WorldWideScience

Sample records for bone flow-induced mechanotransduction

  1. Mechanotransduction by bone cells in vitro: mechanobiology of bone tissue

    NARCIS (Netherlands)

    Mullender, M.; El Haj, A.J.; Yang, Y.; van Duin, M.A.; Burger, E.H.; Klein-Nulend, J.

    2004-01-01

    Mechanical force plays an important role in the regulation of bone remodelling in intact bone and bone repair. In vitro, bone cells demonstrate a high responsiveness to mechanical stimuli. Much debate exists regarding the critical components in the load profile and whether different components, such

  2. Bone as an ion exchange system: evidence for a link between mechanotransduction and metabolic needs.

    Science.gov (United States)

    Rubinacci, A; Covini, M; Bisogni, C; Villa, I; Galli, M; Palumbo, C; Ferretti, M; Muglia, M A; Marotti, G

    2002-04-01

    To detect whether the mutual interaction occurring between the osteocytes-bone lining cells system (OBLCS) and the bone extracellular fluid (BECF) is affected by load through a modification of the BECF-extracellular fluid (ECF; systemic extracellular fluid) gradient, mice metatarsal bones immersed in ECF were subjected ex vivo to a 2-min cyclic axial load of different amplitudes and frequencies. The electric (ionic) currents at the bone surface were measured by a vibrating probe after having exposed BECF to ECF through a transcortical hole. The application of different loads and different frequencies increased the ionic current in a dose-dependent manner. The postload current density subsequently decayed following an exponential pattern. Postload increment's amplitude and decay were dependent on bone viability. Dummy and static loads did not induce current density modifications. Because BECF is perturbed by loading, it is conceivable that OBLCS tends to restore BECF preload conditions by controlling ion fluxes at the bone-plasma interface to fulfill metabolic needs. Because the electric current reflects the integrated activity of OBLCS, its evaluation in transgenic mice engineered to possess genetic lesions in channels or matrix constituents could be helpful in the characterization of the mechanical and metabolic functions of bone.

  3. [Mechanotransduction and tensegrity (I)].

    Science.gov (United States)

    Mustaţă, T; Rusu, V

    1998-01-01

    The current review deals with mechanotransduction by means of an architectural model of cell function called tensegrity. This concept was introduced by D. E. Ingber in order to frame more focused mechanisms of mechano-transduction, i.e. different signaling pathways, which are less able to predict global cellular behaviour in response to stress, into a coherent mechano-chemical theory of cell function. Tensegrity structures are made and held up by interconnecting a continuous series of tension elements with a discontinuous series of compression resistant struts, in a simple "stick and string" model. These structures develops an intrinsic stabilizing tension called prestress and reacts by global rearrangements of their configuration to a local action of a mechanical stress. The only requirement of a tensegrity network is that tension is continuous and compression is local. At the cellular level the theory assumes that membrane, nucleus and all the organelles are hard-wired by the insoluble cytoskeletal (CSK) scaffold. More than that, the interconnection between CSK and the extracellular matrix (ECM) provides an efficient mechanical couple responsible for changes in cell shape and movement. Cell shape, in turn, regulates cellular function. Focal adhesion complexes, which mediate the CSK-ECM interaction are viewed as integrative devices for both mechanical signaling and soluble factor-dependent signaling. Furthermore, the tensegral molecular network is considered to be a solid-state regulatory system of all cell functions. The way tensegrity influences molecular mechanics, cellular response tuning and coordinated behaviour of large scale structures are also discussed. Besides its conceptual importance, the tensegrity model has multiple applications, being used in combined approach of cell biology, bioengineering, architecture, and biomechanics in order both to improve cell culture and its subsequent applications and the open the way to a more complex technology of

  4. Cell mechanics and mechanotransduction: pathways, probes, and physiology.

    Science.gov (United States)

    Huang, Hayden; Kamm, Roger D; Lee, Richard T

    2004-07-01

    Cells face not only a complex biochemical environment but also a diverse biomechanical environment. How cells respond to variations in mechanical forces is critical in homeostasis and many diseases. The mechanisms by which mechanical forces lead to eventual biochemical and molecular responses remain undefined, and unraveling this mystery will undoubtedly provide new insight into strengthening bone, growing cartilage, improving cardiac contractility, and constructing tissues for artificial organs. In this article we review the physical bases underlying the mechanotransduction process, techniques used to apply controlled mechanical stresses on living cells and tissues to probe mechanotransduction, and some of the important lessons that we are learning from mechanical stimulation of cells with precisely controlled forces.

  5. A Mathematical Model of Mechanotransduction

    CERN Document Server

    Roth, Bradley J

    2016-01-01

    This article reviews the mechanical bidomain model, a mathematical description how the extracellular matrix and intracellular cytoskeleton are coupled by integrin proteins. The fundamental hypothesis is that differences between intracellular and extracellular displacements drive mechanotransduction. A one-dimensional example illustrates the model, which is then extended to two dimensions. In several cases the equations are solved analytically, illustrating how displacements divide into two parts: monodomain displacements are identical in both spaces and therefore do not contribute to mechanotransduction, whereas bidomain displacements cause mechanotransduction. A new length constant depends on the intracellular and extracellular shear moduli and the integrin spring constant, and bidomain effects often occur within a few length constants of the tissue edge. Numerical methods for solving the model equations are being developed. Precursors to the model and potential applications are discussed. The bidomain model...

  6. Identification of Elongated Primary Cilia with Impaired Mechanotransduction in Idiopathic Scoliosis Patients

    Science.gov (United States)

    Oliazadeh, Niaz; Gorman, Kristen F.; Eveleigh, Robert; Bourque, Guillaume; Moreau, Alain

    2017-01-01

    The primary cilium is an outward projecting antenna-like organelle with an important role in bone mechanotransduction. The capacity to sense mechanical stimuli can affect important cellular and molecular aspects of bone tissue. Idiopathic scoliosis (IS) is a complex pediatric disease of unknown cause, defined by abnormal spinal curvatures. We demonstrate significant elongation of primary cilia in IS patient bone cells. In response to mechanical stimulation, these IS cells differentially express osteogenic factors, mechanosensitive genes, and signaling genes. Considering that numerous ciliary genes are associated with a scoliosis phenotype, among ciliopathies and knockout animal models, we expected IS patients to have an accumulation of rare variants in ciliary genes. Instead, our SKAT-O analysis of whole exomes showed an enrichment among IS patients for rare variants in genes with a role in cellular mechanotransduction. Our data indicates defective cilia in IS bone cells, which may be linked to heterogeneous gene variants pertaining to cellular mechanotransduction. PMID:28290481

  7. THE ROLE OF MECHANOTRANSDUCTION IN OSTEOPOROSIS PATOPHYSIOLOGY

    Directory of Open Access Journals (Sweden)

    Yuliana **

    2013-04-01

    Full Text Available Osteoporosis is o[en encountered by elderly people. It can cause fracture. This disease can be prevented by doing physical activity. Osteocyte as mechanosensory cell, has important role in mechanotransduction system. There are four anabolic transduction signals, i.e. Wnt pathway, BMP/transforming growth factor (TGF-pathway, ER pathway, and growth hormone/insulin-like growth Factor (IGF-I pathway. Any disorder on mechanotransduction system will cause osteoporosis.

  8. Mechanotransduction in epidermal Merkel cells.

    Science.gov (United States)

    Nakatani, Masashi; Maksimovic, Srdjan; Baba, Yoshichika; Lumpkin, Ellen A

    2015-01-01

    The cellular and molecular basis of vertebrate touch reception remains least understood among the traditional five senses. Somatosensory afferents that innervate the skin encode distinct tactile qualities, such as flutter, slip, and pressure. Gentle touch is thought to be transduced by somatosensory afferents whose tactile end organs selectively filter mechanical stimuli. These tactile end organs comprise afferent terminals in association with non-neuronal cell types such as Merkel cells, keratinocytes, and Schwann cells. An open question is whether these non-neuronal cells serve primarily as passive mechanical filters or whether they actively participate in mechanosensory transduction. This question has been most extensively studied in Merkel cells, which are epidermal cells that complex with sensory afferents in regions of high tactile acuity such as fingertips, whisker follicles, and touch domes. Merkel cell-neurite complexes mediate slowly adapting type I (SAI) responses, which encode sustained pressure and represent object features with high fidelity. How Merkel cells contribute to unique SAI firing patterns has been debated for decades; however, three recent studies in rodent models provide some direct answers. First, whole-cell recordings demonstrate that Merkel cells are touch-sensitive cells with fast, mechanically activated currents that require Piezo2. Second, optogenetics and intact recordings show that Merkel cells mediate sustained SAI firing. Finally, loss-of-function studies in transgenic mouse models reveal that SAI afferents are also touch sensitive. Together, these studies identify molecular mechanisms of mechanotransduction in Merkel cells, reveal unexpected functions for these cells in touch, and support a revised, two-receptor site model of mechanosensory transduction.

  9. Mechanotransductive surfaces for reversible biocatalysis activation

    Science.gov (United States)

    Mertz, Damien; Vogt, Cédric; Hemmerlé, Joseph; Mutterer, Jérôme; Ball, Vincent; Voegel, Jean-Claude; Schaaf, Pierre; Lavalle, Philippe

    2009-09-01

    Fibronectin, like other proteins involved in mechanotransduction, has the ability to exhibit recognition sites under mechanical stretch. Such cryptic sites are buried inside the protein structure in the native fold and become exposed under an applied force, thereby activating specific signalling pathways. Here, we report the design of new active polymeric nanoassembled surfaces that show some similarities to these cryptic sites. These nanoassemblies consist of a first polyelectrolyte multilayer stratum loaded with enzymes and capped with a second polyelectrolyte multilayer acting as a mechanically sensitive nanobarrier. The biocatalytic activity of the film is switched on/off reversibly by mechanical stretching, which exposes enzymes through the capping barrier, similarly to mechanisms involved in proteins during mechanotransduction. This first example of a new class of biologically inspired surfaces should have great potential in the design of various devices aimed to trigger and modulate chemical reactions by mechanical action with applications in the field of microfluidic devices or mechanically controlled biopatches for example.

  10. YAP-mediated mechanotransduction in skeletal muscle

    Directory of Open Access Journals (Sweden)

    Martina eFischer

    2016-02-01

    Full Text Available Skeletal muscle is not only translating chemical energy into mechanical work, it is also a highly adaptive and regenerative tissue whose architecture and functionality is determined by its mechanical and physical environment. Processing intra- and extracellular mechanical signaling cues contributes to the regulation of cell growth, survival, migration and differentiation. Yes-associated Protein (YAP, a transcriptional coactivator downstream of the Hippo pathway and its paralogue, the transcriptional co-activator with PDZ-binding motif (TAZ, were recently found to play a key role in mechanotransduction in various tissues including skeletal muscle. Furthermore, YAP/TAZ modulate myogenesis and muscle regeneration and abnormal YAP activity has been reported in muscular dystrophy and rhabdomyosarcoma. Here, we summarize the current knowledge of mechanosensing and -signaling in striated muscle. We highlight the role of YAP signaling and discuss the different routes and hypotheses of its regulation in the context of mechanotransduction.

  11. Heparan sulfate proteoglycans mediate interstitial flow mechanotransduction regulating MMP-13 expression and cell motility via FAK-ERK in 3D collagen.

    Directory of Open Access Journals (Sweden)

    Zhong-Dong Shi

    Full Text Available BACKGROUND: Interstitial flow directly affects cells that reside in tissues and regulates tissue physiology and pathology by modulating important cellular processes including proliferation, differentiation, and migration. However, the structures that cells utilize to sense interstitial flow in a 3-dimensional (3D environment have not yet been elucidated. Previously, we have shown that interstitial flow upregulates matrix metalloproteinase (MMP expression in rat vascular smooth muscle cells (SMCs and fibroblasts/myofibroblasts via activation of an ERK1/2-c-Jun pathway, which in turn promotes cell migration in collagen. Herein, we focused on uncovering the flow-induced mechanotransduction mechanism in 3D. METHODOLOGY/PRINCIPAL FINDINGS: Cleavage of rat vascular SMC surface glycocalyx heparan sulfate (HS chains from proteoglycan (PG core proteins by heparinase or disruption of HS biosynthesis by silencing N-deacetylase/N-sulfotransferase 1 (NDST1 suppressed interstitial flow-induced ERK1/2 activation, interstitial collagenase (MMP-13 expression, and SMC motility in 3D collagen. Inhibition or knockdown of focal adhesion kinase (FAK also attenuated or blocked flow-induced ERK1/2 activation, MMP-13 expression, and cell motility. Interstitial flow induced FAK phosphorylation at Tyr925, and this activation was blocked when heparan sulfate proteoglycans (HSPGs were disrupted. These data suggest that HSPGs mediate interstitial flow-induced mechanotransduction through FAK-ERK. In addition, we show that integrins are crucial for mechanotransduction through HSPGs as they mediate cell spreading and maintain cytoskeletal rigidity. CONCLUSIONS/SIGNIFICANCE: We propose a conceptual mechanotransduction model wherein cell surface glycocalyx HSPGs, in the presence of integrin-mediated cell-matrix adhesions and cytoskeleton organization, sense interstitial flow and activate the FAK-ERK signaling axis, leading to upregulation of MMP expression and cell motility in 3D

  12. Mechanotransduction as an Adaptation to Gravity

    Science.gov (United States)

    Najrana, Tanbir; Sanchez-Esteban, Juan

    2016-01-01

    Gravity has played a critical role in the development of terrestrial life. A key event in evolution has been the development of mechanisms to sense and transduce gravitational force into biological signals. The objective of this manuscript is to review how living organisms on Earth use mechanotransduction as an adaptation to gravity. Certain cells have evolved specialized structures, such as otoliths in hair cells of the inner ear and statoliths in plants, to respond directly to the force of gravity. By conducting studies in the reduced gravity of spaceflight (microgravity) or simulating microgravity in the laboratory, we have gained insights into how gravity might have changed life on Earth. We review how microgravity affects prokaryotic and eukaryotic cells at the cellular and molecular levels. Genomic studies in yeast have identified changes in genes involved in budding, cell polarity, and cell separation regulated by Ras, PI3K, and TOR signaling pathways. Moreover, transcriptomic analysis of late pregnant rats have revealed that microgravity affects genes that regulate circadian clocks, activate mechanotransduction pathways, and induce changes in immune response, metabolism, and cells proliferation. Importantly, these studies identified genes that modify chromatin structure and methylation, suggesting that long-term adaptation to gravity may be mediated by epigenetic modifications. Given that gravity represents a modification in mechanical stresses encounter by the cells, the tensegrity model of cytoskeletal architecture provides an excellent paradigm to explain how changes in the balance of forces, which are transmitted across transmembrane receptors and cytoskeleton, can influence intracellular signaling pathways and gene expression. PMID:28083527

  13. Ion Permeation and Mechanotransduction Mechanisms of Mechanosensitive Piezo Channels.

    Science.gov (United States)

    Zhao, Qiancheng; Wu, Kun; Geng, Jie; Chi, Shaopeng; Wang, Yanfeng; Zhi, Peng; Zhang, Mingmin; Xiao, Bailong

    2016-03-16

    Piezo proteins have been proposed as the long-sought-after mechanosensitive cation channels in mammals that play critical roles in various mechanotransduction processes. However, the molecular bases that underlie their ion permeation and mechanotransduction have remained functionally undefined. Here we report our finding of the miniature pore-forming module of Piezo1 that resembles the pore architecture of other trimeric channels and encodes the essential pore properties. We further identified specific residues within the pore module that determine unitary conductance, pore blockage and ion selectivity for divalent and monovalent cations and anions. The non-pore-containing region of Piezo1 confers mechanosensitivity to mechano-insensitive trimeric acid-sensing ion channels, demonstrating that Piezo1 channels possess intrinsic mechanotransduction modules separate from their pore modules. In conclusion, this is the first report on the bona fide pore module and mechanotransduction components of Piezo channels, which define their ion-conducting properties and gating by mechanical stimuli, respectively.

  14. YAP-mediated mechanotransduction regulates osteogenic and adipogenic differentiation of BMSCs on hierarchical structure.

    Science.gov (United States)

    Pan, Houhua; Xie, Youtao; Zhang, Zequan; Li, Kai; Hu, Dandan; Zheng, Xuebin; Fan, Qiming; Tang, Tingting

    2017-04-01

    Hierarchical structure mimicking the natural bone microenvironment has been considered as a promising platform to regulate cell functions. We have previously fabricated hierarchical macropore/nanowire structure and evidence has shown that it can better manipulate the cytoskeleton status and osteogenic performance of osteoblasts. However, how cues of hierarchical structure are translated and ultimately linked to BMSC lineage commitment have still remained elusive, which hinders the accurate knowledge and further development of the hierarchical structure. In this study, bone marrow-derived mesenchymal stem cells (BMSCs) fate on hierarchical structure was investigated as well as the detailed mechanisms. It was shown that well-developed cytoskeleton and focal adhesion were observed for BMSCs on hierarchical structure, which was accompanied by enhanced osteogenic and depressed adipogenic potential. Evidence of increased YAP activity and nuclear translocation were exhibited on hierarchical structure and YAP knockdown inhibited osteogenic differentiation and promoted adipogenic differentiation induced by hierarchical structure. Further remove of cytoskeleton tension inhibited YAP function, which confirmed the key role of YAP-mediated mechanotransduction in the BMSC differentiation. These results together provide information of the stem cell fate commitment on hierarchical structure and a promising approach to design advanced biomaterials by focusing on specific mechanotransduction process.

  15. Biophysical Tools to Study Cellular Mechanotransduction

    Directory of Open Access Journals (Sweden)

    Ismaeel Muhamed

    2017-02-01

    Full Text Available The cell membrane is the interface that volumetrically isolates cellular components from the cell’s environment. Proteins embedded within and on the membrane have varied biological functions: reception of external biochemical signals, as membrane channels, amplification and regulation of chemical signals through secondary messenger molecules, controlled exocytosis, endocytosis, phagocytosis, organized recruitment and sequestration of cytosolic complex proteins, cell division processes, organization of the cytoskeleton and more. The membrane’s bioelectrical role is enabled by the physiologically controlled release and accumulation of electrochemical potential modulating molecules across the membrane through specialized ion channels (e.g., Na+, Ca2+, K+ channels. The membrane’s biomechanical functions include sensing external forces and/or the rigidity of the external environment through force transmission, specific conformational changes and/or signaling through mechanoreceptors (e.g., platelet endothelial cell adhesion molecule (PECAM, vascular endothelial (VE-cadherin, epithelial (E-cadherin, integrin embedded in the membrane. Certain mechanical stimulations through specific receptor complexes induce electrical and/or chemical impulses in cells and propagate across cells and tissues. These biomechanical sensory and biochemical responses have profound implications in normal physiology and disease. Here, we discuss the tools that facilitate the understanding of mechanosensitive adhesion receptors. This article is structured to provide a broad biochemical and mechanobiology background to introduce a freshman mechano-biologist to the field of mechanotransduction, with deeper study enabled by many of the references cited herein.

  16. Mechanotransduction pathways in skeletal muscle hypertrophy.

    Science.gov (United States)

    Yamada, André Katayama; Verlengia, Rozangela; Bueno Junior, Carlos Roberto

    2012-02-01

    In the last decade, molecular biology has contributed to define some of the cellular events that trigger skeletal muscle hypertrophy. Recent evidence shows that insulin like growth factor 1/phosphatidyl inositol 3-kinase/protein kinase B (IGF-1/PI3K/Akt) signaling is not the main pathway towards load-induced skeletal muscle hypertrophy. During load-induced skeletal muscle hypertrophy process, activation of mTORC1 does not require classical growth factor signaling. One potential mechanism that would activate mTORC1 is increased synthesis of phosphatidic acid (PA). Despite the huge progress in this field, it is still early to affirm which molecular event induces hypertrophy in response to mechanical overload. Until now, it seems that mTORC1 is the key regulator of load-induced skeletal muscle hypertrophy. On the other hand, how mTORC1 is activated by PA is unclear, and therefore these mechanisms have to be determined in the following years. The understanding of these molecular events may result in promising therapies for the treatment of muscle-wasting diseases. For now, the best approach is a good regime of resistance exercise training. The objective of this point-of-view paper is to highlight mechanotransduction events, with focus on the mechanisms of mTORC1 and PA activation, and the role of IGF-1 on hypertrophy process.

  17. Calcium's Role in Mechanotransduction during Muscle Development

    Directory of Open Access Journals (Sweden)

    Tatiana Benavides Damm

    2014-01-01

    Full Text Available Mechanotransduction is a process where cells sense their surroundings and convert the physical forces in their environment into an appropriate response. Calcium plays a crucial role in the translation of such forces to biochemical signals that control various biological processes fundamental in muscle development. The mechanical stimulation of muscle cells may for example result from stretch, electric and magnetic stimulation, shear stress, and altered gravity exposure. The response, mainly involving changes in intracellular calcium concentration then leads to a cascade of events by the activation of downstream signaling pathways. The key calcium-dependent pathways described here include the nuclear factor of activated T cells (NFAT and mitogen-activated protein kinase (MAPK activation. The subsequent effects in cellular homeostasis consist of cytoskeletal remodeling, cell cycle progression, growth, differentiation, and apoptosis, all necessary for healthy muscle development, repair, and regeneration. A deregulation from the normal process due to disuse, trauma, or disease can result in a clinical condition such as muscle atrophy, which entails a significant loss of muscle mass. In order to develop therapies against such diseased states, we need to better understand the relevance of calcium signaling and the downstream responses to mechanical forces in skeletal muscle. The purpose of this review is to discuss in detail how diverse mechanical stimuli cause changes in calcium homeostasis by affecting membrane channels and the intracellular stores, which in turn regulate multiple pathways that impart these effects and control the fate of muscle tissue.

  18. Response Of Mineralizing And Non-Mineralizing Bone Cells To Fluid Flow: An In Vitro Model For Mechanotransruction

    Science.gov (United States)

    Makuch, Lauren A.

    2004-01-01

    Humans reach peak bone mass at age 30. After this point, we lose 1 to 2 percent of bone mass each decade. In the microgravity environment of space, astronauts lose bone mass at an accelerated rate of 1 to 2 percent each month. When astronauts travel to Mars, they may be in space for as long as 3 years. During this time, they may lose about half of their bone mass from weight-bearing bones. This loss may be irreversible. The drastic loss in bone that astronauts experience in space makes them much more vulnerable to fractures. In addition, the corresponding removal of calcium from bone results in higher levels of calcium in the blood, which increases the risk of developing kidney stones. Currently, studies are being conducted which investigate factors governing bone adaptation and mechanotransduction. Bone is constantly adapting in response to mechanical stimuli. Increased mechanical loading stimulates bone formation and suppresses bone resorption. Reduction in mechanical loading caused by bedrest, disuse, or microgravity results in decreased bone formation and possibly increased bone resorption. Osteoblasts and osteoclasts are the two main cell types that participate in bone remodeling. Osteoblasts are anabolic (bone-forming) cells and osteoclasts are catabolic (bone-resorbing) cells. In microgravity, the activity of osteoblasts slows down and the activity of osteoclasts may speed up, causing a loss of bone density. Mechanotransduction, the molecular mechanism by which mechanical stimuli are converted to biochemical signals, is not yet understood. Exposure of cells to fluid flow imposes a shear stress on the cells. Several studies have shown that the shear stress that results from fluid flow induces a cellular response similar to that induced by mechanical loading. Thus, fluid flow can be used as an in vitro model to simulate the mechanical stress that bone cells experience in vivo. Previous in vitro studies have shown that fluid flow induces several responses in

  19. Transient bioimpedance monitoring of mechanotransduction in artificial tissue during indentation

    Directory of Open Access Journals (Sweden)

    David Cheneler

    2014-09-01

    Full Text Available Mechanotransduction is of fundamental importance in cell physiology, facilitating sensing in touch and hearing as well as tissue development and wound healing. This study used an impedance sensor to monitor the effective resistance and permittivity of artificial tissues, alginate hydrogel with encapsulated fibroblasts, which were kept viable through the use of a bespoke microfluidic system. The observed transient impedance responses upon the application of identical compressive normal loads differed between acellular hydrogels and hydrogels in which fibroblasts were encapsulated. These differences resulted from changes in the conductivity and permeability of the hydrogel due to the presence of the encapsulated fibroblasts, and transient changes in ion concentrations due to mechanotransduction effects.

  20. High-throughput microcavitation bubble induced cellular mechanotransduction

    Science.gov (United States)

    Compton, Jonathan Lee

    Focused pulsed laser irradiation allows for the deposition of energy with high spatial and temporal resolution. These attributes provide an optimal tool for non-contact manipulation in cellular biology such as laser microsurgery, cell membrane permeabilization, as well as targeted cell death. In this thesis we investigate the direct physical effects produced by laser- generated microcavitation bubbles in adherent cell cultures. We examine how variation in pulse durations (180 ps - 6ns) and pulse energy (0.5 - 40 mu;J) affect microcavitation bubble (mu;CB) generated cell lysis, necrosis, and molecular delivery. To compare the effects of pulse duration we employ classical fluid dynamics modeling to quantify the perturbation caused on cell populations from mu;CB generated microTsunamis (a transient microscale burst of hydrodynamic shear stress). Through time-resolved imaging we capture the mu;CB dynamics at various energies and pulse durations. Moreover, the mathematical modeling provides information regarding the cellular exposure to time varying shear stress and impulse as a function of radial location from the mu;CB center. We demonstrate that the resultant cellular effect can be predicted based on the total impulse across a two order of magnitude span of pulse duration and pulse energy. We also examine the region of cells beyond the zone of molecular delivery to investigate possible cellular reactions to mu;Tsunami exposure. Our studies have shown that cellular mechanotransduction occurs within cell populations spanning an area of up to 1 mm2 surrounding the mu;CB. Visualization of mechanotransduction is achieved through the visualization of intracellular calcium signaling via fluorescence microscopy that occurs due to the ability of the muTsunami generated shear stresses to stimulate G-protein coupled receptors at the apical cell surface. Moreover, we have shown that the observed signaling can be attenuated in a dose-dependent manner using 2-APB which is a known

  1. Flow-induced crystallization in isotactic polypropylene

    Science.gov (United States)

    Hamad, Fawzi Ghassan

    Brief intervals of strong flow stretch chains in a semicrystalline polymer melt, which results in an increase in the nuclei number density and a transformation of the crystal structure. This flow-induced crystallization (FIC) phenomenon is explored in this study using highly isotactic polypropylene (iPP) samples. Using one synthesized and five commercial linear isotactic polypropylene samples, we investigate the FIC behavior by imposing shear onto these samples in a rotational rheometer. Equipped with a good temperature control and flexible shear protocol, we apply different temperature and flow conditions. The magnitude of the FIC effect varies with basic processing parameters (shear rate, specific work, crystallization temperature, and shearing temperature) and material properties (totalistic, molecular weight distribution, and particle concentration in the polymer). The scope of this study is to systematically investigate the influences of these parameters on FIC. The FIC effects that are investigated in this dissertation are: crystallization kinetics, persistence time of flow-induced nuclei, and crystal morphology. The crystallization time was measured in the rheometer by monitoring the onset of crystallization after quenching samples sheared above Tm. These samples were subsequently used to study their flow-induced nuclei persistence time and crystal morphology. The lifetime of flow-induced nuclei was determined by measuring the time required to return from FIC back to quiescent crystallization using a differential scanning calorimeter. The crystal morphology was imaged using polarized optical microscopy and atomic force microscopy. We investigated the influence of specific work on the three FIC characteristics, and found three regimes that are separated by the critical work ( Wc) and the saturation work (Wsat) thresholds. Below the critical work threshold, the morphology is composed of mostly spherulite crystals, which keep a constant volume, and a small

  2. Bone

    Science.gov (United States)

    Helmberger, Thomas K.; Hoffmann, Ralf-Thorsten

    The typical clinical signs in bone tumours are pain, destruction and destabilization, immobilization, neurologic deficits, and finally functional impairment. Primary malignant bone tumours are a rare entity, accounting for about 0.2% of all malignancies. Also benign primary bone tumours are in total rare and mostly asymptomatic. The most common symptomatic benign bone tumour is osteoid osteoma with an incidence of 1:2000.

  3. Varicose Veins: Role of Mechanotransduction of Venous Hypertension

    Science.gov (United States)

    Atta, Hussein M.

    2012-01-01

    Varicose veins affect approximately one-third of the adult population and result in significant psychological, physical, and financial burden. Nevertheless, the molecular pathogenesis of varicose vein formation remains unidentified. Venous hypertension exerted on veins of the lower extremity is considered the principal factor in varicose vein formation. The role of mechanotransduction of the high venous pressure in the pathogenesis of varicose vein formation has not been adequately investigated despite a good progress in understanding the mechanomolecular mechanisms involved in transduction of high blood pressure in the arterial wall. Understanding the nature of the mechanical forces, the mechanosensors and mechanotransducers in the vein wall, and the downstream signaling pathways will provide new molecular targets for the prevention and treatment of varicose veins. This paper summarized the current understanding of mechano-molecular pathways involved in transduction of hemodynamic forces induced by blood pressure and tries to relate this information to setting of venous hypertension in varicose veins. PMID:22489273

  4. Varicose Veins: Role of Mechanotransduction of Venous Hypertension

    Directory of Open Access Journals (Sweden)

    Hussein M. Atta

    2012-01-01

    Full Text Available Varicose veins affect approximately one-third of the adult population and result in significant psychological, physical, and financial burden. Nevertheless, the molecular pathogenesis of varicose vein formation remains unidentified. Venous hypertension exerted on veins of the lower extremity is considered the principal factor in varicose vein formation. The role of mechanotransduction of the high venous pressure in the pathogenesis of varicose vein formation has not been adequately investigated despite a good progress in understanding the mechanomolecular mechanisms involved in transduction of high blood pressure in the arterial wall. Understanding the nature of the mechanical forces, the mechanosensors and mechanotransducers in the vein wall, and the downstream signaling pathways will provide new molecular targets for the prevention and treatment of varicose veins. This paper summarized the current understanding of mechano-molecular pathways involved in transduction of hemodynamic forces induced by blood pressure and tries to relate this information to setting of venous hypertension in varicose veins.

  5. Mechanotransduction Across the Cell Surface and Through the Cytoskeleton

    Science.gov (United States)

    Wang, Ning; Butler, James P.; Ingber, Donald E.

    1993-05-01

    Mechanical stresses were applied directly to cell surface receptors with a magnetic twisting device. The extracellular matrix receptor, integrin β_1, induced focal adhesion formation and supported a force-dependent stiffening response, whereas nonadhesion receptors did not. The cytoskeletal stiffness (ratio of stress to strain) increased in direct proportion to the applied stress and required intact microtubules and intermediate filaments as well as microfilaments. Tensegrity models that incorporate mechanically interdependent struts and strings that reorient globally in response to a localized stress mimicked this response. These results suggest that integrins act as mechanoreceptors and transmit mechanical signals to the cytoskeleton. Mechanotransduction, in turn, may be mediated simultaneously at multiple locations inside the cell through force-induced rearrangements within a tensionally integrated cytoskeleton.

  6. [CHARACTERISTICS OF OSTEOCYTE CELL LINES FROM BONES FORMED AS A RESULT OF MEMBRANOUS (SKULL BONES) AND CHONDRAL (LONG BONES) OSSIFICATION].

    Science.gov (United States)

    Avrunin, A S; Doktorov, A A

    2016-01-01

    The aim of this work was to analyze the literature data and the results of authors' own research, to answer the question--if the osteocytes of bone tissues resulting from membranous and chondral ossification, belong to one or to different cell lines. The differences between the cells of osteocyte lines derived from bones resulting from membranous and chondral ossification were established in: 1) the magnitude of the mechanical signal, initiating the development of the process of mechanotransduction; 2) the nature of the relationship between the magnitude of the mechanical signal that initiates the reorganization of the architecture of bone structures and the resource of their strength; in membranous bones significantly lower mechanical signal caused a substantially greater increment of bone strength resource; 3) the biological activity of bone structures, bone fragments formed from membranous tissue were more optimal for transplantation; 4) the characteristics of expression of functional markers of bone cells at different stages of their differentiation; 5) the nature of the reaction of bone cells to mechanical stress; 6) the sensitivity of bone cells to one of the factors controlling the process of mechanotransduction (PGI2); 7) the functioning of osteocytes during lactation. These differences reflect the functional requirements to the bones of the skeleton--the supporting function in the bones of the limbs and the shaping and protection in the bones of the cranial vault. These data suggest that the results of research conducted on the bones of the skull, should not be transferred to the entire skeleton as a whole.

  7. From mechanotransduction to extracellular matrix gene expression in fibroblasts.

    Science.gov (United States)

    Chiquet, Matthias; Gelman, Laurent; Lutz, Roman; Maier, Silke

    2009-05-01

    Tissue mechanics provide an important context for tissue growth, maintenance and function. On the level of organs, external mechanical forces largely influence the control of tissue homeostasis by endo- and paracrine factors. On the cellular level, it is well known that most normal cell types depend on physical interactions with their extracellular matrix in order to respond efficiently to growth factors. Fibroblasts and other adherent cells sense changes in physical parameters in their extracellular matrix environment, transduce mechanical into chemical information, and integrate these signals with growth factor derived stimuli to achieve specific changes in gene expression. For connective tissue cells, production of the extracellular matrix is a prominent response to changes in mechanical load. We will review the evidence that integrin-containing cell-matrix adhesion contacts are essential for force transmission from the extracellular matrix to the cytoskeleton, and describe novel experiments indicating that mechanotransduction in fibroblasts depends on focal adhesion adaptor proteins that might function as molecular springs. We will stress the importance of the contractile actin cytoskeleton in balancing external with internal forces, and describe new results linking force-controlled actin dynamics directly to the expression of specific genes, among them the extracellular matrix protein tenascin-C. As assembly lines for diverse signaling pathways, matrix adhesion contacts are now recognized as the major sites of crosstalk between mechanical and chemical stimuli, with important consequences for cell growth and differentiation.

  8. Flow Induced Electrification of Liquid Insulated Systems.

    Science.gov (United States)

    Washabaugh, Andrew Patrick

    1995-01-01

    The transport or motion of semi-insulating liquids has led to flow induced static electrification and catastrophic failures in several industries. While techniques for reducing the hazard have been developed, the roles of seemingly important parameters are poorly understood. The objective of this thesis was to measure and understand the fundamental parameters of the flow electrification process that, together with the laws of electroquasistatics and physicochemical hydrodynamics, can be used to predict the performance of complex flow systems, with particular attention to transformer applications. A rotating cylindrical electrode apparatus, which provided cylindrical Couette flow, was used to simulate flow electrification in an electric power transformer. The apparatus had Shell Diala A transformer oil filling the annulus between coaxial cylindrical stainless steel electrodes that were either bare metal, or covered by a thin copper sheet and/or EHV-Weidmann HiVal pressboard insulation. Extensive experiments characterized the time transient and steady state behavior of the electrification through measurements of the volume charge density, the terminal voltage, and the terminal current as the system was driven out of equilibrium by changes in the flow rate (inner cylinder rotation rates of 100-1400 rpm, Reynolds numbers of 5 times 10^3-5 times 10^5), temperature (15-70 ^circ), insulation moisture content (0.5-20 ppm in the oil), applied voltage (0-2 kV DC), and concentration of the non-ionizable anti-static additive 1,2,3 benzotriazole (BTA, 0-60 ppm). Generally, the electrification increased with flow rate and temperature but the BTA appeared to cause competing effects: it decreased the volume charge density on the liquid side of the interface (by a factor of 4), which reduces the electrification, but also decreased the oil conductivity (by a factor of 10), which enhances the electrification. A critical oil BTA concentration of 5 -8 ppm minimized the electrification

  9. Cadherin mechanotransduction in morphogenesis: the importance of α-catenin and vinculin

    NARCIS (Netherlands)

    Han, MKL

    2016-01-01

    The actomyosin contractile tension that is transmitted and regulated at cadherin-based cell-cell adhesions, greatly contributes to cell shape, cell migration, and coordinated tissue formation and organization. In a process termed mechanotransduction, the protein complexes in cell adhesions are able

  10. Mechanotransduction in mouse inner ear hair cells requires transmembrane channel-like genes

    NARCIS (Netherlands)

    Kawashima, Yoshiyuki; Geleoc, Gwenaelle S. G.; Kurima, Kiyoto; Labay, Valentina; Lelli, Andrea; Asai, Yukako; Makishima, Tomoko; Wu, Doris K.; Della Santina, Charles C.; Holt, Jeffrey R.; Griffith, Andrew J.

    2011-01-01

    Inner ear hair cells convert the mechanical stimuli of sound, gravity, and head movement into electrical signals. This mechanotransduction process is initiated by opening of cation channels near the tips of hair cell stereocilia. Since the identity of these ion channels is unknown, and mutations in

  11. αE-catenin-dependent mechanotransduction is essential for proper convergent extension in zebrafish

    Science.gov (United States)

    Han, Mitchell K. L.; Hoijman, Esteban; Nöel, Emily; Garric, Laurence; Bakkers, Jeroen

    2016-01-01

    ABSTRACT Cadherin complexes mediate cell-cell adhesion and are crucial for embryonic development. Besides their structural function, cadherin complexes also transduce tension across the junction-actomyosin axis into proportional biochemical responses. Central to this mechanotransduction is the stretching of the cadherin-F-actin-linker α-catenin, which opens its central domain for binding to effectors such as vinculin. Mechanical unfolding of α-catenin leads to force-dependent reinforcement of cadherin-based junctions as studied in cell culture. The importance of cadherin mechanotransduction for embryonic development has not been studied yet. Here we used TALEN-mediated gene disruption to perturb endogenous αE-catenin in zebrafish development. Zygotic α-catenin mutants fail to maintain their epithelial barrier, resulting in tissue rupturing. We then specifically disrupted mechanotransduction, while maintaining cadherin adhesion, by expressing an αE-catenin construct in which the mechanosensitive domain was perturbed. Expression of either wild-type or mechano-defective α-catenin fully rescues barrier function in α-catenin mutants; however, expression of mechano-defective α-catenin also induces convergence and extension defects. Specifically, the polarization of cadherin-dependent, lamellipodia-driven cell migration of the lateral mesoderm was lost. These results indicate that cadherin mechanotransduction is crucial for proper zebrafish morphogenesis, and uncover one of the essential processes affected by its perturbation. PMID:27612508

  12. Flow induced charging of liquids in reduced gravity

    Energy Technology Data Exchange (ETDEWEB)

    Pettit, D.R.

    1996-02-01

    Microgravity experiments on free fluid surfaces of large length scale could be subject to experimental artifact from flow induced charging. Under conditions favorable for flow induced charging, flowing liquids develop a static electrical charge which manifests itself as a force whose magnitude approaches that of surface tension force. Favorable conditions are: a non-conducting liquid, a small diameter non-conducting flow passage, a large flow volume, and a small separation distance between the fluid and another object. We present a method for calculating the magnitude of flow induced charging and scaling arguments so that potential problems can be determined and dealt with at the experimental design phase. A dimensionless ratio of charge force to surface tension force we call the Hula Number should be less than 0.5 to prevent artifact or unwanted fluid motion.

  13. Flow Induced segregation in full scale castings with SCC

    DEFF Research Database (Denmark)

    Thrane, Lars Nyholm; Stang, Henrik; Geiker, Mette Rica

    2007-01-01

    Though promising, pioneering work has been carried out with rheological characterization and numerical modelling of form filling with SCC, the approach is far from standard in the concrete industry and clearly the approach does not yet hold all the answers to relevant questions. In particular flow...... induced segregation is a major risk during casting and it is not yet clear how this phenomenon should be modelled. In this paper testing and numerical simulations of full-scale wall castings are compared. Two different SCCs and three different filling methods were applied resulting in different flow...... patterns during form filling. Results show that the flow patterns have a major influence on the risk of flow induced segregation and the surface finish of the hardened concrete. A hypothesis for the mechanism of flow induced segregation is put forth....

  14. Flow-induced phase separation in polymer solutions

    NARCIS (Netherlands)

    Moel, K. de; Flikkema, E.; Szleifer, I.; Brinke, G. ten

    1998-01-01

    A correct description of phase behaviour in polymer solutions requires a coupling between configurational statistics and thermodynamics. The effect of flow-induced chain deformation on the polymer-solvent interaction energy depends on the concentration and on the polymer architecture. It will be dem

  15. Flow-induced vibrations of circular cylindrical structures. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S.

    1977-06-01

    The problems of flow-induced vibrations of circular cylindrical structures are reviewed. First, the general method of analysis and classification of structural responses are presented. Then, the presentation is broken up along the lines with stationary fluid, parallel flow, and cross flow. Finally, design considerations and future research needs are pointed out. 234 references.

  16. Flow-induced vibration of circular cylindrical structures

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S.S.

    1985-06-01

    This report summarizes the flow-induced vibration of circular cylinders in quiescent fluid, axial flow, and crossflow, and applications of the analytical methods and experimental data in design evaluation of various system components consisting of circular cylinders. 219 figs., 30 tabs. (JDB)

  17. Flow induced noise modelling for industrial piping systems

    NARCIS (Netherlands)

    Gijrath, H.; Ǎbom, M.

    2003-01-01

    Noise from e.g. gas-transport piping systems becomes more and more a problem for plants located close to urban areas. Too high noise levels are unacceptable and will put limitations on the plant capacity. Flow-induced noise of valves, orifices and headers installed in the installation plays a domina

  18. Adaptation of mammalian auditory hair cell mechanotransduction is independent of calcium entry

    OpenAIRE

    Peng, A.W.; Effertz, T.; Ricci, A.J.

    2013-01-01

    Adaptation is a hallmark of hair cell mechanotransduction, extending the sensory hair bundle dynamic range while providing mechanical filtering of incoming sound. In hair cells responsive to low frequencies, two distinct adaptation mechanisms exist, a fast component of debatable origin and a slow myosin-based component. It is generally believed that Ca2+ entry through mechano-electric transducer channels is required for both forms of adaptation. This study investigates the calcium dependence ...

  19. Appreciating force and shape—the rise of mechanotransduction in cell biology.

    Science.gov (United States)

    Iskratsch, Thomas; Wolfenson, Haguy; Sheetz, Michael P

    2014-12-01

    Although the shapes of organisms are encoded in their genome, the developmental processes that lead to the final form of vertebrates involve a constant feedback between dynamic mechanical forces, and cell growth and motility. Mechanobiology has emerged as a discipline dedicated to the study of the effects of mechanical forces and geometry on cell growth and motility—for example, during cell-matrix adhesion development—through the signalling process of mechanotransduction.

  20. Flow-Induced Vibration of Circular Cylindrical Structures

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shoei-Sheng [Argonne National Lab. (ANL), Argonne, IL (United States). Components Technology Division

    1985-06-01

    Flow-induced vibration is a term to denote those phenomena associated with the response of structures placed in or conveying fluid flow. More specifically, the terra covers those cases in which an interaction develops between fluid-dynamic forces and the inertia, damping or elastic forces in the structures. The study of these phenomena draws on three disciplines: (1) structural mechanics, (2) mechanical vibration, and (3) fluid dynamics. The vibration of circular cylinders subject to flow has been known to man since ancient times; the vibration of a wire at its natural frequency in response to vortex shedding was known in ancient Greece as aeolian tones. But systematic studies of the problem were not made until a century ago when Strouhal established the relationship between vortex shedding frequency and flow velocity for a given cylinder diameter. The early research in this area has beer summarized by Zdravkovich (1985) and Goldstein (1965). Flow-induced structural vibration has been experienced in numerous fields, including the aerospace industry, power generation/transmission (turbine blades, heat exchanger tubes, nuclear reactor components), civil engineering (bridges, building, smoke stacks), and undersea technology. The problems have usually been encountered or created accidentally through improper design. In most cases, a structural or mechanical component, designed to meet specific objectives, develops problems when the undesired effects of flow field have not been accounted for in the design. When a flow-induced vibration problem is noted in the design stage, the engineer has different options to eliminate the detrimental vibration. Unfortunately, in many situations, the problems occur after the components are already in operation; the "fix" usually is very costly. Flow-induced vibration comprises complex and diverse phenomena; subcritical vibration of nuclear fuel assemblies, galloping of transmission lines, flutter of pipes conveying fluid, and whirling

  1. Mechanotransduction-Induced Lipid Production System with High Robustness and Controllability for Microalgae

    Science.gov (United States)

    Cho, Myung Kwon; Shin, Hwa Sung

    2016-09-01

    Microalgae lipids are a promising energy source, but current biochemical methods of lipid-inductions such as nitrogen deprivation have low process robustness and controllability. Recently, use of mechanotransduction based membrane distortion by applying compression stress in a 2D-microsystem was suggested as a way to overcome these limitations of biochemical induction. However, reproduction in large numbers of cells without cell death has been difficult to overcome because compression for direct membrane distortion reduces culture volume and leads to cell death due to nutrient deprivation. In this study, a mechanotransduction-induced lipid production (MDLP) system that redirects elastic microbeads to induce membrane distortion of microalgae with alleviating cell death was developed. This system resulted in accumulation of lipid in as little as 4 hr. Once compressed, porous microbeads absorb media and swell simultaneously while homogeneously inducing compression stress of microalgae. The absorbed media within beads could be supplied to adjacent cells and could minimize cell death from nutrient deficiency. All mechanotransduction was confirmed by measuring upregulation of calcium influx and Mat3 genes. The microbeads ensured robustness and controllability in repeated compression/de-compression processes. Overall, the MDLP system has potential for use as a fundamental biodiesel process that requires robustness and controllability.

  2. Mechanotransductive cascade of Myo-II-dependent mesoderm and endoderm invaginations in embryo gastrulation

    Science.gov (United States)

    Mitrossilis, Démosthène; Röper, Jens-Christian; Le Roy, Damien; Driquez, Benjamin; Michel, Aude; Ménager, Christine; Shaw, Gorky; Le Denmat, Simon; Ranno, Laurent; Dumas-Bouchiat, Frédéric; Dempsey, Nora M.; Farge, Emmanuel

    2017-01-01

    Animal development consists of a cascade of tissue differentiation and shape change. Associated mechanical signals regulate tissue differentiation. Here we demonstrate that endogenous mechanical cues also trigger biochemical pathways, generating the active morphogenetic movements shaping animal development through a mechanotransductive cascade of Myo-II medio-apical stabilization. To mimic physiological tissue deformation with a cell scale resolution, liposomes containing magnetic nanoparticles are injected into embryonic epithelia and submitted to time-variable forces generated by a linear array of micrometric soft magnets. Periodic magnetically induced deformations quantitatively phenocopy the soft mechanical endogenous snail-dependent apex pulsations, rescue the medio-apical accumulation of Rok, Myo-II and subsequent mesoderm invagination lacking in sna mutants, in a Fog-dependent mechanotransductive process. Mesoderm invagination then activates Myo-II apical accumulation, in a similar Fog-dependent mechanotransductive process, which in turn initiates endoderm invagination. This reveals the existence of a highly dynamic self-inductive cascade of mesoderm and endoderm invaginations, regulated by mechano-induced medio-apical stabilization of Myo-II.

  3. Mechanotransduction-Induced Lipid Production System with High Robustness and Controllability for Microalgae.

    Science.gov (United States)

    Cho, Myung Kwon; Shin, Hwa Sung

    2016-09-09

    Microalgae lipids are a promising energy source, but current biochemical methods of lipid-inductions such as nitrogen deprivation have low process robustness and controllability. Recently, use of mechanotransduction based membrane distortion by applying compression stress in a 2D-microsystem was suggested as a way to overcome these limitations of biochemical induction. However, reproduction in large numbers of cells without cell death has been difficult to overcome because compression for direct membrane distortion reduces culture volume and leads to cell death due to nutrient deprivation. In this study, a mechanotransduction-induced lipid production (MDLP) system that redirects elastic microbeads to induce membrane distortion of microalgae with alleviating cell death was developed. This system resulted in accumulation of lipid in as little as 4 hr. Once compressed, porous microbeads absorb media and swell simultaneously while homogeneously inducing compression stress of microalgae. The absorbed media within beads could be supplied to adjacent cells and could minimize cell death from nutrient deficiency. All mechanotransduction was confirmed by measuring upregulation of calcium influx and Mat3 genes. The microbeads ensured robustness and controllability in repeated compression/de-compression processes. Overall, the MDLP system has potential for use as a fundamental biodiesel process that requires robustness and controllability.

  4. SIMULATIONS OF FLOW INDUCED CORROSION IN API DRILLPIPE CONNECTOR

    Institute of Scientific and Technical Information of China (English)

    ZHU Hong-jun; LIN Yuan-hua; ZENG De-zhi; YAN Ren-tian

    2011-01-01

    Drillpipe failure is an outstanding issue in drilling engineering,often involving great financial losses.In view of the special features of the flow channel in the high failure zone,this article analyzes the drillpipe failure mechanism from the point of view of flow induced corrosion.Based on the Eulerian-Langrangian method and the discrete phase model,a numerical simulation method is used to investigate the flows of the drilling fluid in the drillpipe connector during the operation of three typical drilling methods (mud drilling,air drilling and foam drilling).From the flow field in the drillpipe connector,especially,the velocity and pressure distributions in the threaded nipple and the thickened intermediate belt,one may detect the existence of the flow induced corrosion.Then,some structural optimization measures for the drillpipe connector are proposed,and the optimization effects are compared.

  5. An investigation of the most Flow Inducing Genres

    Directory of Open Access Journals (Sweden)

    Behzad Ghonsooly

    2014-05-01

    Full Text Available The present study aims at examining the extent to which three discourse genres of descriptive, expository, and narrative would be flow inducing. In other words, it attempts to testify the role of the text in promoting optimal experience on the one hand, and to identify which discourse genre would be the most flow inducing, on the other hand. To this end, a community sample of 60 participants comprising of 16 males and 44 females from various English language institutes in Mashhad, volunteered to take part in the study by reading three texts of TOEFL containing the expository, narrative, and descriptive genres. After each reading the respondents were asked to reflect on their flow experience through filling in the Flow Perception Questionnaire (Egbert, 2003. The researchers investigated flow differences across genres by employing repeated measures ANOVA. The results revealed that flow occurred during the reading of descriptive, narrative, and expository genres; however, there were significant differences in terms of the flow scores engendered by the variations across these genres. The results of the data analysis reported the descriptive genre as the most flow inducing discourse genre.

  6. Flow induced vibration studies on PFBR control plug components

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, V., E-mail: prakash@igcar.gov.in [Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamilnadu (India); Kumar, P. Anup; Anandaraj, M.; Thirumalai, M.; Anandbabu, C.; Rajan, K.K. [Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamilnadu (India)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Flow induced vibration studies on Prototype Fast Breeder Reactor control plug model carried out. Black-Right-Pointing-Pointer Velocity similitude was followed for the study. Black-Right-Pointing-Pointer Frequencies and amplitude of vibrations of various control plug components measured. Black-Right-Pointing-Pointer Overall values of vibration are well within permissible limits. - Abstract: The construction of Prototype Fast Breeder Reactor (PFBR), a 500 MWe liquid sodium cooled reactor, is in progress at Kalpakkam in India. Control plug (CP) is located right above the core subassemblies in the hot pool. Control plug is an important component as many of the critical reactor parameters are sensed and controlled by the components housed in the control plug assembly. In PFBR primary circuit, components are basically thin walled, slender shells with diameter to thickness ratio ranging from 100 to 650. These components are prone to flow induced vibrations. The existence of free liquid (sodium) surfaces, which is the source of sloshing phenomenon and the operation of primary sodium pump in the primary pool are other potential sources of vibration of reactor components. Control plug is a hollow cylindrical shell structure and provides passages and support for 12 absorber rod drive mechanisms (ARDM) which consists of 9 control and safety rods and 3 diverse safety rods, 210 thermo wells to measure the sodium temperature at the exit of various fuel subassemblies, three failed fuel localization modules (FFLM) and acoustic detectors. It consists of a core cover plate (CCP), which forms the bottom end, two intermediate supports plate, i.e. lower stay plate (LSP) and upper stay plate (USP) and an outer shell. The CCP is located at a distance of 1.3 m from the core top. With such a gap, there will be long free hanging length of the thermocouple sleeves, Delayed neutron detector (DND) sampling tubes and ARDM shroud tubes and hence they are

  7. HCN channels are not required for mechanotransduction in sensory hair cells of the mouse inner ear.

    Directory of Open Access Journals (Sweden)

    Geoffrey C Horwitz

    Full Text Available The molecular composition of the hair cell transduction channel has not been identified. Here we explore the novel hypothesis that hair cell transduction channels include HCN subunits. The HCN family of ion channels includes four members, HCN1-4. They were originally identified as the molecular correlates of the hyperpolarization-activated, cyclic nucleotide gated ion channels that carry currents known as If, IQ or Ih. However, based on recent evidence it has been suggested that HCN subunits may also be components of the elusive hair cell transduction channel. To investigate this hypothesis we examined expression of mRNA that encodes HCN1-4 in sensory epithelia of the mouse inner ear, immunolocalization of HCN subunits 1, 2 and 4, uptake of the transduction channel permeable dye, FM1-43 and electrophysiological measurement of mechanotransduction current. Dye uptake and transduction current were assayed in cochlear and vestibular hair cells of wildtype mice exposed to HCN channel blockers or a dominant-negative form of HCN2 that contained a pore mutation and in mutant mice that lacked HCN1, HCN2 or both. We found robust expression of HCNs 1, 2 and 4 but little evidence that localized HCN subunits in hair bundles, the site of mechanotransduction. Although high concentrations of the HCN antagonist, ZD7288, blocked 50-70% of the transduction current, we found no reduction of transduction current in either cochlear or vestibular hair cells of HCN1- or HCN2- deficient mice relative to wild-type mice. Furthermore, mice that lacked both HCN1 and HCN2 also had normal transduction currents. Lastly, we found that mice exposed to the dominant-negative mutant form of HCN2 had normal transduction currents as well. Taken together, the evidence suggests that HCN subunits are not required for mechanotransduction in hair cells of the mouse inner ear.

  8. Elastomeric microposts integrated into microfluidics for flow-mediated endothelial mechanotransduction analysis.

    Science.gov (United States)

    Lam, Raymond H W; Sun, Yubing; Chen, Weiqiang; Fu, Jianping

    2012-04-24

    Mechanotransduction is known as the cellular mechanism converting insoluble biophysical signals in the local cellular microenvironment (e.g. matrix rigidity, external mechanical forces, and fluid shear) into intracellular signalling to regulate cellular behaviours. While microfluidic technologies support a precise and independent control of soluble factors in the cellular microenvironment (e.g. growth factors, nutrients, and dissolved gases), the regulation of insoluble biophysical signals in microfluidics, especially matrix rigidity and adhesive pattern, has not yet been achieved. Here we reported an integrated soft lithography-compatible microfluidic methodology that could enable independent controls and modulations of fluid shear, substrate rigidity, and adhesive pattern in a microfluidic environment, by integrating micromolded elastomeric micropost arrays and microcontact printing with microfluidics. The geometry of the elastomeric micropost array could be regulated to mediate substrate rigidity and adhesive pattern, and further the elastomeric microposts could be utilized as force sensors to map live-cell subcellular contractile forces. To illustrate the general application of our methodology, we investigated the flow-mediated endothelial mechanotransduction process and examined specifically the involvement of subcellular contractile forces in the morphological realignment process of endothelial cells under a sustained directional fluid shear. Our results showed that the cytoskeletal contractile forces of endothelial cells were spatiotemporally regulated and coordinated to facilitate their morphology elongation process along the direction of flow. Together, our study provided an integrated microfluidic strategy to modulate the in vitro cellular microenvironment with both defined soluble and insoluble signals, and we demonstrated its application to investigate quantitatively the involvement of cytoskeletal contractile forces in the flow

  9. Flow Induced Vibration Program at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    Argonne National Laboratory has had a Flow Induced Vibration Program since 1967; the Program currently resides in the Laboratory's Components Technology Division. Throughout its existence, the overall objective of the program has been to develop and apply new and/or improved methods of analysis and testing for the design evaluation of nuclear reactor plant components and heat exchange equipment from the standpoint of flow induced vibration. Historically, the majority of the program activities have been funded by the US Atomic Energy Commission (AEC), Energy Research and Development Administration (ERDA), and Department of Energy (DOE). Current DOE funding is from the Breeder Mechanical Component Development Division, Office of Breeder Technology Projects; Energy Conversion and Utilization Technology (ECUT) Program, Office of Energy Systems Research; and Division of Engineering, Mathematical and Geosciences, Office of Basic Energy Sciences. Testing of Clinch River Breeder Reactor upper plenum components has been funded by the Clinch River Breeder Reactor Plant (CRBRP) Project Office. Work has also been performed under contract with Foster Wheeler, General Electric, Duke Power Company, US Nuclear Regulatory Commission, and Westinghouse.

  10. On the Normal Force Mechanotransduction of Human Umbilical Vein Endothelial Cells

    Science.gov (United States)

    Vahabikashi, Amir; Wang, Qiuyun; Wilson, James; Wu, Qianhong; Vucbmss Team

    2016-11-01

    In this paper, we report a cellular biomechanics study to examine the normal force mechanotransduction of Human Umbilical Vein Endothelial Cells (HUVECs) with their implications on hypertension. Endothelial cells sense mechanical forces and adjust their structure and function accordingly. The mechanotransduction of normal forces plays a vital role in hypertension due to the higher pressure buildup inside blood vessels. Herein, HUVECs were cultured to full confluency and then exposed to different mechanical loadings using a novel microfluidic flow chamber. One various pressure levels while keeps the shear stress constant inside the flow chamber. Three groups of cells were examined, the control group (neither shear nor normal stresses), the normal pressure group (10 dyne/cm2 of shear stress and 95 mmHg of pressure), and the hypertensive group (10 dyne/cm2 of shear stress and 142 mmHg of pressure). Cellular response characterized by RT-PCR method indicates that, COX-2 expressed under normal pressure but not high pressure; Mn-SOD expressed under both normal and high pressure while this response was stronger for normal pressure; FOS and e-NOS did not respond under any condition. The differential behavior of COX-2 and Mn-SOD in response to changes in pressure, is instrumental for better understanding the pathogenesis of hypertensive cardiovascular diseases. This research was supported by the National Science Foundation under Award #1511096.

  11. Combining Targeted Metabolomic Data with a Model of Glucose Metabolism: Toward Progress in Chondrocyte Mechanotransduction

    Science.gov (United States)

    Salinas, Daniel; Carlson, Ross P.; McCutchen, Carley N.

    2017-01-01

    Osteoarthritis is a debilitating disease likely involving altered metabolism of the chondrocytes in articular cartilage. Chondrocytes can respond metabolically to mechanical loads via cellular mechanotransduction, and metabolic changes are significant because they produce the precursors to the tissue matrix necessary for cartilage health. However, a comprehensive understanding of how energy metabolism changes with loading remains elusive. To improve our understanding of chondrocyte mechanotransduction, we developed a computational model to calculate the rate of reactions (i.e. flux) across multiple components of central energy metabolism based on experimental data. We calculated average reaction flux profiles of central metabolism for SW1353 human chondrocytes subjected to dynamic compression for 30 minutes. The profiles were obtained solving a bounded variable linear least squares problem, representing the stoichiometry of human central energy metabolism. Compression synchronized chondrocyte energy metabolism. These data are consistent with dynamic compression inducing early time changes in central energy metabolism geared towards more active protein synthesis. Furthermore, this analysis demonstrates the utility of combining targeted metabolomic data with a computational model to enable rapid analysis of cellular energy utilization. PMID:28056047

  12. Scale invariant disordered nanotopography promotes hippocampal neuron development and maturation with involvement of mechanotransductive pathways

    Directory of Open Access Journals (Sweden)

    Carsten Schulte

    2016-11-01

    Full Text Available The identification of biomaterials which promote neuronal maturation up to the generation of integrated neural circuits is fundamental for modern neuroscience. The development of neural circuits arises from complex maturative processes regulated by poorly understood signalling events, often guided by the extracellular matrix (ECM. Here we report that nanostructured zirconia surfaces, produced by supersonic cluster beam deposition of zirconia nanoparticles and characterised by ECM-like nanotopographical features, can direct the maturation of neural networks. Hippocampal neurons cultured on such cluster-assembled surfaces displayed enhanced differentiation paralleled by functional changes. The latter was demonstrated by single-cell electrophysiology showing earlier action potential generation and increased spontaneous postsynaptic currents compared to the neurons grown on the featureless unnaturally flat standard control surfaces. Label-free shotgun proteomics broadly confirmed the functional changes and suggests furthermore a vast impact of the neuron/nanotopography interaction on mechanotransductive machinery components, known to control physiological in vivo ECM-regulated axon guidance and synaptic plasticity. Our results indicate a potential of cluster-assembled zirconia nanotopography exploitable for the creation of efficient neural tissue interfaces and cell culture devices promoting neurogenic events, but also for unveiling mechanotransductive aspects of neuronal development and maturation.

  13. Scale Invariant Disordered Nanotopography Promotes Hippocampal Neuron Development and Maturation with Involvement of Mechanotransductive Pathways

    Science.gov (United States)

    Schulte, Carsten; Ripamonti, Maddalena; Maffioli, Elisa; Cappelluti, Martino A.; Nonnis, Simona; Puricelli, Luca; Lamanna, Jacopo; Piazzoni, Claudio; Podestà, Alessandro; Lenardi, Cristina; Tedeschi, Gabriella; Malgaroli, Antonio; Milani, Paolo

    2016-01-01

    The identification of biomaterials which promote neuronal maturation up to the generation of integrated neural circuits is fundamental for modern neuroscience. The development of neural circuits arises from complex maturative processes regulated by poorly understood signaling events, often guided by the extracellular matrix (ECM). Here we report that nanostructured zirconia surfaces, produced by supersonic cluster beam deposition of zirconia nanoparticles and characterized by ECM-like nanotopographical features, can direct the maturation of neural networks. Hippocampal neurons cultured on such cluster-assembled surfaces displayed enhanced differentiation paralleled by functional changes. The latter was demonstrated by single-cell electrophysiology showing earlier action potential generation and increased spontaneous postsynaptic currents compared to the neurons grown on the featureless unnaturally flat standard control surfaces. Label-free shotgun proteomics broadly confirmed the functional changes and suggests furthermore a vast impact of the neuron/nanotopography interaction on mechanotransductive machinery components, known to control physiological in vivo ECM-regulated axon guidance and synaptic plasticity. Our results indicate a potential of cluster-assembled zirconia nanotopography exploitable for the creation of efficient neural tissue interfaces and cell culture devices promoting neurogenic events, but also for unveiling mechanotransductive aspects of neuronal development and maturation. PMID:27917111

  14. The role of focal adhesion complexes in fibroblast mechanotransduction during scar formation.

    Science.gov (United States)

    Rustad, Kristine C; Wong, Victor W; Gurtner, Geoffrey C

    2013-10-01

    Historically, great efforts have been made to elucidate the biochemical pathways that direct the complex process of wound healing; however only recently has there been recognition of the importance that mechanical signals play in the process of tissue repair and scar formation. The body's physiologic response to injury involves a dynamic interplay between mechanical forces and biochemical cues which directs a cascade of signals leading ultimately to the formation of fibrotic scar. Fibroblasts are a highly mechanosensitive cell type and are also largely responsible for the generation of the fibrotic matrix during scar formation and are thus a critical player in the process of mechanotransduction during tissue repair. Mechanotransduction is initiated at the interface between the cell membrane and the extracellular matrix where mechanical signals are first translated into a biochemical response. Focal adhesions are dynamic multi-protein complexes through which the extracellular matrix links to the intracellular cytoskeleton. These focal adhesion complexes play an integral role in the propagation of this initial mechanical cue into an extensive network of biochemical signals leading to widespread downstream effects including the influx of inflammatory cells, stimulation of angiogenesis, keratinocyte migration, fibroblast proliferation and collagen synthesis. Increasing evidence has demonstrated the importance of the biomechanical milieu in healing wounds and suggests that an integrated approach to the discovery of targets to decrease scar formation may prove more clinically efficacious than previous purely biochemical strategies.

  15. Flow-Induced Stress Distribution in Porous Scaffolds

    Science.gov (United States)

    Papavassiliou, Dimitrios; Voronov, Roman; Vangordon, Samuel; Sikavitsas, Vassilios

    2010-11-01

    Flow-induced stresses help the differentiation and proliferation of mesenchymal cells cultured in porous scaffolds within perfusion bioreactors. The distribution of stresses in a scaffold is thus important for understanding the tissue growth process in such reactors. Computational results for flow through Poly-L-Lactic Acid porous scaffolds that have been produced with salt-leaching techniques, and for scaffolds that have been constructed with nonwoven fibers, indicate that the probability density function (pdf) of the wall stress, when normalized with the mean and the standard deviation of the pdf, appears to follow a single type of pdf. The scaffolds were imaged with micro-CT and the simulations were run with lattice Boltzmann methods. The parameters of the distribution can be obtained using Darcy's law and the Blake-Kozeny-Carman equation. Experimental results available in the literature appear to corroborate the computational findings, leading to the conclusion that stresses in high-porosity porous materials follow a single distribution.

  16. Cross flow induced vibrations in staggered arrays of cylindrical structures

    Energy Technology Data Exchange (ETDEWEB)

    Marn, J.

    1991-12-31

    Flow induced vibrations cause by instability is the subject of this investigation. The bulk of the work performed is theoretical in nature, the comparison with some of existing experimental data is given for each of four models described. First model encompasses the effects of prescribed motion on the cylinder. Such circumstances occur in the case of vortex shedding initiated instability. The reduced velocity within the cylinder array is low and there is no coupling between the adjacent cylinders. Second model assumes certain form of vibration and corresponding behavior of the perturbed velocity field in temporal and one of spatial coordinates thus transforming partial differential equations into ordinary differential equations and takes into account the motion of the neighboring cylinder. This corresponds to fluid elastic controlled instabilities. The resulting equations are solved analytically. The model is used for better understanding of the equations of cylinder motion as well as for quick estimates of threshold of instability. Third model relaxes an assumption about the form of vibration in spatial direction and uses the vorticity formulation of equation of fluid motion to account for fluid-solid interaction. This model analysis is of two phase (air-water mixture) flow. The void fraction distribution is found to be the single most decisive factor to determine the onset of instability for such a domain. In conclusion, two distinct mechanism were found to be responsible for flow induced vibration caused instabilities, (1) outside source controlled periodic excitation (such as vortex shedding) -- described by the first model and (2) fluid elastic forces -- described by second, third and fourth models. For the values of reduced velocity below 0.7 first model is proposed, for the values above 0.7, the rest.

  17. EXPERIMENTAL STUDY OF ENHANCED HEAT TRANSFER BY FLOW-INDUCED VIBRATION OF ELASTIC TUBE BUNDLES

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new concept of heat transfer enhancement by flow-induced vibration was put forward, and a novel heat transfer element called elastic tube bundles was designed. The experimental investigation was performed on its characteristics of flow-induced virbration in out-tube or in-tube flow. Under the conditions of fixed heat flux and steam-water heat transfer, the regularity of heat transfer enhancement by flow-induced vibration was examined.

  18. Cellular mechanotransduction

    Directory of Open Access Journals (Sweden)

    Wolfgang H. Goldmann

    2016-01-01

    Full Text Available Cell adhesion and cell–cell contacts are pre-requisites for proper metabolism, protein synthesis, cell survival, and cancer metastasis. Major transmembrane receptors are the integrins, which are responsible for cell matrix adhesions, and the cadherins, which are important for cell-cell adhesions.  Adherent cells are anchored via focal adhesions (FAs to the extracellular matrix, while cell-cell contacts are connected via focal adherens junctions (FAJs. Force transmission over considerable distances and stress focusing at these adhesion sites make them prime candidates for mechanosensors. Exactly which protein(s within FAs and FAJs or which membrane component of ion channels sense, transmit, and respond to mechano-chemical signaling is currently strongly debated and numerous candidates have been proposed.

  19. Fluctuation-driven mechanotransduction regulates mitochondrial-network structure and function

    Science.gov (United States)

    Bartolák-Suki, Erzsébet; Imsirovic, Jasmin; Parameswaran, Harikrishnan; Wellman, Tyler J.; Martinez, Nuria; Allen, Philip G.; Frey, Urs; Suki, Béla

    2015-10-01

    Cells can be exposed to irregular mechanical fluctuations, such as those arising from changes in blood pressure. Here, we report that ATP production, assessed through changes in mitochondrial membrane potential, is downregulated in vascular smooth muscle cells in culture exposed to monotonous stretch cycles when compared with cells exposed to a variable cyclic stretch that incorporates physiological levels of cycle-by-cycle variability in stretch amplitude. Variable stretch enhances ATP production by increasing the expression of ATP synthase’s catalytic domain, cytochrome c oxidase and its tyrosine phosphorylation, mitofusins and PGC-1α. Such a fluctuation-driven mechanotransduction mechanism is mediated by motor proteins and by the enhancement of microtubule-, actin- and mitochondrial-network complexity. We also show that, in aorta rings isolated from rats, monotonous stretch downregulates--whereas variable stretch maintains--physiological vessel-wall contractility through mitochondrial ATP production. Our results have implications for ATP-dependent and mechanosensitive intracellular processes.

  20. Adaptation of mammalian auditory hair cell mechanotransduction is independent of calcium entry.

    Science.gov (United States)

    Peng, Anthony W; Effertz, Thomas; Ricci, Anthony J

    2013-11-20

    Adaptation is a hallmark of hair cell mechanotransduction, extending the sensory hair bundle dynamic range while providing mechanical filtering of incoming sound. In hair cells responsive to low frequencies, two distinct adaptation mechanisms exist, a fast component of debatable origin and a slow myosin-based component. It is generally believed that Ca(2+) entry through mechano-electric transducer channels is required for both forms of adaptation. This study investigates the calcium dependence of adaptation in the mammalian auditory system. Recordings from rat cochlear hair cells demonstrate that altering Ca(2+) entry or internal Ca(2+) buffering has little effect on either adaptation kinetics or steady-state adaptation responses. Two additional findings include a voltage-dependent process and an extracellular Ca(2+) binding site, both modulating the resting open probability independent of adaptation. These data suggest that slow motor adaptation is negligible in mammalian auditory cells and that the remaining adaptation process is independent of calcium entry.

  1. A critical role for Piezo2 channels in the mechanotransduction of mouse proprioceptive neurons.

    Science.gov (United States)

    Florez-Paz, Danny; Bali, Kiran Kumar; Kuner, Rohini; Gomis, Ana

    2016-05-17

    Proprioceptors are responsible for the conscious sensation of limb position and movement, muscle tension or force, and balance. Recent evidence suggests that Piezo2 is a low threshold mechanosensory receptor in the peripheral nervous system, acting as a transducer for touch sensation and proprioception. Thus, we characterized proprioceptive neurons in the mesencephalic trigeminal nucleus that are involved in processing proprioceptive information from the face and oral cavity. This is a specific population of neurons that produce rapidly adapting mechanically-activated currents that are fully dependent on Piezo2. As such, we analyzed the deficits in balance and coordination caused by the selective deletion of the channel in proprioceptors (conditional knockout). The data clearly shows that Piezo2 fulfills a critical role in a defined homogeneous population of proprioceptor neurons that innervate the head muscles, demonstrating that this ion channel is essential for mammalian proprioceptive mechanotransduction.

  2. Agrin as a Mechanotransduction Signal Regulating YAP through the Hippo Pathway.

    Science.gov (United States)

    Chakraborty, Sayan; Njah, Kizito; Pobbati, Ajaybabu V; Lim, Ying Bena; Raju, Anandhkumar; Lakshmanan, Manikandan; Tergaonkar, Vinay; Lim, Chwee Teck; Hong, Wanjin

    2017-03-07

    The Hippo pathway effectors YAP and TAZ act as nuclear sensors of mechanical signals in response to extracellular matrix (ECM) cues. However, the identity and nature of regulators in the ECM and the precise pathways relaying mechanoresponsive signals into intracellular sensors remain unclear. Here, we uncover a functional link between the ECM proteoglycan Agrin and the transcriptional co-activator YAP. Importantly, Agrin transduces matrix and cellular rigidity signals that enhance stability and mechanoactivity of YAP through the integrin-focal adhesion- and Lrp4/MuSK receptor-mediated signaling pathways. Agrin antagonizes focal adhesion assembly of the core Hippo components by facilitating ILK-PAK1 signaling and negating the functions of Merlin and LATS1/2. We further show that Agrin promotes oncogenesis through YAP-dependent transcription and is clinically relevant in human liver cancer. We propose that Agrin acts as a mechanotransduction signal in the ECM.

  3. Agrin as a Mechanotransduction Signal Regulating YAP through the Hippo Pathway

    Directory of Open Access Journals (Sweden)

    Sayan Chakraborty

    2017-03-01

    Full Text Available The Hippo pathway effectors YAP and TAZ act as nuclear sensors of mechanical signals in response to extracellular matrix (ECM cues. However, the identity and nature of regulators in the ECM and the precise pathways relaying mechanoresponsive signals into intracellular sensors remain unclear. Here, we uncover a functional link between the ECM proteoglycan Agrin and the transcriptional co-activator YAP. Importantly, Agrin transduces matrix and cellular rigidity signals that enhance stability and mechanoactivity of YAP through the integrin-focal adhesion- and Lrp4/MuSK receptor-mediated signaling pathways. Agrin antagonizes focal adhesion assembly of the core Hippo components by facilitating ILK-PAK1 signaling and negating the functions of Merlin and LATS1/2. We further show that Agrin promotes oncogenesis through YAP-dependent transcription and is clinically relevant in human liver cancer. We propose that Agrin acts as a mechanotransduction signal in the ECM.

  4. Direct measurement of TRPV4 and PIEZO1 activity reveals multiple mechanotransduction pathways in chondrocytes

    Science.gov (United States)

    Rocio Servin-Vences, M; Moroni, Mirko; Lewin, Gary R; Poole, Kate

    2017-01-01

    The joints of mammals are lined with cartilage, comprised of individual chondrocytes embedded in a specialized extracellular matrix. Chondrocytes experience a complex mechanical environment and respond to changing mechanical loads in order to maintain cartilage homeostasis. It has been proposed that mechanically gated ion channels are of functional importance in chondrocyte mechanotransduction; however, direct evidence of mechanical current activation in these cells has been lacking. We have used high-speed pressure clamp and elastomeric pillar arrays to apply distinct mechanical stimuli to primary murine chondrocytes, stretch of the membrane and deflection of cell-substrate contacts points, respectively. Both TRPV4 and PIEZO1 channels contribute to currents activated by stimuli applied at cell-substrate contacts but only PIEZO1 mediates stretch-activated currents. These data demonstrate that there are separate, but overlapping, mechanoelectrical transduction pathways in chondrocytes. DOI: http://dx.doi.org/10.7554/eLife.21074.001 PMID:28135189

  5. Matrix Stiffness–Induced Myofibroblast Differentiation Is Mediated by Intrinsic Mechanotransduction

    Science.gov (United States)

    Huang, Xiangwei; Yang, Naiheng; Fiore, Vincent F.; Barker, Thomas H.; Sun, Yi; Morris, Stephan W.; Ding, Qiang; Thannickal, Victor J.

    2012-01-01

    The mechanical properties of the extracellular matrix have recently been shown to promote myofibroblast differentiation and lung fibrosis. Mechanisms by which matrix stiffness regulates myofibroblast differentiation are not fully understood. The goal of this study was to determine the intrinsic mechanisms of mechanotransduction in the regulation of matrix stiffness–induced myofibroblast differentiation. A well established polyacrylamide gel system with tunable substrate stiffness was used in this study. Megakaryoblastic leukemia factor-1 (MKL1) nuclear translocation was imaged by confocal immunofluorescent microscopy. The binding of MKL1 to the α-smooth muscle actin (α-SMA) gene promoter was quantified by quantitative chromatin immunoprecipitation assay. Normal human lung fibroblasts responded to matrix stiffening with changes in actin dynamics that favor filamentous actin polymerization. Actin polymerization resulted in nuclear translocation of MKL1, a serum response factor coactivator that plays a central role in regulating the expression of fibrotic genes, including α-SMA, a marker for myofibroblast differentiation. Mouse lung fibroblasts deficient in Mkl1 did not respond to matrix stiffening with increased α-SMA expression, whereas ectopic expression of human MKL1 cDNA restored the ability of Mkl1 null lung fibroblasts to express α-SMA. Furthermore, matrix stiffening promoted production and activation of the small GTPase RhoA, increased Rho kinase (ROCK) activity, and enhanced fibroblast contractility. Inhibition of RhoA/ROCK abrogated stiff matrix–induced actin cytoskeletal reorganization, MKL1 nuclear translocation, and myofibroblast differentiation. This study indicates that actin cytoskeletal remodeling–mediated activation of MKL1 transduces mechanical stimuli from the extracellular matrix to a fibrogenic program that promotes myofibroblast differentiation, suggesting an intrinsic mechanotransduction mechanism. PMID:22461426

  6. Flow induced vibrations in arrays of irregularly spaced cylinders

    Science.gov (United States)

    Taub, Gordon; Michelin, Sébastien

    2014-11-01

    Historically the main industrial applications of cylinder arrays in cross flows favored regular arrangements of cylinders. For this reason, most past studies of Flow Induced Vibrations (FIV) in large cylinder arrays have focused on such arrangements. Recently there has been some interest in generating renewable energy using FIV of bluff bodies. In such applications it will likely be beneficial to enhance, rather than suppress FIV. It is not known a priori if regular or irregularly spaced arrays are most adequate for this type of application. In this study, wind tunnel experiments were conducted on one regularly spaced array and four different irregularly spaced arrays of cylinders in a cross flow. Each arrangement of cylinders was examined under eight different orientations to a cross flow ranging between 10 m/s and 17 m/s. The average amplitude of vibration of the cylinders was found to highly depend on arrangement and orientation. The typical amplitude of vibration of the rods in the irregular arrangements were found to be an order of magnitude larger than that of the regular array. A simple model was proposed in order to predict if a given arrangement was likely to produce large oscillations, and the validity of the model was examined. This research was supported by a Marie Curie International Reintegration Grant within the 7th European Community Framework Program (Grant PIRG08-GA-2010-276762).

  7. Flow-induced oscillations of a floating moored cylinder

    Science.gov (United States)

    Carlson, Daniel; Modarres-Sadeghi, Yahya

    2016-11-01

    An experimental study of flow-induced oscillations of a floating model spar buoy was conducted. The model spar consisted of a floating uniform cylinder moored in a water tunnel test section, and free to oscillate about its mooring attachment point near the center of mass. For the bare cylinder, counter-clockwise (CCW) figure-eight trajectories approaching A* =1 in amplitude were observed at the lower part of the spar for a reduced velocity range of U* =4-11, while its upper part experienced clockwise (CW) orbits. It was hypothesized that the portion of the spar undergoing CCW figure eights is the portion within which the flow excites the structure. By adding helical strakes to the portion of the cylinder with CCW figure eights, the response amplitude was significantly reduced, while adding strakes to portions with clockwise orbital motion had a minimal influence on the amplitude of response. This work is partially supported by the NSF-sponsored IGERT: Offshore Wind Energy Engineering, Environmental Science, and Policy (Grant Number 1068864).

  8. Flow-induced gelation of living (micellar) polymers

    Science.gov (United States)

    Bruinsma, Robijn; Gelbart, William M.; Ben-Shaul, Avinoam

    1992-01-01

    The effect of shear velocity gradients on the size (L) of rodlike micelles in dilute and semidilute solution is considered. A kinetic equation is introduced for the time-dependent concentration of aggregates of length L, consisting of 'bimolecular' combination processes L + L-prime yield (L + L-prime) and unimolecular fragmentations L yield L + (L - L-prime). The former are described by a generalization (from spheres to rods) of the Smoluchowski mechanism for shear-induced coalesence of emulsions, and the latter by incorporating the tension-deformation effects due to flow. Steady-state solutions to the kinetic equation are obtained, with the corresponding mean micellar size evaluated as a function of the Peclet number P (i.e., the dimensionless ratio of the flow rate and the rotational diffusion coefficient). For sufficiently dilute solutions, only a weak dependence of the micellar size on P is found. In the semidilute regime, however, an apparent divergence in the micellar size at P of about 1 suggests a flow-induced first-order gelation phenomenon.

  9. Flow-induced structured phase in nonionic micellar solutions.

    Science.gov (United States)

    Cardiel, Joshua J; Tonggu, Lige; de la Iglesia, Pablo; Zhao, Ya; Pozzo, Danilo C; Wang, Liguo; Shen, Amy Q

    2013-12-17

    In this work, we consider the flow of a nonionic micellar solution (precursor) through an array of microposts, with focus on its microstructural and rheological evolution. The precursor contains polyoxyethylene(20) sorbitan monooleate (Tween-80) and cosurfactant monolaurin (ML). An irreversible flow-induced structured phase (NI-FISP) emerges after the nonionic precursor flows through the hexagonal micropost arrays, when subjected to strain rates ~10(4) s(-1) and strain ~10(3). NI-FISP consists of close-looped micellar bundles and multiconnected micellar networks as evidenced by transmission electron microscopy (TEM) and cryo-electron microscopy (cryo-EM). We also conduct small-angle neutron scattering (SANS) measurements in both precursor and NI-FISP to illustrate the structural transition. We propose a potential mechanism for the NI-FISP formation that relies on the micropost arrays and the flow kinematics in the microdevice to induce entropic fluctuations in the micellar solution. Finally, we show that the rheological variation from a viscous precursor solution to a viscoelastic micellar structured phase is associated with the structural evolution from the precursor to NI-FISP.

  10. Flow-induced pruning of branched systems and brittle reconfiguration

    CERN Document Server

    Lopez, Diego; de Langre, Emmanuel

    2011-01-01

    Whereas most plants are flexible structures that undergo large deformations under flow, another process can occur when the plant is broken by heavy fluid-loading. We investigate here the mechanism of such possible breakage, focusing on the flow-induced pruning that can be observed in plants or aquatic vegetation when parts of the structure break under flow. By computation on an actual tree geometry, a 20-yr-old walnut tree (Juglans Regia L.) and comparison with simple models, we analyze the influence of geometrical and physical parameters on the occurrence of branch breakage and on the successive breaking events occurring in a tree-like structure when the flow velocity is increased. We show that both the branching pattern and the slenderness exponent, defining the branch taper, play a major role in the breakage scenario. We identify a criterion for branch breakage to occur before breakage of the trunk. In that case, we show that the successive breakage of peripheral branches allows the plant to sustain higher...

  11. Extensional Flow-Induced Dynamic Phase Transitions in Isotactic Polypropylene.

    Science.gov (United States)

    Ju, Jianzhu; Wang, Zhen; Su, Fengmei; Ji, Youxin; Yang, Haoran; Chang, Jiarui; Ali, Sarmad; Li, Xiangyang; Li, Liangbin

    2016-09-01

    With a combination of fast extension rheometer and in situ synchrotron radiation ultra-fast small- and wide-angle X-ray scattering, flow-induced crystallization (FIC) of isotactic polypropylene (iPP) is studied at temperatures below and above the melting point of α crystals (Tmα). A flow phase diagram of iPP is constructed in strain rate-temperature space, composing of melt, non-crystalline shish, α and α&β coexistence regions, based on which the kinetic and dynamic competitions among these four phases are discussed. Above Tmα , imposing strong flow reverses thermodynamic stabilities of the disordered melt and the ordered phases, leading to the occurrence of FIC of β and α crystals as a dynamic phase transition. Either increasing temperature or stain rate favors the competiveness of the metastable β over the stable α crystals, which is attributed to kinetic rate rather than thermodynamic stability. The violent competitions among four phases near the boundary of crystal-melt may frustrate crystallization and result in the non-crystalline shish winning out.

  12. Flow Induced Coalescence of Drops in a Viscous Liquid

    Science.gov (United States)

    Leal, L. Gary

    2002-11-01

    The problem of flow-induced coalescence has been the subject of many experimental and theoretical studies. In recent years, this work has been motivated by the role that this process plays in the formation of polymer blends, which is currently the major route to new polymeric materials with desired macroscopic properties. In order to control this process, we need to understand the conditions for coalescence and their dependence on fluid and flow properties, including the effects of surfactants (known as "compatibilizers" in the polymer blend literature). With a few exceptions, experimental studies have been based upon measurements of the mean drop size (or size distribution) in an emulsion or blend following flow in either blending devices or simple rheometry flows. The four-roll mill, on the other hand, provides an opportunity to study the coalescence process at the scale of individual drops. When such experiments are carried out, we find some surprises vis a vis expectations from simple models of the drop collision/film drainage and rupture process that leads to coalescence. In this talk, we review recent experimental work in this field, and discuss the relationship to present theory

  13. Measurement Of Flow Induced Vibration Of Reactor Component

    Science.gov (United States)

    Dharmaraju, N.; Meher, K. K.; Rao, A. Rama

    The effect of flow-induced vibration on class I components in the reactor is a very important design factor for its qualifications worthy of loading inside the core. In this regard, a clear definition of the flow excitation and the dynamic characteristics of the component are the two primary inputs required to make an estimation of vibration severity. Though there are general guidelines available, more often it has been seen that they only help in arriving at a first approximation. There are many instances wherein a component has failed to perform as per design in spite of sufficient margin provided in the calculations. There are also instances wherein some components have failed even after successful testing under close to simulated flow condition. The paper deals with qualification procedure followed to flow test an in core component in an out of pile facility. The adopted procedure is considered to be a best approach especially in this field where in there are many gray areas.

  14. Microarchitectural adaptations in aging and osteoarthrotic subchondral bone tissues

    DEFF Research Database (Denmark)

    Ding, Ming

    2010-01-01

    The human skeleton optimizes its microarchitecture by elaborate adaptations to mechanical loading during development and growth. The mechanisms for adaptation involve a multistep process of cellular mechanotransduction stimulating bone modelling, and remodeling resulting in either bone formation...... into the age-related and OA-related subchondral bone adaptations.   Microarchitectural adaptation in human aging cancellous bone The precision of micro-CT measurement is excellent. Accurate 3-D micro-CT image datasets can be generated by applying an appropriate segmentation threshold. A fixed threshold may...... and the constant nature of connectivity suggest an important bone remodeling mechanism that normal aging tibia may adapt trabecular volume orientation. Namely, that the aging trabeculae align preferentially to the primary loading direction to compensate bone loss (III). Age-related changes in trabecular thickness...

  15. Flow induced/ refined solution crystallization of a semiconducting polymer

    Science.gov (United States)

    Nguyen, Ngoc A.

    Organic photovoltaics, a new generation of solar cells, has gained scientific and economic interests due to the ability of solution-processing and potentially low-cost power production. Though, the low power conversion efficiency of organic/ plastic solar cells is one of the most pertinent challenges that has appealed to research communities from many different fields including materials science and engineering, electrical engineering, chemical engineering, physics and chemistry. This thesis focuses on investigating and controlling the morphology of a semi-conducting, semi-crystalline polymer formed under shear-flow. Molecular structures and processing techniques are critical factors that significantly affect the morphology formation in the plastic solar cells, thus influencing device performance. In this study, flow-induced solution crystallization of poly (3-hexylthiophene) (P3HT) in a poor solvent, 2-ethylnapthalene (2-EN) was utilized to make a paint-like, structural liquid. The polymer crystals observed in this structured paint are micrometers long, nanometers in cross section and have a structure similar to that formed under quiescent conditions. There is pi-pi stacking order along the fibril axis, while polymer chain folding occurs along the fibril width and the order of the side-chain stacking is along fibril height. It was revealed that shear-flow not only induces P3HT crystallization from solution, but also refines and perfects the P3HT crystals. Thus, a general strategy to refine the semiconducting polymer crystals from solution under shear-flow has been developed and employed by simply tuning the processing (shearing) conditions with respect to the dissolution temperature of P3HT in 2-EN. The experimental results demonstrated that shear removes defects and allows more perfect crystals to be formed. There is no glass transition temperature observed in the crystals formed using the flow-induced crystallization indicating a significantly different

  16. Zyxin Is Involved In Regulation Of Mechanotransduction In Arteriole Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Zhe eSun

    2012-12-01

    Full Text Available Zyxin is a focal adhesion protein that has been implicated in the modulation of cell adhesion and motility, and is hypothesized to be a mechano-sensor in integrin-mediated responses to mechanical force. To test the functional role of zyxin in the mechanotransduction of microvascular smooth muscle cells (VSMC, we utilized atomic force microscopy (AFM to apply localized pulling forces to VSMC through a fibronectin (FN focal adhesion induced by a FN-coated bead on cell surface. Application of force with the AFM induced an increase of zyxin accumulation at the site of the FN-bead focal adhesion that accompanied the VSMC contractile response. Whereas, reduction of zyxin expression by using a zyxin-shRNA construct abolished the VSMC contractile response to AFM pulling forces, even though the zyxin-silenced VSMCs displayed increased adhesion to FN in both AFM adhesion assays and cell adhesion assays. The reduced zyxin expression significantly impaired cell spreading and reorganization of the actin cytoskeleton that could indicate a possible underlying reason for the loss of a contractile response to mechanical force. Consistent with these observations, zyxin silencing also resulted in reduced expression of Rac1, which plays an important role in the actin reorganization in VSMC, but increased TRIP6 and FAK expression, the latter being a major protein that promote cell adhesion. In conclusion, these data support an important enabling role for zyxin in VSMCs ability to mechanically respond to applied force.

  17. Mechanotransduction in primary human osteoarthritic chondrocytes is mediated by metabolism of energy, lipids, and amino acids.

    Science.gov (United States)

    Zignego, Donald L; Hilmer, Jonathan K; June, Ronald K

    2015-12-16

    Chondrocytes are the sole cell type found in articular cartilage and are repeatedly subjected to mechanical loading in vivo. We hypothesized that physiological dynamic compression results in changes in energy metabolism to produce proteins for maintenance of the pericellular and extracellular matrices. The objective of this study was to develop an in-depth understanding for the short term (human chondrocytes harvested from femoral heads of osteoarthritic donors. Cell-seeded agarose constructs were randomly assigned to experimental groups, and dynamic compression was applied for 0, 15, or 30min. Following dynamic compression, metabolites were extracted and detected by HPLC-MS. Untargeted analyzes examined changes in global metabolomics profiles and targeted analysis examined the expression of specific metabolites related to central energy metabolism. We identified hundreds of metabolites that were regulated by applied compression, and we report the detection of 16 molecules not found in existing metabolite databases. We observed patient-specific mechanotransduction with aging dependence. Targeted studies found a transient increase in the ratio of NADP+ to NADPH and an initial decrease in the ratio of GDP to GTP, suggesting a flux of energy into the TCA cycle. By characterizing metabolomics profiles of primary chondrocytes in response to applied dynamic compression, this study provides insight into how OA chondrocytes respond to mechanical load. These results are consistent with increases in glycolytic energy utilization by mechanically induced signaling, and add substantial new data to a complex picture of how chondrocytes transduce mechanical loads.

  18. Stiffening hydrogels for investigating the dynamics of hepatic stellate cell mechanotransduction during myofibroblast activation

    Science.gov (United States)

    Caliari, Steven R.; Perepelyuk, Maryna; Cosgrove, Brian D.; Tsai, Shannon J.; Lee, Gi Yun; Mauck, Robert L.; Wells, Rebecca G.; Burdick, Jason A.

    2016-02-01

    Tissue fibrosis contributes to nearly half of all deaths in the developed world and is characterized by progressive matrix stiffening. Despite this, nearly all in vitro disease models are mechanically static. Here, we used visible light-mediated stiffening hydrogels to investigate cell mechanotransduction in a disease-relevant system. Primary hepatic stellate cell-seeded hydrogels stiffened in situ at later time points (following a recovery phase post-isolation) displayed accelerated signaling kinetics of both early (Yes-associated protein/Transcriptional coactivator with PDZ-binding motif, YAP/TAZ) and late (alpha-smooth muscle actin, α-SMA) markers of myofibroblast differentiation, resulting in a time course similar to observed in vivo activation dynamics. We further validated this system by showing that α-SMA inhibition following substrate stiffening resulted in attenuated stellate cell activation, with reduced YAP/TAZ nuclear shuttling and traction force generation. Together, these data suggest that stiffening hydrogels may be more faithful models for studying myofibroblast activation than static substrates and could inform the development of disease therapeutics.

  19. Dynamic Characteristics of Flow Induced Vibration in a Rotor-Seal System

    Directory of Open Access Journals (Sweden)

    Nan Zhang

    2011-01-01

    Full Text Available Flow induced vibration is an important factor affecting the performance of the rotor-seal system. From the point of view of flow induced vibration, the nonlinear models of the rotor-seal system are presented for the analysis of the fluid force, which is induced by the interaction between the unstable fluid flow in the seal and the vibrating rotor. The nonlinear characteristics of flow induced vibration in the rotor-seal system are analyzed, and the nonlinear phenomena in the unbalanced rotor-seal system are investigated using the nonlinear models. Various nonlinear phenomena of flow induced vibration in the rotor-seal system, such as synchronization phenomenon and amplitude mutation, are reproduced.

  20. Flow induced noise calculations for non-axially distributed hydrophones in towed arrays

    Institute of Scientific and Technical Information of China (English)

    WANG Bin; TANG Weilin; FAN Jun

    2009-01-01

    Two improvements are put forward on the analyses of flow induced noise in towed arrays. First, the differences between Corcos/Carpenter pressure fluctuation models have been discussed at length, as well as flow induced noise calculated with these two models. Second, flow induced noise received by the finite hydrophones distributed non-axially is discussed and the relevant power spectrum is deduced. The results show that there are some disparities between the wavenumber spectrums and the responses of flow induced noise of these two models. Flow induced noise is closely related with the tow speed, the tube radius and the off-axis distance. The numerical analyses with Carpenter model indicate that the power spectrum of flow induced noise will increase 24 dB approximately with the tow speed doubled, decrease with the radius of the tube, and increase with the off-axis distance. The tube radius and the off-axis distance have greater influence on the high-frequency components than on the low-frequency components.

  1. Bone tumor

    Science.gov (United States)

    Tumor - bone; Bone cancer; Primary bone tumor; Secondary bone tumor; Bone tumor - benign ... The cause of bone tumors is unknown. They often occur in areas of the bone that grow rapidly. Possible causes include: Genetic defects ...

  2. Pannexin 1 channels play essential roles in urothelial mechanotransduction and intercellular signaling.

    Directory of Open Access Journals (Sweden)

    Hiromitsu Negoro

    Full Text Available Urothelial cells respond to bladder distension with ATP release, and ATP signaling within the bladder and from the bladder to the CNS is essential for proper bladder function. In other cell types, pannexin 1 (Panx1 channels provide a pathway for mechanically-induced ATP efflux and for ATP-induced ATP release through interaction with P2X7 receptors (P2X7Rs. We report that Panx1 and P2X7R are functionally expressed in the bladder mucosa and in immortalized human urothelial cells (TRT-HU1, and participate in urothelial ATP release and signaling. ATP release from isolated rat bladders induced by distention was reduced by the Panx1 channel blocker mefloquine (MFQ and was blunted in mice lacking Panx1 or P2X7R expression. Hypoosmotic shock induced YoPro dye uptake was inhibited by MFQ and the P2X7R blocker A438079 in TRT-HU1 cells, and was also blunted in primary urothelial cells derived from mice lacking Panx1 or P2X7R expression. Rinsing-induced mechanical stimulation of TRT-HU1 cells triggered ATP release, which was reduced by MFQ and potentiated in low divalent cation solution (LDPBS, a condition known to enhance P2X7R activation. ATP signaling evaluated as intercellular Ca2+ wave radius was significantly larger in LDPBS, reduced by MFQ and by apyrase (ATP scavenger. These findings indicate that Panx1 participates in urothelial mechanotransduction and signaling by providing a direct pathway for mechanically-induced ATP release and by functionally interacting with P2X7Rs.

  3. Matrix stiffness regulation of integrin-mediated mechanotransduction during osteogenic differentiation of human mesenchymal stem cells.

    Science.gov (United States)

    Shih, Yu-Ru V; Tseng, Kuo-Fung; Lai, Hsiu-Yu; Lin, Chi-Hung; Lee, Oscar K

    2011-04-01

    Mesenchymal stem cells (MSCs) cultured on extracellular matrices with different stiffness have been shown to possess diverse lineage commitment owing to the extracellular mechanical stimuli sensed by the cells. The aim of this study was to further delineate how matrix stiffness affects intracellular signaling through the mechanotransducers Rho kinase (ROCK) and focal adhesion kinase (FAK) and subsequently regulates the osteogenic phenotype of MSCs. MSCs were cultured in osteogenic medium on tunable polyacrylamide hydrogels coated with type I collagen with elasticities corresponding to Young's modulus of 7.0 ± 1.2 and 42.1 ± 3.2 kPa. Osteogenic differentiation was increased on stiffer matrices, as evident by type I collagen, osteocalcin, and Runx2 gene expressions and alizarin red S staining for mineralization. Western blot analysis demonstrated an increase in kinase activities of ROCK, FAK, and ERK1/2 on stiffer matrices. Inhibition of FAK, an important mediator of osteogenic differentiation, and inhibition of ROCK, a known mechanotransducer of matrix stiffness during osteogenesis, resulted in decreased expression of osteogenic markers during osteogenic induction. In addition, FAK affects osteogenic differentiation through ERK1/2, whereas ROCK regulates both FAK and ERK1/2. Furthermore, α(2)-integrin was upregulated on stiffer matrices during osteogenic induction, and its knockdown by siRNA downregulated the osteogenic phenotype through ROCK, FAK, and ERK1/2. Taken together, our results provide evidence that the matrix rigidity affects the osteogenic outcome of MSCs through mechanotransduction events that are mediated by α(2)-integrin.

  4. Investigation on Flow-Induced Noise due to Backflow in Low Specific Speed Centrifugal Pumps

    Directory of Open Access Journals (Sweden)

    Qiaorui Si

    2013-01-01

    Full Text Available Flow-induced noise causes disturbances during the operation of centrifugal pumps and also affects their performance. The pumps often work at off-design conditions, mainly at part-load conditions, because of frequent changes in the pump device system. Consequently numerous unstable phenomena occur. In low specific speed centrifugal pumps the main disturbance is the inlet backflow, which is considered as one of the most important factors of flow-induced noise and vibration. In this study, a test rig of the flow-induced noise and vibration of the centrifugal pump was built to collect signals under various operating conditions. The three-dimensional unsteady flow of centrifugal pumps was calculated based on the Reynolds-averaged equations that resemble the shear stress transport (SST k-ω turbulence model. The results show that the blade passing frequency and shaft frequency are dominant in the spectrum of flow-induced noise, whereas the shaft component, amplitude value at shaft frequency, and peak frequencies around the shaft increase with decreasing flow. Through flow field analysis, the inlet backflow of the impeller occurs under 0.7 times the design flow. The pressure pulsation spectrum with backflow conditions validates the flow-induced noise findings. The velocity characteristics of the backflow zone at the inlet pipe were analyzed, and the dynamic characteristics of the backflow eddy during one impeller rotating period were simultaneously obtained by employing the backflow conditions. A flow visualization experiment was performed to confirm the numerical calculations.

  5. Flow-Induced Deformation of a Flexible Thin Structure as Manifestation of Heat Transfer Enhancement

    CERN Document Server

    Soti, Atul Kumar; Sheridan, John

    2015-01-01

    Flow-induced deformation of thin structures coupled with convective heat transfer has potential applications in energy harvesting and is important for understanding functioning of several biological systems. We numerically demonstrate large-scale flow-induced deformation as an effective passive heat transfer enhancement technique. An in-house, strongly-coupled fluid-structure interaction (FSI) solver is employed in which flow and structure solvers are based on sharp-interface immersed boundary and finite element method, respectively. In the present work, we validate convective heat transfer module of the in-house FSI solver against several benchmark examples of conduction and convective heat transfer including moving structure boundaries. The thermal augmentation is investigated as well as quantified for the flow-induced deformation of an elastic thin plate attached to lee side of a rigid cylinder in a heated channel laminar flow. We show that the wake vortices past the plate sweep higher sources of vorticity...

  6. Flow structure and flow-induced noise in an axisymmetric cavity with lids

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Seo Yoon [KAERI, Daejeon (Korea, Republic of); Sung, Hyung Jin [KAIST, Daejeon (Korea, Republic of)

    2016-07-15

    Direct numerical simulations of incompressible turbulent flow through an axisymmetric cavity with or without lids were performed at Re{sub t},{sub in} = 186 to examine the hydrodynamic effects of the lids on the flow-induced noise. The strength of the recirculation in the downstream region was weakened by the installation of the lids. Comparison of the acoustic sources of the Lighthill equation indicated that the lid in the downstream region attenuated the flow-induced noise substantially. Frequency spectra and spatio-temporal correlations of pressure fluctuations revealed the most energetic mode and the convective nature of the flow over the cavity. It was evident from a detailed investigation of the instantaneous flow fields that the introduction of lids into the cavity significantly weakened the interaction between the separated shear layer and the trailing edge of the cavity. The present results clearly showed that the installation of lids is an effective means of reducing flow-induced noise.

  7. Piezo Is Essential for Amiloride-Sensitive Stretch-Activated Mechanotransduction in Larval Drosophila Dorsal Bipolar Dendritic Sensory Neurons.

    Science.gov (United States)

    Suslak, Thomas J; Watson, Sonia; Thompson, Karen J; Shenton, Fiona C; Bewick, Guy S; Armstrong, J Douglas; Jarman, Andrew P

    2015-01-01

    Stretch-activated afferent neurons, such as those of mammalian muscle spindles, are essential for proprioception and motor co-ordination, but the underlying mechanisms of mechanotransduction are poorly understood. The dorsal bipolar dendritic (dbd) sensory neurons are putative stretch receptors in the Drosophila larval body wall. We have developed an in vivo protocol to obtain receptor potential recordings from intact dbd neurons in response to stretch. Receptor potential changes in dbd neurons in response to stretch showed a complex, dynamic profile with similar characteristics to those previously observed for mammalian muscle spindles. These profiles were reproduced by a general in silico model of stretch-activated neurons. This in silico model predicts an essential role for a mechanosensory cation channel (MSC) in all aspects of receptor potential generation. Using pharmacological and genetic techniques, we identified the mechanosensory channel, DmPiezo, in this functional role in dbd neurons, with TRPA1 playing a subsidiary role. We also show that rat muscle spindles exhibit a ruthenium red-sensitive current, but found no expression evidence to suggest that this corresponds to Piezo activity. In summary, we show that the dbd neuron is a stretch receptor and demonstrate that this neuron is a tractable model for investigating mechanisms of mechanotransduction.

  8. Analysis of the occurrence of flow-induced pulsations in a gas control station

    NARCIS (Netherlands)

    Peters, M.C.A.M.; Riezebos, H.J.

    2001-01-01

    Strong flow-induced pulsations were observed at some measurement and control stations of the major gas transport company in the Netherlands, Gasunie. These resonances occur when the gas flow is passing closed side branches in the system at a sufficiently high velocity. Unsteady vortex shedding at th

  9. Water flow induced transport of Pseudomonas fluorescens cells through soil columns as affected by inoculant treatment

    NARCIS (Netherlands)

    Hekman, W.E.; Heijnen, C.E.; Trevors, J.T.; Elsas, van J.D.

    1994-01-01

    Water flow induced transport of Pseudomonas fluorescens cells through soil columns was measured as affected by the inoculant treatment. Bacterial cells were introduced into the topsoil of columns, either encapsulated in alginate beads of different types or mixed with bentonite clay in concentrations

  10. Flow induced vibration of subsea gas production systems caused by choke valves

    NARCIS (Netherlands)

    Ligterink, N.E.; Groot, R. de; Gharaibah, E.; Slot, H.J.

    2012-01-01

    In the design of subsea flow systems the integrity and reliability is paramount. As the equipment must be designed to operate at a large variety of conditions, inherent to the many processes, evaluation of the integrity is complex. . Flow induced pulsations and vibrations can cause serious design an

  11. Flow induced vibration of subsea gas production system caused by choke valves

    NARCIS (Netherlands)

    Ligterink, N.E.; Groot, R. de; Gharaibah, E.; Slot, H.J.

    2012-01-01

    In the design of subsea flow systems the integrity and reliability is paramount. As the equipment must be designed to operate at a large variety of conditions, inherent to the many processes, evaluation of the integrity is complex. . Flow induced pulsations and vibrations can cause serious design an

  12. A continuum model for flow induced by metachronal coordination between beating cilia

    NARCIS (Netherlands)

    Hussong, J.; Breugem, W.-P.; Westerweel, J.

    2011-01-01

    In this numerical study we investigate the flow induced by metachronal coordination between beating cilia arranged in a densely packed layer by means of a continuum model. The continuum approach allows us to treat the problem as two-dimensional as well as stationary, in a reference frame moving with

  13. Bone Biopsy

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Bone Biopsy Bone biopsy uses a needle and imaging ... the limitations of Bone Biopsy? What is a Bone Biopsy? A bone biopsy is an image-guided ...

  14. Energy harvesting by means of flow-induced vibrations on aerospace vehicles

    Science.gov (United States)

    Li, Daochun; Wu, Yining; Da Ronch, Andrea; Xiang, Jinwu

    2016-10-01

    This paper reviews the design, implementation, and demonstration of energy harvesting devices that exploit flow-induced vibrations as the main source of energy. Starting with a presentation of various concepts of energy harvesters that are designed to benefit from a general class of flow-induced vibrations, specific attention is then given at those technologies that may offer, today or in the near future, a potential benefit to extend the operational capabilities and to monitor critical parameters of unmanned aerial vehicles. Various phenomena characterized by flow-induced vibrations are discussed, including limit cycle oscillations of plates and wing sections, vortex-induced and galloping oscillations of bluff bodies, vortex-induced vibrations of downstream structures, and atmospheric turbulence and gusts. It was found that linear or linearized modeling approaches are commonly employed to support the design phase of energy harvesters. As a result, highly nonlinear and coupled phenomena that characterize flow-induced vibrations are neglected in the design process. The Authors encourage a shift in the current design paradigm: considering coupled nonlinear phenomena, and adequate modeling tools to support their analysis, from a design limitation to a design opportunity. Special emphasis is placed on identifying designs and implementations applicable to aircraft configurations. Application fields of flow-induced vibrations-based energy harvesters are discussed including power supply for wireless sensor networks and simultaneous energy harvest and control. A large body of work on energy harvesters is included in this review journal. Whereas most of the references claim direct applications to unmanned aerial vehicles, it is apparent that, in most of the cases presented, the working principles and characteristics of the energy harvesters are incompatible with any aerospace applications. Finally, the challenges that hold back the integration of energy harvesting

  15. Bone Densitometry (Bone Density Scan)

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Bone Densitometry (DEXA) Bone densitometry, also called dual-energy ... limitations of DEXA Bone Densitometry? What is a Bone Density Scan (DEXA)? Bone density scanning, also called ...

  16. Experimental study of shell side flow-induced vibration of conical spiral tube bundle

    Institute of Scientific and Technical Information of China (English)

    闫柯; 葛培琪; 洪军

    2013-01-01

    Conical spiral tube bundles are widely used in enhancing the heat transfer via the flow-induced vibration in heat exchangers. The shell side flow-induced vibration of the conical spiral tube bundle is experimentally investigated in this paper. The experiment table was built and the operational modes, the vibration parameters of the tube bundle were analyzed. The results show that, the operational mode frequencies of the conical spiral tube are decreased as the shell-side fluid flow velocity increases, especially for the first order frequency. Within the parameter range of this experiment, the real working frequency of the conical spiral tube is between the 1st and the 2nd operational modes, and the free end vibration amplitude of the tube bundle increases greatly when the shell side fluid flow velocity exceeds a critical value.

  17. Analytical and experimental studies of flow-induced vibration of SSME components

    Science.gov (United States)

    Chen, S. S.; Jendrzejczyk, J. A.; Wambsganss, M. W.

    1987-01-01

    Components of the Space Shuttle Main Engines (SSMEs) are subjected to a severe environment that includes high-temperature, high-velocity flows. Such flows represent a source of energy that can induce and sustain large-amplitude vibratory stresses and/or result in fluidelastic instabilities. Three components are already known to have experienced failures in evaluation tests as a result of flow-induced structural motion. These components include the liquid-oxygen (LOX) posts, the fuel turbine bellows shield, and the internal inlet tee splitter vane. Researchers considered the dynamic behavior of each of these components with varying degrees of effort: (1) a theoretical and experimental study of LOX post vibration excited by a fluid flow; (2) an assessment of the internal inlet tee splitter vane vibration (referred to as the 4000-Hz vibration problem); and (3) a preliminary consideration of the bellows shield problem. Efforts to resolve flow-induced vibration problems associated with the SSMEs are summarized.

  18. Highly Increased Flow-Induced Power Generation on Plasmonically Carbonized Single-Walled Carbon Nanotube .

    Science.gov (United States)

    Kim, Jangheon; Lee, Janghyeon; Kim, Soohyun; Jung, Wonsuk

    2016-11-09

    We generate networks and carbonization between individualized single-walled carbon nanotubes (SWCNTs) by an optimized plasmonic heating process using a halogen lamp to improve electrical properties for flow-induced energy harvesting. These properties were characterized by Raman spectra, a field-emission-scanning probe, transmission electron microscopy, atomic force microscopy and thermographic camera. The electrical sheet resistance of carbonized SWCNTs was decreased to 2.71 kΩ/□, 2.5 times smaller than normal-SWCNTs. We demonstrated flow-induced voltage generation on SWCNTs at various ion concentrations of NaCl. The generated voltage and current for the carbonized-SWCNTs were 9.5 and 23.5 times larger than for the normal-SWCNTs, respectively, based on the electron dragging mechanism.

  19. The non-equilibrium phase diagrams of flow-induced crystallization and melting of polyethylene.

    Science.gov (United States)

    Wang, Zhen; Ju, Jianzhu; Yang, Junsheng; Ma, Zhe; Liu, Dong; Cui, Kunpeng; Yang, Haoran; Chang, Jiarui; Huang, Ningdong; Li, Liangbin

    2016-09-09

    Combining extensional rheology with in-situ synchrotron ultrafast x-ray scattering, we studied flow-induced phase behaviors of polyethylene (PE) in a wide temperature range up to 240 °C. Non-equilibrium phase diagrams of crystallization and melting under flow conditions are constructed in stress-temperature space, composing of melt, non-crystalline δ, hexagonal and orthorhombic phases. The non-crystalline δ phase is demonstrated to be either a metastable transient pre-order for crystallization or a thermodynamically stable phase. Based on the non-equilibrium phase diagrams, nearly all observations in flow-induced crystallization (FIC) of PE can be well understood. The interplay of thermodynamic stabilities and kinetic competitions of the four phases creates rich kinetic pathways for FIC and diverse final structures. The non-equilibrium flow phase diagrams provide a detailed roadmap for precisely processing of PE with designed structures and properties.

  20. Experimental investigations on flow induced vibration of an externally excited flexible plate

    Science.gov (United States)

    Purohit, Ashish; Darpe, Ashish K.; Singh, S. P.

    2016-06-01

    Flow-induced vibration of a harmonically actuated flexible plate in the wake of an upstream bluff body is experimentally investigated. The experiments are performed in an open-ended wind tunnel. A flexible plate trailing a bluff body is under fluid induced excitation due to the flowing fluid. The additional external excitation to the trailing plate is applied using an electro-magnetic exciter. The frequency and amplitude of the external harmonic excitation are selected as variable parameters in the experiments and their effect on the plate vibration and is investigated. To know the nature of acoustic pressure wave generated from the vibrating system, near-field acoustic pressure is also measured. A laser vibrometer, a pressure microphone and a high-speed camera are employed to measure the plate vibration, pressure signal, and instantaneous images of the plate motion respectively. The results obtained indicate that the dynamics of the plate is influenced by both the flow-induced excitation and external harmonic excitation. When frequency of the two excitations is close enough, a large vibration level and a high tonal sound pressure are observed. At higher amplitude of external excitation, the frequency component corresponding to the flow-induced excitation is found to reduce significantly in the frequency spectrum of the vibration signal. It is observed that, for certain range of excitation frequency, the plate vibration first reduces, reaches a minimum value and then increases with increase in the level of external excitation. A fair qualitative agreement of the experimental results with numerical simulation result of the past study has been noted. In addition to the experiments, the role of phase difference between the flow-induced excitation generated from the front obstacle and externally applied harmonic excitation is investigated through numerical simulations. The result obtained reveals that the final steady state vibration of the coupled system is

  1. Prediction of Streamwise Flow-Induced Vibration of A Circular Cylinder in the First Instability Range

    Institute of Scientific and Technical Information of China (English)

    Xu Wan-hai; Yu Jian-xing; Du Jie; CHENG An-kang; KANG Hao

    2012-01-01

    The streamwise flow-induced vibration of a circular cylinder with symmetric vortex shedding in the first instability range is investigated,and a wake oscillator model for the dynamic response prediction is proposed.An approach is applied to calibrate the empirical parameters in the present model; the numerical and experimental results are compared to validate the proposed model.It can be found that the present prediction model is accurate and sufficiently simple to be easily applied in practice.

  2. Water hammer, flow induced vibration and safety/relief valve loads

    Energy Technology Data Exchange (ETDEWEB)

    Valandani, P.; Uffer, R.; Sexton, D.

    1984-09-01

    This report presents the results of an evaluation performed to determine current and recommended practices regarding the consideration of water hammer, flow-induced vibration and safety-relief valve loads in the design of nuclear power plant piping systems. Current practices were determined by a survey of industry experts. Recommended practices were determined by evaluating factors such as load magnitude and frequency content, system susceptibility to load occurrence and safety effects of postulated piping damage.

  3. Numerical prediction of flow induced noise in free jets of high Mach numbers

    OpenAIRE

    Schönrock, Olaf

    2009-01-01

    A direct aeroacoustic simulation methodology is developed on the basis of the numerical schemes implemented in the commercial tool ANSYS CFX. The focus lies upon the efficient and direct numerical prediction of the flow-induced noise generated by natural gas and pneumatic applications. The respective compressed gas related components are characterized by tiny supersonic gas jets, strong noise emissions, poor accessibility by measurement techniques and excessive simulation costs in particular...

  4. Disruption of TGF-β signaling in smooth muscle cell prevents flow-induced vascular remodeling

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Fu [Department of Vascular Surgery, Peking University People’s Hospital, Beijing (China); Chambon, Pierre [Institut de Génétique et de Biologie Moléculaire et Cellulaire (CNRS UMR7104, INSERM U596, ULP, Collége de France) and Institut Clinique de la Souris, ILLKIRCH, Strasbourg (France); Tellides, George [Department of Surgery, Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, CT (United States); Kong, Wei [Department of Physiology and Pathophysiology, Basic Medical College of Peking University, Beijing (China); Zhang, Xiaoming, E-mail: rmygxgwk@163.com [Department of Vascular Surgery, Peking University People’s Hospital, Beijing (China); Li, Wei [Department of Vascular Surgery, Peking University People’s Hospital, Beijing (China)

    2014-11-07

    Highlights: • TGF-β signaling in SMC contributes to the flow-induced vascular remodeling. • Disruption of TGF-β signaling in SMC can prevent this process. • Targeting SM-specific Tgfbr2 could be a novel therapeutic strategy for vascular remodeling. - Abstract: Transforming growth factor-β (TGF-β) signaling has been prominently implicated in the pathogenesis of vascular remodeling, especially the initiation and progression of flow-induced vascular remodeling. Smooth muscle cells (SMCs) are the principal resident cells in arterial wall and are critical for arterial remodeling. However, the role of TGF-β signaling in SMC for flow-induced vascular remodeling remains unknown. Therefore, the goal of our study was to determine the effect of TGF-β pathway in SMC for vascular remodeling, by using a genetical smooth muscle-specific (SM-specific) TGF-β type II receptor (Tgfbr2) deletion mice model. Mice deficient in the expression of Tgfbr2 (MyhCre.Tgfbr2{sup f/f}) and their corresponding wild-type background mice (MyhCre.Tgfbr2{sup WT/WT}) underwent partial ligation of left common carotid artery for 1, 2, or 4 weeks. Then the carotid arteries were harvested and indicated that the disruption of Tgfbr2 in SMC provided prominent inhibition of vascular remodeling. And the thickening of carotid media, proliferation of SMC, infiltration of macrophage, and expression of matrix metalloproteinase (MMP) were all significantly attenuated in Tgfbr2 disruption mice. Our study demonstrated, for the first time, that the TGF-β signaling in SMC plays an essential role in flow-induced vascular remodeling and disruption can prevent this process.

  5. Flow-induced noise simulation using detached eddy simulation and the finite element acoustic analogy method

    Directory of Open Access Journals (Sweden)

    Kai Liu

    2016-06-01

    Full Text Available Signals in long-distance pipes are complex due to flow-induced noise generated in special structure, and the computation of these noise sources is difficult and time-consuming. To address this problem, a hybrid method based on computational fluid dynamics and Lighthill’s acoustic analogy theory is proposed to simulate flow-induced noise, with the results showing that the method is sufficient for noise predictions. The proposed method computes the turbulent flow field using detached eddy simulation and then calculates turbulence-generated sound using the finite element acoustic analogy method, which solves acoustic sources as volume sources. The velocity field obtained in the detached eddy simulation computation provides the sound source through interpolation between the computational fluid dynamics and acoustic meshes. The hybrid method is validated and assessed by comparing data from the cavity in pipe and large eddy simulation results. The peak value of flow-induced noise calculated at the monitor point is in good agreement with experimental data available in the literature.

  6. Bone within a bone

    Energy Technology Data Exchange (ETDEWEB)

    Williams, H.J.; Davies, A.M. E-mail: wendy.turner@roh.nhs.uk; Chapman, S

    2004-02-01

    The 'bone within a bone' appearance is a well-recognized radiological term with a variety of causes. It is important to recognize this appearance and also to be aware of the differential diagnosis. A number of common conditions infrequently cause this appearance. Other causes are rare and some remain primarily of historical interest, as they are no longer encountered in clinical practice. In this review we illustrate some of the conditions that can give the bone within a bone appearance and discuss the physiological and pathological aetiology of each where known.

  7. Segmentation of nanotomographic cortical bone images for quantitative characterization of the osteoctyte lacuno-canalicular network

    Energy Technology Data Exchange (ETDEWEB)

    Ciani, A.; Kewish, C. M. [Synchrotron Soleil, L’Orme des Merisiers, 91192 Saint-Aubin (France); Guizar-Sicairos, M.; Diaz, A.; Holler, M. [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Pallu, S.; Achiou, Z.; Jennane, R.; Toumi, H.; Lespessailles, E. [Univ Orléans, I3MTO, Ea 4708, 45000 Orléans (France)

    2016-01-28

    A newly developed data processing method able to characterize the osteocytes lacuno-canalicular network (LCN) is presented. Osteocytes are the most abundant cells in the bone, living in spaces called lacunae embedded inside the bone matrix and connected to each other with an extensive network of canals that allows for the exchange of nutrients and for mechanotransduction functions. The geometrical three-dimensional (3D) architecture is increasingly thought to be related to the macroscopic strength or failure of the bone and it is becoming the focus for investigating widely spread diseases such as osteoporosis. To obtain 3D LCN images non-destructively has been out of reach until recently, since tens-of-nanometers scale resolution is required. Ptychographic tomography was validated for bone imaging in [1], showing clearly the LCN. The method presented here was applied to 3D ptychographic tomographic images in order to extract morphological and geometrical parameters of the lacuno-canalicular structures.

  8. Stability analysis of the fluttering and autorotation of flow-induced rotation of a hinged flat plate

    Institute of Scientific and Technical Information of China (English)

    MIRZAEISEFAT Sina; FERNANDES Antonio Carlos

    2013-01-01

    This work describes investigations performed on the interaction of uniform current and freely rotating plate about a fixed vertical axis. Fluttering and autorotation are two different motions that may occur during the flow induced rotation. The dimensional analysis proves that the motion in flow induced rotation motion is governed essentially by the dimensionless moment of inertia and Reynolds number. Certain combinations define the stability boundaries between fluttering and autorotation. Fluttering is oscillation of body about a vertical axis and the autorotation is a name given to the case when the body turns continuously about the vertical axis. First, the loads and moment coefficients are calculated by experiments and streamline theory for different angles of attack for a fixed flat plate. Then for dynamic case, a bifurcation diagram is presented based on experiments to classify different motion states of flow induced rotation. Finally, a dynamical model is proposed for stability analysis of flow induced rotation of a flat plate.

  9. Flow-induced birefringence: the hidden PSF killer in high performance injection-molded plastic optics

    Science.gov (United States)

    Chidley, Matthew D.; Tkaczyk, Tomasz; Kester, Robert; Descour, Michael R.

    2006-02-01

    A 7-mm OD, NA = 1 water immersion injection-molded plastic endoscope objective has been fabricated for a laser scanning fiber confocal reflectance microscope (FCRM) system specifically designed for in vivo detection of cervical and oral pre-cancers. Injection-molded optics was selected for the ability to incorporate aspheric surfaces into the optical design and its high volume capabilities. Our goal is high performance disposable endoscope probes. This objective has been built and tested as a stand-alone optical system, a Strehl ratio greater than 0.6 has been obtained. One of the limiting factors of optical performance is believed to be flow-induced birefringence. We have investigated different configurations for birefringence visualization and believe the circular polariscope is most useful for inspection of injection-molded plastic optics. In an effort to decrease birefringence effects, two experiments were conducted. They included: (1) annealing of the optics after fabrication and (2) modifying the injection molding prameters (packing pressures, injection rates, and hold time). While the second technique showed improvement, the annealing process could not improve quality without physically warping the lenses. Therefore, to effectively reduce flow-induced birefringence, molding conditions have to be carefully selected. These parameters are strongly connected to the physical part geometry. Both optical design and fabrication technology have to be considered together to deliver low birefringence while maintaining the required manufacturing tolerances. In this paper we present some of our current results that illustrate how flow-induced birefringence can degrade high performance injection-molded plastic optical systems.

  10. Characteristics of liquid flow induced by atmospheric-pressure DC glow discharge in contact with liquid

    Science.gov (United States)

    Tochikubo, Fumiyoshi; Aoki, Takuya; Shirai, Naoki; Uchida, Satoshi

    2017-04-01

    In this work, we investigated the characteristics of liquid flow induced by atmospheric-pressure dc glow discharge in contact with a liquid. The spatiotemporal development of liquid flow was visualized by the schlieren method, and the temperature distribution was measured using microencapsulated thermotropic liquid crystal particles dispersed in a liquid. We confirmed the appearance of specific downward liquid flow immediately below the dc glow discharge. The characteristics of downward liquid flow were reproduced by fluid simulation considering a downward driving force at the plasma–liquid interface. Our results suggest that the probable driving force for the downward liquid flow was the momentum transfer of charged species at the liquid surface.

  11. Flow Induced Spring Coefficients of Labyrinth Seals for Application in Rotor Dynamics

    Science.gov (United States)

    Benckert, H.; Wachter, J.

    1980-01-01

    Flow induced aerodynamic spring coefficients of labyrinth seals are discussed and the restoring force in the deflection plane of the rotor and the lateral force acting perpendicularly to it are also considered. The effects of operational conditions on the spring characteristics of these components are examined, such as differential pressure, speed, inlet flow conditions, and the geometry of the labyrinth seals. Estimation formulas for the lateral forces due to shaft rotation and inlet swirl, which are developed through experiments, are presented. The utilization of the investigations is explained and results of stability calculations, especially for high pressure centrifugal compressors, are added. Suggestions are made concerning the avoidance of exciting forces in labyrinths.

  12. Flow-induced vibrations of two tandem cylinders in a channel

    Directory of Open Access Journals (Sweden)

    Jiang Ren-Jie

    2012-01-01

    Full Text Available We numerically studied flow-induced vibrations of two tandem cylinders in transverse direction between two parallel walls. The effect of the horizontal separation between two cylinders, ranging from 1.1 to 10, on the motions of the cylinders and the flow structures were investigated and a variety of periodic and non-periodic vibration regimes were observed. The results show that when two cylinders are placed in close proximity to each other, compared with the case of an isolated cylinder, the gap flow plays an important role. As the separation ratio is increased, the fluid-structure interaction decouples and the cylinders behave as two isolated cylinders.

  13. On The Analysis of Labyrinth Seal Flow Induced Vibration by Oscillating Fluid Mechanics Method

    Institute of Scientific and Technical Information of China (English)

    ChenZuoyi; JingYouhao; 等

    1994-01-01

    A numerical model and a solution method to analyze the labyrinth seal flow induced vibration by Oscillating Fluid Mechanics Method(OFMM) are presented in this paper,including the basic equations and solution procedure to determine the oscillating velocity,pressure and the dynamic characteristic coefficients of Labyrinth seal such as the stiffness coefficients and damping coefficients.The results show that this method has the advantages of both less time consuming and high accuracy.In addition it can be applied to the field diagnosis of the vibration of the axis of turbomachinery system.

  14. Matrix stiffness drives epithelial-mesenchymal transition and tumour metastasis through a TWIST1-G3BP2 mechanotransduction pathway.

    Science.gov (United States)

    Wei, Spencer C; Fattet, Laurent; Tsai, Jeff H; Guo, Yurong; Pai, Vincent H; Majeski, Hannah E; Chen, Albert C; Sah, Robert L; Taylor, Susan S; Engler, Adam J; Yang, Jing

    2015-05-01

    Matrix stiffness potently regulates cellular behaviour in various biological contexts. In breast tumours, the presence of dense clusters of collagen fibrils indicates increased matrix stiffness and correlates with poor survival. It is unclear how mechanical inputs are transduced into transcriptional outputs to drive tumour progression. Here we report that TWIST1 is an essential mechanomediator that promotes epithelial-mesenchymal transition (EMT) in response to increasing matrix stiffness. High matrix stiffness promotes nuclear translocation of TWIST1 by releasing TWIST1 from its cytoplasmic binding partner G3BP2. Loss of G3BP2 leads to constitutive TWIST1 nuclear localization and synergizes with increasing matrix stiffness to induce EMT and promote tumour invasion and metastasis. In human breast tumours, collagen fibre alignment, a marker of increasing matrix stiffness, and reduced expression of G3BP2 together predict poor survival. Our findings reveal a TWIST1-G3BP2 mechanotransduction pathway that responds to biomechanical signals from the tumour microenvironment to drive EMT, invasion and metastasis.

  15. Changes in muscle cell metabolism and mechanotransduction are associated with myopathic phenotype in a mouse model of collagen VI deficiency.

    Directory of Open Access Journals (Sweden)

    Sara De Palma

    Full Text Available This study identifies metabolic and protein phenotypic alterations in gastrocnemius, tibialis anterior and diaphragm muscles of Col6a1(-/- mice, a model of human collagen VI myopathies. All three muscles of Col6a1(-/- mice show some common changes in proteins involved in metabolism, resulting in decreased glycolysis and in changes of the TCA cycle fluxes. These changes lead to a different fate of α-ketoglutarate, with production of anabolic substrates in gastrocnemius and tibialis anterior, and with lipotoxicity in diaphragm. The metabolic changes are associated with changes of proteins involved in mechanotransduction at the myotendineous junction/costameric/sarcomeric level (TN-C, FAK, ROCK1, troponin I fast and in energy metabolism (aldolase, enolase 3, triose phosphate isomerase, creatine kinase, adenylate kinase 1, parvalbumin, IDH1 and FASN. Together, these change may explain Ca(2+ deregulation, impaired force development, increased muscle-relaxation-time and fiber damage found in the mouse model as well as in patients. The severity of these changes differs in the three muscles (gastrocnemius

  16. Transcriptomes reveal alterations in gravity impact circadian clocks and activate mechanotransduction pathways with adaptation through epigenetic change.

    Science.gov (United States)

    Casey, Theresa; Patel, Osman V; Plaut, Karen

    2015-04-01

    Few studies have investigated the impact of alterations in gravity on mammalian transcriptomes. Here, we describe the impact of spaceflight on mammary transcriptome of late pregnant rats and the effect of hypergravity exposure on mammary, liver, and adipose transcriptomes in late pregnancy and at the onset of lactation. RNA was isolated from mammary collected on pregnancy day 20 from rats exposed to spaceflight from days 11 to 20 of gestation. To measure the impact of hypergravity on mammary, liver, and adipose transcriptomes we isolated RNA from tissues collected on P20 and lactation day 1 from rats exposed to hypergravity beginning on pregnancy day 9. Gene expression was measured with Affymetrix GeneChips. Microarray analysis of variance revealed alterations in gravity affected the expression of genes that regulate circadian clocks and activate mechanotransduction pathways. Changes in these systems may explain global gene expression changes in immune response, metabolism, and cell proliferation. Expression of genes that modify chromatin structure and methylation was affected, suggesting adaptation to gravity alterations may proceed through epigenetic change. Altered gravity experiments offer insights into the role of forces omnipresent on Earth that shape genomes in heritable ways. Our study is the first to analyze the impact of alterations in gravity on transcriptomes of pregnant and lactating mammals. Findings provide insight into systems that sense gravity and the way in which they affect phenotype, as well as the possibility of sustaining life beyond Earth's orbit.

  17. Rescuing loading induced bone formation at senescence.

    Directory of Open Access Journals (Sweden)

    Sundar Srinivasan

    Full Text Available The increasing incidence of osteoporosis worldwide requires anabolic treatments that are safe, effective, and, critically, inexpensive given the prevailing overburdened health care systems. While vigorous skeletal loading is anabolic and holds promise, deficits in mechanotransduction accrued with age markedly diminish the efficacy of readily complied, exercise-based strategies to combat osteoporosis in the elderly. Our approach to explore and counteract these age-related deficits was guided by cellular signaling patterns across hierarchical scales and by the insight that cell responses initiated during transient, rare events hold potential to exert high-fidelity control over temporally and spatially distant tissue adaptation. Here, we present an agent-based model of real-time Ca(2+/NFAT signaling amongst bone cells that fully described periosteal bone formation induced by a wide variety of loading stimuli in young and aged animals. The model predicted age-related pathway alterations underlying the diminished bone formation at senescence, and hence identified critical deficits that were promising targets for therapy. Based upon model predictions, we implemented an in vivo intervention and show for the first time that supplementing mechanical stimuli with low-dose Cyclosporin A can completely rescue loading induced bone formation in the senescent skeleton. These pre-clinical data provide the rationale to consider this approved pharmaceutical alongside mild physical exercise as an inexpensive, yet potent therapy to augment bone mass in the elderly. Our analyses suggested that real-time cellular signaling strongly influences downstream bone adaptation to mechanical stimuli, and quantification of these otherwise inaccessible, transient events in silico yielded a novel intervention with clinical potential.

  18. Experimental Investigation on Flow-Induced Vibration of Fuel Rods in Supercritical Water Loop

    Directory of Open Access Journals (Sweden)

    Licun Wu

    2014-01-01

    Full Text Available The supercritical water-cooled reactor (SCWR is one of the most promising Generation IV reactors. In order to make the fuel qualification test for SCWR, a research plan is proposed to test a small scale fuel assembly in a supercritical water loop. To ensure the structure safety of fuel assembly in the loop, a flow-induced vibration experiment was carried out to investigate the vibration behavior of fuel rods, especially the vibration caused by leakage flow. From the experiment result, it can be found that: the vibration of rods is mainly caused by turbulence when flow rate is low. However, the effects of leakage flow become obvious as flow rate increases, which could changes the distribution of vibrational energy in spectrum, increasing the vibrational energy in high-frequency band. That is detrimental to the structure safety of fuel rods. Therefore, it is more reasonable to improve the design by using the spacers with blind hole, which can eliminate the leakage flow, to assemble the fuel rods in supercritical water loop. On the other hand, the experimental result could provide a benchmark for the theoretical studies to validate the applicability of boundary condition set for the leakage-flow-induced vibration.

  19. Changes in ocular flow induced by hypo- and hypercapnia relate to static visual acuity in humans

    Directory of Open Access Journals (Sweden)

    Nami Someya

    2011-06-01

    Full Text Available We investigated whether the change in ocular blood flow, induced by hypo- and hypercapnia, is related to static visual acuity. Eleven healthy subjects (26±5 years underwent three treatments. A three-treatment three-period crossover design was used. In the hypocapnia treatment (HYPO, the subjects controlled their minute ventilation (VE to a target of 25 L/min for 6 min. In the hypercapnia treatment (HYPER, the subjects inspired high-fraction CO2 gas (FICO2 = 4% for 6 min. In the control treatment (CON, VE was not manipulated. We measured choroidal and retinal blood flow by laser speckle flowmetry as ocular blood flow, and static visual acuity using the Landolt C chart. End-tidal partial pressure of CO2 differed significantly among HYPO, HYPER and CON (21±1, 48±1, and 42±1 mmHg, respectively. Retinal blood flow decreased significantly from the baseline in HYPO (-22±5%, but increased significantly in HYPER (+3±9% compared to CON. Decimal visual acuity was significantly lower in HYPO than in the CON (0.21±0.1 vs. 0.24±0.1 P<0.05. These results suggest that changes in ocular blood flow induced by changes in arterial CO2 partial pressure influences visual acuity.

  20. Simulation of cross-flow-induced vibration of tube bundle by surface vorticity method

    Institute of Scientific and Technical Information of China (English)

    Fenghao WANG; Gedong JIANG; Jong Zhang Lin

    2008-01-01

    A fluid-structure interaction model based on Surface Vorticity Method (SVM) was used to study flow-induced vibrations of tube bundles in medium space ratio. The flow-induced vibrations of four tubes in a rotated square and a staggered tube bundle in three-row and five-column arrangements were simulated in the high sub-critical Reynolds number (Re) range. The results on fluid forces, tube responses and vorticity maps were pre-sented. The vorticity maps of the four rotated-square tubes changed dramatically when the rigid tubes were replaced by the flexible tubes. From the vorticity maps and vibration responses of the staggered tube bundle of different structural parameters, it was found that with the decrease of tube natural frequency, the maximal vibration response moved from the third row to the first. The results also showed that when more flexible tubes are used, the flow pattern changed drastically and the fluid-structure interaction imposed a dominant impact on the flow.

  1. Flow-induced corrosion behavior of absorbable magnesium-based stents.

    Science.gov (United States)

    Wang, Juan; Giridharan, Venkataraman; Shanov, Vesselin; Xu, Zhigang; Collins, Boyce; White, Leon; Jang, Yongseok; Sankar, Jagannathan; Huang, Nan; Yun, Yeoheung

    2014-12-01

    The aim of this work was to study corrosion behavior of magnesium (Mg) alloys (MgZnCa plates and AZ31 stents) under varied fluid flow conditions representative of the vascular environment. Experiments revealed that fluid hydrodynamics, fluid flow velocity and shear stress play essential roles in the corrosion behavior of absorbable magnesium-based stent devices. Flow-induced shear stress (FISS) accelerates the overall corrosion (including localized, uniform, pitting and erosion corrosions) due to the increased mass transfer and mechanical force. FISS increased the average uniform corrosion rate, the localized corrosion coverage ratios and depths and the removal rate of corrosion products inside the corrosion pits. For MgZnCa plates, an increase of FISS results in an increased pitting factor but saturates at an FISS of ∼0.15Pa. For AZ31 stents, the volume loss ratio (31%) at 0.056Pa was nearly twice that (17%) at 0Pa before and after corrosion. Flow direction has a significant impact on corrosion behavior as more severe pitting and erosion corrosion was observed on the back ends of the MgZnCa plates, and the corrosion product layer facing the flow direction peeled off from the AZ31 stent struts. This study demonstrates that flow-induced corrosion needs be understood so that Mg-based stents in vascular environments can be effectively designed.

  2. Bone Markers

    Science.gov (United States)

    ... markers may be seen in conditions such as: Osteoporosis Paget disease Cancer that has spread to the bone (metastatic bone disease) Hyperparathyroidism Hyperthyroidism Osteomalacia in adults and rickets in children—lack of bone mineralization, ...

  3. Bone scan

    Science.gov (United States)

    ... legs, or spine fractures) Diagnose a bone infection (osteomyelitis) Diagnose or determine the cause of bone pain, ... 2015:chap 43. Read More Broken bone Metabolism Osteomyelitis Review Date 12/10/2015 Updated by: Jatin ...

  4. Bone Cancer

    Science.gov (United States)

    Cancer that starts in a bone is uncommon. Cancer that has spread to the bone from another ... more common. There are three types of bone cancer: Osteosarcoma - occurs most often between ages 10 and ...

  5. Bone Diseases

    Science.gov (United States)

    Your bones help you move, give you shape and support your body. They are living tissues that rebuild constantly ... childhood and your teens, your body adds new bone faster than it removes old bone. After about ...

  6. Lysyl oxidase contributes to mechanotransduction-mediated regulation of transforming growth factor-β signaling in breast cancer cells.

    Science.gov (United States)

    Taylor, Molly A; Amin, Jay D; Kirschmann, Dawn A; Schiemann, William P

    2011-05-01

    Transforming growth factor-β (TGF-β) regulates all stages of mammary gland development, including the maintenance of tissue homeostasis and the suppression of tumorigenesis in mammary epithelial cells (MECs). Interestingly, mammary tumorigenesis converts TGF-β from a tumor suppressor to a tumor promoter through molecular mechanisms that remain incompletely understood. Changes in integrin signaling and tissue compliance promote the acquisition of malignant phenotypes in MECs in part through the activity of lysyl oxidase (LOX), which regulates desmoplastic reactions and metastasis. TGF-β also regulates the activities of tumor reactive stroma and MEC metastasis. We show here that TGF-β1 stimulated the synthesis and secretion of LOX from normal and malignant MECs in vitro and in mammary tumors produced in mice. The ability of TGF-β1 to activate Smad2/3 was unaffected by LOX inactivation in normal MECs, whereas the stimulation of p38 MAPK by TGF-β1 was blunted by inhibiting LOX activity in malignant MECs or by inducing the degradation of hydrogen peroxide in both cell types. Inactivating LOX activity impaired TGF-β1-mediated epithelial-mesenchymal transition and invasion in breast cancer cells. We further show that increasing extracellular matrix rigidity by the addition of type I collagen to three-dimensional organotypic cultures promoted the proliferation of malignant MECs, a cellular reaction that was abrogated by inhibiting the activities of TGF-β1 or LOX, and by degrading hydrogen peroxide. Our findings identify LOX as a potential mediator that couples mechanotransduction to oncogenic signaling by TGF-β1 and suggest that measures capable of inactivating LOX function may prove effective in diminishing breast cancer progression stimulated by TGF-β1.

  7. Lysyl Oxidase Contributes to Mechanotransduction-Mediated Regulation of Transforming Growth Factor-β Signaling in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Molly A. Taylor

    2011-05-01

    Full Text Available Transforming growth factor-β (TGF-β regulates all stages of mammary gland development, including the maintenance of tissue homeostasis and the suppression of tumorigenesis in mammary epithelial cells (MECs. Interestingly, mammary tumorigenesis converts TGF-β from a tumor suppressor to a tumor promoter through molecular mechanisms that remain incompletely understood. Changes in integrin signaling and tissue compliance promote the acquisition of malignant phenotypes in MECs in part through the activity of lysyl oxidase (LOX, which regulates desmoplastic reactions and metastasis. TGF-β also regulates the activities of tumor reactive stroma and MEC metastasis. We show here that TGF-β1 stimulated the synthesis and secretion of LOX from normal and malignant MECs in vitro and in mammary tumors produced in mice. The ability of TGF-β1 to activate Smad2/3 was unaffected by LOX inactivation in normal MECs, whereas the stimulation of p38 MAPK by TGF-β1 was blunted by inhibiting LOX activity in malignant MECs or by inducing the degradation of hydrogen peroxide in both cell types. Inactivating LOX activity impaired TGF-β1-mediated epithelial-mesenchymal transition and invasion in breast cancer cells. We further show that increasing extracellular matrix rigidity by the addition of type I collagen to three-dimensional organotypic cultures promoted the proliferation of malignant MECs, a cellular reaction that was abrogated by inhibiting the activities of TGF-β1 or LOX, and by degrading hydrogen peroxide. Our findings identify LOX as a potential mediator that couples mechanotransduction to oncogenic signaling by TGF-β1 and suggest that measures capable of inactivating LOX function may prove effective in diminishing breast cancer progression stimulated by TGF-β1.

  8. The Eulerian- and Lagrangian-mean flows induced by stationary, dissipating planetary waves

    Science.gov (United States)

    Takahashi, M.; Uryu, M.

    1981-01-01

    The Eulerian- and the Lagrangian-mean flows induced by stationary, dissipating planetary waves are discussed by employing a simple channel model on a beta-plane. It is assumed that the wave is excited by the bottom undulation and dissipated by Newtonian cooling with relaxation time alpha and by Rayleigh friction with (lambda)(alpha), lambda being constant. Three cases where lambda is equal to one are discussed: (1) the basic zonal wind U sub 0 and the dissipation rate alpha are both constant; (2) U sub 0 varies with height while alpha is constant; and (3) U sub 0 and alpha both vary with height. In case (1), the Eulerian- and the Lagrangian-mean fields are shown to depend on the difference between the dissipation scale-height and the density scale-height. In case (2) and case (3), it is shown that the results for case (1) are modified under slightly more realistic situations.

  9. Flow-induced cylinder noise formulated as a diffraction problem for low Mach numbers

    Science.gov (United States)

    Gloerfelt, X.; Pérot, F.; Bailly, C.; Juvé, D.

    2005-10-01

    The role of surfaces in the mechanism of sound generation by low Mach number flows interacting with solid nonvibrating surfaces is well established by the classical aeroacoustic papers by Powell, Doak, Ffowcs Williams, Crighton, or Howe. It can be formulated as a problem of diffraction of the flow sources by the rigid body. The present study illustrates this statement in the case of flow-induced cylinder noise. Curle's formulation is analytically and numerically compared to a formulation based on an exact Green's function tailored to a cylindrical geometry. The surface integral of Curle's formulation represents exactly the diffraction effects by the rigid body. The direct and scattered parts of the sound field are studied. In this low Mach number configuration, the cylinder is compact, and the scattered (dipole) field dominates the direct (quadrupole) field. The classical properties of the scattering by a cylinder are retrieved by considering a point quadripole source near the cylinder surface.

  10. Modeling of movement-induced and flow-induced fluid forces in fast switching valves

    DEFF Research Database (Denmark)

    Roemer, Daniel Beck; Johansen, Per; Schmidt, Lasse;

    2015-01-01

    Fast switching fluid power valves set strict requirements on performance, size and energy efficiency and simulation models are therefore needed to obtain good designs of such components. The valve moving member is subject to fluid forces depending on the valve flow rate and movement of the valve...... is proposed, which includes both the flow-induced fluid forces and the movement-induced fluid forces resulting from movement of the valve moving member. The movement-induced fluid force model is based on a known solution to the linearized Navier-Stokes equations. A method for accurately simulating the flow......-pressure relationship of a switching valve based on CFD results is presented along with the fluid force model, to constitute a complete valve fluid model. The parameters needed for the proposed model are determined based on CFD analyses, and the process of finding these parameters are described based on a reference...

  11. Flow-induced vibration for light water reactors. Final progress report, July 1981-September 1981

    Energy Technology Data Exchange (ETDEWEB)

    Torres, M.R.

    1981-11-01

    Flow-Induced Vibration for Light Water Reactors (FIV for LWRs) is a program designed to improve the FIV performance of light water reactors through the development of design criteria, analytical models for predicting behavior of components, and general scaling laws to improve the accuracy of reduced-scale tests, and through the identification of high FIV risk areas. The program is managed by the General Electric Nuclear Power Systems Engineering Department and has three major contributors: General Electric Nuclear Power Systems Engineering Department (NPSED), General Electric Corporate Research and Development (CR and D) and Argonne National Laboratory (ANL). The program commenced December 1, 1976. This progress report summarizes the accomplishments achieved during the final period from July 1981 to September 1981. This is the last quarterly progress report to be issued for this program.

  12. CFD simulation of flow-induced vibration of an elastically supported airfoil

    Directory of Open Access Journals (Sweden)

    Šidlof Petr

    2016-01-01

    Full Text Available Flow-induced vibration of lifting or control surfaces in aircraft may lead to catastrophic consequences. Under certain circumstances, the interaction between the airflow and the elastic structure may lead to instability with energy transferred from the airflow to the structure and with exponentially increasing amplitudes of the structure. In the current work, a CFD simulation of an elastically supported NACA0015 airfoil with two degrees of freedom (pitch and plunge coupled with 2D incompressible airflow is presented. The geometry of the airfoil, mass, moment of inertia, location of the centroid, linear and torsional stiffness was matched to properties of a physical airfoil model used for wind-tunnel measurements. The simulations were run within the OpenFOAM computational package. The results of the CFD simulations were compared with the experimental data.

  13. First international symposium on Flow Induced Noise and Vibration Issues and Aspects

    CERN Document Server

    Rosa, Sergio; Franco, Francesco; Guyader, Jean-Louis; Hambric, Stephen; Flinovia - Flow Induced Noise and Vibration Issues and Aspects

    2015-01-01

    Flow induced vibration and noise (FIVN) remains a critical research topic. Even after over 50 years of intensive research, accurate and cost-effective FIVN simulation and measurement techniques remain elusive. This book gathers the latest research from some of the most prominent experts in the field. It describes methods for characterizing wall pressure fluctuations, including subsonic and supersonic turbulent boundary layer flows over smooth and rough surfaces using computational methods like Large Eddy Simulation;
for inferring wall pressure fluctuations using inverse techniques based on panel vibrations or holographic pressure sensor arrays;
for calculating the resulting structural vibrations and radiated sound using traditional finite element methods, as well as advanced methods like Energy Finite Elements;
for using scaling approaches to universally collapse flow-excited vibration and noise spectra; and for computing time histories of structural response, including alternating stresses. This book p...

  14. Modeling and control of flow-induced vibrations of a flexible hydrofoil in viscous flow

    Science.gov (United States)

    Caverly, Ryan James; Li, Chenyang; Chae, Eun Jung; Forbes, James Richard; Young, Yin Lu

    2016-06-01

    In this paper, a reduced-order model (ROM) of the flow-induced vibrations of a flexible cantilevered hydrofoil is developed and used to design an active feedback controller. The ROM is developed using data from high-fidelity viscous fluid-structure interaction (FSI) simulations and includes nonlinear terms to accurately capture the effect of lock-in. An active linear quadratic Gaussian (LQG) controller is designed based on a linearization of the ROM and is implemented in simulation with the ROM and the high-fidelity viscous FSI model. A controller saturation method is also presented that ensures that the control force applied to the system remains within a prescribed range. Simulation results demonstrate that the LQG controller successfully suppresses vibrations in both the ROM and viscous FSI simulations using a reasonable amount of control force.

  15. Effects of nanopore size on the flow-induced star polymer translocation.

    Science.gov (United States)

    Chen, Qiaoyue; Zhang, Lili; Ding, Mingming; Duan, Xiaozheng; Huang, Yineng; Shi, Tongfei

    2016-11-01

    We study the effects of the nanopore size on the flow-induced capture of the star polymer by a nanopore and the afterward translocation, using a hybrid simulation method that couples point particles into a fluctuating lattice-Boltzmann fluid. Our simulation demonstrates that the optimal forward arm number decreases slowly with the increase of the length of the nanopore. Compared to the minor effect of the length of the nanopore, the optimal forward arm number obviously increases with the increase of the width of the nanopore, which can clarify the current controversial issue for the optimal forward arm number between the theory and experiments. In addition, our results indicate that the critical velocity flux of the star polymer is independent of the nanopore size. Our work bridges the experimental results and the theoretical understanding, which can provide comprehensive insights for the characterization and the purification of the star polymers.

  16. A novel concept of measuring mass flow rates using flow induced stresses

    Indian Academy of Sciences (India)

    P I Jagad; B P Puranik; A W Date

    2015-08-01

    Measurement of mass flow rate is important for automatic control of the mass flow rate in many industries such as semiconductor manufacturing and chemical industry (for supply of catalyst to a reaction). In the present work, a new concept for direct measurement of mass flow rates which does not depend on the volumetric flow rate measurement and obviates the need for the knowledge of density is proposed from the measurement of the flow induced stresses in a substrate. The concept is formulated by establishing the relationship between the mass flow rate and the stress in the substrate. To this end, the flow field and the stress field in the substrate are evaluated simultaneously using a numerical procedure and the necessary correlations are derived. A least squares based procedure is used to derive the mass flow rate from the correlations as a function of the stress in the substrate.

  17. Flow and flow-induced vibration of a square array of cylinders in steady currents

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Ming [School of Computing, Engineering and Mathematics, University of Western Sydney, Locked Bag 1797, Penrith, NSW 2751 (Australia); Cheng, Liang; An, Hongwei; Tong, Feifei, E-mail: m.zhao@uws.edu.au [School of Civil, Environmental and Mining Engineering, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia)

    2015-08-15

    Flow and flow-induced vibration of a square array of cylinders are investigated by two-dimensional numerical simulations. Flow past 36 cylinders in an inline arranged square array and 33 cylinders in a staggered arranged square array is firstly simulated, for Re = 100 and the spacing ratios of L/D = 1.5, 2, 3, 4, 5. Only one vortex street is observed in the wake of the cylinder array when the spacing ratio is 1.5 in the inline arrangement and 1.5 and 2 in the staggered arrangement, indicating that the critical spacing ratio for the single-vortex street mode in the staggered arrangement is higher than that in the inline arrangement. The vortex shedding from the cylinders is suppressed at L/D = 3 for both inline and staggered arrangements. Vortex shedding from each individual cylinder is observed when L/D = 4. Flow-induced vibration of 36 cylinders in an inline square arrangement is studied for a constant Reynolds number of 100, two spacing ratios of 2 and 5, a constant mass ratio of 2.5 and a wide range of reduced velocities. It is found that for a spacing ratio of 2, the vibration of the cylinders in the four downstream columns does not start until the reduced velocity exceeds 4.5. The vibration of the cylinders progresses downstream with increasing reduced velocity. For a spacing ratio of 5, the vibrations of the cylinders in the most upstream column are similar to that of a single cylinder. The vibration amplitudes of the downstream cylinders peak at higher reduced velocities than that of a single cylinder. The maximum possible response amplitudes occur at the most downstream cylinders. (paper)

  18. Advanced non-linear flow-induced vibration and fretting-wear analysis capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Toorani, M.; Pan, L.; Li, R.; Idvorian, N. [Babcock and Wilcox Canada Ltd., Cambridge, Ontario (Canada); Vincent, B.

    2009-07-01

    Fretting wear is a potentially significant degradation mechanism in nuclear steam generators and other shell and tube heat transfer equipment as well. This paper presents an overview of the recently developed code FIVDYNA which is used for the non-linear flow-induced vibration and fretting wear analysis for operating steam generators (OTSG and RSG) and shell-and-tube heat exchangers. FIVDYNA is a non-linear time-history Flow-Induced Vibration (FIV) analysis computer program that has been developed by Babcock and Wilcox Canada to advance the understanding of tube vibration and tube to tube-support interaction. In addition to the dynamic fluid induced forces the program takes into account other tube static forces due to axial and lateral tube preload and thermal interaction loads. The program is capable of predicting the location where the fretting wear is most likely to occur and its magnitude taking into account the support geometry including gaps. FIVDYNA uses the general purpose finite element computer code ABAQUS as its solver. Using ABAQUS gives the user the flexibility to add additional forces to the tube ranging from tube preloads and the support offsets to thermal loads. The forces currently being modeled in FIVDYNA are the random turbulence, steady drag force, fluid-elastic forces, support offset and pre-strain force (axial loads). This program models the vibration of tubes and calculates the structural dynamic characteristics, and interaction forces between the tube and the tube supports. These interaction forces are then used to calculate the work rate at the support and eventually the predicted depth of wear scar on the tube. A very good agreement is found with experiments and also other computer codes. (author)

  19. Inhibition of rho kinase attenuates high flow induced pulmonary hypertension in rats

    Institute of Scientific and Technical Information of China (English)

    LI Fu-hai; XIA Wei; LI Ai-wu; ZHAO Cui-fen; SUN Ruo-peng

    2007-01-01

    Background The RhoA/Rho kinase pathway may participate in the pathogenesis of hypoxia and monocrotaline induced pulmonary hypertension. This study tested whether RhoA/Rho kinase pathway is involved in the pathogenesis of high flow induced pulmonary hypertension in rats.Methods Male Wistar rats (4 weeks) were randomly divided into 4 shunt groups, 4 treated groups and 4 control groups.Shunt and treated groups underwent left common carotid artery/external jugular vein shunt operation. Control groups underwent sham operation. Treated groups received fasudil treatment and the others received same dose of saline. At weeks 1, 2, 4 and 8 of the study, right ventricular systolic pressure was measured and blood gases were analysed to calculate Qp/Qs. The weight ratio of right ventricle to left ventricle plus septum and the mean percentage of medial wall thickness in moderate sized pulmonary arteries were obtained. RhoA activity in pulmonary arteries was detected using Rho activity assay reagent. Rho kinase activity was quantified by the extent of MYPT1 phosphorylation with Western blot.Proliferating cells were evaluated using proliferating cell nuclear antigen immunohistological staining.Results Carotid artery/jugular vein shunt resulted in high pulmonary blood flow, both an acute and a chronic elevation of right ventricular systolic pressure, significant medial wall thickening characterized by smooth muscle cells proliferation,right ventricular hypertrophy and increased activation of RhoA and Rho kinase. Fasudil treatment lowered pulmonary artery systolic pressure, suppressed pulmonary artery smooth muscle cells proliferation, attenuated pulmonary artery medial wall thickening and inhibited right ventricular hypertrophy together with significant suppression of Rho kinase activity but not Rho activity.Conclusions Activated RhoA/Rho kinase pathway is associated with both the acute pulmonary vasoconstriction and the chronic pulmonary artery remodelling of high flow induced

  20. Numerical and experimental investigation of natural flow-induced vibrations of flexible hydrofoils

    Science.gov (United States)

    Chae, Eun Jung; Akcabay, Deniz Tolga; Lelong, Alexandra; Astolfi, Jacques Andre; Young, Yin Lu

    2016-07-01

    The objective of this work is to present combined numerical and experimental studies of natural flow-induced vibrations of flexible hydrofoils. The focus is on identifying the dependence of the foil's vibration frequencies and damping characteristics on the inflow velocity, angle of attack, and solid-to-fluid added mass ratio. Experimental results are shown for a cantilevered polyacetate (POM) hydrofoil tested in the cavitation tunnel at the French Naval Academy Research Institute (IRENav). The foil is observed to primarily behave as a chordwise rigid body and undergoes spanwise bending and twisting deformations, and the flow is observed to be effectively two-dimensional (2D) because of the strong lift retention at the free tip caused by a small gap with a thickness less than the wall boundary layer. Hence, the viscous fluid-structure interaction (FSI) model is formulated by coupling a 2D unsteady Reynolds-averaged Navier-Stokes (URANS) model with a two degree-of-freedom (2-DOF) model representing the spanwise tip bending and twisting deformations. Good agreements were observed between viscous FSI predictions and experimental measurements of natural flow-induced vibrations in fully turbulent and attached flow conditions. The foil vibrations were found to be dominated by the natural frequencies in absence of large scale vortex shedding due to flow separation. The natural frequencies and fluid damping coefficients were found to vary with velocity, angle of attack, and solid-to-fluid added mass ratio. In addition, the numerical results showed that the in-water to in-air natural frequency ratios decreased rapidly, and the fluid damping coefficients increased rapidly, as the solid-to-fluid added mass ratio decreases. Uncoupled mode (UM) linear potential theory was found to significantly over-predict the fluid damping for cases of lightweight flexible hydrofoils, and this over-prediction increased with higher velocity and lower solid-to-fluid added mass ratio.

  1. Bone Densitometry (Bone Density Scan)

    Science.gov (United States)

    ... of DXA Bone Densitometry? What is a Bone Density Scan (DXA)? Bone density scanning, also called dual-energy x-ray absorptiometry ( ... is today's established standard for measuring bone mineral density (BMD). An x-ray (radiograph) is a noninvasive ...

  2. Bone marrow aspiration

    Science.gov (United States)

    Iliac crest tap; Sternal tap; Leukemia - bone marrow aspiration; Aplastic anemia - bone marrow aspiration; Myelodysplastic syndrome - bone marrow aspiration; Thrombocytopenia - bone marrow aspiration; Myelofibrosis - bone marrow aspiration

  3. Preclinical mouse models for assessing axial compression of long bones during exercise.

    Science.gov (United States)

    Stadelmann, Vincent A; Brun, Julia; Bonnet, Nicolas

    2015-01-01

    The aim of this laboratory method is to describe two approaches for the investigation of bone responses to mechanical loading in mice in vivo. The first is running exercise, because it is easily translatable clinically, and the second is axial compression of the tibia, because it is precisely controllable. The effects of running exercise, and in general physical activity, on bone tissue have been shown to be both direct through mechanical loading (ground impact and muscle tension) and indirect through metabolic changes. Therefore, running exercise has been considered the most convenient preclinical model for demonstrating the general idea that exercise is good for bone health, either early in age for increasing peak bone mass or later in age by slowing down bone loss. However, numerous combinations of protocols have been reported, which makes it difficult to formulate a simple take-home message. This laboratory method also provides a detailed description of in vivo direct mechanical axial compression of the mouse tibia. The effects of mechanical loading depend on the force (strain), frequency, waveform and duration of application, and they range from bone anabolism with low bone remodeling, inducing lamellar bone accumulation, to bone catabolism with high bone remodeling, leading to microdamage, woven bone formation and bone loss. Direct in vivo loading models are extensively used to study mechanotransduction pathways, and contribute by this way to the development of new bone anabolism treatments. Although it is particularly difficult to assemble an internationally adopted protocol description, which would give reproducible bone responses, here we have attempted to provide a comprehensive guide for best practice in performing running exercise and direct in vivo mechanical loading in the laboratory.

  4. Exercise and Regulation of Bone and Collagen Tissue Biology

    DEFF Research Database (Denmark)

    Kjaer, Michael; Jørgensen, Niklas Rye; Heinemeier, Katja

    2015-01-01

    The musculoskeletal system and its connective tissue include the intramuscular connective tissue, the myotendinous junction, the tendon, the joints with their cartilage and ligaments, and the bone; they all together play a crucial role in maintaining the architecture of the skeletal muscle......, ensuring force transmission, storing energy, protecting joint surface and stability, and ensuring the transfer of muscular forces into resulting limb movement. The musculoskeletal connective tissue structure is relatively stable, but mechanical loading and subsequent mechanotransduction and molecular...... anabolic signaling can result in some adaptation of the connective tissue, its size, its strength, and its mechanical properties, whereby it can improve its capacity by 5-20% with regular physical activity. For several of the mechanically loaded connective tissues, only limited information regarding...

  5. Flow induced particle migration in fresh concrete: Theoretical frame, numerical simulations and experimental results on model fluids

    DEFF Research Database (Denmark)

    Spangenberg, J.; Roussel, N.; Hattel, J.H.;

    2012-01-01

    In this paper, we describe and compare the various physical phenomena which potentially lead to flow induced particle migration in concrete. We show that, in the case of industrial casting of concrete, gravity induced particle migration dominates all other potential sources of heterogeneities ind...

  6. A theory for bone resorption based on the local rupture of osteocytes cells connections: A finite element study.

    Science.gov (United States)

    Ridha, Hambli; Almitani, Khalid H; Chamekh, Abdessalem; Toumi, Hechmi; Tavares, Joao Manuel R S

    2015-04-01

    In this work, a bone damage resorption finite element model based on the disruption of the inhibitory signal transmitted between osteocytes cells in bone due to damage accumulation is developed and discussed. A strain-based stimulus function coupled to a damage-dependent spatial function is proposed to represent the connection between two osteocytes embedded in the bone tissue. The signal is transmitted to the bone surface to activate bone resorption. The proposed model is based on the idea that the osteocyte signal reduction is not related to the reduction of the stimulus sensed locally by osteocytes due to damage, but to the difficulties for the signal in travelling along a disrupted area due to microcracks that can destroy connections of the intercellular network between osteocytes and bone-lining cells. To check the potential of the proposed model to predict the damage resorption process, two bone resorption mechano-regulation rules corresponding to two mechanotransduction approaches have been implemented and tested: (1) Bone resorption based on a coupled strain-damage stimulus function without ruptured osteocyte connections (NROC); and (2) Bone resorption based on a strain stimulus function with ruptured osteocyte connections (ROC). The comparison between the results obtained by both models, shows that the proposed model based on ruptured osteocytes connections predicts realistic results in conformity with previously published findings concerning the fatigue damage repair in bone.

  7. Effect of overall drop deformation on flow-induced coalescence at low capillary numbers

    Science.gov (United States)

    Baldessari, Fabio; Leal, L. Gary

    2006-01-01

    Comparison of recent experimental results for flow-induced drop coalescence [H. Yang, C. C. Park, Y. T. Hu et al., "The coalescence of two equal-sized drops in a two-dimensional linear flow," Phys. Fluids13, 1087 (2001)] with existing theory provides the motivation for an examination of the theory. Specifically, for head-on collisions, the experiments show a plateau in the dependence of drainage time versus capillary number at low capillary number that could not be explained by either the existing scaling analysis or the existing thin-film theory of the film drainage process previously described in the pioneering work of Davis and co-workers [S. G. Yiantsios and R. H. Davis, "Close approach and deformation of two viscous drops due to gravity and van der Waals forces," J. Colloid Interface Sci. 144, 412 (1991); R. H. Davis, J. A. Schonberg, and J. M. Rallison, "The lubrication force between two viscous drops," Phys. Fluids A 1, 77 (1989); M. A. Rother, A. Z. Zinchenko, and R. H. Davis, "Buoyancy-driven coalescence of slightly deformable drops," J. Fluid Mech. 346, 117 (1997); S. G. Yiantsios and R. H. Davis, "On the buoyancy-driven motion of a drop towards a rigid surface or a deformable interface," J. Fluid Mech. 217, 547 (1990)]. Both of these results indicate that the existing theories, while fundamentally correct in concept, are incomplete in providing a framework for a comprehensive explanation of the experimental results. In the present paper, we reexamine the thin-film theory of Davis et al. in the low capillary number limit. We find that a quasistatic model in which deformation is localized within the thin film is in general not sufficient to describe the leading-order asymptotic approximation of the flow-induced collision and coalescence of two slightly deformable drops at low capillary number. Instead, the overall deformation induced in the drops by the external flow plays a key role in determining the initial film thickness needed for numerical simulation

  8. Stimulation of bone repair with ultrasound: a review of the possible mechanic effects.

    Science.gov (United States)

    Padilla, Frédéric; Puts, Regina; Vico, Laurence; Raum, Kay

    2014-07-01

    In vivo and in vitro studies have demonstrated the positive role that ultrasound can play in the enhancement of fracture healing or in the reactivation of a failed healing process. We review the several options available for the use of ultrasound in this context, either to induce a direct physical effect (LIPUS, shock waves), to deliver bioactive molecules such as growth factors, or to transfect cells with osteogenic plasmids; with a main focus on LIPUS (or Low Intensity Pulsed Ultrasound) as it is the most widespread and studied technique. The biological response to LIPUS is complex as numerous cell types respond to this stimulus involving several pathways. Known to-date mechanotransduction pathways involved in cell responses include MAPK and other kinases signaling pathways, gap-junctional intercellular communication, up-regulation and clustering of integrins, involvement of the COX-2/PGE2, iNOS/NO pathways and activation of ATI mechanoreceptor. The mechanisms by which ultrasound can trigger these effects remain intriguing. Possible mechanisms include direct and indirect mechanical effects like acoustic radiation force, acoustic streaming, and propagation of surface waves, fluid-flow induced circulation and redistribution of nutrients, oxygen and signaling molecules. Effects caused by the transformation of acoustic wave energy into heat can usually be neglected, but heating of the transducer may have a potential impact on the stimulation in some in-vitro systems, depending on the coupling conditions. Cavitation cannot occur at the pressure levels delivered by LIPUS. In-vitro studies, although not appropriate to identify the overall biological effects, are of great interest to study specific mechanisms of action. The diversity of current experimental set-ups however renders this analysis very complex, as phenomena such as transducer heating, inhomogeneities of the sound intensity in the near field, resonances in the transmission and reflection through the culture

  9. Flow induced vibration and stability analysis of multi wall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Kyung Jae [Agency for Defense Development, Daejeon (Korea, Republic of); Choi, Jong Woon [Korean Intellectual Property Office, Daejeon (Korea, Republic of); Kim, Sung Kyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Song, Oh Seop [Chungnam National Univ., Daejeon (Korea, Republic of)

    2012-12-15

    The free vibration and flow induced flutter instability of cantilever multi wall carbon nanotubes conveying fluid are investigated and the nanotubes are modeled as thin-walled beams. The non-classical effects of the transverse shear, rotary inertia, warping inhibition, and van der Waals forces between two walls are incorporated into the structural model. The governing equations and associated boundary conditions are derived using Hamilton's principle. A numerical analysis is carried out by using the extended Galerkin method, which enables us to obtain more accurate solutions compared to the conventional Galerkin method. Cantilevered carbon nanotubes are damped with decaying amplitude for a flow velocity below a certain critical value. However, beyond this critical flow velocity, flutter instability may occur. The variations in the critical flow velocity with respect to both the radius ratio and length of the carbon nanotubes are investigated and pertinent conclusions are outlined. The differences in the vibration and instability characteristics between the Timoshenko beam theory and Euler beam theory are revealed. A comparative analysis of the natural frequencies and flutter characteristics of MWCNTs and SWCNTs is also performed.

  10. Signal analysis of acoustic and flow-induced vibrations of BWR main steam line

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa-Paredes, G., E-mail: gepe@xanum.uam.mx [División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, México, D.F. 09340 (Mexico); Prieto-Guerrero, A. [División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, México, D.F. 09340 (Mexico); Núñez-Carrera, A. [Comisión Nacional de Seguridad Nuclear y Salvaguardias, Doctor Barragán 779, Col. Narvarte, México, D.F. 03020 (Mexico); Vázquez-Rodríguez, A. [División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, México, D.F. 09340 (Mexico); Centeno-Pérez, J. [Instituto Politécnico Nacional, Escuela Superior de Física y Matemáticas Unidad Profesional “Adolfo López Mateos”, Av. IPN, s/n, México, D.F. 07738 (Mexico); Espinosa-Martínez, E.-G. [Departamento de Sistemas Energéticos, Universidad Nacional Autónoma de México, México, D.F. 04510 (Mexico); and others

    2016-05-15

    Highlights: • Acoustic and flow-induced vibrations of BWR are analyzed. • BWR performance after extended power uprate is considered. • Effect of acoustic side branches (ASB) is analyzed. • The ASB represents a reduction in the acoustic loads to the steam dryer. • Methodology developed for simultaneous analyzing the signals in the MSL. - Abstract: The aim of this work is the signal analysis of acoustic waves due to phenomenon known as singing in Safety Relief Valves (SRV) of the main steam lines (MSL) in a typical BWR5. The acoustic resonance in SRV standpipes and fluctuating pressure is propagated from SRV to the dryer through the MSL. The signals are analyzed with a novel method based on the Multivariate Empirical Mode Decomposition (M-EMD). The M-EMD algorithm has the potential to find common oscillatory modes (IMF) within multivariate data. Based on this fact, we implement the M-EMD technique to find the oscillatory mode in BWR considering the measurements obtained collected by the strain gauges located around the MSL. These IMF, analyzed simultaneously in time, allow obtaining an estimation of the effects of the multiple-SRV in the MSL. Two scenarios are analyzed: the first is the signal obtained before the installation of the acoustic dampers (ASB), and the second, the signal obtained after installation. The results show the effectiveness of the ASB to damp the strong resonances when the steam flow increases, which represents an important reduction in the acoustic loads to the steam dryer.

  11. Luminal flow induces NADPH oxidase 4 translocation to the nuclei of thick ascending limbs.

    Science.gov (United States)

    Saez, Fara; Hong, Nancy J; Garvin, Jeffrey L

    2016-03-01

    Superoxide (O2 (-)) exerts its physiological actions in part by causing changes in gene transcription. In thick ascending limbs flow-induced O2 (-)production is mediated byNADPHoxidase 4 (Nox4) and is dependent on protein kinase C (PKC). Polymerase delta interacting protein 2 (Poldip2) increases Nox4 activity, but it is not known whether Nox4 translocates to the nucleus and whether Poldip2 participates in this process. We hypothesized that luminal flow causes Nox4 translocation to the nuclei of thick ascending limbs in aPKC-dependent process facilitated by Poldip2. To test our hypothesis, we studied the subcellular localization of Nox4 and Poldip2 using confocal microscopy and O2 (-)production in the absence and presence of luminal flow. Luminal flow increased the ratio of nuclear to cytoplasmic intensity of Nox4 (N/C) from 0.3 ± 0.1 to 0.7 ± 0.1 (P thick ascending limbs.

  12. Corrsin Award Talk - Collide and conquer: flow-induced segregation in blood and other multicomponent suspensions

    Science.gov (United States)

    Graham, Michael

    2015-11-01

    Blood is a suspension of objects of various shapes, sizes and mechanical properties, whose distribution during flow is important in many contexts. Red blood cells tend to migrate toward the center of a blood vessel, leaving a cell-free layer at the vessel wall, while white blood cells and platelets are preferentially found near the walls, a phenomenon called margination that is critical for the physiological responses of inflammation and hemostasis. Additionally, drug delivery particles in the bloodstream will also undergo segregation - the influence of these phenomena on the efficacy of such particles is unknown. This talk describes efforts to gain a systematic understanding of flow-induced segregation phenomena in blood and other complex mixtures, using a combination of theory and direct simulations. Contrasts in size, deformability and shape can all lead to segregation. A kinetic theory model based on pair collisions and wall-induced hydrodynamic migration can capture the key effects observed in direct simulations, including a ``drainage transition'' in which one component is completely depleted from the bulk of the flow. Experiments performed in the laboratory of Wilbur Lam indicate the physiological and clinical importance of these observations. This talk is based upon work supported by the National Science Foundation under Grants No. CBET- 1132579 and No. CBET-1436082.

  13. Counter flow induced draft cooling tower option for supercritical carbon dioxide Brayton cycle

    Energy Technology Data Exchange (ETDEWEB)

    Pidaparti, Sandeep R., E-mail: sandeep.pidaparti@gmail.com [Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, Atlanta, GA 30332 (United States); Moisseytsev, Anton; Sienicki, James J. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Ranjan, Devesh, E-mail: devesh.ranjan@me.gatech.edu [Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, Atlanta, GA 30332 (United States)

    2015-12-15

    Highlights: • A code was developed to investigate the various aspects of using cooling tower for S-CO{sub 2} Brayton cycles. • Cooling tower option to reject heat is quantitatively compared to the direct water cooling and dry air cooling options. • Optimum water conditions resulting in minimal plant capital cost per unit power consumption are calculated. - Abstract: A simplified qualitative analysis was performed to investigate the possibility of using counter flow induced draft cooling tower option to reject heat from the supercritical carbon dioxide Brayton cycle for advanced fast reactor (AFR)-100 and advanced burner reactor (ABR)-1000 plants. A code was developed to estimate the tower dimensions, power and water consumption, and to perform economic analysis. The code developed was verified against a vendor provided quotation and is used to understand the effect of ambient air and water conditions on the design of cooling tower. The calculations indicated that there exists optimum water conditions for given ambient air conditions which will result in minimum power consumption, thereby increasing the cycle efficiency. A cost-based optimization technique is used to estimate the optimum water conditions which will improve the overall plant economics. A comparison of different cooling options for the S-CO{sub 2} cycle indicated that the cooling tower option is a much more practical and economical option compared to the dry air cooling or direct water cooling options.

  14. Influence of subglottic stenosis on the flow-induced vibration of a computational vocal fold model

    Science.gov (United States)

    Smith, Simeon L.; Thomson, Scott L.

    2013-04-01

    The effect of subglottic stenosis on vocal fold vibration is investigated. An idealized stenosis is defined, parameterized, and incorporated into a two-dimensional, fully coupled finite element model of the vocal folds and laryngeal airway. Flow-induced responses of the vocal fold model to varying severities of stenosis are compared. The model vibration was not appreciably affected by stenosis severities of up to 60% occlusion. Model vibration was altered by stenosis severities of 90% or greater, evidenced by decreased superior model displacement, glottal width amplitude, and flow rate amplitude. Predictions of vibration frequency and maximum flow declination rate were also altered by high stenosis severities. The observed changes became more pronounced with increasing stenosis severity and inlet pressure, and the trends correlated well with flow resistance calculations. Flow visualization was used to characterize subglottal flow patterns in the space between the stenosis and the vocal folds. Underlying mechanisms for the observed changes, possible implications for human voice production, and suggestions for future work are discussed.

  15. One-Directional Fluidic Flow Induced by Chemical Wave Propagation in a Microchannel.

    Science.gov (United States)

    Arai, Miyu; Takahashi, Kazuhiro; Hattori, Mika; Hasegawa, Takahiko; Sato, Mami; Unoura, Kei; Nabika, Hideki

    2016-05-26

    A one-directional flow induced by chemical wave propagation was investigated to understand the origin of its dynamic flow. A cylindrical injection port was connected with a straight propagation channel; the chemical wave was initiated at the injection port. Chemical waves propagated with a constant velocity irrespective of the channel width, indicating that the dynamics of the chemical waves were governed by a geometry-independent interplay between the chemical reaction and diffusion. In contrast, the velocity of the one-directional flow was dependent on the channel width. Furthermore, enlargement of the injection port volume increased the flow velocity and volume flux. These results imply that the one-directional flow in the microchannel is due to a hydrodynamic effect induced in the injection port. Spectroscopic analysis of a pH indicator revealed the simultaneous behavior between the pH increase near the injection port and the one-directional flow. Hence, we can conclude that the one-directional flow in the microchannel with chemical wave propagation was caused by a proton consumption reaction in the injection port, probably through liquid volume expansion by the reaction products and the reaction heat. It is a characteristic feature of the present system that the hydrodynamic flow started from the chemical wave initiation point and not the propagation wavefront, as observed for previous systems.

  16. Use of a plane jet for flow-induced noise reduction of tandem rods

    Science.gov (United States)

    Zhao, Kun; Yang, Xi-xiang; Okolo, Patrick N.; Zhang, Wei-hua; Bennett, Gareth J.

    2016-06-01

    Unsteady wake from upstream components of landing gear impinging on downstream components could be a strong noise source. The use of a plane jet is proposed to reduce this flow-induced noise. Tandem rods with different gap widths were utilized as the test body. Both acoustic and aerodynamic tests were conducted in order to validate this technique. Acoustic test results proved that overall noise emission from tandem rods could be lowered and tonal noise could be removed with use of the plane jet. However, when the plane jet was turned on, in some frequency range it could be the subsequent main contributor instead of tandem rods to total noise emission whilst in some frequency range rods could still be the main contributor. Moreover, aerodynamic tests fundamentally studied explanations for the noise reduction. Specifically, not only impinging speed to rods but speed and turbulence level to the top edge of the rear rod could be diminished by the upstream plane jet. Consequently, the vortex shedding induced by the rear rod was reduced, which was confirmed by the speed, Reynolds stress as well as the velocity fluctuation spectral measured in its wake. This study confirmed the potential use of a plane jet towards landing gear noise reduction. Project partially supported by the European Union FP7 CleanSky Joint Technology Initiative “ALLEGRA” (Grant No. 308225).

  17. Effect of initial perturbation amplitude on Richtmyer-Meshkov flows induced by strong shocks

    Energy Technology Data Exchange (ETDEWEB)

    Dell, Z.; Abarzhi, S. I., E-mail: snezhana.abarzhi@gmail.com, E-mail: sabarji@andrew.cmu.edu [Mellon College of Science and Carnegie Mellon University – Qatar, Carnegie Mellon University, Pittsburgh, Pennsylvania 15231 (United States); Stellingwerf, R. F. [Stellingwerf Consulting, Huntsville, Alabama 35803 (United States)

    2015-09-15

    We systematically study the effect of the initial perturbation on Richtmyer-Meshkov (RM) flows induced by strong shocks in fluids with contrasting densities. Smooth Particle Hydrodynamics simulations are employed. A broad range of shock strengths and density ratios is considered. The amplitude of the initial single mode sinusoidal perturbation of the interface varies from 0% to 100% of its wavelength. The simulations results are compared, wherever possible, with four rigorous theories, and with other experiments and simulations, achieving good quantitative and qualitative agreement. Our study is focused on early time dynamics of the Richtmyer-Meshkov instability (RMI). We analyze the initial growth-rate of RMI immediately after the shock passage, when the perturbation amplitude increases linearly with time. For the first time, to the authors' knowledge, we find that the initial growth-rate of RMI is a non-monotone function of the initial perturbation amplitude, thus restraining the amount of energy that can be deposited by the shock at the interface. The maximum value of the initial growth-rate depends on the shock strength and the density ratio, whereas the corresponding value of the initial perturbation amplitude depends only slightly on the shock strength and density ratio.

  18. Numerical simulation for propagation characteristics of shock wave and gas flow induced by outburst intensity

    Institute of Scientific and Technical Information of China (English)

    Zhou Aitao; Wang Kai; Wang Li; Du Feng; Li Zhilei

    2015-01-01

    In order to analyze the propagation characteristics of shock wave and gas flow induced by outburst inten-sity, the governing equations of shock wave and gas flow propagation were put forward, and the numer-ical simulation boundary condition was obtained based on outburst characteristics. The propagation characteristics of shock wave and gas flow were simulated by Fluent software, and the simulation results were verified by experiments. The results show that air shock wave is formed due to air medium com-pressed by the transient high pressure gas which rapidly expands in the roadway;the shock wave and gas flow with high velocity are formed behind the shock wave front, which significantly decays due to limiting effect of the roadway wall. The attenuation degree is greater in the early stage than that in the late stage, and the velocity of gas convection transport is lower than the speed of the shock wave. The greater the outburst intensity is, the greater the pressure of the shock wave front is, and the higher the speed of the shock wave and gas flow is.

  19. Preparation of Nanostructured Microporous Metal Foams through Flow Induced Electroless Deposition

    Directory of Open Access Journals (Sweden)

    Galip Akay

    2015-01-01

    Full Text Available Monolithic nanostructured metallic porous structures with a hierarchy of pore size ranging from ca. 10 μm to 1 nm are processed for use as microreactors. The technique is based on flow induced electroless deposition of metals on a porous template known as PolyHIPE Polymer. The process is conducted in a purpose built flow reactor using a processing protocol to allow uniform and efficient metal deposition under flow. Nickel chloride and sodium hypophosphite were used as the metal and reducing agent, respectively. Electroless deposition occurs in the form of grains with a composition of NixPy in which the grain size range was ca. 20–0.2 μm depending on the composition of the metal deposition solution. Structure formation in the monoliths starts with heat treatment above 600°C resulting in the formation of a 3-dimensional network of capillary-like porous structures which form the walls of large arterial pores. These monoliths have a dense but porous surface providing mechanical strength for the monolith. The porous capillary-like arterial pore walls provide a large surface area for any catalytic activity. The mechanisms of metal deposition and nanostructure formation are evaluated using scanning electron microscopy, energy dispersive X-ray analysis, XRD, BET-surface area, and mercury intrusion porosimetry.

  20. FIVPET Flow-Induced Vibration Test Report (1) - Candidate Spacer Grid Type I (Optimized H Type)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Hee; Kang, Heung Seok; Yoon, Kyung Ho; Song, Kee Nam; Kim, Jae Yong

    2006-03-15

    The flow-induced vibration (FIV) test using a 5x5 partial fuel assembly was performed to evaluate mechanical/structural performance of the candidate spacer grid type I (Optimized H shape). From the measured vibration response of the test bundle and the flow parameters, design features of the spacer strap can be analyzed in the point of vibration and hydraulic aspect, and also compared with other spacer strap in simple comparative manner. Furthermore, the FIV test will contributes to understand behaviors of nuclear fuel in operating reactor. The FIV test results will be used to verify the theoretical model of fuel rod and assembly vibration. The aim of this report is to present the results of the FIV test of partial fuel assembly and to introduce the detailed test methodology and analysis procedure. In chapter 2, the overall configuration of test bundle and instrumented tube is remarked and chapter 3 will introduce the test facility (FIVPET) and test section. Chapter 4 deals with overall test condition and procedure, measurement and data acquisition devices, instrumentation equipment and calibration, and error analysis. Finally, test result of vibration and pressure fluctuation is presented and discussed in chapter 5.

  1. Experimental investigation of flow induced dust acoustic shock waves in a complex plasma

    CERN Document Server

    Jaiswal, S; Sen, A

    2016-01-01

    We report on experimental observations of flow induced large amplitude dust-acoustic shock waves (DASW) in a complex plasma. The experiments have been carried out in a $\\Pi$ shaped DC glow discharge experimental device using kaolin particles as the dust component in a background of Argon plasma. A strong supersonic flow of the dust fluid is induced by adjusting the pumping speed and neutral gas flow into the device. An isolated copper wire mounted on the cathode acts as a potential barrier to the flow of dust particles. A sudden change of gas flow rate is used to trigger the onset of high velocity dust acoustic shocks whose dynamics are captured by fast video pictures of the evolving structures. The physical characteristics of these shocks are delineated through a parametric scan of their dynamical properties over a range of flow speeds and potential hill heights. The observed evolution of the shock waves and their propagation characteristics are found to compare well with model numerical results based on a m...

  2. Shellside flow-induced tube vibration in typical heat exchanger configurations: overview of a research program

    Energy Technology Data Exchange (ETDEWEB)

    Halle, H.; Chenoweth, J.M.; Wambsganss, M.W.

    1986-01-01

    A comprehensive research program is being conducted to develop the necessary criteria to assist designers and operators of shell-and-tube heat exchangers to avoid detrimental flow-induced tube vibration. This paper presents an overview of the insights gained from shellside water-flow testing on a horizontal, industrial-sized test exchanger that can be configured in many ways using interchangeable tube bundles and replaceable nozzles. Nearly 50 different configurations have been tested representing various combinations of triangular, square, rotated-triangular, and rotated-square tubefield layouts; odd and even numbers of crosspasses; and both single- and double-segmental baffles with different cut sizes and orientations. The results are generally consistent with analytical relationships that predict tube vibration response by the combined reinforcing effect of the vibration mode shape and flow velocity distribution. An understanding of the vibration and instability performance is facilitated by recognizing that the excitation is induced by three separate, though sometimes interacting, flow conditions. These are the crossflows that generate ''classic'' fluidelastic instabilities in the interior of the tube bundle, the entrance and exit bundle flow from and into the shell nozzles, and the localized high velocity bypass and leakage stream flows. The implications to design and/or possible field remedies to avoid vibration problems are discussed. 17 refs., 10 figs.

  3. Translational Optic Flow Induces Shifts in Direction of Active Forward and Backward Self-Motion

    Directory of Open Access Journals (Sweden)

    Kenzo Sakurai

    2011-05-01

    Full Text Available Previously, we reported that when observers passively experience real linear oscillatory somatic motion while viewing orthogonal visual optic flow patterns, their perceived motion direction is intermediate to those specified by visual and vestibular information individually (Sakurai et al., 2002, ACV; 2003, ECVP; 2010, VSS; Kubodera et al., 2010, APCV. Here, we extend those studies to active somatic motion, measuring the angular shift in body direction after active body motion while viewing synchronized orthogonal optic flow. Experimental visual stimuli consisted of 1 second of translating leftward (rightward random-dots and 1 second of random noise. Control stimuli consisted of two 1-second intervals of random noise separated by a static interval. Observers viewed the stimulus for 30 seconds through a face-mounted display while actively stepping forward and backward such that their forward body movement was synchronized with the random-dot translational motion. Observers' body direction was measured before and after each trial. Translational optic flow induced shifts in body direction that were opposite to shifts in perceived direction with passive viewing in our previous reports. Observers may have compensated their body motion in response to perceived direction shifts similar to those we reported for passive viewing.

  4. Physical and numerical investigation of the flow induced vibration of the hydrofoil

    Science.gov (United States)

    Wu, Q.; Wang, G. Y.; Huang, B.

    2016-11-01

    The objective of this paper is to investigate the flow induced vibration of a flexible hydrofoil in cavitating flows via combined experimental and numerical studies. The experiments are presented for the modified NACA66 hydrofoil made of POM Polyacetate in the closed-loop cavitation tunnel at Beijing Institute of Technology. The high-speed camera and the single point Laser Doppler Vibrometer are applied to analyze the transient flow structures and the corresponding structural vibration characteristics. The hybrid coupled fluid structure interaction model is conducted to couple the incompressible and unsteady Reynolds Averaged Navier-Stokes solver with a simplified two-degree-of-freedom structural model. The k-ω SST turbulence model with the turbulence viscosity correction and the Zwart cavitation model are introduced to the present simulations. The results showed that with the decreasing of the cavitation number, the cavitating flows display incipient cavitation, sheet cavitation, cloud cavitation and supercavitation. The vibration magnitude increases dramatically for the cloud cavitation and decline for the supercavitation. The cloud cavitation development strongly affects the vibration response, which is corresponding to the periodically developing and shedding of the large-scale cloud cavity. The main frequency of the vibration amplitude is accordance with the cavity shedding frequency and other two frequencies of the vibration amplitude are corresponding to the natural frequencies of the bending and twisting modes.

  5. Flow induced vibrations in heat exchangers equipped with helical finned tubes; Stroemungsinduzierte Schwingungen in Spiralrippenrohrbuendelwaermetauschern

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, M.

    2003-08-01

    Flow-induced vibrations resulting from acoustic resonance or fluid-elastic instability cause severe damage to finned-tube heat exchangers. There are hardly any publications on spiral finned tubes. This contribution presents experimental data on intrinsic frequencies and damping of spiral finned tubes as well as equations for calculating intrinsic frequencies. Stability limits for fluid-elastic instabilities were defined in flow experiments. Examples are presented to illustrate the applicability of the calculation method in preventing vibration-induced damage. [German] Stroemungsinduzierte Schwingungen in Rippenrohrwaermetauschern aufgrund von akustischer Resonanz bzw. fluidelastischer Instabilitaet fuehren immer wieder zu schweren Schadensfaellen. Hinsichtlich ihres Schwingungsverhaltens sind Spiralrippenrohre in der Literatur bislang vernachlaessigt worden, obwohl sie in der industriellen Anwendung immer mehr an Bedeutung gewinnen. Im vorliegenden Beitrag werden die Eigenfrequenzen und Daempfungen von Spiralrippenrohren experimentell untersucht und Berechnungsformeln fuer die Eigenfrequenzen angegeben. In Stroemungsexperimenten werden Stabilitaetsgrenzen fuer fluidelastische Instabilitaeten ermittelt. Anhand einiger Beispielfaelle wird aufgezeigt, dass das daraus entwickelte Berechnungsschema zur Absicherung gegen Schwingungsschaeden geeignet ist. (orig.)

  6. FLOW-INDUCED VIBRATION IN PIPES: CHALLENGESS AND SOLUTIONS - A REVIEW

    Directory of Open Access Journals (Sweden)

    M. SIBA

    2016-03-01

    Full Text Available The Flow-induced vibration has recently been the topic of experimental, numerical, and theoretical studies. It was intended to implement better applications for controlling the flow using orifice technique. Having the flow under control, the orifice becomes an instrument for measuring the flow. The flow of all fluid such as water, oil, gas and vapours through an orifice was tested and mathematical models were developed adequately. The basic theme for these enormous studies was the need for the very accurate flow measurements through orifices. All experimental, theoretical, numerical, and analytical studies have agreed that there is more than one avenue to develop, modify, and enhance such measurements. However, one factor that affects the flow measurements is the vibration which was not treated as required until the mid-20th century due to enormous discoveries that damages could be rooted to vibration. Researchers have studied vibration and then proposed mathematical models in conjunction with the pressure and velocity measurements of the flowing fluids and then the effect of the vibration, induced or not induced, has been under continuous investigation. This paper is an attempt to review the previous studies regarding understanding the nature of the vibration and the possible effects of vibration on the flow and on the piping structure in order to limit the damage caused by the vibration. This study shows that the need for more experimental studies and more comprehensive analytical approaches are, in particular, very essential to develop better results.

  7. Flow induced by ependymal cilia dominates near-wall cerebrospinal fluid dynamics in the lateral ventricles.

    Science.gov (United States)

    Siyahhan, Bercan; Knobloch, Verena; de Zélicourt, Diane; Asgari, Mahdi; Schmid Daners, Marianne; Poulikakos, Dimos; Kurtcuoglu, Vartan

    2014-05-06

    While there is growing experimental evidence that cerebrospinal fluid (CSF) flow induced by the beating of ependymal cilia is an important factor for neuronal guidance, the respective contribution of vascular pulsation-driven macroscale oscillatory CSF flow remains unclear. This work uses computational fluid dynamics to elucidate the interplay between macroscale and cilia-induced CSF flows and their relative impact on near-wall dynamics. Physiological macroscale CSF dynamics are simulated in the ventricular space using subject-specific anatomy, wall motion and choroid plexus pulsations derived from magnetic resonance imaging. Near-wall flow is quantified in two subdomains selected from the right lateral ventricle, for which dynamic boundary conditions are extracted from the macroscale simulations. When cilia are neglected, CSF pulsation leads to periodic flow reversals along the ventricular surface, resulting in close to zero time-averaged force on the ventricle wall. The cilia promote more aligned wall shear stresses that are on average two orders of magnitude larger compared with those produced by macroscopic pulsatile flow. These findings indicate that CSF flow-mediated neuronal guidance is likely to be dominated by the action of the ependymal cilia in the lateral ventricles, whereas CSF dynamics in the centre regions of the ventricles is driven predominantly by wall motion and choroid plexus pulsation.

  8. Integrins, tensegrity, and mechanotransduction

    Science.gov (United States)

    Ingber, D. E.

    1997-01-01

    Physical forces, such as those due to gravity, play an important role in tissue development and remodeling. Yet, little is known about how individual cells sense mechanical signals or how they transduce them into a chemical response. Rather than listing the numerous signal pathways that have been found to be sensitive to mechanical stimulation, we need to place potential molecular signaling mechanisms within the context of the entire cell. The model presented is based on the concept that cells use tensegrity architecture to organize their cytoskeleton and stabilize their form. Studies with stick and string tensegrity cell models predict that living cells are hard-wired to respond immediately to external mechanical stresses. This hard-wiring exists in the form of discrete cytoskeletal filament networks that mechanically couple specific cell surface receptors, such as integrins, to nuclear matrix scaffolds and to potential transducing molecules that physically associate with the cytoskeleton. If these signaling molecules do function in a "solid-state", then mechanical stresses may be transduced into biochemical responses through force-dependent changes in cytoskeletal geometry or through local alterations in thermodynamic or kinetic parameters. Changes in cytoskeletal tension (prestress) also may play a role in signal amplification and adaptation. Recent experimental results are described which provide direct support for the tensegrity theory.

  9. Proceedings of the 8. international conference on Flow-induced vibration

    Energy Technology Data Exchange (ETDEWEB)

    Langre, E. de [Ecole Polytechnique, Dept. de Mecanique, LadHyX, 91 - Palaiseau (France); Axisa, F. [CEA Saclay 91 - Gif-sur-Yvette (France)

    2004-07-01

    FIV2004, the eighth of the series of International Conferences on Flow-Induced Vibration initiated at Keswick in 1973, evidences the sustained interest of the scientific and engineering international community for a subject area which incorporates at least two major disciplines: fluid mechanics and structural dynamics. Flow induced vibration (FIV) occur whenever a structure is in contact with a flowing fluid; which is a very common occurrence indeed. FIV can be rightly perceived as very useful and agreeable, in musical instruments, or at the opposite as annoying and even disastrous, in mechanical engineering. In both cases, the subject motivates a large and highly diversified amount of research work, driven either by scientific curiosity or engineering concerns, or both. In this field, empirical knowledge and experience are a precious asset but a certain breadth of perspective gained through a thorough background in theoretical mechanics is also necessary. In other words, to deal successfully with FIV problems, theoretical and pragmatic knowledge must be skillfully interwoven. Having also in mind the impressive progress achieved since the early seventies both in experimental techniques and computer science, it is rather fascinating to realize that we have still to learn so much about so 'elementary' systems as a pipe conveying air or water, or cylindrical rods subjected to cross-flow, to mention just two archetypical systems which are in fact extremely complex and which motivated so many studies already at the time of the first Keswick Conference and which still do at FIV2004. Though such systems are encountered in many industrial components and are rather easily accessible to experiment, they still give rise to many challenging questions concerning the extremely varied dynamical behavior they can display, which remain often insufficiently amenable to prediction. By no means this is to say that the research work devoted to FIV up to now has been made in

  10. Do column frits contribute to the on-column, flow-induced degradation of macromolecules?

    Science.gov (United States)

    Striegel, André M

    2014-09-12

    Flow-induced, on-column degradation is a major hindrance to the accurate characterization of ultra-high molar mass macromolecules and colloids. This degradation is a direct result of the large shear rates which are generated within the column, which cause chain scission to occur both in the interstitial medium and, it has been postulated, at the packing particle pore boundary. An additional putative source of degradation has been the column frits, though little experimental evidence exists to either support or refute this claim. To this effect, the present experiments examine the role of the frits in the degradation of high molar mass macromolecules. Two narrow dispersity polystyrene standards, the molar mass of which differs by a factor of two, were analyzed on three different size-exclusion chromatography (SEC) columns, each with frits of different pore size, at various flow rates. In the smallest pore size column, which also contained the smallest frits and which was packed with the smallest diameter particles, the larger standard was forced to degrade by increasing the flow rate of the mobile phase. During the course of the latter portion of the study, the inlet and the outlet frits were removed from the column, in stepwise fashion. It was concluded that neither frit played any appreciable role in the degradation. Results of our studies were applied to explain previously observed degradation in ultra-high pressure liquid chromatography of polymers. The general conclusion arrived at herein is that the column frits are likely to have a secondary role (as compared to interstitial and pore boundary stresses), or no role at all, in polymer degradation for cases where the frit radius is larger than or equal to the hydraulic radius rcof the column.

  11. Effects of flow-induced shear stress on limbal epithelial stem cell growth and enrichment.

    Directory of Open Access Journals (Sweden)

    Yun Gyeong Kang

    Full Text Available The roles of limbal epithelial stem cells (LESCs are widely recognized, but for these cells to be utilized in basic research and potential clinical applications, researchers must be able to efficiently isolate them and subsequently maintain their stemness in vitro. We aimed to develop a biomimetic environment for LESCs involving cells from their in vivo niche and the principle of flow-induced shear stress, and to subsequently demonstrate the potential of this novel paradigm. LESCs, together with neighboring cells, were isolated from the minced limbal tissues of rabbits. At days 8 and 9 of culture, the cells were exposed to a steady flow or intermittent flow for 2 h per day in a custom-designed bioreactor. The responses of LESCs and epithelial cells were assessed at days 12 and 14. LESCs and epithelial cells responded to both types of flow. Proliferation of LESCs, as assessed using a BrdU assay, was increased to a greater extent under steady flow conditions. Holoclones were found under intermittent flow, indicating that differentiation into transient amplifying cells had occurred. Immunofluorescent staining of Bmi-1 suggested that steady flow has a positive effect on the maintenance of stemness. This finding was confirmed by real-time PCR. Notch-1 and p63 were more sensitive to intermittent flow, but this effect was transient. K3 and K12 expression, indicative of differentiation of LESCs into epithelial cells, was induced by flow and lasted longer under intermittent flow conditions. In summary, culture of LESCs in a bioreactor under a steady flow paradigm, rather than one of intermittent flow, is beneficial for both increasing proliferation and maintaining stemness. Conversely, intermittent flow appears to induce differentiation of LESCs. This novel experimental method introduces micro-mechanical stimuli to traditional culture techniques, and has potential for regulating the proliferation and differentiation of LESCs in vitro, thereby

  12. CFD simulations of flow erosion and flow-induced deformation of needle valve: Effects of operation, structure and fluid parameters

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Hongjun, E-mail: ticky863@126.com [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, Sichuan (China); State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan (China); Pan, Qian; Zhang, Wenli; Feng, Guang; Li, Xue [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, Sichuan (China)

    2014-07-01

    Highlights: • A combined FSI–CFD and DPM computational method is used to investigate flow erosion and deformation of needle valve. • The numerical model is validated with the comparison of measured and predicted erosion rate. • Effects of operation, structure and fluid parameters on flow erosion and flow-induced deformation are discussed. • Particle diameter has the most significant effect on flow erosion. • Inlet rate has the most obvious effect on flow-induced deformation. - Abstract: A three-dimensional fluid–structure interaction (FSI) computational model coupling with a combined continuum and discrete model has been used to predict the flow erosion rate and flow-induced deformation of needle valve. Comparisons with measured data demonstrate good agreement with the predictions of erosion rate. The flow field distribution of gas-particle flow and the erosion rate and deformation of valve core are captured under different operating and structural conditions with different fluid parameters. The effects of inlet velocity, valve opening and inlet valve channel size, particle concentration, particle diameter and particle phase components are discussed in detail. The results indicate that valve tip has the most severe erosion and deformation, and flow field, erosion rate and deformation of valve are all sensitive to inlet condition changes, structural changes and fluid properties changes. The effect of particle diameter on erosion is the most significant, while the influence of inlet rate on deformation is the greatest one.

  13. Importance of Added Mass and Damping in Flow-Induced Vibration Analysis of Tubes Bundle: An Overview

    Directory of Open Access Journals (Sweden)

    Faisal Karim Shami

    2012-01-01

    Full Text Available Flow-induced vibration is of prime concern to the designers of heat exchangers subjected to high flows of gases or liquids. Excessive vibration may cause tube failure due to fatigue or fretting-wear. Tube failure results in, expensive plant upholding and suffers loss of production. Therefore, tube failure due to unwarranted vibration must be avoided in process heat exchangers and nuclear steam generators, preferably at design stage. Such vibration problems may be avoided through a comprehensive flowinduced vibration analysis before fabrication of heat exchangers. However, it requires an understanding of vibration mechanism and parameters related to flow-induced vibration. For an accurate vibration analysis, it is of prime importance to have good estimates of structural and flow related dynamic parameters. Thus dynamic parameters such as added mass and damping are of significant concern in a flow regime. The purpose of this paper is to provide an overview of our state of knowledge and role of dynamic parameters in flow-induced vibration on tube bundles due to current trend of larger heat exchangers. The present paper provides published data, analysis, evaluation, formulation, and experimental studies related to hydrodynamic mass and damping by a large number of researchers. Guidelines for experimental research and heat exchangers design related to added mass and damping mechanisms subjected to both single and two-phase flow are outlined in this paper.

  14. Flow-induced Noise and Vibration Analysis of a Piping Elbow with/without a Guide Vane

    Institute of Scientific and Technical Information of China (English)

    Tao Zhang; Yongou Zhang; Huajiang Ouyang; Tao Guo

    2014-01-01

    The effect of a guide vane installed at the elbow on flow-induced noise and vibration is investigated in the range of Reynolds numbers from 1.70×105 to 6.81×105, and the position of guide vane is determined by publications. The turbulent flow in the piping elbow is simulated with large eddy simulation (LES). Following this, a hybrid method of combining LES and Lighthill’s acoustic analogy theory is used to simulate the hydrodynamic noise and sound sources are solved as volume sources in code Actran. In addition, the flow-induced vibration of the piping elbow is investigated based on a fluid-structure interaction (FSI) code. The LES results indicate that the range of vortex zone in the elbow without the guide vane is larger than the case with the guide vane, and the guide vane is effective in reducing flow-induced noise and vibration in the 90° piping elbow at different Reynolds numbers.

  15. Flow-induced noise and vibration analysis of a piping elbow with/without a guide vane

    Science.gov (United States)

    Zhang, Tao; Zhang, Yong'ou; Ouyang, Huajiang; Guo, Tao

    2014-12-01

    The effect of a guide vane installed at the elbow on flow-induced noise and vibration is investigated in the range of Reynolds numbers from 1.70×105 to 6.81×105, and the position of guide vane is determined by publications. The turbulent flow in the piping elbow is simulated with large eddy simulation (LES). Following this, a hybrid method of combining LES and Lighthill's acoustic analogy theory is used to simulate the hydrodynamic noise and sound sources are solved as volume sources in code Actran. In addition, the flow-induced vibration of the piping elbow is investigated based on a fluid-structure interaction (FSI) code. The LES results indicate that the range of vortex zone in the elbow without the guide vane is larger than the case with the guide vane, and the guide vane is effective in reducing flow-induced noise and vibration in the 90° piping elbow at different Reynolds numbers.

  16. Numerical study on flow-induced noise for a steam stop-valve using large eddy simulation

    Science.gov (United States)

    Liu, Jiming; Zhang, Tao; Zhang, Yong'ou

    2013-09-01

    The noise induced by the fluctuant saturated steam flow under 250 °C in a stop-valve was numerically studied. The simulation was carried out using computational fluid dynamics (CFD) and ACTRAN. The acoustic field was investigated with Lighthill's acoustic analogy based on the properties of the flow field obtained using a large-eddy simulation that employs the LES-WALE dynamic model as the sub-grid-scale model. Firstly, the validation of mesh was well conducted, illustrating that two million elements were sufficient in this situation. Secondly, the treatment of the steam was deliberated, and conclusions indicate that when predicting the flow-induced noise of the stop-valve, the steam can be treated as incompressible gas at a low inlet velocity. Thirdly, the flow-induced noises under different inlet velocities were compared. The findings reveal it has remarkable influence on the flow-induced noises. Lastly, whether or not the heat preservation of the wall has influence on the noise was taken into account. The results show that heat preservation of the wall had little influence.

  17. Operational modal analysis of flow-induced vibration of nuclear fuel rods in a turbulent axial flow

    Energy Technology Data Exchange (ETDEWEB)

    De Pauw, B., E-mail: bdepauw@vub.ac.be [Vrije Universiteit Brussel (VUB), Brussels Photonics Team (B-Phot), Brussels (Belgium); Vrije Universiteit Brussel (VUB), Department of Mechanical Engineering (AVRG), Brussels (Belgium); Belgian Nuclear Research Centre (SCK-CEN), Boeretang 200, Mol (Belgium); Weijtjens, W.; Vanlanduit, S. [Vrije Universiteit Brussel (VUB), Department of Mechanical Engineering (AVRG), Brussels (Belgium); Van Tichelen, K. [Belgian Nuclear Research Centre (SCK-CEN), Boeretang 200, Mol (Belgium); Berghmans, F. [Vrije Universiteit Brussel (VUB), Brussels Photonics Team (B-Phot), Brussels (Belgium)

    2015-04-01

    Highlights: • We describe an analysis technique to evaluate nuclear fuel pins. • We test a single fuel pin mockup subjected to turbulent axial flow. • Our analysis is based on operational modal analysis (OMA). • The accuracy and precision of our method is higher compared to traditional methods. • We demonstrate the possible onset of a fluid-elastic instability. - Abstract: Flow-induced vibration of nuclear reactor fuel pins can result in mechanical noise and lead to failure of the reactor's fuel assembly. This problem can be exacerbated in the new generation of liquid heavy metal fast reactors that use a much denser and more viscous coolant in the reactor core. An investigation of the flow-induced vibration in these particular conditions is therefore essential. In this paper, we describe an analysis technique to evaluate flow-induced vibration of nuclear reactor fuel pins subjected to a turbulent axial flow of heavy metal. We deal with a single fuel pin mockup designed for the lead–bismuth eutectic (LBE) cooled MYRRHA reactor which is subjected to similar flow conditions as in the reactor core. Our analysis is based on operational modal analysis (OMA) techniques. We show that the accuracy and precision of our OMA technique is higher compared to traditional methods and that it allows evaluating the evolution of modal parameters in operational conditions. We also demonstrate the possible onset of a fluid-elastic instability by tracking the modal parameters with increasing flow velocity.

  18. Bone cutting.

    Science.gov (United States)

    Giraud, J Y; Villemin, S; Darmana, R; Cahuzac, J P; Autefage, A; Morucci, J P

    1991-02-01

    Bone cutting has always been a problem for surgeons because bone is a hard living material, and many osteotomes are still very crude tools. Technical improvement of these surgical tools has first been their motorization. Studies of the bone cutting process have indicated better features for conventional tools. Several non-conventional osteotomes, particularly ultrasonic osteotomes are described. Some studies on the possible use of lasers for bone cutting are also reported. Use of a pressurised water jet is also briefly examined. Despite their advantages, non-conventional tools still require improvement if they are to be used by surgeons.

  19. Effects of Neuropeptides and Mechanical Loading on Bone Cell Resorption in Vitro

    Directory of Open Access Journals (Sweden)

    Yeong-Min Yoo

    2014-04-01

    Full Text Available Neuropeptides such as vasoactive intestinal peptide (VIP and calcitonin gene-related peptide (CGRP are present in nerve fibers of bone tissues and have been suggested to potentially regulate bone remodeling. Oscillatory fluid flow (OFF-induced shear stress is a potent signal in mechanotransduction that is capable of regulating both anabolic and catabolic bone remodeling. However, the interaction between neuropeptides and mechanical induction in bone remodeling is poorly understood. In this study, we attempted to quantify the effects of combined neuropeptides and mechanical stimuli on mRNA and protein expression related to bone resorption. Neuropeptides (VIP or CGRP and/or OFF-induced shear stress were applied to MC3T3-E1 pre-osteoblastic cells and changes in receptor activator of nuclear factor kappa B (NF-κB ligand (RANKL and osteoprotegerin (OPG mRNA and protein levels were quantified. Neuropeptides and OFF-induced shear stress similarly decreased RANKL and increased OPG levels compared to control. Changes were not further enhanced with combined neuropeptides and OFF-induced shear stress. These results suggest that neuropeptides CGRP and VIP have an important role in suppressing bone resorptive activities through RANKL/OPG pathway, similar to mechanical loading.

  20. Data for The flow and flow-induced noise behaviour of a simplified high-speed train bogie in a cavity and including a fairing

    OpenAIRE

    Zhu, Jianyue; Hu, Zhiwei; Thompson, David

    2017-01-01

    Dataset for the main results of paper entitled 'The flow and flow-induced noise behaviour of a simplified high-speed train bogie in a cavity and including a fairing' published in Journal of Rail and Rapid Transit.

  1. Bone x-ray

    Science.gov (United States)

    ... or broken bone Bone tumors Degenerative bone conditions Osteomyelitis (inflammation of the bone caused by an infection) ... Multiple myeloma Osgood-Schlatter disease Osteogenesis imperfecta Osteomalacia Osteomyelitis Paget disease of the bone Rickets X-ray ...

  2. A Study on the Uncertainty of Flow-Induced Vibration in a Cross Flow over Staggered Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji-Su; Park, Jong-Woon [Dongguk univ, Gyeong Ju (Korea, Republic of); Choi, Hyeon-Kyeong [HanNam University, Daejeon (Korea, Republic of)

    2015-05-15

    Cross-flow in many support columns of very high temperature reactor (VHTR) lower plenum would have FIV issues under high speed flow jetting from the core. For a group of multiple circular cylinders subjected to a cross-flow, three types of potential vibration mechanisms may exist: (1) Vortex-induced vibration (VIV), (2) Fluid-elastic vibration (FEV) and (3) Turbulence-induced vibration (TIV). Kevalahan studied the free vibration of circular cylinders in a tightly packed periodic square inline array of cylinders. Pandey et al. studied the flue gas flow distribution in the Low Temperature Super Heater (LTSH) tube bundles situated in second pass of a utility boiler and the phenomenon of flow induced vibration. Nakamura et al. studied flow instability of cylinder arrays resembling U-bend tubes in steam generators. The FIV evaluation is usually performed with computational fluid dynamic (CFD) analysis to obtain unknown frequency of oscillation of the multiple objects under turbulent flow and thus the uncertainty residing in the turbulence model used should be quantified. In this paper, potential FIV uncertainty arising from the turbulence phenomena are evaluated for a typical cross flow through staggered tube bundles resembling the VHTR lower plenum support columns. Flow induced vibration (FIV) is one of the important mechanical and fatigue issues in nuclear systems. Especially, cross-flow in many support structures of VHTR lower plenum would have FIV issues under highly turbulent jet flows from the core. The results show that the effect of turbulence parameters on FIV is not negligible and the uncertainty is 5 to 10%. Present method can be applied to future FIV evaluations of nuclear systems. More extensive studies on flow induced vibration in a plant scale by using more rigorous computational methods are under way.

  3. Bone pain

    DEFF Research Database (Denmark)

    Frost, Charlotte Ørsted; Hansen, Rikke Rie; Heegaard, Anne-Marie

    2016-01-01

    Skeletal conditions are common causes of chronic pain and there is an unmet medical need for improved treatment options. Bone pain is currently managed with disease modifying agents and/or analgesics depending on the condition. Disease modifying agents affect the underlying pathophysiology...... of the disease and reduce as a secondary effect bone pain. Antiresorptive and anabolic agents, such as bisphosphonates and intermittent parathyroid hormone (1-34), respectively, have proven effective as pain relieving agents. Cathepsin K inhibitors and anti-sclerostin antibodies hold, due to their disease...... modifying effects, promise of a pain relieving effect. NSAIDs and opioids are widely employed in the treatment of bone pain. However, recent preclinical findings demonstrating a unique neuronal innervation of bone tissue and sprouting of sensory nerve fibers open for new treatment possibilities....

  4. Bone graft

    Science.gov (United States)

    ... around the area. The bone graft can be held in place with pins, plates, or screws. Why ... Orthopaedic Surgery, San Francosco, CA. Also reviewed by David Zieve, MD, MHA, Isla Ogilvie, PhD, and the ...

  5. A comprehensive flow-induced vibration model to predict crack growth and leakage potential in steam generator tubes

    Energy Technology Data Exchange (ETDEWEB)

    El Bouzidi, Salim [School of Engineering, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Hassan, Marwan, E-mail: mahassan@uoguelph.ca [School of Engineering, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Riznic, Jovica [Operational Engineering Assessment Division, Canadian Nuclear Safety Commission, Ottawa, Ontario K1P 5S9 (Canada)

    2015-10-15

    Highlights: • Comprehensive flow induced vibrations time domain model was developed. • Simulations of fluidelastic instability and turbulence were conducted. • Nonlinear effect due to the clearances at the supports was studied. • Prediction of stresses due to fluid excitation was obtained. • Deterministic and stochastic analyses for crack and leakage rate were conducted. - Abstract: Flow-induced vibrations (FIVs) are a major threat to the operation of nuclear steam generators. Turbulence and fluidelastic instability are the two main excitation mechanisms leading to tube vibrations. The consequences to the operation of steam generators are premature wear of the tubes, as well as development of cracks that may leak hazardous fluids. This paper investigates the effect of tube support clearance on the integrity of tube bundles within steam generators. Special emphasis will be placed on crack propagation and leakage rates. A crack growth model is used to simulate the growth of surface flaws and through-wall cracks of various initial sizes due to a wide range of support clearances. Leakage rates are predicted using a two-phase flow leakage model. Nonlinear finite element analysis is used to simulate a full U-bend subjected to fluidelastic and turbulence forces. Monte Carlo simulations are then used to conduct a probabilistic assessment of steam generator life due to crack development.

  6. Selection of a Suitable Wall Pressure Spectrum Model for Estimating Flow-Induced Noise in Sonar Applications

    Directory of Open Access Journals (Sweden)

    V. Bhujanga Rao

    1995-01-01

    Full Text Available Flow-induced structural noise of a sonar dome in which the sonar transducer is housed, constitutes a major source of self-noise above a certain speed of the vessel. Excitation of the sonar dome structure by random pressure fluctuations in turbulent boundary layer flow leads to acoustic radiation into the interior of the dome. This acoustic radiation is termed flow-induced structural noise. Such noise contributes significantly to sonar self-noise of submerged vessels cruising at high speed and plays an important role in surface ships, torpedos, and towed sonars as well. Various turbulent boundary layer wall pressure models published were analyzed and the most suitable analytical model for the sonar dome application selected while taking into account high frequency, fluid loading, low wave number contribution, and pressure gradient effects. These investigations included type of coupling that exists between turbulent boundary layer pressure fluctuations and dome wall structure of a typical sonar dome. Comparison of theoretical data with measured data onboard a ship are also reported.

  7. An Immersed Boundary Finite-Element Solver for Flow-Induced Deformation of Soft Structures with Application in Cardiac Flows

    Science.gov (United States)

    Bhardwaj, Rajneesh; Mittal, Rajat

    2011-11-01

    The modeling of complex biological phenomena such as cardiac mechanics is challenging. It involves complex three dimensional geometries, moving structure boundaries inside the fluid domain and large flow-induced deformations of the structure. We present a fluid-structure interaction solver (FSI) which couples a sharp-interface immersed boundary method for flow simulation with a powerful finite-element based structure dynamics solver. An implicit partitioned (or segregated) approach is implemented to ensure the stability of the solver. We validate the FSI solver with published benchmark for a configuration which involves a thin elastic plate attached to a rigid cylinder. The frequency and amplitude of the oscillations of the plate are in good agreement with published results and non-linear dynamics of the plate and its coupling with the flow field are discussed. The FSI solver is used to understand left-ventricular hemodynamics and flow-induced dynamics of mitral leaflets during early diastolic filling and results from this study are presented.

  8. Fluid-flow-induced mesenchymal stem cell migration: role of focal adhesion kinase and RhoA kinase sensors.

    Science.gov (United States)

    Riehl, Brandon D; Lee, Jeong Soon; Ha, Ligyeom; Lim, Jung Yul

    2015-03-01

    The study of mesenchymal stem cell (MSC) migration under flow conditions with investigation of the underlying molecular mechanism could lead to a better understanding and outcome in stem-cell-based cell therapy and regenerative medicine. We used peer-reviewed open source software to develop methods for efficiently and accurately tracking, measuring and processing cell migration as well as morphology. Using these tools, we investigated MSC migration under flow-induced shear and tested the molecular mechanism with stable knockdown of focal adhesion kinase (FAK) and RhoA kinase (ROCK). Under steady flow, MSCs migrated following the flow direction in a shear stress magnitude-dependent manner, as assessed by root mean square displacement and mean square displacement, motility coefficient and confinement ratio. Silencing FAK in MSCs suppressed morphology adaptation capability and reduced cellular motility for both static and flow conditions. Interestingly, ROCK silencing significantly increased migration tendency especially under flow. Blocking ROCK, which is known to reduce cytoskeletal tension, may lower the resistance to skeletal remodelling during the flow-induced migration. Our data thus propose a potentially differential role of focal adhesion and cytoskeletal tension signalling elements in MSC migration under flow shear.

  9. Low Bone Density

    Science.gov (United States)

    ... Information › Bone Density Exam/Testing › Low Bone Density Low Bone Density Low bone density is when your ... compared to people with normal bone density. Detecting Low Bone Density A bone density test will determine ...

  10. Probing the mystery of Chinese medicine meridian channels with special emphasis on the connective tissue interstitial fluid system, mechanotransduction, cells durotaxis and mast cell degranulation

    Directory of Open Access Journals (Sweden)

    Fung Peter

    2009-05-01

    Full Text Available Abstract This article hypothesizes that the Chinese medicine meridian system is a special channel network comprising of skin with abundant nerves and nociceptive receptors of various types, and deeper connective tissues inside the body with the flowing interstitial fluid system. These meridian channels provide efficient migratory tracks mainly due to durotaxis (also including chemotaxis for mast cells, fibroblasts and other cells to migrate and carry out a number of physiological functions. Acupuncture acting on meridian channel causes cytoskeletal remodeling through mechanotransduction, leading to regulation of gene expression and the subsequent production of related proteins. Also, stimulation on cell surface can trigger Ca2+ activities, resulting in a cascade of intra- and inter-cellular signaling. Moreover, nerve endings in the meridian channels interact with mast cells and induce the degranulation of these cells, leading to the release of many specific biomolecules needed for homeostasis, immune surveillance, wound healing and tissue repair. Acupoint along a meridian channel is a functional site to trigger the above functions with specificity and high efficiency.

  11. Bone marrow transplant

    Science.gov (United States)

    Transplant - bone marrow; Stem cell transplant; Hematopoietic stem cell transplant; Reduced intensity nonmyeloablative transplant; Mini transplant; Allogenic bone marrow transplant; Autologous bone marrow transplant; Umbilical ...

  12. Bone mineral content and bone metabolism in young adults with severe periodontitis

    DEFF Research Database (Denmark)

    Wowern von, N.; Westergaard, J.; Kollerup, G.

    2001-01-01

    Bone loss, bone markers, bone metabolism, bone mineral content, osteoporosis, severe periodontitis......Bone loss, bone markers, bone metabolism, bone mineral content, osteoporosis, severe periodontitis...

  13. [Bone transplant].

    Science.gov (United States)

    San Julián, M; Valentí, A

    2006-01-01

    We describe the methodology of the Bone and Soft Tissue Bank, from extraction and storage until use. Since the year 1986, with the creation of the Bone Bank in the University Clinic of Navarra, more than 3,000 grafts have been used for very different types of surgery. Bone grafts can be classified into cortical and spongy; the former are principally used in surgery to save tumour patients, in large post-traumatic reconstructions and in replacement surgery where there are massive bone defects and a structural support is required. The spongy grafts are the most used due to their numerous indications; they are especially useful in filling cavities that require a significant quantity of graft when the autograft is insufficient, or as a complement. They are also of special help in treating fractures when there is bone loss and in the treatment of delays in consolidation and pseudoarthrosis in little vascularized and atrophic zones. They are also used in prosthetic surgery against the presence of cavity type defects. Allografts of soft tissues are specially recognised in multiple ligament injuries that require reconstructions. Nowadays, the most utilised are those employed in surgery of the anterior cruciate ligament although they can be used for filling any ligament or tendon defect. The principal difficulties of the cortical allografts are in the consolidation of the ends with the bone itself and in tumour surgery, given that these are patients immunodepressed by the treatment, the incidence of infection is increased with respect to spongy grafts and soft tissues, which is irrelevant. In short, the increasingly widespread use of allografts is an essential therapeutic weapon in orthopaedic surgery and traumatology. It must be used by expert hands.

  14. Bone biopsy (image)

    Science.gov (United States)

    A bone biopsy is performed by making a small incision into the skin. A biopsy needle retrieves a sample of bone and it ... examination. The most common reasons for bone lesion biopsy are to distinguish between benign and malignant bone ...

  15. Bone lesion biopsy

    Science.gov (United States)

    Bone biopsy; Biopsy - bone ... needle is gently pushed and twisted into the bone. Once the sample is obtained, the needle is ... sample is sent to a lab for examination. Bone biopsy may also be done under general anesthesia ...

  16. Facts about Broken Bones

    Science.gov (United States)

    ... Room? What Happens in the Operating Room? Broken Bones KidsHealth > For Kids > Broken Bones Print A A ... sticking through the skin . What Happens When a Bone Breaks? It hurts to break a bone! It's ...

  17. Calcium and bones

    Science.gov (United States)

    Bone strength and calcium ... calcium (as well as phosphorus) to make healthy bones. Bones are the main storage site of calcium in ... your body does not absorb enough calcium, your bones can get weak or will not grow properly. ...

  18. Broken Bones (For Parents)

    Science.gov (United States)

    ... Feeding Your 1- to 2-Year-Old Broken Bones KidsHealth > For Parents > Broken Bones Print A A ... bone fragments in place. When Will a Broken Bone Heal? Fractures heal at different rates, depending upon ...

  19. Flow-Induced Pulsation and Vibration in Hydroelectric Machinery Engineer’s Guidebook for Planning, Design and Troubleshooting

    CERN Document Server

    Dörfler, Peter; Coutu, André

    2013-01-01

    Since the 1970’s, an increasing amount of specialized research has focused on the problems created by instability of internal flow in hydroelectric power plants. However, progress in this field is hampered by the inter­disciplinary nature of the subject, between fluid mechanics, structural mechanics and hydraulic transients. Flow-induced Pulsation and Vibration in Hydroelectric Machinery provides a compact guidebook explaining the many different underlying physical mechanisms and their possible effects.   Typical phenomena are described to assist in the proper diagnosis of problems and various key strategies for solution are compared and considered with support from practical experience and real-life examples. The link between state-of the-art CFD computation and notorious practical problems is discussed  and quantitative data is provided on  normal levels of vibration and pulsation so realistic limits can be set for future projects. Current projects are also addressed as the possibilities and limitatio...

  20. Bone densitometry

    DEFF Research Database (Denmark)

    Ravn, Pernille; Alexandersen, P; Møllgaard, A

    1999-01-01

    The bisphosphonates have been introduced as alternatives to hormone replacement therapy (HRT) for the treatment and prevention of postmenopausal osteoporosis. The expected increasing application in at clinical practice demands cost-effective and easily handled methods to monitor the effect on bone...

  1. Dating of cremated bones

    NARCIS (Netherlands)

    Lanting, JN; Aerts-Bijma, AT; van der Plicht, J; Boaretto, E.; Carmi, I.

    2001-01-01

    When dating unburnt bone, bone collagen, the organic fraction of the bone, is used. Collagen does not survive the heat of the cremation pyre, so dating of cremated bone has been considered impossible. Structural carbonate in the mineral fraction of the bone, however, survives the cremation process.

  2. Mechanical stimulation orchestrates the osteogenic differentiation of human bone marrow stromal cells by regulating HDAC1.

    Science.gov (United States)

    Wang, J; Wang, C D; Zhang, N; Tong, W X; Zhang, Y F; Shan, S Z; Zhang, X L; Li, Q F

    2016-01-01

    Mechanical stimulation and histone deacetylases (HDACs) have essential roles in regulating the osteogenic differentiation of bone marrow stromal cells (BMSCs) and bone formation. However, little is known regarding what regulates HDAC expression and therefore the osteogenic differentiation of BMSCs during osteogenesis. In this study, we investigated whether mechanical loading regulates HDAC expression directly and examined the role of HDACs in mechanical loading-triggered osteogenic differentiation and bone formation. We first studied the microarrays of samples from patients with osteoporosis and found that the NOTCH pathway and skeletal development gene sets were downregulated in the BMSCs of patients with osteoporosis. Then we demonstrated that mechanical stimuli can regulate osteogenesis and bone formation both in vivo and in vitro. NOTCH signaling was upregulated during cyclic mechanical stretch (CMS)-induced osteogenic differentiation, whereas HDAC1 protein expression was downregulated. The perturbation of HDAC1 expression also had a significant effect on matrix mineralization and JAG1-mediated Notch signaling, suggesting that HDAC1 acts as an endogenous attenuator of Notch signaling in the mechanotransduction of BMSCs. Chromatin immunoprecipitation (ChIP) assay results suggest that HDAC1 modulates the CMS-induced histone H3 acetylation level at the JAG1 promoter. More importantly, we found an inhibitory role of Hdac1 in regulating bone formation in response to hindlimb unloading in mice, and pretreatment with an HDAC1 inhibitor partly rescued the osteoporosis caused by mechanical unloading. Our results demonstrate, for the first time, that mechanical stimulation orchestrates genes expression involved in the osteogenic differentiation of BMSCs via the direct regulation of HDAC1, and the therapeutic inhibition of HDAC1 may be an efficient strategy for enhancing bone formation under mechanical stimulation.

  3. Individual-specific multi-scale finite element simulation of cortical bone of human proximal femur

    Energy Technology Data Exchange (ETDEWEB)

    Ascenzi, Maria-Grazia, E-mail: mgascenzi@mednet.ucla.edu [UCLA/Orthopaedic Hospital, Department of Orthopaedic Surgery, Rehabilitation Bldg, Room 22-69, 1000 Veteran Avenue, University of California, Los Angeles, CA 90095 (United States); Kawas, Neal P., E-mail: nealkawas@ucla.edu [UCLA/Orthopaedic Hospital, Department of Orthopaedic Surgery, Rehabilitation Bldg, Room 22-69, 1000 Veteran Avenue, University of California, Los Angeles, CA 90095 (United States); Lutz, Andre, E-mail: andre.lutz@hotmail.de [Institute of Biomechanics and Numerical Mechanics, Leibniz University Hannover, 30167 Hannover (Germany); Kardas, Dieter, E-mail: kardas@ibnm.uni-hannover.de [ContiTech Vibration Control, Jaedekamp 30 None, 30419 Hannover (Germany); Nackenhorst, Udo, E-mail: nackenhorst@ibnm.uni-hannover.de [Institute of Biomechanics and Numerical Mechanics, Leibniz University Hannover, 30167 Hannover (Germany); Keyak, Joyce H., E-mail: jhkeyak@uci.edu [Department of Radiological Sciences, Medical Sciences I, Bldg 811, Room B140, University of California, Irvine, CA 92697-5000 (United States)

    2013-07-01

    We present an innovative method to perform multi-scale finite element analyses of the cortical component of the femur using the individual’s (1) computed tomography scan; and (2) a bone specimen obtained in conjunction with orthopedic surgery. The method enables study of micro-structural characteristics regulating strains and stresses under physiological loading conditions. The analysis of the micro-structural scenarios that cause variation of strain and stress is the first step in understanding the elevated strains and stresses in bone tissue, which are indicative of higher likelihood of micro-crack formation in bone, implicated in consequent remodeling or macroscopic bone fracture. Evidence that micro-structure varies with clinical history and contributes in significant, but poorly understood, ways to bone function, motivates the method’s development, as does need for software tools to investigate relationships between macroscopic loading and micro-structure. Three applications – varying region of interest, bone mineral density, and orientation of collagen type I, illustrate the method. We show, in comparison between physiological loading and simple compression of a patient’s femur, that strains computed at the multi-scale model’s micro-level: (i) differ; and (ii) depend on local collagen-apatite orientation and degree of calcification. Our findings confirm the strain concentration role of osteocyte lacunae, important for mechano-transduction. We hypothesize occurrence of micro-crack formation, leading either to remodeling or macroscopic fracture, when the computed strains exceed the elastic range observed in micro-structural testing.

  4. Morphological divergence and flow-induced phenotypic plasticity in a native fish from anthropogenically altered stream habitats.

    Science.gov (United States)

    Franssen, Nathan R; Stewart, Laura K; Schaefer, Jacob F

    2013-11-01

    Understanding population-level responses to human-induced changes to habitats can elucidate the evolutionary consequences of rapid habitat alteration. Reservoirs constructed on streams expose stream fishes to novel selective pressures in these habitats. Assessing the drivers of trait divergence facilitated by these habitats will help identify evolutionary and ecological consequences of reservoir habitats. We tested for morphological divergence in a stream fish that occupies both stream and reservoir habitats. To assess contributions of genetic-level differences and phenotypic plasticity induced by flow variation, we spawned and reared individuals from both habitats types in flow and no flow conditions. Body shape significantly and consistently diverged in reservoir habitats compared with streams; individuals from reservoirs were shallower bodied with smaller heads compared with individuals from streams. Significant population-level differences in morphology persisted in offspring but morphological variation compared with field-collected individuals was limited to the head region. Populations demonstrated dissimilar flow-induced phenotypic plasticity when reared under flow, but phenotypic plasticity in response to flow variation was an unlikely explanation for observed phenotypic divergence in the field. Our results, together with previous investigations, suggest the environmental conditions currently thought to drive morphological change in reservoirs (i.e., predation and flow regimes) may not be the sole drivers of phenotypic change.

  5. NUMERICAL SIMULATION OF UNSTEADY TURBULENT FLOW INDUCED BY TWO-DIMENSIONAL ELEVATOR CAR AND COUNTER WEIGHT SYSTEM

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A two-dimensional model of unsteady turbulent flow induced by high-speed elevator system was established in the present study. The research was focused on the instantaneous variation of the aerodynamic force on the car structure during traversing motion of the counter weight in the hoistway. A dynamic meshing method was employed to treat the multi-body motion system to avoid poor distortion of meshes. A comprehensive understanding of this significant aspect was obtained by varying the horizontal gap (δ=0.1m, 0.2m, and 0.3m) between the elevator car and the counter weight, and the moving speed (U0=2m/s, 6m/s, and 10m/s) of the elevator system. A pulsed intensification of the aerodynamic force on the elevator car and subsequent appearance of large valley with negative aerodynamic force were clearly observed in the numerical results. In parameters studied (δ=0.1m, U0=2m/s, 6m/s, 10m/s), the peaked horizontal and vertical forces are respectively 7-11 and 4.3-5.65 times of that when the counter weight is far from the car. These results demonstrated the prominent influence of the traversing counter weight on aerodynamic force on the elevator car, which is of great significance to designers of high-speed elevator system.

  6. Computational modelling of blood-flow-induced changes in blood electrical conductivity and its contribution to the impedance cardiogram.

    Science.gov (United States)

    Trakic, A; Akhand, M; Wang, H; Mason, D; Liu, F; Wilson, S; Crozier, S

    2010-01-01

    Studies have shown that blood-flow-induced change in electrical conductivity is of equal importance in assessment of the impedance cardiogram (ICG) as are volumetric changes attributed to the motion of heart, lungs and blood vessels. To better understand the sole effect of time-varying blood conductivity on the spatiotemporal distribution of trans-thoracic electric fields (i.e. ICG), this paper presents a segmented high-resolution (1 mm(3)) thoracic cardiovascular system, in which the time-varying pressures, flows and electrical conductivities of blood in different vessels are evaluated using a set of coupled nonlinear differential equations, red blood cell orientation and cardiac cycle functions. Electric field and voltage simulations are performed using two and four electrode configurations delivering a small alternating electric current to an anatomically realistic and electrically accurate model of modelled human torso. The simulations provide a three-dimensional electric field distribution and show that the time-varying blood conductivity alters the voltage potential difference between the electrodes by a maximum of 0.28% for a cardiac output of about 5 L min(-1). As part of a larger study, it is hoped that this initial model will be useful in providing improved insights into blood-flow-related spatiotemporal electric field variations and assist in the optimal placement of electrodes in impedance cardiography experiments.

  7. Numerical Research about Influence of Blade Outlet Angle on Flow-Induced Noise and Vibration for Centrifugal Pump

    Directory of Open Access Journals (Sweden)

    Ailing Yang

    2014-03-01

    Full Text Available A hybrid numerical method was used to calculate the flow-induced noise and vibration of the centrifugal pump in the paper. The unsteady flows inside the centrifugal pumps with different blade outlet angles were simulated firstly. The unsteady pressure on the inner surface of the volute and the unsteady force applied on the impeller were analyzed. Then the vibration of the volute and sound field were calculated based on an acoustic-vibro-coupling method. The results show that the pump head has increased 7% while the hydraulic efficiency decreased 11.75% as blade outlet angles increased from 18° to 39°. The amplitude of pressure fluctuation at the first blade passing frequency has decreased but increased at the second-order blade passing frequency as the angle growing. The total fluctuation power near volute tongue goes up about 12% every 3° increment of blade outlet angle. The results also show that vibrating-velocity of the volute at second-order blade passing frequency is much higher than at other frequencies, and the velocity increases rapidly as blade outlet angle varies from 18° to 39°. At the same time, the sound pressure level outside the pump has increased about 8.6 dB when the angle increased from 18° to 39°.

  8. Generic rules of mechano-regulation combined with subject specific loading conditions can explain bone adaptation after THA.

    Directory of Open Access Journals (Sweden)

    Tomasz D Szwedowski

    Full Text Available Bone adaptation after total hip arthroplasty is associated with the change in internal load environment, and can result in compromised bone stock, which presents a considerable challenge should a revision procedure be required. Under the assumption of a generic mechano-regulatory algorithm for governing bone adaptation, the aim of this study was to understand the contribution of subject specific loading conditions towards explaining the local periprosthetic remodelling variations in patients. CT scans of 3 consecutive THA patients were obtained and used for the construction of subject specific finite element models using verified musculoskeletal loading and physiological boundary conditions. Using either strain energy density or equivalent strain as mechano-transduction signals, predictions of bone adaptation were compared to DEXA derived BMD changes from 7 days to 12 months post-implantation. Individual changes in BMD of up to 33.6% were observed within the 12 month follow-up period, together with considerable inter-patient variability of up to 26%. Estimates of bone adaptation using equivalent strain and balanced loading conditions led to the best agreement with in vivo measured BMD, with RMS errors of only 3.9%, 7.3% and 7.3% for the individual subjects, compared to errors of over 10% when the loading conditions were simplified.This study provides evidence that subject specific loading conditions and physiological boundary constraints are essential for explaining inter-patient variations in bone adaptation patterns. This improved knowledge of the rules governing the adaptation of bone following THA helps towards understanding the interplay between mechanics and biology for better identifying patients at risk of excessive or problematic periprosthetic bone atrophy.

  9. Smoking and Bone Health

    Science.gov (United States)

    ... supported by your browser. Home Bone Basics Lifestyle Smoking and Bone Health Publication available in: PDF (85 ... late to adopt new habits for healthy bones. Smoking and Osteoporosis Cigarette smoking was first identified as ...

  10. Missense Mutations in LRP5 Associated with High Bone Mass Protect the Mouse Skeleton from Disuse- and Ovariectomy-Induced Osteopenia.

    Science.gov (United States)

    Niziolek, Paul J; Bullock, Whitney; Warman, Matthew L; Robling, Alexander G

    2015-01-01

    The low density lipoprotein receptor-related protein-5 (LRP5), a co-receptor in the Wnt signaling pathway, modulates bone mass in humans and in mice. Lrp5 knock-out mice have severely impaired responsiveness to mechanical stimulation whereas Lrp5 gain-of-function knock-in and transgenic mice have enhanced responsiveness to mechanical stimulation. Those observations highlight the importance of Lrp5 protein in bone cell mechanotransduction. It is unclear if and how high bone mass-causing (HBM) point mutations in Lrp5 alter the bone-wasting effects of mechanical disuse. To address this issue we explored the skeletal effects of mechanical disuse using two models, tail suspension and Botulinum toxin-induced muscle paralysis, in two different Lrp5 HBM knock-in mouse models. A separate experiment employing estrogen withdrawal-induced bone loss by ovariectomy was also conducted as a control. Both disuse stimuli induced significant bone loss in WT mice, but Lrp5 A214V and G171V were partially or fully protected from the bone loss that normally results from disuse. Trabecular bone parameters among HBM mice were significantly affected by disuse in both models, but these data are consistent with DEXA data showing a failure to continue growing in HBM mice, rather than a loss of pre-existing bone. Ovariectomy in Lrp5 HBM mice resulted in similar protection from catabolism as was observed for the disuse experiments. In conclusion, the Lrp5 HBM alleles offer significant protection from the resorptive effects of disuse and from estrogen withdrawal, and consequently, present a potential mechanism to mimic with pharmaceutical intervention to protect against various bone-wasting stimuli.

  11. Bone development

    DEFF Research Database (Denmark)

    Tatara, M.R.; Tygesen, Malin Plumhoff; Sawa-Wojtanowicz, B.

    2007-01-01

    The objective of this study was to determine the long-term effect of alpha-ketoglutarate (AKG) administration during early neonatal life on skeletal development and function, with emphasis on bone exposed to regular stress and used to serve for systemic changes monitoring, the rib. Shropshire ram...... lambs were randomly assigned to two weight-matched groups at birth. During the first 14 days of life AKG was administered orally to the experimental group (n=12) at the dosage of 0.1 g/kg body weight per day, while the control group (n=11) received an equal dose of the vehicle. Lambs were slaughtered...... has a long-term effect on skeletal development when given early in neonatal life, and that changes in rib properties serve to improve chest mechanics and functioning in young animals. Moreover, neonatal administration of AKG may be considered as an effective factor enhancing proper development...

  12. Evaluation of agglutination strength by a flow-induced cell movement assay based surface plasmon resonance (SPR) technique.

    Science.gov (United States)

    Sudprasert, Krisda; Peungthum, Patjaree; Vongsakulyanon, Apirom; Amarit, Ratthasart; Somboonkaew, Armote; Sutapun, Boonsong; Kitpoka, Pimpun; Kunakorn, Mongkol; Srikhirin, Toemsak

    2015-02-07

    A flow-induced cell movement assay combined with a surface plasmon resonance (SPR) technique was developed to quantify the agglutination strength, derived from the standard tube-agglutination test. Red blood cells (RBCs), based on the ABO blood group system, were specifically captured by anti-A and/or anti-B antibodies immobilized on a sensor surface. The agglutination strength corresponds to the amount of antigen-antibody interactions or the strength of RBC adhesion. Under a shear flow, the adherent RBCs were forced to move out of the region of interest with different average cell velocities (vc) depending upon the adhesion strength and wall shear stress (WSS). That is, a higher adhesion strength (higher agglutination strength) or lower WSS represents a lower vc or vice versa. In this work, the agglutination strength was derived from the vc that was calculated from the time derivative of the relative SPR signal by using a simple model of cell movement response, whose validity was verified. The vc values of different samples were correlated with their agglutination strengths at a given WSS and antibody surface density. The vc decreased as the agglutination strength increased, which can be considered as a linear regression. The coefficient of variation of the calculated vc decreased to 0.1 as vc increased to 30 μm min(-1). The sensitivity of this assay can be controlled by optimizing the antibody surface density or the WSS. This assay has the capability to resolve the antigen density of A1 and B RBCs from that of A1B RBCs.

  13. Bone grafting: An overview

    Directory of Open Access Journals (Sweden)

    D. O. Joshi

    2010-08-01

    Full Text Available Bone grafting is the process by which bone is transferred from a source (donor to site (recipient. Due to trauma from accidents by speedy vehicles, falling down from height or gunshot injury particularly in human being, acquired or developmental diseases like rickets, congenital defects like abnormal bone development, wearing out because of age and overuse; lead to bone loss and to replace the loss we need the bone grafting. Osteogenesis, osteoinduction, osteoconduction, mechanical supports are the four basic mechanisms of bone graft. Bone graft can be harvested from the iliac crest, proximal tibia, proximal humerus, proximal femur, ribs and sternum. An ideal bone graft material is biologically inert, source of osteogenic, act as a mechanical support, readily available, easily adaptable in terms of size, shape, length and replaced by the host bone. Except blood, bone is grafted with greater frequency. Bone graft indicated for variety of orthopedic abnormalities, comminuted fractures, delayed unions, non-unions, arthrodesis and osteomyelitis. Bone graft can be harvested from the iliac crest, proximal tibia, proximal humerus, proximal femur, ribs and sternum. By adopting different procedure of graft preservation its antigenicity can be minimized. The concept of bone banking for obtaining bone grafts and implants is very useful for clinical application. Absolute stability require for successful incorporation. Ideal bone graft must possess osteogenic, osteoinductive and osteocon-ductive properties. Cancellous bone graft is superior to cortical bone graft. Usually autologous cancellous bone graft are used as fresh grafts where as allografts are employed as an alloimplant. None of the available type of bone grafts possesses all these properties therefore, a single type of graft cannot be recomm-ended for all types of orthopedic abnormalities. Bone grafts and implants can be selected as per clinical problems, the equipments available and preference of

  14. Orchestration of bone remodeling

    NARCIS (Netherlands)

    Moester, Martiene Johanna Catharina

    2014-01-01

    In healthy individuals, a balance exists between bone formation and resorption. Disruption of this balance can lead to higher or lower bone mass, and disease such as osteoporosis. Treatment for osteoporosis generally inhibits bone resorption, but does not rebuild bone to a healthy strength. More kno

  15. Bone grafts in dentistry

    Directory of Open Access Journals (Sweden)

    Prasanna Kumar

    2013-01-01

    Full Text Available Bone grafts are used as a filler and scaffold to facilitate bone formation and promote wound healing. These grafts are bioresorbable and have no antigen-antibody reaction. These bone grafts act as a mineral reservoir which induces new bone formation.

  16. Bone Marrow Diseases

    Science.gov (United States)

    Bone marrow is the spongy tissue inside some of your bones, such as your hip and thigh bones. It contains stem cells. The stem cells can ... the platelets that help with blood clotting. With bone marrow disease, there are problems with the stem ...

  17. 角质形成细胞的机械应力传导通路研究进展%RESEARCH PROGRESS OF SIGNALING CHANNELS OF MECHANOTRANSDUCTION ON KERATINOCYTES

    Institute of Scientific and Technical Information of China (English)

    付思祺; 范金财

    2013-01-01

    目的 总结近年来有关角质形成细胞机械应力的感受及传导作用分子、信号通路研究进展,为促进伤口愈合及加快组织扩张寻找新的途径. 方法 查阅近年国内外关于角质形成细胞机械应力的感受和传导作用分子、信号通路的相关文献,进行总结分析. 结果 角质形成细胞机械应力感受机制包括机械应力敏感通道、生长因子介导的机械应力感受和蛋白形变介导的机械应力感受,机械应力传导的信号通路有细胞黏附介导的信号通路、促分裂原活化蛋白激酶信号通路和细胞骨架、细胞外基质等. 结论 角质形成细胞可以感受机械应力,并通过不同信号通路传导有效刺激信息,完成形变、迁移、增殖或分化等一系列生物学行为,以调节适应新的环境.%Objective To find new ways for wound healing and tissue expansion by reviewing of progress in recent years in functional molecules which are used for signaling channels of mechanical stress perception and mechanotransduction of keratinocyte. Methods The domestic and international articles were reviewed to summarize the functional molecules and signaling channels of mechanical stress perception and mechanotransduction of keratinocytes. Results The mechanism of mechanical stress perception includes mechano-sensitive channels, growth factor receptor-mediated mechanical stress perception, and mechanical stress perception by protein deformation. The mechanism of mechanotransduction includes cell adhesion-mediated signaling, mitogen-activated protein kinase signaling, the cytoskeleton and extracellular matrix, and so on. Conclusion Keratinocytes can response to the mechanical stress and transfer the effective information to undergo shaping, migration, proliferation, differentiation, and other biological behavior in order to adjust itself to adapt to the new environment.

  18. Bone Health and Osteoporosis.

    Science.gov (United States)

    Lupsa, Beatrice C; Insogna, Karl

    2015-09-01

    Osteoporosis is characterized by low bone mass and microarchitectural deterioration of bone tissue leading to decreased bone strength and an increased risk of low-energy fractures. Central dual-energy X-ray absorptiometry measurements are the gold standard for determining bone mineral density. Bone loss is an inevitable consequence of the decrease in estrogen levels during and following menopause, but additional risk factors for bone loss can also contribute to osteoporosis in older women. A well-balanced diet, exercise, and smoking cessation are key to maintaining bone health as women age. Pharmacologic agents should be recommended in patients at high risk for fracture.

  19. BONE IN OSTEOPETROSIS

    Directory of Open Access Journals (Sweden)

    Ramkumar

    2014-04-01

    Full Text Available Osteopetrosis, a generalized developmental bone disease due to genetic disturbances, characterized by failure of bone re sorption and continuous bone formation making the bone hard, dense and brittle. Bones of intramembranous ossification and enchondrial ossification are affected genetically and symmetrically. During the process of disease the excess bone formation obliterates the cranial foramina and presses the optic, auditory and facial nerves resulting in defective vision, impaired hearing and facial paralysis. The bone formation in osteopetrosis affects bone marrow function leading to severe anemia and deficient of blood cells. The bone devoid of blood supply due to compression of blood vessels by excess formation of bone are prone to osteomyelitic changes with suppuration and pathological fracture if exposed to infection. Though the condition is chronic progressive, it produces changes leading to fatal condition, it should be studied thoroughly by everyone and hence this article presents a classical case of osteopetrosis with detailed description and discussion for the benefit of readers

  20. Multiscale Modeling of Bone

    Science.gov (United States)

    2014-12-01

    DISEASE Both age and disease can affect the structure of bone, the effects of which are often similar. The most common bone disease is osteoporosis ... Osteoporosis is a disease that results in reduced bone mass and density. This reduction of bone mass and density has a greater impact on trabecular...Bone loss in females is linked to a decrease in estrogen ; the decrease of estrogen associated with menopause increases osteoclast activity [89]. This

  1. Bone cysts: unicameral and aneurysmal bone cyst.

    Science.gov (United States)

    Mascard, E; Gomez-Brouchet, A; Lambot, K

    2015-02-01

    Simple and aneurysmal bone cysts are benign lytic bone lesions, usually encountered in children and adolescents. Simple bone cyst is a cystic, fluid-filled lesion, which may be unicameral (UBC) or partially separated. UBC can involve all bones, but usually the long bone metaphysis and otherwise primarily the proximal humerus and proximal femur. The classic aneurysmal bone cyst (ABC) is an expansive and hemorrhagic tumor, usually showing characteristic translocation. About 30% of ABCs are secondary, without translocation; they occur in reaction to another, usually benign, bone lesion. ABCs are metaphyseal, excentric, bulging, fluid-filled and multicameral, and may develop in all bones of the skeleton. On MRI, the fluid level is evocative. It is mandatory to distinguish ABC from UBC, as prognosis and treatment are different. UBCs resolve spontaneously between adolescence and adulthood; the main concern is the risk of pathologic fracture. Treatment in non-threatening forms consists in intracystic injection of methylprednisolone. When there is a risk of fracture, especially of the femoral neck, surgery with curettage, filling with bone substitute or graft and osteosynthesis may be required. ABCs are potentially more aggressive, with a risk of bone destruction. Diagnosis must systematically be confirmed by biopsy, identifying soft-tissue parts, as telangiectatic sarcoma can mimic ABC. Intra-lesional sclerotherapy with alcohol is an effective treatment. In spinal ABC and in aggressive lesions with a risk of fracture, surgical treatment should be preferred, possibly after preoperative embolization. The risk of malignant transformation is very low, except in case of radiation therapy.

  2. Differences in Trabecular Bone of Leptin-Deficient ob/ob Mice in Response to Biomechanical Loading

    Directory of Open Access Journals (Sweden)

    Hansjoerg Heep, Christian Wedemeyer, Alexander Wegner, Sebastian Hofmeister, Marius von Knoch

    2008-01-01

    Full Text Available Objective: It is known that bone mineral density (BMD and the strength of bone is predicted by body mass. Fat mass is a significant predictor of bone mineral density which correlates with body weight. This suggests that body fat regulates bone metabolism first by means of hormonal factors and second that the effects of muscle and loading are signaling factors in mechanotransduction. Leptin, a peptide hormone produced predominantly by white fat cells, is one of these hormonal factors. The aim of this study was to investigate and measure by micro-CT the different effects of weight-bearing on trabecular bone formation in mice without the stimulation of leptin. Results: Animals with an ad-libitum-diet (Group A were found to increase body weight significantly at the age of six weeks in comparison with lean mice (Group B. From this point on, the difference increased constantly. At the age of twenty weeks the obese mice were almost twice as heavy as the lean mice. Significant statistical differences are shown between the two groups for body weight and bone mineral density. Examination of trabecular bone (BV/TV, trabecular number (Tb.N., trabecular thickness (Tb.Th. revealed that the only statistically significant difference between the two groups was the Tb.N. for the proximal femur. High weight-bearing insignificantly improved all trabecular bone parameters in the obese mice. Compared with the control-diet Group B, the BV/TV and Tb.N. were slightly higher in the controlled-diet Group A, but not the Tb.Th.. However, correlation was found between Tb.N. and BMD on the one hand and body weight on the other hand. Conclusion: biomechanical loading led to decreased bone mineral density by a decrease in the number of trabeculae. Trabecular thickness was not increased by biomechanical loading in growing mice. Decreased body weight in leptin-deficient mice protects against bone loss. This finding is consistent with the principle of light-weight construction of

  3. Regulation of Bone Metabolism.

    Science.gov (United States)

    Shahi, Maryam; Peymani, Amir; Sahmani, Mehdi

    2017-04-01

    Bone is formed through the processes of endochondral and intramembranous ossification. In endochondral ossification primary mesenchymal cells differentiate to chondrocytes and then are progressively substituted by bone, while in intramembranous ossification mesenchymal stem cells (MSCs) differentiate directly into osteoblasts to form bone. The steps of osteogenic proliferation, differentiation, and bone homeostasis are controlled by various markers and signaling pathways. Bone needs to be remodeled to maintain integrity with osteoblasts, which are bone-forming cells, and osteoclasts, which are bone-degrading cells.In this review we considered the major factors and signaling pathways in bone formation; these include fibroblast growth factors (FGFs), bone morphogenetic proteins (BMPs), wingless-type (Wnt) genes, runt-related transcription factor 2 (RUNX2) and osteoblast-specific transcription factor (osterix or OSX).

  4. Regulation of Bone Metabolism

    Science.gov (United States)

    Shahi, Maryam; Peymani, Amir; Sahmani, Mehdi

    2017-01-01

    Bone is formed through the processes of endochondral and intramembranous ossification. In endochondral ossification primary mesenchymal cells differentiate to chondrocytes and then are progressively substituted by bone, while in intramembranous ossification mesenchymal stem cells (MSCs) differentiate directly into osteoblasts to form bone. The steps of osteogenic proliferation, differentiation, and bone homeostasis are controlled by various markers and signaling pathways. Bone needs to be remodeled to maintain integrity with osteoblasts, which are bone-forming cells, and osteoclasts, which are bone-degrading cells.In this review we considered the major factors and signaling pathways in bone formation; these include fibroblast growth factors (FGFs), bone morphogenetic proteins (BMPs), wingless-type (Wnt) genes, runt-related transcription factor 2 (RUNX2) and osteoblast-specific transcription factor (osterix or OSX). PMID:28367467

  5. What Is Bone Cancer?

    Science.gov (United States)

    ... start in bone, muscle, fibrous tissue, blood vessels, fat tissue, as well as some other tissues. They can develop anywhere in the body. There are several different types of bone tumors. Their names are based on ...

  6. Osteochondroma (Bone Tumor)

    Science.gov (United States)

    ... to be the most common benign bone tumor, accounting for 35% to 40% of all benign bone ... imaging scans. Doctors may also request computed tomography (CT) scans or magnetic resonance imaging (MRI) scans to ...

  7. What causes bone loss?

    Science.gov (United States)

    ... bone biology. In: Melmed S, Polonsky KS, Larsen PR, Kronenberg HM, eds. Williams Textbook of Endocrinology . 13th ed. Philadelphia, PA: Elsevier; 2016:chap 29. Maes C, Kronenberg HM. Bone development and remodeling. In: Jameson JL, ...

  8. Bone mineral density test

    Science.gov (United States)

    BMD test; Bone density test; Bone densitometry; DEXA scan; DXA; Dual-energy x-ray absorptiometry; p-DEXA; Osteoporosis-BMD ... need to undress. This scan is the best test to predict your risk of fractures. Peripheral DEXA ( ...

  9. A 3D CFD Simulation and Analysis of Flow-Induced Forces on Polymer Piezoelectric Sensors in a Chinese Liquors Identification E-Nose.

    Science.gov (United States)

    Gu, Yu; Wang, Yang-Fu; Li, Qiang; Liu, Zu-Wu

    2016-10-20

    Chinese liquors can be classified according to their flavor types. Accurate identification of Chinese liquor flavors is not always possible through professional sommeliers' subjective assessment. A novel polymer piezoelectric sensor electric nose (e-nose) can be applied to distinguish Chinese liquors because of its excellent ability in imitating human senses by using sensor arrays and pattern recognition systems. The sensor, based on the quartz crystal microbalance (QCM) principle is comprised of a quartz piezoelectric crystal plate sandwiched between two specific gas-sensitive polymer coatings. Chinese liquors are identified by obtaining the resonance frequency value changes of each sensor using the e-nose. However, the QCM principle failed to completely account for a particular phenomenon: we found that the resonance frequency values fluctuated in the stable state. For better understanding the phenomenon, a 3D Computational Fluid Dynamics (CFD) simulation using the finite volume method is employed to study the influence of the flow-induced forces to the resonance frequency fluctuation of each sensor in the sensor box. A dedicated procedure was developed for modeling the flow of volatile gas from Chinese liquors in a realistic scenario to give reasonably good results with fair accuracy. The flow-induced forces on the sensors are displayed from the perspective of their spatial-temporal and probability density distributions. To evaluate the influence of the fluctuation of the flow-induced forces on each sensor and ensure the serviceability of the e-nose, the standard deviation of resonance frequency value (SDF) and the standard deviation of resultant forces (SDFy) in y-direction (Fy) are compared. Results show that the fluctuations of Fy are bound up with the resonance frequency values fluctuations. To ensure that the sensor's resonance frequency values are steady and only fluctuate slightly, in order to improve the identification accuracy of Chinese liquors using

  10. Androgens and bone.

    Science.gov (United States)

    Vanderschueren, Dirk; Vandenput, Liesbeth; Boonen, Steven; Lindberg, Marie K; Bouillon, Roger; Ohlsson, Claes

    2004-06-01

    Loss of estrogens or androgens increases the rate of bone remodeling by removing restraining effects on osteoblastogenesis and osteoclastogenesis, and also causes a focal imbalance between resorption and formation by prolonging the lifespan of osteoclasts and shortening the lifespan of osteoblasts. Conversely, androgens, as well as estrogens, maintain cancellous bone mass and integrity, regardless of age or sex. Although androgens, via the androgen receptor (AR), and estrogens, via the estrogen receptors (ERs), can exert these effects, their relative contribution remains uncertain. Recent studies suggest that androgen action on cancellous bone depends on (local) aromatization of androgens into estrogens. However, at least in rodents, androgen action on cancellous bone can be directly mediated via AR activation, even in the absence of ERs. Androgens also increase cortical bone size via stimulation of both longitudinal and radial growth. First, androgens, like estrogens, have a biphasic effect on endochondral bone formation: at the start of puberty, sex steroids stimulate endochondral bone formation, whereas they induce epiphyseal closure at the end of puberty. Androgen action on the growth plate is, however, clearly mediated via aromatization in estrogens and interaction with ERalpha. Androgens increase radial growth, whereas estrogens decrease periosteal bone formation. This effect of androgens may be important because bone strength in males seems to be determined by relatively higher periosteal bone formation and, therefore, greater bone dimensions, relative to muscle mass at older age. Experiments in mice again suggest that both the AR and ERalpha pathways are involved in androgen action on radial bone growth. ERbeta may mediate growth-limiting effects of estrogens in the female but does not seem to be involved in the regulation of bone size in males. In conclusion, androgens may protect men against osteoporosis via maintenance of cancellous bone mass and

  11. Gracile bone dysplasias

    Energy Technology Data Exchange (ETDEWEB)

    Kozlowski, Kazimierz [Department of Medical Imaging, The Children' s Hospital at Westmead, Locked Bag 4001, Westmead 2145, NSW (Australia); Masel, John [Department of Radiology, Royal Children' s Hospital, Brisbane (Australia); Sillence, David O. [Department of Paediatrics and Child Health, The University of Sydney (Australia); Arbuckle, Susan [Department of Anatomical Pathology, The Children' s Hospital at Westmead, NSW (Australia); Juttnerova, Vera [Oddeleni Lekarske Genetiky, Hradec Kralove (Czech Republic)

    2002-09-01

    Gracile bone dysplasias constitute a group of disorders characterised by extremely slender bones with or without fractures. We report four newborns, two of whom showed multiple fractures. Two babies had osteocraniostenosis and one had features of oligohydramnios sequence. The diagnosis in the fourth newborn, which showed thin long bones and clavicles and extremely thin, poorly ossified ribs, is uncertain. Exact diagnosis of a gracile bone dysplasia is important for genetic counselling and medico-legal reasons. (orig.)

  12. Enzymatic maceration of bone

    DEFF Research Database (Denmark)

    Uhre, Marie-Louise; Eriksen, Anne Marie; Simonsen, Kim Pilkjær;

    2015-01-01

    the bones. The DNA analysis showed that DNA was preserved on all the pieces of bones which were examined. Finally, the investigation suggests that enzyme maceration could be gentler on the bones, as the edges appeared less frayed. The enzyme maceration was also a quicker method; it took three hours compared...

  13. Oxytocin and bone

    Science.gov (United States)

    Sun, Li; Zaidi, Mone; Zallone, Alberta

    2014-01-01

    One of the most meaningful results recently achieved in bone research has been to reveal that the pituitary hormones have profound effect on bone, so that the pituitary-bone axis has become one of the major topics in skeletal physiology. Here, we discuss the relevant evidence about the posterior pituitary hormone oxytocin (OT), previously thought to exclusively regulate parturition and breastfeeding, which has recently been established to directly regulate bone mass. Both osteoblasts and osteoclasts express OT receptors (OTR), whose stimulation enhances bone mass. Consistent with this, mice deficient in OT or OTR display profoundly impaired bone formation. In contrast, bone resorption remains unaffected in OT deficiency because, even while OT stimulates the genesis of osteoclasts, it inhibits their resorptive function. Furthermore, in addition to its origin from the pituitary, OT is also produced by bone marrow osteoblasts acting as paracrine-autocrine regulator of bone formation modulated by estrogens. In turn, the power of estrogen to increase bone mass is OTR-dependent. Therefore, OTR−/− mice injected with 17β-estradiol do not show any effects on bone formation parameters, while the same treatment increases bone mass in wild-type mice. These findings together provide evidence for an anabolic action of OT in regulating bone mass and suggest that bone marrow OT may enhance the bone-forming action of estrogen through an autocrine circuit. This established new physiological role for OT in the maintenance of skeletal integrity further suggests the potential use of this hormone for the treatment of osteoporosis. PMID:25209411

  14. Bone regeneration with cultured human bone grafts

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, T.; Nakajima, H. [Nara Medical Univ., Kashihara City (Japan). Dept. of Pathology; Nara Medical Univ., Kashihara City (Japan). Dept. of Orthopedic Surgery; Ohgushi, H.; Ueda, Y.; Takakura, Y. [Nara Medical Univ., Kashihara City (Japan). Dept. of Orthopedic Surgery; Uemura, T.; Tateishi, T. [National Inst. for Advanced Interdisciplinary Research (NAIR), Ibaraki (Japan). Tsukuba Research Center; Enomoto, Y.; Ichijima, K. [Nara Medical Univ., Kashihara City (Japan). Dept. of Pathology

    2001-07-01

    From 73 year old female patient, 3 ml of bone marrow was collected from the ilium. The marrow was cultured to concentrate and expand the marrow mesenchymal cells on a culture dish. The cultured cells were then subculturedeither on another culture dish or in porous areas of hydroxyapatite ceramics in the presence of dexamethasone and beta-glycerophosphate (osteo genic medium). The subculturedtissues on the dishes were analyzed by scanning electron microscopy (SEM), and subculturedtissues in the ceramics were implanted intraperitoneally into athymic nude mice. Vigorous growth of spindle-shaped cells and a marked formation of bone matrix beneath the cell layers was observed on the subculture dishes by SEM. The intraperitoneally implanted ceramics with cultured tissues revealed thick layer of lamellar bone together with active osteoblasts lining in many pore areas of the ceramics after 8 weeks. The in vitro bone formations on the culture dishes and in vivo bone formation in porous ceramics were detected. These results indicate that we can assemble an in vitro bone/ceramic construct, and due to the porous framework of the ceramic, the construct has osteogenic potential similar to that of autologous cancellous bone. A significant benefit of this method is that the construct can be made with only a small amount of aspirated marrow cells from aged patients with little host morbidity. (orig.)

  15. A High-Order Immersed Boundary Method for Acoustic Wave Scattering and Low-Mach Number Flow-Induced Sound in Complex Geometries.

    Science.gov (United States)

    Seo, Jung Hee; Mittal, Rajat

    2011-02-20

    A new sharp-interface immersed boundary method based approach for the computation of low-Mach number flow-induced sound around complex geometries is described. The underlying approach is based on a hydrodynamic/acoustic splitting technique where the incompressible flow is first computed using a second-order accurate immersed boundary solver. This is followed by the computation of sound using the linearized perturbed compressible equations (LPCE). The primary contribution of the current work is the development of a versatile, high-order accurate immersed boundary method for solving the LPCE in complex domains. This new method applies the boundary condition on the immersed boundary to a high-order by combining the ghost-cell approach with a weighted least-squares error method based on a high-order approximating polynomial. The method is validated for canonical acoustic wave scattering and flow-induced noise problems. Applications of this technique to relatively complex cases of practical interest are also presented.

  16. Bone scintiscanning updated.

    Science.gov (United States)

    Lentle, B C; Russell, A S; Percy, J S; Scott, J R; Jackson, F I

    1976-03-01

    Use of modern materials and methods has given bone scintiscanning a larger role in clinical medicine, The safety and ready availability of newer agents have led to its greater use in investigating both benign and malignant disease of bone and joint. Present evidence suggests that abnormal accumulation of 99mTc-polyphosphate and its analogues results from ionic deposition at crystal surfaces in immature bone, this process being facilitated by an increase in bone vascularity. There is, also, a component of matrix localization. These factors are in keeping with the concept that abnormal scintiscan sites represent areas of increased osteoblastic activity, although this may be an oversimplification. Increasing evidence shows that the bone scintiscan is more sensitive than conventional radiography in detecting focal disease of bone, and its ability to reflect the immediate status of bone further complements radiographic findings. The main limitation of this method relates to nonspecificity of the results obtained.

  17. BONES WITH BIOCERAMICS

    Directory of Open Access Journals (Sweden)

    Wijianto Wijianto

    2017-01-01

    Full Text Available This paper discuss about ceramics in application as bone implant. Bioceramics for instance Hydroxyapatite, usually is abbreviated with HA or HAp, is a mineral that is very good physical properties as bone replacement in human body. To produce Hydroxyapatite, coating process is used which have good potential as they can exploit the biocompatible and bone bonding properties of the ceramic. There are many advantages and disadvantages of bioceramics as bone implant. Advantages of hydroxyapatite as bone implant are rapidly integrated into the human body, and is most interesting property that will bond to bone forming indistinguishable unions. On contrary, disadvantages of hydroxyapatite as bone implant are poor mechanical properties (in particular fatigue properties mean that hydroxyapatite cannot be used in bulk form for load bearing applications such as orthopaedics and poor adhesion between the calcium phosphate coating and the material implant will occur.

  18. Long-term potentiation in bone – a role for glutamate in strain-induced cellular memory?

    Directory of Open Access Journals (Sweden)

    Genever Paul G

    2003-07-01

    Full Text Available Abstract Background The adaptive response of bone cells to mechanical strain is a primary determinant of skeletal architecture and bone mass. In vivo mechanical loading induces new bone formation and increases bone mineral density whereas disuse, immobilisation and weightlessness induce bone loss. The potency of mechanical strain is such that a single brief period of loading at physiological strain magnitude is able to induce a long-lasting osteogenic response that lasts for days. Although the process of mechanotransduction in bone is incompletely understood, observations that responses to mechanical strain outlast the duration of stimulation necessitate the existence of a form of cellular memory through which transient strain episodes are recorded, interpreted and remembered by bone cells. Recent evidence supports the existence of a complex multicellular glutamate-signalling network in bone that shares functional similarities to glutamatergic neurotransmission in the central nervous system. In neurones, these signalling molecules coordinate synaptic communication required to support learning and memory formation, through a complex process of long-term potentiation. Presentation of the hypothesis We hypothesise that osteoblasts use a cellular mechanism similar or identical to neuronal long-term potentiation in the central nervous system to mediate long-lasting changes in osteogenesis following brief periods of mechanical strain. Testing the hypothesis N-methyl-D-aspartate (NMDA receptor antagonism should inhibit the saturating response of mechanical strain and reduce the enhanced osteogenicity of segregated loading to that of an equivalent period of uninterrupted loading. Changes in α-amino-3-hydroxy-5-methyl-isoxazole propionate (AMPA receptor expression, localisation and electrophysiological responses should be induced by mechanical strain and inhibited by modulators of neuronal long-term potentiation. Implications of the hypothesis If true

  19. Diabetes, Biochemical Markers of Bone Turnover, Diabetes Control, and Bone

    OpenAIRE

    Starup-Linde, Jakob

    2013-01-01

    Diabetes mellitus is known to have late complications including micro vascular and macro vascular disease. This review focuses on another possible area of complication regarding diabetes; bone. Diabetes may affect bone via bone structure, bone density, and biochemical markers of bone turnover. The aim of the present review is to examine in vivo from humans on biochemical markers of bone turnover in diabetics compared to non-diabetics. Furthermore, the effect of glycemic control on bone marker...

  20. Bone building with bortezomib

    Science.gov (United States)

    Roodman, G. David

    2008-01-01

    In this issue of the JCI, Mukherjee et al. report that bortezomib, a clinically available proteasome inhibitor active against myeloma, induces the differentiation of mesenchymal stem/progenitor cells (MSCs) — rather than mature osteoprogenitor cells — into osteoblasts, resulting in new bone formation (see the related article beginning on page 491). These results were observed when MSCs were implanted subcutaneously in mice or were used to treat a mouse model of postmenopausal bone loss. Others have reported that immunomodulatory drugs (e.g., thalidomide and lenalidomide), which are active against myeloma, also block the activity of bone-resorbing osteoclasts. These results reflect the utility of targeting endogenous MSCs for the purpose of tissue repair and suggest that combining different classes of agents that are antineoplastic and also inhibit bone destruction and increase bone formation should be very beneficial for myeloma patients suffering from severe bone disease. PMID:18219395

  1. Adrenal gland and bone.

    Science.gov (United States)

    Hardy, Rowan; Cooper, Mark S

    2010-11-01

    The adrenal gland synthesizes steroid hormones from the adrenal cortex and catecholamines from the adrenal medulla. Both cortisol and adrenal androgens can have powerful effects on bone. The overproduction of cortisol in Cushing's disease leads to a dramatic reduction in bone density and an increase risk of fracture. Overproduction of adrenal androgens in congenital adrenal hyperplasia (CAH) leads to marked changes in bone growth and development with early growth acceleration but ultimately a significant reduction in final adult height. The role of more physiological levels of glucocorticoids and androgens on bone metabolism is less clear. Cortisol levels measured in elderly individuals show a weak correlation with measures of bone density and change in bone density over time with a high cortisol level associated with lower bone density and more rapid bone loss. Cortisol levels and the dynamics of cortisol secretion change with age which could also explain some age related changes in bone physiology. It is also now clear that adrenal steroids can be metabolized within bone tissue itself. Local synthesis of cortisol within bone from its inactive precursor cortisone has been demonstrated and the amount of cortisol produced within osteoblasts appears to increase with age. With regard to adrenal androgens there is a dramatic reduction in levels with aging and several studies have examined the impact that restoration of these levels back to those seen in younger individuals has on bone health. Most of these studies show small positive effects in women, not men, but the skeletal sites where benefits are seen varies from study to study.

  2. Bone scanning in otolaryngology.

    Science.gov (United States)

    Noyek, A M

    1979-09-01

    Modern radionuclide bone scanning has introduced a new concept in physiologic and anatomic diagnostic imaging to general medicine. As otolaryngologists must diagnose and treat disease in relation to the bony and/or cartilaginous supporting structures of the neurocranium and upper airway, this modality should be included in the otolaryngologist's diagnostic armamentarium. It is the purpose of this manuscript to study the specific applications of bone scanning to our specialty at this time, based on clinical experience over the past three years. This thesis describes the development of bone scanning in general (history of nuclear medicine and nuclear physics; history of bone scanning in particular). General concepts in nuclear medicine are then presented; these include a discussion of nuclear semantics, principles of radioactive emmissions, the properties 99mTc as a radionuclide, and the tracer principle. On the basis of these general concepts, specific concepts in bone scanning are then brought forth. The physiology of bone and the action of the bone scan agents is presented. Further discussion considers the availability and production of the bone scan agent, patient factors, the gamma camera, the triphasic bone scan and the ultimate diagnostic principle of the bone scan. Clinical applications of bone scanning in otolaryngology are then presented in three sections. Proven areas of application include the evaluation of malignant tumors of the head and neck, the diagnosis of temporomandibular joint disorders, the diagnosis of facial fractures, the evaluation of osteomyelitis, nuclear medicine imaging of the larynx, and the assessment of systemic disease. Areas of adjunctive or supplementary value are also noted, such as diagnostic imaging of meningioma. Finally, areas of marginal value in the application of bone scanning are described.

  3. Hypercalciuric Bone Disease

    Science.gov (United States)

    Favus, Murray J.

    2008-09-01

    Hypercalciuria plays an important causal role in many patients with calcium oxalate (CaOx) stones. The source of the hypercalciuria includes increased intestinal Ca absorption and decreased renal tubule Ca reabsorption. In CaOx stone formers with idiopathic hypercalciuria (IH), Ca metabolic balance studies have revealed negative Ca balance and persistent hypercalciuria in the fasting state and during low dietary Ca intake. Bone resorption may also contribute to the high urine Ca excretion and increase the risk of bone loss. Indeed, low bone mass by DEXA scanning has been discovered in many IH patients. Thiazide diuretic agents reduce urine Ca excretion and may increase bone mineral density (BMD), thereby reducing fracture risk. Dietary Ca restriction that has been used unsuccessfully in the treatment of CaOx nephrolithiasis in the past may enhance negative Ca balance and accelerate bone loss. DEXA scans may demonstrate low BMD at the spine, hip, or forearm, with no predictable pattern. The unique pattern of bone histologic changes in IH differs from other causes of low DEXA bone density including postmenopausal osteoporosis, male hypogonadal osteoporosis, and glucocorticoid-induced osteoporosis. Hypercalciuria appears to play an important pathologic role in the development of low bone mass, and therefore correction of urine Ca losses should be a primary target for treatment of the bone disease accompanying IH.

  4. Glutamate signalling in bone.

    Directory of Open Access Journals (Sweden)

    Karen eBrakspear

    2012-08-01

    Full Text Available Mechanical loading plays a key role in the physiology of bone, allowing bone to functionally adapt to its environment, however characterisation of the signalling events linking load to bone formation is incomplete. A screen for genes associated with mechanical load-induced bone formation identified the glutamate transporter GLAST, implicating the excitatory amino acid, glutamate, in the mechanoresponse. When an osteogenic load (10N, 10Hz was externally applied to the rat ulna, GLAST (EAAT1 mRNA, was significantly down-regulated in osteocytes in the loaded limb. Functional components from each stage of the glutamate signalling pathway have since been identified within bone, including proteins necessary for calcium-mediated glutamate exocytosis, receptors, transporters and signal propagation. Activation of ionotropic glutamate receptors has been shown to regulate the phenotype of osteoblasts and osteoclasts in vitro and bone mass in vivo. Furthermore, glutamatergic nerves have been identified in the vicinity of bone cells expressing glutamate receptors in vivo. However, it is not yet known how a glutamate signalling event is initiated in bone or its physiological significance. This review will examine the role of the glutamate signalling pathway in bone, with emphasis on the functions of glutamate transporters in osteoblasts.

  5. Blood: bone equilibrium

    Energy Technology Data Exchange (ETDEWEB)

    Neuman, M.W.

    1982-01-01

    The conundrum of blood undersaturation with respect to bone mineralization and its supersaturation with respect to bone's homeostatic function has acquired a new equation. On the supply side, Ca/sup 2 +/ is pumped in across bone cells to provide the needed Ca/sup 2 +/ x P/sub i/ for brushite precipitation. On the demand side, blood is in equilibrium with bone fluid, which is in equilibrium with a mineral more soluble than apatite. The function of potassium in this equation is yet to be found.

  6. Olecranon bone graft: revisited.

    Science.gov (United States)

    Mersa, Berkan; Ozcelik, Ismail Bulent; Kabakas, Fatih; Sacak, Bulent; Aydin, Atakan

    2010-09-01

    Autogenous bone grafts are frequently in use in the field of reconstructive upper extremity surgery. Cancellous bone grafts are applied to traumatic osseous defects, nonunions, defects after the resection of benign bone tumors, arthrodesis, and osteotomy procedures. Cancellous bone grafts do not only have benefits such as rapid revascularization, but they also have mechanical advantages. Despite the proximity to the primary surgical field, cancellous olecranon grafts have not gained the popularity they deserve in the field of reconstructive hand surgery. In this study, the properties, advantages, and technical details of harvesting cancellous olecranon grafts are discussed.

  7. Numerical simulation of flow induced by a pitched blade turbine. Comparison of the sliding mesh technique and an averaged source term method

    Energy Technology Data Exchange (ETDEWEB)

    Majander, E.O.J.; Manninen, M.T. [VTT Energy, Espoo (Finland)

    1996-12-31

    The flow induced by a pitched blade turbine was simulated using the sliding mesh technique. The detailed geometry of the turbine was modelled in a computational mesh rotating with the turbine and the geometry of the reactor including baffles was modelled in a stationary co-ordinate system. Effects of grid density were investigated. Turbulence was modelled by using the standard k-{epsilon} model. Results were compared to experimental observations. Velocity components were found to be in good agreement with the measured values throughout the tank. Averaged source terms were calculated from the sliding mesh simulations in order to investigate the reliability of the source term approach. The flow field in the tank was then simulated in a simple grid using these source terms. Agreement with the results of the sliding mesh simulations was good. Commercial CFD-code FLUENT was used in all simulations. (author)

  8. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... ionizing radiation to produce pictures of any bone in the body. It is commonly used to diagnose ... bone x-ray makes images of any bone in the body, including the hand, wrist, arm, elbow, ...

  9. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... the body. X-rays are the oldest and most frequently used form of medical imaging. A bone ... bones. top of page How should I prepare? Most bone x-rays require no special preparation. You ...

  10. Nanomaterials promise better bone repair

    OpenAIRE

    Qifei Wang; Jianhua Yan; Junlin Yang; Bingyun Li

    2016-01-01

    Nanomaterials mimicking the nano-features of bones and offering unique smart functions are promising for better bone fracture repair. This review provides an overview of the current state-of-the-art research in developing and using nanomaterials for better bone fracture repair. This review begins with a brief introduction of bone fracture repair processes, then discusses the importance of vascularization, the role of growth factors in bone fracture repair, and the failure of bone fracture rep...

  11. BONES, TEACHER'S GUIDE.

    Science.gov (United States)

    Elementary Science Study, Newton, MA.

    THIS GUIDE WAS DEVELOPED FOR USE WITH THE ELEMENTARY SCIENCE STUDY UNIT ON "BONES.""BONES" HAS BEEN TAUGHT IN THE FOURTH GRADE AND REQUIRES FROM 10 TO 25 LESSONS, DEPENDING ON THE NUMBER OF ACTIVITIES USED. THE GUIDE DOES NOT PROVIDE DETAILED INSTRUCTION FOR CONDUCTING CLASSES, BUT RATHER SOME POSSIBLE ACTIVITIES, AND LEAVES THE DAY-TO-DAY…

  12. Children's bone health

    NARCIS (Netherlands)

    I.M. van der Sluis (Inge)

    2002-01-01

    textabstractThe thesis can be divided in two main parts. In the first part (Chapter 2 to 5) bone mineral density, bone metabolism and body composition in healthy children and young adults have been evaluated, while in the second part (Chapter 6 to 10) these issues were studied in children with vario

  13. Biodegradable synthetic bone composites

    Science.gov (United States)

    Liu, Gao; Zhao, Dacheng; Saiz, Eduardo; Tomsia, Antoni P.

    2013-01-01

    The invention provides for a biodegradable synthetic bone composition comprising a biodegradable hydrogel polymer scaffold comprising a plurality of hydrolytically unstable linkages, and an inorganic component; such as a biodegradable poly(hydroxyethylmethacrylate)/hydroxyapatite (pHEMA/HA) hydrogel composite possessing mineral content approximately that of human bone.

  14. Osteotransductive bone cements.

    Science.gov (United States)

    Driessens, F C; Planell, J A; Boltong, M G; Khairoun, I; Ginebra, M P

    1998-01-01

    Calcium phosphate bone cements (CPBCs) are osteotransductive, i.e. after implantation in bone they are transformed into new bone tissue. Furthermore, due to the fact that they are mouldable, their osteointegration is immediate. Their chemistry has been established previously. Some CPBCs contain amorphous calcium phosphate (ACP) and set by a sol-gel transition. The others are crystalline and can give as the reaction product dicalcium phosphate dihydrate (DCPD), calcium-deficient hydroxyapatite (CDHA), carbonated apatite (CA) or hydroxyapatite (HA). Mixed-type gypsum-DCPD cements are also described. In vivo rates of osteotransduction vary as follows: gypsum-DCPD > DCPD > CDHA approximately CA > HA. The osteotransduction of CDHA-type cements may be increased by adding dicalcium phosphate anhydrous (DCP) and/or CaCO3 to the cement powder. CPBCs can be used for healing of bone defects, bone augmentation and bone reconstruction. Incorporation of drugs like antibiotics and bone morphogenetic protein is envisaged. Load-bearing applications are allowed for CHDA-type, CA-type and HA-type CPBCs as they have a higher compressive strength than human trabecular bone (10 MPa).

  15. Pseudoanaplastic tumors of bone

    Energy Technology Data Exchange (ETDEWEB)

    Bahk, Won-Jong [Uijongbu St. Mary Hospital, The Catholic University of Korea, Department of Orthopaedic Surgery, Gyunggido, 480-821 (Korea); Mirra, Joseph M. [Orthopaedic Hospital, Orthopedic Oncology, Los Angeles, California (United States)

    2004-11-01

    To discuss the concept of pseudoanaplastic tumors of bone, which pathologically show hyperchromatism and marked pleomorphism with quite enlarged, pleomorphic nuclei, but with no to extremely rare, typical mitoses, and to propose guidelines for their diagnosis. From a database of 4,262 bone tumors covering from 1971 to 2001, 15 cases of pseudoanaplastic bone tumors (0.35% of total) were retrieved for clinical, radiographic and pathologic review. Postoperative follow-up after surgical treatment was at least 3 years and a maximum of 7 years. There were eight male and seven female patients. Their ages ranged from 10 to 64 years with average of 29.7 years. Pathologic diagnoses of pseudoanaplastic variants of benign bone tumors included: osteoblastoma (4 cases), giant cell tumor (4 cases), chondromyxoid fibroma (3 cases), fibrous dysplasia (2 cases), fibrous cortical defect (1 case) and aneurysmal bone cyst (1 case). Radiography of all cases showed features of a benign bone lesion. Six cases, one case each of osteoblastoma, fibrous dysplasia, aneurysmal bone cyst, chondromyxoid fibroma, giant cell tumor and osteoblastoma, were initially misdiagnosed as osteosarcoma. The remaining cases were referred for a second opinion to rule out sarcoma. Despite the presence of significant cytologic aberrations, none of our cases showed malignant behavior following simple curettage or removal of bony lesions. Our observation justifies the concept of pseudoanaplasia in some benign bone tumors as in benign soft tissue tumors, especially in their late evolutionary stage when bizarre cytologic alterations strongly mimic a sarcoma. (orig.)

  16. Perfluorodecalin and bone regeneration

    Directory of Open Access Journals (Sweden)

    F Tamimi

    2013-01-01

    Full Text Available Perfluorodecalin (PFD is a chemically and biologically inert biomaterial and, as many perfluorocarbons, is also hydrophobic, radiopaque and has a high solute capacity for gases such as oxygen. In this article we have demonstrated, both in vitro and in vivo, that PFD may significantly enhance bone regeneration. Firstly, the potential benefit of PFD was demonstrated by prolonging the survival of bone marrow cells cultured in anaerobic conditions. These findings translated in vivo, where PFD incorporated into bone-marrow-loaded 3D-printed scaffolds substantially improved their capacity to regenerate bone. Secondly, in addition to biological applications, we have also shown that PFD improves the radiopacity of bone regeneration biomaterials, a key feature required for the visualisation of biomaterials during and after surgical implantation. Finally, we have shown how the extreme hydrophobicity of PFD enables the fabrication of highly cohesive self-setting injectable biomaterials for bone regeneration. In conclusion, perfluorocarbons would appear to be highly beneficial additives to a number of regenerative biomaterials, especially those for bone regeneration.

  17. Beta-Catenin Haplo Insufficient Male Mice Do Not Lose Bone in Response to Hindlimb Unloading.

    Directory of Open Access Journals (Sweden)

    Delphine B Maurel

    Full Text Available As the β-catenin pathway has been shown to be involved in mechanotransduction, we sought to determine if haploinsufficiency would affect skeletal response to unloading. It has previously been shown that deletion of both alleles of β-catenin in bone cells results in a fragile skeleton highly susceptible to fracture, but deletion of one allele using Dmp1-Cre (Ctnnb1+/loxP; Dmp1-Cre, cKO HET has little effect on the 2 mo old skeleton. We found that under normal housing conditions, trabecular bone volume was significantly less in 5 mo old male cKO HET mice compared to controls (Ctrl/HET:Tb. BV/TV = 13.96±2.71/8.92±0.95%, Tb.N. = 4.88±0.51/3.95±0.44/mm, Tb. Sp. = 0.20±0.02/0.26±0.03mm, a 36%, 19% and 30% change respectively but not in females suggesting an age and gender related effect. Before performing suspension experiments and to control for the environmental effects, animals with the same tail attachment and housing conditions, but not suspended (NS, were compared to normally housed (NH animals. Attachment and housing resulted in weight loss in both genders and phenotypes. Cortical bone loss was observed in the cKO HET males (NH/NS, Ct BV/TV: 90.45±0.72/89.12±0.56% and both diaphyseal (0.19±0.01/0.17±0.01mm and metaphyseal (0.10±0.01/0.08±0.01mm thickness, but not in female cKO HET mice suggesting that male cKO HET mice are susceptible to attachment and housing conditions. These results with transgenic mice emphasizes the importance of proper controls when attributing skeletal responses to unloading. With suspension, cKO HET male mice did not lose bone unlike female cKO HET mice that had greater trabecular bone loss than controls (Ctrl 9%:cKO HET 21% decrease Tb. N; Ctrl 12%:cKO HET 27% increase Tb. Sp.. Suspended and non-suspended mice lost weight compared to normally housed animals. Taken together, the data suggest a protective effect of β-catenin against the effects of stress in males and partial protection against unloading in

  18. Acidosis, hypoxia and bone.

    Science.gov (United States)

    Arnett, Timothy R

    2010-11-01

    Bone homeostasis is profoundly affected by local pH and oxygen tension. It has long been recognised that the skeleton contains a large reserve of alkaline mineral (hydroxyapatite), which is ultimately available to neutralise metabolic H(+) if acid-base balance is not maintained within narrow limits. Bone cells are extremely sensitive to the direct effects of pH: acidosis inhibits mineral deposition by osteoblasts but it activates osteoclasts to resorb bone and other mineralised tissues. These reciprocal responses act to maximise the availability of OH(-) ions from hydroxyapatite in solution, where they can buffer excess H(+). The mechanisms by which bone cells sense small pH changes are likely to be complex, involving ion channels and receptors in the cell membrane, as well as direct intracellular effects. The importance of oxygen tension in the skeleton has also long been known. Recent work shows that hypoxia blocks the growth and differentiation of osteoblasts (and thus bone formation), whilst strongly stimulating osteoclast formation (and thus bone resorption). Surprisingly, the resorptive function of osteoclasts is unimpaired in hypoxia. In vivo, tissue hypoxia is usually accompanied by acidosis due to reduced vascular perfusion and increased glycolytic metabolism. Thus, disruption of the blood supply can engender a multiple negative impact on bone via the direct actions of reduced pO(2) and pH on bone cells. These observations may contribute to our understanding of the bone disturbances that occur in numerous settings, including ageing, inflammation, fractures, tumours, anaemias, kidney disease, diabetes, respiratory disease and smoking.

  19. 变截面管道流噪声数值计算%Numerical Simulation of Flow-induced Noise in the Pipelines with Variable Cross-sections

    Institute of Scientific and Technical Information of China (English)

    赵威; 彭旭; 陈明; 李奇

    2016-01-01

    The flow-induced noise in pipelines is simulated using the variational formulations of Lighthill acoustic analogy. Simulation of the flow-induced noise includes two-steps:(1) calculating the unsteady flow noise sources through the refined flow field grid;(2) using the interpolation method to the results of the noise source simulation to determine the acoustic nodal sources of the acoustic grid, and then calculating the acoustic propagation by means of the finite element method (FEM). The large-eddy simulation (LES) turbulence model is employed in unsteady flow computation to find the acoustic sources. The numerical results of the acoustic pressure for the pipelines with variable cross-sections are compared with the experimental data. It is found that they are in good agreement. It is indicated that after analyzing the distribution of the acoustic source magnitude in the suddenly-contracted pipeline, the proposed optimal models perform well for noise reduction.%采用变分形式的Lighthill声类比方程来定量地求解管路内流噪声。数值计算主要分为两步:第一步通过精细的流场网格计算非定常的噪声源;第二步将声源结果守恒插值至声学网格,并通过有限元法计算声传播。在非定常流场计算中采用大涡模拟(LES)湍流模型,以获取噪声源。与试验值对比发现数值计算结果与试验结果趋势一致,从而验证了计算结果的合理性。研究结果表明,在分析原截面突缩管的主要噪声源分布后,优化管截面获得很好的降噪效果。

  20. Study on Flow Induced Vibration Characteristic of Tube Bundle%管束结构的流致振动特性研究

    Institute of Scientific and Technical Information of China (English)

    冯志鹏; 臧峰刚; 张毅雄

    2015-01-01

    In order to investigate the flow induced vibration problems in tube bundles ,a numerical model for fluid‐structure interaction system of an in‐line square tube bundle was presented .The unsteady three‐dimensional Navier‐Stokes equation and LES turbu‐lence model were solved with finite volume approach on structured grids combined with the technique of dynamic mesh . The dynamic equilibrium equation was discretized according to the finite element theory ,and the properties of fluid force and responses for various elastic tube models were studied by several calculations .The results show that tube configurations have an important effect on fluid force and dynamics respond .T he 5‐tube model can basically represent a flexible tube bundle .T he critical velocity predic‐ted by single tube model is larger than that predicted by flexible tube bundle .Besides ,it show s good qualitative agreement on flow induced vibration behaviors of square bundle with a pitch‐to‐diameter ratio of 1.5 .%为研究管束结构的流致振动问题,利用有限体积法离散大涡模拟的流体控制方程及有限元方法离散结构动力学方程,结合动网格技术,建立了正方形顺排排列弹性管束流固耦合系统的三维数值模型,并研究了不同弹性管束模型的流体力及振动响应特性。结果表明,管束结构的排列方式对流体力及动力学响应有很大的影响,5管模型能基本反映弹性管束的振动特性,而单管模型预测的临界速度较大,却可定性反映节径比为1.5正方形管束的流致振动特性。

  1. Pregnancy, Breastfeeding, and Bone Health

    Science.gov (United States)

    ... need for calcium. During pregnancy, women produce more estrogen, a hormone that protects bones. Any bone mass lost during pregnancy is typically ... mass during breastfeeding because they’re producing less estrogen, which is the hormone that protects bones. The good news is that, like bone lost ...

  2. Oral Health and Bone Disease

    Science.gov (United States)

    ... low bone mass. Research suggests a link between osteoporosis and bone loss in the jaw. The bone in the jaw supports and anchors the teeth. When the jawbone becomes less dense, tooth loss can occur, a common occurrence in older adults. Skeletal Bone Density and Dental Concerns Periodontal Disease ...

  3. Osteopetrosis (marble bone disease

    Directory of Open Access Journals (Sweden)

    Alexey Nikolayevich Kalyagin

    2014-01-01

    Full Text Available We report the data of the history of describing osteopetrosis (marble bone disease, its clinical features, diagnosis, and possible therapy approaches. Our own clinical case is presented.

  4. Petrous Bone Cholesteatoma

    Science.gov (United States)

    Sanna, Mario; Zini, Carlo; Gamoletti, Roberto; Frau, Niccolò; Taibah, Abdel Kader; Russo, Alessandra; Pasanisi, Enrico

    1993-01-01

    Petrous bone cholesteatoma is a rare pathologic entity and may be a difficult surgical challenge because of potential involvement of the facial nerve, carotid artery, dura mater, otic capsule, and risk of cerebrospinal fluid leak. The objective of this article is to present a personal classification of petrous bone cholesteatomas, a survey of recent surgical attitudes, and our present surgical strategy based on our experience with 54 operations between 1978 and 1990. Radical petromastoid exenteration with marsupialization and the middle cranial fossa approach were used only for small pure infra- or supralabyrinthine cholesteatomas, respectively. The enlarged transcochlear approach with closure of the external auditory canal was used for infralabyrinthine, infralabyrinthine-apical, and massive petrous bone cholesteatomas. Five cases with petrous bone cholesteatomas in different locations are described in detail to present the signs and symptoms together with the management. ImagesFigure 10Figure 11Figure 12Figure 13Figure 14Figure 15Figure 16Figure 17Figure 18 PMID:17170912

  5. Metastatic Bone Disease

    Science.gov (United States)

    ... begin in bone are much less common in adults older than 45 years. Other diseases, such as Paget’s sarcoma, post-radiation sarcoma, hyperparathyroidism, and fractures due to osteoporosis, are also possibilities. Additional tests will likely be ...

  6. SHEEP TEMPORAL BONE

    Directory of Open Access Journals (Sweden)

    Kesavan

    2016-03-01

    Full Text Available INTRODUCTION Human temporal bones are difficult to procure now a days due to various ethical issues. Sheep temporal bone is a good alternative due to morphological similarities, easy to procure and less cost. Many middle ear exercises can be done easily and handling of instruments is done in the procedures like myringoplasty, tympanoplasty, stapedotomy, facial nerve dissection and some middle ear implants. This is useful for resident training programme.

  7. Bone changes in leprosy

    Energy Technology Data Exchange (ETDEWEB)

    Mende, B.; Stein, G.; Kreysel, H.W.

    1985-02-01

    Bone lesions is a frequent organic manifestation in leprosy. Osseal destructions caused by granulomatous process induced by M. leprae are so-called specific lesions in contrast to non specific lesions based on nerval or arterial diseases. The specific osseal alterations are characterized by cystic brightenings in roentgenograms while non specific osseal changes show absorption to bone structure as akroosterolysis and osteoporosis. Typical radiologic findings in different stages of mutilation are demonstrated.

  8. Bone Remodeling Monitor

    Science.gov (United States)

    Foucar, Charlie; Goldberg, Leslie; Hon, Bodin; Moore, Shannon; Williams, Evan

    2009-01-01

    The impact of bone loss due to different mechanical loadings in microgravity is a major concern for astronauts upon reintroduction to gravitational forces in exploration missions to the Moon and Mars. it has been shown that astronauts not only lose bone at differing rates, with levels up to 2% per month, but each astronaut will respond to bone loss treatments differently. Pre- and post-flight imaging techniques and frozen urine samples for post-flight laboratory immunoassays To develop a novel, non-invasive, highly . sensitive, portable, intuitive, and low-powered device to measure bone resorption levels in 'real time' to provide rapid and Individualized feedback to maximize the efficacy of bone loss countermeasures 1. Collect urine specimen and analyze the level of bone resorption marker, DPD (deoxypridinoline) excreted. 2. Antibodies specific to DPD conjugated with nanoshells and mixed with specimen, the change in absorbance from agglutination is measured by an optical device. 3. The concentration of DPD is displayed and recorded on a PDA

  9. Experimental Investigation of the Effect of Radial Gap and Impeller Blade Exit on Flow-Induced Vibration at the Blade-Passing Frequency in a Centrifugal Pump

    Directory of Open Access Journals (Sweden)

    A. Al-Qutub

    2009-01-01

    Full Text Available It has been recognized that the pressure pulsation excited by rotor-stator interaction in large pumps is strongly influenced by the radial gap between impeller and volute diffusers/tongues and the geometry of impeller blade at exit. This fluid-structure interaction phenomenon, as manifested by the pressure pulsation, is the main cause of flow-induced vibrations at the blade-passing frequency. In the present investigation, the effects of the radial gap and flow rate on pressure fluctuations, vibration, and pump performance are investigated experimentally for two different impeller designs. One impeller has a V-shaped cut at the blade's exit, while the second has a straight exit (without the V-cut. The experimental findings showed that the high vibrations at the blade-passing frequency are primarily raised by high pressure pulsation due to improper gap design. The existence of V-cut at blades exit produces lower pressure fluctuations inside the pump while maintaining nearly the same performance. The selection of proper radial gap for a given impeller-volute combination results in an appreciable reduction in vibration levels.

  10. Migration and alignment of spherical particles in sheared viscoelastic suspensions. A quantitative determination of the flow-induced self-assembly kinetics.

    Science.gov (United States)

    Pasquino, Rossana; Panariello, Daniele; Grizzuti, Nino

    2013-03-15

    Flow-Induced Self-Assembly (FISA) is the flow-driven formation of ordered structures in complex fluids. In this paper the effect of shear flow on the microstructure formation of dilute sphere suspensions in a viscoelastic fluid has been studied experimentally by optical microscopy techniques. The system is formed by Polymethylmethacrylate beads suspended in 20 wt.% aqueous solutions of Hydroxypropylcellulose at volume fractions ranging between 0.1% and 1.0%. Experiments show that, under the action of flow, beads migrate from the bulk to the shear walls, there forming strings aligned along the flow direction. Strings grow with time eventually reaching a steady-state final length. The alignment kinetics have been quantified by means of an alignment factor, which is a measure of the average length of the strings. The experimental results indicate that both shear rate and particle concentration are relevant factors in determining the alignment factor kinetics. In particular, it is shown that, upon increasing shear rate, strings grow both faster and longer. As a consequence, the characteristic time of the overall alignment process remains roughly constant. It is also shown that an increase in particle volume fraction determines effects similar to an increase of shear rate.

  11. Immersed Boundary Models for Quantifying Flow-Induced Mechanical Stimuli on Stem Cells Seeded on 3D Scaffolds in Perfusion Bioreactors

    Science.gov (United States)

    Smeets, Bart; Odenthal, Tim; Luyten, Frank P.; Ramon, Herman; Papantoniou, Ioannis; Geris, Liesbet

    2016-01-01

    Perfusion bioreactors regulate flow conditions in order to provide cells with oxygen, nutrients and flow-associated mechanical stimuli. Locally, these flow conditions can vary depending on the scaffold geometry, cellular confluency and amount of extra cellular matrix deposition. In this study, a novel application of the immersed boundary method was introduced in order to represent a detailed deformable cell attached to a 3D scaffold inside a perfusion bioreactor and exposed to microscopic flow. The immersed boundary model permits the prediction of mechanical effects of the local flow conditions on the cell. Incorporating stiffness values measured with atomic force microscopy and micro-flow boundary conditions obtained from computational fluid dynamics simulations on the entire scaffold, we compared cell deformation, cortical tension, normal and shear pressure between different cell shapes and locations. We observed a large effect of the precise cell location on the local shear stress and we predicted flow-induced cortical tensions in the order of 5 pN/μm, at the lower end of the range reported in literature. The proposed method provides an interesting tool to study perfusion bioreactors processes down to the level of the individual cell’s micro-environment, which can further aid in the achievement of robust bioprocess control for regenerative medicine applications. PMID:27658116

  12. Evaluation of Flow-Induced Dynamic Stress and Vibration of Volute Casing for a Large-Scale Double-Suction Centrifugal Pump

    Directory of Open Access Journals (Sweden)

    Fu-Jun Wang

    2013-01-01

    Full Text Available The transient analysis was carried out to investigate the dynamic stress and vibration of volute casing for a large double-suction centrifugal pump by using the transient fluid-structure interaction theory. The flow pulsations at flow rate ranging from 60% to 100% of the nominal flow rate (Qd were taken as the boundary conditions for FEM analysis of the pump volute casing structure. The results revealed that, for all operating conditions, the maximum stress located at the volute tongue region, whereas the maximum vibration displacement happened close to the shaft hole region. It was also found that the blade passing frequency and its harmonics were dominant in the variations of dynamic stress and vibration displacement. The amplitude of the dominant frequency for the maximum stress detected at 0.6 Qd was 1.14 times that at Qd, lower than the related difference observed for pressure fluctuations (3.23 times. This study provides an effective method to quantify the flow-induced structural dynamic characteristics for a large-scale double-suction pump. It can be used to direct the hydraulic and structural design and stable operation, as well as fatigue life prediction for large-scale pumps.

  13. Guided bone regeneration : the influence of barrier membranes on bone grafts and bone defects

    NARCIS (Netherlands)

    Gielkens, Pepijn Frans Marie

    2008-01-01

    Guided bone regeneration (GBR) can be described as the use of a barrier membrane to provide a space available for new bone formation in a bony defect. The barrier membrane protects the defect from in-growth of soft tissue cells and allows bone progenitor cells to develop bone within a blood clot tha

  14. Biomarkers of bone and mineral metabolism following bone marrow transplantation.

    Science.gov (United States)

    Baek, Ki Hyun; Kang, Moo Il

    2009-01-01

    The loss of bone mass often occurs after patients undergo bone marrow transplantation (BMT). The rapid impairment of bone formation and the increase in bone resorption, as mirrored by the biochemical markers of bone turnover, might play a role in this bone loss, and especially during the immediate post-BMT period. The possible direct causes for this paradoxical uncoupling are exposure to immunosuppressants, hypogonadism, the changes of cytokines, the changes of the bone growth factors, and the damage to the osteoprogenitor cells because of myeloablative therapy. In this chapter, we discuss the general aspects of post-BMT bone loss with a peculiar focus on the remodeling imbalance of bone and its relation to the use of immunosuppressants and the changes of sex hormones, growth factors, and cytokines.

  15. Porous surface modified bioactive bone cement for enhanced bone bonding.

    Directory of Open Access Journals (Sweden)

    Qiang He

    Full Text Available BACKGROUND: Polymethylmethacrylate bone cement cannot provide an adhesive chemical bonding to form a stable cement-bone interface. Bioactive bone cements show bone bonding ability, but their clinical application is limited because bone resorption is observed after implantation. Porous polymethylmethacrylate can be achieved with the addition of carboxymethylcellulose, alginate and gelatin microparticles to promote bone ingrowth, but the mechanical properties are too low to be used in orthopedic applications. Bone ingrowth into cement could decrease the possibility of bone resorption and promote the formation of a stable interface. However, scarce literature is reported on bioactive bone cements that allow bone ingrowth. In this paper, we reported a porous surface modified bioactive bone cement with desired mechanical properties, which could allow for bone ingrowth. MATERIALS AND METHODS: The porous surface modified bioactive bone cement was evaluated to determine its handling characteristics, mechanical properties and behavior in a simulated body fluid. The in vitro cellular responses of the samples were also investigated in terms of cell attachment, proliferation, and osteoblastic differentiation. Furthermore, bone ingrowth was examined in a rabbit femoral condyle defect model by using micro-CT imaging and histological analysis. The strength of the implant-bone interface was also investigated by push-out tests. RESULTS: The modified bone cement with a low content of bioactive fillers resulted in proper handling characteristics and adequate mechanical properties, but slightly affected its bioactivity. Moreover, the degree of attachment, proliferation and osteogenic differentiation of preosteoblast cells was also increased. The results of the push-out test revealed that higher interfacial bonding strength was achieved with the modified bone cement because of the formation of the apatite layer and the osseointegration after implantation in the bony

  16. Role of bone marrow macrophages in controlling homeostasis and repair in bone and bone marrow niches.

    Science.gov (United States)

    Kaur, Simranpreet; Raggatt, Liza Jane; Batoon, Lena; Hume, David Arthur; Levesque, Jean-Pierre; Pettit, Allison Robyn

    2017-01-01

    Macrophages, named for their phagocytic ability, participate in homeostasis, tissue regeneration and inflammatory responses. Bone and adjacent marrow contain multiple functionally unique resident tissue macrophage subsets which maintain and regulate anatomically distinct niche environments within these interconnected tissues. Three subsets of bone-bone marrow resident tissue macrophages have been characterised; erythroblastic island macrophages, haematopoietic stem cell niche macrophages and osteal macrophages. The role of these macrophages in controlling homeostasis and repair in bone and bone marrow niches is reviewed in detail.

  17. Mimicking the nanostructure of bone matrix to regenerate bone

    Directory of Open Access Journals (Sweden)

    Robert Kane

    2013-11-01

    Full Text Available Key features of bone tissue structure and composition are capable of directing cellular behavior toward the generation of new bone tissue. Bone tissue, as well as materials derived from bone, have a long and successful history of use as bone grafting materials. Recent developments in design and processing of synthetic scaffolding systems has allowed the replication of the bone's desirable biological activity in easy to fabricate polymeric materials with nano-scale features exposed on the surface. The biological response to these new tissue-engineering scaffold materials oftentimes exceeds that seen on scaffolds produced using biological materials.

  18. Virtual Temporal Bone Anatomy

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Background The Visible Human Project(VHP) initiated by the U.S. National Library of Medicine has drawn much attention and interests from around the world. The Visible Chinese Human (VCH) project has started in China. The current study aims at acquiring a feasible virtual methodology for reconstructing the temporal bone of the Chinese population, which may provide an accurate 3-D model of important temporal bone structures that can be used in teaching and patient care for medical scientists and clinicians. Methods A series of sectional images of the temporal bone were generated from section slices of a female cadaver head. On each sectional image, SOIs (structures of interest) were segmented by carefully defining their contours and filling their areas with certain gray scale values. The processed volume data were then inducted into the 3D Slicer software(developed by the Surgical Planning Lab at Brigham and Women's Hospital and the MIT AI Lab) for resegmentation and generation of a set of tagged images of the SOIs. 3D surface models of SOIs were then reconstructed from these images. Results The temporal bone and structures in the temporal bone, including the tympanic cavity, mastoid cells, sigmoid sinus and internal carotid artery, were successfully reconstructed. The orientation of and spatial relationship among these structures were easily visualized in the reconstructed surface models. Conclusion The 3D Slicer software can be used for 3-dimensional visualization of anatomic structures in the temporal bone, which will greatly facilitate the advance of knowledge and techniques critical for studying and treating disorders involving the temporal bone.

  19. Bellows flow-induced vibrations

    Science.gov (United States)

    Johnson, J. E.; Deffenbaugh, D. M.; Astleford, W. J.; Gerlach, C. R.

    1979-01-01

    Results of theoretical and experimental investigations of bellows typical of those found in space shuttle external tanks are presented. Correlation parameters are identified which generalize the alternating stress calculations cited in an earlier study. Alternating stress amplitudes and mean stress levels form the basis of a fatigue analysis incorporating seven ordinate charts for 347 stainless steel, alloy 21 6-9, and Inco 718. A crack propagation model is included with a program for computing bellows fatigue life. Two phase flow and material hardness properties are discussed.

  20. Inca bones at asterion

    Directory of Open Access Journals (Sweden)

    Prashant E Natekar

    2014-01-01

    Full Text Available Background: Surgical approach towards asterion has to be done with caution as many surgeons are unfamiliar with the anatomical variations. The asterion corresponds to the site of the posterolateral (mastoid fontanelle of the neonatal skull which closes at the end of the first year. Inca bones provide information as markers for various diseases, and can mislead in the diagnosis of fractures. Observation and Results: 150 dry skull bones from the Department of Anatomy at Goa Medical College, India and other neighboring medical colleges by examining the asterion, and its sutural articulations with parietal, temporal and occipital bones and also anatomical variations if any in adults. Discussion: The anatomical landmarks selected must be reliable and above all easy to identify. Bony structures are more suitable than soft tissue or cartilaginous landmarks because of their rigid and reliable location. Presence of these bones provides false impressions of fractures or the fractures may be interpreted for inca bones especially in the region of asterion either radiologically or clinically which may lead to complications during burr hole surgeries.

  1. Bone printing: new frontiers in the treatment of bone defects.

    Science.gov (United States)

    Arealis, Georgios; Nikolaou, Vasileios S

    2015-12-01

    Bone defects can be congenital or acquired resulting from trauma, infection, neoplasm and failed arthroplasty. The osseous reconstruction of these defects is challenging. Unfortunately, none of the current techniques for the repair of bone defects has proven to be fully satisfactory. Bone tissue engineering (BTE) is the field of regenerative medicine (RM) that focuses on alternative treatment options for bone defects that will ideally address all the issues of the traditional techniques in treating large bone defects. However, current techniques of BTE is laborious and have their own shortcomings. More recently, 2D and 3D bone printing has been introduced to overcome most of the limitations of bone grafts and BTE. So far, results are extremely promising, setting new frontiers in the management of bone defects.

  2. Analysis of bone biopsies.

    Science.gov (United States)

    Goodrich, J A; Difiore, R J; Tippens, J K

    1983-11-01

    The orthopedic surgeon is frequently confronted with the decision of when to perform a bone biopsy and whether to do a needle biopsy or an open biopsy. Frequently consultations are received from other services requesting bone biopsies with questionable indications. The indications and contraindications for performing bone biopsies are discussed as well as advantages and disadvantages of either closed or open technique. Four selective cases are discussed with illustrations. The challenge of undiagnosed osseous lesions is best met by rational evaluation of each individual case and coordinated with the team effort of the primary care physician, surgeon, pathologist, and radiologist. The decision for either an open or closed biopsy technique must be based on the experience and skills of the surgeon and pathologist.

  3. Bone healing in 2016

    Science.gov (United States)

    Buza, John A.; Einhorn, Thomas

    2016-01-01

    Summary Delayed fracture healing and nonunion occurs in up to 5–10% of all fractures, and can present a challenging clinical scenario for the treating physician. Methods for the enhancement of skeletal repair may benefit patients that are at risk of, or have experienced, delayed healing or nonunion. These methods can be categorized into either physical stimulation therapies or biological therapies. Physical stimulation therapies include electrical stimulation, low-intensity pulsed ultrasonography, or extracorporeal shock wave therapy. Biological therapies can be further classified into local or systemic therapy based on the method of delivery. Local methods include autologous bone marrow, autologous bone graft, fibroblast growth factor-2, platelet-rich plasma, platelet-derived growth factor, and bone morphogenetic proteins. Systemic therapies include parathyroid hormone and bisphosphonates. This article reviews the current applications and supporting evidence for the use of these therapies in the enhancement of fracture healing. PMID:27920804

  4. Alveolar bone grafting

    Directory of Open Access Journals (Sweden)

    Lilja Jan

    2009-10-01

    Full Text Available In patients with cleft lip and palate, bone grafting in the mixed dentition in the residual alveolar cleft has become a well-established procedure. The main advantages can be summarised as follows: stabilisation of the maxillary arch; facilitation of eruption of the canine and sometimes facilitation of the lateral incisor eruption; providing bony support to the teeth adjacent to the cleft; raising the alar base of the nose; facilitation of closure of an oro-nasal fistula; making it possible to insert a titanium fixture in the grafted site and to obtain favourable periodontal conditions of the teeth within and adjacent to the cleft. The timing of the ABG surgery take into consideration not only eruption of the canine but also that of the lateral incisor, if present. The best time for bone grafting surgery is when a thin shell of bone still covers the soon erupting lateral incisor or canine tooth close to the cleft.

  5. Biochemical markers of bone turnover

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Deog Yoon [College of Medicine, Kyunghee Univ., Seoul (Korea, Republic of)

    1999-08-01

    Biochemical markers of bone turnover has received increasing attention over the past few years, because of the need for sensitivity and specific tool in the clinical investigation of osteoporosis. Bone markers should be unique to bone, reflect changes of bone less, and should be correlated with radiocalcium kinetics, histomorphometry, or changes in bone mass. The markers also should be useful in monitoring treatment efficacy. Although no bone marker has been established to meet all these criteria, currently osteocalcin and pyridinium crosslinks are the most efficient markers to assess the level of bone turnover in the menopausal and senile osteoporosis. Recently, N-terminal telopeptide (NTX), C-terminal telopeptide (CTX) and bone specific alkaline phosphatase are considered as new valid markers of bone turnover. Recent data suggest that CTX and free deoxypyridinoline could predict the subsequent risk of hip fracture of elderly women. Treatment of postmenopausal women with estrogen, calcitonin and bisphosphonates demonstrated rapid decrease of the levels of bone markers that correlated with the long-term increase of bone mass. Factors such as circadian rhythms, diet, age, sex, bone mass and renal function affect the results of biochemical markers and should be appropriately adjusted whenever possible. Each biochemical markers of bone turnover may have its own specific advantages and limitations. Recent advances in research will provide more sensitive and specific assays.

  6. Bone pathology inpsoriatic arthritis

    Directory of Open Access Journals (Sweden)

    V. V. Badokin

    2007-01-01

    Full Text Available Objective. To study different variants of osteolysis in pts with psoriatic arthritis (PA and to reveal their relationship with other clinico-radiological features of joint damage. Material and methods. 370 pts with definite PA having different variants of joint damage were included. Radiological examination of bones and joints (in some cases large picture frame was performed. Morphological evaluation of synovial biopsies was done in 34 pts with PA and 10 pts with rheumatoid arthritis (RA. Results. Different types of osteolysis were revealed in 80 (21,6% pts. Osteolytic variant of joint damage was present in 29 pts. 33 pts had acral, 48 — intra-articular osteolysis and 16 - true bone atrophy. Frequency and intensity of bone resorption were associated with severity of PA. Acral osteolysis correlated with arthritis of distal interphalangeal joints and onychodystrophy. Intra-articular osteolysis was most often present in distal interphalangeal joints of hands and metacarpophalangeal joints (39,6% and 41,7% respectively. Characteristic feature of PA was combination of prominent resorption with formation of bone ankylosis and periosteal reaction. Ankylosis was present in 33,3% of pts with intra-articular osteolysis and in 60% of pts with combination of different osteolysis variants. Systemic reaction of microcirculation in synovial biopsies was most prominent in osteolytic variant: marked thickening of capillary and venule basal membrane with high level of acid phosphatase, increased capillary and precapillary blood flow with stasis features, vascular lymphocyte and macrophage infiltration, productive vasculitis with annular wall thickening, thrombovasculitis and villi deep layer sclerosis. Conclusion. Different variants of osteolysis show bone involvement in PA. Acral and intra- articular osteolysis association with bone ankylosis and periostitis proves their common pathogenetic entity.

  7. Study on the annular leakage-flow-induced vibrations. 1st Report. Stability for translational and rotational single-degree-of-freedom systems; Kanjo sukimaryu reiki shindo ni kansuru kenkyu. 1. Heishin oyobi kaiten 1 jiyudokei no anteise

    Energy Technology Data Exchange (ETDEWEB)

    Li, D.W. [Hitachi, Ltd., Tokyo (Japan); Kaneko, S. [The University of Tokyo, Tokyo (Japan); Hayama, S. [Toyama Prefectural University, Toyama (Japan)

    1999-07-25

    This study reports the stability of annular leakage-flow-induced vibrations. The pressure distribution of fluid between a fixed outer cylinder and a vibrating inner cylinder was obtained in the case of a translationally and rotationally coupled motion of the inner cylinder. The unsteady fluid force acting on the inner cylinder in the case of translational and rotational single-degree-of-freedom vibrations was then expressed in terms proportional to the acceleration, velocity, and displacement. Then the critical flow rate (at which stability was lost) was determined for an annular leakage-flow-induced vibration. Finally, the stability was investigated theoretically. It is known that instability will occur in the case of a divergent passage, but the critical flow rate depends on the passage increment in a limited range: the eccentricity of the passage and the pressure loss factor at the inlet of the passage lower the stability. (author)

  8. Sex steroids and bone.

    Science.gov (United States)

    Manolagas, S C; Kousteni, S; Jilka, R L

    2002-01-01

    The adult skeleton is periodically remodeled by temporary anatomic structures that comprise juxtaposed osteoclast and osteoblast teams and replace old bone with new. Estrogens and androgens slow the rate of bone remodeling and protect against bone loss. Conversely, loss of estrogen leads to increased rate of remodeling and tilts the balance between bone resorption and formation in favor of the former. Studies from our group during the last 10 years have elucidated that estrogens and androgens decrease the number of remodeling cycles by attenuating the birth rate of osteoclasts and osteoblasts from their respective progenitors. These effects result, in part, from the transcriptional regulation of genes responsible for osteoclastogenesis and mesenchymal cell replication and/or differentiation and are exerted through interactions of the ligand-activated receptors with other transcription factors. However, increased remodeling alone cannot explain why loss of sex steroids tilts the balance of resorption and formation in favor of the former. Estrogens and androgens also exert effects on the lifespan of mature bone cells: pro-apoptotic effects on osteoclasts but anti-apoptotic effects on osteoblasts and osteocytes. These latter effects stem from a heretofore unexpected function of the classical "nuclear" sex steroid receptors outside the nucleus and result from activation of a Src/Shc/extracellular signal-regulated kinase signal transduction pathway probably within preassembled scaffolds called caveolae. Strikingly, estrogen receptor (ER) alpha or beta or the androgen receptor can transmit anti-apoptotic signals with similar efficiency, irrespective of whether the ligand is an estrogen or an androgen. More importantly, these nongenotropic, sex-nonspecific actions are mediated by the ligand-binding domain of the receptor and can be functionally dissociated from transcriptional activity with synthetic ligands. Taken together, these lines of evidence strongly suggest that

  9. Archival bone marrow samples

    DEFF Research Database (Denmark)

    Lund, Bendik; Najmi, Laeya A; Wesolowska-Andersen, Agata;

    2015-01-01

    AB Archival samples represent a significant potential for genetic studies, particularly in severe diseases with risk of lethal outcome, such as in cancer. In this pilot study, we aimed to evaluate the usability of archival bone marrow smears and biopsies for DNA extraction and purification, whole...... with samples stored for 4 to 10 years. Acceptable call rates for SNPs were detected for 7 of 42 archival samples. In conclusion, archival bone marrow samples are suitable for DNA extraction and multiple marker analysis, but WGA was less successful, especially when longer fragments were analyzed. Multiple SNP...

  10. Computerized geometric features of carpal bone for bone age estimation

    Institute of Scientific and Technical Information of China (English)

    Chi-Wen Hsieh; Tai-Lang Jong; Yi-Hong Chou; Chui-Mei Tiu

    2007-01-01

    Background Bone age development is one of the significant indicators depicting the growth status of children.However, bone age assessment is an heuristic and tedious work for pediatricians. We developed a computerized bone age estimation system based on the analysis of geometric features of carpal bones.Methods The geometric features of carpals were extracted and analyzed to judge the bone age of children by computerized shape and area description. Four classifiers, linear, nearest neighbor, back-propagation neural network,and radial basis function neural network, were adopted to categorize bone age. Principal component and discriminate analyses were employed to improve assorting accuracy.Results The hand X-ray films of 465 boys and 444 girls served as our database. The features were extracted from carpal bone images, including shape, area, and sequence. The proposed normalization area ratio method was effective in bone age classification by simulation. Besides, features statistics showed similar results between the standard of the Greulich and Pyle atlas and our database.Conclusions The bone area has a higher discriminating power to judge bone age. The ossification sequence of trapezium and trapezoid bones between Taiwanese and the atlas of the GP method is quite different. These results also indicate that carpal bone assessment with classification of neural networks can be correct and practical.

  11. Citoesqueleto e mecanotransdução na fisiopatologia da lesão pulmonar induzida por ventilador Cytoskeleton and mechanotransduction in the pathophysiology of ventilator-induced lung injury

    Directory of Open Access Journals (Sweden)

    Leandro Utino Taniguchi

    2010-06-01

    Full Text Available A ventilação mecânica é uma terapia importante, mas pode resultar em complicações. Uma das mais relevantes é a lesão pulmonar induzida por ventilador. Devido à hiperdistensão alveolar, o pulmão inicia um processo inflamatório, com infiltrado neutrofílico, formação de membrana hialina, fibrogênese e prejuízo de troca gasosa. Nesse processo, a mecanotransdução da hiperdistensão celular é mediada através do citoesqueleto da célula e de suas interações com a matriz extracelular e com as células vizinhas, de modo que o estímulo mecânico da ventilação se traduz em sinalização bioquímica intracelular, desencadeando ativação endotelial, permeabilidade vascular pulmonar, quimiotaxia leucocitária, produção de citocinas e, possivelmente, lesão de órgãos à distância. Estudos clínicos demonstram essa relação entre distensão pulmonar e mortalidade em pacientes com lesão pulmonar induzida por ventilador. Entretanto, apesar de o citoesqueleto ter um papel fundamental na patogênese da lesão pulmonar induzida por ventilador, a literatura carece de estudos utilizando modelos in vivo sobre as alterações do citoesqueleto e de suas proteínas associadas durante esse processo patológico.Although mechanical ventilation is an important therapy, it can result in complications. One major complication is ventilator-induced lung injury, which is caused by alveolar hyperdistension, leading to an inflammatory process, with neutrophilic infiltration, hyaline membrane formation, fibrogenesis and impaired gas exchange. In this process, cellular mechanotransduction of the overstretching stimulus is mediated by means of the cytoskeleton and its cell-cell and cell-extracellular matrix interactions, in such a way that the mechanical stimulus of ventilation is translated into an intracellular biochemical signal, inducing endothelial activation, pulmonary vascular permeability, leukocyte chemotaxis, cytokine production and, possibly

  12. Vitamin D, Calcium, and Bone Health

    Science.gov (United States)

    ... in Balance › Vitamin D, Calcium, and Bone Health Vitamin D, Calcium, and Bone Health March 2012 Download ... also helps keep your bones strong. Why are vitamin D and calcium important to bone health? Vitamin ...

  13. Exercise, lifestyle, and your bones

    Science.gov (United States)

    Osteoporosis - exercise; Low bone density - exercise; Osteopenia - exercise ... your bones strong and lower your risk of osteoporosis and fractures as you get older. Before you begin an exercise program, talk with your health care provider if: ...

  14. Eldercare at Home: Bone Weakness

    Science.gov (United States)

    ... of the hormones that keep bones strong. Without estrogen, bones may become softer, weaker, and more likely to ... should take progesterone (another hormone) as well as estrogen to protect against this. However, recent studies have shown that ...

  15. Marijuana May Blunt Bone Health

    Science.gov (United States)

    ... page: https://medlineplus.gov/news/fullstory_161575.html Marijuana May Blunt Bone Health Study finds heavy users ... 19, 2016 WEDNESDAY, Oct. 19, 2016 (HealthDay News) -- Marijuana may be bad to the bone, a new ...

  16. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... little information about muscles, tendons or joints. An MRI may be more useful in identifying bone and ... bones and the spinal cord can be evaluated). MRI can also detect subtle or occult fractures or ...

  17. Blood and Bone Marrow Donation

    Science.gov (United States)

    ... waiting for a stem cell transplant. Bone marrow donation The most serious risk associated with donating bone ... you feel fully recovered. Peripheral blood stem cell donation The risks of this type of stem cell ...

  18. Vitamin A and Bone Health

    Science.gov (United States)

    ... supported by your browser. Home Bone Basics Nutrition Vitamin A and Bone Health Publication available in: PDF ( ... Find More Information? For Your Information What Is Vitamin A? Vitamin A is a family of compounds ...

  19. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... produce pictures of any bone in the body. It is commonly used to diagnose fractured bones or ... pass through most objects, including the body. Once it is carefully aimed at the part of the ...

  20. Nanomaterials promise better bone repair

    Directory of Open Access Journals (Sweden)

    Qifei Wang

    2016-10-01

    Full Text Available Nanomaterials mimicking the nano-features of bones and offering unique smart functions are promising for better bone fracture repair. This review provides an overview of the current state-of-the-art research in developing and using nanomaterials for better bone fracture repair. This review begins with a brief introduction of bone fracture repair processes, then discusses the importance of vascularization, the role of growth factors in bone fracture repair, and the failure of bone fracture repair. Next, the review discusses the applications of nanomaterials for bone fracture repair, with a focus on the recent breakthroughs such as nanomaterials leading to precise immobilization of growth factors at the molecular level, promoting vascularization without the use of growth factors, and re-loading therapeutic agents after implantation. The review concludes with perspectives on challenges and future directions for developing nanomaterials for improved bone fracture repair.

  1. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... your doctor to view and assess bone fractures, injuries and joint abnormalities. This exam requires little to ... fusion, joint replacement and fracture reductions. look for injury, infection, arthritis , abnormal bone growths and bony changes ...

  2. Transcutaneous Raman Spectroscopy of Bone

    Science.gov (United States)

    Maher, Jason R.

    Clinical diagnoses of bone health and fracture risk typically rely upon measurements of bone density or structure, but the strength of a bone is also dependent upon its chemical composition. One technology that has been used extensively in ex vivo, exposed-bone studies to measure the chemical composition of bone is Raman spectroscopy. This spectroscopic technique provides chemical information about a sample by probing its molecular vibrations. In the case of bone tissue, Raman spectra provide chemical information about both the inorganic mineral and organic matrix components, which each contribute to bone strength. To explore the relationship between bone strength and chemical composition, our laboratory has contributed to ex vivo, exposed-bone animal studies of rheumatoid arthritis, glucocorticoid-induced osteoporosis, and prolonged lead exposure. All of these studies suggest that Raman-based predictions of biomechanical strength may be more accurate than those produced by the clinically-used parameter of bone mineral density. The utility of Raman spectroscopy in ex vivo, exposed-bone studies has inspired attempts to perform bone spectroscopy transcutaneously. Although the results are promising, further advancements are necessary to make non-invasive, in vivo measurements of bone that are of sufficient quality to generate accurate predictions of fracture risk. In order to separate the signals from bone and soft tissue that contribute to a transcutaneous measurement, we developed an overconstrained extraction algorithm that is based upon fitting with spectral libraries derived from separately-acquired measurements of the underlying tissue components. This approach allows for accurate spectral unmixing despite the fact that similar chemical components (e.g., type I collagen) are present in both soft tissue and bone and was applied to experimental data in order to transcutaneously detect, to our knowledge for the first time, age- and disease-related spectral

  3. Playing with bone and fat

    DEFF Research Database (Denmark)

    Gimble, Jeffrey M.; Zvonic, Sanjin; Floyd, Z. Elisabeth

    2006-01-01

    The relationship between bone and fat formation within the bone marrow microenvironment is complex and remains an area of active investigation. Classical in vitro and in vivo studies strongly support an inverse relationship between the commitment of bone marrow-derived mesenchymal stem cells...

  4. Gout: Value of bone scanning

    Energy Technology Data Exchange (ETDEWEB)

    Oliva, J.P.; Cardenas, R.; Bell, L.; Gonzalez Griego, J.

    1986-12-01

    11 male patients with gout were studied by means of bone scintigraphy with /sup 99m/TcMDP. This diagnostic method rendered possible the diagnosis of clinically or roentgenologically occult bone involvement. Bone scintigraphy may be useful procedure to monitor therapy of gout.

  5. Bone regeneration during distraction osteogenesis

    NARCIS (Netherlands)

    Amir, L.R.; Everts, V.; Bronckers, A.L.J.J.

    2009-01-01

    Bone has the capacity to regenerate in response to injury. During distraction osteogenesis, the renewal of bone is enhanced by gradual stretching of the soft connec- tive tissues in the gap area between two separated bone segments. This procedure has received much clinical atten- tion as a way to co

  6. Healthy Bones at Every Age

    Science.gov (United States)

    .org Healthy Bones at Every Age Page ( 1 ) Bone health is important at every age and stage of life. The skeleton is our body’s storage bank for ... are many things we can do at every age to keep our bones strong and healthy. Peak ...

  7. Breast Cancer and Bone Loss

    Science.gov (United States)

    ... Balance › Breast Cancer and Bone Loss Fact Sheet Breast Cancer and Bone Loss July, 2010 Download PDFs English ... JoAnn Pinkerton, MD What is the link between breast cancer and bone loss? Certain treatments for breast cancer ...

  8. Bone vascularization: a way to study bone microarchitecture?

    Science.gov (United States)

    Blery, P.; Autrusseau, F.; Crauste, E.; Freuchet, Erwan; Weiss, Pierre; Guédon, J.-P.; Amouriq, Y.

    2014-03-01

    Trabecular bone and its microarchitecture are of prime importance for health. Studying vascularization helps to better know the relationship between bone and vascular microarchitecture. This research is an animal study (nine Lewis rats), based on the perfusion of vascularization by a contrast agent (a mixture of 50% barium sulfate with 1.5% of gelatin) before euthanasia. The samples were studied by micro CT at a resolution of 9μm. Softwares were used to show 3D volumes of bone and vessels, to calculate bone and vessels microarchitecture parameters. This study aims to understand simultaneously the bone microarchitecture and its vascular microarchitecture.

  9. Temporal bone imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lemmerling, Marc [Algemeen Ziekenhuis Sint-Lucas, Gent (Belgium). Dept. of Radiology; Foer, Bert de (ed.) [Sint-Augustinus Ziekenhuis, Wilrijk (Belgium). Dept. of Radiology

    2015-04-01

    Complete overview of imaging of normal and diseased temporal bone. Straightforward structure to facilitate learning. Detailed consideration of newer imaging techniques, including the hot topic of diffusion-weighted imaging. Includes a chapter on anatomy that will be of great help to the novice interpreter of imaging findings. Excellent illustrations throughout. This book provides a complete overview of imaging of normal and diseased temporal bone. After description of indications for imaging and the cross-sectional imaging anatomy of the area, subsequent chapters address the various diseases and conditions that affect the temporal bone and are likely to be encountered regularly in clinical practice. The classic imaging methods are described and discussed in detail, and individual chapters are included on newer techniques such as functional imaging and diffusion-weighted imaging. There is also a strong focus on postoperative imaging. Throughout, imaging findings are documented with the aid of numerous informative, high-quality illustrations. Temporal Bone Imaging, with its straightforward structure based essentially on topography, will prove of immense value in daily practice.

  10. Bone scintigraphy in psoriasis

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, K.; Thiers, G.; Eissner, D.; Holzmann, H.

    1980-08-01

    Since 1973 bone scintigraphy using sup(99m)Tc-phosphate-complexes was carried out in 382 patients with psoriasis. For comparison with the results of nuclear medicine, roentgenologic and clinical findings a group af 121 patients with psoriasis aged between 11 and 74 years was compared to a group of 42 patients aged between 20 and 49 years without roentgenologic and clinical signs of psoriasis arthritis. We found by means of isotope investigation that an essentially greater part of the bones adjacent to the joints was involved than was expected according to X-ray and clinical findings. In addition, in 205 patients with psoriasis whole-body scintigraphy, using sup(99m)Tc-MDP, was carried out since 1977/78. In 17 patients we found an increased accumulation of activity in the region of extraarticular structures of the skull as well as of the skeletal thorax. According to these results we conclude that in addition to the clinically and roentgenologically defined psoriatic arthritis in patients with psoriasis an osteopathy may exist, which can only be demonstrated by skeletal scintigraphy and which is localized in bones adjacent to the joints but can also be demonstrated in the region of extraarticular bones.

  11. Bone scintigraphy in chondroblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Humphry, A.; Gilday, D.L.; Brown, R.G.

    1980-11-01

    Scintigraphy in 3 patients with chondroblastoma showed that the tumors were hyperemic and avidly accumulated the radionuclide. These changes were also present in adjacent normal bone, but to a lesser degree. This suggests that radionuclide uptake in chondroblastoma is a function of the blood supply to the tumor rather than primary matrix extraction.

  12. Chondroblastoma of temporal bone

    Energy Technology Data Exchange (ETDEWEB)

    Tanohta, K.; Noda, M.; Katoh, H.; Okazaki, A.; Sugiyama, S.; Maehara, T.; Onishi, S.; Tanida, T.

    1986-07-01

    The case of a 55-year-old female with chondroblastoma arising from the left temporal bone is presented. Although 10 cases of temporal chondroblastoma have been reported, this is the first in which plain radiography, pluridirectional tomography, computed tomography (CT) and angiography were performed. We discuss the clinical and radiological aspects of this rare tumor.

  13. Performing a bone gammagraphy

    Directory of Open Access Journals (Sweden)

    Marta Corbacho Martín

    2010-03-01

    Full Text Available In the Nuclear Medicine service multitude of diagnostic tests are performed, being one of them the bone gammagraphy that acquires a very important role both by the high demand for this test, because of its simplicity and in the realization by its high sensitivity.The bone gammagraphy as opposed to conventional radiological techniques not only provides an anatomical view, but also adds a functional imaging that provides information on bone metabolism. Addition is not restricted to malignant bone disease (primary or metastatic tumors, but it is very useful for most benign osteoarticular processes. It would be interesting to bring to the nursing knowledge of this test for a proper implementation of it, because it is a very defendant but unknown to many nurses, thus going to unify the standards of performance. The need for nursing professionals during the performance of this technique because the patient remains in these units for quite some time, being responsible for the care while they remain in the unit, taking their physical, psychological and social. We also have a key role in providing information and reassurance when the patient arrives at the unit and it is therefore necessary to have information and training necessary to answer these key questions.

  14. Sodium and bone health

    DEFF Research Database (Denmark)

    Teucher, B.; Dainty, J. R.; Spinks, C. A.

    2008-01-01

    High salt intake is a well-recognized risk factor for osteoporosis because it induces calciuria, but the effects of salt on calcium metabolism and the potential impact on bone health in postmenopausal women have not been fully characterized. This study investigated adaptive mechanisms in response...... was negative on both high and low salt diets....

  15. Food and Your Bones

    Science.gov (United States)

    ... Store Shopping Cart Home › Patients › Treatment › Nutrition Nutrition Food For Thought Quiz Please share why you eat ... never tried prunes View Answers Loading ... Sponsored by: Food and Your Bones – Osteoporosis Nutrition Guidelines The food ...

  16. Bone island and leprosy

    Energy Technology Data Exchange (ETDEWEB)

    Carpintero, P.; Garcia-Frasquet, A. [Department of Orthopaedic Surgery, Cordoba University, Medical School, Reina Sofia University Hospital, Cordoba (Spain); Tarradas, E. [Department of Imaging, Cordoba University, Medical School, Cordoba (Spain); Logrono, C. [Department of Dermatology, Reina Sofia University Hospital, Cordoba (Spain); Carrascal, A. [Department of Radiology, Infanta Elena Hospital, Huelva (Spain); Carreto, A. [Department of Radiology, Reina Sofia University Hospital, Cordoba (Spain)

    1998-06-01

    Objective. To determine the incidence of bone islands in leprosy patients. Design. X-rays of feet and hands of patients with Hansen`s disease (leprosy) were reviewed retrospectively. A second group of related age- and sex-matched patients who did not have Hansen`s disease was used for control purposes. Controls had undergone hand or foot X-rays during diagnosis of other pathologies. The patients with Hansen`s disease were compared with the control group, and were also analyzed as subgroups with different types of leprosy. The results were subjected to statistical analysis. Patients. Ninety patients with Hansen`s disease were randomly selected for this study. Patients who had had ulcers on hands or feet were excluded from the study. Results and conclusions. Bone islands were demonstrated in 20 patients with Hansen`s disease; no bone islands were observed in the controls. This was statistically significant (P<0.01). Bone islands were only seen in patients with lepromatous leprosy and borderline types but were not demonstrated in patients with tuberculoid leprosy. There was also a statistically significant relationship for a disease duration of 15 years or more. The cause of this raised incidence of enostosis in leprosy patients is not clear, but there may be a genetic predisposition in patients with leprosy, or it may be a side effect of leprosy, especially the lepromatous form. (orig.) With 4 figs., 2 tabs., 9 refs.

  17. Bone Marrow Matters

    Science.gov (United States)

    Dunne, Mark; Maklad, Rania; Heaney, Emma

    2014-01-01

    As a final-year student teacher specialising in primary science, Emma Heaney faced the challenge of having to plan, organise, and conduct a small-scale, classroom-based research project. She had to teach about bones in the final block practice session and thought it would be a good idea to bring in some biological specimens obtained from the local…

  18. Bones of the Earth

    Science.gov (United States)

    Correa, Jose Miguel

    2014-01-01

    The film "Bones of the Earth" (Riglin, Cunninham & Correa, 2014) is an experience in collective inquiry and visual creation based on arts-based research. Starting from the meeting of different subjectivities and through dialogue, planning, shooting and editing, an audiovisual text that reconstructs a reflexive process of collective…

  19. Are Bones Alive?

    Science.gov (United States)

    Caravita, Silvia; Falchetti, Elisabetta

    2005-01-01

    Many studies have investigated the classification of living things. Our study deals with a different problem: the attribution of life to one component of a living organism, specifically the bones. The task involves not only specifying what we mean by "alive", but also requires "informed thinking" leading to an understanding of…

  20. Surgery for Bone Cancer

    Science.gov (United States)

    ... be amputated mid-thigh, the lower leg and foot can be rotated and attached to the thigh bone. The old ankle joint becomes the new knee joint. This surgery is called rotationplasty (roh-TAY-shun-PLAS-tee). A prosthesis is used to make the new leg the ...

  1. Bone marrow oedema associated with benign and malignant bone tumours

    Energy Technology Data Exchange (ETDEWEB)

    James, S.L.J. [Department of Radiology, Royal Orthopaedic Hospital, Birmingham, B31 2AP (United Kingdom)], E-mail: steven.james@roh.nhs.uk; Panicek, D.M. [Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021 (United States); Davies, A.M. [Department of Radiology, Royal Orthopaedic Hospital, Birmingham, B31 2AP (United Kingdom)

    2008-07-15

    Bone marrow oedema is associated with a wide variety of pathological processes including both benign and malignant bone tumours. This imaging finding in relation to intraosseous tumours can aid in providing a more focused differential diagnosis. In this review, we will discuss the MR imaging of bone marrow oedema surrounding intraosseous neoplasms. The different pulse sequences used in differentiating underlying tumour from surrounding oedema are discussed along with the role of dynamic contrast enhanced MRI. Benign lesions commonly associated with bone marrow oedema include osteoid osteoma, osteoblastoma, chondroblastoma and Langerhan's cell histiocytosis. Metastases and malignant primary bone tumours such as osteosarcoma, Ewing's sarcoma and chondrosarcoma may also be surrounded by bone marrow oedema. The imaging findings of these conditions are reviewed and illustrated. Finally, the importance of bone marrow oedema in assessment of post chemotherapeutic response is addressed.

  2. Evolutionary patterns of bone histology and bone compactness in xenarthran mammal long bones.

    Science.gov (United States)

    Straehl, Fiona R; Scheyer, Torsten M; Forasiepi, Analía M; MacPhee, Ross D; Sánchez-Villagra, Marcelo R

    2013-01-01

    Bone microstructure reflects physiological characteristics and has been shown to contain phylogenetic and ecological signals. Although mammalian long bone histology is receiving increasing attention, systematic examination of the main clades has not yet been performed. Here we describe the long bone microstructure of Xenarthra based on thin sections representing twenty-two species. Additionally, patterns in bone compactness of humeri and femora are investigated. The primary bone tissue of xenarthran long bones is composed of a mixture of woven, parallel-fibered and lamellar bone. The vascular canals have a longitudinal, reticular or radial orientation and are mostly arranged in an irregular manner. Concentric rows of vascular canals and laminar organization of the tissue are only found in anteater bones. The long bones of adult specimens are marked by dense Haversian bone, a feature that has been noted for most groups of mammals. In the long bones of armadillos, secondary osteons have an oblique orientation within the three-dimensional bone tissue, thus resulting in their irregular shape when the bones are sectioned transversely. Secondary remodeling is generally more extensive in large taxa than in small taxa, and this could be caused by increased loading. Lines of arrested growth are assumed to be present in all specimens, but they are restricted to the outermost layer in bones of armadillos and are often masked by secondary remodeling in large taxa. Parameters of bone compactness show a pattern in the femur that separates Cingulata and Pilosa (Folivora and Vermilingua), with cingulates having a lower compactness than pilosans. In addition, cingulates show an allometric relationship between humeral and femoral bone compactness.

  3. Digital electronic bone growth stimulator

    Energy Technology Data Exchange (ETDEWEB)

    Kronberg, James W. (Aiken, SC)

    1995-01-01

    A device for stimulating bone tissue by applying a low level alternating current signal directly to the patient's skin. A crystal oscillator, a binary divider chain and digital logic gates are used to generate the desired waveforms that reproduce the natural electrical characteristics found in bone tissue needed for stimulating bone growth and treating osteoporosis. The device, powered by a battery, contains a switch allowing selection of the correct waveform for bone growth stimulation or osteoporosis treatment so that, when attached to the skin of the patient using standard skin contact electrodes, the correct signal is communicated to the underlying bone structures.

  4. Digital electronic bone growth stimulator

    Energy Technology Data Exchange (ETDEWEB)

    Kronberg, J.W.

    1995-05-09

    A device is described for stimulating bone tissue by applying a low level alternating current signal directly to the patient`s skin. A crystal oscillator, a binary divider chain and digital logic gates are used to generate the desired waveforms that reproduce the natural electrical characteristics found in bone tissue needed for stimulating bone growth and treating osteoporosis. The device, powered by a battery, contains a switch allowing selection of the correct waveform for bone growth stimulation or osteoporosis treatment so that, when attached to the skin of the patient using standard skin contact electrodes, the correct signal is communicated to the underlying bone structures. 5 figs.

  5. Bone repair and stem cells.

    Science.gov (United States)

    Ono, Noriaki; Kronenberg, Henry M

    2016-10-01

    Bones are an important component of vertebrates; they grow explosively in early life and maintain their strength throughout life. Bones also possess amazing capabilities to repair-the bone is like new without a scar after complete repair. In recent years, a substantial progress has been made in our understanding on mammalian bone stem cells. Mouse genetic models are powerful tools to understand the cell lineage, giving us better insights into stem cells that regulate bone growth, maintenance and repair. Recent findings about these stem cells raise new questions that require further investigations.

  6. 传热管流体诱导振动特性的数值研究%Numerical Study on Flow Induced Vibration Characteristics of Heat Transfer Tube

    Institute of Scientific and Technical Information of China (English)

    冯志鹏; 臧峰刚; 张毅雄

    2014-01-01

    The model presents a fully coupled approach with solving the fluid flow and the structure vibration simultaneously . The three-dimensional unsteady , viscous , incompressible Navier-Stokes equation and LES turbulence model were solved by the finite volume approach and the heat transfer structure was solved by finite element method combined with moving mesh control technique . The dynamic equilibrium equation was discretized according to the finite element theory and the mesh update was achieved by the dynamic mesh technology .Based on this model ,flow induced vibration responses of the tube were thus investigated using response branch , phase angle , Lissajou diagram ,trajectory ,phase portrait and Poincare section mapping .Meanwhile , the limit cycle and bifurcation of lift coefficient and lateral displacement were analyzed . T he results reveal that a quasi-upper branch is found in the fluid-structure interaction system ,and there is no bifurcation of lift coefficient and lateral displacement occurred in three-dimensional flexible tube submitted to uniform turbulent flow .%本文利用有限体积法离散非稳态湍流黏性、不可压缩的N-S方程及L ES湍流模型,用有限元方法离散传热管结构,结合动网格控制技术,实现了流体-结构两个物理场之间的交互作用。基于数值模型,通过响应分支、相位角、Lissajou图、运动轨迹、相图以及Poincare截面映射,分析了传热管在不同响应阶段的运动行为和响应特性,以及升力系数与横向位移的极限环与分叉等非线性特性。研究结果表明:传热管的流体诱导振动系统存在一个拟上端分支;在均匀湍流流动作用下,三维弹性管的升力与横向位移并未出现周期解的分叉。

  7. Characterization of reactive flow-induced evolution of carbonate rocks using digital core analysis- part 1: Assessment of pore-scale mineral dissolution and deposition

    Science.gov (United States)

    Qajar, Jafar; Arns, Christoph H.

    2016-09-01

    The application of X-ray micro-computed tomography (μ-CT) for quantitatively characterizing reactive-flow induced pore structure evolution including local particle detachment, displacement and deposition in carbonate rocks is investigated. In the studies conducted in this field of research, the experimental procedure has involved alternating steps of imaging and ex-situ core sample alteration. Practically, it is impossible to return the sample, with micron precision, to the same position and orientation. Furthermore, successive images of a sample in pre- and post-alteration states are usually taken at different conditions such as different scales, resolutions and signal-to-noise ratios. These conditions accompanying with subresolution features in the images make voxel-by-voxel comparisons of successive images problematic. In this paper, we first address the respective challenges in voxel-wise interpretation of successive images of carbonate rocks subject to reactive flow. Reactive coreflood in two carbonate cores with different rock types are considered. For the first rock, we used the experimental and imaging results published by Qajar et al. (2013) which showed a quasi-uniform dissolution regime. A similar reactive core flood was conducted in the second rock which resulted in wormhole-like dissolution regime. We particularly examine the major image processing operations such as transformation of images to the same grey-scale, noise filtering and segmentation thresholding and propose quantitative methods to evaluate the effectiveness of these operations in voxel-wise analysis of successive images of a sample. In the second part, we generalize the methodology based on the three-phase segmentation of normalized images, microporosity assignment and 2D histogram of image intensities to estimate grey-scale changes of individual image voxels for a general case where the greyscale images are segmented into arbitrary number of phases. The results show that local (voxel

  8. Function of osteocytes in bone.

    Science.gov (United States)

    Aarden, E M; Burger, E H; Nijweide, P J

    1994-07-01

    Although the structural design of cellular bone (i.e., bone containing osteocytes that are regularly spaced throughout the bone matrix) dates back to the first occurrence of bone as a tissue in evolution, and although osteocytes represent the most abundant cell type of bone, we know as yet little about the role of the osteocyte in bone metabolism. Osteocytes descend from osteoblasts. They are formed by the incorporation of osteoblasts into the bone matrix. Osteocytes remain in contact with each other and with cells on the bone surface via gap junction-coupled cell processes passing through the matrix via small channels, the canaliculi, that connect the cell body-containing lacunae with each other and with the outside world. During differentiation from osteoblasts to mature osteocyte the cells lose a large part of their cell organelles. Their cell processes are packed with microfilaments. In this review we discuss the various theories on osteocyte function that have taken in consideration these special features of osteocytes. These are 1) osteocytes are actively involved in bone turnover; 2) the osteocyte network is through its large cell-matrix contact surface involved in ion exchange; and 3) osteocytes are the mechanosensory cells of bone and play a pivotal role in functional adaptation of bone. In our opinion, especially the last theory offers an exciting concept for which some biomechanical, biochemical, and cell biological evidence is already available and which fully warrants further investigations.

  9. Inducible models of bone loss.

    Science.gov (United States)

    Doucette, Casey R; Rosen, Clifford J

    2014-12-11

    Bone is an essential organ that not only confers structural stability to the organism, but also serves as a reservoir for hematopoietic elements and is thought to affect systemic homeostasis through the release of endocrine factors as well as calcium. The loss of bone mass due to an uncoupling of bone formation and bone resorption leads to increased fragility that can result in devastating fractures. Further understanding of the effects of environmental stimuli on the development of bone disease in humans is needed, and they can be studied using animal models. Here, we present established and novel methods for the induction of bone loss in mice, including manipulation of diet and environment, administration of drugs, irradiation, and surgically induced hormone deficiency. All of these models are directly related to human cases, and thus, can be used to investigate the causes of bone loss resulting from these interventions.

  10. Bone- and bone marrow scintigraphy in Gaucher disease type 1

    Energy Technology Data Exchange (ETDEWEB)

    Mikosch, P. [Dept. of Nuclear Medicine and Endocrinology, State Hospital Klagenfurt (Austria); Dept. of Internal Medicine II, State Hospital Klagenfurt (Austria); Zitter, F. [Dept. of Internal Medicine II, State Hospital Klagenfurt (Austria); Gallowitsch, H.J.; Lind, P. [Dept. of Nuclear Medicine and Endocrinology, State Hospital Klagenfurt (Austria); Wuertz, F. [Dept. of Pathology, State Hospital Klagenfurt (Austria); Mehta, A.B.; Hughes, D.A. [Lysosomal Storage Disorder Unit, Dept. of Academic Haematology, Royal Free and Univ. Coll. Medical School, London (United Kingdom)

    2008-07-01

    Scintigraphy is a method for imaging metabolism and should be viewed as complimentary to morphological imaging. Bone and bone marrow scintigraphy can particularly contribute to the detection of focal disease in Gaucher disease. In bone crises it can discriminate within three days after pain onset between local infection and aseptic necrosis. A further advantage of bone- and bone marrow scintigraphy is the visualization of the whole skeleton within one setting. Whole body imaging for focal lesions might thus be an objective in GD, in particular in patients complaining of several painful sites. Direct imaging of bone marrow deposits in GD by MIBI scintigraphy might be of special interest in children in whom bone marrow undergoes a developmental conversion from red to yellow marrow in the ap-pendicular skeleton. MRI interpretation in young GD patients is thus difficult in order to estimate the exact amount and extent of bone marrow infiltration by Gaucher cells. 99mTc-MIBI scintigraphy with its direct visualization of lipid storage could thus add interesting additional information not shown with other methods including MRI. Although MRI is the most accepted imaging modality in assessing the skeletal status in GD, a selective use of scintigraphy for imaging bone and bone marrow may add information in the evaluation of patients with Gaucher disease.

  11. Myosin II and mechanotransduction: a balancing act.

    NARCIS (Netherlands)

    Clark, K.A.; Langeslag, M.; Figdor, C.G.; Leeuwen, F.N. van

    2007-01-01

    Adherent cells respond to mechanical properties of the surrounding extracellular matrix. Mechanical forces, sensed at specialized cell-matrix adhesion sites, promote actomyosin-based contraction within the cell. By manipulating matrix rigidity and adhesion strength, new roles for actomyosin contract

  12. Mechanotransduction in colonic smooth muscle cells.

    Science.gov (United States)

    Young, S H; Ennes, H S; Mayer, E A

    1997-11-15

    We evaluated mechanisms which mediate alterations in intracellular biochemical events in response to transient mechanical stimulation of colonic smooth muscle cells. Cultured myocytes from the circular muscle layer of the rabbit distal colon responded to brief focal mechanical deformation of the plasma membrane with a transient increase in intracellular calcium concentration ([Ca2+]i) with peak of 422.7 +/- 43.8 nm above an average resting [Ca2+]i of 104.8 +/- 10.9 nM (n = 57) followed by both rapid and prolonged recovery phases. The peak [Ca2+]i increase was reduced by 50% in the absence of extracellular Ca2+, while the prolonged [Ca2+]i recovery was either abolished or reduced to less than or = 15% of control values. In contrast, no significant effect of gadolinium chloride (100 microM) or lanthanum chloride (25 microM) on either peak transient or prolonged [Ca2+]i recovery was observed. Pretreatment of cells with thapsigargin (1 microM) resulted in a 25% reduction of the mechanically induced peak [Ca2+]i response, while the phospholipase C inhibitor U-73122 had no effect on the [Ca2+]i transient peak. [Ca2+]i transients were abolished when cells previously treated with thapsigargin were mechanically stimulated in Ca2+-free solution, or when Ca2+ stores were depleted by thapsigargin in Ca2+-free solution. Pretreatment with the microfilament disrupting drug cytochalasin D (10 microM) or microinjection of myocytes with an intracellular saline resulted in complete inhibition of the transient. The effect of cytochalasin D was reversible and did not prevent the [Ca2+]i increases in response to thapsigargin. These results suggest a communication, which may be mediated by direct mechanical link via actin filaments, between the plasma membrane and an internal Ca2+ store.

  13. Calcium and mechanotransduction of the myogenic response.

    Science.gov (United States)

    D'Angelo, G; Davis, M J; Meininger, G A

    1997-07-01

    The purpose of this study was to measure vascular smooth muscle (VSM) cytosolic calcium ([Ca2+]i) during the myogenic response. We examined the temporal and steady-state relationships between lumen diameter and VSM [Ca2+]i in isolated arterioles exposed to step changes in intravascular pressure. We also studied the relationship between step sizes in intravascular pressure and changes in [Ca2+]i. First-order arterioles from the hamster cheek pouch were isolated, cannulated, and pressurized. [Ca2+]i was quantified using the ratio of emitted fluorescence intensity (R340/380) during alternate excitation of fura 2-loaded vessels at 340 and 380 nm. Stepwise increases in transmural pressure elicited corresponding increases in steady-state [Ca2+]i and myogenic constriction. From a common baseline pressure, the initial rise in [Ca2+]i after a step change in pressure was directly related to the magnitude of the step size and of the distension caused by that pressure step. This supports the theory that there is a relationship between the initial distension of the vessel and the initial [Ca2+]i change. Also, increasing the size of the step change in pressure resulted in a greater myogenic response, yet no difference in the steady-state [Ca2+]i was detected, which suggests that Ca2+ is not the principal or only determinant of steady-state constriction. Finally, larger increases in [Ca2+]i do not necessarily augment the myogenic response, which suggests that some minimal rise in [Ca2+]i is required to elicit myogenic vasoconstriction. Collectively, these data suggest the presence of a separate, Ca(2+)-independent regulatory system.

  14. Temporal Bone Localized Chondroblastoma.

    Science.gov (United States)

    Demirhan, Hasan; Acioğlu, Engin; Durna, Yusuf Muhammed; Yiğit, Özgür; Bozkurt, Erol Rüştü; Karagöz, Yeşim

    2015-11-01

    Chondroblastoma is a highly destructive tumor originating from immature cartilage cells. Although chondroblastoma is defined as a benign tumor, it may exhibit malign tumor behaviors such as invasion or metastasis on neighboring structures. Magnetic resonance (MR) image is a solid mass lesion, which included heterogeneous hypointense in T2A and heterogeneous minimal hyperintense in T1A with destructive expansile characteristics and millimetric calcifications. Temporal bone chondroblastomas may complicate the diagnosis because of their different histologic characteristics. Microscopically, chondroblastic cell nests and calcification of locally "chicken wire" type around the cells are observed. These tumors secrete s-100 and vimentin and are used for differential diagnosis. In this study, a temporal bone localized chondroblastoma case is presented.

  15. [Fractures of carpal bones].

    Science.gov (United States)

    Lögters, T; Windolf, J

    2016-10-01

    Fractures of the carpal bones are uncommon. On standard radiographs fractures are often not recognized and a computed tomography (CT) scan is the diagnostic method of choice. The aim of treatment is to restore pain-free and full functioning of the hand. A distinction is made between stable and unstable carpal fractures. Stable non-displaced fractures can be treated conservatively. Unstable and displaced fractures have an increased risk of arthritis and non-union and should be stabilized by screws or k‑wires. If treated adequately, fractures of the carpal bones have a good prognosis. Unstable and dislocated fractures have an increased risk for non-union. The subsequent development of carpal collapse with arthrosis is a severe consequence of non-union, which has a heterogeneous prognosis.

  16. Virtual temporal bone

    Institute of Scientific and Technical Information of China (English)

    QIU Ming-guo; ZHANG Shao-xiang; LIU Zheng-jin; TAN Li-wen; WANG Yu-su; DENG Jun-hui; TANG Ze-sheng

    2002-01-01

    Objective:To provide the virtual model of the temporal bone for improving 3-dimension (3D) visualization of the inner ear. Methods: Plastination technique was used to make equidistant serial thin sections 1.0 mm in thickness. On SGI workstation, a Contours+Marching Cubes algorithm was selected to reconstruct the temporal bone and intratemporal structures in 3D, then to view the middle ear, inner ear, and intratemporal structures which imitate the scenes observed by the traditional endoscopy. Results: The virtual model of the temporal bone was successfully constructed, with all reconstructed structures being represented individually or jointly and being rotated continuously in any plane. Virtual endoscopy improved 3D visualization of the middle ear, inner ear, and intratemporal structures. Conclusion: The reconstructed model can be used for the medical students to rehearse or review the surgeries on this part and for the surgeons to develop a new approach for operation. Virtual otoscopy stands as a promising new visualization technique for elucidating the structure and relation of the middle ear, inner ear, and intratemporal structures.

  17. Bone Metabolism on ISS Missions

    Science.gov (United States)

    Smith, S. M.; Heer, M. A.; Shackelford, L. C.; Zwart, S. R.

    2014-01-01

    Spaceflight-induced bone loss is associated with increased bone resorption (1, 2), and either unchanged or decreased rates of bone formation. Resistive exercise had been proposed as a countermeasure, and data from bed rest supported this concept (3). An interim resistive exercise device (iRED) was flown for early ISS crews. Unfortunately, the iRED provided no greater bone protection than on missions where only aerobic and muscular endurance exercises were available (4, 5). In 2008, the Advanced Resistive Exercise Device (ARED), a more robust device with much greater resistance capability, (6, 7) was launched to the ISS. Astronauts who had access to ARED, coupled with adequate energy intake and vitamin D status, returned from ISS missions with bone mineral densities virtually unchanged from preflight (7). Bone biochemical markers showed that while the resistive exercise and adequate energy consumption did not mitigate the increased bone resorption, bone formation was increased (7, 8). The typical drop in circulating parathyroid hormone did not occur in ARED crewmembers. In 2014, an updated look at the densitometry data was published. This study confirmed the initial findings with a much larger set of data. In 42 astronauts (33 male, 9 female), the bone mineral density response to flight was the same for men and women (9), and those with access to the ARED did not have the typical decrease in bone mineral density that was observed in early ISS crewmembers with access to the iRED (Figure 1) (7). Biochemical markers of bone formation and resorption responded similarly in men and women. These data are encouraging, and represent the first in-flight evidence in the history of human space flight that diet and exercise can maintain bone mineral density on long-duration missions. However, the maintenance of bone mineral density through bone remodeling, that is, increases in both resorption and formation, may yield a bone with strength characteristics different from those

  18. Bone morphogenetic proteins: Periodontal regeneration

    Directory of Open Access Journals (Sweden)

    Subramaniam M Rao

    2013-01-01

    Full Text Available Periodontitis is an infectious inflammatory disease that results in attachment loss and bone loss. Regeneration of the periodontal tissues entails de novo formation of cementum, periodontal ligament, and alveolar bone. Several different approaches are currently being explored to achieve complete, reliable, and reproducible regeneration of periodontal tissues. The therapeutic management of new bone formation is one of the key issues in successful periodontal regeneration. Bone morphogenetic proteins form a unique group of proteins within the transforming growth factor superfamily of genes and have a vital role in the regulation in the bone induction and maintenance. The activity of bone morphogenetic proteins was first identified in the 1960s, but the proteins responsible for bone induction were unknown until the purification and cloning of human bone morphogenetic proteins in the 1980s, because of their osteoinductive potential. Bone morphogenetic proteins have gained a lot of interest as therapeutic agents for treating periodontal defects. A systematic search for data related to the use of bone morphogenetic proteins for the regeneration of periodontal defects was performed to recognize studies on animals and human (PUBMED, MEDLINE, COCHRANE, and Google search. All the studies included showed noticeable regeneration of periodontal tissues with the use of BMP.

  19. Carbon nanohorns accelerate bone regeneration in rat calvarial bone defect

    Energy Technology Data Exchange (ETDEWEB)

    Kasai, Takao; Iizuka, Tadashi; Kanamori, Takeshi; Yokoyama, Atsuro [Department of Oral Functional Prosthodontics, Division of Oral Functional Science, Graduate School of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8586 (Japan); Matsumura, Sachiko; Shiba, Kiyotaka [Division of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31, Ariake, koutou-ku, Tokyo 135-8550 (Japan); Yudasaka, Masako; Iijima, Sumio, E-mail: tkasai@den.hokudai.ac.jp [Nanotube Research Center, National Institute of Advanced Industrial Science and Technology, Central 5, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8565 (Japan)

    2011-02-11

    A recent study showed that carbon nanohorns (CNHs) have biocompatibility and possible medical uses such as in drug delivery systems. It was reported that some kinds of carbon nanomaterials such as carbon nanotubes were useful for bone formation. However, the effect of CNHs on bone tissue has not been clarified. The purpose of this study was to evaluate the effect of CNHs on bone regeneration and their possible application for guided bone regeneration (GBR). CNHs dispersed in ethanol were fixed on a porous polytetrafluoroethylene membrane by vacuum filtration. Cranial defects were created in rats and covered by a membrane with/without CNHs. At two weeks, bone formation under the membrane with CNHs had progressed more than under that without CNHs and numerous macrophages were observed attached to CNHs. At eight weeks, there was no significant difference in the amount of newly formed bone between the groups and the appearance of macrophages was decreased compared with that at two weeks. Newly formed bone attached to some CNHs directly. These results suggest that macrophages induced by CNHs are related to bone regeneration. In conclusion, the present study indicates that CNHs are compatible with bone tissue and effective as a material for GBR.

  20. Carbon nanohorns accelerate bone regeneration in rat calvarial bone defect

    Science.gov (United States)

    Kasai, Takao; Matsumura, Sachiko; Iizuka, Tadashi; Shiba, Kiyotaka; Kanamori, Takeshi; Yudasaka, Masako; Iijima, Sumio; Yokoyama, Atsuro

    2011-02-01

    A recent study showed that carbon nanohorns (CNHs) have biocompatibility and possible medical uses such as in drug delivery systems. It was reported that some kinds of carbon nanomaterials such as carbon nanotubes were useful for bone formation. However, the effect of CNHs on bone tissue has not been clarified. The purpose of this study was to evaluate the effect of CNHs on bone regeneration and their possible application for guided bone regeneration (GBR). CNHs dispersed in ethanol were fixed on a porous polytetrafluoroethylene membrane by vacuum filtration. Cranial defects were created in rats and covered by a membrane with/without CNHs. At two weeks, bone formation under the membrane with CNHs had progressed more than under that without CNHs and numerous macrophages were observed attached to CNHs. At eight weeks, there was no significant difference in the amount of newly formed bone between the groups and the appearance of macrophages was decreased compared with that at two weeks. Newly formed bone attached to some CNHs directly. These results suggest that macrophages induced by CNHs are related to bone regeneration. In conclusion, the present study indicates that CNHs are compatible with bone tissue and effective as a material for GBR.

  1. Development of Bone Remodeling Model for Spaceflight Bone Physiology Analysis

    Science.gov (United States)

    Pennline, James A.; Werner, Christopher R.; Lewandowski, Beth; Thompson, Bill; Sibonga, Jean; Mulugeta, Lealem

    2015-01-01

    Current spaceflight exercise countermeasures do not eliminate bone loss. Astronauts lose bone mass at a rate of 1-2% a month (Lang et al. 2004, Buckey 2006, LeBlanc et al. 2007). This may lead to early onset osteoporosis and place the astronauts at greater risk of fracture later in their lives. NASA seeks to improve understanding of the mechanisms of bone remodeling and demineralization in 1g in order to appropriately quantify long term risks to astronauts and improve countermeasures. NASA's Digital Astronaut Project (DAP) is working with NASA's bone discipline to develop a validated computational model to augment research efforts aimed at achieving this goal.

  2. 倾斜推移体激发颗粒流的连续介质模型%A Continuum Model of Granular Flow Induced By Inclined Plane

    Institute of Scientific and Technical Information of China (English)

    郭鸿; 骆亚生; 程大伟; 陈茜; 陈栋梁

    2015-01-01

    岩土工程中的土方推移等属于颗粒体的倾斜推移问题,探索了倾斜推移体在颗粒中平动推移时所受的阻力和升力。应用惯性数的理念,确定了流态类型,提出了适合非准静态流的广义摩擦系数。在此基础上,用基于改进的库伦被动土压力理论,通过基于二维颗粒离散元的位移场分析,建立了预测推移阻力和升力的楔体模型。结果表明,在其他条件相同时,推移阻力不随推移体的倾角变化,但是升力随倾角的增大而显著减小。升力和阻力分别是作用在推移体上合力的竖直分量和水平分量,且阻力和升力的比值为推移体倾角的正切值。广义摩擦角是推移速度和倾角的二次函数。所建立的模型可以预测不同倾角和推移速度时推移阻力和升力的大小。%Soils moving is one of the geotechnical problems, which can be described as a granular flow induced by inclined plane.This work aims to investigate the drag and lift forces acting on the inclined in-truder.By using the inertial number concept to confirm the flow regime, a parameter named dynamic fric-tion coefficient is induced to this non-quasi-static flow.By improving the Coulomb model, the displace-ment field is obtained by two dimensional discrete element method, and the wedge model for drag and lift forces is built.The results show that drag force is dependent of the inclined angle when the other condi-tions are the same, but the lift force is decreasing with the inclined angle.Drag and lift forces are the horizontal and vertical components of the total force, respectively.And the ratio of drag and lift forces is just equal to the tangent value of the inclined angle.The dynamic friction angle is the quadratic function of velocity and inclined angle.This model can predict different case in different inclined angle and veloci-ty.

  3. Bone health in cancer patients

    DEFF Research Database (Denmark)

    Coleman, R; Body, J J; Aapro, M

    2014-01-01

    There are three distinct areas of cancer management that make bone health in cancer patients of increasing clinical importance. First, bone metastases are common in many solid tumours, notably those arising from the breast, prostate and lung, as well as multiple myeloma, and may cause major...... morbidity including fractures, severe pain, nerve compression and hypercalcaemia. Through optimum multidisciplinary management of patients with bone metastases, including the use of bone-targeted treatments such as potent bisphosphonates or denosumab, it has been possible to transform the course of advanced...... cancer for many patients resulting in a major reduction in skeletal complications, reduced bone pain and improved quality of life. Secondly, many of the treatments we use to treat cancer patients have effects on reproductive hormones, which are critical for the maintenance of normal bone remodelling...

  4. Bone-seeking therapeutic radiopharmaceuticals

    Directory of Open Access Journals (Sweden)

    Srivastava Suresh C.

    2002-01-01

    Full Text Available Bone-seeking therapeutic radiopharmaceuticals are utilized on the basis of the radionuclide?s particulate emissions (primarily low to intermediate beta emission. The requirements therefore are different from those of bone imaging agents that consist mainly of short-lived single photon emitters. Lately, the therapeutic bone seeking radiopharmaceuticals have attained increasing importance due to their potential role in alleviating pain from osseous metastases in cancer patients, for the treatment of joint pain resulting from inflamed synovium (radiosynoviorthesis, or radiosynovectomy, or from various other forms of arthritic disease. There is, however, a paucity of published data on the bio-pharmacokinetics of these agents when used following intravenous administration for bone pain palliation. This paper will briefly review and summarize the presently available chemical and biopharmacokinetic information on the various clinically approved as well as experimental bone-localizing therapeutic radiopharmaceuticals, and make projections on their clinical application for the treatment of primary/metastatic cancer in bone.

  5. Distribution Principle of Bone Tissue

    CERN Document Server

    Fan, Yifang; Fan, Yubo; Xu, Zongxiang; Li, Zhiyu

    2009-01-01

    Using the analytic and experimental techniques we present an exploratory study of the mass distribution features of the high coincidence of centre of mass of heterogeneous bone tissue in vivo and its centroid of geometry position. A geometric concept of the average distribution radius of bone issue is proposed and functional relation of this geometric distribution feature between the partition density and its relative tissue average distribution radius is observed. Based upon the mass distribution feature, our results suggest a relative distance assessment index between the center of mass of cortical bone and the bone center of mass and establish a bone strength equation. Analysing the data of human foot in vivo, we notice that the mass and geometric distribution laws have expanded the connotation of Wolff's law, which implies a leap towards the quantitative description of bone strength. We finally conclude that this will not only make a positive contribution to help assess osteoporosis, but will also provide...

  6. SWALLOWED FISH BONES IN MALI

    Directory of Open Access Journals (Sweden)

    Sacko HB

    2015-07-01

    Full Text Available Objective: To study the different aspects, clinical, diagnostic and therapeutic of 114 cases of fish bones in the upper digestive tract . Methods: One hundred fourteen patients with fish bones suspected in the upper digestive tract were admitted in our department between February 2010 and October 2012. Results: There was a predominance of the male: 66 men (58%. The average age of the patients was 26 years with extremes 3 to 62 years old. The tongue base and vallecula are constituted the principals locations 66.66%. In the majority of the cases the fish bones were removed by direct pharyngoscopy in 43.86 %. We have not notified any serious complications. Conclusion: Therefore this study shows the foreign fish bones are frequently just as well in children as adult. The fish bones are particularly lodged in tongue base. The classical methods of extraction are permit to remove the all foreign fish bones.

  7. Bone disease and HIV infection.

    Science.gov (United States)

    Amorosa, Valerianna; Tebas, Pablo

    2006-01-01

    The high prevalence of bone demineralization among human immunodeficiency virus (HIV)-infected patients in the current therapeutic era has been described in multiple studies, sounding the alarm that we may expect an epidemic of fragility fractures in the future. However, despite noting high overall prevalences of osteopenia and osteoporosis, recent longitudinal studies that we review here have generally not observed accelerated bone loss during antiretroviral therapy beyond the initial period after treatment initiation. We discuss the continued progress toward understanding the mechanisms of HIV-associated bone loss, particularly the effects of HIV infection, antiretroviral therapy, and host immune factors on bone turnover. We summarize results of clinical trials published in the past year that studied the safety and efficacy of treatment of bone loss in HIV-infected patients and provide provisional opinions about who should be considered for bone disease screening and treatment.

  8. Bone healing around nanocrystalline hydroxyapatite, deproteinized bovine bone mineral, biphasic calcium phosphate, and autogenous bone in mandibular bone defects

    DEFF Research Database (Denmark)

    Broggini, Nina; Bosshardt, Dieter D; Jensen, Simon S;

    2015-01-01

    The individual healing profile of a given bone substitute with respect to osteogenic potential and substitution rate must be considered when selecting adjunctive grafting materials for bone regeneration procedures. In this study, standardized mandibular defects in minipigs were filled with nanocr......The individual healing profile of a given bone substitute with respect to osteogenic potential and substitution rate must be considered when selecting adjunctive grafting materials for bone regeneration procedures. In this study, standardized mandibular defects in minipigs were filled...... with nanocrystalline hydroxyapatite (HA-SiO), deproteinized bovine bone mineral (DBBM), biphasic calcium phosphate (BCP) with a 60/40% HA/β-TCP (BCP 60/40) ratio, or particulate autogenous bone (A) for histological and histomorphometric analysis. At 2 weeks, percent filler amongst the test groups (DBBM (35.65%), HA...

  9. Bone disease in primary hypercalciuria

    OpenAIRE

    Sella, Stefania; Cattelan, Catia; Realdi, Giuseppe; Giannini, Sandro

    2008-01-01

    Primary Hypercalciuria (PH) is very often accompanied with some degrees of bone demineralization. The most frequent clinical condition in which this association has been observed is calcium nephrolithiasis. In patients affected by this disorder bone density is very frequently low and increased susceptibility to fragility fractures is reported. The very poor definition of this bone disease from a histomorphometric point of view is a crucial aspect. At present, the most common finding seems to ...

  10. Gonadal dysgenesis and bone metabolism.

    Science.gov (United States)

    Breuil, V; Euller-Ziegler, L

    2001-02-01

    Gonadal dysgenesis is defined as congenital hypogonadism related to abnormalities of the sex chromosomes. Because sex steroids play a central role in the acquisition and maintenance of bone mass, studies have been done to investigate bone status in patients with gonadal dysgenesis, particularly Turner's syndrome and Klinefelter's syndrome, which are the two most common types. The severe estrogen deficiency characteristic of Turner's syndrome (44, X0) is associated with a significant bone mass decrease ascribable to increased bone turnover, as shown by histological studies and assays of bone turnover markers. Estrogen therapy is followed by a significant bone mass gain and a return to normal of bone turnover markers, suggesting that it is the estrogen deficiency rather than the chromosomal abnormality that causes the bone mass deficiency, although abnormalities in the renal metabolism of vitamin D have been reported. Combined therapy with estrogens and growth hormone seems beneficial during the prepubertal period. In Klinefelter's syndrome (47XXY), serum testosterone levels are at the lower end of the normal range and dihydrotestosterone levels are low. Histological studies show depressed osteoblast function and a decrease in 5-alpha-reductase activity responsible for partial tissue resistance to androgens. Assays of bone turnover markers show evidence of increased bone turnover. The bone deficiency is most marked at the femoral neck and seems correlated with serum testosterone and estradiol levels. Androgen therapy has favorable effects on the bone only if it is started before puberty. Recent data suggest that estrogens may contribute to the development of demineralization in KS and that bisphosphonate therapy may be beneficial.

  11. Unexplained Bone Pain Is an Independent Risk Factor for Bone Metastases in Newly Diagnosed Prostate Cancer

    DEFF Research Database (Denmark)

    Zacho, Helle D; Mørch, Carsten D; Barsi, Tamás;

    2017-01-01

    OBJECTIVE: To determine the relationship between bone pain and bone metastases in newly diagnosed prostate cancer. PATIENTS AND METHODS: This prospective study of bone scintigraphy enrolled 567 consecutive patients with newly diagnosed prostate cancer. The presence of all-cause bone pain, known b......: Unexplained bone pain was a strong independent risk factor for bone metastasis. Guidelines should recommend staging bone scintigraphy in patients with unexplained bone pain, regardless of other risk factors....

  12. Bones of the Earth

    Directory of Open Access Journals (Sweden)

    Jose Miguel Correa

    2014-06-01

    Full Text Available The film Bones of the Earth (Riglin, Cunninham & Correa, 2014 is an experience in collective inquiry and visual creation based on arts-based research. Starting from the meeting of different subjectivities and through dialogue, planning, shooting and editing, an audiovisual text that reconstructs a reflexive process of collective creation is built. A sense of community, on-going inquiry, connections and social commitment inform the creative process. As a result, the video’s nearly five intense minutes are a metaphor for the search for personal meaning, connection with nature and intersubjective positioning in a world that undergoes constant change.

  13. Bones and joints

    Energy Technology Data Exchange (ETDEWEB)

    Runge, M.

    1987-01-01

    This exercise book guides the student and the radiologist wishing to review his knowledge to rapid and correct analysis and interpretation of radiologic findings in bone and joint disorders. The first part of the volume demonstrates the radiologic findings without going into the clinical and pathological aspects. In the second part, the reader then learns to analyse and diagnose systematically the case examples by means of a complete description of the X-ray images. Contents: Introduction; iconography; commentary with corresponding schemata; references and subject index.

  14. Raman spectroscopy of bone metastasis

    Science.gov (United States)

    Esmonde-White, Karen A.; Sottnik, Joseph; Morris, Michael; Keller, Evan

    2012-02-01

    Raman spectroscopy of bone has been used to characterize chemical changes occurring in diseases such as osteoporosis, osteoarthritis and osteomyelitis. Metastasis of cancer into bone causes changes to bone quality that are similar to those observed in osteoporosis, such as decreased bone strength, but with an accelerated timeframe. In particular, osteolytic (bone degrading) lesions in bone metastasis have a marked effect on patient quality of life because of increased risk of fractures, pain, and hypercalcemia. We use Raman spectroscopy to examine bone from two different mouse models of osteolytic bone metastasis. Raman spectroscopy measures physicochemical information which cannot be obtained through standard biochemical and histological measurements. This study was reviewed and approved by the University of Michigan University Committee on the Care and Use of Animals. Two mouse models of prostate cancer bone metastasis, RM1 (n=3) and PC3-luc (n=4) were examined. Tibiae were injected with RM1 or PC3-luc cancer cells, while the contralateral tibiae received a placebo injection for use as controls. After 2 weeks of incubation, the mice were sacrificed and the tibiae were examined by Raman microspectroscopy (λ=785 nm). Spectroscopic markers corresponding to mineral stoichiometry, bone mineralization, and mineral crystallinity were compared in spectra from the cancerous and control tibiae. X-ray imaging of the tibia confirmed extensive osteolysis in the RM1 mice, with tumor invasion into adjoining soft tissue and moderate osteolysis in the PC3-luc mice. Raman spectroscopic markers indicate that osteolytic lesions are less mineralized than normal bone tissue, with an altered mineral stoichiometry and crystallinity.

  15. Molecular mechanism of bone formation and regeneration

    Institute of Scientific and Technical Information of China (English)

    Akira Yamaguchi

    2008-01-01

    @@ Bone formation and regeneration are mediated by the coordinate action of various factors. Among these, bone morphogenetic protein (BMP) and runt-related gene 2 (Runx2) play crucial roles in bone formation.

  16. Broken Bones, Sprains, and Strains (For Parents)

    Science.gov (United States)

    ... Feeding Your 1- to 2-Year-Old Broken Bones, Sprains, and Strains KidsHealth > For Parents > Broken Bones, ... home. What to Do: For a Suspected Broken Bone: Do not move a child whose injury involves ...

  17. Bone marrow edema syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Korompilias, Anastasios V.; Lykissas, Marios G.; Beris, Alexandros E. [University of Ioannina, Department of Orthopaedic Surgery, School of Medicine, Ioannina (Greece); Karantanas, Apostolos H. [University of Crete School of Medicine, Department of Radiology, Heraklion (Greece)

    2009-05-15

    Bone marrow edema syndrome (BMES) refers to transient clinical conditions with unknown pathogenic mechanism, such as transient osteoporosis of the hip (TOH), regional migratory osteoporosis (RMO), and reflex sympathetic dystrophy (RSD). BMES is primarily characterized by bone marrow edema (BME) pattern. The disease mainly affects the hip, the knee, and the ankle of middle-aged males. Many hypotheses have been proposed to explain the pathogenesis of the disease. Unfortunately, the etiology of BMES remains obscure. The hallmark that separates BMES from other conditions presented with BME pattern is its self-limited nature. Laboratory tests usually do not contribute to the diagnosis. Histological examination of the lesion is unnecessary. Plain radiographs may reveal regional osseous demineralization. Magnetic resonance imaging is mainly used for the early diagnosis and monitoring the progression of the disease. Early differentiation from other aggressive conditions with long-term sequelae is essential in order to avoid unnecessary treatment. Clinical entities, such as TOH, RMO, and RSD are spontaneously resolving, and surgical treatment is not needed. On the other hand, early differential diagnosis and surgical treatment in case of osteonecrosis is of crucial importance. (orig.)

  18. Unusual sutural bones at pterion

    Directory of Open Access Journals (Sweden)

    Nayak SB

    2008-08-01

    Full Text Available The existence of Wormian (sutural bones in the skull is well known. We found three unusual Wormian bones at the right pterion in an adult Indian skull. The variation noted was unilateral. This type of variation has not been reported yet.

  19. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... bone absorbs much of the radiation while soft tissue, such as muscle, fat and organs, allow more of the x-rays to pass through them. As a result, bones appear white on the x-ray, soft tissue shows up in shades of gray and air ...

  20. Ivory Osteoma Of Temporal Bone

    Directory of Open Access Journals (Sweden)

    Ravi Meher

    2006-03-01

    Full Text Available Osteomas are slow growing bony tumors common in fronto-ethmoid regions and rare in temporal bone. These are usually asymptomatic and require treatment mainly for cosmetic reasons. We describe a case of temporal bone osteoma in a female.

  1. Bone scintigraphy and metabolic disorders

    Energy Technology Data Exchange (ETDEWEB)

    Mari' , C.; Catafau, A.; Carrio' , I. [Hospital de Sant Pau, Barcelone (Spain). Serv. of Nuclear Medicine

    1999-09-01

    The paper discusses the main clinical value of bone scan in metabolic bone disease: its detection of focal conditions or focal complications of such generalized disease, its most common use of being the detection of fractures in osteoporosis, pseudo fractures in osteomalacia and the evaluation of Paget's disease.

  2. Physiological Challenges of Bone Repair

    Science.gov (United States)

    2012-12-01

    necrosis factor a. In this early phase, periosteal pre-osteoblasts and local osteoblasts begin to form new bone. Mesenchymal cells and fibroblasts...of cartilage lead to a prolongation of endochondral ossification, delayed onset of periosteal reaction, decreased overall bone formation, and impaired

  3. Green Tea and Bone Metabolism

    Science.gov (United States)

    Osteoporosis is a major health problem in elderly men and women. Epidemiological evidence has shown association between tea consumption and age-related bone loss in elderly men and women. The aim of this review is to provide a systemic review of green tea and bone health to cover the following topi...

  4. [Bone disease in Gaucher's disease].

    Science.gov (United States)

    Roca Espiau, Mercedes

    2011-09-01

    The exposition aims, is to review the pathophysiological mechanisms of bone marrow involvement and the patterns of marrow infiltration by Gaucher cells. We have reviewed the different methods of assessment of bone marrow infiltration and its temporal development. Qualitative methods include simple radiography, magnetic resonance imaging (MRI), computed tomography (CT) and radioisotope. The simple radiography is the basic element, but its sensitivity is limited and only allows for assessing changes and trabecular bone remodeling MRI allows us to appreciate the bone marrow infiltration, detection of complications and response to therapy. Radioisotopes can contribute to the differential diagnosis of osteomyelitis and bone crises. Among the quantitative methods are the QCSI (quantitative chemical shift imaging) and the dual-energy X-ray absorptiometry (DEXA), as well as new quantitative techniques of CT, MRI and ultrasound densitometry. The QCSI performed an assessment of fat content of bone marrow in the spine. DEXA quantifies bone density by measuring the attenuation coefficient. The semiquantitative methods have various "scores" to establish criteria for generalized bone disease endpoints of disease progression and response to therapy.

  5. Investigations of Diabetic Bone Disease

    DEFF Research Database (Denmark)

    Linde, Jakob Starup

    Diabetes mellitus is associated with an increased risk of fracture with and current fracture predictors underestimate fracture risk in both type 1 and type 2 diabetes. Thus, further understanding of the underlying causes of diabetic bone disease may lead to better fracture predictors and preventive...... measures in patients with diabetes. This PhD thesis reports the results of two systematic reviews and a meta-analysis, a state-of-the-art intervention study, a clinical cross-sectional study and a registry-based study all examining the relationship between diabetes, glucose, and bone. Patients with type 2...... diabetes had lower bone turnover markers compared to patients with type 1 diabetes and bone mineral density and tissue stiffness were increased in patients with type 2 diabetes. The bone turnover markers were inversely associated with blood glucose in patients with diabetes and both an oral glucose...

  6. Ethnic Differences in Bone Health

    Directory of Open Access Journals (Sweden)

    Ayse eZengin

    2015-03-01

    Full Text Available There are differences in bone health between ethnic groups in both men and in women. Variations in body size and composition are likely to contribute to reported differences. Most studies report ethnic differences in areal bone mineral density (aBMD which do not consistently parallel ethnic patterns in fracture rates. This suggests that other parameters beside aBMD should be considered when determining fracture risk between and within populations, including other aspects of bone strength: bone structure and microarchitecture as well muscle strength (mass, force generation, anatomy and fat mass. We review what is known about differences in bone-densitometry derived outcomes between ethnic groups and the extent to which they account for the differences in fracture risk. Studies are included that were published primarily between 1994 – 2014. A ‘one size fits all approach’ should not be used to understand better ethnic differences in fracture risk.

  7. The healing of fractured bones

    Energy Technology Data Exchange (ETDEWEB)

    Bacon, G.E. [Central Electricity Generating Board, Cheltenham (United Kingdom)

    1997-04-01

    A method utilising neutron beams of width 1 mm, used on D1B (2.4 A) and D20 (1.3 A) to study the healing of fractured bones is presented. It is found that the callus bone uniting the fractured tibia of a sheep, whose healing had been encouraged by daily mechanical vibration over a period of three months, showed no trace of the large preferential vertical orientation of the apatite crystals which is characteristic of the normal bone. Nevertheless the bone had regained about 60% of its mechanical strength and the callus bone, although not oriented, was well crystallized. It is considered that the new monochromator for D20, expected to give increased intensity at 2.5 A, will be of considerable advantage. (author). 2 refs.

  8. Antiepileptic drugs and bone metabolism.

    Science.gov (United States)

    Valsamis, Helen A; Arora, Surender K; Labban, Barbara; McFarlane, Samy I

    2006-09-06

    Anti-epileptic medications encompass a wide range of drugs including anticonvulsants, benzodiazepines, enzyme inducers or inhibitors, with a variety effects, including induction of cytochrome P450 and other enzyme, which may lead to catabolism of vitamin D and hypocalcemia and other effects that may significantly effect the risk for low bone mass and fractures. With the current estimates of 50 million people worldwide with epilepsy together with the rapid increase in utilization of these medications for other indications, bone disease associated with the use of anti-epileptic medications is emerging as a serious health threat for millions of people. Nevertheless, it usually goes unrecognized and untreated. In this review we discuss the pathophysiologic mechanisms of bone disease associated with anti-epileptic use, including effect of anti-epileptic agents on bone turnover and fracture risk, highlighting various strategies for prevention of bone loss and associated fractures a rapidly increasing vulnerable population.

  9. Progesterone and Bone: Actions Promoting Bone Health in Women

    Directory of Open Access Journals (Sweden)

    Vanadin Seifert-Klauss

    2010-01-01

    Full Text Available Estradiol (E2 and progesterone (P4 collaborate within bone remodelling on resorption (E2 and formation (P4. We integrate evidence that P4 may prevent and, with antiresorptives, treat women's osteoporosis. P4 stimulates osteoblast differentiation in vitro. Menarche (E2 and onset of ovulation (P4 both contribute to peak BMD. Meta-analysis of 5 studies confirms that regularly cycling premenopausal women lose bone mineral density (BMD related to subclinical ovulatory disturbances (SODs. Cyclic progestin prevents bone loss in healthy premenopausal women with amenorrhea or SOD. BMD loss is more rapid in perimenopause than postmenopause—decreased bone formation due to P4 deficiency contributes. In 4 placebo-controlled RCTs, BMD loss is not prevented by P4 in postmenopausal women with increased bone turnover. However, 5 studies of E2-MPA co-therapy show greater BMD increases versus E2 alone. P4 fracture data are lacking. P4 prevents bone loss in pre- and possibly perimenopausal women; progesterone co-therapy with antiresorptives may increase bone formation and BMD.

  10. Histologic diagnosis of metabolic bone diseases: bone histomorphometry

    Directory of Open Access Journals (Sweden)

    L. Dalle Carbonare

    2011-09-01

    Full Text Available Histomorphometry or quantitative histology is the analysis on histologic sections of bone resorption parameters, formation and structure. It is the only technique that allows a dynamic evaluation of the activity of bone modelling after labelling with tetracycline. Moreover, the new measurement procedures through the use of the computer allow an assessment of bone microarchitecture too. Histomorphometric bone biopsy is a reliable and well-tolerated procedure. Complications are reported only in 1% of the subjects (hematoma, pain, transient neuralgia. Histomorphometry is used to exclude or confirm the diagnosis of osteomalacia. It is employed in the evaluation of bone damage associated with particular treatments (for example, anticonvulsants or in case of rare bone diseases (osteogenesis imperfecta, systemic mastocytosis. It is also an essential approach when clinical, biochemical and other diagnostic data are not consistent. Finally, it is a useful method to understand the pathophysiologic mechanisms of drugs. The bone sample is taken at the level of iliac crest under local anesthesia. It is then put into methyl-metacrilate resin where the sections are prepared for the microscopic analysis of the various histomorphometric parameters.

  11. Limb bone morphology, bone strength, and cursoriality in lagomorphs.

    Science.gov (United States)

    Young, Jesse W; Danczak, Robert; Russo, Gabrielle A; Fellmann, Connie D

    2014-10-01

    The primary aim of this study is to broadly evaluate the relationship between cursoriality (i.e. anatomical and physiological specialization for running) and limb bone morphology in lagomorphs. Relative to most previous studies of cursoriality, our focus on a size-restricted, taxonomically narrow group of mammals permits us to evaluate the degree to which 'cursorial specialization' affects locomotor anatomy independently of broader allometric and phylogenetic trends that might obscure such a relationship. We collected linear morphometrics and μCT data on 737 limb bones covering three lagomorph species that differ in degree of cursoriality: pikas (Ochotona princeps, non-cursorial), jackrabbits (Lepus californicus, highly cursorial), and rabbits (Sylvilagus bachmani, level of cursoriality intermediate between pikas and jackrabbits). We evaluated two hypotheses: cursoriality should be associated with (i) lower limb joint mechanical advantage (i.e. high 'displacement advantage', permitting more cursorial species to cycle their limbs more quickly) and (ii) longer, more gracile limb bones, particularly at the distal segments (as a means of decreasing rotational inertia). As predicted, highly cursorial jackrabbits are typically marked by the lowest mechanical advantage and the longest distal segments, non-cursorial pikas display the highest mechanical advantage and the shortest distal segments, and rabbits generally display intermediate values for these variables. Variation in long bone robusticity followed a proximodistal gradient. Whereas proximal limb bone robusticity declined with cursoriality, distal limb bone robusticity generally remained constant across the three species. The association between long, structurally gracile limb bones and decreased maximal bending strength suggests that the more cursorial lagomorphs compromise proximal limb bone integrity to improve locomotor economy. In contrast, the integrity of distal limb bones is maintained with increasing

  12. Bone Biochemistry on the International Space Station

    Science.gov (United States)

    Smith, Scott M.; Heer, Martina; Zwart, Sara R.

    2016-01-01

    Bone biochemical measures provide valuable insight into the nature and time course of microgravity effects on bone during space flight, where imaging technology cannot be employed. Increased bone resorption is a hallmark of space flight, while markers of bone formation are typically unchanged or decreased. Recent studies (after the deployment to ISS of the advanced resistive exercise device, ARED), have documented that astronauts with good nutritional intake (e.g., maintenance of body mass), good vitamin D status, and exercise maintained bone mineral density. These data are encouraging, but crewmembers exercising on the ARED do have alterations in bone biochemistry, specifically, bone resorption is still increased above preflight levels, but bone formation is also significantly increased. While this bone remodeling raises questions about the strength of the resulting bone, however documents beneficial effects of nutrition and exercise in counteracting bone loss of space flight.

  13. Improved repair of bone defects with prevascularized tissue-engineered bones constructed in a perfusion bioreactor.

    Science.gov (United States)

    Li, De-Qiang; Li, Ming; Liu, Pei-Lai; Zhang, Yuan-Kai; Lu, Jian-Xi; Li, Jian-Min

    2014-10-01

    Vascularization of tissue-engineered bones is critical to achieving satisfactory repair of bone defects. The authors investigated the use of prevascularized tissue-engineered bone for repairing bone defects. The new bone was greater in the prevascularized group than in the non-vascularized group, indicating that prevascularized tissue-engineered bone improves the repair of bone defects. [Orthopedics. 2014; 37(10):685-690.].

  14. Re-evaluation of bone pain in patients with type 1 Gaucher disease suggests that bone crises occur in small bones as well as long bones.

    Science.gov (United States)

    Baris, Hagit N; Weisz Hubshman, Monika; Bar-Sever, Zvi; Kornreich, Liora; Shkalim Zemer, Vered; Cohen, Ian J

    2016-09-01

    Bone crises in type 1 Gaucher disease are reported in long bones and occasionally in weight bearing bones and other bones, but rarely in small bones of the hands and feet. We retrospectively examined the incidence of bone pain in patients followed at the Rabin Medical Center, Israel, before and following the initiation of enzyme replacement therapy (ERT) and evaluated them for bone crises. Of 100 type I Gaucher disease patients, 30 (30%) experienced one or more bone crises. Small bone crises represented 31.5% of all bone crises and were always preceded by crises in other bones. While the incidence of long bone crises reduced after the initiation of ERT, small bone crises increased. Almost 60% of patients with bone crises were of the N370S/84GG genotype suggesting a greater susceptibility of N370S/84GG patients to severe bone complications. These patients also underwent the greatest number of splenectomies (70.6% of splenectomised patients). Splenectomised patients showed a trend towards increased long and small bone crises after surgery. Active investigation of acute pain in the hands and feet in patients in our cohort has revealed a high incidence of small bone crises. Physicians should consider imaging studies to investigate unexplained pain in these areas.

  15. Bone sialoprotein and osteopontin in bone metastasis of osteotropic cancers.

    Science.gov (United States)

    Kruger, Thomas E; Miller, Andrew H; Godwin, Andrew K; Wang, Jinxi

    2014-02-01

    The mechanisms underlying malignant cell metastasis to secondary sites such as bone are complex and no doubt multifactorial. Members of the small integrin-binding ligand N-linked glycoproteins (SIBLINGs) family, particularly bone sialoprotein (BSP) and osteopontin (OPN), exhibit multiple activities known to promote malignant cell proliferation, detachment, invasion, and metastasis of several osteotropic cancers. The expression level of BSP and OPN is elevated in a variety of human cancers, particularly those that metastasize preferentially to the skeleton. Recent studies suggest that the "osteomimicry" of malignant cells is not only conferred by transmembrane receptors bound by BSP and OPN, but includes the "switch" in gene expression repertoire typically expressed in cells of skeletal lineage. Understanding the role of BSP and OPN in tumor progression, altered pathophysiology of bone microenvironment, and tumor metastasis to bone will likely result in development of better diagnostic approaches and therapeutic regimens for osteotropic malignant diseases.

  16. Novel Adipokines and Bone Metabolism

    Directory of Open Access Journals (Sweden)

    Yuan Liu

    2013-01-01

    Full Text Available Osteoporosis is a serious social issue nowadays. Both the high morbidity and its common complication osteoporotic fracture load a heavy burden on the whole society. The adipose tissue is the biggest endocrinology organ that has a different function on the bone. The adipocytes are differentiated from the same cell lineage with osteoblast, and they can secrete multiple adipokines with various functions on bone remolding. Recently, several novel adipokines have been identified and investigated thoroughly. In this paper, we would like to highlight the complicated relation between the bone metabolism and the novel adipokines, and it may provide us with a new target for prediction and treatment of osteoporosis.

  17. Gaucher disease and bone manifestations.

    Science.gov (United States)

    Marcucci, Gemma; Zimran, Ari; Bembi, Bruno; Kanis, John; Reginster, Jean-Yves; Rizzoli, Renè; Cooper, Cyrus; Brandi, Maria Luisa

    2014-12-01

    Gaucher disease is a relatively rare metabolic disease caused by the inherited deficiency of the lysosomal enzyme glucocerebrosidase. Gaucher disease affects multiple organs, among which is the skeleton. Bone involvement occurs frequently in Gaucher disease, and is one of its most debilitating features, reducing the quality of life of patients. Bone status is an important consideration for treatment to ameliorate symptoms and reduce the risk of irreversible complications. We have conducted a systematic review of all the various aspects of Gaucher disease, focusing on different skeletal manifestations, pathophysiology of bone alterations, clinical symptoms, and current diagnostic and therapeutic approaches.

  18. Bone imaging in sports medicine.

    Directory of Open Access Journals (Sweden)

    Shikare S

    1997-07-01

    Full Text Available Increased participation in sports by the general public leads to increase in sports induced injuries including stress fractures, shin splints, arthritis and host of musculotendenous maladies. We have studied twenty patients referred from sports clinic for bone scanning to evaluate clinically difficult problems. It showed stress fracture in twelve patients, bilateral shin splint in five patients and normal bone scan in three patients. Present study highlights the utility of bone imaging for the diagnosis of various sports injuries in sports medicine.

  19. 多相混输管道弯管流动腐蚀数值计算%Numerical Calculation of Flow Induced Corrosion for the Bend of Multiphase Pipelines

    Institute of Scientific and Technical Information of China (English)

    周彬; 刘勇峰

    2013-01-01

    There is gas-liquid two-phase flow in pipeline of gas condensate field, corrosion perforation often happens at the bend. Aiming at this phenomenon, using computational fluid dynamics method, according to the laws of fluid flow, a mathematical model of flow induced corrosion was established. Finite element method was used to solve equations. The results show that the flow induced corrosion is closely related to fluid movement;The change of flow rate, liquid distribution, turbulent kinetic energy, pressure and its distribution of multiphase flow through the bend causes change of shear stress, liquid containing rate, turbulent kinetic energy, pressure at internal wall of the bend, which can accelerate pipe’s corrosion. The results provide a guidance for theory study of bend’s flow induced corrosion and multiphase pipelines’ safety management.%  凝析气田管道中含有气液两相,在弯头处经常发生腐蚀穿孔现象。针对这一现象,利用计算流体力学方法,根据流体流动的规律,建立了弯管流动腐蚀的数学模型,运用有限元法来解方程。研究发现弯管的流动腐蚀与流体的运动息息相关,多相流经过弯管后流速、液相分布、湍动能、压力的大小和分布都发生了变化,引起管壁处某些部位剪切应力、含液率、湍动能、压力发生变化,加速了弯管的腐蚀。研究结果可以为弯管流动腐蚀的理论研究和多相混输管道安全管理提供指导。

  20. Research progress in the flow induced vibration mechanism of tube bundles in heat exchangers and precautionary measures%换热器管束流体诱导振动机理与防振研究进展

    Institute of Scientific and Technical Information of China (English)

    冯刚

    2012-01-01

    换热器内管束的流体诱导振动所产生的危害严重影响其运行的安全性。本文对近年来国内外学者对管束振动机理的研究现状进行了综述,说明由于振动损坏,传热管的平均服役寿命仅达到设计寿命的一半,同时系统总结并提出了防振措施。阐述了随着换热器的设计趋于大型化和壳程流动高速度化,对换热器内流体诱导振动问题的正确分析,成为延长换热器服役寿命的关键因素之一。指出了未来研究应重点关注换热管束的激振原因,提出了更有效的防护措施,对实际换热器设计具有一定的指导意义。%The flow-induced vibration of tube bundles in heat exchangers seriously affects the operation safety.This paper presents the research progress in the field of vibration mechanism of tube bundles in recent years.Due to vibration damage,the average service life of heat transfer tube is only half of its design life.Based on the systematic analysis,the corresponding anti-vibration measures are proposed.As the design trend of heat exchanger is to get large-scale and high-spead shell-side flow the flow-induced vibration of tube bundles stands out as one of the decisive factors to extend the service life of heat exchanger.This paper pointed out that the future research should be focused on the reason of flow-induced vibration of tube bundles,and the more effective protective measures should be proposed,which is of some significance to the actual design of heat exchanger.

  1. TGF-β in cancer and bone: implications for treatment of bone metastases.

    Science.gov (United States)

    Juárez, Patricia; Guise, Theresa A

    2011-01-01

    Bone metastases are common in patients with advanced breast, prostate and lung cancer. Tumor cells co-opt bone cells to drive a feed-forward cycle which disrupts normal bone remodeling to result in abnormal bone destruction or formation and tumor growth in bone. Transforming growth factor-beta (TGF-β) is a major bone-derived factor, which contributes to this vicious cycle of bone metastasis. TGF-β released from bone matrix during osteoclastic resorption stimulates tumor cells to produce osteolytic factors further increasing bone resorption adjacent to the tumor cells. TGF-β also regulates 1) key components of the metastatic cascade such as epithelial-mesenchymal transition, tumor cell invasion, angiogenesis and immunosuppression as well as 2) normal bone remodeling and coupling of bone resorption and formation. Preclinical models demonstrate that blockade of TGF-β signaling is effective to treat and prevent bone metastases as well as to increase bone mass.

  2. Estimation of In vivo Cancellous Bone Elasticity

    Science.gov (United States)

    Otani, Takahiko; Mano, Isao; Tsujimoto, Toshiyuki; Yamamoto, Tadahito; Teshima, Ryota; Naka, Hiroshi

    2009-07-01

    The effect of decreasing bone density (a symptom of osteoporosis) is greater for cancellous bone than for dense cortical bone, because cancellous bone is metabolically more active. Therefore, the bone density or bone mineral density of cancellous bone is generally used to estimate the onset of osteoporosis. Elasticity or elastic constant is a fundamental mechanical parameter and is directly related to the mechanical strength of bone. Accordingly, elasticity is a preferable parameter for assessing fracture risk. A novel ultrasonic bone densitometer LD-100 has been developed to determine the mass density and elasticity of cancellous bone with a spatial resolution comparable to that of peripheral quantitative computed tomography. Bone density and bone elasticity are evaluated using ultrasonic parameters based on fast and slow waves in cancellous bone by modeling the ultrasonic wave propagation path. Elasticity is deduced from the measured bone density and the propagation speed of the fast wave. Thus, the elasticity of cancellous bone is approximately expressed by a cubic equation of bone density.

  3. What Is Paget's Disease of Bone?

    Science.gov (United States)

    ... Size | S S M M L L Bone Basics Osteoporosis Osteogenesis Imperfecta Paget’s Disease of Bone Related Topics News Glossary ... focus(); */ } //--> Print-Friendly Page Home Bone Basics Osteoporosis Osteogenesis Imperfecta Paget’s Disease of Bone Related Topics About Us ...

  4. How Is Paget's Disease of Bone Diagnosed?

    Science.gov (United States)

    ... Size | S S M M L L Bone Basics Osteoporosis Osteogenesis Imperfecta Paget’s Disease of Bone Related Topics News Glossary ... focus(); */ } //--> Print-Friendly Page Home Bone Basics Osteoporosis Osteogenesis Imperfecta Paget’s Disease of Bone Related Topics About Us ...

  5. Decellularized bone matrix grafts for calvaria regeneration

    Science.gov (United States)

    Lee, Dong Joon; Diachina, Shannon; Lee, Yan Ting; Zhao, Lixing; Zou, Rui; Tang, Na; Han, Han; Chen, Xin; Ko, Ching-Chang

    2016-01-01

    Decellularization is a promising new method to prepare natural matrices for tissue regeneration. Successful decellularization has been reported using various tissues including skin, tendon, and cartilage, though studies using hard tissue such as bone are lacking. In this study, we aimed to define the optimal experimental parameters to decellularize natural bone matrix using 0.5% sodium dodecyl sulfate and 0.1% NH4OH. Then, the effects of decellularized bone matrix on rat mesenchymal stem cell proliferation, osteogenic gene expression, and osteogenic differentiations in a two-dimensional culture system were investigated. Decellularized bone was also evaluated with regard to cytotoxicity, biochemical, and mechanical characteristics in vitro. Evidence of complete decellularization was shown through hematoxylin and eosin staining and DNA measurements. Decellularized bone matrix displayed a cytocompatible property, conserved structure, mechanical strength, and mineral content comparable to natural bone. To study new bone formation, implantation of decellularized bone matrix particles seeded with rat mesenchymal stem cells was conducted using an orthotopic in vivo model. After 3 months post-implantation into a critical-sized defect in rat calvaria, new bone was formed around decellularized bone matrix particles and also merged with new bone between decellularized bone matrix particles. New bone formation was analyzed with micro computed tomography, mineral apposition rate, and histomorphometry. Decellularized bone matrix stimulated mesenchymal stem cell proliferation and osteogenic differentiation in vitro and in vivo, achieving effective bone regeneration and thereby serving as a promising biological bone graft. PMID:28228929

  6. CT assisted biomimetic artificial bone des

    Institute of Scientific and Technical Information of China (English)

    WANG Xian-gang; ZHANG Chao-zong; GUO Zhi-ping; TIAN Jie-mo

    2001-01-01

    @@ In the recent years, bioceramic materials have been widely used in the clinics. They are mainly fabricated as the substitution of human hard tissue, such as artificial bone and false tooth. As a medical implant, those that have similar structure to human bone have better biocompatibility and osteoinductional property. So it is necessary to design bone model close to human bone.

  7. Growth hormone stimulates bone healing in a critical-sized bone defect model

    NARCIS (Netherlands)

    Theyse, L. F. H.; Oosterlaken-Dijksterhuis, M. A.; van Doorn, J.; Dhert, W. J. A.; Hazewinkel, H. A. W.

    2006-01-01

    Growth hormone plays an important role in bone metabolism. Treating bone deficits is a major topic in orthopaedic surgery. Our hypothesis was that local continuous growth hormone administration stimulates bone healing in a canine critical-sized bone defect model. Bone formation in the defects was qu

  8. Biochemical parameters of bone metabolism in bone metastases of solid tumors (Review)

    NARCIS (Netherlands)

    Meijer, Wilhelmus; van der Veer, E; Willemse, P H

    1998-01-01

    The role of biochemical markers of bone metabolism in the diagnosis and monitoring of bone metastases in solid tumors is reviewed. Emphasis is on the recently developed markers, which may provide a more accurate quantitation of bone metabolism. In metastatic bone disease, bone formation and resorpti

  9. Drugs Approved for Bone Cancer

    Science.gov (United States)

    This page lists cancer drugs approved by the Food and Drug Administration (FDA) for bone cancer. The list includes generic names and brand names. The drug names link to NCI's Cancer Drug Information summaries.

  10. Calcium, vitamin D and bone

    OpenAIRE

    Borg, Andrew A.

    2012-01-01

    Calcium, protein and vitamin D are the main nutrients relevant to bone health. This short article discusses the importance of vitamin D and its relation to calcium homeostasis. The various causes, clinical manifestations and treatment are outlined.

  11. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... view and assess bone fractures, injuries and joint abnormalities. This exam requires little to no special preparation. ... follow-up exam is done because a potential abnormality needs further evaluation with additional views or a ...

  12. [Bone metastases treated with radiopharmaceuticals].

    Science.gov (United States)

    Giammarile, Francesco

    2013-11-01

    The administration of a radionuclide in unsealed source whose radiation will destroy cells that have selectively accumulated product is called radiometabolic therapy. The management of bone pain is a major problem, particularly in cases of breast or prostate where the presence of metastases can remain compatible with long-term survival of cancer patients. In this context, the radiometabolic therapy reduces the pain secondary to bone metastases, in association or not with analgesics. This technique is rarely prescribed as first-line. It can also be combined with external beam radiotherapy or chemotherapy, if clinical conditions permit (due to the increased risk of hematologic toxicity). In this setting, the currently used substances are Metastron® and Quadramet®. Recently, a new product, radium chloride (or Alpharadin®) has shown efficacy in bone metastases from prostate cancer, particularly in terms of bone pain palliation, but also of increased overall survival. In addition, this product has virtually no hematologic toxicity.

  13. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... radiation like light or radio waves. X-rays pass through most objects, including the body. Once it ... organs, allow more of the x-rays to pass through them. As a result, bones appear white ...

  14. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... assist in the detection and diagnosis of bone cancer . locate foreign objects in soft tissues around or ... Risks There is always a slight chance of cancer from excessive exposure to radiation. However, the benefit ...

  15. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... of page What are some common uses of the procedure? A bone x-ray is used to: ... and x-rays. top of page What does the equipment look like? The equipment typically used for ...

  16. How Is Bone Cancer Diagnosed?

    Science.gov (United States)

    ... the x-ray, but only a biopsy can absolutely determine that. A chest x-ray is often ... may find disturbing. Some places provide headphones with music to block this out. Radionuclide bone scans This ...

  17. Bone scintigraphy in ankylosing spondylitis

    Energy Technology Data Exchange (ETDEWEB)

    Otsuka, Nobuaki; Fukunaga, Masao; Tomomitsu, Tatsushi (Kawasaki Medical School, Kurashiki, Okayama (Japan)); Morita, Rikushi

    1991-10-01

    Twelve patients with ankylosing spondylitis (11 males and one female) were examined by both bone scintigraphy and dual energy X-ray absorptiometry (DEXA). Bone scintigraphy revealed increased accumulation in the sacroiliac joint in 6 patients, the spines in 10, and the other joints, including the sternoclavicular joint, in 8 patients. Each one patient had an intense tracer uptake in the finger and toe joints. In 4 patients in whom DEXA was concurrently performed at the level of 2nd to 4th lumbar vertebrae, there was no consistent tendency for mean bone mineral density. In 2 of 3 patients receiving DEXA for the radius, bone marrow density was within the normal range. (N.K.).

  18. Understanding the Structure of Bones

    Science.gov (United States)

    ... structure of bone is very similar to reinforced concrete that is used to make a building or ... a defective blueprint is produced that tells the cell to produce deformed collagen, resulting in bad collagen ...

  19. Nanoscale deformation mechanisms in bone.

    Science.gov (United States)

    Gupta, Himadri S; Wagermaier, Wolfgang; Zickler, Gerald A; Raz-Ben Aroush, D; Funari, Sérgio S; Roschger, Paul; Wagner, H Daniel; Fratzl, Peter

    2005-10-01

    Deformation mechanisms in bone matrix at the nanoscale control its exceptional mechanical properties, but the detailed nature of these processes is as yet unknown. In situ tensile testing with synchrotron X-ray scattering allowed us to study directly and quantitatively the deformation mechanisms at the nanometer level. We find that bone deformation is not homogeneous but distributed between a tensile deformation of the fibrils and a shearing in the interfibrillar matrix between them.

  20. Primary bone tumours in infants

    Energy Technology Data Exchange (ETDEWEB)

    Kozlowski, K.; Beluffi, G.; Cohen, D.H.; Padovani, J.; Tamaela, L.; Azouz, M.; Bale, P.; Martin, H.C.; Nayanar, V.V.; Arico, M.

    1985-09-01

    Ten cases of primary bone tumours in infants (1 osteosarcoma, 3 Ewing's sarcoma, 1 chondroblastoma and 5 angiomastosis) are reported. All cases of angiomatosis showed characteristic radiographic findings. In all the other tumours the X-ray appearances were different from those usually seen in older children and adolescents. In the auhtors' opinion the precise diagnosis of malignant bone tumours in infancy is very difficult as no characteristic X-ray features are present in this age period.

  1. Osteoradionecrosois of the temporal bone

    Energy Technology Data Exchange (ETDEWEB)

    Thornley, G.D.; Gullane, P.J.; Ruby, R.R.; Heeneman, H.

    1979-10-01

    Six cases of osteoradionecrosis of the temporal bone are described. Persistent symptoms of otitis externa refractory to local treatment measures should alert the physician to the possibility of underlying osteoradionecrosis. Treatment of superficial parotidectomy and partial temporal bone resection with preservation of the facial nerve is indicated if local aggressive conservative measures fail to control the disease. Benign mixed tumors of the parotid gland should be treated surgically with avoidance of radiotherapy.

  2. Mechanisms of cancer metastasis to the bone

    Institute of Scientific and Technical Information of China (English)

    Juan Juan YIN; Claire B. POLLOCK; Kathleen KELLY

    2005-01-01

    Some of the most common human cancers, including breast cancer, prostate cancer, and lung cancer, metastasize with avidity to bone. What is the basis for their preferential growth within the bone microenvironment? Bidirectional interactions between tumor cells and cells that make up bone result in a selective advantage for tumor growth and can lead to bone destruction or new bone matrix deposition. This review discusses our current understanding of the molecular components and mechanisms that are responsible for those interactions.

  3. Prostate Cancer Presenting with Parietal Bone Metastasis

    Science.gov (United States)

    Pare, Abdoul Karim; Abubakar, Babagana Mustapha; Kabore, Moussa

    2017-01-01

    Bone metastases from prostate cancer are very common. They are usually located on the axial skeleton. However, cranial bone metastases especially to the parietal bone are rare. We report a case of metastatic prostate cancer presenting with left parietal bone metastasis in a patient with no urological symptoms or signs. We should consider prostate cancer in any man above 60 years presenting unusual bone lesions.

  4. Analysis on Stall of Double Stage Adjustable-blade AXial Flow Induced Draft Fan in High-load Operation%双级动叶可调式轴流引风机高负荷失速分析

    Institute of Scientific and Technical Information of China (English)

    王军民

    2016-01-01

    Through the elaboration on the mechanism of axial flow fan stall and in combination with double stage adjustable-blade axial flow induced draft fan stall in actual production of a power plant, the paper ana-lyzes the deep-seated causes of the stall and thus puts forward the principle of stall handling of induced draft fan in high load and effective measures for install prevention.%通过阐述轴流通风机失速的机理,结合某发电厂实际生产中双级动叶可调式轴流引风机失速的现象,分析发生失速的深层次原因,提出机组高负荷下处理引风机失速异常的原则以及防止失速的有效措施。

  5. 离心泵作透平流体诱发内场噪声特性及贡献分析%Flow-induced Noise Characteristic and Contribution to Interior Noise for Centrifugal Pump as Turbine

    Institute of Scientific and Technical Information of China (English)

    董亮; 代翠; 孔繁余; 付磊; 操瑞嘉

    2016-01-01

    对某离心泵作透平流体诱发的内场噪声特性进行数值计算和试验研究。在典型流量下,采用雷诺时均方法获取壳体壁面偶极子声源,并利用边界元方法(Boundary element method, BEM)求解出壳体偶极子源作用的流动噪声,基于有限元结合边界元的声振耦合法(Finite element method/boundary element method, FEM/BEM)计算出流体激励结构振动产生的内场流激噪声及考虑结构振动的流动噪声,分析不同性质噪声源的频谱特性,同时评估内场声源在各个频段下的贡献量。借助水听器对透平出口进行流体声学试验,获得了噪声的频谱特性。结果表明,离心泵作透平出口流体诱发噪声主要集中在中低频段,小流量工况低频噪声特性增强。壳体声源作用下考虑结构振动流动噪声的计算结果与试验结果在较大流量下吻合较好。壳体偶极子作用的流动噪声对内场噪声的贡献最大,其次是考虑结构振动的流动噪声,流激噪声对内场噪声贡献最小。结构的影响使得二阶叶频处声压增加,其余离散频率及宽频处声压均有所降低。该研究结果为低噪声叶轮机械设计提供了一定的参考。%The numerical simulation and experimental investigation are performed on flow-induced interior noise in a centrifugal pump as turbine(PAT). Under typical flow conditions, the casing dipole source is obtained using Reynolds-average method. The flow-borne noise and flow-induced structure noise in interior acoustic field are solved by boundary element method(BEM) and finite element method/ boundary element method(FEM/BEM), respectively. On the basis of this, the spectrum characteristics of each noise source and their contribution to interior noise are distinguished. Meanwhile, the noise spectra are evaluated by hydrophone placed at the outlet of PAT. The results show that the spectrum of flow-induced noise is mainly concentrated on low and

  6. Vitamin D and Bone Disease

    Directory of Open Access Journals (Sweden)

    S. Christodoulou

    2013-01-01

    Full Text Available Vitamin D is important for normal development and maintenance of the skeleton. Hypovitaminosis D adversely affects calcium metabolism, osteoblastic activity, matrix ossification, bone remodeling and bone density. It is well known that Vit. D deficiency in the developing skeleton is related to rickets, while in adults is related to osteomalacia. The causes of rickets include conditions that lead to hypocalcemia and/or hypophosphatemia, either isolated or secondary to vitamin D deficiency. In osteomalacia, Vit. D deficiency leads to impairment of the mineralisation phase of bone remodeling and thus an increasing amount of the skeleton being replaced by unmineralized osteoid. The relationship between Vit. D and bone mineral density and osteoporosis are still controversial while new evidence suggests that Vit. D may play a role in other bone conditions such as osteoarthritis and stress fractures. In order to maintain a “good bone health” guidelines concerning the recommended dietary intakes should be followed and screening for Vit. D deficiency in individuals at risk for deficiency is required, followed by the appropriate action.

  7. Green tea and bone metabolism.

    Science.gov (United States)

    Shen, Chwan-Li; Yeh, James K; Cao, Jay J; Wang, Jia-Sheng

    2009-07-01

    Osteoporosis is a major health problem in both elderly women and men. Epidemiological evidence has shown an association between tea consumption and the prevention of age-related bone loss in elderly women and men. Ingestion of green tea and green tea bioactive compounds may be beneficial in mitigating bone loss of this population and decreasing their risk of osteoporotic fractures. This review describes the effect of green tea or its bioactive components on bone health, with an emphasis on (i) the prevalence and etiology of osteoporosis; (ii) the role of oxidative stress and antioxidants in osteoporosis; (iii) green tea composition and bioavailability; (iv) the effects of green tea and its active components on osteogenesis, osteoblastogenesis, and osteoclastogenesis from human epidemiological, animal, as well as cell culture studies; (v) possible mechanisms explaining the osteoprotective effects of green tea bioactive compounds; (vi) other bioactive components in tea that benefit bone health; and (vii) a summary and future direction of green tea and bone health research and the translational aspects. In general, tea and its bioactive components might decrease the risk of fracture by improving bone mineral density and supporting osteoblastic activities while suppressing osteoclastic activities.

  8. Dairy products, yogurts, and bone health.

    Science.gov (United States)

    Rizzoli, René

    2014-05-01

    Fracture risk is determined by bone mass, geometry, and microstructure, which result from peak bone mass (the amount attained at the end of pubertal growth) and from the amount of bone lost subsequently. Nutritional intakes are an important environmental factor that influence both bone mass accumulation during childhood and adolescence and bone loss that occurs in later life. Bone growth is influenced by dietary intake, particularly of calcium and protein. Adequate dietary calcium and protein are essential to achieve optimal peak bone mass during skeletal growth and to prevent bone loss in the elderly. Dairy products are rich in nutrients that are essential for good bone health, including calcium, protein, vitamin D, potassium, phosphorus, and other micronutrients and macronutrients. Studies supporting the beneficial effects of milk or dairy products on bone health show a significant inverse association between dairy food intake and bone turnover markers and a positive association with bone mineral content. Fortified dairy products induce more favorable changes in biochemical indexes of bone metabolism than does calcium supplementation alone. The associations between the consumption of dairy products and the risk of hip fracture are less well established, although yogurt intake shows a weakly positive protective trend for hip fracture. By consuming 3 servings of dairy products per day, the recommended daily intakes of nutrients essential for good bone health may be readily achieved. Dairy products could therefore improve bone health and reduce the risk of fractures in later life.

  9. Controlling Bone Graft Substitute Microstructure to Improve Bone Augmentation.

    Science.gov (United States)

    Sheikh, Zeeshan; Drager, Justin; Zhang, Yu Ling; Abdallah, Mohamed-Nur; Tamimi, Faleh; Barralet, Jake

    2016-07-01

    Vertical bone augmentation procedures are frequently carried out to allow successful placement of dental implants in otherwise atrophic ridges and represent one of the most common bone grafting procedures currently performed. Onlay autografting is one of the most prevalent and predictable techniques to achieve this; however, there are several well documented complications and drawbacks associated with it and synthetic alternatives are being sought. Monetite is a bioresorbable dicalcium phosphate with osteoconductive and osteoinductive potential that has been previously investigated for onlay bone grafting and it is routinely made by autoclaving brushite to simultaneously sterilize and phase convert. In this study, monetite disc-shaped grafts are produced by both wet and dry heating methods which alter their physical properties such as porosity, surface area, and mechanical strength. Histological observations after 12 weeks of onlay grafting on rabbit calvaria reveal higher bone volume (38%) in autoclaved monetite grafts in comparison with the dry heated monetite grafts (26%). The vertical bone height gained is similar for both the types of monetite grafts (up to 3.2 mm). However, it is observed that the augmented bone height is greater in the lateral than the medial areas of both types of monetite grafts. It is also noted that the higher porosity of autoclaved monetite grafts increases the bioresorbability, whereas the dry heated monetite grafts having lower porosity but higher surface area resorb to a significantly lesser extent. This study provides information regarding two types of monetite onlay grafts prepared with different physical properties that can be further investigated for clinical vertical bone augmentation applications.

  10. Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells.

    Science.gov (United States)

    Florencio-Silva, Rinaldo; Sasso, Gisela Rodrigues da Silva; Sasso-Cerri, Estela; Simões, Manuel Jesus; Cerri, Paulo Sérgio

    2015-01-01

    Bone tissue is continuously remodeled through the concerted actions of bone cells, which include bone resorption by osteoclasts and bone formation by osteoblasts, whereas osteocytes act as mechanosensors and orchestrators of the bone remodeling process. This process is under the control of local (e.g., growth factors and cytokines) and systemic (e.g., calcitonin and estrogens) factors that all together contribute for bone homeostasis. An imbalance between bone resorption and formation can result in bone diseases including osteoporosis. Recently, it has been recognized that, during bone remodeling, there are an intricate communication among bone cells. For instance, the coupling from bone resorption to bone formation is achieved by interaction between osteoclasts and osteoblasts. Moreover, osteocytes produce factors that influence osteoblast and osteoclast activities, whereas osteocyte apoptosis is followed by osteoclastic bone resorption. The increasing knowledge about the structure and functions of bone cells contributed to a better understanding of bone biology. It has been suggested that there is a complex communication between bone cells and other organs, indicating the dynamic nature of bone tissue. In this review, we discuss the current data about the structure and functions of bone cells and the factors that influence bone remodeling.

  11. [Bone and Calcium Metabolisms Associated with Dental and Oral-Maxillofacial Diseases. Bone remodeling and alveolar bone homeostasis].

    Science.gov (United States)

    Nakashima, Tomoki

    2015-08-01

    Bone, which support motile organ and periodontal tissue, is renewing throughout our life. This restructuring process is called "bone remodeling" , and osteoclasts and osteoblasts play a crucial role in this process. Bone remodeling is important not only for normal bone mass and strength, but also for mineral homeostasis. Bone remodeling is stringently regulated by communication between bone component cells such as osteoclasts, osteoblasts and osteocytes. An imbalance of this process is often linked to various bone diseases. Alveolar bone remodeling is directly influenced by occlusal force from the teeth. Thus, the elucidation of the regulatory mechanisms involved in alveolar bone remodeling is critical for a deeper understanding of the maintenance of healthy tooth and dental disease.

  12. Skeletal growth after oral administration of demineralized bone matrix.

    Science.gov (United States)

    Martínez, J A; Elorriaga, M; Marquínez, M; Larralde, J

    1993-03-01

    Oral administration of bone extracts obtained from bovine demineralized bone matrix to rats has a direct effect on bone metabolism, affecting bone proportions and some markers of bone formation such as bone malate dehydrogenase, serum alkaline phosphatase and serum osteocalcin. Furthermore collagen deposition, bone protein synthesis and nucleic acids content were significantly increased by the treatment.

  13. Regenerate augmentation with bone marrow concentrate after traumatic bone loss.

    Science.gov (United States)

    Gessmann, Jan; Köller, Manfred; Godry, Holger; Schildhauer, Thomas Armin; Seybold, Dominik

    2012-01-01

    Distraction osteogenesis after post-traumatic segmental bone loss of the tibia is a complex and time-consuming procedure that is often complicated due to prolonged consolidation or complete insufficiency of the regenerate. The aim of this feasibility study was to investigate the potential of bone marrow aspiration concentrate (BMAC) for percutaneous regenerate augmentation to accelerate bony consolidation of the regenerate. Eight patients (age 22-64) with an average posttraumatic bone defect of 82.4 mm and concomitant risk factors (nicotine abuse, soft-tissue defects, obesity and/or circulatory disorders) were treated with a modified Ilizarov external frame using an intramedullary cable transportation system. At the end of the distraction phase, each patient was treated with a percutaneously injection of autologous BMAC into the centre of the regenerate. The concentration factor was analysed using flow cytometry. The mean follow up after frame removal was 10 (4-15) months. With a mean healing index (HI) of 36.9 d/cm, bony consolidation of the regenerate was achieved in all eight cases. The mean concentration factor of the bone marrow aspirate was 4.6 (SD 1.23). No further operations concerning the regenerate were needed and no adverse effects were observed with the BMAC procedure. This procedure can be used for augmentation of the regenerate in cases of segmental bone transport. Further studies with a larger number of patients and control groups are needed to evaluate a possible higher success rate and accelerating effects on regenerate healing.

  14. Biomimetically Enhanced Demineralized Bone Matrix for Bone Regenerative Applications

    Directory of Open Access Journals (Sweden)

    Sriram eRavindran

    2015-10-01

    Full Text Available Demineralized bone matrix (DBM is one of the most widely used bone graft materials in dentistry. However, the ability of DBM to reliably and predictably induce bone regeneration has always been a cause for concern. The quality of DBM varies greatly depending on several donor dependent factors and also manufacturing techniques. In order to standardize the quality and to enable reliable and predictable bone regeneration, we have generated a biomimetically-enhanced version of DBM (BE-DBM using clinical grade commercial DBM as a control. We have generated the BE-DBM by incorporating a cell-derived pro-osteogenic extracellular matrix (ECM within clinical grade DBM. In the present study, we have characterized the BE-DBM and evaluated its ability to induce osteogenic differentiation of human marrow derived stromal cells (HMSCs with respect to clinical grade commercial DBM. Our results indicate that the BE-DBM contains significantly more pro-osteogenic factors than DBM and enhances HMSC differentiation and mineralized matrix formation in vitro and in vivo. Based on our results, we envision that the BE-DBM has the potential to replace DBM as the bone graft material of choice.

  15. Hyperhomocysteinemia decreases bone blood flow

    Directory of Open Access Journals (Sweden)

    Neetu T

    2011-01-01

    Full Text Available Neetu Tyagi*, Thomas P Vacek*, John T Fleming, Jonathan C Vacek, Suresh C TyagiDepartment of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, KY, USA *These authors have equal authorshipAbstract: Elevated plasma levels of homocysteine (Hcy, known as hyperhomocysteinemia (HHcy, are associated with osteoporosis. A decrease in bone blood flow is a potential cause of compromised bone mechanical properties. Therefore, we hypothesized that HHcy decreases bone blood flow and biomechanical properties. To test this hypothesis, male Sprague–Dawley rats were treated with Hcy (0.67 g/L in drinking water for 8 weeks. Age-matched rats served as controls. At the end of the treatment period, the rats were anesthetized. Blood samples were collected from experimental or control rats. Biochemical turnover markers (body weight, Hcy, vitamin B12, and folate were measured. Systolic blood pressure was measured from the right carotid artery. Tibia blood flow was measured by laser Doppler flow probe. The results indicated that Hcy levels were significantly higher in the Hcy-treated group than in control rats, whereas vitamin B12 levels were lower in the Hcy-treated group compared with control rats. There was no significant difference in folate concentration and blood pressure in Hcy-treated versus control rats. The tibial blood flow index of the control group was significantly higher (0.78 ± 0.09 flow unit compared with the Hcy-treated group (0.51 ± 0.09. The tibial mass was 1.1 ± 0.1 g in the control group and 0.9 ± 0.1 in the Hcy-treated group. The tibia bone density was unchanged in Hcy-treated rats. These results suggest that Hcy causes a reduction in bone blood flow, which contributes to compromised bone biomechanical properties.Keywords: homocysteine, tibia, bone density

  16. Dynamics of bone graft healing around implants

    Directory of Open Access Journals (Sweden)

    Narayan Venkataraman

    2015-01-01

    A few questions arise pertaining to the use of bone grafts along with implants are whether these are successful in approximation with implant. Do they accelerate bone regeneration? Are all defects ultimately regenerated with new viable bone? Is the bone graft completely resorbed or integrated in new bone? Does the implant surface characteristic positively affect osseointegration when used with a bone graft? What type of graft and implant surface can be used that will have a positive effect on the healing type and time? Finally, what are the dynamics of bone graft healing around an implant? This review discusses the cellular and molecular mechanisms of bone graft healing in general and in vicinity of another foreign, avascular body, namely the implant surface, and further, the role of bone grafts in osseointegration and/or clinical success of the implants.

  17. Fracture of phalanx from simple bone cyst: A rare bone lesion in the hand

    Directory of Open Access Journals (Sweden)

    Emre Inozu

    2016-08-01

    Full Text Available Solitary bone cysts, also known as unicameral bone cysts or simple bone cysts, are benign tumors of the bone full of liquid. While typically seen on proximal humerus and femur bones, they are rarely seen on other bones. Simple bone cysts, diagnosed with X-ray. incidentally or for other reasons, are usually asymptomatic. In this case, a 25-year-old male patient with pathologic fracture of the proximal phalanx from an undiagnosed simple bone cyst was reported and referred to the authors' clinic to be treated with curettage. [Hand Microsurg 2016; 5(2.000: 100-103

  18. Cancer Cell Colonisation in the Bone Microenvironment

    Directory of Open Access Journals (Sweden)

    Casina Kan

    2016-10-01

    Full Text Available Bone metastases are a common complication of epithelial cancers, of which breast, prostate and lung carcinomas are the most common. The establishment of cancer cells to distant sites such as the bone microenvironment requires multiple steps. Tumour cells can acquire properties to allow epithelial-to-mesenchymal transition, extravasation and migration. Within the bone metastatic niche, disseminated tumour cells may enter a dormancy stage or proliferate to adapt and survive, interacting with bone cells such as hematopoietic stem cells, osteoblasts and osteoclasts. Cross-talk with the bone may alter tumour cell properties and, conversely, tumour cells may also acquire characteristics of the surrounding microenvironment, in a process known as osteomimicry. Alternatively, these cells may also express osteomimetic genes that allow cell survival or favour seeding to the bone marrow. The seeding of tumour cells in the bone disrupts bone-forming and bone-resorbing activities, which can lead to macrometastasis in bone. At present, bone macrometastases are incurable with only palliative treatment available. A better understanding of how these processes influence the early onset of bone metastasis may give insight into potential therapies. This review will focus on the early steps of bone colonisation, once disseminated tumour cells enter the bone marrow.

  19. Cancer Cell Colonisation in the Bone Microenvironment

    Science.gov (United States)

    Kan, Casina; Vargas, Geoffrey; Le Pape, François; Clézardin, Philippe

    2016-01-01

    Bone metastases are a common complication of epithelial cancers, of which breast, prostate and lung carcinomas are the most common. The establishment of cancer cells to distant sites such as the bone microenvironment requires multiple steps. Tumour cells can acquire properties to allow epithelial-to-mesenchymal transition, extravasation and migration. Within the bone metastatic niche, disseminated tumour cells may enter a dormancy stage or proliferate to adapt and survive, interacting with bone cells such as hematopoietic stem cells, osteoblasts and osteoclasts. Cross-talk with the bone may alter tumour cell properties and, conversely, tumour cells may also acquire characteristics of the surrounding microenvironment, in a process known as osteomimicry. Alternatively, these cells may also express osteomimetic genes that allow cell survival or favour seeding to the bone marrow. The seeding of tumour cells in the bone disrupts bone-forming and bone-resorbing activities, which can lead to macrometastasis in bone. At present, bone macrometastases are incurable with only palliative treatment available. A better understanding of how these processes influence the early onset of bone metastasis may give insight into potential therapies. This review will focus on the early steps of bone colonisation, once disseminated tumour cells enter the bone marrow. PMID:27782035

  20. Biomechanical researches on tissue engineering bone constructed by deproteinated bone

    Institute of Scientific and Technical Information of China (English)

    JIAN Yue-kui; TIAN Xiao-bin; LI Qi-hong; LI Bo; PENG Zhi; ZHAO Wei-feng; WANG Yuan-zheng; YANG Zhen

    2010-01-01

    Objective:To study biomechanical changes of newly formed bones 24 weeks after repairing large defects of long bones of goats using heterogeneous deproteinated bone(DPB)prepared by modified methods as an engineering scaffold.Methods:According to a fully randomized design,18 goats were evenly divided into three groups:normal bone control group(Group A),autologous bone group(Group B)and experimental group(Group C).Each goat in Groups B and C were subjected to the periosteum and bone defect at middle-lower part of the fight tibia(20% of the whole tibia in length),followed by autologous bone or DPB plus autologous MSCs + rhBMP2 implantation,respectively and semiring slot fixation;while goats in Group A did not perform osteotomy.At 24 weeks after surgery,biomechanical tests were carried out on the tibias.Results:At 24 weeks after surgery,the results of anticompression test on tibias in three groups were recorded by a functional recorder presented as linear pressure-deformation curve.The shapes of the curves and their change tendency were similar among three groups.The ultimate pressure values were 10.74 Mpa±1.23 Mpa,10.11 Mpa±1.35 Mpa and 10.22 Mpa±1.32 Mpa and fracture compression rates were 26.82%±0.87%,27.17%±0.75% and 28.22%±1.12% in Groups A,B and C,respectively.Comparisons of anti-compression ultimate pressures and fracture compression rates among three groups demonstrated no significant difference(P_(AB)=0.415,P_(BC)=0.494).Three-point antibend test on tibias was recorded as load-deformation curves,and the shapes of the curves and their change tendency were similar among three groups.The ultimate pressure values of the anti-bend test were 481.52 N±12.45 N,478.34 N±14.68 N and 475.62 N±13.41 N and the fracture bend rates were 2.62 mm±0.12 mm,2.61 mm±0.15 mm and 2.81 mm±0.13 mm in Groups A,B and C,respectively.There was no significant difference between groups(P_(AB)=0.7,P_(BC)=0.448).The ultirates were 29.51°±1.64°,28.88°±1.46° and 28.81°±1.33

  1. Autologous bone graft versus demineralized bone matrix in internal fixation of ununited long bones

    Directory of Open Access Journals (Sweden)

    Rubenbauer Bianka

    2009-12-01

    Full Text Available Abstract Background Non-unions are severe complications in orthopaedic trauma care and occur in 10% of all fractures. The golden standard for the treatment of ununited fractures includes open reduction and internal fixation (ORIF as well as augmentation with autologous-bone-grafting. However, there is morbidity associated with the bone-graft donor site and some patients offer limited quantity or quality of autologous-bone graft material. Since allogene bone-grafts are introduced on the market, this comparative study aims to evaluate healing characteristics of ununited bones treated with ORIF combined with either iliac-crest-autologous-bone-grafting (ICABG or demineralized-bone-matrix (DBM. Methods and results From 2000 to 2006 out of sixty-two consecutive patients with non-unions presenting at our Level I Trauma Center, twenty patients had ununited diaphyseal fractures of long bones and were treated by ORIF combined either by ICABG- (n = 10 or DBM-augmentation (n = 10. At the time of index-operation, patients of the DBM-group had a higher level of comorbidity (ASA-value: p = 0.014. Mean duration of follow-up was 56.6 months (ICABG-group and 41.2 months (DBM-group. All patients were clinically and radiographically assessed and adverse effects related to bone grafting were documented. The results showed that two non-unions augmented with ICABG failed osseous healing (20% whereas all non-unions grafted by DBM showed successful consolidation during the first year after the index operation (p = 0.146. No early complications were documented in both groups but two patients of the ICABG-group suffered long-term problems at the donor site (20% (p = 0.146. Pain intensity were comparable in both groups (p = 0.326. However, patients treated with DBM were more satisfied with the surgical procedure (p = 0.031. Conclusion With the use of DBM, the costs for augmentation of the non-union-site are more expensive compared to ICABG (calculated difference: 160

  2. Interesting bone scans - unusual findings

    Energy Technology Data Exchange (ETDEWEB)

    Dobson, M.; Wadhwa, S.S.; Mansberg, R.; Fernandes, V.B. [Wollongong Hospital, Wollongong, NSW (Australia)

    1997-12-01

    A 59-year-old female with carcinoma of the colon and known liver metastatic disease was referred for bone scan to evaluate for bone metastases. Although no bone metastases were found, there was abnormal uptake noted in the liver corresponding to a metastatic calcified lesion. The only other findings were of degenerative disease in the cervical spine, right shoulder and small joints of the hands. A 69-year-old male with carcinoma of the prostate and right side low back pain was referred for bone scan. No focal abnormalities to suggest metastatic disease were identified; findings within the cervical spine, lumber spine and knees were presumed secondary to degenerative disease. Intermittent pain persisted and the patient was referred for a repeat bone scan six months later. Previous scan findings of degenerative disease and no metastatic disease were confirmed; however, closer inspection revealed an enlarged right kidney with significant retention of tracer in the pelvicalyceal system suggesting possible obstruction. A Retrograde pyelogram was performed, and no obvious obstruction demonstrated. As bone scan findings were very suggestive of obstruction, a DTPA scan with lasix was performed showing a dilated right collecting system with no functional obstruction. Given the degree of dilation, it is possible that the patient experiences intermittent PUJ obstruction causing his symptoms. A 33-year-old male with insulin dependent diabetes mellitus and viral arthritis was referred for a bone scan. A three phase revealed increased uptake in the region of the knee and leR proximal tibia. Delayed whole body images revealed multiple focal areas of osteoblastic activity in the leR tibia. Abnormal uptake was also seen in the upper third of the leR femur. The remainder of the skeletal survey was normal. X-ray correlation of the leR tibia and femoral findings was undertaken. Combinating unilateral changes on bone scan and X-ray although very suggestive of sclerotic polyostotic

  3. Exploring the Bone Proteome to Help Explain Altered Bone Remodeling and Preservation of Bone Architecture and Strength in Hibernating Marmots.

    Science.gov (United States)

    Doherty, Alison H; Roteliuk, Danielle M; Gookin, Sara E; McGrew, Ashley K; Broccardo, Carolyn J; Condon, Keith W; Prenni, Jessica E; Wojda, Samantha J; Florant, Gregory L; Donahue, Seth W

    2016-01-01

    Periods of physical inactivity increase bone resorption and cause bone loss and increased fracture risk. However, hibernating bears, marmots, and woodchucks maintain bone structure and strength, despite being physically inactive for prolonged periods annually. We tested the hypothesis that bone turnover rates would decrease and bone structural and mechanical properties would be preserved in hibernating marmots (Marmota flaviventris). Femurs and tibias were collected from marmots during hibernation and in the summer following hibernation. Bone remodeling was significantly altered in cortical and trabecular bone during hibernation with suppressed formation and no change in resorption, unlike the increased bone resorption that occurs during disuse in humans and other animals. Trabecular bone architecture and cortical bone geometrical and mechanical properties were not different between hibernating and active marmots, but bone marrow adiposity was significantly greater in hibernators. Of the 506 proteins identified in marmot bone, 40 were significantly different in abundance between active and hibernating marmots. Monoaglycerol lipase, which plays an important role in fatty acid metabolism and the endocannabinoid system, was 98-fold higher in hibernating marmots compared with summer marmots and may play a role in regulating the changes in bone and fat metabolism that occur during hibernation.

  4. 2009 Santa Fe Bone symposium.

    Science.gov (United States)

    Lewiecki, E Michael; Bilezikian, John P; Laster, Andrew J; Miller, Paul D; Recker, Robert R; Russell, R Graham G; Whyte, Michael P

    2010-01-01

    Osteoporosis is a common skeletal disease with serious clinical consequences because of fractures. Despite the availability of clinical tools to diagnose osteoporosis and assess fracture risk, and drugs proven to reduce fracture risk, it remains a disease that is underdiagnosed and undertreated. When treatment is started, it is commonly not taken correctly or long enough to be effective. Recent advances in understanding of the regulators and mediators of bone remodeling have led to new therapeutic targets and the development of drugs that may offer advantages over current agents in reducing the burden of osteoporotic fractures. Many genetic factors that play a role in the pathogenesis of osteoporosis and metabolic bone disease have now been identified. At the 2009 Santa Fe Bone Symposium, held in Santa Fe, New Mexico, USA, the links between advances in genetics, basic bone science, recent clinical trials, and new and emerging therapeutic agents were presented and explored. Socioeconomic challenges and opportunities in the care of osteoporosis were discussed. This is a collection of medical essays based on key presentations at the 2009 Santa Fe Bone Symposium.

  5. [Bone and Men's Health. Bone selective androgen receptor modulators].

    Science.gov (United States)

    Furuya, Kazuyuki

    2010-02-01

    Androgen, one of the sex steroid hormones shows various biological activities on the corresponding various tissues. Many efforts to produce novel drug materials maintaining a desired biological activity with an adequate tissue selectivity, which is so-called selective androgen receptor modulators (SARMs) , are being performed. As one of such efforts, studies on SARMs against bone tissues which possess a significant potential to stimulate a bone formation with reducing undesirable androgenic virilizing activities are in progress all over the world. This review focuses on the research and development activities of such SARMs and discuses their usefulness for the treatment of osteoporosis.

  6. Fat and Bone: An Odd Couple

    Science.gov (United States)

    Kremer, Richard; Gilsanz, Vicente

    2016-01-01

    In this review, we will first discuss the concept of bone strength and introduce how fat at different locations, including the bone marrow, directly or indirectly regulates bone turnover. We will then review the current literature supporting the mechanistic relationship between marrow fat and bone and our understanding of the relationship between body fat, body weight, and bone with emphasis on its hormonal regulation. Finally, we will briefly discuss the importance and challenges of accurately measuring the fat compartments using non-invasive methods. This review highlights the complex relationship between fat and bone and how these new concepts will impact our diagnostic and therapeutic approaches in the very near future. PMID:27014187

  7. Androgen and bone mass in men

    Institute of Scientific and Technical Information of China (English)

    AnnieW.C.Kung

    2003-01-01

    Androgens have multiple actions on the skeleton throughout life. Androgens promote skeletal growth and accumulation of minerals during puberty and adolescence and stimulate osteoblast but suppress osteoclast function,activity and lifespan through complex mechanisms. Also androgens increase periosteal bone apposition, resulting in larger bone size and thicker cortical bone in men. There is convincing evidence to show that aromatization to estrogens was an important pathway for mediating the action of testosterone on bone physiology. Estrogen is probably the dominant sex steroid regulating bone resorption in men, but both testosterone and estrogen are important in maintaining bone formation. ( Asian J Androl 2003 Jun; 5: 148-154)

  8. Bone disease of primary hyperoxaluria in infancy

    Energy Technology Data Exchange (ETDEWEB)

    Ring, E.; Wendler, H.; Zobel, G. (Graz Univ. (Austria). Abt. fuer Kinderheilkunde); Ratschek, M. (Graz Univ. (Austria). Abt. fuer Pathologie)

    1989-11-01

    A patient with primary hyperoxaluria type I in infancy is reported. He had renal insufficiency, but urolithiasis was absent. Demonstration of diffuse nephrocalcinosis by renal ultrasound contributed to early diagnosis. Prolonged survival leads to extensive extrarenal oxalate deposition. Repeated skeletal surveys showed the development and the progression of severe hyperoxaluria-related bone disease. Translucent metaphyseal bands with sclerotic margins, wide areas of rarefaction at the ends of the long bones, and translucent rims around the epiphyses and the tarsal bones were signs of disordered bone growth. Bone density generally increased with time indicating progressive sclerosis due to oxalate deposition in the previously normal bone structure. (orig.).

  9. Bone composition and bone mineral density of long bones of free-living raptors

    Directory of Open Access Journals (Sweden)

    Britta Schuhmann

    2014-10-01

    Full Text Available Bone composition and bone mineral density (BMD of long bones of two raptor and one owl species were assessed. Right humerus and tibiotarsus of 40 common buzzards, 13 white-tailed sea eagles and 9 barn owls were analyzed. Statistical analysis was performed for influence of species, age, gender and nutritional status. The BMD ranged from 1.8 g/cm3 (common buzzards to 2.0 g/cm3 (white-tailed sea eagles. Dry matter was 87.0% (buzzards to 89.5% (sea eagles. Percentage of bone ash was lower in sea eagles than in buzzards and owls. Content of crude fat was lower than 2% of the dry matter in all bones. In humeri lower calcium values (220 g/kg fat free dry matter were detected in sea eagles than in barn owls (246 g/kg, in tibiotarsi no species differences were observed. Phosphorus levels were lowest in sea eagles (humeri 104 g/kg fat free dry matter, tibiotarsi 102 g/kg and highest in barn owls. Calcium-phosphorus ratio was about 2:1 in all species. Magnesium content was lower in sea eagles (humeri 2590 mg/kg fat free dry matter, tibiotarsi 2510 mg/kg than in buzzards and owls. Bones of barn owls contained more copper (humeri 8.7 mg/kg fat free dry matter, tibiotarsi 12.7 mg/kg than in the Accipitridae. Zinc content was highest in sea eagles (humeri 278 mg/kg fat free dry matter, tibiotarsi 273 mg/kg and lowest in barn owls (humeri 185 mg/kg, tibiotarsi 199 mg/kg. The present study shows that bone characteristics can be considered as species specific in raptors.

  10. Systemic alendronate prevents resorption of necrotic bone during revascularization. A bone chamber study in rats

    Directory of Open Access Journals (Sweden)

    Aspenberg Per

    2002-08-01

    Full Text Available Abstract Background Avascular necrosis of bone (osteonecrosis can cause structural failure and subsequent deformation, leading to joint dysfunction and pain. Structural failure is the result of resorption of necrotic bone during revascularization, before new bone has formed or consolidated enough for loadbearing. Bone resorption can be reduced by bisphosphonates. If resorption of the necrotic bone could be reduced during the revascularization phase until sufficient new bone has formed, it would appear that structural failure could be avoided. Methods To test whether resorption of necrotic bone can be prevented, structural grafts were subjected to new bone ingrowth during systemic bisphosphonate treatment in a rat model. Results In rats treated with alendronate the necrotic bone was not resorbed, whereas it was almost entirely resorbed in the controls. Conclusion Systemic alendronate treatment prevents resorption of necrotic bone during revascularization. In patients with osteonecrosis, bisphosphonates may therefore prevent collapse of the necrotic bone.

  11. Functional adaptation to loading of a single bone is neuronally regulated and involves multiple bones.

    Science.gov (United States)

    Sample, Susannah J; Behan, Mary; Smith, Lesley; Oldenhoff, William E; Markel, Mark D; Kalscheur, Vicki L; Hao, Zhengling; Miletic, Vjekoslav; Muir, Peter

    2008-09-01

    Regulation of load-induced bone formation is considered a local phenomenon controlled by osteocytes, although it has also been hypothesized that functional adaptation may be neuronally regulated. The aim of this study was to examine bone formation in multiple bones, in response to loading of a single bone, and to determine whether adaptation may be neuronally regulated. Load-induced responses in the left and right ulnas and humeri were determined after loading of the right ulna in male Sprague-Dawley rats (69 +/- 16 days of age). After a single period of loading at -760-, -2000-, or -3750-microepsilon initial peak strain, rats were given calcein to label new bone formation. Bone formation and bone neuropeptide concentrations were determined at 10 days. In one group, temporary neuronal blocking was achieved by perineural anesthesia of the brachial plexus with bupivicaine during loading. We found right ulna loading induces adaptive responses in other bones in both thoracic limbs compared with Sham controls and that neuronal blocking during loading abrogated bone formation in the loaded ulna and other thoracic limb bones. Skeletal adaptation was more evident in distal long bones compared with proximal long bones. We also found that the single period of loading modulated bone neuropeptide concentrations persistently for 10 days. We conclude that functional adaptation to loading of a single bone in young rapidly growing rats is neuronally regulated and involves multiple bones. Persistent changes in bone neuropeptide concentrations after a single loading period suggest that plasticity exists in the innervation of bone.

  12. Fibrillin microfibrils in bone physiology.

    Science.gov (United States)

    Smaldone, Silvia; Ramirez, Francesco

    2016-01-01

    The severe skeletal abnormalities associated with Marfan syndrome (MFS) and congenital contractural arachnodactyly (CCA) underscore the notion that fibrillin assemblies (microfibrils and elastic fibers) play a critical role in bone formation and function in spite of representing a low abundance component of skeletal matrices. Studies of MFS and CCA mice have correlated the skeletal phenotypes of these mutant animals with distinct pathophysiological mechanisms that reflect the contextual contribution of fibrillin-1 and -2 scaffolds to TGFβ and BMP signaling during bone patterning, growth and metabolism. Illustrative examples include the unique role of fibrillin-2 in regulating BMP-dependent limb patterning and the distinct impact of the two fibrillin proteins on the commitment and differentiation of marrow mesenchymal stem cells. Collectively, these findings have important implication for our understanding of the pathophysiological mechanisms that drive age- and injury-related processes of bone degeneration.

  13. Integrins mediating bone signal transduction

    Institute of Scientific and Technical Information of China (English)

    HE Chuanglong; WANG Yuanliang; YANG Lihua; ZHANG Jun

    2004-01-01

    Integrin-mediated adhesions play critical roles in diverse cell functions. Integrins offers a platform on which mechanical stimuli, cytoskeletal organization, biochemical signals can concentrate. Mechanical stimuli transmitted by integrins influence the cytoskeleton, in turn, the cytoskeleton influences cell adhesion via integrins, then cell adhesion results in a series of signal transduction cascades. In skeleton, integrins also have a key role for bone resoption by osteoclasts and reformation by osteoblasts. In present review, the proteins involved in integrin signal transduction and integrin signal transduction pathways were discussed, mainly on the basic mechanisms of integrin signaling and the roles of integrins in bone signal transduction, which may give insight into new therapeutic agents to all kinds of skeletal diseases and new strategies for bone tissue engineering.

  14. Phytonutrients for bone health during ageing.

    Science.gov (United States)

    Sacco, Sandra Maria; Horcajada, Marie-Noëlle; Offord, Elizabeth

    2013-03-01

    Osteoporosis is a skeletal disease characterized by a decrease in bone mass and bone quality that predispose an individual to an increased risk of fragility fractures. Evidence demonstrating a positive link between certain dietary patterns (e.g. Mediterranean diet or high consumption of fruits and vegetables) and bone health highlights an opportunity to investigate their potential to protect against the deterioration of bone tissue during ageing. While the list of these phytonutrients is extensive, this review summarizes evidence on some which are commonly consumed and have gained increasing attention over recent years, including lycopene and various polyphenols (e.g. polyphenols from tea, grape seed, citrus fruit, olive and dried plum). Evidence to define a clear link between these phytonutrients and bone health is currently insufficient to generate precise dietary recommendations, owing to mixed findings or a scarcity in clinical data. Moreover, their consumption typically occurs within the context of a diet consisting of a mix of phytonutrients and other nutrients rather than in isolation. Future clinical trials that can apply a robust set of outcome measurements, including the determinants of bone strength, such as bone quantity (i.e. bone mineral density) and bone quality (i.e. bone turnover and bone microarchitecture), will help to provide a more comprehensive outlook on how bone responds to these various phytonutrients. Moreover, future trials that combine these phytonutrients with established bone nutrients (i.e. calcium and vitamin D) are needed to determine whether combined strategies can produce more robust effects on skeletal health.

  15. Parathyroid hormone and bone healing

    DEFF Research Database (Denmark)

    Ellegaard, M; Jørgensen, N R; Schwarz, P

    2010-01-01

    , no pharmacological treatments are available. There is therefore an unmet need for medications that can stimulate bone healing. Parathyroid hormone (PTH) is the first bone anabolic drug approved for the treatment of osteoporosis, and intriguingly a number of animal studies suggest that PTH could be beneficial...... in the treatment of fractures and could thus be a potentially new treatment option for induction of fracture healing in humans. Furthermore, fractures in animals with experimental conditions of impaired healing such as aging, estrogen withdrawal, and malnutrition can heal in an expedited manner after PTH treatment...

  16. Bone Repair and Military Readiness

    Science.gov (United States)

    2014-08-01

    L929, and HUVEC ). Months 1-24. FY10 Task 3: Determine the biological response to silorane bone cement in animal models, Subtask 3a. Small Animal...cement identified in Specific Aim 1 with relevant cell lines (i.e., MLO-A5, MSCs, L929, and HUVEC ). Months 1-36. FY10 Task 3: Determine the...chemically initiated silorane bone cement identified in Specific Aim 1 with relevant cell lines (i.e., MLO-A5, MSCs, L929, and HUVEC ). Months 1-36

  17. The classic: Bone morphogenetic protein.

    Science.gov (United States)

    Urist, Marshall R; Strates, Basil S

    2009-12-01

    This Classic Article is a reprint of the original work by Marshall R. Urist and Basil S. Strates, Bone Morphogenetic Protein. An accompanying biographical sketch of Marshall R. Urist, MD is available at DOI 10.1007/s11999-009-1067-4; a second Classic Article is available at DOI 10.1007/s11999-009-1069-2; and a third Classic Article is available at DOI 10.1007/s11999-009-1070-9. The Classic Article is copyright 1971 by Sage Publications Inc. Journals and is reprinted with permission from Urist MR, Strates BS. Bone morphogenetic protein. J Dent Res. 1971;50:1392-1406.

  18. Bone regeneration and stem cells

    DEFF Research Database (Denmark)

    Arvidson, K; Abdallah, B M; Applegate, L A

    2011-01-01

    This invited review covers research areas of central importance for orthopedic and maxillofacial bone tissue repair, including normal fracture healing and healing problems, biomaterial scaffolds for tissue engineering, mesenchymal and fetal stem cells, effects of sex steroids on mesenchymal stem...... cells, use of platelet rich plasma for tissue repair, osteogenesis and its molecular markers. A variety of cells in addition to stem cells, as well as advances in materials science to meet specific requirements for bone and soft tissue regeneration by addition of bioactive molecules, are discussed....

  19. Aneurysmal bone cysts treated by curettage, cryotherapy and bone grafting

    NARCIS (Netherlands)

    Schreuder, HWB; Veth, RPH; Pruszczynski, M; Lemmens, JAM; Molenaar, WM; Schraffordt Koops, H.

    1997-01-01

    We treated 26 patients with 27 aneurysmal bone cysts by curettage and cryotherapy and evaluated local tumour control. complications and functional outcome. The mean follow-up time was 37 months (19 to 154), There was local recurrence in one patient. Two patients developed deep wound infections and o

  20. 21 CFR 888.3027 - Polymethylmethacrylate (PMMA) bone cement.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Polymethylmethacrylate (PMMA) bone cement. 888... Polymethylmethacrylate (PMMA) bone cement. (a) Identification. Polymethylmethacrylate (PMMA) bone cement is a device...: Polymethylmethacrylate (PMMA) Bone Cement.”...

  1. Bone Marrow Transplants: "Another Possibility at Life"

    Science.gov (United States)

    ... page please turn Javascript on. Feature: Bone Marrow Transplants “Another Possibility at Life” Past Issues / Summer 2011 ... for 16,000 of them, a bone marrow transplant is the best treatment option, notes Susan F. ...

  2. Understanding coupling between bone resorption and formation

    DEFF Research Database (Denmark)

    Andersen, Thomas Levin; Abdelgawad, Mohamed Essameldim; Kristensen, Helene Bjørg

    2013-01-01

    . Collectively, our observations suggest that arrested reversal cells reflect aborted remodeling cycles that did not progress to the bone formation step. We, therefore, propose that bone loss in postmenopausal osteoporosis does not only result from a failure of the bone formation step, as commonly believed......Bone remodeling requires bone resorption by osteoclasts, bone formation by osteoblasts, and a poorly investigated reversal phase coupling resorption to formation. Likely players of the reversal phase are the cells recruited into the lacunae vacated by the osteoclasts and presumably preparing...... these lacunae for bone formation. These cells, called herein reversal cells, cover >80% of the eroded surfaces, but their nature is not identified, and it is not known whether malfunction of these cells may contribute to bone loss in diseases such as postmenopausal osteoporosis. Herein, we combined...

  3. Calcium, vitamin D, and your bones

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/patientinstructions/000490.htm Calcium, vitamin D, and your bones To use the sharing ... and maintain strong bones. How Much Calcium and Vitamin D do I Need? Amounts of calcium are ...

  4. Osteoporosis: Peak Bone Mass in Women

    Science.gov (United States)

    ... not supported by your browser. Home Osteoporosis Women Osteoporosis: Peak Bone Mass in Women Publication available in: ... drug products. NIH Pub. No. 15-7891 NIH Osteoporosis and Related Bone Diseases ~ National Resource Center 2 ...

  5. Regenerate augmentation with bone marrow concentrate after traumatic bone loss

    Directory of Open Access Journals (Sweden)

    Jan Gessmann

    2012-03-01

    Full Text Available Distraction osteogenesis after post-traumatic segmental bone loss of the tibia is a complex and time-consuming procedure that is often complicated due to prolonged consolidation or complete insufficiency of the regenerate. The aim of this feasibility study was to investigate the potential of bone marrow aspiration concentrate (BMAC for percutaneous regenerate augmentation to accelerate bony consolidation of the regenerate. Eight patients (age 22-64 with an average posttraumatic bone defect of 82.4 mm and concomitant risk factors (nicotine abuse, soft-tissue defects, obesity and/or circulatory disorders were treated with a modified Ilizarov external frame using an intramedullary cable transportation system. At the end of the distraction phase, each patient was treated with a percutaneously injection of autologous BMAC into the centre of the regenerate. The concentration factor was analysed using flow cytometry. The mean follow up after frame removal was 10 (4-15 months. With a mean healing index (HI of 36.9 d/cm, bony consolidation of the regenerate was achieved in all eight cases. The mean concentration factor of the bone marrow aspirate was 4.6 (SD 1.23. No further operations concerning the regenerate were needed and no adverse effects were observed with the BMAC procedure. This procedure can be used for augmentation of the regenerate in cases of segmental bone transport. Further studies with a larger number of patients and control groups are needed to evaluate a possible higher success rate and accelerating effects on regenerate healing.

  6. Effects of Spaceflight on Bone: The Rat as an Animal Model for Human Bone Loss

    Science.gov (United States)

    Halloran, B.; Weider, T.; Morey-Holton, E.

    1999-01-01

    The loss of weight bearing during spaceflight results in osteopenia in humans. Decrements in bone mineral reach 3-10% after as little as 75-184 days in space. Loss of bone mineral during flight decreases bone strength and increases fracture risk. The mechanisms responsible for, and the factors contributing to, the changes in bone induced by spaceflight are poorly understood. The rat has been widely used as an animal model for human bone loss during spaceflight. Despite its potential usefulness, the results of bone studies performed in the rat in space have been inconsistent. In some flights bone formation is decreased and cancellous bone volume reduced, while in others no significant changes in bone occur. In June of 1996 Drs. T. Wronski, S. Miller and myself participated in a flight experiment (STS 78) to examine the effects of glucocorticoids on bone during weightlessness. Technically the 17 day flight experiment was flawless. The results, however, were surprising. Cancellous bone volume and osteoblast surface in the proximal tibial metaphysis were the same in flight and ground-based control rats. Normal levels of cancellous bone mass and bone formation were also detected in the lumbar vertebrae and femoral neck of flight rats. Furthermore, periosteal bone formation rate was found to be identical in flight and ground-based control rats. Spaceflight had little or no effect on bone metabolism! These results prompted us to carefully review the changes in bone observed in, and the flight conditions of previous spaceflight missions.

  7. Guided bone regeneration using autogenous tooth bone graft in implant therapy: case series.

    Science.gov (United States)

    Kim, Young-Kyun; Kim, Su-Gwan; Bae, Ji-Hyun; Um, In-Woong; Oh, Ji-Su; Jeong, Kyung-In

    2014-04-01

    Recently, techniques have been reported that involve the preparation of extracted teeth from patients used as particulated bone graft materials for bone graft purposes. For implant placement and bone graft, autogenous teeth bone graft materials were used in 15 patients, and clinically excellent results were obtained. In histological examination, favorable bony healing by osteoconduction was observed.

  8. Impact of bone graft harvesting techniques on bone formation and graft resorption

    DEFF Research Database (Denmark)

    Saulacic, Nikola; Bosshardt, Dieter D; Jensen, Simon S;

    2015-01-01

    formation and graft resorption in vivo. MATERIAL AND METHODS: Four harvesting techniques were used: (i) corticocancellous blocks particulated by a bone mill; (ii) bone scraper; (iii) piezosurgery; and (iv) bone slurry collected from a filter device upon drilling. The grafts were placed into bone defects...

  9. Determinants of bone mass and bone geometry in adolescent and young adult women

    NARCIS (Netherlands)

    Kardinaal, A.F.M.; Hoorneman, G.; Väänänen, K.; Charles, P.; Ando, S.; Maggiolini, M.; Charzewska, J.; Rotily, M.; Deloraine, A.; Heikkinen, J.; Juvin, R.; Schaafsma, G.

    2000-01-01

    Bone mass and bone geometry are considered to have independent effects on bone strength. The purpose of this study was to obtain data on bone mass and geometry in young female populations and how they are influenced by body size and lifestyle factors. In a cross-sectional, observational study in six

  10. Printing bone : the application of 3D fiber deposition for bone tissue engineering

    NARCIS (Netherlands)

    Fedorovich, N.E.

    2011-01-01

    Bone chips are used by orthopaedic surgeons for treating spinal trauma and to augment large bone defects. A potential alternative to autologous bone is regeneration of bone tissue in the lab by developing hybrid implants consisting of osteogenic (stem) cells seeded on supportive matrices. Applicatio

  11. Noninvasive methods of measuring bone blood perfusion

    OpenAIRE

    Dyke, J. P.; Aaron, R.K.

    2010-01-01

    Measurement of bone blood flow and perfusion characteristics in a noninvasive and serial manner would be advantageous in assessing revascularization after trauma and the possible risk of avascular necrosis. Many disease states, including osteoporosis, osteoarthritis, and bone neoplasms, result in disturbed bone perfusion. A causal link between bone perfusion and remodeling has shown its importance in sustained healing and regrowth following injury. Measurement of perfusion and permeability wi...

  12. Positive modulator of bone morphogenic protein-2

    Science.gov (United States)

    Zamora, Paul O.; Pena, Louis A.; Lin, Xinhua; Takahashi, Kazuyuki

    2009-01-27

    Compounds of the present invention of formula I and formula II are disclosed in the specification and wherein the compounds are modulators of Bone Morphogenic Protein activity. Compounds are synthetic peptides having a non-growth factor heparin binding region, a linker, and sequences that bind specifically to a receptor for Bone Morphogenic Protein. Uses of compounds of the present invention in the treatment of bone lesions, degenerative joint disease and to enhance bone formation are disclosed.

  13. Engineers Create Bone that Blends into Tendons

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Engineers at Georgia Tech have used skin cells to create artificial bones that mimic the ability of natural bone to blend into other tissues such as tendons or ligaments. The artificial bones display a gradual change from bone to softer tissue rather than the sudden shift of previously developed artificial tissue, providing better integration with the body and allowing them to handle weight more successfully.

  14. Flow-induced Vibration Test on Radiation Vessel Assembly of China Experimental Fast Reactor%中国实验快堆辐照容器组件流致振动实验

    Institute of Scientific and Technical Information of China (English)

    翟伟明; 周平; 程道喜; 苏喜平; 齐晓光; 杨兵

    2015-01-01

    在水力实验台架上利用DASP-V10振动测量系统对中国实验快堆结构材料辐照容器组件进行流致振动实验。通过实验,得到组件前5阶固有振动特性(固有频率、振型)及额定流量工况(0.6 m3/h)和120%额定流量工况下组件的振动响应及动态应变响应。实验以固有振动特性测量结果来指导开展组件在运行工况下的流致振动实验,并根据得到的流致振动结果结合组件固有振动特性从振动力学原理上阐述了辐照容器组件共振现象的产生及其对组件运行的影响。%Responses of the radiation vessel assembly of China Experimental Fast Reac-tor to flow-induced vibration were measured by DASP-V1 0 vibration system in a ther-mal-hydraulic test facility.The first five intrinsic frequencies and mode shapes of assem-bly were obtained by the test.Vibration and dynamic strains responses were obtained during the dynamic tests which were operated in the rated flow of 0.6 m3/h and 120% of the rated flow.The flow-induced vibration test was operated to follow the results of the test measurements for intrinsic vibration characteristics.Results of the two tests give the reason why the resonance vibration occurrs and explain its effect to the assembly based on vibration mechanics.

  15. Postoperative morbidity after reconstruction of alveolar bone defects with chin bone transplants in cleft patients - 111 consecutive patients

    DEFF Research Database (Denmark)

    Andersen, Kristian; Nørholt, Sven Erik; Knudsen, Johan;

    Postoperative morbidity after reconstruction of alveolar bone defects with chin bone transplants in cleft patients - 111 consecutive patients......Postoperative morbidity after reconstruction of alveolar bone defects with chin bone transplants in cleft patients - 111 consecutive patients...

  16. BoneJ: Free and extensible bone image analysis in ImageJ.

    Science.gov (United States)

    Doube, Michael; Kłosowski, Michał M; Arganda-Carreras, Ignacio; Cordelières, Fabrice P; Dougherty, Robert P; Jackson, Jonathan S; Schmid, Benjamin; Hutchinson, John R; Shefelbine, Sandra J

    2010-12-01

    Bone geometry is commonly measured on computed tomographic (CT) and X-ray microtomographic (μCT) images. We obtained hundreds of CT, μCT and synchrotron μCT images of bones from diverse species that needed to be analysed remote from scanning hardware, but found that available software solutions were expensive, inflexible or methodologically opaque. We implemented standard bone measurements in a novel ImageJ plugin, BoneJ, with which we analysed trabecular bone, whole bones and osteocyte lacunae. BoneJ is open source and free for anyone to download, use, modify and distribute.

  17. Effects of Inactivity and Exercise on Bone.

    Science.gov (United States)

    Smith, Everett L.; Gilligan, Catherine

    1987-01-01

    Research has shown that bone tissue responds to the forces of gravity and muscle contraction. The benefits of weight-bearing exercise in preventing or reversing bone mass loss related to osteoporosis is reviewed. The effects of weightlessness and immobilization, and the possible effects of athletic amenorrhea, on bone mineral density are…

  18. Adaptation of subchondral bone in osteoarthritis

    DEFF Research Database (Denmark)

    Ding, Ming

    2004-01-01

    never been proven. Recent studies showing reduced chemical and mechanical properties of subchondral bone in various stages of the disease have invigorated interest in the role of subchondral bone in the development and progression of the disease. The current study showed that the concept of bone...

  19. Short Anabolic Peptides for Bone Growth.

    Science.gov (United States)

    Amso, Zaid; Cornish, Jillian; Brimble, Margaret A

    2016-07-01

    Loss of bone occurs in the age-related skeletal disorder, osteoporosis, leading to bone fragility and increased incidence of fractures, which are associated with enormous costs and substantial morbidity and mortality. Recent data indicate that osteoporotic fractures are more common than other diseases, which usually attract public attention (e.g., heart attack and breast cancer). The prevention and treatment of this skeletal disorder are therefore of paramount importance. Majority of osteoporosis medications restore skeletal balance by reducing osteoclastic activity, thereby reducing bone resorption. These agents, however, do not regenerate damaged bone tissue, leaving limited options for patients once bone loss has occurred. Recently, attention has turned to bone-anabolic agents. Such agents have the ability to increase bone mass and strength, potentially reversing structural damage. To date, only one bone-anabolic drug is available in the market. The discovery of more novel, cost-effective bone anabolic agents is therefore a priority to treat those suffering from this disabling condition. Short peptides offer an important alternative for the development of novel bone-anabolic agents given their high target binding specificity, which translates into potent activity with limited side effects. This review summarizes attempts in the identification of bone-anabolic peptides, and their development for promoting bone growth.

  20. Suboccipital neuropathy after bone conduction device placement

    NARCIS (Netherlands)

    Faber, H.T.; Ru, J.A. de

    2013-01-01

    OBJECTIVE: To describe the clinical characteristics of a 70-year-old female with occipital neuropathy following bone conduction device surgery. DESCRIPTION: A 65-year-old woman underwent bone conduction device placement surgery on the left temporal bone. Postoperatively she progressively developed c

  1. Early postoperative bone scintigraphy in the evaluation of microvascular bone grafts in head and neck reconstruction

    Directory of Open Access Journals (Sweden)

    Poissonnet Gilles

    2007-04-01

    Full Text Available Abstract Background Bone scintigraphy was performed to monitor anastomotic patency and bone viability. Methods In this retrospective study, bone scans were carried out during the first three postoperative days in a series of 60 patients who underwent microvascular bone grafting for reconstruction of the mandible or maxilla. Results In our series, early bone scans detected a compromised vascular supply to the bone with high accuracy (p Conclusion When performing bone scintigraphy during the first three postoperative days, it not only helps to detect complications with high accuracy, as described in earlier studies, but it is also an additional reliable monitoring tool to decide whether or not microvascular revision surgery should be performed. Bone scans were especially useful in buried free flaps where early postoperative monitoring depended exclusively on scans. According to our experience, we recommend bone scans as soon as possible after surgery and immediately in cases suspicious of vascularized bone graft failure.

  2. Analyzing the cellular contribution of bone marrow to fracture healing using bone marrow transplantation in mice.

    Science.gov (United States)

    Colnot, C; Huang, S; Helms, J

    2006-11-24

    The bone marrow is believed to play important roles during fracture healing such as providing progenitor cells for inflammation, matrix remodeling, and cartilage and bone formation. Given the complex nature of bone repair, it remains difficult to distinguish the contributions of various cell types. Here we describe a mouse model based on bone marrow transplantation and genetic labeling to track cells originating from bone marrow during fracture healing. Following lethal irradiation and engraftment of bone marrow expressing the LacZ transgene constitutively, wild type mice underwent tibial fracture. Donor bone marrow-derived cells, which originated from the hematopoietic compartment, did not participate in the chondrogenic and osteogenic lineages during fracture healing. Instead, the donor bone marrow contributed to inflammatory and bone resorbing cells. This model can be exploited in the future to investigate the role of inflammation and matrix remodeling during bone repair, independent from osteogenesis and chondrogenesis.

  3. Bone histology in chronic kidney disease-related mineral and bone disorder.

    Science.gov (United States)

    Kazama, Junichiro James

    2011-06-01

    A quantitative histological analysis of biopsied bone samples is currently regarded as the gold standard for a diagnosing procedure for bone diseases associated with chronic kidney disease-related mineral and bone disorder. Conventionally, "bone cell activities" and "bone mineralization" are applied as two independent assessment axes, and the histology results are classified into five categories according to these axes. Recently, a new bone histology classification system called the Turnover-Mineralization-Volume system, which applied "cancellous bone volume" as another major assessing axis, was advocated; however, both classification systems have many unsolved problems. Clinicians must realize the limitations in evaluating bone metabolism by bone histology. We will need to establish a new classification method for renal bone diseases independent of histological findings.

  4. Aromatase inhibitors and bone loss.

    Science.gov (United States)

    Perez, Edith A; Weilbaecher, Katherine

    2006-08-01

    The aromatase inhibitors (AIs) anastrozole (Arimidex), letrozole (Femara), and exemestane (Aromasin) are significantly more effective than the selective estrogen-receptor modulator (SERM) tamoxifen in preventing recurrence in estrogen receptor-positive early breast cancer. Aromatase inhibitors are likely to replace SERMs as first-line adjuvant therapy for many patients. However, AIs are associated with significantly more osteoporotic fractures and greater bone mineral loss. As antiresorptive agents, oral and intravenous bisphosphonates such as alendronate (Fosamax), risedronate (Actonel), ibandronate (Boniva), pamidronate (Aredia), and zoledronic acid (Zometa) have efficacy in preventing postmenopausal osteoporosis, cancer treatment-related bone loss, or skeletal complications of metastatic disease. Clinical practice guidelines recommend baseline and annual follow-up bone density monitoring for all patients initiating AI therapy. Bisphosphonate therapy should be prescribed for patients with osteoporosis (T score vitamin D intake, weight-bearing exercise, and smoking cessation should be addressed. Adverse events associated with bisphosphonates include gastrointestinal toxicity, renal toxicity, and osteonecrosis of the jaw. These safety concerns should be balanced with the potential of bisphosphonates to minimize or prevent the debilitating effects of AI-associated bone loss in patients with early, hormone receptor-positive breast cancer.

  5. Low Bone Mass in Thalassemia

    Science.gov (United States)

    4 Low Bone Mass in Thalassemia • In addition to a diet rich in calcium and vitamin D, your doctor may recommend taking calcium and/or vitamin D ... Zoledronic acid may be beneficial to patients with thalassemia and osteoporosis; other trials are investigating whether increasing ...

  6. Bone Mineralization in Celiac Disease

    Directory of Open Access Journals (Sweden)

    Tiziana Larussa

    2012-01-01

    Full Text Available Evidence indicates a well-established relationship between low bone mineral density (BMD and celiac disease (CD, but data on the pathogenesis of bone derangement in this setting are still inconclusive. In patients with symptomatic CD, low BMD appears to be directly related to the intestinal malabsorption. Adherence to a strict gluten-free diet (GFD will reverse the histological changes in the intestine and also the biochemical evidence of calcium malabsorption, resulting in rapid increase of BMD. Nevertheless, GFD improves BMD but does not normalize it in all patients, even after the recovery of intestinal mucosa. Other mechanisms of bone injury than calcium and vitamin D malabsorption are thought to be involved, such as proinflammatory cytokines, parathyroid function abnormalities, and misbalanced bone remodeling factors, most of all represented by the receptor activator of nuclear factor B/receptor activator of nuclear factor B-ligand/osteoprotegerin system. By means of dual-energy X-ray absorptiometry (DXA, it is now rapid and easy to obtain semiquantitative values of BMD. However, the question is still open about who and when submit to DXA evaluation in CD, in order to estimate risk of fractures. Furthermore, additional information on the role of nutritional supplements and alternative therapies is needed.

  7. Mathematical model for bone mineralization

    Directory of Open Access Journals (Sweden)

    Svetlana V Komarova

    2015-08-01

    Full Text Available Defective bone mineralization has serious clinical manifestations, including deformities and fractures, but the regulation of this extracellular process is not fully understood. We have developed a mathematical model consisting of ordinary differential equations that describe collagen maturation, production and degradation of inhibitors, and mineral nucleation and growth. We examined the roles of individual processes in generating normal and abnormal mineralization patterns characterized using two outcome measures: mineralization lag time and degree of mineralization. Model parameters describing the formation of hydroxyapatite mineral on the nucleating centers most potently affected the degree of mineralization, while the parameters describing inhibitor homeostasis most effectively changed the mineralization lag time. Of interest, a parameter describing the rate of matrix maturation emerged as being capable of counter-intuitively increasing both the mineralization lag time and the degree of mineralization. We validated the accuracy of model predictions using known diseases of bone mineralization such as osteogenesis imperfecta and X-linked hypophosphatemia. The model successfully describes the highly non-linear mineralization dynamics, which includes an initial lag phase when osteoid is present but no mineralization is evident, then fast primary mineralization, followed by secondary mineralization characterized by a continuous slow increase in bone mineral content. The developed model can potentially predict the function for a mutated protein based on the histology of pathologic bone samples from mineralization disorders of unknown etiology.

  8. BeagleBone media center

    CERN Document Server

    Lewin, David

    2015-01-01

    Whether you are a hobbyist or a professional, this book will get you fully equipped to resolve the most commonly occurring media-related challenges. If you want to expand your horizons beyond lighting an LED and push the limits of your board, this is just the book for you. Working knowledge of BeagleBone is assumed.

  9. Chondroblastoma of the sphenoid bone

    Directory of Open Access Journals (Sweden)

    Patrocíni, Tomas Gomes

    2008-12-01

    Full Text Available Introduction: Chondroblastoma is an uncommon cartilaginous benign neoplasm, highly destructive, which specifically appears in the epiphysis of long bones in young patients. Its occurrence is extremely rare in the cranial base, normally occurring in the temporal bone. Objective: To describe a rare case in a patient presenting with a sphenoid bone chondroblastoma that invaded the middle cranial cavity, submitted to a successful surgical resection, without recurrence after 2 years. Case Report: W.J.S, 37 years old, male, forwarded to the otorhinolaryngology service with persistent and strong otalgia for 3 months. He had normal otoscopy and without visible tumorations. The computerized tomography confirmed tumor mass in the left infra-temporal cavity, invading the middle cranial cavity. The biopsy suggested giant cells tumor. After wide resection by frontal approach via orbitozygomatic osteotomy. During the surgery, we confirmed tomographic statements and didn't find temporal bone involvement. The histopathological exam confirmed chondroblastoma. After 18 months after the surgery, he doesn't present with complaints, without motor, sensitive deficits or of cranial nerves and without recurrence tomographic signals. Conclusion: The importance of differential diagnosis of chondroblastoma is remarkable in the cranial base lesions and its therapeutic approach, whose objective must always be the major possible resection with the maximum function conservation.

  10. Green tea and bone health

    Science.gov (United States)

    Osteoporosis is a major health problem in the elderly, particularly women. Epidemiological evidence has shown an association between tea consumption and the prevention of age-related bone loss in elderly women and men. Ingestion of green tea and green tea bioactive compounds may be beneficial in mit...

  11. Bone Repair and Military Readiness

    Science.gov (United States)

    2012-10-25

    Corporation, Rolla, Missouri Received 3 January 2011; revised 1 July 2011; accepted 5 July 2011 Published online 18 November 2011 in Wiley Online Library (wileyonlinelibrary.com...January 2012 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/jbm.b.32649 Abstract: Methyl methacrylate used in bone cements has

  12. Leptin and bone mineral density

    DEFF Research Database (Denmark)

    Morberg, Cathrine M; Tetens, Inge; Black, Eva;

    2003-01-01

    Leptin has been suggested to decrease bone mineral density (BMD). This observational analysis explored the relationship between serum leptin and BMD in 327 nonobese men (controls) (body mass index 26.1 +/- 3.7 kg/m(2), age 49.9 +/- 6.0 yr) and 285 juvenile obese men (body mass index 35.9 +/- 5.9 kg...

  13. Photodynamic therapy of diseased bone

    Science.gov (United States)

    Bisland, Stuart K.; Yee, Albert; Siewerdsen, Jeffery; Wilson, Brian C.; Burch, Shane

    2005-08-01

    Objective: Photodynamic therapy (PDT) defines the oxygen-dependent reaction that occurs upon light-mediated activation of a photosensitizing compound, culminating in the generation of cytotoxic, reactive oxygen species, predominantly, singlet oxygen. We are investigating PDT treatment of diseased bone. Methods: Using a rat model of human breast cancer (MT-1)-derived bone metastasis we confirmed the efficacy of benzoporphyrin-derivative monoacid (BPD-MA)-PDT for treating metastatic lesions within vertebrae or long bones. Results: Light administration (150 J) 15 mins after BPDMA (2.5 mg/Kg, i.v.) into the lumbar (L3) vertebra of rats resulted in complete ablation of the tumour and surrounding bone marrow 48 hrs post-PDT without paralysis. Porcine vertebrae provided a model comparable to that of human for light propagation (at 150 J/cm) and PDT response (BPD-MA; 6 mg/m2, i.v.) in non-tumour vertebrae. Precise fibre placement was afforded by 3-D cone beam computed tomography. Average penetration depth of light was 0.16 +/- 0.04 cm, however, the necrotic/non-necrotic interface extended 0.6 cm out from the treatment fiber with an average incident fluence rate of 4.3 mW/cm2. Non-necrotic tissue damage was evident 2 cm out from the treatment fiber. Current studies involving BPD-MA-PDT treatment of primary osteosarcomas in the forelimbs of dogs are very promising. Magnetic resonance imaging 24 hr post treatment reveal well circumscribed margins of treatment that encompass the entire 3-4 cm lesion. Finally, we are also interested in using 5-aminolevulinic acid (ALA) mediated PDT to treat osteomyelitis. Response to therapy was monitored as changes in bioluminescence signal of staphylococcus aureus (SA)-derived biofilms grown onto 0.5 cm lengths of wire and subjected to ALA-PDT either in vitro or in vivo upon implant into the intramedullary space of rat tibia. Transcutaneous delivery of PDT (75 J/cm2) effectively eradicated SAbiofilms within bone. Conclusions: Results support

  14. Osteoclasts secrete non-bone derived signals that induce bone formation

    DEFF Research Database (Denmark)

    Karsdal, Morten A; Neutzsky-Wulff, Anita V; Dziegiel, Morten Hanefeld

    2008-01-01

    Bone turnover is a highly regulated process, where bone resorption in the normal healthy individual always is followed by bone formation in a manner referred to as coupling. Patients with osteopetrosis caused by defective acidification of the resorption lacuna have severely decreased resorption, ...... secrete non-bone derived factors, which induce preosteoblasts to form bone-like nodules, potentially explaining the imbalanced coupling seen in osteopetrotic patients....

  15. Erythropoietin Modulates the Structure of Bone Morphogenetic Protein 2–Engineered Cranial Bone

    OpenAIRE

    Sun, Hongli; Jung, Younghun; Shiozawa, Yusuke; Taichman, Russell S.; Krebsbach, Paul H.

    2012-01-01

    The ideally engineered bone should have similar structural and functional properties to the native tissue. Although structural integrity is critical for functional bone regeneration, we know less about modulating the structural properties of the engineered bone elicited by bone morphogenetic protein (BMP) than efficacy and safety. Erythropoietin (Epo), a primary erythropoietic hormone, has been used to augment blood transfusion in orthopedic surgery. However, the effects of Epo on bone regene...

  16. [Metabolic status and bone mineral density in patients with pseudarthrosis of long bones in hyperhomocysteinemia].

    Science.gov (United States)

    Bezsmertnyĭ, Iu O

    2013-06-01

    In article described research of the metabolic status and bone mineral density in 153 patients with with pseudarthrosis of long bones, in individuals with consolidated fractures and healthy people. The violations of reparative osteogenesis at hyperhomocysteinemia are accompanied by disturbances of the functional state of bone tissue, inhibition of biosynthetic and increased destruction processes, reduced bone mineral density in the formation of osteopenia and osteoporosis. The degree and direction of change of bone depends on the type of violation of reparative osteogenesis.

  17. 3D artificial bones for bone repair prepared by computed tomography-guided fused deposition modeling for bone repair.

    Science.gov (United States)

    Xu, Ning; Ye, Xiaojian; Wei, Daixu; Zhong, Jian; Chen, Yuyun; Xu, Guohua; He, Dannong

    2014-09-10

    The medical community has expressed significant interest in the development of new types of artificial bones that mimic natural bones. In this study, computed tomography (CT)-guided fused deposition modeling (FDM) was employed to fabricate polycaprolactone (PCL)/hydroxyapatite (HA) and PCL 3D artificial bones to mimic natural goat femurs. The in vitro mechanical properties, in vitro cell biocompatibility, and in vivo performance of the artificial bones in a long load-bearing goat femur bone segmental defect model were studied. All of the results indicate that CT-guided FDM is a simple, convenient, relatively low-cost method that is suitable for fabricating natural bonelike artificial bones. Moreover, PCL/HA 3D artificial bones prepared by CT-guided FDM have more close mechanics to natural bone, good in vitro cell biocompatibility, biodegradation ability, and appropriate in vivo new bone formation ability. Therefore, PCL/HA 3D artificial bones could be potentially be of use in the treatment of patients with clinical bone defects.

  18. 叶片包角对离心泵流动诱导振动噪声的影响%Effects of vane wrap angle on flow induced vibration and noise of centrifugal pumps

    Institute of Scientific and Technical Information of China (English)

    王勇; 刘厚林; 刘东喜; 王健; 吴贤芳

    2013-01-01

    In order to better understand the effects of vane wrap angle on flow induced vibration and noise of centrifugal pumps, a single grade end suction centrifugal pump is chosen as research object. The vane wrap angle was varied from 115°to 110°, 120°and 125°, while the volute and other geometric parameters were kept constant. The vibration and noise signal of the model pump were acquired via PXI-4472B dynamic data acquisition system developed by NI Company in United States and measured respectively by the 4 acceleration transducers MA352A60 made in the PBC Company in USA with a range of 5-70 kHz, and one hydrophone with a range of 50-70 kHz and a received sound pressure sensitivity of -204 dB. The hydrophone measure point was located in pump outlet pipe and the 4 acceleration transducers were placed on the suction flange a1, discharge flange a2, the pump casing a3 and the pump foot a4 respectively. Based on the pump testing system and the virtual instrument data acquisition system, the pump flow-induced vibration and noise testing system was established, which realized the synchronous collection of the pump characteristics and the vibration and noise signal. In addition, the system improved testing accuracy. On the centrifugal pump closed experimental rig, the performance characteristics (flow-head curves and flow-efficiency curves), the flow-induced vibration and noise signals of model pump with different vane wrap angle in the full flow range were measured and analyzed. Experimental results show that there was an optimal value of vane wrap angle for pump to obtain maximum efficiency under design condition, because the unsteady flow (take-off flow and vortex) decreased with the increase of vane wrap angle, but the blade length growth, friction loss increased. 115°was found as the optimal vane wrap angle for the model pump in this investigation. The vibration intensity of model pump with different vane wrap angle at four measurement points was nearly unchanged or

  19. Low bone turnover phenotype in Rett syndrome

    DEFF Research Database (Denmark)

    Roende, Gitte; Petersen, Janne; Ravn, Kirstine;

    2014-01-01

    Background:Patients with Rett syndrome (RTT) are at risk of having low bone mass and low-energy fractures.Methods:We characterised bone metabolism by both bone formation and resorption markers in blood in a RTT population of 61 girls and women and 122 well-matched healthy controls. Levels of N...... of the lumbar spine (vBMADspine) and femoral neck (vBMADneck). We examined biochemical bone marker levels overall, and stratified to persons younger than age 25 years or equal to or older than age 25 years.Results:The RTT patients had reduced levels of all biochemical bone markers (p...

  20. Desmoplastic Fibroma of Bone: Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Yun; Ha, Dong Ho; Kim, Dong Won [Dept. of Radiology, Dong A University College of Medicine, Seoul (Korea, Republic of); Kim, Su Jin [Dept. of Pathology, Dong A University College of Medicine, Seoul (Korea, Republic of)

    2011-05-15

    Desmoplastic fibroma of bone is a rare benign primary bone tumor that histologically resembles the extra-abdominal desmoid tumor of soft tissues. It is a nonmetastasizing, but locally aggressive tumor that is similar to a desmoid tumor of the soft tissues, and so it is considered 'semimalignant'. According to a previous report on a series of bone tumors, the incidence rate of desmoplastic fibroma was 0.1-0.3%. Its rarity results in radiologists having a tendency of overlooking the possibility of desmoplastic fibroma of bone during the imaging readings. We report on the imaging findings of desmoplastic fibroma of bone with a review of the relevant literature.

  1. Vascularized tail bone grafts in rats.

    Science.gov (United States)

    Sempuku, T; Tamai, S; Mizumoto, S; Yajima, H

    1993-03-01

    A new experimental model for vascularized corticocancellous bone grafts was established by investigation of vascular anatomy of the tail in 15 adult Fischer 344 rats and determination of the viability of vascularized tail bone grafts into the abdominal wall in 22 7-week-old rats. The tail bones of 40 rats were then raised on the pedicle of the caudal artery and its venae comitantes, transferred to a resected portion in the femur, and observed for 16 weeks. The vascularized graft showed marked reactive periosteal bone formation during the first and second weeks following transfer, and thereafter, the graft continued to show active bone formation. In transverse section, the sharp processes became rounded. In the cancellous bone, both bone resorption and bone formation were noticeably activated early after transfer, although resorption predominated and the amount of the cancellous bone consequently diminished. The nonvascularized grafts showed "creeping substitution." The results suggest that morphologic adaptation occurs if living (i.e., vascularized) tail bones are transferred to long-bone femurs.

  2. Bone remodeling as a spatial evolutionary game.

    Science.gov (United States)

    Ryser, Marc D; Murgas, Kevin A

    2017-04-07

    Bone remodeling is a complex process involving cell-cell interactions, biochemical signaling and mechanical stimuli. Early models of the biological aspects of remodeling were non-spatial and focused on the local dynamics at a fixed location in the bone. Several spatial extensions of these models have been proposed, but they generally suffer from two limitations: first, they are not amenable to analysis and are computationally expensive, and second, they neglect the role played by bone-embedded osteocytes. To address these issues, we developed a novel model of spatial remodeling based on the principles of evolutionary game theory. The analytically tractable framework describes the spatial interactions between zones of bone resorption, bone formation and quiescent bone, and explicitly accounts for regulation of remodeling by bone-embedded, mechanotransducing osteocytes. Using tools from the theory of interacting particle systems we systematically classified the different dynamic regimes of the spatial model and identified regions of parameter space that allow for global coexistence of resorption, formation and quiescence, as observed in physiological remodeling. In coexistence scenarios, three-dimensional simulations revealed the emergence of sponge-like bone clusters. Comparison between spatial and non-spatial dynamics revealed substantial differences and suggested a stabilizing role of space. Our findings emphasize the importance of accounting for spatial structure and bone-embedded osteocytes when modeling the process of bone remodeling. Thanks to the lattice-based framework, the proposed model can easily be coupled to a mechanical model of bone loading.

  3. Bone Remodelling Markers in Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Patrice Fardellone

    2014-01-01

    Full Text Available Bone loss in rheumatoid arthritis (RA patients results from chronic inflammation and can lead to osteoporosis and fractures. A few bone remodeling markers have been studied in RA witnessing bone formation (osteocalcin, serum aminoterminal propeptide of type I collagen (PINP, serum carboxyterminal propeptide of type I collagen (ICTP, bone alkaline phosphatase (BAP, osteocalcin (OC, and bone resorption: C-terminal telopeptide of type 1 collagen (I-CTX, N-terminal telopeptide of type 1 collagen (I-NTX, pyridinolines (DPD and PYD, and tartrate-resistant acid phosphatase (TRAP. Bone resorption can be seen either in periarticular bone (demineralization and erosion or in the total skeleton (osteoporosis. Whatever the location, bone resorption results from activation of osteoclasts when the ratio between osteoprotegerin and receptor activator of nuclear factor kappa-B ligand (OPG/RANKL is decreased under influence of various proinflammatory cytokines. Bone remodeling markers also allow physicians to evaluate the effect of drugs used in RA like biologic agents, which reduce inflammation and exert a protecting effect on bone. We will discuss in this review changes in bone markers remodeling in patients with RA treated with biologics.

  4. Vitamin D -prevalence, mortality and bone pain

    DEFF Research Database (Denmark)

    Durup, Darshana Tiffany

    2013-01-01

    Bone pain is a common and debilitating symptom of many metabolic bone diseases. However, almost nothing is known about the molecular and cellular mechanisms leading to bone pain and the pain states are poorly characterized. It is well-established that osteomalacia due to severe vitamin D deficiency...... of this thesis was to determine the prevalence of vitamin D insufficiency and deficiency and its impact on mortality. Furthermore, a multidisciplinary and translational study was carried out to investigate the effects of disturbed calcified tissue on the nervous system. Thus, quantification and characterization...... of the pain syndrome in patients with vitamin D deficiency and bone pain. Furtherme, development of a non-cancer animal model of bone pain, was carried out, to enable investigations of bone pain threshold, bone microenvironment and endocrinology parameters involved in this debilitating disease. A unique...

  5. Image diagnosis of nasal bone fracture

    Energy Technology Data Exchange (ETDEWEB)

    Hirota, Yoshiharu; Shimizu, Yayoi; Iinuma, Toshitaka.

    1988-04-01

    Twenty cases of nasal bone fractures were evaluated as to the types of fractures based upon HRCT findings. Conventional X-Ray films for nasal bones were analyzed and compared with HRCT findings. Nasal bone fractures were classified into lateral and frontal fractures. HRCT images were evaluated in three planes including upper, middle and lower portions of the nasal bone. Fractures favored males of teens. Lateral fracture gave rise to the fractures of the nasal bone opposite to the external force, loosening of the ipsilateral nasomaxillary sutures and fractures of the frontal process of the maxilla. Conventional X-Ray films were reevaluated after HRCT evaluation and indications of nasal bone fractures were determined. In addition to the discontinuity of the nasal dorsum, fracture lines parallel to and beneath the nasal dorsum and indistinct fracture lines along the nasomaxillary sutures are the indication of nasal bone fractures by conventional X-Ray films.

  6. Findings of skin and bones in mastocytosis

    Energy Technology Data Exchange (ETDEWEB)

    Rohner, H.G.; Bartl, R.; Koischwitz, D.; Rodermund, O.E.

    1982-12-01

    The syndrome of mastocytosis can include isolated urticaria pigmentosa, systemic mastocytosis, or the extremely rare form of mast cell leucemia. Our investigations of many patients have shown more frequently than earlier suspected, that the mastocytosis is a systemic disease. The frequency of attacked bone marrow is noteworthy. Because of the inflammatory granulomatous manifestation in bone marrow, considerations of the pathogenesis of an immune and reactive event are taken into account. The mast cell granulomas are mostly found in the endosteal region, which is the reason for frequently occurring bone lesions (half of all patients show bone lesions). The bone changes can develop generalized (osteoporosis-osteosclerosis) or localized (osteolytic-osteosclerotic foci). In clinical work bone biopsies and skeletal radiology are supplementing each other: bone biopsy and skin biopsy give the first diagnosis of mastocytosis and reveal the systemic disease; X-ray pictures give information of shape and dimension of the induced osteopathy.

  7. New molecular targets in bone metastases.

    Science.gov (United States)

    Santini, D; Galluzzo, S; Zoccoli, A; Pantano, F; Fratto, M E; Vincenzi, B; Lombardi, L; Gucciardino, C; Silvestris, N; Riva, E; Rizzo, S; Russo, A; Maiello, E; Colucci, G; Tonini, G

    2010-11-01

    Bone metastases have a major impact on morbidity and on mortality in cancer patients. Despite its clinical relevance, metastasis remains the most poorly elucidated aspect of carcinogenesis. The biological mechanisms leading to bone metastasis establishment have been referred as "vicious circle," a complex network between cancer cells and the bone microenvironment. This review is aimed to underline the new molecular targets in bone metastases management other than bisphosphonates. Different pathways or molecules such as RANK/RANKL/OPG, cathepsin K, endothelin-1, Wnt/DKK1, Src have recently emerged as potential targets and nowadays preclinical and clinical trials are underway. The results from those in the advanced clinical phases are encouraging and underlined the need to design large randomised clinical trials to validate these results in the next future. Targeting the bone by preventing skeletal related events (SREs) and bone metastases has major clinical impact in improving survival in bone metastatic patients and in preventing disease relapse in adjuvant setting.

  8. Organ printing: the future of bone regeneration?

    Science.gov (United States)

    Fedorovich, Natalja E; Alblas, Jacqueline; Hennink, Wim E; Oner, F Cumhur; Dhert, Wouter J A

    2011-12-01

    In engineered bone grafts, the combined actions of bone-forming cells, matrix and bioactive stimuli determine the eventual performance of the implant. The current notion is that well-built 3D constructs include the biological elements that recapitulate native bone tissue structure to achieve bone formation once implanted. The relatively new technology of organ/tissue printing now enables the accurate 3D organization of the components that are important for bone formation and also addresses issues, such as graft porosity and vascularization. Bone printing is seen as a great promise, because it combines rapid prototyping technology to produce a scaffold of the desired shape and internal structure with incorporation of multiple living cell types that can form the bone tissue once implanted.

  9. Mechanisms of multiple myeloma bone disease

    Science.gov (United States)

    Galson, Deborah L; Silbermann, Rebecca; Roodman, G David

    2012-01-01

    Multiple myeloma is the second most common hematological malignancy and the most frequent cancer to involve the skeleton. Multiple myeloma bone disease (MMBD) is characterized by abnormal bone remodeling with dysfunction of both bone resorption and bone formation, and thus can be used as a paradigm for other inflammatory bone diseases, and the regulation of osteoclasts and osteoblasts in malignancy. Studies of MMBD have identified novel regulators that increase osteoclastogenesis and osteoclast function, repress osteoblast differentiation, increase angiogenesis, or permanently alter stromal cells. This review will discuss the current understanding of mechanisms of osteoclast and osteoblast regulation in MMBD, and therapeutic approaches currently in use and under development that target mediators of bone destruction and blockade of bone formation for myeloma patients, including new anabolic therapies. PMID:23951515

  10. RETINOID RECEPTORS IN BONE AND THEIR ROLE IN BONE REMODELING

    Directory of Open Access Journals (Sweden)

    Petra eHenning

    2015-03-01

    Full Text Available Vitamin A (retinol is a necessary and important constituent of the body which is provided by food intake of retinyl esters and carotenoids. Vitamin A is known best for being important for vision, but in addition to the eye, vitamin A is necessary in numerous other organs in the body, including the skeleton. Vitamin A is converted to an active compound, all-trans-retinoic acid (ATRA, which is responsible for most of its biological actions. ATRA binds to intracellular nuclear receptors called retinoic acid receptors (RAR, RAR, RAR. RARs and closely related retinoid X receptors (RXR, RXR, RXR form heterodimers which bind to DNA and function as ligand activated transcription factors. It has been known for many years that hypervitaminosis A promotes skeleton fragility by increasing osteoclast formation and decreasing cortical bone mass. Some epidemiological studies have suggested that increased intake of vitamin A and increased serum levels of retinoids may decrease bone mineral density and increase fracture rate, but the literature on this is not conclusive. The current review summarizes how vitamin A is taken up by the intestine, metabolized, stored in the liver and processed to ATRA. ATRA’s effects on formation and activity of osteoclasts and osteoblasts are outlined, and a summary of clinical data pertaining to vitamin A and bone is presented.

  11. Bone mass and bone metabolic indices in male master rowers.

    Science.gov (United States)

    Śliwicka, Ewa; Nowak, Alicja; Zep, Wojciech; Leszczyński, Piotr; Pilaczyńska-Szcześniak, Łucja

    2015-09-01

    The purpose of this study was to assess bone mass and bone metabolic indices in master athletes who regularly perform rowing exercises. The study was performed in 29 men: 14 master rowers and 15 non-athletic, body mass index-matched controls. Dual-energy X-ray absorptiometry measurements of the areal bone mineral density (aBMD) were performed for the total body, regional areas (arms, total forearms, trunk, thoracic spine, pelvis, and legs), lumbar spine (L1-L4), left hip (total hip and femoral neck), and forearm (33 % radius of the dominant and nondominant forearm). Serum concentrations of osteocalcin, collagen type I cross-linked C-telopeptide, visfatin, resistin, insulin, and glucose were determined. Comparative analyses showed significantly lower levels of body fat and higher lean body mass values in the rowers compared to the control group. The rowers also had significantly higher values of total and regional (left arm, trunk, thoracic spine, pelvis, and leg) BMD, as well as higher BMD values for the lumbar spine and the left hip. There were significant differences between the groups with respect to insulin, glucose, and the index of homeostasis model assessment insulin resistance. In conclusion, the systematic training of master rowers has beneficial effects on total and regional BMD and may be recommended for preventing osteoporosis.

  12. High-strength mineralized collagen artificial bone

    Science.gov (United States)

    Qiu, Zhi-Ye; Tao, Chun-Sheng; Cui, Helen; Wang, Chang-Ming; Cui, Fu-Zhai

    2014-03-01

    Mineralized collagen (MC) is a biomimetic material that mimics natural bone matrix in terms of both chemical composition and microstructure. The biomimetic MC possesses good biocompatibility and osteogenic activity, and is capable of guiding bone regeneration as being used for bone defect repair. However, mechanical strength of existing MC artificial bone is too low to provide effective support at human load-bearing sites, so it can only be used for the repair at non-load-bearing sites, such as bone defect filling, bone graft augmentation, and so on. In the present study, a high strength MC artificial bone material was developed by using collagen as the template for the biomimetic mineralization of the calcium phosphate, and then followed by a cold compression molding process with a certain pressure. The appearance and density of the dense MC were similar to those of natural cortical bone, and the phase composition was in conformity with that of animal's cortical bone demonstrated by XRD. Mechanical properties were tested and results showed that the compressive strength was comparable to human cortical bone, while the compressive modulus was as low as human cancellous bone. Such high strength was able to provide effective mechanical support for bone defect repair at human load-bearing sites, and the low compressive modulus can help avoid stress shielding in the application of bone regeneration. Both in vitro cell experiments and in vivo implantation assay demonstrated good biocompatibility of the material, and in vivo stability evaluation indicated that this high-strength MC artificial bone could provide long-term effective mechanical support at human load-bearing sites.

  13. Renal Cell Carcinoma Metastasized to Pagetic Bone.

    Science.gov (United States)

    Ramirez, Ashley; Liu, Bo; Rop, Baiywo; Edison, Michelle; Valente, Michael; Burt, Jeremy

    2016-01-01

    Paget's disease of the bone, historically known as osteitis deformans, is an uncommon disease typically affecting individuals of European descent. Patients with Paget's disease of the bone are at increased risk for primary bone neoplasms, particularly osteosarcoma. Many cases of metastatic disease to pagetic bone have been reported. However, renal cell carcinoma metastasized to pagetic bone is extremely rare. A 94-year-old male presented to the emergency department complaining of abdominal pain. A computed tomography scan of the abdomen demonstrated a large mass in the right kidney compatible with renal cell carcinoma. The patient was also noted to have Paget's disease of the pelvic bones and sacrum. Within the pagetic bone of the sacrum, there was an enhancing mass compatible with renal cell carcinoma. A subsequent biopsy of the renal lesion confirmed renal cell carcinoma. Paget's disease of the bone places the patient at an increased risk for bone neoplasms. The most commonly reported sites for malignant transformation are the femur, pelvis, and humerus. In cases of malignant transformation, osteosarcoma is the most common diagnosis. Breast, lung, and prostate carcinomas are the most common to metastasize to pagetic bone. Renal cell carcinoma associated with Paget's disease of the bone is very rare, with only one prior reported case. Malignancy in Paget's disease of the bone is uncommon with metastatic disease to pagetic bone being extremely rare. We report a patient diagnosed with concomitant renal cell carcinoma and metastatic disease within Paget's disease of the sacrum. Further research is needed to assess the true incidence of renal cell carcinoma associated with pagetic bone.

  14. Properties of deproteinized bone for reparation of big segmental defect in long bone

    Institute of Scientific and Technical Information of China (English)

    JIAN Yue-kui; TIAN Xiao-bin; LI Bo; QIU Bing; ZHOU Zuo-jia; YANG Zheng; LI Qi-hong

    2008-01-01

    Objective: To explore suitable scaffold material for big segmental long bone defect by studying the properties of the prepared deproteinized bone. Methods: Cancellated bone were made as 30 mm ×3 mm ×3 mm bone blocks from inferior extremity of pig femur along bone trabecula. The deproteinized bone was prepared with an improved method. Their morphological features, components, cell compatibility, mechanical and immunological properties were investigated respectively. Results: Deproteinized bone maintained natural re ticular pore system. The main organic material is collagen Ⅰand inorganic composition is hydroxyapatite. It has good mechanical properties, cell adhesion rate and histocompatibility. Conlusion: This deproteinized bone can be applicable as scaffold for reparation of big segmental defect in long bone.

  15. Gene Therapy for Bone Engineering

    Directory of Open Access Journals (Sweden)

    Elizabeth eRosado Balmayor

    2015-02-01

    Full Text Available Bone has an intrinsic healing capacity that may be exceeded when the fracture gap is too big or unstable. In that moment, osteogenic measures needs to be taken by physicians. It is important to combine cells, scaffolds and growth factors and the correct mechanical conditions. Growth factors are clinically administered as recombinant proteins. They are, however, expensive and needed in high supraphysiological doses. Moreover, their half-life is short when administered to the fracture. Therefore, gene therapy may be an alternative. Cells can constantly produce the protein of interest in the correct folding, with the physiological glycosylation and in the needed amounts. Genes can be delivered in vivo or ex vivo by viral or non-viral methods. Adenovirus is mostly used. For the non-viral methods, hydrogels and recently sonoporation seem to be promising means. This review will give an overview of recent advancements in gene therapy approaches for bone regeneration strategies.

  16. Crystal bones. A case report

    Directory of Open Access Journals (Sweden)

    Alexander Torres Molina

    2010-08-01

    Full Text Available There is a case still on milk with clinical and radiological manifestations with the diagnosis of imperfect osteogenesis. There was a study with the clinical description of the external habit, detecting triangular facie, slight blue sclera, ligamentous hypelaxitud in hands and feet, pectus excavatum, arrosariated ribs, legs in abduction, keeping a right angle and diafisiary fractures of long bones. The parents clinical study was normal. The typification was according Sillence criteria of Type III.

  17. Chondroblastoma of the navicular bone.

    Science.gov (United States)

    Li, Xiao Na; Peng, Zhi Gang; Zhao, Jing Pin; Zhang, Ze Kun

    2014-12-01

    This is a case report of a 24-year-old man who presented with increased pain and firm swelling of the right foot after a minor twisting injury. Radiography, computed tomography (CT) and magnetic resonance imaging (MRI) findings showed ancillary information that was helpful for surgical treatment. The final diagnosis was confirmed as chondroblastoma of the navicular bone based on the pathology report. The navicularbone is a very rare site in the foot, where we should pay attention to chondroblastoma.

  18. Syndromes with congenital brittle bones

    Directory of Open Access Journals (Sweden)

    Plotkin Horacio

    2004-08-01

    Full Text Available Abstract Background There is no clear definition of osteogenesis imperfecta (OI. The most widely used classification of OI divides the disease in four types, although it has been suggested that there may be at least 12 forms of OI. These forms have been named with numbers, eponyms or descriptive names. Some of these syndromes can actually be considered congenital forms of brittle bones resembling OI (SROI. Discussion A review of different syndromes with congenital brittle bones published in the literature is presented. Syndromes are classified in "OI" (those secondary to mutations in the type I pro-collagen genes, and "syndromes resembling OI" (those secondary to mutations other that the type I pro-collagen genes, identified or not. A definition for OI is proposed as a syndrome of congenital brittle bones secondary to mutations in the genes codifying for pro-collagen genes (COL1A1 and COL1A2. Summary A debate about the definition of OI and a possible clinical and prognostic classification are warranted.

  19. Vitamin K and bone health.

    Science.gov (United States)

    Hamidi, Maryam S; Gajic-Veljanoski, Olga; Cheung, Angela M

    2013-01-01

    Vitamin K has been purported to play an important role in bone health. It is required for the gamma-carboxylation of osteocalcin (the most abundant noncollagenous protein in bone), making osteocalcin functional. There are 2 main forms (vitamin K1 and vitamin K2), and they come from different sources and have different biological activities. Epidemiologic studies suggest a diet high in vitamin K is associated with a lower risk of hip fractures in aging men and women. However, randomized controlled trials of vitamin K1 or K2 supplementation in white populations did not increase bone mineral density at major skeletal sites. Supplementation with vitamin K1 and K2 may reduce the risk of fractures, but the trials that examined fractures as an outcome have methodological limitations. Large well-designed trials are needed to compare the efficacies of vitamin K1 and K2 on fractures. We conclude that currently there is not enough evidence to recommend the routine use of vitamin K supplements for the prevention of osteoporosis and fractures in postmenopausal women.

  20. Digital electronic bone growth stimulator

    Energy Technology Data Exchange (ETDEWEB)

    Kronberg, J.W.

    1993-01-01

    The present invention relates to the electrical treatment of biological tissue. In particular, the present invention discloses a device that produces discrete electrical pulse trains for treating osteoporosis and accelerating bone growth. According to its major aspects and broadly stated, the present invention consists of an electrical circuit configuration capable of generating Bassett-type waveforms shown with alternative signals provide for the treatment of either fractured bones or osteoporosis. The signal generator comprises a quartz clock, an oscillator circuit, a binary divider chain, and a plurality of simple, digital logic gates. Signals are delivered efficiently, with little or no distortion, and uniformly distributed throughout the area of injury. Perferably, power is furnished by widely available and inexpensive radio batteries, needing replacement only once in several days. The present invention can be affixed to a medical cast without a great increase in either weight or bulk. Also, the disclosed stimulator can be used to treat osteoporosis or to strengthen a healing bone after the cast has been removed by attaching the device to the patient`s skin or clothing.