole was inhibited by the mitogen-activated protein kinase kinase inhibitor PD98059 (2'-amino-3'-methoxyflavone) or by expression of an ERK2 siRNA. These data suggest that BMP-2/p38 pathway links to the early phase, whereas ERK1/2 pathway is associated with the later phase in osthole-mediated differentiation of osteoblast cells. In this study, we demonstrate that osthole is a promising agent for treating osteoporosis

  18. Construction of a bicistronic recombinant adenoviral vector for human interleukin-10 and enhanced green fluorescent protein expression in bone marrow mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    LIN Jian-qing; LIN Cai-zhu; LIN Xian-zhong; ZENG Kai; GAO You-guang

    2012-01-01

    Background Human interleukin-10 (hlL-10) is a cytokine synthesis inhibitory factor,which is involved in various immune responses.The purpose of this study was to construct an adenoviral vector carrying the hlL-10 gene for expression of biologically active hlL-10 in rat bone marrow mesenchymal stem cells (rMSCs).Methods A pSNAV2.0-hlL10 plasmid was used as a template to obtain a hlL-10 cDNA fragment that was subcloned by restriction enzyme digestion and ligation into a pDC316-IRES-EGFP-lacZ alpha plasmid carrying an enhanced green fluorescent protein (EGFP) marker gene.The pDC316-hlL-10-IRES-EGFP plasmid was linearized by Pmel digestion and used to transfect HEK293 packaging cells using the adenovirus packaging system AdMax.Virus particles were amplified by repeatedly infecting HEK293 cells with the seed virus and then purified by ion exchange.After the number of virus particles and titer was determined,rMSCs were infected with the adenoviral vector.The infection rate was determined by fluorescence microscopy and flow cytometry,and hlL-10 protein expression in rMSCs was measured by Western blotting.Results The virus particle concentration,OD260/280 value and virus titer of the amplified and purified recombinant adenovirus were 3.2×1011 VP/ml,approximately 2.0,and 1.1×1010 TCID50/ml,respectively.Bright green fluorescence was observed by fluorescence microscopy and flow cytometry in the recombinant adenovirus-infected rMSCs.GFP expression was considered the multiplicity of infection (MOI) and was time-dependent.The infection rate was 92.9% at 100 MOI.Conclusions A bicistrenic recombinant adenoviral vector for hlL-10 and EGFP gene expression were successfully constructed.The infection rate of rMSCs by the adenovirus was high (92.9% at 100 MOI) and the target gene hlL-10 was highly expressed in cells.The present study provides an experimental basis for further research of immunosuppressive therapy using hlL-10.The expression level of hlL-10 protein as detected by

  19. The Expression of Bone Morphogenetic Protein 2 and Matrix Metalloproteinase 2 through Retinoic Acid Receptor Beta Induced by All-Trans Retinoic Acid in Cultured ARPE-19 Cells

    Science.gov (United States)

    Gao, Zhenya; Huo, Lijun; Cui, Dongmei; Yang, Xiao; Zeng, Junwen

    2016-01-01

    Purpose All-trans retinoic acid (ATRA) plays an important role in ocular development. Previous studies found that retinoic acid could influence the metabolism of scleral remodeling by promoting retinal pigment epithelium (RPE) cells to secrete secondary signaling factors. The purpose of this study was to investigate whether retinoic acid affected secretion of bone morphogenetic protein 2 (BMP-2) and matrix metalloproteinase 2 (MMP-2) and to explore the signaling pathway of retinoic acid in cultured acute retinal pigment epithelial 19 (ARPE-19) cells. Methods The effects of ATRA (concentrations from 10−9 to 10−5 mol/l) on the expression of retinoic acid receptors (RARs) in ARPE-19 cells were examined at the mRNA and protein levels using reverse transcription-polymerase chain reaction (RT-PCR) and western blot assay, respectively. The effects of treating ARPE-19 cells with ATRA concentrations ranging from 10−9 to 10−5 mol/l for 24 h and 48 h or with 10-6mol/l ATRA at different times ranging from 6h to 72h were assessed using real-time quantitative PCR (qPCR) and enzyme-linked immunosorbent assay (ELISA). The contribution of RARβ-induced activation of ARPE-19 cells was confirmed using LE135, an antagonist of RARβ. Results RARβ mRNA levels significantly increased in the ARPE-19 cells treated with ATRA for 24h and 48h. These increases in RARβ mRNA levels were dose dependent (at concentrations of 10−9 to 10−5 mol/l) with a maximum effect observed at 10−6 mol/l. There were no significant changes in the mRNA levels of RARα and RARγ. Western blot assay revealed that RARβ protein levels were increased significantly in a time-dependent manner in ARPE-19 cells treated with 10−6 mol/l ATRA from 12 h to 72 h, with a marked increase observed at 24 h and 48 h. The upregulation of RARβ and the ATRA-induced secretion in ARPE-19 cells could be inhibited by the RARβ antagonist LE135. Conclusion ATRA induced upregulation of RARβ in ARPE-19 cells and stimulated

  20. 1,25-Dihydroxyvitamin D3 stimulates the production of insulin-like growth factor-binding proteins-2, -3 and -4 in human bone marrow stromal cells

    DEFF Research Database (Denmark)

    Kveiborg, Marie; Flyvbjerg, Allan; Eriksen, E F;

    2001-01-01

    1,25-Dihydroxyvitamin D3 (calcitriol) inhibits proliferation and stimulates differentiation of multiple cell types, including osteoblasts. Human (h) bone marrow stromal cells (MSCs) are a homogenous non-hematopoietic population of cells present in the bone marrow and exhibit a less differentiated...

  1. DXA measurements in rett syndrome reveal small bones with low bone mass

    DEFF Research Database (Denmark)

    Roende, Gitte; Ravn, Kirstine; Fuglsang, Kathrine;

    2011-01-01

    Low bone mass is reported in growth-retarded patients harboring mutations in the X-linked methyl-CpG-binding