WorldWideScience

Sample records for bone matrix dbm

  1. Heterotopic Ossification around the Knee after Internal Fixation of a Complex Tibial Plateau Fracture Combined with the Use of Demineralized Bone Matrix (DBM: A Case Report

    Directory of Open Access Journals (Sweden)

    1.\tSjoerd P.F.T. Nota

    2014-10-01

    Full Text Available Demineralized bone matrix has been successfully commercialized as an alternative bone graft material that not only can function as filler but also as an osteoinductive graft. Numerous studies have confirmed its beneficial use in clinical practice. Heterotopic ossification after internal fixation combined with the use of demineralized bone matrix has not been widely reported. In this paper we describe a 39 year old male who sustained a complex articular fracture that developed clinically significant heterotopic ossification after internal fixation with added demineralized bone matrix. Although we cannot be sure that there is a cause-and-effect relation between demineralized bone matrix and the excessive heterotopic ossification seen in our patient, it seems that some caution in using demineralised bone matrix in similar cases is warranted. Also, given the known inter- and intraproduct variability, the risks and benefits of these products should be carefully weighed.

  2. Biomimetically Enhanced Demineralized Bone Matrix for Bone Regenerative Applications

    Directory of Open Access Journals (Sweden)

    Sriram eRavindran

    2015-10-01

    Full Text Available Demineralized bone matrix (DBM is one of the most widely used bone graft materials in dentistry. However, the ability of DBM to reliably and predictably induce bone regeneration has always been a cause for concern. The quality of DBM varies greatly depending on several donor dependent factors and also manufacturing techniques. In order to standardize the quality and to enable reliable and predictable bone regeneration, we have generated a biomimetically-enhanced version of DBM (BE-DBM using clinical grade commercial DBM as a control. We have generated the BE-DBM by incorporating a cell-derived pro-osteogenic extracellular matrix (ECM within clinical grade DBM. In the present study, we have characterized the BE-DBM and evaluated its ability to induce osteogenic differentiation of human marrow derived stromal cells (HMSCs with respect to clinical grade commercial DBM. Our results indicate that the BE-DBM contains significantly more pro-osteogenic factors than DBM and enhances HMSC differentiation and mineralized matrix formation in vitro and in vivo. Based on our results, we envision that the BE-DBM has the potential to replace DBM as the bone graft material of choice.

  3. In vitro and in vivo investigations on bone regeneration potential of laminated hydroxyapatite/gelatin nanocomposite scaffold along with DBM

    International Nuclear Information System (INIS)

    Bone regeneration ability of a scaffold strongly depends on its structure and the size of its components. In this study, a nanostructured scaffold was designed for bone repair using nano hydroxyapatite (nHA) (8–16 nm × 50–80 nm) and gelatin (GEL) as main components. In vitro investigations of calcium matrix deposition and gene expression of the seeded cells for this scaffold, demineralized bone matrix (DBM), scaffold plus DBM, and the control group were carried out. Bone regeneration in rat calvarium with critical defect size after 1, 4, and 8 weeks post implantation was investigated. The calcium matrix depositions by the osteoblast and RUNX2, ALP, osteonectin, and osteocalcin gene expression in scaffold were more significant than in other groups. Histomorphometry analysis confirmed in vitro results. In vitro and in vivo bone regeneration were least in scaffold plus DBM group. Enhanced effects in scaffold could be attributed to the shape and size of nHA particles and good architecture of the scaffold. Reduction of bone regeneration might be due to tight bonding of BMPs and nHA particles in the third group. Results obtained from this study confirmed that nano-scale size of the main components and the scaffold architecture (pore diameter, interconnectivity pores, etc.) have significant effects on bone regeneration ability of the scaffold and are important parameters in designing a temporary bone substitute.

  4. Bone induction by composite of bioerodible polyorthoester and deminiralized bone matrix in rats

    Energy Technology Data Exchange (ETDEWEB)

    Pinholt, E.M.; Solheim, E. (Institute for Surgical Research, Rikshospitalet, University of Oslo (Norway)); Bang, G. (Department of Oral Pathology and Forensic Odontology, University of Bergen (Norway)); Sudmann, E. (Hagavik Orthopedic Hospital, University of Bergen (Norway))

    1991-01-01

    A composite of a local, sustained, drug-release system, Alzamer bioerodible polyorthoester, and demineralized bone-matrix (DBM) particles implanted in the abdominal muscle of 89 Wistar rats induced cartilage and bone formation at the same rate as DBM when evaluated histologically and by {sup 85}Sr uptake. The composite implant was technically easier to use than DBM alone. (author).

  5. Enhanced release of bone morphogenetic proteins from demineralized bone matrix by gamma irradiation

    International Nuclear Information System (INIS)

    Gamma irradiation is a useful method for sterilizing demineralized bone matrix (DBM), but its effect on the osteoinductivity of DBM is still controversial. In this study, the osteoinductive activity of gamma-irradiated DBM was examined using a mouse myoblastic cell line (C2C12). DBM was extracted from adult bovine bone and was irradiated at a dose of 25 kGy using a 60cobalt gamma-irradiator. Cell proliferation with DBM was not affected by gamma-irradiation, but alkaline phosphatase and osteocalcin productions were significantly increased in C2C12 cell groups treated with gamma-irradiated DBM. It was reasoned that bone morphogenetic proteins were more efficiently released from gamma-irradiated DBM than from the non-irradiated control. This result suggests the effectiveness of radiation sterilization of bone implants - Highlights: • Demineralized bone matrix (DBM) was gamma-irradiated for sterilization. • Irradiated DBM had higher alkaline phosphatase and osteocalcin production. • It was reasoned the more released bone morphogenetic proteins by irradiation. • This result supports the application of radiation sterilization for bone implants

  6. Osteogenic ability of bone marrow stem cells intraoperatively enriched by a novel matrix

    OpenAIRE

    Ye, Qing; Chen, Kaining; HUANG, WU; HE, YUNSONG; NONG, MINGSHAN; LI, CHUNXIANG; LIANG, TIANSEN

    2014-01-01

    Poly-L-lysine (PLL) is commonly used as an adhibiting agent due to its good viscosity, and demineralized bone matrix (DBM) is a common enriched matrix for selective cell retention technology. Therefore, the aim of this study was to use PLL to coat the surface and interspaces of DBM to form a novel type of enriched matrix [DBM coated with PLL (PLL-DBM)], in order to effectively improve the enrichment effects of bone marrow stem cells and enhance their osteogenic ability. Electron microscope sc...

  7. A composite demineralized bone matrix--self assembling peptide scaffold for enhancing cell and growth factor activity in bone marrow.

    Science.gov (United States)

    Hou, Tianyong; Li, Zhiqiang; Luo, Fei; Xie, Zhao; Wu, Xuehui; Xing, Junchao; Dong, Shiwu; Xu, Jianzhong

    2014-07-01

    The need for suitable bone grafts is high; however, there are limitations to all current graft sources, such as limited availability, the invasive harvest procedure, insufficient osteoinductive properties, poor biocompatibility, ethical problems, and degradation properties. The lack of osteoinductive properties is a common problem. As an allogenic bone graft, demineralized bone matrix (DBM) can overcome issues such as limited sources and comorbidities caused by invasive harvest; however, DBM is not sufficiently osteoinductive. Bone marrow has been known to magnify osteoinductive components for bone reconstruction because it contains osteogenic cells and factors. Mesenchymal stem cells (MSCs) derived from bone marrow are the gold standard for cell seeding in tissue-engineered biomaterials for bone repair, and these cells have demonstrated beneficial effects. However, the associated high cost and the complicated procedures limit the use of tissue-engineered bone constructs. To easily enrich more osteogenic cells and factors to DBM by selective cell retention technology, DBM is modified by a nanoscale self-assembling peptide (SAP) to form a composite DBM/SAP scaffold. By decreasing the pore size and increasing the charge interaction, DBM/SAP scaffolds possess a much higher enriching yield for osteogenic cells and factors compared with DBM alone scaffolds. At the same time, SAP can build a cellular microenvironment for cell adhesion, proliferation, and differentiation that promotes bone reconstruction. As a result, a suitable bone graft fabricated by DBM/SAP scaffolds and bone marrow represents a new strategy and product for bone transplantation in the clinic. PMID:24755526

  8. A composite demineralized bone matrix--self assembling peptide scaffold for enhancing cell and growth factor activity in bone marrow.

    Science.gov (United States)

    Hou, Tianyong; Li, Zhiqiang; Luo, Fei; Xie, Zhao; Wu, Xuehui; Xing, Junchao; Dong, Shiwu; Xu, Jianzhong

    2014-07-01

    The need for suitable bone grafts is high; however, there are limitations to all current graft sources, such as limited availability, the invasive harvest procedure, insufficient osteoinductive properties, poor biocompatibility, ethical problems, and degradation properties. The lack of osteoinductive properties is a common problem. As an allogenic bone graft, demineralized bone matrix (DBM) can overcome issues such as limited sources and comorbidities caused by invasive harvest; however, DBM is not sufficiently osteoinductive. Bone marrow has been known to magnify osteoinductive components for bone reconstruction because it contains osteogenic cells and factors. Mesenchymal stem cells (MSCs) derived from bone marrow are the gold standard for cell seeding in tissue-engineered biomaterials for bone repair, and these cells have demonstrated beneficial effects. However, the associated high cost and the complicated procedures limit the use of tissue-engineered bone constructs. To easily enrich more osteogenic cells and factors to DBM by selective cell retention technology, DBM is modified by a nanoscale self-assembling peptide (SAP) to form a composite DBM/SAP scaffold. By decreasing the pore size and increasing the charge interaction, DBM/SAP scaffolds possess a much higher enriching yield for osteogenic cells and factors compared with DBM alone scaffolds. At the same time, SAP can build a cellular microenvironment for cell adhesion, proliferation, and differentiation that promotes bone reconstruction. As a result, a suitable bone graft fabricated by DBM/SAP scaffolds and bone marrow represents a new strategy and product for bone transplantation in the clinic.

  9. Autologous bone graft versus demineralized bone matrix in internal fixation of ununited long bones

    Directory of Open Access Journals (Sweden)

    Rubenbauer Bianka

    2009-12-01

    Full Text Available Abstract Background Non-unions are severe complications in orthopaedic trauma care and occur in 10% of all fractures. The golden standard for the treatment of ununited fractures includes open reduction and internal fixation (ORIF as well as augmentation with autologous-bone-grafting. However, there is morbidity associated with the bone-graft donor site and some patients offer limited quantity or quality of autologous-bone graft material. Since allogene bone-grafts are introduced on the market, this comparative study aims to evaluate healing characteristics of ununited bones treated with ORIF combined with either iliac-crest-autologous-bone-grafting (ICABG or demineralized-bone-matrix (DBM. Methods and results From 2000 to 2006 out of sixty-two consecutive patients with non-unions presenting at our Level I Trauma Center, twenty patients had ununited diaphyseal fractures of long bones and were treated by ORIF combined either by ICABG- (n = 10 or DBM-augmentation (n = 10. At the time of index-operation, patients of the DBM-group had a higher level of comorbidity (ASA-value: p = 0.014. Mean duration of follow-up was 56.6 months (ICABG-group and 41.2 months (DBM-group. All patients were clinically and radiographically assessed and adverse effects related to bone grafting were documented. The results showed that two non-unions augmented with ICABG failed osseous healing (20% whereas all non-unions grafted by DBM showed successful consolidation during the first year after the index operation (p = 0.146. No early complications were documented in both groups but two patients of the ICABG-group suffered long-term problems at the donor site (20% (p = 0.146. Pain intensity were comparable in both groups (p = 0.326. However, patients treated with DBM were more satisfied with the surgical procedure (p = 0.031. Conclusion With the use of DBM, the costs for augmentation of the non-union-site are more expensive compared to ICABG (calculated difference: 160

  10. A comparison of commercially available demineralized bone matrix for spinal fusion

    OpenAIRE

    Wang, Jeffrey C.; Alanay, A; Mark, Davies; Kanim, Linda E. A.; Campbell, Pat A; Dawson, Edgar G.; Lieberman, Jay R.

    2007-01-01

    In an effort to augment the available grafting material as well as to increase spinal fusion rates, the utilization of a demineralized bone matrix (DBM) as a graft extender or replacement is common. There are several commercially available DBM substances available for use in spinal surgery, each with different amounts of DBM containing osteoinductive proteins. Each product may have different osteoinductivity potential due to different methods of preparation, storage, and donor specifications....

  11. Demineralized Bone Matrix Injection in Consolidation Phase Enhances Bone Regeneration in Distraction Osteogenesis via Endochondral Bone Formation

    OpenAIRE

    Kim, Ji-Beom; Lee, Dong Yeon; Seo, Sang Gyo; Kim, Eo Jin; Kim, Ji Hye; Yoo, Won Joon; Cho, Tae-Joon; Choi, In Ho

    2015-01-01

    Background Distraction osteogenesis (DO) is a promising tool for bone and tissue regeneration. However, prolonged healing time remains a major problem. Various materials including cells, cytokines, and growth factors have been used in an attempt to enhance bone formation. We examined the effect of percutaneous injection of demineralized bone matrix (DBM) during the consolidation phase on bone regeneration after distraction. Methods The immature rabbit tibial DO model (20 mm length-gain) was u...

  12. Nanometeric hydroxyapatite in situ formed in demineralized bone matrix by electrochemical technique

    Institute of Scientific and Technical Information of China (English)

    CHEN Ji-da; WANG Yuan-ling; CAI Hao-xi; CAO Yin

    2001-01-01

    @@ To prepare biomimic bone materials, some thick meshes of demineralized bone matrix (DBM), which are the interest work of collagen fibrils, have been prepared in normal way, and calcium phosphate of nanometeric apatite-li.ke was introduced into these mesh works with aqueous calcium and phosphate salt solution by means of the electrochemical technique at room temperature.

  13. Cartilage tissue engineering of nasal septal chondrocyte-macroaggregates in human demineralized bone matrix.

    Science.gov (United States)

    Liese, Juliane; Marzahn, Ulrike; El Sayed, Karym; Pruss, Axel; Haisch, Andreas; Stoelzel, Katharina

    2013-06-01

    Tissue Engineering is an important method for generating cartilage tissue with isolated autologous cells and the support of biomaterials. In contrast to various gel-like biomaterials, human demineralized bone matrix (DBM) guarantees some biomechanical stability for an application in biomechanically loaded regions. The present study combined for the first time the method of seeding chondrocyte-macroaggregates in DBM for the purpose of cartilage tissue engineering. After isolating human nasal chondrocytes and creating a three-dimensional macroaggregate arrangement, the DBM was cultivated in vitro with the macroaggregates. The interaction of the cells within the DBM was analyzed with respect to cell differentiation and the inhibitory effects of chondrocyte proliferation. In contrast to chondrocyte-macroaggregates in the cell-DBM constructs, morphologically modified cells expressing type I collagen dominated. The redifferentiation of chondrocytes, characterized by the expression of type II collagen, was only found in low amounts in the cell-DBM constructs. Furthermore, caspase 3, a marker for apoptosis, was detected in the chondrocyte-DBM constructs. In another experimental setting, the vitality of chondrocytes as related to culture time and the amount of DBM was analyzed with the BrdU assay. Higher amounts of DBM tended to result in significantly higher proliferation rates of the cells within the first 48 h. After 96 h, the vitality decreased in a dose-dependent fashion. In conclusion, this study provides the proof of concept of chondrocyte-macroaggregates with DBM as an interesting method for the tissue engineering of cartilage. The as-yet insufficient redifferentiation of the chondrocytes and the sporadic initiation of apoptosis will require further investigations.

  14. Study on biocompatibility of PDLLA/HA/DBM with co-cultured human osteoblasts in vitro

    Institute of Scientific and Technical Information of China (English)

    郭乔楠; 赵建华; 卢佳友

    2003-01-01

    Objective: To evaluate the osteocompatibility of D, L-polylactic/hydroxyapatite/decalcifying bone matrix (PDLLA/HA/DBM), and compare with PDLLA and DBM. Methods: Human primary osteoblasts isolated from the femoral head of patients were inoculated onto PDLLA/HA/DBM, PLA and DBM respectively. The proliferation rate and collagen Ⅰ expression were detected. The interface between biomaterial and osteoblasts was investigated with phase contrast microscopy and electron scanning microscopy. Results: Best proliferation rate was observed with the PDLLA/HA/DBM and followed by DBM and PLA, suggesting that PDLLA/HA/DBM satisfying most requirements for the cultivation of human osteoblasts. Scanning electron microscopy showed the morphology of osteoblasts was correlated with the proliferation data. The cells, well spread and flattened, were attached closely on the surface of biomaterial with an arched structure and had normal morphology. The extracellular collagenous matrixs covered the surface of biomaterial and packed the granules of biomaterial. Conclusion: PDLLA/HA/DBM can form osteointerface early and have a good biocompability.

  15. A composite scaffold of MSC affinity peptide-modified demineralized bone matrix particles and chitosan hydrogel for cartilage regeneration

    Science.gov (United States)

    Meng, Qingyang; Man, Zhentao; Dai, Linghui; Huang, Hongjie; Zhang, Xin; Hu, Xiaoqing; Shao, Zhenxing; Zhu, Jingxian; Zhang, Jiying; Fu, Xin; Duan, Xiaoning; Ao, Yingfang

    2015-12-01

    Articular cartilage injury is still a significant challenge because of the poor intrinsic healing potential of cartilage. Stem cell-based tissue engineering is a promising technique for cartilage repair. As cartilage defects are usually irregular in clinical settings, scaffolds with moldability that can fill any shape of cartilage defects and closely integrate with the host cartilage are desirable. In this study, we constructed a composite scaffold combining mesenchymal stem cells (MSCs) E7 affinity peptide-modified demineralized bone matrix (DBM) particles and chitosan (CS) hydrogel for cartilage engineering. This solid-supported composite scaffold exhibited appropriate porosity, which provided a 3D microenvironment that supports cell adhesion and proliferation. Cell proliferation and DNA content analysis indicated that the DBM-E7/CS scaffold promoted better rat bone marrow-derived MSCs (BMMSCs) survival than the CS or DBM/CS groups. Meanwhile, the DBM-E7/CS scaffold increased matrix production and improved chondrogenic differentiation ability of BMMSCs in vitro. Furthermore, after implantation in vivo for four weeks, compared to those in control groups, the regenerated issue in the DBM-E7/CS group exhibited translucent and superior cartilage-like structures, as indicated by gross observation, histological examination, and assessment of matrix staining. Overall, the functional composite scaffold of DBM-E7/CS is a promising option for repairing irregularly shaped cartilage defects.

  16. DBM 502 Course tutorial/ indigohelp

    OpenAIRE

    SFC

    2015-01-01

    For more classes visit www.indigohelp.com   DBM 502 Individual Assignment: Implementing an Enterprise DBMS DBM 502 Individual Assignment: Comparing Database Software PART 2 OF 2 DBM 502 Individual Assignment: Comparing Database Software PART 1 OF 2 DBM 502 Individual Assignment: Data Dictionary DBM 502 Individual Assignment: Database Security DBM 502 Learning Team Assignment: DBMS Implementation Plan Compare databases covered in this course. What are ...

  17. DBM 502 Courses/snaptutorial

    OpenAIRE

    charles

    2015-01-01

    For more classes visit www.snaptutorial.com   DBM 502 Individual Assignment: Implementing an Enterprise DBMS DBM 502 Individual Assignment: Comparing Database Software PART 2 OF 2 DBM 502 Individual Assignment: Comparing Database Software PART 1 OF 2 DBM 502 Individual Assignment: Data Dictionary DBM 502 Individual Assignment: Database Security DBM 502 Learning Team Assignment: DBMS Implementation Plan Compare databases covered in this course. What ar...

  18. A statistical model to allow the phasing out of the animal testing of demineralised bone matrix products.

    Science.gov (United States)

    Murray, Samuel S; Brochmann, Elsa J; Harker, Judith O; King, Edward; Lollis, Ryan J; Khaliq, Sameer A

    2007-08-01

    Demineralised bone matrix (DBM) products are complex mixtures of proteins known to influence bone growth, turnover, and repair. They are used extensively in orthopaedic surgery, and are bioassayed in vivo prior to being used in clinical applications. Many factors contribute to the osteogenic potency of DBM, but the relative contributions of these factors, as well as the possibility of interactive effects, are not completely defined. The "gold standard" measure of the therapeutic value of DBM, the in vivo assay for ectopic bone formation, is costly, time-consuming, and involves the use of numerous animal subjects. We have measured the levels of five growth factors released by the collagenase digestion of DBM, and statistically related these levels with osteogenic potency as determined by a standard in vivo model, in order to determine which value or combination of values of growth factors best predict osteogenic activity. We conclude that the level of BMP-2 is the best single predictor of osteogenic potency, and that adding the values of other growth factors only minimally increases the predictive power of the BMP-2 measurement. A small, but significant, interactive effect between BMP-2 and BMP-7 was demonstrated. We present a statistical model based on growth factor (e.g. BMP-2) analysis that best predicts the in vivo assay score for DBM. This model allows the investigator to predict which lots of DBM are likely to exhibit in vivo bioactivity and which are not, thus reducing the need to conduct in vivo testing of insufficiently active lots of DBM. This model uses cut-point analysis to allow the user to assign an estimate of acceptable uncertainty with respect to the "gold standard" test. This procedure will significantly reduce the number of animal subjects used to test DBM products. PMID:17850186

  19. Transplantation of allogenic chondrocytes with chitosan hydrogel-demineralized bone matrix hybrid scaffold to repair rabbit cartilage injury.

    Science.gov (United States)

    Man, Zhentao; Hu, Xiaoqing; Liu, Zhenlong; Huang, Hongjie; Meng, Qingyang; Zhang, Xin; Dai, Linghui; Zhang, Jiying; Fu, Xin; Duan, Xiaoning; Zhou, Chunyan; Ao, Yingfang

    2016-11-01

    Cartilage tissue engineering is the hotspot of cartilage repair. The allogenic chondrocytes appear to be a promising source of seed cells in cartilage tissue engineering. In this study, we aimed to transplant allogenic chondrocytes with chitosan hydrogel (CS)-demineralized bone matrix (DBM) hybrid scaffold (CS/DBM) to repair rabbit cartilage injury with one-step operation. After the CS/DBM scaffold was successfully fabricated, it showed that the porous CS filled the large pores of DBM, which improved the distribution of seed cells in the CS/DBM scaffold. The allogenic chondrocytes at second passage were transplanted with different scaffolds to repair rabbit cartilage injury. Twenty-four weeks after surgery, the cartilage defect in the CS/DBM group was successfully filled as shown by MRI. Moreover, the histological score of CS/DBM group was significantly higher than that of the other groups. On the aspect of biomechanical property, the regenerated cartilage in the CS/DBM group were superior to those in the other groups as determined by nanoindentation. Meanwhile, no obvious inflammatory response was observed after the transplantation of allogenic chondrocytes at 24 weeks post-surgery. Furtherly, gene expression profile for cells within the repair tissue was compared with the allogenic chondrocytes before transplantation using Agilent microarray and RT-qPCR. The results showed that some genes beneficial to cartilage regeneration, such as BMP-7, HGF, and IGF-1, were upregulated one month after transplantation. Consequently, our study demonstrated that the transplantation of allogenic chondrocytes with CS/DBM scaffold successfully repaired rabbit cartilage injury with only one-step operation, thereby providing new insights into cartilage tissue engineering. PMID:27636153

  20. Production of an osteoinductive demineralised bone matrix powder without the use of organic solvents.

    Science.gov (United States)

    Eagle, M J; Rooney, P; Kearney, J N

    2015-09-01

    Demineralised bone matrix (DBM) is produced by grinding cortical bone into a powder, sieving the powder to obtain a desired size range and then demineralising the powder using acid. Protocols for the production of DBM powder have been published since 1965 and the powder can be used in lyophilised form or it can be mixed with a carrier to produce a paste or putty. The powder is generally produced from cortical bone which has been processed to remove blood, bone marrow and bone marrow components, including fat. Removal of fat is accomplished by incorporating incubation in an organic solvent, often chloroform, chloroform/methanol or acetone. The use of organic solvents in a clean room environment in a human tissue bank is problematic and involves operator exposure and the potential for the solvent to be trapped in air filters or recirculated throughout the clean room suite. Consequently, in this study, we have developed a cortical bone washing step which removes fat/lipid without the use of an organic solvent. Bone was prepared from six femoral shafts from three donors by dissecting soft tissue and bisecting the shaft, the shafts were then cut into ~9-10 cm lengths. These struts were then taken through a series of hot water washes at 56-59 °C, centrifugation and decontamination steps. Washed cortical struts were then lyophilised before being ground with a compressed air milling machine. The ground bone was sieved, demineralised, freeze-dried and terminally sterilised with a target dose of 25 kGy gamma irradiation. The DBM powder was evaluated for residual calcium content, in vitro cytotoxicity and osteoinductivity by implantation into the muscle of an athymic mouse. Data indicated that in addition to removing in excess of 97% DNA and extractable soluble protein, the washing protocol reduced lipid 10,000-fold. The processed bone was easily ground without clogging the grinder; the sterilised DBM powder was not cytotoxic but was osteoinductive in the animal model

  1. The comparative effectiveness of demineralized bone matrix, beta-tricalcium phosphate, and bovine-derived anorganic bone matrix on inflammation and bone formation using a paired calvarial defect model in rats

    Directory of Open Access Journals (Sweden)

    Khoshzaban A

    2011-09-01

    Full Text Available Ahad Khoshzaban1,2,3, Shahram Mehrzad1, Vida Tavakoli2, Saeed Heidari Keshel2, Gholam Reza Behrouzi2, Maryam Bashtar2 1Iranian Tissue Bank Research and Preparation Center, Imam Khomeini Hospital Complex, 2Stem Cells Preparation Unit, Eye Research Center, Farabi Hospital, Tehran University of Medical Science, 3Dental Bio Material Department, Tehran University of Medical Science, Faculty of Dentistry, Tehran, Iran Background: In this study, the effectiveness of Iranian Tissue Bank–produced demineralized bone matrix (ITB-DBM, beta-tricalcium phosphate (ßTCP, and Bio-Oss® (Geistlich Pharma AG, Wolhusen, Switzerland were evaluated and compared with double controls. The main goal was to measure the amount of new bone formation in the center of defects created in rat calvaria. Another goal was to compare the controls and evaluate the effects of each treatment material on their adjacent untreated (control defects. Methods: In this study, 40 male Wistar rats were selected and divided into four groups, In each group, there were ten rats with two defects in their calvarias; one of them is considered as control and the other one was treated with ITB-DBM (group 1, BIO-OSS (group2, and ßTCP (group 3, respectively. But in group 4, both defects were considered as control. The amount of inflammation and new bone formation were evaluated at 4 and 10 weeks. In the first group, one defect was filled with ITB-DBM; in the second group, one defect was filled with Bio-Oss; in the third group, one defect was filled with ßTCP; and in the fourth group, both defects were left unfilled. Zeiss microscope (Carl Zeiss AG, Oberkochen, Germany and Image Tool® (version 3.0; University of Texas Health Science Center at San Antonio, San Antonio, TX software were used for evaluation. SPSS Statistics (IBM Corp, Somers, NY was used for statistical analysis. Results: Maximum bone formation at 4 and 10 weeks were observed in the ITB-DBM group (46.960% ± 4.366%, 94.970% ± 0

  2. Minimal invasive surgery for unicameral bone cyst using demineralized bone matrix: a case series

    Directory of Open Access Journals (Sweden)

    Cho Hwan

    2012-07-01

    Full Text Available Abstract Background Various treatments for unicameral bone cyst have been proposed. Recent concern focuses on the effectiveness of closed methods. This study evaluated the effectiveness of demineralized bone matrix as a graft material after intramedullary decompression for the treatment of unicameral bone cysts. Methods Between October 2008 and June 2010, twenty-five patients with a unicameral bone cyst were treated with intramedullary decompression followed by grafting of demineralized bone matrix. There were 21 males and 4 female patients with mean age of 11.1 years (range, 3–19 years. The proximal metaphysis of the humerus was affected in 12 patients, the proximal femur in five, the calcaneum in three, the distal femur in two, the tibia in two, and the radius in one. There were 17 active cysts and 8 latent cysts. Radiologic change was evaluated according to a modified Neer classification. Time to healing was defined as the period required achieving cortical thickening on the anteroposterior and lateral plain radiographs, as well as consolidation of the cyst. The patients were followed up for mean period of 23.9 months (range, 15–36 months. Results Nineteen of 25 cysts had completely consolidated after a single procedure. The mean time to healing was 6.6 months (range, 3–12 months. Four had incomplete healing radiographically but had no clinical symptom with enough cortical thickness to prevent fracture. None of these four cysts needed a second intervention until the last follow-up. Two of 25 patients required a second intervention because of cyst recurrence. All of the two had a radiographical healing of cyst after mean of 10 additional months of follow-up. Conclusions A minimal invasive technique including the injection of DBM could serve as an excellent treatment method for unicameral bone cysts.

  3. Combination therapy with PTH and DBM cannot heal a critical sized murine femoral defect.

    Science.gov (United States)

    Pensak, Michael; Hong, Seung-Hyun; Dukas, Alex; Bayron, Jennifer; Tinsley, Brian; Jain, Ashish; Tang, Amy; Rowe, David; Lieberman, Jay R

    2015-08-01

    Orthopaedic surgeons continue to search for cost-effective bone graft substitutes to enhance bone repair. Teriparatide (PTH 1-34) and demineralized bone matrix (DBM) have been used in patients to promote bone healing. We evaluated the efficacy of PTH and DBM in healing a critical sized femoral defect in three lineage-specific transgenic mice expressing Col3.6GFPtopaz (pre-osteoblastic marker), Col2.3GFPemerald (osteoblastic marker) and α-SMA-Cherry (pericyte/myofibroblast marker). Mid-diaphyseal defects measuring 2 mm in length were created in the central 1/3 of mice femora using a circular saw and stabilized with an alveolar distractor device and cerclage wires. Three groups were evaluated: Group I, PTH 30 μg/kg injection daily, Group II, PTH 30 μg/kg injection daily + DBM, and Group III, DBM + 30μL saline injection. PTH was given for 28 days or until the time of sacrifice. Animals were sacrificed at 7, 14, 28, and 56 days. Radiographs at the time of sacrifice were evaluated using a 5-point scaled scoring system. Radiographs showed a lack of healing across all treatment groups at all time points: Group I, 1.57 +/- 0.68; Group II, 3.00 +/- 1.29; and Group III, 2.90 +/- 1.03. Bone formation in the defect as measured by radiographic healing score was significantly better at 56 days in Groups II (p = 0.01) and III (p < 0.01) compared to Group I. Across all treatment groups and time points the defects were largely absent of osteoprogenitor cells based on gross observation of frozen histology and quantitation of cellular based histomorphometric parameters. Quantitation of frozen histologic slides showed a limited osteoprogenitor response to PTH and DBM. Our results suggest that the anabolic agent teriparatide is unable to induce healing in a critical sized mouse femoral defect when given alone or in combination with the DBM preparation we used as a local bone graft substitute. PMID:25877402

  4. [Osteoplastic effectiveness of mineralized bone matrix].

    Science.gov (United States)

    2013-01-01

    In the experiment conducted on 50 Wistar rats, the peculiarities of the reparative osteogenesis were studied using scanning electron microscopy, x-ray electron-probe microanalysis and histological techniques. Granulated mineralized bone matrix (MBM) obtained without thermal and demineralizing treatment, was implanted into the tibial defect. MBM was found to possess marked osteoinductive and osteoconductive properties. It induced a prolonged activation of reparative osteogenesis after the implantation, as well as deep bone tissue ingrowth into the implant, acceleration of organotypic remodeling of regenerated bone, intense angiogenesis and early restoration of the damaged PMID:23805618

  5. Diabetes-induced fibrotic matrix inhibits intramembranous bone healing

    OpenAIRE

    Khosravi, Roozbeh; Trackman, Philip C.

    2014-01-01

    Diabetes diminishes bone healing and ossification. Reduced bone formation in intramembranous ossification is known, yet the mechanism(s) behind impaired intramembranous bone healing are unclear. Here we report the formation of a fibrotic matrix during healing of intramembranous calvarial bone defects that appears to exclude new bone growth. Our histological analyses of 7-day and 14-day calvaria bone healing tissue in chemically-induced diabetic mice and non-diabetic mice showed the accumulati...

  6. Multifunctional and stable bone mimic proteinaceous matrix for bone tissue engineering

    OpenAIRE

    Won, J. E.; Yun, Y. R.; Jang, J. H.; S. H. Yang; Kim, J. H.; W. Chrzanowski; Wall, I. B.; Knowles, J. C.; Kim, H. W.

    2015-01-01

    Biomaterial surface design with biomimetic proteins holds great promise for successful regeneration of tissues including bone. Here we report a novel proteinaceous hybrid matrix mimicking bone extracellular matrix that has multifunctional capacity to promote stem cell adhesion and osteogenesis with excellent stability. Osteocalcin-fibronectin fusion protein holding collagen binding domain was networked with fibrillar collagen, featuring bone extracellular matrix mimic, to provide multifunctio...

  7. Synthesis and characterization of Sm(DBM)3Phen-and Nd(DBM)3Phen-doped polymethylmethacrylate for potential solar spectrum converter

    Science.gov (United States)

    Lee, Heungyeol; Yang, Bogeum; Yoo, Mi-Yeon; Lim, Ki-Soo; Lee, Myeongkyu

    2014-07-01

    Sm(DBM)3Phen and Nd(DBM)3Phen were synthesized as stable rare-earth complexes in polymer matrix. Polymethylmethacrylate (PMMA) containing these complexes was highly transparent but exhibited emission peaks in the visible and near-infrared ranges when excited by ultraviolet light. These emission peaks were attributed to energy transfer from excited DBM to rare-earth ions. To evaluate the potential of this material for use in planar solar spectrum converters, complex-doped PMMA layers were solution-casted on top of Si solar cells and their spectral responses were investigated.

  8. Osteogenic Matrix Cell Sheets Facilitate Osteogenesis in Irradiated Rat Bone

    Directory of Open Access Journals (Sweden)

    Yoshinobu Uchihara

    2015-01-01

    Full Text Available Reconstruction of large bone defects after resection of malignant musculoskeletal tumors is a significant challenge in orthopedic surgery. Extracorporeal autogenous irradiated bone grafting is a treatment option for bone reconstruction. However, nonunion often occurs because the osteogenic capacity is lost by irradiation. In the present study, we established an autogenous irradiated bone graft model in the rat femur to assess whether osteogenic matrix cell sheets improve osteogenesis of the irradiated bone. Osteogenic matrix cell sheets were prepared from bone marrow-derived stromal cells and co-transplanted with irradiated bone. X-ray images at 4 weeks after transplantation showed bridging callus formation around the irradiated bone. Micro-computed tomography images at 12 weeks postoperatively showed abundant callus formation in the whole circumference of the irradiated bone. Histology showed bone union between the irradiated bone and host femur. Mechanical testing showed that the failure force at the irradiated bone site was significantly higher than in the control group. Our study indicates that osteogenic matrix cell sheet transplantation might be a powerful method to facilitate osteogenesis in irradiated bones, which may become a treatment option for reconstruction of bone defects after resection of malignant musculoskeletal tumors.

  9. A strategy to quantitate global phosphorylation of bone matrix proteins.

    Science.gov (United States)

    Sroga, Grażyna E; Vashishth, Deepak

    2016-04-15

    Current studies of protein phosphorylation focus primarily on the importance of specific phosphoproteins and their landscapes of phosphorylation in the regulation of different cellular functions. However, global changes in phosphorylation of extracellular matrix phosphoproteins measured "in bulk" are equally important. For example, correct global phosphorylation of different bone matrix proteins is critical to healthy tissue biomineralization. To study changes of bone matrix global phosphorylation, we developed a strategy that combines a procedure for in vitro phosphorylation/dephosphorylation of fully mineralized bone in addition to quantitation of the global phosphorylation levels of bone matrix proteins. For the first time, we show that it is possible to enzymatically phosphorylate/dephosphorylate fully mineralized bone originating from either cadaveric human donors or laboratory animals (mice). Using our strategy, we detected the difference in the global phosphorylation levels of matrix proteins isolated from wild-type and osteopontin knockout mice. We also observed that the global phosphorylation levels of matrix proteins isolated from human cortical bone were lower than those isolated from trabecular bone. The developed strategy has the potential to open new avenues for studies on the global phosphorylation of bone matrix proteins and their role in biomineralization as well for other tissues/cells and protein-based materials. PMID:26851341

  10. The "love-hate" relationship between osteoclasts and bone matrix.

    Science.gov (United States)

    Rucci, Nadia; Teti, Anna

    2016-01-01

    Osteoclasts are unique cells that destroy the mineralized matrix of the skeleton. There is a "love-hate" relationship between the osteoclasts and the bone matrix, whereby the osteoclast is stimulated by the contact with the matrix but, at the same time, it disrupts the matrix, which, in turn, counteracts this disruption by some of its components. The balance between these concerted events brings about bone resorption to be controlled and to contribute to bone tissue integrity and skeletal health. The matrix components released by osteoclasts are also involved in the local regulation of other bone cells and in the systemic control of organismal homeostasis. Disruption of this regulatory loop causes bone diseases, which may end up with either reduced or increased bone mass, often associated with poor bone quality. Expanding the knowledge on osteoclast-to-matrix interaction could help to counteract these diseases and improve the human bone health. In this article, we will present evidence of the physical, molecular and regulatory relationships between the osteoclasts and the mineralized matrix, discussing the underlying mechanisms as well as their pathologic alterations and potential targeting.

  11. A strategy to quantitate global phosphorylation of bone matrix proteins.

    Science.gov (United States)

    Sroga, Grażyna E; Vashishth, Deepak

    2016-04-15

    Current studies of protein phosphorylation focus primarily on the importance of specific phosphoproteins and their landscapes of phosphorylation in the regulation of different cellular functions. However, global changes in phosphorylation of extracellular matrix phosphoproteins measured "in bulk" are equally important. For example, correct global phosphorylation of different bone matrix proteins is critical to healthy tissue biomineralization. To study changes of bone matrix global phosphorylation, we developed a strategy that combines a procedure for in vitro phosphorylation/dephosphorylation of fully mineralized bone in addition to quantitation of the global phosphorylation levels of bone matrix proteins. For the first time, we show that it is possible to enzymatically phosphorylate/dephosphorylate fully mineralized bone originating from either cadaveric human donors or laboratory animals (mice). Using our strategy, we detected the difference in the global phosphorylation levels of matrix proteins isolated from wild-type and osteopontin knockout mice. We also observed that the global phosphorylation levels of matrix proteins isolated from human cortical bone were lower than those isolated from trabecular bone. The developed strategy has the potential to open new avenues for studies on the global phosphorylation of bone matrix proteins and their role in biomineralization as well for other tissues/cells and protein-based materials.

  12. Osseous healing with a composite of allograft and demineralized bone matrix: adverse effects of smoking.

    Science.gov (United States)

    Ziran, Bruce H; Hendi, Pooneh; Smith, Wade R; Westerheide, Kenneth; Agudelo, Juan F

    2007-04-01

    We report on our use of a composite graft of lyophilized cancellous allogenic chips and demineralized bone matrix (DBM; Grafton; Osteotech, Eatontown, NJ) to manage traumatic osseous defects and nonunions. Data were prospectively collected from all patients who received this composite bone graft between 1996 and 2000. Only acute fractures with bone loss resulting in a uncontained defect and atrophic non-unions were included in the present study. Demographic data and complications related to composite use, tobacco use, and other comorbidities that could affect healing were evaluated. One hundred seven patients (112 bone graft sites) were followed up for a mean of 32 months (range, 12-60 months). Graft sites included the forearm, femur and tibia. Of the 112 patients, there were 56 smokers (25 non-unions and 31 fractures) and 56 non-smokers (28 fractures and 28 non-unions). Healing occured in 38/56 smokers compared with 49/56 non-smokers. In failed cases, smoking was characteristic in 7/9 non-unions and 11/16 fractures. There were 26 acute uncontained injuries, 29 acute contained defects, and 67 nonunions. Grafting sites were radius/ulna (13 cases), humerus (17), femur (31), and tibia/fibula (51). Significant comorbidities were diabetes mellitus (4 cases), fungal osteomyelitis (1), and pulmonary alveolar proteinosis (1). Eight (73%) of the 11 patients with graft failure had a significant smoking history. This composite graft is an option for managing osseous defects and nonunions traditionally treated with autologous bone grafting but should be used with caution when treating patients who are smokers. PMID:17515188

  13. Minimal invasive surgery for unicameral bone cyst using demineralized bone matrix: a case series

    OpenAIRE

    Cho Hwan; Seo Sung; Park So; Park Jong; Shin Duk; Park Il

    2012-01-01

    Abstract Background Various treatments for unicameral bone cyst have been proposed. Recent concern focuses on the effectiveness of closed methods. This study evaluated the effectiveness of demineralized bone matrix as a graft material after intramedullary decompression for the treatment of unicameral bone cysts. Methods Between October 2008 and June 2010, twenty-five patients with a unicameral bone cyst were treated with intramedullary decompression followed by grafting of demineralized bone ...

  14. Adynamic Bone Decreases Bone Toughness During Aging by Affecting Mineral and Matrix.

    Science.gov (United States)

    Ng, Adeline H; Omelon, Sidney; Variola, Fabio; Allo, Bedilu; Willett, Thomas L; Alman, Benjamin A; Grynpas, Marc D

    2016-02-01

    Adynamic bone is the most frequent type of bone lesion in patients with chronic kidney disease; long-term use of antiresorptive therapy may also lead to the adynamic bone condition. The hallmark of adynamic bone is a loss of bone turnover, and a major clinical concern of adynamic bone is diminished bone quality and an increase in fracture risk. Our current study aims to investigate how bone quality changes with age in our previously established mouse model of adynamic bone. Young and old mice (4 months old and 16 months old, respectively) were used in this study. Col2.3Δtk (DTK) mice were treated with ganciclovir and pamidronate to create the adynamic bone condition. Bone quality was evaluated using established techniques including bone histomorphometry, microcomputed tomography, quantitative backscattered electron imaging, and biomechanical testing. Changes in mineral and matrix properties were examined by powder X-ray diffraction and Raman spectroscopy. Aging controls had a natural decline in bone formation and resorption with a corresponding deterioration in trabecular bone structure. Bone turnover was severely blunted at all ages in adynamic animals, which preserved trabecular bone loss normally associated with aging. However, the preservation of trabecular bone mass and structure in old adynamic mice did not rescue deterioration of bone mechanical properties. There was also a decrease in cortical bone toughness in old adynamic mice that was accompanied by a more mature collagen matrix and longer bone crystals. Little is known about the effects of metabolic bone disease on bone fracture resistance. We observed an age-related decrease in bone toughness that was worsened by the adynamic condition, and this decrease may be due to material level changes at the tissue level. Our mouse model may be useful in the investigation of the mechanisms involved in fractures occurring in elderly patients on antiresorptive therapy who have very low bone turnover. PMID:26332924

  15. Demineralized bone matrix and human cancellous bone enhance fixation of porous-coated titanium implants in sheep

    DEFF Research Database (Denmark)

    Babiker, Hassan; Ding, Ming; Overgaard, Søren

    2013-01-01

    of DBM alone, DBM with CB, or allograft on the fixation of porous-coated titanium implants. DBM100 and CB produced from human tissue were included. Both materials are commercially available. DBM granules are placed in pure DBM and do not contain any other carrier. Titanium alloy implants, 10 mm long × 10...

  16. Tensile behavior of cortical bone: dependence of organic matrix material properties on bone mineral content.

    Science.gov (United States)

    Kotha, S P; Guzelsu, N

    2007-01-01

    A porous composite model is developed to analyze the tensile mechanical properties of cortical bone. The effects of microporosity (volksman's canals, osteocyte lacunae) on the mechanical properties of bone tissue are taken into account. A simple shear lag theory, wherein tensile loads are transferred between overlapped mineral platelets by shearing of the organic matrix, is used to model the reinforcement provided by mineral platelets. It is assumed that the organic matrix is elastic in tension and elastic-perfectly plastic in shear until it fails. When organic matrix shear stresses at the ends of mineral platelets reach their yield values, the stress-strain curve of bone tissue starts to deviate from linear behavior. This is referred as the microscopic yield point. At the point where the stress-strain behavior of bone shows a sharp curvature, the organic phase reaches its shear yield stress value over the entire platelet. This is referred as the macroscopic yield point. It is assumed that after macroscopic yield, mineral platelets cannot contribute to the load bearing capacity of bone and that the mechanical behavior of cortical bone tissue is determined by the organic phase only. Bone fails when the principal stress of the organic matrix is reached. By assuming that mechanical properties of the organic matrix are dependent on bone mineral content below the macroscopic yield point, the model is used to predict the entire tensile mechanical behavior of cortical bone for different mineral contents. It is found that decreased shear yield stresses and organic matrix elastic moduli are required to explain the mechanical behavior of bones with lowered mineral contents. Under these conditions, the predicted values (elastic modulus, 0.002 yield stress and strain, and ultimate stress and strain) are within 15% of experimental data. PMID:16434048

  17. Characterization of Bone Marrow Mononuclear Cells on Biomaterials for Bone Tissue Engineering In Vitro

    Directory of Open Access Journals (Sweden)

    Dirk Henrich

    2015-01-01

    Full Text Available Bone marrow mononuclear cells (BMCs are suitable for bone tissue engineering. Comparative data regarding the needs of BMC for the adhesion on biomaterials and biocompatibility to various biomaterials are lacking to a large extent. Therefore, we evaluated whether a surface coating would enhance BMC adhesion and analyze the biocompatibility of three different kinds of biomaterials. BMCs were purified from human bone marrow aspirate samples. Beta tricalcium phosphate (β-TCP, without coating or coated with fibronectin or human plasma, demineralized bone matrix (DBM, and bovine cancellous bone (BS were assessed. Seeding efficacy on β-TCP was 95% regardless of the surface coating. BMC demonstrated a significantly increased initial adhesion on DBM and β-TCP compared to BS. On day 14, metabolic activity was significantly increased in BMC seeded on DBM in comparison to BMC seeded on BS. Likewise increased VEGF-synthesis was observed on day 2 in BMC seeded on DBM when compared to BMC seeded on BS. The seeding efficacy of BMC on uncoated biomaterials is generally high although there are differences between these biomaterials. Beta-TCP and DBM were similar and both superior to BS, suggesting either as suitable materials for spatial restriction of BMC used for regenerative medicine purposes in vivo.

  18. Alveolar Ridge Preservation Using Xenogeneic Collagen Matrix and Bone Allograft

    Directory of Open Access Journals (Sweden)

    Andreas O. Parashis

    2014-01-01

    Full Text Available Alveolar ridge preservation (ARP has been shown to prevent postextraction bone loss. The aim of this report is to highlight the clinical, radiographic, and histological outcomes following use of a bilayer xenogeneic collagen matrix (XCM in combination with freeze-dried bone allograft (FDBA for ARP. Nine patients were treated after extraction of 18 teeth. Following minimal flap elevation and atraumatic extraction, sockets were filled with FDBA. The XCM was adapted to cover the defect and 2-3 mm of adjacent bone and flaps were repositioned. Healing was uneventful in all cases, the XCM remained in place, and any matrix exposure was devoid of further complications. Exposed matrix portions were slowly vascularized and replaced by mature keratinized tissue within 2-3 months. Radiographic and clinical assessment indicated adequate volume of bone for implant placement, with all planned implants placed in acceptable positions. When fixed partial dentures were placed, restorations fulfilled aesthetic demands without requiring further augmentation procedures. Histological and immunohistochemical analysis from 9 sites (4 patients indicated normal mucosa with complete incorporation of the matrix and absence of inflammatory response. The XCM + FDBA combination resulted in minimal complications and desirable soft and hard tissue therapeutic outcomes, suggesting the feasibility of this approach for ARP.

  19. Effect of rhBMP-2 Immobilized Anorganic Bovine Bone Matrix on Bone Regeneration

    OpenAIRE

    Jung-Bo Huh; June-Jip Yang; Kyung-Hee Choi; Ji Hyeon Bae; Jeong-Yeol Lee; Sung-Eun Kim; Sang-Wan Shin

    2015-01-01

    Anorganic bovine bone matrix (Bio-Oss®) has been used for a long time for bone graft regeneration, but has poor osteoinductive capability. The use of recombinant human bone morphogenetic protein-2 (rhBMP-2) has been suggested to overcome this limitation of Bio-Oss®. In the present study, heparin-mediated rhBMP-2 was combined with Bio-Oss® in animal experiments to investigate bone formation performance; heparin was used to control rhBMP-2 release. Two calvarial defects (8 mm diameter) were fo...

  20. Induction of Bone Matrix Protein Expression by Native Bone Matrix Proteins in C2C12 Culture

    Institute of Scientific and Technical Information of China (English)

    ZHEN-MING HU; SEAN A. F. PEEL; STEPHEN K. C. HO; GEORGE K. B. SANDOR; CAMERON M. L. CLOKIE

    2009-01-01

    Objective To study the expression of bone matrix protein (BMP) induced by bovine bone morphogenetic proteins (BMPs) in vitro. Methods Type I collagen, osteopontin (OPN), osteonectin (ON), osteocalcin (OC), and bone sialoprotein (BSP) were detected by immunohistochemistry in C2C12 cultured from day 1 to day 28. Results The signaling of bone matrix protein expression became weaker except for type I collagen, OC and BSP after 5 days. Fourteen days after culture, the positive signaling of type I collagen, OPN, ON, OC, and BSP was gradually declined, and could be detected significantly as compared with that of the negative control on day 28. BMP assay showed that the Ikaline phosphatase (ALP) activity was higher in C2C12 culture than in the control during the 14-day culture. Also, total protein and DNA significantly increased during the 14-day culture. High levels of ALP were seen in preosteoblasts and osteoblsts in vivo and in differentiating ostcoblasts in vitro. ALP was well recognized as a marker reflecting osteoblastic activity. Conclusion Native bovine BMP induces conversion of myoblasts into osteoblasts, produces type 1 collagen, and plays significantly role in osteoinduction and bone matrix mineralization of C2C12 in vitro.

  1. Structural features underlying raloxifene's biophysical interaction with bone matrix.

    Science.gov (United States)

    Bivi, Nicoletta; Hu, Haitao; Chavali, Balagopalakrishna; Chalmers, Michael J; Reutter, Christopher T; Durst, Gregory L; Riley, Anna; Sato, Masahiko; Allen, Matthew R; Burr, David D; Dodge, Jeffrey A

    2016-02-15

    Raloxifene, a selective estrogen receptor modulator (SERM), reduces fracture risk at least in part by improving the mechanical properties of bone in a cell- and estrogen receptor-independent manner. In this study, we determined that raloxifene directly interacts with the bone tissue. Through the use of multiple and complementary biophysical techniques including nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FTIR), we show that raloxifene interacts specifically with the organic component or the organic/mineral composite, and not with hydroxyapatite. Structure-activity studies reveal that the basic side chain of raloxifene is an instrumental determinant in the interaction with bone. Thus, truncation of portions of the side chain reduces bone binding and also diminishes the increase in mechanical properties. Our results support a model wherein the piperidine interacts with bone matrix through electrostatic interactions with the piperidine nitrogen and through hydrophobic interactions (van der Waals) with the aliphatic groups in the side chain and the benzothiophene core. Furthermore, in silico prediction of the potential binding sites on the surface of collagen revealed the presence of a groove with sufficient space to accommodate raloxifene analogs. The hydroxyl groups on the benzothiophene nucleus, which are necessary for binding of SERMs to the estrogen receptor, are not required for binding to the bone surface, but mediate a more robust binding of the compound to the bone powder. In conclusion, we report herein a novel property of raloxifene analogs that allows them to interact with the bone tissue through potential contacts with the organic matrix and in particular collagen. PMID:26795112

  2. Is DBM Beneficial for the Enhancement of Bony Consolidation in Distraction Osteogenesis? A Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Sang-Heon Song

    2015-01-01

    Full Text Available The aim of the present study was to compare the radiographic and clinical outcomes of DBM injection and conventional treatment during tibial lengthening over an intramedullary nail in adult patients with short stature. Twenty-nine patients were randomized to receive DBM injection (n=14 or conventional treatment without any injection (n=15 and evaluated. The outcome was measured on the basis of the pixel value ratio (PVR in the digital radiographs during the consolidation period; healing index; clinical assessment; and the rate of complications. In the DBM group, the mean PVR of 1 (mineral density of the callus is comparable to the adjacent bone was reached by 40 weeks in anterior and medial cortices which was significantly different than that in the control group (P=0.03 for anterior cortex; P=0.04 for medial cortex. The average healing index in the DBM group was 39.8 ± 5.3 days/cm compared to 44.3 ± 5.8 days/cm in the control group (P=0.05. There were no significant differences in clinical outcomes (P=0.23 and functional status (P=0.47 including complications (P=0.72 between two groups. In this randomized clinical trial, injection of DBM at the time of initial operation enhanced consolidation of regenerate callus without interfering with clinical outcomes compared to that with conventional treatment.

  3. Bone graft materials in fixation of orthopaedic implants in sheep

    DEFF Research Database (Denmark)

    Babiker, Hassan

    2013-01-01

    Bone graft is widely used within orthopaedic surgery especially in revision joint arthroplasty and spine fusion. The early implant fixation in the revision situation of loose joint prostheses is important for the long-term survival. Bone autograft has been considered as gold standard in many...... orthopaedic procedures, whereas allograft is the gold standard by replacement of extensive bone loss. However, the use of autograft is associated with donor site morbidity, especially chronic pain. In addition, the limited supply is a significant clinical challenge. Limitations in the use of allograft include...... skeletal bones. The osteoconductive properties of the composite might be improved by adding bone marrow aspirate (BMA), which can be harvested during surgery. Other alternatives to bone graft are demineralised bone matrix (DBM) and human cancellous bone (CB). DBM is prepared by acid extraction of human...

  4. Blueberry consumption prevents loss of collagen in bone matrix and inhibits senescence pathways in osteoblastic cells

    Science.gov (United States)

    Ovariectomy (OVX)-induced bone loss has been linked to increased bone turnover and higher bone matrix collagen degradation as the result of osteoclast activation. However, the role of degraded collagen matrix in the fate of resident bone-forming cells is unclear. In this report, we show that OVX-i...

  5. REGENERATION OF ARTICULAR CARTILAGE UNDER THE IMPLANTATION OF BONE MATRIX

    Directory of Open Access Journals (Sweden)

    Yuri M. Iryanov, Nikolay A. Kiryanov, Olga V. Dyuriagina , Tatiana Yu. Karaseva, Evgenii A. Karasev

    2015-07-01

    Full Text Available Background: The damage or loss of articular cartilage is costly medical problem. The purpose of this work – morphological analysis of reparative chondrogenesis when implanted in the area of the knee joint cartilage of granulated mineralized bone matrix. Material and Methods: The characteristic features of the knee cartilage regeneration studied experimentally in pubertal Wistar rats after modeling a marginal perforated defect and implantation of granulated mineralized bone matrix obtained according to original technology without heat and demineralizing processing into the injury zone. Results: This biomaterial established to have pronounced chondro- and osteoinductive properties, and to provide prolonged activation of reparative process, accelerated organotypical remodeling and restoration of the articular cartilage injured. Conclusion: The data obtained demonstrate the efficacy of МВМ in clinical practice for the treatment of diseases and injuries of the articular cartilage.

  6. Evaluation of osteogenic cell differentiation in response to bone morphogenetic protein or demineralized bone matrix in a critical sized defect model using GFP reporter mice.

    Science.gov (United States)

    Alaee, Farhang; Hong, Seung-Hyun; Dukas, Alex G; Pensak, Michael J; Rowe, David W; Lieberman, Jay R

    2014-09-01

    We evaluated the osteoprogenitor response to rhBMP-2 and DBM in a transgenic mouse critical sized defect. The mice expressed Col3.6GFPtopaz (a pre-osteoblastic marker), Col2.3GFPemerald (an osteoblastic marker) and α-smooth muscle actin (α-SMA-Cherry, a pericyte/myofibroblast marker). We assessed defect healing at various time points using radiographs, frozen, and conventional histologic analyses. GFP signal in regions of interest corresponding to the areas of new bone formation was quantified using a novel computer assisted algorithm. All defects treated with rhBMP-2 healed. In contrast, the majority of the defects in the DBM (27/30) and control (28/30) groups did not heal. Quantitation of pre-osteoblasts demonstrated a maximal response (% GFP + cells/TV) in the Col3.6GFPtopaz mice at day 7 (7.2% ± 6.0, p Col2.3GFP cells was seen at days 14 (8.04% ± 5.0) and 21 (8.31% ± 4.32), p < 0.05. In contrast, DBM and control groups showed a limited osteogenic response at all time points. In conclusion, we demonstrated that the BMP and DBM induce vastly different osteogenic responses which should influence their clinical application as bone graft substitutes. PMID:24888702

  7. Physicomechanical properties of the extracellular matrix of a demineralized bone

    Science.gov (United States)

    Kirilova, I. A.; Sharkeev, Yu. P.; Nikolaev, S. V.; Podorozhnaya, V. T.; Uvarkin, P. V.; Ratushnyak, A. S.; Chebodaeva, V. V.

    2016-08-01

    The article describes the results of a study of physicomechanical properties of a demineralized bone matrix of human cancellous and compact bones. A demineralized cancellous bone was shown to have the best characteristics of a porous system for colonization of matrices by cells. The ultimate stress and elasticity modulus of samples of demineralized femoral heads isolated in primary hip replacement was demonstrated to vary in wide ranges. The elasticity modulus ranged from 50 to 250 MPa, and the tensile strength varied from 1.1 to 5.5 MPa. Microhardness measurements by the recovered indentation method were not possible because of the viscoelastic properties of a bone material. To study the piezoelectric properties of samples, a measuring system was developed that comprised a measuring chamber with contact electrodes, a system for controlled sample loading, an amplifier-converter unit, and signal recording and processing software. The measurement results were used to determine the dependence of the signal amplitude on the dynamic deformation characteristics. The findings are discussed in terms of the relationship between the mechanical and electrical properties and the structure of the organic bone component.

  8. TGF-b Downregulation by RNAi Technique in ex Vivo-Expanded HSCs on 3D DBM Scaffold

    Directory of Open Access Journals (Sweden)

    N Amirizadeh

    2012-05-01

    Full Text Available Background: Bone Marrow Transplantations (BMT are limited by low CD34+ cell counts in umbilical cord blood (UCB and these cells need to be expanded for success in such procedures. To achieve this goal, ex vivo expansion of hematopoietic stem cells (HSCs by enhancing their self-renewal activity on demineralized bone matrix (DBM scaffold coated with mesenchymal progenitor cells (MPCs and unrestricted somatic stem cells (USSCs was recommended. TGF-b pathway is a key inhibitory factor for HSCs self-renewal. In this study ex vivo expansion and downregulation of TGF-b pathway were simultaneously performed. Methods: USSC cells were isolated from UCB and then coated on DBM scaffold as a feeder layer. UCB CD34+ cells were isolated from UCB by magnetic activated cell sorting (MACS method and were transfected by siRNA against TGFbR2 in two-dimensional (2D and three-dimensional (3D cultures by co-cultivation with USSC. TGFbR2 expression levels were evaluated by quantitative real-time PCR. Cell count and flow cytometry were performed and clonogenic activity was evaluated. Results: Ex vivo expansion of CD34+ cells was significantly enhanced (41±0.7 folds by TGFbR2 downregulation, especially in 2D than 3D cultures. Finally, 2D culture showed less TGFbR2 expression levels and higher increase in the percentage of CD34 markers by flow cytometry assay. Conclusion: The 3D siRNA delivery system would be of lower efficiency in contrast to 2D settings where the cells have less freedom and are in more contact with the feeder layer.

  9. Effect of rhBMP-2 Immobilized Anorganic Bovine Bone Matrix on Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Jung-Bo Huh

    2015-07-01

    Full Text Available Anorganic bovine bone matrix (Bio-Oss® has been used for a long time for bone graft regeneration, but has poor osteoinductive capability. The use of recombinant human bone morphogenetic protein-2 (rhBMP-2 has been suggested to overcome this limitation of Bio-Oss®. In the present study, heparin-mediated rhBMP-2 was combined with Bio-Oss® in animal experiments to investigate bone formation performance; heparin was used to control rhBMP-2 release. Two calvarial defects (8 mm diameter were formed in a white rabbit model and then implanted or not (controls with Bio-Oss® or BMP-2/Bio-Oss®. The Bio-Oss® and BMP-2/Bio-Oss® groups had significantly greater new bone areas (expressed as percentages of augmented areas than the non-implanted controls at four and eight weeks after surgery, and the BMP-2/Bio-Oss® group (16.50 ± 2.87 (n = 6 had significantly greater new bone areas than the Bio-Oss® group (9.43 ± 3.73 (n = 6 at four weeks. These findings suggest that rhBMP-2 treated heparinized Bio-Oss® markedly enhances bone regeneration.

  10. Effect of rhBMP-2 Immobilized Anorganic Bovine Bone Matrix on Bone Regeneration.

    Science.gov (United States)

    Huh, Jung-Bo; Yang, June-Jip; Choi, Kyung-Hee; Bae, Ji Hyeon; Lee, Jeong-Yeol; Kim, Sung-Eun; Shin, Sang-Wan

    2015-01-01

    Anorganic bovine bone matrix (Bio-Oss®) has been used for a long time for bone graft regeneration, but has poor osteoinductive capability. The use of recombinant human bone morphogenetic protein-2 (rhBMP-2) has been suggested to overcome this limitation of Bio-Oss®. In the present study, heparin-mediated rhBMP-2 was combined with Bio-Oss® in animal experiments to investigate bone formation performance; heparin was used to control rhBMP-2 release. Two calvarial defects (8 mm diameter) were formed in a white rabbit model and then implanted or not (controls) with Bio-Oss® or BMP-2/Bio-Oss®. The Bio-Oss® and BMP-2/Bio-Oss® groups had significantly greater new bone areas (expressed as percentages of augmented areas) than the non-implanted controls at four and eight weeks after surgery, and the BMP-2/Bio-Oss® group (16.50 ± 2.87 (n = 6)) had significantly greater new bone areas than the Bio-Oss® group (9.43 ± 3.73 (n = 6)) at four weeks. These findings suggest that rhBMP-2 treated heparinized Bio-Oss® markedly enhances bone regeneration. PMID:26184187

  11. Effect of cefazolin loaded bone matrix gelatin on repairing large segmental bone defects and preventing infection

    Institute of Scientific and Technical Information of China (English)

    游洪波; 陈安民

    2004-01-01

    Objective: To explore the possibility of repairing long segmental bone defects and preventing infection with cefazolin loaded bone matrix gelatin (C-BMG). Methods: C-BMG was made from putting cefazolin into BMG by vacuum absorption and lyophilization techniques. The sustaining period of effective drug concentration in vitro and in vivo was detected. The time of inhibiting bacteria, and the drug concentration in local tissues ( bone and muscle) and plasma after implantation of C-BMG were examined by high performance liquid chromatography.Results: The effective inhibition time to staphylococcus aureus of C-BMG was 22 days in vitro; while 14 days in vivo. The cefazolin concentration in local tissues was higher in early stage, and later it kept a stable and low drug release. C-BMG showed an excellent ability to repair segmental long bone defects.Conclusions: C-BMG can gradually release cefazolin with effective drug concentration and has excellent ability to repair segmental bone defects. It can be used to repair segmental long bone defects and prevent infection after operation.

  12. Bone Formation is Affected by Matrix Advanced Glycation End Products (AGEs) In Vivo.

    Science.gov (United States)

    Yang, Xiao; Mostafa, Ahmed Jenan; Appleford, Mark; Sun, Lian-Wen; Wang, Xiaodu

    2016-10-01

    Advanced glycation end products (AGEs) accumulate in bone extracellular matrix as people age. Although previous evidence shows that the accumulation of AGEs in bone matrix may impose significant effects on bone cells, the effect of matrix AGEs on bone formation in vivo is still poorly understood. To address this issue, this study used a unique rat model with autograft implant to investigate the in vivo response of bone formation to matrix AGEs. Fluorochrome biomarkers were sequentially injected into rats to label the dynamic bone formation in the presence of elevated levels of matrix AGEs. After sacrificing animals, dynamic histomorphometry was performed to determine mineral apposition rate (MAR), mineralized surface per bone surface (MS/BS), and bone formation rate (BFR). Finally, nanoindentation tests were performed to assess mechanical properties of newly formed bone tissues. The results showed that MAR, MS/BS, and BFR were significantly reduced in the vicinity of implant cores with high concentration of matrix AGEs, suggesting that bone formation activities by osteoblasts were suppressed in the presence of elevated matrix AGEs. In addition, MAR and BFR were found to be dependent on the surrounding environment of implant cores (i.e., cortical or trabecular tissues). Moreover, MS/BS and BFR were also dependent on how far the implant cores were away from the growth plate. These observations suggest that the effect of matrix AGEs on bone formation is dependent on the biological milieu around the implants. Finally, nanoindentation test results indicated that the indentation modulus and hardness of newly formed bone tissues were not affected by the presence of elevated matrix AGEs. In summary, high concentration of matrix AGEs may slow down the bone formation process in vivo, while imposing little effects on bone mineralization.

  13. Thrombospondin-1 regulates bone homeostasis through effects on bone matrix integrity and nitric oxide signaling in osteoclasts

    OpenAIRE

    Sarah R Amend; Uluckan, Ozge; Hurchla, Michelle; Leib, Daniel; Novack, Deborah Veis; Silva, Matthew; Frazier, William; Weilbaecher, Katherine N.

    2015-01-01

    Thrombospondin-1 (TSP1), an endogenous antiangiogenic, is a widely expressed secreted ligand with roles in migration, adhesion and proliferation and is a target for new therapeutics. While TSP1 is present in the bone matrix and several TSP1 receptors play roles in bone biology, the role of TSP1 in bone remodeling has not been fully elucidated. Bone turnover is characterized by coordinated activity of bone-forming osteoblasts (OB) and bone-resorbing osteoclasts (OC). TSP1−/− mice had increased...

  14. Syntheses and electroluminescent properties of two europium ternary complexes Eu(DBM){sub 3}(PBO) and Eu(DBM){sub 3}(PBT)

    Energy Technology Data Exchange (ETDEWEB)

    Guan Min [State Key Laboratory of Rare Earth Materials Chemistry and Applications, Peking University, Beijing 100871 (China); Gao Lihua [Department of Chemistry, Beijing Normal University, Beijing 100875 (China); Wang Shanshan [State Key Laboratory of Rare Earth Materials Chemistry and Applications, Peking University, Beijing 100871 (China); Huang Chunhui [State Key Laboratory of Rare Earth Materials Chemistry and Applications, Peking University, Beijing 100871 (China)], E-mail: chhuang@pku.edu.cn; Wang Kezhi [Department of Chemistry, Beijing Normal University, Beijing 100875 (China)

    2007-12-15

    Two europium complexes, Eu(DBM){sub 3}(PBO) and Eu(DBM){sub 3}(PBT) (DBM=dibenzoylmethanato, PBO=2-(2-pyridyl)benzoxazole, PBT=2-(2-pyridyl)benzothiazole), were prepared and used as emitting materials in organic electroluminescent (EL) devices. The devices with the structures ITO/TPD/Eu(DBM){sub 3}(PBO) (or Eu(DBM){sub 3}(PBT)/BCP/Alq{sub 3}/Mg:Ag/Ag emit red light originating from the europium complexes.

  15. Blueberry consumption prevents loss of collagen in bone matrix and inhibits senescence pathways in osteoblastic cells

    OpenAIRE

    Zhang, Jian; Lazarenko, Oxana P.; Blackburn, Michael L.; Badger, Thomas M.; Ronis, Martin J. J.; Chen, Jin-Ran

    2012-01-01

    Ovariectomy (OVX)-induced bone loss has been linked to increased bone turnover and higher bone matrix collagen degradation as the result of osteoclast activation. However, the role of degraded collagen matrix in the fate of resident bone-forming cells is unclear. In this report, we show that OVX-induced bone loss is associated with profound decreases in collagen 1 and Sirt1. This was accompanied by increases in expression and activity of the senescence marker collagenase and expression of p16...

  16. A 3D printed nano bone matrix for characterization of breast cancer cell and osteoblast interactions

    Science.gov (United States)

    Zhu, Wei; Castro, Nathan J.; Cui, Haitao; Zhou, Xuan; Boualam, Benchaa; McGrane, Robert; Glazer, Robert I.; Zhang, Lijie Grace

    2016-08-01

    Bone metastasis is one of the most prevalent complications of late-stage breast cancer, in which the native bone matrix components, including osteoblasts, are intimately involved in tumor progression. The development of a successful in vitro model would greatly facilitate understanding the underlying mechanism of breast cancer bone invasion as well as provide a tool for effective discovery of novel therapeutic strategies. In the current study, we fabricated a series of in vitro bone matrices composed of a polyethylene glycol hydrogel and nanocrystalline hydroxyapatite of varying concentrations to mimic the native bone microenvironment for the investigation of breast cancer bone metastasis. A stereolithography-based three-dimensional (3D) printer was used to fabricate the bone matrices with precisely controlled architecture. The interaction between breast cancer cells and osteoblasts was investigated in the optimized bone matrix. Using a Transwell® system to separate the two cell lines, breast cancer cells inhibited osteoblast proliferation, while osteoblasts stimulated breast cancer cell growth, whereas, both cell lines increased IL-8 secretion. Breast cancer cells co-cultured with osteoblasts within the 3D bone matrix formed multi-cellular spheroids in comparison to two-dimensional monolayers. These findings validate the use of our 3D printed bone matrices as an in vitro metastasis model, and highlights their potential for investigating breast cancer bone metastasis.

  17. Bone Quality: The Mechanical Effects of Microarchitecture and Matrix Properties

    NARCIS (Netherlands)

    J.S. Day (Judd)

    2005-01-01

    textabstractIn this body of work we have examined some of the current concepts pertaining to the relation between bone mass, bone quality and the mechanical properties of bone. In our first series of studies we used a model of human osteoarthritis to investigate the implications of changes in the ef

  18. 3D printed nanocomposite matrix for the study of breast cancer bone metastasis.

    Science.gov (United States)

    Zhu, Wei; Holmes, Benjamin; Glazer, Robert I; Zhang, Lijie Grace

    2016-01-01

    Bone is one of the most common metastatic sites of breast cancer, but the underlying mechanisms remain unclear, in part due to an absence of advanced platforms for cancer culture and study that mimic the bone microenvironment. In the present study, we integrated a novel stereolithography-based 3D printer and a unique 3D printed nano-ink consisting of hydroxyapatite nanoparticles suspended in hydrogel to create a biomimetic bone-specific environment for evaluating breast cancer bone invasion. Breast cancer cells cultured in a geometrically optimized matrix exhibited spheroid morphology and migratory characteristics. Co-culture of tumor cells with bone marrow mesenchymal stem cells increased the formation of spheroid clusters. The 3D matrix also allowed for higher drug resistance of breast cancer cells than 2D culture. These results validate that our 3D bone matrix can mimic tumor bone microenvironments, suggesting that it can serve as a tool for studying metastasis and assessing drug sensitivity. From the Clinical Editor: Cancer remains a major cause of mortality for patients in the clinical setting. For breast cancer, bone is one of the most common metastatic sites. In this intriguing article, the authors developed a bone-like environment using 3D printing technology to investigate the underlying biology of bone metastasis. Their results would also allow a new model for other researchers who work on cancer to use.

  19. 3D printed nanocomposite matrix for the study of breast cancer bone metastasis.

    Science.gov (United States)

    Zhu, Wei; Holmes, Benjamin; Glazer, Robert I; Zhang, Lijie Grace

    2016-01-01

    Bone is one of the most common metastatic sites of breast cancer, but the underlying mechanisms remain unclear, in part due to an absence of advanced platforms for cancer culture and study that mimic the bone microenvironment. In the present study, we integrated a novel stereolithography-based 3D printer and a unique 3D printed nano-ink consisting of hydroxyapatite nanoparticles suspended in hydrogel to create a biomimetic bone-specific environment for evaluating breast cancer bone invasion. Breast cancer cells cultured in a geometrically optimized matrix exhibited spheroid morphology and migratory characteristics. Co-culture of tumor cells with bone marrow mesenchymal stem cells increased the formation of spheroid clusters. The 3D matrix also allowed for higher drug resistance of breast cancer cells than 2D culture. These results validate that our 3D bone matrix can mimic tumor bone microenvironments, suggesting that it can serve as a tool for studying metastasis and assessing drug sensitivity. From the Clinical Editor: Cancer remains a major cause of mortality for patients in the clinical setting. For breast cancer, bone is one of the most common metastatic sites. In this intriguing article, the authors developed a bone-like environment using 3D printing technology to investigate the underlying biology of bone metastasis. Their results would also allow a new model for other researchers who work on cancer to use. PMID:26472048

  20. Biochemical Characterization of Major Bone-Matrix Proteins Using Nanoscale-Size Bone Samples and Proteomics Methodology*

    OpenAIRE

    Grażyna E Sroga; Karim, Lamya; Colón, Wilfredo; Vashishth, Deepak

    2011-01-01

    There is growing evidence supporting the need for a broad scale investigation of the proteins and protein modifications in the organic matrix of bone and the use of these measures to predict fragility fractures. However, limitations in sample availability and high heterogeneity of bone tissue cause unique experimental and/or diagnostic problems. We addressed these by an innovative combination of laser capture microscopy with our newly developed liquid chromatography separation methods, follow...

  1. Bisphosphonate treatment affects trabecular bone apparent modulus through micro-architecture rather than matrix properties

    DEFF Research Database (Denmark)

    Ding, Ming

    2004-01-01

    and trabecular architecture independently. Conventional histomorphometry and microdamage data were obtained from the second and third lumbar vertebrae of the same dogs [Bone 28 (2001) 524]. Bisphosphonate treatment resulted in an increased apparent Young's modulus, decreased bone turnover, increased calcified...... matrix density, and increased microdamage. We could not detect any change in the effective Young's modulus of the calcified matrix in the bisphosphonate treated groups. The observed increase in apparent Young's modulus was due to increased bone mass and altered trabecular architecture rather than changes...... in the calcified matrix modulus. We hypothesize that the expected increase in the Young's modulus of the calcified matrix due to the increased calcified matrix density was counteracted by the accumulation of microdamage. Udgivelsesdato: 2004 May...

  2. Gross anatomic and radiographic study of bone matrix gelatin implantation in tibial fracture of rabbit

    Directory of Open Access Journals (Sweden)

    Sobhani A

    2001-07-01

    Full Text Available Different ossificant materials have been used for induction of bone repair in many studies, and bone matrix gelatin which contains bone morphogenic proteins is one of the best ones. In present study we evaluated the role of this material in acceleration of bone repair in rabbit tibia. A hole of 3.5 mm diameter was made on right tibia of 10 and 12 rabbits as study and control group respectively. In the experiment group, in addition to Bone Wax, we applied bone matrix gelatin in the hole. Radiographic images were taken in days 0, 20, 40 and 53 after operation. In 6 rabbits of each group, photographic pictures were also taken after exposure of entire bone. In 6 controls less degree of restoration were seen on day 53. In 4 experimental animals restoration were completed by this time and in 2 speciments repair processing were better than controls. This results shows that bone matrix gelatin can be used as a accelerator of bone repair.

  3. Gross anatomic and radiographic study of bone matrix gelatin implantation in tibial fracture of rabbit1

    Directory of Open Access Journals (Sweden)

    Sobhani A

    2000-07-01

    Full Text Available Different ossificant materials have been used for induction of bone repair in many studies, and bone matrix gelatin which contains bone morphogenic proteins is one of the best ones. In present study we evaluated the role of this material in acceleration of bone repair in rabbit tibia. A hole of 3.5 mm diameter was made on right tibia of 10 and 12 rabbits as study and control group respectively. In the experiment group, in addition to Bone Wax, we applied bone matrix gelatin in the hole. Radiographic images were taken in days 0, 20, 40 and 53 after operation. In 6 rabbits of each group, photographic pictures were also taken after exposure of entire bone. In 6 controls less degree of restoration were seen on day 53. In 4 experimental animals restoration were completed by this time and in 2 speciments repair processing were better than controls. This results shows that bone matrix gelatin can be used as a accelerator of bone repair.

  4. Comparison of TGFbR2 down-regulation in expanded HSCs on MBA/DBM scaffolds coated by UCB stromal cells.

    Science.gov (United States)

    Hashemi, Zahra Sadat; Moghadam, Mehdi Forouzandeh; Soleimani, Masoud

    2015-05-01

    Bone marrow transplants (BMTs) are mainly limited by a low number of CD34(+) cells. The transforming growth factor-beta (TGF-β) pathway downregulation is a key factor that increases cell self-renewal. In nature, hematopoietic stem cells (HSCs) are in a microenvironment, surrounded by cells in a three-dimensional (3D) configuration. The aim of this study is to investigate the association between a 3D culture and the delivery ratio of downregulation. Demineralized bone matrix (DBM) and mineralized bone allograft (MBA) scaffolds were coated using unrestricted somatic stem cells (USSCs) as the feeder layer. Umbilical cord blood (UCB)-CD34(+) cells were then ex vivo expanded in them and transfected by small interfering RNA (siRNA) against TGFbR2, a type 2 receptor in the TGF-β pathway. Finally, quantitative real-time PCR, flow cytometry, and clonogenic assay were performed. In a global comparison, we observed that the highest expansion ratio, lowest expression level, and the highest CD34 marker belonged to the simple 2D culture transfected group. This suggests that TGFbR2 downregulation in a 2D culture can be done more effectively. The siRNA delivery system and the transfection ratio in an ex vivo environment, which mimicks in vivo conditions, have low efficiency. Genetic modification of the cells needs free 3D spaces to enable better transfection.

  5. Effect of Bio-Oss® Collagen and Collagen Matrix on Bone Formation

    OpenAIRE

    Wong, R.W.K; Rabie, A.B.M

    2010-01-01

    Objective: to compare the amount of new bone produced by Bio-Oss ® Collagen to that produced by collagen matrix in vivo. Method: eighteen bone defects, 5mm by 10mm were created in the parietal bone of 9 New Zealand White rabbits. 6 defects were grafted with Bio-Oss ® Collagen. 6 defects were grafted with collagen matrix alone (positive control) and 6 were left empty (negative control). Animals were killed on day 14 and the defects were dissected and prepared for histological assessment. Quant...

  6. Gray-Level Co-occurrence Matrix Bone Fracture Detection

    Directory of Open Access Journals (Sweden)

    Hum Y. Chai

    2011-01-01

    Full Text Available Problem statement: Currently doctors in orthopedic wards inspect the bone x-ray images according to their experience and knowledge in bone fracture analysis. Manual examination of x-rays has multitude drawbacks. The process is time-consuming and subjective. Approach: Since detection of fractures is an important orthopedics and radiologic problem and therefore a Computer Aided Detection(CAD system should be developed to improve the scenario. In this study, a fracture detection CAD based on GLCM recognition could improve the current manual inspection of x-ray images system. The GLCM for fracture and non-fracture bone is computed and analysis is made. Features of Homogeneity, contrast, energy, correlation are calculated to classify the fractured bone. Results: 30 images of femur fractures have been tested, the result shows that the CAD system can differentiate the x-ray bone into fractured and nonfractured femur. The accuracy obtained from the system is 86.67. Conclusion: The CAD system is proved to be effective in classifying the digital radiograph of bone fracture. However the accuracy rate is not perfect, the performance of this system can be further improved using multiple features of GLCM and future works can be done on classifying the bone into different degree of fracture specifically.

  7. Bone regeneration with osteogenically enhanced mesenchymal stem cells and their extracellular matrix proteins.

    Science.gov (United States)

    Clough, Bret H; McCarley, Matthew R; Krause, Ulf; Zeitouni, Suzanne; Froese, Jeremiah J; McNeill, Eoin P; Chaput, Christopher D; Sampson, H Wayne; Gregory, Carl A

    2015-01-01

    Although bone has remarkable regenerative capacity, about 10% of long bone fractures and 25% to 40% of vertebral fusion procedures fail to heal. In such instances, a scaffold is employed to bridge the lesion and accommodate osteoprogenitors. Although synthetic bone scaffolds mimic some of the characteristics of bone matrix, their effectiveness can vary because of biological incompatibility. Herein, we demonstrate that a composite prepared with osteogenically enhanced mesenchymal stem cells (OEhMSCs) and their extracellular matrix (ECM) has an unprecedented capacity for the repair of critical-sized defects of murine femora. Furthermore, OEhMSCs do not cause lymphocyte activation, and ECM/OEhMSC composites retain their in vivo efficacy after cryopreservation. Finally, we show that attachment to the ECM by OEhMSCs stimulates the production of osteogenic and angiogenic factors. These data demonstrate that composites of OEhMSCs and their ECM could be utilized in the place of autologous bone graft for complex orthopedic reconstructions.

  8. HBM Mice Have Altered Bone Matrix Composition and Improved Material Toughness.

    Science.gov (United States)

    Ross, Ryan D; Mashiatulla, Maleeha; Acerbo, Alvin S; Almer, Jonathan D; Miller, Lisa M; Johnson, Mark L; Sumner, D Rick

    2016-10-01

    The G171V mutation in the low-density lipoprotein receptor-related protein 5 (LRP5) leads to a high bone mass (HBM) phenotype. Studies using HBM transgenic mouse models have consistently found increased bone mass and whole-bone strength, but little attention has been paid to the composition of the bone matrix. The current study sought to determine if the cortical bone matrix composition differs in HBM and wild-type mice and to determine how much of the variance in bone material properties is explained by variance in matrix composition. Consistent with previous studies, HBM mice had greater cortical area, moment of inertia, ultimate force, bending stiffness, and energy to failure than wild-type animals. The increased energy to failure was primarily caused by a large increase in post-yield behavior, with no difference in pre-yield behavior. The HBM mice had increased mineral-to-matrix and collagen cross-link ratios, and decreased crystallinity, carbonate, and acid phosphate substitution as measured by Fourier transform infrared microspectroscopy, but no differences in crystal length, intra-fibular strains, and mineral spacing compared to wild-type controls, as measured by X-ray scattering. The largest between genotype difference in material properties was a twofold increase in the modulus of toughness in HBM mice. Step-wise regression analyses showed that the specific matrix compositional parameters most closely associated with material properties varied between the wild-type and HBM genotypes. Although the mechanisms controlling the paradoxical combination of more mineralized yet tougher bone in HBM mice remain to be fully explained, the findings suggest that LRP5 represents a target to not only build bone mass but also to improve bone quality.

  9. PTH(1-84) Administration in Hypoparathyroidism Transiently Reduces Bone Matrix Mineralization.

    Science.gov (United States)

    Misof, Barbara M; Roschger, Paul; Dempster, David W; Zhou, Hua; Bilezikian, John P; Klaushofer, Klaus; Rubin, Mishaela R

    2016-01-01

    Patients with hypoparathyroidism have low circulating parathyroid (PTH) levels and higher cancellous bone volume and trabecular thickness. Treatment with PTH(1-84) was shown to increase abnormally low bone remodeling dynamics. In this work, we studied the effect of 1-year or 2-year PTH(1-84) treatment on cancellous and cortical bone mineralization density distribution (Cn.BMDD and Ct.BMDD) based on quantitative backscattered electron imaging (qBEI) in paired transiliac bone biopsy samples. The study cohort comprised 30 adult hypoparathyroid patients (14 treated for 1 year; 16 treated for 2 years). At baseline, Cn.BMDD was shifted to higher mineralization densities in both treatment groups (average degree of mineralization Cn.CaMean +3.9% and +2.7%, p mineralizing surface) was predictive for Cn.BMDD outcomes in the 1-year PTH(1-84) group, but not in the 2-year PTH(1-84) group. Our findings suggest higher baseline bone matrix mineralization consistent with the decreased bone turnover in hypoparathyroidism. PTH(1-84) treatment caused differential effects dependent on treatment duration that were consistent with the histomorphometric bone formation outcomes. The greater increase in bone formation during the first year of treatment was associated with a decrease in bone matrix mineralization, suggesting that PTH(1-84) exposure to the hypoparathyroid skeleton has the greatest effects on BMDD early in treatment.

  10. Aluminum and iron can be deposited in the calcified matrix of bone exostoses.

    Science.gov (United States)

    Chappard, Daniel; Mabilleau, Guillaume; Moukoko, Didier; Henric, Nicolas; Steiger, Vincent; Le Nay, Patrick; Frin, Jean-Marie; De Bodman, Charlotte

    2015-11-01

    Exostosis (or osteochondroma) is the most common benign bone tumor encountered in children and adults. Exostoses may occur as solitary or multiple tumors (in the autosomal syndromes of hereditary multiple exostoses). Exostoses are composed of cortical and medullary bone covered by an overlying hyaline cartilage cap. We have searched iron (Fe) and aluminum (Al) in the matrix of cortical and trabecular bone of 30 patients with exostosis. Al(3+) and Fe(3+) are two cations which can substitute calcium in the hydroxyapatite crystals of the bone matrix. The bone samples were removed surgically and were studied undecalcified. Perls' Prussian blue staining (for Fe) and solochrome azurine B (for Al) were used on the histological sections of the tumors. Al(3+) was detected histochemically in 21/30 patients as linear bands deposited by the osteoblasts. Fe(3+) was detected in 10 out of these 21 patients as linear bands in the same locations. Fe(3+) and Al(3+) were not identified in the bone matrix of a control group of 20 osteoporotic patients. Energy X-ray Dispersive Spectrometry failed to identify Fe and Al in bone of these tumors due to the low sensitivity of the method. Wavelength Dispersive Spectrometry identified them but the concentrations were very low. Histochemistry appears a very sensitive method for Fe(3+) and Al(3+) in bone.The presence of these two metals in the exostoses advocates for a disturbed metabolism of osteoblasts which can deposit these metals into the bone matrix, similar to which is observed in case of hemochromatosis with Fe(3+).

  11. Blueberry consumption prevents loss of collagen in bone matrix and inhibits senescence pathways in osteoblastic cells.

    Science.gov (United States)

    Zhang, Jian; Lazarenko, Oxana P; Blackburn, Michael L; Badger, Thomas M; Ronis, Martin J J; Chen, Jin-Ran

    2013-06-01

    Ovariectomy (OVX)-induced bone loss has been linked to increased bone turnover and higher bone matrix collagen degradation as the result of osteoclast activation. However, the role of degraded collagen matrix in the fate of resident bone-forming cells is unclear. In this report, we show that OVX-induced bone loss is associated with profound decreases in collagen 1 and Sirt1. This was accompanied by increases in expression and activity of the senescence marker collagenase and expression of p16/p21 in bone. Feeding a diet supplemented with blueberries (BB) to pre-pubertal rats throughout development or only prior to puberty [postnatal day 21 (PND21) to PND34] prevents OVX-induced effects on expression of these molecules at PND68. In order to provide more evidence and gain a better understanding on the association between bone collagen matrix and resident bone cell fate, in vitro studies on the cellular senescence pathway using primary calvarial cells and three cell lines (ST2 cells, OB6, and MLO-Y4) were conducted. We found that senescence was inhibited by collagen in a dose-response manner. Treatment of cells with serum from OVX rats accelerated osteoblastic cell senescence pathways, but serum from BB-fed OVX rats had no effect. In the presence of low collagen or treatment with OVX rat serum, ST2 cells exhibited higher potential to differentiate into adipocytes. Finally, we demonstrated that bone cell senescence is associated with decreased Sirt1 expression and activated p53, p16, and p21. These results suggest that (1) a significant prevention of OVX-induced bone cell senescence from adult rats can occur after only 14 days consumption of a BB-containing diet immediately prior to puberty, and (2) the molecular mechanisms underlying this effect involves, at least in part, prevention of collagen degradation. PMID:22555620

  12. 动态压力促进骨基质支架中微血管形成的实验研究%Study of dynamic pressure to promote the angiogenesis of bone matrix

    Institute of Scientific and Technical Information of China (English)

    杨军; 周振东; 李建军; 张钦明

    2011-01-01

    Objective To observe the effects of dynamic pressure for the ability of endothelial progenitor cells (EPCs) to form blood vessels, when EPCs seeded into DBM with load. Methods Use the Ficoll density gradient centrifuge combined with difference-speed adherence screening method to separate MNCs from rat bone marrow. Identify the induced EPCs by means of immunohistochemistry and immunofluorescence. Through the organization of fixed, defatted, decalcified and other steps use of spine vertebral body,demineralized bone matrix (DBM) samples of pig were prepared in vitro. Divided scaffolds into two groups A and groups B. Induced EPCs were seeded into DBM. The cell-seeded scaffolds of groups A were dynamically loaded in compression using a sine wave at 1 Hz, 5% strain in the media-filled chamber for 4 h on days 5 of culture. and cell-seeded scaffolds of groups B were cultured directly without any load. Both of two groups were cultured two weeks. Then the ability of EPCs to form blood vessels was observed. Primer desig;Extract total RNA from cells with Trlzol; Reverse transcription reaction; PCR. Results Two groups of cells in HE staining and fluorescent staining showed the formation of vascular bundles. There were formation of blood vessels. It was obvious that the formation in group A was more than that in group B. Test the mRNA expression of vWF and Flk-1 during the EPCs differentiationby RT-PCR. Group A was significantly stronger than that of group B. Conclusion When DBM combines together with EPC, it has become organization engineering bone, then with press on it, the bone graft has been vascularized, so it has clinical application on the direction of repair bone defect.%目的 将血管内皮祖细胞(endothelial progenitor cells,EPCs)种植于体外制备的猪脱钙骨基质支架中,予适当压力干预,观察动态压力对EPCs形成血管能力的影响.方法 采用密度梯度离心法结合差速贴壁筛选法分离出骨髓单个核细胞,用条件培养液

  13. A Surrogate Measure of Cortical Bone Matrix Density by Long T2 -Suppressed MRI.

    Science.gov (United States)

    Seifert, Alan C; Li, Cheng; Wehrli, Suzanne L; Wehrli, Felix W

    2015-12-01

    Magnetic resonance has the potential to image and quantify two pools of water within bone: free water within the Haversian pore system (transverse relaxation time, T2 > 1 ms), and water hydrogen-bonded to matrix collagen (T2 ∼ 300 to 400 μs). Although total bone water concentration quantified by MRI has been shown to scale with porosity, greater insight into bone matrix density and porosity may be gained by relaxation-based separation of bound and pore water fractions. The objective of this study was to evaluate a recently developed surrogate measurement for matrix density, single adiabatic inversion recovery (SIR) zero echo-time (ZTE) MRI, in human bone. Specimens of tibial cortical bone from 15 donors (aged 27 to 97 years; 8 female and 7 male) were examined at 9.4T field strength using two methods: (1) (1)H ZTE MRI, to capture total (1)H signal, and (2) (1)H SIR-ZTE MRI, to selectively image matrix-associated (1)H signal. Total water, bone matrix, and bone mineral densities were also quantified gravimetrically, and porosity was measured by micro-CT. ZTE apparent total water (1)H concentration was 32.7 ± 3.2 M (range 28.5 to 40.3 M), and was correlated positively with porosity (R(2) = 0.80) and negatively with matrix and mineral densities (R(2) =  0.90 and 0.82, respectively). SIR-ZTE apparent bound water (1)H concentration was 32.9 ± 3.9 M (range 24.4 to 39.8 M), and its correlations were opposite to those of apparent total water: negative with porosity (R(2) = 0.73) and positive with matrix density (R(2) = 0.74) and mineral density (R(2) = 0.72). Porosity was strongly correlated with gravimetric matrix density (R(2) = 0.91, negative) and total water density (R(2) = 0.92, positive). The strong correlations of SIR-ZTE-derived apparent bound water (1)H concentration with ground-truth measurements suggest that this quantitative solid-state MRI method provides a nondestructive surrogate measure of bone matrix density

  14. Bone graft materials in fixation of orthopaedic implants in sheep.

    Science.gov (United States)

    Babiker, Hassan

    2013-07-01

    Bone graft is widely used within orthopaedic surgery especially in revision joint arthroplasty and spine fusion. The early implant fixation in the revision situation of loose joint prostheses is important for the long-term survival. Bone autograft has been considered as gold standard in many orthopaedic procedures, whereas allograft is the gold standard by replacement of extensive bone loss. However, the use of autograft is associated with donor site morbidity, especially chronic pain. In addition, the limited supply is a significant clinical challenge. Limitations in the use of allograft include the risk of bacterial contamination and disease transmission as well as non-union and poor bone quality. Other bone graft and substitutes have been considered as alternative in order to improve implant fixation. Hydroxyapatite and collagen type I composite (HA/Collagen) have the potential in mimicking skeletal bones. The osteoconductive properties of the composite might be improved by adding bone marrow aspirate (BMA), which can be harvested during surgery. Other alternatives to bone graft are demineralised bone matrix (DBM) and human cancellous bone (CB). DBM is prepared by acid extraction of human bone and includes bone collagen, morphogenetic proteins and growth factors. The combination of DBM with CB and with allograft might improve the healing potential of these grafts around non-cemented orthopaedic implants and thereby the implant fixation. Study I investigates the effect of HA/Collagen composite alone and in combination with BMA on the early fixation of porous coated titanium implants. In addition, the study compares also the effect of autograft with the gold standard allograft. By using a sheep model, the implants were inserted in the trabecular bone of femoral condyles. The test biomaterials were placed in a well defined peri-implant gap. After the observation period, the bone-implant specimens were harvested and evaluated mechanically by a destructive push

  15. Nanoporous Structure of Bone Matrix at Osteoporosis from Data of Atomic Force Microscopy and IR Spectroscopy

    Directory of Open Access Journals (Sweden)

    A. A. Gaidash

    2011-01-01

    Full Text Available It was found that in an osteoporotic bone the fraction of nanosized pores decreases, the mineral phase amorphizes, hydrated shells around mineralized particles of the bone matrix thicken, and adhesion forces increase. This contributes to the formation of water clusters similar to bulk water clusters compared to the healthy bone tissue and leads to the accumulation of more viscous liquid with increased intermolecular interaction forces in the pores of the bone matrix. Given this, the rates of chemical reactions proceeding in the water phase of ultrathin channels of general parts of collagen fibrils decrease. Ultimately, nanopores of collagen-apatite interfaces lose, to a certain extent, the capability of catalyzing the hydroxyapatite crystallization.

  16. Effects of fatigue on microstructure and mechanical properties of bone organic matrix under compression

    International Nuclear Information System (INIS)

    The aim of the study was to investigate whether a fatigue induced weakening of cortical bone was revealed in microstructure and mechanical competence of demineralized bone matrix. Two types of cortical bone samples (plexiform and Haversian) were use. Bone slabs from the midshaft of bovine femora were subjected to cyclical bending. Fatigued and adjacent control samples were cut into cubes and demineralized in ethylenediaminetetraacetic acid. Demineralized samples were either subjected to microscopic quantitative image analysis, or compressed to failure (in longitudinal or transverse direction) with a simultaneous analysis of acoustic emission (AE). In fatigued samples porosity of organic matrix and average area of pores have risen, along with a change in the pores shape. The effect of fatigue depended on the type of the bone, being more pronounced in the plexiform than in Haversian tissue. Demineralized bone matrix was anisotropic under compressive loads in both types of cortical structure. The main result of fatigue pretreatment on mechanical parameters was a significant decrease of ultimate strain in the transverse direction in plexiform samples. The decrease of strain in this group was accompanied by a considerable increase of the fraction of large pores and a significant change in AE energy.

  17. Ultrastructural studies on the origin and structure of matrix vesicles in bone of young rats.

    Science.gov (United States)

    Ornoy, A; Atkin, I; Levy, J

    1980-01-01

    Tibiae of young rats were examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) in order to study the origin and structure of matrix vesicles in periosteal bone. SEM studies have shown that periosteal osteoblasts have elongated processes with globular structures of 0.1 micron in diameter attached to the cell surface and processes. Similar structures were found to cover the inner surface of osteoblastic lacunae. The SEM studies have further shown that in the periosteal surface (forming bone) the above-described globules once mineralized, aggregated to form larger, nonhomogeneous mineralized spherules in which, by proper treatment with NaOCl, hydroxyapatite crystals could be exposed. Endosteal osteoblasts had fewer processes, devoid of the globular structures. Similarly, osteocytic and osteoclastic processes, although elongated and numberous, were not covered by the globular structures. In the matrix, collagen fibers of forming bone were randomly orientated, while in the deeper areas of bone they formed bundles with a longitudinal orientation. TEM studies have shown that the structures found on the osteoblastic surface and in the matrix are membrane-bound matrix vesicles which seem to be formed by budding from cell processes. Preformed membrane-bound vesicles were also observed by TEM inside sections of osteoblastic processes. These vesicles resembled the extracellular matrix vesicles in size and shape, thus giving the impression that at least some of the matrix vesicles are preformed cellular structures. While comparing SEM with TEM, it can be conducted that in bone, as in cartilage, matrix vesicles which probably serve as the initial locus of calcification, are formed directly by osteoblasts.

  18. Ultrastructural studies on the origin and structure of matrix vesicles in bone of young rats.

    Science.gov (United States)

    Ornoy, A; Atkin, I; Levy, J

    1980-01-01

    Tibiae of young rats were examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) in order to study the origin and structure of matrix vesicles in periosteal bone. SEM studies have shown that periosteal osteoblasts have elongated processes with globular structures of 0.1 micron in diameter attached to the cell surface and processes. Similar structures were found to cover the inner surface of osteoblastic lacunae. The SEM studies have further shown that in the periosteal surface (forming bone) the above-described globules once mineralized, aggregated to form larger, nonhomogeneous mineralized spherules in which, by proper treatment with NaOCl, hydroxyapatite crystals could be exposed. Endosteal osteoblasts had fewer processes, devoid of the globular structures. Similarly, osteocytic and osteoclastic processes, although elongated and numberous, were not covered by the globular structures. In the matrix, collagen fibers of forming bone were randomly orientated, while in the deeper areas of bone they formed bundles with a longitudinal orientation. TEM studies have shown that the structures found on the osteoblastic surface and in the matrix are membrane-bound matrix vesicles which seem to be formed by budding from cell processes. Preformed membrane-bound vesicles were also observed by TEM inside sections of osteoblastic processes. These vesicles resembled the extracellular matrix vesicles in size and shape, thus giving the impression that at least some of the matrix vesicles are preformed cellular structures. While comparing SEM with TEM, it can be conducted that in bone, as in cartilage, matrix vesicles which probably serve as the initial locus of calcification, are formed directly by osteoblasts. PMID:7386166

  19. Ultra-structural defects cause low bone matrix stiffness despite high mineralization in osteogenesis imperfecta mice☆

    Science.gov (United States)

    Vanleene, Maximilien; Porter, Alexandra; Guillot, Pascale-Valerie; Boyde, Alan; Oyen, Michelle; Shefelbine, Sandra

    2012-01-01

    Bone is a complex material with a hierarchical multi-scale organization from the molecule to the organ scale. The genetic bone disease, osteogenesis imperfecta, is primarily caused by mutations in the collagen type I genes, resulting in bone fragility. Because the basis of the disease is molecular with ramifications at the whole bone level, it provides a platform for investigating the relationship between structure, composition, and mechanics throughout the hierarchy. Prior studies have individually shown that OI leads to: 1. increased bone mineralization, 2. decreased elastic modulus, and 3. smaller apatite crystal size. However, these have not been studied together and the mechanism for how mineral structure influences tissue mechanics has not been identified. This lack of understanding inhibits the development of more accurate models and therapies. To address this research gap, we used a mouse model of the disease (oim) to measure these outcomes together in order to propose an underlying mechanism for the changes in properties. Our main finding was that despite increased mineralization, oim bones have lower stiffness that may result from the poorly organized mineral matrix with significantly smaller, highly packed and disoriented apatite crystals. Using a composite framework, we interpret the lower oim bone matrix elasticity observed as the result of a change in the aspect ratio of apatite crystals and a disruption of the crystal connectivity. PMID:22449447

  20. Utility of tricalcium phosphate and osteogenic matrix cellsheet constructs for bone defect reconstruction

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    AIM To determine the effects of transplanting osteogenicmatrix cell sheets and beta-tricalcium phosphate(TCP) constructs on bone formation in bone defects.METHODS: Osteogenic matrix cell sheets were preparedfrom bone marrow stromal cells (BMSCs), anda porous TCP ceramic was used as a scaffold. Threeexperimental groups were prepared, comprised of TCPscaffolds (1) seeded with BMSCs; (2) wrapped withosteogenic matrix cell sheets; or (3) both. Constructswere implanted into a femoral defect model in rats andbone growth was evaluated by radiography, histology,biochemistry, and mechanical testing after 8 wk.RESULTS: In bone defects, constructs implanted withcell sheets showed callus formation with segmental or continuous bone formation at 8 wk, in contrast toTCP seeded with BMSCs, which resulted in bone nonunion.Wrapping TCP constructs with osteogenic matrixcell sheets increased their osteogenic potential andresulting bone formation, compared with conventionalbone tissue engineering TCP scaffolds seeded withBMSCs. The compressive stiffness (mean ± SD) valueswere 225.0 ± 95.7, 30.0 ± 11.5, and 26.3 ± 10.6MPa for BMSC/TCP/Sheet constructs with continuousbone formation, BMSC/TCP/Sheet constructs withsegmental bone formation, and BMSC/TCP constructs,respectively. The compressive stiffness of BMSC/TCP/Sheet constructs with continuous bone formation wassignificantly higher than those with segmental boneformation and BMSC/TCP constructs.CONCLUSION: This technique is an improvementover current methods, such as TCP substitution, andis useful for hard tissue reconstruction and inducingearlier bone union in defects.

  1. Relationships between serum osteoprotegerin, matrix metalloproteinase-2 levels and bone metabolism in postmenopausal women

    Institute of Scientific and Technical Information of China (English)

    DAI Yi; SHEN Lin

    2007-01-01

    Background Serum osteoprotegerin (OPG) and matrix metalloproteinase-2 (MMP-2) have been shown to play a role in bone metabolism by degrading the bone matrix. The present study was undertaken to compare OPG and MMP-2 with bone mineral density and three markers (alkaline phosphatase (AKP), calcium and phosphorus) in postmenopausal women in Wuhan.Methods Serum OPG, MMP-2, and AKP of 78 Chinese postmenopausal women aged 48 to 65 were measured using enzyme-linked immunosorbent assay (ELISA). Bone mineral density was measured with dual energy X-ray absorptiometry (DEXA), and serum calcium and phosphorus were measured by auto biochemical analysis.Results Serum OPG and MMP-2 concentrations were significantly higher in postmenopausal women with osteoporosis ((127.6±6.3) ng/L; (1388±121) μg/L)) than those in age-matched normal controls ((72.3±2.4) ng/L; (1126±141) μg/L,P<0.01). Negative relationships were found between serum OPG, MMP-2 levels and bone mineral density in osteoporotic women. Adjusted by age and body mass index (BMI), the correlation of MMP-2 with bone mineral density of the neck of the femur disappeared. In osteoporotic women, negative correlations between OPG, MMP-2 levels and serum calcium were found (r=-0.216; r=-0.269, P<0.05), but positive correlations between OPG and serum AKP, serum phosphorus (r=0.235; r=0.124, P<0.05).Conclusions Significant correlations exist between serum OPG, MMP-2 levels and bone metabolism in high bone turnover of postmenopausal osteoporotic women. The concentrations of serum OPG and MMP-2 increase possibly as a concomitant event in the high bone turnover state, such as postmenopausal osteoporosis. Therefore serum OPG and MMP-2 could be used as indicators for the bone metabolism in postmenopausal osteoporotic women.

  2. Aluminum and bone: Review of new clinical circumstances associated with Al(3+) deposition in the calcified matrix of bone.

    Science.gov (United States)

    Chappard, D; Bizot, P; Mabilleau, G; Hubert, L

    2016-06-01

    Several decades ago, aluminum encephalopathy associated with osteomalacia has been recognized as the major complication of chronic renal failure in dialyzed patients. Removal of aluminum from the dialysate has led to a disappearance of the disease. However, aluminum deposit occurs in the hydroxyapatite of the bone matrix in some clinical circumstances that are presented in this review. We have encountered aluminum in bone in patients with an increased intestinal permeability (coeliac disease), or in the case of prolonged administration of aluminum anti-acid drugs. A colocalisation of aluminum with iron was also noted in cases of hemochromatosis and sickle cell anemia. Aluminium was also identified in a series of patients with exostosis, a frequent benign bone tumor. Corrosion of prosthetic implants composed of grade V titanium (TA6V is an alloy containing 6% aluminum and 4% vanadium) was also observed in a series of hip or knee revisions. Aluminum can be identified in undecalcified bone matrix stained by solochrome azurine, a highly specific stain allowing the detection of 0.03 atomic %. Colocalization of aluminum and iron does not seem to be the fruit of chance but the cellular and molecular mechanisms are still poorly understood. Histochemistry is superior to spectroscopic analyses (EDS and WDS in scanning electron microscopy).

  3. Antibacterial and osteoinductive properties of demineralized bone matrix treated with silver

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, S.J.; Spadaro, J.A.; Webster, D.A.

    The problems incurred by storage of demineralized bone allograft material and its potential use in contaminated operative sites make an antibacterial property desirable. Silver was considered for this role because of its wide spectrum of antibacterial susceptibility, low incidence of resistance, and its ability to persistently inhibit bacteria after binding to collagen matrices. Demineralized bone matrix prepared from rat diaphyseal bone segments was treated by exposure fo AgCl, AgNO3 and NaNO3 solutions prior to lyophilization. The resulting material was tested for bacterial inhibition after incubation in saline solutions for various times and showed inhibition persisting for at least four weeks (Ag-treated material only). Silver treating the matrix was found to partially inhibit the osteoinductive capacity at 10(-3) and 10(-2) M but not at 10(-5) M as measured by intramuscular implantation in the rat for six weeks. Control and NaNo3-treated specimens showed normal bone growth as measured by ashing and by 99mTc binding, and confirmed by radiologic densities. Histologic sections showed dense microdeposits on dense material predominately near the decalcified bone surfaces, but also within the matrix. The results suggest that pretreatment with silver at concentrations in the 10(-4) range would render the implant material antibacterial, protect its sterility, and leave the osteoinductive capacity intact.

  4. Castor oil polymer induces bone formation with high matrix metalloproteinase-2 expression.

    Science.gov (United States)

    Saran, Wallace Rocha; Chierice, Gilberto Orivaldo; da Silva, Raquel Assed Bezerra; de Queiroz, Alexandra Mussolino; Paula-Silva, Francisco Wanderley Garcia; da Silva, Léa Assed Bezerra

    2014-02-01

    The aim of this study was to evaluate the modulation of matrix metalloproteinase-2 (MMP-2) and -9 (MMP-9) expression in newly formed bone tissue at the interface between implants derived from castor oil (Ricinus communis) polymer and the tibia medullary canal. Forty-four rabbits were assigned to either Group 1 (n = 12; control) or Group 2 (n = 30), which had the tibial medullary canals reamed bilaterally and filled with polymer. CT scans showed no space between the material surface and the bone at the implant/bone marrow interface, and the density of the tissues at this interface was similar to the density measured of other regions of the bone. At 90 days postimplantation, the interface with the polymer presented a thick layer of newly formed bone tissue rich in osteocytes. This tissue exhibited ongoing maturation at 120 and 150 days postimplantation. Overall, bone remodeling process was accompanied by positive modulation of MMP-2 and low MMP-9 expression. Differently, in control group, the internal surface close to the medullary canal was lined by osteoblasts, followed by a bone tissue zone with few lacunae filled with osteocytes. Maturation of the tissue of the medullary internal surface occurred in the inner region, with the bone being nonlamellar.

  5. How Osteoblasts Sense their Environment: Integrin-Extracellular Matrix Interactions and Mechanical Loading of Bone

    Science.gov (United States)

    Globus, Ruth K.; Dalton, Bonnie (Technical Monitor)

    2002-01-01

    Osteoblasts are the cells responsible for forming and replacing bone throughout life. We know that mechanical stimulation through weight-bearing at I gravity on Earth is needed to maintain healthy bone, and that osteoblasts play a critical role in that process. Over the last 9 years in my laboratory at NASA ARC, we have studied the regulation of osteoblast function by interactions between the extracellular matrix and die cell. Using a cell culture approach, we defined the repertoire of adhesion receptors, called integrins, which are expressed on the osteoblast surface, as well as specific extracellular matrix proteins, which are needed for cellular differentiation and survival. We are now extending these observations to determine if integrin signaling is involved in the skeletal responses to disuse and recovery from disuse using the rodent model of hindlimb unloading by tail suspension. Together, our cell culture and animal studies are providing new insight into the regulation of osteoblast function in bone.

  6. Histologic Evaluation of Critical Size Defect Healing With Natural and Synthetic Bone Grafts in the Pigeon ( Columba livia ) Ulna.

    Science.gov (United States)

    Tunio, Ahmed; Jalila, Abu; Goh, Yong Meng; Shameha-Intan; Shanthi, Ganabadi

    2015-06-01

    Fracture and bone segment loss are major clinical problems in birds. Achieving bone formation and clinical union in a fracture case is important for the survival of the bird. To evaluate the efficacy of bone grafts for defect healing in birds, 2 different bone grafts were investigated in the healing of a bone defect in 24 healthy pigeons ( Columba livia ). In each bird, a 1-cm critical size defect (CSD) was created in the left ulna, and the fracture was stabilized with external skeletal fixation (ESF). A graft of hydroxyapatite (HA) alone (n = 12 birds) or demineralized bone matrix (DBM) combined with HA (n = 12 birds) was implanted in the CSD. The CSD healing was evaluated at 3 endpoints: 3, 6, and 12 weeks after surgery. Four birds were euthanatized at each endpoint from each treatment group, and bone graft healing in the ulna CSD was evaluated by histologic examination. The CSD and graft implants were evaluated for quality of union, cortex development, and bone graft incorporation. Results showed no graft rejection in any bird, and all birds had connective tissue formation in the defect because of the bone graft application. These results suggest that bone defect healing can be achieved by a combination of osteoinductive and osteoconductive bone graft materials for clinical union and new bone regeneration in birds. The combination of DBM and HA resulted in a better quality bone graft (P < .05) than did HA alone, but there was no significant differences in cortex development or bone graft incorporation at 3, 6, or 12 weeks. From the results of this study, we conclude that HA bone grafts, alone or in combination with DBM, with external skeletal fixation is suitable and safe for bone defect and fracture treatment in pigeons.

  7. Application of DBM tool for detection of EUV mask defect

    Science.gov (United States)

    Yoo, Gyun; Kim, Jungchan; Park, Chanha; Lee, Taehyeong; Ji, Sunkeun; Yang, Hyunjo; Yim, Donggyu; Park, Byeongjun; Maruyama, Kotaro; Yamamoto, Masahiro

    2013-04-01

    Extreme ultraviolet lithography (EUVL) is one of the most leading lithography technologies for high volume manufacturing. The EUVL is based on reflective optic system therefore critical patterning issues are arisen from the surface of photomask. Defects below and inside of the multilayer or absorber of EUV photomask is one of the most critical issues to implement EUV lithography in mass production. It is very important to pick out and repair printable mask defects. Unfortunately, however, infrastructure for securing the defect free photomask such as inspection tool is still under development furthermore it does not seem to be ready soon. In order to overcome the lack of infrastructures for EUV mask inspection, we will discuss an alternative methodology which is based on wafer inspection results using DBM (Design Based Metrology) tool. It is very challenging for metrology to quantify real mask defect from wafer inspection result since various sources are possible contributor. One of them is random defect comes from poor CD uniformity. It is probable that those random defects are majority of a defect list including real mask defects. It is obvious that CD uniformity should be considered to pick out only a real mask defect. In this paper, the methodology to determine real mask defect from the wafer inspection results will be discussed. Experiments are carried out on contact layer and on metal layer using mask defect inspection tool, Teron(KLA6xx) and DBM (Design Based Metrology) tool, NGR2170™.

  8. 超临界流体技术制备脱矿骨基质/聚乳酸复合材料及相关性能%Demineralized bone matrix/polylactic acid produced through supercritical carbon dioxide and its properties

    Institute of Scientific and Technical Information of China (English)

    刘晓明; 李宝兴; 张育敏; 徐伟俊; 李宝明; 马绍英; 陈学英; 赵亚平

    2012-01-01

    目的:以聚乳酸(PLA)为塑型剂,通过超临界二氧化碳(SC-CC2)合成法,将脱矿骨基质(DBM)构建成三维多孔组织工程骨材料,并选取最适复合分子量及最适复合比例,为骨库大量骨皮质不能被有效利用提供一种有效的解决办法.方法:取不同重均分子量的PLA,利用SC-CO2合成法制备多孔材料,通过孔隙率、生物力学性能评价,筛选出与DBM复合的最适分子量;将DBM与PLA按1/9、2/8、3/7、4/6、5/5、6/4、7/3质量比均匀混合,相同方法制备一系列复合多孔材料,通过孔隙率、生物力学性能、体外细胞毒性、扫描电镜观察,选择最适的DBM/PLA复合比例.结果:5万、10万、50万重均分子量PLA支架材料孔隙率分别为65.39%、76.46%、85.52%,10万重均分子量PLA支架材料抗压强度及弹性模量为264.03及49.71MPa,优于5万及50万重均分子量PLA; DBM与PLA不同比例复合,随着DBM含量的增加材料孔隙率逐渐变大,力学性能逐步下降,细胞毒性逐渐降低,当DBM含量为60%时,材料的孔隙率为79.71%,抗压强度及弹性模量为108.72及13.82MPa,细胞毒性为0级或1级,扫描电镜观察材料混合均匀,结合致密,材料孔隙分布均匀.结论:10万重均分子量的PLA更适合与DBM进行复合;6/4为DBM/PLA的最佳复合比例.%Objective: To prepare a composed biomaterial of demineralized bone matrix (DBM) with polylactic acid (PLA) through supercritical carbon dioxide (SC-CO2) synthesis, in order to widen utilization of cortical bone of tissue bank. Meth ods: Porous composite was made by PLA of different molecular weight, and sodium chloride served as moulding agent. In terval porosity and mechanical properties were tested to decide the most appropriate molecular weight of PLA. DBM and PLA were mixed according to different mass ratios (1/9, 2/8, 3/7, 4/6, 5/5, 6/4, 7/3 ) and series porous composited ma terials were prepared by the SC-CO2 synthesis. The interval porosity

  9. Ridge preservation with acellular dermal matrix and anorganic bone matrix cell-binding peptide P-15 after tooth extraction in humans. A histologic and morphometric study

    OpenAIRE

    Arthur B. Novaes Jr.; Patricia Garani Fernandes; Flávia Adelino Suaid; Marcio Fernando de Moraes Grisi; Sergio Luis Scombatti de Souza; Mario Taba Jr.; Daniela Bazan Palioto; Valdir Antonio Muglia

    2012-01-01

    Aim: The aim of this study was to analyze by histomorphometric parameters the use of acellular dermal matrix (ADM) with or without anorganic bovine bone matrix (ABM) / synthetic cell-binding peptide P-15 in the formation of bone in human alveoli. Materials and methods: Eighteen patients in need of extraction of maxillary anterior teeth were selected and randomly assigned to the test group (ADM plus ABM/P-15) or the control group (ADM only). Histomorphometric measurements and histological a...

  10. Tendon Reattachment to Bone in an Ovine Tendon Defect Model of Retraction Using Allogenic and Xenogenic Demineralised Bone Matrix Incorporated with Mesenchymal Stem Cells

    Science.gov (United States)

    2016-01-01

    Background Tendon-bone healing following rotator cuff repairs is mainly impaired by poor tissue quality. Demineralised bone matrix promotes healing of the tendon-bone interface but its role in the treatment of tendon tears with retraction has not been investigated. We hypothesized that cortical demineralised bone matrix used with minimally manipulated mesenchymal stem cells will result in improved function and restoration of the tendon-bone interface with no difference between xenogenic and allogenic scaffolds. Materials and Methods In an ovine model, the patellar tendon was detached from the tibial tuberosity and a complete distal tendon transverse defect measuring 1 cm was created. Suture anchors were used to reattach the tendon and xenogenic demineralised bone matrix + minimally manipulated mesenchymal stem cells (n = 5), or allogenic demineralised bone matrix + minimally manipulated mesenchymal stem cells (n = 5) were used to bridge the defect. Graft incorporation into the tendon and its effect on regeneration of the enthesis was assessed using histomorphometry. Force plate analysis was used to assess functional recovery. Results Compared to the xenograft, the allograft was associated with significantly higher functional weight bearing at 6 (P = 0.047), 9 (P = 0.028), and 12 weeks (P = 0.009). In the allogenic group this was accompanied by greater remodeling of the demineralised bone matrix into tendon-like tissue in the region of the defect (p = 0.015), and a more direct type of enthesis characterized by significantly more fibrocartilage (p = 0.039). No failures of tendon-bone healing were noted in either group. Conclusion Demineralised bone matrix used with minimally manipulated mesenchymal stem cells promotes healing of the tendon-bone interface in an ovine model of acute tendon retraction, with superior mechanical and histological results associated with use of an allograft. PMID:27606597

  11. Demineralized dentin matrix combined with recombinant human bone morphogenetic protein-2 in rabbit calvarial defects

    OpenAIRE

    Um, In-Woong; Hwang, Suk-Hyun; Kim, Young-Kyun; Kim, Moon-Young; Jun, Sang-Ho; Ryu, Jae-Jun; Jang, Hyon-Seok

    2016-01-01

    Objectives The aim of this study was to compare the osteogenic effects of demineralized dentin matrix (DDM) combined with recombinant human bone morphogenetic protein-2 (rhBMP-2) in rabbit calvarial defects with DDM and anorganic bovine bone (ABB) combined with rhBMP-2. Materials and Methods Four round defects with 8-mm diameters were created in each rabbit calvaria. Each defect was treated with one of the following: 1) DDM, 2) ABB/rhBMP-2, or 3) DDM/rhBMP-2. The rhBMP-2 was combined with DDM...

  12. Morphological similarities between DBM and a microeconomic model of sprawl

    Science.gov (United States)

    Caruso, Geoffrey; Vuidel, Gilles; Cavailhès, Jean; Frankhauser, Pierre; Peeters, Dominique; Thomas, Isabelle

    2011-03-01

    We present a model that simulates the growth of a metropolitan area on a 2D lattice. The model is dynamic and based on microeconomics. Households show preferences for nearby open spaces and neighbourhood density. They compete on the land market. They travel along a road network to access the CBD. A planner ensures the connectedness and maintenance of the road network. The spatial pattern of houses, green spaces and road network self-organises, emerging from agents individualistic decisions. We perform several simulations and vary residential preferences. Our results show morphologies and transition phases that are similar to Dieletric Breakdown Models (DBM). Such similarities were observed earlier by other authors, but we show here that it can be deducted from the functioning of the land market and thus explicitly connected to urban economic theory.

  13. Ameloblastin, an Extracellular Matrix Protein, Affects Long Bone Growth and Mineralization.

    Science.gov (United States)

    Lu, Xuanyu; Fukumoto, Satoshi; Yamada, Yoshihiko; Evans, Carla A; Diekwisch, Thomas Gh; Luan, Xianghong

    2016-06-01

    Matrix molecules such as the enamel-related calcium-binding phosphoprotein ameloblastin (AMBN) are expressed in multiple tissues, including teeth, bones, and cartilage. Here we have asked whether AMBN is of functional importance for timely long bone development and, if so, how it exerts its function related to osteogenesis. Adolescent AMBN-deficient mice (AMBN(Δ5-6) ) suffered from a 33% to 38% reduction in femur length and an 8.4% shorter trunk spinal column when compared with WT controls, whereas there was no difference between adult animals. On a cellular level, AMBN truncation resulted in a shortened growth plate and a 41% to 49% reduction in the number of proliferating tibia chondrocytes and osteoblasts. Bone marrow stromal cells (BMSCs) isolated from AMBN mutant mice displayed defects in proliferation and differentiation potential as well as cytoskeleton organization. Osteogenesis-related growth factors, such as insulin-like growth factor 1 (IGF1) and BMP7, were also significantly (46% to 73%) reduced in AMBN-deficient BMSCs. Addition of exogenous AMBN restored cytoskeleton structures in AMBN mutant BMSCs and resulted in a dramatic 400% to 600% increase in BMP2, BMP7, and Col1A expression. Block of RhoA diminished the effect of AMBN on osteogenic growth factor and matrix protein gene expression. Addition of exogenous BMP7 and IGF1 rescued the proliferation and differentiation potential of AMBN-deficient BMSCs. Confirming the effects of AMBN on long bone growth, back-crossing of mutant mice with full-length AMBN overexpressors resulted in a complete rescue of AMBN(Δ5-6) bone defects. Together, these data indicate that AMBN affects extracellular matrix production and cell adhesion properties in the long bone growth plate, resulting in altered cytoskeletal dynamics, increased osteogenesis-related gene expression, as well as osteoblast and chondrocyte proliferation. We propose that AMBN facilitates rapid long bone growth and an important growth spurt during the

  14. Fibular Allograft and Demineralized Bone Matrix for the Treatment of Slipped Capital Femoral Epiphysis.

    Science.gov (United States)

    Murray, Travis; Morscher, Melanie A; Krahe, Amy M; Adamczyk, Mark J; Weiner, Dennis S

    2016-05-01

    Previous studies documented the use of fibular allograft in the treatment of slipped capital femoral epiphysis (SCFE) with bone graft epiphysiodesis (BGE). This study describes the results of using a 10-mm diameter premilled fibular allograft packed with demineralized bone matrix placed across the physis in an open surgical approach under image intensification. A review identified 45 cases of BGE using fibular allograft and demineralized bone matrix in 34 patients with a diagnosis of SCFE performed by a single surgeon during an 8-year period. Thirty-four cases (25 patients) had at least 1 year of follow-up and were included in the study. Medical records were reviewed for complications, subsequent surgeries, and time to physeal closure. Of the 34 cases included, there were no cases of acute chondrolysis. Complications included 1 case of bone graft extrusion that required surgical replacement and 1 re-slip requiring surgical stabilization. Five cases of avascular necrosis (AVN) were encountered (1 unstable slip with total head AVN, and 4 stable slips with 3 total head and 1 partial head AVN). In 1 patient, small loose bony fragments were noted on postoperative radiographs that appeared outside of the articular surface of the hip and were asymptomatic. Two patients encountered wound healing issues that resolved with appropriate wound care. In light of the occurrence of AVN in stable cases, BGE with autogenous corticocancellous graft is preferable to BGE with autologous fibular graft for the treatment of SCFE. [Orthopedics. 2016; 39(3):e519-e525.].

  15. Repair of calvarial defects with human umbilical cord blood derived mesenchymal stem cells and demineralized bone matrix in athymic rats%人脐血间充质干细胞修复颅骨缺损的实验研究

    Institute of Scientific and Technical Information of China (English)

    刘广鹏; 李宇琳; 孙剑; 崔磊; 张文杰; 曹谊林

    2010-01-01

    Objective To investigate the feasibility of using human umbilical cord blood derived mesenchymal stem cells (UCB-MSCs) and demineralized bone matrix (DBM) scaffolds to repair critical-sized calvarial defects in athymic rats. Methods Human UCB-MSCs were isolated, expanded and osteogenically induced in vitro. Osteogenic differentiation of UCB-MSCs was evaluated by Alizarin Red staining and measurement of calcium content respectively, and then the cells were seeded onto DBM scaffolds. Bilateral full-thickness defects (5 mm in diameter) of parietal bone were created in an athymic rat model. The defects were either repaired with UCB-MSC/DBM constructs (experimental group) or with DBM scaffolds alone (control group). Animals were harvested at 6 and 12 weeks post-implantation respectively, and defect repair was evaluated with gross observation, micro-CT measurement and histological analysis. Results Micro-CT showed that new bone was formed in the experimental group at 6 weeks post-implantation, while no sign of new bone formation was observed in the control group. At 12 weeks post-transplantation, scaffolds had been degraded almost completely in both sides. It was shown that an average of (78.19±6.45)% of each defect volume had been repaired in experimental side; while in the control side, only limited bone formed at the periphery of the defect. Histological examination revealed that the defect was repaired by trabecular bone tissue in experimental side at 12 weeks, while only fibrous connection was observed in the control group. Conclusions Tissue-engineered bone composed of osteogenically-induced human UCB-MSCs on DBM scaffolds could successfully repair the critical-sized calvarial defects in athymic rat models.%目的 应用人脐血间充质干细胞(umbilical cord blood derived mesenchymal stem cells,UCB-MSCs)复合脱钙骨材料构建组织工程化骨,修复裸大鼠颅骨标准缺损.方法 体外扩增培养、成骨诱导人UCB-MSCs,采用Alizarin Red染色

  16. Biomineralization of a Self-Assembled Extracellular Matrix for Bone Tissue Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Yizhi, M.; Yi-Xian, Q; DiMasi, E; Xiaolan, B; Rafailovich, M; Pernodet, N

    2009-01-01

    Understanding how biomineralization occurs in the extracellular matrix (ECM) of bone cells is crucial to the understanding of bone formation and the development of a successfully engineered bone tissue scaffold. It is still unclear how ECM mechanical properties affect protein-mineral interactions in early stages of bone mineralization. We investigated the longitudinal mineralization properties of MC3T3-E1 cells and the elastic modulus of their ECM using shear modulation force microscopy, synchrotron grazing incidence X-ray diffraction (GIXD), scanning electron microscopy, energy dispersive X-ray spectroscopy, and confocal laser scanning microscopy (CLSM). The elastic modulus of the ECM fibers underwent significant changes for the mineralizing cells, which were not observed in the nonmineralizing cells. On substrates conducive to ECM network production, the elastic modulus of mineralizing cells increased at time points corresponding to mineral production, whereas that of the nonmineralizing cells did not vary over time. The presence of hydroxyapatite in mineralizing cells and the absence thereof in the nonmineralizing ones were confirmed by GIXD, and CLSM showed that a restructuring of actin occurred only for mineral-producing cells. These results show that the correct and complete development of the ECM network is required for osteoblasts to mineralize. This in turn requires a suitably prepared synthetic substrate for bone development to succeed in vitro.

  17. 复合材料修复骨缺损血管化及结构特征变化%Changes of circulation and construction on repairment of bone defect with compound material

    Institute of Scientific and Technical Information of China (English)

    周勇; 范清宇; 蒋维中; 文艳华; 周慧

    2002-01-01

    Objective To observe the changes of circulation and construction by compound material of decalcified bone matrix (DBM) particles which was combined with rhBMP-2 impregnated with bone cement for repairment of experimental bone defect. Methods To assess the changes of circulation and construction, the methods of intravascular injection of India ink and scanning electron microscope were used. Results Results showed that an amount of regenerative blood vessels gathered around the implanted material and the blood vessels began to grow into it at the second week after operation, the blood vessels which grew into the implanted material increased gradually at the fourth, eighth and twelfth week after surgery. The changes of construction were observed that an amount of regenerative collagen was formed into the implanted material and the ossification developed from the collagen were seen in some places at the fourth week after implantation,a large amount of new bone which covered the DBM particles and the bone cement along the irregular gaps was found and the irregular gaps were filled up by the regenerative tissues in 8 to 12 weeks after operation. Conclusion The compound materials of DBM particles which were combined with rhBMP-2 impregnated with bone cement have favourable capacity of bone induction. This compound material can be used effectively to repair segmental bone defects.

  18. Biological conduits combining bone marrow mesenchymal stem cells and extracellular matrix to treat long-segment sciatic nerve defects

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2015-01-01

    Full Text Available The transplantation of polylactic glycolic acid conduits combining bone marrow mesenchymal stem cells and extracellular matrix gel for the repair of sciatic nerve injury is effective in some respects, but few data comparing the biomechanical factors related to the sciatic nerve are available. In the present study, rabbit models of 10-mm sciatic nerve defects were prepared. The rabbit models were repaired with autologous nerve, a polylactic glycolic acid conduit + bone marrow mesenchymal stem cells, or a polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel. After 24 weeks, mechanical testing was performed to determine the stress relaxation and creep parameters. Following sciatic nerve injury, the magnitudes of the stress decrease and strain increase at 7,200 seconds were largest in the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel group, followed by the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells group, and then the autologous nerve group. Hematoxylin-eosin staining demonstrated that compared with the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells group and the autologous nerve group, a more complete sciatic nerve regeneration was found, including good myelination, regularly arranged nerve fibers, and a completely degraded and resorbed conduit, in the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel group. These results indicate that bridging 10-mm sciatic nerve defects with a polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel construct increases the stress relaxation under a constant strain, reducing anastomotic tension. Large elongations under a constant physiological load can limit the anastomotic opening and shift, which is beneficial for the regeneration and functional reconstruction of sciatic nerve. Better

  19. Effect of bone marrow stromal cell sheet on the formation of tissue-engineered bone in dogs%犬骨髓基质细胞片层在构建组织工程骨中的作用

    Institute of Scientific and Technical Information of China (English)

    王玲玲; 李宁毅; 樊功为; 卜令学; 杨学财; 高振华

    2011-01-01

    目的:探讨犬骨髓基质细胞(bone marrow stromal cells,BMSCs)细胞片层在构建组织工程骨中的价值.方法:制备犬同种异体脱钙骨基质(dermineralized bone matrix,DBM).将人重组骨形态发生蛋白-2(rhBMP-2)复合到DBM上.抽取犬髂骨骨髓,采用密度梯度离心法分离犬骨髓基质细胞(BMSCs).将经成骨诱导的第3代细胞接种于温度反应性培养皿中,制备BMSCs细胞片层.用得到的BMSCs细胞片层包裹DBM/rhBMP-2/BMSCs复合体,植入犬背阔肌血运丰富的肌筋膜下为实验侧,以无BMSCs细胞片层包裹的DBM/rhBMP-加MSCs复合体为对照侧.术后4、8、12周取材,行组织学观察,评价体内异位成骨的情况.采用SPSS13.0软件,对数据进行两样本均数差别的t检验.结果:实验侧成骨面积大于对照侧,2组差异有显著性(P<0.05).术后12周,实验侧生成大量板层骨,有哈弗系统形成,骨髓腔内有红骨髓.对照侧有板层骨形成,无哈弗系统形成,骨髓腔内无红骨髓.结论:BMSCs细胞片层可促进具有致密板层骨和哈弗系统的组织工程骨的形成.%PURPOSE: To investigate the effect of bone marrow stromal cell sheet on the formation of tissue-engineered bone in dogs. METHODS: Demineralized bone matrix (DBM) were prepared from homologous bone. DBM was constituted with recombination human bone morphogenetic protein-2(rhBMP-2). And bone marrow stromal cells(BMSCs) were isolated from iliac bone of dogs with the method of density gradient centrifugation in vitro. BMSCs induced by osteogenic DMEM at passage 3 were incubated in the temperature-responsive culture dish to form BMSCs cell sheet. BMSCs cell sheet combined with DBM/rhBMP-2/BMSCs was implanted around the vessels of latissimus dorsi muscle in the experimental side,and DBM/rhBMP-2/BMSCs without BMSCs cell sheet was implanted around the vessels of latissimus dorsi muscle in the control side. 4,8,12 weeks after operation, the ectopic bone formation was investigated by

  20. Two-Stage Revision Anterior Cruciate Ligament Reconstruction: Bone Grafting Technique Using an Allograft Bone Matrix.

    Science.gov (United States)

    Chahla, Jorge; Dean, Chase S; Cram, Tyler R; Civitarese, David; O'Brien, Luke; Moulton, Samuel G; LaPrade, Robert F

    2016-02-01

    Outcomes of primary anterior cruciate ligament (ACL) reconstruction have been reported to be far superior to those of revision reconstruction. However, as the incidence of ACL reconstruction is rapidly increasing, so is the number of failures. The subsequent need for revision ACL reconstruction is estimated to occur in up to 13,000 patients each year in the United States. Revision ACL reconstruction can be performed in one or two stages. A two-stage approach is recommended in cases of improper placement of the original tunnels or in cases of unacceptable tunnel enlargement. The aim of this study was to describe the technique for allograft ACL tunnel bone grafting in patients requiring a two-stage revision ACL reconstruction.

  1. Two-Stage Revision Anterior Cruciate Ligament Reconstruction: Bone Grafting Technique Using an Allograft Bone Matrix.

    Science.gov (United States)

    Chahla, Jorge; Dean, Chase S; Cram, Tyler R; Civitarese, David; O'Brien, Luke; Moulton, Samuel G; LaPrade, Robert F

    2016-02-01

    Outcomes of primary anterior cruciate ligament (ACL) reconstruction have been reported to be far superior to those of revision reconstruction. However, as the incidence of ACL reconstruction is rapidly increasing, so is the number of failures. The subsequent need for revision ACL reconstruction is estimated to occur in up to 13,000 patients each year in the United States. Revision ACL reconstruction can be performed in one or two stages. A two-stage approach is recommended in cases of improper placement of the original tunnels or in cases of unacceptable tunnel enlargement. The aim of this study was to describe the technique for allograft ACL tunnel bone grafting in patients requiring a two-stage revision ACL reconstruction. PMID:27274452

  2. Small oscillatory accelerations, independent of matrix deformations, increase osteoblast activity and enhance bone morphology.

    Directory of Open Access Journals (Sweden)

    Russell Garman

    Full Text Available A range of tissues have the capacity to adapt to mechanical challenges, an attribute presumed to be regulated through deformation of the cell and/or surrounding matrix. In contrast, it is shown here that extremely small oscillatory accelerations, applied as unconstrained motion and inducing negligible deformation, serve as an anabolic stimulus to osteoblasts in vivo. Habitual background loading was removed from the tibiae of 18 female adult mice by hindlimb-unloading. For 20 min/d, 5 d/wk, the left tibia of each mouse was subjected to oscillatory 0.6 g accelerations at 45 Hz while the right tibia served as control. Sham-loaded (n = 9 and normal age-matched control (n = 18 mice provided additional comparisons. Oscillatory accelerations, applied in the absence of weight bearing, resulted in 70% greater bone formation rates in the trabeculae of the metaphysis, but similar levels of bone resorption, when compared to contralateral controls. Quantity and quality of trabecular bone also improved as a result of the acceleration stimulus, as evidenced by a significantly greater bone volume fraction (17% and connectivity density (33%, and significantly smaller trabecular spacing (-6% and structural model index (-11%. These in vivo data indicate that mechanosensory elements of resident bone cell populations can perceive and respond to acceleratory signals, and point to an efficient means of introducing intense physical signals into a biologic system without putting the matrix at risk of overloading. In retrospect, acceleration, as opposed to direct mechanical distortion, represents a more generic and safe, and perhaps more fundamental means of transducing physical challenges to the cells and tissues of an organism.

  3. Fabrication and characterization of DBM/p-Si heterojunction solar cell

    Energy Technology Data Exchange (ETDEWEB)

    El-Nahass, M.M.; Kamel, M.A. [Physics Department, Faculty of Education, Ain Shams University, Roxy, 11757 Cairo (Egypt); Atta, A.A. [Physics Department, Faculty of Education, Ain Shams University, Roxy, 11757 Cairo (Egypt); Physics Department, Faculty of Science, Taif University, Taif, 888 Taif (Saudi Arabia); Huthaily, S.Y., E-mail: s_huthaily@yahoo.com [Physics Department, Faculty of Education, Hodeidah University, Alduraihimi, 3114 Hodeidah (Yemen)

    2013-01-15

    Hybrid organic/inorganic solar cell was fabricated by depositing a thin film of p-N,N dimethylaminobenzylidenemalononitrile (DBM) onto p-Si substrate. DBM is a donor-acceptor disubstituted benzenes dye known as molecular rotors and highly polar molecular compounds. Its powder has a polycrystalline structure, while nano-crystallite rods are formed in the as-deposited film. The dark current density-voltage (J-V) characteristics of Au/DBM/p-Si/Al heterojunction device measured at different temperatures ranging from 291 to 353 K have been investigated. The operating conduction mechanisms, the series and shunt resistances, the rectification ratio, the ideality factor, the effective barrier height, and the total trap concentration were determined. The capacitance-voltage (C-V) characteristics indicated that the junction is of abrupt nature. The built-in voltage and the carrier concentration distributed through the depletion region were estimated. Under illumination, the DBM/p-Si cell showed photovoltaic properties and the photovoltaic parameters were evaluated. -- Highlights: Black-Right-Pointing-Pointer The molecular rotors DBM dye can be used to manufacture D/A solar cells. Black-Right-Pointing-Pointer Since D/A are situated in the DBM molecule, we ensure photoinduced D {yields} A electron transfer. Black-Right-Pointing-Pointer The DBM film is grown as nano-rods. Black-Right-Pointing-Pointer The most of the DBM bulk of the cell contributes to the generation of external current.

  4. Biological Assessment of a Calcium Silicate Incorporated Hydroxyapatite-Gelatin Nanocomposite: A Comparison to Decellularized Bone Matrix

    OpenAIRE

    Dong Joon Lee; Ricardo Padilla; He Zhang; Wei-Shou Hu; Ching-Chang Ko

    2014-01-01

    Our laboratory utilized biomimicry to develop a synthetic bone scaffold based on hydroxyapatite-gelatin-calcium silicate (HGCS). Here, we evaluated the potential of HGCS scaffold in bone formation in vivo using the rat calvarial critical-sized defect (CSD). Twelve Sprague-Dawley rats were randomized to four groups: control (defect only), decellularized bone matrix (DECBM), and HGCS with and without multipotent adult progenitor cells (MAPCs). DECBM was prepared by removing all the cells using ...

  5. Dynamic nanomechanics of individual bone marrow stromal cells and cell-matrix composites during chondrogenic differentiation.

    Science.gov (United States)

    Lee, BoBae; Han, Lin; Frank, Eliot H; Grodzinsky, Alan J; Ortiz, Christine

    2015-01-01

    Dynamic nanomechanical properties of bovine bone marrow stromal cells (BMSCs) and their newly synthesized cartilage-like matrices were studied at nanometer scale deformation amplitudes. The increase in their dynamic modulus, |E(*)| (e.g., 2.4±0.4 kPa at 1 Hz to 9.7±0.2 kPa at 316 Hz at day 21, mean±SEM), and phase angle, δ, (e.g., 15±2° at 1 Hz to 74±1° at 316 Hz at day 21) with increasing frequency were attributed to the fluid flow induced poroelasticity, governed by both the newly synthesized matrix and the intracellular structures. The absence of culture duration dependence suggested that chondrogenesis of BMSCs had not yet resulted in the formation of a well-organized matrix with a hierarchical structure similar to cartilage. BMSC-matrix composites demonstrated different poro-viscoelastic frequency-dependent mechanical behavior and energy dissipation compared to chondrocyte-matrix composites due to differences in matrix molecular constituents, structure and cell properties. This study provides important insights into the design of optimal protocols for tissue-engineered cartilage products using chondrocytes and BMSCs. PMID:25468666

  6. Low dose BMP-2 treatment for bone repair using a PEGylated fibrinogen hydrogel matrix.

    Science.gov (United States)

    Ben-David, Dror; Srouji, Samer; Shapira-Schweitzer, Keren; Kossover, Olga; Ivanir, Eran; Kuhn, Gisela; Müller, Ralph; Seliktar, Dror; Livne, Erella

    2013-04-01

    Bone repair strategies utilizing resorbable biomaterial implants aim to stimulate endogenous cells in order to gradually replace the implant with functional repair tissue. These biomaterials should therefore be biodegradable, osteoconductive, osteoinductive, and maintain their integrity until the newly formed host tissue can contribute proper function. In recent years there has been impressive clinical outcomes for this strategy when using osteoconductive hydrogel biomaterials in combination with osteoinductive growth factors such as human recombinant bone morphogenic protein (hrBMP-2). However, the success of hrBMP-2 treatments is not without risks if the factor is delivered too rapidly and at very high doses because of a suboptimal biomaterial. Therefore, the aim of this study was to evaluate the use of a PEGylated fibrinogen (PF) provisional matrix as a delivery system for low-dose hrBMP-2 treatment in a critical size maxillofacial bone defect model. PF is a semi-synthetic hydrogel material that can regulate the release of physiological doses of hrBMP-2 based on its controllable physical properties and biodegradation. hrBMP-2 release from the PF material and hrBMP-2 bioactivity were validated using in vitro assays and a subcutaneous implantation model in rats. Critical size calvarial defects in mice were treated orthotopically with PF containing 8 μg/ml hrBMP-2 to demonstrate the capacity of these bioactive implants to induce enhanced bone formation in as little as 6 weeks. Control defects treated with PF alone or left empty resulted in far less bone formation when compared to the PF/hrBMP-2 treated defects. These results demonstrate the feasibility of using a semi-synthetic biomaterial containing small doses of osteoinductive hrBMP-2 as an effective treatment for maxillofacial bone defects. PMID:23375953

  7. Experimental study of bone marrow stromal cell sheet on the construction of tissue-engineered bone%应用骨髓基质细胞片层构建组织工程骨的实验研究

    Institute of Scientific and Technical Information of China (English)

    王玲玲; 李宁毅; 樊功为; 卜令学; 袁荣涛; 高振华; 邢士超

    2011-01-01

    Objective To invesligale the effecl of bone marrow slromal cell sheet on the conslruclion of tissue-engineered bone in dogs. Methods Bone marrow slromal cells ( BMSCs) were isolaled from iliac bone of dogs with the melhod of density gradienl cenlrifu galion in vitro. Demineralized bone malrix( DBM) were prepared from homologuous bone. DBM was composiled wilh recombination hu man bone morphogenelic prolein-2( rhBMP-2). BMSCs induced by osleogenic DMEM al passage 3 were incubaled in the lemperalure responsive culture dish to make the BMSCs cell sheel. BMSCs cell sheel combined wilh DBM/rhBMP-2/BMSCs was implanted around the vessels of lattisimus dorsi muscle on the left side in the experiment group, and DBM/rhBMP-2/BMSCs without BMSCs cell sheet was implanted around the vessels of lattisimus dorsi muscle on the right side in the control group. 8,12,16 weeks after operation, the bone formation was investigated by histological observation. Results Osteogenesis result was experimental group > control group. Newly formed bone tissue in two groups were significantly different( P < 0. 05). 16 weeks after operation, a large number of lamellar bone and haversian system formed in experimental group,with red bone marrow in the bone marrow cavity. Lamellar bone formed in control group without haversian system and red bone marrow. Conclusions BMSCs cell sheet could promote the formation of tissue-engineered bone with dense lamellar bone and haversian system.%目的 探讨犬骨髓基质细胞(bone marrow stromal cells,BMSCs)片层在构建组织工程骨中的价值.方法 抽取犬髂骨骨髓,采用密度梯度离心法分离犬骨髓基质细胞(BMSCs).制备犬同种异体脱钙骨基质(dermineralized bone matrix,DBM).将人重组骨形态发生蛋白-2(recombination human bone morphogenetic protein-2,rhBMP-2)复合到DBM上.将经成骨诱导的第3代细胞接种于温度反应性培养皿中,制备BMSCs细胞片层.用得到的BMSCs细胞片层包裹DBM/rhBMP-2

  8. Extracellular matrix-inspired growth factor delivery systems for bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Martino, Mikaël M. [Osaka Univ. (Japan). Immunology Frontier Research Center; Briquez, Priscilla S. [Ecole Polytechnique Federale de Lausanne (Switzerland). Inst. of Bioengineering; Maruyama, Kenta [Osaka Univ. (Japan). Immunology Frontier Research Center; Hubbell, Jeffrey A. [Ecole Polytechnique Federale de Lausanne (Switzerland). Inst. of Bioengineering; Univ. of Chicago, IL (United States). Inst. for Molecular Engineering; Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-04-17

    Growth factors are very promising molecules to enhance bone regeneration. However, their translation to clinical use has been seriously limited, facing issues related to safety and cost-effectiveness. These problems derive from the vastly supra-physiological doses of growth factor used without optimized delivery systems. Therefore, these issues have motivated the development of new delivery systems allowing better control of the spatio-temporal release and signaling of growth factors. Because the extracellular matrix (ECM) naturally plays a fundamental role in coordinating growth factor activity in vivo, a number of novel delivery systems have been inspired by the growth factor regulatory function of the ECM. After introducing the role of growth factors during the bone regeneration process, this review exposes different issues that growth factor-based therapies have encountered in the clinic and highlights recent delivery approaches based on the natural interaction between growth factor and the ECM.

  9. In vivo study of extracellular matrix coating enhancing fixation of the pedicle screw-bone's interface

    Institute of Scientific and Technical Information of China (English)

    LIU Guo-min; ZHANG Xing-yi; XU Chuan-jie; ZHU Xiao-min; WANG Jun; LIU Yi

    2011-01-01

    Background Based on in vivo research on the effect of the coating of the extracellular matrix composition of pedicle screws on the conduction and induction of bone formation in young sheep,the aim of this study was to investigate the application of coated pedicle screws in sheep with scoliosis whose spines are under constant development.Methods Four groups of pedicle screws were randomly implanted into bilateral L2-L5 pedicles of 2.5- to 3-month-old sheep.A static experiment was performed on one side and a loading test was performed on the other side by implanting connecting rods at the L2-L3 and L4-L5 segments.The changes in the force on the coated screws and the combination of the surface of the coated screws with the surrounding bone in the growth process of young sheep's spines with aging were observed.After 3 months,the lumbar vertebrae with the screws were removed and examined by micro-CT,histological,and biomechanical analyses.Results Under nonloading conditions,there is bone formation around the surfaces of coated screws.The bone forming on the surface of collagen/chondroitin sulfate/hydroxyapatite coating of pedicle screws is the most,the one of the collagen / chondrcitin sulfate coating and hydroxyapatite coating is followed,and no significant difference between the two groups.In terms of the trabecular bone morphology parameters of the region of interest around the surface of the pedicle screws,such as bone mineral content,bone mineral density,tissue mineral content,tissue bone mineral density,bone volume fraction,and connection density,those associated with collagen/chondroitin sulfate/hydroxyapatite coatings are largest and those unassociated with coatings are smallest.Under nonloading conditions,the pullout strength of the collagen/chondroitin sulfate/hydroxyapatite-coated screws was largest,and that of the uncoated screws was minimal (P <0.01).Under loading conditions,the maximum pullout strength of each group of pedicle screws was less than that

  10. Contribution of matrix vesicles and alkaline phosphatase to ectopic bone formation

    Directory of Open Access Journals (Sweden)

    Ciancaglini P.

    2006-01-01

    Full Text Available Endochondral calcification involves the participation of matrix vesicles (MVs, but it remains unclear whether calcification ectopically induced by implants of demineralized bone matrix also proceeds via MVs. Ectopic bone formation was induced by implanting rat demineralized diaphyseal bone matrix into the dorsal subcutaneous tissue of Wistar rats and was examined histologically and biochemically. Budding of MVs from chondrocytes was observed to serve as nucleation sites for mineralization during induced ectopic osteogenesis, presenting a diameter with Gaussian distribution with a median of 306 ± 103 nm. While the role of tissue-nonspecific alkaline phosphatase (TNAP during mineralization involves hydrolysis of inorganic pyrophosphate (PPi, it is unclear how the microenvironment of MV may affect the ability of TNAP to hydrolyze the variety of substrates present at sites of mineralization. We show that the implants contain high levels of TNAP capable of hydrolyzing p-nitrophenylphosphate (pNPP, ATP and PPi. The catalytic properties of glycosyl phosphatidylinositol-anchored, polidocanol-solubilized and phosphatidylinositol-specific phospholipase C-released TNAP were compared using pNPP, ATP and PPi as substrates. While the enzymatic efficiency (k cat/Km remained comparable between polidocanol-solubilized and membrane-bound TNAP for all three substrates, the k cat/Km for the phosphatidylinositol-specific phospholipase C-solubilized enzyme increased approximately 108-, 56-, and 556-fold for pNPP, ATP and PPi, respectively, compared to the membrane-bound enzyme. Our data are consistent with the involvement of MVs during ectopic calcification and also suggest that the location of TNAP on the membrane of MVs may play a role in determining substrate selectivity in this micro-compartment.

  11. Time domain optical coherence tomography investigation of bone matrix interface in rat femurs

    Science.gov (United States)

    Rusu, Laura-Cristina; Negruá¹±iu, Meda-Lavinia; Sinescu, Cosmin; Hoinoiu, Bogdan; Topala, Florin-Ionel; Duma, Virgil-Florin; Rominu, Mihai; Podoleanu, Adrian G.

    2013-08-01

    The materials used to fabricate scaffolds for tissue engineering are derived from synthetic polymers, mainly from the polyester family, or from natural materials (e.g., collagen and chitosan). The mechanical properties and the structural properties of these materials can be tailored by adjusting the molecular weight, the crystalline state, and the ratio of monomers in the copolymers. Quality control and adjustment of the scaffold manufacturing process are essential to achieve high standard scaffolds. Most scaffolds are made from highly crystalline polymers, which inevitably result in their opaque appearance. Their 3-D opaque structure prevents the observation of internal uneven surface structures of the scaffolds under normal optical instruments, such as the traditional light microscope. The inability to easily monitor the inner structure of scaffolds as well as the interface with the old bone poses a major challenge for tissue engineering: it impedes the precise control and adjustment of the parameters that affect the cell growth in response to various mimicked culture conditions. The aim of this paper is to investigate the interface between the femur rat bone and the new bone that is obtained using a method of tissue engineering that is based on different artificial matrixes inserted in previously artificially induced defects. For this study, 15 rats were used in conformity with ethical procedures. In all the femurs a round defect was induced by drilling with a 1 mm spherical Co-Cr surgical drill. The matrixes used were Bioss and 4bone. These materials were inserted into the induced defects. The femurs were investigated at 1 week, 1 month, 2 month and three month after the surgical procedures. The interfaces were examined using Time Domain (TD) Optical Coherence Tomography (OCT) combined with Confocal Microscopy (CM). The optical configuration uses two single mode directional couplers with a superluminiscent diode as the source centered at 1300 nm. The scanning

  12. Effects of Time of Initial Exposure to MSV Sarcoma on Bone Induction by Dentine Matrix Implants and on Orthotopic Femora

    Directory of Open Access Journals (Sweden)

    Aniela Brodzikowska

    2010-09-01

    Full Text Available HCl-demineralized murine lower incisors were implanted intramuscularly into syngeneic BALB/c mice to induce heterotopic osteogenesis. Implants were exposed at the early, preosteogenic stage (4, or at the later, osteogenic stage (12 to the Moloney sarcoma virus (MSV, which within 3–4 days results in a sarcoma. The yield of bone induction was determined by weight of dry bone mass following NaOH hydrolysis of soft tissues. To verify the effect of this sarcoma on orthotopic local femoral bone, the dry mass of the tumor-exposed femora was measured and compared with the weight of MSV-unexposed contralateral controls. MSV-sarcoma or cells involved with their spontaneous rejection have a stimulatory effect on the periosteal membrane of the tumor-adjacent femoral bones, increasing their dry mass on average by 18%. No stimulatory effect on heterotopic bone induction was observed when the MSV sarcoma grew during the early, preosteogenic stage (4 onward, but when the tooth matrix had been exposed to such tumor at the already bone-forming stage, (12 onward, the yield of bone induction was enhanced. Thus, it is postulated that lesions induced by MSV during the early, preosteogenic stage inhibit recruitment of osteoprogenitor cells or degrade Bone Morphogenetic Proteins (BMPs released by matrix resorbing inflammatory cells, whereas when acting on already existing bone they have a stimulatory effect.

  13. In vitro cartilage tissue engineering using cancellous bone matrix gelatin as a biodegradable scaffold.

    Science.gov (United States)

    Yang, Bo; Yin, Zhanhai; Cao, Junling; Shi, Zhongli; Zhang, Zengtie; Song, Hongxing; Liu, Fuqiang; Caterson, Bruce

    2010-08-01

    In this study, we constructed tissue-engineered cartilage using allogeneic cancellous bone matrix gelatin (BMG) as a scaffold. Allogeneic BMG was prepared by sequential defatting, demineralization and denaturation. Isolated rabbit chondrocytes were seeded onto allogeneic cancellous BMG, and cell-BMG constructs were harvested after 1, 3 and 6 weeks for evaluation by hematoxylin and eosin staining for overall morphology, toluidine blue for extracellular matrix (ECM) proteoglycans, immunohistochemical staining for collagen type II and a transmission electron microscope for examining cellular microstructure on BMG. The prepared BMG was highly porous with mechanical strength adjustable by duration of demineralization and was easily trimmed for tissue repair. Cancellous BMG showed favorable porosity for cell habitation and metabolism material exchange with larger pore sizes (100-500 microm) than in cortical BMG (5-15 microm), allowing cell penetration. Cancellous BMG also showed good biocompatibility, which supported chondrocyte proliferation and sustained their differentiated phenotype in culture for up to 6 weeks. Rich and evenly distributed cartilage ECM proteoglycans and collagen type II were observed around chondrocytes on the surface and inside the pores throughout the cancellous BMG. Considering the large supply of banked bone allografts and relatively convenient preparation, our study suggests that allogeneic cancellous BMG is a promising scaffold for cartilage tissue engineering.

  14. In vitro cartilage tissue engineering using cancellous bone matrix gelatin as a biodegradable scaffold

    Energy Technology Data Exchange (ETDEWEB)

    Yang Bo; Yin Zhanhai; Cao Junling; Shi Zhongli; Zhang Zengtie; Liu Fuqiang [College of Medicine, Xi' an Jiaotong University, Yanta West Road, No 76, Yanta District, Xi' an, Shaanxi Province 710061 (China); Song Hongxing [Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Caterson, Bruce, E-mail: caojl@mail.xjtu.edu.c [Connective Tissue Biology Laboratories, Cardiff School of Biosciences, Cardiff University, Biomedical Building, Museum Avenue, Cardiff, CF10 3US (United Kingdom)

    2010-08-01

    In this study, we constructed tissue-engineered cartilage using allogeneic cancellous bone matrix gelatin (BMG) as a scaffold. Allogeneic BMG was prepared by sequential defatting, demineralization and denaturation. Isolated rabbit chondrocytes were seeded onto allogeneic cancellous BMG, and cell-BMG constructs were harvested after 1, 3 and 6 weeks for evaluation by hematoxylin and eosin staining for overall morphology, toluidine blue for extracellular matrix (ECM) proteoglycans, immunohistochemical staining for collagen type II and a transmission electron microscope for examining cellular microstructure on BMG. The prepared BMG was highly porous with mechanical strength adjustable by duration of demineralization and was easily trimmed for tissue repair. Cancellous BMG showed favorable porosity for cell habitation and metabolism material exchange with larger pore sizes (100-500 {mu}m) than in cortical BMG (5-15 {mu}m), allowing cell penetration. Cancellous BMG also showed good biocompatibility, which supported chondrocyte proliferation and sustained their differentiated phenotype in culture for up to 6 weeks. Rich and evenly distributed cartilage ECM proteoglycans and collagen type II were observed around chondrocytes on the surface and inside the pores throughout the cancellous BMG. Considering the large supply of banked bone allografts and relatively convenient preparation, our study suggests that allogeneic cancellous BMG is a promising scaffold for cartilage tissue engineering.

  15. Influence of mineral phase in mineralization of a biocomposite containing chitosan, demineralized bone matrix and bone ash—in vitro study

    Indian Academy of Sciences (India)

    Krithiga Gunasekaran; Santhosh Kumar Baskar; Divya Sapphire Mohan; Thotapalli P Sastry

    2014-05-01

    A resorbable composite which acts as a active barrier in guided bone regeneration was fabricated using chitosan, demineralized bone matrix and bone ash. Its potential to form bone like apatite in simulated body fluid was assessed in this study. The mechanical strength of these composites was correlated with bone ash ratios and composites with better tensile strength were studied for their acellular bioactivity by incubating in simulated body fluid for 21 days. Composites without bone ash did not show acellular bioactivity which was confirmed by thermogravimetric analysis. In case of biocomposites with bone ash, there was an increase in residual weight indicating the mineralization of the composite. The composite containing bone ash has shown the peaks related to phosphate vibrations in its Fourier-transform infrared spectrum. Scanning micrographs revealed formation of apatite like crystals on its surface. Ca/P ratio was found to be 1.7 which is nearer to that of natural bone. Thus, prepared composites can be used as resorbable biocomposite in maxillofacial and oral defects.

  16. Ridge preservation with acellular dermal matrix and anorganic bone matrix cell-binding peptide P-15 after tooth extraction in humans. A histologic and morphometric study

    Directory of Open Access Journals (Sweden)

    Arthur B. Novaes Jr

    2012-06-01

    Full Text Available Aim: The aim of this study was to analyze by histomorphometric parameters the use of acellular dermal matrix (ADM with or without anorganic bovine bone matrix (ABM / synthetic cell-binding peptide P-15 in the formation of bone in human alveoli. Materials and methods: Eighteen patients in need of extraction of maxillary anterior teeth were selected and randomly assigned to the test group (ADM plus ABM/P-15 or the control group (ADM only. Histomorphometric measurements and histological analysis were recorded about 6 months after ridge preservation procedures in ten patients. The amount of newly formed bone, the most recently formed bone, fibrous tissue plus marrow spaces and remaining graft particles were measured and analyzed. Results: At 6 months, the new bone area parameter and the percentage of fibrous tissue plus marrow space areas showed higher values to the control group, and statistically significant differences when compared with the test group (p=0.03. Conclusion: The ADM acted as a membrane. The association of ABM/P-15 with ADM resulted in new bone formation within the alveoli, but the results were not considered relevant when used in this indication.

  17. Histone deacetylase 3 supports endochondral bone formation by controlling cytokine signaling and matrix remodeling.

    Science.gov (United States)

    Carpio, Lomeli R; Bradley, Elizabeth W; McGee-Lawrence, Meghan E; Weivoda, Megan M; Poston, Daniel D; Dudakovic, Amel; Xu, Ming; Tchkonia, Tamar; Kirkland, James L; van Wijnen, Andre J; Oursler, Merry Jo; Westendorf, Jennifer J

    2016-01-01

    Histone deacetylase (HDAC) inhibitors are efficacious epigenetic-based therapies for some cancers and neurological disorders; however, each of these drugs inhibits multiple HDACs and has detrimental effects on the skeleton. To better understand how HDAC inhibitors affect endochondral bone formation, we conditionally deleted one of their targets, Hdac3, pre- and postnatally in type II collagen α1 (Col2α1)-expressing chondrocytes. Embryonic deletion was lethal, but postnatal deletion of Hdac3 delayed secondary ossification center formation, altered maturation of growth plate chondrocytes, and increased osteoclast activity in the primary spongiosa. HDAC3-deficient chondrocytes exhibited increased expression of cytokine and matrix-degrading genes (Il-6, Mmp3, Mmp13, and Saa3) and a reduced abundance of genes related to extracellular matrix production, bone development, and ossification (Acan, Col2a1, Ihh, and Col10a1). Histone acetylation increased at and near genes that had increased expression. The acetylation and activation of nuclear factor κB (NF-κB) were also increased in HDAC3-deficient chondrocytes. Increased cytokine signaling promoted autocrine activation of Janus kinase (JAK)-signal transducer and activator of transcription (STAT) and NF-κB pathways to suppress chondrocyte maturation, as well as paracrine activation of osteoclasts and bone resorption. Blockade of interleukin-6 (IL-6)-JAK-STAT signaling, NF-κB signaling, and bromodomain extraterminal proteins, which recognize acetylated lysines and promote transcriptional elongation, significantly reduced Il-6 and Mmp13 expression in HDAC3-deficient chondrocytes and secondary activation in osteoclasts. The JAK inhibitor ruxolitinib also reduced osteoclast activity in Hdac3 conditional knockout mice. Thus, HDAC3 controls the temporal and spatial expression of tissue-remodeling genes and inflammatory responses in chondrocytes to ensure proper endochondral ossification during development. PMID:27507649

  18. Novel biocompatible polymeric blends for bone regeneration: Material and matrix design and development

    Science.gov (United States)

    Deng, Meng

    The first part of the work presented in this dissertation is focused on the design and development of novel miscible and biocompatible polyphosphazene-polyester blends as candidate materials for scaffold-based bone tissue engineering applications. Biodegradable polyesters such as poly(lactide-co-glycolide) (PLAGA) are among the most widely used polymeric materials for bone tissue engineering. However, acidic degradation products resulting from the bulk degradation mechanism often lead to catastrophic failure of the structure integrity, and adversely affect biocompatibility both in vitro and in vivo. One promising approach to circumvent these limitations is to blend PLAGA with other macromolecules that can buffer the acidic degradation products with a controlled degradation rate. Biodegradable polyphosphazenes (PPHOS), a new class of biomedical materials, have proved to be superior candidate materials to achieve this objective due to their unique buffering degradation products. A highly practical blending approach was adopted to develop novel biocompatible, miscible blends of these two polymers. In order to achieve this miscibility, a series of amino acid ester, alkoxy, aryloxy, and dipeptide substituted PPHOS were synthesized to promote hydrogen bonding interactions with PLAGA. Five mixed-substituent PPHOS compositions were designed and blended with PLAGA at different weight ratios producing candidate blends via a mutual solvent method. Preliminary characterization identified two specific side groups namely glycylglycine dipeptide and phenylphenoxy that resulted in improved blend miscibility and enhanced in vitro osteocompatibility. These findings led to the synthesis of a mixed-substituent polyphosphazene poly[(glycine ethyl glycinato)1(phenylphenoxy)1phosphazene] (PNGEGPhPh) for blending with PLAGA. Two dipeptide-based blends having weight ratios of PNGEGPhPh to PLAGA namely 25:75 (Matrix1) and 50:50 (Matrix2) were fabricated. Both of the blends were

  19. Biological conduits combining bone marrow mesenchymal stem cells and extracellular matrix to treat long-segment sciatic nerve defects

    Institute of Scientific and Technical Information of China (English)

    Yang Wang; Zheng-wei Li; Min Luo; Ya-jun Li; Ke-qiang Zhang

    2015-01-01

    The transplantation of polylactic glycolic acid conduits combining bone marrow mesenchymal stem cells and extracellular matrix gel for the repair of sciatic nerve injury is effective in some re-spects, but few data comparing the biomechanical factors related to the sciatic nerve are available. In the present study, rabbit models of 10-mm sciatic nerve defects were prepared. The rabbit models were repaired with autologous nerve, a polylactic glycolic acid conduit+bone marrow mesenchymal stem cells, or a polylactic glycolic acid conduit+bone marrow mesenchymal stem cells+extracellular matrix gel. After 24 weeks, mechanical testing was performed to determine the stress relaxation and creep parameters. Following sciatic nerve injury, the magnitudes of the stress decrease and strain increase at 7,200 seconds were largest in the polylactic glycolic acid conduit+bone marrow mesenchymal stem cells+extracellular matrix gel group, followed by the polylactic glycolic acid conduit+bone marrow mesenchymal stem cells group, and then the autologous nerve group. Hematoxylin-eosin staining demonstrated that compared with the poly-lactic glycolic acid conduit+bone marrow mesenchymal stem cells group and the autologous nerve group, a more complete sciatic nerve regeneration was found, including good myelination, regularly arranged nerve ifbers, and a completely degraded and resorbed conduit, in the polylac-tic glycolic acid conduit+bone marrow mesenchymal stem cells+extracellular matrix gel group. These results indicate that bridging 10-mm sciatic nerve defects with a polylactic glycolic acid conduit+bone marrow mesenchymal stem cells+extracellular matrix gel construct increases the stress relaxation under a constant strain, reducing anastomotic tension. Large elongations under a constant physiological load can limit the anastomotic opening and shift, which is ben-eifcial for the regeneration and functional reconstruction of sciatic nerve. Better regeneration was found with the

  20. Bone marrow derived cell-seeded extracellular matrix: A novel biomaterial in the field of wound management

    OpenAIRE

    V. Remya; Naveen Kumar; Sharma, A. K.; Mathew, Dayamon D.; Mamta Negi; S.K. Maiti; Sameer Shrivastava; S. Sonal; KURADE, N.P.

    2014-01-01

    Aim: Extensive or irreversible damage to the skin often requires additional skin substitutes for reconstruction. Biomaterials have become critical components in the development of effective new medical therapies for wound care. Materials and Methods: In the present study, a cell matrix construct (bone marrow-derived cells (BMdc) seeded extracellular matrix [ECM]) was used as a biological substitute for the repair of full-thickness skin wound. ECM was developed by decellularizing fish swim ...

  1. Ornamenting 3D printed scaffolds with cell-laid extracellular matrix for bone tissue regeneration.

    Science.gov (United States)

    Pati, Falguni; Song, Tae-Ha; Rijal, Girdhari; Jang, Jinah; Kim, Sung Won; Cho, Dong-Woo

    2015-01-01

    3D printing technique is the most sophisticated technique to produce scaffolds with tailorable physical properties. But, these scaffolds often suffer from limited biological functionality as they are typically made from synthetic materials. Cell-laid mineralized ECM was shown to be potential for improving the cellular responses and drive osteogenesis of stem cells. Here, we intend to improve the biological functionality of 3D-printed synthetic scaffolds by ornamenting them with cell-laid mineralized extracellular matrix (ECM) that mimics a bony microenvironment. We developed bone graft substitutes by using 3D printed scaffolds made from a composite of polycaprolactone (PCL), poly(lactic-co-glycolic acid) (PLGA), and β-tricalcium phosphate (β-TCP) and mineralized ECM laid by human nasal inferior turbinate tissue-derived mesenchymal stromal cells (hTMSCs). A rotary flask bioreactor was used to culture hTMSCs on the scaffolds to foster formation of mineralized ECM. A freeze/thaw cycle in hypotonic buffer was used to efficiently decellularize (97% DNA reduction) the ECM-ornamented scaffolds while preserving its main organic and inorganic components. The ECM-ornamented 3D printed scaffolds supported osteoblastic differentiation of newly-seeded hTMSCs by upregulating four typical osteoblastic genes (4-fold higher RUNX2; 3-fold higher ALP; 4-fold higher osteocalcin; and 4-fold higher osteopontin) and increasing calcium deposition compared to bare 3D printed scaffolds. In vivo, in ectopic and orthotopic models in rats, ECM-ornamented scaffolds induced greater bone formation than that of bare scaffolds. These results suggest a valuable method to produce ECM-ornamented 3D printed scaffolds as off-the-shelf bone graft substitutes that combine tunable physical properties with physiological presentation of biological signals.

  2. Using bone marrow matrix to analyze meprobamate for forensic toxicological purposes.

    Science.gov (United States)

    Bévalot, F; Gustin, M P; Cartiser, N; Gaillard, Y; Le Meur, C; Fanton, L; Guitton, J; Malicier, D

    2013-09-01

    Bone marrow (BM) analysis is of forensic interest for postmortem toxicological investigations where blood samples are unavailable or unusable. Due to the lack of studies, it remains difficult to interpret concentrations of xenobiotics measured in this matrix. Based on a statistical approach published previously to interpret meprobamate concentrations in bile and vitreous humor, we propose here a diagnostic test for interpretation of BM meprobamate concentrations from analysis of 99 sets of autopsy data. The mean age was 48 years (range 18-80 years, one unknown) for males and 50 years (range 19-80 years, one unknown) for females, with a male/female ratio at 0.768. A BM concentration threshold of 11.3 μg/g was found to be statistically equivalent to that of a blood meprobamate concentration threshold of 50 μg/ml in distinguishing overdose from therapeutic use. The intrinsic qualities of this diagnostic test were good with sensitivity of 0.82 and specificity of 0.92. Compared to previous tests published with the same objective on vitreous humor and bile, this study shows that BM is a useful alternative matrix to reveal meprobamate overdose when blood, vitreous humor, and bile are not available or unusable. PMID:23400420

  3. Using bone marrow matrix to analyze meprobamate for forensic toxicological purposes.

    Science.gov (United States)

    Bévalot, F; Gustin, M P; Cartiser, N; Gaillard, Y; Le Meur, C; Fanton, L; Guitton, J; Malicier, D

    2013-09-01

    Bone marrow (BM) analysis is of forensic interest for postmortem toxicological investigations where blood samples are unavailable or unusable. Due to the lack of studies, it remains difficult to interpret concentrations of xenobiotics measured in this matrix. Based on a statistical approach published previously to interpret meprobamate concentrations in bile and vitreous humor, we propose here a diagnostic test for interpretation of BM meprobamate concentrations from analysis of 99 sets of autopsy data. The mean age was 48 years (range 18-80 years, one unknown) for males and 50 years (range 19-80 years, one unknown) for females, with a male/female ratio at 0.768. A BM concentration threshold of 11.3 μg/g was found to be statistically equivalent to that of a blood meprobamate concentration threshold of 50 μg/ml in distinguishing overdose from therapeutic use. The intrinsic qualities of this diagnostic test were good with sensitivity of 0.82 and specificity of 0.92. Compared to previous tests published with the same objective on vitreous humor and bile, this study shows that BM is a useful alternative matrix to reveal meprobamate overdose when blood, vitreous humor, and bile are not available or unusable.

  4. The tent pole splint: a bone-supported stereolithographic surgical splint for the soft tissue matrix expansion graft procedure.

    Science.gov (United States)

    Cillo, Joseph E; Theodotou, Nicholas; Samuels, Marc; Krajekian, Joseph

    2010-06-01

    This report details the use of computer-aided planning and intraoperative stereolithographic direct-bone-contact surgical splints for the accurate extraoral placement of dental implants in the soft tissue matrix expansion (tent pole) graft of the severely resorbed mandible. PMID:20231048

  5. Biological Assessment of a Calcium Silicate Incorporated Hydroxyapatite-Gelatin Nanocomposite: A Comparison to Decellularized Bone Matrix

    Directory of Open Access Journals (Sweden)

    Dong Joon Lee

    2014-01-01

    Full Text Available Our laboratory utilized biomimicry to develop a synthetic bone scaffold based on hydroxyapatite-gelatin-calcium silicate (HGCS. Here, we evaluated the potential of HGCS scaffold in bone formation in vivo using the rat calvarial critical-sized defect (CSD. Twelve Sprague-Dawley rats were randomized to four groups: control (defect only, decellularized bone matrix (DECBM, and HGCS with and without multipotent adult progenitor cells (MAPCs. DECBM was prepared by removing all the cells using SDS and NH4OH. After 12 weeks, the CSD specimens were harvested to evaluate radiographical, histological, and histomorphometrical outcomes. The in vitro osteogenic effects of the materials were studied by focal adhesion, MTS, and alizarin red. Micro-CT analysis indicated that the DECBM and the HGCS scaffold groups developed greater radiopaque areas than the other groups. Bone regeneration, assessed using histological analysis and fluorochrome labeling, was the highest in the HGCS scaffold seeded with MAPCs. The DECBM group showed limited osteoinductivity, causing a gap between the implant and host tissue. The group grafted with HGCS+MAPCs resulting in twice as much new bone formation seems to indicate a role for effective bone regeneration. In conclusion, the novel HGCS scaffold could improve bone regeneration and is a promising carrier for stem cell-mediated bone regeneration.

  6. Biological assessment of a calcium silicate incorporated hydroxyapatite-gelatin nanocomposite: a comparison to decellularized bone matrix.

    Science.gov (United States)

    Lee, Dong Joon; Padilla, Ricardo; Zhang, He; Hu, Wei-Shou; Ko, Ching-Chang

    2014-01-01

    Our laboratory utilized biomimicry to develop a synthetic bone scaffold based on hydroxyapatite-gelatin-calcium silicate (HGCS). Here, we evaluated the potential of HGCS scaffold in bone formation in vivo using the rat calvarial critical-sized defect (CSD). Twelve Sprague-Dawley rats were randomized to four groups: control (defect only), decellularized bone matrix (DECBM), and HGCS with and without multipotent adult progenitor cells (MAPCs). DECBM was prepared by removing all the cells using SDS and NH4OH. After 12 weeks, the CSD specimens were harvested to evaluate radiographical, histological, and histomorphometrical outcomes. The in vitro osteogenic effects of the materials were studied by focal adhesion, MTS, and alizarin red. Micro-CT analysis indicated that the DECBM and the HGCS scaffold groups developed greater radiopaque areas than the other groups. Bone regeneration, assessed using histological analysis and fluorochrome labeling, was the highest in the HGCS scaffold seeded with MAPCs. The DECBM group showed limited osteoinductivity, causing a gap between the implant and host tissue. The group grafted with HGCS+MAPCs resulting in twice as much new bone formation seems to indicate a role for effective bone regeneration. In conclusion, the novel HGCS scaffold could improve bone regeneration and is a promising carrier for stem cell-mediated bone regeneration. PMID:25054149

  7. Implant Composed of Demineralized Bone and Mesenchymal Stem Cells Genetically Modified with AdBMP2/AdBMP7 for the Regeneration of Bone Fractures in Ovis aries

    Science.gov (United States)

    Hernandez-Hurtado, Adelina A.; Lara-Arias, Jorge; Romero-Diaz, Viktor J.; Abrego-Guerra, Adalberto; Vilchez-Cavazos, Jose F.; Elizondo-Riojas, Guillermo; Martinez-Rodriguez, Herminia G.; Espinoza-Juarez, Marcela A.; Mendoza Lemus, Oscar F.

    2016-01-01

    Adipose-derived mesenchymal stem cells (ADMSCs) are inducible to an osteogenic phenotype by the bone morphogenetic proteins (BMPs). This facilitates the generation of implants for bone tissue regeneration. This study evaluated the in vitro osteogenic differentiation of ADMSCs transduced individually and in combination with adenoviral vectors expressing BMP2 and BMP7. Moreover, the effectiveness of the implant containing ADMSCs transduced with the adenoviral vectors AdBMP2/AdBMP7 and embedded in demineralized bone matrix (DBM) was tested in a model of tibial fracture in sheep. This graft was compared to ewes implanted with untransduced ADMSCs embedded in the same matrix and with injured but untreated animals. In vivo results showed accelerated osteogenesis in the group treated with the AdBMP2/AdBMP7 transduced ADMSC graft, which also showed improved restoration of the normal bone morphology.

  8. Differences between buccal and lingual bone quality and quantity of peri-implant regions.

    Science.gov (United States)

    Kim, Do-Gyoon; Elias, Kathy L; Jeong, Yong-Hoon; Kwon, Hyun-Jung; Clements, Matthew; Brantley, William A; Lee, Damian J; Han, Jung-Suk

    2016-07-01

    The objective of the current study was to examine whether peri-implant bone tissue properties are different between the buccal and lingual regions treated by growth factors. Four dental implant groups were used: titanium (Ti) implants, alumina-blasted zirconia implants (ATZ-N), alumina-blasted zirconia implants with demineralized bone matrix (DBM) (ATZ-D), and alumina-blasted zirconia implants with rhBMP-2 (ATZ-B). These implants were placed in mandibles of six male dogs. Nanoindentation elastic modulus (E) and plastic hardness (H) were measured for the buccal and lingual bone tissues adjacent and away from the implants at 3 and 6 weeks post-implantation. A total of 2281 indentations were conducted for 48 placed implants. The peri-implant buccal region had less bone quantity resulting from lower height and narrower width of bone tissue than the lingual region. Buccal bone tissues had significant greater mean values of E and H than lingual bone tissues at each distance and healing period (pimplant treatment groups displayed lower mean values of the E at the lingual bone tissues than at the buccal bone tissues (pimplant group (p=0.758). The DBM and rhBMP-2 treatments stimulated more peri-implant bone remodeling at the lingual region, producing more immature new bone tissues with lower E than at the buccal region. This finding suggests that the growth factor treatments to the zirconia implant system may help balance the quantity and quality differences between the peri-implant bone tissues. PMID:26773652

  9. Bone matrix calcification during embryonic and postembryonic rat calvarial development assessed by SEM-EDX spectroscopy, XRD, and FTIR spectroscopy.

    Science.gov (United States)

    Henmi, Akiko; Okata, Hiroshi; Anada, Takahisa; Yoshinari, Mariko; Mikami, Yasuto; Suzuki, Osamu; Sasano, Yasuyuki

    2016-01-01

    Bone mineral is constituted of biological hydroxyapatite crystals. In developing bone, the mineral crystal matures and the Ca/P ratio increases. However, how an increase in the Ca/P ratio is involved in maturation of the crystal is not known. The relationships among organic components and mineral changes are also unclear. The study was designed to investigate the process of calcification during rat calvarial bone development. Calcification was evaluated by analyzing the atomic distribution and concentration of Ca, P, and C with scanning electron microscopy (SEM)-energy-dispersive X-ray (EDX) spectroscopy and changes in the crystal structure with X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. Histological analysis showed that rat calvarial bone formation started around embryonic day 16. The areas of Ca and P expanded, matching the region of the developing bone matrix, whereas the area of C became localized around bone. X-ray diffraction and FTIR analysis showed that the amorphous-like structure of the minerals at embryonic day 16 gradually transformed into poorly crystalline hydroxyapatite, whereas the proportion of mineral to protein increased until postnatal week 6. FTIR analysis also showed that crystallization of hydroxyapatite started around embryonic day 20, by which time SEM-EDX spectroscopy showed that the Ca/P ratio had increased and the C/Ca and C/P ratios had decreased significantly. The study suggests that the Ca/P molar ratio increases and the proportion of organic components such as proteins of the bone matrix decreases during the early stage of calcification, whereas crystal maturation continues throughout embryonic and postembryonic bone development.

  10. Eight-year results of site retention of anorganic bovine bone and anorganic bovine matrix.

    Science.gov (United States)

    Degidi, Marco; Perrotti, Vittoria; Piattelli, Adriano; Iezzi, Giovanna

    2013-12-01

    The long-term fate of some biomaterials is still unknown, and the reports present in the literature are not conclusive as to whether these biomaterials are resorbed over time or not. Different reports can be found with regard to the resorption behavior of anorganic bovine bone (ABB). The aim of the present study was to provide a comparative histological and histomorphometrical evaluation, in the same patient, of 2 specimens retrieved from a sinus augmented with ABB and with anorganic bovine matrix added to a cell-binding peptide (PepGen P-15), respectively, after a healing period of 6 months and after 8 years of implant loading, to evaluate the resorption of both biomaterials. A unilateral sinus augmentation procedure with ABB (50%) and with PepGen P-15 (50%) was performed in a 54-year-old male patient. Two titanium dental implants with a sandblasted and acid-etched surface were inserted after 6 months. During this procedure, 2 tissue cores were retrieved from the sinus with a trephine, before implant insertion. After an additional 6 months, a fixed prosthetic restoration was fabricated. One of these implants, after a loading period of 8 years, fractured in the coronal portion and was removed. Both specimens, one retrieved after a 6-month healing period and the other after an 8-year loading period, were treated to obtain thin ground sections. In the 6-month specimen, the histomorphometry showed that the percentage of newly formed bone was 27.2% ± 3.6%, marrow spaces 35.6% ± 2.3%, residual ABB particles 25.1% ± 1.2%, and residual PepGen P-15 particles 12.1% ± 2.2%. In the 8-year specimen, the histomorphometry showed that the percentage of newly formed bone was 51.4% ± 4.8%, marrow spaces 40% ± 7.1%, residual ABB particles 6.2% ± 0.7%, and residual PepGen P-15 particles 2.4% ± 0.5%. Both biomaterials underwent significant resorption over the course of this study. PMID:22103882

  11. A Novel High Mechanical Property PLGA Composite Matrix Loaded with Nanodiamond-Phospholipid Compound for Bone Tissue Engineering.

    Science.gov (United States)

    Zhang, Fan; Song, Qingxin; Huang, Xuan; Li, Fengning; Wang, Kun; Tang, Yixing; Hou, Canglong; Shen, Hongxing

    2016-01-20

    A potential bone tissue engineering material was produced from a biodegradable polymer, poly(lactic-co-glycolic acid) (PLGA), loaded with nanodiamond phospholipid compound (NDPC) via physical mixing. On the basis of hydrophobic effects and physical absorption, we modified the original hydrophilic surface of the nanodiamond (NDs) with phospholipids to be amphipathic, forming a typical core-shell structure. The ND-phospholipid weight ratio was optimized to generate sample NDPC50 (i.e., ND-phospholipid weight ratio of 100:50), and NDPC50 was able to be dispersed in a PLGA matrix at up to 20 wt %. Compared to a pure PLGA matrix, the introduction of 10 wt % of NDPC (i.e., sample NDPC50-PF10) resulted in a significant improvement in the material's mechanical and surface properties, including a decrease in the water contact angle from 80 to 55°, an approximately 100% increase in the Young's modulus, and an approximate 550% increase in hardness, thus closely resembling that of human cortical bone. As a novel matrix supporting human osteoblast (hFOB1.19) growth, NDPC50-PFs with different amounts of NDPC50 demonstrated no negative effects on cell proliferation and osteogenic differentiation. Furthermore, we focused on the behaviors of NDPC-PFs implanted into mice for 8 weeks and found that NDPC-PFs induced acceptable immune response and can reduce the rapid biodegradation of PLGA matrix. Our results represent the first in vivo research on ND (or NDPC) as nanofillers in a polymer matrix for bone tissue engineering. The high mechanical properties, good in vitro and in vivo biocompatibility, and increased mineralization capability suggest that biodegradable PLGA composite matrices loaded with NDPC may potentially be useful for a variety of biomedical applications, especially bone tissue engineering.

  12. Fiber-matrix interface studies on bioabsorbable composite materials for internal fixation of bone fractures. I. Raw material evaluation and measurement of fiber-matrix interfacial adhesion.

    Science.gov (United States)

    Slivka, M A; Chu, C C; Adisaputro, I A

    1997-09-15

    The objective of this study was to characterize and evaluate the performance of various fiber-matrix composite systems by studying the mechanical, thermal, and physical properties of the fiber and matrix components, and by studying the fiber-matrix interface adhesion strength using both microbond and fragmentation methods. The composites studies were poly(L-lactic acid) (PLLA) matrix reinforced with continuous fibers of either nonabsorbable AS4 carbon (C), absorbable calcium phosphate (CaP), poly(glycolic acid) (PGA), or chitin. Carbon and CaP single fibers had high Young's moduli and failed in a brittle manner. PGA and chitin single fibers had relatively lower Young's moduli and relatively higher ductility. Upon in vitro hydrolysis, CaP fibers retained 17% of their tensile strength and 39% of their Young's modulus after 12 h, PCA fibers retained 10% of their tensile strength and 52% of their Young's modulus after 16 days, and chitin fibers retained 87% of their tensile strength and 130% of their Young's modulus after 25 days. PLLA films had much lower strength and Young's moduli, but much higher ductility relative to the single fibers. Using the microbond method, the initial fiber-matrix interfacial shear strength (IFSS) of C/PLLA and CaP/PLLA microcomposites was 33.9 and 12.6 MPa, respectively. Upon in vitro hydrolysis, C/PLLA retained 49% of IFSS after 15 days and CaP/PLLA retained 46% of IFSS after 6 h. Using a fiber fragmentation method, the initial IFSS of C/PLLA, CaP/PLLA, and chitin/ PLLA was 22.2, 15.6, and 28.3 MPa, respectively. The performance of carbon fibers and C/PLLA composites was superior to the other fibers and fiber/PLLA systems, but the carbon fiber was nonabsorbable. CaP had the most suitable modulus of the absorbable fibers for fixing cortical bone fracture, but its rapid deterioration of mechanical properties and loss of IFSS limits its use. PGA and chitin fibers had suitable mechanical properties and their retention for fixing cancellous

  13. Tissue-specific calibration of extracellular matrix material properties by transforming growth factor-β and Runx2 in bone is required for hearing

    OpenAIRE

    Chang, Jolie L; Brauer, Delia S.; Johnson, Jacob; Chen, Carol G.; Akil, Omar; Balooch, Guive; Humphrey, Mary Beth; Chin, Emily N.; Porter, Alexandra E.; Butcher, Kristin; Ritchie, Robert O.; Schneider, Richard A; Lalwani, Anil; Derynck, Rik; Marshall, Grayson W.

    2010-01-01

    By investigating the role of bone quality in hearing, this study provides evidence that signaling pathways and lineage-specific transcription factors cooperate to define the tissue-specific and functionally essential material properties of the extracellular matrix.

  14. Fibrinogen is a ligand for the Staphylococcus aureus Microbial Surface Components Recognizing Adhesive Matrix Molecules (MSCRAMM) Bone sialoprotein-binding protein (Bbp)

    OpenAIRE

    Foster, Timothy

    2011-01-01

    PUBLISHED MSCRAMMs (microbial surface components recognizing adhesive matrix molecules) are bacterial surface proteins mediating adherence of the microbes to components of the extracellular matrix of the host. On Staphylococci the MSCRAMMs often have multiple ligands. Consequently we hypothesized that the S. aureus MSCRAMM Bbp (bone sialoprotein-binding protein) might recognize host molecules other than the identified bone protein. A ligand screen revealed that Bbp binds human fibrinogen (...

  15. Fibrinogen Is a Ligand for the Staphylococcus aureus Microbial Surface Components Recognizing Adhesive Matrix Molecules (MSCRAMM) Bone Sialoprotein-binding Protein (Bbp)

    OpenAIRE

    Vazquez, Vanessa; Liang, Xiaowen; Horndahl, Jenny K.; Ganesh, Vannakambadi K.; Smeds, Emanuel; Foster, Timothy J.; Hook, Magnus

    2011-01-01

    Microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) are bacterial surface proteins mediating adherence of the microbes to components of the extracellular matrix of the host. On Staphylococci, the MSCRAMMs often have multiple ligands. Consequently, we hypothesized that the Staphylococcus aureus MSCRAMM bone sialoprotein-binding protein (Bbp) might recognize host molecules other than the identified bone protein. A ligand screen revealed that Bbp binds human fibrinogen ...

  16. Spine Fusion Using Cell Matrix Composites Enriched in Bone Marrow-Derived Cells

    OpenAIRE

    Muschler, George F.; Nitto, Hironori; Matsukura, Yoichi; Boehm, Cynthia; Valdevit, Antonio; Kambic, Helen; Davros, William; Powell, Kimerly; Easley, Kirk

    2003-01-01

    Bone marrow-derived cells including osteoblastic progenitors can be concentrated rapidly from bone marrow aspirates using the surface of selected implantable matrices for selective cell attachment. Concentration of cells in this way to produce an enriched cellular composite graft improves graft efficacy. The current study was designed to test the hypothesis that the biologic milieu of a bone marrow clot will significantly improve the efficacy of such a graft. An established posterior spinal f...

  17. Morphological Similarities between DBM and an Economic Geography Model of City Growth

    Science.gov (United States)

    Cavailhès, Jean; Frankhauser, Pierre; Caruso, Geoffrey; Peesters, Dominique; Thomas, Isabelle; Vuidel, Gilles

    An urban microeconomic model of households evolving in a 2D cellular automata allows to simulate the growth of a metropolitan area where land is devoted to housing, road network and agricultural/green areas. This system is self-organised: based on individualistic decisions of economic agents who compete on the land market, the model generates a metropolitan area with houses, roads, and agriculture. Several simulation are performed. The results show strong similarities with physical Dieletric breackdown models (DBM). In particular, phase transitions in the urban morphology occur when a control parameter reaches critical values. Population density in our model and the electric potential in DBM play similar roles, which can explain these resemblances.

  18. Implications of combined ovariectomy and glucocorticoid (dexamethasone) treatment on mineral, microarchitectural, biomechanical and matrix properties of rat bone.

    Science.gov (United States)

    Govindarajan, Parameswari; Khassawna, Thaqif; Kampschulte, Marian; Böcker, Wolfgang; Huerter, Britta; Dürselen, Lutz; Faulenbach, Miriam; Heiss, Christian

    2013-12-01

    Osteoporosis is one of the deleterious side effects of long-term glucocorticoid therapy. Since the condition is particularly aggressive in postmenopausal women who are on steroid therapy, in this study we have attempted to analyse the combined effect of glucocorticoid (dexamethasone) treatment and cessation of oestrogen on rat bone. The dual aim was to generate osteoporotic bone status in a short time scale and to characterise the combination of glucocorticoid-postmenopausal osteoporotic conditions. Sprague Dawley rats (N = 42) were grouped randomly into three groups: untreated control, sham-operated and ovariectomized-steroid (OVX-Steroid) rats. Control animals were euthanized with no treatment [Month 0 (M0)], while sham and OVX-Steroid rats were monitored up to 1 month (M1) and 3 months (M3) post laparotomy/post OVX-Steroid treatment. Histology, dual-energy X-ray absorptiometry (DXA), micro-computed tomography (micro-CT), and biomechanical and mRNA expression analysis of collagenous, non-collagenous matrix proteins and osteoclast markers were examined. The study indicated enhanced osteoclastogenesis and significantly lower bone mineral density (BMD) in the OVX-Steroid rats with Z-scores below -2.5, reduced torsional strength, reduced bone volume (BV/TV%), significantly enhanced trabecular separation (Tb.S), and less trabecular number (Tb.N) compared with sham rats. Osteoclast markers, cathepsin K and MMP 9 were upregulated along with Col1α1 and biglycan with no significant expression variation in fibronectin, MMP 14, LRP-5, Car II and TNC. These results show higher bone turnover with enhanced bone resorption accompanied with reduced torsional strength in OVX-Steroid rats; and these changes were attained within a short timeframe. This could be a useful model which mimics human postmenopausal osteoporosis that is associated with steroid therapy and could prove of value both in disease diagnosis and for testing generating and testing biological agents which could

  19. Structure, photo- and triboluminescence of the lanthanoid dibenzoylmethanates: HNEt{sub 3}[Ln(dbm){sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Akerboom, Sebastiaan; Meijer, Michael S. [Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands); Siegler, Maxime A. [Small Molecule X-ray facility, Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218 (United States); Fu, Wen Tian [Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands); Bouwman, Elisabeth, E-mail: bouwman@chem.leidenuniv.nl [Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands)

    2014-01-15

    A series of lanthanoid coordination compounds with the general formula HNEt{sub 3}[Ln(dbm){sub 4}] (Ln=La, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, and Yb; dbm=dibenzoylmethanate) has been prepared and characterized. In addition, single crystals with Ln=La, Nd and Sm were obtained. Single crystal X-ray diffraction studies reveal that the compounds with Ln=La and Nd crystallize in the P2{sub 1}/c space group, while the Sm-compound crystallizes in the Pc space group. Based on powder XRD data, the compounds with Ln=Eu–Yb can be described with a monoclinic cell. Photoluminescence studies indicate that compounds with Ln=Sm and Eu exhibit bright photoluminescence characteristic of the lanthanoid ion upon excitation in the near UV range. Furthermore, HNEt{sub 3}[Sm(dbm){sub 4}] has been identified as a novel triboluminescent compound. -- Highlights: • The compounds HNEt{sub 3}[Ln(dbm){sub 4}], Ln=La, Nd, Sm, Eu, Tb, Dy, Ho Er, Tm, and Yb, have been prepared and their photophysical properties have been studied. • Crystal structures of HNEt{sub 3}[La(dbm){sub 4}], HNEt{sub 3}[Nd(dbm){sub 4}] and HNEt{sub 3}[Sm(dbm){sub 4}] are reported for the first time. • A novel, brightly triboluminescent Sm compound is reported.

  20. Development and Characterization of a Bioinspired Bone Matrix with Aligned Nanocrystalline Hydroxyapatite on Collagen Nanofibers

    Directory of Open Access Journals (Sweden)

    Hsi-Chin Wu

    2016-03-01

    Full Text Available Various kinds of three-dimensional (3D scaffolds have been designed to mimic the biological spontaneous bone formation characteristics by providing a suitable microenvironment for osteogenesis. In view of this, a natural bone-liked composite scaffold, which was combined with inorganic (hydroxyapatite, Hap and organic (type I collagen, Col phases, has been developed through a self-assembly process. This 3D porous scaffold consisting of a c-axis of Hap nanocrystals (nHap aligning along Col fibrils arrangement is similar to natural bone architecture. A significant increase in mechanical strength and elastic modulus of nHap/Col scaffold is achieved through biomimetic mineralization process when compared with simple mixture of collagen and hydroxyapatite method. It is suggested that the self-organization of Hap and Col produced in vivo could also be achieved in vitro. The oriented nHap/Col composite not only possesses bone-like microstructure and adequate mechanical properties but also enhances the regeneration and reorganization abilities of bone tissue. These results demonstrated that biomimetic nHap/Col can be successfully reconstructed as a bone graft substitute in bone tissue engineering.

  1. Concentration quenching and photostability in Eu(dbm){sub 3}phen embedded in mesoporous silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Moretti, Elisa, E-mail: elisa.moretti@unive.it [Department of Molecular Sciences and Nanosystems, Università Ca' Foscari Venezia, Via Torino 155/B, 30172 Mestre Venezia (Italy); Talon, Aldo; Storaro, Loretta [Department of Molecular Sciences and Nanosystems, Università Ca' Foscari Venezia, Via Torino 155/B, 30172 Mestre Venezia (Italy); Le Donne, Alessia; Binetti, Simona [Department of Materials Science and Solar Energy Research Center (MIB-SOLAR), University of Milano-Bicocca, Via Cozzi 53, 20125 Milano (Italy); Benedetti, Alvise; Polizzi, Stefano [Department of Molecular Sciences and Nanosystems, Università Ca' Foscari Venezia, Via Torino 155/B, 30172 Mestre Venezia (Italy)

    2014-02-15

    Ordered mesoporous silica nanoparticles (MSNs) were impregnated with different loadings of the luminescent complex tris(dibenzoylmethane) mono(1,10-phenanthroline)europium(III) (Eu(dbm){sub 3}phen), with the aim of increasing the luminescence by avoiding concentration quenching and having mainly in mind the application as spectral converter for multi-crystalline silicon solar cells. The morphological, structural and luminescence properties of the impregnated silica nanoparticles were characterized by N{sub 2} physisorption, X-ray diffraction, transmission electron microscopy, infrared spectroscopy, UV–visible spectroscopy and photoluminescence excitation and emission measurements. Photostability was tested under 1 sun (1000 W/m{sup 2}) illumination for 24 h and the related effects were inspected by UV–visible and photoluminescence spectroscopies. Impregnation of the complex into 50–70 nm MSNs with pore size tailored around 2.9 nm depressed concentration quenching and allowed the use of complex loadings as high as 23 wt%. Sunlight irradiation caused a marked increase in the luminescence intensity. -- Highlights: • Mesoporous silica nanoparticles tailored to the size of Eu{sup 3+}(dbm){sub 3}phen molecules. • Concentration quenching avoided up to 23 wt% of Eu{sup 3+}(dbm){sub 3}phen/silica. • Sun irradiation increased luminescence intensity by two order of magnitudes.

  2. Socket Preservation Therapy with Acellular Dermal Matrix and Mineralized Bone Allograft After Tooth Extraction in Humans: A Clinical and Histomorphometric Study.

    Science.gov (United States)

    Fernandes, Patricia Garani; Muglia, Valdir Antonio; Reino, Danilo Maeda; Maia, Luciana Prado; de Moraes Grisi, Marcio Fernando; de Souza, Sergio Luís; Taba, Mario; Palioto, Daniela Bazan; de Almeida, Adriana G; Novaes, Arthur Belém

    2016-01-01

    The aim of this study was to analyze through clinical and histomorphometric parameters the use of acellular dermal matrix (ADM) with or without mineralized bone allograft (AB) on bone formation in human alveoli after a 6- to 8-month healing period. A total of 19 patients in need of extraction of the maxillary anterior teeth were selected and randomly assigned to the test group (ADM plus AB) or to the control group (ADM only). Clinical and histomorphometric measurements and histologic analysis were recorded 6 to 8 months after ridge preservation procedures. Clinical parameters and amount of mineralized and nonmineralized tissue were measured and analyzed. In the clinical measurements, the test group showed reduced bone loss in the buccopalatal dimension after 6 to 8 months (intragroup analysis P acellular dermal matrix in association with mineralized bone allograft reduced alveolar bone loss in the anterior maxillae both in height and width after a follow-up period of 6 to 8 months. PMID:26901306

  3. Increased expression of osteonectin and osteopontin, two bone matrix proteins, in human breast cancer.

    OpenAIRE

    Bellahcène, A.; Castronovo, V.

    1995-01-01

    Microcalcifications are a common phenomenon associated with breast cancer and are often the only mammographic sign of a malignant breast disease. Although microcalcifications are not restricted to breast cancer and can be also associated with benign lesions, it is noteworthy that they are composed exclusively of hydroxyapatite in breast carcinoma. Hydroxyapatite is the bone-associated phosphocalcic crystal the deposition of which in bone tissue requires the coordinated expression of several m...

  4. Chemical modification of extracellular matrix by cold atmospheric plasma-generated reactive species affects chondrogenesis and bone formation.

    Science.gov (United States)

    Eisenhauer, Peter; Chernets, Natalie; Song, You; Dobrynin, Danil; Pleshko, Nancy; Steinbeck, Marla J; Freeman, Theresa A

    2016-09-01

    The goal of this study was to investigate whether cold plasma generated by dielectric barrier discharge (DBD) modifies extracellular matrices (ECM) to influence chondrogenesis and endochondral ossification. Replacement of cartilage by bone during endochondral ossification is essential in fetal skeletal development, bone growth and fracture healing. Regulation of this process by the ECM occurs through matrix remodelling, involving a variety of cell attachment molecules and growth factors, which influence cell morphology and protein expression. The commercially available ECM, Matrigel, was treated with microsecond or nanosecond pulsed (μsp or nsp, respectively) DBD frequencies conditions at the equivalent frequencies (1 kHz) or power (~1 W). Recombinant human bone morphogenetic protein-2 was added and the mixture subcutaneously injected into mice to simulate ectopic endochondral ossification. Two weeks later, the masses were extracted and analysed by microcomputed tomography. A significant increase in bone formation was observed in Matrigel treated with μsp DBD compared with control, while a significant decrease in bone formation was observed for both nsp treatments. Histological and immunohistochemical analysis showed Matrigel treated with μsp plasma increased the number of invading cells, the amount of vascular endothelial growth factor and chondrogenesis while the opposite was true for Matrigel treated with nsp plasma. In support of the in vivo Matrigel study, 10 T1/2 cells cultured in vitro on μsp DBD-treated type I collagen showed increased expression of adhesion proteins and activation of survival pathways, which decreased with nsp plasma treatments. These results indicate DBD modification of ECM can influence cellular behaviours to accelerate or inhibit chondrogenesis and endochondral ossification. Copyright © 2016 John Wiley & Sons, Ltd.

  5. The Effect of Bioceramic Composite Extracellular Matrixes Used to Repair Bone Deficiency on Relevant Blood Biochemical Indices

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    At the base of experimental animal model construction of bone defect in New Zealand rabbit, the promoting repair effect of bioactive ceramics on bone defect as well as its machanism was studied through testing body mineral elements, enzymes related to bone morphogenetic proteins and some biochemical indexes. Refering to some documents, materials of TCP, CHA and HA were combined and TCP/BMP/ TCP-β1 and CHA/BMP/ TCP-β1, HA/BMP/ TCP-β1 composite materials were made. All kinds of them were implanted into the radial defect site of rabbit, respectively. The chosen blood indexes (Ca, P, ALP, GGT, AST, ALT, TPA, BUN and Cr) were tested by colorimetry, speed rate and bromocresol green testing methods. No abnormal effects were found in any animal after operation. Serum concentrations of Ca, P and ALP were increased with the length of time in all groups of the three kinds of composite material, mixed material and pure materials. The increases in composite material groups were more significant ( P <0.05). Comparison of the three kinds of material showed TCP > CHA > HA. There was a tendency of increased TPA and decreased BUN with the length of time. There was no significant difference between the composite material groups and pure material group (P >0.05). The three kinds of bioactive ceramics composed of extracellular matrix could increase the serum concentrations of Ca and P and activity of ALP after being implanted into defect bone and showed some repairing capacity. This provided a new area of machanism study of bone defect repair by biomaterials.

  6. Bone

    Science.gov (United States)

    Helmberger, Thomas K.; Hoffmann, Ralf-Thorsten

    The typical clinical signs in bone tumours are pain, destruction and destabilization, immobilization, neurologic deficits, and finally functional impairment. Primary malignant bone tumours are a rare entity, accounting for about 0.2% of all malignancies. Also benign primary bone tumours are in total rare and mostly asymptomatic. The most common symptomatic benign bone tumour is osteoid osteoma with an incidence of 1:2000.

  7. Human osteoblast-like cells respond to mechanical strain with increased bone matrix protein production independent of hormonal regulation

    Science.gov (United States)

    Harter, L. V.; Hruska, K. A.; Duncan, R. L.

    1995-01-01

    Exposure of osteosarcoma cell lines to chronic intermittent strain increases the activity of mechano-sensitive cation (SA-cat) channels. The impact of mechano-transduction on osteoblast function has not been well studied. We analyzed the expression and production of bone matrix proteins in human osteoblast-like osteosarcoma cells, OHS-4, in response to chronic intermittent mechanical strain. The OHS-4 cells exhibit type I collagen production, 1,25-Dihydroxyvitamin D-inducible osteocalcin, and mineralization of the extracellular matrix. The matrix protein message level was determined from total RNA isolated from cells exposed to 1-4 days of chronic intermittent strain. Northern analysis for type I collagen indicated that strain increased collagen message after 48 h. Immunofluorescent labeling of type I collagen demonstrated that secretion was also enhanced with mechanical strain. Osteopontin message levels were increased several-fold by the application of mechanical load in the absence of vitamin D, and the two stimuli together produced an additive effect. Osteocalcin secretion was also increased with cyclic strain. Osteocalcin levels were not detectable in vitamin D-untreated control cells. However, after 4 days of induced load, significant levels of osteocalcin were observed in the medium. With vitamin D present, osteocalcin levels were 4 times higher in the medium of strained cells compared to nonstrained controls. We conclude that mechanical strain of osteoblast-like cells is sufficient to increase the transcription and secretion of matrix proteins via mechano-transduction without hormonal induction.

  8. Construction of tissue engineering bone with bone marrow stromal cell sheets%应用骨髓基质细胞片层构建组织工程骨的实验研究

    Institute of Scientific and Technical Information of China (English)

    卜令学; 王艳辉; 李宁毅; 高振华; 陈欣; 荆恒

    2011-01-01

    目的 应用犬骨髓基质细胞片层构建组织工程骨,为临床提供组织工程骨来源.方法 分离培养传代犬骨髓基质细胞(bone marrow stromal cell,BMSC).将经成骨诱导的第3代BMSC接种于温度反应性培养皿中,制备BMSC细胞片层.制备犬同种异体脱钙骨基质(decalcification bone matrixes,DBM).实验用16只犬分为4组,每组4只,采用自身对照.将复合体BMSC片层-人重组骨形态生成蛋白2( rhBMP-2) -BMSC-DBM植入犬左侧背阔肌肌筋膜下为实验侧,同法右侧植入DBM-rhBMP-2-BMSC为对照侧.术后4、8、12、16周取材行组织学观察,评价体内异位成骨的情况.结果 实验侧成骨优于对照侧,成骨面积实验侧>对照侧,两侧差异有统计学意义(P<0.05).术后16周,实验侧板层骨连接成片,可见骨单位,骨髓腔内可见红骨髓.结论 BMSC细胞片层可促进功能性组织工程骨的形成.%Objective To construct tissue engineering bone with bone marrow stromal cell(BMSC)sheets of dogs.Methods BMSC were derived from dog bone marrow and cell sheets were prepared with temperature-responsive dishes after the cells were induced by osteogenesis.Allogeneic dogs decalcification bone matrixes(DBM) were prepared.Sixteen dogs were divided into 4 groups.The MSC cell sheets-rhBMP2-BMSC-DBM were implanted under the left latissimus dorsi myofascial as the experimental side; while the thBMP-2-BMSC-DBM were implanted in the right side as the control.Ectopic bone formation in vivo was evaluated by histological examination 4,8,12,16 weeks after operation.Results The osteogenesis in the experimental group was better than that in the control group.New bone area in the experimental side was larger than that in the control group,and the difference was significant ( P < 0.05 ).After 16 weeks,lamellar bone was connected into a film in the experimental group.Haversian system and red bone marrow could be seen.Conclusions BMSC cell sheets could promote the bone formation of

  9. Self-assembled composite matrix in a hierarchical 3-D scaffold for bone tissue engineering

    DEFF Research Database (Denmark)

    Chen, Muwan; Le, Dang Quang Svend; Baatrup, Anette;

    2011-01-01

    MSC seeding efficiency, proliferation, distribution and differentiation. Porous PCL meshes prepared by fused deposition modeling (FDM) were embedded in matrix of hyaluronic acid, methylated collagen and terpolymer via polyelectrolyte complex coacervation. Scaffolds were cultured statically and dynamically...

  10. A multicentre randomized controlled clinical trial on the treatment of intrabony defects with enamel matrix derivatives/synthetic bone graft or enamel matrix derivatives alone?Results after 12 months

    OpenAIRE

    Meyle, Joerg; Hoffmann, Thomas; Topoll, Heinz; Heinz, Bernd; Al-Machot, Eli; Jervøe-Storm, Pia-Merete; Jepsen, Søren; Eickholz, Peter; Meiss, Christian

    2011-01-01

    Abstract Objectives: Comparison of clinical and radiographic outcomes of a combination of enamel matrix derivatives (EMD) and a synthetic bone graft (SBG) with EMD alone in wide and deep 1- and 2- wall intrabony defects 12 months after treatment. Method: In 73 patients with chronic periodontitis and one intrabony lesion, defects were randomly assigned to EMD/SBG (test) or EMD (control). Bone sounding, attachment levels, probing pocket depths, bleeding on probing and recessions w...

  11. Synthesis and characterization of a nanostructured matrix hydroxyapatite ceramic bone reconstruction

    International Nuclear Information System (INIS)

    The nanostructured ceramics have been shown promise as biomaterials for bone reconstruction. Among calcium phosphates, hydroxyapatite Ca/P ratio = 1.67 mol stands out because of its crystallographic similarity with the mineral bone phase and biocompatibility. This work was based on synthesis and characterization of a nanostructured hydroxyapatite for use in reconstituting bone tissue. The synthesis method for obtaining the bioceramic powder occurred at process of dissolution/precipitation, involving CaO solid/liquid and phosphoric acid required for forming the composition of Ca/P = 1.67 mole. The material recovered from the synthesis was calcined at 900 ° C/2h, providing the hydroxyapatite powder nanometer. This was subjected to mechanical fragmentation process in mill attritor, providing a hydroxyapatite with modified surface morphology. The results presented relate to morphological characterization studies (SEM), mineralogical (XRD), chemical (FTIR) and particle size distribution, using the laser particle size analysis method. Such results showed the formation of hydroxyapatite phase and morphology satisfactory for use in reconstituting bone tissue

  12. Effect of acemannan, an extracted polysaccharide from Aloe vera, on BMSCs proliferation, differentiation, extracellular matrix synthesis, mineralization, and bone formation in a tooth extraction model.

    Science.gov (United States)

    Boonyagul, Sani; Banlunara, Wijit; Sangvanich, Polkit; Thunyakitpisal, Pasutha

    2014-07-01

    Aloe vera is a traditional wound healing medicine. We hypothesized acemannan, a polysaccharide extracted from Aloe vera gel, could affect bone formation. Primary rat bone marrow stromal cells (BMSCs) were treated with various concentrations of acemannan. New DNA synthesis, VEGF, BMP-2, alkaline phosphatase activity, bone sialoprotein, osteopontin expression, and mineralization were determined by [(3)H] thymidine incorporation assay, ELISA, biochemical assay, western blotting, and Alizarin Red staining, respectively. In an animal study, mandibular right incisors of male Sprague-Dawley rats were extracted and an acemannan treated sponge was placed in the socket. After 1, 2, and 4 weeks, the mandibles were dissected. Bone formation was evaluated by dual-energy X-ray absorptiometry and histopathological examination. The in vitro results revealed acemannan significantly increased BMSC proliferation, VEGF, BMP-2, alkaline phosphatase activity, bone sialoprotein and osteopontin expression, and mineralization. In-vivo results showed acemannan-treated groups had higher bone mineral density and faster bone healing compared with untreated controls. A substantial ingrowth of bone trabeculae was observed in acemannan-treated groups. These data suggest acemannan could function as a bioactive molecule inducing bone formation by stimulating BMSCs proliferation, differentiation into osteoblasts, and extracellular matrix synthesis. Acemannan could be a candidate natural biomaterial for bone regeneration.

  13. Synthesis and photovoltaic properties of new europium complex Eu(DBM)3(CPyBM)

    Institute of Scientific and Technical Information of China (English)

    Li Ying Zhang; Bin Li; Shu Mei Yue; Wen Lian Li

    2007-01-01

    A new europium(Ⅲ) complex, tris(dibenzoylmethanate){1-[9-hexyl-9-carbazole]-2-(2-pyridyl)-benzimidazole]europium(Ⅲ)[Eu(DBM)3(CPyBM)] was synthesized and used as an electron-acceptor and electron-transport layer in organic photovoltaic (PV)device. Power conversion efficiency achieved from the device was 1.04% under illumination with 365 nm UV light at 1.6 mW/cm2.Compared with the previous reported devices based on Eu(Ⅲ) complexes, the PV performances were improved. The working mechanism of the organic PV device was discussed.

  14. Effects of matrix metalloproteinase-1 on the myogenic differentiation of bone marrow-derived mesenchymal stem cells in vitro

    International Nuclear Information System (INIS)

    Highlights: ► MMP-1 is a member of the zinc-dependent endopeptidase family. ► MMP-1 has no cytotoxic effects on BMSCs. ► MMP-1 can promote the myogenic differentiation of BMSCs. ► MyoD and desmin were chosen as myogenic markers in this study. -- Abstract: Matrix metalloproteinase-1 (MMP-1) is a member of the family of zinc-dependent endopeptidases that are capable of degrading extracellular matrix (ECM) and certain non-matrix proteins. It has been shown that MMP-1 can enhance muscle regeneration by improving the differentiation and migration of myoblasts. However, it is still not known whether MMP-1 can promote the myogenesis of bone marrow-derived mesenchymal stem cells (BMSCs). To address this question, we isolated BMSCs from C57BL/6J mice and investigated the effects of MMP-1 on their proliferation and myogenic differentiation. Our results showed that MMP-1 treatment, which had no cytotoxic effects on BMSCs, increased the mRNA and protein levels of MyoD and desmin in a dose-dependent manner, indicating that MMP-1 promoted myogenic differentiation of BMSCs in vitro. These results suggest that BMSCs may have a therapeutic potential for treating muscular disorders.

  15. Evaluation of bone matrix gelatin/fibrin glue and chitosan/gelatin composite scaffolds for cartilage tissue engineering.

    Science.gov (United States)

    Wang, Z H; Zhang, J; Zhang, Q; Gao, Y; Yan, J; Zhao, X Y; Yang, Y Y; Kong, D M; Zhao, J; Shi, Y X; Li, X L

    2016-01-01

    This study was designed to evaluate bone matrix gelatin (BMG)/fibrin glue and chitosan/gelatin composite scaffolds for cartilage tissue engineering. Chondrocytes were isolated from costal cartilage of Sprague-Dawley rats and seeded on BMG/fibrin glue or chitosan/gelatin composite scaffolds. After different in vitro culture durations, the scaffolds were subjected to hematoxylin and eosin, Masson's trichrome, and toluidine blue staining, anti-collagen II and anti-aggrecan immunohistochemistry, and scanning electronic microscopy (SEM) analysis. After 2 weeks of culture, chondrocytes were distributed evenly on the surfaces of both scaffolds. Cell numbers and the presence of extracellular matrix components were markedly increased after 8 weeks of culture, and to a greater extent on the chitosan/gelatin scaffold. The BMG/fibrin glue scaffold showed signs of degradation after 8 weeks. Immunofluorescence analysis confirmed higher levels of collagen II and aggrecan using the chitosan/gelatin scaffold. SEM revealed that the majority of cells on the surface of the BMG/fibrin glue scaffold demonstrated a round morphology, while those in the chitosan/gelatin group had a spindle-like shape, with pseudopodia. Chitosan/gelatin scaffolds appear to be superior to BMG/ fibrin glue constructs in supporting chondrocyte attachment, proliferation, and biosynthesis of cartilaginous matrix components. PMID:27525846

  16. Bone

    International Nuclear Information System (INIS)

    Bone scanning provides information on the extent of primary bone tumors, on possible metastatic disease, on the presence of osteomyelitis prior to observation of roentgenographic changes so that earlier therapy is possible, on the presence of collagen diseases, on the presence of fractures not disclosed by x-ray films, and on the evaluation of aseptic necrosis. However, the total effect and contribution of bone scanning to the diagnosis, treatment, and ultimate prognosis of pediatric skeletal diseases is, as yet, unknown. (auth)

  17. Matrix elasticity of void-forming hydrogels controls transplanted-stem-cell-mediated bone formation

    Science.gov (United States)

    Huebsch, Nathaniel; Lippens, Evi; Lee, Kangwon; Mehta, Manav; Koshy, Sandeep T.; Darnell, Max C.; Desai, Rajiv M.; Madl, Christopher M.; Xu, Maria; Zhao, Xuanhe; Chaudhuri, Ovijit; Verbeke, Catia; Kim, Woo Seob; Alim, Karen; Mammoto, Akiko; Ingber, Donald E.; Duda, Georg N.; Mooney, David J.

    2015-12-01

    The effectiveness of stem cell therapies has been hampered by cell death and limited control over fate. These problems can be partially circumvented by using macroporous biomaterials that improve the survival of transplanted stem cells and provide molecular cues to direct cell phenotype. Stem cell behaviour can also be controlled in vitro by manipulating the elasticity of both porous and non-porous materials, yet translation to therapeutic processes in vivo remains elusive. Here, by developing injectable, void-forming hydrogels that decouple pore formation from elasticity, we show that mesenchymal stem cell (MSC) osteogenesis in vitro, and cell deployment in vitro and in vivo, can be controlled by modifying, respectively, the hydrogel’s elastic modulus or its chemistry. When the hydrogels were used to transplant MSCs, the hydrogel’s elasticity regulated bone regeneration, with optimal bone formation at 60 kPa. Our findings show that biophysical cues can be harnessed to direct therapeutic stem cell behaviours in situ.

  18. Pigment epithelium derived factor suppresses expression of Sost/Sclerostin by osteocytes: implication for its role in bone matrix mineralization.

    Science.gov (United States)

    Li, Feng; Song, Na; Tombran-Tink, Joyce; Niyibizi, Christopher

    2015-06-01

    Mutations in Serpinf1 gene which encodes pigment epithelium derived factor (PEDF) lead to osteogenesis imperfecta type VI whose hallmark is defective mineralization. Mechanisms by which PEDF regulates matrix mineralization remain unknown. We examined effect of exogenous PEDF on expression of osteoblastic and osteocytic related genes and proteins in mineralizing osteoblast culture. Mineralizing human osteoblasts supplemented with exogenous PEDF for 14 days deposited 47% more mineral than cells cultured without PEDF. Analysis of selected gene expression by cells in mineralizing cultures supplemented with exogenous PEDF showed reduction in expression of Sclerostin (Sost) by 70%, matrix extracellular phosphoglycoprotein (MEPE) by 75% and dentin matrix protein (DMP-1) by 20% at day 14 of culture. Phosphate-regulating gene with homologies to endopeptidases on the X chromosome (PHEX) expression was not affected. Western blotting and immunoprecipitation showed that sclerostin and MEPE synthesis by osteocytes were reduced by 50% and 60% respectively in mineralizing osteoblasts containing exogenous PEDF. Primary osteocytes exposed to PEDF also reduced synthesis of Sost/sclerostin by 50% within 24 h. For osteoblastic genes, Bone sialoprotein (BSP) was expressed at 75% higher by day 7 in cultures containing exogenous PEDF while Col1A1 expression remained high at all-time points. Total beta-catenin was increased in mineralizing osteoblastic cells suggesting increased Wnt activity. Taken together, the data indicate that PEDF suppressed expression of factors that inhibit mineralization while enhancing those that promote mineralization. The findings also suggest that PEDF may regulate Sost expression by osteocytes leading to enhanced osteoblastic differentiation and increased matrix mineralization.

  19. In situ biomimetic synthesis, characterization and in vitro investigation of bone-like nanohydroxyapatite in starch matrix

    International Nuclear Information System (INIS)

    In this work, we report the synthesis of bone-like hydroxyapatite (HAp) nanorods in wheat starch matrix via a biomimetic process. Characterization of the samples was performed by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). Scanning and transmission electron microscopy (SEM and TEM) were used to determine the size, shape and morphology of nano-HAp. The results indicate that, the shape and morphology of nHAp is influenced by the presence of starch as a template agent and rod-like nHAp similar to the inorganic component in the human body is obtained at room temperature. In vitro bioactivity of the synthesized HAp nanocomposites was finally verified by comparison of the HAp's structures and morphology before and after immersion in simulated body fluid (SBF) solution for 3, 7, and 14 days.

  20. Promotion of Hepatic Differentiation of Bone Marrow Mesenchymal Stem Cells on Decellularized Cell-Deposited Extracellular Matrix

    Directory of Open Access Journals (Sweden)

    Hongliang He

    2013-01-01

    Full Text Available Interactions between stem cells and extracellular matrix (ECM are requisite for inducing lineage-specific differentiation and maintaining biological functions of mesenchymal stem cells by providing a composite set of chemical and structural signals. Here we investigated if cell-deposited ECM mimicked in vivo liver's stem cell microenvironment and facilitated hepatogenic maturation. Decellularization process preserved the fibrillar microstructure and a mix of matrix proteins in cell-deposited ECM, such as type I collagen, type III collagen, fibronectin, and laminin that were identical to those found in native liver. Compared with the cells on tissue culture polystyrene (TCPS, bone marrow mesenchymal stem cells (BM-MSCs cultured on cell-deposited ECM showed a spindle-like shape, a robust proliferative capacity, and a suppressed level of intracellular reactive oxygen species, accompanied with upregulation of two superoxide dismutases. Hepatocyte-like cells differentiated from BM-MSCs on ECM were determined with a more intensive staining of glycogen storage, an elevated level of urea biosynthesis, and higher expressions of hepatocyte-specific genes in contrast to those on TCPS. These results demonstrate that cell-deposited ECM can be an effective method to facilitate hepatic maturation of BM-MSCs and promote stem-cell-based liver regenerative medicine.

  1. Efficacy of platelet rich fibrin in the treatment of human intrabony defects with or without bone graft: A randomized controlled trial

    Science.gov (United States)

    Chandradas, Nikhil D.; Ravindra, Shivamurthy; Rangaraju, Vivekananda M.; Jain, Sheetal; Dasappa, Shivaprasad

    2016-01-01

    Aim: To evaluate the efficacy of platelet rich fibrin (PRF) with or without bone graft [demineralized bone matrix (DBM) graft] in the treatment of intrabony defects based on clinical and radiographic parameters. Materials and Methods: Thirty six intrabony defects in 36 patients were randomly divided into three different groups and were treated with group A (PRF with DBM) or group B (PRF alone) or group C [open flap debridement (OFD)]. Clinical parameters such as plaque index (PI), gingival index (GI), probing depth (PD), relative attachment level (RAL), and gingival recession (GR) were assessed at baseline and 9 months postoperatively; radiographic parameters such as linear bone growth (LBG) and percentage in bone fill (%BF) were calculated by using the image analysis software. Comparisons of groups were analyzed using Kruskal–Wallis analysis of variance test. Pair-wise comparison of groups was done by Mann-Whitney U test. Results: Mean PD reduction and RAL gain were greater in group A (4.25 ± 1.48, 3.92 ± 0.90) and group B (3.82 ± 0.75, 3.27 ± 0.65) than control (3.00 ± 1.21, 2.25 ± 0.62). Furthermore, statistically significant improvement in LBG and %BF was found in group A (3.47 ± 0.53, 61.53 ± 4.54) compared to group B (2.55 ± 0.61, 49.60 ± 14.08) and group C (1.21 ± 0.80, 24.69 ± 15.59). Conclusions: The study demonstrated that PRF improves clinical and radiological parameters compared to OFD alone in intrabony defects. Addition of DBM enhances the effects of PRF in RAL gain and radiographic defect fill. PMID:27652249

  2. Dietary Zinc Reduces Osteoclast Resorption Activities and Increases Markers of Osteoblast Differentiation, Matrix Maturation, and Mineralization in the Long Bones of Growing Rats

    Science.gov (United States)

    The nutritional influence of zinc (Zn) on markers of bone extracellular matrix (ECM) resorption and mineralization was investigated in growing rats. Thirty male weanling rats were randomly assigned to consume AIN-93G based diets containing 2.5, 5, 7.5, 15, or 30 µg Zn/g diet for 24 d. Femur Zn incre...

  3. Autoradiographic study of the effect of 1,25-dihydroxyvitamin D3 on bone matrix synthesis in vitamin D replete rats

    International Nuclear Information System (INIS)

    An autoradiographic technique using pulse labels of [3H]proline was developed to assess the early effects of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] on bone matrix synthesis in vitamin D replete rats. Rats, 7 days old, were given 0.25, 2.5, or 25 ng of 1,25(OH)2D3 or vehicle alone subcutaneously on days 1, 3, and 5 of the experiment. Rats received a subcutaneous injection of 100 μCi [3H]proline on days 2 and 6 and were killed on day 7. Calvaria and tibia were processed for autoradiography, and morphometric methods were developed to measure the rate and amount of bone matrix formed during the experimental period. When compared to control values, the amount and rate of formation of new bone matrix were both significantly decreased in rats receiving 25 ng of 1,25(OH)2D3 and slightly, but not significantly, decreased in rats receiving 2.5 ng. We conclude that administration of pharmacologic doses of 1,25(OH)2D3 to vitamin D replete rat pups impairs the formation of collagenous bone matrix. (orig.)

  4. Synthesis and photoluminescence of Eu(DBM)3phen/APTES-SBA-15 with morphology of pearl-like chains

    Institute of Scientific and Technical Information of China (English)

    ZHAO Chun-xia; LIU Qi; CHEN Wen; TIAN Gao; XU Ling-fang

    2006-01-01

    Novel ordered mesoporous Eu(DBM)3phen/APTES-SBA-15 (EAS) composites with reasonable photoluminescence property and interesting morphology of bundles of pearl-like chains were synthesized. The characteristics of the mesostructure and the optical properties of the prepared samples were investigated by means of XRD,FTIR,SEM,TEM,N2 adsorption-desorption and PL spectroscopy. The results indicate that the as-made EAS composites have long-distance ordered mesoporous structure. Compared with the Eu(DBM)3phen complex,it is found that the EAS composites perform a considerable photoluminescence with good color purity. It is proposed that the anchored amine from the APTES and quantum size effect of the Eu(DBM)3phen complex have great effect on the photoluminescence of the EAS composites.

  5. Comparative Environmental Performance of Two-Diesel-Fuel Oxygenates: Dibutyl Maleate (DBM) and Triproplyene Glycol Monomethyl Ether (TGME)

    Energy Technology Data Exchange (ETDEWEB)

    Layton, D.W.; Marchetti, A.A.

    2001-10-01

    Many studies have shown that the addition of oxygen bearing compounds to diesel fuel can significantly reduce particulate emissions. To assist in the evaluation of the environmental performance of diesel-fuel oxygenates, we have implemented a suite of diagnostic models for simulating the transport of compounds released to air, water, and soils/groundwater as well as regional landscapes. As a means of studying the comparative performance of DBM and TGME, we conducted a series of simulations for selected environmental media. Benzene and methyl tertiary butyl ether (MTBE) were also addressed because they represent benchmark fuel-related compounds that have been the subject of extensive environmental measurements and modeling. The simulations showed that DBM and TGME are less mobile in soil because of reduced vapor-phase transport and increased retention on soil particles. The key distinction between these two oxygenates is that DBM is predicted to have a greater potential than TGME for aerobic biodegradation, based on chemical structure.

  6. The NH2-terminal and COOH-terminal fragments of dentin matrix protein 1 (DMP1) localize differently in the compartments of dentin and growth plate of bone.

    Science.gov (United States)

    Maciejewska, Izabela; Cowan, Cameron; Svoboda, Kathy; Butler, William T; D'Souza, Rena; Qin, Chunlin

    2009-02-01

    Multiple studies have shown that dentin matrix protein 1 (DMP1) is essential for bone and dentin mineralization. After post-translational proteolytic cleavage, DMP1 exists within the extracellular matrix of bone and dentin as an NH2-terminal fragment, a COOH-terminal fragment, and the proteoglycan form of the NH2-terminal fragment (DMP1-PG). To begin to assess the biological function of each fragment, we evaluated the distribution of both fragments in the rat tooth and bone using antibodies specific to the NH2-terminal and COOH-terminal regions of DMP1 and confocal microscopy. In rat first molar organs, the NH2-terminal fragment localized to predentin, whereas the COOH-terminal fragment was mainly restricted to mineralized dentin. In the growth plate of bone, the NH2-terminal fragment appeared in the proliferation and hypertrophic zones, whereas the COOH-terminal fragment occupied the ossification zone. Forster resonance energy transfer analysis showed colocalization of both fragments of DMP1 in odontoblasts and predentin, as well as hypertrophic chondrocytes within the growth plates of bone. The biochemical analysis of bovine teeth showed that predentin is rich in DMP1-PG, whereas mineralized dentin primarily contains the COOH-terminal fragment. We conclude that the differential patterns of expression of NH2-terminal and COOH-terminal fragments of DMP1 reflect their potentially distinct roles in the biomineralization of dentin and bone matrices.

  7. Altered composition of bone as triggered by irradiation facilitates the rapid erosion of the matrix by both cellular and physicochemical processes.

    Directory of Open Access Journals (Sweden)

    Danielle E Green

    Full Text Available Radiation rapidly undermines trabecular architecture, a destructive process which proceeds despite a devastated cell population. In addition to the 'biologically orchestrated' resorption of the matrix by osteoclasts, physicochemical processes enabled by a damaged matrix may contribute to the rapid erosion of bone quality. 8w male C57BL/6 mice exposed to 5 Gy of Cs(137 γ-irradiation were compared to age-matched control at 2d, 10d, or 8w following exposure. By 10d, irradiation had led to significant loss of trabecular bone volume fraction. Assessed by reflection-based Fourier transform infrared imaging (FTIRI, chemical composition of the irradiated matrix indicated that mineralization had diminished at 2d by -4.3±4.8%, and at 10d by -5.8±3.2%. These data suggest that irradiation facilitates the dissolution of the matrix through a change in the material itself, a conclusion supported by a 13.7±4.5% increase in the elastic modulus as measured by nanoindentation. The decline in viable cells within the marrow of irradiated mice at 2d implies that the immediate collapse of bone quality and inherent increased risk of fracture is not solely a result of an overly-active biologic process, but one fostered by alterations in the material matrix that predisposes the material to erosion.

  8. Synthesis and spectroscopic behavior of highly luminescent Eu 3+-dibenzoylmethanate (DBM) complexes with sulfoxide ligands

    Science.gov (United States)

    Niyama, E.; Brito, H. F.; Cremona, M.; Teotonio, E. E. S.; Reyes, R.; Brito, G. E. S.; Felinto, M. C. F. C.

    2005-09-01

    In this paper the synthesis, characterization and photoluminescent behavior of the [RE(DBM) 3L 2] complexes (RE = Gd and Eu) with a variety of sulfoxide ligands; L = benzyl sulfoxide (DBSO), methyl sulfoxide (DMSO), phenyl sulfoxide (DPSO) and p-tolyl sulfoxide (PTSO) have been investigated in solid state. The emission spectra of the Eu 3+-β-diketonate complexes show characteristics narrow bands arising from the 5D 0 → 7F J ( J = 0-4) transitions, which are split according to the selection rule for C n, C nv or C s site symmetries. The experimental Judd-Ofelt intensity parameters ( Ω2 and Ω4), radiative ( Arad) and non-radiative ( Anrad) decay rates, and R02 for the europium complexes have been determined and compared. The highest value of Ω2 (61.9 × 10 -20 cm 2) was obtained to the complex with PTSO ligand, indicating that Eu 3+ ion is in the highly polarizable chemical environment. The higher values of the experimental quantum yield ( q) and emission quantum efficiency of the emitter 5D 0 level ( η) for the Eu-complexes with DMSO, DBSO and PTSO sulfoxides suggest that these complexes are promising Light Conversion Molecular Devices (LCMDs). The lower value of quantum yield ( q = 1%), for the hydrated complex [Eu(DBM) 3(H 2O)], indicates that the luminescence quenching occurs via multiphonon relaxation by coupling with the OH-oscillators from water molecule coordinated to rare earth ion. The pure red emission of the Eu-complexes has been confirmed by ( x, y) color coordinates.

  9. Instrumented fusion of thoracolumbar fracture with type I mineralized collagen matrix combined with autogenous bone marrow as a bone graft substitute: a four-case report

    OpenAIRE

    Faundez, Antonio; Taylor, Sofia; Kaelin, André

    2006-01-01

    In order to avoid the morbidity from autogenous bone harvesting, bone graft substitutes are being used more frequently in spinal surgery. There is indirect radiological evidence that bone graft substitutes are efficacious in humans. The purpose of this four-case study was to visually, manually, and histologically assess the quality of a fusion mass produced by a collagen hydroxyapatite scaffold impregnated with autologous bone marrow aspirate for posterolateral fusion. Four patients sustained...

  10. Intervertebral disk-like biphasic scaffold—demineralized bone matrix cylinder and poly(polycaprolactone triol malate)—for interbody spine fusion

    OpenAIRE

    Li Jin; Yuqing Wan; Shimer, Adam L.; Shen, Francis H.; Li, Xudong J

    2012-01-01

    Interbody fusion is an established procedure to preserve disk height and anterior fusion, but fusion with autografts, allografts, and metallic cages has its endogenous shortcomings. The objective of this study is to investigate whether a biphasic scaffold model, the native demineralized bone matrix cylinder in conjunction with degradable biomaterial poly(polycaprolactone triol malate), can be employed as a biological graft for interbody fusion. The poly(polycaprolactone triol malate) was synt...

  11. Maxillary sinus floor augmentation on humans: Packing simulations and 8 months histomorphometric comparative study of anorganic bone matrix and β-tricalcium phosphate particles as grafting materials

    OpenAIRE

    Martinez, A; Franco, J.; Saiz, E.; Guitian, F.

    2010-01-01

    The present study compares the behaviour of an anorganic bone matrix material and a synthetic β-Tricalcium phosphate employed as grafting materials in a sinus floor augmentation two step protocol in humans. In order to estimate the initial occupation level for the two materials, an ‘in vitro’ simulation has been performed to analyse macroporosity created due to particle packing in terms of porosity and interparticle distances. Grafting in the sinus floor augmentation was performed by filling ...

  12. The Expression of Bone Morphogenetic Protein 2 and Matrix Metalloproteinase 2 through Retinoic Acid Receptor Beta Induced by All-Trans Retinoic Acid in Cultured ARPE-19 Cells

    OpenAIRE

    Zhenya Gao; Lijun Huo; Dongmei Cui; Xiao Yang; Junwen Zeng

    2016-01-01

    Purpose All-trans retinoic acid (ATRA) plays an important role in ocular development. Previous studies found that retinoic acid could influence the metabolism of scleral remodeling by promoting retinal pigment epithelium (RPE) cells to secrete secondary signaling factors. The purpose of this study was to investigate whether retinoic acid affected secretion of bone morphogenetic protein 2 (BMP-2) and matrix metalloproteinase 2 (MMP-2) and to explore the signaling pathway of retinoic acid in cu...

  13. Osteomimicry of mammary adenocarcinoma cells in vitro; increased expression of bone matrix proteins and proliferation within a 3D collagen environment.

    Directory of Open Access Journals (Sweden)

    Rachel F Cox

    Full Text Available Bone is the most common site of metastasis for breast cancer, however the reasons for this remain unclear. We hypothesise that under certain conditions mammary cells possess osteomimetic capabilities that may allow them to adapt to, and flourish within, the bone microenvironment. Mammary cells are known to calcify within breast tissue and we have recently reported a novel in vitro model of mammary mineralization using murine mammary adenocarcinoma 4T1 cells. In this study, the osteomimetic properties of the mammary adenocarcinoma cell line and the conditions required to induce mineralization were characterized extensively. It was found that exogenous organic phosphate and inorganic phosphate induce mineralization in a dose dependent manner in 4T1 cells. Ascorbic acid and dexamethasone alone have no effect. 4T1 cells also show enhanced mineralization in response to bone morphogenetic protein 2 in the presence of phosphate supplemented media. The expression of several bone matrix proteins were monitored throughout the process of mineralization and increased expression of collagen type 1 and bone sialoprotein were detected, as determined by real-time RT-PCR. In addition, we have shown for the first time that 3D collagen glycosaminoglycan scaffolds, bioengineered to represent the bone microenvironment, are capable of supporting the growth and mineralization of 4T1 adenocarcinoma cells. These 3D scaffolds represent a novel model system for the study of mammary mineralization and bone metastasis. This work demonstrates that mammary cells are capable of osteomimicry, which may ultimately contribute to their ability to preferentially metastasize to, survive within and colonize the bone microenvironment.

  14. Tissue Regeneration of the Vocal Fold Using Bone Marrow Mesenchymal Stem Cells and Synthetic Extracellular Matrix Injections in Rats

    Science.gov (United States)

    Johnson, Beatriz Helena Quinchia; Fox, Ryan; Chen, Xia; Thibeault, Susan

    2009-01-01

    Objective To determine the effectiveness of bone marrow mesenchymal stem cell (BM-MSC) transplantation in isolation or within a synthetic extracellular matrix (sECM) for tissue regeneration of the scarred vocal fold lamina propria. Methods In vitro stability and compatibility of mouse BM-MSC embedded in sECM was assessed by flow cytometry detection of BM-MSC marker expression and proliferation. Eighteen rats were subjected to vocal fold injury bilaterally, followed by one month post-treatment with unilateral injections of saline or sECM hydrogel (Extracel), GFP-mouse BM-MSC or BM-MSC suspended in sECM. Outcomes measured one month after treatment included procollagen-III, fibronectin, hyaluronan synthase-III (HAS3), hyaluronidase (HYAL3), smooth muscle actin (SMA) and transforming growth factor-beta 1(TGF-β1) mRNA expression. The persistence of GFP BM-MSC, proliferation, apoptosis and myofibroblast differentiation was assessed by immunofluorescence. Results BM-MSC grown in vitro within sECM express Sca-1, are positive for hyaluronan receptor CD44 and continue to proliferate. In the in vivo study, groups injected with BM-MSC had detectable GFP-labeled BM-MSC remaining, showed proliferation and low apoptotic or myofibroblast markers compared to the contralateral side. Embedded BM-MSC in sECM group exhibited increased levels of procollagen III, fibronectin and TGF-β1. BM-MSC within sECM downregulated the expression of SMA compared to BM-MSC alone, exhibited upregulation of HYAL3 and no change in HAS3 compared to saline. Conclusions Treatment of vocal fold scarring with BM-MSC injected in a sECM displayed the most favorable outcomes in ECM production, hyaluronan metabolism, myofibroblast differentiation and production of TGF-β1. Furthermore, the combined treatment had no detectable cytotoxicity and preserved local cell proliferation. PMID:20131370

  15. Extracellular matrix production by nucleus pulposus and bone marrow stem cells in response to altered oxygen and glucose microenvironments.

    Science.gov (United States)

    Naqvi, Syeda M; Buckley, Conor T

    2015-12-01

    Bone marrow (BM) stem cells may be an ideal source of cells for intervertebral disc (IVD) regeneration. However, the harsh biochemical microenvironment of the IVD may significantly influence the biological and metabolic vitality of injected stem cells and impair their repair potential. This study investigated the viability and production of key matrix proteins by nucleus pulposus (NP) and BM stem cells cultured in the typical biochemical microenvironment of the IVD consisting of altered oxygen and glucose concentrations. Culture-expanded NP cells and BM stem cells were encapsulated in 1.5% alginate and ionically crosslinked to form cylindrical hydrogel constructs. Hydrogel constructs were maintained under different glucose concentrations (1, 5 and 25 mM) and external oxygen concentrations (5 and 20%). Cell viability was measured using the Live/Dead® assay and the production of sulphated glycosaminoglycans (sGAG), and collagen was quantified biochemically and histologically. For BM stem cells, IVD-like micro-environmental conditions (5 mM glucose and 5% oxygen) increased the accumulation of sGAG and collagen. In contrast, low glucose conditions (1 mM glucose) combined with 5% external oxygen concentration promoted cell death, inhibiting proliferation and the accumulation of sGAG and collagen. NP-encapsulated alginate constructs were relatively insensitive to oxygen concentration or glucose condition in that they accumulated similar amounts of sGAG under all conditions. Under IVD-like microenvironmental conditions, NP cells were found to have a lower glucose consumption rate compared with BM cells and may in fact be more suitable to adapt and sustain the harsh microenvironmental conditions. Considering the highly specialised microenvironment of the central NP, these results indicate that IVD-like concentrations of low glucose and low oxygen are critical and influential for the survival and biological behaviour of stem cells. Such findings may promote and accelerate

  16. Inhibition of bone morphogenetic protein signal transduction prevents the medial vascular calcification associated with matrix Gla protein deficiency.

    Directory of Open Access Journals (Sweden)

    Rajeev Malhotra

    Full Text Available Matrix Gla protein (MGP is reported to inhibit bone morphogenetic protein (BMP signal transduction. MGP deficiency is associated with medial calcification of the arterial wall, in a process that involves both osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs and mesenchymal transition of endothelial cells (EndMT. In this study, we investigated the contribution of BMP signal transduction to the medial calcification that develops in MGP-deficient mice.MGP-deficient mice (MGP(-/- were treated with one of two BMP signaling inhibitors, LDN-193189 or ALK3-Fc, beginning one day after birth. Aortic calcification was assessed in 28-day-old mice by measuring the uptake of a fluorescent bisphosphonate probe and by staining tissue sections with Alizarin red. Aortic calcification was 80% less in MGP(-/- mice treated with LDN-193189 or ALK3-Fc compared with vehicle-treated control animals (P<0.001 for both. LDN-193189-treated MGP(-/- mice survived longer than vehicle-treated MGP(-/- mice. Levels of phosphorylated Smad1/5 and Id1 mRNA (markers of BMP signaling did not differ in the aortas from MGP(-/- and wild-type mice. Markers of EndMT and osteogenesis were increased in MGP(-/- aortas, an effect that was prevented by LDN-193189. Calcification of isolated VSMCs was also inhibited by LDN-193189.Inhibition of BMP signaling leads to reduced vascular calcification and improved survival in MGP(-/- mice. The EndMT and osteogenic transdifferentiation associated with MGP deficiency is dependent upon BMP signaling. These results suggest that BMP signal transduction has critical roles in the development of vascular calcification in MGP-deficient mice.

  17. 表面脱钙骨基质明胶修复大块骨缺损的成骨作用研究%Osteogenesis of surface-decalcified bone matrix gelation in the repair of segmental bone defects

    Institute of Scientific and Technical Information of China (English)

    张学鹏; 伊哲; 王英兰; 徐延

    2005-01-01

    BACKGROUND: Repair of segmental bone defects is one of the difficult problems in orthopaedics. Although the therapeutic effect on bone autograft is the best, the source is limited and there is lack of suitable substitutive materials for autologous bone.OBJECTIVE: To probe into the therapeutic effects of surface-decalcified bone matrix gelation(SDBMG) and the substitutive possibility of autologous bone on repair of segmental bone defects.DESIGN: The research was designed as completely randomized controlled experiment. The clinical research was designed as pre- and post-controlled study on the basis of diagnosis.SEETING: Department of Orthopaedics, Wuhan General Hospital of Guangzhou Military Area Command.MATERLALS and PARTICIPANTS: The experiment was accomplished in Laboratory of Wuhan General Hospital of Guangzhou Military Area Command, and Testing Center of Wuhan University of Technology. Thirty-two local healthy adult male rabbits were employed as the materials in the experiment, 2.5 kg in body mass, bought from Hubei Academy of Medical Sciences. The clinical subjects were 31 patients(male 25 and female 6, a meanage of 9 years old) with segmental bone defects hospitalized in the Department of Orthopaedics, Wuhan General Hospital of Guangzhou Military Area Command during January 1991 to May 2001.METHODS: The 32 rabbits were randomized into group A and group B. The bilateral radial bones were prepared into 1-cm bone defect in both groups. In both groups, SDBMG was grafted on the left side; in Group A, wholly-decalcffied bone matrix gelatin(WDBMG) was grafted on the right side;and in Group B, the autologous bone was grafted on the right side. Human SDBMG was provided to treat 31 cases of segmental bone defects.MAIN OUTCOME MEASURES: ① Regular X-ray and histological examinations after operation in animals(Group A) and biomechanical deterruination (Group B ). ② Regular X-ray examinations after operation.RESULTS: SDBMG induced osteogenesis process "gradually" from

  18. Evaluation of anorganic bovine-derived hydroxyapatite matrix/cell binding peptide as a bone graft material in the treatment of human periodontal infrabony defects: A clinico-radiographic study

    OpenAIRE

    Ghousia Fatima; Ravindra Shivamurthy; Srinath Thakur; Mohammad Abdul Baseer

    2015-01-01

    Background: Various bone graft materials have been used in the treatment of periodontal defects. A synthetic bone substitute material composed of P-15 with anorganic bone mineral has been scantly studied. Hence, the present study was aimed to evaluate and compare the efficacy of anorganic bovine-derived hydroxyapatite matrix (ABM)/cell binding peptide (P-15) in human periodontal infrabony defects with that of open flap debridement (OFD) alone. Materials and Methods: A split-mouth, randomized ...

  19. Contribution of human osteoblasts and macrophages to bone matrix degradation and proinflammatory cytokine release after exposure to abrasive endoprosthetic wear particles.

    Science.gov (United States)

    Jonitz-Heincke, Anika; Lochner, Katrin; Schulze, Christoph; Pohle, Diana; Pustlauk, Wera; Hansmann, Doris; Bader, Rainer

    2016-08-01

    One of the major reasons for failure after total joint arthroplasty is aseptic loosening of the implant. At articulating surfaces, defined as the interface between implant and surrounding bone cement, wear particles can be generated and released into the periprosthetic tissue, resulting in inflammation and osteolysis. The aim of the present study was to evaluate the extent to which osteoblasts and macrophages are responsible for the osteolytic and inflammatory reactions following contact with generated wear particles from Ti‑6Al‑7Nb and Co‑28Cr‑6Mo hip stems. To this end, human osteoblasts and THP‑1 monocytic cells were incubated with the experimentally generated wear particles as well as reference particles (0.01 and 0.1 mg/ml) for 48 h under standard culture conditions. To evaluate the impact of these particles on the two cell types, the release of different bone matrix degrading matrix metalloproteinases (MMPs), tissue inhibitors of MMPs (TIMPs), and relevant cytokines were determined by multiplex enzyme‑linked immunosorbent assays. Following incubation with wear particles, human osteoblasts showed a significant upregulation of MMP1 and MMP8, whereas macrophages reacted with enhanced MMP3, MMP8 and MMP10 production. Moreover, the synthesis of TIMPs 1 and 2 was inhibited. The osteoblasts and macrophages also responded with modified expression of the inflammatory mediators interleukin (IL)‑6, IL‑8, monocyte chemoattractant protein‑1 and vascular endothelial growth factor. These results demonstrate that the release of wear particles affects the release of proinflammatory cytokines and has a negative impact on bone matrix formation during the first 48 h of particle exposure. Human osteoblasts are directly involved in the proinflammatory cascade of bone matrix degradation. The simultaneous activation and recruitment of monocytes/macrophages boosted osteolytic processes in the periprosthetic tissue. By the downregulation of TIMP production and the

  20. In vitro cartilage production using an extracellular matrix-derived scaffold and bone marrow-derived mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yan-hong; YANG Qiang; XIA Qun; PENG Jiang; LU Shi-bi; GUO Quan-yi; MA Xin-long

    2013-01-01

    Background Cartilage repair is a challenging research area because of the limited healing capacity of adult articular cartilage.We had previously developed a natural,human cartilage extracellular matrix (ECM)-derived scaffold for in vivo cartilage tissue engineering in nude mice.However,before these scaffolds can be used in clinical applications in vivo,the in vitro effects should be further explored.Methods We produced cartilage in vitro using a natural cartilage ECM-derived scaffold.The scaffolds were fabricated by combining a decellularization procedure with a freeze-drying technique and were characterized by scanning electron microscopy (SEM),micro-computed tomography (micro-CT),histological staining,cytotoxicity assay,biochemical and biomechanical analysis.After being chondrogenically induced,the induction results of BMSCs were analyzed by histology and Immunohisto-chemistry.The attachment and viability assessment of the cells on scaffolds were analyzed using SEM and LIVE/DEAD staining.Cell-scaffold constructs cultured in vitro for 1 week and 3 weeks were analyzed using histological and immunohistochemical methods.Results SEM and micro-CT revealed a 3-D interconnected porous structure.The majority of the cartilage ECM was found in the scaffold following the removal of cellular debris,and stained positive for safranin O and collagen Ⅱ.Viability staining indicated no cytotoxic effects of the scaffold.Biochemical analysis showed that collagen content was (708.2±44.7)μg/mg,with GAG (254.7±25.9) μg/mg.Mechanical testing showed the compression moduli (E) were (1.226±0.288) and (0.052±0.007) MPa in dry and wet conditions,respectively.Isolated canine bone marrow-derived stem cells (BMSCs) were induced down a chondrogenic pathway,labeled with PKH26,and seeded onto the scaffold.Immunofluorescent staining of the cell-scaffold constructs indicated that chondrocyte-like cells were derived from seeded BMSCs and excreted ECM.The cell-scaffold constructs contained

  1. Histological and histomorphometrical analysis of a silica matrix embedded nanocrystalline hydroxyapatite bone substitute using the subcutaneous implantation model in Wistar rats

    Energy Technology Data Exchange (ETDEWEB)

    Ghanaati, Shahram; Orth, Carina; Barbeck, Mike; Kirkpatrick, Charles James [Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55101 Mainz (Germany); Willershausen, Ines [Institute for Dental Material Sciences and Technology, University Medical Center of the Johannes Gutenberg University Mainz, Anselm-Franz-von-Bentzel-Weg 14, 55128 Mainz (Germany); Thimm, Benjamin W [Institute for Biomechanics, ETH Zuerich, Wolfgang-Pauli-Str.10, 8093 Zuerich (Switzerland); Booms, Patrick [Leeds Institute of Molecular Medicine, Section of Medicine, Surgery and Anaesthesia, University of Leeds (United Kingdom); Stuebinger, Stefan; Landes, Constantin; Sader, Robert Anton, E-mail: ghanaati@uni-mainz.d [Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Goethe University Frankfurt, Theodor-Stein-Kai 7, 60596 Frankfurt am Main (Germany)

    2010-06-01

    The clinical suitability of a bone substitute material is determined by the ability to induce a tissue reaction specific to its composition. The aim of this in vivo study was to analyze the tissue reaction to a silica matrix-embedded, nanocrystalline hydroxyapatite bone substitute. The subcutaneous implantation model in Wistar rats was chosen to assess the effect of silica degradation on the vascularization of the biomaterial and its biodegradation within a time period of 6 months. Already at day 10 after implantation, histomorphometrical analysis showed that the vascularization of the implantation bed reached its peak value compared to all other time points. Both vessel density and vascularization significantly decreased until day 90 after implantation. In this time period, the bone substitute underwent a significant degradation initiated by TRAP-positive and TRAP-negative multinucleated giant cells together with macrophages and lymphocytes. Although no specific tissue reaction could be related to the described silica degradation, the biomaterial was close to being fully degraded without a severe inflammatory response. These characteristics are advantageous for bone regeneration and remodeling processes.

  2. Osteoclasts prefer aged bone

    DEFF Research Database (Denmark)

    Henriksen, K; Leeming, Diana Julie; Byrjalsen, I;

    2007-01-01

    We investigated whether the age of the bones endogenously exerts control over the bone resorption ability of the osteoclasts, and found that osteoclasts preferentially develop and resorb bone on aged bone. These findings indicate that the bone matrix itself plays a role in targeted remodeling...

  3. The effect of SDF-1α on low dose BMP-2 mediated bone regeneration by release from heparinized mineralized collagen type I matrix scaffolds in a murine critical size bone defect model.

    Science.gov (United States)

    Zwingenberger, Stefan; Langanke, Robert; Vater, Corina; Lee, Geoffrey; Niederlohmann, Eik; Sensenschmidt, Markus; Jacobi, Angela; Bernhardt, Ricardo; Muders, Michael; Rammelt, Stefan; Knaack, Sven; Gelinsky, Michael; Günther, Klaus-Peter; Goodman, Stuart B; Stiehler, Maik

    2016-09-01

    The treatment of critical size bone defects represents a challenge. The growth factor bone morphogenetic protein 2 (BMP-2) is clinically established but has potentially adverse effects when used at high doses. The aim of this study was to evaluate if stromal derived factor-1 alpha (SDF-1α) and BMP-2 released from heparinized mineralized collagen type I matrix (MCM) scaffolds have a cumulative effect on bone regeneration. MCM scaffolds were functionalized with heparin, loaded with BMP-2 and/or SDF-1α and implanted into a murine critical size femoral bone defect (control group, low dose BMP-2 group, low dose BMP-2 + SDF-1α group, and high dose BMP-2 group). After 6 weeks, both the low dose BMP-2 + SDF-1α group (5.8 ± 0.6 mm³, p = 0.0479) and the high dose BMP-2 group (6.5 ± 0.7 mm³, p = 0.008) had a significantly increased regenerated bone volume compared to the control group (4.2 ± 0.5 mm³). There was a higher healing score in the low dose BMP-2 + SDF-1α group (median grade 8; Q1-Q3 7-9; p = 0.0357) than in the low dose BMP-2 group (7; Q1-Q3 5-9) histologically. This study showed that release of BMP-2 and SDF-1α from heparinized MCM scaffolds allows for the reduction of the applied BMP-2 concentration since SDF-1α seems to enhance the osteoinductive potential of BMP-2. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2126-2134, 2016. PMID:27060915

  4. Effect of enamel matrix derivative and parathyroid hormone on bone formation in standardized osseous defects: an experimental study in minipigs

    DEFF Research Database (Denmark)

    Jensen, Simon S; Chen, B; Bornstein, Michael M;

    2011-01-01

    or directly on the bone-forming cells. In addition, it is not known if the presentation of PTH by adding the amino acid sequence Arg-Gly-Asp (RGD) is essential for its osteopromotive effect. Local delivery of a bioactive substance at the right time and in the right concentration often constitutes a major...... challenge. Polyethylene glycol-based hydrogel (PEG) is a degradable vehicle developed for delivery of bioactive proteins. To enhance the mechanical stability of the PEG-bioactive substance complex, an osteoconductive bone substitute material is often needed....

  5. Bone marrow-derived myofibroblasts are the providers of pro-invasive matrix metalloproteinase 13 in primary tumor

    DEFF Research Database (Denmark)

    Lecomte, Julie; Masset, Anne; Blacher, Silvia;

    2012-01-01

    Carcinoma-associated fibroblasts are key contributors of the tumor microenvironment that regulates carcinoma progression. They consist of a heterogeneous cell population with diverse origins, phenotypes, and functions. In the present report, we have explored the contribution of bone marrow (BM)-d...

  6. Ce(DBM)3Phen doped poly(methyl methacrylate) for three-dimensional multilayered optical memory by femtosecond laser

    Institute of Scientific and Technical Information of China (English)

    JIU; Hongfang

    2009-01-01

    The formation of submicrometer voids within Ce(DBM)3Phen doped poly(methyl methacrylate)(PMMA) was reported under multiphoton absorption excited by an infrared laser beam. The absorption spectra, photoluminescence and electron spin resonance (ESR) spectra before and after femtosecond laser irradiation were discussed. An ultrashort-pulsed laser beam with a pulse width of 200 femtosecond at a wavelength of 800 nm was focused into doped PMMA. The large changes in refractive index and the fluorescence associated with a void allowed conventional optical microscopy and reflection-type confocal microscopy to be used as detection methods. Voids could be arranged in a three-dimensional multilayered structure for high-density optical data storage. The separation of adjacent bits and layers were 4 and 16 μm, respectively.

  7. [Effect of laminar shear stress on the expression of matrix metalloproteinases-9 in rat bone marrow-derived mesenchymal stem cells].

    Science.gov (United States)

    Chen, Longju; Sun, Xiaodong; Tang, Jie; Ding, Yan; Li, Jing; Li, Wenchun; Gong, Jian; Wang, Hanqin

    2010-12-01

    This paper was designed to investigate the effect of laminar shear stress on matrix metalloproteinase -9 (MMP-9) expression in rat bone marrow-derived mesenchymal stem cells (MSCs), and the possible signal transduction mechanism involved. Rat bone marrow MSCs were isolated and cultured, then, exposed to laminar shear stress at indicated strengths such as low (5dyne/cm2), medium (15 dyne/cm2) and high (30 dyne/cm2) via parallel plate flow chamber. RT-PCR was used to analyze the expression of MMP-9. The signaling inhibitors such as Wortmannin (PI3K specific inhabitor), SB202190 (p38MAPK specific inhabitor), and PD98059 (ERK1/2 specific inhabitor) were used to investigate the possible mechanical signal transduction pathway. The results showed: (1) The expression of MMP-9 was weak in static state, however, MMP-9 expression increased when MSCs were exposed to 15 dyne/cm2 shear stress for 2 hours, and MMP-9 expression increased with the extension of stimulating time, and it reached the peak at 24 h; (2) MSCs were stimulated by shear stress for 2 hours at different strengths (5 dyne/cm2, 15 dyne/cm2, 30 dyne/cm2), and under all these conditions, the expression of MMP-9 increased, and reached the peak at 15 dyne/cm2; (3) After MSCs were pretreated by three kinds of signal pathway inhibitors, the expression of MMP-9 did not change obviously in Wortmannin group and PD98059 group, but it was significantly inhibited in SB202190 group. This study demonstrated that shear stress could induce the expression of MMP-9 in rat bone marrow-derived mesenchymal stem cells; the amount of MMP-9 expression was closely related to stimulating time and the strengths of shear stress; and p38MAPK signal pathway played a critical role during the process.

  8. Extracellular Matrix Proteins, Alkaline Phosphatase and Pyrophosphate as Molecular Determinants of Bone, Tooth, Kidney and Vascular Calcification

    Science.gov (United States)

    McKee, Marc D.

    2008-09-01

    Progress in biomineralization research in recent years has identified, characterized and described functions for key noncollagenous extracellular matrix proteins regulating crystal growth in the skeleton and dentition. Some of these same proteins expressed in soft tissues undergoing pathologic calcification also inhibit ectopic crystal growth. In addition to extracellular matrix proteins regulating matrix mineralization, the enzyme tissue-nonspecific alkaline phosphatase—which is highly expressed by cells in mineralized tissues—cleaves pyrophosphate, an anionic small-molecule inhibitor of mineralization. Together with the required mineral ion availability necessary for crystal growth, these molecular determinants appear to function in limiting the spread of pathologic calcification seen in soft tissues such as blood vessels and kidneys. Osteopontin, in particular, is a potent calcification inhibitor that accumulates in mineralized tissues and in calcified deposits during vascular calcification and nephrolithiasis/urolithiasis. Additional research is required to establish the exact temporal sequence in which the molecular determinants of pathologic calcification appear relative to mineral crystal growth in different tissues, and to establish their relationship (if any) to the activation of osteogenic differentiation programs.

  9. Characterization of partially hydrolyzed OCP crystals deposited in a gelatin matrix as a scaffold for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Ezoe, Yushi [Tohoku University Graduate School of Dentistry, Division of Oral and Maxillofacial Surgery (Japan); Anada, Takahisa [Tohoku University Graduate School of Dentistry, Division of Craniofacial Function Engineering (Japan); Yamazaki, Hajime [The Forsyth Institute, Department of Applied Oral Sciences, Center for Biomineralization (United States); Handa, Takuto; Kobayashi, Kazuhito; Takahashi, Tetsu [Tohoku University Graduate School of Dentistry, Division of Oral and Maxillofacial Surgery (Japan); Suzuki, Osamu, E-mail: suzuki-o@m.tohoku.ac.jp [Tohoku University Graduate School of Dentistry, Division of Craniofacial Function Engineering (Japan)

    2015-03-15

    The present study was designed to investigate how hydrolysis of octacalcium phosphate (OCP) into hydroxyapatite is affected by the presence of gelatin (Gel) molecules and how osteoblastic cells respond to the resultant OCP hydrolyzate/Gel composites as the hydrolysis advances. OCP was prepared from a solution containing calcium and phosphate ions and Gel molecules, having a composition to produce a 40 wt% OCP as a final co-precipitate as the OCP/Gel. The precipitate was further incubated up to 40 h to advance the hydrolysis of OCP. These precipitates were processed to mold OCP/Gel sponges through lyophilization and dehydrothermal treatment. Chemical analysis, X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, and selected area electron diffraction revealed that the hydrolysis of OCP/Gel composite in hot water advanced in a time-dependent manner and faster than hydrolysis of OCP alone. The effect of Gel on the OCP hydrolysis was further examined in the presence of distinct concentrations of Gel molecules in hot water, showing that the Gel enhanced the hydrolysis as the concentration increased. Proliferation and differentiation of mouse bone marrow stromal ST-2 cells on the hydrolyzed OCP/Gel composites were compatible with Gel sponge alone after 21 days of culture, suggesting that these composites could be a candidate as a scaffold in bone tissue engineering.

  10. Characterization of partially hydrolyzed OCP crystals deposited in a gelatin matrix as a scaffold for bone tissue engineering

    International Nuclear Information System (INIS)

    The present study was designed to investigate how hydrolysis of octacalcium phosphate (OCP) into hydroxyapatite is affected by the presence of gelatin (Gel) molecules and how osteoblastic cells respond to the resultant OCP hydrolyzate/Gel composites as the hydrolysis advances. OCP was prepared from a solution containing calcium and phosphate ions and Gel molecules, having a composition to produce a 40 wt% OCP as a final co-precipitate as the OCP/Gel. The precipitate was further incubated up to 40 h to advance the hydrolysis of OCP. These precipitates were processed to mold OCP/Gel sponges through lyophilization and dehydrothermal treatment. Chemical analysis, X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, and selected area electron diffraction revealed that the hydrolysis of OCP/Gel composite in hot water advanced in a time-dependent manner and faster than hydrolysis of OCP alone. The effect of Gel on the OCP hydrolysis was further examined in the presence of distinct concentrations of Gel molecules in hot water, showing that the Gel enhanced the hydrolysis as the concentration increased. Proliferation and differentiation of mouse bone marrow stromal ST-2 cells on the hydrolyzed OCP/Gel composites were compatible with Gel sponge alone after 21 days of culture, suggesting that these composites could be a candidate as a scaffold in bone tissue engineering

  11. Different osteogenesis of tubular decalcified bone matrix and no tubular decalcified bone matrix scaffold%管型与非管型脱钙骨基质支架材料成骨活性差别的实验研究

    Institute of Scientific and Technical Information of China (English)

    赵益峰; 朱风华; 王海滨; 贾存岭; 孟纯阳; 赵金升; 罗开祥

    2012-01-01

    Objective To investigate the different osteogenesis of tubular and no tubular material of repairing segmental bone defect. Methods The allogeneic radioulnar decalcified bone matrix of rabbits was used as raw material to make repair materials including tubular shape (A group) and non tubular shape (B group), 30 each. They were implanted randomly into the middle-proximal 15 mm radial bone defects of 30 rabbits of the two sides. At the ends of 1, 2, 4, 8 and 12 week,6 rabbits were killed randomly each time and the histological assessment, radiographic analysism, general observation and unit humid weight Ca value were carried out and the results got a statistical treatment. Results At the earlier period (2 weeks postoperatively) the A group had more callus formed (P <0.05), more unit humid weight Ca value (P <0.05). At the middle period (4 weeks postoperatively) the woven bone of A group had more rate of porosity(P <0.05). At the later period (8 and 12 weeks postoperatively) the A group showed thinner lamellar bone, better medullary cavity recanalization rate, better moulding and more mature bone marrow (P <0.05)and more unit humid weight Ca value (P <0.05). Conclusion These results suggest that the tubular decalcified bone matrix has better repairing ability to segmental bone defect than no tubular one, and hint that use tubular artificial bone to cure segmental bone defect would have good outlook.%目的 探讨管型与非管型骨缺损修复材料成骨活性的差别.方法 以兔同种异体尺桡骨脱钙骨基质为原料,制成管型(A组)及非管型(B组)修复材料各30只,随机植入30只兔双侧桡骨中上段1.5 cm骨缺损中,分别于术后1、2、4、8、12周随机处死6只取材进行X线、组织学切片、大体观察、单位湿重Ca值等检查,结果进行统计学处理.结果 早期(术后2周)A组具有更多的骨痂生成(P<0.05)、更高的单位湿重Ca值(P<0.05);中期(术后4周)A组编织骨具有更高的孔隙率(P<0

  12. The Influence of Autologous Bone Marrow Stem Cell Transplantation on Matrix Metalloproteinases in Patients Treated for Acute ST-Elevation Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Eline Bredal Furenes

    2014-01-01

    Full Text Available Background. Matrix metalloproteinase-9 (MMP-9, regulated by tissue inhibitor of metalloproteinase-9 (TIMP-1 and the extracellular matrix metalloproteinase inducer (EMMPRIN, contributes to plaque instability. Autologous stem cells from bone marrow (mBMC treatment are suggested to reduce myocardial damage; however, limited data exists on the influence of mBMC on MMPs. Aim. We investigated the influence of mBMC on circulating levels of MMP-9, TIMP-1, and EMMPRIN at different time points in patients included in the randomized Autologous Stem-Cell Transplantation in Acute Myocardial Infarction (ASTAMI trial (n=100. Gene expression analyses were additionally performed. Results. After 2-3 weeks we observed a more pronounced increase in MMP-9 levels in the mBMC group, compared to controls (P=0.030, whereas EMMPRIN levels were reduced from baseline to 2-3 weeks and 3 months in both groups (P<0.0001. Gene expression of both MMP-9 and EMMPRIN was reduced from baseline to 3 months. MMP-9 and EMMPRIN were significantly correlated to myocardial injury (CK: P=0.005 and P<0.001, resp. and infarct size (SPECT: P=0.018 and P=0.008, resp.. Conclusion. The results indicate that the regulation of metalloproteinases is important during AMI, however, limited influenced by mBMC.

  13. Effects of different carriers on bone-inducing activity of recombinant human osteogenic protein-1%不同载体对重组人成骨蛋白-1骨诱导活性的影响

    Institute of Scientific and Technical Information of China (English)

    王敏; 韩金祥; 宋长征

    2004-01-01

    BACKGROUND: The carriers of recombinant human osteogenic protein-1(rhOP-1) are limited to collagen. The effects of different carriers on its bone inducing activity still have not been proved. OBJECTIVE: To find an optimal carrier material for rhOP-1 through a comparative studies of the effects of different materials on the bone-inducing activity. DESIGN: A completely randomized, auto-control and mutual control study was used. SETTING AND PARTICIPANTS: Ninety-six male mice of Kunming species were recruited in this study and the experiment was completed at the Animal Laboratory of our center. INTERVENTION: The materials included inactive decalcified bone matrix ( DBM), hydroxyapatite ( HA ), polylactic acid ( PLA), polylactic acid-polyethylene glycol copolymers (PLA-PEG) and polylactic glycollc acid (PLGA), and they were compounded with rhOP-1 respectively, and were then implanted into the medial intermuscular septum of the thighs of mice for 3 weeks. Then, samples were taken to evaluate the effects of the five materials on bone-inducing activity of rhOP-1.MAIN OUTCOME MEASURE: New bone maturity and osteogenic rate were assessed by histological studies, determination of alkaline phosphatase (ALP) level and calcium content of the entopic new bone.RESULTS: Three weeks after implantation, groups of DBM/rhOP-1 (A), rhOP-1 (F) and Eukaryon expressed OP-1 (control VI) all showed new bone formation. Group A was found to have massive bone trabeculac, marrow cavity, and lamellar bones as well as rich blood vessels and bone marrow. Group F showed appearance of woven bones. In Group VI, there appeared compact bone tissues of maturity. In the rest of the groups, there was proliferation of mesenchymal cells, and part of the materials were absorbed, and no bone was found. ALP level and calcium content were significantly higher in every compound group than in control group, and they were higher in Group A than in other experimental groups( F =6. 250, P <0.05). No significant

  14. Marginal bone resorption around dental implants placed in grafted sinuses; an up-to-30-month clinical and radiological follow-up

    International Nuclear Information System (INIS)

    Objective: To determine the relative success of two different bone grafting material - putty and powder forms of De-mineralised Bone Matrix (DBM) - used in sinus lift procedure. Methods: The retrospective study was conducted at the Department of Oral and Maxillofacial Surgery, Ankara University, Ankara, Turkey, and comprised data related to the patients referred for bilateral maxillary sinus augmentation between 2007 and 2010. During the period, 48 endoosseous implants were placed concurrently with the sinus augmentation in 12 patients. Marginal bone loss around the implants was measured at the time of loading, 12 and 30 months after the treatment. SPSS 11.5 was used for data analysis. Results: Of the 12 patients, 8 (66.6%) were females and 4 (33.3%) were males. All implants osseointegrated in both the putty and powder groups well without any significant clinical finding. The average volume of marginal bone resorption at implants for the putty side was 0.43+-0.22 mm, 0.8+-0.33 mm and 1.12+-0.49 mm at prosthetic loading, 12-month and 30-month follow-up, respectively. For the powder side, the corresponding numbers were 0.48+-0.32 mm, 0.82+-0.46 mm and 1.24+-0.57 mm. No statistically significant difference in bone loss between the two groups was observed (p >0.05). Conclusion: Both putty and powder forms of de-mineralised Bone Matrix showed satisfactory results and there was no significant difference in marginal bone loss around dental implants and survival rates. (author)

  15. A 58-dBm S-band limiter in standard 0.25-μm BiCMOS technology

    NARCIS (Netherlands)

    Wanum, M. van; Vliet, F.E. van

    2013-01-01

    A series of limiters have been developed for power levels up to 58 dBm in a standard 0.25-μm BiCMOS process. After a thorough analysis of general design tradeoffs, a figure-of-merit (FOM) for limiter technologies is introduced. This FOM indicates the necessity of a high current-to-capacitance ratio,

  16. Bone marrow-derived myofibroblasts are the providers of pro-invasive matrix metalloproteinase 13 in primary tumor

    DEFF Research Database (Denmark)

    Lecomte, Julie; Masset, Anne; Blacher, Silvia;

    2012-01-01

    )-derived cells to generate different fibroblast subsets that putatively produce the matrix metalloproteinase 13 (MMP13) and affect cancer cell invasion. A murine model of skin carcinoma was applied to mice, irradiated, and engrafted with BM isolated from green fluorescent protein (GFP) transgenic mice. We...... provide evidence that one third of BM-derived GFP(+) cells infiltrating the tumor expressed the chondroitin sulfate proteoglycan NG2 (pericytic marker) or α-smooth muscle actin (α-SMA, myofibroblast marker), whereas almost 90% of Thy1(+) fibroblasts were originating from resident GFP-negative cells. MMP13......producing cells were exclusively α-SMA(+) cells and derived from GFP(+) BM cells. To investigate their impact on tumor invasion, we isolated mesenchymal stem cells (MSCs) from the BM of wild-type and MMP13-deficient mice. Wild-type MSC promoted cancer cell invasion in a spheroid assay, whereas MSCs obtained...

  17. Tissue inhibitor of matrix metalloproteinase-1 suppresses apoptosis of mouse bone marrow stromal cell line MBA-1.

    Science.gov (United States)

    Guo, L-J; Luo, X-H; Xie, H; Zhou, H-D; Yuan, L-Q; Wang, M; Liao, E-Y

    2006-05-01

    We investigated the action of tissue inhibitor of metalloproteinase-1 (TIMP-1) on apoptosis and differentiation of mouse bone marrow stromal cell line MBA-1. TIMP-1 did not affect alkaline phosphatase (ALP) activity, suggesting that it is not involved in osteoblastic differentiation in MBA-1 cells. However, TIMP-1 inhibited MBA-1 apoptosis induced by serum deprivation in a dose-dependent manner. Our study also showed increased Bcl-2 protein expression and decreased Bax protein expression with TIMP-1 treatment. TIMP-1 decreased cytochrome c release and caspase-3 activation in MBA-1 cells. TIMP-1 activated phosphatidylinositol 3-kinase (PI3-kinase) and c-Jun N-terminal kinase (JNK), and the PI3-kinase inhibitor LY294002 or the JNK inhibitor SP600125 abolished its antiapoptotic activity. To investigate whether antiapoptotic action of TIMP-1 was mediated through its inhibition on MMP activities, we constructed mutant TIMP-1 by side-directed mutagenesis, which abolished the inhibitory activity of MMPs by deletion of Cys1 to Ala4. Wild-type TIMP-1 and mutant TIMP-1 expression plasmids were transfected in MBA-1 cells, and results showed that mutant TIMP-1 still protected the induced MBA-1 cell against apoptosis. These data suggest that TIMP-1 antiapoptotic actions are mediated via the PI3-kinase and JNK signaling pathways and independent of TIMP-1 inhibition of MMP activities.

  18. The use of beta-tricalcium phosphate and bovine bone matrix in the guided tissue regeneration treatment of deep infra-bony defects

    Directory of Open Access Journals (Sweden)

    Luković Natalija

    2009-01-01

    Full Text Available Introduction. The primary goal of bone regeneration procedures with application of various regenerative biologic agents and biomaterials is to facilitate the formation of periodontal tissues lost as a result of periodontitis. Objective. The aim of the study was to compare clinical outcome of the guided tissue regeneration (GTR treatment with the use of β-tricalcium phosphate and with bovine bone matrix in human deep intra-osseous defects. Methods. Twenty-one systemically healthy subjects with moderate to advanced periodontitis, between 30 and 56 years of age, 11 females and 10 males, were selected. Patients having two similar inter-proximal defects with pocket probing depths following initial therapy greater than 5 mm were recruited for the study. Experimental sites were grafted with pure β-tricalcium phosphate biomaterial (Cerasorb® and a biomembrane, while control sites were treated with bovine-bone hydroxiapatite xenograft (Bio-oss® and a biomembrane. Immediately before surgery and 12 months after surgery, pocket probing depth (PPD, epithelial attachment level (EAL and gingival recession (GR were evaluated. Results. In the experimental group PPD amounted to 6.76±0.83 mm before surgery, and decreased significantly to 2.67±0.48 mm 12 months following surgery, while in the control group PPD significantly decreased from 7.14±0.65 mm presurgically to 2.85±0.57 mm postsurgically. After one year, EAL gain was 2.76±0.99 mm in the experimental group, and 3.24±0.16 mm in the control group. After twelve months postoperatively GR amounted to 1.33±0.79 mm in the experimental group and to 1.05±0.80 mm in the control group. No statistically significant differences for PPD reduction, EAL gain and GR increase were detected between the groups. Conclusion. Results from the present study indicate that GTR treatment of deep intra-osseous defects with Bio-oss® and Cerasorb® resulted in clinically and statistically significant improvement of EAL gain

  19. 人纳米脱钙骨基质复合物的理化性质和安全性%Physicochemical property and safety of nanometer human demineralized bone matrix composite

    Institute of Scientific and Technical Information of China (English)

    房雷; 陈雄生; 黄凯; 周盛源; 朱巍; 王辉; 邵将; 贾连顺

    2013-01-01

    背景:脱钙骨基质和骨形态发生蛋白已被证实具有良好的骨诱导性,但有关纳米脱钙骨基质的研究较少,其理化性质和生物安全性尚不明确。  目的:在前期实验制备人纳米脱钙骨基质的基础上加载重组人骨形态发生蛋白2,分析人纳米脱钙骨基质复合重组人骨形态发生蛋白2的理化性质及生物安全性。  方法:采用改良Urist法制备人脱钙骨基质,并进行纳米化处理,再将骨形态发生蛋白2与其按特定比例混合,冻干塑型行以下实验:①热源实验:将材料浸提液经耳静脉注入兔体内。②毒性实验:将材料浸提液与生理盐水分别经尾静脉注入小白鼠体内。③植入实验:在兔两侧后肢肌肉内分别植入实验材料和β-磷酸三钙。  结果与结论:冻干塑型后,纳米人脱钙骨基质材料表面致密,孔隙直径100-400μm,孔隙分布欠均匀,孔隙率小于30%,以碳、氧和氮为主要元素组成。人纳米脱钙骨基质复合重组人骨形态发生蛋白2材料无热源效应,注射后未见兔体温有明显波动。急性全身毒性实验结果表明人纳米脱钙骨基质复合重组人骨形态发生蛋白2材料符合国家相关规定,注射后未见小鼠出现明显毒性反应。人纳米脱钙骨基质复合重组人骨形态发生蛋白2材料植入兔体内的炎症反应明显轻于β-磷酸三钙植入后的反应。结果表明人纳米脱钙骨基质复合重组人骨形态发生蛋白2是一种无毒、组织相容性好、生物利用度高、炎症反应轻的纳米同种异体骨移植替代物。%BACKGROUND: Demineralized bone matrix and bone morphogenetic protein have been shown to have good bone induction, but less studies concerned nanometer demineralized bone matrix. Its physical and chemical properties and biological security are not yet clear. OBJECTIVE:On the basis of preparing the nanometer human demineralized bone

  20. Short bouts of mechanical loading are as effective as dexamethasone at inducing matrix production by human bone marrow Mesenchymal stem cell

    Directory of Open Access Journals (Sweden)

    A Sittichokechaiwut

    2010-07-01

    Full Text Available Dexamethasone (Dex is used widely to induce differentiation in human mesenchymal stem cells (hMSCs; however, using a pharmaceutical agent to stimulate hMSC differentiation is not the best choice for engineered tissue transplantation due to potential side-effects. The goal of the present study was to investigate the effects of dynamic compressive loading on differentiation and mineralized matrix production of hMSCs in 3D polyurethane scaffolds, using a loading regimen previously shown to stimulate mineralised matrix production of mature bone cells (MLO-A5. hMSCs were seeded in polyurethane scaffolds and cultured in standard culture media with or without Dex. Cell-seeded scaffolds were compressed at 5% global strain for 2 h on day 9 and then every 5 days in a media-filled sterile chamber. Samples were tested for mRNA expression of alkaline phosphatase (ALP, osteopontin (OPN, collagen type 1 (col 1 and runt-related transcription factor-2 (RUNX-212 h after the first loading, cell viability by MTS assay and alkaline phosphatase activity at day 12 of culture and cell viability, collagen content by Sirius red and calcium content by alizarin red at day 24 of culture. Neither Dex nor loading had significant effects on cell viability. Collagen content was significantly higher (p<0.01 in the loaded group compared with the non-loaded group in all conditions. There was no difference in ALP activity or the amount of collagen and calcium produced between the non-loaded group supplemented with Dex and the loaded group without Dex. We conclude that dynamic loading has the ability to stimulate osteogenic differentiation of hMSC in the absence of glucocorticoids.

  1. EXPERIMENTAL DEVELOPMENT OF BIO-BASED POLYMER MATRIX BUILDING MATERIAL AND FISH BONE DIAGRAM FOR MATERIAL EFFECT ON QUALITY

    Directory of Open Access Journals (Sweden)

    Asmamaw Tegegne

    2014-06-01

    Full Text Available These days cost of building materials are continuously increasing and the conventional construction materials for this particular purpose become low and low. The weight of conventional construction materials particularly building block is heavy and costly due to particularly cement. Thus, the objective of this paper is to develop an alternative light weight, high strength and relatively cost effective building material that satisfy the quality standard used in the country. A bio-based polymer matrix composite material for residential construction was experimentally developed. Sugar cane bagasse, thermoplastics (polyethylene g roup sand and red ash were used as materials alternatively. Mixing of the additives,melting of the hermoplastics, molding and curing (dryingwere the common methods used on the forming process of the samples. Mechanical behavior evaluation (testing of the product was carried out. Totally 45 specimens were produced and three replicate tests were performed per each test type. Quality analysis was carried out for group B material using Ishikawa diagram. The tensile strength of group A specimen was approximately 3 times greater than that of group B specimens. The compression strength of group A specimens were nearly 2 times greater than group B. Comparing to the conventional building materials(concert block and agrostoneproduced in the country, which the compression strength is 7Mpa and 16Mpa respectively, the newly produced materials show much better results in which Group A is 25.66 Mpa and group B is 16.66 Mpa. energy absorption capacity of group A specimens was approximately 3 times better than that of group B. Water absorption test was carried out for both groups and both showed excellent resistivity. Group A composite material specimens, showed better results in all parameters.

  2. GS/DBM/PLA porous composite biomaterial for the treatment of infective femoral condyle defect in rats

    OpenAIRE

    Liu, Xiaoming; Yang, Lin; Li, Jing; Zhang, Yuming; Xu, Weijun; Ren, Yan; LIU, BIWANG; Yang, Biao; LI, BAOXING

    2016-01-01

    A bone defect resulting from open bone trauma may easily become infected; however, the administration of efficacious systemic antibiotics cannot be performed at safe levels. Previous studies have investigated anti-infective biomaterials that incorporate into bone and facilitate the direct application of high-concentration local antibiotics. In the present study, the effect of a novel porous composite with gentamicin sulfate (GS) in treating infected femoral condyle defects was investigated us...

  3. [Actin cytoskeleton organization and spreading of bone marrow stromal cells and cartilage cells during their combined and independent cultivation on different extracellular matrix proteins].

    Science.gov (United States)

    Sakhenberg, E I; Nikolaenko, N S; Pinaev, G P

    2014-01-01

    To clarify the mutual influence of bone marrow stromal cells (BMSCs) and cartilage cells we studied the organization of their actin cytoskeleton and cell spreading on different extracellular matrix proteins--laminin 2/4, collagen type I or fibronectin. It has been shown that the most pronounced difference in morphological characteristics of the cells such as their form, size and actin cytoskeleton organization occur in the case of interaction with fibronectin. So, after separate brief incubation of both cell types on fibronectin, the average area of BMSCs spreading was about 4 times greater than the area of the cartilage cell spreading. However, in the co-culture of these cells in a ratio of 1:1, the average jointed spreading area on fibronctin was nearly 1.5 times less than the theoretically calculated. To determine the nature of exposure of the cells to each other we have studied spreading of these cells in the media conditioned by another cell type. We have found that the area of BMSC's spreading in the medium conditioned by cartilage cells is markedly smaller than the area of spreading of the same cells in the control medium. These data suggest that the cartilage cells secrete factors that reduce BMSC's spreading.

  4. Expression of bone morphogenic protein 2/4, transforming growth factor-β1, and bone matrix protein expression in healing area between vascular tibia grafts and irradiated bone-experimental model of osteonecrosis

    International Nuclear Information System (INIS)

    Purpose: For the surgical treatment of osteoradionecrosis after multimodal therapy of head-and-neck cancers, free vascular bone grafts are used to reconstruct osseous structures in the previously irradiated graft bed. Reduced, or even absent osseous healing in the transition area between the vascular graft and the irradiated graft bed represents a clinical problem. Inflammatory changes and fibrosis lead to delayed healing, triggered by bone morphogentic protein 2/4 (BMP2/4) and transforming growth factor (TGF)-β1. Given the well-known fibrosis-inducing activity of TGF-β1, an osteoinductive effect has been reported for BMP2/4. However, the influence of irradiation (RT) on this cytokine expression remains elusive. Therefore, the aim of the present in vivo study was to analyze the expression of BMP2/4, TGF-β1, collagen I, and osteocalcin in the transition area between the bone graft and the graft bed after RT. Methods and materials: Twenty Wistar rats (male, weight 300-500 g) were used in this study. A free vascular tibia graft was removed in all rats and maintained pedicled in the groin region. Ten rats underwent RT with 5 x 10 Gy to the right tibia, the remainder served as controls. After 4 weeks, the previously removed tibia grafts were regrafted into the irradiated (Group 1) and nonirradiated (Group 2) graft beds. The interval between RT and grafting was 4 weeks. After a 4-week osseous healing period, the bone grafts were removed, and the transition area between the nonirradiated graft and the irradiated osseous graft bed was examined histomorphometrically (National Institutes of Health imaging program) and immunohistochemically (avidin-biotin-peroxidase complex) for the expression of BMP2/4, TGF-β1, collagen I, and osteocalcin. Results: Absent or incomplete osseous healing of the graft was found in 9 of 10 rats after RT with 50 Gy and in 1 of 10 of the rats with nonirradiated osseous grafts. Histomorphometrically, the proportion of osseous healing in the

  5. Synthesis, Spectroscopic Studies for a Starburst Ligand and Corresponding Trinuclear Eu(Ⅲ) Complex Eu3(DBM)9(TDMB) with Dibenzoylmethane%三核铕配合物Eu3(DBM)9(TDMB)的星型配体制备与发光性能

    Institute of Scientific and Technical Information of China (English)

    刘玉静; 刘连利; 朱东霞; 田爱香; 应俊

    2011-01-01

    A starburst ligand 1,3,5-tris((4,5-diazafluoren-9-yliminoxy)methyl))-benzene (TDMB),and corresponding trinuclear Eu(Ⅲ)complex Eu3(DBM)9(TDMB) (DBM=1,3-dipheny1-1,3-propanedionate) were synthesized and characterized by elemental analyses,IR,1H NMR.Furthermore,the photophysical properties of ligand and its europium complex were investigated.It exhibits different PL spectra in solid state and in solution of Eu3(DBM)9(TDMB).There are two fluorescent peaks at 612 nm and 414 nm in dichloromethane solution of Eu3(DBM)9(TDMB),while in solid state only red emission is observed.This result indicates that efficient energy transfer could take place from TDMB ligand to europium ion in Eu-complex solid.%用一种星型配体1,3,5-三((4,5-二氮芴-9-肟)甲基))-苯合成了三核铕配合物Eu3(DBM)9(TDMB)(DBM=1,3 二苯基-1,3-丙二酮),合成的配合物用元素分析,红外,氢核磁共振进行了表征.研究了配体与配合物的光物理性质.配合物在固态和溶液中具有不同的发光光谱,在二氯甲烷中分别在612 nm和414 nm有荧光峰,固态时只有红光发射,这一结果显示在固态时从TrDMB配体到铕离子的能量传递更有效.

  6. ATLAS DBM Module Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Soha, Aria [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Gorisek, Andrej [J. Stefan Inst., Ljubljana (Slovenia); Zavrtanik, Marko [J. Stefan Inst., Ljubljana (Slovenia); Sokhranyi, Grygorii [J. Stefan Inst., Ljubljana (Slovenia); McGoldrick, Garrin [Univ. of Toronto, ON (Canada); Cerv, Matevz [European Organization for Nuclear Research (CERN), Geneva (Switzerland)

    2014-06-18

    This is a technical scope of work (TSW) between the Fermi National Accelerator Laboratory (Fermilab) and the experimenters of Jozef Stefan Institute, CERN, and University of Toronto who have committed to participate in beam tests to be carried out during the 2014 Fermilab Test Beam Facility program. Chemical Vapour Deposition (CVD) diamond has a number of properties that make it attractive for high energy physics detector applications. Its large band-gap (5.5 eV) and large displacement energy (42 eV/atom) make it a material that is inherently radiation tolerant with very low leakage currents and high thermal conductivity. CVD diamond is being investigated by the RD42 Collaboration for use very close to LHC interaction regions, where the most extreme radiation conditions are found. This document builds on that work and proposes a highly spatially segmented diamond based luminosity monitor to complement the time segmented ATLAS Beam Conditions Monitor (BCM) so that when Minimum Bias Trigger Scintillators (MTBS) and LUCID (LUminosity measurement using a Cherenkov Integrating Detector) have difficulty functioning the ATLAS luminosity measurement is not compromised.

  7. Subchondral Bone Regenerative Effect of Two Different Biomaterials in the Same Patient

    Directory of Open Access Journals (Sweden)

    Marco Cavallo

    2013-01-01

    Full Text Available This case report aims at highlighting the different effects on subchondral bone regeneration of two different biomaterials in the same patient, in addition to bone marrow derived cell transplantation (BMDCT in ankle. A 15-year-old boy underwent a first BMDCT on a hyaluronate membrane to treat a deep osteochondral lesion (8 mm. The procedure failed: subchondral bone was still present at MRI. Two years after the first operation, the same procedure was performed on a collagen membrane with DBM filling the defect. After one year, AOFAS score was 100 points, and MRI showed a complete filling of the defect. The T2 mapping MRI after one year showed chondral tissue with values in the range of hyaline cartilage. In this case, DBM and the collagen membrane were demonstrated to be good biomaterials to restore subchondral bone: this is a critical step towards the regeneration of a healthy hyaline cartilage.

  8. Xeno-free culture condition for human bone marrow and umbilical cord matrix-derived mesenchymal stem/stromal cells using human umbilical cord blood serum

    Science.gov (United States)

    Esmaeli, Azadeh; Moshrefi, Mojgan; Shamsara, Ali; Eftekhar-vaghefi, Seyed Hasan; Nematollahi-mahani, Seyed Noureddin

    2016-01-01

    Background: Fetal bovine serum (FBS) is widely used in cell culture laboratories, risk of zoonotic infections and allergic side effects create obstacles for its use in clinical trials. Therefore, an alternative supplement with proper inherent growth-promoting activities is demanded. Objective: To find FBS substitute, we tested human umbilical cord blood serum (hUCS) for proliferation of human umbilical cord matrix derived mesenchymal stem cells (hUC-MSCs) and human bone marrow-derived mesenchymal cells (hBM-MSCs). Materials and Methods: Umbilical cord blood of healthy neonates, delivered by Caesarian section, was collected and the serum was separated. hUC-MSCs and hBM-MSCs were isolated and characterized by assessment of cell surface antigens by flow cytometry, alkaline phosphatase activity and osteogenic/adipogenic differentiation potential. The cells were then cultured in Iscove's Modified Dulbecco's Medium (IMDM) by conventional methods in three preparations: 1- with hUCS, 2- with FBS, and 3- without serum supplements. Cell proliferation was measured using WST-1 assay, and cell viability was assessed by trypan blue staining. Results: The cells cultured in hUCS and FBS exhibited similar morphology and mesenchymal stem cells properties. WST-1 proliferation assay data showed no significant difference between the proliferation rate of either cells following hUCS and FBS supplementation. Trypan blue exclusion dye test also revealed no significant difference for viability between hUCS and FBS groups. A significant difference was detected between the proliferation rate of stem cells cultured in serum-supplemented medium compared with serum-free medium. Conclusion: Our results indicate that human umbilical cord serum can effectively support proliferation of hBM-MSCS and hUC-MSCs in vitro and can be used as an appropriate substitute for FBS, especially in clinical studies. PMID:27738658

  9. Low melting point amphiphilic microspheres for delivery of bone morphogenetic protein-6 and transforming growth factor-β3 in a hydrogel matrix.

    Science.gov (United States)

    Sukarto, Abby; Amsden, Brian G

    2012-02-28

    Low melting-point poly(1,3-trimethylene carbonate-co-ε-caprolactone)-b-poly(ethylene glycol)-b-poly(1,3-trimethylene carbonate-co-ε-caprolactone), P(TMC-CL)(2)-PEG, was employed to fabricate microspheres for sustained growth factor delivery in a photocrosslinked N-methacrylate glycol chitosan hydrogel matrix. The P(TMC-CL)(2)-PEG had a melting range such that it was solid at 10°C, yet liquid with a low degree of crystallinity at 37°C. The in vitro degradation of P(TMC-CL)(2)-PEG microspheres was slow, regardless of the triblock copolymer molecular weight and so did not influence protein release. The size of protein loaded P(TMC-CL)(2)-PEG microspheres manufactured using a low-temperature electrospray technique was between 65 and 85μm. Initial formulation work was done with the model protein lysozyme, co-lyophilized with trehalose and encapsulated as approximately 2μm particles within P(TMC-CL)(2)-PEG microspheres. This work indicated a sustained release could be achieved with high trehalose content (90% w/w) in the particles. Under these conditions, the release rate of bone morphogenetic protein-6 was more sustained than that of the excipient bovine serum albumin (BSA) and closely followed that of lysozyme. On the other hand, transforming growth factor-β3 and the stabilizing agent BSA generated similar release profiles. This difference in release was proposed to be linked to the protein isoelectric point, with positively charged proteins possibly being more strongly adsorbed to the P(TMC-CL)(2)-PEG. Both growth factors were released in highly bioactive form, indicating the potential of the release approach. PMID:22037107

  10. Evaluation of anorganic bovine-derived hydroxyapatite matrix/cell binding peptide as a bone graft material in the treatment of human periodontal infrabony defects: A clinico-radiographic study

    Directory of Open Access Journals (Sweden)

    Ghousia Fatima

    2015-01-01

    Full Text Available Background: Various bone graft materials have been used in the treatment of periodontal defects. A synthetic bone substitute material composed of P-15 with anorganic bone mineral has been scantly studied. Hence, the present study was aimed to evaluate and compare the efficacy of anorganic bovine-derived hydroxyapatite matrix (ABM/cell binding peptide (P-15 in human periodontal infrabony defects with that of open flap debridement (OFD alone. Materials and Methods: A split-mouth, randomized controlled clinical study was designed to investigate the efficacy of ABM/P-15. In this clinical trial, 10 patients having bilateral periodontal infrabony defects were treated either with ABM/P-15 or OFD and followed for a period of 9 months. At baseline and at 9 months probing pocket depth (PPD, relative attachment level (RAL, depth of a defect, and radiographic bone level were measured; and compared between test and control sites. Results: A statistically significant reduction (P < 0.001 in PPD was observed in test sites compared to control sites. Both sites showed a gain in RAL without any significant difference. Similarly, the radiographic evaluation revealed significantly higher radiographic defect fill in test sites as compared to control sites (P < 0.001. Conclusion: ABM/P-15 bone graft material appears to be useful and beneficial in the treatment of human periodontal infrabony defects.

  11. In vivo CT quantification of trabecular bone dynamics in mice after sciatic neurectomy using monochromatic synchrotron radiation.

    Science.gov (United States)

    Matsumoto, Takeshi; Nishikawa, Ken; Tanaka, Masao; Uesugi, Kentaro

    2011-05-01

    We demonstrated the capability of in vivo synchrotron radiation CT (SRCT) in analyzing short-term changes in trabecular bone architecture (TBA) and the degree of bone mineralization (DBM) in small animals. Mice underwent unilateral sciatic neurectomy (SN) and sham operation on the contralateral side (SO) at 13 weeks of age. In vivo SRCT scans (11.7-μm cubic voxel) were made of both knees 7 and 17 days (group 1, n = 7) or only 17 days (group 2, n = 6) after surgery. In three mice in group 2, one knee was scanned twice on the same day in different orientations for reproducibility testing. Two scan data sets of the tibial proximal metaphysis acquired at different time points (group 1) or at the same time point (group 2) were registered for detecting differences in volume fraction (BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N), connectivity density (Conn.D), and mean DBM (mDBM). The reproducibility test showed small errors of 25%. In group 1, Tb.Th increased but Tb.N and Conn.D decreased in both SN and SO; BV/TV and mDBM increased only in SO; accordingly, BV/TV, Tb.Th, and mDBM became lower in SN than in SO. No significant interaction between SN and irradiation was found; the SN effects on TBA and DBM were similar between groups 1 and 2, although synchrotron irradiation led to higher Tb.Th and lower Tb.N in group 1. In conclusion, in vivo SRCT has potential use for detecting short-term bone dynamics of small animals. PMID:21359625

  12. Biocompatibility of acellular natural bone matrix with induced osteoblasts in vitro%脱细胞天然骨基质与诱导性成骨细胞的体外相容性

    Institute of Scientific and Technical Information of China (English)

    李康杰; 孙抒

    2011-01-01

    背景:前期工作表明TritonX-100处理的脱细胞骨基质已满足组织学和免疫学方面的修复要求.如果细胞能在材料表面很好地生长,将利于进一步进行体内动物实验.目的:采用细胞培养法在体外评估脱细胞骨基质与诱导后成骨细胞的生物相容性.方法:第3代骨髓基质干细胞经成骨诱导分化培养液诱导分化为成骨细胞,接种于TritonX-100处理的脱细胞骨基质及羟基磷灰石表面,检测成骨细胞的碱性磷酸酶表达并用扫描电镜观察材料表面的细胞生长情况.结果与结论:碱性磷酸酶活性分析均表明,TritonX-100处理的脱细胞骨基质在培养48 h之后比羟基磷灰石更利于诱导成骨细胞生长;扫描电镜下可见,成骨细胞在脱细胞骨基质表面呈现立体生长方式,细胞呈球形,并且聚集成簇.体外实验结果显示成骨细胞与脱细胞天然骨基质有较好的生物相容性.%BACKGROUND:The repair requirements of histology and immunology can be met by acellular bone matrix treated by TritonX-100.The test cells will be able to grow nicely on the surface of test materials, which will benefit fu rther evaluating them in animals in vivo.OBJECTIVE:To evaluate the biocompatibility of acellular natural bone matrix prepared with TritonX-100 to osteoblasts by cell culture assay.METHODS:The third passage of bone marrow stromal stem cells were induced to differentiate into osteoblasts, then the identified osteoblasts were seeded on surface of acellular natural bone matrix prepared with TritonX-100 and calcium hydroxyapatite. Alkaline phosphatase vitality was measured by alkaline phosphatase detection kit and the growth of osteoblast-like cells on su rface of the material was observed with scanning electron microscopy.RESULTS AND CONCLUSION:Alkaline phosphatase detection kit analysis indicated that acellular natural bone matrix prepared with TritonX-100 were able to promote the growth of osteoblast-like cells compared

  13. Increased serum and bone matrix levels of transforming growth factor {beta}1 in patients with GH deficiency in response to GH treatment

    DEFF Research Database (Denmark)

    Ueland, Thor; Lekva, Tove; Otterdal, Kari;

    2011-01-01

    Patients with adult onset GH deficiency (aoGHD) have secondary osteoporosis, which is reversed by long-term GH substitution. Transforming growth factor β1 (TGFβ1 or TGFB1) is abundant in bone tissue and could mediate some effects of GH/IGFs on bone. We investigated its regulation by GH/IGF1 in vivo...

  14. First-line treatment with bortezomib rapidly stimulates both osteoblast activity and bone matrix deposition in patients with multiple myeloma, and stimulates osteoblast proliferation and differentiation in vitro

    DEFF Research Database (Denmark)

    Lund, Thomas; Søe, Kent; Abildgaard, Niels;

    2010-01-01

    studied in vitro. RESULTS: Treatment with bortezomib caused a significant increase in bone-specific alkaline phosphatase and pro-collagen type I N-terminal propeptide, a novel bone formation marker. The addition of a glucocorticoid resulted in a transient decrease in collagen deposition. In vitro...

  15. The Expression of Bone Morphogenetic Protein 2 and Matrix Metalloproteinase 2 through Retinoic Acid Receptor Beta Induced by All-Trans Retinoic Acid in Cultured ARPE-19 Cells.

    Directory of Open Access Journals (Sweden)

    Zhenya Gao

    Full Text Available All-trans retinoic acid (ATRA plays an important role in ocular development. Previous studies found that retinoic acid could influence the metabolism of scleral remodeling by promoting retinal pigment epithelium (RPE cells to secrete secondary signaling factors. The purpose of this study was to investigate whether retinoic acid affected secretion of bone morphogenetic protein 2 (BMP-2 and matrix metalloproteinase 2 (MMP-2 and to explore the signaling pathway of retinoic acid in cultured acute retinal pigment epithelial 19 (ARPE-19 cells.The effects of ATRA (concentrations from 10-9 to 10-5 mol/l on the expression of retinoic acid receptors (RARs in ARPE-19 cells were examined at the mRNA and protein levels using reverse transcription-polymerase chain reaction (RT-PCR and western blot assay, respectively. The effects of treating ARPE-19 cells with ATRA concentrations ranging from 10-9 to 10-5 mol/l for 24 h and 48 h or with 10-6mol/l ATRA at different times ranging from 6h to 72h were assessed using real-time quantitative PCR (qPCR and enzyme-linked immunosorbent assay (ELISA. The contribution of RARβ-induced activation of ARPE-19 cells was confirmed using LE135, an antagonist of RARβ.RARβ mRNA levels significantly increased in the ARPE-19 cells treated with ATRA for 24h and 48h. These increases in RARβ mRNA levels were dose dependent (at concentrations of 10-9 to 10-5 mol/l with a maximum effect observed at 10-6 mol/l. There were no significant changes in the mRNA levels of RARα and RARγ. Western blot assay revealed that RARβ protein levels were increased significantly in a time-dependent manner in ARPE-19 cells treated with 10-6 mol/l ATRA from 12 h to 72 h, with a marked increase observed at 24 h and 48 h. The upregulation of RARβ and the ATRA-induced secretion in ARPE-19 cells could be inhibited by the RARβ antagonist LE135.ATRA induced upregulation of RARβ in ARPE-19 cells and stimulated these cells to secrete BMP-2 and MMP-2.

  16. The Expression of Bone Morphogenetic Protein 2 and Matrix Metalloproteinase 2 through Retinoic Acid Receptor Beta Induced by All-Trans Retinoic Acid in Cultured ARPE-19 Cells

    Science.gov (United States)

    Gao, Zhenya; Huo, Lijun; Cui, Dongmei; Yang, Xiao; Zeng, Junwen

    2016-01-01

    Purpose All-trans retinoic acid (ATRA) plays an important role in ocular development. Previous studies found that retinoic acid could influence the metabolism of scleral remodeling by promoting retinal pigment epithelium (RPE) cells to secrete secondary signaling factors. The purpose of this study was to investigate whether retinoic acid affected secretion of bone morphogenetic protein 2 (BMP-2) and matrix metalloproteinase 2 (MMP-2) and to explore the signaling pathway of retinoic acid in cultured acute retinal pigment epithelial 19 (ARPE-19) cells. Methods The effects of ATRA (concentrations from 10−9 to 10−5 mol/l) on the expression of retinoic acid receptors (RARs) in ARPE-19 cells were examined at the mRNA and protein levels using reverse transcription-polymerase chain reaction (RT-PCR) and western blot assay, respectively. The effects of treating ARPE-19 cells with ATRA concentrations ranging from 10−9 to 10−5 mol/l for 24 h and 48 h or with 10-6mol/l ATRA at different times ranging from 6h to 72h were assessed using real-time quantitative PCR (qPCR) and enzyme-linked immunosorbent assay (ELISA). The contribution of RARβ-induced activation of ARPE-19 cells was confirmed using LE135, an antagonist of RARβ. Results RARβ mRNA levels significantly increased in the ARPE-19 cells treated with ATRA for 24h and 48h. These increases in RARβ mRNA levels were dose dependent (at concentrations of 10−9 to 10−5 mol/l) with a maximum effect observed at 10−6 mol/l. There were no significant changes in the mRNA levels of RARα and RARγ. Western blot assay revealed that RARβ protein levels were increased significantly in a time-dependent manner in ARPE-19 cells treated with 10−6 mol/l ATRA from 12 h to 72 h, with a marked increase observed at 24 h and 48 h. The upregulation of RARβ and the ATRA-induced secretion in ARPE-19 cells could be inhibited by the RARβ antagonist LE135. Conclusion ATRA induced upregulation of RARβ in ARPE-19 cells and stimulated

  17. Preparation of bone marrow cells-derived extracellular matrix and its microstructure and composition%人骨髓细胞外基质的制备及其结构成分

    Institute of Scientific and Technical Information of China (English)

    唐丽; 武俊杰; 王阿娴; 梁源; 季海宁; 丁寅

    2014-01-01

    背景:细胞外基质可以在体外模拟细胞微环境,使干细胞在体外大量增殖的同时具有良好的干细胞特性。目的:制备人骨髓细胞外基质并分析其结构成分。  方法:取第4代人骨髓细胞培养14 d,在最后8 d换成膜诱导液,经脱细胞处理后制备人骨髓细胞外基质。倒置显微镜和扫描电镜观察人骨髓细胞外基质表面形态。免疫荧光染色观察脱细胞处理前后Ⅰ型胶原和二聚糖的变化。将人牙周膜干细胞接种于人骨髓细胞外基质、纤粘连蛋白包被的六孔板和普通培养板,比较不同基质对人牙周膜干细胞细胞形态和黏附的影响。  结果与结论:化学物理联合脱细胞处理可以获得结构完整的人骨髓细胞外基质膜片,Ⅰ型胶原和二聚糖在去细胞处理前后结构和含量无明显差异。接种在细胞外基质上生长的人牙周膜干细胞,按照细胞外基质的轨道有序生长,不同于原有细胞形态;相同时间人牙周膜干细胞在细胞外基质上贴壁数量较多。表明有效的脱细胞处理可以得到结构完整的细胞外基质网状支架,相关蛋白成分未因脱细胞而明显丧失,细胞外基质影响接种细胞的形态、促进细胞黏附。提示可利用细胞外基质模型模拟体内干细胞生长微环境,在体外获得大量高质量的成体干细胞。%BACKGROUND:Extracellular matrix can simulate microenvironment and make the stem cells proliferate maintaining the characteristics of stem cells wel in vitro. OBJECTIVE:To prepare the extracellular matrix from human bone marrow cells and to analyze its microstructure and composition preliminarily. METHODS:Human bone marrow cells of passage 4 were cultured for 14 days, and the induction medium was used during the last 8 days. After decellularization, cells were removed to prepare human bone marrow cells-derived extracellular matrix. The surface morphology of human

  18. Clinical evaluation of the efficacy of a GTR membrane (HEALIGUIDE® and demineralised bone matrix (OSSEOGRAFT® as a space maintainer in the treatment of Miller′s Class I gingival recession

    Directory of Open Access Journals (Sweden)

    S Nanditha

    2011-01-01

    Full Text Available Background: Periodontal plastic surgical procedures aimed at coverage of exposed root surface have evolved into routine treatment modalities. The present study was designed to evaluate the effectiveness and predictability of using a collagen barrier along with a demineralized bone matrix in the treatment of recession defects in a single surgical procedure. Materials and Methods: Seventeen patients with Miller′s class I recession were treated with a combination of a collagen barrier used along with a bone graft and coronally advanced flap technique. Clinical parameters were recorded at baseline, 3 months, 6 months, and 9 months. Results: The study showed a highly significant reduction in the recession depth (70.29 ± 21.96% at the end of the study. This study showed that the use of this technique for recession coverage is highly predictable and highly esthetic root coverage can be obtained.

  19. Strategies to eradicate minimal residual disease in small cell lung cancer: high-dose chemotherapy with autologous bone marrow transplantation, matrix metalloproteinase inhibitors, and BEC2 plus BCG vaccination.

    Science.gov (United States)

    Krug, L M; Grant, S C; Miller, V A; Ng, K K; Kris, M G

    1999-10-01

    In the last 25 years, treatment for small cell lung cancer (SCLC) has improved with advances in chemotherapy and radiotherapy. Standard chemotherapy regimens can yield 80% to 90% response rates and some cures when combined with thoracic irradiation in limited-stage patients. Nonetheless, small cell lung cancer has a high relapse rate due to drug resistance; this has resulted in poor survival for most patients. Attacking this problem requires a unique approach to eliminate resistant disease remaining after induction therapy. This review will focus on three potential strategies: high-dose chemotherapy with autologous bone marrow transplantation, matrix metalloproteinase inhibitors, and BEC2 plus BCG vaccination.

  20. Histomorphometry and Bone Matrix Mineralization Before and After Bisphosphonate Treatment in Boys With Duchenne Muscular Dystrophy: A Paired Transiliac Biopsy Study.

    Science.gov (United States)

    Misof, Barbara M; Roschger, Paul; McMillan, Hugh J; Ma, Jinhui; Klaushofer, Klaus; Rauch, Frank; Ward, Leanne M

    2016-05-01

    Duchenne muscular dystrophy (DMD) is a genetic disorder causing progressive muscle weakness. To prolong independent ambulation, DMD patients are treated with glucocorticoids, which, in turn, can increase bone fragility. In a cohort with vertebral fractures, intravenous bisphosphonate (iv BP) therapy stabilized vertebrae and reduced back pain. To characterize the effects of glucocorticoid therapy and bisphosphonate treatment on bone tissue and material properties, paired transiliac biopsy samples (before and after on average 2.4 years of iv BP) from 9 boys with DMD were studied for histomorphometry and bone mineralization density distribution (BMDD) and compared to reference values. Before iv BP, the boys had low cancellous bone volume (BV/TV) and cortical thickness (Ct.Wi) (both on average 56% of the healthy average, p < 0.001 versus reference), and mineralizing surface (MS/BS) in the lower normal range (on average 74% of the healthy average). The average degree of mineralization of cancellous (Cn.CaMean) and cortical compartments (Ct.CaMean) was 21.48 (20.70, 21.90) wt% and 20.42 (19.32, 21.64) wt%, respectively (median [25th, 75th percentiles]), which was not different from reference. After iv BP, BV/TV and Ct.Wi were, on average, unchanged. However, at the individual patient level, BV/TV Z-scores increased in 2, remained unchanged in 4, and declined in 3 patients. Additionally, on average, MS/BS decreased (-85%, p < 0.001), Cn.CaMean (+2.7%) increased, whereas the heterogeneity of cancellous (Cn.CaWidth -19%) and cortical bone mineralization (Ct.CaWidth -8%, all p < 0.05) decreased versus baseline. The changes in bone mineralization are consistent with the antiresorptive action of iv BP. At the same time, our observations point to the need for novel therapies with less or absent bone turnover suppression, including the fact that bone turnover was low even before bisphosphonate therapy, that bone turnover declined further (as expected) with treatment

  1. Long-term voluntary exercise of male mice induces more beneficial effects on cancellous and cortical bone than on the collagenous matrix

    OpenAIRE

    2009-01-01

    Abstract The effects of lifelong physical exercise on the composition, structure and mechanical properties of bone are not well understood. Earlier, we found that voluntary physical exercise improved various properties of bone in maturing male mice up to 6 months of age. In the present study, we extended the previous study to 18 months. Half of the mice (total N=144) had access to running wheels while half were kept sedentary. The collagen network was assessed biochemically and by ...

  2. Bone tumor

    Science.gov (United States)

    Tumor - bone; Bone cancer; Primary bone tumor; Secondary bone tumor ... The cause of bone tumors is unknown. They often occur in areas of the bone that grow rapidly. Possible causes include: Genetic defects ...

  3. Comparação histológica entre o osso desmineralizado e polímero de mamona sobre a regeneração óssea Histological comparison of demineralized bone matrix and the Ricinus communis polymer on bone regeneration

    Directory of Open Access Journals (Sweden)

    José Rodrigues Laureano Filho

    2007-04-01

    Full Text Available O presente estudo tem por objetivo analisar histologicamente o efeito de uma matriz óssea desmineralizada de origem humana e de uma resina poliuretana derivada do óleo da mamona sobre o processo de reparação óssea. MATERIAIS E MÉTODOS: Foram utilizados 24 coelhos e em cada calvária foram preparadas duas cavidades cirúrgicas, sendo uma do lado direito e a outra do lado esquerdo da sutura parietal. Os animais foram divididos em dois grupos. No grupo I, a cavidade experimental (lado direito foi preenchida com a matriz óssea desmineralizada de origem humana, enquanto no grupo II a cavidade experimental foi preenchida com a poliuretana derivada do óleo de mamona. As cavidades de controle foram preenchidas apenas com o sangue do animal. Os animais foram sacrificados nos períodos pós-operatórios de 4, 7 e 15 semanas. RESULTADOS: A análise histológica revelou que tanto o grupo controle quanto os grupos I e II apresentaram um aumento na neoformação óssea ao longo do tempo, sendo que esta reparação se deu mais rapidamente no grupo controle, mesmo mostrando diminuição importante na espessura. CONCLUSÕES: Ambos os materiais apresentaram-se biocompatíveis, sendo a poliuretana reabsorvida mais tardiamente e considerada de melhor resultado em relação ao outro material empregado.Aim the aim of the present study is to make a histologic analysis the effects of a human demineralized bone matrix and a polyurethane resin derived from the Ricinus communis, on bone regeneration process. MATERIALS AND METHODS: For this, 24 rabbits were submitted to two surgical calvaria bone defects, one on the right and another on the left side of the parietal suture. The animals were divided in two groups. In group I the experimental defect (right side was treated with a human demineralized bone matrix, while in group II the experimental cavity was treated with the polyurethane resin derived from Ricinus communis. The control defects were filled with the

  4. Tumores ósseos benignos e lesões ósseas Pseudotumorais: tratamento atual e novas tendências Benign bone tumors and tumor-like bone lesions: treatment update and new trends

    Directory of Open Access Journals (Sweden)

    José Marcos Nogueira Drumond

    2009-10-01

    , which have ossified bone lesions caused by fibrous dysplasia. Aneurismal bone cyst has been treated with sclerosing agents by percutaneous injection, yielding good results. Adjuvants allow joint salvage, maintenance of movements and function, with low rates of recurrence. Among them, the most used ones are bone cement (PMMA, phenol, nitrogen-based cryotherapy, hydrogen peroxide, ethanol and radiotherapy. New methods of treatment include thermal ablation with radiofrequency and laser, mainly utilized for treating osteoid osteoma. Arthroscopy allows resection of benign intra-joint lesions and assists the surgery of subchondral tumors. A great advance is the utilization of synthetic bone substitutes, which are a mixture of osteoinductive growth factors and osteoconductive ceramics, and have presented comparable results to autogenous bone grafts. There is a recent trend for closed treatments, with percutaneous injection of demineralized bone matrix (DBM and calcium sulfate. Autogenous cancellous bone graft remains as the gold standard. Vascularized fibula graft, on the other hand, incorporates faster in the treatment of large destructive lesions. Also, allogenic cortical support allows structural augmentation for aggressive tumors. Freeze-dried allografts are used to fill contained defects and as expanders of autografts. Joint endoprosthesis may be used in large destructive lesions of the distal femur, hip and shoulder.

  5. Clinical application of heterogeneous acellular dermal matrix used in alveolar bone grafting%异种脱细胞真皮基质膜在齿槽裂植骨术中的临床应用

    Institute of Scientific and Technical Information of China (English)

    李可兴; 刘曙光

    2014-01-01

    Objective To observe the effect of bone repair and evaluate its esthetic outcome with heterogeneous acellular dermal matrix cover the alveolar cleft bone grafting area in the alveolar cleft operation.Methods In 67 cases,unilateral cleft palate,were treated by alveolar cleft conventional surgical method.Cancellous iliac bone grafting were control group,heterogeneous acellular dermal matrix cover the alveolar cleft bone grafting area were treatment group.Radiographs was taken at 1 st,3 rd,6 th,12 th,18 th,24 th month postoperatively to observe the bone regeneration alveolar cleft zone.Results The alveolar cleft graft area new bone formation with Ⅰ,Ⅱ,Ⅲ,Ⅳ grade after 6 months in control group was 15,11,9,6 cases and in treatment group was 13,9,3,1 case.The graft survival rate and success rate (97.8%,84.3%) of treatment group were higher than that of control group (84.5%,63.7%),the difference was statistically significant (P < 0.05).Conclusion The successful rate of operation could be warranted,by the joint application of autogenous iliac bone grafts and heterogeneous acellular dermal matrix in the alveolar cleft operation.%目的 在齿槽裂手术中,将异种脱细胞真皮基质膜覆盖齿槽裂植骨区,观察新骨形成状况,评价植骨修复效果.方法 选择67例单侧齿槽裂患者,按治疗方法不同分为对照组和试验组.对照组单纯应用髂骨骨松质移植41例,试验组应用异种脱细胞真皮基质膜加髂骨骨松质移植26例.术后1,3,6,12,18,24个月随访,X线片观察齿槽裂植骨区新骨生成情况.结果 对照组病例术后6个月齿槽裂植骨区新骨形成Ⅰ,Ⅱ,Ⅲ,Ⅳ级分别为15,11,9,6例,齿槽裂植骨成活率为84.5%,临床成功率为63.7%.而试验组病例植骨区新骨形成Ⅰ,Ⅱ,Ⅲ,Ⅳ级分别为13,9,3,1例.齿槽裂植骨成活率为97.8%,临床成功率为84.3%.两组植骨成活率、临床成功率比较差异有统计学意义(P<0.05).结论 自体髂骨加异

  6. Bone scintiscanning updated.

    Science.gov (United States)

    Lentle, B C; Russell, A S; Percy, J S; Scott, J R; Jackson, F I

    1976-03-01

    Use of modern materials and methods has given bone scintiscanning a larger role in clinical medicine, The safety and ready availability of newer agents have led to its greater use in investigating both benign and malignant disease of bone and joint. Present evidence suggests that abnormal accumulation of 99mTc-polyphosphate and its analogues results from ionic deposition at crystal surfaces in immature bone, this process being facilitated by an increase in bone vascularity. There is, also, a component of matrix localization. These factors are in keeping with the concept that abnormal scintiscan sites represent areas of increased osteoblastic activity, although this may be an oversimplification. Increasing evidence shows that the bone scintiscan is more sensitive than conventional radiography in detecting focal disease of bone, and its ability to reflect the immediate status of bone further complements radiographic findings. The main limitation of this method relates to nonspecificity of the results obtained.

  7. ICTP in Bone Metastases of Lung Cancer

    OpenAIRE

    Franjević, Ana; Pavićević, Radomir; Bubanović, Gordana

    2011-01-01

    Bone metastases often appear in advanced stages of lung cancer. They are the result of modulation of bone metabolism by tumor cells that migrated into bone microenvironment and degraded bone organic matrix. Measurement of C-terminal telopeptide of type I collagen (ICTP) in the serum of subjects with lung cancer with and without bone metastases and healthy population is the way to explore bone resorption. In 343 subjects included in this research ICTP level was significantly higher...

  8. Cancer to bone: a fatal attraction

    OpenAIRE

    Weilbaecher, Katherine N.; Guise, Theresa A.; McCauley, Laurie K

    2011-01-01

    When cancer metastasizes to bone, considerable pain and deregulated bone remodelling occurs, greatly diminishing the possibility of cure. Metastasizing tumour cells mobilize and sculpt the bone microenvironment to enhance tumour growth and to promote bone invasion. Understanding the crucial components of the bone microenvironment that influence tumour localization, along with the tumour-derived factors that modulate cellular and protein matrix components of bone to favour tumour expansion and...

  9. Function of osteocytes in bone.

    Science.gov (United States)

    Aarden, E M; Burger, E H; Nijweide, P J

    1994-07-01

    Although the structural design of cellular bone (i.e., bone containing osteocytes that are regularly spaced throughout the bone matrix) dates back to the first occurrence of bone as a tissue in evolution, and although osteocytes represent the most abundant cell type of bone, we know as yet little about the role of the osteocyte in bone metabolism. Osteocytes descend from osteoblasts. They are formed by the incorporation of osteoblasts into the bone matrix. Osteocytes remain in contact with each other and with cells on the bone surface via gap junction-coupled cell processes passing through the matrix via small channels, the canaliculi, that connect the cell body-containing lacunae with each other and with the outside world. During differentiation from osteoblasts to mature osteocyte the cells lose a large part of their cell organelles. Their cell processes are packed with microfilaments. In this review we discuss the various theories on osteocyte function that have taken in consideration these special features of osteocytes. These are 1) osteocytes are actively involved in bone turnover; 2) the osteocyte network is through its large cell-matrix contact surface involved in ion exchange; and 3) osteocytes are the mechanosensory cells of bone and play a pivotal role in functional adaptation of bone. In our opinion, especially the last theory offers an exciting concept for which some biomechanical, biochemical, and cell biological evidence is already available and which fully warrants further investigations.

  10. Bone Biopsy

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z Bone Biopsy Bone biopsy uses a needle and imaging guidance ... limitations of Bone Biopsy? What is a Bone Biopsy? A bone biopsy is an image-guided procedure ...

  11. Bone Diseases

    Science.gov (United States)

    ... avoid smoking and drinking too much alcohol. Bone diseases can make bones easy to break. Different kinds ... break Osteogenesis imperfecta makes your bones brittle Paget's disease of bone makes them weak Bones can also ...

  12. Microdamage induced calcium efflux from bone matrix activates intracellular calcium signaling in osteoblasts via L-type and T-type voltage-gated calcium channels.

    Science.gov (United States)

    Jung, Hyungjin; Best, Makenzie; Akkus, Ozan

    2015-07-01

    Mechanisms by which bone microdamage triggers repair response are not completely understood. It has been shown that calcium efflux ([Ca(2+)]E) occurs from regions of bone undergoing microdamage. Such efflux has also been shown to trigger intracellular calcium signaling ([Ca(2+)]I) in MC3T3-E1 cells local to damaged regions. Voltage-gated calcium channels (VGCCs) are implicated in the entry of [Ca(2+)]E to the cytoplasm. We investigated the involvement of VGCC in the extracellular calcium induced intracellular calcium response (ECIICR). MC3T3-E1 cells were subjected to one dimensional calcium efflux from their basal aspect which results in an increase in [Ca(2+)]I. This increase was concomitant with membrane depolarization and it was significantly reduced in the presence of Bepridil, a non-selective VGCC inhibitor. To identify specific type(s) of VGCC in ECIICR, the cells were treated with selective inhibitors for different types of VGCC. Significant changes in the peak intensity and the number of [Ca(2+)]I oscillations were observed when L-type and T-type specific VGCC inhibitors (Verapamil and NNC55-0396, respectively) were used. So as to confirm the involvement of L- and T-type VGCC in the context of microdamage, cells were seeded on devitalized notched bone specimen, which were loaded to induce microdamage in the presence and absence of Verapamil and NNC55-0396. The results showed significant decrease in [Ca(2+)]I activity of cells in the microdamaged regions of bone when L- and T-type blockers were applied. This study demonstrated that extracellular calcium increase in association with damage depolarizes the cell membrane and the calcium ions enter the cell cytoplasm by L- and T-type VGCCs.

  13. A RANDOMIZED PHASE II TRIAL OF THE MATRIX METALLOPROTEINASE INHIBITOR BMS-275291 IN HORMONE-REFRACTORY PROSTATE CANCER PATIENTS WITH BONE METASTASES

    Science.gov (United States)

    Background: BMS-275291 is a selective matrix metalloproteinase inhibitor (MMPI) that does not inhibit sheddases implicated in the dose-limiting arthritis of older MMPIs. We conducted a randomized phase II trail of two doses of BMS-275291 (1,200 versus 2,400 mg) in hormone-refractory prostate cancer ...

  14. Matrix metalloproteinase-12 (MMP-12) in osteoclasts

    DEFF Research Database (Denmark)

    Hou, Peng; Troen, Tine; Ovejero, Maria C;

    2004-01-01

    Osteoclasts require matrix metalloproteinase (MMP) activity and cathepsin K to resorb bone, but the critical MMP has not been identified. Osteoclasts express MMP-9 and MMP-14, which do not appear limiting for resorption, and the expression of additional MMPs is not clear. MMP-12, also called...... bone show MMP-12 expression in osteoclasts in calvariae and long bones. We also demonstrate that recombinant MMP-12 cleaves the putative functional domains of osteopontin and bone sialoprotein, two bone matrix proteins that strongly influence osteoclast activities, such as attachment, spreading...

  15. 新型脱细胞骨基质-壳聚糖骨组织工程支架的制备及性能评价%Fabrication and characteristics of novel acellular bone matrix-chitosan scaffold for bone tissue engineering

    Institute of Scientific and Technical Information of China (English)

    刘昊; 王玉; 眭翔; 许文静; 卢世璧; 张永刚; 郭全义; 黄靖香; 张莉; 黄野; 韩雨; 赵斌; 汪爱媛

    2011-01-01

    目的 探寻新型脱细胞骨基质(Acellular Bone Extracellular Matrix,ABECM)材料及脱细胞骨基质-壳聚糖(Chitosan,CS)复合多孔支架的制备方法,并对其性能进行评价.方法 采用Triton X-100、干二烷基硫酸钠(Sodium Dodecyl Sulfate,SDS)的脱细胞方法对猪股骨进行脱细胞处理,应用溶液共混、冷冻干燥法制备脱细胞骨基质-壳聚糖复合支架.对ABECM材料进行定性分析,观察ABECM-CS复合多孔支架的形态学、孔隙率、力学性能和细胞-支架复合培养的相容性.结果 ABECM材料HE染色、Hoechest33258荧光染色均无细胞残留,茜素红染色、Ⅰ型胶原免疫组织化学染色、骨形态发生蛋白-2抗体染色阳性.扫描电镜显示支架具有多孔结构,孔径50-200μm,孔隙率为(53.50±4.23)%,力学测试支架干燥状态纵向压缩模量为(33.23±14.45)MPa,支架湿润状态下的压缩模量为(2.27±1.13)MPa.细胞-支架复合培养相容性良好.结论 制备的ABECM-CS复合多孔支架去细胞彻底,保留了脱细胞骨基质主要成分,具备合适的孔径和孔隙率,细胞相容性良好,是理想的骨组织工程支架.%To study the method to prepare novel acellular bone extracellular tnatrix(ABECM) and acellular bone matrixchitosan scaffolds and to evaluate their physicochemical properties. Methods A fresh porcine femur was treated with Triton X-100 and sodium dodecyl sulfate(SDS), respectively. Acellular bone matrix-chitosan scaffolds were prepared with the solution-mixing and freeze-drying method. ABECM was qualitatively analyzed. Morphology, porosity, mechanical properties and biocompatibility of cultured ABECM chitosan scaffolds were observed with acellular Triton X-100 and SDS, respectively. Results The histological staining of ABECM showed that there were no cellular debris in the scaffolds and anti-collagen 1 immunohistochemistry staining was positive. SEM scanning showed that the scaffolds had a porous structure with a pore diameter

  16. Short bouts of mechanical loading are as effective as dexamethasone at inducing matrix production by human bone marrow Mesenchymal stem cell

    OpenAIRE

    Sittichokechaiwut, A.; JH Edwards; AM Scutt; GC Reilly

    2010-01-01

    Dexamethasone (Dex) is used widely to induce differentiation in human mesenchymal stem cells (hMSCs); however, using a pharmaceutical agent to stimulate hMSC differentiation is not the best choice for engineered tissue transplantation due to potential side-effects. The goal of the present study was to investigate the effects of dynamic compressive loading on differentiation and mineralized matrix production of hMSCs in 3D polyurethane scaffolds, using a loading regimen previously shown to sti...

  17. Adaptation of subchondral bone in osteoarthritis

    DEFF Research Database (Denmark)

    Ding, Ming

    2004-01-01

    never been proven. Recent studies showing reduced chemical and mechanical properties of subchondral bone in various stages of the disease have invigorated interest in the role of subchondral bone in the development and progression of the disease. The current study showed that the concept of bone...... adaptation might explain subchondral stiffening, a process where subchondral bone becomes typically sclerotic in osteoarthritis. In addition, we report reduced mechanical matrix tissue properties as well as an increase in denatured collagen content. In conclusion, although osteoarthritic bone tissue contains...... increased denatured collagen and has reduced matrix mechanical properties, the widely accepted concept of subchondral stiffening is compatible with the process of normal bone adaptation. Udgivelsesdato: 2004...

  18. Bone Grafts

    Science.gov (United States)

    ... repair and rebuild diseased bones in your hips, knees, spine, and sometimes other bones and joints. Grafts can also repair bone loss caused by some types of fractures or cancers. Once your body accepts the bone ...

  19. Bone metastases: When and how lung cancer interacts with bone

    OpenAIRE

    Roato, Ilaria

    2014-01-01

    Bone metastasis is a common and debilitating consequence of lung cancer: 30%-40% of patients with non-small cell lung cancer develop bone metastases during the course of their disease. Lung cancer cells find a favorable soil in the bone microenvironment due to factors released by the bone matrix, the immune system cells, and the same cancer cells. Many aspects of the cross-talk among lung tumor cells, the immune system, and bone cells are not clear, but this review aims to summarize the recen...

  20. Mechanisms of cancer metastasis to the bone

    Institute of Scientific and Technical Information of China (English)

    Juan Juan YIN; Claire B. POLLOCK; Kathleen KELLY

    2005-01-01

    Some of the most common human cancers, including breast cancer, prostate cancer, and lung cancer, metastasize with avidity to bone. What is the basis for their preferential growth within the bone microenvironment? Bidirectional interactions between tumor cells and cells that make up bone result in a selective advantage for tumor growth and can lead to bone destruction or new bone matrix deposition. This review discusses our current understanding of the molecular components and mechanisms that are responsible for those interactions.

  1. Bone within a bone

    Energy Technology Data Exchange (ETDEWEB)

    Williams, H.J.; Davies, A.M. E-mail: wendy.turner@roh.nhs.uk; Chapman, S

    2004-02-01

    The 'bone within a bone' appearance is a well-recognized radiological term with a variety of causes. It is important to recognize this appearance and also to be aware of the differential diagnosis. A number of common conditions infrequently cause this appearance. Other causes are rare and some remain primarily of historical interest, as they are no longer encountered in clinical practice. In this review we illustrate some of the conditions that can give the bone within a bone appearance and discuss the physiological and pathological aetiology of each where known.

  2. TGF-β in cancer and bone: implications for treatment of bone metastases.

    Science.gov (United States)

    Juárez, Patricia; Guise, Theresa A

    2011-01-01

    Bone metastases are common in patients with advanced breast, prostate and lung cancer. Tumor cells co-opt bone cells to drive a feed-forward cycle which disrupts normal bone remodeling to result in abnormal bone destruction or formation and tumor growth in bone. Transforming growth factor-beta (TGF-β) is a major bone-derived factor, which contributes to this vicious cycle of bone metastasis. TGF-β released from bone matrix during osteoclastic resorption stimulates tumor cells to produce osteolytic factors further increasing bone resorption adjacent to the tumor cells. TGF-β also regulates 1) key components of the metastatic cascade such as epithelial-mesenchymal transition, tumor cell invasion, angiogenesis and immunosuppression as well as 2) normal bone remodeling and coupling of bone resorption and formation. Preclinical models demonstrate that blockade of TGF-β signaling is effective to treat and prevent bone metastases as well as to increase bone mass.

  3. Comparison of histomorphometry and [sup 85]Sr uptake in induced heterotopic bone in rats

    Energy Technology Data Exchange (ETDEWEB)

    Solheim, E.; Pinholt, E.M. (Institute for Surgical Research, Rikshospitalet, University of Oslo (Norway)); Bang, G. (Department of Oral Pathology and Forensic Odontology, University of Bergen (Norway)); Sudmann, E. (Hagavik Orthopedic Hospital, University of Bergen (Norway))

    1992-01-01

    Heterotopic bone formation in the abdominal muscle of 45 male 8-week-old Wistar rats induced by implantation of 5, 10, or 15 mg demineralized bone (DBM) powder was evaluated at 4 weeks by [sup 85]Sr uptake of the implants and area histomorphometry of the induced bone. Two indices of [sup 85]Sr uptake were calculated: the osteogenic index [(counts/min/mg implant)/(counts/min/mg os ilium)] and an index that we have called the osteoquantum index in which the weight of the implant is disregarded [(counts/min implant)/(counts/min/mg os ilium)]. The osteoquantum index showed a linear relationship to the area of the induced bone with a correlation coefficient (r) of 0.90. Only weak linear relationships were found between the osteogenic index and the area of the bone (r = 0.32) and between the osteogenic index and the osteoquantum index (r = 0.33). The osteoquantum index and the area of the induced bone both increased with increasing mass of implanted DBM, whereas the osteogenic index did not change. (au).

  4. Bone regeneration with cultured human bone grafts

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, T.; Nakajima, H. [Nara Medical Univ., Kashihara City (Japan). Dept. of Pathology; Nara Medical Univ., Kashihara City (Japan). Dept. of Orthopedic Surgery; Ohgushi, H.; Ueda, Y.; Takakura, Y. [Nara Medical Univ., Kashihara City (Japan). Dept. of Orthopedic Surgery; Uemura, T.; Tateishi, T. [National Inst. for Advanced Interdisciplinary Research (NAIR), Ibaraki (Japan). Tsukuba Research Center; Enomoto, Y.; Ichijima, K. [Nara Medical Univ., Kashihara City (Japan). Dept. of Pathology

    2001-07-01

    From 73 year old female patient, 3 ml of bone marrow was collected from the ilium. The marrow was cultured to concentrate and expand the marrow mesenchymal cells on a culture dish. The cultured cells were then subculturedeither on another culture dish or in porous areas of hydroxyapatite ceramics in the presence of dexamethasone and beta-glycerophosphate (osteo genic medium). The subculturedtissues on the dishes were analyzed by scanning electron microscopy (SEM), and subculturedtissues in the ceramics were implanted intraperitoneally into athymic nude mice. Vigorous growth of spindle-shaped cells and a marked formation of bone matrix beneath the cell layers was observed on the subculture dishes by SEM. The intraperitoneally implanted ceramics with cultured tissues revealed thick layer of lamellar bone together with active osteoblasts lining in many pore areas of the ceramics after 8 weeks. The in vitro bone formations on the culture dishes and in vivo bone formation in porous ceramics were detected. These results indicate that we can assemble an in vitro bone/ceramic construct, and due to the porous framework of the ceramic, the construct has osteogenic potential similar to that of autologous cancellous bone. A significant benefit of this method is that the construct can be made with only a small amount of aspirated marrow cells from aged patients with little host morbidity. (orig.)

  5. Immobilization of cross linked Col-I–OPN bone matrix protein on aminolysed PCL surfaces enhances initial biocompatibility of human adipogenic mesenchymal stem cells (hADMSC)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young-Hee; Jyoti, Md. Anirban; Song, Ho-Yeon, E-mail: songmic@sch.ac.kr

    2014-06-01

    In bone tissue engineering surface modification is considered as one of the important ways of fabricating successful biocompatible material. Addition of biologically active functionality on the surfaces has been tried for improving the overall biocompatibility of the system. In this study poly-ε-caprolactone film surfaces have been modified through aminolysis and immobilization process. Collagen type I (COL-I) and osteopontin (OPN), which play an important role in osteogenesis, was immobilized onto PCL films followed by aminolysis treatment using 1,6-hexanediamine. Characterization of animolysed and immobilized surfaces were done by a number techniques using scanning electron microscopy (SEM), FT-IR, XPS, ninhydrin staining, SDS-PAGE and confocal microscopy and compared between the modified and un-modified surfaces. Results of the successive experiments showed that aminolysis treatment was homogeneously achieved which helped to entrap or immobilize Col-I–OPN proteins on surfaces of PCL film. In vitro studies with human adipogenic mesenchymal stem cells (hADMSC) also confirmed the attachment and proliferation of cells was better in modified PCL surfaces than the unmodified surfaces. SEM, confocal microscopy and MTT assay showed a significant increase in cell spreading, attachment and proliferations on the biofunctionalized surfaces compared to the unmodified PCL surfaces at all-time points indicating the success of surface biofunctionalization.

  6. Exogenic Acellular Dermal Matrix in Guided Bone Regeneration of Dental Implant%异种脱细胞真皮基质在牙种植中引导骨再生的临床观察

    Institute of Scientific and Technical Information of China (English)

    韦丽萍; 左陈启; 王远勤

    2011-01-01

    Objective: To identify the clinical effect of a homemade exogenic acelluar dermal matrix as a barrier membrane in guide bone regeneration (GBR) of dental implants. Methods: Seventy eight dental implants/cases with limited bone-bed were divided into 2 groups, and treated by GBR technology with different barrier membrane. Experiment group (38 cases) used homemade exogenic acelluar dermal matrix, while in the control group (40 cases) Bio-Gide biofilm was used. Results: The difference of bone harvested in two groups was not statistically significant (P>0.05). All patients were healed with first intention and the healing rate of 2 groups were all 100%. One case complicated with facial swelling in control group, which was cured after anti-inflammatory and symptomatic treatment. There was no statistically significant between two groups in the demographic basic information, such as, adverse events, healing of incision, bone growth effect,and the like. Conclusion: This alternative homemade material should be considered in GBR by practitioners.%目的:观察国产异种脱细胞真皮基质修复膜作为屏障膜,在牙种植的引导骨再生中应用的临床效果.方法:78例需要引导骨再生的种植病例,均为前牙区或前磨牙区单牙或连续多牙位(3牙)缺失;其中前牙52颗,前磨牙26颗.缺牙区牙槽嵴主要为唇颊侧垂直性吸收,牙槽嵴顶宽度约1~3 mm,牙槽嵴水平吸收量在2 mm以内.分为2组,一组采用国产异种脱细胞真皮基质修复膜作为GBR技术的屏蔽膜(38例),另一组采用Bio-Gide生物膜作为对照(40例),比较二者的临床效果.结果:2组在骨生长效果之间的差异无统计学意义(P>0.05).2组患者切口均甲级愈合,切口愈合率均为100%.术后3 d,对照组有1例发生面部肿胀,经抗感染治疗和对症处理后缓解.本研究的其他病例均未出现感染等不良事件.结论:使用国产异种脱细胞真皮基质修复膜在牙种植术中进行骨引

  7. 异种脱细胞真皮基质联合Bio-oss Collagen修复牙槽骨缺损的临床研究%Clinical application of acellular dermal matrix combined with Bio-oss Collagen to repair alveolar bone defects

    Institute of Scientific and Technical Information of China (English)

    杨春羚; 林良缘; 庄亮亮; 曾金表

    2011-01-01

    Objective: To investigate the effect of guided bone regeneration of acellular dermal matrix (ADM) combined with Bio -oss Collagen in alveolar defect. Method: 18 cases patients with severe alveolar bone resorption or damage were included.Bone defect after teeth extraction were very serious and the residual height and width of the alveolar bone were very limited in all these cases. Bio-oss Collagen was delivered into the sockets immediately after tooth extraction and covered with acellular dermal matrix membrane.Suture was removed 2 weeks postop.and the alveolar bone was regularly examined at the 3rd month. Result:New bone was found to form well in both physical examination and X-ray examination in all the 18 cases in the 3rd month.The height and width of the alveolar bone were significantly increased, providing a good bone condition for later FPD prosthetic treatment. Conclusion: Acellular dermal matrix combined with Bio-oss Collagen can improve the bone condition before restoration in clinical.%目的:通过引导骨再生(GBR)技术评估异种脱细胞真皮基质(acellular dermal matrix,ADM)与Bio-oss Collagen联合应用在修复牙槽骨缺损中的作用.方法:选择拔牙术后牙槽骨缺损严重的病例18例,拔牙同期在拔牙创植入Bio-oss Collagen并覆盖异种脱细胞真皮基质(海奥生物膜),术后2周拆线,3个月复诊并拍摄X线片.结果:术后经临床检查和X线检查,18例患者植骨区新骨形成良好,牙槽骨高度与丰满度明显改善,术区骨生成良好.结论:临床上异种脱细胞真皮基质与Bio-oss Collagen联合应用能有效修复牙槽骨缺损,改善修复前的骨条件.

  8. Study of building an integrated annulus fibrosus-nucleus pulposus biphasic scaffold based on bone matrix gelatin and cartilage matrix%以骨基质明胶及软骨基质构建一体化纤维环-髓核双相支架的实验研究

    Institute of Scientific and Technical Information of China (English)

    伍耀宏; 徐宝山; 杨强; 马信龙; 夏群; 李秀兰; 胡永成; 张杨; 张春秋

    2013-01-01

    Objective To fabricate an integrated annulus fibrosus-nucleus pulposus biphasic scaffolds based on bone matrix gelatin and acellular cartilage matrix,and to detect its property and cell compatibility.Methods An integrated annulus fibrosus-nucleus pulposus biphasic scaffold was fabricated by the following steps: preparing the hollow bone matrix gelatin ring,injecting the acellular cartilage homogenate into the center of the bone matrix gelatin ring,and freeze drying.Sample slices were stained with Hoechst 33258,picrosirius and HE.The internal structure of the scaffold was observed under a scanning electron microscope.The porosity and water absorption of the scaffold were also evaluated.Compressive mechanical property under wet situation was tested.The annulus fibrosus and nucleus pulposus cells were isolated from sheep disc and separately implanted into the corresponding sites of the scaffold,and biocompatibility of the scaffold was evaluated by scanning electron microscope and live/dead cell staining.Results Hoechst 33258 staining showed no residual cells,picrosirius staining was positive,and HE staining showed two parts linked closely.Under scanning electron microscope,the scaffold had porous structure,and the average pore size was 401.4±13.1 μm for annulus fibrosus,and 112.4±21.8 μm for nucleus pulposus.The porosity and water absorption of the scaffold was 73.37%±2.56% and 655.7%±78.6%,respectively.The average compressive elastic modulus of the scaffold (49.06 ±15.57) kpa was smaller than that of the native disc (135.9±28.9) kPa.Scanning electron microscope showed cells adhered on the scaffold surface,with secreted matrix around them,and live/dead cells staining showed cells with good activity on scaffolds.Conclusion The integrated annulus fibrosus-nucleus pulposus scaffold based on bone matrix gelatin and cartilage matrix is an ideal artificial disc material,in view of well pore size,closely linked boundary,and good biocompatibility.%目的 以

  9. MKP1-dependent PTH modulation of bone matrix mineralization in female mice is osteoblast maturation stage specific and involves P-ERK and P-p38 MAPKs.

    Science.gov (United States)

    Mahalingam, Chandrika D; Sampathi, Bharat Reddy; Sharma, Sonali; Datta, Tanuka; Das, Varsha; Abou-Samra, Abdul B; Datta, Nabanita S

    2013-03-01

    Limited information is available on the role of MAPK phosphatase 1 (MKP1) signaling in osteoblasts. We have recently reported distinct roles for MKP1 during osteoblast proliferation, differentiation, and skeletal responsiveness to parathyroid hormone (PTH). As MKP1 regulates the phosphorylation status of MAPKs, we investigated the involvement of P-ERK and P-p38 MAPKs in MKP1 knockout (KO) early and mature osteoblasts with respect to mineralization and PTH response. Calvarial osteoblasts from 9-14-week-old WT and MKP1 KO male and female mice were examined. Western blot analysis revealed downregulation and sustained expressions of P-ERK and P-p38 with PTH treatment in differentiated osteoblasts derived from KO males and females respectively. Exposure of early osteoblasts to p38 inhibitor, SB203580 (S), markedly inhibited mineralization in WT and KO osteoblasts from both genders as determined by von Kossa assay. In osteoblasts from males, ERK inhibitor U0126 (U), not p38 inhibitor (S), prevented the inhibitory effects of PTH on mineralization in early or mature osteoblasts. In osteoblasts from KO females, PTH sustained mineralization in early osteoblasts and decreased mineralization in mature cells. This effect of PTH was attenuated by S in early osteoblasts and by U in mature KO cells. Changes in matrix Gla protein expression with PTH in KO osteoblasts did not correlate with mineralization, indicative of MKP1-dependent additional mechanisms essential for PTH action on osteoblast mineralization. We conclude that PTH regulation of osteoblast mineralization in female mice is maturation stage specific and involves MKP1 modulation of P-ERK and P-p38 MAPKs.

  10. Bone scintigraphy in chondroblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Humphry, A.; Gilday, D.L.; Brown, R.G.

    1980-11-01

    Scintigraphy in 3 patients with chondroblastoma showed that the tumors were hyperemic and avidly accumulated the radionuclide. These changes were also present in adjacent normal bone, but to a lesser degree. This suggests that radionuclide uptake in chondroblastoma is a function of the blood supply to the tumor rather than primary matrix extraction.

  11. Sorption and degradation of selected organic UV filters (BM-DBM, 4-MBC, and OD-PABA) in laboratory water-sediment systems.

    Science.gov (United States)

    Li, Sheng; Lu, Guanghua; Xie, Zhengxin; Ding, Jiannan; Liu, Jianchao; Li, Yi

    2016-05-01

    Organic UV filters that have been widely used in sunscreens and other personal care products have drawn much public concern because of their widespread contamination in the environment and their potential ecological risks to ecosystems. We selected three UV filters with high frequency of detection in the environment, namely butyl methoxy dibenzoylmethane (BM-DBM), ethylhexyl dimethyl p-aminobenzoate (OD-PABA), and 4-methylbenzylidene camphor (4-MBC), to investigate the sorption and degradation behaviors of these compounds in lab-scale water-sediment systems set up with natural water and sediment samples collected from different rivers and lakes (i.e., Yangtze River, Qinhuai River, Xuanwu Lake, and Mochou Lake) in Nanjing, East China. The sorption isotherms of these UV filters were well described by the Freundlich equation (C s   = K f  × C w (n) ). The sorption of three UV filters in four sediments was all linear or close to it, with n values between 0.92 and 1.13. A moderate to strong sorption affinity was observed for these compounds, and the sorption appears to be irreversible. For the combined sorption and degradation studies, sorption was found to be a primary mechanism for the disappearance of these UV filters from the water phase, and biotransformation appears to be the predominant factor for the degradation of the target compounds in the water-sediment systems. All three UV filters were found to be slightly resistant to the microbes in these systems, with DT50total and DT90total values-the disappearance time (DT) describes the time in which the initial total mass of the UV filters in the whole system is reduced by 50 and 90 %-ranging between 18 and 31 days and 68 and 101 days, respectively.

  12. Sorption and degradation of selected organic UV filters (BM-DBM, 4-MBC, and OD-PABA) in laboratory water-sediment systems.

    Science.gov (United States)

    Li, Sheng; Lu, Guanghua; Xie, Zhengxin; Ding, Jiannan; Liu, Jianchao; Li, Yi

    2016-05-01

    Organic UV filters that have been widely used in sunscreens and other personal care products have drawn much public concern because of their widespread contamination in the environment and their potential ecological risks to ecosystems. We selected three UV filters with high frequency of detection in the environment, namely butyl methoxy dibenzoylmethane (BM-DBM), ethylhexyl dimethyl p-aminobenzoate (OD-PABA), and 4-methylbenzylidene camphor (4-MBC), to investigate the sorption and degradation behaviors of these compounds in lab-scale water-sediment systems set up with natural water and sediment samples collected from different rivers and lakes (i.e., Yangtze River, Qinhuai River, Xuanwu Lake, and Mochou Lake) in Nanjing, East China. The sorption isotherms of these UV filters were well described by the Freundlich equation (C s   = K f  × C w (n) ). The sorption of three UV filters in four sediments was all linear or close to it, with n values between 0.92 and 1.13. A moderate to strong sorption affinity was observed for these compounds, and the sorption appears to be irreversible. For the combined sorption and degradation studies, sorption was found to be a primary mechanism for the disappearance of these UV filters from the water phase, and biotransformation appears to be the predominant factor for the degradation of the target compounds in the water-sediment systems. All three UV filters were found to be slightly resistant to the microbes in these systems, with DT50total and DT90total values-the disappearance time (DT) describes the time in which the initial total mass of the UV filters in the whole system is reduced by 50 and 90 %-ranging between 18 and 31 days and 68 and 101 days, respectively. PMID:26846244

  13. Comparison of autologous ilium spongy bone combined with human decalcified dentinal matrix in alveolar process cleft bone grafting%脱钙人牙基质材料联合髂骨与单纯髂骨移植修复牙槽突裂的对比性研究

    Institute of Scientific and Technical Information of China (English)

    霍永力; 张雷; 王建华; 李华; 邢建峰; 孙志干; 陆立本; 刘英华

    2009-01-01

    group (13.3%), 1 case(2 sides) in class 4 group(6.7%). The overall survival rate of ABGR was 93.3%, and the clinical success rate was 80%. Conclusion: Ilium spongy bone combined with DDM is good for alveolar process cleft bone grafting. It is better to use decalcified dentinal matrix of human than autologous ilium spongy bone.

  14. Degradation of the organic phase of bone by osteoclasts

    DEFF Research Database (Denmark)

    Henriksen, Kim; Sørensen, Mette G; Nielsen, Rasmus H;

    2006-01-01

    Osteoclasts degrade bone matrix by secretion of hydrochloric acid and proteases. We studied the processes involved in the degradation of the organic matrix of bone in detail and found that lysosomal acidification is involved in this process and that MMPs are capable of degrading the organic matrix...

  15. Altered matrix mineralization in a case of a sclerosing osteosarcoma.

    Science.gov (United States)

    Hofstaetter, Jochen G; Roschger, Andreas; Puchner, Stephan E; Dominkus, Martin; Sulzbacher, Irene; Windhager, Reinhard; Klaushofer, Klaus; Roschger, Paul

    2013-04-01

    Little is known about the tumor matrix mineralization of highly sclerotic osteosarcoma. We used quantitative backscattered electron imaging (qBEI) to determine the Bone mineralization density distribution (BMDD) of a highly sclerosing osteosarcoma of the proximal tibia as well as adjacent normal bone of a 10-year-old girl following chemotherapy according to the EURAMOS-1 protocol. Data were compared to recently published normative reference data for young individuals. Backscattered electron imaging of the tumor region revealed a dense accumulation of mineralized tumor bone matrix (up to 90% of the medullar space). The BMDD was shifted tremendously towards higher matrix mineralization (CaMean +18.5%, CaPeak +22.5%, CaHigh +100 fold) compared to normal bone. Additionally the BMDD became much wider, indicating a higher heterogeneity in mineralization (CaWidth +40%). In contrast to lamellar bone, which mineralizes via a mineralization front, the mineralization of the tumor matrix starts by randomly distributed spots of mineral clusters fusing together to a highly mineralized non-lamellar bone matrix. We also found an altered BMDD of the patient's normal bone when compared with the reference BMDD of young individuals. In conclusion this high radiodensity region of the sclerosing sarcoma is not only due to the high amount of tumor matrix but also to its high mineralization density. Chemotherapy may lead to altered matrix mineralization of normal bone due to suppression of bone turnover. The mechanism of matrix mineralization in a sclerosing osteosarcoma warrants further studies.

  16. 骨唾液蛋白和基质金属蛋白酶-9在风湿性心脏病瓣膜的表达及意义%Expression and significance of bone sialoprotein and matrix metalloproteinase-9 in calcified metral valves of rheumatic heart disease

    Institute of Scientific and Technical Information of China (English)

    白传明; 张彬; 张楠; 宋书田; 张志刚; 边玉清; 周岊梧

    2012-01-01

    Objective To investigate the expression and significance of bone sialoprotein and matrix metalloproteinase-9 in calcified mitral valves in patients with rheumatic heart disease.Methods A total of 150 mitral valves were divided into the rheumatic group (n =120) and the non-rheumatic group (n =30 ).Expressions of bone sialoprotein and matrix metalloproteinase-9 were determined by immunohistochemistry.Results Expressions of bone sialoprotein ( 91.6%,x2 =56.6354 ) and matrix metalloproteinase-9 ( 90.8%,x2 =59.4272) in the rheumatic group increased significantly than in the non-rheumatic group (P < 0.01).Conclusion Both bone sialoprotein and matrix metalloproteinase-9 are highly expressed in the calcified rheumatic group.This suggests that caficify of rheumatic mitral valves is related with the degradation and remodeling of extra cellular matricx by matrix metalloproteinase-9,as well as osteoblastlike bone formation by bone sialoprotein.%目的 观察骨唾液蛋白和基质金属蛋白酶-9在风湿性心脏病瓣膜的表达.方法 将手术切除的二尖瓣瓣膜按病史分为风湿性心脏病(风心病)组(120例)和非风心病组( 30例),采用SP法进行免疫组化染色观察骨唾液蛋白和基质金属蛋白酶-9的表达.结果 风心病组的骨唾液蛋白(91.6%)和基质金属蛋白酶-9 (90.8%)阳性率明显高于非风心病组骨唾液蛋白(23.3%)和基质金属蛋白酶-9(20.0%)(x2值分别为56.6354、59.4272,P均<0.01).结论 风心病瓣膜的钙化与基质金属蛋白酶-9所引起的细胞外基质降解和重塑以及骨唾液蛋白所诱导的成骨样骨形成密切相关.

  17. Parallel mechanisms suppress cochlear bone remodeling to protect hearing.

    Science.gov (United States)

    Jáuregui, Emmanuel J; Akil, Omar; Acevedo, Claire; Hall-Glenn, Faith; Tsai, Betty S; Bale, Hrishikesh A; Liebenberg, Ellen; Humphrey, Mary Beth; Ritchie, Robert O; Lustig, Lawrence R; Alliston, Tamara

    2016-08-01

    Bone remodeling, a combination of bone resorption and formation, requires precise regulation of cellular and molecular signaling to maintain proper bone quality. Whereas osteoblasts deposit and osteoclasts resorb bone matrix, osteocytes both dynamically resorb and replace perilacunar bone matrix. Osteocytes secrete proteases like matrix metalloproteinase-13 (MMP13) to maintain the material quality of bone matrix through perilacunar remodeling (PLR). Deregulated bone remodeling impairs bone quality and can compromise hearing since the auditory transduction mechanism is within bone. Understanding the mechanisms regulating cochlear bone provides unique ways to assess bone quality independent of other aspects that contribute to bone mechanical behavior. Cochlear bone is singular in its regulation of remodeling by expressing high levels of osteoprotegerin. Since cochlear bone expresses a key PLR enzyme, MMP13, we examined whether cochlear bone relies on, or is protected from, osteocyte-mediated PLR to maintain hearing and bone quality using a mouse model lacking MMP13 (MMP13(-/-)). We investigated the canalicular network, collagen organization, lacunar volume via micro-computed tomography, and dynamic histomorphometry. Despite finding defects in these hallmarks of PLR in MMP13(-/-) long bones, cochlear bone revealed no differences in these markers, nor hearing loss as measured by auditory brainstem response (ABR) or distortion product oto-acoustic emissions (DPOAEs), between wild type and MMP13(-/-) mice. Dynamic histomorphometry revealed abundant PLR by tibial osteocytes, but near absence in cochlear bone. Cochlear suppression of PLR corresponds to repression of several key PLR genes in the cochlea relative to long bones. These data suggest that cochlear bone uniquely maintains bone quality and hearing independent of MMP13-mediated osteocytic PLR. Furthermore, the cochlea employs parallel mechanisms to inhibit remodeling by osteoclasts and osteoblasts, and by

  18. Parallel mechanisms suppress cochlear bone remodeling to protect hearing.

    Science.gov (United States)

    Jáuregui, Emmanuel J; Akil, Omar; Acevedo, Claire; Hall-Glenn, Faith; Tsai, Betty S; Bale, Hrishikesh A; Liebenberg, Ellen; Humphrey, Mary Beth; Ritchie, Robert O; Lustig, Lawrence R; Alliston, Tamara

    2016-08-01

    Bone remodeling, a combination of bone resorption and formation, requires precise regulation of cellular and molecular signaling to maintain proper bone quality. Whereas osteoblasts deposit and osteoclasts resorb bone matrix, osteocytes both dynamically resorb and replace perilacunar bone matrix. Osteocytes secrete proteases like matrix metalloproteinase-13 (MMP13) to maintain the material quality of bone matrix through perilacunar remodeling (PLR). Deregulated bone remodeling impairs bone quality and can compromise hearing since the auditory transduction mechanism is within bone. Understanding the mechanisms regulating cochlear bone provides unique ways to assess bone quality independent of other aspects that contribute to bone mechanical behavior. Cochlear bone is singular in its regulation of remodeling by expressing high levels of osteoprotegerin. Since cochlear bone expresses a key PLR enzyme, MMP13, we examined whether cochlear bone relies on, or is protected from, osteocyte-mediated PLR to maintain hearing and bone quality using a mouse model lacking MMP13 (MMP13(-/-)). We investigated the canalicular network, collagen organization, lacunar volume via micro-computed tomography, and dynamic histomorphometry. Despite finding defects in these hallmarks of PLR in MMP13(-/-) long bones, cochlear bone revealed no differences in these markers, nor hearing loss as measured by auditory brainstem response (ABR) or distortion product oto-acoustic emissions (DPOAEs), between wild type and MMP13(-/-) mice. Dynamic histomorphometry revealed abundant PLR by tibial osteocytes, but near absence in cochlear bone. Cochlear suppression of PLR corresponds to repression of several key PLR genes in the cochlea relative to long bones. These data suggest that cochlear bone uniquely maintains bone quality and hearing independent of MMP13-mediated osteocytic PLR. Furthermore, the cochlea employs parallel mechanisms to inhibit remodeling by osteoclasts and osteoblasts, and by

  19. Determination of osteocalcin in meat and bone meal of bovine and porcine origin using matrix-assisted laser desorption ionization/time-of-flight mass spectrometry and high-resolution hybrid mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Balizs, Gabor, E-mail: gabor.balizs@bfr.bund.de [Federal Institute for Risk Assessment, Thielallee 88-92, D-14195 Berlin (Germany); Weise, Christoph [Freie Universitaet Berlin, Institute for Chemistry and Biochemistry, Thielallee 63, D-14195 Berlin (Germany); Rozycki, Christel; Opialla, Tobias; Sawada, Stefanie; Zagon, Jutta; Lampen, Alfonso [Federal Institute for Risk Assessment, Thielallee 88-92, D-14195 Berlin (Germany)

    2011-05-05

    A method has been developed for determining the origin of meat and bone meal (MBM) by detecting species-specific osteocalcin (OC) using matrix-assisted laser desorption ionization/time-of-flight (MALDI/TOF) and high-resolution hybrid mass spectrometry (HR-Q/TOF MS). The analysis is based on the detection of typical species-specific OC and its tryptic peptide fragments which differ in mass due to differences in the amino-acid sequences between species. After dissolving the MBM samples in EDTA buffer, purification after ultrafiltration was performed using two methods: solid-phase extraction using Zip-Tip C{sub 18} or size exclusion coupled with reverse-phase chromatography. Fractions containing partially purified intact OC were analyzed using LC-Q/TOF and MALDI/TOF mass spectrometry. Species-specific OC was detected at the typical protonated and doubly protonated molecular ions. Furthermore, typical porcine- and bovine-derived tryptic fragments from MBM were detected after enzymatic digestion. In order to determine the underlying amino-acid sequences and to confirm the assignment to OC-derived peptides, MS/MS analysis was carried out. In conclusion, we were able to detect OC in bovine and porcine MBM with high sensitivity and the MS-based method described here by which total OC mass and marker peptides of digested OC are recorded can be used as an alternative approach to detect genus-specific differences in MBM and can be applied as a confirmatory method to mainly immunological osteocalcin screening methods.

  20. Synchrotron FT-IR microspectroscopic analysis of necrotic bone

    OpenAIRE

    Bayari, Sevgi Haman; Utku, Haluk; Ikemoto, Yuka; Celasun, Bülent; Kömürcü, Mahmut; Atik, Aziz

    2007-01-01

    Avascular necrosis (osteonecrosis) is a disease that results from the temporary or permanent loss of blood supply to the bone. Synchrotron FT-IR microspectroscopy has been used to study the changes in mineral and matrix content of necrotic bone. FT-IR spectroscopic analysis revealed that in necrotic bone the relative mineral/matrix ratio decreased. Spectroscopic differences were observed between normal and necrotic bones. The noticeable differences may have important implications for analyzin...

  1. A comparative study of fibrous dysplasia and osteofibrous dysplasia with regard to expressions of c-fos and c-jun products and bone matrix proteins: a clinicopathologic review and immunohistochemical study of c-fos, c-jun, type I collagen, osteonectin, osteopontin, and osteocalcin.

    Science.gov (United States)

    Sakamoto, A; Oda, Y; Iwamoto, Y; Tsuneyoshi, M

    1999-12-01

    Fibrous dysplasia and osteofibrous dysplasia are both benign fibro-osseous lesions of the bone and are generally seen during childhood or adolescence. Histologically, the features of these bone lesions sometimes look quite similar, but their precise nature remains controversial. We retrospectively studied clinicopathologic findings in 62 cases of fibrous dysplasia and 20 cases of osteofibrous dysplasia with regard to their anatomic location and histological appearance. From among these cases, the immunohistochemical expressions of c-fos and c-jun proto-oncogene products and bone matrix proteins of type I collagen, osteonectin, osteopontin, and osteocalcin were evaluated in 20 typical fibrous dysplasias and 17 osteofibrous dysplasias using paraffin sections, and these expressions were then assessed semiquantitatively. Microscopically, fibrous dysplasia showed various secondary changes, such as hyalinization, hemorrhage, xanthomatous reaction, and cystic change in 22 of the 62 cases (35%). This was a higher incidence than in osteofibrous dysplasia, in which only 2 of the 20 cases (10%) showed such changes. In the elderly fibrous dysplasia cases, the cellularity of fibroblast-like cells was rather low, and those cases were hyalinized. Almost all of the cases of fibrous dysplasia and osteofibrous dysplasia showed positive expressions of c-fos and c-jun products. The expressions of type I collagen and osteopontin showed no difference between fibrous dysplasia and osteofibrous dysplasia. Immunoreactivity for osteonectin in bone matrix was detected in only 1 case of fibrous dysplasia (1 of 20), whereas it was recognized in 14 of the 17 cases of osteofibrous dysplasia. Furthermore, the immunoreactivity for osteocalcin in bone matrix and fibroblast-like cells was higher in fibrous dysplasia than it was in osteofibrous dysplasia, semiquantitatively. Our immunohistochemical results regarding osteonectin and osteocalcin suggest that the bone matrix of fibrous dysplasia is

  2. Avaliação das metaloproteinases de matriz -2 e -9 em gatos com desmineralização óssea secundária à tirotoxicose induzida Evaluation of matrix metalloproteinases -2 and -9 in cats under bone demineralization secondary to induced thyrotoxicosis

    Directory of Open Access Journals (Sweden)

    F.S. Costa

    2008-10-01

    Full Text Available Observou-se significativo aumento de atividade das formas ativas das metaloproteinases -2 e -9 em gatos com tirotoxicose induzida e desmineralização óssea. As formas pró e intermediária da metaloproteinase -2 elevaram-se com 14 dias de administração hormonal, porém, posteriormente, houve uma tendência de queda. Observou-se correlação negativa entre a forma ativa das metaloproteinases de matriz -2 e -9 e a densidade mineral óssea da extremidade distal do rádio. Os resultados sugerem aumento da degradação da matriz colágena secundária com a elevação dos hormônios tiroidianos.Significant increase of activity of active forms of matrix metalloproteinases -2 and -9 in cats under induced thyrotoxicosis and bone demineralization was observed. Pro and intermediated forms of matrix metalloproteinases -2 and -9 increased at 14 days of hormonal treatment, followed by decrease tendency. A negative correlation between active forms of matrix metalloproteinases -2 and -9 and bone mineral density of radius distal extremity was also observed. The results suggest an increase of collagen matrix degradation secondary to high levels of thyroid hormones.

  3. Synthetic matrix metalloproteinase inhibitors inhibit growth of established breast cancer osteolytic lesions and prolong survival in mice

    DEFF Research Database (Denmark)

    Winding, Bent; NicAmhlaoibh, Róisín; Misander, Henriette;

    2002-01-01

    PURPOSE: Breast cancer frequently leads to incurable bone metastasis. Essential requirements for the development of bone metastasis are cell-cell and cell-matrix interactions, release of bioactive growth factors and cytokines, and removal of large amounts of bone matrix. Matrix metalloproteinases...

  4. Synthetic matrix metalloproteinase inhibitors inhibit growth of established breast cancer osteolytic lesions and prolong survival in mice

    DEFF Research Database (Denmark)

    Winding, Bent; NicAmhlaoibh, Róisín; Misander, Henriette;

    2002-01-01

    Breast cancer frequently leads to incurable bone metastasis. Essential requirements for the development of bone metastasis are cell-cell and cell-matrix interactions, release of bioactive growth factors and cytokines, and removal of large amounts of bone matrix. Matrix metalloproteinases (MMPs) p...

  5. Bone Densitometry (Bone Density Scan)

    Science.gov (United States)

    ... of DXA Bone Densitometry? What is a Bone Density Scan (DXA)? Bone density scanning, also called dual-energy x-ray absorptiometry ( ... is today's established standard for measuring bone mineral density (BMD). An x-ray (radiograph) is a noninvasive ...

  6. Identifying A Molecular Phenotype for Bone Marrow Stromal Cells With In Vivo Bone Forming Capacity

    DEFF Research Database (Denmark)

    Larsen, Kenneth H; Frederiksen, Casper M; Burns, Jorge S;

    2009-01-01

    Abstract The ability of bone marrow stromal cells (BMSCs) to differentiate into osteoblasts is being exploited in cell-based therapy for repair of bone defects. However, the phenotype of ex vivo cultured BMSCs predicting their bone forming capacity is not known. Thus, we employed DNA microarrays...... comparing two human bone marrow stromal cell (hBMSC) populations: one is capable of in vivo heterotopic bone formation (hBMSC-TERT(+Bone)) and the other is not (hBMSC-TERT(-Bone)). Compared to hBMSC-TERT(-Bone), the hBMSC-TERT(+Bone) cells had an increased over-representation of extracellular matrix genes...... (17% versus 5%) and a larger percentage of genes with predicted SP3 transcription factor binding sites in their promoter region (21% versus 8%). On the other hand, hBMSC-TERT(-Bone) cells expressed a larger number of immune-response related genes (26% versus 8%). In order to test for the predictive...

  7. Low Bone Density

    Science.gov (United States)

    ... Density Exam/Testing › Low Bone Density Low Bone Density Low bone density is when your bone density ... people with normal bone density. Detecting Low Bone Density A bone density test will determine whether you ...

  8. Matrix calculus

    CERN Document Server

    Bodewig, E

    1959-01-01

    Matrix Calculus, Second Revised and Enlarged Edition focuses on systematic calculation with the building blocks of a matrix and rows and columns, shunning the use of individual elements. The publication first offers information on vectors, matrices, further applications, measures of the magnitude of a matrix, and forms. The text then examines eigenvalues and exact solutions, including the characteristic equation, eigenrows, extremum properties of the eigenvalues, bounds for the eigenvalues, elementary divisors, and bounds for the determinant. The text ponders on approximate solutions, as well

  9. Experimental study on peri-implant bone regeneration by bone marrow stromal cells with Osx gene activated matrix%骨髓基质干细胞复合Osx基因活化材料促进种植体周围骨再生的实验研究

    Institute of Scientific and Technical Information of China (English)

    李大鲁; 黄国倩; 李肇元

    2014-01-01

    导作用,与不含Osx基质的对照组相比成骨速度更快,新生骨量更多,明显促进了骨组织再生。%Objective: To build the beagle dog peri-implant bone defect model, and construct Gene Activated Matrix (GAM)containing plasmid pcDNA3.1 flag-Osx and mixed with autologous Bone Marrow Stromal Cells (BMSC);to evaluate the effect of Osx gene activation technology on bone formation and minerali-zation. Methods: With the marrow extracted prior to operation, bone marrow stromal cells were culti-vated and plasmid pcDNA3.1 flag-Osx amplified. Fifteen male beagle dogs were randomly whilst evenly divided into three groups, with group 1 being a four-week group, group 2 as an eight-week group and group 3 a twelve-week group. The left mandibular 2nd and 4th premolar and the rihgt mandibular 2nd premolar were extracted, based on which the operations of trapezoidal incisions and bone defects were made. Each of the three bone defects was implanted with an OSSTEM GSII, and filled respectively with:Category A, Perioglas;Category B, Perioglas+BMSCs+empty vector pcDNA3.1flag;and Category C, Perioglas+BMSCs+pcDNA3.1flag-Osx. Each material was covered with Bio-Gide collagen membrane via Guided Bone Regeneration (GBR) technique. Finally in 4, 8, and 12 weeks after the operation, ani-mals in group 1, 2 and 3 were killed respectively to obtain the specimens. The specimens were analyzed by comparison with the control group utilizing histological, imageological, and histomorphometric mea-surements. Each index is weighted by Mean ±Standard deviation (X ±s). The index differences between groups at each time sample are analyzed using the statistical package SPSS 17.0 by one way analysis of variance (ANOVA). P<0.05 were considered statistically significant. Results:1. Sclerous tissue exami-nation. Newly formed bone appeared at every bone defect under tests, among which Group C has the richest new bones, Group B has less and Group A has the least. 2.Results from Micro

  10. Osteoblasts in Bone Physiology—Mini Review

    Directory of Open Access Journals (Sweden)

    Orit Rosenberg

    2012-04-01

    Full Text Available Bone structural integrity and shape are maintained by removal of old matrix by osteoclasts and in-situ synthesis of new bone by osteoblasts. These cells comprise the basic multicellular unit (BMU. Bone mass maintenance is determined by the net anabolic activity of the BMU, when the matrix elaboration of the osteoblasts equals or exceeds the bone resorption by the osteoclasts. The normal function of the BMU causes a continuous remodeling process of the bone, with deposition of bony matrix (osteoid along the vectors of the generated force by gravity and attached muscle activity. The osteoblasts are derived from mesenchymal stem cells (MSCs. Circulating hormones and locally produced cytokines and growth factors modulate the replication and differentiation of osteoclast and osteoblast progenitors. The appropriate number of the osteoblasts in the BMU is determined by the differentiation of the precursor bone-marrow stem cells into mature osteoblasts, their proliferation with subsequent maturation into metabolically active osteocytes, and osteoblast degradation by apoptosis. Thus, the two crucial points to target when planning to control the osteoblast population are the processes of cell proliferation and apoptosis, which are regulated by cellular hedgehog and Wnt pathways that involve humoral and mechanical stimulations. Osteoblasts regulate both bone matrix synthesis and mineralization directly by their own synthetic activities, and bone resorption indirectly by its paracrinic effects on osteoclasts. The overall synthetic and regulatory activities of osteoblasts govern bone tissue integrity and shape.

  11. Bone Cancer

    Science.gov (United States)

    ... cancer. Surgery is often the main treatment for bone cancer. Other treatments may include amputation, chemotherapy, and radiation therapy. Because bone cancer can come back after treatment, regular follow-up visits are important. NIH: National ...

  12. 松质骨基质复合生物蛋白胶构建组织工程软骨的研究%Construction Tissue-Engineered Cartilage Using Bone Matrix Gelatin and Biological Fibrin Glue

    Institute of Scientific and Technical Information of China (English)

    王正辉; 常会敏; 吴宝俊; 杨壮群; Kamal Mustafa; 卢晓云

    2012-01-01

    目的 尝试采用松质骨基质与生物蛋白胶复合材料构建组织工程软骨.方法 体外培养大鼠软骨细胞,接种于松质骨基质/生物蛋白胶材料上行体外培养、采用HE、甲苯胺蓝染色免疫学检测、扫描电镜观察等方法观察所构建的组织工程软骨的特性.结果 松质骨基质/生物蛋白胶组的组织学结构更接近于软骨样组织,其Ⅱ型胶原、蛋白多糖基因表达量及蛋白多糖含量明显高于松质骨基质组.结论 松质骨基质/生物蛋白胶复合材料可用于构建组织工程软骨, 是一种较理想的支架材料.%Objective To explore the feasibility of the construction of tissue-engineered cartilage using hybrid scaffolds of demineralized bone matrix gelatin (BMG) and fibrin glue. Methods Rattus chottdroeytes were cultured on hybrid BMG/ fibrin glue scaffolds (BMG/fibrin glue group) and BMG scaffolds (HMG group) in vitro. Engineered cartilage-like tissue grown on the scaffolds was characterized by histological observation, immunological examination, scanning electron microscopy, hinchemioiil assays and unatysis of gene expression. Results The presence of proteoglycan was confirmed by positive (oluidiiie blue in BMG/fibrin glue group, compared with BMG group. Collagen type Ⅱ exhibited intense immuno-positivity at the peri-cellular matrices in BMC/fibrin glue group, compared with BMG group. The expression of collagen type Ⅱ had no signifiranl difference between BMG/fibrin glue group and BMG group (p>0.05), while the expression of aggrecan core protein in BMG/fibrin glue group was higher than that in BMG group (P<0.05). The glyrusamlnog]yean production and hycjroxyproline content of BMG/fibrin glue group were higher than that of BMG group (P<0.05). Conclusion The fibrin/BMG hybrid scaffolds may serve as a potential celt delivery vehicle and a ^trurtural basis for cartilage tissue engineering.

  13. Estudio comparativo del uso de la matriz ósea desmineralizada de origen humana y de la poliuretana derivada del aceite de mamona sobre el proceso de regeneración ósea: Estudio histométrico en calota de conejos A comparative study on the use of demineralized bone matrix of human origin and polyurethane derived from castor oil in bone regeneration processes: A histometric study on rabbit calvaria

    Directory of Open Access Journals (Sweden)

    J. Rodrigues Laureano Filho

    2007-08-01

    Full Text Available Objetivo. Analizar histométricamente el efecto de la matriz ósea desmineralizada de origen humana y de la resina poliuretana derivada del aceite de mamona, sobre el proceso de regeneración ósea. Diseño del estudio: fueron utilizados 24 conejos y en cada calota craniana fueron preparadas dos cavidades quirúrgicas, siendo una a cada lado de la sutura parietal. Los animales fueron divididos en dos grupos. En el grupo I la cavidad experimental (lado derecho fue rellenada con la poliuretana derivada del aceite de mamona, mientras que en el grupo II la cavidad experimental fue rellenada con la matriz ósea desmineralizada de origen humano. Las cavidades de control fueron rellenadas solo con la sangre del animal. Los animales fueron sacrificados en los períodos postoperatorios de 04, 07 y 15 semanas. Resultados. El análisis estadístico, realizado en base de los datos de la histometría, mostró una mayor neoformación ósea de los grupos I y II en relación al grupo control, no existiendo diferencia estadística cuando los grupos experimentales fueron comparados. Conclusiones. El uso de poliuretana derivada del aceite de mamona y matriz ósea desmineralizada de origen humano mejoran el proceso de regeneración cuando lo comparamos a la regeneración ósea normal resultando que entre ambos materiales tuvieron un comportamiento similar sin diferencias estadísticas significantes entre sí.Objective. The present study was aimed at carrying out a histological and histometric analysis on the effect of human demineralized bone matrix and a polyurethane resin, derived of the castor bean oil, on the bone regeneration process. Design: For this, 24 rabbits were used and in each calvarium two surgical bone defect were prepared, one on the right side and another on the left side of the parietal suture. The animals were divided into two groups. In group I the experimental defect (right side was filled with polyurethane derived from oil of the castor oil

  14. Bisphosphonates inhibit the adhesion of breast cancer cells to bone matrices in vitro.

    OpenAIRE

    van der Pluijm, G.; Vloedgraven, H; van Beek, E; van der Wee-Pals, L; Löwik, C; Papapoulos, S

    1996-01-01

    Bisphosphonates are used with increasing frequency in the management of skeletal complications in patients with breast cancer. In this paper, we have investigated whether bisphosphonates, besides their known beneficial effects on tumor-associated osteoclastic resorption, are capable of inhibiting breast cancer cell adhesion to bone matrix. For that we used two in vitro models for bone matrix (cortical bone slices and cryostat sections of trabecular bone from neonatal mouse tails). Four bone m...

  15. 人工骨支撑棒结合脱钙骨基质治疗股骨头缺血性坏死的临床观察%Clinical observation of artificial bone rod combined with decalcified bone matrix for the treatment of osteonecrosis of the femoral head

    Institute of Scientific and Technical Information of China (English)

    王金龙; 杨述华; 叶树楠; 王晶; 刘先哲

    2015-01-01

    Objective To evaluate the clinical outcome associated with the core decompression in combination with the nano-hydroxyapatite/collagen composite rod combined with decalcified bone matrix in a consecutive series of patients with osteonecrosis of femoral head,especially the prevention of collapse of femoral head and its predisposing factors.Methods From August,2012 to May,2013,46 pationts (50 hips) who had undergone core decompression in combination with nano-hydroxyapatite/collagen composite rod insertion in corporated with decalcified bone matrix in our hospital were involved in this study.Postoperative care consisted of prophylactic intravenous antibiotic and anticoagulation therapy.Patients were instructed to be non-weight-bearing for 3 weeks,to partial weight-bear for the next 3 weeks,and to weight bear as tolerated thereafter.All patients were evaluated both clinically and radiographically.The primary clinical outcome of this study was functional improvement assessed with the Harris hip score.Serial radiograms of the pelvis were taken at 1,3,6,12 months post-operatively to analyze the process of osteonecrosis.Results All patients followed up for 12 months,no one suffer complications.The mean Harris score pre-operation was 65.6 ± 10.6,post-operation score was 87.5 ± 15.3,with a mean improvement of 21.8 ± 13.2 (P < 0.05).According to Harris hip score system,excellent for 30 hips,good for 14 hips,fair for 2 hip and poor for 4 hips.Refer to the Kaplan-Meier survivorship curve,the success rate at 12 months post-operatively was 92%.Radiological changes coincided with clinical changes.Conclusion Core decompressionin combination with nano-hydroxyapatite/ collagen composite rod insertion in corporated with decalcified bone matrix provided a minimally invasive surgical treatment option to treat early stage osteonecrotic hips(stage Ⅰ and Ⅱ) and to prevent femoral heads from collapsing,with clinical outcomes and success rates priorto other commonly used surgical

  16. Periostin action in bone.

    Science.gov (United States)

    Bonnet, Nicolas; Garnero, Patrick; Ferrari, Serge

    2016-09-01

    Periostin is a highly conserved matricellular protein that shares close homology with the insect cell adhesion molecule fasciclin 1. Periostin is expressed in a broad range of tissues including the skeleton, where it serves both as a structural molecule of the bone matrix and a signaling molecule through integrin receptors and Wnt-beta-catenin pathways whereby it stimulates osteoblast functions and bone formation. The development of periostin null mice has allowed to elucidate the crucial role of periostin on dentinogenesis and osteogenesis, as well as on the skeletal response to mechanical loading and parathyroid hormone. The use of circulating periostin as a potential clinical biomarker has been explored in different non skeletal conditions. These include cancers and more specifically in the metastasis process, respiratory diseases such as asthma, kidney failure, renal injury and cardiac infarction. In postmenopausal osteoporosis, serum levels have been shown to predict the risk of fracture-more specifically non-vertebral- independently of bone mineral density. Because of its preferential localization in cortical bone and periosteal tissue, it can be speculated that serum periostin may be a marker of cortical bone metabolism, although additional studies are clearly needed. PMID:26721738

  17. Matrix Thermalization

    CERN Document Server

    Craps, Ben; Nguyen, Kévin

    2016-01-01

    Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.

  18. New insights to the role of aryl hydrocarbon receptor in bone phenotype and in dioxin-induced modulation of bone microarchitecture and material properties

    International Nuclear Information System (INIS)

    Bone is a target for high affinity aryl hydrocarbon receptor (AHR) ligands, such as dioxins. Although bone morphology, mineral density and strength are sensitive endpoints of dioxin toxicity, less is known about effects on bone microarchitecture and material properties. This study characterizes TCDD-induced modulations of bone tissue, and the role of AHR in dioxin-induced bone toxicity and for normal bone phenotype. Six AHR-knockout (Ahr−/−) and wild-type (Ahr+/+) mice of both genders were exposed to TCDD weekly for 10 weeks, at a total dose of 200 μg/kg bw. Bones were examined with micro-computed tomography, nanoindentation and biomechanical testing. Serum levels of bone remodeling markers were analyzed, and the expression of genes related to osteogenic differentiation was profiled using PCR array. In Ahr+/+ mice, TCDD-exposure resulted in harder bone matrix, thinner and more porous cortical bone, and a more compact trabecular bone compartment. Bone remodeling markers and altered expression of a number of osteogenesis related genes indicated imbalanced bone remodeling. Untreated Ahr−/− mice displayed a slightly modified bone phenotype as compared with untreated Ahr+/+ mice, while TCDD exposure caused only a few changes in bones of Ahr−/− mice. Part of the effects of both TCDD-exposure and AHR-deficiency were gender dependent. In conclusion, exposure of adult mice to TCDD resulted in harder bone matrix, thinner cortical bone, mechanically weaker bones and most notably, increased trabecular bone volume fraction in Ahr+/+ mice. AHR is involved in bone development of a normal bone phenotype, and is crucial for manifestation of TCDD-induced bone alterations. - Highlights: • TCDD disrupts bone remodeling resulting in altered cortical and trabecular bone. • In trabecular bone an anabolic effect is observed. • Cortical bone is thinner, more porous, harder, stiffer and mechanically weaker. • AHR ablation results in increased trabecular bone and softer

  19. A 4 × 2 switch matrix in QFN24 package for 0.5–3 GHz application

    International Nuclear Information System (INIS)

    This paper presents a 4 × 2 switching matrix implemented in the Win 0.5 μm GaAs pseudomorphic high electron mobility transistor process, it covers the 0.5–3 GHz frequency range. The switch matrix is composed of 4 SPDT switch whose two output ports can simultaneously select the input port and a 4 to 8 bit digital decoder, both the radio frequency (RF) part and the digital part are integrated into one single chip. The chip is packaged in a low cost QFN24 plastic package. On chip shunt, capacitors at the input ports are taken to compensate for the bonding wire inductance effect. The designed switch matrix shows a good measured performance: the insertion loss is less than 5.5 dB, the isolation is no worse than 30 dB, the return loss of input ports and output ports is better than −10 dB, the input 1 dB compression point is better than 25.6 dBm, and the OIP3 is better than 37 dBm. The chip size of the switch matrix is only 1.45 × 1.45 mm2. (semiconductor integrated circuits)

  20. [Bone diseases].

    Science.gov (United States)

    Uebelhart, Brigitte; Rizzoli, René

    2016-01-13

    Calcium intake shows a small impact on bone mineral density and fracture risk. Denosumab is a more potent inhibitor of bone resorption than zoledronate. Abaloparatide, PTHrP analog, increases bone mineral density and decreases fracture incidence. Teriparatide could be delivered via a transdermic device. Romosozumab and odanacatib improve calculated bone strength. Sequential or combined treatments with denosumab and teriparatide could be of interest, but not denosumab followed by teriparatide. Fibrous dysplasia, Paget disease and hypophosphatasia are updated, as well as atypical femoral fracture and osteonecrosis of the jaw. PMID:26946704

  1. Nonallograft osteoconductive bone graft substitutes.

    Science.gov (United States)

    Bucholz, Robert W

    2002-02-01

    An estimated 500,000 to 600,000 bone grafting procedures are done annually in the United States. Approximately (1/2) of these surgeries involve spinal arthrodesis whereas 35% to 40% are used for general orthopaedic applications. Synthetic bone graft substitutes currently represent only 10% of the bone graft market, but their share is increasing as experience and confidence in their use are accrued. Despite 15 to 20 years of clinical experience with various synthetic substitutes, there have been few welldesigned, controlled clinical trials of these implants. Synthetic bone graft substitutes consist of hydroxyapatite, tricalcium phosphate, calcium sulfate, or a combination of these minerals. Their fabrication technique, crystallinity, pore dimensions, mechanical properties, and resorption rate vary. All synthetic porous substitutes share numerous advantages over autografts and allografts including their unlimited supply, easy sterilization, and storage. However, the degree to which the substitute provides an osteoconductive structural framework or matrix for new bone ingrowth differs among implants. Disadvantages of ceramic implants include brittle handling properties, variable rates of resorption, poor performance in diaphyseal defects, and potentially adverse effects on normal bone remodeling. These inherent weaknesses have refocused their primary use to bone graft extenders and carriers for pharmaceuticals. The composition, histologic features, indications, and clinical experience of several of the synthetic bone graft substitutes approved for orthopaedic use in the United States are reviewed. PMID:11937865

  2. Pressurization of bioactive bone cement in vitro.

    Science.gov (United States)

    Fujita, H; Iida, H; Kawanabe, K; Okada, Y; Oka, M; Masuda, T; Kitamura, Y; Nakamura, T

    1999-01-01

    We have developed a bioactive bone cement consisting of MgO-CaO-SiO2-P2O5-CaF2 glass-ceramic powder (AW glass-ceramic powder), silica glass powder as an inorganic filler, and bisphenol-a-glycidyl methacrylate (bis-GMA) based resin as an organic matrix. The efficacy of this bioactive bone cement was investigated by evaluating its pressurization in a 5-mm hole and small pores using a simulated acetabular cavity. Two types of acetabular components were used (flanged and unflanged sockets) and a commercially available polymethylmethacrylate (PMMA) bone cement (CMW 1 Radiopaque Bone Cement) was selected as a comparative control. Bioactive bone cement exerted greater intrusion volume in 5-mm holes than PMMA bone cement in both the flanged and unflanged sockets 10 minutes after pressurization (p anchor holes than PMMA bone cement.

  3. Effects of thirty elements on bone metabolism.

    Science.gov (United States)

    Dermience, Michael; Lognay, Georges; Mathieu, Françoise; Goyens, Philippe

    2015-10-01

    The human skeleton, made of 206 bones, plays vital roles including supporting the body, protecting organs, enabling movement, and storing minerals. Bones are made of organic structures, intimately connected with an inorganic matrix produced by bone cells. Many elements are ubiquitous in our environment, and many impact bone metabolism. Most elements have antagonistic actions depending on concentration. Indeed, some elements are essential, others are deleterious, and many can be both. Several pathways mediate effects of element deficiencies or excesses on bone metabolism. This paper aims to identify all elements that impact bone health and explore the mechanisms by which they act. To date, this is the first time that the effects of thirty minerals on bone metabolism have been summarized. PMID:26302917

  4. Matrix inequalities

    CERN Document Server

    Zhan, Xingzhi

    2002-01-01

    The main purpose of this monograph is to report on recent developments in the field of matrix inequalities, with emphasis on useful techniques and ingenious ideas. Among other results this book contains the affirmative solutions of eight conjectures. Many theorems unify or sharpen previous inequalities. The author's aim is to streamline the ideas in the literature. The book can be read by research workers, graduate students and advanced undergraduates.

  5. The response of bone to unloading

    Science.gov (United States)

    Bikle, D. D.; Halloran, B. P.

    1999-01-01

    Skeletal unloading leads to decreased bone formation and decreased bone mass. Bone resorption is uncoupled from bone formation, contributing to the bone loss. During spaceflight bone is lost principally from the bones most loaded in the 1-g environment, and some redistribution of bone from the lower extremities to the head appears to take place. Although changes in calcitropic hormones have been demonstrated during skeletal unloading (PTH and 1,25(OH)2D decrease), it remains unclear whether such changes account for or are in response to the changes in bone formation and resorption. Bed rest studies with human volunteers and hindlimb elevation studies with rats have provided useful data to help explain the changes in bone formation during spaceflight. These models of skeletal unloading reproduce a number of the conditions associated with microgravity, and the findings from such studies confirm many of the observations made during spaceflight. Determining the mechanism(s) by which loading of bone is sensed and translated into a signal(s) controlling bone formation remains the holy grail in this field. Such investigations couple biophysics to biochemistry to cell and molecular biology. Although studies with cell cultures have revealed biochemical responses to mechanical loads comparable to that seen in intact bone, it seems likely that matrix-cell interactions underlie much of the mechanocoupling. The role for systemic hormones such as PTH, GH, and 1,25(OH)2D compared to locally produced factors such as IGF-I, PTHrP, BMPs, and TGF-beta in modulating the cellular response to load remains unclear. As the mechanism(s) by which bone responds to mechanical load with increased bone formation are further elucidated, applications of this knowledge to other etiologies of osteoporosis are likely to develop. Skeletal unloading provides a perturbation in bone mineral homeostasis that can be used to understand the mechanisms by which bone mineral homeostasis is maintained, with

  6. Expression of vascular endothelial growth factor in repair of cranial bone defect with acellular bone matrix combined with platelet-rich plasma%VEGF在脱细胞骨基质复合富血小板血浆修复颅骨缺损中的表达

    Institute of Scientific and Technical Information of China (English)

    袁道英; 杨佑成; 张彬; 牛怀恩; 李克义; 张巍峰

    2010-01-01

    目的:研究血管内皮生长因子(VEGF)在脱细胞骨基质(acellular bone matrix,ABM)复合富血小板血浆(platelet-rich plasma,PRP)修复兔颅骨缺损时的表达及分布,探讨富血小板血浆促进成骨的机制.方法:雄性新西兰大白兔24只,体质量1.5~2.0 kg.在兔颅骨两侧分别建立一个1cm×0.5cm全层骨缺损区,同时去除该区骨膜,注意勿伤及硬脑膜.随机选择一侧骨缺损作实验侧,植入复合PRP的ABM;另一侧为对照侧,仅植入ABM.术后第2、4、8、12周末分别处死6只兔取材.免疫组织化学法测定骨缺损修复区血管内皮细胞生长因子(Vascular endothelial growth factor,VEGF)的表达;应用Image-proplus 5.0图像分析软件测量VEGF表达强度的灰度值.采用SSPS 16.0软件包进行t检验.结果:术后2周,实验组VEGF呈强阳性表达,随后急剧下降,以后趋于平缓.对照组在术后2、4周呈阳性表达,以后平缓下降.两组相比,在第2、4周时差异均有显著性(P<0.05).第8、12周时,2组表达差异无显著性.结论:VEGF在实验组早期阶段的强阳性表达,说明血管形成活跃.PRP促进骨修复的作用发生在植入后早期,启动了早期活跃的成骨.

  7. In vitro study of the osteocytes response to hypoxia and their regulation of bone homeostasis

    OpenAIRE

    Montesi, Monica

    2014-01-01

    Bone remodelling is a fundamental mechanism for removing and replacing bone during adaptation of the skeleton to mechanical loads. Skeletal unloading leads to severe hypoxia (1%O2) in the bone microenvironment resulting in imbalanced bone remodelling that favours bone resorption. Hypoxia, in vivo, is a physiological condition for osteocytes, 5% O2 is more likely physiological for osteocytes than 20% O2, as osteocytes are embedded deep inside the mineralized bone matrix. Osteocytes are thought...

  8. Talking Bones.

    Science.gov (United States)

    Johnson, Jaclyn; Kassing, Sharon

    2002-01-01

    Describes cooperation with the Saint Louis Zoo to provide opportunities for elementary school students to learn about bones, how animals move, what they eat, and how much they grow. Uses biofacts which include bones, skulls, and other parts to make the laboratory a hands-on experience for students. (YDS)

  9. Bone Markers

    Science.gov (United States)

    ... bone turnover: C-telopeptide (C-terminal telopeptide of type 1 collagen (CTx)) – a marker for bone resorption. It is ... resorption include: N-telopeptide (N-terminal telopeptide of type 1 collagen (NTx)) – a peptide fragment from the amino terminal ...

  10. Vibrational spectroscopy in biomedical science: bone

    Science.gov (United States)

    Gamsjäger, Sonja; Zoehrer, R.; Roschger, P.; Fratzl, P.; Klaushofer, K.; Mendelsohn, R.; Paschalis, E. P.

    2009-02-01

    Fourier transform infrared imaging (FTIR) and Raman Microspectroscopy are powerful tools for characterizing the distribution of different chemical moieties in heterogeneous materials. FTIR and Raman measurements have been adapted to assess the maturity of the mineral and the quality of the organic component (collagen and non-collagenous proteins) of the mineralized tissue in bone. Unique to the FTIRI analysis is the capability to provide the spatial distribution of two of the major collagen cross-links (pyridinoline, and dehydro-dihydroxylysinonorleucine) and through the study of normal and diseased bone, relate them to bone strength. These FTIR parameters have been validated based on analysis of model compounds. It is widely accepted that bone strength is determined by bone mass and bone quality. The latter is a multifactorial term encompassing the material and structural properties of bone, and one important aspect of the bone material properties is the organic matrix. The bone material properties can be defined by parameters of mineral and collagen, as determined by FTIR and Raman analysis. Considerably less attention has been directed at collagen, although there are several publications in the literature reporting altered collagen properties associated with fragile bone, in both animals and humans. Since bone is a heterogeneous tissue due to the remodeling process, microscopic areas may be carefully selected based on quantitative Backscattered Electron Imaging or histological staining, thus ensuring comparison of areas with similar metabolic activity and mineral content. In conclusion, FTIRI and Raman vibrational spectroscopy are proving to be powerful tools in bone-related medical research.

  11. Bone densitometry

    DEFF Research Database (Denmark)

    Ravn, Pernille; Alexandersen, P; Møllgaard, A

    1999-01-01

    The bisphosphonates have been introduced as alternatives to hormone replacement therapy (HRT) for the treatment and prevention of postmenopausal osteoporosis. The expected increasing application in at clinical practice demands cost-effective and easily handled methods to monitor the effect on bone....... The weak response at the distal forearm during antiresorptive treatment has restricted the use of bone densitometry at this region. We describe a new model for bone densitometry at the distal forearm, by which the response obtained is comparable to the response in other regions where bone densitometry...... is much more expensive and technically complicated. By computerized iteration of single X-ray absorptiometry forearm scans we defined a region with 65% trabecular bone. The region was analyzed in randomized, double-masked, placebo- controlled trials: a 2-year trial with alendronate (n = 69), a 1-year...

  12. [Metabolic bone disease osteomalacia].

    Science.gov (United States)

    Reuss-Borst, M A

    2014-05-01

    Osteomalacia is a rare disorder of bone metabolism leading to reduced bone mineralization. Underlying vitamin D deficiency and a disturbed phosphate metabolism (so-called hypophosphatemic osteomalacia) can cause the disease. Leading symptoms are dull localized or generalized bone pain, muscle weakness and cramps as well as increased incidence of falls. Rheumatic diseases, such as polymyalgia rheumatica, rheumatoid arthritis, myositis and fibromyalgia must be considered in the differential diagnosis. Alkaline phosphatase (AP) is typically elevated in osteomalacia while serum phosphate and/or 25-OH vitamin D3 levels are reduced. The diagnosis of osteomalacia can be confirmed by an iliac crest bone biopsy. Histological correlate is reduced or deficient mineralization of the newly synthesized extracellular matrix. Treatment strategies comprise supplementation of vitamin D and calcium and for patients with intestinal malabsorption syndromes vitamin D and calcium are also given parenterally. In renal phosphate wasting syndromes substitution of phosphate is the treatment of choice, except for tumor-induced osteomalacia when removal of the tumor leads to a cure in most cases. PMID:24811356

  13. Bone composition: relationship to bone fragility and antiosteoporotic drug effects.

    Science.gov (United States)

    Boskey, Adele L

    2013-01-01

    The composition of a bone can be described in terms of the mineral phase, hydroxyapatite, the organic phase, which consists of collagen type I, noncollagenous proteins, other components and water. The relative proportions of these various components vary with age, site, gender, disease and treatment. Any drug therapy could change the composition of a bone. This review, however, will only address those pharmaceuticals used to treat or prevent diseases of bone: fragility fractures in particular, and the way they can alter the composition. As bone is a heterogeneous tissue, its composition must be discussed in terms of the chemical makeup, properties of its chemical constituents and their distributions in the ever-changing bone matrix. Emphasis, in this review, is placed on changes in composition as a function of age and various diseases of bone, particularly osteoporosis. It is suggested that while some of the antiosteoporotic drugs can and do modify composition, their positive effects on bone strength may be balanced by negative ones. PMID:24501681

  14. Biglycan deficiency interferes with ovariectomy-induced bone loss

    DEFF Research Database (Denmark)

    Nielsen, Karina L; Allen, Matthew R; Bloomfield, Susan A;

    2003-01-01

    Biglycan is a matrix proteoglycan with a possible role in bone turnover. In a 4-week study with sham-operated or OVX biglycan-deficient or wildtype mice, we show that biglycan-deficient mice are resistant to OVX-induced trabecular bone loss and that there is a gender difference in the response to...... in bone, where it may modulate both formation and resorption ultimately influencing the bone turnover process....

  15. Early reversal cells in adult human bone remodeling

    DEFF Research Database (Denmark)

    Abdelgawad, Mohamed Essameldin; Delaisse, Jean-Marie; Hinge, Maja;

    2016-01-01

    . Earlier preclinical studies indicate that reversal cells degrade the organic matrix left behind by the osteoclasts and that this degradation is crucial for the initiation of the subsequent bone formation. To our knowledge, this study is the first addressing these catabolic activities in adult human bone...... demonstrates that reversal cells colonizing bone surfaces right after resorption are osteoblast-lineage cells, and extends to adult human bone remodeling their role in rendering eroded surfaces osteogenic....

  16. Matrix analysis

    CERN Document Server

    Bhatia, Rajendra

    1997-01-01

    A good part of matrix theory is functional analytic in spirit. This statement can be turned around. There are many problems in operator theory, where most of the complexities and subtleties are present in the finite-dimensional case. My purpose in writing this book is to present a systematic treatment of methods that are useful in the study of such problems. This book is intended for use as a text for upper division and gradu­ ate courses. Courses based on parts of the material have been given by me at the Indian Statistical Institute and at the University of Toronto (in collaboration with Chandler Davis). The book should also be useful as a reference for research workers in linear algebra, operator theory, mathe­ matical physics and numerical analysis. A possible subtitle of this book could be Matrix Inequalities. A reader who works through the book should expect to become proficient in the art of deriving such inequalities. Other authors have compared this art to that of cutting diamonds. One first has to...

  17. EFFECT OF BONE MARROW MESENCHYMAL STEM CELLS-DERIVED EXTRACELLULAR MATRIX SCAFFOLD ON CHONDROGENIC DIFFERENTIATION OF MARROW CLOT AFTER MICROFRACTURE OF BONE MARROW STIMULATION IN VITRO%BMSCs来源细胞外基质支架对微骨折骨髓刺激术后血凝块体外软骨化分化的作用研究

    Institute of Scientific and Technical Information of China (English)

    魏波; 金成哲; 徐燕; 唐成; 胡文浩; 王黎明

    2013-01-01

    Objective To evaluate the feasibility and validity of chondrogenic differentiation of marrow clot after microfracture of bone marrow stimulation combined with bone marrow mesenchymal stem cells (BMSCs)-derived extracellular matrix (ECM) scaffold in vitro. Methods BMSCs were obtained and isolated from 20 New Zealand white rabbits (5-6 months old). The 3rd passage cells were cultured and induced to osteoblasts, chondrocytes, and adipocytes in vitro, respectively. ECM scaffold was manufactured using the 3rd passage cells via a freeze-dying method. Microstructure was observed by scanning electron microscope (SEM). A full-thickness cartilage defect (6 mm in diameter) was established and 5 microholes (1 mm in diameter and 3 mm in depth) were created with a syringe needle in the trochlear groove of the femur of rabbits to get the marrow clots. Another 20 rabbits which were not punctured were randomly divided into groups A (n=10) and B (n=10): culture of the marrow clot alone (group A) and culture of the marrow clot with transforming growth factor (33 (TGF-B3) (group B). Twenty rabbits which were punctured were randomly divided into groups C (n=10) and D (n=10): culture of the ECM scaffold and marrow clot composite (group C) and culture of the ECM scaffold and marrow clot composite with TGF-p3 (group D). The cultured tissues were observed and evaluated by gross morphology,histology, immunohistochemistry, and biochemical composition at 1,2, 4, and 8 weeks after culture. Results Cells were successfully induced into osteoblasts, chondrocytes, and adipocytes in vitro. Highly porous microstructure of the ECM scaffold was observed by SEM. The cultured tissue gradually reduced in size with time and disappeared at 8 weeks in group A. Soft and loose structure developed in group C during culturing. Chondroid tissue with smooth surface developed in groups B and D with time. The cultured tissue size of groups C and D were significantly larger than that of group B at 4 and 8 weeks (P

  18. Bone microdamage and cell apoptosis

    Directory of Open Access Journals (Sweden)

    Noble B.

    2003-12-01

    Full Text Available Accumulation of microdamage in bone leads to the reduced strength of our skeleton. In health, bone adapts to the prevailing mechanical needs of the organism and is also capable of self-repair, sensing, removing and replacing damaged or mechanically insufficient volumes of bone. In disease and old age these characteristics are reduced. In order to undertake both of the processes of functional adaptation and repair the bone resorbing and forming cells must be very accurately targeted to areas of physiological need. The mechanism by which cells are precisely targeted to areas requiring repair is both clinically relevant and poorly understood. The osteocyte has been assumed to play a role in sensing damage and signaling for its removal, due largely to its abundance throughout the mineralized bone matrix. However, until recently there has been little evidence that osteocyte function is modified in the vicinity of the microdamage. Here I outline the possibility that the targeted removal of bone containing microcracks might involve signals derived from the apoptotic death of the osteocyte. I shall discuss data that support or refute this view and will consider the possible molecular mechanisms by which controlled cell death might contribute to the signals for repair in the light of work involving cells in bone and other tissue systems.

  19. Matrix pentagons

    CERN Document Server

    Belitsky, A V

    2016-01-01

    The Operator Product Expansion for null polygonal Wilson loop in planar maximally supersymmetric Yang-Mills theory runs systematically in terms of multiparticle pentagon transitions which encode the physics of excitations propagating on the color flux tube ending on the sides of the four-dimensional contour. Their dynamics was unravelled in the past several years and culminated in a complete description of pentagons as an exact function of the 't Hooft coupling. In this paper we provide a solution for the last building block in this program, the SU(4) matrix structure arising from internal symmetry indices of scalars and fermions. This is achieved by a recursive solution of the Mirror and Watson equations obeyed by the so-called singlet pentagons and fixing the form of the twisted component in their tensor decomposition. The non-singlet, or charged, pentagons are deduced from these by a limiting procedure.

  20. Your Bones

    Science.gov (United States)

    ... a fall! If you play sports like football, soccer, lacrosse, or ice hockey, always wear all the ... to strengthen your bones is through exercise like running, jumping, dancing, and playing sports. Take these steps ...

  1. Isolation of osteocytes from human trabecular bone.

    Science.gov (United States)

    Prideaux, Matthew; Schutz, Christine; Wijenayaka, Asiri R; Findlay, David M; Campbell, David G; Solomon, Lucian B; Atkins, Gerald J

    2016-07-01

    Osteocytes are essential regulators of bone homeostasis. However, they are difficult to study due to their location within the bone mineralised matrix. Although several techniques have been published for the isolation of osteocytes from mouse bone, no such technique has been described for human osteocytes. We have therefore developed a protocol for the isolation of osteocytes from human trabecular bone samples acquired during surgery. The cells were digested from the bone matrix by sequential collagenase and ethylenediaminetetraacetic acid (EDTA) digestions and the cells from later digests displayed characteristic dendritic osteocyte morphology when cultured ex vivo. Furthermore, the cells expressed characteristic osteocyte marker genes, such as E11, dentin matrix protein 1 (DMP1), SOST, matrix extracellular phosphoglycoprotein (MEPE) and phosphate regulating endopeptidase homologue, X-linked (PHEX). In addition, genes associated with osteocyte perilacunar remodelling, including matrix metallopeptidase-13 (MMP13), cathepsin K (CTSK) and carbonic anhydrase 2 (CAR2) were expressed. The cells also responded to parathyroid hormone (PTH) by downregulating SOST mRNA expression and to 1α,25-dihydroxyvitamin D3 (1,25D) by upregulating fibroblast growth factor 23 (FGF23) mRNA expression. Therefore, the cells behave in a similar manner to osteocytes in vivo. These cells represent an important tool in enhancing current knowledge in human osteocyte biology. PMID:27109824

  2. Osteocyte lacunar properties in rat cortical bone

    DEFF Research Database (Denmark)

    Bach-Gansmo, Fiona Linnea; Weaver, James C.; Jensen, Mads Hartmann;

    2015-01-01

    Recently, the roles of osteocytes in bone maintenance have gained increasing attention. Osteocytes reside in lacunae that are interconnected by canaliculi resulting in a vast cellular network within the mineralized bone matrix. As the structure of the lacuno-canalicular network is highly connected......-species but also inter-site variation in lacunar properties. Here, osteocyte lacunae in rat cortical bone have been studied using synchrotron radiation micro computed tomography (SR μCT) and backscattered electron (BE) microscopy. Quantitative lacunar geometric characteristics are reported based on the synchrotron...... radiation data, differentiating between circumferential lamellar bone and a central, more disordered bone type. From these studies, no significant differences were found in lacunar volumes between lamellar and central bone, whereas significant differences in lacunar orientation, shape and density values...

  3. 富血小板血浆及带血管筋膜在组织工程骨血管化中的作用组织影像学观察%Platelet-rich plasma and latissimus dorsi fascia with blood vessels in the vascularization of tissue-engineered bone: A histological & radiological observation

    Institute of Scientific and Technical Information of China (English)

    陈涛; 李宁毅

    2008-01-01

    织工程骨的成骨和血管化,且两者具有协同作用.%BACKGROUND: It is still disputed whether several growth factors of platelet-rich plasma and the fascia with blood vessels can promote bone regeneration and vascularization. OBJECTIVE: To evaluate the effects of platclet-rich plasma and the fascia with blood vessels on the vascularization of tissue-engineered bone composited by marrow stromal stem cells (MSCs) and decalcified bone matrix (DBM). DESIGN, TIME AND SETTING: The present single-sample observation, self-control animal experiment was performed at the Central Laboratory Center, Affiliated Hospital of Qingdao University Medical College between October 2004 and November 2007. MATERIALS: Twelve healthy hybrid dogs, aged 11-12 months, weighing 20-25 kg, equal number of males and females, were included for this study. METHODS: ①MSCs were isolated from dog bone marrow by density gradient centrifugation, followed by in vitro adherent culture and ontogenesis culture.Dog femur was taken for preparation of DBM and composited with MSCs.②The back of each dog was divided into 4 regions (A,B,C,and D).In the regions A and B, DBM/MSCs/platelet-rich plasma composites were transplanted. In the regions C and D, DBM/MSCs composites were transplanted. The implants for the regions A and C were wrapped with latissimus dorsi fascia with blood vessels. The implants for the regions B and D were wrapped with blood vessels-free superficial fascia from back. At weeks 4,8,and 12,4 dogs comprising 2 males and 2 females, were sacrificed following anesthesia for specimen harvesting. MAIN OUTCOME MEASURES:①MSC morphology was observed utilizing a phase contrast microscope, and cell growth curves were portrayed by methyl thiazolyl tetrazolium colorimetric assay.②Morphology of osteoblasts induced was observed by modified alkaline phospharase (ALP) staining (Ca-Co method), Von Kossa method, alizarin red method and calcium node staining.③Composite structure was observed

  4. Bone marrow transplant

    Science.gov (United States)

    Transplant - bone marrow; Stem cell transplant; Hematopoietic stem cell transplant; Reduced intensity nonmyeloablative transplant; Mini transplant; Allogenic bone marrow transplant; Autologous bone marrow transplant; Umbilical ...

  5. Vitamin D and Bone Disease

    Directory of Open Access Journals (Sweden)

    S. Christodoulou

    2013-01-01

    Full Text Available Vitamin D is important for normal development and maintenance of the skeleton. Hypovitaminosis D adversely affects calcium metabolism, osteoblastic activity, matrix ossification, bone remodeling and bone density. It is well known that Vit. D deficiency in the developing skeleton is related to rickets, while in adults is related to osteomalacia. The causes of rickets include conditions that lead to hypocalcemia and/or hypophosphatemia, either isolated or secondary to vitamin D deficiency. In osteomalacia, Vit. D deficiency leads to impairment of the mineralisation phase of bone remodeling and thus an increasing amount of the skeleton being replaced by unmineralized osteoid. The relationship between Vit. D and bone mineral density and osteoporosis are still controversial while new evidence suggests that Vit. D may play a role in other bone conditions such as osteoarthritis and stress fractures. In order to maintain a “good bone health” guidelines concerning the recommended dietary intakes should be followed and screening for Vit. D deficiency in individuals at risk for deficiency is required, followed by the appropriate action.

  6. High-strength mineralized collagen artificial bone

    Science.gov (United States)

    Qiu, Zhi-Ye; Tao, Chun-Sheng; Cui, Helen; Wang, Chang-Ming; Cui, Fu-Zhai

    2014-03-01

    Mineralized collagen (MC) is a biomimetic material that mimics natural bone matrix in terms of both chemical composition and microstructure. The biomimetic MC possesses good biocompatibility and osteogenic activity, and is capable of guiding bone regeneration as being used for bone defect repair. However, mechanical strength of existing MC artificial bone is too low to provide effective support at human load-bearing sites, so it can only be used for the repair at non-load-bearing sites, such as bone defect filling, bone graft augmentation, and so on. In the present study, a high strength MC artificial bone material was developed by using collagen as the template for the biomimetic mineralization of the calcium phosphate, and then followed by a cold compression molding process with a certain pressure. The appearance and density of the dense MC were similar to those of natural cortical bone, and the phase composition was in conformity with that of animal's cortical bone demonstrated by XRD. Mechanical properties were tested and results showed that the compressive strength was comparable to human cortical bone, while the compressive modulus was as low as human cancellous bone. Such high strength was able to provide effective mechanical support for bone defect repair at human load-bearing sites, and the low compressive modulus can help avoid stress shielding in the application of bone regeneration. Both in vitro cell experiments and in vivo implantation assay demonstrated good biocompatibility of the material, and in vivo stability evaluation indicated that this high-strength MC artificial bone could provide long-term effective mechanical support at human load-bearing sites.

  7. Bone mineral content and bone metabolism in young adults with severe periodontitis

    DEFF Research Database (Denmark)

    Wowern von, N.; Westergaard, J.; Kollerup, G.

    2001-01-01

    Bone loss, bone markers, bone metabolism, bone mineral content, osteoporosis, severe periodontitis......Bone loss, bone markers, bone metabolism, bone mineral content, osteoporosis, severe periodontitis...

  8. Connecting mechanics and bone cell activities in the bone remodeling process: an integrated finite element modeling.

    Science.gov (United States)

    Hambli, Ridha

    2014-01-01

    Bone adaptation occurs as a response to external loadings and involves bone resorption by osteoclasts followed by the formation of new bone by osteoblasts. It is directly triggered by the transduction phase by osteocytes embedded within the bone matrix. The bone remodeling process is governed by the interactions between osteoblasts and osteoclasts through the expression of several autocrine and paracrine factors that control bone cell populations and their relative rate of differentiation and proliferation. A review of the literature shows that despite the progress in bone remodeling simulation using the finite element (FE) method, there is still a lack of predictive models that explicitly consider the interaction between osteoblasts and osteoclasts combined with the mechanical response of bone. The current study attempts to develop an FE model to describe the bone remodeling process, taking into consideration the activities of osteoclasts and osteoblasts. The mechanical behavior of bone is described by taking into account the bone material fatigue damage accumulation and mineralization. A coupled strain-damage stimulus function is proposed, which controls the level of autocrine and paracrine factors. The cellular behavior is based on Komarova et al.'s (2003) dynamic law, which describes the autocrine and paracrine interactions between osteoblasts and osteoclasts and computes cell population dynamics and changes in bone mass at a discrete site of bone remodeling. Therefore, when an external mechanical stress is applied, bone formation and resorption is governed by cells dynamic rather than adaptive elasticity approaches. The proposed FE model has been implemented in the FE code Abaqus (UMAT routine). An example of human proximal femur is investigated using the model developed. The model was able to predict final human proximal femur adaptation similar to the patterns observed in a human proximal femur. The results obtained reveal complex spatio-temporal bone

  9. Bone microenvironment-mediated resistance of cancer cells to bisphosphonates and impact on bone osteocytes/stem cells.

    Science.gov (United States)

    Alasmari, Abeer; Lin, Shih-Chun; Dibart, Serge; Salih, Erdjan

    2016-08-01

    Anti-resorptive bisphosphonates (BPs) have been clinically used to prevent cancer-bone metastasis and cancer-induced bone pathologies despite the fact that the phenotypic response of the cancer-bone interactions to BP exposure is "uncharted territory". This study offers unique insights into the interplay between cancer stem cells and osteocytes/osteoblasts and mesenchymal stem cells using a three-dimensional (3D) live cancer-bone interactive model. We provide extraordinary cryptic details of the biological events that occur as a result of alendronate (ALN) treatment using 3D live cancer-bone model systems under specific bone remodeling stages. While cancer cells are susceptible to BP treatment in the absence of bone, they are totally unaffected in the presence of bone. Cancer cells colonize live bone irrespective of whether the bone is committed to bone resorption or formation and hence, cancer-bone metastasis/interactions are though to be "independent of bone remodeling stages". In our 3D live bone model systems, ALN inhibited bone resorption at the osteoclast differentiation level through effects of mineral-bound ALN on osteocytes and osteoblasts. The mineral-bound ALN rendered bone incapable of osteoblast differentiation, while cancer cells colonize the bone with striking morphological adaptations which led to a conclusion that a direct anti-cancer effect of BPs in a "live or in vivo" bone microenvironment is implausible. The above studies were complemented with mass spectrometric analysis of the media from cancer-bone organ cultures in the absence and presence of ALN. The mineral-bound ALN impacts the bone organs by limiting transformation of mesenchymal stem cells to osteoblasts and leads to diminished endosteal cell population and degenerated osteocytes within the mineralized bone matrix. PMID:27155840

  10. Selective Retention of Bone Marrow-Derived Cells to Enhance Spinal Fusion

    OpenAIRE

    Muschler, George F.; Matsukura, Yoichi; Nitto, Hironori; Boehm, Cynthia A.; Valdevit, Antonio D.; Kambic, Helen E.; Davros, William J.; Easley, Kirk A.; Powell, Kimerly A.

    2005-01-01

    Connective tissue progenitors can be concentrated rapidly from fresh bone marrow aspirates using some porous matrices as a surface for cell attachment and selective retention, and for creating a cellular graft that is enriched with respect to the number of progenitor cells. We evaluated the potential value of this method using demineralized cortical bone powder as the matrix. Matrix alone, matrix plus marrow, and matrix enriched with marrow cells were compared in an established canine spinal ...

  11. [Clinical usefulness of bone turnover markers in the management of osteoporosis].

    Science.gov (United States)

    Yano, Shozo

    2013-09-01

    Osteoporosis is a state of elevated risk for bone fracture due to depressed bone strength, which is considered to be the sum of bone mineral density and bone quality. Since a measure of bone quality has not been established, bone mineral density and bone turnover markers are the only way to evaluate bone strength. Bone turnover markers are classified into bone formation marker and resorption marker, which are correlated with the bone formation rate and resorption rate, respectively, and bone matrix-related marker. Bone is always metabolized; old tissue is resorbed by acids and proteases derived from osteoclasts, whereas new bone is produced by osteoblasts. Bone formation and resorption rates should be balanced (also called coupled). When the bone resorption rate exceeds the formation rate(uncoupled state), bone volume will be reduced. Thus, we can comprehend bone metabolism by measuring both formation and resorption markers at the same time. Increased fracture risk is recognized by elevated bone resorption markers and undercarboxylated osteocalcin, which reflects vitamin K insufficiency and bone turnover. These values and the time course give us helpful information to choose medicine suitable for the patients and to judge the responsiveness. If the value is extraordinarily high without renal failure, metabolic bone disorder or bone metastatic tumor should be considered. Bone quality may be assessed by measuring bone matrix-related markers such as homocystein and pentosidine. Since recent studies indicate that the bone is a hormone-producing organ, it is possible that glucose metabolism or an unknown mechanism could be assessed in the future. PMID:24369600

  12. [Bone transplant].

    Science.gov (United States)

    San Julián, M; Valentí, A

    2006-01-01

    We describe the methodology of the Bone and Soft Tissue Bank, from extraction and storage until use. Since the year 1986, with the creation of the Bone Bank in the University Clinic of Navarra, more than 3,000 grafts have been used for very different types of surgery. Bone grafts can be classified into cortical and spongy; the former are principally used in surgery to save tumour patients, in large post-traumatic reconstructions and in replacement surgery where there are massive bone defects and a structural support is required. The spongy grafts are the most used due to their numerous indications; they are especially useful in filling cavities that require a significant quantity of graft when the autograft is insufficient, or as a complement. They are also of special help in treating fractures when there is bone loss and in the treatment of delays in consolidation and pseudoarthrosis in little vascularized and atrophic zones. They are also used in prosthetic surgery against the presence of cavity type defects. Allografts of soft tissues are specially recognised in multiple ligament injuries that require reconstructions. Nowadays, the most utilised are those employed in surgery of the anterior cruciate ligament although they can be used for filling any ligament or tendon defect. The principal difficulties of the cortical allografts are in the consolidation of the ends with the bone itself and in tumour surgery, given that these are patients immunodepressed by the treatment, the incidence of infection is increased with respect to spongy grafts and soft tissues, which is irrelevant. In short, the increasingly widespread use of allografts is an essential therapeutic weapon in orthopaedic surgery and traumatology. It must be used by expert hands.

  13. [Bone transplant].

    Science.gov (United States)

    San Julián, M; Valentí, A

    2006-01-01

    We describe the methodology of the Bone and Soft Tissue Bank, from extraction and storage until use. Since the year 1986, with the creation of the Bone Bank in the University Clinic of Navarra, more than 3,000 grafts have been used for very different types of surgery. Bone grafts can be classified into cortical and spongy; the former are principally used in surgery to save tumour patients, in large post-traumatic reconstructions and in replacement surgery where there are massive bone defects and a structural support is required. The spongy grafts are the most used due to their numerous indications; they are especially useful in filling cavities that require a significant quantity of graft when the autograft is insufficient, or as a complement. They are also of special help in treating fractures when there is bone loss and in the treatment of delays in consolidation and pseudoarthrosis in little vascularized and atrophic zones. They are also used in prosthetic surgery against the presence of cavity type defects. Allografts of soft tissues are specially recognised in multiple ligament injuries that require reconstructions. Nowadays, the most utilised are those employed in surgery of the anterior cruciate ligament although they can be used for filling any ligament or tendon defect. The principal difficulties of the cortical allografts are in the consolidation of the ends with the bone itself and in tumour surgery, given that these are patients immunodepressed by the treatment, the incidence of infection is increased with respect to spongy grafts and soft tissues, which is irrelevant. In short, the increasingly widespread use of allografts is an essential therapeutic weapon in orthopaedic surgery and traumatology. It must be used by expert hands. PMID:16998521

  14. 45S5 Bioactive Glass-Based Composite Scaffolds with Polymer Coatings for Bone Tissue Engineering Therapeutics

    OpenAIRE

    Li, Wei

    2015-01-01

    Bone tissue engineering is a rapidly developing interdisciplinary field. An effective approach to bone tissue engineering aims to restore the function of damaged bone tissue or to regenerate bone tissue with the aid of scaffolds made from engineered biomaterials. The scaffolds should act as temporary matrices for cell attachment, proliferation, migration, differentiation and extracellular matrix deposition, with consequent bone ingrowth until the new bone tissue is totally restored or regener...

  15. What Is Bone?

    Science.gov (United States)

    ... by your browser. Home Bone Basics What Is Bone? Publication available in: PDF (57 KB) Related Resources ... Men, and Osteoporosis Osteoporosis Prevention For Your Information Bone Remodeling Throughout life, bone is constantly renewed through ...

  16. Calcium and bones

    Science.gov (United States)

    Bone strength and calcium ... calcium (as well as phosphorus) to make healthy bones. Bones are the main storage site of calcium in ... your body does not absorb enough calcium, your bones can get weak or will not grow properly. ...

  17. Facts about Broken Bones

    Science.gov (United States)

    ... White House Lunch Recipes The Facts About Broken Bones KidsHealth > For Kids > The Facts About Broken Bones ... through the skin . continue What Happens When a Bone Breaks? It hurts to break a bone! It's ...

  18. Bone biopsy (image)

    Science.gov (United States)

    A bone biopsy is performed by making a small incision into the skin. A biopsy needle retrieves a sample of bone and it ... examination. The most common reasons for bone lesion biopsy are to distinguish between benign and malignant bone ...

  19. Bone lesion biopsy

    Science.gov (United States)

    Bone biopsy; Biopsy - bone ... is sent to a lab for examination. Bone biopsy may also be done under general anesthesia to ... remove the bone can be done if the biopsy exam shows that there is an abnormal growth ...

  20. ‘Old wood’ effect in radiocarbon dating of prehistoric cremated bones?

    OpenAIRE

    Olsen, Jesper; Heinemeier, Jan; Hornstrup, Karen Margrethe; Bennike, Pia; Thrane, Henrik

    2013-01-01

    Numerous reports of successful radiocarbon dating of cremated bones have emerged during the last decade. The success of radiocarbon dating cremated bones depends on the temperature during burning and the degree of recrystallisation of the inorganic bone matrix. During cremation bones undergo major morphological and mineralogical changes which have raised some interesting questions and discussion on the origin of the carbon source in archaeologically cremated bones. Recent laboratory experimen...

  1. TGF-β in the Bone Microenvironment: Role in Breast Cancer Metastases

    OpenAIRE

    Buijs, Jeroen T.; Stayrook, Keith R; Guise, Theresa A.

    2011-01-01

    Breast cancer is the most prevalent cancer among females worldwide. It has long been known that cancers preferentially metastasize to particular organs, and bone metastases occur in ∼70% of patients with advanced breast cancer. Breast cancer bone metastases are predominantly osteolytic and accompanied by bone destruction, bone fractures, pain, and hypercalcemia, causing severe morbidity and hospitalization. In the bone matrix, transforming growth factor-β (TGF-β) is one of the most abundant g...

  2. Bone graft revascularization strategies

    NARCIS (Netherlands)

    W.F. Willems

    2014-01-01

    Reconstruction of avascular necrotic bone by pedicled bone grafting is a well-known treatment with little basic research supporting its application. A new canine model was used to simulate carpal bone avascular necrosis. Pedicled bone grafting proved to increase bone remodeling and bone blood flow,

  3. Carbon dioxide (CO2) absorption behavior of mixed matrix polymer composites containing a flexible coordination polymer.

    Science.gov (United States)

    Culp, Jeffrey T; Sui, Lang; Goodman, Angela; Luebke, David

    2013-03-01

    Mixed matrix membranes (MMMs) comprised of metal organic frameworks (MOFs) dispersed in organic polymers are popular materials under study for potential applications in gas separations. However, research on MMMs containing structurally dynamic sorbents known as flexible MOFs has only very recently appeared in the literature. The thermodynamic requirements of the structure transition between the low porosity and high porosity phases of flexible MOFs may provide a mechanism for high adsorption selectivity in these materials. A fundamental question in MMMs containing flexible MOFs is how the constraint of the polymer matrix on the intrinsic expansion of the flexible MOF particles that occurs during gas adsorption might affect the thermodynamics of this structural phase transition and influence the gas adsorption properties of the embedded MOF. To investigate the fundamental nature of this flexible MOF-polymer interface, thin films of ~20 um thickness were prepared using the flexible linear chain coordination polymer catena-bis(dibenzoylmethanato)-(4,4'bipyridyl)nickel(II) "Ni(Bpy)(DBM)(2)" embedded as 35 wt% dispersions in Matrimid®, polystyrene, and polysulfone. The adsorption of CO(2) in the polymers and embedded particles was studied using in situ ATR-FTIR spectroscopy and variable temperature volumetric CO(2) adsorption/desorption isotherms. Interestingly, no effect of the polymer matrix on the gas adsorption behavior of the embedded Ni(Bpy)(DBM)(2) particles was observed. The composite samples all showed the same threshold pressures for CO(2) absorption and desorption hysteresis associated with the structural phase change in the polymer embedded Ni(Bpy)(DBM)(2) particles as was observed in the pristine polycrystalline sample. The current results contrast those recently reported for a MMM containing the flexible MOF "NH(2)-MIL-53" where a significant increase in the threshold pressure for CO(2) adsorption associated with the structural phase change of the MOF was

  4. Development of electrospun bone-mimetic matrices for bone regenerative applications

    Science.gov (United States)

    Phipps, Matthew Christopher

    Although bone has a dramatic capacity for regeneration, certain injuries and procedures present defects that are unable to heal properly, requiring surgical intervention to induce and support osteoregeneration. Our research group has hypothesized that the development of a biodegradable material that mimics the natural composition and architecture of bone extracellular matrix has the potential to provide therapeutic benefit to these patients. Utilizing a process known as electrospinning, our lab has developed a bone-mimetic matrix (BMM) consisting of composite nanofibers of the mechanically sta-ble polymer polycaprolactone (PCL), and the natural bone matrix molecules type-I colla-gen and hydroxyapatite nanocrystals (HA). We herein show that BMMs supported great-er adhesion, proliferation, and integrin activation of mesenchymal stem cells (MSCs), the multipotent bone-progenitor cells within bone marrow and the periosteum, in comparison to electrospun PCL alone. These cellular responses, which are essential early steps in the process of bone regeneration, highlight the benefits of presenting cells with natural bone molecules. Subsequently, evaluation of new bone formation in a rat cortical tibia defect showed that BMMs are highly osteoconductive. However, these studies also revealed the inability of endogenous cells to migrate within electrospun matrices due to the inherently small pore sizes. To address this limitation, which will negatively impact the rate of scaf-fold-to-bone turnover and inhibit vascularization, sacrificial fibers were added to the ma-trix. The removal of these fibers after fabrication resulted in BMMs with larger pores, leading to increased infiltration of MSCs and endogenous bone cells. Lastly, we evaluat-ed the potential of our matrices to stimulate the recruitment of MSCs, a vital step in bone healing, through the sustained delivery of platelet derived growth factor-BB (PDGF-BB). BMMs were found to adsorb and subsequently release greater

  5. Quantitative evaluation of regularized phase retrieval algorithms on bone scaffolds seeded with bone cells.

    Science.gov (United States)

    Weber, L; Langer, M; Tavella, S; Ruggiu, A; Peyrin, F

    2016-05-01

    In the field of regenerative medicine, there has been a growing interest in studying the combination of bone scaffolds and cells that can maximize newly formed bone. In-line phase-contrast x-ray tomography was used to image porous bone scaffolds (Skelite(©)), seeded with bone forming cells. This technique allows the quantification of both mineralized and soft tissue, unlike with classical x-ray micro-computed tomography. Phase contrast images were acquired at four distances. The reconstruction is typically performed in two successive steps: phase retrieval and tomographic reconstruction. In this work, different regularization methods were applied to the phase retrieval process. The application of a priori terms for heterogeneous objects enables quantitative 3D imaging of not only bone morphology, mineralization, and soft tissue formation, but also cells trapped in the pre-bone matrix. A statistical study was performed to derive statistically significant information on the different culture conditions. PMID:27054380

  6. Quantitative evaluation of regularized phase retrieval algorithms on bone scaffolds seeded with bone cells

    Science.gov (United States)

    Weber, L.; Langer, M.; Tavella, S.; Ruggiu, A.; Peyrin, F.

    2016-05-01

    In the field of regenerative medicine, there has been a growing interest in studying the combination of bone scaffolds and cells that can maximize newly formed bone. In-line phase-contrast x-ray tomography was used to image porous bone scaffolds (Skelite©), seeded with bone forming cells. This technique allows the quantification of both mineralized and soft tissue, unlike with classical x-ray micro-computed tomography. Phase contrast images were acquired at four distances. The reconstruction is typically performed in two successive steps: phase retrieval and tomographic reconstruction. In this work, different regularization methods were applied to the phase retrieval process. The application of a priori terms for heterogeneous objects enables quantitative 3D imaging of not only bone morphology, mineralization, and soft tissue formation, but also cells trapped in the pre-bone matrix. A statistical study was performed to derive statistically significant information on the different culture conditions.

  7. Decreased bone tissue mineralization can partly explain subchondral sclerosis observed in osteoarthritis.

    Science.gov (United States)

    Cox, L G E; van Donkelaar, C C; van Rietbergen, B; Emans, P J; Ito, K

    2012-05-01

    For many years, pharmaceutical therapies for osteoarthritis (OA) were focused on cartilage. However, it has been theorized that bone changes such as increased bone volume fraction and decreased bone matrix mineralization may play an important role in the initiation and pathogenesis of OA as well. The mechanisms behind the bone changes are subject of debate, and a better understanding may help in the development of bone-targeting OA therapies. In the literature, the increase in bone volume fraction has been hypothesized to result from mechanoregulated bone adaptation in response to decreased mineralization. Furthermore, both changes in bone volume fraction and mineralization have been reported to be highest close to the cartilage, and bone volume fraction has been reported to be correlated with cartilage degeneration. These data indicate that cartilage degeneration, bone volume fraction, and bone matrix mineralization may be related in OA. In the current study, we aimed to investigate the relationships between cartilage degeneration, bone matrix mineralization and bone volume fraction at a local level. With microCT, we determined bone matrix mineralization and bone volume fraction as a function of distance from the cartilage in osteochondral plugs from human OA tibia plateaus with varying degrees of cartilage degeneration. In addition, we evaluated whether mechanoregulated bone adaptation in response to decreased bone matrix mineralization may be responsible for the increase in bone volume fraction observed in OA. For this purpose, we used the experimentally obtained mineralization data as input for bone adaptation simulations. We simulated the effect of mechanoregulated bone adaptation in response to different degrees of mineralization, and compared the simulation results to the experimental data. We found that local changes in subchondral bone mineralization and bone volume fraction only occurred underneath severely degenerated cartilage, indicating that bone

  8. [Regulation of bone homeostasis by glucose].

    Science.gov (United States)

    Fukasawa, Kazuya; Hinoi, Eiichi

    2016-08-01

    Synthesis of type Ⅰ collagen, a major component of the bone matrix, precedes the expression of Runt-related transcription factor 2(Runx2), a master regulator in osteoblast differentiation. Thus, a direct link between osteoblast differentiation and bone formation is seemingly absent, and how these are maintained in a coordinated matter remains unclear. It was recently demonstrated that osteoblasts depend on glucose, which glucose transporter type 1(GLUT1)takes up as an energy source, and it was found that glucose uptake promotes osteoblast differentiation and bone formation via AMP-activated protein kinase. It was also shown that Runx2 upregulates GLUT1 expression, and this Runx2-GLUT1 feedforward regulation integrates and coordinates osteoblast differentiation and bone formation throughout life. These previous findings revealed that the energy metabolism balance in osteoblasts integrates the differentiation and function of osteoblasts, and re-emphasized the importance of crosstalk between bone and sugar metabolism. PMID:27461500

  9. Bone morphogenetic protein-2: a potential regulator in scleral remodeling

    OpenAIRE

    Hu, Jianmin; Cui, Dongmei; Yang, Xiao; Wang, Shaowei; Hu, Shoulong; Li, Chuanxu; Zeng, Junwen

    2008-01-01

    Purpose Bone morphogenetic protein 2 (BMP-2) is a member of the main subgroup of bone morphogenetic proteins within the transforming growth factor-β superfamily. BMP-2 is involved in numerous cellular functions including development, cell proliferation, apoptosis, and extracellular matrix synthesis. We examined BMP-2 expression in human scleral fibroblasts (HSF) and assessed the effects of recombinant human BMP-2 (rhBMP-2) on HSF proliferation, matrix metalloproteinase-2 (MMP-2), and tissue i...

  10. Assessment of bone mineral status in children with Marfan syndrome

    Science.gov (United States)

    Marfan syndrome (MFS) is an autosomal dominant connective tissue disorder with skeletal involvement. It is caused by mutations in fibrillin1 (FBN1) gene resulting in activation of TGF-ßeta, which developmentally regulates bone mass and matrix properties. There is no consensus regarding bone minerali...

  11. Biglycan deficiency interferes with ovariectomy-induced bone loss

    DEFF Research Database (Denmark)

    Nielsen, Karina L; Allen, Matthew R; Bloomfield, Susan A;

    2003-01-01

    Biglycan is a matrix proteoglycan with a possible role in bone turnover. In a 4-week study with sham-operated or OVX biglycan-deficient or wildtype mice, we show that biglycan-deficient mice are resistant to OVX-induced trabecular bone loss and that there is a gender difference in the response to...

  12. Imaging appearance of bone tumors of the maxillofacial region

    OpenAIRE

    Razek, Ahmed Abdel Khalek Abdel

    2011-01-01

    This paper reviews the imaging appearance of benign and malignant bone tumors of the maxillofacial region. A benign bone tumor commonly appears as a well circumscribed lesion. The matrix of the tumor may be calcified or sclerotic. Malignancies often display aggressive characteristics such as cortical breakthrough, bone destruction, a permeative pattern and associated soft-tissue masses. Computed tomography scan is an excellent imaging modality for accurate localization of the lesion, characte...

  13. Role of TGF-β in breast cancer bone metastases

    OpenAIRE

    Chiechi, Antonella; Waning, David L.; Stayrook, Keith R; Buijs, Jeroen T.; Guise, Theresa A.; Mohammad, Khalid S

    2013-01-01

    Breast cancer is the most prevalent cancer among females worldwide leading to approximately 350,000 deaths each year. It has long been known that cancers preferentially metastasize to particular organs, and bone metastases occur in ~70% of patients with advanced breast cancer. Breast cancer bone metastases are predominantly osteolytic and accompanied by increased fracture risk, pain, nerve compression and hypercalcemia, causing severe morbidity. In the bone matrix, transforming growth factor-...

  14. Glycosylation of Dentin Matrix Protein 1 is critical for osteogenesis.

    Science.gov (United States)

    Sun, Yao; Weng, Yuteng; Zhang, Chenyang; Liu, Yi; Kang, Chen; Liu, Zhongshuang; Jing, Bo; Zhang, Qi; Wang, Zuolin

    2015-12-04

    Proteoglycans play important roles in regulating osteogenesis. Dentin matrix protein 1 (DMP1) is a highly expressed bone extracellular matrix protein that regulates both bone development and phosphate metabolism. After glycosylation, an N-terminal fragment of DMP1 protein was identified as a new proteoglycan (DMP1-PG) in bone matrix. In vitro investigations showed that Ser(89) is the key glycosylation site in mouse DMP1. However, the specific role of DMP1 glycosylation is still not understood. In this study, a mutant DMP1 mouse model was developed in which the glycosylation site S(89) was substituted with G(89) (S89G-DMP1). The glycosylation level of DMP1 was down-regulated in the bone matrix of S89G-DMP1 mice. Compared with wild type mice, the long bones of S89G-DMP1 mice showed developmental changes, including the speed of bone remodeling and mineralization, the morphology and activities of osteocytes, and activities of both osteoblasts and osteoclasts. These findings indicate that glycosylation of DMP1 is a key posttranslational modification process during development and that DMP1-PG functions as an indispensable proteoglycan in osteogenesis.

  15. Calcium phosphate cement delivering zoledronate decreases bone turnover rate and restores bone architecture in ovariectomized rats.

    Science.gov (United States)

    Wu, Chang-Chin; Wang, Chen-Chie; Lu, Dai-Hua; Hsu, Li-Ho; Yang, Kai-Chiang; Lin, Feng-Huei

    2012-06-01

    Patients sustaining bony fractures frequently require the application of bone graft substitutes to fill the bone defects. In the meantime, anti-osteoporosis drugs may be added in bone fillers to treat osteoporosis, especially in postmenopausal women and the elderly. The effects of zoledronate-impregnated calcium phosphate cement (ZLN/CPC) on ovariectomized (OVX) rats were evaluated. OVX rats were implanted with ZLN/CPC, containing 0.025 mg ZLN in the greater omentum. Afterward the clinical sign of toxicity was recorded for eight weeks. The rats were sacrificed and blood samples were collected for hematology and serum bone turnover markers analyses. The four limbs of the rats were harvested and micro-computer tomography (micro-CT) scanning and bone ash analyses were performed. No clinical toxicity was observed in the treated rats. Compared to the OVX rats, levels of bone resorption markers (fragments of C-telopeptides of type I collagen) and bone formation markers (alkaline phosphatase and osteocalcin) decreased significantly in the treated rats. Osteopontin, which mediates the anchoring of osteoclasts to the mineral matrix of bones, also decreased significantly. Micro-CT scanning and histologic examinations of the distal femoral metaphyses showed that the cancellous bone architectures were restored, with a concomitant decrease in bone porosity. The bone mineral content in the bone ashes also increased significantly. This study indicates that ZLN-impregnated CPC reduces bone turnover rate and restores bone architecture in OVX rats. CPC may be an appropriate carrier to deliver drugs to treat osteoporosis, and this approach may also reduce rates of post-dosing symptoms for intravenous ZLN delivery.

  16. Calcium phosphate cement delivering zoledronate decreases bone turnover rate and restores bone architecture in ovariectomized rats

    International Nuclear Information System (INIS)

    Patients sustaining bony fractures frequently require the application of bone graft substitutes to fill the bone defects. In the meantime, anti-osteoporosis drugs may be added in bone fillers to treat osteoporosis, especially in postmenopausal women and the elderly. The effects of zoledronate-impregnated calcium phosphate cement (ZLN/CPC) on ovariectomized (OVX) rats were evaluated. OVX rats were implanted with ZLN/CPC, containing 0.025 mg ZLN in the greater omentum. Afterward the clinical sign of toxicity was recorded for eight weeks. The rats were sacrificed and blood samples were collected for hematology and serum bone turnover markers analyses. The four limbs of the rats were harvested and micro-computer tomography (micro-CT) scanning and bone ash analyses were performed. No clinical toxicity was observed in the treated rats. Compared to the OVX rats, levels of bone resorption markers (fragments of C-telopeptides of type I collagen) and bone formation markers (alkaline phosphatase and osteocalcin) decreased significantly in the treated rats. Osteopontin, which mediates the anchoring of osteoclasts to the mineral matrix of bones, also decreased significantly. Micro-CT scanning and histologic examinations of the distal femoral metaphyses showed that the cancellous bone architectures were restored, with a concomitant decrease in bone porosity. The bone mineral content in the bone ashes also increased significantly. This study indicates that ZLN-impregnated CPC reduces bone turnover rate and restores bone architecture in OVX rats. CPC may be an appropriate carrier to deliver drugs to treat osteoporosis, and this approach may also reduce rates of post-dosing symptoms for intravenous ZLN delivery. (paper)

  17. Distinct Characteristics of Mandibular Bone Collagen Relative to Long Bone Collagen: Relevance to Clinical Dentistry

    Directory of Open Access Journals (Sweden)

    Takashi Matsuura

    2014-01-01

    Full Text Available Bone undergoes constant remodeling throughout life. The cellular and biochemical mechanisms of bone remodeling vary in a region-specific manner. There are a number of notable differences between the mandible and long bones, including developmental origin, osteogenic potential of mesenchymal stem cells, and the rate of bone turnover. Collagen, the most abundant matrix protein in bone, is responsible for determining the relative strength of particular bones. Posttranslational modifications of collagen, such as intermolecular crosslinking and lysine hydroxylation, are the most essential determinants of bone strength, although the amount of collagen is also important. In comparison to long bones, the mandible has greater collagen content, a lower amount of mature crosslinks, and a lower extent of lysine hydroxylation. The great abundance of immature crosslinks in mandibular collagen suggests that there is a lower rate of cross-link maturation. This means that mandibular collagen is relatively immature and thus more readily undergoes degradation and turnover. The greater rate of remodeling in mandibular collagen likely renders more flexibility to the bone and leaves it more suited to constant exercise. As reviewed here, it is important in clinical dentistry to understand the distinctive features of the bones of the jaw.

  18. Selenoprotein P is the essential selenium transporter for bones.

    Science.gov (United States)

    Pietschmann, Nicole; Rijntjes, Eddy; Hoeg, Antonia; Stoedter, Mette; Schweizer, Ulrich; Seemann, Petra; Schomburg, Lutz

    2014-05-01

    Selenium (Se) plays an important role in bone physiology as best reflected by Kashin-Beck disease, an endemic Se-dependent osteoarthritis. Bone development is delayed in children with mutations in SECIS binding protein 2 (SBP2), a central factor for selenoprotein biosynthesis. Circulating selenoprotein P (SePP) is positively associated with bone turnover in humans, yet its function for bone homeostasis is not known. We have analysed murine models of altered Se metabolism. Most of the known selenoprotein genes and factors needed for selenoprotein biosynthesis are expressed in bones. Bone Se is not associated with the mineral but exclusively with the organic matrix. Genetic ablation of Sepp-expression causes a drastic decline in serum (25-fold) but only a mild reduction in bone (2.5-fold) Se concentrations. Cell-specific expression of a SePP transgene in hepatocytes efficiently restores bone Se levels in Sepp-knockout mice. Of the two known SePP receptors, Lrp8 was detected in bones while Lrp2 was absent. Interestingly, Lrp8 mRNA concentrations were strongly increased in bones of Sepp-knockout mice likely in order to counteract the developing Se deficiency. Our data highlight SePP as the essential Se transporter to bones, and suggest a novel feedback mechanism for preferential uptake of Se in Se-deprived bones, thereby contributing to our understanding of hepatic osteodystrophy and the consistent bone phenotype observed in subjects with inherited selenoprotein biosynthesis mutations. PMID:24626785

  19. A High-Adhesive Lysine-Cyclic RGD Peptide Designed for Selective Cell Retention Technology.

    Science.gov (United States)

    Luo, Keyu; Mei, Tieniu; Li, Zhiqiang; Deng, Moyuan; Zhang, Zehua; Hou, Tianyong; Dong, Shiwu; Xie, Zhao; Xu, Jianzhong; Luo, Fei

    2016-06-01

    Cell adhesion is an important property of biomaterials used in selective cell retention (SCR) technology, which fabricates bone grafts rapidly in clinical settings. This could be improved by physical and biologic manipulations. To facilitate retention of the cells on the scaffold, especially osteoprogenitors from bone marrow in the convenient SCR procedure, a lysine-cyclic RGD (LcRGD) peptide was here designed to coordinate positively charged amino acids and the RGD sequence to enhance the adhesion performance of the scaffold. Demineralized bone matrix (DBM) is an important therapeutic resource, but its cell adhesion ability and osteoinductive capacity are low because of its processing. These capabilities can be increased to enhance the performance of DBM when used in SCR technology. Here, LcRGD peptide was used to modify DBM and produce a DBM/LcRGD composite. This composite exhibited enhanced adhesion performance on cultured human bone marrow-derived mesenchymal stem cells and retained more osteoprogenitors from bone marrow than other materials did. The DBM/LcRGD composite displayed a preferable osteoinduction in vitro and osteogenic capacity in vivo. Thus, LcRGD peptide as a commendable modifier of DBM applied in SCR technology can improve bone transplantation. PMID:27154386

  20. Enhancement of Osteoclastic Bone Resorption and Suppression of Osteoblastic Bone Formation in Response to Reduced Mechanical Stress Do Not Occur in the Absence of Osteopontin

    OpenAIRE

    Ishijima, Muneaki; Rittling, Susan R.; Yamashita, Teruhito; Tsuji, Kunikazu; Kurosawa, Hisashi; Nifuji, Akira; Denhardt, David T.; Noda, Masaki

    2001-01-01

    Reduced mechanical stress to bone in bedridden patients and astronauts leads to bone loss and increase in fracture risk which is one of the major medical and health issues in modern aging society and space medicine. However, no molecule involved in the mechanisms underlying this phenomenon has been identified to date. Osteopontin (OPN) is one of the major noncollagenous proteins in bone matrix, but its function in mediating physical-force effects on bone in vivo has not been known. To investi...

  1. 骨唾液蛋白和基质金属蛋白酶-9在风湿性心脏病钙化瓣膜中的表达及意义%The expression and significance of bone sialoprotein and matrix metalloproteinase-9 in calcified valves of patients with rheumatic heart disease

    Institute of Scientific and Technical Information of China (English)

    白传明; 张彬; 张楠; 宋书田; 张志刚; 边玉清; 周岊梧

    2012-01-01

    Objective To observe the expression of bone sialoprotein (BSP) and matrix metalloproteinase-9 (MMP-9) in calcified valves of patients with rheumatic heart disease.Methods A total of 150 mitral valves which were resected by surgery were divided into rheumatic group ( 120 valves) and nonrheumatic group (30 valves).Immunohistochemical staining was taken by SP method and the expressions of BSP and MMP-9 in two groups were observed and compared.Results The positive expressions of BSP and MMP-9 in rheumatic group were 91.7%(110/120) and 90.8%(109/120),respectively,which were significantly higher than those in non-rheumatic group [23.3%(7/30) and 20.0%(6/30) ](P< 0.01 ).Conclusions The expressions of both BSP and MMP-9 are higher in the valves of patients with rheumatic heart disease.The calcification of rheumatic mitral valves is closely related with the degradation and remodeling of extracellular matrix caused by MMP-9,and osteoblast-like bone formation induced by BSP.%目的 观察骨唾液蛋白(BSP)和基质金属蛋白酶-9(MMP-9)在风湿性心脏病(风心病)钙化瓣膜中的表达情况.方法 将手术切除的二尖瓣瓣膜(共150枚)按病史分为风心病组(120枚)和非风心病组(30枚),采用SP法进行免疫组织化学染色,观察并比较两组BSP和MMP-9的表达情况.结果 风心病组BSP和MMP-9阳性表达率分别为91.7%(110/120)和90.8%(109/120),显著高于非风心病组的23.3%( 7/30)和20.0%(6/30),差异均有统计学意义(P<0.01).结论 风心病瓣膜BSP和MMP-9高表达,风心病瓣膜的钙化与MMP-9所引起的细胞外基质降解和重塑以及BSP所诱导的成骨样骨形成密切相关.

  2. New insights to the role of aryl hydrocarbon receptor in bone phenotype and in dioxin-induced modulation of bone microarchitecture and material properties

    Energy Technology Data Exchange (ETDEWEB)

    Herlin, Maria, E-mail: maria.herlin@ki.se [Institute of Environmental Medicine, Karolinska Institutet, Stockholm (Sweden); Finnilä, Mikko A.J., E-mail: mikko.finnila@oulu.fi [Department of Medical Technology, Institute of Biomedicine, University of Oulu, Oulu (Finland); Department of Anatomy and Cell Biology, Institute of Biomedicine, University of Oulu, Oulu (Finland); Zioupos, Peter, E-mail: p.zioupos@cranfield.ac.uk [Biomechanics Laboratories, Department of Engineering and Applied Science, Cranfield University, Shrivenham SN6 8LA (United Kingdom); Aula, Antti, E-mail: antti.aula@gmail.com [Department of Medical Physics, Imaging Centre, Tampere University Hospital, Tampere (Finland); Department of Biomedical Engineering, Tampere University of Technology, Tampere (Finland); Risteli, Juha, E-mail: juha.risteli@ppshp.fi [Department of Clinical Chemistry, Oulu University Hospital, Oulu (Finland); Miettinen, Hanna M., E-mail: hanna.miettinen@crl.com [Department of Environmental Health, National Institute for Health and Welfare, Kuopio (Finland); Jämsä, Timo, E-mail: timo.jamsa@oulu.fi [Department of Medical Technology, Institute of Biomedicine, University of Oulu, Oulu (Finland); Department of Diagnostic Radiology, Oulu University Hospital, Oulu (Finland); Tuukkanen, Juha, E-mail: juha.tuukkanen@oulu.fi [Department of Anatomy and Cell Biology, Institute of Biomedicine, University of Oulu, Oulu (Finland); Korkalainen, Merja, E-mail: merja.korkalainen@thl.fi [Department of Environmental Health, National Institute for Health and Welfare, Kuopio (Finland); Håkansson, Helen, E-mail: Helen.Hakansson@ki.se [Institute of Environmental Medicine, Karolinska Institutet, Stockholm (Sweden); Viluksela, Matti, E-mail: matti.viluksela@thl.fi [Department of Environmental Health, National Institute for Health and Welfare, Kuopio (Finland); Department of Environmental Science, University of Eastern Finland, Kuopio (Finland)

    2013-11-15

    Bone is a target for high affinity aryl hydrocarbon receptor (AHR) ligands, such as dioxins. Although bone morphology, mineral density and strength are sensitive endpoints of dioxin toxicity, less is known about effects on bone microarchitecture and material properties. This study characterizes TCDD-induced modulations of bone tissue, and the role of AHR in dioxin-induced bone toxicity and for normal bone phenotype. Six AHR-knockout (Ahr{sup −/−}) and wild-type (Ahr{sup +/+}) mice of both genders were exposed to TCDD weekly for 10 weeks, at a total dose of 200 μg/kg bw. Bones were examined with micro-computed tomography, nanoindentation and biomechanical testing. Serum levels of bone remodeling markers were analyzed, and the expression of genes related to osteogenic differentiation was profiled using PCR array. In Ahr{sup +/+} mice, TCDD-exposure resulted in harder bone matrix, thinner and more porous cortical bone, and a more compact trabecular bone compartment. Bone remodeling markers and altered expression of a number of osteogenesis related genes indicated imbalanced bone remodeling. Untreated Ahr{sup −/−} mice displayed a slightly modified bone phenotype as compared with untreated Ahr{sup +/+} mice, while TCDD exposure caused only a few changes in bones of Ahr{sup −/−} mice. Part of the effects of both TCDD-exposure and AHR-deficiency were gender dependent. In conclusion, exposure of adult mice to TCDD resulted in harder bone matrix, thinner cortical bone, mechanically weaker bones and most notably, increased trabecular bone volume fraction in Ahr{sup +/+} mice. AHR is involved in bone development of a normal bone phenotype, and is crucial for manifestation of TCDD-induced bone alterations. - Highlights: • TCDD disrupts bone remodeling resulting in altered cortical and trabecular bone. • In trabecular bone an anabolic effect is observed. • Cortical bone is thinner, more porous, harder, stiffer and mechanically weaker. • AHR ablation

  3. A supra-cellular model for coupling of bone resorption to formation during remodeling: lessons from two bone resorption inhibitors affecting bone formation differently.

    Science.gov (United States)

    Jensen, Pia Rosgaard; Andersen, Thomas Levin; Pennypacker, Brenda L; Duong, Le T; Engelholm, Lars H; Delaissé, Jean-Marie

    2014-01-10

    The bone matrix is maintained functional through the combined action of bone resorbing osteoclasts and bone forming osteoblasts, in so-called bone remodeling units. The coupling of these two activities is critical for securing bone replenishment and involves osteogenic factors released by the osteoclasts. However, the osteoclasts are separated from the mature bone forming osteoblasts in time and space. Therefore the target cell of these osteoclastic factors has remained unknown. Recent explorations of the physical microenvironment of osteoclasts revealed a cell layer lining the bone marrow and forming a canopy over the whole remodeling surface, spanning from the osteoclasts to the bone forming osteoblasts. Several observations show that these canopy cells are a source of osteoblast progenitors, and we hypothesized therefore that they are the likely cells targeted by the osteogenic factors of the osteoclasts. Here we provide evidence supporting this hypothesis, by comparing the osteoclast-canopy interface in response to two types of bone resorption inhibitors in rabbit lumbar vertebrae. The bisphosphonate alendronate, an inhibitor leading to low bone formation levels, reduces the extent of canopy coverage above osteoclasts. This effect is in accordance with its toxic action on periosteoclastic cells. In contrast, odanacatib, an inhibitor preserving bone formation, increases the extent of the osteoclast-canopy interface. Interestingly, these distinct effects correlate with how fast bone formation follows resorption during these respective treatments. Furthermore, canopy cells exhibit uPARAP/Endo180, a receptor able to bind the collagen made available by osteoclasts, and reported to mediate osteoblast recruitment. Overall these observations support a mechanism where the recruitment of bone forming osteoblasts from the canopy is induced by osteoclastic factors, thereby favoring initiation of bone formation. They lead to a model where the osteoclast-canopy interface is

  4. Biomimetic hydroxyapatite as a new consolidating agent for archaeological bone

    Science.gov (United States)

    North, Alexis E.

    Recent studies on calcareous stone and plaster consolidation have demonstrated considerable potential by bio-mimicking the growth of hydroxyapatite (HAP), the main mineralogical constituent of teeth and bone matrix. These initial conservation applications, together with significant fundamental research on the precipitation of HAP for bioengineering and biomedical applications, offer great promise in the use of HAP as a consolidating agent for archaeological bone and other similar materials such as archaeological teeth, ivory, and antler. Experimental research via the controlled application of diammonium phosphate (DAP) precursors to bone flour, modern bone samples, and archaeological bones, indicated the in situ formation of HAP with a simultaneous increase in the cohesiveness of friable bone material, while preserving the bone's physiochemical properties. These preliminary results point towards a promising new method in archaeological conservation.

  5. Bone Adaptation and Regeneration - New Developments

    Science.gov (United States)

    Klein-Nulend, Jenneke; Bacabac, Rommel Gaud

    Bone is a dynamic tissue that is constantly renewed and adapts to its local loading environment. Mechanical loading results in adaptive changes in bone size and shape that strengthen bone structure. The mechanisms for adaptation involve a multistep process called mechanotransduction, which is the ability of resident bone cells to perceive and translate mechanical energy into a cascade of structural and biochemical changes within the cells. The transduction of a mechanical signal to a biochemical response involves pathways within the cell membrane and cytoskeleton of the osteocytes, the professional mechansensor cells of bone. During the last decade the role of mechanosensitive osteocytes in bone metabolism and turnover, and the lacuno-canalicular porosity as the structure that mediates mechanosensing, is likely to reveal a new paradigm for understanding the bone formation response to mechanical loading, and the bone resorption response to disuse. Strain-derived fluid flow of interstitial fluid through the lacuno-canalicular porosity seems to mechanically activate the osteocytes, as well as ensures transport of cell signaling molecules, nutrients and waste products. Cell-cell signaling from the osteocyte sensor cells to the effector cells (osteoblasts or osteoclasts), and the effector cell response - either bone formation or resorption, allow an explanation of local bone gain and loss as well as remodeling in response to fatigue damage as processes supervised by mechanosensitive osteocytes. The osteogenic activity of cultured bone cells has been quantitatively correlated with varying stress stimulations highlighting the importance of the rate of loading. Theoretically a possible mechanism for the stress response by osteocytes is due to strain amplification at the pericellular matrix. Single cell studies on molecular responses of osteocytes provide insight on local architectural alignment in bone during remodeling. Alignment seems to occur as a result of the

  6. The control of bone induction in soft tissues.

    Science.gov (United States)

    Gray, D H; Speak, K S

    1979-09-01

    The induction of bone at the boundary of parenchymal organs has been studied using acid demineralized rib implants in rabbits. The induction of bone is usually confined to that portion of an implant protruding from such an organ though both scant cartilage induction and the induction of bone within the territory of parenchymal organs were seen on a few occasions. Neonatal splenectomy does not influence the inductive properties of bone matrix in muscle or other soft tissues. The inclusion of composite autografts of liver and acid demineralized bone in muscle results in a reduction in the induction rate. It is postulated that the parenchymal organs exclude osteoprogenitor cells and possibly blood-bone bone-marrow-derived osteoinductor releasing cells by some mechanism that is diffusable, thus preventing the initial inductive event. Composite grafts of matrix and muscle produce bone in these tissue, demonstrating that once bone cell differentiation by induction is initiated bone tissue develops even in spleen, liver and kidney parenchyma. PMID:389518

  7. Bone marrow aspiration

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003658.htm Bone marrow aspiration To use the sharing features on this page, please enable JavaScript. Bone marrow is the soft tissue inside bones that helps ...

  8. Bone marrow biopsy

    Science.gov (United States)

    Biopsy - bone marrow ... A bone marrow biopsy may be done in the health care provider's office or in a hospital. The sample may be taken from the pelvic or breast bone. Sometimes, other areas are used. Marrow is removed ...

  9. A Numerically Subdominant CD8 T Cell Response to Matrix Protein of Respiratory Syncytial Virus Controls Infection with Limited Immunopathology.

    Directory of Open Access Journals (Sweden)

    Jie Liu

    2016-03-01

    Full Text Available CD8 T cells are involved in pathogen clearance and infection-induced pathology in respiratory syncytial virus (RSV infection. Studying bulk responses masks the contribution of individual CD8 T cell subsets to protective immunity and immunopathology. In particular, the roles of subdominant responses that are potentially beneficial to the host are rarely appreciated when the focus is on magnitude instead of quality of response. Here, by evaluating CD8 T cell responses in CB6F1 hybrid mice, in which multiple epitopes are recognized, we found that a numerically subdominant CD8 T cell response against DbM187 epitope of the virus matrix protein expressed high avidity TCR and enhanced signaling pathways associated with CD8 T cell effector functions. Each DbM187 T effector cell lysed more infected targets on a per cell basis than the numerically dominant KdM282 T cells, and controlled virus replication more efficiently with less pulmonary inflammation and illness than the previously well-characterized KdM282 T cell response. Our data suggest that the clinical outcome of viral infections is determined by the integrated functional properties of a variety of responding CD8 T cells, and that the highest magnitude response may not necessarily be the best in terms of benefit to the host. Understanding how to induce highly efficient and functional T cells would inform strategies for designing vaccines intended to provide T cell-mediated immunity.

  10. Photosensized Controlling Benzyl Methacrylate-Based Matrix Enhanced Eu3+ Narrow-Band Emission for Fluorescence Applications

    Directory of Open Access Journals (Sweden)

    Mei-Hsiang Lin

    2012-03-01

    Full Text Available This study synthesized a europium (Eu3+ complex Eu(DBM3Cl-MIP (DBM = dibenzoyl methane; Cl-MIP = 2-(2-chlorophenyl-1-methyl-1H-imidazo[4,5-f][1,10]phenanthroline dispersed in a benzyl methacrylate (BMA monomer and treated with ultraviolet (UV light for polymerization. Spectral results showed that the europium complex containing an antenna, Cl-MIP, which had higher triplet energy into the Eu3+ energy level, was an energetically enhanced europium emission. Typical stacking behaviors of π–π interactions between the ligands and the Eu3+-ion were analyzed using single crystal X-ray diffraction. Regarding the luminescence performance of this europium composite, the ligand/defect emission was suppressed by dispersion in a poly-BMA (PBMA matrix. The underlying mechanism of the effective enhancement of the pure Eu3+ emission was attributed to the combined effects of structural modifications, defect emissions, and carrier charge transfer. Fluorescence spectra were compared to the composite of optimized Eu3+ emission where they were subsequently chelated to four metal ions via carboxylate groups on the BMA unit. The optical enhanced europium composite clearly demonstrated highly efficient optical responses and is, therefore a promising application as an optical detection material.

  11. Measurement of lumbar spine bone mineral content using dual photon absorptiometry. Usefulness in metabolic bone diseases

    International Nuclear Information System (INIS)

    Measurement of bone density using an accurate, non-invasive method is a crucial step in the clinical investigation of metabolic bone diseases, especially osteoporosis. Among the recently available techniques, measurement of lumbar spine bone mineral content (BMC) using dual photon absorptiometry appears as the primary method because it is simple, inexpensive, and involves low levels of radiation exposure. In this study, we measured the BMC in 168 normal adults and 95 patients. Results confirmed the good reproducibility and sensitivity of this technique for quantifying bone loss in males and females with osteoporosis. Significant bone loss was found in most females with primary hyperparathyroidism. Dual photon absorptiometry can also be used for quantifying increases in bone mass in Paget disease of bone and diffuse osteosclerosis. Osteomalacia is responsible for a dramatic fall in BMC reflecting lack of mineralization of a significant portion of the bone matrix, a characteristic feature in this disease. Furthermore, in addition to being useful for diagnostic purposes and for evaluation of the vertebral fracture risk, lumbar spine absorptiometry can be used for monitoring the effectiveness of bone-specific treatments

  12. Anorexia Nervosa and Bone

    OpenAIRE

    Misra, Madhusmita; Klibanski, Anne

    2014-01-01

    Anorexia nervosa (AN) is a condition of severe low weight that is associated with low bone mass, impaired bone structure and reduced bone strength, all of which contribute to increased fracture risk., Adolescents with AN have decreased rates of bone accrual compared with normal-weight controls, raising addition concerns of suboptimal peak bone mass and future bone health in this age group. Changes in lean mass and compartmental fat depots, hormonal alterations secondary to nutritional factors...

  13. Influence of in vitro biomimicked stem cell 'niche' for regulation of proliferation and differentiation of human bone marrow-derived mesenchymal stem cells to myocardial phenotypes: serum starvation without aid of chemical agents and prevention of spontaneous stem cell transformation enhanced by the matrix environment.

    Science.gov (United States)

    Kim, Jae Hyung; Shin, Sang-Hyun; Li, Tian Zhu; Suh, Hwal

    2016-01-01

    Niche appears important for preventing the spontaneous differentiation or senescence that cells undergo during in vitro expansion. In the present study, it was revealed that human bone marrow-derived mesenchymal stem cells (hBM-MSCs) undergo senescence-related differentiation into the myocardial lineage in vitro without any induction treatment. This phenomenon occurred over the whole population of MCSs, much different from conventional differentiation with limited frequency of occurrence, and was accompanied by a change of morphology into large, flat cells with impeded proliferation, which are the representative indications of MSC senescence. By culturing MSCs under several culture conditions, it was determined that induction treatment with 5-azacytidine was not associated with the phenomenon, but the serum-starvation condition, under which proliferation is severely hampered, caused senescence progression and upregulation of cardiac markers. Nevertheless, MSCs gradually developed a myocardial phenotype under normal culture conditions over a prolonged culture period and heterogeneous populations were formed. In perspectives of clinical applications, this must be prevented for fair and consistent outcomes. Hence, the biomimetic 'niche' was constituted for hBM-MSCs by cultivating on a conventionally available extracellular matrix (ECM). Consequently, cells on ECM regained a spindle-shape morphology, increased in proliferation rate by two-fold and showed decreased expression of cardiac markers at both the mRNA and protein levels. In conclusion, the outcome indicates that progression of MSC senescence may occur via myocardial differentiation during in vitro polystyrene culture, and this can be overcome by employing appropriate ECM culture techniques.

  14. Bone marrow transplant - discharge

    Science.gov (United States)

    Transplant - bone marrow - discharge; Stem cell transplant - discharge; Hematopoietic stem cell transplant - discharge; Reduced intensity; Non-myeloablative transplant - discharge; Mini transplant - discharge; Allogenic bone marrow transplant - discharge; ...

  15. AN APPROACH OF BONE LOSS ESTIMATION THROUGH DIGITAL RADIOGRAPHY

    Directory of Open Access Journals (Sweden)

    Anupam Maiti,

    2011-06-01

    Full Text Available Osteoporosis is a disease characterized by low bone mass or density. In osteoporosis, bone mineral density (BMD is reduced and bone micro-architecture is deteriorating. Bones are becomes brittle and subjected to breakage even at a normal load. Conventionally, bone mineral density is measured by dual-emission X-ray absorptiometery (DEXA to establish osteoporosis but is costly. In this study, images from digital X-ray have been used to measure bone mineral density. The selected radiograph is segmented to separate bone image frombackground and converted to a gray level intensity matrix. Each pixel value of the matrix is related to bone density. A set of gray level intensity matrix corresponds to a particular region is taken and perform the Tstatistics on those data sample. To detect osteoporosis, a comparative study between calculated T-score and standard T-score, maintained by WHO (World Health Organization is performed from the selected area. Tstatistics is also the measurement of probability of osteoporotic fracture risk.

  16. Custom Titanium Ridge Augmentation Matrix (CTRAM): A Case Report.

    Science.gov (United States)

    Connors, Christopher A; Liacouras, Peter C; Grant, Gerald T

    2016-01-01

    This is a case report of a custom titanium ridge augmentation matrix (CTRAM). Using cone beam computed tomography (CBCT), a custom titanium space-maintaining device was developed. Alveolar ridges were virtually augmented, a matrix was virtually designed, and the CTRAM was additively manufactured with titanium (Ti6Al4V). Two cases are presented that resulted in sufficient increased horizontal bone volume with successful dental implant placement. The CTRAM design allows for preoperative planning for increasing alveolar ridge dimensions to support dental implants, reduces surgical time, and prevents the need for a second surgical site to gain sufficient alveolar ridge bone volume for dental implant therapy. PMID:27560675

  17. New mechanistic insights of integrin β1 in breast cancer bone colonization

    OpenAIRE

    Thibaudeau, Laure; Taubenberger, Anna V.; Theodoropoulos, Christina; Holzapfel, Boris M.; Ramuz, Olivier; Straub, Melanie; Hutmacher, Dietmar W.

    2014-01-01

    Bone metastasis is a frequent and life-threatening complication of breast cancer. The molecular mechanisms supporting the establishment of breast cancer cells in the skeleton are still not fully understood, which may be attributed to the lack of suitable models that interrogate interactions between human breast cancer cells and the bone microenvironment. Although it is well-known that integrins mediate adhesion of malignant cells to bone extracellular matrix, their role during bone colonizati...

  18. The Matrix Cookbook

    DEFF Research Database (Denmark)

    Petersen, Kaare Brandt; Pedersen, Michael Syskind

    Matrix identities, relations and approximations. A desktop reference for quick overview of mathematics of matrices.......Matrix identities, relations and approximations. A desktop reference for quick overview of mathematics of matrices....

  19. Differences in Bone Quality between High versus Low Turnover Renal Osteodystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Daniel S. [University of Kentucky, Lexington; Pienkowski, David [University of Kentucky, Lexington; Faugere, Marie-Claude [Albert B. Chandler Medical Center; Malluche, Hartmut H. [Albert B. Chandler Medical Center

    2012-01-01

    Abnormal bone turnover is common in chronic kidney disease (CKD), but its effects on bone quality remain unclear. This study sought to quantify the relationship between abnormal bone turnover and bone quality. Iliac crest bone biopsies were obtained from CKD-5 patients on dialysis with low (n=18) or high (n=17) turnover, and from volunteers (n=12) with normal turnover and normal kidney function. Histomorphometric methods were used to quantify the microstructural parameters; Fourier transform infrared spectroscopy and nanoindentation were used to quantify the material and mechanical properties in bone. Reduced mineral-to-matrix ratio, mineral crystal size, stiffness and hardness were observed in bone with high turnover compared to bone with normal or low turnover. Decreased cancellous bone volume and trabecular thickness were seen in bone with low turnover compared to bone with normal or high turnover. Bone quality, as defined by its microstructural, material, and mechanical properties, is related to bone turnover. These data suggest that turnover related alterations in bone quality may contribute to the known diminished mechanical competence of bone in CKD patients, albeit from different mechanisms for bone with high (material abnormality) vs. low (microstructural alteration) turnover. The present findings suggest that improved treatments for renal osteodystrophy should seek to avoid low or high bone turnover and aim for turnover rates as close to normal as possible.

  20. Matrix Order Differintegration

    OpenAIRE

    Naber, Mark

    2003-01-01

    The Riemann-Liouville formula for fractional derivatives and integrals (differintegration) is used to derive formulae for matrix order derivatives and integrals. That is, the parameter for integration and differentiation is allowed to assume matrix values. It is found that the computation of derivatives and integrals to matrix order is well defined for any square matrix over the complex numbers. Some properties are worked out for special classes of matrices. It is hoped that this new formalis...

  1. Matrix Tile Analysis

    OpenAIRE

    Givoni, Inmar; Cheung, Vincent; Frey, Brendan J.

    2012-01-01

    Many tasks require finding groups of elements in a matrix of numbers, symbols or class likelihoods. One approach is to use efficient bi- or tri-linear factorization techniques including PCA, ICA, sparse matrix factorization and plaid analysis. These techniques are not appropriate when addition and multiplication of matrix elements are not sensibly defined. More directly, methods like bi-clustering can be used to classify matrix elements, but these methods make the overly-restrictive assumptio...

  2. Matrix with Prescribed Eigenvectors

    Science.gov (United States)

    Ahmad, Faiz

    2011-01-01

    It is a routine matter for undergraduates to find eigenvalues and eigenvectors of a given matrix. But the converse problem of finding a matrix with prescribed eigenvalues and eigenvectors is rarely discussed in elementary texts on linear algebra. This problem is related to the "spectral" decomposition of a matrix and has important technical…

  3. A novel, truncated human bone morphogenetic protein-2:construction, expression ,functions and clinical potential

    Institute of Scientific and Technical Information of China (English)

    XU Fang

    2001-01-01

    @@ Introduction As a member of the bone morphogenetic protein (BMP) family, BMP-2 plays important roles not only in bone regeneration and bone repair but also in cell proliferation, apoptosis, differentiation and morphogenesis. The BMP-2 remarkable ability to stimulate new bone growth results in the development of a novel therapy strategy for bone mass defect due to accidents or diseases. Because the BMP-2 itself, in conjunction with a suitable matrix, is sufficient to stimulate genesis of new bone, the genetically engineered BMP-2 has good applied prospects.

  4. Low 25-hydroxyvitamin D levels and low bone density assessed by quantitative ultrasonometry in a cohort of postmenopausal Italian nuns.

    Science.gov (United States)

    Nuzzo, Vincenzo; Zuccoli, Antonio; de Terlizzi, Francesca; Colao, Annamaria; Tauchmanova, Libuse

    2013-01-01

    This study was aimed at evaluating the effect of clothing style on bone mass and fractures in 70 postmenopausal nuns residing in a monastery in Naples. Sixty healthy women matched for age, body mass index, and menopausal status were enrolled as controls. Each participant underwent measurement by quantitative ultrasonometry (QUS) using a DBM Sonic Bone Profiler (IGEA S.p.A., Carpi, Modena, Italy) at proximal phalanges, responded to questionnaires regarding lifestyle, calcium intake, medical history, including clinical fragility fractures, and was submitted to routine biochemical assessment. A significant reduction in ultrasonometric parameters of bone mass was found in nuns compared with controls (p from 0.007 to nuns (9.8 ± 4.2 vs 23.5 ± 5.7 nmol/L; p nuns' group (p = 0.016). Incidence of fractures was higher in nuns (39% vs 10%; p = 0.0029), and the best predictors of fractures were age at menopause (odds ratio [OR]: 1.12; 95% confidence interval [CI]: 1.01-1.30), amplitude-dependent speed of sound T-score (OR: 1.15; 95% CI: 1.03-1.63), and bone transmission time T-score (OR: 1.30; 95% CI: 1.15-1.81). This study documented low 25-OH vit D levels, increased frequency of clinical fractures, and low bone mass detected by QUS in Southern Italian nuns. PMID:22832035

  5. Matrix metalloproteinases (MMPs) safeguard osteoblasts from apoptosis during transdifferentiation into osteocytes

    DEFF Research Database (Denmark)

    Karsdal, M A; Levin Andersen, Thomas; Bonewald, L;

    2004-01-01

    Osteoblasts undergo apoptosis or differentiate into either osteocytes or bone-lining cells after termination of bone matrix synthesis. In this study, we investigated the role of matrix metalloproteinases (MMPs) in differentiation of osteoblasts, bone formation, transdifferentiation into osteocytes......, and osteocyte apoptosis. This was accomplished by using calvarial sections from the MT1-MMP-deficient mouse and by culture of the mouse osteoblast cell line MC3T3-E1 and primary mouse calvarial osteoblasts. We found that a synthetic matrix metalloprotease inhibitor, GM6001, strongly inhibited bone formation...... apoptosis when transdifferentiating into osteocytes. By examination of osteoblasts and osteocytes embedded in calvarial bone in the MT1-MMP deficient mice, we found that MT1-MMP deficient mice had 10-fold higher levels of apoptotic osteocytes than wild-type controls. We have previously shown that MT1-MMP...

  6. Bone grafting: An overview

    Directory of Open Access Journals (Sweden)

    D. O. Joshi

    2010-08-01

    Full Text Available Bone grafting is the process by which bone is transferred from a source (donor to site (recipient. Due to trauma from accidents by speedy vehicles, falling down from height or gunshot injury particularly in human being, acquired or developmental diseases like rickets, congenital defects like abnormal bone development, wearing out because of age and overuse; lead to bone loss and to replace the loss we need the bone grafting. Osteogenesis, osteoinduction, osteoconduction, mechanical supports are the four basic mechanisms of bone graft. Bone graft can be harvested from the iliac crest, proximal tibia, proximal humerus, proximal femur, ribs and sternum. An ideal bone graft material is biologically inert, source of osteogenic, act as a mechanical support, readily available, easily adaptable in terms of size, shape, length and replaced by the host bone. Except blood, bone is grafted with greater frequency. Bone graft indicated for variety of orthopedic abnormalities, comminuted fractures, delayed unions, non-unions, arthrodesis and osteomyelitis. Bone graft can be harvested from the iliac crest, proximal tibia, proximal humerus, proximal femur, ribs and sternum. By adopting different procedure of graft preservation its antigenicity can be minimized. The concept of bone banking for obtaining bone grafts and implants is very useful for clinical application. Absolute stability require for successful incorporation. Ideal bone graft must possess osteogenic, osteoinductive and osteocon-ductive properties. Cancellous bone graft is superior to cortical bone graft. Usually autologous cancellous bone graft are used as fresh grafts where as allografts are employed as an alloimplant. None of the available type of bone grafts possesses all these properties therefore, a single type of graft cannot be recomm-ended for all types of orthopedic abnormalities. Bone grafts and implants can be selected as per clinical problems, the equipments available and preference of

  7. Bosonic Matrix Theory and Matrix Dbranes

    CERN Document Server

    Chaudhuri, S

    2002-01-01

    We develop new tools for an in-depth investigation of our recent proposal for Matrix Theory. We construct the anomaly-free and finite planar continuum limit of the ground state with SO(2^{13}) symmetry matching with the tadpole and tachyon free IR stable high temperature ground state of the open and closed bosonic string. The correspondence between large N limits and spacetime effective actions is demonstrated more generally for an arbitrary D25brane ground state which might include brane-antibrane pairs or NS-branes and which need not have an action formulation. Closure of the finite N matrix Lorentz algebra nevertheless requires that such a ground state is simultaneously charged under all even rank antisymmetric matrix potentials. Additional invariance under the gauge symmetry mediated by the one-form matrix potential requires a ground state charged under the full spectrum of antisymmetric (p+1)-form matrix potentials with p taking any integer value less than 26. Matrix Dbrane democracy has a beautiful larg...

  8. Bone scan in rheumatology

    International Nuclear Information System (INIS)

    In this chapter a revision is made concerning different uses of bone scan in rheumatic diseases. These include reflex sympathetic dystrophy, osteomyelitis, spondyloarthropaties, metabolic bone diseases, avascular bone necrosis and bone injuries due to sports. There is as well some comments concerning pediatric pathology and orthopedics. (authors). 19 refs., 9 figs

  9. Bone Marrow Transplantation

    Science.gov (United States)

    Bone marrow is the spongy tissue inside some of your bones, such as your hip and thigh bones. It contains immature cells, called stem cells. The ... platelets, which help the blood to clot. A bone marrow transplant is a procedure that replaces a ...

  10. Bone grafts in dentistry

    Directory of Open Access Journals (Sweden)

    Prasanna Kumar

    2013-01-01

    Full Text Available Bone grafts are used as a filler and scaffold to facilitate bone formation and promote wound healing. These grafts are bioresorbable and have no antigen-antibody reaction. These bone grafts act as a mineral reservoir which induces new bone formation.

  11. Short-term aluminum administration in the rat: reductions in bone formation without osteomalacia

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, W.G.

    1984-05-01

    Aluminum may be a pathogenic factor in dialysis-associated osteomalacia. To study the early effects of Al on bone, cortical bone growth was measured in pair-fed rats given Al and control rats over two consecutive intervals of 28 (period I) and 16 (period II) days, respectively, using tetracycline labeling of bone. Al (2 mg elemental Al per rat) was administered intraperitoneally for 5 days each week, except for the first week of study, when an incremental dose of Al was given. Control rats received saline vehicle only. For the entire 44-day study, bone and matrix formation were reduced from control values in rats given Al. Although bone and matrix formation remained at control levels during period I in rats given Al, both measurements decreased from control values during period II. During Al exposure, bone and matrix apposition at the periosteum were reduced from control levels in period II, but not in period I. Neither osteoid width nor mineralization front width increased from control values in rats given Al. These findings indicate that Al reduces bone and matrix formation early in the course of Al exposure and prior to the development of histologic osteomalacia. Rather than acting as an inhibitor of mineralization, the early effect of Al on bone is the suppression of matrix synthesis. Our results suggest that the state of low bone formation seen in dialysis-associated osteomalacia may be the consequence of a direct toxic effect of Al on the cellular activity of osteoblasts. 29 references, 3 tables.

  12. Bone Health and Osteoporosis.

    Science.gov (United States)

    Lupsa, Beatrice C; Insogna, Karl

    2015-09-01

    Osteoporosis is characterized by low bone mass and microarchitectural deterioration of bone tissue leading to decreased bone strength and an increased risk of low-energy fractures. Central dual-energy X-ray absorptiometry measurements are the gold standard for determining bone mineral density. Bone loss is an inevitable consequence of the decrease in estrogen levels during and following menopause, but additional risk factors for bone loss can also contribute to osteoporosis in older women. A well-balanced diet, exercise, and smoking cessation are key to maintaining bone health as women age. Pharmacologic agents should be recommended in patients at high risk for fracture.

  13. BONE IN OSTEOPETROSIS

    Directory of Open Access Journals (Sweden)

    Ramkumar

    2014-04-01

    Full Text Available Osteopetrosis, a generalized developmental bone disease due to genetic disturbances, characterized by failure of bone re sorption and continuous bone formation making the bone hard, dense and brittle. Bones of intramembranous ossification and enchondrial ossification are affected genetically and symmetrically. During the process of disease the excess bone formation obliterates the cranial foramina and presses the optic, auditory and facial nerves resulting in defective vision, impaired hearing and facial paralysis. The bone formation in osteopetrosis affects bone marrow function leading to severe anemia and deficient of blood cells. The bone devoid of blood supply due to compression of blood vessels by excess formation of bone are prone to osteomyelitic changes with suppuration and pathological fracture if exposed to infection. Though the condition is chronic progressive, it produces changes leading to fatal condition, it should be studied thoroughly by everyone and hence this article presents a classical case of osteopetrosis with detailed description and discussion for the benefit of readers

  14. The impact of skeletal unloading on bone formation

    Science.gov (United States)

    Bikle, Daniel D.; Sakata, Takeshi; Halloran, Bernard P.

    2003-01-01

    Skeletal unloading leads to decreased bone formation and decreased bone mass. Bone resorption is uncoupled from bone formation, contributing to the bone loss. During space flight bone is lost principally from the bones most loaded in the 1 g environment. Determining the mechanism(s) by which loading of bone is sensed and translated into a signal(s) controlling bone formation remains the holy grail in this field. It seems likely that matrix/cell interactions will underlie much of the mechanocoupling. Integrins are a prime mediator of such interactions. The role for systemic hormones such as PTH, GH and 1,25(OH)2D compared to locally produced factors such as IGF-I, PTHrP, BMPs and TGF beta in modulating the cellular response to load remains unclear. Our studies demonstrate that skeletal unloading leads to resistance to the anabolic actions of IGF-I on bone as a result of failure of IGF-I to activate its own signaling pathways. This is associated with a reduction in integrin expression, suggesting crosstalk between these two pathways. As the mechanism(s) by which bone responds to changes in mechanical load with changes in bone formation is further elucidated, applications of this knowledge to other etiologies of osteoporosis are likely to develop. Skeletal unloading provides a perturbation in bone mineral homeostasis that can be used to understand the mechanisms by which bone mineral homeostasis is maintained, and that such understanding will lead to effective treatment for disuse osteoporosis in addition to preventive measures for the bone loss that accompanies space travel.

  15. Assessment of Bonelike (registered) graft with a resorbable matrix using an animal model

    Energy Technology Data Exchange (ETDEWEB)

    Lobato, J.V. [CHVNG-Servico de Estomatologia, Centro Hospitalar de Vila Nova de Gaia (Portugal); ICBAS-Instituto de Ciencias Biomedicas de Abel Salazar, Universidade do Porto, Largo Professor Abel Salazar, 2, 4099-003 Porto (Portugal); CECA/ICETA-Centro de Estudos de Ciencia Animal, Instituto de Ciencias e Tecnologias Agrarias e Agro-Alimentares, Campus Agrario de Vairao, Rua Padre Armando Quintas, 4485-661 Vairao (Portugal); Hussain, N. Sooraj [INEB-Instituto de Engenharia Biomedica, Laboratorio de Biomateriais, Rua Campo Alegre, 823, 4150-180, Porto (Portugal); FEUP-Faculdade de Engenharia da Universidade do Porto, DEMM, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Botelho, C.M. [INEB-Instituto de Engenharia Biomedica, Laboratorio de Biomateriais, Rua Campo Alegre, 823, 4150-180, Porto (Portugal); FEUP-Faculdade de Engenharia da Universidade do Porto, DEMM, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Mauricio, A.C. [ICBAS-Instituto de Ciencias Biomedicas de Abel Salazar, Universidade do Porto, Largo Professor Abel Salazar, 2, 4099-003 Porto (Portugal); CECA/ICETA-Centro de Estudos de Ciencia Animal, Instituto de Ciencias e Tecnologias Agrarias e Agro-Alimentares, Campus Agrario de Vairao, Rua Padre Armando Quintas, 4485-661 Vairao (Portugal); Afonso, A. [FMDUP-Faculdade de Medicina Dentaria da Universidade do Porto, Rua Dr. Manuel Pereira da Silva, 4200-393 Porto (Portugal); Ali, N. [Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro (Portugal); Santos, J.D. [INEB-Instituto de Engenharia Biomedica, Laboratorio de Biomateriais, Rua Campo Alegre, 823, 4150-180, Porto (Portugal) and FEUP-Faculdade de Engenharia da Universidade do Porto, DEMM, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal)]. E-mail: jdsantos@fe.up.pt

    2006-09-25

    Synthetic bone grafts have been developed to provide an alternative to autografts and allografts. Bonelike (registered) is a patented synthetic osteoconductive bone graft that mimics the mineral composition of natural bone. In the present preliminary animal studies a user-friendly version of synthetic bone graft Bonelike (registered) have been developed by using a resorbable matrix, Floseal (registered) , as a vehicle and raloxifene hydrochloride as a therapeutic molecule, that is known to decrease osteoclast activity and therefore enhanced bone formation. From histological and scanning electron microscopy evaluations, the use of Bonelike (registered) associated with Floseal (registered) and raloxifene hydrochloride showed that new bone was rapidly apposed on implanted granules and also that the presence of the matrix and therapeutic molecule does not alter the proven highly osteoconductivity properties of Bonelike (registered) . Therefore, this association may be one step-forward for the clinical applications of Bonelike (registered) scaffolds since it is much more easy-to-handle when compared to granular materials.

  16. Molecular packing in bone collagen fibrils prior to mineralization

    Science.gov (United States)

    Hsiao, Benjamin; Zhou, Hong-Wen; Burger, Christian; Chu, Benjamin; Glimcher, Melvin J.

    2012-02-01

    The three-dimensional packing of collagen molecules in bone collagen fibrils has been largely unknown because even in moderately mineralized bone tissues, the organic matrix structure is severely perturbed by the deposition of mineral crystals. During the past decades, the structure of tendon collagen (e.g. rat tail) --- a tissue that cannot mineralize in vivo, has been assumed to be representative for bone collagen fibrils. Small-angle X-ray diffraction analysis of the native, uncalcified intramuscular fish bone has revealed a new molecular packing scheme, significantly different from the quasi-hexagonal arrangement often found in tendons. The deduced structure in bone collagen fibrils indicates the presence of spatially discrete microfibrils, and an arrangement of intrafibrillar space to form ``channels'', which could accommodate crystals with dimensions typically found in bone apatite.

  17. Cement line staining in undecalcified thin sections of cortical bone

    Science.gov (United States)

    Bain, S. D.; Impeduglia, T. M.; Rubin, C. T.

    1990-01-01

    A technique for demonstrating cement lines in thin, undecalcified, transverse sections of cortical bone has been developed. Cortical bone samples are processed and embedded undecalcified in methyl methacrylate plastic. After sectioning at 3-5 microns, cross-sections are transferred to a glass slide and flattened for 10 min. Sections of cortical bone are stained for 20 sec free-floating in a fresh solution of 1% toluidine blue dissolved in 0.1% formic acid. The section is dehydrated in t-butyl alcohol, cleared in xylene, and mounted with Eukitt's medium. Reversal lines appear as thin, scalloped, dark blue lines against a light blue matrix, whereas bone formation arrest lines are thicker with a smooth contour. With this technique cellular detail, osteoid differentiation, and fluorochrome labels are retained. Results demonstrate the applicability of a one-step staining method for cement lines which will facilitate the assessment of bone remodeling activity in thin sections of undecalcified cortical bone.

  18. Osteoblasts and their applications in bone tissue engineering

    Directory of Open Access Journals (Sweden)

    Rupani A

    2012-05-01

    Full Text Available Asha Rupani1, Richard Balint2, Sarah H Cartmell1,21Institute of Science and Technology in Medicine, Keele University, Hartshill, Stoke-on-Trent, UK; 2Materials Science Centre, The University of Manchester, Manchester, UKAbstract: Tissue engineering is an emerging therapy that offers a new solution to patients suffering from bone loss. It utilizes cells derived from such sources as a patient's own bone or bone marrow, which are laboratory-isolated, grown (so they multiply in number, and placed onto a degradable material, or scaffold, that has mechanical/chemical properties appropriate to the bone section that it is replacing. The cells plus the scaffold are then grown in a container, or bioreactor, which is necessary as it provides the correct environment required for the cells to proliferate, differentiate, and to produce extracellular matrix. The following review focuses on the use of osteoblasts for bone tissue engineering.Keywords: osteoblast, bone, tissue engineering, regenerative medicine, orthopaedic

  19. Bone cysts: unicameral and aneurysmal bone cyst.

    Science.gov (United States)

    Mascard, E; Gomez-Brouchet, A; Lambot, K

    2015-02-01

    Simple and aneurysmal bone cysts are benign lytic bone lesions, usually encountered in children and adolescents. Simple bone cyst is a cystic, fluid-filled lesion, which may be unicameral (UBC) or partially separated. UBC can involve all bones, but usually the long bone metaphysis and otherwise primarily the proximal humerus and proximal femur. The classic aneurysmal bone cyst (ABC) is an expansive and hemorrhagic tumor, usually showing characteristic translocation. About 30% of ABCs are secondary, without translocation; they occur in reaction to another, usually benign, bone lesion. ABCs are metaphyseal, excentric, bulging, fluid-filled and multicameral, and may develop in all bones of the skeleton. On MRI, the fluid level is evocative. It is mandatory to distinguish ABC from UBC, as prognosis and treatment are different. UBCs resolve spontaneously between adolescence and adulthood; the main concern is the risk of pathologic fracture. Treatment in non-threatening forms consists in intracystic injection of methylprednisolone. When there is a risk of fracture, especially of the femoral neck, surgery with curettage, filling with bone substitute or graft and osteosynthesis may be required. ABCs are potentially more aggressive, with a risk of bone destruction. Diagnosis must systematically be confirmed by biopsy, identifying soft-tissue parts, as telangiectatic sarcoma can mimic ABC. Intra-lesional sclerotherapy with alcohol is an effective treatment. In spinal ABC and in aggressive lesions with a risk of fracture, surgical treatment should be preferred, possibly after preoperative embolization. The risk of malignant transformation is very low, except in case of radiation therapy.

  20. Patterns of localization of sup(99m)Tc-diphosphonate and tetracycline in bone tumors

    International Nuclear Information System (INIS)

    In the beginning of a study on mechanism of sup(99m)Tc-phosphoric acid compounds accumulation, regions where sup(99m)Tc-methylene diphosphonate (MDP) or tetracycline accumulated were compared in 5 patients with primary bone tumors (one with osteosarcoma, one with malignant fibrous histocytoma, one with osteochondroma, and two with chondrosarcoma). In accordance with regions where tetracycline accumulated, much sup(99m)Tc-MDP accumulated in neoplastic bone, calcified and ossified cartilage, and reactive new bone around bone tumors. It was concluded from above-mentioned results and mechanism of tetracycline accumulation that much sup(99m)Tc-MDP penetrated well and accumulated in reactive new bone around bone tumors probably because in reactive new bone around bone tumors, the size of hydroxyapatite was small, the density of matrix of bone was low, and surface area of hydroxyapatite crystal was very wide. (Tsunoda, M.)

  1. Micro-fracture enhanced by autologous bone marrow mesenchymal stem cells extracellular matrix scaffold to treat articular cartilage defects in the knee of pigs%微骨折与自体骨髓间充质干细胞外基质支架修复猪膝关节软骨缺损

    Institute of Scientific and Technical Information of China (English)

    李祥全; 唐成; 宋科荣; 金成哲

    2014-01-01

    BACKGROUND:Micro-fracture surgery method is simple, easy to operate, which is an effective way to treat articular cartilage defects, but there are stil some problems such as regenerated fibrocartilage and regenerated cartilage degradation. Scholars have focused on the use of various methods to improve the micro-fracture effect on repairing cartilage defects. OBJECTIVE:To explore the effects of micro-fracture enhanced by autologous bone marrow mesenchymal stem cells extracellular matrix (aBMSC-dECM) scaffold for treating cartilage defects in minipig models. METHODS:Bone marrow was extracted from the minipigs and bone marrow mesenchymal stem cells were obtained. aBMSC-dECM membranes were col ected. Cross-linking and freeze-drying technology were used to make the three-dimensional porous aBMSC-dECM scaffold. Ful thickness cartilage defects, 2 mm in depth and 6 mm in diameter, were created on the femoral condyles and trochlea grooves of the two knees of the minipigs. The right knees were treated with micro-fracture as control and the left were treated with micro-fracture enhanced by aBMSC-dECM scaffold. Six months later, histological examination and Wakitani score were used to evaluate the cartilage regeneration, and glycosaminoglycans and DNA contents in the regenerative tissue were determined. RESULTS AND CONCLUSION:After 6 months, the tissue treated by micro-fracture enhanced by aBMSC-dECM scaffold got better surface and integrated with the surrounding cartilage. Safranin O and fast green staining and Masson staining showed that the regenerated cartilage of the left knee, with abundant matrix and dense bone trabeculae, was better than that of the right. Wakitani score of the left knee was higher than that of the right. Glycosaminoglycans content of the left knee was much more than that of the right, while the DNA content was lower in the left knee than the right knee. Better results were observed in the left knee undergoing micro-fracture enhanced by a

  2. Microfibrous {beta}-TCP/collagen scaffolds mimic woven bone in structure and composition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Shen; Zhang Xin; Cai Qing; Yang Xiaoping [Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Wang Bo; Deng Xuliang, E-mail: yangxp@mail.buct.edu.c [Department of VIP Dental Service, School and Hospital of Stomatology, Peking University, Beijing 100081 (China)

    2010-12-15

    Woven bone, as the initial form of bone tissue, is always found in developing and repairing bone. It is thought of as a temporary scaffold for the deposition of osteogenic cells and the laying down of lamellar bone. Thus, we hypothesize that a matrix which resembles the architecture and components of woven bone can provide an osteoblastic microenvironment for bone cell growth and new bone formation. In this study, woven-bone-like beta-tricalcium phosphate ({beta}-TCP)/collagen scaffolds were fabricated by sol-gel electrospinning and impregnating methods. Optimization studies on sol-gel synthesis and electrospinning process were conducted respectively to prepare pure {beta}-TCP fibers with dimensions close to mineralized collagen fibrils in woven bone. The collagen-coating layer prepared by impregnation had an adhesive role that held the {beta}-TCP fibers together, and resulted in rapid degradation and matrix mineralization in in vitro tests. MG63 osteoblast-like cells seeded on the resultant scaffolds showed three-dimensional (3D) morphologies, and merged into multicellular layers after 7 days culture. Cytotoxicity test further revealed that extracts from the resultant scaffolds could promote the proliferation of MG63 cells. Therefore, the woven-bone-like matrix that we constructed favored the attachment and proliferation of MG63 cells in three dimensions. It has great potential ability to shorten the time of formation of new bone.

  3. Extracellular matrix adaptation of tendon and skeletal muscle to exercise

    DEFF Research Database (Denmark)

    Kjaer, Michael; Magnusson, Peter; Krogsgaard, Michael;

    2006-01-01

    The extracellular matrix (ECM) of connective tissues enables linking to other tissues, and plays a key role in force transmission and tissue structure maintenance in tendons, ligaments, bone and muscle. ECM turnover is influenced by physical activity, and both collagen synthesis and metalloprotea...

  4. Inhibition of matrix metalloproteinase-14 in osteosarcoma cells by clodronate

    NARCIS (Netherlands)

    Heikkilä, P.; Teronen, O.; Hirn, M.Y.; Sorsa, T.; Tervahartiala, T.; Salo, T.; Konttinen, Y.T.; Halttunen, T.; Moilanen, M.; Hanemaaijer, R.; Laitinen, M.

    2003-01-01

    Background. Bisphosphonates reduce the bone metastasis formation and angiogenesis but the exact molecular mechanisms involved are unclear. Progelatinase A (proMMP-2; 78 KDa) is activated up during the tumor spread and metastasis by a cell surface-associated matrix metalloproteinase (membrane-type ma

  5. Biocompatible 3D Matrix with Antimicrobial Properties

    Directory of Open Access Journals (Sweden)

    Alberto Ion

    2016-01-01

    Full Text Available The aim of this study was to develop, characterize and assess the biological activity of a new regenerative 3D matrix with antimicrobial properties, based on collagen (COLL, hydroxyapatite (HAp, β-cyclodextrin (β-CD and usnic acid (UA. The prepared 3D matrix was characterized by Scanning Electron Microscopy (SEM, Fourier Transform Infrared Microscopy (FT-IRM, Transmission Electron Microscopy (TEM, and X-ray Diffraction (XRD. In vitro qualitative and quantitative analyses performed on cultured diploid cells demonstrated that the 3D matrix is biocompatible, allowing the normal development and growth of MG-63 osteoblast-like cells and exhibited an antimicrobial effect, especially on the Staphylococcus aureus strain, explained by the particular higher inhibitory activity of usnic acid (UA against Gram positive bacterial strains. Our data strongly recommend the obtained 3D matrix to be used as a successful alternative for the fabrication of three dimensional (3D anti-infective regeneration matrix for bone tissue engineering.

  6. Parallelism in matrix computations

    CERN Document Server

    Gallopoulos, Efstratios; Sameh, Ahmed H

    2016-01-01

    This book is primarily intended as a research monograph that could also be used in graduate courses for the design of parallel algorithms in matrix computations. It assumes general but not extensive knowledge of numerical linear algebra, parallel architectures, and parallel programming paradigms. The book consists of four parts: (I) Basics; (II) Dense and Special Matrix Computations; (III) Sparse Matrix Computations; and (IV) Matrix functions and characteristics. Part I deals with parallel programming paradigms and fundamental kernels, including reordering schemes for sparse matrices. Part II is devoted to dense matrix computations such as parallel algorithms for solving linear systems, linear least squares, the symmetric algebraic eigenvalue problem, and the singular-value decomposition. It also deals with the development of parallel algorithms for special linear systems such as banded ,Vandermonde ,Toeplitz ,and block Toeplitz systems. Part III addresses sparse matrix computations: (a) the development of pa...

  7. Melvin Matrix Models

    CERN Document Server

    Motl, L

    2001-01-01

    In this short note we construct the DLCQ description of the flux seven-branes in type IIA string theory and discuss its basic properties. The matrix model involves dipole fields. We explain the relation of this nonlocal matrix model to various orbifolds. We also give a spacetime interpretation of the Seiberg-Witten-like map, proposed in a different context first by Bergman and Ganor, that converts this matrix model to a local, highly nonlinear theory.

  8. Mixed matrix membrane development.

    Science.gov (United States)

    Kulprathipanja, Santi

    2003-03-01

    Two types of mixed matrix membranes were developed by UOP in the late 1980s. The first type includes adsorbent polymers, such as silicalite-cellulose acetate (CA), NaX-CA, and AgX-CA mixed matrix membranes. The silicalite-CA has a CO(2)/H(2) selectivity of 5.15 +/- 2.2. In contrast, the CA membrane has a CO(2)/H(2) selectivity of 0.77 +/- 0.06. The second type of mixed matrix membrane is PEG-silicone rubber. The PEG-silicone rubber mixed matrix membrane has high selectivity for polar gases, such as SO(2), NH(3), and H(2)S.

  9. Modular Matrix Models

    OpenAIRE

    He, Y.; Jejjala, V.

    2003-01-01

    Inspired by a formal resemblance of certain q-expansions of modular forms and the master field formalism of matrix models in terms of Cuntz operators, we construct a Hermitian one-matrix model, which we dub the ``modular matrix model.'' Together with an N=1 gauge theory and a special Calabi-Yau geometry, we find a modular matrix model that naturally encodes the Klein elliptic j-invariant, and hence, by Moonshine, the irreducible representations of the Fischer-Griess Monster group.

  10. Microspectroscopic evidence of cretaceous bone proteins.

    Directory of Open Access Journals (Sweden)

    Johan Lindgren

    Full Text Available Low concentrations of the structural protein collagen have recently been reported in dinosaur fossils based primarily on mass spectrometric analyses of whole bone extracts. However, direct spectroscopic characterization of isolated fibrous bone tissues, a crucial test of hypotheses of biomolecular preservation over deep time, has not been performed. Here, we demonstrate that endogenous proteinaceous molecules are retained in a humerus from a Late Cretaceous mosasaur (an extinct giant marine lizard. In situ immunofluorescence of demineralized bone extracts shows reactivity to antibodies raised against type I collagen, and amino acid analyses of soluble proteins extracted from the bone exhibit a composition indicative of structural proteins or their breakdown products. These data are corroborated by synchrotron radiation-based infrared microspectroscopic studies demonstrating that amino acid containing matter is located in bone matrix fibrils that express imprints of the characteristic 67 nm D-periodicity typical of collagen. Moreover, the fibrils differ significantly in spectral signature from those of potential modern bacterial contaminants, such as biofilms and collagen-like proteins. Thus, the preservation of primary soft tissues and biomolecules is not limited to large-sized bones buried in fluvial sandstone environments, but also occurs in relatively small-sized skeletal elements deposited in marine sediments.

  11. The materials used in bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Tereshchenko, V. P., E-mail: tervp@ngs.ru; Kirilova, I. A.; Sadovoy, M. A.; Larionov, P. M. [Novosibirsk Research Institute of Traumatology and Orthopedics n.a. Ya.L. Tsivyan, Novosibirsk (Russian Federation)

    2015-11-17

    Bone tissue engineering looking for an alternative solution to the problem of skeletal injuries. The method is based on the creation of tissue engineered bone tissue equivalent with stem cells, osteogenic factors, and scaffolds - the carriers of these cells. For production of tissue engineered bone equivalent is advisable to create scaffolds similar in composition to natural extracellular matrix of the bone. This will provide optimal conditions for the cells, and produce favorable physico-mechanical properties of the final construction. This review article gives an analysis of the most promising materials for the manufacture of cell scaffolds. Biodegradable synthetic polymers are the basis for the scaffold, but it alone cannot provide adequate physical and mechanical properties of the construction, and favorable conditions for the cells. Addition of natural polymers improves the strength characteristics and bioactivity of constructions. Of the inorganic compounds, to create cell scaffolds the most widely used calcium phosphates, which give the structure adequate stiffness and significantly increase its osteoinductive capacity. Signaling molecules do not affect the physico-mechanical properties of the scaffold, but beneficial effect is on the processes of adhesion, proliferation and differentiation of cells. Biodegradation of the materials will help to fulfill the main task of bone tissue engineering - the ability to replace synthetic construct by natural tissues that will restore the original anatomical integrity of the bone.

  12. Chondroblastoma with secondary aneurysmal bone cyst of the capitate.

    Science.gov (United States)

    Sato, Eiichi; Ichikawa, Jiro; Ando, Takashi; Sato, Nobutaka; Kawasaki, Tomonori; Haro, Hirotaka

    2014-05-01

    Chondroblastoma is a benign tumor that typically arises in the epiphysis of a long bone. There have been only 2 reported cases of chondroblastoma involving the capitate. This is the first report of chondroblastoma with secondary aneurysmal bone cyst involving the capitate. A 33-year-old man presented with a 3-year history of pain and swelling of the right wrist. Radiography as well as computed tomography showed a radiolucent area and no matrix calcification within the capitate. Magnetic resonance imaging revealed a homogeneous signal that was low on T1-weighted images and high on T2-weighted images and showed only slight enhancement. On the basis of imaging findings, the authors chose excisional biopsy. The bone tumor in the capitate was explored through a dorsal approach by dividing the extensor tendons. After repeated curettages, bone graft substitute using allograft bone was packed into the capitate. Histologically, the authors diagnosed this tumor as a chondroblastoma with a secondary aneurysmal bone cyst. At the final 2-year follow-up, there was evidence of bone union, full range of motion, and recovery and no evidence of recurrence. Although the recurrence of chondroblastoma is occasionally reported, the principal treatment is intralesional curettage and bone graft. High-speed burring, phenol, bone cement, and cryosurgery have been reported to reduce local recurrence. Complete excision of the carpal bone seems to be overtreatment.

  13. Chondroblastoma with secondary aneurysmal bone cyst of the capitate.

    Science.gov (United States)

    Sato, Eiichi; Ichikawa, Jiro; Ando, Takashi; Sato, Nobutaka; Kawasaki, Tomonori; Haro, Hirotaka

    2014-05-01

    Chondroblastoma is a benign tumor that typically arises in the epiphysis of a long bone. There have been only 2 reported cases of chondroblastoma involving the capitate. This is the first report of chondroblastoma with secondary aneurysmal bone cyst involving the capitate. A 33-year-old man presented with a 3-year history of pain and swelling of the right wrist. Radiography as well as computed tomography showed a radiolucent area and no matrix calcification within the capitate. Magnetic resonance imaging revealed a homogeneous signal that was low on T1-weighted images and high on T2-weighted images and showed only slight enhancement. On the basis of imaging findings, the authors chose excisional biopsy. The bone tumor in the capitate was explored through a dorsal approach by dividing the extensor tendons. After repeated curettages, bone graft substitute using allograft bone was packed into the capitate. Histologically, the authors diagnosed this tumor as a chondroblastoma with a secondary aneurysmal bone cyst. At the final 2-year follow-up, there was evidence of bone union, full range of motion, and recovery and no evidence of recurrence. Although the recurrence of chondroblastoma is occasionally reported, the principal treatment is intralesional curettage and bone graft. High-speed burring, phenol, bone cement, and cryosurgery have been reported to reduce local recurrence. Complete excision of the carpal bone seems to be overtreatment. PMID:24810829

  14. 1. Morphological Implication on Cellular Response to Mechanical Stress in Bone.

    Science.gov (United States)

    Amizuka, Norio

    2016-08-01

    In bone, there are 3 distinct cell types: an osteoblast, a bone forming cell; an osteocyte embedded in bone matrix as a consequence of being differentiated from an osteoblast; and an osteoclast, a multinucleated giant cell responsible for bone resorption. Bone is always remodeled by replacing old bone with new bone (bone remodeling), by which bone can maintain its stiffness and flexibility. However, in an osteoporotic state, the disrupted balance between bone resorption and formation results in not only markedly reduced bone mass, but also in disorganized geometry of trabecules, which can often give rise to a bone fracture. Osteocytes located in their lacunae insert their fine cytoplasmic processes into narrow passageways referred to as osteocytic canaliculi. Neighboring osteocytes connect to each other by means of a gap junction in their cytoplasmic processes. Therefore, osteocytes and their lacunae/canaliculi appear to form functional syncytium called osteocytic lacunar canalicular system (OLCS). The geometrical distribution of OLCS is poorly arranged in immature bone, while it appears well-arranged distribution in mature bone (cortical bone), in which molecular transports and sensing mechanical stress seems to be efficient, and therefore, may be able to respond to mechanical stress. In this seminar, I will introduce our recent findings on the morphology and function of OLCS which may respond to mechanical stress. PMID:27441762

  15. Bone development and its relation to fracture repair. The role of mesenchymal osteoblasts and surface osteoblasts

    Directory of Open Access Journals (Sweden)

    F Shapiro

    2008-04-01

    Full Text Available Bone development occurs by two mechanisms: intramembranous bone formation and endochondral bone formation. Bone tissue forms by eventual differentiation of osteoprogenitor cells into either mesenchymal osteoblasts (MOBL, which synthesize woven bone in random orientation, or surface osteoblasts (SOBL, which synthesize bone on surfaces in a well oriented lamellar array. Bone repair uses the same formation patterns as bone development but the specific mechanism of repair is determined by the biomechanical environment provided. Bone synthesis and maintenance are highly dependent on the blood supply of bone and on cell-cell communication via the lacunar-canalicular system. Recent investigations highlight the molecular cascades leading to cell differentiation, the components of the structural proteins such as the various collagens, and tissue vascularization. The patterning of bone matrix from an initial woven to an eventual lamellar orientation is essential for bone to develop its maximum strength. This review demonstrates the repetitive nature of woven to lamellar bone formation as mediated by MOBLs and SOBLs in both normal vertebrate bones and bone repair. Repair, using endochondral, primary, direct and distraction osteogenesis mechanisms, is reviewed along with the associated molecular, vascular, and biophysical features.

  16. Solid aneurysmal bone cyst in the humerus

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Tetsuji; Marui, Takashi; Akisue, Toshihiro; Mizuno, Kosaku [Dept. of Orthopaedic Surgery, Kobe University School of Medicine, Chuo-Ku (Japan)

    2000-08-01

    We report on a 69-year-old woman with a solid variant of aneurysmal bone cyst (solid ABC) in the left humerus with a pathological fracture. Radiographically, the lesion exhibited a relatively well-defined osteolytic lesion in the diaphysis of the left humerus. On magnetic resonance (MR) imaging, the medullary lesion exhibited a homogeneous signal intensity isointense with surrounding normal muscles on the T1-weighted images and a mixture of low and high signal intensity on the T2-weighted images. Contrast-enhanced T1-weighted images revealed diffuse enhancement of the entire lesion. The pathological study showed a proliferation of fibroblasts, histiocytes, chronic inflammatory cells and numerous multinucleated giant cells in a collagenous matrix. Abundant osteoid formation in the matrix was observed, but the cells were devoid of nuclear atypia. Aneurysmal cystic cavities were absent. A review of the English literature found 22 cases of solid ABC of the long bones. (orig.)

  17. Biomimetic hydroxyapatite as a new consolidating agent for archaeological bone

    OpenAIRE

    North, Alexis

    2014-01-01

    Recent studies on calcareous stone and plaster consolidation have demonstrated considerable potential by bio-mimicking the growth of hydroxyapatite (HAP), the main mineralogical constituent of teeth and bone matrix. These initial conservation applications, together with significant fundamental research on the precipitation of HAP for bioengineering and biomedical applications, offer great promise in the use of HAP as a consolidating agent for archaeological bone and other similar materials su...

  18. Injectable bone substitute using a hydrophilic polymer.

    OpenAIRE

    Weiss, Pierre; Gauthier, Olivier; Bouler, Jean-Michel; Grimandi, Gaël; Daculsi, Guy

    1999-01-01

    We studied a new injectable biomaterial for bone and dental surgery consisting of a hydrophilic polymer as matrix and bioactive calcium phosphate (CaP) ceramics as fillers. This material is composed of complex fluids whose flow is determined by the laws of rheology. We investigated the macromolecular effects on this composite in a tube. The stability of the polymer and the mixture is essential to the production of a ready-to-use injectable biomaterial. These flow properties are necessary to o...

  19. How Is Bone Cancer Diagnosed?

    Science.gov (United States)

    ... with bone cancer. Accurate diagnosis of a bone tumor often depends on combining information about its location (what bone is affected and even which part of the bone is involved), appearance on x-rays, and appearance under a microscope. ...

  20. Matrix metalloproteinases and epileptogenesis.

    Science.gov (United States)

    Ikonomidou, Chrysanthy

    2014-12-01

    Matrix metalloproteinases are vital drivers of synaptic remodeling in health and disease. It is suggested that at early stages of epileptogenesis, inhibition of matrix metalloproteinases may help ameliorate cell death, aberrant network rewiring, and neuroinflammation and prevent development of epilepsy. PMID:26567100

  1. Bone mineral density test

    Science.gov (United States)

    ... Paula FJA, Black DM, Rosen CJ. Osteoporosis and bone biology.In: Melmed S, Polonsky KS, Larsen PR, Kronenberg HM, eds. Williams Textbook of Endocrinology . 13th ed. Philadelphia, ... Bone-density testing interval and transition to osteoporosis in ...

  2. Bone Graft Alternatives

    Science.gov (United States)

    ... cadavers. The types of allograft bone used for spine surgery include fresh frozen and lyophilized (freeze dried). The ... the most common uses of bone grafts in spine surgery is during spinal fusion. The use of autogenous ...

  3. Bone mineral density test

    Science.gov (United States)

    BMD test; Bone density test; Bone densitometry; DEXA scan; DXA; Dual-energy x-ray absorptiometry; p-DEXA; Osteoporosis-BMD ... need to undress. This scan is the best test to predict your risk of fractures. Peripheral DEXA ( ...

  4. Smoking and Bone Health

    Science.gov (United States)

    ... It has been called a childhood disease with old age consequences because building healthy bones in youth helps ... stronger. Weight-bearing exercise that forces you to work against gravity is the best exercise for bone. ...

  5. Bone Loss in IBD

    Science.gov (United States)

    ... DENSITY? Although bone seems as hard as a rock, it’s actually living tissue. Throughout your life, old ... available Bone Loss (.pdf) File: 290 KB 733 Third Avenue, Suite 510, New York, NY 10017 | 800- ...

  6. Bone Marrow Diseases

    Science.gov (United States)

    ... that help with blood clotting. With bone marrow disease, there are problems with the stem cells or ... marrow makes too many white blood cells Other diseases, such as lymphoma, can spread into the bone ...

  7. Fuzzy vulnerability matrix

    International Nuclear Information System (INIS)

    The so-called vulnerability matrix is used in the evaluation part of the probabilistic safety assessment for a nuclear power plant, during the containment event trees calculations. This matrix is established from what is knows as Numerical Categories for Engineering Judgement. This matrix is usually established with numerical values obtained with traditional arithmetic using the set theory. The representation of this matrix with fuzzy numbers is much more adequate, due to the fact that the Numerical Categories for Engineering Judgement are better represented with linguistic variables, such as 'highly probable', 'probable', 'impossible', etc. In the present paper a methodology to obtain a Fuzzy Vulnerability Matrix is presented, starting from the recommendations on the Numerical Categories for Engineering Judgement. (author)

  8. Double coincidence matrix

    International Nuclear Information System (INIS)

    To increase the accuracy of discrimination of true coincidences against the background of accidental ones, circuit has been developed which operates on the principle of dynamic equalization of resolution times of two coincidence circuits. The flowsheet of a 4x6 double-coincidence matrix is given. The principal elements of the matrix are commutators and output signal shapers. The matrix uses 138-series microcircuits. The resolution time of coincidence circuits is 10 ns, the dead time is 25 ns. The results of testing the matrix during experiments under conditions of a high background of accidental coincidences (70-90%) have shown that the accuracy of discrimination of true coincidences with the help of the double-coincidence matrix approximates the accuracy of time-to-digital converters within the limits of the statistical accuracy

  9. Fermionic matrix models

    CERN Document Server

    Semenoff, Gordon W; Semenoff, Gordon W; Szabo, Richard J

    1996-01-01

    We review a class of matrix models whose degrees of freedom are matrices with anticommuting elements. We discuss the properties of the adjoint fermion one-, two- and gauge invariant D-dimensional matrix models at large-N and compare them with their bosonic counterparts which are the more familiar Hermitian matrix models. We derive and solve the complete sets of loop equations for the correlators of these models and use these equations to examine critical behaviour. The topological large-N expansions are also constructed and their relation to other aspects of modern string theory such as integrable hierarchies is discussed. We use these connections to discuss the applications of these matrix models to string theory and induced gauge theories. We argue that as such the fermionic matrix models may provide a novel generalization of the discretized random surface representation of quantum gravity in which the genus sum alternates and the sums over genera for correlators have better convergence properties than thei...

  10. Time rate collision matrix

    International Nuclear Information System (INIS)

    The collision integral terms in Boltzmann equation are reformulated numerically leading to the substitution of the multiple integrals with a multiplicative matrix of the two colliding species velocity distribution functions which varies with the differential collision cross section. A matrix of lower rank may be constructed when one of the distribution functions is specified, in which case the matrix elements represent kinetic transition probabilities in the velocity space and the multiplication of the time rate collision matrix with the unknown velocity distribution function expresses the time rate of change of the distribution. The collision matrix may be used to describe the time evolution of systems in nonequilibrium conditions, to evaluate the rate of momentum and energy transfer between given species, or to generate validity criteria for linearized kinetic equations

  11. Matrix comparison, Part 2

    DEFF Research Database (Denmark)

    Schneider, Jesper Wiborg; Borlund, Pia

    2007-01-01

    The present two-part article introduces matrix comparison as a formal means for evaluation purposes in informetric studies such as cocitation analysis. In the first part, the motivation behind introducing matrix comparison to informetric studies, as well as two important issues influencing...... such comparisons, matrix generation, and the composition of proximity measures, are introduced and discussed. In this second part, the authors introduce and thoroughly demonstrate two related matrix comparison techniques the Mantel test and Procrustes analysis, respectively. These techniques can compare...... and evaluate the degree of monotonicity between different proximity measures or their ordination results. In common with these techniques is the application of permutation procedures to test hypotheses about matrix resemblances. The choice of technique is related to the validation at hand. In the case...

  12. Bone regeneration in dentistry

    OpenAIRE

    Tonelli, Paolo; Duvina, Marco; Barbato, Luigi; Biondi, Eleonora; Nuti, Niccolò; Brancato, Leila; Rose, Giovanna Delle

    2011-01-01

    The edentulism of the jaws and the periodontal disease represent conditions that frequently leads to disruption of the alveolar bone. The loss of the tooth and of its bone of support lead to the creation of crestal defects or situation of maxillary atrophy. The restoration of a functional condition involves the use of endosseous implants who require adequate bone volume, to deal with the masticatory load. In such situations the bone need to be regenerated, taking advantage of the biological p...

  13. BONE MECHANOTRANSDUCTION: A REVIEW

    OpenAIRE

    Reis, Joana; Capela e Silva, Fernando; Queiroga, Cristina; Lucena, Sónia; Potes, José

    2011-01-01

    This review focus on the bone physiology and mechanotransduction elements and mechanisms. Bone biology and architecture is deeply related to the mechanical environment. Orthopaedic implants cause profound changes in the biomechanics and electrophysiology of the skeleton. In the context of biomedical engineering, a deep reflexion on bone physiology and electromechanics is needed. Strategic development of new biomaterials and devices that respect and promote continuity with bone str...

  14. Gracile bone dysplasias

    Energy Technology Data Exchange (ETDEWEB)

    Kozlowski, Kazimierz [Department of Medical Imaging, The Children' s Hospital at Westmead, Locked Bag 4001, Westmead 2145, NSW (Australia); Masel, John [Department of Radiology, Royal Children' s Hospital, Brisbane (Australia); Sillence, David O. [Department of Paediatrics and Child Health, The University of Sydney (Australia); Arbuckle, Susan [Department of Anatomical Pathology, The Children' s Hospital at Westmead, NSW (Australia); Juttnerova, Vera [Oddeleni Lekarske Genetiky, Hradec Kralove (Czech Republic)

    2002-09-01

    Gracile bone dysplasias constitute a group of disorders characterised by extremely slender bones with or without fractures. We report four newborns, two of whom showed multiple fractures. Two babies had osteocraniostenosis and one had features of oligohydramnios sequence. The diagnosis in the fourth newborn, which showed thin long bones and clavicles and extremely thin, poorly ossified ribs, is uncertain. Exact diagnosis of a gracile bone dysplasia is important for genetic counselling and medico-legal reasons. (orig.)

  15. Bone cysts: unicameral and aneurysmal bone cyst.

    Science.gov (United States)

    Mascard, E; Gomez-Brouchet, A; Lambot, K

    2015-02-01

    Simple and aneurysmal bone cysts are benign lytic bone lesions, usually encountered in children and adolescents. Simple bone cyst is a cystic, fluid-filled lesion, which may be unicameral (UBC) or partially separated. UBC can involve all bones, but usually the long bone metaphysis and otherwise primarily the proximal humerus and proximal femur. The classic aneurysmal bone cyst (ABC) is an expansive and hemorrhagic tumor, usually showing characteristic translocation. About 30% of ABCs are secondary, without translocation; they occur in reaction to another, usually benign, bone lesion. ABCs are metaphyseal, excentric, bulging, fluid-filled and multicameral, and may develop in all bones of the skeleton. On MRI, the fluid level is evocative. It is mandatory to distinguish ABC from UBC, as prognosis and treatment are different. UBCs resolve spontaneously between adolescence and adulthood; the main concern is the risk of pathologic fracture. Treatment in non-threatening forms consists in intracystic injection of methylprednisolone. When there is a risk of fracture, especially of the femoral neck, surgery with curettage, filling with bone substitute or graft and osteosynthesis may be required. ABCs are potentially more aggressive, with a risk of bone destruction. Diagnosis must systematically be confirmed by biopsy, identifying soft-tissue parts, as telangiectatic sarcoma can mimic ABC. Intra-lesional sclerotherapy with alcohol is an effective treatment. In spinal ABC and in aggressive lesions with a risk of fracture, surgical treatment should be preferred, possibly after preoperative embolization. The risk of malignant transformation is very low, except in case of radiation therapy. PMID:25579825

  16. Enzymatic maceration of bone

    DEFF Research Database (Denmark)

    Uhre, Marie-Louise; Eriksen, Anne Marie; Simonsen, Kim Pilkjær;

    2015-01-01

    the bones. The DNA analysis showed that DNA was preserved on all the pieces of bones which were examined. Finally, the investigation suggests that enzyme maceration could be gentler on the bones, as the edges appeared less frayed. The enzyme maceration was also a quicker method; it took three hours compared...

  17. What's a Funny Bone?

    Science.gov (United States)

    ... Help White House Lunch Recipes What's a Funny Bone? KidsHealth > For Kids > What's a Funny Bone? Print A A A Text Size Have you ... prickly kind of dull pain? That's your funny bone! It doesn't really hurt as much as ...

  18. Menopause and Bone Loss

    Science.gov (United States)

    Fact Sheet & Menopause Bone Loss How are bone loss and menopause related? Throughout life your body keeps a balance between the loss ... The sooner you take steps to prevent bone loss, the lower your risk of osteoporosis later in life. If you are skipping menstrual periods, have had ...

  19. The critical role of bisphosphonates to target bone cancer metastasis: an overview.

    Science.gov (United States)

    Singh, Tejinder; Kaur, Veerpal; Kumar, Manish; Kaur, Prabhjot; Murthy, R S R; Rawal, Ravindra K

    2015-01-01

    Cancer becomes the leading cause of deaths worldwide, including breast cancer, prostate cancer and lung cancer that preferentially metastasize to bone and bone marrow. Bisphosphonates (BPs) have been used successfully for many years to reduce the skeletal complications related with the benign and malignant bone diseases that are characterized by enhanced osteoclastic bone resorption. Nitrogen-containing bisphosphonates (N-BPs) have also been demonstrated to exhibit direct anti-tumour effects. BPs binds avidly to the bone matrix, and released from matrix during bone resorption process, BPs are internalized by the osteoclasts where they interfere with biochemical pathways and induce osteoclast apoptosis. BPs also antagonizes the production of osteoclast and promotes the osteoblasts proliferation. Currently, Zoledronic acid is widely used as one of the BP having high bone specificity and potential to inhibit the osteoclast-mediated bone resorption. In addition to inhibition of cell multiplication and initiation of apoptosis in cultured cancer cells, they also interfere with adhesion of cancer cells to the bone matrix and inhibit cell migration and invasion. Pathophysiology and current target therapies like conjugate of BPs with liposomes, nanoparticle used for the treatment of bone cancer is reviewed in this article along with the use of different BPs.

  20. Characteristics of alveolar bone associated with physiological movement of molar in mice: a histological and histochemical study.

    Science.gov (United States)

    Matsuda, Kie; Haga-Tsujimura, Maiko; Yoshie, Sumio; Shimomura-Kuroki, Junko

    2014-01-01

    Mouse molars undergo distal movement, during which new bone is formed at the mesial side of the tooth root whereas the preexisting bone is resorbed at the distal side of the root. However, there is little detailed information available regarding which of the bones that surround the tooth root are involved in physiological tooth movement. In the present study, we therefore aimed to investigate the precise morphological differences of the alveolar bone between the bone formation side of the tooth root, using routine histological procedures including silver impregnation, as well as by immunohistochemical analysis of alkaline phosphatase and tartrate-resistant acid phosphatase activity, and immunohistochemical analysis of the expression of the osteocyte markers dentin matrix protein 1, sclerostin, and fibroblast growth factor 23. Histochemical analysis indicated that bone formation by osteoblasts and bone resorption by osteoclasts occurred at the bone formation side and the bone resorption side, respectively. Osteocyte marker immunoreactivity of osteocytes at the surface of the bone close to the periodontal ligament differed at the bone formation and bone resorption sides. We also showed different specific features of osteocytic lacunar canalicular systems at the bone formation and bone resorption sides by using silver staining. This study suggests that the alveolar bone is different in the osteocyte nature between the bone formation side and the bone resorption side due to physiological distal movement of the mouse molar.

  1. The nuclear reaction matrix

    Energy Technology Data Exchange (ETDEWEB)

    Krenciglowa, E.M.; Kung, C.L.; Kuo, T.T.S.; Osnes, E.

    1976-09-24

    Different definitions of the reaction matrix G appropriate to the calculation of nuclear structure are reviewed and discussed. Qualitative physical arguments are presented in support of a two-step calculation of the G-matrix for finite nuclei. In the first step the high-energy excitations are included using orthogonalized plane-wave intermediate states, and in the second step the low-energy excitations are added in, using harmonic oscillator intermediate states. Accurate calculations of G-matrix elements for nuclear structure calculations in the Aapprox. =18 region are performed following this procedure and treating the Pauli exclusion operator Q/sub 2//sub p/ by the method of Tsai and Kuo. The treatment of Q/sub 2//sub p/, the effect of the intermediate-state spectrum and the energy dependence of the reaction matrix are investigated in detail. The present matrix elements are compared with various matrix elements given in the literature. In particular, close agreement is obtained with the matrix elements calculated by Kuo and Brown using approximate methods. (AIP)

  2. Dissolution of the inorganic phase of bone leading to release of calcium regulates osteoclast survival

    DEFF Research Database (Denmark)

    Nielsen, Rasmus H; Karsdal, Morten A; Sørensen, Mette G;

    2007-01-01

    Osteoclasts are the sole cells possessing the ability to resorb calcified bone matrix. This occurs via secretion of hydrochloric acid mediated by the V-ATPase and the chloride channel ClC-7. Loss of acidification leads to osteopetrosis characterized by ablation of bone resorption and increased...... osteoclast numbers, indicating increased life span of the osteoclasts. To investigate the role of the inorganic phase of bone with respect to osteoclast life span, we used the V-ATPase inhibitor bafilomycin and the calcium uptake antagonist ryanodine on human osteoclasts cultured on calcified and decalcified...... bone slices. Bafilomycin inhibited bone resorption and increased osteoclast survival on calcified but not decalcified bones. Ryanodine attenuated calcium uptake and thereby augmented osteoclast survival on calcified bones. In summary, we found that acidification leading to calcium release from bone...

  3. Human fetal bone cells associated with ceramic reinforced PLA scaffolds for tissue engineering.

    Science.gov (United States)

    Montjovent, Marc-Olivier; Mark, Silke; Mathieu, Laurence; Scaletta, Corinne; Scherberich, Arnaud; Delabarde, Claire; Zambelli, Pierre-Yves; Bourban, Pierre-Etienne; Applegate, Lee Ann; Pioletti, Dominique P

    2008-03-01

    Fetal bone cells were shown to have an interesting potential for therapeutic use in bone tissue engineering due to their rapid growth rate and their ability to differentiate into mature osteoblasts in vitro. We describe hereafter their capability to promote bone repair in vivo when combined with porous scaffolds based on poly(l-lactic acid) (PLA) obtained by supercritical gas foaming and reinforced with 5 wt.% beta-tricalcium phosphate (TCP). Bone regeneration was assessed by radiography and histology after implantation of PLA/TCP scaffolds alone, seeded with primary fetal bone cells, or coated with demineralized bone matrix. Craniotomy critical size defects and drill defects in the femoral condyle in rats were employed. In the cranial defects, polymer degradation and cortical bone regeneration were studied up to 12 months postoperatively. Complete bone ingrowth was observed after implantation of PLA/TCP constructs seeded with human fetal bone cells. Further tests were conducted in the trabecular neighborhood of femoral condyles, where scaffolds seeded with fetal bone cells also promoted bone repair. We present here a promising approach for bone tissue engineering using human primary fetal bone cells in combination with porous PLA/TCP structures. Fetal bone cells could be selected regarding osteogenic and immune-related properties, along with their rapid growth, ease of cell banking and associated safety. PMID:18178142

  4. Odanacatib in postmenopausal women with low bone mineral density: a review of current clinical evidence.

    Science.gov (United States)

    Zerbini, Cristiano A F; McClung, Michael R

    2013-08-01

    Human bones are in a continuous process of remodeling that ensures renovation and maintenance of the skeletal mass. Bone remodeling has two phases that are normally coupled and balanced: bone resorption mediated by osteoclasts and bone formation mediated by osteoblasts. An increase in bone resorption over bone formation results in a progressive loss of bone mass and impairment of bone microarchitecture leading to osteoporosis and its associated fractures. Recent advances in the understanding of the molecular and cellular mechanisms involved in the remodeling process have allowed the development of new targets for osteoporosis treatment. Cathepsin K, a cysteine protease, is found in osteoclasts along the bone resorption surfaces and very efficiently degrades type I collagen, the major component of the organic bone matrix. Inhibition of cathepsin K reduces bone resorption but does not impair bone formation particularly at cortical sites. Odanacatib, a potent and highly selective cathepsin K inhibitor, showed prevention of bone loss without reduction of bone formation in preclinical and clinical trials (phase I and II). Odanacatib is currently in a phase III fracture outcome international trial for the treatment of postmenopausal osteoporosis. PMID:23904864

  5. Alendronate reduced peri-tunnel bone loss and enhanced tendon graft to bone tunnel healing in anterior cruciate ligament reconstruction

    Directory of Open Access Journals (Sweden)

    PPY Lui

    2013-01-01

    Full Text Available Peri-tunnel bone loss after anterior cruciate ligament (ACL reconstruction is commonly observed, both clinically and experimentally. We aimed to study the effect and mechanisms of different doses of alendronate in the reduction of peri-tunnel bone loss and promotion of graft-bone tunnel healing in ACL reconstruction. Eighty-four ACL-reconstructed rats were divided into 4 groups. Alendronate at different dosages, or saline, were injected subcutaneously weekly, for 2 or 6 weeks post-reconstruction, for vivaCT (computed tomography imaging, biomechanical tests, histology and immunohistochemistry. Alendronate significantly increased bone mass and density of tissue inside bone tunnels except at the epiphyseal region of tibial tunnel. The femoral tunnel diameter decreased significantly in the mid-dose and high-dose alendronate groups compared to that in the saline group at week 6. Alendronate significantly increased the peri-tunnel bone mass and density along all tunnel regions at week 6. Better graft-bone tunnel integration and intra-tunnel graft integrity were observed in the alendronate groups. The ultimate load was significantly higher in the mid-dose and high-dose alendronate groups at week 2, but not at week 6. There was a reduction in matrix metalloprotein (MMP1, MMP13 and CD68-positive cells at the peri-tunnel region and graft-bone interface in the alendronate-treated group compared to the saline group. Alendronate reduced peri-tunnel bone resorption, increased mineralised tissue inside bone tunnel as well as histologically and biomechanically promoted graft-bone tunnel healing, probably by reducing the expression of MMP1, MMP13 and CD68-positive cells. Alendronate might be used for reducing peri-tunnel bone loss and promoting graft-bone tunnel healing at early stage post-ACL reconstruction.

  6. Tin in Human Bones

    OpenAIRE

    Jambor, Jaroslav; Smreka, Vâclav

    1993-01-01

    TIN IN HUMAN BONES. The tin content in the bones of 149 skeletons from the 1st - 5th centuries A.D., and of 11 individuals of the recent population was determined. The bone samples were carbonized and analyzed through emission spectroscopy with a.c. excitation. The tin content in bones of recent populations not exposed to extra tin supply is about one order of magnitude higher than is the case with the bones od some populations that lived at the beginning of our era. The distribut...

  7. Faces of matrix models

    CERN Document Server

    Morozov, A

    2012-01-01

    Partition functions of eigenvalue matrix models possess a number of very different descriptions: as matrix integrals, as solutions to linear and non-linear equations, as tau-functions of integrable hierarchies and as special-geometry prepotentials, as result of the action of W-operators and of various recursions on elementary input data, as gluing of certain elementary building blocks. All this explains the central role of such matrix models in modern mathematical physics: they provide the basic "special functions" to express the answers and relations between them, and they serve as a dream model of what one should try to achieve in any other field.

  8. Elementary matrix theory

    CERN Document Server

    Eves, Howard

    1980-01-01

    The usefulness of matrix theory as a tool in disciplines ranging from quantum mechanics to psychometrics is widely recognized, and courses in matrix theory are increasingly a standard part of the undergraduate curriculum.This outstanding text offers an unusual introduction to matrix theory at the undergraduate level. Unlike most texts dealing with the topic, which tend to remain on an abstract level, Dr. Eves' book employs a concrete elementary approach, avoiding abstraction until the final chapter. This practical method renders the text especially accessible to students of physics, engineeri

  9. Patience of matrix games

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Arnsfelt; Ibsen-Jensen, Rasmus; Podolskii, Vladimir V.;

    2013-01-01

    For matrix games we study how small nonzero probability must be used in optimal strategies. We show that for image win–lose–draw games (i.e. image matrix games) nonzero probabilities smaller than image are never needed. We also construct an explicit image win–lose game such that the unique optimal...... strategy uses a nonzero probability as small as image. This is done by constructing an explicit image nonsingular image matrix, for which the inverse has only nonnegative entries and where some of the entries are of value image....

  10. Mueller matrix differential decomposition.

    Science.gov (United States)

    Ortega-Quijano, Noé; Arce-Diego, José Luis

    2011-05-15

    We present a Mueller matrix decomposition based on the differential formulation of the Mueller calculus. The differential Mueller matrix is obtained from the macroscopic matrix through an eigenanalysis. It is subsequently resolved into the complete set of 16 differential matrices that correspond to the basic types of optical behavior for depolarizing anisotropic media. The method is successfully applied to the polarimetric analysis of several samples. The differential parameters enable one to perform an exhaustive characterization of anisotropy and depolarization. This decomposition is particularly appropriate for studying media in which several polarization effects take place simultaneously. PMID:21593943

  11. [Bone marrow stromal damage mediated by immune response activity].

    Science.gov (United States)

    Vojinović, J; Kamenov, B; Najman, S; Branković, Lj; Dimitrijević, H

    1994-01-01

    The aim of this work was to estimate influence of activated immune response on hematopoiesis in vitro, using the experimental model of BCG immunized BALB/c mice and in patients with chronic immunoactivation: long-lasting infections, autoimmunity or malignancy. We correlated changes in long term bone marrow cultures (Dexter) and NBT reduction with appearance of anemia in patients and experimental model of immunization by BCG. Increased spontaneous NBT reduction pointed out role of macrophage activation in bone marrow stroma damage. Long-term bone marrow cultures showed reduced number of hematopoietic cells, with predomination of fibroblasts and loss of fat cells. This results correlated with anemia and leucocytosis with stimulated myelopoiesis in peripheral blood. Activation of immune response, or acting of any agent that directly changes extracellular matrix and cellularity of bone marrow, may result in microenviroment bone marrow damage that modify hematopoiesis.

  12. Intracystic negative pressure may promote bone formation around jaw cysts

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yi; HAN Qi-bing; LIU Bing

    2011-01-01

    The growth and enlargement of jaw cysts are associated with raised intracystic pressure and bone resorption surrounding the cysts. The major bone-resorbing cells are the osteoclasts. They are acting under the influence of local bone-resorbing factors: prostaglandins, proteinases and cytokines. It was found that positive pressure enhanced the expression of IL-1αmRNA and protein in epithelial cells of odontogenic keratocyst, and increased the secretion of matrix metalloproteinase and PGE in a co-culture of odontogenic keratocyst fibroblasts and epithelial cells. However, the signal intensities for IL-1α mRNA and protein in the epithelium were significantly decreased after marsupialization which relived intracystic pressure. Experimental study indicated that intermittent negative pressure could promote osteogenesis in human bone marrow-derived stroma cells (BMSCs) in vitro. We propose a hypothesis that bone formation around the cyst of the jaws would be stimulated by intracystic negative pressure.

  13. Asymptomatic Paget's disease of bone presenting with complete atrioventricular block

    Institute of Scientific and Technical Information of China (English)

    A.Rauoof Malik; Nazir A.Lone; Hilal A.Rather; Vicar M Jan; Javid A.Malik; Khursheed A.Khan; S.Jalal

    2008-01-01

    @@ Paget's disease of bone is a deforming bone disease (osteitis deformans) characterized by increased bone remodeling,bone hypertrophy,and abnormal bone structure,leading to bone expansion,deformities,easy fractures,and occasionally,neoplastic transformation.It is the second most common bone disorder after osteoporosis.1 The disease is relatively rare in Asia but is common in Europe and North America,affecting approximately 2% of the population over 50 years,although lately,a decline in the prevalence has been reported.2 Paget's disease commonly affects people in or past their middle age and is slightly more common in men than in women.1 The exact cause of Paget's disease is not known.Environmental agents,particularly paramyxoviral infections (measles and canine distemper viruses) have been postulated as potential etiological factors.3 Recently,a strong genetic component has been described,with candidate loci suggested at 18q,5q35-QTER,and particularly,the squestosome 1/p62.2,3 The pathological process in Paget's disease consists of one or more areas of aggressive and relentless osteoclastic activity,coupled with deposition of structurally abnormal excessive bone and matrix tissues.1,4 Most of the cases involve only one (monostotic) or few bones,particularly skull,vertebrae,pelvis,femur,and tibia.

  14. Pesticide-Exposure Matrix

    Science.gov (United States)

    The "Pesticide-exposure Matrix" was developed to help epidemiologists and other researchers identify the active ingredients to which people were likely exposed when their homes and gardens were treated for pests in past years.

  15. The Hill Interaction Matrix

    Science.gov (United States)

    Hill, William Fawcett

    1971-01-01

    Leadership style, group composition, and group development are simultaneously quantified through the use of the matrix. It represents an attempt to objectify the art of group therapy. Comment by Richard C. Rank follows. (Author)

  16. In vitro short term cartilage tissue engineering with oriented cartilage extracellular matrix scaffolds and bone marrow mesenchymal stem cells%软骨细胞外基质源性取向支架与骨髓基质干细胞体外软骨组织工程的初步研究

    Institute of Scientific and Technical Information of China (English)

    姚军; 卢世璧; 彭江; 郭全义; 张莉; 黄靖香; 汪嗳媛; 许文静

    2010-01-01

    Objective To fabricate cartilage extracellular matrix (ECM) oriented scaffolds and investigate the attachment, proliferation, distribution and orientation of bone marrow mesenchymal stem cells (BMSCs) cultured within the scaffolds in vitro. Methods Cartilage slices were shattered in sterile phosphate-buffered saline (PBS) and the suspension were differentially centrifugated untill the micro- fiber of the cartilage extracellular matrix was disassociated from the residue cartilage fragments. At last the supernatant were centrifugated, the precipitation were collected and were made into 2%-3% suspension. Using unidirectional solidification as a freezing process and freeze-dried method, the cartilage extracellular matrix derived oriented scaffolds was fabricated. The scaffolds were then cross-linked by exposure to ultraviolet radiation and immersion in a carbodiimide solution. By light microscope and scan electron microscope (SEM) observation, histological staining, and biomechanical test, the traits of scaffolds were studied. After being labelled with PKH26 fluorescent dye, rabbit BMSCs were seeded onto the scaffolds. The attachment, proliferation and differentiation of the cells were analyzed using inverted fluorescent microscope. Results The histological staining showed that toluidine blue, safranin O, alcian blue and anti-collagen Ⅱ immunohistochemistry staining of the scaffolds were positive. A perpendicular pore-channel structures which has a diameter of 100 μm were verified by light microscope and SEM analysis. The cell-free scaffolds showed the compression moduli were (2.02±0.02) MPa in the mechanical testing. Inverted fluorescent microscope showed that most of the cells attached to the scaffold. Cells were found to be widely distributed within the scaffold, which acted as a columnar arrangement. The formation of a surface cells layer was found on the surface of the scaffolds which resembled natural cartilage. Coclusion The cartilage extracellular matrix

  17. Correlating the nanoscale mechanical and chemical properties of knockout mice bones

    Science.gov (United States)

    Kavukcuoglu, Nadire Beril

    Bone is a mineral-organic composite where the organic matrix is mainly type I collagen plus small amounts of non-collagenous proteins including osteopontin (OPN), osteocalcin (OC) and fibrillin 2 (Fbn2). Mature bone undergoes remodeling continually so new bone is formed and old bone resorbed. Uncoupling between the bone resorption and bone formation causes an overall loss of bone mass and leads to diseases like osteoporosis and osteopenia. These are characterized by structural deterioration of the bone tissue and an increased risk of fracture. The non-collagenous bone proteins are known to have a role in regulating bone turnover and to affect the structural integrity of bone. OPN and OC play a key role in bone resorption and formation, while absence of Fbn-2 causes a connective tissue disorder (congenital contractural arachnodactyly) and has been associated with decreased bone mass. In this thesis nanoindentation and Raman-microspectroscopy techniques were used to investigate and correlate the mechanical and chemical properties of cortical femoral bones from OPN deficient (OPN-/-), OC deficient (OC-/-) and Fbn-2 deficient (Fbn2-/-) mice and their age, sex and background matched wild-type controls (OPN+/+, OC+/+ and Fbn2+/+). For OPN the hardness (H) and elastic modulus (E) of under 12 week OPN-/- bones were significantly lower than for OPN+/+ bones, but Raman showed no significant difference. Mechanical properties of bones from mice older than 12 weeks were not significantly different with genotype. However, mineralization and crystallinity from >50 week OPN-/- bones were significantly higher than for OPN+/+ bones. Mechanical properties of OPN-/- bones showed no variation with age, but mineralization, crystallinity and type-B carbonate substitution increased for both genotypes. For OC-/- intra-bone analyses showed that the hardness and crystallinity of the bones were significantly higher, especially in the mid-cortical sections, compared to OC+/+ bones. Fbn2

  18. Dental pulp stem cells and bone regeneration.

    Directory of Open Access Journals (Sweden)

    Amalia KAPAROU

    2015-04-01

    Full Text Available SUMMARY: Dental pulp, a soft tissue of mesenchymal origin, contains stem cells derived from cranial neural crest cells. Dental pulp stem cells (DPSCs reside into special anatomic locations of dental pulp, the so called “niches”. Stem cell niches are located predominately, but not exclusively, in the perivascular regions of the pulpal cavity. DPSCs exhibit clonogenic and high proliferative activity and are capable of differentiating into several cell types. The main function of these cells is the production of tertiary/reparative dentine following trauma or caries of dental crown. Previous studies have shown that DPSCs can differentiate into osteoblast-like cells that secrete abundant extracellular matrix and can build a woven bone in vitro. Moreover, DPSCs are capable of forming a complete and well-vascularised lamellar bone after grafting ectopically into immunocompromised rats. The in vivo transplantation of DPSCs into critical-sized bone defects in animal models has been shown to promote and/or accelerate bone regeneration. These results are clearly encouraging and stress the need of further research for the potential clinical use of DPSCs in bone tissue engineering.

  19. Matrix Big Brunch

    OpenAIRE

    Bedford, J; Papageorgakis, C.; Rodriguez-Gomez, D.; Ward, J.

    2007-01-01

    Following the holographic description of linear dilaton null Cosmologies with a Big Bang in terms of Matrix String Theory put forward by Craps, Sethi and Verlinde, we propose an extended background describing a Universe including both Big Bang and Big Crunch singularities. This belongs to a class of exact string backgrounds and is perturbative in the string coupling far away from the singularities, both of which can be resolved using Matrix String Theory. We provide a simple theory capable of...

  20. Matrix string interactions

    OpenAIRE

    Periwal, Vipul; Tafjord, Oyvind

    1998-01-01

    String configurations have been identified in compactified Matrix theory at vanishing string coupling. We show how the interactions of these strings are determined by the Yang-Mills gauge field on the worldsheet. At finite string coupling, this suggests the underlying dynamics is not well-approximated as a theory of strings. This may explain why string perturbation theory diverges badly, while Matrix string perturbation theory presumably has a perturbative expansion with properties similar to...

  1. Metal matrix Composites

    OpenAIRE

    Pradeep K. Rohatgi

    1993-01-01

    This paper reviews the world wide upsurge in metal matrix composite research and development activities with particular emphasis on cast metal-matrix particulate composites. Extensive applications of cast aluminium alloy MMCs in day-to-day use in transportation as well as durable good industries are expected to advance rapidly in the next decade. The potential for extensive application of cast composites is very large in India, especially in the areas of transportation, energy and elec...

  2. Matrix fractional systems

    Science.gov (United States)

    Tenreiro Machado, J. A.

    2015-08-01

    This paper addresses the matrix representation of dynamical systems in the perspective of fractional calculus. Fractional elements and fractional systems are interpreted under the light of the classical Cole-Cole, Davidson-Cole, and Havriliak-Negami heuristic models. Numerical simulations for an electrical circuit enlighten the results for matrix based models and high fractional orders. The conclusions clarify the distinction between fractional elements and fractional systems.

  3. The Matrix Organization Revisited

    DEFF Research Database (Denmark)

    Gattiker, Urs E.; Ulhøi, John Parm

    1999-01-01

    This paper gives a short overview of matrix structure and technology management. It outlines some of the characteristics and also points out that many organizations may actualy be hybrids (i.e. mix several ways of organizing to allocate resorces effectively).......This paper gives a short overview of matrix structure and technology management. It outlines some of the characteristics and also points out that many organizations may actualy be hybrids (i.e. mix several ways of organizing to allocate resorces effectively)....

  4. Osteoblast Differentiation and Bone: Relevant proteins, regulatory processes and the vascular connection

    NARCIS (Netherlands)

    R.D.A.M. Alves (Rodrigo)

    2012-01-01

    textabstractBone is a highly specialized form of connective tissue present in most vertebrate animals as part of the endoskeleton. Structurally speaking, bone is mainly constituted by an organic extracellular matrix (ECM) hardened by deposited mineral. The blending between the organic and inorganic

  5. Current trends and future perspectives of bone substitute materials - from space holders to innovative biomaterials.

    Science.gov (United States)

    Kolk, Andreas; Handschel, Jörg; Drescher, Wolf; Rothamel, Daniel; Kloss, Frank; Blessmann, Marco; Heiland, Max; Wolff, Klaus-Dietrich; Smeets, Ralf

    2012-12-01

    An autologous bone graft is still the ideal material for the repair of craniofacial defects, but its availability is limited and harvesting can be associated with complications. Bone replacement materials as an alternative have a long history of success. With increasing technological advances the spectrum of grafting materials has broadened to allografts, xenografts, and synthetic materials, providing material specific advantages. A large number of bone-graft substitutes are available including allograft bone preparations such as demineralized bone matrix and calcium-based materials. More and more replacement materials consist of one or more components: an osteoconductive matrix, which supports the ingrowth of new bone; and osteoinductive proteins, which sustain mitogenesis of undifferentiated cells; and osteogenic cells (osteoblasts or osteoblast precursors), which are capable of forming bone in the proper environment. All substitutes can either replace autologous bone or expand an existing amount of autologous bone graft. Because an understanding of the properties of each material enables individual treatment concepts this review presents an overview of the principles of bone replacement, the types of graft materials available, and considers future perspectives. Bone substitutes are undergoing a change from a simple replacement material to an individually created composite biomaterial with osteoinductive properties to enable enhanced defect bridging.

  6. SERUM YKL-40 IS ASSOCIATED WITH BONE DISEASE IN MULTIPLE MYELOMA

    DEFF Research Database (Denmark)

    Mylin, Anne Kjærsgaard; Abildgaard, Niels; Johansen, Julia S.;

    2007-01-01

     Introduction. The secreted glycoprotein YKL-40 (CHI3L1, HC gp-39) is a potential player in the tumor-host interactions affecting several aspects of multiple myeloma (MM) including bone destruction. Previous studies support a role for YKL-40 in remodelling of the extracellular matrix...... to progression of myeloma-related bone disease. A potential role for YKL-40 in the bone disease of MM must be considered....

  7. Regulation of Osteoblast Survival by the Extracellular Matrix and Gravity

    Science.gov (United States)

    Globus. Ruth K.; Almeida, Eduardo A. C.; Searby, Nancy D.; Bowley, Susan M. (Technical Monitor)

    2000-01-01

    Spaceflight adversely affects the skeleton, posing a substantial risk to astronaut's health during long duration missions. The reduced bone mass observed in growing animals following spaceflight is due at least in part to inadequate bone formation by osteoblasts. Thus, it is of central importance to identify basic cellular mechanisms underlying normal bone formation. The fundamental ideas underlying our research are that interactions between extracellular matrix proteins, integrin adhesion receptors, cytoplasmic signaling and cytoskeletal proteins are key ingredients for the proper functioning of osteoblasts, and that gravity impacts these interactions. As an in vitro model system we used primary fetal rat calvarial cells which faithfully recapitulate osteoblast differentiation characteristically observed in vivo. We showed that specific integrin receptors ((alpha)3(beta)1), ((alpha)5(beta)1), ((alpha)8(betal)1) and extracellular matrix proteins (fibronectin, laminin) were needed for the differentiation of immature osteoblasts. In the course of maturation, cultured osteoblasts switched from depending on fibronectin and laminin for differentiation to depending on these proteins for their very survival. Furthermore, we found that manipulating the gravity vector using ground-based models resulted in activation of key intracellular survival signals generated by integrin/extracellular matrix interactions. We are currently testing the in vivo relevance of some of these observations using targeted transgenic technology. In conclusion, mechanical factors including gravity may participate in regulating survival via cellular interactions with the extracellular matrix. This leads us to speculate that microgravity adversely affects the survival of osteoblasts and contributes to spaceflight-induced osteoporosis.

  8. Bosonic Matrix Theory and Matrix Dbranes

    OpenAIRE

    Chaudhuri, Shyamoli

    2002-01-01

    We develop new tools for an in-depth study of our recent proposal for Matrix Theory. We construct the anomaly-free and finite planar continuum limit of the ground state with SO(2^{13}) symmetry matching with the tadpole and tachyon free IR stable high temperature ground state of the open and closed bosonic string. The correspondence between large N limits and spacetime effective actions is demonstrated more generally for an arbitrary D25brane ground state which might include brane-antibrane p...

  9. Microhardness of human cancellous bone tissue in progressive hip osteoarthritis.

    Science.gov (United States)

    Tomanik, Magdalena; Nikodem, Anna; Filipiak, Jarosław

    2016-12-01

    Bone tissue is a biological system in which the dynamic processes of, among others, bone formation or internal reconstruction will determine the spatial structure of the tissue and its mechanical properties. The appearance of a factor disturbing the balance between biological processes, e.g. a disease, will cause changes in the spatial structure of bones, thus affecting its mechanical properties. One of the bone diseases most common in an increasingly ageing population is osteoarthritis, also referred to as degenerative joint disease. It is estimated that in 2050 about 1300 million people will show symptoms of OA. The appearance of a pathological stimulus disturbs the balance of the processes of degradation and synthesis of articular cartilage, chondrocytes and the extracellular matrix, and the subchondral bone layer. As osteoarthritis progresses, study of the epiphysis reveals increasingly widespread changes of the articular surface and the internal structure of bone tissue. In this paper, the authors point out the differences in the mechanical properties of cancellous bone tissue forming the proximal epiphysis of the femoral bone during the progressive stages of OA. In order to determine microproperties of bone trabeculae, specimens from different stages of the disease (N=9) were subjected to microindentation testing, which made it possible to determine the material properties of bone tissue, such as microhardness HV and Young׳s modulus E. In addition, mechanical tests were supplemented with Raman spectroscopy, which determine the degree of bone mineralization, and measurements of structural properties based on analysis using microCT. The conducted tests were used to establish both quantitative and quantitative description of changes in the structural and mechanical properties connected with reorganization of trabeculae making up the bone in the various stages of osteoarthritis. The proposed description will supplement existing knowledge in the literature about

  10. Ca2+-induced self-assembly of Bombyx mori silk sericin into a nanofibrous network-like protein matrix for directing controlled nucleation of hydroxylapatite nano-needles

    OpenAIRE

    Yang, Mingying; Zhou, Guanshan; Shuai, Yajun; Wang, Jie; Zhu, Liangjun; Mao, Chuanbin

    2015-01-01

    Bone biomineralization is a well-regulated protein-mediated process where hydroxylapatite (HAP) crystals are nucleated with preferred orientation within self-assembled protein matrix. Mimicking this process is a promising approach to the production of bone-like protein/mineral nanocomposites for bone repair and regeneration. Towards the goal of fabricating such nanocomposites from sericin, a protein spun by Bombyx mori (B.mori) silkworm, and bone mineral HAP, for the first time we investigate...

  11. Strain energy density gradients in bone marrow predict osteoblast and osteoclast activity: a finite element study.

    Science.gov (United States)

    Webster, Duncan; Schulte, Friederike A; Lambers, Floor M; Kuhn, Gisela; Müller, Ralph

    2015-03-18

    Huiskes et al. hypothesized that mechanical strains sensed by osteocytes residing in trabecular bone dictate the magnitude of load-induced bone formation. More recently, the mechanical environment in bone marrow has also been implicated in bone׳s response to mechanical stimulation. In this study, we hypothesize that trabecular load-induced bone formation can be predicted by mechanical signals derived from an integrative µFE model, incorporating a description of both the bone and marrow phase. Using the mouse tail loading model in combination with in vivo micro-computed tomography (µCT) we tracked load induced changes in the sixth caudal vertebrae of C57BL/6 mice to quantify the amount of newly mineralized and eroded bone volumes. To identify the mechanical signals responsible for adaptation, local morphometric changes were compared to micro-finite element (µFE) models of vertebrae prior to loading. The mechanical parameters calculated were strain energy density (SED) on trabeculae at bone forming and resorbing surfaces, SED in the marrow at the boundary between bone forming and resorbing surfaces, along with SED in the trabecular bone and marrow volumes. The gradients of each parameter were also calculated. Simple regression analysis showed mean SED gradients in the trabecular bone matrix to significantly correlate with newly mineralized and eroded bone volumes R(2)=0.57 and 0.41, respectively, pbone marrow plays a significant role in determining osteoblast and osteoclast activity.

  12. Biophotonics and Bone Biology

    Science.gov (United States)

    Zimmerli, Gregory; Fischer, David; Asipauskas, Marius; Chauhan, Chirag; Compitello, Nicole; Burke, Jamie; Tate, Melissa Knothe

    2004-01-01

    One of the more-serious side effects of extended space flight is an accelerated bone loss [Bioastronautics Critical Path Roadmap, http://research.hq.nasa.gov/code_u/bcpr/index.cfm]. Rates of bone loss are highest in the weight-bearing bones of the hip and spine regions, and the average rate of bone loss as measured by bone mineral density measurements is around 1.2% per month for persons in a microgravity environment. It shows that an extrapolation of the microgravity induced bone loss rates to longer time scales, such as a 2.5 year round-trip to Mars (6 months out at 0 g, 1.5 year stay on Mars at 0.38 g, 6 months back at 0 g), could severely compromise the skeletal system of such a person.

  13. Bone tumors: Nursing care

    International Nuclear Information System (INIS)

    Bone tumors represent approximately 5% of childhood malignancies. osteosarcoma is the primary malignant bone tumor, accounting for 60% of cancer with peak incidence in the 2nd decade of life. Ewing's sarcoma is the second most common bone cancer with peak at a slightly younger age. This presentation discusses similarities and differences in the diagnosis and treatment of these two malignancies. Diagnostic procedures include plain radiographs, CT and MRI of the primary site, plain x-ray and CT of the chest, bone scan, and biopsy of the primary tumor. For patients diagnosed with Ewing's sarcoma, a bone marrow aspirate and biopsy will also be required. Our current approach to the treatment of bone tumors includes preoperative combination chemotherapy and en bloc surgical removal of the tumor followed by postoperative chemotherapy. In the case of Ewing's sarcoma, radiation therapy may be employed in addition to surgery, if margins are questionable of instead of surgery, if the tumor is not resectable

  14. Clinical and radiological studies upon a combined method for guided bone regeneration in experimental mandibular defects in dogs - a preliminary communication

    International Nuclear Information System (INIS)

    The treated bone defects were compared clinically and radiologically. After a 3-month period of survey, the best results were obtained in the group treated with partially demineralized bone matrix, enzymatically processed and lyophilized dura mater and mucoperiosteal flap. The placement of titanium screw dental implants did not impair the guided bone regeneration, that was confirmed by their good osteointegration

  15. Use of bone morphogenetic proteins in mesenchymal stem cell stimulation of cartilage and bone repair

    OpenAIRE

    Scarfì, Sonia

    2016-01-01

    The extracellular matrix-associated bone morphogenetic proteins (BMPs) govern a plethora of biological processes. The BMPs are members of the transforming growth factor-β protein superfamily, and they actively participate to kidney development, digit and limb formation, angiogenesis, tissue fibrosis and tumor development. Since their discovery, they have attracted attention for their fascinating perspectives in the regenerative medicine and tissue engineering fields. BMPs have been employed i...

  16. Matrix Information Geometry

    CERN Document Server

    Bhatia, Rajendra

    2013-01-01

    This book is an outcome of the Indo-French Workshop on Matrix Information Geometries (MIG): Applications in Sensor and Cognitive Systems Engineering, which was held in Ecole Polytechnique and Thales Research and Technology Center, Palaiseau, France, in February 23-25, 2011. The workshop was generously funded by the Indo-French Centre for the Promotion of Advanced Research (IFCPAR).  During the event, 22 renowned invited french or indian speakers gave lectures on their areas of expertise within the field of matrix analysis or processing. From these talks, a total of 17 original contribution or state-of-the-art chapters have been assembled in this volume. All articles were thoroughly peer-reviewed and improved, according to the suggestions of the international referees. The 17 contributions presented  are organized in three parts: (1) State-of-the-art surveys & original matrix theory work, (2) Advanced matrix theory for radar processing, and (3) Matrix-based signal processing applications.  

  17. Effects of microporous porcine acellular dermal matrix combined with bone marrow mesenchymal cells of rats on the regeneration of cutaneous appendages cells in nude mice%微孔化猪脱细胞真皮基质与大鼠骨髓间充质细胞对裸鼠皮肤附件细胞再生的作用

    Institute of Scientific and Technical Information of China (English)

    罗旭; 辛国华; 曾逃方; 林才; 曾元临; 李郁葱; 邱泽亮

    2013-01-01

    色清亮渗液;A、D组均未见明显脓性分泌物.B、C组皮片外观与周围皮肤颜色接近.(5)移植术后5、7 d,A、B、C组真皮基质的微孔结构中已见血管化,其内可见有形红细胞;D组移植皮片部分干燥坏死.移植术后14 d,A、B、C组真皮基质的微孔结构中已完全血管化,其内可见大量的红细胞.纵切片中,A组微孔真皮基质成活,但与其上所覆盖的无孔猪ADM未紧密结合;B、C组皮片与真皮基质间连接紧密,皮片中均未见皮肤附属器,C组创面皮片与真皮基质交接处可见特殊的单层细胞.(6)D组移植皮片末能成活,故放弃电镜观察.移植术后7d,A、B、C组透射电镜图片未见明显差别.移植术后14 d,A、B组移植物中未见皮脂腺样及汗腺样细胞,也未见新生神经末梢,仅见Fb迁入.C组创面刃厚皮与真皮基质交接处可见大量新生毛细血管增生,Fb粗面内质网分裂增殖旺盛,可见新生的无髓神经末梢;在真皮基质浅层,出现单个游离的皮脂腺样及汗腺样细胞 结论 LPADM为骨髓间充质细胞群的迁移和分化提供了“干细胞龛”样微环境,联合刃厚皮片移植可在体诱导外源性BMSC分化,实现部分皮肤附件的重建.%Objective To observe the effects of microporous porcine acellular dermal matrix (ADM) combined with bone marrow mesenchymal cells (BMMCs) population containing bone mesenchymal stem cells (BMSCs) of rats on the regeneration of cutaneous appendages cells in nude mice.Methods Split-thickness dermal grafts,20 cm × 10 cm in size and 0.3 mm in thickness,were prepared from a healthy pig which was sacrificed under sanitary condition.Laser microporous porcine ADM (LPADM) was produced by laser punching,hypertonic saline solution acellular method,and crosslinking treatment,and nonporous porcine ADM (NPADM) was produced by the latter two procedures.Then the appearance observation,histological examination and scanning electron microscope observation were

  18. Bone Regeneration in Odontostomatology

    OpenAIRE

    Tonelli, P; Duvina, M.; Brancato, L.; Delle Rose, G.; Biondi, E.; Civitelli, V.

    2010-01-01

    Maxillary edentulism, together with periodontal disease, is the condition that most frequently induces disruption of alveolar bone tissue. Indeed, the stimulus of the periodontal ligament is lost and the local bone tissue becomes subject to resorption processes that, in the six months following the loss of the tooth, result in alveolar defects or more extensive maxillary atrophy. In both cases, loss of vestibular cortical bone is followed by reduction in the vertical dimension of the alveolar...

  19. Percutaneous Bone Tumor Management

    OpenAIRE

    Gangi, Afshin; Buy, Xavier

    2010-01-01

    Interventional radiology plays a major role in the management of bone tumors. Many different percutaneous techniques are available. Some aim to treat pain and consolidate a pathological bone (cementoplasty); others aim to ablate tumor or reduce its volume (sclerotherapy, thermal ablation). In this article, image-guided techniques of primary and secondary bone tumors with vertebroplasty, ethanol injection, radiofrequency ablation, laser photocoagulation, cryoablation, and radiofrequency ioniza...

  20. Nanocomposites and bone regeneration

    Science.gov (United States)

    James, Roshan; Deng, Meng; Laurencin, Cato T.; Kumbar, Sangamesh G.

    2011-12-01

    This manuscript focuses on bone repair/regeneration using tissue engineering strategies, and highlights nanobiotechnology developments leading to novel nanocomposite systems. About 6.5 million fractures occur annually in USA, and about 550,000 of these individual cases required the application of a bone graft. Autogenous and allogenous bone have been most widely used for bone graft based therapies; however, there are significant problems such as donor shortage and risk of infection. Alternatives using synthetic and natural biomaterials have been developed, and some are commercially available for clinical applications requiring bone grafts. However, it remains a great challenge to design an ideal synthetic graft that very closely mimics the bone tissue structurally, and can modulate the desired function in osteoblast and progenitor cell populations. Nanobiomaterials, specifically nanocomposites composed of hydroxyapatite (HA) and/or collagen are extremely promising graft substitutes. The biocomposites can be fabricated to mimic the material composition of native bone tissue, and additionally, when using nano-HA (reduced grain size), one mimics the structural arrangement of native bone. A good understanding of bone biology and structure is critical to development of bone mimicking graft substitutes. HA and collagen exhibit excellent osteoconductive properties which can further modulate the regenerative/healing process following fracture injury. Combining with other polymeric biomaterials will reinforce the mechanical properties thus making the novel nano-HA based composites comparable to human bone. We report on recent studies using nanocomposites that have been fabricated as particles and nanofibers for regeneration of segmental bone defects. The research in nanocomposites, highlight a pivotal role in the future development of an ideal orthopaedic implant device, however further significant advancements are necessary to achieve clinical use.

  1. Fabrication of bioactive composite scaffolds by electrospinning for bone regeneration

    NARCIS (Netherlands)

    Nandakumar, Anandkumar; Fernandes, Hugo; Boer, de Jan; Moroni, Lorenzo; Habibovic, Pamela; Blitterswijk, van Clemens A.

    2010-01-01

    Electrospun scaffolds are widely used for various biomedical applications. In this study, we prepared electrospun bioactive composite scaffolds combining hydroxyapatite, collagen (Col) and a synthetic polymer—PolyActive™—to mimic naturally occurring extracellular matrix for in situ bone regeneration

  2. Identification of free nitric oxide radicals in rat bone marrow

    DEFF Research Database (Denmark)

    Aleksinskaya, Marina A; van Faassen, Ernst E H; Nelissen, Jelly;

    2013-01-01

    Nitric oxide (NO) has been implicated in matrix metallopeptidase 9 (MMP9)-dependent mobilization of hematopoietic stem and progenitor cells from bone marrow (BM). However, direct measurement of NO in the BM remained elusive due to its low in situ concentration and short lifetime. Using NO spin...

  3. Imaging of Bone Marrow.

    Science.gov (United States)

    Lin, Sopo; Ouyang, Tao; Kanekar, Sangam

    2016-08-01

    Bone marrow is the essential for function of hematopoiesis, which is vital for the normal functioning of the body. Bone marrow disorders or dysfunctions may be evaluated by blood workup, peripheral smears, marrow biopsy, plain radiographs, computed tomography (CT), MRI and nuclear medicine scan. It is important to distinguish normal spinal marrow from pathology to avoid missing a pathology or misinterpreting normal changes, either of which may result in further testing and increased health care costs. This article focuses on the diffuse bone marrow pathologies, because the majority of the bone marrow pathologies related to hematologic disorders are diffuse. PMID:27444005

  4. Bone marrow fat.

    Science.gov (United States)

    Hardouin, Pierre; Pansini, Vittorio; Cortet, Bernard

    2014-07-01

    Bone marrow fat (BMF) results from an accumulation of fat cells within the bone marrow. Fat is not a simple filling tissue but is now considered as an actor within bone microenvironment. BMF is not comparable to other fat depots, as in subcutaneous or visceral tissues. Recent studies on bone marrow adipocytes have shown that they do not appear only as storage cells, but also as cells secreting adipokines, like leptin and adiponectin. Moreover bone marrow adipocytes share the same precursor with osteoblasts, the mesenchymal stem cell. It is now well established that high BMF is associated with weak bone mass in osteoporosis, especially during aging and anorexia nervosa. But numerous questions remain discussed: what is the precise phenotype of bone marrow adipocytes? What is the real function of BMF, and how does bone marrow adipocyte act on its environment? Is the increase of BMF during osteoporosis responsible for bone loss? Is BMF involved in other diseases? How to measure BMF in humans? A better understanding of BMF could allow to obtain new diagnostic tools for osteoporosis management, and could open major therapeutic perspectives. PMID:24703396

  5. Biophotonics and Bone Biology

    Science.gov (United States)

    Zimmerli, Gregory; Fischer, David; Asipauskas, Marius; Chauhan, Chirag; Compitello, Nicole; Burke, Jamie; Tate, Melissa Knothe

    2004-01-01

    One of the more serious side effects of extended space flight is an accelerated bone loss. Rates of bone loss are highest in the weight-bearing bones of the hip and spine regions, and the average rate of bone loss as measured by bone mineral density measurements is around 1.2% per month for persons in a microgravity environment. It is well known that bone remodeling responds to mechanical forces. We are developing two-photon microscopy techniques to study bone tissue and bone cell cultures to better understand the fundamental response mechanism in bone remodeling. Osteoblast and osteoclast cell cultures are being studied, and the goal is to use molecular biology techniques in conjunction with Fluorescence Lifetime Imaging Microscopy (FLIM) to study the physiology of in-vitro cell cultures in response to various stimuli, such as fluid flow induced shear stress and mechanical stress. We have constructed a two-photon fluorescence microscope for these studies, and are currently incorporating FLIM detection. Current progress will be reviewed. This work is supported by the NASA John Glenn Biomedical Engineering Consortium.

  6. Hypercalciuric Bone Disease

    Science.gov (United States)

    Favus, Murray J.

    2008-09-01

    Hypercalciuria plays an important causal role in many patients with calcium oxalate (CaOx) stones. The source of the hypercalciuria includes increased intestinal Ca absorption and decreased renal tubule Ca reabsorption. In CaOx stone formers with idiopathic hypercalciuria (IH), Ca metabolic balance studies have revealed negative Ca balance and persistent hypercalciuria in the fasting state and during low dietary Ca intake. Bone resorption may also contribute to the high urine Ca excretion and increase the risk of bone loss. Indeed, low bone mass by DEXA scanning has been discovered in many IH patients. Thiazide diuretic agents reduce urine Ca excretion and may increase bone mineral density (BMD), thereby reducing fracture risk. Dietary Ca restriction that has been used unsuccessfully in the treatment of CaOx nephrolithiasis in the past may enhance negative Ca balance and accelerate bone loss. DEXA scans may demonstrate low BMD at the spine, hip, or forearm, with no predictable pattern. The unique pattern of bone histologic changes in IH differs from other causes of low DEXA bone density including postmenopausal osteoporosis, male hypogonadal osteoporosis, and glucocorticoid-induced osteoporosis. Hypercalciuria appears to play an important pathologic role in the development of low bone mass, and therefore correction of urine Ca losses should be a primary target for treatment of the bone disease accompanying IH.

  7. Nanocomposite Membranes Enhance Bone Regeneration Through Restoring Physiological Electric Microenvironment.

    Science.gov (United States)

    Zhang, Xuehui; Zhang, Chenguang; Lin, Yuanhua; Hu, Penghao; Shen, Yang; Wang, Ke; Meng, Song; Chai, Yuan; Dai, Xiaohan; Liu, Xing; Liu, Yun; Mo, Xiaoju; Cao, Cen; Li, Shue; Deng, Xuliang; Chen, Lili

    2016-08-23

    Physiological electric potential is well-known for its indispensable role in maintaining bone volume and quality. Although implanted biomaterials simulating structural, morphological, mechanical, and chemical properties of natural tissue or organ has been introduced in the field of bone regeneration, the concept of restoring physiological electric microenvironment remains ignored in biomaterials design. In this work, a flexible nanocomposite membrane mimicking the endogenous electric potential is fabricated to explore its bone defect repair efficiency. BaTiO3 nanoparticles (BTO NPs) were first coated with polydopamine. Then the composite membranes are fabricated with homogeneous distribution of Dopa@BTO NPs in poly(vinylidene fluoridetrifluoroethylene) (P(VDF-TrFE)) matrix. The surface potential of the nanocomposite membranes could be tuned up to -76.8 mV by optimizing the composition ratio and corona poling treatment, which conform to the level of endogenous biopotential. Remarkably, the surface potential of polarized nanocomposite membranes exhibited a dramatic stability with more than half of original surface potential remained up to 12 weeks in the condition of bone defect. In vitro, the membranes encouraged bone marrow mesenchymal stem cells (BM-MSCs) activity and osteogenic differentiation. In vivo, the membranes sustainably maintained the electric microenvironment giving rise to rapid bone regeneration and complete mature bone-structure formation. Our findings evidence that physiological electric potential repair should be paid sufficient attention in biomaterials design, and this concept might provide an innovative and well-suited strategy for bone regenerative therapies. PMID:27389708

  8. MATLAB matrix algebra

    CERN Document Server

    Pérez López, César

    2014-01-01

    MATLAB is a high-level language and environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java. MATLAB Matrix Algebra introduces you to the MATLAB language with practical hands-on instructions and results, allowing you to quickly achieve your goals. Starting with a look at symbolic and numeric variables, with an emphasis on vector and matrix variables, you will go on to examine functions and operations that support vectors and matrices as arguments, including those based on analytic parent functions. Computational methods for finding eigenvalues and eigenvectors of matrices are detailed, leading to various matrix decompositions. Applications such as change of bases, the classification of quadratic forms and ...

  9. Finite Temperature Matrix Theory

    CERN Document Server

    Meana, M L; Peñalba, J P; Meana, Marco Laucelli; Peñalba, Jesús Puente

    1998-01-01

    We present the way the Lorentz invariant canonical partition function for Matrix Theory as a light-cone formulation of M-theory can be computed. We explicitly show how when the eleventh dimension is decompactified, the N=1 eleven dimensional SUGRA partition function appears. From this particular analysis we also clarify the question about the discernibility problem when making statistics with supergravitons (the N! problem) in Matrix black hole configurations. We also provide a high temperature expansion which captures some structure of the canonical partition function when interactions amongst D-particles are on. The connection with the semi-classical computations thermalizing the open superstrings attached to a D-particle is also clarified through a Born-Oppenheimer approximation. Some ideas about how Matrix Theory would describe the complementary degrees of freedom of the massless content of eleven dimensional SUGRA are also discussed.

  10. Dynamic Matrix Rank

    DEFF Research Database (Denmark)

    Frandsen, Gudmund Skovbjerg; Frandsen, Peter Frands

    2009-01-01

    We consider maintaining information about the rank of a matrix under changes of the entries. For n×n matrices, we show an upper bound of O(n1.575) arithmetic operations and a lower bound of Ω(n) arithmetic operations per element change. The upper bound is valid when changing up to O(n0.575) entries...... in a single column of the matrix. We also give an algorithm that maintains the rank using O(n2) arithmetic operations per rank one update. These bounds appear to be the first nontrivial bounds for the problem. The upper bounds are valid for arbitrary fields, whereas the lower bound is valid for algebraically...... closed fields. The upper bound for element updates uses fast rectangular matrix multiplication, and the lower bound involves further development of an earlier technique for proving lower bounds for dynamic computation of rational functions....

  11. Nonenzymatic Glycation and Degree of Mineralization Are Higher in Bone From Fractured Patients With Type 1 Diabetes Mellitus.

    Science.gov (United States)

    Farlay, Delphine; Armas, Laura A G; Gineyts, Evelyne; Akhter, Mohammed P; Recker, Robert R; Boivin, Georges

    2016-01-01

    Low-energy fractures are frequent complications in type 1 diabetes mellitus patients (T1DM). Modifications of bone intrinsic composition might be a potential cause of fragility observed in diabetic subjects. Advanced glycation end products (AGEs) were found in numerous connective tissues from T1DM patients. However, whether AGEs are present at high levels in bone matrix from diabetic subjects is unknown. Moreover, whether elevated AGEs in the bone matrix impair mineralization has not been addressed in humans. The purposes of this study were 1) to determine whether bone matrix from fracturing and nonfracturing T1DM contained more AGEs than bone from healthy patients (CTL), and 2) to compare the degree of mineralization of bone and hardness between fracturing and nonfracturing T1DM versus CTL. We analyzed iliac crest bone biopsies from 5 fracturing T1DM patients, 5 nonfracturing T1DM patients, and 5 healthy subjects, all age- and sex-matched. AGEs (pentosidine) in bone matrix was measured by high-performance liquid chromatography separately in trabecular and cortical bone. The degree of mineralization of bone (DMB) was assessed by digitized microradiography, and mechanical properties by micro- and nanohardness tests. Trabecular bone from fracturing T1DM exhibited significantly higher levels of pentosidine than CTL (p = 0.04) and was more mineralized than nonfracturing T1DM (p = 0.04) and CTL (p = 0.04). Trabecular bone was not significantly different in pentosidine between nonfracturing T1DM and CTL. Cortical bone from nonfracturing T1DM was not significantly different from CTL. Positive correlations were found between HbA1c and pentosidine (r' = 0.79, p < 0.003) and between HbA1c and DMB (r' = 0.64, p < 0.02). Both modifications could lead to less flexible bone (reduced modulus of elasticity) and a tendency toward low-energy fractures in T1DM patients.

  12. Demineralized bone matrix and human cancellous bone enhance fixation of titanium implants

    DEFF Research Database (Denmark)

    Babiker, Hassan; Ding, Ming; Overgaard, Søren

    from human tissue were included (IsoTis OrthoBiologics, Inc. USA). Both materials are commercially available. Titanium alloy implants (Biomet Inc.) of 10 mm in length and 10 mm in diameter were inserted bilaterally into the femoral condyles of 8 skeletally mature sheep. Thus four implants...

  13. DIY Bertin Matrix

    OpenAIRE

    Perin, Charles; Le Goc, Mathieu; Di Vozzo, Romain; Fekete, Jean-Daniel; Dragicevic, Pierre

    2015-01-01

    In this paper, we relate the iterative fabrication of a physical Bertin Matrix. Jacques Bertin designed and refined such devices over 10 years (1970–1980) and five iterations of what he called Dominos 1–5. For the purpose of an exhibit dedicated to Bertin's work during VIS 2014 in Paris, we designed an improved version of such device by leveraging modern fabrication possibilities and in particular a laser cutter. We describe the process, iterations and improvements of our matrix, and report l...

  14. Reduced Google matrix

    CERN Document Server

    Frahm, K M

    2016-01-01

    Using parallels with the quantum scattering theory, developed for processes in nuclear and mesoscopic physics and quantum chaos, we construct a reduced Google matrix $G_R$ which describes the properties and interactions of a certain subset of selected nodes belonging to a much larger directed network. The matrix $G_R$ takes into account effective interactions between subset nodes by all their indirect links via the whole network. We argue that this approach gives new possibilities to analyze effective interactions in a group of nodes embedded in a large directed networks. Possible efficient numerical methods for the practical computation of $G_R$ are also described.

  15. Elementary matrix algebra

    CERN Document Server

    Hohn, Franz E

    2012-01-01

    This complete and coherent exposition, complemented by numerous illustrative examples, offers readers a text that can teach by itself. Fully rigorous in its treatment, it offers a mathematically sound sequencing of topics. The work starts with the most basic laws of matrix algebra and progresses to the sweep-out process for obtaining the complete solution of any given system of linear equations - homogeneous or nonhomogeneous - and the role of matrix algebra in the presentation of useful geometric ideas, techniques, and terminology.Other subjects include the complete treatment of the structur

  16. A nonsupersymmetric matrix orbifold

    OpenAIRE

    Banks, Tom; Motl, Lubos

    1999-01-01

    We construct the matrix description for a twisted version of the IIA string theory on S^1 with fermions antiperiodic around a spatial circle. The result is a 2+1-dimensional U(N) x U(N) nonsupersymmetric Yang-Mills theory with fermionic matter transforming in the (N,Nbar). The two U(N)'s are exchanged if one goes around a twisted circle of the worldvolume. Relations with Type 0 theories are explored and we find Type 0 matrix string limits of our gauge theory. We argue however that most of the...

  17. Complex matrix model duality

    Energy Technology Data Exchange (ETDEWEB)

    Brown, T.W.

    2010-11-15

    The same complex matrix model calculates both tachyon scattering for the c=1 non-critical string at the self-dual radius and certain correlation functions of half-BPS operators in N=4 super- Yang-Mills. It is dual to another complex matrix model where the couplings of the first model are encoded in the Kontsevich-like variables of the second. The duality between the theories is mirrored by the duality of their Feynman diagrams. Analogously to the Hermitian Kontsevich- Penner model, the correlation functions of the second model can be written as sums over discrete points in subspaces of the moduli space of punctured Riemann surfaces. (orig.)

  18. Complex matrix model duality

    International Nuclear Information System (INIS)

    The same complex matrix model calculates both tachyon scattering for the c=1 non-critical string at the self-dual radius and certain correlation functions of half-BPS operators in N=4 super- Yang-Mills. It is dual to another complex matrix model where the couplings of the first model are encoded in the Kontsevich-like variables of the second. The duality between the theories is mirrored by the duality of their Feynman diagrams. Analogously to the Hermitian Kontsevich- Penner model, the correlation functions of the second model can be written as sums over discrete points in subspaces of the moduli space of punctured Riemann surfaces. (orig.)

  19. Matrixed business support comparison study.

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, Josh D.

    2004-11-01

    The Matrixed Business Support Comparison Study reviewed the current matrixed Chief Financial Officer (CFO) division staff models at Sandia National Laboratories. There were two primary drivers of this analysis: (1) the increasing number of financial staff matrixed to mission customers and (2) the desire to further understand the matrix process and the opportunities and challenges it creates.

  20. Determinants of microdamage in elderly human vertebral trabecular bone.

    Directory of Open Access Journals (Sweden)

    Hélène Follet

    Full Text Available Previous studies have shown that microdamage accumulates in bone as a result of physiological loading and occurs naturally in human trabecular bone. The purpose of this study was to determine the factors associated with pre-existing microdamage in human vertebral trabecular bone, namely age, architecture, hardness, mineral and organic matrix. Trabecular bone cores were collected from human L2 vertebrae (n = 53 from donors 54-95 years of age (22 men and 30 women, 1 unknown and previous cited parameters were evaluated. Collagen cross-link content (PYD, DPD, PEN and % of collagen was measured on surrounding trabecular bone. We found that determinants of microdamage were mostly the age of donors, architecture, mineral characteristics and mature enzymatic cross-links. Moreover, linear microcracks were mostly associated with the bone matrix characteristics whereas diffuse damage was associated with architecture. We conclude that linear and diffuse types of microdamage seemed to have different determinants, with age being critical for both types.

  1. Building bone tissue: matrices and scaffolds in physiology and biotechnology

    Directory of Open Access Journals (Sweden)

    Riminucci M.

    2003-01-01

    Full Text Available Deposition of bone in physiology involves timed secretion, deposition and removal of a complex array of extracellular matrix proteins which appear in a defined temporal and spatial sequence. Mineralization itself plays a role in dictating and spatially orienting the deposition of matrix. Many aspects of the physiological process are recapitulated in systems of autologous or xenogeneic transplantation of osteogenic precursor cells developed for tissue engineering or modeling. For example, deposition of bone sialoprotein, a member of the small integrin-binding ligand, N-linked glycoprotein family, represents the first step of bone formation in ectopic transplantation systems in vivo. The use of mineralized scaffolds for guiding bone tissue engineering has revealed unexpected manners in which the scaffold and cells interact with each other, so that a complex interplay of integration and disintegration of the scaffold ultimately results in efficient and desirable, although unpredictable, effects. Likewise, the manner in which biomaterial scaffolds are "resorbed" by osteoclasts in vitro and in vivo highlights more complex scenarios than predicted from knowledge of physiological bone resorption per se. Investigation of novel biomaterials for bone engineering represents an essential area for the design of tissue engineering strategies.

  2. Ameloblastin is not implicated in bone remodelling and repair

    Directory of Open Access Journals (Sweden)

    S Kuroda

    2011-07-01

    Full Text Available Ameloblastin (AMBN is an enamel matrix protein produced by ameloblasts. It has been suggested that AMBN might also be implicated in craniofacial bone formation. Our objective was to determine whether AMBN has an effect on osteogenic mineralisation and influences bone remodelling and repair. MC3T3-E1 cells were screened for endogenous expression of enamel proteins using real time PCR. Various osteogenic cells were infected with lentivirus encoding for AMBN and protein expression was verified using immunochemistry. Cultures were stained with alizarin red and mineralisation was quantified. Healing bone was probed for expression of AMBN by DNA microarray analysis. Tooth extraction, experimental tooth movement (ETM, and creation of a non-critical size bone defect in the tibia (BDT were carried out in wild type and AMBNΔ5-6 mutant mice. Tissues were processed for immunolabelling of AMBN and Bril, an osteoblast specific protein associated with active bone formation. MC3T3-E1 cells and healing bone showed no significant expression of AMBN. Overexpression of AMBN in osteogenic cultures induced no noticeable changes in mineralisation. In wild type mice, AMBN was immunodetected in ameloblasts and enamel, but not in normal bone, and at sites where bone remodelling and repair were induced. Bone remodelling during ETM and BDT repair in AMBNΔ5-6 mice were not significantly different from that in wild type animals. Our results suggest that AMBN does not influence osteogenic activity in vitro under the conditions used, and does not participate in craniofacial bone remodelling under mechanical stress and in repair of non-critical size bone defects.

  3. Phase field approaches of bone remodeling based on TIP

    Science.gov (United States)

    Ganghoffer, Jean-François; Rahouadj, Rachid; Boisse, Julien; Forest, Samuel

    2016-01-01

    The process of bone remodeling includes a cycle of repair, renewal, and optimization. This adaptation process, in response to variations in external loads and chemical driving factors, involves three main types of bone cells: osteoclasts, which remove the old pre-existing bone; osteoblasts, which form the new bone in a second phase; osteocytes, which are sensing cells embedded into the bone matrix, trigger the aforementioned sequence of events. The remodeling process involves mineralization of the bone in the diffuse interface separating the marrow, which contains all specialized cells, from the newly formed bone. The main objective advocated in this contribution is the setting up of a modeling and simulation framework relying on the phase field method to capture the evolution of the diffuse interface between the new bone and the marrow at the scale of individual trabeculae. The phase field describes the degree of mineralization of this diffuse interface; it varies continuously between the lower value (no mineral) and unity (fully mineralized phase, e.g. new bone), allowing the consideration of a diffuse moving interface. The modeling framework is the theory of continuous media, for which field equations for the mechanical, chemical, and interfacial phenomena are written, based on the thermodynamics of irreversible processes. Additional models for the cellular activity are formulated to describe the coupling of the cell activity responsible for bone production/resorption to the kinetics of the internal variables. Kinetic equations for the internal variables are obtained from a pseudo-potential of dissipation. The combination of the balance equations for the microforce associated to the phase field and the kinetic equations lead to the Ginzburg-Landau equation satisfied by the phase field with a source term accounting for the dissipative microforce. Simulations illustrating the proposed framework are performed in a one-dimensional situation showing the evolution of

  4. [Reducing bone resorption by cathepsin K inhibitor and treatment of osteoporosis].

    Science.gov (United States)

    Watanabe, Reiko; Okazaki, Ryo

    2014-01-01

    Cathepsin K is a lysosomal cysteine protease, secreted from osteoclasts. It plays a major role in the osteoclastic bone resorption by cleaving type 1 collagen, the major bone matrix protein, under acidic pH. In cathepsin K knockout mice, bone mineral density (BMD) is increased, bone resorption is decreased without reduction in the number of osteoclast whereas bone formation is decreased. Based on these results, cathepsin K inhibitors have been developed for the treatment of osteoporosis. Odanacatib is one of them and is perhaps closest for launching. In phase 1 and 2 trials, it markedly reduced bone resorption with a transient reduction in bone formation, thus resulted in a robust increase in both trabecular and cortical BMD in osteoporotics. Currently, Odanacatib is in phase 3 fracture prevention trial, of which results are anticipated in 2014. PMID:24369281

  5. Accelerated growth plate mineralization and foreshortened proximal limb bones in fetuin-A knockout mice.

    Science.gov (United States)

    Seto, Jong; Busse, Björn; Gupta, Himadri S; Schäfer, Cora; Krauss, Stefanie; Dunlop, John W C; Masic, Admir; Kerschnitzki, Michael; Zaslansky, Paul; Boesecke, Peter; Catalá-Lehnen, Philip; Schinke, Thorsten; Fratzl, Peter; Jahnen-Dechent, Willi

    2012-01-01

    The plasma protein fetuin-A/alpha2-HS-glycoprotein (genetic symbol Ahsg) is a systemic inhibitor of extraskeletal mineralization, which is best underscored by the excessive mineral deposition found in various tissues of fetuin-A deficient mice on the calcification-prone genetic background DBA/2. Fetuin-A is known to accumulate in the bone matrix thus an effect of fetuin-A on skeletal mineralization is expected. We examined the bones of fetuin-A deficient mice maintained on a C57BL/6 genetic background to avoid bone disease secondary to renal calcification. Here, we show that fetuin-A deficient mice display normal trabecular bone mass in the spine, but increased cortical thickness in the femur. Bone material properties, as well as mineral and collagen characteristics of cortical bone were unaffected by the absence of fetuin-A. In contrast, the long bones especially proximal limb bones were severely stunted in fetuin-A deficient mice compared to wildtype littermates, resulting in increased biomechanical stability of fetuin-A deficient femora in three-point-bending tests. Elevated backscattered electron signal intensities reflected an increased mineral content in the growth plates of fetuin-A deficient long bones, corroborating its physiological role as an inhibitor of excessive mineralization in the growth plate cartilage matrix--a site of vigorous physiological mineralization. We show that in the case of fetuin-A deficiency, active mineralization inhibition is a necessity for proper long bone growth.

  6. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... diagnosis of bone cancer . locate foreign objects in soft tissues around or in bones. top of page How ... Dense bone absorbs much of the radiation while soft tissue, such as muscle, fat and organs, allow more ...

  7. Bone marrow (stem cell) donation

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000839.htm Bone marrow (stem cell) donation To use the sharing ... stem cells from a donor's blood. Types of Bone Marrow Donation There are two types of bone ...

  8. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... or in bones. top of page How should I prepare? Most bone x-rays require no special ... to 10 minutes. top of page What will I experience during and after the procedure? A bone ...

  9. Bone Marrow Aspiration and Biopsy

    Science.gov (United States)

    ... Global Sites Search Help? Bone Marrow Aspiration and Biopsy Share this page: Was this page helpful? Also ... Examination Formal name: Bone Marrow Aspiration; Bone Marrow Biopsy Related tests: Complete Blood Count ; WBC Differential ; Reticulocyte ...

  10. Exercise for Your Bone Health

    Science.gov (United States)

    ... supported by your browser. Home Bone Basics Lifestyle Exercise for Your Bone Health Publication available in: PDF ( ... A Complete Osteoporosis Program For Your Information Why Exercise? Like muscle, bone is living tissue that responds ...

  11. Anti-transforming growth factor ß antibody treatment rescues bone loss and prevents breast cancer metastasis to bone.

    Science.gov (United States)

    Biswas, Swati; Nyman, Jeffry S; Alvarez, JoAnn; Chakrabarti, Anwesa; Ayres, Austin; Sterling, Julie; Edwards, James; Rana, Tapasi; Johnson, Rachelle; Perrien, Daniel S; Lonning, Scott; Shyr, Yu; Matrisian, Lynn M; Mundy, Gregory R

    2011-01-01

    Breast cancer often metastasizes to bone causing osteolytic bone resorption which releases active TGFβ. Because TGFβ favors progression of breast cancer metastasis to bone, we hypothesized that treatment using anti-TGFβ antibody may reduce tumor burden and rescue tumor-associated bone loss in metastatic breast cancer. In this study we have tested the efficacy of an anti-TGFβ antibody 1D11 preventing breast cancer bone metastasis. We have used two preclinical breast cancer bone metastasis models, in which either human breast cancer cells or murine mammary tumor cells were injected in host mice via left cardiac ventricle. Using several in vivo, in vitro and ex vivo assays, we have demonstrated that anti-TGFβ antibody treatment have significantly reduced tumor burden in the bone along with a statistically significant threefold reduction in osteolytic lesion number and tenfold reduction in osteolytic lesion area. A decrease in osteoclast numbers (p = 0.027) in vivo and osteoclastogenesis ex vivo were also observed. Most importantly, in tumor-bearing mice, anti-TGFβ treatment resulted in a twofold increase in bone volume (ptreatment with anti-TGFβ antibody increased the mineral-to-collagen ratio in vivo, a reflection of improved tissue level properties. Moreover, anti-TGFβ antibody directly increased mineralized matrix formation in calverial osteoblast (p = 0.005), suggesting a direct beneficial role of anti-TGFβ antibody treatment on osteoblasts. Data presented here demonstrate that anti-TGFβ treatment may offer a novel therapeutic option for tumor-induced bone disease and has the dual potential for simultaneously decreasing tumor burden and rescue bone loss in breast cancer to bone metastases. This approach of intervention has the potential to reduce skeletal related events (SREs) in breast cancer survivors.

  12. Event matrix system

    International Nuclear Information System (INIS)

    The number of background events in nuclear and particle physics experiments which use multiwire proportional chambers can be extremely high. Using a computer to resolve these events results in a high deadtime for the experiment. A fast matrix system for decreasing the number of background events is described in this report. 4 figures

  13. Matrix Embedded Organic Synthesis

    Science.gov (United States)

    Kamakolanu, U. G.; Freund, F. T.

    2016-05-01

    In the matrix of minerals such as olivine, a redox reaction of the low-z elements occurs. Oxygen is oxidized to the peroxy state while the low-Z-elements become chemically reduced. We assign them a formula [CxHyOzNiSj]n- and call them proto-organics.

  14. Challenging the CSCW matrix

    DEFF Research Database (Denmark)

    Jørnø, Rasmus Leth Vergmann; Gynther, Karsten; Christensen, Ove

    2014-01-01

    useful information, we question whether the axis of time and space comprising the matrix pertains to relevant defining properties of the tools, technology or learning environments to which they are applied. Subsequently we offer an example of an Adobe Connect e-learning session as an illustration...

  15. Matrix model holography

    OpenAIRE

    Ortiz, Thomas; Samtleben, Henning; Tsimpis, Dimitrios

    2014-01-01

    We set up the formalism of holographic renormalization for the matter-coupled two-dimensional maximal supergravity that captures the low-lying fluctuations around the non-conformal D0-brane near-horizon geometry. As an application we compute holographically one- and two-point functions of the BFSS matrix quantum mechanics and its supersymmetric $SO(3)\\times SO(6)$ deformation.

  16. Constructing the matrix

    Science.gov (United States)

    Elliott, John

    2012-09-01

    As part of our 'toolkit' for analysing an extraterrestrial signal, the facility for calculating structural affinity to known phenomena must be part of our core capabilities. Without such a resource, we risk compromising our potential for detection and decipherment or at least causing significant delay in the process. To create such a repository for assessing structural affinity, all known systems (language parameters) need to be structurally analysed to 'place' their 'system' within a relational communication matrix. This will need to include all known variants of language structure, whether 'living' (in current use) or ancient; this must also include endeavours to incorporate yet undeciphered scripts and non-human communication, to provide as complete a picture as possible. In creating such a relational matrix, post-detection decipherment will be assisted by a structural 'map' that will have the potential for 'placing' an alien communication with its nearest known 'neighbour', to assist subsequent categorisation of basic parameters as a precursor to decipherment. 'Universal' attributes and behavioural characteristics of known communication structure will form a range of templates (Elliott, 2001 [1] and Elliott et al., 2002 [2]), to support and optimise our attempt at categorising and deciphering the content of an extraterrestrial signal. Detection of the hierarchical layers, which comprise intelligent, complex communication, will then form a matrix of calculations that will ultimately score affinity through a relational matrix of structural comparison. In this paper we develop the rationales and demonstrate functionality with initial test results.

  17. Empirical codon substitution matrix

    Directory of Open Access Journals (Sweden)

    Gonnet Gaston H

    2005-06-01

    Full Text Available Abstract Background Codon substitution probabilities are used in many types of molecular evolution studies such as determining Ka/Ks ratios, creating ancestral DNA sequences or aligning coding DNA. Until the recent dramatic increase in genomic data enabled construction of empirical matrices, researchers relied on parameterized models of codon evolution. Here we present the first empirical codon substitution matrix entirely built from alignments of coding sequences from vertebrate DNA and thus provide an alternative to parameterized models of codon evolution. Results A set of 17,502 alignments of orthologous sequences from five vertebrate genomes yielded 8.3 million aligned codons from which the number of substitutions between codons were counted. From this data, both a probability matrix and a matrix of similarity scores were computed. They are 64 × 64 matrices describing the substitutions between all codons. Substitutions from sense codons to stop codons are not considered, resulting in block diagonal matrices consisting of 61 × 61 entries for the sense codons and 3 × 3 entries for the stop codons. Conclusion The amount of genomic data currently available allowed for the construction of an empirical codon substitution matrix. However, more sequence data is still needed to construct matrices from different subsets of DNA, specific to kingdoms, evolutionary distance or different amount of synonymous change. Codon mutation matrices have advantages for alignments up to medium evolutionary distances and for usages that require DNA such as ancestral reconstruction of DNA sequences and the calculation of Ka/Ks ratios.

  18. Spatiotemporal Analyses of Osteogenesis and Angiogenesis via Intravital Imaging in Cranial Bone Defect Repair.

    Science.gov (United States)

    Huang, Chunlan; Ness, Vincent P; Yang, Xiaochuan; Chen, Hongli; Luo, Jiebo; Brown, Edward B; Zhang, Xinping

    2015-07-01

    Osteogenesis and angiogenesis are two integrated components in bone repair and regeneration. A deeper understanding of osteogenesis and angiogenesis has been hampered by technical difficulties of analyzing bone and neovasculature simultaneously in spatiotemporal scales and in 3D formats. To overcome these barriers, a cranial defect window chamber model was established that enabled high-resolution, longitudinal, and real-time tracking of angiogenesis and bone defect healing via multiphoton laser scanning microscopy (MPLSM). By simultaneously probing new bone matrix via second harmonic generation (SHG), neovascular networks via intravenous perfusion of fluorophore, and osteoblast differentiation via 2.3-kb collagen type I promoter-driven GFP (Col2.3GFP), we examined the morphogenetic sequence of cranial bone defect healing and further established the spatiotemporal analyses of osteogenesis and angiogenesis coupling in repair and regeneration. We showed that bone defect closure was initiated in the residual bone around the edge of the defect. The expansion and migration of osteoprogenitors into the bone defect occurred during the first 3 weeks of healing, coupled with vigorous microvessel angiogenesis at the leading edge of the defect. Subsequent bone repair was marked by matrix deposition and active vascular network remodeling within new bone. Implantation of bone marrow stromal cells (BMSCs) isolated from Col2.3GFP mice further showed that donor-dependent bone formation occurred rapidly within the first 3 weeks of implantation, in concert with early angiogenesis. The subsequent bone wound closure was largely host-dependent, associated with localized modest induction of angiogenesis. The establishment of a live imaging platform via cranial window provides a unique tool to understand osteogenesis and angiogenesis in repair and regeneration, enabling further elucidation of the spatiotemporal regulatory mechanisms of osteoprogenitor cell interactions with host bone

  19. Enamel matrix protein derivatives: role in periodontal regeneration

    OpenAIRE

    Rathva VJ

    2011-01-01

    Vandana J RathvaDepartment of Periodontics, KM Shah Dental College and Hospital, Sumandeep University, Gujarat, IndiaAbstract: The role of regenerative periodontal therapy is the reconstitution of lost periodontal structures, ie, new formation of root cementum, periodontal ligament, and alveolar bone. The outcome of basic research has pointed to the important role of enamel matrix protein derivative (EMD) in periodontal wound healing. Histologic results from animal and human studies have show...

  20. Abnormal bone formation induced by implantation of osteosarcoma-derived bone-inducing substance in the X-linked hypophosphatemic mouse

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, H.; Masuhara, K.; Takaoka, K.; Ono, K.; Tanaka, H.; Seino, Y.

    1985-01-01

    The X-linked hypophosphatemic mouse (Hyp) has been proposed as a model for the human familial hypophosphatemia (the most common form of vitamin D-resistant rickets). An osteosarcoma-derived bone-inducing substance was subcutaneously implanted into the Hyp mouse. The implant was consistently replaced by cartilage tissue at 2 weeks after implantation. The cartilage matrix seemed to be normal, according to the histological examination, and 35sulphur (TVS) uptake was also normal. Up to 4 weeks after implantation the cartilage matrix was completely replaced by unmineralized bone matrix and hematopoietic bone marrow. Osteoid tissue arising from the implantation of bone inducing substance in the Hyp mouse showed no radiologic or histologic sign of calcification. These findings suggest that the abnormalities of endochondral ossification in the Hyp mouse might be characterized by the failure of mineralization in cartilage and bone matrix. Analysis of the effects of bone-inducing substance on the Hyp mouse may help to give greater insight into the mechanism and treatment of human familial hypophosphatemia.