WorldWideScience

Sample records for bone cement additives

  1. Nanofunctionalized zirconia and barium sulfate particles as bone cement additives

    Directory of Open Access Journals (Sweden)

    Riaz Gillani

    2009-12-01

    Full Text Available Riaz Gillani1, Batur Ercan1, Alex Qiao3, Thomas J Webster1,21Division of Engineering, 2Department of Orthopaedics, Brown University, Providence, RI, USA; 3G3 Technology Innovations, LLC, Pittsford, NY, USAAbstract: Zirconia (ZrO2 and barium sulfate (BaSO4 particles were introduced into a methyl methacrylate monomer (MMA solution with polymethyl methacrylate (PMMA beads during polymerization to develop the following novel bone cements: bone cements with unfunctionalized ZrO2 micron particles, bone cements with unfunctionalized ZrO2 nanoparticles, bone cements with ZrO2 nanoparticles functionalized with 3-(trimethoxysilylpropyl methacrylate (TMS, bone cements with unfunctionalized BaSO4 micron particles, bone cements with unfunctionalized BaSO4 nanoparticles, and bone cements with BaSO4 nanoparticles functionalized with TMS. Results demonstrated that in vitro osteoblast (bone-forming cell densities were greater on bone cements containing BaSO4 ceramic particles after four hours compared to control unmodified bone cements. Osteoblast densities were also greater on bone cements containing all of the ceramic particles after 24 hours compared to unmodified bone cements, particularly those bone cements containing nanofunctionalized ceramic particles. Bone cements containing ceramic particles demonstrated significantly altered mechanical properties; specifically, under tensile loading, plain bone cements and bone cements containing unfunctionalized ceramic particles exhibited brittle failure modes whereas bone cements containing nanofunctionalized ceramic particles exhibited plastic failure modes. Finally, all bone cements containing ceramic particles possessed greater radio-opacity than unmodified bone cements. In summary, the results of this study demonstrated a positive impact on the properties of traditional bone cements for orthopedic applications with the addition of unfunctionalized and TMS functionalized ceramic nanoparticles

  2. Influence of lactose addition to gentamicin-loaded acrylic bone cement on the kinetics of release of the antibiotic and the cement properties.

    Science.gov (United States)

    Frutos, Gloria; Pastor, José Ygnacio; Martínez, Noelia; Virto, María Rosa; Torrado, Susana

    2010-03-01

    The purpose of this study was to characterize a poly(methyl methacrylate) bone cement that was loaded with the antibiotic gentamicin sulphate (GS) and lactose, which served to modulate the release of GS from cement specimens. The release of GS when the cement specimens were immersed in phosphate-buffered saline at 37 degrees Celsius was determined spectrophotometrically. The microstructure, porosity, density, tensile properties and flexural properties of the cements were determined before and after release of GS. A kinetics model of the release of GS from the cement that involved a coupled mechanism based on dissolution/diffusion processes and an initial burst effect was proposed. Dissolution assay results showed that drug elution was controlled by a diffusion mechanism which can be modulated by lactose addition. Density values and mechanical properties (tensile strength, flexural strength, elastic modulus and fracture toughness) were reduced by the increased porosity resulting from lactose addition, but maintained acceptable values for the structural functions of bone cement. The present results suggest that lactose-modified, gentamicin-loaded acrylic bone cements are potential candidates for use in various orthopaedic and dental applications. Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Porous surface modified bioactive bone cement for enhanced bone bonding.

    Directory of Open Access Journals (Sweden)

    Qiang He

    Full Text Available Polymethylmethacrylate bone cement cannot provide an adhesive chemical bonding to form a stable cement-bone interface. Bioactive bone cements show bone bonding ability, but their clinical application is limited because bone resorption is observed after implantation. Porous polymethylmethacrylate can be achieved with the addition of carboxymethylcellulose, alginate and gelatin microparticles to promote bone ingrowth, but the mechanical properties are too low to be used in orthopedic applications. Bone ingrowth into cement could decrease the possibility of bone resorption and promote the formation of a stable interface. However, scarce literature is reported on bioactive bone cements that allow bone ingrowth. In this paper, we reported a porous surface modified bioactive bone cement with desired mechanical properties, which could allow for bone ingrowth.The porous surface modified bioactive bone cement was evaluated to determine its handling characteristics, mechanical properties and behavior in a simulated body fluid. The in vitro cellular responses of the samples were also investigated in terms of cell attachment, proliferation, and osteoblastic differentiation. Furthermore, bone ingrowth was examined in a rabbit femoral condyle defect model by using micro-CT imaging and histological analysis. The strength of the implant-bone interface was also investigated by push-out tests.The modified bone cement with a low content of bioactive fillers resulted in proper handling characteristics and adequate mechanical properties, but slightly affected its bioactivity. Moreover, the degree of attachment, proliferation and osteogenic differentiation of preosteoblast cells was also increased. The results of the push-out test revealed that higher interfacial bonding strength was achieved with the modified bone cement because of the formation of the apatite layer and the osseointegration after implantation in the bony defect.Our findings suggested a new bioactive

  4. Preclinical evaluation of strontium-containing bioactive bone cement

    International Nuclear Information System (INIS)

    Li, Zhaoyang; Yuan, Ning; Lam, Raymond Wing Moon; Cui, Zhenduo; Yang, Xianjin; Lu, William Weijia

    2013-01-01

    Strontium (Sr) has become more attractive for orthopaedic applications as they can simultaneously stimulate bone formation and prevent bone loss. A Sr-containing bioactive bone cement (Sr-BC) has been designed to fix osteoporotic bone fracture. Sr is a trace element, so the safety of containing Sr is concerned when Sr-BC is implanted in human body. The preclinical assessment of biocompatibility of Sr-BC was conducted according to ISO 10993 standards. MTT assay showed that this bioactive bone cement was non-toxic to mouse fibroblasts, and it met the basic requirement for the orthopaedic implant. The three independent genetic toxicity studies including Ames, chromosome aberration and bone marrow micronucleus assays demonstrated absence of genotoxic components in Sr-BC, which reassured the safety concerns of this novel bone cement. The muscle implantation results in present study were also encouraging. The acute inflammation around the cement was observed at 1 week post-implantation; however, no significant difference was observed between control and Sr-BC groups. These responses may be attributed to the presence of the foreign body, but the tissue healed after 12 weeks implantation. In summary, the above preclinical results provide additional assurance for the safety of this implant. Sr-BC can be used as a potential alternative to the traditional bone cement. - Highlights: • Strontium-containing bioactive bone cement (Sr-BC) was designed. • The biocompatibility of Sr-BC was evaluated according ISO 10993 standards. • Preclinical results provide additional assurance for the safety of Sr-BC

  5. Preclinical evaluation of strontium-containing bioactive bone cement

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhaoyang, E-mail: lizy@hku.hk [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China); Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong (China); Yuan, Ning [Department of Laboratory Medicine, Tianjin Chest Hospital, Tianjin 300051 (China); Lam, Raymond Wing Moon [Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong (China); Cui, Zhenduo; Yang, Xianjin [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China); Lu, William Weijia, E-mail: wwlu@hku.hk [Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong (China)

    2013-12-01

    Strontium (Sr) has become more attractive for orthopaedic applications as they can simultaneously stimulate bone formation and prevent bone loss. A Sr-containing bioactive bone cement (Sr-BC) has been designed to fix osteoporotic bone fracture. Sr is a trace element, so the safety of containing Sr is concerned when Sr-BC is implanted in human body. The preclinical assessment of biocompatibility of Sr-BC was conducted according to ISO 10993 standards. MTT assay showed that this bioactive bone cement was non-toxic to mouse fibroblasts, and it met the basic requirement for the orthopaedic implant. The three independent genetic toxicity studies including Ames, chromosome aberration and bone marrow micronucleus assays demonstrated absence of genotoxic components in Sr-BC, which reassured the safety concerns of this novel bone cement. The muscle implantation results in present study were also encouraging. The acute inflammation around the cement was observed at 1 week post-implantation; however, no significant difference was observed between control and Sr-BC groups. These responses may be attributed to the presence of the foreign body, but the tissue healed after 12 weeks implantation. In summary, the above preclinical results provide additional assurance for the safety of this implant. Sr-BC can be used as a potential alternative to the traditional bone cement. - Highlights: • Strontium-containing bioactive bone cement (Sr-BC) was designed. • The biocompatibility of Sr-BC was evaluated according ISO 10993 standards. • Preclinical results provide additional assurance for the safety of Sr-BC.

  6. Radioactivity of bone cement

    International Nuclear Information System (INIS)

    Scherer, M.A.; Winkler, R.; Ascherl, R.; Lenz, E.

    1993-01-01

    A total of 14 samples of different types of bone cement from five different manufacturers were examined for their radioactivity. Each of the investigated bone cements showed a low radioactivity level, i.e. between [de

  7. Development of a biodegradable bone cement

    International Nuclear Information System (INIS)

    Yusof Abdullah; Nurhaslinda Ee Abdullah; Wee Pee Chai; Norita Mohd Zain

    2002-01-01

    Biodegradable bone cement is a newly developed bone repair material, which is able to give immediate support to the implant area, and does not obstruct the bone repairing and regeneration process through appropriate biodegradation rate, which is synchronized with the mechanical load it should bear. The purpose of this study is to locally produce biodegradable bone cement using HA as absorbable filler. The cement is composed of an absorbable filler and unsaturated polyester for 100% degradation. Cross-linking effect is achieved through the action of poly (vinyl pyrrol lidone) (PVP) and an initiator. On the other hand, PPF was synthesized using direct esterification method. Characteristics of the bone cement were studied; these included the curing time, cross-linking effect and curing temperature. The products were characterized using X-Ray diffraction (XRD) to perform phase analysis and Scanning Electrons Microscopes to determine the morphology. The physical and mechanical properties of the bone cement were also investigated. The biocompatibility of the bone cement was tested using simulated body physiological solution. (Author)

  8. 21 CFR 888.3027 - Polymethylmethacrylate (PMMA) bone cement.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Polymethylmethacrylate (PMMA) bone cement. 888... Polymethylmethacrylate (PMMA) bone cement. (a) Identification. Polymethylmethacrylate (PMMA) bone cement is a device...: Polymethylmethacrylate (PMMA) Bone Cement.” [67 FR 46855, July 17, 2002] ...

  9. Effect of heat generation from bone cement on bone tissue in total knee arthroplasty; Jinko kansetsu okikaeji no one cement no hatsunetsu ga seitai soshiki ni oyobosu eikyo ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, M.; Uchida, T. [Kobe University, Kobe (Japan); Iwatsubo, T. [Kobe University, Kobe (Japan). Faculty of Engineering; Kurosawa, M.; Hashimoto, Y. [Kobe University, Kobe (Japan). Faculty of Medicine; Fukushima, H.

    1998-01-25

    Bone cement is often applied to fix the components in a surgical operation, such as TKA (total knee arthroplasty). In this paper, we consider the effect of heat generation from bone cement on bone tissue in TKA by using numerical simulation. First, we applied an axisymmetric model of tibia to finite element method and analyzed heat generation of bone cement. To confirm the results of analysis by experiment, we measured the temperature determined by 6 points i.e., 2 points each in component-cement interface, cement and bone-cement interface. As a result, the temperature determined by analysis agrees with that determined by experiment. Next, we proposed the evaluation formula of the bone necrosis. We constructed a bone necrosis map from the simulation. From the map, we found that the bone necrosis region was about 2 mm from the bone-cement interface. In addition, the bone necrosis is severe at the base of the tibial component. 7 refs., 15 figs., 3 tabs.

  10. Influence of Nano-HA Coated Bone Collagen to Acrylic (Polymethylmethacrylate Bone Cement on Mechanical Properties and Bioactivity.

    Directory of Open Access Journals (Sweden)

    Tao Li

    Full Text Available This research investigated the mechanical properties and bioactivity of polymethylmethacrylate (PMMA bone cement after addition of the nano-hydroxyapatite(HA coated bone collagen (mineralized collagen, MC.The MC in different proportions were added to the PMMA bone cement to detect the compressive strength, compression modulus, coagulation properties and biosafety. The MC-PMMA was embedded into rabbits and co-cultured with MG 63 cells to exam bone tissue compatibility and gene expression of osteogenesis.15.0%(wt impregnated MC-PMMA significantly lowered compressive modulus while little affected compressive strength and solidification. MC-PMMA bone cement was biologically safe and indicated excellent bone tissue compatibility. The bone-cement interface crosslinking was significantly higher in MC-PMMA than control after 6 months implantation in the femur of rabbits. The genes of osteogenesis exhibited significantly higher expression level in MC-PMMA.MC-PMMA presented perfect mechanical properties, good biosafety and excellent biocompatibility with bone tissues, which has profoundly clinical values.

  11. A modified PMMA cement (Sub-cement) for accelerated fatigue testing of cemented implant constructs using cadaveric bone.

    Science.gov (United States)

    Race, Amos; Miller, Mark A; Mann, Kenneth A

    2008-10-20

    Pre-clinical screening of cemented implant systems could be improved by modeling the longer-term response of the implant/cement/bone construct to cyclic loading. We formulated bone cement with degraded fatigue fracture properties (Sub-cement) such that long-term fatigue could be simulated in short-term cadaver tests. Sub-cement was made by adding a chain-transfer agent to standard polymethylmethacrylate (PMMA) cement. This reduced the molecular weight of the inter-bead matrix without changing reaction-rate or handling characteristics. Static mechanical properties were approximately equivalent to normal cement. Over a physiologically reasonable range of stress-intensity factor, fatigue crack propagation rates for Sub-cement were higher by a factor of 25+/-19. When tested in a simplified 2 1/2-D physical model of a stem-cement-bone system, crack growth from the stem was accelerated by a factor of 100. Sub-cement accelerated both crack initiation and growth rate. Sub-cement is now being evaluated in full stem/cement/femur models.

  12. Preparation and Characterization of Injectable Brushite Filled-Poly (Methyl Methacrylate Bone Cement

    Directory of Open Access Journals (Sweden)

    Lucas C. Rodriguez

    2014-09-01

    Full Text Available Powder-liquid poly (methyl methacrylate (PMMA bone cements are widely utilized for augmentation of bone fractures and fixation of orthopedic implants. These cements typically have an abundance of beneficial qualities, however their lack of bioactivity allows for continued development. To enhance osseointegration and bioactivity, calcium phosphate cements prepared with hydroxyapatite, brushite or tricalcium phosphates have been introduced with rather unsuccessful results due to increased cement viscosity, poor handling and reduced mechanical performance. This has limited the use of such cements in applications requiring delivery through small cannulas and in load bearing. The goal of this study is to design an alternative cement system that can better accommodate calcium-phosphate additives while preserving cement rheological properties and performance. In the present work, a number of brushite-filled two-solution bone cements were prepared and characterized by studying their complex viscosity-versus-test frequency, extrusion stress, clumping tendency during injection through a syringe, extent of fill of a machined void in cortical bone analog specimens, and compressive strength. The addition of brushite into the two-solution cement formulations investigated did not affect the pseudoplastic behavior and handling properties of the materials as demonstrated by rheological experiments. Extrusion stress was observed to vary with brushite concentration with values lower or in the range of control PMMA-based cements. The materials were observed to completely fill pre-formed voids in bone analog specimens. Cement compressive strength was observed to decrease with increasing concentration of fillers; however, the materials exhibited high enough strength for consideration in load bearing applications. The results indicated that partially substituting the PMMA phase of the two-solution cement with brushite at a 40% by mass concentration provided the best

  13. Microindentation of Polymethyl Methacrylate (PMMA Based Bone Cement

    Directory of Open Access Journals (Sweden)

    F. Zivic

    2011-12-01

    Full Text Available Characterization of polymethyl methacrylate (PMMA based bone cement subjected to cyclical loading using microindentation technique is presented in this paper. Indentation technique represents flexible mechanical testing due to its simplicity, minimal specimen preparation and short time needed for tests. The mechanical response of bone cement samples was studied. Realised microindentation enabled determination of the indentation testing hardness HIT and indentation modulus EIT of the observed bone cement. Analysis of optical photographs of the imprints showed that this technique can be effectively used for characterization of bone cements.

  14. Effect of Poly(Vinyl Alcohol) Addition on the Properties of Hydrothermal Derived Calcium Phosphate Cement for Bone Filling Materials

    Science.gov (United States)

    Razali, N. N.; Sopyan, I.; Mel, M.; Salleh, H. M.; Rahman, M. M.; Singh, R.

    2017-06-01

    The effect of addition of poly(vinyl alcohol) on hydrothermal derived calcium phosphate cement has been studied. The precursors used to prepare the cement were calcium oxide (CaO) and ammonium dihydrogen phosphate (NH4H2PO4); the reaction was conducted in water at 80-100°C. To improve properties of CPC, poly(vinyl alcohol) (PVA) of 1wt% and 2wt% was added to the liquid phase of CPC and the results were compared to CPC without PVA addition. The addition of PVA was proved to bring remarkable effects on cohesion, setting time and mechanical strength of CPC which make it suitable physically for injectable bone filler applications.

  15. Calcium phosphate holmium-166 ceramic to addition in bone cement: synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Donanzam, Blanda A.; Campos, Tarcisio P.R., E-mail: campos@nuclear.ufmg.b [Universidade do Federal de Minas Gerais (DEN/UFMG), Belo Horizonte, MG (Brazil). Escola de Engenharia. Dept. de Engenharia Nuclear; Dalmazio, Ilza; Valente, Eduardo S., E-mail: id@cdtn.b, E-mail: valente@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    Spine metastases are a common and painful complication of cancer. The treatment often consists of bone cement injection (vertebroplasty or kyphoplasty) within vertebral body for vertebrae stabilization, followed by external beam radiation therapy. Recently, researchers introduced the concept of radioactive bone cement for spine tumors therapy. Then, investigations about bioactive and radioactive materials became interesting. In this study, we present the synthesis of calcium phosphate incorporated holmium (CaP-Ho) via sol-gel technique, and its characterization by XRD, FT-IR, NA and SEM. Results showed a multiphasic bioceramic composed mainly of hydroxyapatite, {beta}-tricalcium phosphate, holmium phosphate and traces of calcium pyrophosphate. Furthermore, the nuclide Ho-166 was the major radioisotope produced. Despite that, the radioactive bioceramic CaP-{sup 166}Ho must be investigated in clinical trials to assure its efficacy and safety on spine tumors treatment (author)

  16. Calcium phosphate holmium-166 ceramic to addition in bone cement: synthesis and characterization

    International Nuclear Information System (INIS)

    Donanzam, Blanda A.; Campos, Tarcisio P.R.

    2011-01-01

    Spine metastases are a common and painful complication of cancer. The treatment often consists of bone cement injection (vertebroplasty or kyphoplasty) within vertebral body for vertebrae stabilization, followed by external beam radiation therapy. Recently, researchers introduced the concept of radioactive bone cement for spine tumors therapy. Then, investigations about bioactive and radioactive materials became interesting. In this study, we present the synthesis of calcium phosphate incorporated holmium (CaP-Ho) via sol-gel technique, and its characterization by XRD, FT-IR, NA and SEM. Results showed a multiphasic bioceramic composed mainly of hydroxyapatite, β-tricalcium phosphate, holmium phosphate and traces of calcium pyrophosphate. Furthermore, the nuclide Ho-166 was the major radioisotope produced. Despite that, the radioactive bioceramic CaP- 166 Ho must be investigated in clinical trials to assure its efficacy and safety on spine tumors treatment (author)

  17. The mechanical study of acrylic bone cement reinforced with carbon nanotube

    International Nuclear Information System (INIS)

    Nien, Yu-Hsun; Huang, Chiao-li

    2010-01-01

    Bone cement is used as filler between prosthesis and bone for fixation and force distribution. The major composition of bone cement is polymethylmethacrylate (PMMA). Some disadvantages of PMMA bone cement are found such as significant poor mechanical properties which may cause failure of the cement. In this paper, we exploited carbon nanotube to enhance the mechanical properties of bone cement. The mechanical properties of the bone cement were characterized using tensile and compressive analysis as well as dynamic mechanical analysis (DMA). The result shows that carbon nanotube is able to enhance the mechanical properties of the modified bone cement.

  18. The mechanical study of acrylic bone cement reinforced with carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Nien, Yu-Hsun, E-mail: nienyh@yuntech.edu.tw [Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Douliou, Yunlin 64002, Taiwan (China); Huang, Chiao-li [Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Douliou, Yunlin 64002, Taiwan (China)

    2010-05-25

    Bone cement is used as filler between prosthesis and bone for fixation and force distribution. The major composition of bone cement is polymethylmethacrylate (PMMA). Some disadvantages of PMMA bone cement are found such as significant poor mechanical properties which may cause failure of the cement. In this paper, we exploited carbon nanotube to enhance the mechanical properties of bone cement. The mechanical properties of the bone cement were characterized using tensile and compressive analysis as well as dynamic mechanical analysis (DMA). The result shows that carbon nanotube is able to enhance the mechanical properties of the modified bone cement.

  19. Production of bone cement composites: effect of fillers, co-monomer and particles properties

    Energy Technology Data Exchange (ETDEWEB)

    Santos Junior, J.G.F.; Melo, P.A.; Pinto, J.C., E-mail: jjunior@peq.coppe.ufrj.b, E-mail: melo@peq.coppe.ufrj.b, E-mail: pinto@peq.coppe.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia. (PEQ/COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Quimica; Pita, V.J.R.R., E-mail: vjpita@ima.ufrj.b [Universidade Federal do Rio de Janeiro (IMA/UFRJ), RJ (Brazil). Inst. de Macromoleculas Eloisa Mano; Nele, M. [Universidade Federal do Rio de Janeiro (EQ/UFRJ), RJ (Brazil). Escola de Quimica

    2011-04-15

    Artificial bone cements (BCs) based on poly(methyl methacrylate) (PMMA) powders and methyl methacrylate (MMA) liquid monomer also present in their formulation small amounts of other substances, including a chemical initiator compound and radiopaque agents. Because inadequate mixing of the recipe components during the manufacture of the bone cement may compromise the mechanical properties of the final pieces, new techniques to incorporate the fillers into the BC and their effect upon the mechanical properties of BC pieces were investigated in the present study. PMMA powder composites were produced in situ in the reaction vessel by addition of X-ray contrasts to the reacting MMA mixture. It is shown that this can lead to much better mechanical properties of test pieces, when compared to standard bone cement formulations, because enhanced dispersion of the radiopaque agents can be achieved. Moreover, it is shown that the addition of hydroxyapatite (HA) and acrylic acid (AA) to the bone cement recipe can be beneficial for the mechanical performance of the final material. It is also shown that particle morphology can exert a tremendous effect upon the performance of test pieces, indicating that the suspension polymerization step should be carefully controlled when optimization of the bone cement formulation is desired. (author)

  20. Production of bone cement composites: effect of fillers, co-monomer and particles properties

    Directory of Open Access Journals (Sweden)

    J. G. F. Santos Jr.

    2011-06-01

    Full Text Available Artificial bone cements (BCs based on poly(methyl methacrylate (PMMA powders and methyl methacrylate (MMA liquid monomer also present in their formulation small amounts of other substances, including a chemical initiator compound and radiopaque agents. Because inadequate mixing of the recipe components during the manufacture of the bone cement may compromise the mechanical properties of the final pieces, new techniques to incorporate the fillers into the BC and their effect upon the mechanical properties of BC pieces were investigated in the present study. PMMA powder composites were produced in-situ in the reaction vessel by addition of X-ray contrasts to the reacting MMA mixture. It is shown that this can lead to much better mechanical properties of test pieces, when compared to standard bone cement formulations, because enhanced dispersion of the radiopaque agents can be achieved. Moreover, it is shown that the addition of hydroxyapatite (HA and acrylic acid (AA to the bone cement recipe can be beneficial for the mechanical performance of the final material. It is also shown that particle morphology can exert a tremendous effect upon the performance of test pieces, indicating that the suspension polymerization step should be carefully controlled when optimization of the bone cement formulation is desired.

  1. Chemical and physical properties of bone cement for vertebroplasty

    Directory of Open Access Journals (Sweden)

    Po-Liang Lai

    2013-08-01

    Full Text Available Vertebral compression fracture is the most common complication of osteoporosis. It may result in persistent severe pain and limited mobility, and significantly impacts the quality of life. Vertebroplasty involves a percutaneous injection of bone cement into the collapsed vertebrae by fluorescent guide. The most commonly used bone cement in percutaneous vertebroplasty is based on the polymerization of methylmethacrylate monomers to polymethylmethacrylate (PMMA polymers. However, information on the properties of bone cement is mostly published in the biomaterial sciences literature, a source with which the clinical community is generally unfamiliar. This review focuses on the chemistry of bone cement polymerization and the physical properties of PMMA. The effects of altering the portions and contents of monomer liquid and polymer powders on the setting time, polymerization temperature, and compressive strength of the cement are also discussed. This information will allow spine surgeons to manipulate bone cement characteristics for specific clinical applications and improve safety.

  2. [Significance of bone mineral density and modern cementing technique for in vitro cement penetration in total shoulder arthroplasty].

    Science.gov (United States)

    Pape, G; Raiss, P; Kleinschmidt, K; Schuld, C; Mohr, G; Loew, M; Rickert, M

    2010-12-01

    Loosening of the glenoid component is one of the major causes of failure in total shoulder arthroplasty. Possible risk factors for loosening of cemented components include an eccentric loading, poor bone quality, inadequate cementing technique and insufficient cement penetration. The application of a modern cementing technique has become an established procedure in total hip arthroplasty. The goal of modern cementing techniques in general is to improve the cement-penetration into the cancellous bone. Modern cementing techniques include the cement vacuum-mixing technique, retrograde filling of the cement under pressurisation and the use of a pulsatile lavage system. The main purpose of this study was to analyse cement penetration into the glenoid bone by using modern cement techniques and to investigate the relationship between the bone mineral density (BMD) and the cement penetration. Furthermore we measured the temperature at the glenoid surface before and after jet-lavage of different patients during total shoulder arthroplasty. It is known that the surrounding temperature of the bone has an effect on the polymerisation of the cement. Data from this experiment provide the temperature setting for the in-vitro study. The glenoid surface temperature was measured in 10 patients with a hand-held non-contact temperature measurement device. The bone mineral density was measured by DEXA. Eight paired cadaver scapulae were allocated (n = 16). Each pair comprised two scapulae from one donor (matched-pair design). Two different glenoid components were used, one with pegs and the other with a keel. The glenoids for the in-vitro study were prepared with the bone compaction technique by the same surgeon in all cases. Pulsatile lavage was used to clean the glenoid of blood and bone fragments. Low viscosity bone cement was applied retrogradely into the glenoid by using a syringe. A constant pressure was applied with a modified force sensor impactor. Micro-computed tomography

  3. Antibiotic-eluting hydrophilized PMMA bone cement with prolonged bactericidal effect for the treatment of osteomyelitis.

    Science.gov (United States)

    Oh, Eun Jo; Oh, Se Heang; Lee, In Soo; Kwon, Oh Soo; Lee, Jin Ho

    2016-05-01

    Osteomyelitis is still considered to be one of the major challenges for orthopedic surgeons despite advanced antiseptic surgical procedures and pharmaceutical therapeutics. In this study, hydrophilized poly(methyl methacrylate) (PMMA) bone cements containing Pluronic F68 (EG79PG28EG79) as a hydrophilic additive and vancomycin (F68-VAcements) were prepared to allow the sustained release of the antibiotic for adequate periods of time without any significant loss of mechanical properties. The compressive strengths of the bone cements with Pluronic F68 compositions less than 7 wt% were not significantly different compared with the control vancomycin-loaded bone cement (VAcement). TheF68 (7 wt%)-VAcement showed sustained release of the antibiotic for up to 11 weeks and almost 100% release from the bone cement. It also prohibited the growth ofS. aureus(zone of inhibition) over six weeks (the required period to treat osteomyelitis), and it did not show any notable cytotoxicity. From an animal study using a femoral osteomyelitis rat model, it was observed that theF68 (7 wt%)-VAcement was effective for the treatment of osteomyelitis, probably as a result of the prolonged release of antibiotic from the PMMA bone cement. On the basis of these findings, it can be suggested that the use of Pluronic F68 as a hydrophilic additive for antibiotic-eluting PMMA bone cement can be a promising strategy for the treatment of osteomyelitis. © The Author(s) 2016.

  4. Bone cement allocation analysis in artificial cancellous bone structures

    Directory of Open Access Journals (Sweden)

    Ivan Zderic

    2017-01-01

    Conclusion: The simulated leakage path seemed to be the most important adverse injection factor influencing the uniformity of cement distribution. Another adverse factor causing dispersion of this distribution was represented by the simulated bone marrow. However, the rather uniform distribution of the totally injected cement amount, considered as one unit, could be ascribed to the medium viscosity of the used cement. Finally, with its short waiting time of 45 s, the stepwise injection procedure was shown to be ineffective in preventing cement leakage.

  5. Effect of process variables on the preparation of artificial bone cements

    Energy Technology Data Exchange (ETDEWEB)

    Santos Junior, J.G.F.; Melo, P.A.; Pinto, J.C., E-mail: pinto@peq.coppe.ufrj.br, E-mail: jjunior@peq.coppe.ufrj.br, E-mail: melo@peq.coppe.ufrj.br [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Quimica; Pita, V.J.R.R., E-mail: vjpita@ima.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Instituto de Macromoleculas; Nele, M., E-mail: nele@eq.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica

    2013-10-15

    The present work concerns the preparation of bone cements based on poly(methyl methacrylate) (PMMA), used mainly for prosthesis fixation and cavity filling for correction of human bone failures. A typical bone cement recipe contains methyl methacrylate, which polymerizes in situ during cement application. An inherent problem of this reaction is the large amount of heat released during the cement preparation, which may lead to irreparable damage of living tissues. Optimization of PMMA-based bone cement recipes is thus an important step towards safe and reliable clinical usage of these materials. Important process variables related to the reaction temperature profile and the mixing of the recipe constituents were studied in order to allow for the adequate production of bone cements. It is shown that the average molar mass and size of the PMMA particles used in the production of the bone cement, as well as incorporation of radiopaque contrast, co-monomers and fillers into the bone recipe play fundamental roles in the course of the polymerization reaction. Furthermore, the injection vessel geometry may interfere dramatically with the temperature profile and the time for its occurrence. Finally, it has been observed that the morphology of the PMMA particles strongly affects the mixing of the bone cement components. (author)

  6. Effect of process variables on the preparation of artificial bone cements

    Directory of Open Access Journals (Sweden)

    J. G. F. Santos Jr.

    2013-12-01

    Full Text Available The present work concerns the preparation of bone cements based on poly(methyl methacrylate (PMMA, used mainly for prosthesis fixation and cavity filling for correction of human bone failures. A typical bone cement recipe contains methyl methacrylate, which polymerizes in situ during cement application. An inherent problem of this reaction is the large amount of heat released during the cement preparation, which may lead to irreparable damage of living tissues. Optimization of PMMA-based bone cement recipes is thus an important step towards safe and reliable clinical usage of these materials. Important process variables related to the reaction temperature profile and the mixing of the recipe constituents were studied in order to allow for the adequate production of bone cements. It is shown that the average molar mass and size of the PMMA particles used in the production of the bone cement, as well as incorporation of radiopaque contrast, co-monomers and fillers into the bone recipe play fundamental roles in the course of the polymerization reaction. Furthermore, the injection vessel geometry may interfere dramatically with the temperature profile and the time for its occurrence. Finally, it has been observed that the morphology of the PMMA particles strongly affects the mixing of the bone cement components.

  7. Mechanical properties and antibiotic release characteristics of poly(methyl methacrylate)-based bone cement formulated with mesoporous silica nanoparticles.

    Science.gov (United States)

    Letchmanan, Kumaran; Shen, Shou-Cang; Ng, Wai Kiong; Kingshuk, Poddar; Shi, Zhilong; Wang, Wilson; Tan, Reginald B H

    2017-08-01

    The influence of mesoporous silica nanoparticles (MSNs) loaded with antibiotics on the mechanical properties of functional poly(methyl methacrylate)-(PMMA) based bone cements is investigated. The incorporation of MSNs to the bone cements (8.15wt%) shows no detrimental effects on the biomechanical properties of the freshly solidified bone cements. Importantly, there are no significant changes in the compression strength and bending modulus up to 6 months of aging in PBS buffer solution. The preserved mechanical properties of MSN-functionalized bone cements is attributed to the unchanged microstructures of the cements, as more than 96% of MSNs remains in the bone cement matrix to support the cement structures after 6 months of aging. In addition, the MSN-functionalized bone cements are able to increase the drug release of gentamicin (GTMC) significantly as compared with commercially available antibiotic-loaded bone cements. It can be attributed to the loaded nano-sized MSNs with uniform pore channels which build up an effective nano-network path enable the diffusion and extended release of GTMC. The combination of excellent mechanical properties and sustainable drug delivery efficiency demonstrates the potential applicability of MSN-functionalized PMMA bone cements for orthopedic surgery to prevent post-surgery infection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Improvement of disintegrable properties of bone prosthetic phosphate cements

    International Nuclear Information System (INIS)

    Kaneda, Mitsumasa

    2007-01-01

    The author added a viscoelastic binder or bio-disintegrable polymer filler in αDT-cement (DTC) base, which consisting of α-tricalcium phosphate, tetracalcium phosphate and dicalcium phosphate anhydrous, in order to examine whether disintegrable properties of the bone prosthetic materials could be improved. The additive for the former binder was hydroxypropyl-cellulose and the latter filler, poly-(DL-lactide-co-glycolide) and they were mixed in various proportions with the base. At both sides of the cranial coronary suture of Japanese white rabbit, cavities (4 in total) were made at anteroposterior sites where those prosthetic cements were filled. At 1, 2 and 4 weeks later, the operated bone region was dissected out, its soft X-ray image was taken by the machine OMC603 (OHMICRON), and three-dimensional (3D) micro-focused XCT images, by Shimadzu SMX-130CT-SV. The trabecular thickness, bone volume and tissue volume ratio were calculated from the latter images by the trabecular structural measure software TRI/3Dbon (ROTAC). Disintegration rate of the cements was tested in water. Disintegrable properties were found to affect osteogenesis by giving the space for it, and thereby the choice of the ratio of the binder and disintegrable filler in the DTC makes it possible to design the most suitable cement needed. (R.T.)

  9. Fatigue crack propagation of acrylic bone cements. Influence of the radio-opaque agents

    International Nuclear Information System (INIS)

    Ginebra, M. P.; Albuixech, L.; Fernandez-Barragan, E.; Gil, F. J.; Planell, J. A.; San Roman, J.; Vazquez, B.

    2001-01-01

    In this work the 2,5-diiodo-8-quinolyl methacrylate (IHQM), is proposed as a new radiopaque agent. The addition of the iodine containing methacrylate provided a statistically significant increase in the tensile strength, fracture toughness and ductility, with respect to the barium sulphate containing cement. This effect was attributed to the fact that the use of a radiopaque monomer eliminated the porosity associated to the barium sulphate particles. However, since fatigue resistance is one of the main properties required to ensure a good long-term performance of permanent pros these, as is the case of acrylic bone cements, it is important to compare the fatigue properties of this new bone cement formulation with the radiolucent and the BaSO 4 containing bone cements. The results show that the absence of inorganic particles with no matrix adhesion plays a negative role when the fatigue crack propagation is considered. (Author) 26 refs

  10. 3D-Printed Bioactive Ca3SiO5 Bone Cement Scaffolds with Nano Surface Structure for Bone Regeneration.

    Science.gov (United States)

    Yang, Chen; Wang, Xiaoya; Ma, Bing; Zhu, Haibo; Huan, Zhiguang; Ma, Nan; Wu, Chengtie; Chang, Jiang

    2017-02-22

    Silicate bioactive materials have been widely studied for bone regeneration because of their eminent physicochemical properties and outstanding osteogenic bioactivity, and different methods have been developed to prepare porous silicate bioactive ceramics scaffolds for bone-tissue engineering applications. Among all of these methods, the 3D-printing technique is obviously the most efficient way to control the porous structure. However, 3D-printed bioceramic porous scaffolds need high-temperature sintering, which will cause volume shrinkage and reduce the controllability of the pore structure accuracy. Unlike silicate bioceramic, bioactive silicate cements such as tricalcium silicate (Ca 3 SiO 5 and C 3 S) can be self-set in water to obtain high mechanical strength under mild conditions. Another advantage of using C 3 S to prepare 3D scaffolds is the possibility of simultaneous drug loading. Herein, we, for the first time, demonstrated successful preparation of uniform 3D-printed C 3 S bone cement scaffolds with controllable 3D structure at room temperature. The scaffolds were loaded with two model drugs and showed a loading location controllable drug-release profile. In addition, we developed a surface modification process to create controllable nanotopography on the surface of pore wall of the scaffolds, which showed activity to enhance rat bone-marrow stem cells (rBMSCs) attachment, spreading, and ALP activities. The in vivo experiments revealed that the 3D-printed C 3 S bone cement scaffolds with nanoneedle-structured surfaces significantly improved bone regeneration, as compared to pure C 3 S bone cement scaffolds, suggesting that 3D-printed C 3 S bone cement scaffolds with controllable nanotopography surface are bioactive implantable biomaterials for bone repair.

  11. Biocompatibility of calcium phosphate bone cement with optimised mechanical properties: an in vivo study.

    Science.gov (United States)

    Palmer, Iwan; Nelson, John; Schatton, Wolfgang; Dunne, Nicholas J; Buchanan, Fraser; Clarke, Susan A

    2016-12-01

    This work establishes the in vivo performance of modified calcium phosphate bone cements for vertebroplasty of spinal fractures using a lapine model. A non-modified calcium phosphate bone cement and collagen-calcium phosphate bone cements composites with enhanced mechanical properties, utilising either bovine collagen or collagen from a marine sponge, were compared to a commercial poly(methyl methacrylate) cement. Conical cement samples (8 mm height × 4 mm base diameter) were press-fit into distal femoral condyle defects in New Zealand White rabbits and assessed after 5 and 10 weeks. Bone apposition and tartrate-resistant acid phosphatase activity around cements were assessed. All implants were well tolerated, but bone apposition was higher on calcium phosphate bone cements than on poly(methyl methacrylate) cement. Incorporation of collagen showed no evidence of inflammatory or immune reactions. Presence of positive tartrate-resistant acid phosphatase staining within cracks formed in calcium phosphate bone cements suggested active osteoclasts were present within the implants and were actively remodelling within the cements. Bone growth was also observed within these cracks. These findings confirm the biological advantages of calcium phosphate bone cements over poly(methyl methacrylate) and, coupled with previous work on enhancement of mechanical properties through collagen incorporation, suggest collagen-calcium phosphate bone cement composite may offer an alternative to calcium phosphate bone cements in applications where low setting times and higher mechanical stability are important.

  12. Bone-Cement: The New Medical Quick Fix

    Directory of Open Access Journals (Sweden)

    Dinesh Bhatia

    2010-01-01

    Full Text Available

    Bone Cement is being widely used in vertebroplasty, a minimally invasive surgical procedure to treat spinal fractures and collapsed vertebrae. It is being labeled as a concrete success in medical field. It is being used to treat fractures due to osteoporosis, menopause, steroids, hyperthyroidism and chronic obstructive pulmonary diseases.  In this technique a needle with bone cement (PMMA, polymethylmethacrylate is injected into the collapsed vertebra after administering local anesthesia to patient. It solidifies within few minutes and provides support to damaged bone resulting in relief to the patient. It also prevents the movement between different parts of the broken bone. Hence it requires a short hospital stay for the patient and the procedure can be performed with much ease and at significant lower costs. Patient can resume normal activity within a day or so. Bone cement is now being referred to as the quick medical fix material for early repair of fractures.

  13. A New Biphasic Dicalcium Silicate Bone Cement Implant

    Directory of Open Access Journals (Sweden)

    Fausto Zuleta

    2017-07-01

    Full Text Available This study aimed to investigate the processing parameters and biocompatibility of a novel biphasic dicalcium silicate (C2S cement. Biphasic α´L + β-C2Sss was synthesized by solid-state processing, and was used as a raw material to prepare the cement. In vitro bioactivity and biocompatibility studies were assessed by soaking the cement samples in simulated body fluid (SBF and human adipose stem cell cultures. Two critical-sized defects of 6 mm Ø were created in 15 NZ tibias. A porous cement made of the high temperature forms of C2S, with a low phosphorous substitution level, was produced. An apatite-like layer covered the cement’s surface after soaking in SBF. The cell attachment test showed that α´L + β-C2Sss supported cells sticking and spreading after 24 h of culture. The cement paste (55.86 ± 0.23 obtained higher bone-to-implant contact (BIC percentage values (better quality, closer contact in the histomorphometric analysis, and defect closure was significant compared to the control group (plastic. The residual material volume of the porous cement was 35.42 ± 2.08% of the initial value. The highest BIC and bone formation percentages were obtained on day 60. These results suggest that the cement paste is advantageous for initial bone regeneration.

  14. Bone cements for percutaneous vertebroplasty and balloon kyphoplasty: Current status and future developments

    Directory of Open Access Journals (Sweden)

    Zhiwei He

    2015-01-01

    Full Text Available Osteoporotic vertebral compression fractures (OVCFs have gradually evolved into a serious health care problem globally. In order to reduce the morbidity of OVCF patients and improve their life quality, two minimally invasive surgery procedures, vertebroplasty (VP and balloon kyphoplasty (BKP, have been developed. Both VP and BKP require the injection of bone cement into the vertebrae of patients to stabilize fractured vertebra. As such, bone cement as the filling material plays an essential role in the effectiveness of these treatments. In this review article, we summarize the bone cements that are currently available in the market and those still under development. Two major categories of bone cements, nondegradable acrylic bone cements (ABCs and degradable calcium phosphate cements (CPCs, are introduced in detail. We also provide our perspectives on the future development of bone cements for VP and BKP.

  15. Analysis of rheological properties of bone cements.

    Science.gov (United States)

    Nicholas, M K D; Waters, M G J; Holford, K M; Adusei, G

    2007-07-01

    The rheological properties of three commercially available bone cements, CMW 1, Palacos R and Cemex ISOPLASTIC, were investigated. Testing was undertaken at both 25 and 37 degrees C using an oscillating parallel plate rheometer. Results showed that the three high viscosity cements exhibited distinct differences in curing rate, with CMW 1 curing in 8.7 min, Palacos R and Cemex ISOPLASTIC in 13 min at 25 degrees C. Furthermore it was found that these curing rates were strongly temperature dependent, with curing rates being halved at 37 degrees C. By monitoring the change of viscosity with time over the entire curing process, the results showed that these cements had differing viscosity profiles and hence exhibit very different handling characteristics. However, all the cements reached the same maximum viscosity of 75 x 10(3) Pa s. Also, the change in elastic/viscous moduli and tan delta with time, show the cements changing from a viscous material to an elastic solid with a clear peak in the viscous modulus during the latter stages of curing. These results give valuable information about the changes in rheological properties for each commercial bone cement, especially during the final curing process.

  16. Creep and fatigue behavior of a novel 2-component paste-like formulation of acrylic bone cements.

    Science.gov (United States)

    Köster, Ulrike; Jaeger, Raimund; Bardts, Mareike; Wahnes, Christian; Büchner, Hubert; Kühn, Klaus-Dieter; Vogt, Sebastian

    2013-06-01

    The fatigue and creep performance of two novel acrylic bone cement formulations (one bone cement without antibiotics, one with antibiotics) was compared to the performance of clinically used bone cements (Osteopal V, Palacos R, Simplex P, SmartSet GHV, Palacos R+G and CMW1 with Gentamicin). The preparation of the novel bone cement formulations involves the mixing of two paste-like substances in a static mixer integrated into the cartridge which is used to apply the bone cement. The fatigue performance of the two novel bone cement formulations is comparable to the performance of the reference bone cements. The creep compliance of the bone cements is significantly influenced by the effects of physical ageing. The model parameters of Struik's creep law are used to compare the creep behavior of different bone cements. The novel 2-component paste-like bone cement formulations are in the group of bone cements which exhibit a higher creep resistance.

  17. In vivo performance of a reduced-modulus bone cement

    Science.gov (United States)

    Forehand, Brett Ramsey

    Total joint replacement has become one of the most common procedures in the area of orthopedics and is often the solution in patients with diseased or injured hip joints. Component loosening is a significant problem and is primarily caused by bone resorption at the bone-cement interface in cemented implants. It is our hypothesis that localized shear stresses are responsible for the resorption. It was previously shown analytically that local stresses at the interface could be reduced by using a cement of lower modulus. A new reduced modulus cement, polybutyl methylmethacrylate (PBMMA), was developed to test the hypothesis. PBMMA was formulated to exist as polybutyl methacrylate filler in a polymethyl methacrylate matrix. The success of PBMMA cement is based largely on the fact that the polybutyl component of the cement will be in the rubbery state at body temperature. In vitro characterization of the cement was undertaken previously and demonstrated a modulus of approximately one-eighth that of conventional bone cement, polymethyl methacrylate (PMMA) and increased fracture toughness. The purpose of this experiment was to perform an in vivo comparison of the two cements. A sheep model was selected. Total hip arthroplasty was performed on 50 ewes using either PBMMA or PMMA. Radiographs were taken at 6 month intervals. At one year, the contralateral femur of each sheep was implanted so that each animal served as its own control, and the animals were sacrificed. The stiffness of the bone-cement interface of the femoral component within the femur was assessed by applying a torque to the femoral component and demonstrated a significant difference in loosening between the cements when the specimens were tested in external rotation (p sheep had a greater amount of loosening for each subject, 59% versus 4% for standard PMMA. A radiographic analysis demonstrated more signs of loosening in the PMMA series of subjects. A brief histological examination showed similar bony

  18. Nanomechanical properties of bone around cement-retained abutment implants. A minipig study

    Directory of Open Access Journals (Sweden)

    R.R.M. de Barros

    2016-06-01

    Full Text Available Aim The nanomechanical evaluation can provide additional information about the dental implants osseointegration process. The aim of this study was to quantify elastic modulus and hardness of bone around cemented-retained abutment implants positioned at two different crestal bone levels. Materials and methods The mandibular premolars of 7 minipigs were extracted. After 8 weeks, 8 implants were inserted in each animal: crestally on one side of the mandible and subcrestally on the other (crestal and subcrestal groups. Functional loading were immediately provided with abutments cementation and prostheses installation. Eight weeks later, the animals euthanasia was performed and nanoindentation analyses were made at the most coronal newly formed bone region (coronal group, and below in the threaded region (threaded group of histologic sections. Results The comparisons between subcrestal and crestal groups did not achieve statistical relevance; however the elastic modulus and hardness levels were statistically different in the two regions of evaluation (coronal and threaded. Conclusions The crestal and subcrestal placement of cement-retained abutment implants did not affect differently the nanomechanical properties of the surrounding bone. However the different regions of newly formed bone (coronal and threaded groups were extremely different in both elastic modulus and hardness, probably reflecting their differences in bone composition and structure.

  19. Influence of bone density on the cement fixation of femoral hip resurfacing components.

    Science.gov (United States)

    Bitsch, Rudi G; Jäger, Sebastian; Lürssen, Marcus; Loidolt, Travis; Schmalzried, Thomas P; Clarius, Michael

    2010-08-01

    In clinical outcome studies, small component sizes, female gender, femoral shape, focal bone defects, bad bone quality, and biomechanics have been associated with failures of resurfacing arthroplasties. We used a well-established experimental setup and human bone specimens to analyze the effects of bone density on cement fixation of femoral hip resurfacing components. Thirty-one fresh frozen femora were prepared for resurfacing using the original instruments. ASR resurfacing prostheses were implanted after dual-energy X-ray densitometer scans. Real-time measurements of pressure and temperature during implantation, analyses of cement penetration, and measurements of micro motions under torque application were performed. The associations of bone density and measurement data were examined calculating regression lines and multiple correlation coefficients; acceptability was tested with ANOVA. We found significant relations between bone density and micro motion, cement penetration, cement mantle thickness, cement pressure, and interface temperature. Mean bone density of the femora was 0.82 +/- 0.13 g/cm(2), t-score was -0.7 +/- 1.0, and mean micro motion between bone and femoral resurfacing component was 17.5 +/- 9.1 microm/Nm. The regression line between bone density and micro motion was equal to -56.7 x bone density + 63.8, R = 0.815 (p density scans are most helpful for patient selection in hip resurfacing, and a better bone quality leads to higher initial component stability. A sophisticated cementing technique is recommended to avoid vigorous impaction and incomplete seating, since increasing bone density also results in higher cement pressures, lower cement penetration, lower interface temperatures, and thicker cement mantles. Copyright 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  20. The initial instability of cemented and non-cemented femoral stems fixated with a bone grafting technique

    NARCIS (Netherlands)

    Schreurs, B.W.; Huiskes, H.W.J.; Slooff, T.J.J.H.

    1994-01-01

    To reconstruct intramedullary bone stock in revision surgery of failed total hip arthroplasties, a method was developed using impacted trabecular bone grafts. In an in vitro model with femora of the goat, the initial stabilities of both cemented and non-cemented hydroxylapatite-coated stems in this

  1. [The injection of acrylic bone cement prevents bone collapse in the intercalar bones lacking bony support: an experimental sheep semilunar bone model].

    Science.gov (United States)

    Unsal, Murat; Tetik, Cihangir; Erol, Bülent; Cabukoğlu, Cengiz

    2003-01-01

    In a sheep semilunar bone model, we investigated whether collapse in the intercalar bones lacking bony support could be prevented by the injection of acrylic bone cement. The study included 16 limbs of eight sheep. Preoperatively, anteroposterior and lateral views of the carpal joints in the fore limbs were obtained. The animals were divided into four groups. In group 1 (n=3) no surgical procedure was performed in the right semilunar bones, whereas the periosteum on the contralateral side was elevated (group 2; n=3). The first two groups were left as controls. In Group 3 (n=5) the left semilunar bones were filled with acrylic bone cement following decancellation of the bone, while the right semilunar bones were left decancellated (group 4; n=5). The sheep were monitored for three months. Radiographs of the carpal joints were obtained to evaluate collapse occurrence in the semilunar bones. Thereafter, the animals were sacrificed and the semilunar bones were excised for biomechanical and histological examinations. Osteonecrosis and cartilage damage were sought and resistance to compressive forces was investigated. Radiologically, the extent of collapse was statistically significant in the semilunar bones in group 4 (pbone cement was found to prevent collapse in group 3, with no significant difference being noted between preoperative and postoperative semilunar bone heights (p>0.05). Biomechanically, the least resistance to compressive forces was measured in group 4 (pbone cement prevents collapse in the semilunar bones, without inducing any cartilage damage or osteonecrosis.

  2. Bone density and anisotropy affect periprosthetic cement and bone stresses after anatomical glenoid replacement: A micro finite element analysis.

    Science.gov (United States)

    Chevalier, Yan; Santos, Inês; Müller, Peter E; Pietschmann, Matthias F

    2016-06-14

    Glenoid loosening is still a main complication for shoulder arthroplasty. We hypothesize that cement and bone stresses potentially leading to fixation failure are related not only to glenohumeral conformity, fixation design or eccentric loading, but also to bone volume fraction, cortical thickness and degree of anisotropy in the glenoid. In this study, periprosthetic bone and cement stresses were computed with micro finite element models of the replaced glenoid depicting realistic bone microstructure. These models were used to quantify potential effects of bone microstructural parameters under loading conditions simulating different levels of glenohumeral conformity and eccentric loading simulating glenohumeral instability. Results show that peak cement stresses were achieved near the cement-bone interface in all loading schemes. Higher stresses within trabecular bone tissue and cement mantle were obtained within specimens of lower bone volume fraction and in regions of low anisotropy, increasing with decreasing glenohumeral conformity and reaching their maxima below the keeled design when the load is shifted superiorly. Our analyses confirm the combined influences of eccentric load shifts with reduced bone volume fraction and anisotropy on increasing periprosthetic stresses. They finally suggest that improving fixation of glenoid replacements must reduce internal cement and bone tissue stresses, in particular in glenoids of low bone density and heterogeneity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. [Experiment of porous calcium phosphate/bone matrix gelatin composite cement for repairing lumbar vertebral bone defect in rabbit].

    Science.gov (United States)

    Wang, Song; Yang, Han; Yang, Jian; Kang, Jianping; Wang, Qing; Song, Yueming

    2017-12-01

    To investigate the effect of a porous calcium phosphate/bone matrix gelatin (BMG) composite cement (hereinafter referred to as the "porous composite cement") for repairing lumbar vertebral bone defect in a rabbit model. BMG was extracted from adult New Zealand rabbits according to the Urist's method. Poly (lactic-co-glycolic) acid (PLGA) microsphere was prepared by W/O/W double emulsion method. The porous composite cement was developed by using calcium phosphate cement (CPC) composited with BMG and PLGA microsphere. The physicochemical characterizations of the porous composite cement were assessed by anti-washout property, porosity, and biomechanical experiment, also compared with the CPC. Thirty 2-month-old New Zealand rabbits were used to construct vertebral bone defect at L 3 in size of 4 mm×3 mm×3 mm. Then, the bone defect was repaired with porous composite cement (experimental group, n =15) or CPC (control group, n =15). At 4, 8, and 12 weeks after implantation, each bone specimen was assessed by X-ray films for bone fusion, micro-CT for bone mineral density (BMD), bone volume fraction (BVF), trabecular thickness (Tb. Th.), trabecular number (Tb.N.), and trabecular spacing (Tb. Sp.), and histological section with toluidine blue staining for new-born bone formation. The study demonstrated well anti-washout property in 2 groups. The porous composite cement has 55.06%±1.18% of porosity and (51.63±6.73) MPa of compressive strength. The CPC has 49.38%±1.75% of porosity and (63.34±3.27) MPa of compressive strength. There were significant differences in porosity and compressive strength between different cements ( t =4.254, P =0.006; t =2.476, P =0.034). X-ray films revealed that the zone between the cement and host bone gradually blurred with the time extending. At 12 weeks after implantation, the zone was disappeared in the experimental group, but clear in the control group. There were significant differences in BMD, BVF, Tb. Th., Tb. N., and Tb. Sp. between

  4. The Use of Micro and Nano Particulate Fillers to Modify the Mechanical and Material Properties of Acrylic Bone Cement

    Science.gov (United States)

    Slane, Joshua A.

    Acrylic bone cement (polymethyl methacrylate) is widely used in total joint replacements to provide long-term fixation of implants. In essence, bone cement acts as a grout by filling in the voids left between the implant and the patient's bone, forming a mechanical interlock. While bone cement is considered the `gold standard' for implant fixation, issues such as mechanical failure of the cement mantle (aseptic loosening) and the development of prosthetic joint infection (PJI) still plague joint replacement procedures and often necessitate revision arthroplasty. In an effort to address these failures, various modifications are commonly made to bone cement such as mechanical reinforcement with particles/fibers and the addition of antibiotics to mitigate PJI. Despite these attempts, issues such as poor particle interfacial adhesion, inadequate drug release, and the development of multidrug resistant bacteria limit the effectiveness of bone cement modifications. Therefore, the overall goal of this work was to use micro and nanoparticles to enhance the properties of acrylic bone cement, with particular emphasis placed on improving the mechanical properties, cumulative antibiotic release, and antimicrobial properties. An acrylic bone cement (Palacos R) was modified with three types of particles in various loading ratios: mesoporous silica nanoparticles (for mechanical reinforcement), xylitol microparticles (for increased antibiotic release), and silver nanoparticles (as an antimicrobial agent). These particles were used as sole modifications, not in tandem with one another. The resulting cement composites were characterized using a variety of mechanical (macro to nano, fatigue, fracture, and dynamic), imaging, chemical, thermal, biological, and antimicrobial testing techniques. The primary outcomes of this dissertation demonstrate that: (1) mesoporous silica, as used in this work, is a poor reinforcement phase for acrylic bone cement, (2) xylitol can significantly

  5. Experimental and numerical study of cemented bone-implant interface behaviour

    Directory of Open Access Journals (Sweden)

    P. Zlamal

    2011-01-01

    Full Text Available Although the total hip replacement (THR is a long-proven method of surgical treatment of diseases and disorders of the human hip, the surgery brings some risk of long-term instability of the joint. The aim of the research was to investigate the cemented bone-implant interface behavior. The main problems (cement layer degradation and bone-cement interface debonding during physiological loading conditions have been investigated using a custom hip simulator. The experimental setup was designed to allow cyclic loading of the sample of pelvic bone with implanted cemented acetabular component. The hip contact force of required direction and magnitude was applied to the implant using a spherical femoral component head. The most unfavorable activity (downstairs walking was simulated. The process of damage accumulation in the fixation was monitored by repeated scanning using high resolution micro Computed Tomography (µCT. Use of micro-focus source and large high-resolution flat panel detector allows investigation of structural changes and crack propagation both in the cement layer and the trabecular bone.

  6. Low-modulus PMMA bone cement modified with castor oil.

    Science.gov (United States)

    López, Alejandro; Hoess, Andreas; Thersleff, Thomas; Ott, Marjam; Engqvist, Håkan; Persson, Cecilia

    2011-01-01

    Some of the current clinical and biomechanical data suggest that vertebroplasty causes the development of adjacent vertebral fractures shortly after augmentation. These findings have been attributed to high injection volumes as well as high Young's moduli of PMMA bone cements compared to that of the osteoporotic cancellous bone. The aim of this study was to evaluate the use of castor oil as a plasticizer for PMMA bone cements. The Young's modulus, yield strength, maximum polymerization temperature, doughing time, setting time and the complex viscosity curves during curing, were determined. The cytotoxicity of the materials extracts was assessed on cells of an osteoblast-like cell line. The addition of up to 12 wt% castor oil decreased yield strength from 88 to 15 MPa, Young's modulus from 1500 to 446 MPa and maximum polymerization temperature from 41.3 to 25.6°C, without affecting the setting time. However, castor oil seemed to interfere with the polymerization reaction, giving a negative effect on cell viability in a worst-case scenario.

  7. Hypothermic manipulation of bone cement can extend the handling time during vertebroplasty

    Directory of Open Access Journals (Sweden)

    Lai Po-Liang

    2012-10-01

    Full Text Available Abstract Background Polymethylmethacrylate (PMMA is commonly used for clinical applications. However, the short handling time increases the probability of a surgeon missing the crucial period in which the cement maintains its ideal viscosity for a successful injection. The aim of this article was to illustrate the effects a reduction in temperature would have on the cement handling time during percutaneous vertebroplasty. Methods The injectability of bone cement was assessed using a cement compressor. By twisting the compressor, the piston transmits its axial load to the plunger, which then pumps the bone cement out. The experiments were categorized based on the different types of hypothermic manipulation that were used. In group I (room temperature, sham group, the syringes were kept at 22°C after mixing the bone cement. In group 2 (precooling the bone cement and the container, the PMMA powder and liquid, as well as the beaker, spatula, and syringe, were stored in the refrigerator (4°C overnight before mixing. In group 3 (ice bath cooling, the syringes were immediately submerged in ice water after mixing the bone cement at room temperature. Results The average liquid time, paste time, and handling time were 5.1 ± 0.7, 3.4 ± 0.3, and 8.5 ± 0.8 min, respectively, for group 1; 9.4 ± 1.1, 5.8 ± 0.5, and 15.2 ± 1.2 min, respectively, for group 2; and 83.8 ± 5.2, 28.8 ± 6.9, and 112.5 ± 11.3 min, respectively, for group 3. The liquid and paste times could be increased through different cooling methods. In addition, the liquid time (i.e. waiting time for ice bath cooling was longer than for that of the precooling method (p Conclusions Both precooling (i.e. lowering the initial temperature and ice bath cooling (i.e. lowering the surrounding temperature can effectively slow polymerization. Precooling is easy for clinical applications, while ice bath cooling might be more suitable for multiple-level vertebroplasty. Clinicians can take

  8. Hypothermic manipulation of bone cement can extend the handling time during vertebroplasty.

    Science.gov (United States)

    Lai, Po-Liang; Tai, Ching-Lung; Chu, I-Ming; Fu, Tsai-Sheng; Chen, Lih-Huei; Chen, Wen-Jer

    2012-10-16

    Polymethylmethacrylate (PMMA) is commonly used for clinical applications. However, the short handling time increases the probability of a surgeon missing the crucial period in which the cement maintains its ideal viscosity for a successful injection. The aim of this article was to illustrate the effects a reduction in temperature would have on the cement handling time during percutaneous vertebroplasty. The injectability of bone cement was assessed using a cement compressor. By twisting the compressor, the piston transmits its axial load to the plunger, which then pumps the bone cement out. The experiments were categorized based on the different types of hypothermic manipulation that were used. In group I (room temperature, sham group), the syringes were kept at 22°C after mixing the bone cement. In group 2 (precooling the bone cement and the container), the PMMA powder and liquid, as well as the beaker, spatula, and syringe, were stored in the refrigerator (4°C) overnight before mixing. In group 3 (ice bath cooling), the syringes were immediately submerged in ice water after mixing the bone cement at room temperature. The average liquid time, paste time, and handling time were 5.1 ± 0.7, 3.4 ± 0.3, and 8.5 ± 0.8 min, respectively, for group 1; 9.4 ± 1.1, 5.8 ± 0.5, and 15.2 ± 1.2 min, respectively, for group 2; and 83.8 ± 5.2, 28.8 ± 6.9, and 112.5 ± 11.3 min, respectively, for group 3. The liquid and paste times could be increased through different cooling methods. In addition, the liquid time (i.e. waiting time) for ice bath cooling was longer than for that of the precooling method (p < 0.05). Both precooling (i.e. lowering the initial temperature) and ice bath cooling (i.e. lowering the surrounding temperature) can effectively slow polymerization. Precooling is easy for clinical applications, while ice bath cooling might be more suitable for multiple-level vertebroplasty. Clinicians can take advantage of the improved injectability without any

  9. Structural degradation of acrylic bone cements due to in vivo and simulated aging.

    Science.gov (United States)

    Hughes, Kerry F; Ries, Michael D; Pruitt, Lisa A

    2003-05-01

    Acrylic bone cement is the primary load-bearing material used for the attachment of orthopedic devices to adjoining bone. Degradation of acrylic-based cements in vivo results in a loss of structural integrity of the bone-cement-prosthesis interface and limits the longevity of cemented orthopedic implants. The purpose of this study is to investigate the effect of in vivo aging on the structure of the acrylic bone cement and to develop an in vitro artificial aging protocol that mimics the observed degradation. Three sets of retrievals are examined in this study: Palacos brand cement retrieved from hip replacements, and Simplex brand cement retrieved from both hip and knee replacement surgeries. In vitro aging is performed using oxidative and acidic environments on three acrylic-based cements: Palacos, Simplex, and CORE. Gel permeation chromatography (GPC) and Fourier transform infrared spectroscopy (FTIR) are used to examine the evolution of molecular weight and chemical species within the acrylic cements due to both in vivo and simulated aging. GPC analysis indicates that molecular weight is degraded in the hip retrievals but not in the knee retrievals. Artificial aging in an oxidative environment best reproduces this degradation mechanism. FTIR analysis indicates that there exists a chemical evolution within the cement due to in vivo and in vitro aging. These findings are consistent with scission-based degradation schemes in the cement. Based on the results of this study, a pathway for structural degradation of acrylic bone cement is proposed. The findings from this investigation have broad applicability to acrylic-based cements and may provide guidance for the development of new bone cements that resist degradation in the body. Copyright 2003 Wiley Periodicals, Inc.

  10. Method of adhering bone to a rigid substrate using a graphite fiber reinforced bone cement

    Science.gov (United States)

    Knoell, A. C.; Maxwell, H. G. (Inventor)

    1977-01-01

    A method is described for adhering bone to the surface of a rigid substrate such as a metal or resin prosthesis using an improved surgical bone cement. The bone cement has mechanical properties more nearly matched to those of animal bone and thermal curing characteristics which result in less traumatization of body tissues and comprises a dispersion of short high modulus graphite fibers within a bonder composition including polymer dissolved in reactive monomer such as polymethylmethacrylate dissolved in methylmethacrylate monomer.

  11. Biological responses of brushite-forming Zn- and ZnSr- substituted beta-tricalcium phosphate bone cements

    Directory of Open Access Journals (Sweden)

    S Pina

    2010-09-01

    Full Text Available The core aim of this study was to investigate zinc (Zn- and zinc and strontium (ZnSr-containing brushite-forming beta-tricalcium phosphate (TCP cements for their effects on proliferation and differentiation of osteoblastic-like cells (MC3T3-E1 cell line as well as for their in vivo behaviour in trabecular bone cylindrical defects in a pilot study. In vitro proliferation and maturation responses of MC3T3-E1 osteoblastic-like cells to bone cements were studied at the cellular and molecular levels. The Zn- and Sr-containing brushite cements were found to stimulate pre-osteoblastic proliferation and osteoblastic maturation. Indeed, MC3T3-E1 cells exposed to the powdered cements had increased proliferative rates and higher adhesiveness capacity, in comparison to control cells. Furthermore, they exhibited higher alkaline phosphatase (ALP activity and increased Type-I collagen secretion and fibre deposition into the extracellular matrix. Proliferative and collagen deposition properties were more evident for cells grown in cements doped with Sr. The in vivo osteoconductive propertiesof the ZnCPC and ZnSrCPC cements were also pursued. Histological and histomorphometric analyses were performed at 1 and 2 months after implantation, using carbonated apatite cement (Norian SRS® as control. There was no evidence of cement-induced adverse foreign body reactions, and furthermore ZnCPC and ZnSrCPC cements revealed better in vivo performance in comparison to the control apatite cement. Additionally, the presence of both zinc and strontium resulted in the highest rate of new bone formation. These novel results indicate that the investigated ZnCPC and ZnSrCPC cements are both biocompatible and osteoconductive, being good candidate materials to use as bone substitutes.

  12. CT evaluation of local leakage of bone cement after percutaneous kyphoplasty and vertebroplasty

    International Nuclear Information System (INIS)

    Lee, In Jae; Choi, A. Lam; Yie, Mi-Yeon; Yoon, Ji Young; Jeon, Eui Yong; Koh, Sung Hye; Yoon, Dae Young; Lim, Kyung Ja; Im, Hyoung June

    2010-01-01

    Background: Percutaneous injection of bone cement (acrylic cement) during percutaneous kyphoplasty and vertebroplasty can cause symptomatic or asymptomatic complications due to leakage, extravasation or vascular migration of cement. Purpose: To investigate and to compare the incidence and site of local leakage or complications of bone cement after percutaneous kyphoplasty and vertebroplasty using bone cement. Material and Methods: We retrospectively reviewed 473 cases of percutaneous kyphoplasty or vertebroplasty performed under fluoroscopic guidance. Of the 473 cases, follow-up CT scans that covered the treated bones were available for 83 cases (59 kyphoplasty and 24 vertebroplasty). Results: The rate of local leakage of bone cement was 87.5% (21/24) for percutaneous vertebroplasty and 49.2% (29/59) for kyphoplasty. The most common site of local leakage was perivertebral soft tissue (n=8, 38.1%) for vertebroplasty. The most common site of local leakage was a perivertebral vein (n=7, 24.1%) for kyphoplasty. Two cases of pulmonary cement embolism developed: one case after kyphoplasty and one case after vertebroplasty. Conclusion: Local leakage of bone cement was more common for percutaneous vertebroplasty compared with kyphoplasty (P<0.005). The most common sites of local leakage were perivertebral soft tissue and perivertebral vein.

  13. Crevice corrosion of biomedical alloys: a novel method of assessing the effects of bone cement and its chemistry.

    Science.gov (United States)

    Bryant, Michael; Hu, Xinming; Farrar, Richard; Brummitt, Ken; Freeman, Robert; Neville, Anne

    2013-07-01

    In this study, five commercially available poly(methyl methacrylate) PMMA bone cements were tested to investigate the effects of antibiotics on the severity of crevice corrosion. Bone cements with varying chemistry were also tested. A test method was developed in part reference to ASTM F746-04. Cylindrical specimens were fitted with a bone cement tapered collar, creating consistent crevice conditions. Crevice corrosion was then studied using potentiodynamic polarization techniques in 0.9% NaCl solution (pH7.4) at 37°C. Surface analyses using a light microscope and scanning electron microscopy were also conducted to investigate the surface morphology after accelerated electrochemical testing. Initial testing of commercially available bone cements indicated that different PMMA bone cements can affect the initiation and propagation mechanism of crevice corrosion. Further studies, utilising electrochemical and mass spectroscopy techniques, have identified that the addition of radiopaque agent and antibiotics affect the initiation mechanisms of 316L stainless steel, whilst significantly increasing the extent of propagation in CoCrMo alloys. Copyright © 2013 Wiley Periodicals, Inc.

  14. Prediction of the Setting Properties of Calcium Phosphate Bone Cement

    Directory of Open Access Journals (Sweden)

    Seyed Mahmud Rabiee

    2012-01-01

    Full Text Available Setting properties of bone substitutes are improved using an injectable system. The injectable bone graft substitutes can be molded to the shape of the bone cavity and set in situ when injected. Such system is useful for surgical operation. The powder part of the injectable bone cement is included of β-tricalcium phosphate, calcium carbonate, and dicalcium phosphate and the liquid part contains poly ethylene glycol solution with different concentrations. In this way, prediction of the mechanical properties, setting times, and injectability helps to optimize the calcium phosphate bone cement properties. The objective of this study is development of three different adaptive neurofuzzy inference systems (ANFISs for estimation of compression strength, setting time, and injectability using the data generated based on experimental observations. The input parameters of models are polyethylene glycol percent and liquid/powder ratio. Comparison of the predicted values and measured data indicates that the ANFIS model has an acceptable performance to the estimation of calcium phosphate bone cement properties.

  15. Signal-inducing bone cements for MRI-guided spinal cementoplasty: evaluation of contrast-agent-based polymethylmethacrylate cements

    International Nuclear Information System (INIS)

    Bail, Hermann Josef; Tsitsilonis, Serafim; Wichlas, Florian; Sattig, Christoph; Papanikolaou, Ioannis; Teichgraeber, Ulf Karl Mart

    2012-01-01

    The purpose of this work is to evaluate two signal-inducing bone cements for MRI-guided spinal cementoplasty. The bone cements were made of polymethylmethacrylate (PMMA, 5 ml monomeric, 12 g polymeric) and gadoterate meglumine as a contrast agent (CA, 0-40 μl) with either saline solution (NaCl, 2-4 ml) or hydroxyapatite bone substitute (HA, 2-4 ml). The cement's signal was assessed in an open 1-Tesla MR scanner, with T1W TSE and fast interventional T1W TSE pulse sequences, and the ideal amount of each component was determined. The compressive and bending strength for different amounts of NaCl and HA were evaluated. The cement's MRI signal depended on the concentration of CA, the amount of NaCl or HA, and the pulse sequence. The signal peaks were recorded between 1 and 10 μl CA per ml NaCl or HA, and were higher in fast T1W TSE than in T1W TSE images. The NaCl-PMMA-CA cements had a greater MRI signal intensity and compressive strength; the HA-PMMA-CA cements had a superior bending strength. Concerning the MR signal and biomechanical properties, these cements would permit MRI-guided cementoplasty. Due to its higher signal and greater compressive strength, the NaCl-PMMA-CA compound appears to be superior to the HA-PMMA-CA compound. (orig.)

  16. Sr-substituted bone cements direct mesenchymal stem cells, osteoblasts and osteoclasts fate.

    Directory of Open Access Journals (Sweden)

    Monica Montesi

    Full Text Available Strontium-substituted apatitic bone cements enriched with sodium alginate were developed as a potential modulator of bone cells fate. The biological impact of the bone cement were investigated in vitro through the study of the effect of the nanostructured apatitic composition and the doping of strontium on mesenchymal stem cells, pre-osteoblasts and osteoclasts behaviours. Up to 14 days of culture the bone cells viability, proliferation, morphology and gene expression profiles were evaluated. The results showed that different concentrations of strontium were able to evoke a cell-specific response, in fact an inductive effect on mesenchymal stem cells differentiation and pre-osteoblasts proliferation and an inhibitory effect on osteoclasts activity were observed. Moreover, the apatitic structure of the cements provided a biomimetic environment suitable for bone cells growth. Therefore, the combination of biological features of this bone cement makes it as promising biomaterials for tissue regeneration.

  17. Assessment of bone healing ability of calcium phosphate cements loaded with platelet lysate in rat calvarial defects.

    Science.gov (United States)

    Babo, Pedro S; Carvalho, Pedro P; Santo, Vítor E; Faria, Susana; Gomes, Manuela E; Reis, Rui L

    2016-11-01

    Injectable calcium phosphate cements have been used as a valid alternative to autologous bone grafts for bone augmentation with the additional advantage of enabling minimally invasive implantation procedures and for perfectly fitting the tissue defect. Nevertheless, they have low biodegradability and lack adequate biochemical signaling to promote bone healing and remodeling. In previous in vitro studies, we observed that the incorporation of platelet lysate directly into the cement paste or loaded in hyaluronic acid microspheres allowed to modulate the cement degradation and the in vitro expression of osteogenic markers in seeded human adipose derived stem cells. The present study aimed at investigating the possible effect of this system in new bone formation when implanted in calvarial bilateral defects in rats. Different formulations were assessed, namely plain calcium phosphate cements, calcium phosphate cements loaded with human platelet lysate, hybrid injectable formulations composed of the calcium phosphate cement incorporating hyaluronin acid non-loaded microparticles (20% hyaluronin acid) or with particles loaded with platelet lysate. The degradability and new bone regrowth were evaluated in terms of mineral volume in the defect, measured by micro-computed tomography and histomorphometric analysis upon 4, 8 and 12 weeks of implantation. We observed that the incorporation of hyaluronin acid microspheres induced an overly rapid cement degradation, impairing the osteoconductive properties of the cement composites. Moreover, the incorporation of platelet lysate induced higher bone healing than the materials without platelet lysate, up to four weeks after surgery. Nevertheless, this effect was not found to be significant when compared to the one observed in the sham-treated group. © The Author(s) 2016.

  18. Creep and fatigue behavior of a novel 2-component paste-like formulation of acrylic bone cements

    OpenAIRE

    Köster, U.; Jaeger, R.; Bardts, M.; Wahnes, C.; Büchner, H.; Kühn, K.-D.; Vogt, S.

    2013-01-01

    The fatigue and creep performance of two novel acrylic bone cement formulations (one bone cement without antibiotics, one with antibiotics) was compared to the performance of clinically used bone cements (Osteopal V, Palacos R, Simplex P, SmartSet GHV, Palacos R+G and CMW1 with Gentamicin). The preparation of the novel bone cement formulations involves the mixing of two paste-like substances in a static mixer integrated into the cartridge which is used to apply the bone cement. The fatigue pe...

  19. The influence of orientation and practical size on the interface fracture of a bone-nano composite cement

    International Nuclear Information System (INIS)

    Ilik, Igor; Khandaker, Morshed

    2010-01-01

    Clinical follow-up studies in cemented total hip arthroplasties found that femoral prosthesis loosening is caused by the fracture of the bone-cement interfaces. The research objectives were to determine whether orientation of the bone has any influence on the interface fracture strength, and to determine whether inclusion of micro/nano sizes MgO particles on Cobalt HV bone cement has any influence on the interface fracture strength. Flexural tests were conducted on five groups of specimens to find Young Modulus and bending strength: (1) longitudinal bone, (2) transverse bone, (3) pure cement particles, (4) cement with 36 im and 27 nm MgO particles, and (5) cement with 27nm MgO particles. Also, fracture tests were conducted on six groups of bone-cement specimen to find interface fracture toughness: (1) longitudinal bone-cement without MgO particles, (2) transverse bone-cement without MgO particles, (3) longitudinal bone-cement with 36 im MgO particles, (4) transverse bone-cement with 36 im MgO particles, (5) , longitudinal bone-cement with 27 nm MgO particles, and (6) transverse bone-cement with 27 nm MgO particles. Transverse bone specimen was 14% stiffer than longitudinal specimen, while bending strength and fracture toughness of longitudinal specimen was 29% and 2.6 times lower than the transverse specimen, respectively. Reduction of Young's modulus (7.3%), bending strength (27%) and fracture toughness (16%) was observed by the inclusion of microsize MgO particles, and a reduction of the Young's Modulus (19%), bending strength (21%),and fracture toughness (19%) for nanosize MgO particles. The interface toughness of the transverse bone infused with 27nm MgO was about 6 times higher than transverse bone infused with 36 im particles of MgO. Preliminary studies show that orientation of the bone has significant influence on the interface fracture. MgO particles size have a significant effect on the strength of the bone - cement interface.(Author)

  20. Experimental study with domestic bone cement in the percutaneous vertebroplasty

    International Nuclear Information System (INIS)

    Ni Caifang; Liu Xisheng; Chen Long; Yang Huilin; Tang Tiansi; Ding Yi

    2004-01-01

    Objective: To study the feasibility of injecting domestic bone cement in the process of the percutaneous vertebroplasty. Methods: (1) Various types cement were disposed with domestic PMMA. The concretionary phases of cement were observed according to the stages and holding time. Then the most ideal ratio of the mixed cement was selected and ten cement columns were made with this ratio, which was taken as the trial group. The other ten referring to was taken as the contrast one. The biological mechanics was measured with a load and the data of the results were compared. (2) Twenty thoracic and lumbar adjacent bodies were removed intact from five human corpses. These bodies were divided into two groups, in one group PMMA were injected, the other was severed as the contrast one. Then in these twenty vertebral bodies the biological mechanics was measured and the treatment effect was evaluated. (3) In 12 healthy dogs PVP in lumber was tried so as to observe the operational difficulty during the process of injected this bone cement and CT was used to evaluate the result of PMMA, diffusion and the complications caused by it. Results: The most ideal ratio was 4:2.6:1 (g, ml, ml) between powder, monome and contrast. After injecting this kind of cement, the loading strength of these vertebral bodies was increased remarkably (P<0.01). Conclusion: Injecting domestic bone cement provides the theoretical foundations for the clinical application of PVP. (author)

  1. Mechanical behaviour of a new acryclic radiopaque iodine-containing bone cement

    NARCIS (Netherlands)

    Hooy-Corstjens, van C.S.J.; Govaert, L.E.; Spoelstra, A.B.; Bulstra, S.K.; Wetzels, G.M.R.; Koole, L.H.

    2004-01-01

    In total hip replacement, fixation of a prosthesis is in most cases obtained by the application of methacrylic bone cements. Most of the commercially available bone cements contain barium sulphate or zirconium dioxide as radiopacifier. As is shown in the literature, the presence of these inorganic

  2. Benefits and drawbacks of zinc in glass ionomer bone cements

    Energy Technology Data Exchange (ETDEWEB)

    Brauer, Delia S; Hill, Robert G [Unit of Dental Physical Sciences, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Gentleman, Eileen; Stevens, Molly M [Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Farrar, David F, E-mail: d.brauer@qmul.ac.uk [Smith and Nephew Research Centre, York Science Park, Heslington YO10 5DF (United Kingdom)

    2011-08-15

    Glass polyalkenoate (ionomer) cements (GPCs) based on poly(acrylic acid) and fluoro-alumino-silicate glasses are successfully used in a variety of orthopaedic and dental applications; however, they release small amounts of aluminium, which is a neurotoxin and inhibits bone mineralization in vivo. Therefore there has been significant interest in developing aluminium-free glasses containing zinc for forming GPCs because zinc can play a similar structural role in the glass, allowing for glass degradation and subsequent cement setting, and is reported to have beneficial effects on bone formation. We created zinc-containing GPCs and characterized their mechanical properties and biocompatibility. Zinc-containing cements showed adhesion to bone close to 1 MPa, which was significantly greater than that of zinc-free cements (<0.05 MPa) and other currently approved biological adhesives. However, zinc-containing cements produced significantly lower metabolic activity in mouse osteoblasts exposed to cell culture medium conditioned with the cements than controls. Results show that although low levels of zinc may be beneficial to cells, zinc concentrations of 400 {mu}M Zn{sup 2+} or more resulted in cell death. In summary, we demonstrate that while zinc-containing GPCs possess excellent mechanical properties, they fail basic biocompatibility tests, produce an acute cytotoxic response in vitro, which may preclude their use in vivo.

  3. Benefits and drawbacks of zinc in glass ionomer bone cements

    International Nuclear Information System (INIS)

    Brauer, Delia S; Hill, Robert G; Gentleman, Eileen; Stevens, Molly M; Farrar, David F

    2011-01-01

    Glass polyalkenoate (ionomer) cements (GPCs) based on poly(acrylic acid) and fluoro-alumino-silicate glasses are successfully used in a variety of orthopaedic and dental applications; however, they release small amounts of aluminium, which is a neurotoxin and inhibits bone mineralization in vivo. Therefore there has been significant interest in developing aluminium-free glasses containing zinc for forming GPCs because zinc can play a similar structural role in the glass, allowing for glass degradation and subsequent cement setting, and is reported to have beneficial effects on bone formation. We created zinc-containing GPCs and characterized their mechanical properties and biocompatibility. Zinc-containing cements showed adhesion to bone close to 1 MPa, which was significantly greater than that of zinc-free cements ( 2+ or more resulted in cell death. In summary, we demonstrate that while zinc-containing GPCs possess excellent mechanical properties, they fail basic biocompatibility tests, produce an acute cytotoxic response in vitro, which may preclude their use in vivo.

  4. Evaluation of four biodegradable, injectable bone cements in an experimental drill hole model in sheep.

    Science.gov (United States)

    von Rechenberg, Brigitte; Génot, Oliver R; Nuss, Katja; Galuppo, Larry; Fulmer, Mark; Jacobson, Evan; Kronen, Peter; Zlinszky, Kati; Auer, Jörg A

    2013-09-01

    Four cement applications were tested in this investigation. Two dicalcium phosphate dihydrate (DCPD-brushite) hydraulic cements, an apatite hydraulic fiber loaded cement, and a calcium sulfate cement (Plaster of Paris) were implanted in epiphyseal and metaphyseal cylindrical bone defects in sheep. The in vivo study was performed to assess the biocompatibility and bone remodeling of four cement formulations. After time periods of 2, 4, and 6 months, the cement samples were clinically and histologically evaluated. Histomorphometrically, the amount of new bone formation, fibrous tissue, and bone marrow and the area of remaining cement were measured. In all specimens, no signs of inflammation were detectable either macroscopically or microscopically. Cements differed mainly in their resorption time. Calcium sulfate was already completely resorbed at 2 months and showed a variable amount of new bone formation and/or fibrous tissue in the original drill hole over all time periods. The two DCPD cements in contrast were degraded to a large amount at 6 months, whereas the apatite was almost unchanged over all time periods. Copyright © 2013. Published by Elsevier B.V.

  5. Parameters of Alumina Cement and Portland Cement with Addition of Chalcedonite Meal

    Science.gov (United States)

    Kotwa, Anna

    2017-10-01

    Aluminous cement is a quick binder with special properties. It is used primarily to make non-standard monolithic components exposed to high temperatures, + 1300°C. It is also a component of adhesives and mortars. It has a very short setting time. It is characterized by rapid increase in mechanical strength and resistance to aggressive sulphates. It can be used in reinforced concrete structures. Laying of concrete, construction mortar made of alumina cement can be carried out even at temperatures of -10°C. This article discusses a comparison of the parameters of hardened mortar made of alumina cement GÓRKAL 40 and Portland cement CEM I 42.5R. The mortars contain an addition of chalcedonite meal with pozzolanic properties, with particle size of less than 0.063μm. The meal was added in amounts of 5% and 20% of cement weight. Chalcedonite meal used in the laboratory research is waste material, resulting from chalcedonite aggregate mining. It has the same properties as the rock from which it originates. We have compared the parameters of hardened mortar i.e. compressive strength, water absorption and capillarity. The addition of 20% chalcedonite meal to mortars made from aluminous cement will decrease durability by 6.1% relative to aluminous cement mortar without addition of meal. Considering the results obtained during the absorbency tests, it can be stated that the addition of chalcedonite meal reduces weight gains in mortars made with cement CEM I 42.5 R and alumina cement. Use of alumina cement without addition of meal in mortars causes an increase of mass by 248% compared to Portland cement mortars without additions, in the absorption tests. The addition of chalcedonite meal did not cause increased weight gain in the capillary action tests. For the alumina cement mortars, a lesser weight gains of 24.7% was reported, compared to the Portland cement mortar after 28 days of maturing.

  6. A Novel Composite PMMA-based Bone Cement with Reduced Potential for Thermal Necrosis.

    Science.gov (United States)

    Lv, Yang; Li, Ailing; Zhou, Fang; Pan, Xiaoyu; Liang, Fuxin; Qu, Xiaozhong; Qiu, Dong; Yang, Zhenzhong

    2015-06-03

    Percutaneous vertebroplasty (VP) and balloon kyphoplasty (BKP) are now widely used to treat patients who suffer painful vertebral compression fractures. In each of these treatments, a bone cement paste is injected into the fractured vertebral body/bodies, and the cement of choice is a poly(methyl methacrylate) (PMMA) bone cement. One drawback of this cement is the very high exothermic temperature, which, it has been suggested, causes thermal necrosis of surrounding tissue. In the present work, we prepared novel composite PMMA bone cement where microcapsules containing a phase change material (paraffin) (PCMc) were mixed with the powder of the cement. A PCM absorbs generated heat and, as such, its presence in the cement may lead to reduction in thermal necrosis. We determined a number of properties of the composite cement. Compared to the values for a control cement (a commercially available PMMA cement used in VP and BKP), each composite cement was found to have significantly lower maximum exothermic temperature, increased setting time, significantly lower compressive strength, significantly lower compressive modulus, comparable biocompatibility, and significantly smaller thermal necrosis zone. Composite cement containing 20% PCMc may be suitable for use in VP and BKP and thus deserves further evaluation.

  7. PMMA/Ca2+ bone cements. Hydrolytic properties and bioactivity

    Directory of Open Access Journals (Sweden)

    Mónica L. Hernández

    2012-01-01

    Full Text Available Bone cements of poly (methyl methacrylate (PMMA have been used for about 40 years to fix artificial prosthesis to bone structure. The aim of this study was to evaluate the absorption, solubility, degradation and bioactivity of novel formulations of PMMA/Ca2+ bone cements. These properties were evaluated using a fractional experimental design. Hydrolytic parameters were determined, from which we found that 7/8 of the formulations for absorption and 6/8 for solubility fulfill the ISO 4049:2000 requirements. The final degradation values ranged between 1 and 5%, except for one of the formulations. Besides, some formulations showed bioactivity after seven days of immersion in SBF solution.

  8. Nanoparticulate fillers improve the mechanical strength of bone cement.

    Science.gov (United States)

    Gomoll, Andreas H; Fitz, Wolfgang; Scott, Richard D; Thornhill, Thomas S; Bellare, Anuj

    2008-06-01

    Polymethylmethacrylate (PMMA-) based bone cement contains micrometer-size barium sulfate or zirconium oxide particles to radiopacify the cement for radiographic monitoring during follow-up. Considerable effort has been expended to improve the mechanical qualities of cements, largely through substitution of PMMA with new chemical structures. The introduction of these materials into clinical practice has been complicated by concerns over the unknown long-term risk profile of these new structures in vivo. We investigated a new composite with the well characterized chemical composition of current cements, but with nanoparticles instead of the conventional, micrometer-size barium sulfate radiopacifier. In this study, we replaced the barium sulfate microparticles that are usually present in commercial PMMA cements with barium sulfate nanoparticles. The resultant "microcomposite" and "nanocomposite" cements were then characterized through morphological investigations such as ultra-small angle X-ray scattering (USAXS) and scanning electron microscopy (SEM). Mechanical characterization included compression, tensile, compact tension, and fatigue testing. SEM and USAXS showed excellent dispersion of nanoparticles. Substitution of nanoparticles for microparticles resulted in a 41% increase in tensile strain-to-failure (p = 0.002) and a 70% increase in tensile work-of-fracture (p = 0.005). The nanocomposite cement also showed a two-fold increase in fatigue life compared to the conventional, microcomposite cement. In summary, nanoparticulate substitution of radiopacifiers substantially improved the in vitro mechanical properties of PMMA bone cement without changing the known chemical composition.

  9. Cement stress predictions after anatomic total shoulder arthroplasty are correlated with preoperative glenoid bone quality.

    Science.gov (United States)

    Terrier, Alexandre; Obrist, Raphaël; Becce, Fabio; Farron, Alain

    2017-09-01

    We hypothesized that biomechanical parameters typically associated with glenoid implant failure after anatomic total shoulder arthroplasty (aTSA) would be correlated with preoperative glenoid bone quality. We developed an objective automated method to quantify preoperative glenoid bone quality in different volumes of interest (VOIs): cortical bone, subchondral cortical plate, subchondral bone after reaming, subchondral trabecular bone, and successive layers of trabecular bone. Average computed tomography (CT) numbers (in Hounsfield units [HU]) were measured in each VOI from preoperative CT scans. In parallel, we built patient-specific finite element models of simulated aTSAs to predict cement stress, bone-cement interfacial stress, and bone strain around the glenoid implant. CT measurements and finite element predictions were obtained for 20 patients undergoing aTSA for primary glenohumeral osteoarthritis. We tested all linear correlations between preoperative patient characteristics (age, sex, height, weight, glenoid bone quality) and biomechanical predictions (cement stress, bone-cement interfacial stress, bone strain). Average CT numbers gradually decreased from cortical (717 HU) to subchondral and trabecular (362 HU) bone. Peak cement stress (4-10 MPa) was located within the keel hole, above the keel, or behind the glenoid implant backside. Cement stress, bone-cement interfacial stress, and bone strain were strongly negatively correlated with preoperative glenoid bone quality, particularly in VOIs behind the implant backside (subchondral trabecular bone) but also in deeper trabecular VOIs. Our numerical study suggests that preoperative glenoid bone quality is an important parameter to consider in aTSA, which may be associated with aseptic loosening of the glenoid implant. These initial results should now be confronted with clinical and radiologic outcomes. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc

  10. Peri-implant stress correlates with bone and cement morphology: Micro-FE modeling of implanted cadaveric glenoids.

    Science.gov (United States)

    Wee, Hwabok; Armstrong, April D; Flint, Wesley W; Kunselman, Allen R; Lewis, Gregory S

    2015-11-01

    Aseptic loosening of cemented joint replacements is a complex biological and mechanical process, and remains a clinical concern especially in patients with poor bone quality. Utilizing high resolution finite element analysis of a series of implanted cadaver glenoids, the objective of this study was to quantify relationships between construct morphology and resulting mechanical stresses in cement and trabeculae. Eight glenoid cadavers were implanted with a cemented central peg implant. Specimens were imaged by micro-CT, and subject-specific finite element models were developed. Bone volume fraction, glenoid width, implant-cortex distance, cement volume, cement-cortex contact, and cement-bone interface area were measured. Axial loading was applied to the implant of each model and stress distributions were characterized. Correlation analysis was completed across all specimens for pairs of morphological and mechanical variables. The amount of trabecular bone with high stress was strongly negatively correlated with both cement volume and contact between the cement and cortex (r = -0.85 and -0.84, p implant-cortex distance. Contact between the cement and underlying cortex may dramatically reduce trabecular bone stresses surrounding the cement, and this contact depends on bone shape, cement amount, and implant positioning. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  11. The influence of cyclic loading on gentamicin release from acrylic bone cements

    NARCIS (Netherlands)

    Hendriks, JGE; Neut, D; Hazenberg, JG; Verkerke, GJ; van Horn, [No Value; van der Mei, HC; Busscher, HJ

    Antibiotic-loaded acrylic bone cement is widely used in total joint replacement to reduce infections. Walking results in cyclic loading, which has been suggested to stimulate antibiotic release. The goal of this study is to compare antibiotic release from cyclically loaded bone cement with the

  12. The long-term in vivo behavior of polymethyl methacrylate bone cement in total hip arthroplasty.

    Science.gov (United States)

    Oonishi, Hiroyuki; Akiyama, Haruhiko; Takemoto, Mitsuru; Kawai, Toshiyuki; Yamamoto, Koji; Yamamuro, Takao; Oonishi, Hironobu; Nakamura, Takashi

    2011-10-01

    The long-term success of cemented total hip arthroplasty (THA) has been well established. Improved outcomes, both radiographically and clinically, have resulted mainly from advances in stem design and improvements in operating techniques. However, there is concern about the durability of bone cement in vivo. We evaluated the physical and chemical properties of CMW1 bone cements retrieved from patients undergoing revision THA. CMW1 cements were retrieved from 14 patients who underwent acetabular revision because of aseptic loosening. The time in vivo before revision was 7-30 years. The bending properties of the retrieved bone cement were assessed using the three-point bending method. The molecular weight and chemical structure were analyzed by gel permeation chromatography and Fourier-transform infrared spectroscopy. The porosity of the bone cements was evaluated by 3-D microcomputer tomography. The bending strength decreased with increasing time in vivo and depended on the density of the bone cement, which we assume to be determined by the porosity. There was no correlation between molecular weight and time in vivo. The infrared spectra were similar in the retrieved cements and in the control CMW1 cements. Our results indicate that polymer chain scission and significant hydrolysis do not occur in CMW1 cement after implantation in vivo, even in the long term. CMW1 cement was stable through long-term implantation and functional loading.

  13. Portland cement with additives in the repair of furcation perforations in dogs.

    Science.gov (United States)

    Silva Neto, José Dias da; Schnaider, Taylor Brandão; Gragnani, Alfredo; Paiva, Anderson Paulo de; Novo, Neil Ferreira; Ferreira, Lydia Masako

    2012-11-01

    To evaluate the use of Portland cements with additives as furcation perforation repair materials and assess their biocompatibility. The four maxillary and mandibular premolars of ten male mongrel dogs (1-1.5 years old, weighing 10-15 kg) received endodontic treatment (n=80 teeth). The furcations were perforated with a round diamond bur (1016 HL). The perforations involved the dentin, cementum, periodontal ligament, and alveolar bone. A calcium sulfate barrier was placed into the perforated bone to prevent extrusion of obturation material into the periradicular space. The obturation materials MTA (control), white, Type II, and Type V Portland cements were randomly allocated to the teeth. Treated teeth were restored with composite resin. After 120 days, the animals were sacrificed and samples containing the teeth were collected and prepared for histological analysis. There were no significant differences in the amount of newly formed bone between teeth treated with the different obturation materials (p=0.879). Biomineralization occurred for all obturation materials tested, suggesting that these materials have similar biocompatibility.

  14. HDAC inhibitor-loaded bone cement for advanced local treatment of osteosarcoma and chondrosarcoma.

    Science.gov (United States)

    Tonak, Marcus; Becker, Marc; Graf, Claudine; Eckhard, Lukas; Theobald, Matthias; Rommens, Pol-Maria; Wehler, Thomas C; Proschek, Dirk

    2014-11-01

    The treatment of osteosarcoma, especially wide resection, is challenging. An additional local drug therapy after resection using anti-neoplastic bone cement (Polymethylmethacrylate (PMMA)) could help improve the outcome of therapy. In this study, we evaluated the effects of PMMA loaded with valproic acid (VPA) and suberoylanilide hydroxamic acid (SAHA) on the cell activity of a SaOs-2 cell culture, as well as the elution rate of the drugs out of the bone cement. In our experiments, we used the SaOs-2 osteosarcoma and the SW1353 chondrosarcoma cell line. Bone cement clots (5 g) were prepared and loaded with different drug concentrations of VPA (25 mg and 50 mg) and SAHA (1 mg, 2.5 mg and 5 mg). Two control groups were established, one with a native cement clot, the other with human mesenchymal stem cells, in order to evaluate toxicity on non tumor-cells. Cell activity was measured using an Alamar Blue assay on days 1, 2, 3, 4 and 7. The cement clots were additionally examined in a material testing unit for biomechanical and structural changes. Tumor cells showed a significant and complete reduction of activity under therapy with VPA and SAHA. Drug release of VPA was extensive between days 0 and 3 and decreased progressively to day 7. Cumulative drug concentration in the medium continuously increased. Biomechanical testing of the cement clots showed no differences in stability and architecture compared to the control group. SaOs-2 and SW1353 cells with medium from native cement clots without drug therapy presented a cell activity of 100% in all groups and during all measurements. Human mesenchymal stem cells were not significantly affected during therapy with VPA and low concentrations of SAHA. In contrast, cell activity of human mesenchymal stem cells was significantly reduced under therapy with higher concentrations of SAHA, with an approximately linear decrease between days 0-3 and a rapidly decreasing activity between days 4-7. A local cytotoxic therapy in the

  15. Calcium carbonate-calcium phosphate mixed cement compositions for bone reconstruction.

    Science.gov (United States)

    Combes, C; Bareille, R; Rey, C

    2006-11-01

    The feasibility of making calcium carbonate-calcium phosphate (CaCO(3)-CaP) mixed cements, comprising at least 40% (w/w) CaCO(3) in the dry powder ingredients, has been demonstrated. Several original cement compositions were obtained by mixing metastable crystalline CaCO(3) phases with metastable amorphous or crystalline CaP powders in aqueous medium. The cements set within at most 1 h at 37 degrees C in atmosphere saturated with water. The hardened cement is microporous and exhibits weak compressive strength. The setting reaction appeared to be essentially related to the formation of a highly carbonated nanocrystalline apatite phase by reaction of the metastable CaP phase with part or almost all of the metastable CaCO(3) phase. The recrystallization of metastable CaP varieties led to a final cement consisting of a highly carbonated poorly crystalline apatite analogous to bone mineral associated with various amounts of vaterite and/or aragonite. The presence of controlled amounts of CaCO(3) with a higher solubility than that of the apatite formed in the well-developed CaP cements might be of interest to increase resorption rates in biomedical cement and favors its replacement by bone tissue. Cytotoxicity testing revealed excellent cytocompatibility of CaCO(3)-CaP mixed cement compositions.

  16. Surface roughness, porosity and wettability of gentamicin-loaded bone cements and their antibiotic release

    NARCIS (Netherlands)

    van de Belt, H; Neut, D; Uges, DRA; Schenk, W; van Horn, [No Value; van der Mei, HC; Busscher, HJ

    2000-01-01

    In this study, the release of gentamicin as a function of time was measured for six different gentamicin-loaded bone cements and related with the surface roughness, porosity and wettability of the cements. Initial release rates varied little between the six bone cements (CMW1, CMW3, CMW Endurance,

  17. Microencapsulation of rifampicin: A technique to preserve the mechanical properties of bone cement.

    Science.gov (United States)

    Sanz-Ruiz, Pablo; Carbó-Laso, Esther; Del Real-Romero, Juan Carlos; Arán-Ais, Francisca; Ballesteros-Iglesias, Yolanda; Paz-Jiménez, Eva; Sánchez-Navarro, Magdalena; Pérez-Limiñana, María Ángeles; Vaquero-Martín, Javier

    2018-01-01

    Two-stage exchange with antibiotic-loaded bone cement spacers remains the gold standard for chronic periprosthetic joint infection (PJI). Rifampicin is highly efficient on stationary-phase staphylococci in biofilm; however, its addition to PMMA to manufacture spacers prevents polymerization and reduces mechanical properties. Isolation of rifampicin during polymerization by microencapsulation could allow manufacturing rifampicin-loaded bone cement maintaining elution and mechanical properties. Microcapsules of rifampicin with alginate, polyhydroxybutyratehydroxyvalerate (PHBV), ethylcellulose and stearic acid (SA) were synthesized. Alginate and PHBV microcapsules were added to bone cement and elution, compression, bending, hardness, setting time and microbiological tests were performed. Repeated measures ANOVA and Bonferroni post-hoc test were performed, considering a p cement specimens containing alginate microcapsules eluted more rifampicin than PHBV microcapsules or non-encapsulated rifampicin over time (p Cement with alginate microcapsules showed similar behavior in hardness tests to control cement over the study period (73 ± 1.68H D ). PMMA with alginate microcapsules exhibited the largest zones of inhibition in microbiological tests. Statistically significant differences in mean diameters of zones of inhibition between PMMA loaded with alginate-rifampicin (p = 0.0001) and alginate-PHBV microcapsules (p = 0.0001) were detected. Rifampicin microencapsulation with alginate is the best choice to introduce rifampicin in PMMA preserving mechanical properties, setting time, elution, and antimicrobial properties. The main applicability of this study is the opportunity for obtaining rifampicin-loaded PMMA by microencapsulation of rifampicin in alginate microparticles, achieving high doses of rifampicin in infected tissues, increasing the successful of PJI treatment. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res

  18. Reconstruction of the Shallow Acetabulum With a Combination of Autologous Bulk and Impaction Bone Grafting Fixed by Cement.

    Science.gov (United States)

    Maruyama, Masaaki; Wakabayashi, Shinji; Ota, Hiroshi; Tensho, Keiji

    2017-02-01

    Acetabular bone deficiency, especially proximal and lateral deficiency, is a difficult technical problem during primary total hip arthroplasty (THA) in developmental dysplasia of the hip (DDH). We report a new reconstruction method using a medial-reduced cemented socket and additional bulk bone in conjunction with impaction morselized bone grafting (additional bulk bone grafting method). In a population of patients with acetabular dysplasia undergoing THA using a medial-reduced cemented socket and additional bulk bone with impacted morselized bone grafting, we evaluated (1) the radiographic appearance of bone graft; (2) the proportion of cups that developed loosening and subsequent revision; and (3) clinical results (outcome scores and complications). Forty percent of 330 THAs for DDH performed at one center between 1999 and 2009 were defined as shallow dysplastic hips. The additional bulk bone grafting method was performed on 102 THAs with shallow acetabulum (31% for DDH) at one center between 1999 and 2009. We used this approach and technique for shallow acetabuli when a cup protruded from the lateral acetabular edge in preoperative templating. The other 132 dysplastic hips without bone grafting had THA performed at the same periods and served as a control. Acetabuli were defined as shallow when the depth was less than or equal to one-fifth of the pelvic height (cranial-caudal length on radiograph). The additional bulk bone grafting technique was as follows: the resected femoral head was sectioned at 1 to 2 cm thickness, and a suitable size of the bulk bone graft was placed on the lateral iliac cortex and fixed by poly-L-lactate absorbable screws. Autologous impaction morselized bone grafting, with or without hydroxyapatite granules, was performed along with the implantation of a medial-reduced cemented socket. We defined an "incorporated" graft as remodeling and trabeculation including rounding off of the protruding edge of a graft beyond the socket

  19. Mechanical, material, and antimicrobial properties of acrylic bone cement impregnated with silver nanoparticles.

    Science.gov (United States)

    Slane, Josh; Vivanco, Juan; Rose, Warren; Ploeg, Heidi-Lynn; Squire, Matthew

    2015-03-01

    Prosthetic joint infection is one of the most serious complications that can lead to failure of a total joint replacement. Recently, the rise of multidrug resistant bacteria has substantially reduced the efficacy of antibiotics that are typically incorporated into acrylic bone cement. Silver nanoparticles (AgNPs) are an attractive alternative to traditional antibiotics resulting from their broad-spectrum antimicrobial activity and low bacterial resistance. The purpose of this study, therefore, was to incorporate metallic silver nanoparticles into acrylic bone cement and quantify the effects on the cement's mechanical, material and antimicrobial properties. AgNPs at three loading ratios (0.25, 0.5, and 1.0% wt/wt) were incorporated into a commercial bone cement using a probe sonication technique. The resulting cements demonstrated mechanical and material properties that were not substantially different from the standard cement. Testing against Staphylococcus aureus and Staphylococcus epidermidis using Kirby-Bauer and time-kill assays demonstrated no antimicrobial activity against planktonic bacteria. In contrast, cements modified with AgNPs significantly reduced biofilm formation on the surface of the cement. These results indicate that AgNP-loaded cement is of high potential for use in primary arthroplasty where prevention of bacterial surface colonization is vital. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Injectable biphasic calcium phosphate cements as a potential bone substitute

    NARCIS (Netherlands)

    Sariibrahimoglu, K.; Wolke, J.G.C.; Leeuwenburgh, S.C.G.; Yubao, L.; Jansen, J.A.

    2014-01-01

    Apatitic calcium phosphate cements (CPCs) have been widely used as bone grafts due to their excellent osteoconductive properties, but the degradation properties are insufficient to stimulate bone healing in large bone defects. A novel approach to overcome the lack of degradability of apatitic CPC

  1. A novel and easy-to-prepare strontium(II) modified calcium phosphate bone cement with enhanced mechanical properties.

    Science.gov (United States)

    Schumacher, M; Henß, A; Rohnke, M; Gelinsky, M

    2013-07-01

    The aim of this study was to evaluate two different approaches to obtaining strontium-modified calcium phosphate bone cements (SrCPCs) without elaborate synthesis of Sr-containing calcium phosphate species as cement precursors that could release biologically effective doses of Sr(2+) and thus could improve the healing of osteoporotic bone defects. Using strontium carbonate as a strontium(II) source, it was introduced into a hydroxyapatite-forming cement either by the addition of SrCO3 to an α-tricalcium phosphate-based cement precursor mixture (A-type) or by substitution of CaCO3 by SrCO3 during precursor composition (S-type). The cements, obtained after setting in a water-saturated atmosphere, contained up to 2.2at.% strontium in different distribution patterns as determined by time-of-flight secondary ion mass spectrometry and energy-dispersive X-ray spectroscopy. The setting time of CPC and A-type cements was in the range of 6.5-7.5min and increased for substitution-type cements (12.5-13.0min). Set cements had an open porosity between 26 and 42%. Compressive strength was found to increase from 29MPa up to 90% in substituted S-type cements (58MPa). SrCPC samples released between 0.45 and 1.53mgg(-1) Sr(2+) within 21days and showed increased radiopacity. Based on these findings, the SrCPC developed in this study could be beneficial for the treatment of defects of systemically impaired (e.g. osteoporotic) bone. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Studies to compare radioactivity of bone cements and their ingredient X-ray contrast media

    International Nuclear Information System (INIS)

    Hopf, C.; Gloebel, B.; Hopf, T.; Universitaet des Saarlandes, Homburg/Saar; Universitaet des Saarlandes, Homburg/Saar

    1990-01-01

    Various PMMA bone cements/containing zirconium oxide (ZrO 2 ) as an X-ray contrast medium and zirconium oxides of several manufacturers were tested for their radioactivity by means of a gamma spectrometer. All the bone cements tested (Implast, Palacos R, and Sulfix-6) showed a certain degree of radioactivity. The radiation source in the bone cement is the added zirconium oxide, which is polluted by radioactive elements. The examination of various zirconium oxides showed some high radioactive emissions. (orig./GDG) [de

  3. Bactericidal strontium-releasing injectable bone cements based on bioactive glasses

    OpenAIRE

    Brauer, Delia S.; Karpukhina, Natalia; Kedia, Gopal; Bhat, Aditya; Law, Robert V.; Radecka, Izabela; Hill, Robert G.

    2013-01-01

    Strontium-releasing injectable bone cements may have the potential to prevent implant-related infections through the bactericidal action of strontium, while enhancing bone formation in patients suffering from osteoporosis. A melt-derived bioactive glass (BG) series (SiO2–CaO–CaF2–MgO) with 0–50% of calcium substituted with strontium on a molar base were produced. By mixing glass powder, poly(acrylic acid) and water, cements were obtained which can be delivered by injection and set in situ, gi...

  4. [Effects of surface roughness of bone cements on histological characteristics of induced membranes].

    Science.gov (United States)

    Liu, Hai-Xiao; Xu, Hua-Zi; Zhang, Yu; Hu, Gang; Shen, Yue; Cheng, Xiao-Jie; Peng, Lei

    2012-08-01

    To explore surface roughness of bone cement and surround tissue on histological characteristic of induced membranes. Bone cements with smooth and rough surface were implanted in radius bone defect, intramuscular and subcutaneous sites of rabbits, and formed induced membranes. Membranes were obtained and stained (HE) 6 weeks later. Images of membrane tissue were obtained and analyzed with an automated image analysis system. Five histological parameters of membranes were measured with thickness,area,cell density,ECM density and microvessel density. Double factor variance analysis was used to evaluate the effect of the two factors on histological characteristics of induced membranes. Membranes can be induced by each kind of bone cement and at all the three tissue sites. In histological parameters of thickness,area and micro vessel,there were significant differences among the membranes induced at different tissue sites (P = 0.000, P = 0.000, P = 0.000); whereas, there were no significant differences in histological parameters of cell density and ECM density (P = 0.734, P = 0.638). In all five histological parameters of membranes, there were no significant differences between the membranes induced by bone cements with different surface roughness (P = 0.506, P = 0.185, P = 0.883, P = 0.093, P = 0.918). Surround tissue rather than surface roughness of bone cements can affect the histological characteristics of induced membranes. The fibrocystic number, vascularity, mechanical tension and micro motion of the surround tissue may be closely correlated with the histological characteristics of induced membranes.

  5. [Effect of different bone cement dispersion types in the treatment of osteoporotic vertebral compression fracture].

    Science.gov (United States)

    Zhao, Yong-Sheng; Li, Qiang; Li, Qiang; Zheng, Yan-Ping

    2017-05-25

    To observe different bone cement dispersion types of PVP, PKP and manipulative reduction PVP and their effects in the treatment of senile osteoporotic vertebral compression fractures and the bone cement leakage rate. The clinical data of patients with osteoporotic vertebral compression fractures who underwent unilateral vertebroplasty from January 2012 to January 2015 was retrospectively analyzed. Of them, 56 cases including 22 males and 34 females aged from 60 to 78 years old were treated by PVP operation; Fouty-eight cases including 17 males and 31 females aged from 61 to 79 years old were treated by PKP operation; Forty-three cases including 15 males and 28 females aged from 60 to 76 years old were treated by manipulative reduction PVP operation. AP and lateral DR films were taken after the operation; the vertebral bone cement diffusion district area and mass district area were calculated with AutoCAD graphics processing software by AP and lateral DR picture, then ratio(K) of average diffusion area and mass area were calculated, defining K100% as diffusion type. Different bone cement dispersion types of PVP, PKP and manipulative reduction PVP operation were analyzed. According to bone cement dispersion types, patients were divided into diffusion type, mixed type and mass type groups.Visual analogue scale (VAS), vertebral body compression rate, JOA score and bone cement leakage rate were observed. All patients were followed up for 12-24 months with an average of 17.2 months. There was significant difference in bone cement dispersion type among three groups ( P <0.05). The constituent ratio of diffusion type, mixed type and mass type in PVP operation was 46.43%, 35.71%, 17.86%, in PKP was 16.67%, 37.50% , 45.83%, and in manipulative reduction PVP was 37.21%, 44.19% and 18.60%, respectively. PVP operation and manipulative reduction PVP were mainly composed of diffusion type and mixed type, while PKP was mainly composed of mass type and mixed type. There was no

  6. Experimental ex-vivo validation of PMMA-based bone cements loaded with magnetic nanoparticles enabling hyperthermia of metastatic bone tumors

    Directory of Open Access Journals (Sweden)

    Mariem Harabech

    2017-05-01

    Full Text Available Percutaneous vertebroplasty comprises the injection of Polymethylmethacrylate (PMMA bone cement into vertebrae and can be used for the treatment of compression fractures of vertebrae. Metastatic bone tumors can cause such compression fractures but are not treated when injecting PMMA-based bone cement. Hyperthermia of tumors can on the other hand be attained by placing magnetic nanoparticles (MNPs in an alternating magnetic field (AMF. Loading the PMMA-based bone cement with MNPs could both serve vertebra stabilization and metastatic bone tumor hyperthermia when subjecting this PMMA-MNP to an AMF. A dedicated pancake coil is designed with a self-inductance of 10 μH in series with a capacitance of 0.1 μF that acts as resonant inductor-capacitor circuit to generate the AMF. The thermal rise is appraised in beef vertebra placed at 10 cm from the AMF generating circuit using optical temperatures sensors, i.e. in the center of the PMMA-MNP bone cement, which is located in the vicinity of metastatic bone tumors in clinical applications; and in the spine, which needs to be safeguarded to high temperature exposures. Results show a temperature rise of about 7 °C in PMMA-MNP whereas the temperature rise in the spine remains limited to 1 °C. Moreover, multicycles heating of PMMA-MNP is experimentally verified, validating the technical feasibility of having PMMA-MNP as basic component for percutaneous vertebroplasty combined with hyperthermia treatment of metastatic bone tumors.

  7. Electrocoagulation improving bone cement use in middle-ear surgery: short-term and middle-term results.

    Science.gov (United States)

    Galy-Bernadoy, C; Akkari, M; Mondain, M; Uziel, A; Venail, F

    2016-12-01

    Bone cement is used for ossicular chain repair and revision stapes surgery. Its efficient use requires cautious removal of mucosa from the ossicles. This paper reports a technique for easy, fast and safe removal of this mucosa prior to cement application. It consists of the application of monopolar electrocoagulation on the ossicles prior to bone cement application. The outcomes of six cases of revision stapes surgery and seven cases of partial ossiculoplasty, conducted between 2007 and 2012 using this new technique, were evaluated. Intra-operative reports and audiometric data were collected. During the last assessment, reconstruction using bone cement resulted in mean post-operative air-bone gaps of 4.1 ± 6.5 dB in revision stapes surgery cases and 5.7 ± 5.5 dB in partial ossiculoplasty cases, reflecting a significant hearing improvement (p = 0.03). No complications were observed. Electrocoagulation allows the removal of mucosa from the ossicles in an easy, fast and safe manner, enabling the use of bone cement for ossicular chain reconstruction.

  8. Bactericidal strontium-releasing injectable bone cements based on bioactive glasses.

    Science.gov (United States)

    Brauer, Delia S; Karpukhina, Natalia; Kedia, Gopal; Bhat, Aditya; Law, Robert V; Radecka, Izabela; Hill, Robert G

    2013-01-06

    Strontium-releasing injectable bone cements may have the potential to prevent implant-related infections through the bactericidal action of strontium, while enhancing bone formation in patients suffering from osteoporosis. A melt-derived bioactive glass (BG) series (SiO2–CaO–CaF2–MgO) with 0–50% of calcium substituted with strontium on a molar base were produced. By mixing glass powder, poly(acrylic acid) and water, cements were obtained which can be delivered by injection and set in situ, giving compressive strength of up to 35 MPa. Strontium release was dependent on BG composition with increasing strontium substitution resulting in higher concentrations in the medium. Bactericidal effects were tested on Staphylococcus aureus and Streptococcus faecalis; cell counts were reduced by up to three orders of magnitude over 6 days. Results show that bactericidal action can be increased through BG strontium substitution, allowing for the design of novel antimicrobial and bone enhancing cements for use in vertebroplasty or kyphoplasty for treating osteoporosis-related vertebral compression fractures.

  9. Using dehydrated cement paste as new type of cement additive

    NARCIS (Netherlands)

    Yu, R.; Shui, Z.H.; Dong, J

    2013-01-01

    This paper presents an experimental study, including evaluation and modification, on using dehydrated cement paste (DCP) as a new type of cement additive. After a series of processes, normal DCP (N-DCP) was produced as before and a modified form of DCP (M-DCP) was produced as well. The cementitious

  10. Magnesium substitution in brushite cements for enhanced bone tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Cabrejos-Azama, Jatsue, E-mail: jacaza@farm.ucm.es [Departamento de Química-Física II, Facultad de Farmacia, UCM, Madrid (Spain); Departamento de Estomatología III, Facultad de Odontología UCM, Madrid (Spain); Alkhraisat, Mohammad Hamdan; Rueda, Carmen [Departamento de Química-Física II, Facultad de Farmacia, UCM, Madrid (Spain); Torres, Jesús [Facultad de Ciencias de la salud URJC, Alcorcón, Madrid (Spain); Blanco, Luis [Departamento de Estomatología III, Facultad de Odontología UCM, Madrid (Spain); López-Cabarcos, Enrique [Departamento de Química-Física II, Facultad de Farmacia, UCM, Madrid (Spain)

    2014-10-01

    We have synthesized calcium phosphate cements doped with different amounts of magnesium (Mg-CPC) with a twofold purpose: i) to evaluate in vitro the osteoblast cell response to this material, and ii) to compare the bone regeneration capacity of the doped material with a calcium cement prepared without magnesium (CPC). Cell proliferation and in vivo response increased in the Mg-CPCs in comparison with CPC. The Mg-CPCs have promoted higher new bone formation than the CPC (p < 0.05). The cytocompatibility and histomorfometric analysis performed in the rabbit calvaria showed that the incorporation of magnesium ions in CPC improves osteoblasts proliferation and provides higher new bone formation. The development of a bone substitute with controllable biodegradable properties and improved bone regeneration can be considered a step toward personalized therapy that can adapt to patient needs and clinical situations. - Highlights: • The Mg-CPCs promote higher new bone formation than the CPC. • The incorporation of magnesium ions in CPC improves osteoblasts proliferation. • Mg-CPC is a bone substitute with controllable biodegradable properties. • We suggest that the use of Mg ions could improve the clinical efficiency of CPCs.

  11. Gentamicin release from commercially-available gentamicin-loaded PMMA bone cements in a prosthesis-related interfacial gap model and their antibacterial efficacy

    Directory of Open Access Journals (Sweden)

    van der Mei Henny C

    2010-11-01

    Full Text Available Abstract Background Around about 1970, a gentamicin-loaded poly (methylmethacrylate (PMMA bone cement brand (Refobacin Palacos R was introduced to control infection in joint arthroplasties. In 2005, this brand was replaced by two gentamicin-loaded follow-up brands, Refobacin Bone Cement R and Palacos R + G. In addition, another gentamicin-loaded cement brand, SmartSet GHV, was introduced in Europe in 2003. In the present study, we investigated differences in gentamicin release and the antibacterial efficacy of the eluent between these four cement brands. Methods 200 μm-wide gaps were made in samples of each cement and filled with buffer in order to measure the gentamicin release. Release kinetics were related to bone cement powder particle characteristics and wettabilities of the cement surfaces. Gaps were also inoculated with bacteria isolated from infected prostheses for 24 h and their survival determined. Gentamicin release and bacterial survival were statistically analysed using the Student's t-test. Results All three Palacos variants showed equal burst releases but each of the successor Palacos cements showed significantly higher sustained releases. SmartSet GHV showed a significantly higher burst release, while its sustained release was comparable with original Palacos. A gentamicin-sensitive bacterium did not survive in the high gentamicin concentrations in the interfacial gaps, while a gentamicin-resistant strain did, regardless of the type of cement used. Survival was independent of the level of burst release by the bone cement. Conclusions Although marketed as the original gentamicin-loaded Palacos cement, orthopaedic surgeons should be aware that the successor cements do not appear to have the same release characteristics as the original one. Overall, high gentamicin concentrations were reached inside our prosthesis-related interfacial gap model. These concentrations may be expected to effectively decontaminate the prosthesis

  12. [Correlation analysis of cement leakage with volume ratio of intravertebral bone cement to vertebral body and vertebral body wall incompetence in percutaneous vertebroplasty for osteoporotic vertebral compression fractures].

    Science.gov (United States)

    Liang, De; Ye, Linqiang; Jiang, Xiaobing; Huang, Weiquan; Yao, Zhensong; Tang, Yongchao; Zhang, Shuncong; Jin, Daxiang

    2014-11-01

    To investigate the risk factors of cement leakage in percutaneous vertebroplasty (PVP) for osteoporotic vertebral compression fracture (OVCF). Between March 2011 and March 2012, 98 patients with single level OVCF were treated by PVP, and the clinical data were analyzed retrospectively. There were 13 males and 85 females, with a mean age of 77.2 years (range, 54-95 years). The mean disease duration was 43 days (range, 15-120 days), and the mean T score of bone mineral density (BMD) was -3.8 (range, -6.7- -2.5). Bilateral transpedicular approach was used in all the patients. The patients were divided into cement leakage group and no cement leakage group by occurrence of cement leakage based on postoperative CT. Single factor analysis was used to analyze the difference between 2 groups in T score of BMD, operative level, preoperative anterior compression degree of operative vertebrae, preoperative middle compression degree of operative vertebrae, preoperative sagittal Cobb angle of operative vertebrae, preoperative vertebral body wall incompetence, cement volume, and volume ratio of intravertebral bone cement to vertebral body. All relevant factors were introduced to logistic regression analysis to analyze the risk factors of cement leakage. All procedures were performed successfully. The mean operation time was 40 minutes (range, 30-50 minutes), and the mean volume ratio of intravertebral bone cement to vertebral body was 24.88% (range, 7.84%-38.99%). Back pain was alleviated significantly in all the patients postoperatively. All patients were followed up with a mean time of 8 months (range, 6-12 months). Cement leakage occurred in 49 patients. Single factor analysis showed that there were significant differences in the volume ratio of intravertebral bone cement to vertebral body and preoperative vertebral body wall incompetence between 2 groups (P 0.05). The logistic regression analysis showed that the volume ratio of intravertebral bone cement to vertebral body (P

  13. High proximal migration in cemented acetabular revisions operated with bone impaction grafting; 47 revision cups followed with RSA for 17 years.

    Science.gov (United States)

    Mohaddes, Maziar; Herberts, Peter; Malchau, Henrik; Johanson, Per-Erik; Kärrholm, Johan

    2017-05-12

    Bone impaction grafting is a biologically and mechanically appealing option in acetabular revision surgery, allowing restitution of the bone stock and restoration of the biomechanics. We analysed differences in proximal migration of the revision acetabular components when bone impaction grafting is used together with a cemented or an uncemented cup. 43 patients (47 hips), revised due to acetabular loosening and judged to have less than 50% host bone-implant contact were included. The hips were randomised to either an uncemented (n = 20) or a cemented (n = 27) revision cup. Radiostereometry and radiography was performed postoperatively, at 3 and 6 months, 1, 2, 3, 5, 7, 10 and 13 and 17 years postoperatively. Clinical follow-up was performed at 1, 2 and 5 years postoperatively and thereafter at the same interval as in the radiographic follow-up. There were no differences in the base line demographic data between the 2 groups. At the last follow-up (17 years) 14 hips (10 cemented, 4 uncemented) had been re-revised due to loosening. 3 additional cups (1 uncemented and 2 cemented) were radiographically loose. There was a higher early proximal migration in the cemented cups. Cups operated on with cement showed a higher early migration measured with RSA and also a higher number of late revisions. The reason for this is not known, but factors such as inclusion of cases with severe bone defects, use of smaller bone chips and issues related to the impaction technique might have had various degrees of influence.

  14. Micro-mechanical modeling of the cement-bone interface: the effect of friction, morphology and material properties on the micromechanical response.

    Science.gov (United States)

    Janssen, Dennis; Mann, Kenneth A; Verdonschot, Nico

    2008-11-14

    In order to gain insight into the micro-mechanical behavior of the cement-bone interface, the effect of parametric variations of frictional, morphological and material properties on the mechanical response of the cement-bone interface were analyzed using a finite element approach. Finite element models of a cement-bone interface specimen were created from micro-computed tomography data of a physical specimen that was sectioned from an in vitro cemented total hip arthroplasty. In five models the friction coefficient was varied (mu=0.0; 0.3; 0.7; 1.0 and 3.0), while in one model an ideally bonded interface was assumed. In two models cement interface gaps and an optimal cement penetration were simulated. Finally, the effect of bone cement stiffness variations was simulated (2.0 and 2.5 GPa, relative to the default 3.0 GPa). All models were loaded for a cycle of fully reversible tension-compression. From the simulated stress-displacement curves the interface deformation, stiffness and hysteresis were calculated. The results indicate that in the current model the mechanical properties of the cement-bone interface were caused by frictional phenomena at the shape-closed interlock rather than by adhesive properties of the cement. Our findings furthermore show that in our model maximizing cement penetration improved the micromechanical response of the cement-bone interface stiffness, while interface gaps had a detrimental effect. Relative to the frictional and morphological variations, variations in the cement stiffness had only a modest effect on the micro-mechanical behavior of the cement-bone interface. The current study provides information that may help to better understand the load-transfer mechanisms taking place at the cement-bone interface.

  15. Evaluation of an injectable bioactive borate glass cement to heal bone defects in a rabbit femoral condyle model

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Xu [Institute of Bioengineering and Information Technology Materials, Tongji University, Shanghai 200092 (China); Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen 518055 (China); Huang, Wenhai [Institute of Bioengineering and Information Technology Materials, Tongji University, Shanghai 200092 (China); Zhang, Yadong, E-mail: zhangyadong6@126.com [Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120 (China); Huang, Chengcheng; Yu, Zunxiong; Wang, Lei; Liu, Wenlong; Wang, Ting [Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen 518055 (China); Zhou, Jie; Wang, Hui; Zhou, Nai; Wang, Deping [Institute of Bioengineering and Information Technology Materials, Tongji University, Shanghai 200092 (China); Pan, Haobo, E-mail: hb.pan@siat.ac.cn [Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen 518055 (China); Rahaman, Mohamed N., E-mail: rahaman@mst.edu [Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120 (China); Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409-0340 (United States)

    2017-04-01

    There is a need for synthetic biomaterials to heal bone defects using minimal invasive surgery. In the present study, an injectable cement composed of bioactive borate glass particles and a chitosan bonding solution was developed and evaluated for its capacity to heal bone defects in a rabbit femoral condyle model. The injectability and setting time of the cement in vitro decreased but the compressive strength increased (8 ± 2 MPa to 31 ± 2 MPa) as the ratio of glass particles to chitosan solution increased (from 1.0 g ml{sup −1} to 2.5 g ml{sup −1}). Upon immersing the cement in phosphate-buffered saline, the glass particles reacted and converted to hydroxyapatite, imparting bioactivity to the cement. Osteoblastic MC3T3-E1 cells showed enhanced proliferation and alkaline phosphatase activity when incubated in media containing the soluble ionic product of the cement. The bioactive glass cement showed a better capacity to stimulate bone formation in rabbit femoral condyle defects at 12 weeks postimplantation when compared to a commercial calcium sulfate cement. The injectable bioactive borate glass cement developed in this study could provide a promising biomaterial to heal bone defects by minimal invasive surgery. - Highlights: • New class of injectable bone cement composed of bioactive borate glass particles and chitosan bonding phase was created. • The cement is biocompatible and bioactive, and has a much lower temperature increase during setting than PMMA cement. • The cement has a more controllable degradation rate and higher strength over a longer time than calcium sulfate cement. • The cement showed a better ability to heal bone defects than calcium sulfate over a twelve-week implantation period.

  16. A new acoustic method to determine the setting time of calcium sulfate bone cement mixed with antibiotics

    International Nuclear Information System (INIS)

    Cooper, J J; Brayford, M J; Laycock, P A

    2014-01-01

    A new method is described which can be used to determine the setting times of small amounts of high value bone cements. The test was developed to measure how the setting times of a commercially available synthetic calcium sulfate cement (Stimulan, Biocomposites, UK) in two forms (standard and Rapid Cure) varies with the addition of clinically relevant antibiotics. The importance of being able to accurately quantify these setting times is discussed. The results demonstrate that this new method, which is shown to correlate to the Vicat needle, gives reliable and repeatable data with additional benefits expressed in the article. The majority of antibiotics mixed were found to retard the setting reaction of the calcium sulfate cement. (paper)

  17. A new acoustic method to determine the setting time of calcium sulfate bone cement mixed with antibiotics.

    Science.gov (United States)

    Cooper, J J; Brayford, M J; Laycock, P A

    2014-08-01

    A new method is described which can be used to determine the setting times of small amounts of high value bone cements. The test was developed to measure how the setting times of a commercially available synthetic calcium sulfate cement (Stimulan, Biocomposites, UK) in two forms (standard and Rapid Cure) varies with the addition of clinically relevant antibiotics. The importance of being able to accurately quantify these setting times is discussed. The results demonstrate that this new method, which is shown to correlate to the Vicat needle, gives reliable and repeatable data with additional benefits expressed in the article. The majority of antibiotics mixed were found to retard the setting reaction of the calcium sulfate cement.

  18. Investigation of the histology and interfacial bonding between carbonated hydroxyapatite cement and bone

    International Nuclear Information System (INIS)

    Mao Keya; Hao Libo; Tang Peifu; Wang Zheng; Wen Ning; Du Mingkui; Wang Jifang; Wang Yan; Yang Yun; Li Jiangtao

    2009-01-01

    An ideal bone implant should facilitate the formation of a new bone layer as an osteo-integrated interface between bone and the implanted biomaterials. In the present work, the interface between carbonated hydroxyapatite (CHA) cement and bone was evaluated by interfacial bonding strength measurements and histological characterizations. CHA cement was implanted into a mongrel dog's femoral supracondylar and below the tibial plateau area, and was then tested ex vivo by, respectively, detaching and pullout experiments. Polymethylmethacrylate (PMMA) was used as a control. CHA cement could be directly injected and solidified in situ to repair bone defects. Histology results showed that CHA bonded with bone through gradual remodeling and was replaced by new bone tissue, which is an attribute for excellent biocompatibility. The interfacial bonding strength increased with implantation time. After 16 weeks implantation, the measured detaching force and the pullout force between CHA and bone were 281 ± 16 N and 512.5 ± 14.5 N, respectively. These values were several times higher compared to 5 days implantation. In contrast, the control showed a fibrous microstructure between PMMA and bone, and the detaching force and the pullout force decreased with implantation time. The results strongly suggest that CHA can form a better osteo-integrated interface compared to PMMA, and could be used as an ideal biomaterial for bone defect repair.

  19. Creep behavior of bone cement: a method for time extrapolation using time-temperature equivalence.

    Science.gov (United States)

    Morgan, R L; Farrar, D F; Rose, J; Forster, H; Morgan, I

    2003-04-01

    The clinical lifetime of poly(methyl methacrylate) (PMMA) bone cement is considerably longer than the time over which it is convenient to perform creep testing. Consequently, it is desirable to be able to predict the long term creep behavior of bone cement from the results of short term testing. A simple method is described for prediction of long term creep using the principle of time-temperature equivalence in polymers. The use of the method is illustrated using a commercial acrylic bone cement. A creep strain of approximately 0.6% is predicted after 400 days under a constant flexural stress of 2 MPa. The temperature range and stress levels over which it is appropriate to perform testing are described. Finally, the effects of physical aging on the accuracy of the method are discussed and creep data from aged cement are reported.

  20. The effect of bone cement particles on the friction of polyethylene and polyurethane knee bearings

    International Nuclear Information System (INIS)

    Ash, H E; Scholes, S C; Unsworth, A; Jones, E

    2004-01-01

    Compliant layer knee joints have been considered for use in an attempt to increase the serviceable life of artificial joints. If designed correctly, these joints should operate within the full-fluid film lubrication regime. However, adverse tribological conditions, such as the presence of bone and bone cement particles, may breach the fluid film and cause surface wear. The frictional behaviour of both polyurethane (PU) and conventional polyethylene (PE) tibial components against a metallic femoral component was therefore assessed when bone cement particles were introduced into the lubricant. The bone cement particles caused a large increase in the frictional torque of both the PE and PU bearings; however, the friction produced by the PU bearings was still considerably lower than that produced by the PE bearings. The volume of bone cement particles between each of the bearings and the resultant frictional torque both decreased over time. This occurred more quickly with the PE bearings but greater damage was caused to the surface of the PE bearings than the PU components

  1. Preliminary focus on the mechanical and antibacterial activity of a PMMA-based bone cement loaded with gold nanoparticles

    Directory of Open Access Journals (Sweden)

    T. Russo

    2017-09-01

    As reported in the literature, the stress distribution may be altered in bones after the implantation of a total joint prosthesis. Some scientific works have also correlated uncemented TKA to a progressive decrease of bone density below the tibial component. Antibiotic-loaded bone cements are commonly employed in conjunction with systemic antibiotics to treat infections. Furthermore, nanoparticles with antimicrobial activity have been widely analysed. Accordingly, the current research was focused on a preliminary analysis of the mechanical and antibacterial activity of a PMMA-based bone cement loaded with gold nanoparticles. The obtained results demonstrated that nanocomposite cements with a specific concentration of gold nanoparticles improved the punching performance and antibacterial activity. However, critical aspects were found in the optimization of the nanocomposite bone cement.

  2. Calcium phosphate cements properties with polymers addition; Propriedades do cimento de fosfato de calcio com adicao de polimeros

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, J.M.; Trajano, W.T.; Escobar, C.F.; Santos, L.A., E-mail: julianafernandes2@yahoo.com.br [Universidade Federal do Rio Grande do Sul (UFRGS), RS (Brazil)

    2012-07-01

    Calcium phosphate cements (CPC) have attracted great interest to use in orthopedics and dentistry as replacements for damaged parts of the skeletal system, showing good biocompatibility and osseointegration, allowing its use as bone graft. Several studies have shown that the addition of polymer additives have a strong influence on the cement properties. The low mechanical strength is the main obstacle to greater use of CPC as an implant material. The objective of this study was to evaluate properties of a cement based on α-tricalcium phosphate (α-TCP), added polymers. PVA (10%, 8%, 6%), sodium alginate (2%) and polyacrylate ammonia (3%), all in weight, were added to the synthesized α-TCP powder. The samples were molded and evaluated for density, porosity in vitro test (Simulated Body Fluid), crystalline phases and mechanical strength. The results show increased the mechanical properties of the cement when added these polymers.

  3. Micromechanical modeling of the cement-bone interface: the effect of friction, morphology and material properties on the micromechanical response

    OpenAIRE

    Janssen, Dennis; Mann, Kenneth A.; Verdonschot, Nico

    2008-01-01

    In order to gain insight into the micro-mechanical behavior of the cement-bone interface, the effect of parametric variations of frictional, morphological and material properties on the mechanical response of the cement-bone interface were analyzed using a finite element approach. Finite element models of a cement-bone interface specimen were created from micro-computed tomography data of a physical specimen that was sectioned from an in vitro cemented total hip arthroplasty. In five models t...

  4. Influence of dunite mineral additive on strength of cement

    Science.gov (United States)

    Vasilyeva, A. A.; Moskvitina, L. V.; Moskvitin, S. G.; Lebedev, M. P.; Fedorova, G. D.

    2017-12-01

    The work studies the applicability of dunite rocks from Inagli massif (South Yakutia) for the production of mixed (composite) cement. The paper reviews the implementation of dunite for manufacturing materials and products. The chemical and mineral compositions of Inagli massif dunite rocks are presented, which relegate the rocks to magnesia-silicate rocks of low-quality in terms of its application as refractory feedstock due to appreciable serpentinization of dunite. The work presents the results of dunite study in terms of its applicability as an additive to Portland cement. The authors have established that dunite does not feature hydraulicity and can be used as a filling additive to Portland cement in the amount of up to 40%. It was unveiled that the mixed grinding of Portland cement and dunite sand with specific surface area of 5500 cm2/g yields the cement that complies with GOST 31108-2016 for CEM II and CEM V normal-cured cements with strength grades of 32.5 and 42.5. The work demonstrates the benefits of the studies of dunite as a filling additive for producing both Portland cement with mineral component and composite (mixed) cement.

  5. Effect of endodontic cement on bone mineral density using serial dual-energy x-ray absorptiometry.

    Science.gov (United States)

    Saghiri, Mohammad Ali; Orangi, Jafar; Tanideh, Nader; Janghorban, Kamal; Sheibani, Nader

    2014-05-01

    Materials with new compositions were tested in order to develop dental materials with better properties. Calcium silicate-based cements, including white mineral trioxide aggregate (WMTA), may improve osteopromotion because of their composition. Nano-modified cements may help researchers produce ideal root-end filling materials. Serial dual-energy x-ray absorptiometry measurement was used to evaluate the effects of particle size and the addition of tricalcium aluminate (C3A) to a type of mineral trioxide aggregate-based cement on bone mineral density and the surrounding tissues in the mandible of rabbits. Forty mature male rabbits (N = 40) were anesthetized, and a bone defect measuring 7 × 1 × 1 mm was created on the semimandible. The rabbits were divided into 2 groups, which were subdivided into 5 subgroups with 4 animals each based on the defect filled by the following: Nano-WMTA (patent application #13/211.880), WMTA (as standard), WMTA without C3A, Nano-WMTA + 2% Nano-C3A (Fujindonjnan Industrial Co, Ltd, Fujindonjnan Xiamen, China), and a control group. Twenty and forty days postoperatively, the animals were sacrificed, and the semimandibles were removed for DXA measurement. The Kruskal-Wallis test followed by the Mann-Whitney U test showed significant differences between the groups at a significance level of P density at both intervals and P20 day = .004 and P40 day = .005 for bone mineral content. This study showed that bone regeneration was enhanced by reducing the particle size (nano-modified) and C3A mixture. This may relate to the existence of an external supply of minerals and a larger surface area of nano-modified material, which may lead to faster release rate of Ca(2+), inducing bone formation. Adding Nano-C3A to Nano-WMTA may improve bone regeneration properties. Copyright © 2014 American Association of Endodontists. All rights reserved.

  6. Analysis of linezolid and tigecycline as candidates for local prophylaxis via antibiotic-loaded bone cement.

    Science.gov (United States)

    Nichol, T; Smith, T J; Townsend, R; Stockley, I; Akid, R

    2017-02-01

    To assess the Gram-positive-specific antibiotic linezolid and the broad-spectrum antibiotic tigecycline for use in local antibiotic delivery via antibiotic-loaded bone cement. Linezolid and tigecycline were added to Biomet bone cement at varying concentrations. Antibiotic elution over 1 week was quantified by HPLC-MS. The effect of wear on elution over 51 h was determined using a modified TE-66 wear tester. Eluted antibiotics were used to determine the MICs for a panel of clinically relevant bacteria. The impact strength of antibiotic-loaded samples was determined using a Charpy-type impact testing apparatus. Cytotoxicity of eluted antibiotics against MG-63 cells was evaluated using an MTT assay. Linezolid and tigecycline eluted from bone cement to clinically relevant levels within 1 h and retained activity over 1 week. Mechanical wear significantly reduced elution of tigecycline, but had little effect on elution of linezolid. Linezolid showed low cytotoxicity towards MG-63 cells with ≤300 mg/mL resulting in >50% cell activity. Cytotoxicity of tigecycline was higher, with an IC 50 of 5-10 mg/L. Linezolid and tigecycline retain activity after elution from bone cement. The concentration of tigecycline may need to be carefully controlled due to cytotoxicity. The effect of wear on bone cement may need to be considered if tigecycline is to be used for local delivery. Up to 10% linezolid can be added without affecting the impact strength of the bone cement. These results are promising indications for future investigation of these antibiotics for use in local antibiotic delivery strategies. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Activity of Fosfomycin- and Daptomycin-Containing Bone Cement on Selected Bacterial Species Being Associated with Orthopedic Infections

    Directory of Open Access Journals (Sweden)

    Sigrun Eick

    2017-01-01

    Full Text Available The purpose of this study was to determine activity of fosfomycin/gentamicin and daptomycin/gentamicin-containing PMMA bone-cement against Staphylococcus aureus (MRSA, MSSA, Staphylococcus epidermidis, Enterococcus faecium (VRE, and E. coli (ESBL; only fosfomycin. Test specimens of the bone cement were formed and bacteria in two concentrations were added one time or repeatedly up to 96 h. All fosfomycin-containing cement killed ultimately all MSSA, Staphylococcus epidermidis, and E. coli within 24 h; growth of MRSA was suppressed up to 48 h. Activity of daptomycin-containing cement depended on the concentration; the highest concentrated bone cement used (1.5 g daptomycin/40 g of powder was active against all one-time added bacteria. When bacteria were added repeatedly to fosfomycin-containing cement, growth was suppressed up to 96 h and that of MRSA and VRE only up to 24 h. The highest concentration of daptomycin suppressed the growth of repeated added bacteria up to 48 h (VRE until 96 h (MSSA, MRSA. In conclusion, PMMA bone cement with 1.5 g of daptomycin and 0.5 g of gentamicin may be an alternative in treatment of periprosthetic infections caused by Gram-positive bacteria.

  8. Wollastonite nanofiber–doped self-setting calcium phosphate bioactive cement for bone tissue regeneration

    Directory of Open Access Journals (Sweden)

    Guo H

    2012-07-01

    Full Text Available Han Guo,1,2 Jie Wei,2 Wenhua Song,2 Shan Zhang,2 Yonggang Yan,3 Changsheng Liu,2 Tiqiao Xiao11Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, People's Republic of China; 2Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, People's Republic of China; 3School of Physical Science and Technology, Sichuan University, Chengdu, People's Republic of ChinaAbstract: The purpose of this study was to synthesize a self-setting bioactive cement by incorporation of wollastonite nanofibers (WNFs into calcium phosphate cement (CPC. The composition, morphology, setting time, compressive strength, hydrophilicity, and degradation of WNF-doped CPC (wnf-CPC were investigated. Scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and inductively coupled plasma atomic emission spectroscopy were utilized. Additionally, methyl-thiazolyl-tetrazolium bromide assay, scanning electron microscopy, inductively coupled plasma atomic emission spectroscopy, and histological evaluation were used to study the cell and tissue responses to wnf-CPC, both in vitro and in vivo. The results confirmed that the addition of WNFs into CPC had no obvious effect on the setting time or the compressive strength of wnf-CPC, provided the WNF amount was not more than 10 wt%. However, the hydrophilicity and degradability of wnf-CPC were significantly improved by the addition of WNFs – this was because of the change of microstructure caused by the WNFs. The preferred dissolution of WNFs caused the formation of microporosity in wnf-CPC when soaked in tris hydrochloride solution. The microporosity enlarged the surface area of the wnf-CPC and so promoted degradation of the wnf-CPC when in contact with liquid. In addition, MG-63 cell attachment and proliferation on the wnf-CPC were superior to that on the CPC, indicating that

  9. A Study of Metal-Cement Composites with Additives

    Directory of Open Access Journals (Sweden)

    Mironov Victor

    2014-12-01

    Full Text Available The application of small-sized metal fillers (SMF provides a combination of high bulk density, increased durability and ferromagnetic properties of composite materials on the cement basis. However, the total strength of the composite can be compromised by poor adhesion of metal particles with the cement matrix. The use of versatile additives like microsilica and metakaolin is able to improve the structural integrity and mechanical properties of heavy concretes. The paper considers the results of a study using specimens of heavy concretes with SMF aiming to estimate its strength, structural features and ultrasonic parameters. It was found that the contact of SMF particles with the cement was not perfect, since the voids appeared between them and the cement matrix during the cement hydration process (exothermal reaction. Due to the border porosity, the specimens with the metal fillers have lower compressive strength, lower ultrasound velocity and increased frequency slope of attenuation. Microsilica and metakaolin additives facilitate better contact zone between the cement matrix and metal fillers.

  10. Modeling the influence of limestone addition on cement hydration

    Directory of Open Access Journals (Sweden)

    Ashraf Ragab Mohamed

    2015-03-01

    Full Text Available This paper addresses the influence of using Portland limestone cement “PLC” on cement hydration by characterization of its microstructure development. The European Standard EN 197-1:2011 and Egyptian specification ESS 4756-1/2009 permit the cement to contain up to 20% ground limestone. The computational tools assist in better understanding the influence of limestone additions on cement hydration and microstructure development to facilitate the acceptance of these more economical and ecological materials. μic model has been developed to enable the modeling of microstructural evolution of cementitious materials. In this research μic model is used to simulate both the influence of limestone as fine filler, providing additional surfaces for the nucleation and growth of hydration products. Limestone powder also reacts relatively slow with hydrating cement to form monocarboaluminate (AFmc phase, similar to the mono-sulfoaluminate (AFm phase formed in ordinary Portland cement. The model results reveal that limestone cement has accelerated cement hydration rate, previous experimental results and computer model “cemhyd3d” are used to validate this model.

  11. Bone cement distribution is a potential predictor to the reconstructive effects of unilateral percutaneous kyphoplasty in OVCFs: a retrospective study.

    Science.gov (United States)

    Lin, Jiachen; Qian, Lie; Jiang, Changqing; Chen, Xiuyuan; Feng, Fan; Lao, Lifeng

    2018-06-07

    Osteoporotic vertebral compression fracture (OVCF) is a common type of fracture, and percutaneous kyphoplasty (PKP) is an eligible solution to it. Previous studies have revealed that both the volume and filling pattern of bone cement correlate with the clinical outcomes after PKP procedure. However, the role of bone cement distribution remains to be illustrated. To retrospectively evaluate the relationship between the bone cement distribution and the clinical outcomes of unilateral PKP, we enrolled 73 OVCF patients receiving unilateral PKP treatment. All the intervened vertebrae were classified into three groups based on the bone cement distribution observed on postoperative X-ray films. Preoperative and postoperative radiographic parameters including the vertebral height and kyphotic Cobb angle were recorded, and anterior vertebral height restoration rate (AVHRR) and Cobb angle correction (CR) were then calculated to assess the vertebral height reconstruction. Preoperative and postoperative Oswestry Disability Index (ODI) and visual analogue scale (VAS) were adopted by interviewing patients to assess the mobility improvement and pain relief. Demographic data, body mass index (BMI), lumbar bone mineral density (evaluated by BMD T-score) of each patient, bone cement volume (BV), and bone cement extravasation (BE) were also recorded. Between- and within-group comparisons and multivariable correlation analysis were carried out to analyze the data. VAS and ODI scores were both significantly improved in all of the enrolled cases with no significant differences between groups. Among the three groups, the average age, AVHRR, and BV were significantly different. Occurrence of BE was significantly different between two of the three groups. AVHRR was demonstrated to correlate negatively with preoperative anterior vertebral height ratio and positively with preoperative Cobb angle, CR, diffusion score, and ODI changes. Bone cement distribution is a potential predictor to the

  12. Compressive Strength and Physical Properties Behavior of Cement Mortars with addition of Cement Klin Dust

    Directory of Open Access Journals (Sweden)

    Auday A Mehatlaf

    2017-12-01

    Full Text Available Cement Klin Dust (CKD was the waste of almost cement industry factories, so that in this paper utilization of CKD as filler in cement and/or concrete was the main objective. CKD from the Karbala cement factory had been used and analysis to know the chemical composition of the oxides was done. In this paper cement mortars with different weight percentages of CKD (0,5,10,20,30,40 had been prepared. Physical properties such as density and porosity were done in different age curing (3, 7, 28 day. In addition, mechanical properties included the coefficient of thermal conductivity and compressive strength had also observed with different age (3,7, and 28 for all prepared specimens. From the obtained the experimental results and their discussion, it was clear that the addition (20% of CKD had the good results in cement mortars.  

  13. BoneSource hydroxyapatite cement: a novel biomaterial for craniofacial skeletal tissue engineering and reconstruction.

    Science.gov (United States)

    Friedman, C D; Costantino, P D; Takagi, S; Chow, L C

    1998-01-01

    BoneSource-hydroxyapatite cement is a new self-setting calcium phosphate cement biomaterial. Its unique and innovative physical chemistry coupled with enhanced biocompatibility make it useful for craniofacial skeletal reconstruction. The general properties and clinical use guidelines are reviewed. The biomaterial and surgical applications offer insight into improved outcomes and potential new uses for hydroxyapatite cement systems.

  14. Thermal Manifestations and Nanoindentation of Bone Cements for Orthopaedic Surgery

    Czech Academy of Sciences Publication Activity Database

    Hloch, Sergej; Monka, P.; Hvizdoš, P.; Jakubéczyová, D.; Kozak, D.; Čolič, K.; Kloc, J.; Magurová, D.

    2013-01-01

    Roč. 17, č. 1 (2013), s. 251-258 ISSN 0354-9836 Institutional support: RVO:68145535 Keywords : bone cement * exothermic behaviour * nanoindentation * porosity * osteonecrosis Subject RIV: FJ - Surgery incl. Transplants Impact factor: 0.962, year: 2013

  15. Wear and Mechanical Behaviour of Various Polymethylmethacrylate Bone Cements

    Czech Academy of Sciences Publication Activity Database

    Balko, J.; Ballóková, B.; Jakubéczyová, D.; Hvizdoš, P.; Hloch, Sergej; Kloc, J.; Monka, P.

    2013-01-01

    Roč. 13, č. 1 (2013), s. 34-43 ISSN 1335-8987 Institutional support: RVO:68145535 Keywords : bone cements * mixing * pin-on-plate * porosity * nano-hardness Subject RIV: JQ - Machines ; Tools http://www.imr.saske.sk/pmp/issue/1-2013/PMP_Vol13_No1_p_034-043.pdf

  16. Silver-Doped Calcium Phosphate Bone Cements with Antibacterial Properties

    Directory of Open Access Journals (Sweden)

    J. V. Rau

    2016-04-01

    Full Text Available Calcium phosphate bone cements (CPCs with antibacterial properties are demanded for clinical applications. In this study, we demonstrated the use of a relatively simple processing route based on preparation of silver-doped CPCs (CPCs-Ag through the preparation of solid dispersed active powder phase. Real-time monitoring of structural transformations and kinetics of several CPCs-Ag formulations (Ag = 0 wt %, 0.6 wt % and 1.0 wt % was performed by the Energy Dispersive X-ray Diffraction technique. The partial conversion of β-tricalcium phosphate (TCP phase into the dicalcium phosphate dihydrate (DCPD took place in all the investigated cement systems. In the pristine cement powders, Ag in its metallic form was found, whereas for CPC-Ag 0.6 wt % and CPC-Ag 1.0 wt % cements, CaAg(PO33 was detected and Ag (met. was no longer present. The CPC-Ag 0 wt % cement exhibited a compressive strength of 6.5 ± 1.0 MPa, whereas for the doped cements (CPC-Ag 0.6 wt % and CPC-Ag 1.0 wt % the reduced values of the compressive strength 4.0 ± 1.0 and 1.5 ± 1.0 MPa, respectively, were detected. Silver-ion release from CPC-Ag 0.6 wt % and CPC-Ag 1.0 wt % cements, measured by the Atomic Emission Spectroscopy, corresponds to the average values of 25 µg/L and 43 µg/L, respectively, rising a plateau after 15 days. The results of the antibacterial test proved the inhibitory effect towards pathogenic Escherichia coli for both CPC-Ag 0.6 wt % and CPC-Ag 1.0 wt % cements, better performances being observed for the cement with a higher Ag-content.

  17. Effect of sodium carbonate solution on self-setting properties of tricalcium silicate bone cement.

    Science.gov (United States)

    Zhiguang Huan; Jiang Chang

    2008-11-01

    In this study, the effects of sodium carbonate (Na(2)CO(3) ) solution with different concentrations (10, 15, 20, and 25 wt%) as liquid phase on the setting time and compressive strength of tricalcium silicate bone cements are investigated. The in vitro bioactivity and degradability of the resultant Ca(3)SiO(5)-Na(2)CO(3) solution paste was also studied. The results indicate that as the concentration of Na(2)CO(3) solution varies from 0 to 25 wt%, the initial and final setting time of the cement decrease significantly from 90 to 20 min and from 180 to 45 min, respectively. After setting for 24 h, the compressive strength of Ca(3)SiO(5)-Na(2)CO(3) solution paste reaches 5.1 MPa, which is significantly higher than that of Ca( 3)SiO(5)-water cement system. The in vitro bioactivity of the cements is investigated by soaking in simulated body fluid (SBF) for 7 days. The results show that the Ca(3)SiO(5)-Na(2)CO( 3) solution bone cement has a good bioactivity and can degrade in Ringer's solution. The results indicate that Na(2)CO(3) solution as a liquid phase significantly improves the self-setting properties of Ca( 3)SiO(5) cement as compared to water. The Ca(3)SiO( 5) cement paste prepared using Na(2)CO(3) solution shows good bioactivity and moderate degradability, and the Ca(3)SiO( 5)-Na(2)CO(3) solution system may be used as degradable and bioactive bone defect filling materials.

  18. The economics of using prophylactic antibiotic-loaded bone cement in total knee replacement.

    Science.gov (United States)

    Gutowski, C J; Zmistowski, B M; Clyde, C T; Parvizi, J

    2014-01-01

    The rate of peri-prosthetic infection following total joint replacement continues to rise, and attempts to curb this trend have included the use of antibiotic-loaded bone cement at the time of primary surgery. We have investigated the clinical- and cost-effectiveness of the use of antibiotic-loaded cement for primary total knee replacement (TKR) by comparing the rate of infection in 3048 TKRs performed without loaded cement over a three-year period versus the incidence of infection after 4830 TKRs performed with tobramycin-loaded cement over a later period of time of a similar duration. In order to adjust for confounding factors, the rate of infection in 3347 and 4702 uncemented total hip replacements (THR) performed during the same time periods, respectively, was also examined. There were no significant differences in the characteristics of the patients in the different cohorts. The absolute rate of infection increased when antibiotic-loaded cement was used in TKR. However, this rate of increase was less than the rate of increase in infection following uncemented THR during the same period. If the rise in the rate of infection observed in THR were extrapolated to the TKR cohort, 18 additional cases of infection would have been expected to occur in the cohort receiving antibiotic-loaded cement, compared with the number observed. Depending on the type of antibiotic-loaded cement that is used, its cost in all primary TKRs ranges between USD $2112.72 and USD $112 606.67 per case of infection that is prevented.

  19. Influence of agglomeration of a recycled cement additive on the hydration and microstructure development of cement based materials

    NARCIS (Netherlands)

    Yu, R.; Shui, Z.H.

    2013-01-01

    This paper presents a study, including experimental and mechanism analysis, on investigating the effect of agglomeration of a recycled cement additive on the hydration and microstructure development of cement based materials. The recycled additive is firstly produced form waste hardened cement paste

  20. Early hydration of portland cement with crystalline mineral additions

    International Nuclear Information System (INIS)

    Rahhal, V.; Talero, R.

    2005-01-01

    This research presents the effects of finely divided crystalline mineral additions (quartz and limestone), commonly known as filler, on the early hydration of portland cements with very different mineralogical composition. The used techniques to study the early hydration of blended cements were conduction calorimeter, hydraulicity (Fratini's test), non-evaporable water and X-ray diffraction. Results showed that the stimulation and the dilution effects increase when the percentage of crystalline mineral additions used is increased. Depending on the replacement proportion, the mineralogical cement composition and the type of crystalline addition, at 2 days, the prevalence of the dilution effect or the stimulation effect shows that crystalline mineral additions could act as sites of heat dissipation or heat stimulation, respectively

  1. Effect of fabrication pressure on the fatigue performance of Cemex XL acrylic bone cement.

    Science.gov (United States)

    Lewis, Gladius; Janna, S I

    2004-01-01

    During a cemented arthroplasty, the prepared polymerizing dough of acrylic bone cement is subjected to pressurization in a number of ways; first, during delivery into the freshly prepared bone bed, second, during packing in that bed (either digitally or with the aid of a mechanical device), and, third, during the insertion of the prosthesis. Only a few studies have reported on the influence of the level of pressurization experienced during these events (which, depending on the cementing technique used, has been put at between 8 and 273 kPa) on various properties of the cement. That was the focus of the present study, in which the fully reversed tension-compression (+/-15 MPa; 5 Hz) fatigue lives (expressed as number of cycles to fracture, N(f)) of rectangular cross-sectioned "dog-bone" specimens (Type V, per ASTM D 638) fabricated from Cemex XL cement, at pressure applied continuously to the cement dough during curing in the specimen mold, p=75,150, and 300 kPa, were determined. The N(f) results were analyzed using the linearized transformation of the three-parameter Weibull relationship to obtain estimates of the Weibull mean, N(WM), which was taken to be the index of fatigue performance of the specimen set. Over the range of p studied, N(WM) increased as p increased (for example, from 329,118 cycles when p was 75 kPa to 388,496 cycles when p was 300 kPa); however, the increase was not significant over any pair of p increment steps (Mann-Whitney U-test; alpha<0.05).

  2. Additives for cement compositions based on modified peat

    Energy Technology Data Exchange (ETDEWEB)

    Kopanitsa, Natalya, E-mail: kopanitsa@mail.ru; Sarkisov, Yurij, E-mail: sarkisov@tsuab.ru; Gorshkova, Aleksandra, E-mail: kasatkina.alexandra@gmail.com; Demyanenko, Olga, E-mail: angel-n@sibmail.com [Tomsk State University of Architecture and Building, 2, Solyanaya sq., Tomsk, 634003 (Russian Federation)

    2016-01-15

    High quality competitive dry building mixes require modifying additives for various purposes to be included in their composition. There is insufficient amount of quality additives having stable properties for controlling the properties of cement compositions produced in Russia. Using of foreign modifying additives leads to significant increasing of the final cost of the product. The cost of imported modifiers in the composition of the dry building mixes can be up to 90% of the material cost, depending on the composition complexity. Thus, the problem of import substitution becomes relevant, especially in recent years, due to difficult economic situation. The article discusses the possibility of using local raw materials as a basis for obtaining dry building mixtures components. The properties of organo-mineral additives for cement compositions based on thermally modified peat raw materials are studied. Studies of the structure and composition of the additives are carried out by physicochemical research methods: electron microscopy and X-ray analysis. Results of experimental research showed that the peat additives contribute to improving of cement-sand mortar strength and hydrophysical properties.

  3. Statistical study of chemical additives effects in the waste cementation

    International Nuclear Information System (INIS)

    Tello, Cledola C.O. de; Diniz, Paula S.; Haucz, Maria J.A.

    1997-01-01

    This paper presents the statistical study, that was carried out to analyse the chemical additives effect in the waste cementation process. Three different additives from two industries were tested: set accelerator, set retarder and super plasticizers, in cemented pates with and without bentonite. The experiments were planned in accordance with the 2 3 factorial design, so that the effect of each type of additive, its quantity and manufacturer in cemented paste and specimens could be evaluated. The results showed that the use of these can improve the cementation process and the product. The admixture quantity and the association with bentonite were the most important factors affecting the process and product characteristics. (author). 4 refs., 9 figs., 4 tabs

  4. Concepts for increasing gentamicin release from handmade bone cement beads

    NARCIS (Netherlands)

    Rasyid, Hermawan N; van der Mei, Henny C; Frijlink, Henderik W; Soegijoko, Soegijardjo; Van Horn, Jim R; Busscher, Hendrik; Neut, Daniëlle

    2009-01-01

    BACKGROUND AND PURPOSE: Commercial gentamicin-loaded bone cement beads (Septopal) constitute an effective delivery system for local antibiotic therapy. These beads are not available in all parts of the world, and are too expensive for frequent use in others. Thus, orthopedic surgeons worldwide make

  5. Effect of pulsed ultrasound in combination with gentamicin on bacterial viability in biofilms on bone cements in vivo

    NARCIS (Netherlands)

    Ensing, GT; Roeder, BL; Nelson, JL; van Horn, [No Value; van der Mei, HC; Busscher, HJ; Pitt, WG

    2005-01-01

    Aims: The aim of this study is to investigate whether pulsed ultrasound (US) in combination with gentamicin yields a decreased viability of bacteria in biofilms on bone cements in vivo. Methods and Results: Bacterial survival on bone cement in the presence and absence of ultrasound was compared in a

  6. Effects of Incorporating Carboxymethyl Chitosan into PMMA Bone Cement Containing Methotrexate.

    Directory of Open Access Journals (Sweden)

    Bo-Ming Liu

    Full Text Available Treatment of bone metastases usually includes surgical resection with local filling of methotrexate (MTX in polymethyl methacrylate (PMMA cement. We investigated whether incorporating carboxymethyl chitosan (CMCS in MTX-PMMA cement might overcome disadvantages associated with MTX. To determine the optimal CMCS+MTX concentration to suppress the viability of cancer cells, an integrated microfluidic chip culturing highly metastatic lung cancer cells (H460 was employed. The mechanical properties, microstructure, and MTX release of (CMCS+MTX-PMMA cement were evaluated respectively by universal mechanical testing machine, scanning electron microscopy (SEM, and incubation in simulated body fluid with subsequent HPLC-MS. Implants of MTX-PMMA and (CMCS+MTX-PMMA cement were evaluated in vivo in guinea pig femurs over time using spiral computed tomography with three-dimensional image reconstruction, and SEM at 6 months. Viability of H460 cells was significantly lowest after treatment with 57 μg/mL CMCS + 21 μg/mL MTX, which was thus used in subsequent experiments. Incorporation of 1.6% (w/w CMCS to MTX-PMMA significantly increased the bending modulus, bending strength, and compressive strength by 5, 2.8, and 5.2%, respectively, confirmed by improved microstructural homogeneity. Incorporation of CMCS delayed the time-to-plateau of MTX release by 2 days, but increased the fraction released at the plateau from 3.24% (MTX-PMMA to 5.34%. Relative to the controls, the (CMCS+MTX-PMMA implants integrated better with the host bone. SEM revealed pores in the cement of the (CMCS+MTX-PMMA implants that were not obvious in the controls. In conclusion, incorporation of CMCS in MTX-PMMA appears a feasible and effective modification for improving the anti-tumor properties of MTX-PMMA cement.

  7. Incorporation of multiwalled carbon nanotubes to acrylic based bone cements: effects on mechanical and thermal properties.

    Science.gov (United States)

    Ormsby, Ross; McNally, Tony; Mitchell, Christina; Dunne, Nicholas

    2010-02-01

    Polymethyl methacrylate (PMMA) bone cement-multiwalled carbon nanotube (MWCNT) nanocomposites with a weight loading of 0.1% were prepared using 3 different methods of MWCNT incorporation. The mechanical and thermal properties of the resultant nanocomposite cements were characterised in accordance with the international standard for acrylic resin cements. The mechanical properties of the resultant nanocomposite cements were influenced by the type of MWCNT and method of incorporation used. The exothermic polymerisation reaction for the PMMA bone cement was significantly reduced when thermally conductive functionalised MWCNTs were added. This reduction in exotherm translated in a decrease in thermal necrosis index value of the respective nanocomposite cements, which potentially could reduce the hyperthermia experienced in vivo. The morphology and degree of dispersion of the MWCNTs in the PMMA matrix at different scales were analysed using scanning electron microscopy. Improvements in mechanical properties were attributed to the MWCNTs arresting/retarding crack propagation through the cement by providing a bridging effect into the wake of the crack, normal to the direction of crack growth. MWCNT agglomerations were evident within the cement microstructure, the degree of these agglomerations was dependent on the method used to incorporate the MWCNTs into the cement. Copyright 2009. Published by Elsevier Ltd.

  8. Brittle and ductile adjustable cement derived from calcium phosphate cement/polyacrylic acid composites.

    Science.gov (United States)

    Chen, Wen-Cheng; Ju, Chien-Ping; Wang, Jen-Chyan; Hung, Chun-Cheng; Chern Lin, Jiin-Huey

    2008-12-01

    Bone filler has been used over the years in dental and biomedical applications. The present work is to characterize a non-dispersive, fast setting, modulus adjustable, high bioresorbable composite bone cement derived from calcium phosphate-based cement combined with polymer and binding agents. This cement, we hope, will not swell in simulated body fluid and keep the osteogenetic properties of the dry bone and avoid its disadvantages of being brittle. We developed a calcium phosphate cement (CPC) of tetracalcium phosphate/dicalcium phosphate anhydrous (TTCP/DCPA)-polyacrylic acid with tartaric acid, calcium fluoride additives and phosphate hardening solution. The results show that while composite, the hard-brittle properties of 25wt% polyacrylic acid are proportional to CPC and mixing with additives is the same as those of the CPC without polyacrylic acid added. With an increase of polyacrylic acid/CPC ratio, the 67wt% samples revealed ductile-tough properties and 100wt% samples kept ductile or elastic properties after 24h of immersion. The modulus range of this development was from 200 to 2600MPa after getting immersed in simulated body fluid for 24h. The TTCP/DCPA-polyacrylic acid based CPC demonstrates adjustable brittle/ductile strength during setting and after immersion, and the final reaction products consist of high bioresorbable monetite/brushite/calcium fluoride composite with polyacrylic acid.

  9. Optimization of self-healing additives dispersity in cement

    OpenAIRE

    E.R. Ismagilova; F.A. Agzamov; A.J. Abbas

    2017-01-01

    The article reflects results of the experimental studies on the modifying agent’s dispersion to\\ud affect the nature of its distribution in the total volume of cement stone. An attempt was made to evaluate\\ud the strength and filtration properties of the cement stone with respect to the heterogeneity of its structure.\\ud The effect of a character of the modifying additive distribution on the permeability and strength of the\\ud cement stone was investigated, as a result it was clarified that t...

  10. Aluminum-free glass-ionomer bone cements with enhanced bioactivity and biodegradability

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Filipa O.; Pires, Ricardo A., E-mail: rpires@dep.uminho.pt; Reis, Rui L.

    2013-04-01

    Al-free glasses of general composition 0.340SiO{sub 2}:0.300ZnO:(0.250-a-b)CaO:aSrO:bMgO:0.050Na{sub 2}O:0.060P{sub 2}O{sub 5} (a, b = 0.000 or 0.125) were synthesized by melt quenching and their ability to form glass-ionomer cements was evaluated using poly(acrylic acid) and water. We evaluated the influence of the poly(acrylic acid) molecular weight and glass particle size in the cement mechanical performance. Higher compressive strength (25 ± 5 MPa) and higher compressive elastic modulus (492 ± 17 MPa) were achieved with a poly(acrylic acid) of 50 kDa and glass particle sizes between 63 and 125 μm. Cements prepared with glass formulation a = 0.125 and b = 0.000 were analyzed after immersion in simulated body fluid; they presented a surface morphology consistent with a calcium phosphate coating and a Ca/P ratio of 1.55 (similar to calcium-deficient hydroxyapatite). Addition of starch to the cement formulation induced partial degradability after 8 weeks of immersion in phosphate buffer saline containing α-amylase. Micro-computed tomography analysis revealed that the inclusion of starch increased the cement porosity from 35% to 42%. We were able to produce partially degradable Al-free glass-ionomer bone cements with mechanical performance, bioactivity and biodegradability suitable to be applied on non-load bearing sites and with the appropriate physical characteristics for osteointegration upon partial degradation. Zn release studies (concentrations between 413 μM and 887 μM) evidenced the necessity to tune the cement formulations to reduce the Zn concentration in the surrounding environment. Highlights: ► We developed partially degradable, bioactive, Al-free glass-ionomer cements (GICs). ► Enhanced mechanical behavior was achieved using 63–125 μm glass particle size range. ► The highest mechanical resistance was obtained using poly(acrylic acid) of 50 kDa. ► Biodegradation was successfully tuned to start 8 weeks after GIC preparation. ► Zn

  11. Aluminum-free glass-ionomer bone cements with enhanced bioactivity and biodegradability

    International Nuclear Information System (INIS)

    Gomes, Filipa O.; Pires, Ricardo A.; Reis, Rui L.

    2013-01-01

    Al-free glasses of general composition 0.340SiO 2 :0.300ZnO:(0.250-a-b)CaO:aSrO:bMgO:0.050Na 2 O:0.060P 2 O 5 (a, b = 0.000 or 0.125) were synthesized by melt quenching and their ability to form glass-ionomer cements was evaluated using poly(acrylic acid) and water. We evaluated the influence of the poly(acrylic acid) molecular weight and glass particle size in the cement mechanical performance. Higher compressive strength (25 ± 5 MPa) and higher compressive elastic modulus (492 ± 17 MPa) were achieved with a poly(acrylic acid) of 50 kDa and glass particle sizes between 63 and 125 μm. Cements prepared with glass formulation a = 0.125 and b = 0.000 were analyzed after immersion in simulated body fluid; they presented a surface morphology consistent with a calcium phosphate coating and a Ca/P ratio of 1.55 (similar to calcium-deficient hydroxyapatite). Addition of starch to the cement formulation induced partial degradability after 8 weeks of immersion in phosphate buffer saline containing α-amylase. Micro-computed tomography analysis revealed that the inclusion of starch increased the cement porosity from 35% to 42%. We were able to produce partially degradable Al-free glass-ionomer bone cements with mechanical performance, bioactivity and biodegradability suitable to be applied on non-load bearing sites and with the appropriate physical characteristics for osteointegration upon partial degradation. Zn release studies (concentrations between 413 μM and 887 μM) evidenced the necessity to tune the cement formulations to reduce the Zn concentration in the surrounding environment. Highlights: ► We developed partially degradable, bioactive, Al-free glass-ionomer cements (GICs). ► Enhanced mechanical behavior was achieved using 63–125 μm glass particle size range. ► The highest mechanical resistance was obtained using poly(acrylic acid) of 50 kDa. ► Biodegradation was successfully tuned to start 8 weeks after GIC preparation. ► Zn release should be

  12. Addition of 1, 2 and 3% in mass of sodium alginate in calcium phosphate cement

    International Nuclear Information System (INIS)

    Coelho, W.T.; Fernandes, J.M.; Vieira, R.S.; Thurmer, M.B.; Santos, L.A.

    2011-01-01

    The calcium phosphate cement (CFC) are bone substitutes with great potential for use in orthopedics, traumatology and dentistry because of their biocompatibility, bioactivity, osteoconductivity and osteotransdutivity, and a paste that can be easily molded and placed into the surgical site. However, CFCs have low mechanical strength, which equals the maximum mechanical strength of trabecular bone. Aiming to evaluate the strength and time to handle a CFC phase composed mainly of alpha were added to sodium alginate (1%, 2% and 3% wt) and an accelerator handle in an aqueous medium. The cement powder was mixed with liquid takes 2 minutes and resigned in specimens and assessed for apparent density and porosity by the Archimedes method, X-ray diffraction and mechanical strength. We noticed a significant increase in mechanical properties of cement added sodium alginate. (author)

  13. Micro-stereotactic frame utilizing bone cement for individual fabrication: an initial investigation of its accuracy

    Science.gov (United States)

    Rau, Thomas S.; Lexow, G. Jakob; Blume, Denise; Kluge, Marcel; Lenarz, Thomas; Majdani, Omid

    2017-03-01

    A new method for template-guided cochlear implantation surgery is proposed which has been developed to create a minimally invasive access to the inner ear. A first design of the surgical template was drafted, built, and finally tested regarding its accuracy. For individual finalization of the micro-stereotactic frame bone cement is utilized as this well-known and well-established material suggests ease of use as well as high clinical acceptance and enables both sterile and rapid handling. The new concept includes an alignment device, based on a passive hexapod with manually adjustable legs for temporary fixation of the separate parts in the patient-specific pose until the bone cement is spread and finally cured. Additionally, a corresponding evaluation method was developed to determine the accuracy of the microstereotactic frame in some initial experiments. In total 18 samples of the surgical template were fabricated based on previously planned trajectories. The mean positioning error at the target point was 0.30 mm with a standard deviation of 0.25 mm.

  14. Fatigue crack propagation of acrylic bone cements. Influence of the radio-opaque agents; Propagacion de grietas por fatiga de cementos oseos acrilicos. Influencia de los agentes radiopacos

    Energy Technology Data Exchange (ETDEWEB)

    Ginebra, M. P.; Albuixech, L.; Fernandez-Barragan, E.; Gil, F. J.; Planell, J. A.; San Roman, J.; Vazquez, B.

    2001-07-01

    In this work the 2,5-diiodo-8-quinolyl methacrylate (IHQM), is proposed as a new radiopaque agent. The addition of the iodine containing methacrylate provided a statistically significant increase in the tensile strength, fracture toughness and ductility, with respect to the barium sulphate containing cement. This effect was attributed to the fact that the use of a radiopaque monomer eliminated the porosity associated to the barium sulphate particles. However, since fatigue resistance is one of the main properties required to ensure a good long-term performance of permanent pros these, as is the case of acrylic bone cements, it is important to compare the fatigue properties of this new bone cement formulation with the radiolucent and the BaSO{sub 4} containing bone cements. The results show that the absence of inorganic particles with no matrix adhesion plays a negative role when the fatigue crack propagation is considered. (Author) 26 refs.

  15. Is it cement to be? Downhole cement that uses zeolite additive may offer lightweight alternative

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, J.

    2001-05-01

    C2C Zeolite Corporation produces zeolites from a large deposit near Cache Creek, British Columbia, and processes them for use as an additive in downhole cement well casings. Early research indicates that zeolites can significantly improve the way downhole cement is made in the oil industry. Zeolites are made up mostly of silicates of aluminum and calcium. They have a great ability to absorb water, resulting in a lighter and more fluid cement than is currently available. C2C claims that zeolites will reduce cement weight, column pressure and operator costs. The cost benefits of using lighter cement downhole includes easier moving, processing and handling of the mix. Initial research suggests that zeolites might prove to be viable alternatives to other cement lighteners such as silica fumes or flyash. Zeolite-based cement also performed reasonably well in freeze-thaw tests and showed good adhesion and no evidence of shrinkage in downhole tests. 3 figs.

  16. Evaluation of the sealing ability of bone cement as furcation perforation repair material when compared with mineral trioxide aggregate and calcium phosphate cement: An in-vitro study

    Directory of Open Access Journals (Sweden)

    Rashmi Chordiya

    2010-01-01

    Full Text Available Aim: This study was undertaken to compare the sealing ability of bone cement as furcation perforation repair material when compared with mineral trioxide aggregate and calcium phosphate cement. Materials and Methods: A total of 70 sound mandibular molars were selected for this study. The sample teeth were randomly divided into five groups: group I - n=20, perforation repair material used, mineral trioxide aggregate; group II - n=20, perforation repair material used, calcium phosphate cement; group III - n=20, perforation repair material used, bone cement; group IV - positive control, n=5, the furcation were not repaired with any material; group V - negative control, n=5, furcation area intact, no perforation done. The teeth were immersed in silver nitrate solution for 2 hours and then rinsed with photographic developer solution for 6 hours. They were then sectioned in a longitudinal direction and examined under a stereomicroscope. In each section the actual values of dye leakage were calculated from outer margins of perforation to the level of pulpal floor and were then subjected to statistical analysis. Results: An unpaired ′t′ test revealed that different groups exhibited significantly different dye penetrations (P<0.01. Conclusion: Furcation perforation repaired with MTA showed minimum microleakage (mean 54.5%, calcium phosphate cement showed maximum microleakage (100%, and bone cement showed moderate dye leakage (87.8%.

  17. Microencapsulation of 2-octylcyanoacrylate tissue adhesive for self-healing acrylic bone cement.

    Science.gov (United States)

    Brochu, Alice B W; Chyan, William J; Reichert, William M

    2012-10-01

    Here, we report the first phase of developing self-healing acrylic bone cement: the preparation and characterization of polyurethane (PUR) microcapsules containing a medical cyanoacrylate tissue adhesive. Capsules were prepared by interfacial polymerization of a toluene-2,4-diisocyanate-based polyurethane prepolymer with 1,4-butanediol to encapsulate 2-octylcyanoacrylate (OCA). Various capsule characteristics, including: resultant morphology, average size and size distribution, shell thickness, content and reactivity of encapsulated agent, and shelf life are investigated and their reliance on solvent type and amount, surfactant type and amount, temperature, pH, agitation rate, reaction time, and mode of addition of the oil phase to the aqueous phase are presented. Capsules had average diameters ranging from 74 to 222 μm and average shell thicknesses ranging from 1.5 to 6 μm. The capsule content was determined via thermogravimetric analysis and subsequent analysis of the capsules following up to 8 weeks storage revealed minimal loss of core contents. Mechanical testing of OCA-containing capsules showed individual capsules withstood compressive forces up to a few tenths of Newtons, and the contents released from crushed capsules generated tensile adhesive forces of a few Newtons. Capsules were successfully mixed into the poly(methyl methacrylate) bone cement, surviving the mixing process, exposure to methyl methacrylate monomer, and the resulting exothermic matrix curing. Copyright © 2012 Wiley Periodicals, Inc.

  18. Design of ceramic-based cements and putties for bone graft substitution

    Directory of Open Access Journals (Sweden)

    M Bohner

    2010-07-01

    Full Text Available In the last 15 years, a large number of commercial ceramic-based cements and putties have been introduced as bone graft substitutes. As a result, large efforts have been made to improve our understanding of the specific properties of these materials, such as injectability, cohesion, setting time (for cements, and in vivo properties. The aim of this manuscript is to summarize our present knowledge in the field. Instead of just looking at scientific aspects, industrial needs are also considered, including mixing and delivery, sterilization, and shelf-life.

  19. Effect of pulsed ultrasound in combination with gentamicin on bacterial killing of biofilms on bone cements in vivo

    Science.gov (United States)

    Ensing, G.T.; Roeder, B.L.; Nelson, J.L.; van Horn, J.R.; van der Mei, H.C.; Busscher, H.J.; Pitt, W.G.

    2008-01-01

    Aim The aim of this study is to investigate whether pulsed ultrasound in combination with gentamicin yields increased killing of bacterial biofilms on bone cements in vivo. Methods and Results Bacterial survival on bone cement in the presence and absence of ultrasound was compared in a rabbit model. Two bone cement samples with E. coli ATCC 10798 biofilm were implanted in a total of nine rabbits. In two groups bone cement disks loaded with gentamicin were used, and in one group unloaded bone cement disks in combination with systemically administered gentamicin were used. Pulsed ultrasound with a mean acoustic intensity of 167 mW cm−2 and a maximum acoustic intensity of 500 mW cm−2 was applied from 24 h till 72 h post surgery on one of the two implanted disks. After euthanization, the bacteria removed from the disk were quantified. Application of ultrasound, combined with gentamicin, reduced the biofilm in all three groups varying between 58 to 69% compared to the negative control. Ultrasound proved to be safe with respect to creating skin lesions. Conclusions Ultrasound resulted in an tendency of improved efficacy of gentamicin, either applied locally or systemically. Significance and impact of Study This study implies that ultrasound could improve the prevention of infection, especially because the biomaterials, gentamicin and ultrasound used in this model are all in clinical usage, but not yet combined in clinical practice. PMID:16108785

  20. Biocompatibility of calcium phosphate bone cement with optimized mechanical properties.

    Science.gov (United States)

    Palmer, Iwan; Nelson, John; Schatton, Wolfgang; Dunne, Nicholas J; Buchanan, Fraser J; Clarke, Susan A

    2016-02-01

    The broad aim of this work was to investigate and optimize the properties of calcium phosphate bone cements (CPCs) for use in vertebroplasty to achieve effective primary fixation of spinal fractures. The incorporation of collagen, both bovine and from a marine sponge (Chondrosia reniformis), into a CPC was investigated. The biological properties of the CPC and collagen-CPC composites were assessed in vitro through the use of human bone marrow stromal cells. Cytotoxicity, proliferation, and osteoblastic differentiation were evaluated using lactate dehydrogenase, PicoGreen, and alkaline phosphatase activity assays, respectively. The addition of both types of collagen resulted in an increase in cytotoxicity, albeit not to a clinically relevant level. Cellular proliferation after 1, 7, and 14 days was unchanged. The osteogenic potential of the CPC was reduced through the addition of bovine collagen but remained unchanged in the case of the marine collagen. These findings, coupled with previous work showing that incorporation of marine collagen in this way can improve the physical properties of CPCs, suggest that such a composite may offer an alternative to CPCs in applications where low setting times and higher mechanical stability are important. © 2015 The Authors. Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc.

  1. Biphasic calcium sulfate dihydrate/iron-modified alpha-tricalcium phosphate bone cement for spinal applications: in vitro study

    International Nuclear Information System (INIS)

    Vlad, M D; Lopez, J; Torres, R; Barraco, M; Fernandez, E; Valle, L J; Poeata, I

    2010-01-01

    In this study, the cytocompatibility of new 'iron-modified/alpha-tricalcium phosphate (IM/α-TCP) and calcium sulfate dihydrate (CSD)' bone cement (IM/α-TCP/CSD-BC) intended for spinal applications has been approached. The objective was to investigate by direct-contact osteoblast-like cell cultures (from 1 to 14 days) the in vitro cell adhesion, proliferation, morphology and cytoskeleton organization of MG-63 cells seeded onto the new cements. The results were as follows: (a) quantitative MTT-assay and scanning electron microscopy (SEM) showed that cell adhesion, proliferation and viability were not affected with time by the presence of iron in the cements; (b) double immunofluorescent labeling of F-actin and α-tubulin showed a dynamic interaction between the cell and its porous substrates sustaining the locomotion phenomenon on the cements' surface, which favored the colonization, and confirming the biocompatibility of the experimental cements; (c) SEM-cell morphology and cytoskeleton observations also evidenced that MG-63 cells were able to adhere, to spread and to attain normal morphology on the new IM/α-TCP/CSD-BC which offered favorable substratum properties for osteoblast-like cells proliferation and differentiation in vitro. The results showed that these new iron-modified cement-like biomaterials have cytocompatible features of interest not only as possible spinal cancellous bone replacement biomaterial but also as bone tissue engineering scaffolds.

  2. Anti-inflammation performance of curcumin-loaded mesoporous calcium silicate cement.

    Science.gov (United States)

    Chen, Yuan-Chien; Shie, Ming-You; Wu, Yuan-Haw Andrew; Lee, Kai-Xing Alvin; Wei, Li-Ju; Shen, Yu-Fang

    2017-09-01

    Calcium silicate (CS) cements have excellent bioactivity and can induce the bone-like apatite formation. They are good biomaterials for bone tissue engineering and bone regenerative medicine. However, they have degradability and the dissolved CS can cause the inflammatory response at the early post-implantation stage. The purpose of this study was to design and prepare the curcumin-loaded mesoporous CS (MesoCS/curcumin) cements as a strategy to reduce the inflammatory reaction after implantation. The MesoCS/curcumin cements were designed and prepared. The characteristics of MesoCS/curcumin specimens were examined by transmission electron microscopy (TEM), X-ray diffraction (XRD) and scanning electron microscopy (SEM). Their physical properties, biocompatibility, and anti-inflammatory ability were also evaluated. The MesoCS/curcumin cements displayed excellent biocompatibility and physical properties. Their crystalline characterizations were very similar with MesoCS cements. After soaking in simulated body fluid, the bone-like apatite layer of the MesoCS/curcumin cements could be formed. In addition, it could inhibit the expression of tumor necrosis factor-α (TNF-α) and interleukin-1 (IL-1) after inflammation reaction induced by lipopolysaccharides and had good anti-inflammatory ability. Adding curcumin in MesoCS cements can reduce the inflammatory reaction, but does not affect the original biological activity and properties of MesoCS cements. It can provide a good strategy to inhibit the inflammatory reaction after implantation for bone tissue engineering and bone regenerative medicine. Copyright © 2017. Published by Elsevier B.V.

  3. Influence of HAp on the polymerization processes of a possible radioactive bone cement

    Energy Technology Data Exchange (ETDEWEB)

    Montaño, Carlos J.; Campos, Tarcísio P.R., E-mail: carlmont@ucm.es, E-mail: tprcampos@yahoo.com.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte (Brazil). Dept. de Engenharia Nuclear. Lab. de Radiações Ionizantes; Silva, Adolfo H.M.; Araujo, Maria H., E-mail: adolfohmoraes@ufmg.br, E-mail: mharaujo1993@gmail.com [Universidade Federal de Minas Gerais (RMN/UFMG), Belo Horizonte (Brazil). Dept. de Ressonância Magnética Nuclear

    2017-07-01

    Polymethylmethacrylate PMMA is an acrylic that has been already proposed as a composite to adhere together the fractured bone structures. Subsequently, augmentation bone cements have incorporated Calcium Biophosphonates as vital part of its components to increase the biocompatibility with osseous tissues. Minimally invasive percutaneous techniques such as Vertebroplasty and Kyphoplasty have been developed to reduce surgical impact on patients, but in turn have been reported undesirable effects as extravasation of the cement outside of the planning target volume due to the compression of the internal bone fluids or other tissues. An in situ variable that helps favoring of the PMMA polymerization process is the temperature; however, it may bring deleterious effects. On the methodology, an assay was addressed varying the Hydroxyapatite HAp concentration. Also the cement processing was modified by setting water as a vehicle for particle dispersion. The ratios of HAp/PMMA concentrations were: 0.00000, 0.02167, 0.09062, 0.16619 and 0.50000 mixed in PMMA and liquid catalyst and monomer. The thermal profiles were measured during polymerization and analyzed. Nuclear magnetic resonance NMR analysis was carried out on the polymerization process in an aqueous state to monitor the H-H{sub 2}O proton signal. As results, an increasing in the cement hardness time was found in the proportion of the HAp concentration. The highest τ polymerization time was found for the x{sub 5} concentration and the signal from the water trapped in the HAp amorphous lattice was determined around ∼5 ppm in the {sup 1}H NMR spectra. (author)

  4. Influence of HAp on the polymerization processes of a possible radioactive bone cement

    International Nuclear Information System (INIS)

    Montaño, Carlos J.; Campos, Tarcísio P.R.; Silva, Adolfo H.M.; Araujo, Maria H.

    2017-01-01

    Polymethylmethacrylate PMMA is an acrylic that has been already proposed as a composite to adhere together the fractured bone structures. Subsequently, augmentation bone cements have incorporated Calcium Biophosphonates as vital part of its components to increase the biocompatibility with osseous tissues. Minimally invasive percutaneous techniques such as Vertebroplasty and Kyphoplasty have been developed to reduce surgical impact on patients, but in turn have been reported undesirable effects as extravasation of the cement outside of the planning target volume due to the compression of the internal bone fluids or other tissues. An in situ variable that helps favoring of the PMMA polymerization process is the temperature; however, it may bring deleterious effects. On the methodology, an assay was addressed varying the Hydroxyapatite HAp concentration. Also the cement processing was modified by setting water as a vehicle for particle dispersion. The ratios of HAp/PMMA concentrations were: 0.00000, 0.02167, 0.09062, 0.16619 and 0.50000 mixed in PMMA and liquid catalyst and monomer. The thermal profiles were measured during polymerization and analyzed. Nuclear magnetic resonance NMR analysis was carried out on the polymerization process in an aqueous state to monitor the H-H 2 O proton signal. As results, an increasing in the cement hardness time was found in the proportion of the HAp concentration. The highest τ polymerization time was found for the x 5 concentration and the signal from the water trapped in the HAp amorphous lattice was determined around ∼5 ppm in the 1 H NMR spectra. (author)

  5. Micro-mechanical modeling of the cement-bone interface: the effect of friction, morphology and material properties on the micromechanical response.

    NARCIS (Netherlands)

    Janssen, D.; Mann, K.A.; Verdonschot, N.J.J.

    2008-01-01

    In order to gain insight into the micro-mechanical behavior of the cement-bone interface, the effect of parametric variations of frictional, morphological and material properties on the mechanical response of the cement-bone interface were analyzed using a finite element approach. Finite element

  6. Using of borosilicate glass waste as a cement additive

    International Nuclear Information System (INIS)

    Han, Weiwei; Sun, Tao; Li, Xinping; Sun, Mian; Lu, Yani

    2016-01-01

    Highlights: • Borosilicate glass waste used as cement additive can improves its radiation shielding. • When content is 14.8%, the linear attenuation coefficient is 0.2457 cm"−"1 after 28 d. • From 0 to 22.2%, linear attenuation coefficient firstly increase and then decrease. - Abstract: Borosilicate glass waste is investigated as a cement additive in this paper to improve the properties of cement and concrete, such as setting time, compressive strength and radiation shielding. The results demonstrate that borosilicate glass is an effective additive, which not only improves the radiation shielding properties of cement paste, but also shows the irradiation effect on the mechanical and optical properties: borosilicate glass can increase the compressive strength and at the same time it makes a minor impact on the setting time and main mineralogical compositions of hydrated cement mixtures; and when the natural river sand in the mortar is replaced by borosilicate glass sand (in amounts from 0% to 22.2%), the compressive strength and the linear attenuation coefficient firstly increase and then decrease. When the glass waste content is 14.8%, the compressive strength is 43.2 MPa after 28 d and the linear attenuation coefficient is 0.2457 cm"−"1 after 28 d, which is beneficial for the preparation of radiation shielding concrete with high performances.

  7. Using of borosilicate glass waste as a cement additive

    Energy Technology Data Exchange (ETDEWEB)

    Han, Weiwei [State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, Hubei 430070 (China); School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, Hubei 430070 (China); Sun, Tao, E-mail: sunt@whut.edu.cn [State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, Hubei 430070 (China); Key Laboratory of Roadway Bridge & Structure Engineering, Wuhan University of Technology, Wuhan, Hubei 430070 (China); Li, Xinping [Key Laboratory of Roadway Bridge & Structure Engineering, Wuhan University of Technology, Wuhan, Hubei 430070 (China); Sun, Mian [School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei 430070 (China); Lu, Yani [Urban Construction Institute, Hubei Engineering University, Xiaogan, Hubei 432000 (China)

    2016-08-15

    Highlights: • Borosilicate glass waste used as cement additive can improves its radiation shielding. • When content is 14.8%, the linear attenuation coefficient is 0.2457 cm{sup −1} after 28 d. • From 0 to 22.2%, linear attenuation coefficient firstly increase and then decrease. - Abstract: Borosilicate glass waste is investigated as a cement additive in this paper to improve the properties of cement and concrete, such as setting time, compressive strength and radiation shielding. The results demonstrate that borosilicate glass is an effective additive, which not only improves the radiation shielding properties of cement paste, but also shows the irradiation effect on the mechanical and optical properties: borosilicate glass can increase the compressive strength and at the same time it makes a minor impact on the setting time and main mineralogical compositions of hydrated cement mixtures; and when the natural river sand in the mortar is replaced by borosilicate glass sand (in amounts from 0% to 22.2%), the compressive strength and the linear attenuation coefficient firstly increase and then decrease. When the glass waste content is 14.8%, the compressive strength is 43.2 MPa after 28 d and the linear attenuation coefficient is 0.2457 cm{sup −1} after 28 d, which is beneficial for the preparation of radiation shielding concrete with high performances.

  8. Preparation and characterization of a novel injectable strontium-containing calcium phosphate cement with collagen

    Directory of Open Access Journals (Sweden)

    Zhou Ziqiang

    2015-07-01

    Full Text Available Purpose: To develop a novel injectable strontium-containing calcium phosphate cement with collagen. Methods: A novel calcium phosphate bone cement (CPC was prepared with the addition of strontium element, collagenⅠ, and modified starch; the injectability, solidification time, microstructure, phase composition, compressive strength, anti-collapsibility and histological properties of material were evaluated. Results: The results showed that the material could be injected with an excellent performance; the modified starch significantly improved the anti-washout property of cement; with the liquid to solid ratio of 0.3, the largest compressive strength of cement was obtained (48.0 MPa ± 2.3 MPa; histological examination of repair tissue showed that the bone was repaired after 16 weeks; the degradation of cement was consistent with the new bone growth. Conclusion: A novel injectable collagen-strontium-containing CPC with excellent compressive strength and suitable setting time was prepared, with addition of modified starch. The CPC showed a good antiwashout property and the degradation time of the cement met with the new bone growing. This material is supposed to be used in orthopedic and maxillofacial surgery for bone defects.

  9. Effect of the sterilization process on physical and mechanical properties of the bonacryl bone cement

    International Nuclear Information System (INIS)

    Morejon, L.; Delgado, J.A.; Aguero, L.; Rapado, M.; Ginebra, M.P.; Gil, F.J.; Mendizabal, E.

    2008-01-01

    The use of bone cements of poly(methyl methacrylate) (PMMA) to fix artificial prosthesis to the human body is a habitual method in orthopedic surgery. The hip and the knee joints have a very complex biomechanics and support high loads, for these reasons, acrylic bone cements have to comply with international standards in order to secure the biofuncionality and durability of the implant. In this work we report the effect of sterilization by ethylene oxide or gamma radiation on the BONACRYL Cuban cement. We determined how sterilization methods affect the molecular weight of the polymer as well as its quasi-static mechanical properties. The results demonstrated that the gamma radiation modifies the molecular weight of the PMMA although the compression and bending strength were not affected by the sterilization process applied. (authors)

  10. Effect of pulsed ultrasound in combination with gentamicin on bacterial viability in biofilms on bone cements in vivo.

    Science.gov (United States)

    Ensing, G T; Roeder, B L; Nelson, J L; van Horn, J R; van der Mei, H C; Busscher, H J; Pitt, W G

    2005-01-01

    The aim of this study is to investigate whether pulsed ultrasound (US) in combination with gentamicin yields a decreased viability of bacteria in biofilms on bone cements in vivo. Bacterial survival on bone cement in the presence and absence of ultrasound was compared in a rabbit model. Two bone cement samples with an Escherichia coli ATCC 10798 biofilm were implanted in a total of nine rabbits. In two groups bone cement discs loaded with gentamicin, freshly prepared and aged were used, and in one group unloaded bone cement discs in combination with systemically administered gentamicin. Pulsed ultrasound with a frequency of 28.48 kHz and a maximum acoustic intensity of 500 mW cm(-2) was applied continuously from 24 h till 72 h postsurgery on one of the two implanted discs. After euthanization and removal of the bacteria from the discs, the number of viable bacteria were quantified and skin samples were analysed for histopathological examination. Application of ultrasound, combined with gentamicin, reduced the viability of the biofilms in all three groups varying between 58 and 69% compared with the negative control. Histopathological examinations showed no skin lesions. Ultrasound resulted in a tendency of improved efficacy of gentamicin, either applied locally or systemically. Usage of ultrasound in this model proved to be safe. This study implies that ultrasound could improve the prevention of infection immediately after surgery, especially because the biomaterials, gentamicin and ultrasound used in this model are all in clinical usage, but not yet combined in clinical practice.

  11. Disintegration of Bone Cement by Continuous and Pulsating Water Jet

    Czech Academy of Sciences Publication Activity Database

    Hloch, S.; Foldyna, Josef; Sitek, Libor; Zeleňák, Michal; Hlaváček, Petr; Hvizdoš, P.; Kloc, J.; Monka, P.; Monková, K.; Kozak, D.; Magurová, D.

    2013-01-01

    Roč. 20, č. 4 (2013), s. 593-598 ISSN 1330-3651 R&D Projects: GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : bone cement * disintegration * water jet Subject RIV: JQ - Machines ; Tools Impact factor: 0.615, year: 2013 http://hrcak.srce.hr/index.php?show=clanak&id_clanak_jezik=157195

  12. Wear and Mechanical Properties of Various Bone Cements – Influence of Saline Environment

    Czech Academy of Sciences Publication Activity Database

    Balko, J.; Fides, M.; Sedlák, R.; Hvizdoš, P.; Hloch, Sergej; Kloc, J.; Monka, P.

    -, č. 662 (2015), s. 147-150 ISSN 1662-9795 Institutional support: RVO:68145535 Keywords : wear * saline * hardness * bone cement Subject RIV: JQ - Machines ; Tools http://www.scientific.net/KEM.662.147

  13. Preparation of in situ hardening composite microcarriers: Calcium phosphate cement combined with alginate for bone regeneration

    Science.gov (United States)

    Park, Jung-Hui; Lee, Eun-Jung; Knowles, Jonathan C

    2014-01-01

    Novel microcarriers consisting of calcium phosphate cement and alginate were prepared for use as three-dimensional scaffolds for the culture and expansion of cells that are effective for bone tissue engineering. The calcium phosphate cement-alginate composite microcarriers were produced by an emulsification of the composite aqueous solutions mixed at varying ratios (calcium phosphate cement powder/alginate solution = 0.8–1.2) in an oil bath and the subsequent in situ hardening of the compositions during spherodization. Moreover, a porous structure could be easily created in the solid microcarriers by soaking the produced microcarriers in water and a subsequent freeze-drying process. Bone mineral-like apatite nanocrystallites were shown to rapidly develop on the calcium phosphate cement–alginate microcarriers under moist conditions due to the conversion of the α-tricalcium phosphate phase in the calcium phosphate cement into a carbonate–hydroxyapatite. Osteoblastic cells cultured on the microspherical scaffolds were proven to be viable, with an active proliferative potential during 14 days of culture, and their osteogenic differentiation was confirmed by the determination of alkaline phosphatase activity. The in situ hardening calcium phosphate cement–alginate microcarriers developed herein may be used as potential three-dimensional scaffolds for cell delivery and tissue engineering of bone. PMID:23836845

  14. Optimization of a biomimetic bone cement: role of DCPD.

    Science.gov (United States)

    Panzavolta, Silvia; Bracci, Barbara; Rubini, Katia; Bigi, Adriana

    2011-08-01

    We previously proposed a biomimetic α-tricalcium phosphate (α-TCP) bone cement where gelatin controls the transformation of α-TCP into calcium deficient hydroxyapatite (CDHA), leading to improved mechanical properties. In this study we investigated the setting and hardening processes of biomimetic cements containing increasing amounts of CaHPO(4)·2H2O (DCPD) (0, 2.5, 5, 10, 15 wt.%), with the aim to optimize composition. Both initial and final setting times increased significantly when DCPD content accounts for 10 wt.%, whereas cements containing 15 wt.% DCPD did not set at all. Differential scanning calorimetry (DSC), X-ray diffraction (XRD), thermogravimetry (TG) and scanning electron microscopy (SEM) investigations were performed on samples maintained in physiological solution for different times. DCPD dissolution starts soon after cement preparation, but the rate of transformation decreases on increasing DCPD initial content in the samples. The rate of α-TCP to CDHA conversion during hardening decreases on increasing DCPD initial content. Moreover, the presence of DCPD prevents gelatin release during hardening. The combined effects of gelatin and DCPD on the rate of CDHA formation and porosity lead to significantly improved mechanical properties, with the best composition displaying a compressive strength of 35 MPa and a Young modulus of 1600 MPa. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Study of mechanical properties of calcium phosphate cement with addition of sodium alginate and dispersant; Estudo das propriedades mecanicas de cimento de fosfato de calcio com adicao de alginato de sodio e defloculante

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, J.M.; Coelho, W.T.; Thurmer, M.B.; Vieira, P.S.; Santos, L.A., E-mail: julianafernandes2@yahoo.com.br [Universidade Federal do Rio Grande do Sul (UFRS), RS (Brazil)

    2011-07-01

    Several studies in literature have shown that the addition of polymer additives and deflocculant has a strong influence on the mechanical properties of cements in general.The low mechanical strength is the main impediment to wider use of bone cement of calcium phosphate (CFCs) as the implant material, since they have mechanical strength which equals the maximum of trabecular bone.In order to evaluate the strength of a CFC compound alpha-tricalcium phosphate, sodium alginate were added (1%, 2% and 3% by weight) and dispersant ammonium polyacrylate (3%) in aqueous solution.Specimens were made and evaluated for density, porosity, crystalline phases and mechanical strength.The results show the increase of the mechanical properties of cement when added sodium alginate and dispersant. (author)

  16. Improvement of in vitro physicochemical properties and osteogenic activity of calcium sulfate cement for bone repair by dicalcium silicate

    International Nuclear Information System (INIS)

    Chen, Chun-Cheng; Wang, Chien-Wen; Hsueh, Nai-Shuo; Ding, Shinn-Jyh

    2014-01-01

    Highlights: • Dicalcium silicate can improve osteogenic activity of calcium sulfate cement. • The higher the calcium sulfate content, the shorter the setting time in the composite cement. • The results were useful for designing calcium-based cement with optimal properties. -- Abstract: An ideal bone graft substitute should have the same speed of degradation as formation of new bone tissue. To improve the properties of calcium sulfate hemihydrate (CSH) featured for its rapid resorption, a low degradation material of dicalcium silicate (DCS) was added to the CSH cement. This study examined the effect of DCS (20, 40, 60 and 80 wt%) on the in vitro physicochemical properties and osteogenic activities of the calcium-based composite cements. The diametral tensile strength, porosity and weight loss of the composite cements were evaluated before and after soaking in a simulated body fluid (SBF). The osteogenic activities, such as proliferation, differentiation and mineralization, of human mesenchymal stem cells (hMSCs) seeded on cement surfaces were also examined. As a result, the greater the DCS amount, the higher the setting time was in the cement. Before soaking in SBF, the diametral tensile strength of the composite cements was decreased due to the introduction of DCS. On 180-day soaking, the composite cements containing 20, 40, 60 and 80 wt% DCS lost 80%, 69%, 61% and 44% in strength, respectively. Regarding in vitro bioactivity, the DCS-rich cements were covered with clusters of apatite spherulites after soaking for 7 days, while there was no formation of apatite spherulites on the CSH-rich cement surfaces. The presence of DCS could reduce the degradation of the CSH cements, as evidenced in the results of weight loss and porosity. More importantly, DCS may promote effectively the cell proliferation, proliferation and mineralization. The combination of osteogenesis of DCS and degradation of CSH made the calcium-based composite cements an attractive choice for

  17. Experimental and numerical study of cemented bone-implant interface behaviour

    Czech Academy of Sciences Publication Activity Database

    Kytýř, Daniel; Doktor, Tomáš; Jiroušek, Ondřej; Zlámal, Petr; Pokorný, D.

    2011-01-01

    Roč. 15, č. 15 (2011), s. 5-13 ISSN 1971-8993 R&D Projects: GA ČR(CZ) GAP105/10/2305 Institutional research plan: CEZ:AV0Z20710524 Keywords : bone-cement interface * computed tomography * hip simulator * crack detection Subject RIV: FI - Traumatology, Orthopedics http://www.gruppofrattura.it/index.php?option=com_content&task=view&id=90&Itemid=284

  18. Hydration of Portland cement with additions of calcium sulfoaluminates

    International Nuclear Information System (INIS)

    Le Saoût, Gwenn; Lothenbach, Barbara; Hori, Akihiro; Higuchi, Takayuki; Winnefeld, Frank

    2013-01-01

    The effect of mineral additions based on calcium aluminates on the hydration mechanism of ordinary Portland cement (OPC) was investigated using isothermal calorimetry, thermal analysis, X-ray diffraction, scanning electron microscopy, solid state nuclear magnetic resonance and pore solution analysis. Results show that the addition of a calcium sulfoaluminate cement (CSA) to the OPC does not affect the hydration mechanism of alite but controls the aluminate dissolution. In the second blend investigated, a rapid setting cement, the amorphous calcium aluminate reacts very fast to ettringite. The release of aluminum ions strongly retards the hydration of alite but the C–S–H has a similar composition as in OPC with no additional Al to Si substitution. As in CSA–OPC, the aluminate hydration is controlled by the availability of sulfates. The coupling of thermodynamic modeling with the kinetic equations predicts the amount of hydrates and pore solution compositions as a function of time and validates the model in these systems.

  19. Potential risks of using cement-augmented screws for spinal fusion in patients with low bone quality.

    Science.gov (United States)

    Martín-Fernández, M; López-Herradón, A; Piñera, A R; Tomé-Bermejo, F; Duart, J M; Vlad, M D; Rodríguez-Arguisjuela, M G; Alvarez-Galovich, L

    2017-08-01

    Dramatic increases in the average life expectancy have led to increases in the variety of degenerative changes and deformities observed in the aging spine. The elderly population can present challenges for spine surgeons, not only because of increased comorbidities, but also because of the quality of their bones. Pedicle screws are the implants used most commonly in spinal surgery for fixation, but their efficacy depends directly on bone quality. Although polymethyl methacrylate (PMMA)-augmented screws represent an alternative for patients with osteoporotic vertebrae, their use has raised some concerns because of the possible association between cement leakages (CLs) and other morbidities. To analyze potential complications related to the use of cement-augmented screws for spinal fusion and to investigate the effectiveness of using these screws in the treatment of patients with low bone quality. A retrospective single-center study. This study included 313 consecutive patients who underwent spinal fusion using a total of 1,780 cement-augmented screws. We analyzed potential complications related to the use of cement-augmented screws, including CL, vascular injury, infection, screw extraction problems, revision surgery, and instrument failure. There are no financial conflicts of interest to report. A total of 1,043 vertebrae were instrumented. Cement leakage was observed in 650 vertebrae (62.3%). There were no major clinical complications related to CL, but two patients (0.6%) had radicular pain related to CL at the S1 foramina. Of the 13 patients (4.1%) who developed deep infections requiring surgical debridement, two with chronic infections had possible spondylitis that required instrument removal. All patients responded well to antibiotic therapy. Revision surgery was performed in 56 patients (17.9%), most of whom had long construction. A total of 180 screws were removed as a result of revision. There were no problems with screw extraction. These results

  20. Characterization of PCC Cement by Addition of Napa Soil from Subdistrict Sarilamak 50 Kota District as Alternative Additional Material for Semen Padang

    Science.gov (United States)

    Mawardi, M.; Deyundha, D.; Zainul, R.; Zalmi P, R.

    2018-04-01

    The study has been conducted to determine characteristics of the portland composite cement by the addition of napa soil from Sarilamak subdistrict, 50 Kota District as an alternative additional material at PT. Semen Padang. Napa soil is a natural material highly containing silica and alumina minerals so that it can be one of material in producing cement. This study aims to determine the effect of napa soil on the quality of portland composite cement. Napa soil used in the variation compositions 0%, 4%, 8%, 12% and 16%, for control of cement used 8 % of pozzolan and 0 % of napa soil. Determination of cement quality by testing cement characteristics include blaine test, sieving, lost of ignition or LOI, insoluble residue, normal consistency, setting time and compressive strength. Cement was characterized using XRF. Fineness of cement decreases with the addition of napa soil. Lost of Ignition of cement decreased, while the insoluble residue increased with the addition of napa soil. Normal consistency of cement increasing, so does initial setting time and final setting time of cement. While the resultant compressive strength decreases with the addition of napa soil on 28 days, 342, 325, 307, 306, and 300 kg / cm2.

  1. Validation of a measuring technique with computed tomography for cement penetration into trabecular bone underneath the tibial tray in total knee arthroplasty on a cadaver model

    International Nuclear Information System (INIS)

    Verburg, Hennie; Ridder, Laurens C van de; Verhoeven, Vincent WJ; Pilot, Peter

    2014-01-01

    In total knee arthroplasty (TKA), cement penetration between 3 and 5 mm beneath the tibial tray is required to prevent loosening of the tibia component. The objective of this study was to develop and validate a reliable in vivo measuring technique using CT imaging to assess cement distribution and penetration depth in the total area underneath a tibia prosthesis. We defined the radiodensity ranges for trabecular tibia bone, polymethylmethacrylate (PMMA) cement and cement-penetrated trabecular bone and measured the percentages of cement penetration at various depths after cementing two tibia prostheses onto redundant femoral heads. One prosthesis was subsequently removed to examine the influence of the metal tibia prostheses on the quality of the CT images. The percentages of cement penetration in the CT slices were compared with percentages measured with photographs of the corresponding transversal slices. Trabecular bone and cement-penetrated trabecular bone had no overlap in quantitative scale of radio-density. There was no significant difference in mean HU values when measuring with or without the tibia prosthesis. The percentages of measured cement-penetrated trabecular bone in the CT slices of the specimen were within the range of percentages that could be expected based on the measurements with the photographs (p = 0.04). CT scan images provide valid results in measuring the penetration and distribution of cement into trabecular bone underneath the tibia component of a TKA. Since the proposed method does not turn metal elements into artefacts, it enables clinicians to assess the width and density of the cement mantle in vivo and to compare the results of different cementing methods in TKA

  2. 3.4. Chemical additives and granulometric composition influence on soils armed by cement

    International Nuclear Information System (INIS)

    Saidov, D.Kh.

    2011-01-01

    Purpose of this work was to evaluate an influence of various chemical additives on soils armed by portland cement. Experimental research of kinetics of soil cements structure formation after adding the chemicals was carried out. According to the investigations it was determined that structure formation process of soil cements depended on granulometric composition of armed soil, cement quantity, type and quantity of chemical additives.

  3. [Polymethylmethacrylate augmentation of bone cement-injectable cannulated pedicle screws for the treatment of degenerative lumbar diseases with osteoporosis].

    Science.gov (United States)

    Sun, H L; Li, C D; Yang, Z C; Yi, X D; Liu, H; Lu, H L; Li, H; Wang, Y

    2016-12-18

    To describe the application of polymethylmethacrylate augmentation of bone cement-injectable cannulated pedicle screws for the treatment of degenerative lumbar diseases with osteoporosis. Observation group included 14 cases of degenerative lumbar diseases with osteoporosis received polymethylmethacrylate augmentation of bone cement-injectable cannulated pedicle screws from November 2014 to July 2015, control group included 12 cases of degenerative lumbar diseases with osteoporosis received polymethylmethacrylate augmentation with traditional pedicle screws.The operation time, blood loss, number of pedicle screws and number of augmented pedicle screws in the two groups were compared. The bone cement leakage and pulmonary bone cement embolism in the two groups were also compared. The fusion rate and pedicle screws loosening by lumbar X ray and dynamic X ray were evaluated. The clinical results were assessed by visual analog scale (VAS) of pain on lumbar and lower limbers, lumbar Japanese Orthopaedic Association scores (JOA), Prolo functional scores and Oswestry disability (ODI) scores. Differences of operation time and blood loss in the two groups were not statistically significant. The average number of pedicle screws was 9.9±4.7 and the average number of augmented pedicle screws was 5.9±2.6 in observation group while the average number of pedicle screws was 7.1±2.8 and the average number of augmented pedicle screws was 3.0±1.9 in control group. The ratio of augmented pedicle screws was higher in observation group than in control group (0.69±0.30 vs.0.47±0.30,Pdegenerative lumbar diseases with osteoporosis was effective, with simple working processes and lower risk of bone cement leakage. The short-term clinical result was good.

  4. The Mechanical Behavior of Bone Cement in THR in the Presense of Cavities

    Directory of Open Access Journals (Sweden)

    A. Benouis

    2014-06-01

    Full Text Available In this work we analyze three-dimensionally using the finite element method, the level and the Von Mises stress equivalent distribution induced around a cavity and between two cavities located in the proximal and distal bone cement polymethylmethacrylate (PMMA. The effects of the position around two main axes (vertical and horizontal of the cavity with respect to these axes, of the cavity - cavity interdistance and of the type of loading (static on the mechanical behavior of cement orthopedic are highlighted. We show that the breaking strain of the cement is largely taken when the cement in its proximal-lateral part contains cavities very close adjacent to each other. This work highlights not only the effect of the density of cavities, in our case simulated by cavity-cavity interdistance, but also the nature of the activity of the patient (patient standing corresponding to static efforts on the mechanical behavior of cement.

  5. Staphylococcus aureus biofilm formation on different gentamicin-loaded polymethylmethacrylate bone cements

    NARCIS (Netherlands)

    van de Belt, H; Neut, D; Schenk, W; van Horn, [No Value; van der Mei, HC; Busscher, HJ

    In this in vitro study, the formation of a Staphylococcus aureus biofilm on six gentamicin-loaded bone cements (CMW1, CMW3, CMW Endurance, CMW2000, Palacos. and Palamed) was determined in a modified Robbins device over a 3 days time span and related with previously (Van de Belt et al., Biomaterials

  6. The influence of organic cement additives on radionuclide mobility. A literature survey

    International Nuclear Information System (INIS)

    Hakanen, M.; Ervanne, H.

    2006-02-01

    This review evaluates the influence of organic cement additives on radionuclide mobility. The work outlines evaluations under cement conditions where report drafts were available, and an evaluation under groundwater conditions (non-cement conditions) based on the chemical structures of the main components in polyelectrolyte additives and on recent results of metal-humic bounding. Literature of effects of plasticizers on copper and bentonite are reviewed. (orig.)

  7. Modifications on the properties of a calcium phosphate cement by additions of sodium alginate

    International Nuclear Information System (INIS)

    Coelho, W.T.; Fernandes, J.M.; Vieira, R.S.; Thurmer, M.B.; Santos, L.A.

    2012-01-01

    The Calcium Phosphate Cement (CPC) are bone substitutes with great potential for use in orthopedics, traumatology and dentistry due to its biocompatibility, bioactivity and osteoconductivity, and form a paste that can be easily shaped and placed into the surgical site. However, CPCs have low mechanical strength, which equals the maximum mechanical strength of trabecular bone. In order to assess the strength and time to handle a CPC composed primarily of alpha phase, were added sodium alginate (1%, 2% and 3% wt) and an accelerator in an aqueous solution. The cement powder was mixed with liquid of setting, shaped into specimens and evaluated for apparent density and porosity by Archimedes method, X-ray diffraction and compressive strength. A significant increase in compressive strength by adding sodium alginate was verified. (author)

  8. Facial skeletal augmentation using hydroxyapatite cement.

    Science.gov (United States)

    Shindo, M L; Costantino, P D; Friedman, C D; Chow, L C

    1993-02-01

    This study investigates the use of a new calcium phosphate cement, which sets to solid, microporous hydroxyapatite, for facial bone augmentation. In six dogs, the supraorbital ridges were augmented bilaterally with this hydroxyapatite cement. On one side, the hydroxyapatite cement was placed directly onto the bone within a subperiosteal pocket. On the opposite side, the cement was contained within a collagen membrane tubule and then inserted into a subperiosteal pocket. The use of collagen tubules facilitated easy, precise placement of the cement. All implants maintained their original augmented height throughout the duration of the study. They were well tolerated without extrusion or migration, and there was no significant sustained inflammatory response. Histologic studies, performed at 3, 6, and 9 months revealed that when the cement was placed directly onto bone, progressive replacement of the implant by bone (osseointegration of the hydroxyapatite with the underlying bone) without a loss of volume was observed. In contrast, when the cement-collagen tubule combination was inserted, primarily a fibrous union was noted. Despite such fibrous union, the hydroxyapatite-collagen implant solidly bonded to the underlying bone, and no implant resorption was observed. Hydroxyapatite cement can be used successfully for the experimental augmentation of the craniofacial skeleton and may be applicable for such uses in humans.

  9. Physical and chemical characterization of pastes of bone cements with ZrO2

    International Nuclear Information System (INIS)

    Quinto H, A.; Pina B, M.C.

    2003-01-01

    Setting times and temperature of sixteen calcium phosphate cements added with ZrO 2 were evaluated. Their behaviors were analysed to be used like injectable formulations in surgery of bone. Two cements of calcium phosphates enriched with ZrO 2 with the best characteristics in setting times and temperature, were mechanically tested after 1 and 7 days of prepared. Density was determined using a pycnometer, chemical composition was determined by X-ray diffraction and the molecular structure was determined by infrared spectroscopy. (Author)

  10. Peri-Implant Distribution of Polyethylene Debris in Postmortem-Retrieved Knee Arthroplasties: Can Polyethylene Debris Explain Loss of Cement-Bone Interlock in Successful Total Knee Arthroplasties?

    Science.gov (United States)

    Cyndari, Karen I; Goodheart, Jacklyn R; Miller, Mark A; Oest, Megan E; Damron, Timothy A; Mann, Kenneth A

    2017-07-01

    Loss of mechanical interlock between cement and bone with in vivo service has been recently quantified for functioning, nonrevised, cemented total knee arthroplasties (TKAs). The cause of interlocking trabecular resorption is not known. The goal of this study is to quantify the distribution of PE debris at the cement-bone interface and determine if polyethylene (PE) debris is locally associated with loss of interlock. Fresh, nonrevised, postmortem-retrieved TKAs (n = 8) were obtained en bloc. Laboratory-prepared constructs (n = 2) served as negative controls. The intact cement-bone interface of each proximal tibia was embedded in Spurr's resin, sectioned, and imaged under polarized light to identify birefringent PE particles. PE wear particle number density was quantified at the cement-bone interface and distal to the interface, and then compared with local loss of cement-bone interlock. The average PE particle number density for postmortem-retrieved TKAs ranged from 8.6 (1.3) to 24.9 (3.1) particles/mm 2 (standard error) but was weakly correlated with years in service. The average particle number density was twice as high as distal (>5mm) to the interface compared to at the interface. The local loss of interlock at the interface was not related to the presence, absence, or particle density of PE. PE debris can migrate extensively along the cement-bone interface of well-fixed tibial components. However, the amount of local bone loss at the cement-bone interface was not correlated with the amount of PE debris at the interface, suggesting that the observed loss of trabecular interlock in these well-fixed TKAs may be due to alternative factors. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Effect of Gipan addition on the rheologic properties of cement slurries

    Energy Technology Data Exchange (ETDEWEB)

    Shadrin, L N; Solovev, E M

    1966-08-01

    The objective of this study was to determine the effectiveness of Gipan in controlling cement rheology. The chemical nature of Gipan is not disclosed in the article; however it is said to be a plasticizer (perhaps an acrylic polymer). The consistency and rheological properties of Gipan-cement mixtures were studied at 20$C. It was shown that as the concentration of Gipan increased from 0.1 to 1%, cement gel strength decreased, while viscosity increased. Calculations indicated that on adding 1% Gipan to cement, the amount of hydraulic power required to produce turbulent flow in a well is one-half that required for cement without the additive. The Gipan also reduces cement water-loss tremendously.

  12. [Effect of bone cement application on the incidence of deep vein thrombosis in major joint arthroplasties].

    Science.gov (United States)

    Aslan, Ahmet; Ağar, Emre; Aydoğan, Nevres Hürriyet; Atay, Tolga; Baydar, Metin Lütfi; Kırdemir, Vecihi; Ozden, Ahmet

    2011-12-01

    In this study, we have investigated whether the application of bone cement has an effect on the frequency of deep vein thrombosis (DVT) in major joint arthroplasties (MJA). A total of 95 MJA cases meeting the inclusion criteria of this study between January 2004 and January 2005 were divided into cemented and cementless groups. For prophylaxis, all patients were given low molecular weight heparin (LMWH). The patients were scanned for DVT preoperatively and on the postoperative 12(th) day by color Doppler ultrasonography. In hip arthroplasties, in knee arthroplasties and in general, DVT was seen more frequently in cemented group, however, there was no statistically significant difference between groups in the frequency of DVT (p=0.549, p=0.749 and p=0.462, respectively). Also, there was no significant difference between the results of the different LMWH groups (p=0.616). The results of this study shows that bone cement application in MJAs such as hip or knee arthroplasties has no significant effect on the frequency of DVT.

  13. Effect of Selected Alternative Fuels and Raw Materials on the Cement Clinker Quality

    Directory of Open Access Journals (Sweden)

    Strigáč Július

    2015-11-01

    Full Text Available The article deals with the study of the effects of alternative fuels and raw materials on the cement clinker quality. The clinker quality was expressed by the content of two principal minerals alite C3S and belite C2S. The additions of alternative fuels ashes and raw materials, in principle, always increased the belite content and conversely reduced the amount of alite. The alternative fuels with high ash content were used such as the meat-bone meal, sewage sludge from sewage treatment plants and paper sludge and the used alternative raw materials were metallurgical slags - granulated blastfurnace slag, air cooled blastfurnace slag and demetallized steel slag, fluidized bed combustion fly ash and waste glass. Meat-bone meal, sewage sludge from sewage treatment plants and paper sludge were evaluated as moderately suitable alternative fuels which can be added in the amounts of 2.8 wt. % addition of meat-bone meals ash, 3.64 wt. % addition of sewage sludge ash and 3.8 wt. % addition of paper sludge ash to the cement raw mixture. Demetallised steel slag is suitable for production of special sulphate resistant cement clinker for CEM I –SR cement with addition up to 5 wt. %. Granulated blastfurnace slag is a suitable alternative raw material with addition 4 wt. %. Air cooled blastfurnace slag is a suitable alternative raw material with addition 4.2 wt. %. Waste glass is not very appropriate alternative raw material with addition only 1.16 wt. %. Fluidized bed combustion fly ash appears not to be equally appropriate alternative raw material for cement clinker burning with less potential utilization in the cement industry and with addition 3.41 wt. %, which forms undesired anhydrite CaSO4 in the cement clinker.

  14. Effects on Setting, Strength, Moisture Resistance and Linear Changes of Sorel’s Cement on Mixing Portland Cement as an Additive

    OpenAIRE

    Mathur, Ritu; Chandrawat, M. P. S.; Sharma, Sanjay K.

    2009-01-01

    Magnesium oxysulphate cement (MOC, Magnesia / Sorel’s Cement), discovered by Sorel S.T. in 1867 and has versatile cementing characteristics. It is prepared by the reaction of magnesium sulphate with magnesia in aqueous solution. Dolomite is used as inert filler to absorb the heat evolved during the exothermic formations of oxysulphate cement. Additives play an important role to modify the properties of Sorel’s cement by nullifying the harmful effects of the impurities present in the matrix...

  15. Development of a degradable cement of calcium phosphate and calcium sulfate composite for bone reconstruction

    International Nuclear Information System (INIS)

    Guo, H; Wei, J; Liu, C S

    2006-01-01

    A new type of composite bone cement was prepared and investigated by adding calcium sulfate (CS) to calcium phosphate cement (CPC). This composite cement can be handled as a paste and easily shaped into any contour, which can set within 5-20 min, the setting time largely depending on the liquid-solid (L/S) ratio; adding CS to CPC had little effect on the setting time of the composite cements. No obvious temperature increase and pH change were observed during setting and immersion in simulated body fluid (SBF). The compressive strength of the cement decreased with an increase in the content of CS. The degradation rate of the composite cements increased with time when the CS content was more than 20 wt%. Calcium deficient apatite could form on the surface of the composite cement because the release of calcium into SBF from the dissolution of CS and the apatite of the cement induced the new apatite formation; increasing the content of CS in the composite could improve the bioactivity of the composite cements. The results suggested that composite cement has a reasonable setting time, excellent degradability and suitable mechanical strength and bioactivity, which shows promising prospects for development as a clinical cement

  16. Photocurable bioactive bone cement based on hydroxyethyl methacrylate-poly(acrylic/maleic) acid resin and mesoporous sol gel-derived bioactive glass

    Energy Technology Data Exchange (ETDEWEB)

    Hesaraki, S., E-mail: S-hesaraki@merc.ac.ir

    2016-06-01

    This paper reports on strong and bioactive bone cement based on ternary bioactive SiO{sub 2}-CaO-P{sub 2}O{sub 5} glass particles and a photocurable resin comprising hydroxyethyl methacrylate (HEMA) and poly(acrylic/maleic) acid. The as-cured composite represented a compressive strength of about 95 MPa but it weakened during soaking in simulated body fluid, SBF, qua its compressive strength reached to about 20 MPa after immersing for 30 days. Biodegradability of the composite was confirmed by reducing its initial weight (~ 32%) as well as decreasing the molecular weight of early cured resin during the soaking procedure. The composite exhibited in vitro calcium phosphate precipitation in the form of nanosized carbonated hydroxyapatite, which indicates its bone bonding ability. Proliferation of calvarium-derived newborn rat osteoblasts seeded on top of the composite was observed during incubation at 37 °C, meanwhile, an adequate cell supporting ability was found. Consequently, it seems that the produced composite is an appropriate alternative for bone defect injuries, because of its good cell responses, high compressive strength and ongoing biodegradability, though more in vivo experiments are essential to confirm this assumption. - Highlights: • Light cure cement based on SiO{sub 2}-CaO-P{sub 2}O{sub 5} glass and polymer-like matrix was formed. • The matrix includes poly(acrylic/maleic acid) and poly(hydroxyethyl methacrylate). • The cement is as strong as polymethylmethacrylate bone cement. • The cement exhibits apatite formation ability in simulated body fluid. • The cement is biodegradable and supports proliferation of osteoblastic cells.

  17. Influence of multiwall carbon nanotube functionality and loading on mechanical properties of PMMA/MWCNT bone cements.

    Science.gov (United States)

    Ormsby, Ross; McNally, Tony; Mitchell, Christina; Dunne, Nicholas

    2010-08-01

    Poly (methyl methacrylate) (PMMA) bone cement-multi walled carbon nanotube (MWCNT) nanocomposites with weight loadings ranging from 0.1 to 1.0 wt% were prepared. The MWCNTs investigated were unfunctionalised, carboxyl and amine functionalised MWCNTs. Mechanical properties of the resultant nanocomposite cements were characterised as per international standards for acrylic resin cements. These mechanical properties were influenced by the type and wt% loading of MWCNT used. The morphology and degree of dispersion of the MWCNTs in the PMMA matrix at different length scales were examined using field emission scanning electron microscopy. Improvements in mechanical properties were attributed to the MWCNTs arresting/retarding crack propagation through the cement by providing a bridging effect and hindering crack propagation. MWCNTs agglomerations were evident within the cement microstructure, the degree of these agglomerations was dependent on the weight fraction and functionality of MWCNTs incorporated into the cement.

  18. Development of cement material using inorganic additives

    International Nuclear Information System (INIS)

    Toyohara, Masumitsu; Satou, Tatsuaki; Wada, Mikio; Ishii, Tomoharu; Matsuo, Kazuaki.

    1997-01-01

    Inorganic admixtures to enhance the fluidity of cement material was developed. These admixtures turned into easy to immobilize the miscellaneous radioactive waste using cement material. It was found that the ζ potential of cement particles was directly proportional to the content of the inorganic admixtures in cement paste and the particles of cement were dispersed at the high ζ potential. The condensed sodium phosphate, which was the main component of the inorganic admixtures, retarded the dissolution of Ca 2+ ion from the cement, and generated the colloids by incorporating dissolved Ca 2+ ion. The cement material containing the inorganic admixtures was found to have the same mechanical strength and adsorption potential of radionuclides in comparison to normal cement materials. It was confirmed that the cement material containing the inorganic admixture was effectively filled gaps of miscellaneous radioactive waste. (author)

  19. Immobilization of radioactive waste through cementation using Cuban zeolitic rock as additive

    International Nuclear Information System (INIS)

    Chales Suarez, G.; Castillo Gomez, R.

    1997-01-01

    The cementation of both simulated and real low level aqueous wastes using Cuban zeolite as additive is described. Mechanical characteristics and leach testing of the cemented waste forms has been studied. The results obtained have shown that the presence of zeolite in the cemented waste for reduces considerably the leach rates of Cs and Co and moreover, mechanical characteristics (set time and compressive strength) are better when compared with direct cementation of aqueous wastes. (author). 13 refs, 8 tabs

  20. The influence of cellulose nanocrystal additions on the performance of cement paste

    Science.gov (United States)

    Yizheng Cao; Pablo Zavaterri; Jeff Youngblood; Robert Moon; Jason Weiss

    2015-01-01

    The influence of cellulose nanocrystals (CNCs) addition on the performance of cement paste was investigated. Our mechanical tests show an increase in the flexural strength of approximately 30% with only 0.2% volume of CNCs with respect to cement. Isothermal calorimetry (IC) and thermogravimetric analysis (TGA) show that the degree of hydration (DOH) of the cement paste...

  1. An experimental study of domestic bone cement used on percutaneous vertebroplasty

    International Nuclear Information System (INIS)

    Chen Long; Ni Caifang; Ding Yi; Liu Yizhi; Jin Yonghai; Zou Jianwei; Yang Huilin; Tang Tiansi; Wang Yijin

    2004-01-01

    Objective: To evaluate the material properties of domestic bone cement (DBC) and imported bone cement (IBC) with different mixing ratio, and to determine whether the biomechanical properties of vertebral bodies (VBs) subjected to compression fractures and subsequently treated by vertebroplasty with DBC or IBC were different. Methods: There were two groups in this study. One was DBC, whose ratio of powder/liquid (g/ml) was 3:2 and the percentage of BaSO 4 in powder was 20%, the other was IBC, whose mixing ratio followed manufacturer's recommendation. Polymerization time, strength, and stiffness of bone cement were measured respectively in each group. 20 lumbar VBs from four female cadavers (age, 75 ± 5 years) were disarticulated and compressed in a materials testing machine to determine initial strength and stiffness. The fractures were subsequently repaired using DBCor IBCon vertebroplasty. After augmentation, the VBs were scanned by CT, then recrushed, and stiffness and strength of VBs were measured again. Results: The stiffness of DBC whose mixing ratio was altered was (2711.8 ± 612.3) N/mm, while the stiffness of IBC was (2874.7 ± 457.6) N/mm, there was no significant differences between the two groups (t=0.609, P>0.05). But the strength of DBC (7271.3 ± 365.4) N was lower than that of IBC (8481.3 ± 397.3) N, (t=6.281, P 0.05), while the strength of VBs augmentated with DBC and IBC were(1.226 ± 0.44) MPa and (1.202 ± 0.38) Mpa, respectively (F=0.001, P>0.05). CT value of DBC and IBC used on VBs were (2982.9 ± 102.0) Hu and (1554.3 ± 172.7) HU, respectively, and there was significant differences in radiopacity between them (t=22.525, P<0.05). Conclusion: DBC has an excellent radiopacity. VBs augmented by both DBC or IBC could attain satisfactory biomechanical properties, but these results have yet to be substantiated in clinical studies. (authors)

  2. Bulk physicochemical, interconnectivity, and mechanical properties of calcium phosphate cements-fibrin glue composites for bone substitute applications

    NARCIS (Netherlands)

    Lopez-Heredia, M.A.; Pattipeilohy, J.; Hsu, S.; Grykien, M.; Weijden, B. van der; Leeuwenburgh, S.C.G.; Salmon, P.; Wolke, J.G.C.; Jansen, J.A.

    2013-01-01

    Calcium phosphate cements (CPCs) and fibrin glue (FG) are used for surgical applications. Their combination is promising to create bone substitutes able to promote cell attachment and bone remodeling. This study proposes a novel approach to create CPC-FG composites by simultaneous CPC setting and FG

  3. Evaluation of brazilian bentonites as additive in the radwaste cementation

    International Nuclear Information System (INIS)

    Tello, C.C.O. de.

    1988-01-01

    The behavior of some Brazilian bentonites has been evaluated, concerning to their use as additive in the radwaste cementation. The purpose of the bentonite is to retain the radioelements in the final product in leaching process. Experiments to determine properties such as compressive strenght, viscosity, set time leaching and cesium sorption have been carried out to this evaluation. After one-year test, the results show that the bentonites greatly reduce the cesium release. A literature survey about cementation process and plants and about the cement product characteristics has been made in order to obtain a reliable final product, able to be transported and storaged. Some leaching test methods and mathematical models, that could be applied in the evaluation of cement products with bentonite have been evaluated. (author) [pt

  4. Composite bone cements loaded with a bioactive and ferrimagnetic glass-ceramic: Leaching, bioactivity and cytocompatibility

    International Nuclear Information System (INIS)

    Verné, Enrica; Bruno, Matteo; Miola, Marta; Maina, Giovanni; Bianco, Carlotta; Cochis, Andrea; Rimondini, Lia

    2015-01-01

    In this work, composite bone cements, based on a commercial polymethylmethacrylate matrix (Palamed®) loaded with ferrimagnetic bioactive glass-ceramic particles (SC45), were produced and characterized in vitro. The ferrimagnetic bioactive glass-ceramic belongs to the system SiO 2 –Na 2 O–CaO–P 2 O 5 –FeO–Fe 2 O 3 and contains magnetite (Fe 3 O 4 ) crystals into a residual amorphous bioactive phase. Three different formulations (containing 10, 15 and 20 wt.% of glass-ceramic particles respectively) have been investigated. These materials are intended to be applied as bone fillers for the hyperthermic treatment of bone tumors. The morphological, compositional, calorimetric and mechanical properties of each formulation have been already discussed in a previous paper. The in vitro properties of the composite bone cements described in the present paper are related to iron ion leaching test (by graphite furnace atomic absorption spectrometer), bioactivity (i.e. the ability to stimulate the formation of a hydroxyapatite – HAp – layer on their surface after soaking in simulated body fluid SBF) and cytocompatibility toward human osteosarcoma cells (ATCC CRL-1427, Mg63). Morphological and chemical characterizations by scanning electron microscopy and energy dispersion spectrometry have been performed on the composite samples after each test. The iron release was negligible and all the tested samples showed the growth of HAp on their surface after 28 days of immersion in a simulated body fluid (SBF). Cells showed good viability, morphology, adhesion, density and the ability to develop bridge-like structures on all investigated samples. A synergistic effect between bioactivity and cell mineralization was also evidenced. - Highlights: • An in vitro biological characterization was carried out on ferromagnetic and bioactive composite cements. • No release of iron was revealed in the physiological solution. • Bioactivity tests show hydroxyapatite precipitates

  5. Composite bone cements loaded with a bioactive and ferrimagnetic glass-ceramic: Leaching, bioactivity and cytocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Verné, Enrica, E-mail: enrica.verne@polito.it [Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, C. so Duca degli Abruzzi 24, 10129 Torino (Italy); Bruno, Matteo [Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, C. so Duca degli Abruzzi 24, 10129 Torino (Italy); Miola, Marta [Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, C. so Duca degli Abruzzi 24, 10129 Torino (Italy); Department of Health Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, Via Solaroli 17, 28100 Novara (Italy); Maina, Giovanni; Bianco, Carlotta [Traumatology Orthopedics and Occupational Medicine Dept., Università di Torino, Via G. Zuretti 29, 10126 Torino (Italy); Cochis, Andrea [Department of Health Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, Via Solaroli 17, 28100 Novara (Italy); Rimondini, Lia [Department of Health Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, Via Solaroli 17, 28100 Novara (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, Via G. Giusti, 9, 50121 Firenze (Italy)

    2015-08-01

    In this work, composite bone cements, based on a commercial polymethylmethacrylate matrix (Palamed®) loaded with ferrimagnetic bioactive glass-ceramic particles (SC45), were produced and characterized in vitro. The ferrimagnetic bioactive glass-ceramic belongs to the system SiO{sub 2}–Na{sub 2}O–CaO–P{sub 2}O{sub 5}–FeO–Fe{sub 2}O{sub 3} and contains magnetite (Fe{sub 3}O{sub 4}) crystals into a residual amorphous bioactive phase. Three different formulations (containing 10, 15 and 20 wt.% of glass-ceramic particles respectively) have been investigated. These materials are intended to be applied as bone fillers for the hyperthermic treatment of bone tumors. The morphological, compositional, calorimetric and mechanical properties of each formulation have been already discussed in a previous paper. The in vitro properties of the composite bone cements described in the present paper are related to iron ion leaching test (by graphite furnace atomic absorption spectrometer), bioactivity (i.e. the ability to stimulate the formation of a hydroxyapatite – HAp – layer on their surface after soaking in simulated body fluid SBF) and cytocompatibility toward human osteosarcoma cells (ATCC CRL-1427, Mg63). Morphological and chemical characterizations by scanning electron microscopy and energy dispersion spectrometry have been performed on the composite samples after each test. The iron release was negligible and all the tested samples showed the growth of HAp on their surface after 28 days of immersion in a simulated body fluid (SBF). Cells showed good viability, morphology, adhesion, density and the ability to develop bridge-like structures on all investigated samples. A synergistic effect between bioactivity and cell mineralization was also evidenced. - Highlights: • An in vitro biological characterization was carried out on ferromagnetic and bioactive composite cements. • No release of iron was revealed in the physiological solution. • Bioactivity tests

  6. Calcium Orthophosphate Cements and Concretes

    Directory of Open Access Journals (Sweden)

    Sergey V. Dorozhkin

    2009-03-01

    Full Text Available In early 1980s, researchers discovered self-setting calcium orthophosphate cements, which are a bioactive and biodegradable grafting material in the form of a powder and a liquid. Both phases form after mixing a viscous paste that after being implanted, sets and hardens within the body as either a non-stoichiometric calcium deficient hydroxyapatite (CDHA or brushite, sometimes blended with unreacted particles and other phases. As both CDHA and brushite are remarkably biocompartible and bioresorbable (therefore, in vivo they can be replaced with newly forming bone, calcium orthophosphate cements represent a good correction technique for non-weight-bearing bone fractures or defects and appear to be very promising materials for bone grafting applications. Besides, these cements possess an excellent osteoconductivity, molding capabilities and easy manipulation. Furthermore, reinforced cement formulations are available, which in a certain sense might be described as calcium orthophosphate concretes. The concepts established by calcium orthophosphate cement pioneers in the early 1980s were used as a platform to initiate a new generation of bone substitute materials for commercialization. Since then, advances have been made in the composition, performance and manufacturing; several beneficial formulations have already been introduced as a result. Many other compositions are in experimental stages. In this review, an insight into calcium orthophosphate cements and concretes, as excellent biomaterials suitable for both dental and bone grafting application, has been provided.

  7. Developing a novel magnesium glycerophosphate/silicate-based organic-inorganic composite cement for bone repair.

    Science.gov (United States)

    Ding, Zhengwen; Li, Hong; Wei, Jie; Li, Ruijiang; Yan, Yonggang

    2018-06-01

    Considering that the phospholipids and glycerophosphoric acid are the basic materials throughout the metabolism of the whole life period and the bone is composed of organic polymer collagen and inorganic mineral apatite, a novel self-setting composite of magnesium glycerophosphate (MG) and di-calcium silicate(C2S)/tri-calcium silicate(C3S) was developed as bio-cement for bone repair, reconstruction and regeneration. The composite was prepared by mixing the MG, C2S and C3S with the certain ratios, and using the deionized water and phosphoric acid solution as mixed liquid. The combination and formation of the composites was characterized by FTIR, XPS and XRD. The physicochemical properties were studied by setting time, compressive strength, pH value, weight loss in the PBS and surface change by SEM-EDX. The biocompatibility was evaluated by cell culture in the leaching solution of the composites. The preliminary results showed that when di- and tri-calcium silicate contact with water, there are lots of Ca(OH) 2 generated making the pH value of solution is higher than 9 which is helpful for the formation of hydroxyapatite(HA) that is the main bone material. The new organic-inorganic self-setting bio-cements showed initial setting time is ranged from 20 min to 85 min and the compressive strength reached 30 MPa on the 7th days, suitable as the bone fillers. The weight loss was 20% in the first week, and 25% in the 4th week. Meanwhile, the new HA precipitated on the composite surface during the incubation in the SBF showed bioactivity. The cell cultured in the leaching liquid of the composite showed high proliferation inferring the new bio-cement has good biocompatibility to the cells. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Peen treatment on a titanium implant: effect of roughness, osteoblast cell functions, and bonding with bone cement

    Directory of Open Access Journals (Sweden)

    Khandaker M

    2016-02-01

    Full Text Available Morshed Khandaker,1,4 Shahram Riahinezhad,1 Fariha Sultana,1 Melville B Vaughan,2,4 Joshua Knight,2 Tracy L Morris3,4 1Department of Engineering & Physics, 2Department of Biology, 3Department of Mathematics and Statistics, 4Center for Interdisciplinary Biomedical Education and Research, University of Central Oklahoma, Edmond, OK, USA Abstract: Implant failure due to poor integration of the implant with the surrounding biomaterial is a common problem in various orthopedic and orthodontic surgeries. Implant fixation mostly depends upon the implant surface topography. Micron to nanosize circular-shaped groove architecture with adequate surface roughness can enhance the mechanical interlock and osseointegration of an implant with the host tissue and solve its poor fixation problem. Such groove architecture can be created on a titanium (Ti alloy implant by laser peening treatment. Laser peening produces deep, residual compressive stresses in the surfaces of metal parts, delivering increased fatigue life and damage tolerance. The scientific novelty of this study is the controlled deposition of circular-shaped rough spot groove using laser peening technique and understanding the effect of the treatment techniques for improving the implant surface properties. The hypothesis of this study was that implant surface grooves created by controlled laser peen treatment can improve the mechanical and biological responses of the implant with the adjoining biomaterial. The objective of this study was to measure how the controlled laser-peened groove architecture on Ti influences its osteoblast cell functions and bonding strength with bone cement. This study determined the surface roughness and morphology of the peen-treated Ti. In addition, this study compared the osteoblast cell functions (adhesion, proliferation, and differentiation between control and peen-treated Ti samples. Finally, this study measured the fracture strength between each kind of Ti samples

  9. Use of red mud as addition for portland cement mortars

    International Nuclear Information System (INIS)

    Ribeiro, D.V.; Morelli, M.R.

    2011-01-01

    The aim of the present research work was to investigate the possibility of adding red mud, an alkaline leaching waste that is obtained from bauxite during the Bayer process for alumina production, in the raw meal of Portland cement mortars. The red mud is classified as dangerous, according to NBR 10004/2004, and world while generation reached over 117 million tons/year. This huge production requires high consuming products to be used as incorporation matrix and we studied the influence of red mud addition on the characteristics of cement mortars and concrete. In this paper the properties of Portland cement mortars incorporating high amounts of red mud was evaluated: pH variation, fresh (setting time, workability or normal consistency and water retention), and hardened state (mechanical strength, capillary water absorption, density and apparent porosity). Results seem promising for red mud additions up to 20 wt%. (author)

  10. Complexity in modeling of residual stresses and strains during polymerization of bone cement: effects of conversion, constraint, heat transfer, and viscoelastic property changes.

    Science.gov (United States)

    Gilbert, Jeremy L

    2006-12-15

    Aseptic loosening of cemented joint prostheses remains a significant concern in orthopedic biomaterials. One possible contributor to cement loosening is the development of porosity, residual stresses, and local fracture of the cement that may arise from the in-situ polymerization of the cement. In-situ polymerization of acrylic bone cement is a complex set of interacting processes that involve polymerization reactions, heat generation and transfer, full or partial mechanical constraint, evolution of conversion- and temperature-dependent viscoelastic material properties, and thermal and conversion-driven changes in the density of the cement. Interactions between heat transfer and polymerization can lead to polymerization fronts moving through the material. Density changes during polymerization can, in the presence of mechanical constraint, lead to the development of locally high residual strain energy and residual stresses. This study models the interactions during bone cement polymerization and determines how residual stresses develop in cement and incorporates temperature and conversion-dependent viscoelastic behavior. The results show that the presence of polymerization fronts in bone cement result in locally high residual strain energies. A novel heredity integral approach is presented to track residual stresses incorporating conversion and temperature dependent material property changes. Finally, the relative contribution of thermal- and conversion-dependent strains to residual stresses is evaluated and it is found that the conversion-based strains are the major contributor to the overall behavior. This framework provides the basis for understanding the complex development of residual stresses and can be used as the basis for developing more complex models of cement behavior.

  11. Contact damage failure analyses of fretting wear behavior of the metal stem titanium alloy-bone cement interface.

    Science.gov (United States)

    Zhang, Lanfeng; Ge, Shirong; Liu, Hongtao; Wang, Qingliang; Wang, Liping; Xian, Cory J

    2015-11-01

    Although cemented titanium alloy is not favored currently in the Western world for its poor clinical and radiography outcomes, its lower modulus of elasticity and good biocompatibility are instrumental for its ability supporting and transforming physical load, and it is more suitable for usage in Chinese and Japanese populations due to their lower body weights and unique femoral characteristics. Through various friction tests of different cycles, loads and conditions and by examining fretting hysteresis loops, fatigue process curves and wear surfaces, the current study investigated fretting wear characteristics and wear mechanism of titanium alloy stem-bone cement interface. It was found that the combination of loads and displacement affected the wear quantity. Friction coefficient, which was in an inverse relationship to load under the same amplitude, was proportional to amplitudes under the same load. Additionally, calf serum was found to both lubricate and erode the wear interface. Moreover, cement fatigue contact areas appeared black/oxidative in dry and gruel in 25% calf serum. Fatigue scratches were detected within contact areas, and wear scars were found on cement and titanium surfaces, which were concave-shaped and ring concave/ convex-shaped, respectively. The coupling of thermoplastic effect and minimal torque damage has been proposed to be the major reason of contact damage. These data will be important for further studies analyzing metal-cement interface failure performance and solving interface friction and wear debris production issues. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Influence of time addition of superplasticizers on the rheological properties of fresh cement pastes

    International Nuclear Information System (INIS)

    Aiad, Ismail

    2003-01-01

    It is well known that the fluidity and the fluidity loss of fresh cement pastes are affected by the kind and the time of addition of organic admixtures. The influence of the time addition of two chemical admixtures, namely, melamine formaldehyde sulfonate (MFS) and naphthalene formaldehyde sulfonate (NFS), on the rheological properties of ordinary Portland and sulfate-resisting cement pastes through the first 120 min of hydration was investigated. The admixture addition was delayed by 0, 5, 10, 15, 20, and 25 min. Shear stress and apparent viscosity of the cement pastes were determined at different shear rates (3-146 s -1 ) and hydration times of 30, 60, 90, and 120 min. The concentration of Ca 2+ and the combined water content of the cement pastes were determined after 120 min. Yield stress and plastic viscosity values were also determined by using the Bingham model. The results show that an increase in the addition time of the admixture reduces the shear stress, the yield stress, and the plastic viscosity of the cement pastes at the early ages (15 min) as well as at later early ages (120 min). The optimum delaying time of admixture addition is found to be 10-15 min. This time does not depend on the cement and superplasticizer type

  13. Effect of barium-coated halloysite nanotube addition on the cytocompatibility, mechanical and contrast properties of poly(methyl methacrylate cement

    Directory of Open Access Journals (Sweden)

    Jammalamadaka U

    2017-06-01

    Full Text Available Uday Jammalamadaka,1 Karthik Tappa,1 Jeffery A Weisman,1 James Connor Nicholson,2 David K Mills1,3 1Center for Biomedical Engineering and Rehabilitation Science, 2Nanosystems Engineering, 3The School of Biological Sciences, Louisiana Tech University, Ruston, LA, USA Abstract: Halloysite nanotubes (HNTs were investigated as a platform for tunable nanoparticle composition and enhanced opacity in poly(methyl methacrylate (PMMA bone cement. Halloysite has been widely used to increase the mechanical properties of various polymer matrices, in stark contrast to other fillers such as barium sulfate that provide opacity but also decrease mechanical strength. The present work describes a dry deposition method for successively fabricating barium sulfate nanoparticles onto the exterior surface of HNTs. A sintering process was used to coat the HNTs in barium sulfate. Barium sulfate-coated HNTs were then added to PMMA bone cement and the samples were tested for mechanical strength and tailored opacity correlated with the fabrication ratio and the amount of barium sulfate-coated HNTs added. The potential cytotoxic effect of barium-coated HNTs in PMMA cement was also tested on osteosarcoma cells. Barium-coated HNTs were found to be completely cytocompatible, and cell proliferation was not inhibited after exposure to the barium-coated HNTs embedded in PMMA cement. We demonstrate a simple method for the creation of barium-coated nanoparticles that imparted improved contrast and material properties to native PMMA. An easy and efficient method for coating clay nanotubes offers the potential for enhanced imaging by radiologists or orthopedic surgeons. Keywords: barium, bone cement, halloysite, imaging, PMMA, sintering

  14. Evaluation of the strength and radiopacity of Portland cement with varying additions of bismuth oxide.

    Science.gov (United States)

    Saliba, E; Abbassi-Ghadi, S; Vowles, R; Camilleri, J; Hooper, S; Camilleri, J

    2009-04-01

    To study the effect of addition of various proportions of bismuth oxide on compressive strength and radiopacity of Portland cement. The compressive strength of white Portland cement and cement replaced with 10, 15, 20, 25 and 30% bismuth oxide was evaluated by testing cylinders 6 mm in diameter and 12 mm high. Twelve cylinders were tested for each material under study. The radiopacity of the cements tested was evaluated using an aluminium step-wedge and densitometer. The optical density was compared with the relevant thickness of aluminium (Al). Statistical analysis was performed using Analysis of Variance (ANOVA) with P = 0.05 and Tukey test to perform multiple comparison tests. Various additions of bismuth oxide had no significant effect on the strength of the material when compared with the unmodified Portland cement (P > 0.05). The radiopacity of the cements tested ranged from 2.02 mm Al for Portland cement to 9.79 mm Al for the highest bismuth replacement. Addition of bismuth oxide did not affect the compressive strength of Portland cement. All the bismuth oxide cement mixtures had radio-opacities higher than 3 mm thickness of aluminium.

  15. Study of commercial chemical additives for cementation of radioactive waste

    International Nuclear Information System (INIS)

    Mota Vieira, V.; Oliveira, C.C. de

    2015-01-01

    In this research it has been studied the effects of chemical additives (admixtures) in the cementation process of radioactive wastes, which are used to improve the properties of waste cementation process, both of the paste and of the solidified product. However there are a large variety of these materials that are frequently changed or taken out of the market, then it is essential to know the commercially available materials and their effects. The tests were carried out with a solution simulating the evaporator concentrate waste coming from PWR nuclear reactors. It was cemented using two formulations, A and B, incorporating higher or lower amount of waste, respectively. It was added chemical admixtures from two manufacturers (S and H), which were: accelerators, set retarders and superplasticizers. The experiments were organized by a factorial design 23. The measured parameters were the viscosity, the setting time, the paste and product density and the compressive strength. In this study we performed comparative analyzes of the results of compressive strength at age of 28 and 90 days and between the densities of the samples at the same ages. The compressive strength test at age of 28 days is considered a parameter essential issues related to security handling, transport and storage of cemented waste product. The results showed that the addition of accelerators improved the compressive strength of the cemented product, but presented lower values density products. (authors)

  16. Femoral component revision with use of impaction bone-grafting and a cemented polished stem.

    NARCIS (Netherlands)

    Schreurs, B.W.; Arts, J.J.C.; Verdonschot, N.J.J.; Buma, P.; Slooff, T.J.J.H.; Gardeniers, J.W.M.

    2005-01-01

    BACKGROUND: The purpose of this study was to evaluate the clinical and radiographic outcomes of revision of the femoral component of a hip arthroplasty with use of an impaction bone-grafting technique and a cemented polished stem. METHODS: Thirty-three consecutive femoral reconstructions that were

  17. A Model of the Action of the Shockwave Generated by a Multichannel Discharge on the Union of Bone Tissue with Bone Cement

    Czech Academy of Sciences Publication Activity Database

    Zeman, J.; Hach, J.; Mikulaková, W.; Derňarová, Ľ.; Eliášová, A.; Lukeš, Petr; Balážová, L.; Beneš, J.

    2016-01-01

    Roč. 30, č. 3 (2016), s. 237-242 ISSN 0258-851X Institutional support: RVO:61389021 Keywords : Shockwave * bone cement extractions * surgical revision Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.953, year: 2016

  18. In vitro and in vivo biological responses to a novel radiopacifying agent for bone cement

    Science.gov (United States)

    Wang, J.S; Diaz, J; Sabokbar, A; Athanasou, N; Kjellson, F; Tanner, K.E; McCarthy, I.D; Lidgren, L

    2005-01-01

    Iodixanol (IDX) and iohexol (IHX) have been investigated as possible radiopacification agents for polymethylmethacrylate (PMMA) bone cement, to replace the currently used barium sulphate and zirconia. IDX and IHX are both water-soluble iodine-based contrast media and for the last 20 years have been used extensively in clinical diagnostic procedures such as contrast media enhanced computed tomography, angiography and urography. One of the major reasons to remove the current radiopacifying agents is their well-documented cytotoxicity and their potential to increase bone resorption. Using in vitro bone resorption assays, the effect of PMMA particles plus IDX or IHX to induce osteoclast formation and lacunar resorption on dentine slices has been investigated. These responses have been compared with the in vitro response to PMMA particles containing the conventional radiopacifying agents, that is, barium sulphate and zirconia. In parallel, the in vivo reaction, in terms of new bone formation, to particles of these materials has been tested using a bone harvest chamber in rabbit tibiae. In vitro cell culture showed that PMMA containing IHX resulted in significantly less bone resorption than PMMA containing the conventional opacifiers. In vivo testing, however, showed no significant differences between the amounts of new bone formed around cement samples containing the two iodine-based opacifying agents in particulate form, although both led to fewer inflammatory cells than particles of PMMA containing zirconia. Our results suggest that a non-ionic radiopacifier could be considered as an alternative to the conventional radiopacifying agents used in biomaterials in orthopaedic surgery. PMID:16849166

  19. A Novel Terpolymer as Fluid Loss Additive for Oil Well Cement

    Directory of Open Access Journals (Sweden)

    Ming Li

    2017-01-01

    Full Text Available A terpolymer comprised of sodium styrene sulfonate (SSS, fumaric acid (FA, and acrylamide (AM was synthesized by aqueous free radical copolymerization and evaluated as fluid loss additive for oil well cement. The chemical structure and performance of the terpolymer were characterized by Fourier transform infrared (FTIR spectroscopy and thermal gravimetric analysis (TGA; the molecular weight and its distribution were determined by gel permeation chromatography (GPC. The optimum reaction conditions of polymerization were obtained: a reaction temperature of 50°C, a mass ratio of SSS/FA/AM 4 : 2 : 14, initiator 0.1%, and reaction time of 4 h; characterization indicated that the SSS/FA/AM had a certain molecular weight and excellent temperature-resistant and salt-resistant properties. The results show that SSS/FA/AM has a good fluid loss performance, in which the API fluid loss of the oil cement slurry could be controlled within 100 mL at 160°C. In addition, it had little effect on the cement compressive strength. The results of scanning electron microscopy (SEM of the filter cake showed that SSS/FA/AM could be adsorbed on the surface of the cement particles and produce a hydrated layer to prevent fluid loss from the oil well cement.

  20. Impact of implant size on cement filling in hip resurfacing arthroplasty.

    Science.gov (United States)

    de Haan, Roel; Buls, Nico; Scheerlinck, Thierry

    2014-01-01

    Larger proportions of cement within femoral resurfacing implants might result in thermal bone necrosis. We postulate that smaller components are filled with proportionally more cement, causing an elevated failure rate. A total of 19 femoral heads were fitted with polymeric replicas of ReCap (Biomet) resurfacing components fixed with low-viscosity cement. Two specimens were used for each even size between 40 and 56 mm and one for size 58 mm. All specimens were imaged with computed tomography, and the cement thickness and bone density were analyzed. The average cement mantle thickness was 2.63 mm and was not correlated with the implant size. However, specimen with low bone density had thicker cement mantles regardless of size. The average filling index was 36.65% and was correlated to both implant size and bone density. Smaller implants and specimens with lower bone density contained proportionally more cement than larger implants. According to a linear regression model, bone density but not implant size influenced cement thickness. However, both implant size and bone density had a significant impact on the filling index. Large proportions of cement within the resurfacing head have the potential to generate thermal bone necrosis and implant failure. When considering hip resurfacing in patients with a small femoral head and/or osteoporotic bone, extra care should be taken to avoid thermal bone necrosis, and alternative cementing techniques or even cementless implants should be considered. This study should help delimiting the indications for hip resurfacing and to choose an optimal cementing technique taking implant size into account.

  1. Addition of Wollastonite Fibers to Calcium Phosphate Cement Increases Cell Viability and Stimulates Differentiation of Osteoblast-Like Cells

    Directory of Open Access Journals (Sweden)

    Juliana Almeida Domingues

    2017-01-01

    Full Text Available Calcium phosphate cement (CPC that is based on α-tricalcium phosphate (α-TCP is considered desirable for bone tissue engineering because of its relatively rapid degradation properties. However, such cement is relatively weak, restricting its use to areas of low mechanical stress. Wollastonite fibers (WF have been used to improve the mechanical strength of biomaterials. However, the biological properties of WF remain poorly understood. Here, we tested the response of osteoblast-like cells to being cultured on CPC reinforced with 5% of WF (CPC-WF. We found that both types of cement studied achieved an ion balance for calcium and phosphate after 3 days of immersion in culture medium and this allowed subsequent long-term cell culture. CPC-WF increased cell viability and stimulated cell differentiation, compared to nonreinforced CPC. We hypothesize that late silicon release by CPC-WF induces increased cell proliferation and differentiation. Based on our findings, we propose that CPC-WF is a promising material for bone tissue engineering applications.

  2. Intralesional curettage and cementation for low-grade chondrosarcoma of long bones: retrospective study and literature review.

    Science.gov (United States)

    Mermerkaya, Musa Ugur; Bekmez, Senol; Karaaslan, Fatih; Danisman, Murat; Kosemehmetoglu, Kemal; Gedikoglu, Gokhan; Ayvaz, Mehmet; Tokgozoglu, Ahmet Mazhar

    2014-11-10

    Various treatment strategies for low-grade chondrosarcomas with variable outcomes have been reported in the literature. The aim of this study was to assess the oncological and functional outcomes associated with intralesional curettage followed by adjuvant therapy comprising high-speed burring, thermal cauterization, and bone cementation with polymethylmethacrylate. We performed a retrospective review of 21 consecutive patients with intramedullary low-grade chondrosarcoma of long bones treated by intralesional curettage and adjuvant therapy comprising high-speed burring, thermal cauterization, and cementation at our institution from 2007 to 2012. The average age of the patients was 48.7 (range, 18-71) years. There were 7 male and 14 female patients. The mean follow-up period was 58.4 (range, 26-85) months after surgery. The treated lesions were located in the proximal humerus (n=10), proximal tibia (n=6), and distal femur (n=5). At the average follow-up time point of 58.4 (range, 26-85) months, no patient had developed local recurrence and no distant metastases were observed. The average Musculoskeletal Tumor Society score among all 21 patients was 95% (84-100). The combination of intralesional curettage, application of high-speed burring, thermal cauterization, and cementation is an effective treatment strategy for low-grade intramedullary chondrosarcoma of long bones. Excellent oncological and functional results can be obtained.

  3. Fixation of a human rib by an intramedullary telescoping splint anchored by bone cement.

    Science.gov (United States)

    Liovic, Petar; Šutalo, Ilija D; Marasco, Silvana F

    2016-09-01

    A novel concept for rib fixation is presented that involves the use of a bioresorbable polymer intramedullary telescoping splint. Bone cement is used to anchor each end of the splint inside the medullary canal on each side of the fracture site. In this manner, rib fixation is achieved without fixation device protrusion from the rib, making the splint completely intramedullary. Finite element analysis is used to demonstrate that such a splint/cement composite can preserve rib fixation subjected to cough-intensity force loadings. Computational fluid dynamics and porcine rib experiments were used to study the anchor formation process required to complete the fixation.

  4. The Optimization of Calcareous Fly Ash-Added Cement Containing Grinding Aids and Strength-Improving Additives

    Directory of Open Access Journals (Sweden)

    Gökhan Kaplan

    2018-01-01

    Full Text Available This is an experimental study which explores the physical, mechanical, and economic factors involved in the production of type CEM II A-B/W cement. In this context, 4 cement additives were used in two different dosages (200 and 800 g/t. Class C fly ash was used for composite cement production at ratios of 5%, 20%, and 35%. It was shown that Blaine fineness increases with the increasing fly ash content. The use of fly ash at ratios of 5% and 20% was not found to have any unfavorable effects on the compressive strength at the early days. It is found that the use of additive for improving the early-age strength is preferable when fly ash is used. It is possible to produce Class 52.5 N cement using additives to improve early strength and 20% fly ash. Loss in strength was observed in cement mortars produced using glycol-based grinding aid. Increasing the dosage of chemical additive also led to loss in strength due to nonhomogeneous distribution of hydration products. As a result, grinding fly ash with clinker and the use of cement chemicals contribute to the cement sector in terms of sustainability. It is possible to produce cements with improved mechanical properties especially with the use of 20% fly ash.

  5. Rational design of cement composites containing pozzolanic additions

    Czech Academy of Sciences Publication Activity Database

    Keppert, M.; Urbanová, Martina; Brus, Jiří; Čáchová, M.; Fořt, J.; Trník, A.; Scheinherrová, L.; Záleská, M.; Černý, R.

    2017-01-01

    Roč. 148, 1 September (2017), s. 411-418 ISSN 0950-0618 R&D Projects: GA ČR(CZ) GA16-13778S Institutional support: RVO:61389013 Keywords : cement composites * pozzolanic additions * XRD analysis Subject RIV: JN - Civil Engineering OBOR OECD: Civil engineering Impact factor: 3.169, year: 2016

  6. Influence of nano-dispersive modified additive on cement activity

    Energy Technology Data Exchange (ETDEWEB)

    Sazonova, Natalya, E-mail: n.a.sazonova@mail.ru; Badenikov, Artem, E-mail: rector@agta.ru; Ivanova, Elizaveta, E-mail: lisik-iva@mail.ru [Angarsk State Technical University, 60, Tchaykovsky St., 665835, Angarsk (Russian Federation); Skripnikova, Nelli, E-mail: nks2003@mail.ru [Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation)

    2016-01-15

    In the work the influence of single-walled carbon nanotubes (SWCNT) on the cement activity and the processes of structure formation of the hardened cement paste in different periods of hydration are studied. The changes in the kinetic curves of the sample strength growth modified with SWCNT in amount of 0.01 and 0.0005 % are stipulated by the results of differential scanning colorimetry, scanning electronic and ionic microscopy, X-ray-phase analysis. It was found that the nano-modified additive may increase in the axis compressive strength of the system by 1.4–6.3 fold relatively to the reference samples and may reach 179.6 MPa. It may intensify the hydration process of calcium silicates as well as influence on the matrix of hardened cement paste. The studies are conducted on the structural changes in the hardened cement paste, the time periods of increase and decrease of the compressive strength of the samples, the amount of the calcium hydroxide and tobermorite-like gel as well as the degree of hydration C{sub 3}S and β-C{sub 2}S.

  7. Animated sulfonated or sulformethylated lignins as cement fluid loss control additives

    Energy Technology Data Exchange (ETDEWEB)

    Schilling, P.

    1991-05-07

    This patent describes a method of cementing a zone in a well penetrating a subterranean formation comprising injecting down the well and positioning in the zone to be cemented a hydraulic aqueous cement slurry composition. It comprises: a hydraulic cement, and the following expressed as parts by weight per 100 parts of the hydraulic cement, water from about 25 to 105 parts, and a fluid loss control additive comprising from about 0.5 to 2.5 parts of a compound selected from the group consisting of a sulfonated lignin and a sulfomethylated lignin, wherein the lignin has been aminated by reacting it with between about 2-5 moles of a polyamine and 2-5 moles of an aldehyde per 1,000g of the lignin, and 0.1 to 1.5 parts of a compound selected from the group consisting of sodium carbonate, sodium metasilicate, sodium phosphate, sodium sulfite and sodium naphthalene sulfonate and a combination thereof.

  8. [Use of pedicle percutaneous cemented screws in the management of patients with poor bone stock].

    Science.gov (United States)

    Pesenti, S; Graillon, T; Mansouri, N; Adetchessi, T; Tropiano, P; Blondel, B; Fuentes, S

    2016-12-01

    Management of patients with poor bone stock remains difficult due to the risks of mechanical complications such as screws pullouts. At the same time, development of minimal invasive spinal techniques using a percutaneous approach is greatly adapted to these fragile patients with a reduction in operative time and complications. The aim of this study was to report our experience with cemented percutaneous screws in the management of patients with a poor bone stock. Thirty-five patients were included in this retrospective study. In each case, a percutaneous osteosynthesis using cemented screws was performed. Indications were osteoporotic fractures, metastasis or fractures on ankylosing spine. Depending on radiologic findings, short or long constructs (2 levels above and below) were performed and an anterior column support (kyphoplasty or anterior approach) was added. Evaluation of patients was based on pre and postoperative CT-scans associated with clinical follow-up with a minimum of 6 months. Eleven men and 24 women with a mean age of 73 years [60-87] were included in the study. Surgical indication was related to an osteoporotic fracture in 20 cases, a metastasis in 13 cases and a fracture on ankylosing spine in the last 2 cases. Most of the fractures were located between T10 and L2 and a long construct was performed in 22 cases. Percutaneous kyphoplasty was added in 24 cases and a complementary anterior approach in 3 cases. Average operative time was 86minutes [61-110] and blood loss was estimated as minor in all the cases. In the entire series, average volume of cement injected was 1.8 cc/screw. One patient underwent a major complication with a vascular leakage responsible for a cement pulmonary embolism. With a 9 months average follow-up [6-20], no cases of infection or mechanical complication was reported. Minimal invasive spinal techniques are greatly adapted to the management of fragile patients. The use of percutaneous cemented screws is, in our experience

  9. Effect of addition of Sikament-R superplasticizer on the hydration characteristics of portland cement pastes

    Directory of Open Access Journals (Sweden)

    Safaa.M. El Gamal

    2012-08-01

    Full Text Available The effect of addition of Sikament-R superplasticizer (modified lignosulphonate base on the hydration characteristics of hardened Portland cement pastes were studied at different curing conditions. Four mixtures were prepared using 0, 0.2, 0.4 and 0.6 wt% addition of Sikament-R superplasticizer (SR of cement. These pastes were hydrated under two different conditions; (i normal curing at room temperature; 25 °C up to 90 days periods and (ii hydrothermal curing at a pressure of 8 atm. of saturated steam up to 24 h. The compressive strength, combined water content, free lime content, gel/space ratio and microstructure of hardened cement pastes were studied. The results revealed that addition of SR superplasticizer promote the dispersion of cement particles and interacts with Ca(OH2. The addition of SR superplasticizer exhibits Portland cement better workability during the preparation of pastes. In addition, amore compact structure were obtained leading to higher values of compressive strength for all the hardened hydrated pastes under both normal and hydrothermal curing. The results indicated that the addition of SR superplasticizer to Portland cement does not alter the types of hydration products formed during normal or hydrothermal conditions; only it caused a decrease in the degree of the porosity of the formed pastes.

  10. Towards optimization of the silanization process of hydroxyapatite for its use in bone cement formulations

    International Nuclear Information System (INIS)

    Cisneros-Pineda, Olga G.; Herrera Kao, Wilberth; Loría-Bastarrachea, María I.; Veranes-Pantoja, Yaymarilis; Cauich-Rodríguez, Juan V.; Cervantes-Uc, José M.

    2014-01-01

    The aim of this work was to provide some fundamental information for optimization of silanization of hydroxyapatite intended for bone cement formulations. The effect of 3-(trimethoxysilyl) propyl methacrylate (MPS) concentration and solvent system (acetone/water or methanol/water mixtures) during HA silanization was monitored by X-ray diffraction (XRD), FTIR spectroscopy and EDX analysis. The effect of silanized HA on the mechanical properties of acrylic bone cements is also reported. It was found that the silanization process rendered hydroxyapatite with lower crystallinity compared to untreated HA. Through EDX, it was observed that the silicon concentration in the HA particles was higher for acetone–water than that obtained for methanol–water system, although the mechanical performance of cements prepared with these particles exhibited the opposite behavior. Taking all these results together, it is concluded that methanol–water system containing MPS at 3 wt.% provides the better results during silanization process of HA. - Highlights: • Effect of MPS concentration and solvents during HA silanization was studied. • Silanization rendered HA has lower crystallinity compared to untreated HA. • Silicon concentration was higher for acetone than that obtained using methanol. • Methanol–water system containing MPS at 3 wt.% provides the better results

  11. Towards optimization of the silanization process of hydroxyapatite for its use in bone cement formulations

    Energy Technology Data Exchange (ETDEWEB)

    Cisneros-Pineda, Olga G.; Herrera Kao, Wilberth; Loría-Bastarrachea, María I. [Centro de Investigación Científica de Yucatán, A.C., Unidad de Materiales, Calle 43 No. 130, Col. Chuburná de Hidalgo, C.P. 97200 Mérida, Yucatán (Mexico); Veranes-Pantoja, Yaymarilis [Centro de Biomateriales, Universidad de la Habana, Avenida Universidad, s/n, e/G y Ronda, C.P. 10600 C. de La Habana (Cuba); Cauich-Rodríguez, Juan V. [Centro de Investigación Científica de Yucatán, A.C., Unidad de Materiales, Calle 43 No. 130, Col. Chuburná de Hidalgo, C.P. 97200 Mérida, Yucatán (Mexico); Cervantes-Uc, José M., E-mail: manceruc@cicy.mx [Centro de Investigación Científica de Yucatán, A.C., Unidad de Materiales, Calle 43 No. 130, Col. Chuburná de Hidalgo, C.P. 97200 Mérida, Yucatán (Mexico)

    2014-07-01

    The aim of this work was to provide some fundamental information for optimization of silanization of hydroxyapatite intended for bone cement formulations. The effect of 3-(trimethoxysilyl) propyl methacrylate (MPS) concentration and solvent system (acetone/water or methanol/water mixtures) during HA silanization was monitored by X-ray diffraction (XRD), FTIR spectroscopy and EDX analysis. The effect of silanized HA on the mechanical properties of acrylic bone cements is also reported. It was found that the silanization process rendered hydroxyapatite with lower crystallinity compared to untreated HA. Through EDX, it was observed that the silicon concentration in the HA particles was higher for acetone–water than that obtained for methanol–water system, although the mechanical performance of cements prepared with these particles exhibited the opposite behavior. Taking all these results together, it is concluded that methanol–water system containing MPS at 3 wt.% provides the better results during silanization process of HA. - Highlights: • Effect of MPS concentration and solvents during HA silanization was studied. • Silanization rendered HA has lower crystallinity compared to untreated HA. • Silicon concentration was higher for acetone than that obtained using methanol. • Methanol–water system containing MPS at 3 wt.% provides the better results.

  12. Determination of bone and tissue concentrations of teicoplanin mixed with hydroxyapatite cement to repair cortical defects.

    Science.gov (United States)

    Eggenreich, K; Zeipper, U; Schwendenwein, E; Hadju, S; Kaltenecker, G; Laslo, I; Lang, S; Roschger, P; Vecsei, V; Wintersteiger, R

    2002-01-01

    A highly specific and sensitive isocratic reversed-phase high performance liquid chromatography (HPLC) method for the determination of the major component of teicoplanin in tissue is reported. Comparing fluorescamine and o-phthalaldehyde (OPA) as derivatizing agents, the derivative formed with the latter exhibits superior fluorescence intensity allowing detection of femtomole quantities. Pretreatment for tissue samples is by solid-phase extraction which uses Bakerbond PolarP C(18) cartridges and gives effective clean up from endogenous by-products. Linearity was given from 0.6 to 100 ng per injection. The coefficient of variation did not exceed 5.8% for both interday and intraday assays. It was found that when bone defects are repaired with a hydroxyapatite-teicoplanin mixture, the antibiotic does not degrade, even when it is in the cement for several months. The stability of teicoplanin in bone cement was determined fluorodensitometrically.

  13. Antibacterial Efficacy of a New Gentamicin-Coating for Cementless Prostheses Compared to Gentamicin-Loaded Bone Cement

    NARCIS (Netherlands)

    Neut, Danielle; Dijkstra, Rene J. B.; Thompson, Jonathan I.; van der Mei, Henny C.; Busscher, Henk J.

    Cementless prostheses are increasingly popular but require alternative prophylactic measures than the use of antibiotic-loaded bone cements. Here, we determine the 24-h growth inhibition of gentamicin-releasing coatings from grit-blasted and porous-coated titanium alloys, and compare their

  14. Results of cement augmentation and curettage in aneurysmal bone cyst of spine

    Directory of Open Access Journals (Sweden)

    Saumyajit Basu

    2016-01-01

    Full Text Available Aneurysmal bone cyst (ABC is a vascular tumor of the spine. Management of spinal ABC still remains controversial because of its location, vascular nature and incidence of recurrence. In this manuscript, we hereby describe two cases of ABC spine treated by curettage, vertebral cement augmentation for control of bleeding and internal stabilization with two years followup. To the best of our knowledge, this is the first case report in the literature describing the role of cement augmentation in spinal ABC in controlling vascular bleeding in curettage of ABC of spine. Case 1: A 22 year old male patient presented with chronic back pain. On radiological investigation, there were multiple, osteolytic septite lesions at L3 vertebral body without neural compression or instability. Percutaneous transpedicular biopsy of L3 from involved pedicle was done. This was followed by cement augmentation through the uninvolved pedicle. Next, transpedicular complete curettage was done through involved pedicle. Case 2: A 15-year-old female presented with nonradiating back pain and progressive myelopathy. On radiological investigation, there was an osteolytic lesion at D9. At surgery, decompression, pedicle screw-rod fixation and posterolateral fusion from D7 to D11 was done. At D9 level, through normal pedicle cement augmentation was added to provide anterior column support and to control the expected bleeding following curettage. Transpedicular complete curettage was done through the involved pedicle with controlled bleeding at the surgical field. Cement augmentation was providing controlled bleeding at surgical field during curettage, internal stabilization and control of pain. On 2 years followup, pain was relieved and there was a stable spinal segment with well filled cement without any sign of recurrence in computed tomography scan. In selected cases of spinal ABC with single vertebral, single pedicle involvement; cement augmentation of vertebra through normal

  15. Effect of the calcium to phosphorus ratio on the setting properties of calcium phosphate bone cements.

    Science.gov (United States)

    Vlad, M D; Gómez, S; Barracó, M; López, J; Fernández, E

    2012-09-01

    α-Tricalcium phosphate (α-TCP) has become the main reactant of most experimental and commercial ceramic bone cements. It has calcium-to-phosphorus (Ca/P) ratio of 1.50. The present study expands and reports on the microstructures and mechanical properties of calcium phosphate (CP) cements containing sintered monolithic reactants obtained in the interval 1.29 properties as well as on their microstructure and crystal phase evolution. The results showed that: (a) CP-cements made with reactants with Ca/P ratio other than 1.50 have longer setting and lower hardening properties; (b) CP-cements reactivity was clearly affected by the Ca/P ratio of the starting reactant; (c) reactants with Ca/P calcium pyrophosphate and α- and β-TCP. Similarly, reactants with Ca/P > 1.50 were composed of α-TCP, tetracalcium phosphate and hydroxyapatite; (d) only the reactant with Ca/P = 1.50 was monophasic and was made of α-TCP, which transformed during the setting into calcium deficient hydroxyapatite; (e) CP-cements developed different crystal microstructures with specific features depending on the Ca/P ratio of the starting reactant.

  16. Material properties and in vitro biocompatibility of a newly developed bone cement

    Directory of Open Access Journals (Sweden)

    Elke Mitzner

    2009-01-01

    Full Text Available In this study mechanical properties and biocompatibility (In Vitro of a new bone cement were investigated. A new platform technology named COOL is a variable composite of dissolved, chemically modified PMMA and different bioceramics. COOL cures at body temperature via a classical cementation reaction. Compressive strengths ranging from 3.6 ± 0.8 to 62.8 ± 1.3 MPa and bending strengths ranging from 9.9 ± 2.4 to 26.4 ± 3.0 MPa were achieved with different COOL formulations. Porosity varied between 31 and 43%. Varying the components of each formulation mechanical properties and porosity could be adjusted. In Vitro biocompatibility studies with primary human osteoblasts (pHOB in direct contact with different COOL formulations, did not reveal any signs of toxicity. In contrast to Refobacin® R, cells incubated with COOL showed similar density, viability and ALP activity compared to control, if specimen were added immediately to the cell monolayer after preparation. In conclusion, COOL has promising mechanical properties in combination with high biocompatibility In Vitro and combines different advantages of both CPCs and PMMA cements by avoiding some of the respective shortcomings.

  17. Real-time synchronous measurement of curing characteristics and polymerization stress in bone cements with a cantilever-beam based instrument

    Science.gov (United States)

    Palagummi, Sri Vikram; Landis, Forrest A.; Chiang, Martin Y. M.

    2018-03-01

    An instrumentation capable of simultaneously determining degree of conversion (DC), polymerization stress (PS), and polymerization exotherm (PE) in real time was introduced to self-curing bone cements. This comprises the combination of an in situ high-speed near-infrared spectrometer, a cantilever-beam instrument with compliance-variable feature, and a microprobe thermocouple. Two polymethylmethacrylate-based commercial bone cements, containing essentially the same raw materials but differ in their viscosity for orthopedic applications, were used to demonstrate the applicability of the instrumentation. The results show that for both the cements studied the final DC was marginally different, the final PS was different at the low compliance, the peak of the PE was similar, and their polymerization rates were significantly different. Systematic variation of instrumental compliance for testing reveals differences in the characteristics of PS profiles of both the cements. This emphasizes the importance of instrumental compliance in obtaining an accurate understanding of PS evaluation. Finally, the key advantage for the simultaneous measurements is that these polymerization properties can be correlated directly, thus providing higher measurement confidence and enables a more in-depth understanding of the network formation process.

  18. Effect of barium-coated halloysite nanotube addition on the cytocompatibility, mechanical and contrast properties of poly(methyl methacrylate) cement.

    Science.gov (United States)

    Jammalamadaka, Uday; Tappa, Karthik; Weisman, Jeffery A; Nicholson, James Connor; Mills, David K

    2017-01-01

    Halloysite nanotubes (HNTs) were investigated as a platform for tunable nanoparticle composition and enhanced opacity in poly(methyl methacrylate) (PMMA) bone cement. Halloysite has been widely used to increase the mechanical properties of various polymer matrices, in stark contrast to other fillers such as barium sulfate that provide opacity but also decrease mechanical strength. The present work describes a dry deposition method for successively fabricating barium sulfate nanoparticles onto the exterior surface of HNTs. A sintering process was used to coat the HNTs in barium sulfate. Barium sulfate-coated HNTs were then added to PMMA bone cement and the samples were tested for mechanical strength and tailored opacity correlated with the fabrication ratio and the amount of barium sulfate-coated HNTs added. The potential cytotoxic effect of barium-coated HNTs in PMMA cement was also tested on osteosarcoma cells. Barium-coated HNTs were found to be completely cytocompatible, and cell proliferation was not inhibited after exposure to the barium-coated HNTs embedded in PMMA cement. We demonstrate a simple method for the creation of barium-coated nanoparticles that imparted improved contrast and material properties to native PMMA. An easy and efficient method for coating clay nanotubes offers the potential for enhanced imaging by radiologists or orthopedic surgeons.

  19. Enhanced healing of rabbit segmental radius defects with surface-coated calcium phosphate cement/bone morphogenetic protein-2 scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yi; Hou, Juan; Yin, ManLi [Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Wang, Jing, E-mail: biomatwj@163.com [Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Liu, ChangSheng, E-mail: csliu@sh163.net [Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237 (China); Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China)

    2014-11-01

    Large osseous defects remain a difficult clinical problem in orthopedic surgery owing to the limited effective therapeutic options, and bone morphogenetic protein-2 (BMP-2) is useful for its potent osteoinductive properties in bone regeneration. Here we build a strategy to achieve prolonged duration time and help inducting new bone formation by using water-soluble polymers as a protective film. In this study, calcium phosphate cement (CPC) scaffolds were prepared as the matrix and combined with sodium carboxymethyl cellulose (CMC-Na), hydroxypropylmethyl cellulose (HPMC), and polyvinyl alcohol (PVA) respectively to protect from the digestion of rhBMP-2. After being implanted in the mouse thigh muscles, the surface-modified composite scaffolds evidently induced ectopic bone formation. In addition, we further evaluated the in vivo effects of surface-modified scaffolds in a rabbit radius critical defect by radiography, three dimensional micro-computed tomographic (μCT) imaging, synchrotron radiation-based micro-computed tomographic (SRμCT) imaging, histological analysis, and biomechanical measurement. The HPMC-modified CPC scaffold was regarded as the best combination for segmental bone regeneration in rabbit radius. - Highlights: • A simple surface-coating method was used to fabricate composite scaffolds. • Growth factor was protected from rapid depletion via superficial coating. • Significant promotion of bone regeneration was achieved. • HPMC-modification displayed optimal effect of bone regeneration.

  20. Synthesis and characterization of cement slurries additives with epoxy resins - kinetics, thermodynamic and calorimetric analysis

    International Nuclear Information System (INIS)

    Tavares, A.M.G.; Andrade Junior, M.A.S.; Cestari, A.R.; Vieira, E.F.S.

    2010-01-01

    Cement has been used in the world, presenting a wide versatility. However, due to its chemical nature, it is subject to several types of chemical damages, especially for agents of acidic nature. With the purpose of increase its life-time, new cement slurries have been modified with the addition of specific additives. The objective of this work is to modify cement slurries with epoxy resins, which promote higher resistance of those materials in relation to acid attacks. Three cement slurries were synthesized with epoxy resins and a standard slurries, which was composed by cement and water. After 30 days of hydration, the samples were characterized by XDR, FTIR and thermal analysis (TG and DSC). The hydration processes of the cement slurries were studied by heat-conduction microcalorimetry. A kinetic study of HCl interaction with the new slurries were performed by the batch methodology at 25, 35, 45 e 55 deg C. It was verified that the addition of the polymers delayed the processes of hydration of the slurries, decreasing the flow of heat released as a function of the amount of added resin and, increased the resistance of those slurries to the acid attack. (author)

  1. Application of Lime Additive on Cementation of Concentrated Low Activities Liquid Radwaste Containing Boric Acid

    International Nuclear Information System (INIS)

    Bahdir-Johan

    2000-01-01

    The effect of lime additive on the waste form containing boric acid and the activity 1 μCi/ml have been studied. The studying parameter was the optimum lime additive in concentrate. The sample was made by cement slurry containing boric acid. The cement slurry composition are water/cement ratio (W/C) was 0.35, sand/cement ratio (S/C) was 0.75 and boric (B) was 15000 ppm. On this condition into cement slurry was added the lime additive (K/C) 0.05 -0.8 by weigh. The quality test included density, compressive strength and leaching rate. The density was determination by weighing and measuring sample volume, compressive strength determination using Paul Weber apparatus and leaching rate tested using aquadest. The result of this research are the lime/cement ratio (K/C) 0.30; the density (ρ) 2.449 ± 0.008 g.cm -3 , the compressive strength (Γ) 44.005 ± 0.012 N.mm -2 and the leaching rate (Rn) 7.20x10 -4 -0.90x10 -4 g.cm -2 day -1 . According to this research the quality of the waste form has been complied the IAEA quality standard. (author)

  2. In situ synchrotron X-ray powder diffraction study of the early hydration of α-tricalcium phosphate/tricalcium silicate composite bone cement

    Energy Technology Data Exchange (ETDEWEB)

    Morejon-Alonso, Loreley; Correa, Jose Raul, E-mail: lmorejon@fq.uh.cu [Departamento de Quimica General, Facultad de Quimica, Universidad de La Habana, UH (Cuba); Motisuke, Mariana [Universidade Federal de Sao Paulo (UNIFESP), Sao Jose dos Campos, SP (Brazil); Carrodeguas, Raul Garcia [Universidade Federal de Campina Grande (UFCG), Campina Grande, PB (Brazil). Laboratorio de Avaliacao e Desenvolvimento de Biomateriais do Nordeste; Santos, Luis Alberto dos [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Escola de Engenharia. Departamento de Materiais

    2015-01-15

    Bioactivity, osteogenicity and mechanical properties of α-tricalcium phosphate (α-TCP) based phosphates cements can be improved by adding tricalcium silicate (C{sub 3}S); however, the addition of C{sub 3}S delays the precipitation and growth of calcium deficient hydroxyapatite (CDHA). Thus, the aim of this work was the study of in situ setting reaction of α-TCP/C{sub 3}S composite bone cement under high energy X-ray generated by a synchrotron source within the first 72h. The results showed that the addition of C{sub 3}S induces the precipitation of nanosized CDHA at early times depending on the added content. Calculated crystallite sizes showed that the higher the content of C{sub 3}S, the smaller the crystal size at the beginning of the precipitation. These results are different from those obtained by conventional XRD method, suggesting that the proposed technique is a powerful tool in determining the composition and extent of reaction of CPCs surfaces in real time. (author)

  3. The combination of ultrasound with antibiotics released from bone cement decreases the viability of planktonic and biofilm bacteria: an in vitro study with clinical strains.

    Science.gov (United States)

    Ensing, Geert T; Neut, Daniëlle; van Horn, Jim R; van der Mei, Henny C; Busscher, Henk J

    2006-12-01

    Antibiotic-loaded bone cements are used for the permanent fixation of joint prostheses. Antibiotic-loaded cements significantly decrease the incidence of infection. The objective of this study was to investigate whether the viability of bacteria derived from patients with a prosthesis-related infection could be further decreased when antibiotic release from bone cements was combined with application of pulsed ultrasound. Escherichia coli ATCC 10798, Staphylococcus aureus 7323, coagulase-negative staphylococci (CoNS 7368 and CoNS 7391) and Pseudomonas aeruginosa 5148 were grown planktonically in suspension and as a biofilm on three different bone cements: Palacos R without gentamicin as control, gentamicin-loaded Palacos R-G and gentamicin/clindamycin-loaded Copal. The viability of planktonic and biofilm bacteria was measured in the absence and presence of pulsed ultrasound for 40 h. Ultrasound itself did not affect bacterial viability. However, application of pulsed ultrasound in combination with antibiotic release by antibiotic-loaded bone cements yielded a reduction of both planktonic and biofilm bacterial viability compared with antibiotic release without application of ultrasound. This study shows that antibiotic release in combination with ultrasound increases the antimicrobial efficacy further than antibiotic release alone against a variety of clinical isolates. Application of ultrasound in combination with antibiotic release in clinical practice could therefore lead to better prevention or treatment of prosthesis-related infections.

  4. Assessment of Physical and Mechanical Properties of Cement Panel Influenced by Treated and Untreated Coconut Fiber Addition

    Science.gov (United States)

    Abdullah, Alida; Jamaludin, Shamsul Baharin; Anwar, Mohamed Iylia; Noor, Mazlee Mohd; Hussin, Kamarudin

    This project was conducted to produce a cement panel with the addition of treated and untreated coconut fiber in cement panel. Coconut fiber was added to replace coarse aggregate (sand) in this cement panel. In this project, the ratios used to design the mixture were 1:1:0, 1:0.97:0.03, 1:0.94:0.06, 1:0.91:0.09 (cement: sand: coconut fiber). The water cement ratio was constant at 0.55. The sizes of sample tested were, 160 mm x 40 mm x 40 mm for compression test, and 100 mm x 100 mm x 40 mm for density, moisture content and water absorption tests. After curing samples for 28 days, it was found that the addition of coconut fiber, further increase in compressive strength of cement panel with untreated coconut fiber. Moisture content of cement panel with treated coconut fiber increased with increasing content of coconut fiber whereas water absorption of cement panel with untreated coconut fiber increased with increasing content of coconut fiber. The density of cement panel decreased with the addition of untreated and treated coconut fiber.

  5. Influence of industrial solid waste addition on properties of soil-cement bricks

    Directory of Open Access Journals (Sweden)

    F. B. Siqueira

    Full Text Available Abstract The reuse of pollutant solid wastes produced in distinct industrial activities (avian eggshell waste and welding flux slag waste as a source of alternative raw material for producing soil-cement bricks for civil construction was investigated. Soil-cement bricks containing up to 30 wt% of industrial solid waste were uniaxially pressed and cured for 28 days. Special emphasis is given on the influence of solid waste addition on the technical properties (as such volumetric shrinkage, water absorption, bulk density, durability, and compressive strength, microstructure and mineral phases of soil-cement bricks. Microstructural evolution was evaluated via confocal microscopy. The experimental results showed that the solid wastes behave as charge material and influenced both technical properties and microstructure of the soil-cement bricks. It was found that up to 15 wt% of welding flux slag waste and up to 30 wt% of avian eggshell waste could be added into the soil-cement bricks for use as building material.

  6. The Primary Stability of a Bioabsorbable Poly-L-Lactic Acid Suture Anchor for Rotator Cuff Repair Is Not Improved with Polymethylmethacrylate or Bioabsorbable Bone Cement Augmentation.

    Science.gov (United States)

    Güleçyüz, Mehmet F; Kraus-Petersen, Michael; Schröder, Christian; Ficklscherer, Andreas; Wagenhäuser, Markus U; Braun, Christian; Müller, Peter E; Pietschmann, Matthias F

    2018-02-01

    The incidence of osteoporosis and rotator cuff tears increases with age. Cement augmentation of bones is an established method in orthopedic and trauma surgery. This study analyses if polymethylmethacrylate or bioabsorbable cement can improve the primary stability of a bioabsorbable suture anchor in vitro in comparison to a non-augmented suture anchor in osteoporotic human humeri. The trabecular bone mineral density was measured to ensure osteopenic human specimens. Then the poly-l-lactic acid Bio-Corkscrew® FT was implanted in the greater tuberosity footprint with polymethylmethacrylate Refobacin® cement augmentation ( n  = 8), with Cerament™ Bone Void Filler augmentation ( n  = 8) and without augmentation ( n  = 8). Using a cyclic testing protocol, the failure loads, system displacement, and failure modes were recorded. The Cerament™ augmented Bio-Corkscrew® FT yielded the highest failure loads (206.7 N), followed by polymethylmethacrylate Refobacin® augmentation (206.1 N) and without augmentation (160.0 N). The system displacement was lowest for Cerament™ augmentation (0.72 mm), followed by polymethylmethacrylate (0.82 mm) and without augmentation (1.50 mm). Statistical analysis showed no significant differences regarding the maximum failure loads ( p  = 0.1644) or system displacement ( p  = 0.4199). The main mode of failure for all three groups was suture slippage. The primary stability of the Bio-Corkscrew® FT is not influenced by bone cement augmentation with polymethylmethacrylate Refobacin® or with bioabsorbable Cerament™ in comparison to the non-cemented anchors. The cement augmentation of rotator cuff suture anchors in osteoporotic bones remains questionable since biomechanical tests show no significant advantage.

  7. Study of the stabilization of a loamy soil with addition of cement

    Directory of Open Access Journals (Sweden)

    Jonas Alexandre

    2010-05-01

    Full Text Available The use of soil-cement bricks is considered a cheaper constructive method than the conventional (ceramic block or concrete, because one of the raw materials is abundant (the soil. The objective of the present work was to identify the soil of the “Codin” area, in the municipality of Campos of Goytacazes - RJ. After this identification, it was possible to determine the best line for the production of soil-cement, in the 9,5x 10x5 cm format, with lines containing the addition of 5% and 10% of cement in volume.

  8. Femoral component revision with use of impaction bone-grafting and a cemented polished stem. Surgical technique.

    NARCIS (Netherlands)

    Schreurs, B.W.; Arts, J.J.C.; Verdonschot, N.J.J.; Buma, P.; Slooff, T.J.J.H.; Gardeniers, J.W.M.

    2006-01-01

    BACKGROUND: The purpose of this study was to evaluate the clinical and radiographic outcomes of revision of the femoral component of a hip arthroplasty with use of an impaction bone-grafting technique and a cemented polished stem. METHODS: Thirty-three consecutive femoral reconstructions that were

  9. 21 CFR 888.4200 - Cement dispenser.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cement dispenser. 888.4200 Section 888.4200 Food... DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4200 Cement dispenser. (a) Identification. A cement dispenser is a nonpowered syringe-like device intended for use in placing bone cement (§ 888.3027) into...

  10. Experimental in-vitro bone cements disintegration with ultrasonic pulsating water jet for revision arthroplasty

    Czech Academy of Sciences Publication Activity Database

    Hloch, Sergej; Foldyna, Josef; Pude, F.; Kloc, J.; Zeleňák, Michal; Hvizdoš, P.; Monka, P.; Smolko, I.; Ščučka, Jiří; Kozak, D.; Sedmak, A.; Mihalčinová, E.

    2015-01-01

    Roč. 22, č. 6 (2015), s. 1609-1616 ISSN 1330-3651 R&D Projects: GA MŠk ED2.1.00/03.0082; GA MŠk(CZ) LO1406 Institutional support: RVO:68145535 Keywords : bone cement * revision arthroplasty * ultrasonic pulsating water jet Subject RIV: JQ - Machines ; Tools Impact factor: 0.464, year: 2015 http://www.tehnicki-vjesnik.com/web/public/archive

  11. The mechanical and biological studies of calcium phosphate cement-fibrin glue for bone reconstruction of rabbit femoral defects

    Directory of Open Access Journals (Sweden)

    Dong J

    2013-03-01

    Full Text Available Jingjing Dong,1,* Geng Cui,2,* Long Bi,1,* Jie Li,3 Wei Lei11Institute of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, People’s Republic of China; 2Institute of Orthopedics, General Hospital of PLA, Beijing, People’s Republic of China; 3Institute of Gynecology and Obstetrics, General Hospital of PLA, Beijing, People’s Republic of China*These authors contributed equally to this workAbstract: In order to improve the mechanical and biological properties of calcium phosphate cement (CPC, nanometer-biomaterial for bone reconstruction in the rabbit femoral defect model, fibrin glue (FG, the natural product, purified from the blood was introduced at three different ratios. The CPC powder and the FG solution were mixed, respectively, at the powder/liquid (P/L ratios (g/mL of 1:1, 3:1, and 5:1 (g/mL, and pure CPC was used as a control. After being implanted into the femoral defect in rabbit, the healing process was evaluated by micro-computed tomography scan, biomechanical testing, and histological examination. By micro-computed tomography analysis, the P/L ratio of 1:1 (g/mL group indicated the largest quantity of new bone formation at 4 weeks, 8 weeks, and 12 weeks after implantation, respectively. Bone volume per trabecular volume of the 1:1 group was highest in the four groups, which was 1.45% ± 0.42%, 7.35% ± 1.45%, and 29.10% ± 1.67% at 4 weeks, 8 weeks, and 12 weeks after the operation, respectively. In the biomechanical tests, the compressive strength and the elastic modulus of the three CPC–FG groups were much higher than those of the pure CPC group at the determined time point (P < 0.05. The histological evaluation also showed the best osseointegration in the 1:1 group at 4 weeks, 8 weeks, and 12 weeks after the operation, respectively. In the 1:1 group, the bone grew into the pore of the cement in the laminar arrangement and connected with the cement tightly at the 12th week after the operation

  12. Microbial resistance related to antibiotic-loaded bone cement: a historical review.

    Science.gov (United States)

    Walker, Lucy C; Baker, Paul; Holleyman, Richard; Deehan, David

    2017-12-01

    The use of antibiotic-loaded bone cement (ALBC) has a range of indications for use in orthopaedics. It has the advantage of delivering high loads of antibiotics to a targeted site, thereby avoiding the side effects associated with systemic administration. However, there is concern that the use of ALBC may precipitate the development of antibiotic-resistant bacteria. This review focuses on (1) the published research using both animal and human models examining the association between ALBC and the induction of microbial resistance (2) the mechanisms by which antimicrobial resistance develop (3) the research pertaining to specific classes of antibiotics commonly used in orthopaedic practice (4) the recent developments in calcium sulphate beads, nanoparticles and chitosan, as alternative antimicrobial treatments for periprosthetic joint infections. The literature for and against a link between ALBC and the development of microbiological resistance is reviewed and presented. It is concluded that further research is needed to develop a defined set of indications for the use of ALBC in the management of periprosthetic joint infection. In addition, further research into alternative antimicrobial therapies in this area should be encouraged.

  13. Performance of portland limestone cements: Cements designed to be more sustainable that include up to 15% limestone addition

    Science.gov (United States)

    Barrett, Timothy J.

    In 2009, ASTM and AASHTO permitted the use of up to 5% interground limestone in ordinary portland cement (OPC) as a part of a change to ASTM C150/AASHTO M85. When this work was initiated a new proposal was being discussed that would enable up to 15% interground limestone cement to be considered in ASTM C595/AASHTO M234. This work served to provide rapid feedback to the state department of transportation and concrete industry for use in discussions regarding these specifications. Since the time this work was initiated, ASTM C595/AASHTO M234 was passed (2012c) and PLCs are now able to be specified, however they are still not widely used. The proposal for increasing the volume of limestone that would be permitted to be interground in cement is designed to enable more sustainable construction, which may significantly reduce the CO2 that is embodied in the built infrastructure while also extending the life of cement quarries. Research regarding the performance of cements with interground limestone has been conducted by the cement industry since these cements became widely used in Europe over three decades ago, however this work focuses on North American Portland Limestone Cements (PLCs) which are specifically designed to achieve similar performance as the OPCs they replace.This thesis presents a two-phase study in which the potential for application of cements containing limestone was assessed. The first phase of this study utilized a fundamental approach to determine whether cement with up to 15% of interground or blended limestone can be used as a direct substitute to ordinary portland cement. The second phase of the study assessed the concern of early age shrinkage and cracking potential when using PLCs, as these cements are typically ground finer than their OPC counterparts. For the first phase of the study, three commercially produced PLCs were obtained and compared to three commercially produced OPCs made from the same clinker. An additional cement was tested

  14. Preparation, characterization and investigation of in vitro and in vivo biological properties of strontium-modified calcium phosphate cement for bone defect repair

    Directory of Open Access Journals (Sweden)

    Reza Masaeli

    2015-12-01

    Full Text Available Background and Aims: The aim of this study was to evaluate the invitro and invivo performance of a 3 wt% of strontium additive hydroxyapatite calcium phosphate cements (CPC. Materials and Methods: The prepared calcium phosphate cement was characterized with XRD, FTIR, setting time, STA and in vitro and in vivo biological analyses. The MTT assay ALP activities as in vitro study and radiological and histological examinations as in vivo study between the three groups of 3 wt% Sr-HA/CPC, CPC and control were performed and compared. Data were analyzed using T-test and One-way ANOVA. Results: XRD analysis demonstrated that by increasing the ratio of Powder/Liquid (P/L, the crystallinity of the prepared cement increased. The substitution of strontium instead of calcium in CPC could also alter the crystal structure, including some structural disorder. However, in the CPC with no strontium hydroxyapatite (Sr-HA, no significant increase in the crystallinity was observed. SEM observations revealed CPC with increasing P/L ratio, the formation of hydroxyapatite crystals arising from the interaction of solid and liquid phase of cement was decreased. Also, the addition of Sr within Ca site culminated in a dramatic increase in crystallinity of hydroxyapatite. In vitro biological properties ascertained that addition of 3 wt. % Sr-HA into CPC enhanced MTT assay and ALP activity, which could be due to the presence of strontium ions. The histological study showed that greater remodeling was seen at 4 weeks after implantation when the 3 wt% Sr-HA/CPC was used. Conclusion: The obtained results cleared that CPC can be a potential candidate as a carrier with strontium additives for bone remodeling and regeneration.

  15. Industrial Wastes as Auxiliary Additives to Cement/Lime Stabilization of Soils

    Directory of Open Access Journals (Sweden)

    Jijo James

    2016-01-01

    Full Text Available Chemical stabilization involves the use of chemical agents for initiating reactions within the soil for modification of its geotechnical properties. Cement and lime stabilization have been the most common stabilization methods adopted for soil treatment. Cement stabilization results in good compressive strengths and is preferred for cohesionless to moderately cohesive soil but loses effectiveness when the soil is highly plastic. Lime stabilization is the most preferred method for plastic clays; however, it proves to be ineffective in sulphate rich clays and performs poorly under extreme conditions. With such drawbacks, lots of researches have been undertaken to address the issues faced with each stabilization method, in particular, the use of solid wastes for soil stabilization. Solid waste reuse has gained high momentum for achieving sustainable waste management in recent times. Research has shown that the use of solid wastes as additives with and replacement for conventional stabilizers has resulted in better results than the performance of either individually. This review provides insight into some of the works done by earlier researchers on lime/cement stabilization with industrial wastes as additives and helps to form a sound platform for further research on industrial wastes as additives to conventional stabilizers.

  16. Peri-Implantitis Associated with Type of Cement: A Retrospective Analysis of Different Types of Cement and Their Clinical Correlation to the Peri-Implant Tissue.

    Science.gov (United States)

    Korsch, Michael; Walther, Winfried

    2015-10-01

    The cementation of fixed implant-supported dental restorations involves the risk of leaving excess cement in the mouth which can promote biofilm formation in the peri-implant sulcus. As a result, an inflammation may develop. The aim of the present study was to investigate the clinical effect of two different luting cements on the peri-implant tissue. Within the scope of a retrospective clinical follow-up study, the prosthetic structures of 22 patients with 45 implants were revised. In all cases, a methacrylate cement (Premier Implant Cement [PIC], Premier® Dental Products Company, Plymouth Meeting, PA, USA) had been used for cementation. In 16 additional patients with 28 implants, the suprastructures were retained with a zinc oxide-eugenol cement (Temp Bond [TB], Kerr Sybron Dental Specialities, Glendora, CA, USA). These patients were evaluated in the course of routine treatment. In both populations, the retention time of the suprastructures was similar (TB 3.77 years, PIC 4.07 years). In the PIC cases, 62% of all implants had excess cement. In the TB cases, excess cement was not detectable on any of the implants. Bleeding on probing was significantly more frequent on implants cemented with PIC (100% with and 94% without excess cement) than on implants cemented with TB (46%). Pocket suppuration was observed on 89% of the PIC-cemented implants with excess cement (PIC without excess cement 24%), whereas implants with TB were not affected by it at all. The peri-implant bone loss was significantly greater in the PIC patients (with excess cement 1.37 mm, without excess cement 0.41 mm) than it was in the TB patients (0.07 mm). The frequency of undetected excess cement depends essentially on the type of cement used. Cements that tend to leave more undetected excess have a higher prevalence for peri-implant inflammation and cause a more severe peri-implant bone loss. © 2014 Wiley Periodicals, Inc.

  17. Cement Leakage in Percutaneous Vertebral Augmentation for Osteoporotic Vertebral Compression Fractures: Analysis of Risk Factors.

    Science.gov (United States)

    Xie, Weixing; Jin, Daxiang; Ma, Hui; Ding, Jinyong; Xu, Jixi; Zhang, Shuncong; Liang, De

    2016-05-01

    The risk factors for cement leakage were retrospectively reviewed in 192 patients who underwent percutaneous vertebral augmentation (PVA). To discuss the factors related to the cement leakage in PVA procedure for the treatment of osteoporotic vertebral compression fractures. PVA is widely applied for the treatment of osteoporotic vertebral fractures. Cement leakage is a major complication of this procedure. The risk factors for cement leakage were controversial. A retrospective review of 192 patients who underwent PVA was conducted. The following data were recorded: age, sex, bone density, number of fractured vertebrae before surgery, number of treated vertebrae, severity of the treated vertebrae, operative approach, volume of injected bone cement, preoperative vertebral compression ratio, preoperative local kyphosis angle, intraosseous clefts, preoperative vertebral cortical bone defect, and ratio and type of cement leakage. To study the correlation between each factor and cement leakage ratio, bivariate regression analysis was employed to perform univariate analysis, whereas multivariate linear regression analysis was employed to perform multivariate analysis. The study included 192 patients (282 treated vertebrae), and cement leakage occurred in 100 vertebrae (35.46%). The vertebrae with preoperative cortical bone defects generally exhibited higher cement leakage ratio, and the leakage is typically type C. Vertebrae with intact cortical bones before the procedure tend to experience type S leakage. Univariate analysis showed that patient age, bone density, number of fractured vertebrae before surgery, and vertebral cortical bone were associated with cement leakage ratio (Pcement leakage are bone density and vertebral cortical bone defect, with standardized partial regression coefficients of -0.085 and 0.144, respectively. High bone density and vertebral cortical bone defect are independent risk factors associated with bone cement leakage.

  18. Study of chemical additives in the cementation of radioactive waste of PWR reactors

    International Nuclear Information System (INIS)

    Vieira, Vanessa Mota; Tello, Cledola Cassia Oliveira de

    2012-01-01

    In this research it has been studied the effects of chemical admixtures in the cementation process of radioactive wastes. These additives are used to improve the properties of waste cementation process, both of the paste and of the solidified product. However there are a large variety of these materials that are frequently changed or taken out of the market. Then it is essential to know the commercially available materials and their effects. The tests were carried out with a solution simulating the evaporator concentrate waste coming from PWR nuclear reactors. It was cemented using two formulations, A and B, incorporating higher or lower amount of waste, respectively. It was added chemical admixtures from two manufacturers (S and H), which were: accelerators, set retarders and superplasticizers. The experiments were organized by a factorial design 23. The measured parameters were: the viscosity, the setting time, the paste and product density and the compressive strength. The parameter evaluated in this study was the compressive strength at age of 28 days, is considered essential security issues relating to the handling, transport and storage of cemented waste product. The results showed that the addition of accelerators improved the compressive strength of the cemented products. (author)

  19. Study of chemical additives in the cementation of radioactive waste of PWR reactors

    International Nuclear Information System (INIS)

    Vieira, Vanessa Mota; Tello, Cledola Cassia Oliveira de

    2011-01-01

    Cementation is a very useful process to solidify radioactive wastes. Depending on the waste it can be necessary to use of chemical additives (admixtures) to improve the cementation process and its product. Admixtures are materials, other than cement, aggregate and water, that are added either before or during the mixing to alter some properties, such as workability, curing temperature range, and setting time. However there are a large variety of these materials that are frequently changed or taken out of the market. In this changeable scenario it is essential to know the commercially available materials and their characteristics. In this research the effects of chemical admixtures in the solidification process has been studied. For the tests it was prepared a solution simulating the evaporator concentrate waste, cemented by two different formulations, and three chemical admixtures from two manufacturers. The tested admixtures were accelerators, set retarders and super plasticizers. The experiments were organized by a planning factorial 23 to quantify the effects of formulations, of the admixtures, its quantity and manufacturer in properties of the paste and products. The measured parameters were the density, the viscosity and the setting time of the paste, and the product compressive strength. The parameter evaluated in this study was the compressive strength at age of 28 days, is considered essential security issues relating to the handling, transport and storage of cemented waste product. The results showed that the addition of accelerators improved the compressive strength of the cemented products. (author)

  20. Using calcium silicate to regulate the physicochemical and biological properties when using β-tricalcium phosphate as bone cement

    Energy Technology Data Exchange (ETDEWEB)

    Kao, Chia-Tze; Huang, Tsui-Hsien [School of Dentistry, Chung Shan Medical University, Taichung, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Chen, Yi-Jyun [School of Dentistry, Chung Shan Medical University, Taichung, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Dental Department, Taichung Hospital, Ministry of Health and Welfare, Taichung City, Taiwan (China); Hung, Chi-Jr [School of Dentistry, Chung Shan Medical University, Taichung, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Lin, Chi-Chang, E-mail: chichang31@gmail.com [Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan (China); Shie, Ming-You, E-mail: eviltacasi@gmail.com [Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan (China)

    2014-10-01

    β-Tricalcium phosphate (β-TCP) is an osteoconductive material. For this research we have combined it with a low degradation calcium silicate (CS) to enhance its bioactive and osteostimulative properties. To check its effectiveness, a series of β-TCP/CS composites with different ratios were prepared to make new bioactive and biodegradable biocomposites for bone repair. Regarding the formation of bone-like apatite, the diametral tensile strength as well as the ion release and weight loss of composites were compared both before and after immersions in simulated body fluid (SBF). In addition, we also examined the behavior of human dental pulp cells (hDPCs) cultured on β-TCP/CS composites. The results show that the apatite deposition ability of the β-TCP/CS composites improves as the CS content is increased. For composites with more than a 60% CS content, the samples become completely covered by a dense bone-like apatite layer. At the end of the immersion period, weight losses of 24%, 32%, 34%, 38%, 41%, and 45% were observed for the composites containing 0%, 20%, 40%, 80%, 80% and 100% β-TCP cements, respectively. In addition, the antibacterial activity of CS/β-TCP composite improves as the CS-content is increased. In vitro cell experiments show that the CS-rich composites promote human dental pulp cell (hDPC) proliferation and differentiation. However, when the CS quantity in the composite is less than 60%, the quantity of cells and osteogenesis protein of hDPCs is stimulated by Si released from the β-TCP/CS composites. The degradation of β-TCP and the osteogenesis of CS give strong reason to believe that these calcium-based composite cements will prove to be effective bone repair materials. - Highlights: • CS improved the physicochemical properties and osteogenic activity of β-TCP. • Higher CS in the composite, the shorter setting time and the higher DTS was found. • With a CS more than 40%, the osteogenesis and angiogenesis proteins were promoted by

  1. Behaviour of a cement stone with chemical additions under short high temperature effects

    International Nuclear Information System (INIS)

    Falikman, V.R.; Veselova, V.I.; Ershov, V.Yu.; Muzalevskij, L.P.

    1987-01-01

    The purpose of the paper is to investigate the influence of different chemical additions used in NPP construction on thermal stability of a cement stone under short- and high-temperature effects. S-3 and dihydroxyphenyl utilized as peptizing agents for increase of placeability of concrete mixtures as well as sodium nitrite utilized as an antifreezing addition at conccreting at low temperatures are used as additions. The investigations were conducted in the 0-900 deg C temperature range divided into 4 ranges. Shrinkage and mass losses of specimens were determined. The obtained data show that specimens with additions are subjected to smaller shrinkage and mass losses as compared with specimens without additions. The highest positive effect is attained in portland cements with active mineral additions

  2. Mechanical and thermal properties of castor oil polyurethane bone cement after gamma irradiation

    International Nuclear Information System (INIS)

    Azevedo, E.C.; Chierice, G.O.; Claro Neto, S.; Lepiesnki, C.M.; Nascimento, E.M.

    2009-01-01

    Polyurethanes from castor oil are being employed as bone cement in medical applications. In this work the thermal and mechanical properties of gamma irradiated polyurethanes derivative from castor oil were investigated by instrumented indentation, thermogravimetry and scanning electron microscopy. A slightly increase in hardness is observed only for doses as high as 100 kGy. Thermal analysis indicates stability at human body temperature. The glass transition temperature has small changes after gamma irradiation. (author)

  3. Theoretical prediction and experimental determination of the effect of mold characteristics on temperature and monomer conversion fraction profiles during polymerization of a PMMA-based bone cement.

    Science.gov (United States)

    Vallo, Claudia I

    2002-01-01

    The present work is concerned with applications of a kinetic model for free-radical polymerization of a polymethylmethacrylate-based bone cement. Autocatalytic behavior at the first part of the reaction as well as a diffusion control phenomenon near vitrification are described by the model. Comparison of theoretical computations with experimental measurements for the temperature evolution during batch casting demonstrated the capacity of the proposed model to represent the kinetic behavior of the polymerization reaction. Temperature evolution and monomer conversion were simulated for the cure of the cement in molds made of different materials. The maximum monomer conversion fraction was markedly influenced by the physical properties of the mold material. The unreacted monomer acts as a plasticizer that influences the mechanical behavior of the cement. Hence, the same cement formulation cured in molds of different materials may result in different mechanical response because of the differences in the amounts of residual monomer. Standardization of the mold type to prepare specimens for the mechanical characterization of bone cements is recommended. Theoretical prediction of temperature evolution during hip replacement indicated that for cement thickness lower than 6 mm the peak temperature at the bone-cement interface was below the limit stated for thermal injury (50 degrees C for more than 1 min). The use of thin cement layers is recommended to diminish the risk of thermal injury; however, it is accompanied by an increase in the amount of unreacted monomer present in the cured material. Copyright 2002 Wiley Periodicals, Inc. J Biomed Mater Res (Appl Biomater) 63: 627-642, 2002

  4. Improvement in engineering properties of soft-soil using cement and lime additives: A case study of southern Vietnam

    Science.gov (United States)

    To-Anh Phan, Vu; Ngoc-Anh Pham, Kha

    2018-04-01

    This paper presents the experimental results of using two additives to improve natural soft soil properties in southern Vietnam (i.g., cement and cement-lime mixture). The specimens were prepared by compacting method. Firstly, the natural soil was mixed with cement or cement-lime to determine the optimum water contents of various additive contents. Then, optimum water content was used to produce samples to test some engineering properties such as unconfined compressive strength, splitting tensile strength, and Young’s modulus. The specimens were tested by various curing duration of 7, 14, and 28 days. Results indicated that using cement additive is suitable for improvement of soft soil in the local area and cement-soil stabilization can be replaced as the subbase layer of the flexible pavement according to current Vietnamese standard. In addition, a higher cement content has a greater compressive strength as well as tensile strength. Besides, the Young’ modulus has significantly increased with a long-term curing age and more cement content. No evidences of increasing in strength and modulus are found with the cement-lime-soil stabilization. Finally, the best-fit power function is established by the relationships between unconfined compressive strength and splitting tensile strength as well unconfined compressive strength and Young’s Modulus, with the coefficient of determination, R2>0.999.

  5. Physicochemical properties and biocompatibility of chitosan oligosaccharide/gelatin/calcium phosphate hybrid cements

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Ting-Yi [Department of Dental Laboratory Technology, Central Taiwan University of Science and Technology, Taichung 406, Taiwan (China); Ho, Chia-Che [Institute of Oral Biology and Biomaterials Science, Chung-Shan Medical University, Taichung 402, Taiwan (China); Chen, David Chan-Hen [Institute of Veterinary Microbiology, National Chung-Hsing University, Taichung 402, Taiwan (China); Lai, Meng-Heng [Institute of Oral Biology and Biomaterials Science, Chung-Shan Medical University, Taichung 402, Taiwan (China); Ding, Shinn-Jyh, E-mail: sjding@csmu.edu.tw [Institute of Oral Biology and Biomaterials Science, Chung-Shan Medical University, Taichung 402, Taiwan (China); Department of Dentistry, Chung-Shan Medical University Hospital, Taichung 402, Taiwan (China)

    2010-04-15

    A bone substitute material was developed consisting of a chitosan oligosaccharide (COS) solution in a liquid phase and gelatin (GLT) containing calcium phosphate powder in a solid phase. The physicochemical and biocompatible properties of the hybrid cements were evaluated. The addition of COS to cement did not affect the setting time or diametral tensile strength of the hybrid cements, whereas GLT significantly prolonged the setting time and decreased the strength slightly. The setting reaction was inhibited by the addition of GLT to the initial mixture, but not by COS. However, the presence of GLT appreciably improved the anti-washout properties of the hybrid cement compared with COS. COS may promote the cement's biocompatibility as an approximate twofold increase in cell proliferation for 10% COS-containing cements was observed on day 3 as compared with the controls. The combination of GLT and COS was chosen due to the benefits achieved from several synergistic effects and for their clinical applications. Cement with 5% GLT and 10% COS may be a better choice among cements in terms of anti-washout properties and biological activity.

  6. Compressive Strength and Physical Properties Behavior of Cement Mortars with addition of Cement Klin Dust

    OpenAIRE

    Auday A Mehatlaf

    2017-01-01

    Cement Klin Dust (CKD) was the waste of almost cement industry factories, so that in this paper utilization of CKD as filler in cement and/or concrete was the main objective. CKD from the Karbala cement factory had been used and analysis to know the chemical composition of the oxides was done. In this paper cement mortars with different weight percentages of CKD (0,5,10,20,30,40) had been prepared. Physical properties such as density and porosity were done in different age curing (3, 7, 28) d...

  7. Synthesis and evaluation of bone cement with different concentrations of brushite; Sintese e avaliacao de cimento osseo com diferentes concentracoes de brushita

    Energy Technology Data Exchange (ETDEWEB)

    Morua, O.C.; Cardoso, M.J.B.; Farias, K.A.S.; Barbero, M.A.R.; Carrodeguas, R.G.; Fook, M.V.L., E-mail: cumberbatch.otto@gmail.com [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Dept. de Ciencias e Engenharia de Materiais; Laboratorio de Desenvolvimento e Avaliacao de Biomateriais (CERTBIO/UFCG), PB (Brazil); Instituto de Ceramica y Vidrio (CSIC), Madrid (Spain); AzureBio SL, Tres Cantos, Madrid (Spain)

    2017-10-01

    The objective of this study was to chemically synthesize brushite bone cement in different compositions and to evaluate the microstructural formation, crystalline phases present and the influence of the compositions and amount of water on the mechanical property of compression resistance. Characterized by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and mechanical properties. The XRD results confirmed the presence of the brushite and wollastonite phases. In the SEM it was verified the presence of particle agglomerates of each phase and a reduction of the particle sizes. In mechanical properties, it was observed that the amount of water influenced both the porosity and the compressive strength of the compositions. It was concluded that the synthesized brushite bone cement presented the expected crystalline phases and morphology, both the compositions and the amount of water influenced the mechanical properties of the developed cement. (author)

  8. Temperature Measurement During Polymerization of Bone Cement in Percutaneous Vertebroplasty: An In Vivo Study in Humans

    International Nuclear Information System (INIS)

    Anselmetti, Giovanni Carlo; Manca, Antonio; Kanika, Khanna; Murphy, Kieran; Eminefendic, Haris; Masala, Salvatore; Regge, Daniele

    2009-01-01

    Aim of the study was to 'in vivo' measure temperature, during percutaneous vertebroplasty (PV), within a vertebral body injected with different bone cements. According to the declaration of Helsinki, 22 women (60-80 years; mean, 75 years) with painful osteoporotic vertebral collapse underwent bilateral transpedicular PV on 22 lumbar vertebrae. Two 10-G vertebroplasty needles were introduced into the vertebra under digital fluoroscopy; a 16-G radiofrequency thermoablation needle (Starburst XL; RITA Medical System Inc., USA), carrying five thermocouples, was than coaxially inserted. Eleven different bone cements were injected and temperatures were measured every 30 s until temperatures dropped under 45 o C. After the thermocouple needle was withdrawn, bilateral PV was completed with cement injection through the vertebroplasty needle. Unpaired Student's t-tests, Kruskal-Wallis test, and Wilcoxon signed rank test were used to evaluate significant differences (p o C), B (from 50 o to 60 o C), and C (below 50 o C). Peak temperature in Group A (86.7 ± 10.7 o C) was significantly higher (p = 0.0172) than that in Groups B (60.5 ± 3.7 o C) and C (44.8 ± 2.6 o C). The average of all thermocouples showed an extremely significant difference (p = 0.0002) between groups. None of the tested cements maintained a temperature ≥45 o C for more than 30 min. These data suggest that back-pain improvement is obtained not by thermal necrosis but by mechanical consolidation only. The relative necrotic thermal effect in vertebral metastases seems to confirm that analgesia must be considered the main intent of PV.

  9. Influences of doping mesoporous magnesium silicate on water absorption, drug release, degradability, apatite-mineralization and primary cells responses to calcium sulfate based bone cements

    International Nuclear Information System (INIS)

    Gu, Zhengrong; Wang, Sicheng; Weng, Weizong; Chen, Xiao; Cao, Liehu; Wei, Jie; Shin, Jung-Woog; Su, Jiacan

    2017-01-01

    In this study, composite cements containing mesoporous magnesium silicate (m-MS) and calcium sulfate (CS) were fabricated. The results revealed that the setting time of the m-MS/CS composite cements (m-MSC) slightly prolonged with the increase of m-MS content while the compressive strength suffered a little loss. The doping of m-MS improved the water absorption, drug release (vancomycin) and degradability of the m-MSC in Tris-HCl solution (pH = 7.4). In addition, addition of m-MS facilitated the apatite-mineralization of m-MSC in simulated body fluid (SBF), indicating good bioactivity. For cell cultural experiments, the results revealed that the m-MSC promoted the cells adhesion and proliferation, and improved the alkaline phosphatase (ALP) activity of MC3T3-E1 cells, revealing good cytocompatibility. It could be suggested that the m-MSC might be promising cements biomaterials for bone tissue regeneration. - Highlights: • The mesoporous magnesium silicate and calcium sulfate composite was fabricated. • The composite possessed good water absorption and drug release of vancomycin. • The bioactive composite could enhance the in vivo apatite formation in SBF. • The composite promoted cell adhesion, proliferation and osteogenic differentiation.

  10. Influences of doping mesoporous magnesium silicate on water absorption, drug release, degradability, apatite-mineralization and primary cells responses to calcium sulfate based bone cements

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Zhengrong [Department of Trauma Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); The Department of Orthopaedics, Jing' an District Centre Hospital of Shanghai (Huashan Hospital Fudan University Jing' An Branch), 200040 (China); Wang, Sicheng [Department of Trauma Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Department of Orthopaedics, Zhongye Hospital, Shanghai 200941 (China); Weng, Weizong; Chen, Xiao; Cao, Liehu [Department of Trauma Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Wei, Jie [Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Shin, Jung-Woog [Department of Biomedical Engineering, Inje University, Gimhae, 621749 (Korea, Republic of); Su, Jiacan, E-mail: jiacansu@sina.com [Department of Trauma Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China)

    2017-06-01

    In this study, composite cements containing mesoporous magnesium silicate (m-MS) and calcium sulfate (CS) were fabricated. The results revealed that the setting time of the m-MS/CS composite cements (m-MSC) slightly prolonged with the increase of m-MS content while the compressive strength suffered a little loss. The doping of m-MS improved the water absorption, drug release (vancomycin) and degradability of the m-MSC in Tris-HCl solution (pH = 7.4). In addition, addition of m-MS facilitated the apatite-mineralization of m-MSC in simulated body fluid (SBF), indicating good bioactivity. For cell cultural experiments, the results revealed that the m-MSC promoted the cells adhesion and proliferation, and improved the alkaline phosphatase (ALP) activity of MC3T3-E1 cells, revealing good cytocompatibility. It could be suggested that the m-MSC might be promising cements biomaterials for bone tissue regeneration. - Highlights: • The mesoporous magnesium silicate and calcium sulfate composite was fabricated. • The composite possessed good water absorption and drug release of vancomycin. • The bioactive composite could enhance the in vivo apatite formation in SBF. • The composite promoted cell adhesion, proliferation and osteogenic differentiation.

  11. The combination of ultrasound with antibiotics released from bone cement decreases the viability of planktonic and biofilm bacteria : an in vitro study with clinical strains

    NARCIS (Netherlands)

    Ensing, Geert T.; Neut, Danielle; Horn, Jim R. van; van der Mei, Henny C.; Busscher, Henk J.

    2006-01-01

    Objectives: Antibiotic-loaded bone cements are used for the permanent fixation of joint prostheses. Antibiotic-loaded cements significantly decrease the incidence of infection. The objective of this study was to investigate whether the viability of bacteria derived from patients with a

  12. Influence of industrial solid waste addition on properties of soil-cement bricks

    OpenAIRE

    Siqueira, F. B.; Amaral, M. C.; Bou-Issa, R. A.; Holanda, J. N. F.

    2016-01-01

    Abstract The reuse of pollutant solid wastes produced in distinct industrial activities (avian eggshell waste and welding flux slag waste) as a source of alternative raw material for producing soil-cement bricks for civil construction was investigated. Soil-cement bricks containing up to 30 wt% of industrial solid waste were uniaxially pressed and cured for 28 days. Special emphasis is given on the influence of solid waste addition on the technical properties (as such volumetric shrinkage, wa...

  13. Improved workability of injectable calcium sulfate bone cement by regulation of self-setting properties

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zonggang, E-mail: chenzg@sdu.edu.cn [National Glycoengineering Research Center, Shandong University, Jinan 250100 (China); Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Liu, Huanye [Department of Orthodontics, School of Stomatology, China Medical University, Shenyang 110001 (China); Liu, Xi [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Lian, Xiaojie [College of Mechanics, Taiyuan University of Technology, Taiyuan 030024 (China); Guo, Zhongwu [National Glycoengineering Research Center, Shandong University, Jinan 250100 (China); Jiang, Hong-Jiang [Wendeng Hospital of Traditional Chinese Orthopedics and Traumatology, Shandong 264400 (China); Cui, Fu-Zhai, E-mail: cuifz@mail.tsinghua.edu.cn [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2013-04-01

    Calcium sulfate hemihydrate (CSH) powder as an injectable bone cement was prepared by hydrothermal synthesis of calcium sulfate dihydrate (CSD). The prepared materials showed X-ray diffraction peaks corresponding to the CSH structure without any secondary phases, implying complete conversion from CSD phase to CSH phase. Thermogravimetric (TG) analyses showed the crystal water content of CSH was about 6.0% (wt.), which is near to the theoretic crystal water value of CSH. From scanning electron microscopy (SEM) micrographs, sheet crystal structure of CSD was observed to transform into rod-like crystal structure of CSH. Most interesting and important of all, CSD as setting accelerator was also introduced into CSH powder to regulate self-setting properties of injectable CSH paste, and thus the self-setting time of CSH paste can be regulated from near 30 min to less than 5 min by adding various amounts of setting accelerator. Because CSD is not only the reactant of preparing CSH but also the final solidified product of CSH, the setting accelerator has no significant effect on the other properties of materials, such as mechanical properties. In vitro biocompatibility and in vivo histology studies have demonstrated that the materials have good biocompatibility and good efficacy in bone regeneration. All these will further improve the workability of CSH in clinic applications. Highlights: ► Calcium sulfate hemihydrate (CSH) can be an injectable bone cement. ► CSH was produced by hydrothermal synthesis of calcium sulfate dihydrate (CSD). ► CSD was introduced into CSH powder to regulate self-setting properties of CSH. ► Setting accelerator has no significant effect on the other properties of materials. ► Injectable CSH has good biocompatibility and good efficacy in bone regeneration.

  14. Improved workability of injectable calcium sulfate bone cement by regulation of self-setting properties

    International Nuclear Information System (INIS)

    Chen, Zonggang; Liu, Huanye; Liu, Xi; Lian, Xiaojie; Guo, Zhongwu; Jiang, Hong-Jiang; Cui, Fu-Zhai

    2013-01-01

    Calcium sulfate hemihydrate (CSH) powder as an injectable bone cement was prepared by hydrothermal synthesis of calcium sulfate dihydrate (CSD). The prepared materials showed X-ray diffraction peaks corresponding to the CSH structure without any secondary phases, implying complete conversion from CSD phase to CSH phase. Thermogravimetric (TG) analyses showed the crystal water content of CSH was about 6.0% (wt.), which is near to the theoretic crystal water value of CSH. From scanning electron microscopy (SEM) micrographs, sheet crystal structure of CSD was observed to transform into rod-like crystal structure of CSH. Most interesting and important of all, CSD as setting accelerator was also introduced into CSH powder to regulate self-setting properties of injectable CSH paste, and thus the self-setting time of CSH paste can be regulated from near 30 min to less than 5 min by adding various amounts of setting accelerator. Because CSD is not only the reactant of preparing CSH but also the final solidified product of CSH, the setting accelerator has no significant effect on the other properties of materials, such as mechanical properties. In vitro biocompatibility and in vivo histology studies have demonstrated that the materials have good biocompatibility and good efficacy in bone regeneration. All these will further improve the workability of CSH in clinic applications. Highlights: ► Calcium sulfate hemihydrate (CSH) can be an injectable bone cement. ► CSH was produced by hydrothermal synthesis of calcium sulfate dihydrate (CSD). ► CSD was introduced into CSH powder to regulate self-setting properties of CSH. ► Setting accelerator has no significant effect on the other properties of materials. ► Injectable CSH has good biocompatibility and good efficacy in bone regeneration

  15. Graphene oxide versus graphene for optimisation of PMMA bone cement for orthopaedic applications.

    Science.gov (United States)

    Paz, E; Forriol, F; Del Real, J C; Dunne, N

    2017-08-01

    Graphene (G) and graphene oxide (GO) nano-sized powders with loadings ranging from 0.1 to 1.0wt% were investigated as reinforced agents for polymethyl methacrylate (PMMA) bone cements. The mechanical properties (i.e. bend strength, bend modulus, compression strength, fracture toughness and fatigue performance) and the thermal properties (i.e. maximum temperature, setting time, curing heat and residual monomer) of the resultant nanocomposites were characterised. The mechanical performance of G-PMMA and GO-PMMA bone cements has been improved at low loadings (≤0.25wt%), especially the fracture toughness and fatigue performance. These improvements were attributed to the fact that the G and GO induced deviations in the crack fronts and hampered crack propagation. The high functionalisation of GO compared with G resulted in greater enhancements because it facilitated the creation of a stronger interfacial adhesion between the GO and PMMA. The use of loadings ≥0.25wt% showed a detriment in the mechanical performance as consequence of the formation of agglomerates as well as to an increase in the porosity. The increase in the residual monomer and the decrease in the curing heat, observed with the increase in the level of G and GO added, suggests that such materials retard and inhibit the curing reaction at high levels of loading by interfering in the radical reaction. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Regulation of physicochemical properties, osteogenesis activity, and fibroblast growth factor-2 release ability of β-tricalcium phosphate for bone cement by calcium silicate

    International Nuclear Information System (INIS)

    Su, Ching-Chuan; Kao, Chia-Tze; Hung, Chi-Jr; Chen, Yi-Jyun; Huang, Tsui-Hsien; Shie, Ming-You

    2014-01-01

    β-Tricalcium phosphate (β-TCP) is an osteoconductive material. For this research we have combined it with a low degradation calcium silicate (CS) to enhance its bioactive and osteostimulative properties. To check its effectiveness, a series of β-TCP/CS composites with different ratios were prepared to make new bioactive and biodegradable biocomposites for bone repair. Formation of bone-like apatite, the diametral tensile strength, and weight loss of composites were considered before and after immersion in simulated body fluid (SBF). In addition, we also examined the effects of fibroblast growth factor-2 (FGF-2) released from β-TCP/CS composites and in vitro human dental pulp cell (hDPC) and studied its behavior. The results showed that the apatite deposition ability of the β-TCP/CS composites was enhanced as the CS content was increased. For composites with more than 50% CS contents, the samples were completely covered by a dense bone-like apatite layer. At the end of the immersion point, weight losses of 19%, 24%, 33%, 42%, and 51% were observed for the composites containing 0%, 30%, 50%, 70% and 100% β-TCP cements, respectively. In vitro cell experiments show that the CS-rich composites promote human dental pulp cell (hDPC) proliferation and differentiation. However, when the CS quantity in the composite is less than 70%, the amount of cells and osteogenesis protein of hDPCs was stimulated by FGF-2 released from β-TCP/CS composites. The combination of FGF-2 in degradation of β-TCP and osteogenesis of CS gives a strong reason to believe that these calcium-based composite cements may prove to be promising bone repair materials. - Highlights: • CS improved physicochemical properties and osteogenic activity of β-TCP. • The higher the CS in the cement, the shorter the setting time and the higher the DTS. • The cell behavior was stimulated by FGF-2 released from composite containing 50% CS. • β-TCP/CS composite with FGF-2 has optimal properties for

  17. Development of a 3-D x-ray micro-tomography system and its application to trabecular bone/cement interface

    International Nuclear Information System (INIS)

    Chi, Yong Ki; Cho, Gyuseong

    2004-01-01

    In recent years, the interface analysis of micro-structure based objects is an important research in osteoporosis, vascular imaging since a 3-D X-ray micro-tomography system was developed. However, the micro-tomographic image shows the white-out appearance in case of imaging of similar density objects with low energy X-ray. Therefore these images must be analyzed about the interface between microstructure based objects for its application to biomechanical study. Many published studies suggested approximately assumed model of interface and predicted mechanical failure by means of Finite Element Method (FEM) but these FEM analysis has not used for modeling the real structure and interface between objects such as roughness, voids and pores of objects. We developed micro-tomography system and suggest the application of micro-tomographic image for predicting mechanical failure at the interface. The micro-tomography system consists of a 5 μm micro-focus X-ray tube, a CMOS-based image sensor and a rotating sample holder controlled by a precision motor. CMOS image sensor has 62x62 mm 2 sensing area and uses optical lenses system for increasing resolution. The sample which was manufactured by implanting cement in a pig hip bone was used and its fracture is considered to be an important cause of loosening of hip joint replacement in orthopedic implants. A Feldkamp's cone-beam reconstruction algorithm on the equispatial detector case was used for bone/cement 3D volume data and the analysis of a trabecular bone/cement interface containing white-out appearance was performed by using multiple criterion segmentation of region and volume. Finally, the segmented data can be used for fracture prediction of FEM by determining node of hexahedron meshing. In this paper, we present development of a 3-D cone beam micro-tomographic system with CMOS image sensor and its application to a complex structure of a trabecular bone and implanted cement for predicting the failure mechanism of

  18. Lignin-based cement fluid loss control additive

    Energy Technology Data Exchange (ETDEWEB)

    Schilling, P.

    1990-05-22

    This patent describes a hydraulic cement slurry composition. It comprises: a hydraulic cement, and the following expressed as parts by weight per 100 parts of the hydraulic cement, water from about 25 to 105 parts, and from abut 0.5 to 2.5 parts of a compound selected from the group consisting of a sulfonated lignin and a sulfomethylated lignin, wherein the lignin has been sequentially crosslinked by reacting the lignin with a member of the group consisting of formaldehyde and epichlorohydrin and alkoxylated with between about 2 to about 6 moles of a compound selected from the group consisting of ethylene oxide, propylene oxide, butylene oxide and a combination thereof per 1000 g of the lignin.

  19. Bone regeneration in experimental animals using calcium phosphate cement combined with platelet growth factors and human growth hormone.

    Science.gov (United States)

    Emilov-Velev, K; Clemente-de-Arriba, C; Alobera-García, M Á; Moreno-Sansalvador, E M; Campo-Loarte, J

    2015-01-01

    Many substances (growth factors and hormones) have osteoinduction properties and when added to some osteoconduction biomaterial they accelerate bone neoformation properties. The materials included 15 New Zealand rabbits, calcium phosphate cement (Calcibon(®)), human growth hormone (GH), and plasma rich in platelets (PRP). Each animal was operated on in both proximal tibias and a critical size bone defect of 6mm of diameter was made. The animals were separated into the following study groups: Control (regeneration only by Calcibon®), PRP (regeneration by Calcibon® and PRP), GH (regeneration by Calcibon® and GH). All the animals were sacrificed at 28 days. An evaluation was made of the appearance of the proximal extreme of rabbit tibiae in all the animals, and to check the filling of the critical size defect. A histological assessment was made of the tissue response, the presence of new bone formation, and the appearance of the biomaterial. Morphometry was performed using the MIP 45 image analyser. ANOVA statistical analysis was performed using the Statgraphics software application. The macroscopic appearance of the critical defect was better in the PRP and the GH group than in the control group. Histologically greater new bone formation was found in the PRP and GH groups. No statistically significant differences were detected in the morphometric study between bone formation observed in the PRP group and the control group. Significant differences in increased bone formation were found in the GH group (p=0.03) compared to the other two groups. GH facilitates bone regeneration in critical defects filled with calcium phosphate cement in the time period studied in New Zealand rabbits. Copyright © 2014 SECOT. Published by Elsevier Espana. All rights reserved.

  20. A small punch test technique for characterizing the elastic modulus and fracture behavior of PMMA bone cement used in total joint replacement.

    Science.gov (United States)

    Giddings, V L; Kurtz, S M; Jewett, C W; Foulds, J R; Edidin, A A

    2001-07-01

    Polymethylmethacrylate (PMMA) bone cement is used in total joint replacements to anchor implants to the underlying bone. Establishing and maintaining the integrity of bone cement is thus of critical importance to the long-term outcome of joint replacement surgery. The goal of the present study was to evaluate the suitability of a novel testing technique, the small punch or miniaturized disk bend test, to characterize the elastic modulus and fracture behavior of PMMA. We investigated the hypothesis that the crack initiation behavior of PMMA during the small punch test was sensitive to the test temperature. Miniature disk-shaped specimens, 0.5 mm thick and 6.4 mm in diameter, were prepared from PMMA and Simplex-P bone cement according to manufacturers' instructions. Testing was conducted at ambient and body temperatures, and the effect of test temperature on the elastic modulus and fracture behavior was statistically evaluated using analysis of variance. For both PMMA materials, the test temperature had a significant effect on elastic modulus and crack initiation behavior. At body temperature, the specimens exhibited "ductile" crack initiation, whereas at room temperature "brittle" crack initiation was observed. The small punch test was found to be a sensitive and repeatable test method for evaluating the mechanical behavior of PMMA. In light of the results of this study, future small punch testing should be conducted at body temperature.

  1. Composite bone cements loaded with a bioactive and ferrimagnetic glass-ceramic: Leaching, bioactivity and cytocompatibility.

    Science.gov (United States)

    Verné, Enrica; Bruno, Matteo; Miola, Marta; Maina, Giovanni; Bianco, Carlotta; Cochis, Andrea; Rimondini, Lia

    2015-08-01

    In this work, composite bone cements, based on a commercial polymethylmethacrylate matrix (Palamed®) loaded with ferrimagnetic bioactive glass-ceramic particles (SC45), were produced and characterized in vitro. The ferrimagnetic bioactive glass-ceramic belongs to the system SiO2-Na2O-CaO-P2O5-FeO-Fe2O3 and contains magnetite (Fe3O4) crystals into a residual amorphous bioactive phase. Three different formulations (containing 10, 15 and 20 wt.% of glass-ceramic particles respectively) have been investigated. These materials are intended to be applied as bone fillers for the hyperthermic treatment of bone tumors. The morphological, compositional, calorimetric and mechanical properties of each formulation have been already discussed in a previous paper. The in vitro properties of the composite bone cements described in the present paper are related to iron ion leaching test (by graphite furnace atomic absorption spectrometer), bioactivity (i.e. the ability to stimulate the formation of a hydroxyapatite - HAp - layer on their surface after soaking in simulated body fluid SBF) and cytocompatibility toward human osteosarcoma cells (ATCC CRL-1427, Mg63). Morphological and chemical characterizations by scanning electron microscopy and energy dispersion spectrometry have been performed on the composite samples after each test. The iron release was negligible and all the tested samples showed the growth of HAp on their surface after 28 days of immersion in a simulated body fluid (SBF). Cells showed good viability, morphology, adhesion, density and the ability to develop bridge-like structures on all investigated samples. A synergistic effect between bioactivity and cell mineralization was also evidenced. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. The influence of additives on leaching of tritium of the immobilization matrices of contaminated oils by cementation

    International Nuclear Information System (INIS)

    Deneanu, N.; Dulama, M.; Baboescu, E.; Horhoianu, G.

    2000-01-01

    The research studies showed that the solidification of contaminated pump oils resulted from Cernavoda NPP operation can be done by using various immobilization matrices such as: cement with appropriate mineral additives sand of Aghires, lime and silicate accelerator. Research works and experiments were carried out on four groups: cement-emulsion, cement-emulsion-silicate accelerator, cement-emulsion-lime- silicate accelerator and cement-emulsion-sand of Aghires. The paper presents the author's research on immobilization of contaminated oil by cementation using Romanian emulsifiers. With both of the emulsifiers used, there were obtained reasonable compressive strengths and leaching rates. (author)

  3. Utilization of municipal sewage sludge as additives for the production of eco-cement

    International Nuclear Information System (INIS)

    Lin, Yiming; Zhou, Shaoqi; Li, Fuzhen; Lin, Yixiao

    2012-01-01

    Highlights: ► The results of X-ray diffraction (XRD) pattern and scanning electron micrograph (SEM) indicated that the major components in the eco-cement clinkers were similar to those in ordinary Portland cement. ► Though the C 2 S phase formation increased with the increase of sewage sludge contents. ► All the eco-cement pastes had a longer initial setting time and final setting time than those of plain cement paste, which increased as the sewage sludge contents in raw meal increased. ► All the eco-cement pastes had lower early flexural strengths and it increased with the increase of sewage sludge contents increased, while the compressive strengths decreased slightly. ► However, it had no significant effect on all the strengths at later ages. - Abstract: The effects of using dried sewage sludge as additive on cement property in the process of clinker burning were investigated in this paper. The eco-cement samples were prepared by adding 0.50–15.0% of dried sewage sludge to unit raw meal, and then the mixtures were burned at 1450 °C for 2 h. The results indicated that the major components in the eco-cement clinkers were similar to those in ordinary Portland cement. Although the C 2 S phase formation increased with the increase of sewage sludge content, it was also found that the microstructure of the mixture containing 15.0% sewage sludge in raw meal was significantly different and that a larger amount of pores were distributed in the clinker. Moreover, all the eco-cement pastes had a longer initial setting time and final setting time than those of plain cement paste, which increased as the sewage sludge content in the raw meal increased. All the eco-cement pastes had lower early flexural strengths, which increased as the sewage sludge content increased, while the compressive strengths decreased slightly. However, this had no significant effect on all the strengths at later stages. Furthermore, the leaching concentrations of all the types of eco-cement

  4. An Experimental Study on Effect of Palm – Shell Waste Additive to Cement Strenght Enhancement

    Directory of Open Access Journals (Sweden)

    Adi Novriansyah

    2017-03-01

    Full Text Available Enhancing the cement strength through attaching chemical additive has been popular to meet the required condition for a particular well-cementing job. However, due to a low oil-price phenomenon, pouring and additive should be reconsidered because it can raise the cost and make the project become uneconomic. Another additive material in nanocomposite form will be introduced through this experimental study. The nanocomposite material consist of silica nanoparticle, known as “Nanosilica” and a palm-shell-waste, which is abundant in Indonesia. Before making a nanocomposite, the palm-shell should be burned to obtain a charcoal form, ground and sieved to attain a uniform size.   The study focuses on the two parameters, compressive strength and shear bond strength, which can reflect the strength of the cement. These values are obtained by performing a biaxial loading test to the cement sample. Various samples with different concentration of nanocomposite should be prepared and following the mixing, drying, and hardening process before the loading test is carried out. The result from the test shows a positive indication for compressive strength and shear bond strength values, according to the representative well cementing standards. Increasing the nanocomposite concentration on the cement will increase these values. Furthermore, an investigation on the temperature effect confirms that the sample with 700oC burning temperature have highest compressive-strength and shear-bond-strength values. This is a potential opportunity utilizing a waste-based material to produce another product with higher economic value.

  5. Nano clay-enhanced calcium phosphate cements and hydrogels for biomedical applications

    Science.gov (United States)

    Jammalamadaka, Udayabhanu

    Biomaterials are used as templates for drug delivery, scaffolds in tissue engineering, grafts in surgeries, and support for tissue regeneration. Novel biomaterial composites are needed to meet multifaceted requirements of compatibility, ease of fabrication and controlled drug delivery. Currently used biomaterials in orthopedics surgeries suffer limitations in toxicity and preventing infections. Polymethyl methacrylate (PMMA) used as bone cement suffers from limitations of thermal necrosis and monomer toxicity calls for development of better cementing biomaterials. A biodegradable/bioresorbable cement with good mechanical properties is needed to address this short coming. Metal implants used in fixing fractures or total joint replacement needs improvements in preventing biofilm formation and better tissue integration. This research addressed the above mentioned research gaps by formulating novel biomaterial composites. Calcium phosphate cements are the alternative bone cements that are bioresorbable and promote tissue integration. These cements lack sufficient mechanical strengths to be used in load bearing sites. The addition of nanoparticles is hypothesized to improve the mechanical properties without inducing toxicity to the tissue. This hypothesis was tested by evaluating compression and flexural strengths in addition to cytocompatibility tests. Results indicate that addition of nano-clay particles (halloysites nanotubes) improved the compressive strength and osteoinductive properties of calcium phosphate cements. To address the research need of preventing implant failure due to infection and aseptic loosening, novel coatings are needed. Hydrogels are well establish for their ability to mimic in vivo environment, promote cell viability and as drug delivery vehicles. Use of composites of hydrogels and drug-loaded nanoparticles to prevent infection was evaluated. Cytocompatibility results indicate good cell viability. Antibacterial results show sustained release

  6. Titanium dioxide nanotubes addition to self-adhesive resin cement: Effect on physical and biological properties.

    Science.gov (United States)

    Ramos-Tonello, Carla M; Lisboa-Filho, Paulo N; Arruda, Larisa B; Tokuhara, Cintia K; Oliveira, Rodrigo C; Furuse, Adilson Y; Rubo, José H; Borges, Ana Flávia S

    2017-07-01

    This study has investigated the influence of Titanium dioxide nanotubes (TiO 2 -nt) addition to self-adhesive resin cement on the degree of conversion, water sorption, and water solubility, mechanical and biological properties. A commercially available auto-adhesive resin cement (RelyX U200™, 3M ESPE) was reinforced with varying amounts of nanotubes (0.3, 0.6, 0.9wt%) and evaluated at different curing modes (self- and dual cure). The DC in different times (3, 6, 9, 12 and 15min), water sorption (Ws) and solubility (Sl), 3-point flexural strength (σf), elastic modulus (E), Knoop microhardness (H) and viability of NIH/3T3 fibroblasts were performed to characterize the resin cement. Reinforced self-adhesive resin cement, regardless of concentration, increased the DC for the self- and dual-curing modes at all times studied. The concentration of the TiO 2 -nt and the curing mode did not influence the Ws and Sl. Regarding σf, concentrations of both 0.3 and 0.9wt% for self-curing mode resulted in data similar to that of dual-curing unreinforced cement. The E increased with the addition of 0.9wt% for self-cure mode and H increased with 0.6 and 0.9wt% for both curing modes. Cytotoxicity assays revealed that reinforced cements were biocompatible. TiO 2 -nt reinforced self-adhesive resin cement are promising materials for use in indirect dental restorations. Taken together, self-adhesive resin cement reinforced with TiO 2 -nt exhibited physicochemical and mechanical properties superior to those of unreinforced cements, without compromising their cellular viability. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  7. Evaluation of a setting reaction pathway in the novel composite TiHA-CSD bone cement by FT-Raman and FT-IR spectroscopy

    Science.gov (United States)

    Paluszkiewicz, Czesława; Czechowska, Joanna; Ślósarczyk, Anna; Paszkiewicz, Zofia

    2013-02-01

    The aim of this study was to determine a setting reaction pathway in a novel, surgically handy implant material, based on calcium sulfate hemihydrate (CSH) and titanium doped hydroxyapatite (TiHA). The previous studies confirmed superior biological properties of TiHA in comparison to the undoped hydroxyapatite (HA) what makes it highly attractive for future medical applications. In this study the three types of titanium modified HA powders: untreated, calcined at 800 °C, sintered at 1250 °C and CSH were used to produce bone cements. The Fourier Transform-InfraRed (FT-IR) spectroscopy and Raman spectroscopy were applied to evaluate processes taking place during the setting of the studied materials. Our results undoubtedly confirmed that the reaction pathways and the phase compositions differed significantly for set cements and were dependent on the initial heat treatment of TiHA powder. Final materials were multiphase composites consisting of calcium sulfate dihydrate, bassanite, tricalcium phosphate, hydroxyapatite and calcium titanate (perovskite). The FT-IR and Scanning Electron Microscopy (SEM) measurements performed after the incubation of the cement samples in the simulated body fluid (SBF), indicate on high bioactive potential of the obtained bone cements.

  8. [The relationship between angle of puncture and distribution of bone cement of unilateral percutaneous kyphoplasty for the treatment of thoracolumbar compression fractures].

    Science.gov (United States)

    Wang, Xiang-fu; Fan, You-fu; Shi, Rui-fang; Deng, Qiang; Li, Zhong-feng

    2015-08-01

    To explore the relationship of bone cement distribution and the puncture angle in the treatment of thoracolumbar compression fractures with unilateral percutaneous kyphoplasty (PKP). The clinical data of 37 patients with thoracolumbar osteoporotic compression fractures underwent PKP between January 2013 to March 2014 were retrospectively analyzed, all punctures were performed unilaterally. There were 6 males, aged from 65 to 78 years old with an average of (71.83 ± 6.15) years; and 31 females, aged from 57 to 89 years old with an average of (71.06 ± 7.89) years. Imaging data were analyzed and puncture angle and puncture point were measured before operation. According to the measured data, the puncture were performeds during the operation. Distribution area of bone cement were calculated by X-rays data after operation. The effect of bone cement distribution on suitable puncture angle was analyzed; VAS score was used to evaluate the clinical effects. The puncture angle of thoracic vertebrae in T8-T12 was from 28° to 33° with an average 30.4°; and the puncture angle of lumbar vertebrae in L1-L5 was from 28° to 35° with an average of 31.3°. Postoperative X-rays showed the area ratios of bilateral bone cement was 0.97 ± 0.15. Bilateral diffuse area were basic equal. Postoperative VAS score decreased significantly (1.89 ± 1.29 vs 7.03 ± 1.42). Through measure imaging data before operation with PKP,the puncture point and entry point can be confirmed. According the measured data to puncture during operation, unilateral puncture can reach the distribution effect of the bilateral puncture in the treatment of thoracolumbar compression fractures.

  9. Development of multi-walled carbon nanotubes reinforced monetite bionanocomposite cements for orthopedic applications

    International Nuclear Information System (INIS)

    Boroujeni, Nariman Mansoori; Zhou, Huan; Luchini, Timothy J.F.; Bhaduri, Sarit B.

    2013-01-01

    In this study, we present results of our research on biodegradable monetite (DCPA, CaHPO 4 ) cement with surface-modified multi-walled carbon nanotubes (mMWCNTs) as potential bone defect repair material. The cement pastes showed desirable handling properties and possessed a suitable setting time for use in surgical setting. The incorporation of mMWCNTs shortened the setting time of DCPA and increased the compressive strength of DCPA cement from 11.09 ± 1.85 MPa to 21.56 ± 2.47 MPa. The cytocompatibility of the materials was investigated in vitro using the preosteoblast cell line MC3T3-E1. An increase of cell numbers was observed on both DCPA and DCPA-mMWCNTs. Scanning electron microscopy (SEM) results also revealed an obvious cell growth on the surface of the cements. Based on these results, DCPA-mMWCNTs composite cements can be considered as potential bone defect repair materials. - Highlights: • A monetite bone cement for orthopedic applications is reported. • Incorporation of MWCNTs into monetite bone cement is discussed. • Surface functionalized MWCNTs can improve the mechanical strength of monetite cement. • MWCNTs have no impacts on the cytocompatibility of monetite cements

  10. Development of multi-walled carbon nanotubes reinforced monetite bionanocomposite cements for orthopedic applications

    Energy Technology Data Exchange (ETDEWEB)

    Boroujeni, Nariman Mansoori [Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH (United States); Zhou, Huan, E-mail: Huan.Zhou@Rockets.utoledo.edu [Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH (United States); Luchini, Timothy J.F. [Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH (United States); Bhaduri, Sarit B. [Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH (United States); Division of Dentistry, The University of Toledo, Toledo, OH (United States)

    2013-10-15

    In this study, we present results of our research on biodegradable monetite (DCPA, CaHPO{sub 4}) cement with surface-modified multi-walled carbon nanotubes (mMWCNTs) as potential bone defect repair material. The cement pastes showed desirable handling properties and possessed a suitable setting time for use in surgical setting. The incorporation of mMWCNTs shortened the setting time of DCPA and increased the compressive strength of DCPA cement from 11.09 ± 1.85 MPa to 21.56 ± 2.47 MPa. The cytocompatibility of the materials was investigated in vitro using the preosteoblast cell line MC3T3-E1. An increase of cell numbers was observed on both DCPA and DCPA-mMWCNTs. Scanning electron microscopy (SEM) results also revealed an obvious cell growth on the surface of the cements. Based on these results, DCPA-mMWCNTs composite cements can be considered as potential bone defect repair materials. - Highlights: • A monetite bone cement for orthopedic applications is reported. • Incorporation of MWCNTs into monetite bone cement is discussed. • Surface functionalized MWCNTs can improve the mechanical strength of monetite cement. • MWCNTs have no impacts on the cytocompatibility of monetite cements.

  11. Study of the stabilization of a loamy soil with addition of cement

    OpenAIRE

    Jonas Alexandre; Maria da Glória Alves; Thiago Vicente Lima

    2010-01-01

    The use of soil-cement bricks is considered a cheaper constructive method than the conventional (ceramic block or concrete), because one of the raw materials is abundant (the soil). The objective of the present work was to identify the soil of the “Codin” area, in the municipality of Campos of Goytacazes - RJ. After this identification, it was possible to determine the best line for the production of soil-cement, in the 9,5x 10x5 cm format, with lines containing the addition of 5% and 10% of ...

  12. Microstructure engineering of Portland cement pastes and mortars through addition of ultrafine layer silicates

    DEFF Research Database (Denmark)

    Lindgreen, Holger; Geiker, Mette; Krøyer, Hanne

    2008-01-01

    Pozzolanic submicron-sized silica fume and the non-pozzolanic micron- and nano-sized layer silicates (clay minerals) kaolinite, smectite and palygorskite have been used as additives in Portland cement pastes and mortars. These layer silicates have different particle shape (needles and plates......), surface charge, and size (micron and nano). The structure of the resulting cement pastes and mortars has been investigated by atomic force microscopy (AFM), helium porosimetry, nitrogen adsorption (specific surface area and porosity), low-temperature calorimetry (LTC) and thermal analysis. The main result...... is that the cement paste structure and porosity can be engineered by addition of selected layer silicates having specific particle shapes and surface properties (e.g., charge and specific surface area). This seems to be due to the growth of calcium-silicate hydrates (C-S-H) on the clay particle surfaces...

  13. In Vivo Evaluation of an Injectable Premixed Radiopaque Calcium Phosphate Cement

    Directory of Open Access Journals (Sweden)

    Jonas Åberg

    2011-01-01

    Full Text Available In this work a radiopaque premixed calcium phosphate cement (pCPC has been developed and evaluated in vivo. Radiopacity was obtained by adding 0–40 % zirconia to the cement paste. The effects of zirconia on setting time, strength and radiopacity were evaluated. In the in vivo study a 2 by 3.5 mm cylindrical defect in a rat vertebrae was filled with either the pCPC, PMMA or bone chips. Nano-SPECT CT analysis was used to monitor osteoblast activity during bone regeneration. The study showed that by adding zirconia to the cement the setting time becomes longer and the compressive strength is reduced. All materials evaluated in the in vivo study filled the bone defect and there was a strong osteoblast activity at the injury site. In spite of the osteoblast activity, PMMA blocked bone healing and the bone chips group showed minimal new bone formation. At 12 weeks the pCPC was partially resorbed and replaced by new bone with good bone ingrowth. The radiopaque pCPC may be considered to be used for minimal invasive treatment of vertebral fractures since it has good handling, radiopacity and allows healing of cancellous bone in parallel with the resorption of the cement.

  14. A simple and effective approach to prepare injectable macroporous calcium phosphate cement for bone repair: Syringe-foaming using a viscous hydrophilic polymeric solution.

    Science.gov (United States)

    Zhang, Jingtao; Liu, Weizhen; Gauthier, Olivier; Sourice, Sophie; Pilet, Paul; Rethore, Gildas; Khairoun, Khalid; Bouler, Jean-Michel; Tancret, Franck; Weiss, Pierre

    2016-02-01

    In this study, we propose a simple and effective strategy to prepare injectable macroporous calcium phosphate cements (CPCs) by syringe-foaming via hydrophilic viscous polymeric solution, such as using silanized-hydroxypropyl methylcellulose (Si-HPMC) as a foaming agent. The Si-HPMC foamed CPCs demonstrate excellent handling properties such as injectability and cohesion. After hardening the foamed CPCs possess hierarchical macropores and their mechanical properties (Young's modulus and compressive strength) are comparable to those of cancellous bone. Moreover, a preliminary in vivo study in the distal femoral sites of rabbits was conducted to evaluate the biofunctionality of this injectable macroporous CPC. The evidence of newly formed bone in the central zone of implantation site indicates the feasibility and effectiveness of this foaming strategy that will have to be optimized by further extensive animal experiments. A major challenge in the design of biomaterial-based injectable bone substitutes is the development of cohesive, macroporous and self-setting calcium phosphate cement (CPC) that enables rapid cell invasion with adequate initial mechanical properties without the use of complex processing and additives. Thus, we propose a simple and effective strategy to prepare injectable macroporous CPCs through syringe-foaming using a hydrophilic viscous polymeric solution (silanized-hydroxypropyl methylcellulose, Si-HPMC) as a foaming agent, that simultaneously meets all the aforementioned aims. Evidence from our in vivo studies shows the existence of newly formed bone within the implantation site, indicating the feasibility and effectiveness of this foaming strategy, which could be used in various CPC systems using other hydrophilic viscous polymeric solutions. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Use of antibiotic-loaded cement in total knee arthroplasty.

    OpenAIRE

    Hinarejos Gómez, Pedro Angel; Guirro Castellnou, Pau; Puig Verdié, Luís; Torres Claramunt, Raúl; Leal Blanquet, Joan; Sánchez Soler, JF.; Monllau García, Juan Carlos

    2015-01-01

    Bone cement has the capacity to release antibiotic molecules if any antibiotic is included in it, and these elution properties are improved as cement porosity is increased. In vitro studies have shown high local antibiotic concentration for many hours or few days after its use. Antibiotic loaded bone cement (ALBC) is helpful when treating an infection in total knee arthroplasty (TKA) revision surgery. The purpose of this paper was to review the evidence for the routine use of ALBC in TKA in t...

  16. Effect of bioglass 45S5 addition on properties, microstructure and cellular response of tetracalcium phosphate/monetite cements

    Energy Technology Data Exchange (ETDEWEB)

    Stulajterova, R., E-mail: rstulajterova@saske.sk; Medvecky, L.; Giretova, M.; Sopcak, T.; Kovalcikova, A.

    2017-04-15

    Tetracalcium phosphate/nanomonetite (TTCPMH) cement composites with 7.5 and 15 wt% addition of melt-derived 45S5 bioactive glass were prepared by mechanical homogenization of powder components and 2% NaH{sub 2}PO{sub 4} solution was used as a hardening liquid. The properties of composites with the acidic (Ca/P ratio equal 1.5) or basic (Ca/P ratio equal 1.67) TTCPMH component were compared. Addition of glass component caused rapid rise in pH of composites up to 10. In microstructure of basic cement composite, the large bioglass particles weakly bounded to surrounding cement matrix were found contrary to a more compact microstructure of acidic cement composites with the high number of spherical silica particles. Both the significant refinement of hydroxyapatite particles and the change to needle-like morphology with rise in the content of bioglass were identified in hydroxyapatite coatings created during soaking of composites in phosphate buffered saline. In acidic cement mixtures, the increase of compressive strength with an amount of bioglass was found whereas the opposite tendency was revealed in the case of basic cement mixtures. The higher concentrations of ions were verified in solutions after immersion of acidic cement composites. The severe cytotoxicity of extracts and composite cement substrates containing 15 wt% of bioglass demonstrated adverse effects of both the ionic concentrations and unappropriate surface texture on proliferation of mesenchymal stem cells. The enhanced ALP activities of cells cultured on composite cements confirmed the positive effect of bioactive glass addition on differentiation of mesenchymal stem cells. - Highlights: • Novel B45S5 bioglass/tetracalcium phosphate/nanomonetite cement composites • Cement basicity negatively affected their microstructure. • Acid composite cements had higher compressive strengths than basic composites. • Fast differentiation of MSC to osteoblast line on composite with 7.5 wt% of bioglass

  17. The Effect of CaO and MgO as Expanding Additives to Improve Cement Isolation Strength under HPHT Exposure

    Directory of Open Access Journals (Sweden)

    Rudi Rubiandini

    2005-05-01

    Full Text Available Cementing is one of the most important parts in oil-well drilling. Recent development in oil-well drilling technology has led to a more problematic case in cementing. High temperature cementing is one of the problems. High temperature cementing may cover steam recovery wells, geothermal wells and ultra deep wells.The use of expanding cements as an effort to improve the sealing efficacy of annulus cementing has been considered for a long time as a promising solution to the existing problems. CaO and MgO have been proposed as two of the most effective additives to create excellent expanding cement. The purpose of this study is to find the effect of adding up burnt pure CaO and MgO to the value of compressive strength and shear bond strength of API class G cement in high pressure and high temperature condition. The method that we used within this research is an evaluation of the data taken from a simulator that simulated within temperature range of 100 – 250oC and pressure of 2000 psi.The conclusion is taken according to the results which saying that the addition of burnt pure CaO and MgO would increase the shear bond strength and the compressive strength on specific condition up to 200oC temperature. The addition won’t be effective for the condition of 250oC temperature. The behavior of cement strength was also influenced by the length of curing time.Further more, research on expanding cement needs to be developed and extended whether to vary its compositions, temperatures, or curing time conditions. The compatibility when mixed with other additives together with silica flour has not yet been figured out.

  18. Clinical efficacy of bone cement injectable pedicle screw system combined with intervertebral fusion in treatment of lumbar spondylolysis and osteoporosis

    Directory of Open Access Journals (Sweden)

    Peng-yi DAI

    2016-10-01

    Full Text Available Objective  To observe the therapeutic effect of bone cement injectable pedicle screw system combined with intervertebral fusion for lumbar spondylolysis and osteoporosis. Methods  The clinical data were analyzed retrospectively of 21 patients with lumbar spondylolysis and osteoporosis who received treatment of bone cement injectable pedicle screw system and intervertebral fusion from Aug. 2013 to Nov. 2015. The 21 patients (9 males and 12 females aged from 60 to 80 years (mean 64 years old; 6 of them presented degenerative spondylolysis, 15 with isthmic spondylolisthesis; 2 cases had I degree slippage, 13 had Ⅱdegree slippage, 6 had Ⅲdegree slippage, and all the cases were unisegmental slippage including 9 cases in L4 and 12 cases in L5. Bone mineral density of lumbar vertebrae (L2-L5 was measured with dual-energy X-ray absorptiometry, and T values conforming to the diagnostic criteria of osteoporosis were less than or equal to -2.5; All patients were operated with whole lamina resection for decompression, bone cement injectable pedicle screws system implantation, propped open reduction and fixation intervertebral fusion. The clinical outcomes were determined by the radiographic evaluation including intervertebral height, height of intervertebral foramen, slip distance, slip rate and slip angle, and Oswestry disability index (ODI on preoperative, 3 months after operation and the end of the time, and the interbody fusion were followed up. Results  Cerebrospinal fluid leakage of incision was observed in two cases after operation, compression and dressing to incision, Trendelenburg position, dehydration and other treatments were taken, and the stitches of incisions were taken out on schedule. Slips in the 21 patients were reset to different extent, and lumbar physiological curvatures were recovered. The intervertebral height and height of intervertebral foramen were obviously higher 3 months after operation than that before operation (P0

  19. THE INFLUENCE OF CaO AND P2O5 OF BONE ASH UPON THE REACTIVITY AND THE BURNABILITY OF CEMENT RAW MIXTURES

    Directory of Open Access Journals (Sweden)

    TOMÁŠ IFKA

    2012-03-01

    Full Text Available The influence of CaO and P2O5 upon the reactivity of cement raw meal was investigated in this paper. Ash of bone meal containing Ca3(PO42 - 3CaO·P2O5 was used as the source of P2O5. Two series of samples with different content of the ash of bone meal were prepared. In the first series, the ash of bone was added into cement raw meal. The second series of samples were prepared by considering ash as one of CaO sources. Therefore, the total content of CaO in cement raw meal was kept constant, while the amount of P2O5 increased. These different series of samples were investigated by analyzing free lime content in the clinkers. The XRD analysis and Electron Micro Probe Analyzer analysis of the clinkers were also carried out. Two parameters were used to characterize the reactivity of cement raw meal: content of free lime and Burnability Index (BI calculated from free lime content in both series of samples burnt at 1350 ºC, 1400 ºC, 1450 ºC and 1500 ºC. According to the first parameter, P2O5 content that drastically makes worse the reactivity of cement raw meal was found at 1.11 wt.% in the first series, while this limit has reached 1.52 wt.% in the second one. According to the BI, the limit of P2O5 was found at 1.42 wt. % in the first series and 1, 61 wt.% in the second one. Furthermore, EPMA has demonstrated the presence of P2O5 in both calcium silicate phases forming thus solid solutions.

  20. Calcium phosphate cement scaffolds with PLGA fibers.

    Science.gov (United States)

    Vasconcellos, Letícia Araújo; dos Santos, Luís Alberto

    2013-04-01

    The use of calcium phosphate-based biomaterials has revolutionized current orthopedics and dentistry in repairing damaged parts of the skeletal system. Among those biomaterials, the cement made of hydraulic grip calcium phosphate has attracted great interest due to its biocompatibility and hardening "in situ". However, these cements have low mechanical strength compared with the bones of the human body. In the present work, we have studied the attainment of calcium phosphate cement powders and their addition to poly (co-glycolide) (PLGA) fibers to increase mechanical properties of those cements. We have used a new method that obtains fibers by dripping different reagents. PLGA fibers were frozen after lyophilized. With this new method, which was patented, it was possible to obtain fibers and reinforcing matrix which furthered the increase of mechanical properties, thus allowing the attainment of more resistant materials. The obtained materials were used in the construction of composites and scaffolds for tissue growth, keeping a higher mechanical integrity. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Pulmonary Cement Embolism following Percutaneous Vertebroplasty

    Directory of Open Access Journals (Sweden)

    Ümran Toru

    2014-01-01

    Full Text Available Percutaneous vertebroplasty is a minimal invasive procedure that is applied for the treatment of osteoporotic vertebral fractures. During vertebroplasty, the leakage of bone cement outside the vertebral body leads to pulmonary cement embolism, which is a serious complication of this procedure. Here we report a 48-year-old man who was admitted to our hospital with dyspnea after percutaneous vertebroplasty and diagnosed as pulmonary cement embolism.

  2. Fabrication of Novel Biodegradable α-Tricalcium Phosphate Cement Set by Chelating Capability of Inositol Phosphate and Its Biocompatibility

    Directory of Open Access Journals (Sweden)

    Toshiisa Konishi

    2013-01-01

    Full Text Available Biodegradable α-tricalcium phosphate (α-TCP cement based on the chelate-setting mechanism of inositol phosphate (IP6 was developed. This paper examined the effect of the milling time of α-TCP powder on the material properties of the cement. In addition, biocompatibility of the result cement in vitro using osteoblasts and in vivo using rabbit models will be studied as well. The α-TCP powders were ballmilled using ZrO2 beads in pure water for various durations up to 270 minutes, with a single-phase α-TCP obtained at ballmilling for 120 minutes. The resulting cement was mostly composed of α-TCP phase, and the compressive strength of the cement was 8.5±1.1 MPa, which suggested that the cements set with keeping the crystallite phase of starting cement powder. The cell-culture test indicated that the resulting cements were biocompatible materials. In vivo studies showed that the newly formed bones increased with milling time at a slight distance from the cement specimens and grew mature at 24 weeks, and the surface of the cement was resorbed by tartrate-resistant acid phosphatase-(TRAP-positive osteoclast-like cells until 24 weeks of implantation. The present α-TCP cement is promising for application as a novel paste-like artificial bone with biodegradability and osteoconductivity.

  3. Effects of chemical and mineral additives and the water/cement ratio on the thermal resistance of Portland cement concrete

    International Nuclear Information System (INIS)

    Cesar, Leandro Cesar Dias; Morelli, Arnaldo C.; Baldo, Joao Baptista

    1998-01-01

    The exposure of Portland concrete to high temperatures (>250 deg C) can damage drastically the microstructural integrity of the material. Since the water/cement ratio as well as the inclusion of superplasticizers and mineral additives (silica fume) can alter constitutively and micro structurally the material, in this work it was investigated per effect of these additions on the damage resistance of portland concrete after exposure to high temperatures. (author)

  4. Development of nanosilica bonded monetite cement from egg shells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Huan, E-mail: huanzhou@cczu.edu.cn [Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu (China); Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH (United States); Luchini, Timothy J.F.; Boroujeni, Nariman Mansouri [Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH (United States); Agarwal, Anand K.; Goel, Vijay K. [Department of Bioengineering, The University of Toledo, Toledo, OH (United States); Bhaduri, Sarit B. [Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH (United States); Division of Dentistry, The University of Toledo, Toledo, OH (United States)

    2015-05-01

    This work represents further effort from our group in developing monetite based calcium phosphate cements (CPC). These cements start with a calcium phosphate powder (MW-CPC) that is manufactured using microwave irradiation. Due to the robustness of the cement production process, we report that the starting materials can be derived from egg shells, a waste product from the poultry industry. The CPC were prepared with MW-CPC and aqueous setting solution. Results showed that the CPC hardened after mixing powdered cement with water for about 12.5 ± 1 min. The compressive strength after 24 h of incubation was approximately 8.45 ± 1.29 MPa. In addition, adding colloidal nanosilica to CPC can accelerate the cement hardening (10 ± 1 min) process by about 2.5 min and improve compressive strength (20.16 ± 4.39 MPa), which is more than double the original strength. The interaction between nanosilica and CPC was monitored using an environmental scanning electron microscope (ESEM). While hardening, nanosilica can bond to the CPC crystal network for stabilization. The physical and biological studies performed on both cements suggest that they can potentially be used in orthopedics. - Highlights: • Cement raw powder is derived from egg shells. • A microwave assisted system is used for preparing monetite bone cement. • Colloidal silica is used to reinforce cement.

  5. Development of nanosilica bonded monetite cement from egg shells

    International Nuclear Information System (INIS)

    Zhou, Huan; Luchini, Timothy J.F.; Boroujeni, Nariman Mansouri; Agarwal, Anand K.; Goel, Vijay K.; Bhaduri, Sarit B.

    2015-01-01

    This work represents further effort from our group in developing monetite based calcium phosphate cements (CPC). These cements start with a calcium phosphate powder (MW-CPC) that is manufactured using microwave irradiation. Due to the robustness of the cement production process, we report that the starting materials can be derived from egg shells, a waste product from the poultry industry. The CPC were prepared with MW-CPC and aqueous setting solution. Results showed that the CPC hardened after mixing powdered cement with water for about 12.5 ± 1 min. The compressive strength after 24 h of incubation was approximately 8.45 ± 1.29 MPa. In addition, adding colloidal nanosilica to CPC can accelerate the cement hardening (10 ± 1 min) process by about 2.5 min and improve compressive strength (20.16 ± 4.39 MPa), which is more than double the original strength. The interaction between nanosilica and CPC was monitored using an environmental scanning electron microscope (ESEM). While hardening, nanosilica can bond to the CPC crystal network for stabilization. The physical and biological studies performed on both cements suggest that they can potentially be used in orthopedics. - Highlights: • Cement raw powder is derived from egg shells. • A microwave assisted system is used for preparing monetite bone cement. • Colloidal silica is used to reinforce cement

  6. A Study on the Manufacturing Properties of Crack Self-Healing Capsules Using Cement Powder for Addition to Cement Composites

    OpenAIRE

    Choi, Yun-Wang; Oh, Sung-Rok; Choi, Byung-Keol

    2017-01-01

    We fabricated crack self-healing capsules using cement powder for mixing into cement composites and evaluated the properties of the capsule manufacturing process in this study. The manufacture of the self-healing capsules is divided into core production processing of granulating cement in powder form and a coating process for creating a wall on the surfaces of the granulated cement particles. The produced capsules contain unhardened cement and can be mixed directly with the cement composite m...

  7. A Study on the Manufacturing Properties of Crack Self-Healing Capsules Using Cement Powder for Addition to Cement Composites

    Directory of Open Access Journals (Sweden)

    Yun-Wang Choi

    2017-01-01

    Full Text Available We fabricated crack self-healing capsules using cement powder for mixing into cement composites and evaluated the properties of the capsule manufacturing process in this study. The manufacture of the self-healing capsules is divided into core production processing of granulating cement in powder form and a coating process for creating a wall on the surfaces of the granulated cement particles. The produced capsules contain unhardened cement and can be mixed directly with the cement composite materials because they are protected from moisture by the wall material. Therefore, the untreated cement is present in the form of a capsule within the cement composite, and hydration can be induced by moisture penetrating the crack surface in the event of cracking. In the process of granulating the cement, it is important to obtain a suitable consistency through the kneading agent and to maintain the moisture barrier performance of the wall material. We can utilize the results of this study as a basis for advanced self-healing capsule technology for cement composites.

  8. Development of hydroxyapatite bone cement for controlled drug ...

    Indian Academy of Sciences (India)

    The purpose of this work was to study the preparation and characterization of drug–hydroxyapatite cement. The hydroxyapatite (HA) cement has been synthesized by using tricalcium phosphate, calcium carbonate and dicalcium phosphate anhydrous with sodium hydrogen phosphate as liquid phase. The effect of added ...

  9. Soft-tissue Necrosis Complicating Bone-cement Filling in a Patient with Proximal Tibia Giant cell Tumour and Co-morbid Depressive Illness

    Directory of Open Access Journals (Sweden)

    Sagar Narang

    2013-12-01

    Full Text Available Giant-cell tumors are common around the knee. Proximal tibia is a challenging location for limb-salvage due to paucity of soft-tissue cover. Bone cement has been used in treatment of giant-cell tumors after curettage. Tissue irritant properties of its monomer and exothermic reaction involved in polymerization may compromise surgical outcome to varying degrees. Preoperative planning and intra-operative positioning during cementing process are of importance to avoid complications. Co-occurrence of psychiatric illness in tumor patients should be managed by psychiatric counselling and drug therapy. This case has been presented to suggest measures for preventing soft-tissue complications during cement filling in proximal tibia, and for dealing with concomitant psychiatric problems for a holistic improvement in tumor patients.

  10. Re-use of drinking water treatment plant (DWTP) sludge: Characterization and technological behaviour of cement mortars with atomized sludge additions

    International Nuclear Information System (INIS)

    Husillos Rodriguez, N.; Martinez Ramirez, S.; Blanco Varela, M.T.; Guillem, M.; Puig, J.; Larrotcha, E.; Flores, J.

    2010-01-01

    This paper aims to characterize spray-dried DWTP sludge and evaluate its possible use as an addition for the cement industry. It describes the physical, chemical and micro-structural characterization of the sludge as well as the effect of its addition to Portland cements on the hydration, water demand, setting and mechanical strength of standardized mortars. Spray drying DWTP sludge generates a readily handled powdery material whose particle size is similar to those of Portland cement. The atomized sludge contains 12-14% organic matter (mainly fatty acids), while its main mineral constituents are muscovite, quartz, calcite, dolomite and seraphinite (or clinoclor). Its amorphous material content is 35%. The mortars were made with type CEM I Portland cement mixed with 10 to 30% atomized sludge exhibited lower mechanical strength than the control cement and a decline in slump. Setting was also altered in the blended cements with respect to the control.

  11. The influence of mineral additives on the mechanical performances of the conditioning matrix of radioactive waste by cementation

    International Nuclear Information System (INIS)

    Dragolici, F.; Rotarescu, G.; Turcanu, C.N.

    1997-01-01

    To improve the quality of the conditioning matrix of radioactive waste by the cementation technology, mineral additives which are diminishing the leaching rate of the radionuclides in the disposal environment are used. The studies performed until now have as an objective the obtaining of the most propitious mixture of cement and bentonite or cement and volcanic tuff, which have the mechanical properties similar to the cement paste used for the conditioning of the radioactive waste. This mixture, cement - mineral binder, in the future is required to be used at the Radioactive Waste Treatment Plant - IPNE - HH Bucharest- Magurele for the conditioning of the radioactive wastes, taking in consideration the properties of these mineral binders: very good plasticity and capacity of adsorption, which lead at the decrease of porosity. Bentonite is a clay already used in the technology of disposal as a filling material to diminish the radioactive spreading because of degradation in time of the metallic package or the intrusion of casual water. The composition of the cement - bentonite - water system is checked by the cement to water and cement to bentonite ratio, by strength and by the separated water volume. The studies show that the best mechanical performance was obtained for a cement to water ratio 10. Taking in consideration the property of bentonite to fill compactly the free spaces in the presence of water, what entails the occurrence of internal tensions in the matrix structure, which leads, in turn, to appearance of microfissures, the mixtures examined by mechanical tests had in their composition less than 10 % bentonite. For volcanic tuff, similar results were obtained using almost the same ratios. In these conditions, the results obtained allow to draw the conclusion that the adequate usage of the mineral additives do not change the resistance of the cement paste used in the conditioning of the radioactive waste. (authors)

  12. Influence of zeolite and cement additions on mechanical behavior of sandy soil

    Directory of Open Access Journals (Sweden)

    Hossein Mola-Abasi

    2016-10-01

    Full Text Available It is well known that the cemented sand is one of economic and environmental topics in soil stabilization. In this instance, a blend of sand, cement and other materials such as fiber, glass, nanoparticle and zeolite can be commercially available and effectively used in soil stabilization in road construction. However, the influence and effectiveness of zeolite on the properties of cemented sand systems have not been completely explored. In this study, based on an experimental program, the effects of zeolite on the characteristics of cemented sands are investigated. Stabilizing agent includes Portland cement of type II and zeolite. Results show the improvements of unconfined compressive strength (UCS and failure properties of cemented sand when the cement is replaced by zeolite at an optimum proportion of 30% after 28 days. The rate of strength improvement is approximately between 20% and 78%. The efficiency of using zeolite increases with the increases in cement amount and porosity. Finally, a power function of void-cement ratio and zeolite content is demonstrated to be an appropriate method to assess UCS of zeolite-cemented mixtures.

  13. The use of additive ceramic hollow spheres on cement slurry to prevent lost circulation in formation `X' having low pressure fracture

    Science.gov (United States)

    Rita, Novia; Mursyidah, Syahindra, Michael

    2018-03-01

    When drilling, if the hydrostatic pressure is higher than formation pressure (fracture pressure) it will cause lost circulation during cementing process. To solve this problem, hydrostatic pressure of slurry can be decreased by lowering the slurry density by using some additives. Ceramic Hollow Spheres (CHS) is lightweight additive. This additive comes with low specific gravity so it can lowered the slurry density. When the low-density slurry used in cementing process, it can prevent low circulation and fractured formation caused by cement itself. Class G cement is used in this experiment with the standard density of this slurry is 15.8 ppg. With the addition of CHS, slurry density lowered to 12.5 ppg. CHS not only used to lower the slurry density, it also used to make the same properties with the standard slurry even the density has been lowered. Both thickening time and compressive strength have not change if the CHS added to the slurry. With addition of CHS, thickening time at 70 Bc reached in 03 hours 12 minutes. For the compressive strength, 2000 psi reached in 07 hours 07 minutes. Addition of CHS can save more time in cementing process of X formation.

  14. CEMENT SLURRIES FOR GEOTHERMAL WELLS CEMENTING

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    1994-12-01

    Full Text Available During a well cementing special place belongs to the cement slurry design. To ensure the best quality of cementing, a thorough understanding of well parameters is essential, as well as behaviour of cement slurry (especially at high temperatures and application of proven cementing techniques. Many cement jobs fail because of bad job planning. Well cementing without regarding what should be accomplished, can lead to well problems (channels in the cement, unwanted water, gas or fluid production, pipe corrosion and expensive well repairs. Cementing temperature conditions are important because bot-tomhole circulating temperatures affect slurry thickening time, arheology, set time and compressive strength development. Knowing the actual temperature which cement encounters during placement allows the selection of proper cementing materials for a specific application. Slurry design is affected by well depth, bottom hole circulating temperature and static temperature, type or drilling fluid, slurry density, pumping time, quality of mix water, fluid loss control, flow regime, settling and free water, quality of cement, dry or liquid additives, strength development, and quality of the lab cement testing and equipment. Most Portland cements and Class J cement have shown suitable performances in geot-hermal wells. Cement system designs for geothermal wells differ from those for conventional high temperature oil and gas wells in the exclusive use of silica flour instead of silica sand, and the avoidance of fly ash as an extender. In this paper, Portland cement behaviour at high temperatures is described. Cement slurry and set cement properties are also described. Published in literature, the composition of cement slurries which were tested in geothermal conditions and which obtained required compressive strength and water permeability are listed. As a case of our practice geothermal wells Velika Ciglena-1 and Velika Ciglena-la are described.

  15. Evaluation of Heat Transfer to the Implant-Bone Interface During Removal of Metal Copings Cemented onto Titanium Abutments.

    Science.gov (United States)

    Cakan, Umut; Cakan, Murat; Delilbasi, Cagri

    2016-01-01

    The aim of this investigation was to measure the temperature increase due to heat transferred to the implant-bone interface when the abutment screw channel is accessed or a metal-ceramic crown is sectioned buccally with diamond or tungsten carbide bur using an air rotor, with or without irrigation. Cobalt-chromium copings were cemented onto straight titanium abutments. The temperature changes during removal of the copings were recorded over a period of 1 minute. The sectioning of coping with diamond bur and without water irrigation generated the highest temperature change at the cervical part of the implant. Both crown removal methods resulted in an increase in temperature at the implant-bone interface. However, this temperature change did not exceed 47°C, the potentially damaging threshold for bone reported in the literature.

  16. Osteogenesis and angiogenesis properties of dental pulp cell on novel injectable tricalcium phosphate cement by silica doped.

    Science.gov (United States)

    Su, Ying-Fang; Lin, Chi-Chang; Huang, Tsui-Hsien; Chou, Ming-Yung; Yang, Jaw-Ji; Shie, Ming-You

    2014-09-01

    β-Tricalcium phosphate (β-TCP) is an osteoconductive material in clinical. In this study, we have doped silica (Si) into β-TCP and enhanced its bioactive and osteostimulative properties. To check its effectiveness, a series of Si-doped with different ratios were prepared to make new bioactive and biodegradable biocomposites for bone repair. Formation of the diametral tensile strength, ions released and weight loss of cements was considered after immersion. In addition, we also examined the behavior of human dental pulp cells (hDPCs) cultured on Si-doped β-TCP cements. The results showed that setting time and injectability of the Si-doped β-TCP cements were decreased as the Si content was increased. At the end of the immersion point, weight losses of 30.1%, 36.9%, 48.1%, and 55.3% were observed for the cement doping 0%, 10%, 20%, and 30% Si into β-TCP cements, respectively. In vitro cell experiments show that the Si-rich cements promote human dental pulp cell (hDPC) proliferation and differentiation. However, when the Si-doped in the cement is more than 20%, the amount of cells and osteogenesis protein of hDPCs was stimulated by Si released from Si-doped β-TCP cements. The degradation of β-TCP and osteogenesis of Si gives a strong reason to believe that these Si-doped β-TCP cements may prove to be promising bone repair materials. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Recycling Jorf Lasfar fly ash as an additive to cement

    Directory of Open Access Journals (Sweden)

    Hamadi A

    2012-09-01

    Full Text Available Recycling fly ash is a good example of valorization of waste. It gives a solution the environmental problem by avoiding land filling, and reducing CO2 emission in the atmosphere. In this work we studied the physical-chemical characteristics of Jorf Lasfar fly ash. The parameters investigated were particle size, density, specific surface Blaine, chemical and mineralogical compositions. The techniques used are scanning electronic microscope (SEM, transmission electronic microscope (TEM, X-rays fluorescence (XRF, X-rays diffraction (XRD and atomic spectrometry emission coupled with inductive plasma ICP. We also conducted a study on the mechanical behavior of type CPJ45 cements produced from a combined grinding of clinker, limestone and gypsum. The substitution of a portion of the clinker by different percentages of fly ash was conducted. We noticed that the compression and bending resistances for these mixtures went through a maximum at 28 days with the addition of 7% (by mass of ash. This result showed that the mineral and chemical compositions of this ash conferred a Pozzoulanic power to the cement studied.

  18. Development of a fully injectable calcium phosphate cement

    Indian Academy of Sciences (India)

    Permanent link: https://www.ias.ac.in/article/fulltext/boms/026/04/0415-0422. Keywords. Calcium phosphate cements; hydroxyapatite; bioceramics; bone substitute; orthopedic; dental. Abstract. A study on the development of a fully injectable calcium phosphate cement for orthopedic and dental applications is presented.

  19. Viability Study of a Safe Method for Health to Prepare Cement Pastes with Simultaneous Nanometric Functional Additions

    Directory of Open Access Journals (Sweden)

    M. A. de la Rubia

    2018-01-01

    Full Text Available The use of a mixing method based on a novel dry dispersion procedure that enables a proper mixing of simultaneous nanometric functional additions while avoiding the health risks derived from the exposure to nanoparticles is reported and compared with a common manual mixing in this work. Such a dry dispersion method allows a greater workability by avoiding problems associated with the dispersion of the particles. The two mixing methods have been used to prepare Portland cement CEM I 52.5R pastes with additions of nano-ZnO with bactericide properties and micro- or nanopozzolanic SiO2. The hydration process performed by both mixing methods is compared in order to determine the efficiency of using the method. The hydration analysis of these cement pastes is carried out at different ages (from one to twenty-eight days by means of differential thermal analysis and thermogravimetry (DTA-TG, X-ray diffraction (XRD, scanning electron microscopy (SEM, and Fourier transform infrared spectroscopy (FTIR analyses. Regardless of composition, all the mixtures of cement pastes obtained by the novel dispersion method showed a higher retardation of cement hydration at intermediate ages which did not occur at higher ages. In agreement with the resulting hydration behaviour, the use of this new dispersion method makes it possible to prepare homogeneous cement pastes with simultaneous functional nanoparticles which are physically supported on the larger particles of cement, avoiding exposure to the nanoparticles and therefore minimizing health risks. Manual mixing of cement-based materials with simultaneous nanometric functional nanoparticles on a large scale would make it difficult to obtain a homogenous material together with the health risks derived from the handling of nanoparticles.

  20. Biphasic products of dicalcium phosphate-rich cement with injectability and nondispersibility

    International Nuclear Information System (INIS)

    Ko, Chia-Ling; Chen, Jian-Chih; Hung, Chun-Cheng; Wang, Jen-Chyan; Tien, Yin-Chun; Chen, Wen-Cheng

    2014-01-01

    In this study, a calcium phosphate cement was developed using tetracalcium phosphate and surface-modified dicalcium phosphate anhydrous (DCPA). This developed injectable bone graft substitute can be molded to the shape of the bone cavity and set in situ through the piping system that has an adequate mechanical strength, non-dispersibility, and biocompatibility. The materials were based on the modified DCPA compositions of calcium phosphate cement (CPC), where the phase ratio of the surface-modified DCPA is higher than that of the conventional CPC for forming dicalcium phosphate (DCP)-rich cement. The composition and morphology of several calcium phosphate cement specimens during setting were analyzed via X-ray diffractometry and transmission electron microscopy coupled with an energy dispersive spectroscopy system. The compressive strength of DCP-rich CPCs was greater than 30 MPa after 24 h of immersion in vitro. The reaction of the CPCs produced steady final biphasic products of DCPs with apatite. The composites of calcium phosphate cements derived from tetracalcium phosphate mixed with surface-modified DCPA exhibited excellent mechanical properties, injectability, and interlocking forces between particles, and they also featured nondispersive behavior when immersed in a physiological solution. - Highlights: • Bone cement precursor with nanocrystals is characterized. • DCP-rich CPCs with nanocrystals exhibited biphasic product phases. • Nanocrystals in cement significantly affected the interlocking ability. • Nanocrystals in cement exhibited higher strength and anti-dispersion. • DCP-rich CPCs increase the potential of bioresorption after reaction

  1. The behavior of biogenic silica-rich rocks and volcanic tuffs as pozzolanic additives in cement

    Science.gov (United States)

    Fragoulis, Dimitris; Stamatakis, Michael; Anastasatou, Marianthi

    2015-04-01

    Cements currently produced, include a variety of pozzolanic materials, aiming for lower clinker addition and utilization of vast deposits of certain raw materials and/or mining wastes and byproducts. The major naturally occurring pozzolanic materials include glassy tuffs, zeolitic tuffs, diatomites and volcanic lavas rich in glassy phase, such as perlites. Therefore, based on the available raw materials in different locations, the cement composition might vary according to the accessibility of efficient pozzolanic materials. In the present investigation, the behavior of pozzolanic cements produced with representative samples of the aforementioned materials was studied, following the characterization of the implemented pozzolanas with respect to their chemical and mineralogical characteristics. Laboratory cements were produced by co-grinding 75% clinker, 5% gypsum and 20% pozzolana, for the same period of time (45 min). Regarding pozzolanic materials, four different types of pozzolanas were utilized namely, diatomite, perlite, zeolite tuff and glassy tuff. More specifically, two diatomite samples originated from Australia and Greece, with high and low reactive silica content respectively, two perlite samples originated from Turkey and from Milos Island, Greece, with different reactive silica contents, a zeolite tuff sample originated from Turkey and a glassy tuff sample originated from Milos Island, Greece. The above pozzolana samples, which were ground in the laboratory ball mill for cement production performed differently during grinding and that was reflected upon the specific surface area (cm2/gr) values. The perlites and the glassy tuff were the hardest to grind, whereas, the zeolite tuff and the Australian diatomite were the easiest ones. However, the exceedingly high specific surface area of the Australian diatomite renders cement difficult to transport and tricky to use for concrete manufacturing, due to the high water demand of the cement mixture. Regarding

  2. Sustainable Development of the Cement Industry and Blended Cements to Meet Ecological Challenges

    Directory of Open Access Journals (Sweden)

    Konstantin Sobolev

    2003-01-01

    Full Text Available The world production of cement has greatly increased in the past 10 years. This trend is the most significant factor affecting technological development and the updating of manufacturing facilities in the cement industry. Existing technology for the production of cement clinker is ecologically damaging; it consumes much energy and natural resources and also emits pollutants. A new approach to the production of blended or high-volume mineral additive (HVMA cement helps to improve its ecological compatibility. HVMA cement technology is based on the intergrinding of portland cement clinker, gypsum, mineral additives, and a special complex admixture. This new method increases the compressive strength of ordinary cement, improves durability of the cement-based materials, and - at the same time - uses inexpensive natural mineral additives or industrial by-products. This improvement leads to a reduction of energy consumption per unit of the cement produced. Higher strength, better durability, reduction of pollution at the clinker production stage, and decrease of landfill area occupied by industrial by-products, all provide ecological advantages for HVMA cement.

  3. Industrial Wastes as Alternative Mineral Addition in Portland Cement and as Aggregate in Coating Mortars

    OpenAIRE

    Oliveira, Kamilla Almeida; Nazário, Bruna Inácio; Oliveira, Antonio Pedro Novaes de; Hotza, Dachamir; Raupp-Pereira, Fabiano

    2017-01-01

    This paper presents an evaluation study of wastes from pulp and paper as well as construction and demolition industries for application in cement-based materials. The alternative raw materials were used as a source of calcium carbonate (CaCO3) and as pozzolanic material (water-reactive SiO2) in partial replacement of Portland cement. In addition to the hydraulic binder, coating mortars were composed by combining the pulp and paper fluidized bed sand residue with construction and demolition wa...

  4. 10-year results of a new low-monomer cement: follow-up of a randomized RSA study.

    Science.gov (United States)

    Söderlund, Per; Dahl, Jon; Röhrl, Stephan; Nivbrant, Bo; Nilsson, Kjell G

    2012-12-01

    The properties and performance of a new low-monomer cement were examined in this prospective randomized, controlled RSA study. 5-year data have already been published, showing no statistically significant differences compared to controls. In the present paper we present the 10-year results. 44 patients were originally randomized to receive total hip replacement with a Lubinus SPII titanium-aluminum-vanadium stem cemented either with the new Cemex Rx bone cement or with control bone cement, Palacos R. Patients were examined using RSA, Harris hip score, and conventional radiographs. At 10 years, 33 hips could be evaluated clinically and 30 hips could be evaluated with RSA (16 Cemex and 14 Palacos). 9 patients had died and 4 patients were too old or infirm to be investigated. Except for 1 hip that was revised for infection after less than 5 years, no further hips were revised before the 10-year follow-up. There were no statistically significant clinical differences between the groups. The Cemex cement had magnitudes of migration similar to or sometimes lower than those of Palacos cement. In both groups, most hips showed extensive radiolucent lines, probably due to the use of titanium alloy stems. At 10 years, the Cemex bone cement tested performed just as well as the control (Palacos bone cement).

  5. Percutaneous bone cement refixation of aseptically loose hip prostheses: the effect of interface tissue removal on injected cement volumes

    Energy Technology Data Exchange (ETDEWEB)

    Malan, Daniel F. [Leiden University Medical Center, Department of Orthopaedics, Leiden (Netherlands); Delft University of Technology, Department of Intelligent Systems, Delft (Netherlands); Valstar, Edward R. [Leiden University Medical Center, Department of Orthopaedics, Leiden (Netherlands); Delft University of Technology, Department of Biomechanical Engineering, Delft (Netherlands); Nelissen, Rob G.H.H. [Leiden University Medical Center, Department of Orthopaedics, Leiden (Netherlands)

    2014-11-15

    To quantify whether injected cement volumes differed between two groups of patients who underwent experimental minimally invasive percutaneous cement injection procedures to stabilize aseptically loose hip prostheses. One patient group was preoperatively treated using gene-directed enzyme prodrug therapy to remove fibrous interface tissue, while the other group received no preoperative treatment. It was hypothesized that cement penetration may have been inhibited by the presence of fibrous interface tissue in periprosthetic lesions. We analyzed 17 patients (14 female, 3 male, ages 72-91, ASA categories 2-4) who were treated at our institution. Osteolytic lesions and injected cement were manually delineated using 3D CT image segmentation, and the deposition of injected cement was quantified. Patients who underwent preoperative gene-directed enzyme therapy to remove fibrous tissue exhibited larger injected cement volumes than those who did not. The observed median increase in injected cement volume was 6.8 ml. Higher cement leakage volumes were also observed for this group. We conclude that prior removal of periprosthetic fibrous interface tissue may enable better cement flow and penetration. This might lead to better refixation of aseptically loosened prostheses. (orig.)

  6. The effect of cup outer sizes on the contact mechanics and cement fixation of cemented total hip replacements.

    Science.gov (United States)

    Hua, Xijin; Li, Junyan; Wang, Ling; Wilcox, Ruth; Fisher, John; Jin, Zhongmin

    2015-10-01

    One important loosening mechanism of the cemented total hip arthroplasty is the mechanical overload at the bone-cement interface and consequent failure of the cement fixation. Clinical studies have revealed that the outer diameter of the acetabular component is a key factor in influencing aseptic loosening of the hip arthroplasty. The aim of the present study was to investigate the influence of the cup outer diameter on the contact mechanics and cement fixation of a cemented total hip replacement (THR) with different wear penetration depths and under different cup inclination angles using finite element (FE) method. A three-dimensional FE model was developed based on a typical Charnley hip prosthesis. Two acetabular cup designs with outer diameters of 40 and 43 mm were modelled and the effect of cup outer diameter, penetration depth and cup inclination angle on the contact mechanics and cement fixation stresses in the cemented THR were studied. The results showed that for all penetration depths and cup inclination angles considered, the contact mechanics in terms of peak von Mises stress in the acetabular cup and peak contact pressure at the bearing surface for the two cup designs were similar (within 5%). However, the peak von Mises stress, the peak maximum principal stress and peak shear stress in the cement mantle at the bone-cement interface for the 43 mm diameter cup design were predicted to be lower compared to those for the 40 mm diameter cup design. The differences were predicted to be 15-19%, 15-22% and 18-20% respectively for different cup penetration depths and inclination angles, which compares to the clinical difference of aseptic loosening incidence of about 20% between the two cup designs. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  7. The Use of Structural Allograft in Primary and Revision Knee Arthroplasty with Bone Loss

    Directory of Open Access Journals (Sweden)

    Raul A. Kuchinad

    2011-01-01

    Full Text Available Bone loss around the knee in the setting of total knee arthroplasty remains a difficult and challenging problem for orthopaedic surgeons. There are a number of options for dealing with smaller and contained bone loss; however, massive segmental bone loss has fewer options. Small, contained defects can be treated with cement, morselized autograft/allograft or metal augments. Segmental bone loss cannot be dealt with through simple addition of cement, morselized autograft/allograft, or metal augments. For younger or higher demand patients, the use of allograft is a good option as it provides a durable construct with high rates of union while restoring bone stock for future revisions. Older patients, or those who are low demand, may be better candidates for a tumour prosthesis, which provides immediate ability to weight bear and mobilize.

  8. Outcome of long-axis percutaneous sacroplasty for the treatment of sacral insufficiency fractures with a radiofrequency-induced, high-viscosity bone cement

    Energy Technology Data Exchange (ETDEWEB)

    Eichler, Katrin [University of Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt (Germany); J. W. Goethe University of Frankfurt, Institute for Diagnostic and Interventional Radiology, Frankfurt (Germany); Zangos, Stephan; Vogl, Thomas J. [University of Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt (Germany); Mack, Martin G. [Radiology Munich, Munich (Germany); Marzi, Ingo [University of Frankfurt, Department of Trauma, Hand and Reconstructive Surgery, Frankfurt (Germany)

    2014-04-15

    Our goal was to assess the technical results in patients who underwent long-axis sacroplasty for the treatment of sacral insufficiency fractures (SIF) by radiofrequency-induced high-viscosity bone cement augmentation. Twelve patients with bilateral sacral fractures were treated by augmentation with radiofrequency-activated, high-viscosity polymethylmethacrylate (PMMA) bone cement under local anesthesia. CT-guided sacroplasty was performed by using a long-axis approach through a single entry point. Thirty-six vertebrae were treated in 12 sessions under a combination of CT and fluoroscopic guidance using a bilateral access and a cavity-creating osteotome prior to remote-controlled, hydraulically driven cement injection. The visual analogue scale (VAS) score before sacroplasty and at 1 and 3 months after the treatment was obtained. PMMA leaks were evaluated retrospectively using the post-interventional CT. The mean amount of high-viscosity PMMA injected per patient was 7.8 ml. No major adverse events were observed. In the first 4 days after the procedure, the mean VAS score decreased from 8.1 ± 1.9 to mean 3.1 ± 1.2 and was followed by a gradual but continuous decrease throughout the rest of the follow-up period at 24 weeks (mean 2.2 ± 1.1) and 48 weeks (mean 2.1 ± 1.4). CT fluoroscopy-guided sacral augmentation was safe and effective in all 12 patients with osteoporotic SIF. (orig.)

  9. Microstructure, characterizations, functionality and compressive strength of cement-based materials using zinc oxide nanoparticles as an additive

    Energy Technology Data Exchange (ETDEWEB)

    Nochaiya, Thanongsak [Department of Physics, Faculty of Science, Naresuan University, Phitsanulok 65000 (Thailand); Sekine, Yoshika [Department of Chemistry, School of Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Choopun, Supab [Applied Physics Research Laboratory, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Chaipanich, Arnon, E-mail: arnon.chaipanich@cmu.ac.th [Advanced Cement-Based Materials Research Unit, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2015-05-05

    Highlights: • Nano zinc oxide was used as an additive material. • Microstructure and phase characterization of pastes were characterized using SEM and XRD. • TGA and FTIR were also used to determine the hydration reaction. • Compressive strength of ZnO mixes was found to increase at 28 days. - Abstract: Zinc oxide nanoparticles as a nanophotocatalyst has great potential for self-cleaning applications in concrete structures, its effects on the cement hydration, setting time and compressive strength are also important when using it in practice. This paper reports the effects of zinc oxide nanoparticles, as an additive material, on properties of cement-based materials. Setting time, compressive strength and porosity of mortars were investigated. Microstructure and morphology of pastes were characterized using scanning electron microscope and X-ray diffraction (XRD), respectively. Moreover, thermal gravimetric analysis (TGA) and Fourier-transform infrared spectrometer (FTIR) were also used to determine the hydration reaction. The results show that Portland cement paste with additional ZnO was found to slightly increase the water requirement while the setting time presented prolongation period than the control mix. However, compressive strength of ZnO mixes was found to be higher than that of PC mix up to 15% (at 28 days) via filler effect. Microstructure, XRD and TGA results of ZnO pastes show less hydration products before 28 days but similar at 28 days. In addition, FTIR results confirmed the retardation when ZnO was partially added in Portland cement pastes.

  10. Microstructure, characterizations, functionality and compressive strength of cement-based materials using zinc oxide nanoparticles as an additive

    International Nuclear Information System (INIS)

    Nochaiya, Thanongsak; Sekine, Yoshika; Choopun, Supab; Chaipanich, Arnon

    2015-01-01

    Highlights: • Nano zinc oxide was used as an additive material. • Microstructure and phase characterization of pastes were characterized using SEM and XRD. • TGA and FTIR were also used to determine the hydration reaction. • Compressive strength of ZnO mixes was found to increase at 28 days. - Abstract: Zinc oxide nanoparticles as a nanophotocatalyst has great potential for self-cleaning applications in concrete structures, its effects on the cement hydration, setting time and compressive strength are also important when using it in practice. This paper reports the effects of zinc oxide nanoparticles, as an additive material, on properties of cement-based materials. Setting time, compressive strength and porosity of mortars were investigated. Microstructure and morphology of pastes were characterized using scanning electron microscope and X-ray diffraction (XRD), respectively. Moreover, thermal gravimetric analysis (TGA) and Fourier-transform infrared spectrometer (FTIR) were also used to determine the hydration reaction. The results show that Portland cement paste with additional ZnO was found to slightly increase the water requirement while the setting time presented prolongation period than the control mix. However, compressive strength of ZnO mixes was found to be higher than that of PC mix up to 15% (at 28 days) via filler effect. Microstructure, XRD and TGA results of ZnO pastes show less hydration products before 28 days but similar at 28 days. In addition, FTIR results confirmed the retardation when ZnO was partially added in Portland cement pastes

  11. High resolution X-ray imaging of bone-implant interface by large area flat-panel detector

    International Nuclear Information System (INIS)

    Kytyr, D; Jirousek, O; Dammer, J

    2011-01-01

    The aim of the research was to investigate the cemented bone-implant interface behavior (cement layer degradation and bone-cement interface debonding) with emphasis on imaging techniques suitable to detect the early defects in the cement layer. To simulate in vivo conditions a human pelvic bone was implanted with polyurethane acetabular cup using commercial acrylic bone cement. The implanted cup was then loaded in a custom hip simulator to initiate fatigue crack propagation in the bone cement. The pelvic bone was then repetitively scanned in a micro-tomography device. Reconstructed tomography images showed failure processes that occurred in the cement layer during the first 250,000 cycles. A failure in cemented acetabular implant - debonding, crumbling and smeared cracks - has been found to be at the bone-cement interface. Use of micro-focus source and high resolution flat panel detector of large physical dimensions allowed to reconstruct the micro-structural models suitable for investigation of migration, micro-motions and consecutive loosening of the implant. The large area flat panel detector with physical dimensions 120 x 120mm with 50μm pixel size provided a superior image quality compared to clinical CT systems with 300-150μm pixel size.

  12. A New Type of Biphasic Calcium Phosphate Cement as a Gentamicin Carrier for Osteomyelitis

    Directory of Open Access Journals (Sweden)

    Wen-Yu Su

    2013-01-01

    Full Text Available Osteomyelitis therapy is a long-term and inconvenient procedure for a patient. Antibiotic-loaded bone cements are both a complementary and alternative treatment option to intravenous antibiotic therapy for the treatment of osteomyelitis. In the current study, the biphasic calcium phosphate cement (CPC, called α-TCP/HAP (α-tricalcium phosphate/hydroxyapatite biphasic cement, was prepared as an antibiotics carrier for osteomyelitis. The developed biphasic cement with a microstructure of α-TCP surrounding the HAP has a fast setting time which will fulfill the clinical demand. The X-ray diffraction and Fourier transform infrared spectrometry analyses showed the final phase to be HAP, the basic bone mineral, after setting for a period of time. Scanning electron microscopy revealed a porous structure with particle sizes of a few micrometers. The addition of gentamicin in α-TCP/HAP would delay the transition of α-TCP but would not change the final-phase HAP. The gentamicin-loaded α-TCP/HAP supplies high doses of the antibiotic during the initial 24 hours when they are soaked in phosphate buffer solution (PBS. Thereafter, a slower drug release is produced, supplying minimum inhibitory concentration until the end of the experiment (30 days. Studies of growth inhibition of Staphylococcus aureus and Pseudomonas aeruginosa in culture indicated that gentamicin released after 30 days from α-TCP/HAP biphasic cement retained antibacterial activity.

  13. Alternative Fuels in Cement Production

    DEFF Research Database (Denmark)

    Larsen, Morten Boberg

    The substitution of alternative for fossil fuels in cement production has increased significantly in the last decade. Of these new alternative fuels, solid state fuels presently account for the largest part, and in particular, meat and bone meal, plastics and tyre derived fuels (TDF) accounted...... for the most significant alternative fuel energy contributors in the German cement industry. Solid alternative fuels are typically high in volatile content and they may differ significantly in physical and chemical properties compared to traditional solid fossil fuels. From the process point of view......, considering a modern kiln system for cement production, the use of alternative fuels mainly influences 1) kiln process stability (may accelerate build up of blockages preventing gas and/or solids flow), 2) cement clinker quality, 3) emissions, and 4) decreased production capacity. Kiln process stability...

  14. Mechanical aspects of degree of cement bonding and implant wedge effect.

    Science.gov (United States)

    Yoon, Yong-San; Oxland, Thomas R; Hodgson, Antony J; Duncan, Clive P; Masri, Bassam A; Choi, Donok

    2008-11-01

    The degree of bonding between the femoral stem and cement in total hip replacement remains controversial. Our objective was to determine the wedge effect by debonding and stem taper angle on the structural behavior of axisymmetric stem-cement-bone cylinder models. Stainless steel tapered plugs with a rough (i.e. bonded) or smooth (i.e. debonded) surface finish were used to emulate the femoral stem. Three different stem taper angles (5 degrees , 7.5 degrees , 10 degrees ) were used for the debonded constructs. Non-tapered and tapered (7.5 degrees ) aluminum cylindrical shells were used to emulate the diaphyseal and metaphyseal segments of the femur. The cement-aluminum cylinder interface was designed to have a shear strength that simulated bone-cement interfaces ( approximately 8MPa). The test involved applying axial compression at a rate of 0.02mm/s until failure. Six specimens were tested for each combination of the variables. Finite element analysis was used to enhance the understanding of the wedge effect. The debonded stems sustained about twice as much load as the bonded stem, regardless of taper angle. The metaphyseal model carried 35-50% greater loads than the diaphyseal models and the stem taper produced significant differences. Based on the finite element analysis, failure was most probably by shear at the cement-bone interface. Our results in this simplified model suggest that smooth (i.e. debonded) stems have greater failure loads and will incur less slippage or shear failure at the cement-bone interface than rough (i.e. bonded) stems.

  15. Polyelectrolyte addition effect on the properties of setting hydraulic cements based on calcium phosphate

    International Nuclear Information System (INIS)

    Santos, Luis A. dos; Oliveira, Luci C. de; Rigo, Eliana C.S.; Boschi, Anselmo Ortega; Carrodeguas, Raul Gracia

    1997-01-01

    In the present work the effects of the addition of some poly electrolytes (sodium alginate and poly acrylic acid) on the solubility, crystalline phases, pH and mechanical strength under compression of three calcium phosphate cements were studied. (author)

  16. Cemental tear: To know what we have neglected in dental practice

    Directory of Open Access Journals (Sweden)

    Po-Yuan Jeng

    2018-04-01

    Full Text Available Cemental tear is a special kind of root surface fracture, contributing to periodontal and periapical breakdown. However, it is a challenge for doctors to diagnose, resulting in delayed or improper treatment. We reviewed the predisposing factors, location, radiographic/clinical characteristics, diagnosis and treatments of cemental tears. From the literature, patients with cemental tear were mainly males, over 60 year-old. Possible predisposing factors include gender, age, tooth type, traumatic occlusal force and vital teeth. Cemental tears were common in upper and lower anterior teeth, single or multiple, and can be present in cervical, middle and apical third of roots. Morphology of cemental tears can be either piece-shaped or U-shaped. Clinically, cemental tear shows a unitary periodontal pocket and signs/symptoms mimicking localized periodontitis, apical periodontitis and vertical root fractures. Treatment of cemental tears include scaling, root planning, root canal treatment, periodontal/periapical surgery, guided tissue regeneration, bone grafting, and intentional replantation. Recurrence of cemental tear is possible especially when the fracture involves root apex. Extraction is recommended for teeth with poor prognosis. In conclusion, cemental tears can involve both periodontal and periapical area. Dentists should understand the predisposing factors and clinical features of cemental tears for early diagnosis/treatment to prevent bone loss/tooth extraction. Keywords: Cemental tear, Clinical characteristics, Surface root fracture, Periodontal/periapical breakdown, Recurrence, Predisposing factors

  17. Cement Augmentation in Sacroiliac Screw Fixation Offers Modest Biomechanical Advantages in a Cadaver Model.

    Science.gov (United States)

    Osterhoff, Georg; Dodd, Andrew E; Unno, Florence; Wong, Angus; Amiri, Shahram; Lefaivre, Kelly A; Guy, Pierre

    2016-11-01

    Sacroiliac screw fixation in elderly patients with pelvic fractures is prone to failure owing to impaired bone quality. Cement augmentation has been proposed as a possible solution, because in other anatomic areas this has been shown to reduce screw loosening. However, to our knowledge, this has not been evaluated for sacroiliac screws. We investigated the potential biomechanical benefit of cement augmentation of sacroiliac screw fixation in a cadaver model of osteoporotic bone, specifically with respect to screw loosening, construct survival, and fracture-site motion. Standardized complete sacral ala fractures with intact posterior ligaments in combination with ipsilateral upper and lower pubic rami fractures were created in osteoporotic cadaver pelves and stabilized by three fixation techniques: sacroiliac (n = 5) with sacroiliac screws in S1 and S2, cemented (n = 5) with addition of cement augmentation, and transsacral (n = 5) with a single transsacral screw in S1. A cyclic loading protocol was applied with torque (1.5 Nm) and increasing axial force (250-750 N). Screw loosening, construct survival, and sacral fracture-site motion were measured by optoelectric motion tracking. A sample-size calculation revealed five samples per group to be required to achieve a power of 0.80 to detect 50% reduction in screw loosening. Screw motion in relation to the sacrum during loading with 250 N/1.5 Nm was not different among the three groups (sacroiliac: 1.2 mm, range, 0.6-1.9; cemented: 0.7 mm, range, 0.5-1.3; transsacral: 1.1 mm, range, 0.6-2.3) (p = 0.940). Screw subsidence was less in the cemented group (3.0 mm, range, 1.2-3.7) compared with the sacroiliac (5.7 mm, range, 4.7-10.4) or transsacral group (5.6 mm, range, 3.8-10.5) (p = 0.031). There was no difference with the numbers available in the median number of cycles needed until failure; this was 2921 cycles (range, 2586-5450) in the cemented group, 2570 cycles (range, 2500-5107) for the sacroiliac specimens, and

  18. Subsequent Vertebral Fractures Post Cement Augmentation of the Thoracolumbar Spine: Does it Correlate With Level-specific Bone Mineral Density Scores?

    Science.gov (United States)

    Hey, Hwee Weng Dennis; Hwee Weng, Dennis Hey; Tan, Jun Hao; Jun, Hao Tan; Tan, Chuen Seng; Chuen, Seng Tan; Tan, Hsi Ming Bryan; Ming, Bryan Tan Hsi; Lau, Puang Huh Bernard; Huh, Bernard Lau Puang; Hee, Hwan Tak; Hwan, Tak Hee

    2015-12-01

    A case-control study. In this study, we investigated the correlation between level-specific preoperative bone mineral density and subsequent vertebral fractures. We also identified factors associated with subsequent vertebral fractures. Complications of cement augmentation of the spine include subsequent vertebral fractures, leading to unnecessary morbidity and more treatment. Ability to predict at-risk vertebra will help guide management. We studied all patients with osteoporotic compression fractures who underwent cement augmentation in a single institution from November 2001 to December 2010 by a single surgeon. Association between level-specific bone mineral density T-scores and subsequent fractures was assessed. Multivariable analysis was performed to identify significant factors associated with subsequent vertebral fractures. 93 patients followed up for a mean duration of 25.1 months (12-96) had a mean age of 76.8 years (47-99). Vertebroplasty was performed in 58 patients (62.4%) on 68 levels and kyphoplasty in 35 patients (37.6%) on 44 levels. Refracture was seen in 16 patients (17.2%). The time to subsequent fracture post cement augmentation was 20.5 months (2-90). For refracture cases, 43.8% (7/16) fractured in the adjacent vertebrae. Subsequently fractured vertebra had a mean T-score of -2.860 (95% confidence interval -3.268 to -2.452) and nonfractured vertebra had a mean T-score of -2.180 (95% confidence interval -2.373 to -1.986). A T-score of -2.2 or lower is predictive of refracture at that vertebra (P = 0.047). Odds ratio increases with decreasing T-scores from -2.2 or lower to -2.6 or lower. A T-score of -2.6 or lower gives no additional predictive advantage. After multivariable analysis, age (P = 0.049) and loss of preoperative anterior vertebral height (P = 0.017) are associated with refracture. Level-specific T-scores are predictive of subsequent fractures and the odds ratio increases with lower T-scores from -2.2 or less to -2.6 or less. They

  19. Effect of barium-coated halloysite nanotube addition on the cytocompatibility, mechanical and contrast properties of poly(methyl methacrylate) cement

    OpenAIRE

    Jammalamadaka U; Tappa K; Weisman JA; Nicholson JC; Mills DK

    2017-01-01

    Uday Jammalamadaka,1 Karthik Tappa,1 Jeffery A Weisman,1 James Connor Nicholson,2 David K Mills1,3 1Center for Biomedical Engineering and Rehabilitation Science, 2Nanosystems Engineering, 3The School of Biological Sciences, Louisiana Tech University, Ruston, LA, USA Abstract: Halloysite nanotubes (HNTs) were investigated as a platform for tunable nanoparticle composition and enhanced opacity in poly(methyl methacrylate) (PMMA) bone cement. Halloysite has been widely used to increase ...

  20. Effect of Addition of A Marble Dust on Drying Shrinkage Cracks of Cement Mortar Reinforced with Various Fibers

    Directory of Open Access Journals (Sweden)

    Basim Thabit Al-Khafaji

    2017-05-01

    Full Text Available This investigation is conducted to study the effect of addition of marble powder (marble dust and different fibers on drying shrinkage cracks and some properties of fibers reinforcment cement mortar. Steel molds having a trapezoidal section, and the end restrained at square shape with( 2.7 meter at length are used to study restrained drying shrinkage of cement mortar. Specimens of ( compressive .flextural. splitting strength were cast. The admixture (marble dust was used to replacie weight of cement with three levels of (4%, 8% and 16% and the fiber hemp and sisal fiber were added for all mixes with proportion by volum of cement . All specimens were cured for (14 days. Average of three results was taken for any test of compressive, tensil and flextural strength. The experimental results showed that the adding of this admixture(marble dust cause adelay in a formation of cracks predicted from a drying shrinkage ,decreases of its width , and hence increases of (compressive, splitting tensil and flextural strength at levels of (4%, and 8%. Thus there is a the positive effect when fiberes added for all mixes of cement mortar with addition of (marble dust. All The admixtures (marble dust and fibers have the obvious visible effect in the delay of the information of shrinkage cracks and the decrease of its width as Compared to the cement mortar mixes when marble dust added a alone.

  1. Health hazards of cement dust

    International Nuclear Information System (INIS)

    Meo, Sultan A.

    2004-01-01

    ven in the 21st century, millions of people are working daily in a dusty environment. They are exposed to different types of health hazards such as fume, gases and dust, which are risk factors in developing occupational disease. Cement industry is involved in the development of structure of this advanced and modern world but generates dust during its production. Cement dust causes lung function impairment, chronic obstructive lung disease, restrictive lung disease, pneumoconiosis and carcinoma of the lungs, stomach and colon. Other studies have shown that cement dust may enter into the systemic circulation and thereby reach the essentially all the organs of body and affects the different tissues including heart, liver, spleen, bone, muscles and hairs and ultimately affecting their micro-structure and physiological performance. Most of the studies have been previously attempted to evaluate the effects of cement dust exposure on the basis of spirometry or radiology, or both. However, collective effort describing the general effects of cement dust on different organ and systems in humans or animals, or both has not been published. Therefore, the aim of this review is to gather the potential toxic effects of cement dust and to minimize the health risks in cement mill workers by providing them with information regarding the hazards of cement dust. (author)

  2. Improved microstructure of cement-based composites through the addition of rock wool particles

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Wei-Ting [Dept. of Civil Engineering, National Ilan University, Ilan 26047, Taiwan (China); Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan 32546, Taiwan (China); Cheng, An, E-mail: ancheng@niu.edu.tw [Dept. of Civil Engineering, National Ilan University, Ilan 26047, Taiwan (China); Huang, Ran; Zou, Si-Yu [Dept. of Harbor and River Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan (China)

    2013-10-15

    Rock wool is an inorganic fibrous substance produced by steam blasting and cooling molten glass. As with other industrial by-products, rock wool particles can be used as cementitious materials or ultra fine fillers in cement-based composites. This study investigated the microstructure of mortar specimens produced with cement-based composites that include various forms of rock wool particles. It conducted compressive strength testing, rapid chloride penetration tests, X-ray diffraction analysis, thermo-gravimetric analysis, and scanning electronic microscopy to evaluate the macro- and micro-properties of the cement-based composites. Test results indicate that inclusion of rock wool particles in composites improved compressive strength and reduced chloride ion penetration at the age of 91 days due to the reduction of calcium hydroxide content. Microscopic analysis confirms that the use of rock wool particles contributed to the formation of a denser, more compact microstructure within the hardened paste. In addition, X-ray diffraction analysis shows few changes in formation of pozzolanic reaction products and no new hydrations are formed with incorporating rock wool particles. - Highlights: • We report the microstructural characterization of cement-based composites. • Different mixes produced with various rock wool particles have been tested. • The influence of different mixes on macro and micro properties has been discussed. • The macro properties are included compressive strength and permeability. • XRD and SEM observations confirm the pozzolanic reaction in the resulting pastes.

  3. Addition of bioactive glass to glass ionomer cements: Effect on the physico-chemical properties and biocompatibility.

    Science.gov (United States)

    De Caluwé, T; Vercruysse, C W J; Ladik, I; Convents, R; Declercq, H; Martens, L C; Verbeeck, R M H

    2017-04-01

    Glass ionomer cements (GICs) are a subject of research because of their inferior mechanical properties, despite their advantages such as fluoride release and direct bonding to bone and teeth. Recent research aims to improve the bioactivity of the GICs and thereby improve mechanical properties on the long term. In this study, two types of bioactive glasses (BAG) (45S5F and CF9) are combined with GICs to evaluate the physico-chemical properties and biocompatibility of the BAG-GIC combinations. The effect of the addition of Al 3+ to the BAG composition and the use of smaller BAG particles on the BAG-GIC properties was also investigated. Conventional aluminosilicate glass (ASG) and (modified) BAG were synthesized by the melt method. BAG-GIC were investigated on setting time, compressive strength and bioactivity. Surface changes were evaluated by Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), EDS and PO 4 3- -and Ca 2+ uptake in SBF. Biocompatibility of selected BAG-GICs was determined by a direct toxicity assay. The addition of BAG improves the bioactivity of the GIC, which can be observed by the formation of an apatite (Ap) layer, especially in CF9-containing GICs. More BAG leads to more bioactivity but decreases strength. The addition of Al 3+ to the BAG composition improves strength, but decreases bioactivity. BAGs with smaller particle sizes have no effect on bioactivity and decrease strength. The formation of an Ap layer seems beneficial to the biocompatibility of the BAG-GICs. Bioactive GICs may have several advantages over conventional GICs, such as remineralization of demineralized tissue, adhesion and proliferation of bone- and dental cells, allowing integration in surrounding tissue. CF9 BAG-GIC combinations containing maximum 10mol% Al 3+ are most promising, when added in ≤20wt% to a GIC. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  4. Radioactive waste cementation

    International Nuclear Information System (INIS)

    Soriano B, A.

    1996-01-01

    This research was carried out to develop the most adequate technique to immobilize low and medium-activity radioactive waste. different brands of national cement were used, portland and pozzolanic cement. Prismatic and cylindrical test tubes were prepared with different water/cement (W/C) relationship. Additives such a as clay and bentonite were added in some other cases. Later, the properties of these test tubes were evaluated. Properties such as: mechanical resistance, immersion resistance, lixiviation and porosity resistance. Cement with the highest mechanical resistance values, 62,29 MPa was pozzolanic cement for a W/C relationship of 0,35. It must be mentioned that the other types of cements reached a mechanical resistance over 10 MPa, a value indicated by the international standards for transportation and storage of low and medium-activity radioactive waste at a superficial level. However, in the case of immersion resistance, Sol cement (portland type I) with a W/C relationship of 0,35 reached a compression resistance over 61,92 MPa; as in the previous cases, the other cements reached a mechanical resistance > 10 MPa. Regarding porosity, working with W/C relationships = 0,35 0,40 and 0,45, without additives and with additives, the percentage of porosity found for all cements is lower than 40% percentage indicated by international standards. With regard to the lixiviation test, pozzolanic cement best retained Cesium-137 and Cobalt-60, and increased its advantages when bentonite was added, obtaining a lixiviation rate of 2,02 x E-6 cm/day. Sol cement also improved its properties when bentonite was added and obtained a lixiviation rate of 2,84 x E-6 cm/day for Cesium-137. However, Cobalt-60 is almost completely retained with the 3 types of cement with or without additives, reaching the limits indicated by the international standards for the lixiviation rate of beta-gamma emitter < 5,00E-4 cm/day. Characterizing the final product involves the knowledge of its

  5. Assessment of the influence of fly ash additive on the tightness of concrete with furnace cement CEM IIIA 32,5N

    Directory of Open Access Journals (Sweden)

    Anna Szcześniak

    2017-12-01

    Full Text Available The analysis of influence of fly ash additive to concrete on the basis of cement CEM IIIA 32,5 N on the tightness and strength was presented in the paper. Researches were carried out for three types of concrete made with the use of CEM IIIA 32,5N LH HSR NA cement. The basic recipe of concrete does not contain the additive of fly ash, while two other concretes contain the fly ash additive in an amount of 25% and 33% of the cement mass. Laboratory investigations of the concrete samples were carried out under conditions of long-term maturation in the range of the water tightness and the depth of water penetration in concrete, compressive strength and tensile strength of concrete at splitting. Keywords: concrete testing, furnace cement, fly ash additive, water tightness of concrete, strength of concrete

  6. [Bone Cell Biology Assessed by Microscopic Approach. Bone histomorphometry of remodeling, modeling and minimodeling].

    Science.gov (United States)

    Yamamoto, Noriaki; Shimakura, Taketoshi; Takahashi, Hideaki

    2015-10-01

    Bone histomorphometry is defined as a quantitative evaluation of bone remodeling. In bone remodeling, bone resorption and bone formation are coupled with scalloped cement lines. Another mechanism of bone formation is minimodeling which bone formation and resorption are independent. The finding of minimodeling appeared in special condition with metabolic bone disease or anabolic agents. We need further study for minimodeling feature and mechanism.

  7. Cemented total knee replacement in 24 dogs: surgical technique, clinical results, and complications.

    Science.gov (United States)

    Allen, Matthew J; Leone, Kendall A; Lamonte, Kimberly; Townsend, Katy L; Mann, Kenneth A

    2009-07-01

    To characterize the performance of cemented total knee replacement (TKR) in dogs. Preclinical research study. Skeletally mature, male Hounds (25-30 kg; n=24) with no preexisting joint pathology. Dogs had unilateral cemented TKR and were evaluated at 6, 12, 26, or 52 weeks (6 dogs/time point) by radiography, bone density analysis, visual gait assessment, and direct measurement of thigh circumference and stifle joint range of motion as indicators of functional recovery. At study end, the stability of the cemented tibial component was determined by destructive mechanical testing. Joint stability was excellent in 16 dogs (67%) and good in 8 dogs. None of the tibial components had evidence of migration or periprosthetic osteolysis whereas 1 femoral component was loose at 52 weeks. There was an early and significant decrease in tibial bone density, likely because of disuse of the operated limb. Dogs returned to full activity by 12 weeks. The tibial cement-bone interface maintained its strength over 52 weeks. Cement provides stable fixation of the tibial component in canine TKR. Cemented TKR yields adequate clinical function and stifle joint excursion in the dog. Clinical studies are needed to determine the long-term fate of cemented TKR implants, to assess the influence of implant design on implant fixation and wear, and to obtain objective functional data.

  8. Hydration of fly ash cement and microstructure of fly ash cement pastes

    Energy Technology Data Exchange (ETDEWEB)

    Shiyuan, H.

    1981-01-01

    The strength development and hydration of fly ash cement and the influence of addition of gypsum on those were studied at normal and elevated temperatures. It was found that an addition of a proper amount of gypsum to fly ash cement could accelerate the pozzolanic reaction between CH and fly ash, and as a result, increase the strength of fly ash cement pastes after 28 days.

  9. Estimation of Frost Resistance of the Tile Adhesive on a Cement Based with Application of Amorphous Aluminosilicates as a Modifying Additive

    Science.gov (United States)

    Ivanovna Loganina, Valentina; Vladimirovna Zhegera, Christina

    2017-10-01

    In the article given information on the possibility of using amorphous aluminosilicates as a modifying additive in the offered tile cement adhesive. In the article, the data on the preparation of an additive based on amorphous aluminosilicates, on its microstructure and chemical composition. Presented information on the change in the porosity of cement stone when introduced of amorphous aluminosilicates in the his composition. The formulation of a dry building mix on a cement base is proposed with use of an additive based on amorphous aluminosilicates as a modifying additive. Recipe of dry adhesive mixes include Portland cement M400, mineral aggregate in proportion fraction 0.63-0.315:0.315-0.14 respectively 80:20 (%) and filling density of 1538.2 kg/m3, a plasticizer Kratasol, redispersible powder Neolith P4400 and amorphous alumnosilicates. The developed formulation can be used as a tile adhesive for finishing walls of buildings and structure with tiles. Presented results of the evaluation of frost resistance of adhesives based on cement with using of amorphous aluminosilicates as a modifying additive. Installed the mark on the frost resistance of tile glue and frost resistance of the contact zone of adhesive. Established, that the adhesive layer based on developed formulation dry mixture is crack-resistant and frost-resistant for conditions city Penza and dry humidity zone - zone 3 and climatic subarea IIB (accordance with Building codes and regulations 23-01-99Ȋ) cities Russia’s.

  10. Resistance to acid attack of portland cement mortars produced with red mud as a pozzolanic additive

    International Nuclear Information System (INIS)

    Balbino, Thiago Gabriel Ferreira; Fortes, Gustavo Mattos; Lourenco, Rafaela Roberta; Rodrigues, Jose de Anchieta

    2011-01-01

    Portland cement structures are usually exposed to aggressive environments, which requires the knowledge of the performance of these materials under deleterious conditions. In this study, it was evaluated the resistance to acid attack of mortars that contain ordinary (CPI) and compost (CPII-Z) Portland cements, adding to the first red mud (RB) as a pozzolanic additive in different conditions: without calcination, calcined at 400 ° C and at 600 ° C. The specimens were subjected to HCl and H 2 SO 4 solutions, both with concentration of 1.0 Mol L -1 for 28 days, monitoring the weight loss and leached material nature by atomic emission inductively coupled plasma (ICP). The hydration products were studied by thermogravimetric analysis (TGA) and X-ray diffraction (XRD) of the hydrated cement pastes. It was observed a reduction of portlandite amount in the RB containing cement pastes, indicating a possible pozzolanic activity of the red mud. The mortars prepared with RB were more resistant to HCl, while that ones with calcined RB present a better performance in H 2 SO 4 attack. (author)

  11. Osteogenesis and angiogenesis properties of dental pulp cell on novel injectable tricalcium phosphate cement by silica doped

    Energy Technology Data Exchange (ETDEWEB)

    Su, Ying-Fang [Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan (China); Department of Stomatology, Chung Shan Medical University Hospital, Taichung, Taiwan (China); School of Dentistry, Chung Shan Medical University, Taichung, Taiwan (China); Lin, Chi-Chang, E-mail: chichang31@gmail.com [Department of Anatomy, Chung Shan Medical University, Taichung City, Taiwan (China); Huang, Tsui-Hsien; Chou, Ming-Yung [Department of Stomatology, Chung Shan Medical University Hospital, Taichung, Taiwan (China); School of Dentistry, Chung Shan Medical University, Taichung, Taiwan (China); Yang, Jaw-Ji, E-mail: jjyang@csmu.edu.tw [Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan (China); Shie, Ming-You, E-mail: eviltacasi@gmail.com [Department of Anatomy, Chung Shan Medical University, Taichung City, Taiwan (China)

    2014-09-01

    β-Tricalcium phosphate (β-TCP) is an osteoconductive material in clinical. In this study, we have doped silica (Si) into β-TCP and enhanced its bioactive and osteostimulative properties. To check its effectiveness, a series of Si-doped with different ratios were prepared to make new bioactive and biodegradable biocomposites for bone repair. Formation of the diametral tensile strength, ions released and weight loss of cements was considered after immersion. In addition, we also examined the behavior of human dental pulp cells (hDPCs) cultured on Si-doped β-TCP cements. The results showed that setting time and injectability of the Si-doped β-TCP cements were decreased as the Si content was increased. At the end of the immersion point, weight losses of 30.1%, 36.9%, 48.1%, and 55.3% were observed for the cement doping 0%, 10%, 20%, and 30% Si into β-TCP cements, respectively. In vitro cell experiments show that the Si-rich cements promote human dental pulp cell (hDPC) proliferation and differentiation. However, when the Si-doped in the cement is more than 20%, the amount of cells and osteogenesis protein of hDPCs was stimulated by Si released from Si-doped β-TCP cements. The degradation of β-TCP and osteogenesis of Si gives a strong reason to believe that these Si-doped β-TCP cements may prove to be promising bone repair materials. - Highlights: • The higher the Si in the cement, the shorter the setting time and the higher the DTS. • Si20-doped in TCP improved cell adhesion, proliferation and differentiation. • The Si ion stimulated collagen secreted from cells. • The Si released from substrate can promote osteogenic and angiogenic.

  12. Microbial analyses of cement and grouting additives

    International Nuclear Information System (INIS)

    Hallbeck, L.; Jaegevall, S.; Paeaejaervi, A.; Rabe, L.; Edlund, J.; Eriksson, S.

    2012-01-01

    During sampling in the ONKALO tunnel in 2006, heavy growth of a slimy material was observed in connection with grouting. It was suggested to be microbial growth on organic additives leaching from the grout. Two sampling campaigns resulted in the isolation of several aerobic bacterial strains. Some of these strains were used in biodegradation studies of three solid cement powders, eight liquid grout additives, and six plastic drainage materials. Degradation was also studied using ONKALO groundwaters as inoculums. The isolated strains were most closely related to hydrocarbon-degrading microorganisms. The biodegradation of seven of the products was tested using microorganisms isolated from the ONKALO slime in 2006; none of these strains could degrade the tested products. When ONKALO drillhole groundwaters were used as inoculums in the degradation studies, it was demonstrated that Structuro 111X, Mighty 150, and Super-Parmix supported growth of the groundwater microorganisms. Structuro 111X is a polycarboxylate condensate while Mighty 150 and Super-Parmix are condensates with formaldehyde and naphthalene. Some of the isolated microorganisms belonged to the genus Pseudomonas, many strains of which can degrade organic molecules. None of the plastic drainage materials supported growth during the degradation studies. Microorganisms were present in two of the liquid products when delivered, GroutAid and Super-Parmix. The potential of the organic compounds in grout additives to be degraded by microorganisms, increasing the risk of biofilm formation and complexing compound production, must be considered. Microbial growth will also increase the possibility of hydrogen sulphide formation. (orig.)

  13. Performance of Cement Containing Laterite as Supplementary Cementing Material

    Directory of Open Access Journals (Sweden)

    Abbas Bukhari, Z. S.

    2013-03-01

    Full Text Available The utilization of different industrial waste, by-products or other materials such as ground granulated blast furnace slag, silica fume, fly ash, limestone, and kiln dust, etc. as supplemen- tary cementing materials has received considerable attention in recent years. A study has been conducted to look into the performance of laterite as Supplementary Cementing Materials (SCM. The study focuses on compressive strength performance of blended cement containing different percentage of laterite. The cement is replaced accordingly with percentage of 2 %, 5 %, 7 % and 10 % by weight. In addition, the effect of use of three chemically different laterites have been studied on physical performance of cement as in setting time, Le-Chatlier expansion, loss on ignition, insoluble residue, free lime and specifically compressive strength of cement cubes tested at the age of 3, 7, and 28 days. The results show that the strength of cement blended with laterite as SCM is enhanced. Key words: Portland cement, supplementary cementing materials (SCM, laterite, compressive strength KUI – 6/2013 Received January 4, 2012 Accepted February 11, 2013

  14. Effects of the addition of oil shale ash and coal ash on physic-chemical properties of CPJ45 cement

    Directory of Open Access Journals (Sweden)

    Nabih K.

    2014-04-01

    Full Text Available We focused our research on recycling industrial wastes, fly ash (F.A, bottom ash (B.A and oil shale ash (S.A in cement production. The study concerns physico-chemical characterization of these products and the influence of their addition on the mechanical proprieties of the CPJ45 cement. XRF allowed us to rank the three additives used according to their contents on major oxides. Coal ashes belong to the class F, and thus possess poozzolanic properties and oil shale ash belongs to the class C and possesses hydraulic and poozolanic properties. The crystalline phases constituting each ash were analysed by XRD. We observe in bottom ash the presence of quartz and mullite. The same crystals are found in fly ash with hematite and magnetite. Oil shale ash is composed of quartz, anhydrite, gehlenite, wollastonite and periclase. The microstructures of fly ash and bottom ash were studied using SEM. The bottom ash was composed respectively of fine particles that are generally irregularly shaped, their dimensions are between 5 and 28μm and of big particles(300 μm. The EDX analysis coupled with an electronic microscope provided some information about the major elements that constitute our samples. The dehydrations of anhydrous and three days hydrated cement were examined by DSC. For hydrated cements we noticed endothermic peaks related to the dehydration of CSH, CH and decomposition of carbonates. The study of the mechanical properties of CPJ45 cement by adding different proportions of fly ash, bottom ash and oil shale ash helped clarifying the percentage of ash that leaded to improve the 28 days mechanical strength. The results show that the cements studied have their maximum mechanical resistance with the addition at 7% of fly ash or 10% of oil shale ash.

  15. Freeze-Thaw Performance and Moisture-Induced Damage Resistance of Base Course Stabilized with Slow Setting Bitumen Emulsion-Portland Cement Additives

    Directory of Open Access Journals (Sweden)

    Mojtaba Shojaei Baghini

    2015-01-01

    Full Text Available Freeze-thaw (FT cycles and moisture susceptibility are important factors influencing the geotechnical characteristics of soil-aggregates. Given the lack of published information on the behavior of cement-bitumen emulsion-treated base (CBETB under environmental conditions, especially freezing and thawing, this study investigated the effects of these additives on the CBETB performance. The primary goal was to evaluate the resistance of CBETB to moisture damage by performing FT, Marshall conditioning, and AASHTO T-283 tests and to evaluate the long-term stripping susceptibility of CBETB while also predicting the liquid antistripping additives to assess the mixture’s durability and workability. Specimens were stabilized with Portland cement (0%–6%, bitumen emulsion (0%–5%, and Portland cement-bitumen emulsion mixtures and cured for 7 days, and their short- and long-term performances were studied. Evaluation results of both the Marshall stability ratio and the tensile strength ratio show that the additions of additives increase the resistance of the mixtures to moisture damage. Results of durability tests performed for determining the resistance of compacted specimens to repeated FT cycles indicate that the specimen with the 4% cement-3% bitumen emulsion mixture significantly improves water absorption, volume changes, and weight losses. This indicates the effectiveness of this additive as a road base stabilizer with excellent engineering properties for cold regions.

  16. Concrete Durability Properties and Microstructural Analysis of Cement Pastes with Nopal Cactus Mucilage as a Natural Additive

    Directory of Open Access Journals (Sweden)

    Ramírez-Arellanes, S.

    2012-09-01

    Full Text Available The present study evaluated the addition of a 3% nopal cactus mucilage solution to cement pastes, in its effects on setting times, flow, hydration, and microstructure, as well as on capillary water absorption and chloride diffusion in concrete. Hydration was characterized through XRD and microstructure was characterized with SEM. The mucilage solution/cement and water/cement ratios tested were 0.30, 0.45, and 0.60. The results in cement pastes indicate that the addition of mucilage increases setting times, reduces flow, slows cement hydration, and inhibits the formation of calcium hydroxide crystals in comparison with the control. Capillary absorption was significantly reduced in concrete containing mucilage, and chloride diffusion coefficients dropped up to 20% in the mixture with a mucilage/cement ratio = 0.30. The mixture with a mucilage/cement ratio = 0.45 displayed marginal reduction, and the mixture with mucilage/cement ratio = 0.60 exhibited a diffusion coefficient that was greater than the control for the specimens without moist curing.En esta investigación se evaluó el efecto de una solución de mucílago de nopal al 3% en los tiempos de fraguado, fluidez, hidratación y microestructura de pastas de cemento, y absorción capilar de agua y difusión de cloruros en concreto. La hidratación fue caracterizada por XRD y la microestructura por medio de SEM. Las relaciones solución de mucílago/cemento y agua/cemento fueron 0,30; 0,45 y 0,60. Los resultados en las pastas de cemento indican que el mucílago retarda los tiempos de fraguado, reduce la fluidez, retarda la hidratación del cemento, e inhibe la formación de cristales de hidróxido de calcio, comparados con los controles. La absorción capilar en concreto conteniendo mucílago se redujo significativamente y los coeficientes de difusión de cloruros disminuyeron hasta 20% en la mezcla mucílago/cemento = 0.30. En la relación mucílago/cemento = 0.45 la reducción fue marginal y

  17. Porosity study on free mineral addition cement paste

    International Nuclear Information System (INIS)

    Salgueiro, W.; Somoza, A.; Cabrera, O.; Consolati, G.

    2004-01-01

    A study of the hydration process and the porosity evolution in a cement paste is presented. The analysis of porosity was made in samples with water to cement ratios (w/c) of 0.24, 0.40 and 0.60 at age of 3, 7, 28 and 365 days, respectively. Information on the evolution of total porosity and on the strength of the paste were obtained using positron annihilation lifetime spectroscopy (PALS), scanning electron microscopy (SEM), X-ray diffraction (XRD), mechanical tests (compression and flexion) and water absorption techniques. Specifically, positron lifetime technique allowed us to analyze the evolution of gel and capillary porosity during the hydration process. Using a simple function proposed, reasonable fits to the experimental data of the porosity evolution as a function of the compression strength were obtained

  18. Microwave assisted preparation of magnesium phosphate cement (MPC) for orthopedic applications: A novel solution to the exothermicity problem

    International Nuclear Information System (INIS)

    Zhou, Huan; Agarwal, Anand K.; Goel, Vijay K.; Bhaduri, Sarit B.

    2013-01-01

    There are two interesting features of this paper. First, we report herein a novel microwave assisted technique to prepare phosphate based orthopedic cements, which do not generate any exothermicity during setting. The exothermic reactions during the setting of phosphate cements can cause tissue damage during the administration of injectable compositions and hence a solution to the problem is sought via microwave processing. This solution through microwave exposure is based on a phenomenon that microwave irradiation can remove all water molecules from the alkaline earth phosphate cement paste to temporarily stop the setting reaction while preserving the active precursor phase in the formulation. The setting reaction can be initiated a second time by adding aqueous medium, but without any exothermicity. Second, a special emphasis is placed on using this technique to synthesize magnesium phosphate cements for orthopedic applications with their enhanced mechanical properties and possible uses as drug and protein delivery vehicles. The as-synthesized cements were evaluated for the occurrences of exothermic reactions, setting times, presence of Mg-phosphate phases, compressive strength levels, microstructural features before and after soaking in (simulated body fluid) SBF, and in vitro cytocompatibility responses. The major results show that exposure to microwaves solves the exothermicity problem, while simultaneously improving the mechanical performance of hardened cements and reducing the setting times. As expected, the cements are also found to be cytocompatible. Finally, it is observed that this process can be applied to calcium phosphate cements system (CPCs) as well. Based on the results, this microwave exposure provides a novel technique for the processing of injectable phosphate bone cement compositions. - Highlights: • A microwave assisted system for bone cement manufacturing • A solution to exothermicity problem of acid–base reaction based bone cement

  19. Microwave assisted preparation of magnesium phosphate cement (MPC) for orthopedic applications: A novel solution to the exothermicity problem

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Huan, E-mail: Huan.Zhou@rockets.utoledo.edu [Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH 43606 (United States); Agarwal, Anand K.; Goel, Vijay K. [Department of Bioengineering, The University of Toledo, Toledo, OH 43606 (United States); Bhaduri, Sarit B. [Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH 43606 (United States); Division of Dentistry, The University of Toledo, Toledo, OH 43606 (United States)

    2013-10-15

    There are two interesting features of this paper. First, we report herein a novel microwave assisted technique to prepare phosphate based orthopedic cements, which do not generate any exothermicity during setting. The exothermic reactions during the setting of phosphate cements can cause tissue damage during the administration of injectable compositions and hence a solution to the problem is sought via microwave processing. This solution through microwave exposure is based on a phenomenon that microwave irradiation can remove all water molecules from the alkaline earth phosphate cement paste to temporarily stop the setting reaction while preserving the active precursor phase in the formulation. The setting reaction can be initiated a second time by adding aqueous medium, but without any exothermicity. Second, a special emphasis is placed on using this technique to synthesize magnesium phosphate cements for orthopedic applications with their enhanced mechanical properties and possible uses as drug and protein delivery vehicles. The as-synthesized cements were evaluated for the occurrences of exothermic reactions, setting times, presence of Mg-phosphate phases, compressive strength levels, microstructural features before and after soaking in (simulated body fluid) SBF, and in vitro cytocompatibility responses. The major results show that exposure to microwaves solves the exothermicity problem, while simultaneously improving the mechanical performance of hardened cements and reducing the setting times. As expected, the cements are also found to be cytocompatible. Finally, it is observed that this process can be applied to calcium phosphate cements system (CPCs) as well. Based on the results, this microwave exposure provides a novel technique for the processing of injectable phosphate bone cement compositions. - Highlights: • A microwave assisted system for bone cement manufacturing • A solution to exothermicity problem of acid–base reaction based bone cement

  20. Study on Cr(VI) Leaching from Cement and Cement Composites

    Science.gov (United States)

    Palascakova, Lenka; Kanuchova, Maria

    2018-01-01

    This paper reports an experimental study on hexavalent chromium leaching from cement samples and cement composites containing silica fume and zeolite additions that were subjected to various leaching agents. The water-soluble Cr(VI) concentrations in cements ranged from 0.2 to 3.2 mg/kg and represented only 1.8% of the total chromium content. The presence of chromium compounds with both chromium oxidation states of III and VI was detected in the cement samples by X-ray photoelectron spectroscopy (XPS). Leaching tests were performed in a Britton-Robinson buffer to simulate natural conditions and showed increased dissolution of Cr(VI) up to 6 mg/kg. The highest amount of leached hexavalent chromium was detected after leaching in HCl. The findings revealed that the leaching of chromium from cements was higher by 55–80% than that from the cement composites. A minimum concentration was observed for all cement samples when studying the relationship between the soluble Cr(VI) and the cement storage time. PMID:29690550

  1. Preparation, physical-chemical characterisation and cytocompatibility of calcium carbonate cements.

    Science.gov (United States)

    Combes, C; Miao, Baoji; Bareille, Reine; Rey, Christian

    2006-03-01

    The feasibility of calcium carbonate cements involving the recrystallisation of metastable calcium carbonate varieties has been demonstrated. Calcium carbonate cement compositions presented in this paper can be prepared straightforwardly by simply mixing water (liquid phase) with two calcium carbonate phases (solid phase) which can be easily obtained by precipitation. An original cement composition was obtained by mixing amorphous calcium carbonate and vaterite with an aqueous medium. The cement set and hardened within 2h at 37 degrees C in an atmosphere saturated with water and the final composition of the cement consisted mostly of aragonite. The hardened cement was microporous and showed poor mechanical properties. Cytotoxicity tests revealed excellent cytocompatibility of calcium carbonate cement compositions. Calcium carbonates with a higher solubility than the apatite formed for most of the marketed calcium phosphate cements might be of interest to increase biomedical cement resorption rates and to favour its replacement by bone tissue.

  2. Positive effect of removal of subchondral bone plate for cemented acetabular component fixation in total hip arthroplasty: a randomised RSA study with ten-year follow-up.

    Science.gov (United States)

    Flivik, G; Kristiansson, I; Ryd, L

    2015-01-01

    We hypothesised that the removal of the subchondral bone plate (SCBP) for cemented acetabular component fixation in total hip arthroplasty (THA) offers advantages over retention by improving the cement-bone interface, without jeopardising implant stability. We have previously published two-year follow-up data of a randomised controlled trial (RCT), in which 50 patients with primary osteoarthritis were randomised to either retention or removal of the SCBP. The mean age of the retention group (n = 25, 13 males) was 70.0 years (sd 6.8). The mean age in the removal group (n = 25, 16 males) was 70.3 years (sd 7.9). Now we have followed up the patients at six (retention group, n = 21; removal group, n = 20) and ten years (retention group: n = 17, removal group: n = 18), administering clinical outcome questionnaires and radiostereometric analysis (RSA), and determining the presence of radiolucent lines (RLLs) on conventional radiographs. RSA demonstrated similar translation and rotation patterns up to six years. Between six and ten years, proximal acetabular component migration and changes of inclination were larger in the retention group, although the mean differences did not reach statistical significance. Differences in migration were driven by two patients in the SCBP retention group with extensive migration versus none in the SCBP removal group. The significant difference (p < 0.001) in the development of radiolucent lines in the retention group, previously observed at two years, increased even further during the course of follow-up (p < 0.001). While recognising SCBP removal is a more demanding technique, we conclude that, wherever possible, the SCBP should be removed to improve the cement-bone interface in order to maximise acetabular component stability and longevity. ©2015 The British Editorial Society of Bone & Joint Surgery.

  3. Evaluation of the use of red mud as a pozzolanic additive in Portland cement

    International Nuclear Information System (INIS)

    Fortes, Gustavo Mattos; Balbino, Thiago Gabriel Ferreira; Lourenco, Rafaela Roberta; Rodrigues, Jose de Anchieta

    2011-01-01

    It is estimated that the aluminum industry generates approximately 13.7 million tones/year of red mud (RB) in Brazil. Although, being the RB rich in Al 2 O 3 and SiO 2 and partially amorphous, a potential pozzolanic activity is suggested. Thus, this work aims to evaluate the application of 15w-% of RB, as a pozzolanic additive, to the ordinary Portland cement (CPI), simulating a pozzolanic compost Portland cement (CPII-Z). To study the pozzolanic activation of the RB, this one was added without calcination, calcinated at 400°C and at 600°C. The compressive strength was measured in mortars of CPI with additions of RB, of CPI and CPII (references), after 28 days of curing. The analysis of the apparent porosity and the characterization of the hydration products were done to complement the evaluation. The mortars with calcinated RB showed good results of mechanical strength, reaching more than 85% (45 MPa) of the CPI's strength and higher values than the CPII-Z32. (author)

  4. [PVD-silicoating before cementation of zirconia-based knee prostheses effects better cement adhesion and lower aseptic loosening rates].

    Science.gov (United States)

    Marx, R; Faramarzi, R; Oberbach, T; Begand, S; Grätz, N; Wirtz, D C

    2012-02-01

    CoCrMo alloys are contraindicated for allergy patients. For these patients, cemented or uncemented prostheses made of titanium alloy are indicated. Uncemented prostheses, however, have low primary retention, particularly the tibial components of knee joint prostheses because of the lack of a positive locking. Therefore, for knee replacement cemented CoCrMo prostheses may be suitable also for allergy sufferers if these are masked by ZrN or TiNbN layers. Alternatively the CoCrMo alloy may be replaced by high-strength oxide ceramics. For adhesion of bone cement to the ceramic surface, however, only inefficient mechanical retention spots are exposed as compared with a metal surface. Undercuts generated by corundum blasting, although highly efficient on a CoCrMo surface, are not such efficient centres on a ceramic surface due to its brittleness. Therefore, the mechanical component of retention is significantly reduced. When specific adhesion between bone cement and surface does not exist due to physical and chemical forces, the hydrolytic stability will be insufficient. Micromotions are promoted and early aseptic loosening is predictable. Silicoating of the ceramic surface will allow specific adhesion and can result in better hydrolytic stability of bonding. In order to evaluate the effectiveness of silicoating the bond strengths of blasted (mean size of corundum grains 50 µm) and silicate layered alumina-toughened zirconia (ATZ) surfaces were compared with "as fired" surfaces by utilising TiAlV probes (diameter 6 mm) for traction-adhesive strength testing. Samples machined out of CoCrMo alloy were utilised for reference. After preparing the samples for traction-adhesive strength testing (sequence: substrate, silicate and silane, protective lacquer [PolyMA], bone cement, TiAlV probe) they were aged up to 360 days at 37 °C in Ringer's solution. The bond strengths observed for all ageing intervals were well above 20 MPa and much higher and more hydrolytically

  5. Preparation of the fast setting and degrading Ca–Si–Mg cement with both odontogenesis and angiogenesis differentiation of human periodontal ligament cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yi-Wen [Graduate Institute of Clinical Medical Science, China Medical University, Taichung City, Taiwan (China); 3D Printing Medical Research Center, China Medical University Hospital, Taichung City, Taiwan (China); Hsu, Tuan-Ti [Institute of Oral Science, Chung Shan Medical University, Taichung City, Taiwan (China); Wang, Kan [H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Shie, Ming-You, E-mail: eviltacasi@gmail.com [3D Printing Medical Research Center, China Medical University Hospital, Taichung City, Taiwan (China)

    2016-03-01

    Develop a fast setting and controllable degrading magnesium–calcium silicate cement (Mg–CS) by sol–gel, and establish a mechanism using Mg ions to stimulate human periodontal ligament cells (hPDLs) are two purposes of this study. We have used the diametral tensile strength measurement to obtain the mechanical strength and stability of Mg–CS cement; in addition, the cement degradation properties is realized by measuring the releasing amount of Si and Mg ions in the simulated body fluid. The other cell characteristics of hPDLs, such as proliferation, differentiation and mineralization were examined while hPDLs were cultured on specimen surfaces. This study found out the degradation rate of Mg–CS cements depends on the Mg content in CS. Regarding in vitro bioactivity; the CS cements were covered with abundant clusters of apatite spherulites after immersion of 24 h, while less apatite spherulites were formatted on the Mg-rich cement surfaces. In addition, the authors also explored the effects of Mg ions on the odontogenesis and angiogenesis differentiation of hPDLs in comparison with CS cement. The proliferation, alkaline phosphatase, odontogenesis-related genes (DSPP and DMP-1), and angiogenesis-related protein (vWF and ang-1) secretion of hPDLs were significantly stimulated when the Mg content of the specimen was increased. The results in this study suggest that Mg–CS materials with this modified composition could stimulate hPDLs behavior and can be good bioceramics for bone substitutes and hard tissue regeneration applications as they stimulate odontogenesis/angiogenesis. - Highlights: • The fast setting and degrading Mg–CS cement was synthesized by sol–gel. • Promoted proliferation of hPDLs on Mg–CS specimens • Mg–CS can degrade and release Si and Mg ions into SBF. • Up-regulation of odontogenic and angiogenic of hPDLs • Mg–CS may be good bone substitutes for hard tissue regeneration applications.

  6. Preparation of the fast setting and degrading Ca–Si–Mg cement with both odontogenesis and angiogenesis differentiation of human periodontal ligament cells

    International Nuclear Information System (INIS)

    Chen, Yi-Wen; Hsu, Tuan-Ti; Wang, Kan; Shie, Ming-You

    2016-01-01

    Develop a fast setting and controllable degrading magnesium–calcium silicate cement (Mg–CS) by sol–gel, and establish a mechanism using Mg ions to stimulate human periodontal ligament cells (hPDLs) are two purposes of this study. We have used the diametral tensile strength measurement to obtain the mechanical strength and stability of Mg–CS cement; in addition, the cement degradation properties is realized by measuring the releasing amount of Si and Mg ions in the simulated body fluid. The other cell characteristics of hPDLs, such as proliferation, differentiation and mineralization were examined while hPDLs were cultured on specimen surfaces. This study found out the degradation rate of Mg–CS cements depends on the Mg content in CS. Regarding in vitro bioactivity; the CS cements were covered with abundant clusters of apatite spherulites after immersion of 24 h, while less apatite spherulites were formatted on the Mg-rich cement surfaces. In addition, the authors also explored the effects of Mg ions on the odontogenesis and angiogenesis differentiation of hPDLs in comparison with CS cement. The proliferation, alkaline phosphatase, odontogenesis-related genes (DSPP and DMP-1), and angiogenesis-related protein (vWF and ang-1) secretion of hPDLs were significantly stimulated when the Mg content of the specimen was increased. The results in this study suggest that Mg–CS materials with this modified composition could stimulate hPDLs behavior and can be good bioceramics for bone substitutes and hard tissue regeneration applications as they stimulate odontogenesis/angiogenesis. - Highlights: • The fast setting and degrading Mg–CS cement was synthesized by sol–gel. • Promoted proliferation of hPDLs on Mg–CS specimens • Mg–CS can degrade and release Si and Mg ions into SBF. • Up-regulation of odontogenic and angiogenic of hPDLs • Mg–CS may be good bone substitutes for hard tissue regeneration applications.

  7. Antibiotic-loaded acrylic bone cements: An in vitro study on the release mechanism and its efficacy

    Energy Technology Data Exchange (ETDEWEB)

    Miola, Marta, E-mail: marta.miola@polito.it [Applied Science and Technology Department, Politecnico di Torino (Italy); Bistolfi, Alessandro [Department of Orthopaedics, Traumatology and HM, University of Turin (Italy); AO CTO, M Adelaide Hospital, Turin (Italy); Valsania, Maria Carmen; Bianco, Carlotta [Department of Orthopaedics, Traumatology and HM, University of Turin (Italy); Fucale, Giacomo [Chemical, Clinical and Microbiological Analyses Dept., CTO, Turin (Italy); Verné, Enrica [Applied Science and Technology Department, Politecnico di Torino (Italy)

    2013-07-01

    An in vitro study was carried out in order to investigate the antibiotic release mechanism and the antibacterial properties of commercially (Palacos® R + G and Palacos® LV + G) and manually (Palacos® R + GM and Palacos® LV + GM) blended gentamicin-loaded bone cements. Samples were characterized by means of scanning electron microscopy (SEM) and compression strength was evaluated. The antibiotic release was investigated by dipping sample in simulated body fluid (SBF) and periodically analyzing the solution by means of high pressure liquid chromatography (HPLC). Different antibacterial tests were performed to investigate the possible influence of blending technique on antibacterial properties. Only some differences were observed between gentamicin manually added and commercial ones, in the release curves, while the antibacterial effect and the mechanical properties seem to not feel the blending technique. Highlights: • The efficacy of commercially and manually mixed antibiotic-loaded cements is studied. • Exhaustive mechanical, drug release and antibacterial studies are carried out. • The blending technique does not affect the antibacterial and mechanical properties. • The blending process influences only the release curve, not the released drug amount.

  8. Antibiotic-loaded acrylic bone cements: An in vitro study on the release mechanism and its efficacy

    International Nuclear Information System (INIS)

    Miola, Marta; Bistolfi, Alessandro; Valsania, Maria Carmen; Bianco, Carlotta; Fucale, Giacomo; Verné, Enrica

    2013-01-01

    An in vitro study was carried out in order to investigate the antibiotic release mechanism and the antibacterial properties of commercially (Palacos® R + G and Palacos® LV + G) and manually (Palacos® R + GM and Palacos® LV + GM) blended gentamicin-loaded bone cements. Samples were characterized by means of scanning electron microscopy (SEM) and compression strength was evaluated. The antibiotic release was investigated by dipping sample in simulated body fluid (SBF) and periodically analyzing the solution by means of high pressure liquid chromatography (HPLC). Different antibacterial tests were performed to investigate the possible influence of blending technique on antibacterial properties. Only some differences were observed between gentamicin manually added and commercial ones, in the release curves, while the antibacterial effect and the mechanical properties seem to not feel the blending technique. Highlights: • The efficacy of commercially and manually mixed antibiotic-loaded cements is studied. • Exhaustive mechanical, drug release and antibacterial studies are carried out. • The blending technique does not affect the antibacterial and mechanical properties. • The blending process influences only the release curve, not the released drug amount

  9. Pre-clinical evaluation of the mechanical properties of a low-stiffness cement-injectable hip stem.

    Science.gov (United States)

    Eldesouky, Ibrahim; Harrysson, Ola; Marcellin-Little, Denis J; West, Harvey; El-Hofy, Hassan

    2017-11-01

    In total hip arthroplasty (THA), the femoral stem can be fixed with or without bone cement. Cementless stem fixation is recommended for young and active patients as it eliminates the risk of loss of fixation at the bone-cement and cement-implant interfaces. Cementless fixation, however, suffers from a relatively high early revision rate. In the current research, a novel low-stiffness hip stem was designed, fabricated and tested. The stem design provided the option to inject biodegradable bone cement that could enhance initial stem stability. The stem was made of Ti6Al4V alloy. The proximal portion of the stem was porous, with cubic cells. The stem was fabricated using electron beam melting (EBM) technology and tested in compression and bending. Finite-element analysis was used to evaluate stem performance under a dynamic load representing a stair descending cycle and compare it to the performance of a solid stem with similar geometry. The von Mises stresses and maximum principal strains generated within the bone increased after porous stem insertion compared to solid stem insertion. The low-modulus stem tested in this study has acceptable mechanical properties and generates strain patterns in bone that appear compatible with clinical use.

  10. Evaluation of cement thixotropy for the cement of oil wells in areas ...

    African Journals Online (AJOL)

    ... economical for cementing job operations in wells with loss zones. The results also show that the effect of LHF is positive, since in addition to his contribution to long term performances, especially the durability of hardened concrete, it improves the thixotropy of cement made of plaster. Keywords: cementing; lost circulation; ...

  11. Comparative histomorphometric analysis between α-Tcp cement and β-Tcp/Ha granules in the bone repair of rat calvaria

    Directory of Open Access Journals (Sweden)

    Gisela Grandi

    2011-03-01

    Full Text Available This study compared the effect of two bioceramics on the process of bone repair: α-tricalcium phosphate (α-TCP cement and β-tricalcium phosphate hydroxyapatite particles (β-TCP/HA. Calvarial defects were created in 50 rats, divided into two groups (α and β/HA. Software was used at 7, 21, 60, 90 and 120 days to assess bone formation. Mean new bone formation rates were as follows: α group, 1.6% at 7 days, 5.24% at 21 days, 24% at 60 days, 30.21% at 90 days and 50.59% at 120 days; β/HA group, 1.94% at 7 days, 2.53% at 21 days, 12.47% at 60 days, 26.84% at 90 days and 38.82% at 120 days; control group, 0.15% at 7 days, 10.12% at 21 days, 15.10% at 60 days, 18.94% at 90 days, 48.50% at 120 days. Both materials are osteoconductive and biocompatible. Perhaps the larger rate of new bone formation observed in the α-TCP group, it also occurs in the β-TCP/HA group within a longer time period.

  12. Characteristics and propierties of oil-well cements additioned with blast furnace slag

    Directory of Open Access Journals (Sweden)

    Sánchez, R.

    2011-06-01

    Full Text Available The present paper addresses the alkali activation of Portland cements containing blast furnace slag (20 and 30% of the cement by weight with a view to the possible use of these materials in oil well construction. The hydration studies conducted showed that in cement/slag blends, the sodium silicate activating solution partially inhibited the dissolution of the silicate phases in the Portland cement, retarding cement hydration and reducing the precipitation of reaction products. Due to such partial inhibition, the cement/slag blends had significantly lower mechanical strength than Portland cements hydrated with water. 29Si and 27Al MAS NMR and BSE/EDX studies, in turn, showed that the C-S-H gel forming in the alkali-activated cement/slag pastes contained Al in tetrahedral positions and low Ca/Si ratios.

    En el presente trabajo se ha estudiado la activación alcalina de cementos Pórtland con incorporación de escoria de horno alto (20% y 30% con respecto al peso de cemento para su posible aplicación en la construcción de pozos petrolíferos. Los estudios de hidratación realizados indican que en mezclas cemento/escoria, la disolución activadora de silicato sódico inhibe parcialmente la disolución de las fases silicato del cemento Pórtland originando un retraso de su hidratación así como la menor precipitación de productos de reacción. Dicha parcial inhibición de los procesos reactivos en las mezclas cemento/escoria originan resistencias mecánicas significativamente inferiores a las pastas de cemento Portland hidratadas con agua. Finalmente, los estudios de 29Si y 27Al RMN MAS y BSE/EDX indican que el gel C-S-H formado en pastas de mezcla cemento/escoria activadas alcalinamente presenta Al en posiciones tetraédricas y bajas relaciones Ca/Si.

  13. Does Vertebroplasty Affect Radiation Dose Distribution?: Comparison of Spatial Dose Distributions in a Cement-Injected Vertebra as Calculated by Treatment Planning System and Actual Spatial Dose Distribution

    International Nuclear Information System (INIS)

    Komemushi, A.; Tanigawa, N.; Kariya, Sh.; Yagi, R.; Nakatani, M.; Suzuki, S.; Sano, A.; Ikeda, K.; Utsunomiya, K.; Harima, Y.; Sawada, S.

    2012-01-01

    Purpose. To assess differences in dose distribution of a vertebral body injected with bone cement as calculated by radiation treatment planning system (RTPS) and actual dose distribution. Methods. We prepared two water-equivalent phantoms with cement, and the other two phantoms without cement. The bulk density of the bone cement was imported into RTPS to reduce error from high CT values. A dose distribution map for the phantoms with and without cement was calculated using RTPS with clinical setting and with the bulk density importing. Actual dose distribution was measured by the film density. Dose distribution as calculated by RTPS was compared to the dose distribution measured by the film dosimetry. Results. For the phantom with cement, dose distribution was distorted for the areas corresponding to inside the cement and on the ventral side of the cement. However, dose distribution based on film dosimetry was undistorted behind the cement and dose increases were seen inside cement and around the cement. With the equivalent phantom with bone cement, differences were seen between dose distribution calculated by RTPS and that measured by the film dosimetry. Conclusion. The dose distribution of an area containing bone cement calculated using RTPS differs from actual dose distribution

  14. Evaluation method of radiation stability of hardened cement paste with chemical additives

    Energy Technology Data Exchange (ETDEWEB)

    Medvedev, Vyacheslav; Pustovgar, Andrey [National Research Univ. ' Moscow State Univ. of Civil Engineering' (MSUCE), Moscow (Russian Federation); National Research Univ. ' Moscow State Univ. of Civil Engineering' (MSUCE), Moscow (Russian Federation). Scientific Research Inst. of Constructional Materials and Technologies; Denisov, Alexander; Soloviev, Vitaly [National Research Univ. ' Moscow State Univ. of Civil Engineering' (MSUCE), Moscow (Russian Federation)

    2013-07-01

    The influence of additives on the radiation resistance of the concrete will occur through the influence of radiation changes of hardened cement paste on radiation changes of concrete and can be quite significant. The test sequence was produced according to the modified method. The samples were prepared in the form of prisms with the following dimensions: 10 mm x 10 mm, 30 mm long. Measurement series were produced after each heating and cooling sequence. Then the difference between the values before and after heating was calculated. (orig.)

  15. Influence of cement compressive strength and porosity on augmentation performance in a model of orthopedic screw pull-out.

    Science.gov (United States)

    Pujari-Palmer, Michael; Robo, Celine; Persson, Cecilia; Procter, Philip; Engqvist, Håkan

    2018-01-01

    Disease and injuries that affect the skeletal system may require surgical intervention and internal fixation, i.e. orthopedic plate and screw insertion, to stabilize the injury and facilitate tissue repair. If the surrounding bone quality is poor the screws may migrate, or the bone may fail, resulting in fixation failure. While numerous studies have shown that cement augmentation of the interface between bone and implant can increase screw pull-out force, the physical properties of cement that influence pull-out force have not been investigated. The present study sought to determine how the physical properties of high strength calcium phosphate cements (hsCPCs, specifically dicalcium phosphate) affected the corresponding orthopedic screw pull-out force in urethane foam models of "healthy" and "osteoporotic" synthetic bone (Sawbones). In the simplest model, where only the bond strength between screw thread and cement (without Sawbone) was tested, the correlation between pull-out force and cement compressive strength (R 2 = 0.79) was weaker than correlation with total cement porosity (R 2 = 0.89). In open pore Sawbone that mimics "healthy" cancellous bone density the stronger cements produced higher pull-out force (50-60% increase). High strength, low porosity cements also produced higher pull-out forces (50-190% increase) in "healthy" Sawbones with cortical fixation if the failure strength of the cortical material was similar to, or greater than (a metal shell), actual cortical bone. This result is of particular clinical relevance where fixation with a metal plate implant is indicated, as the nearby metal can simulate a thicker cortical shell, thereby increasing the pull-out force of screws augmented with stronger cements. The improvement in pull-out force was apparent even at low augmentation volumes of 0.5mL (50% increase), which suggest that in clinical situations where augmentation volume is limited the stronger, lower porosity calcium phosphate cement (CPC) may

  16. Impact of Phosphorus-Based Food Additives on Bone and Mineral Metabolism.

    Science.gov (United States)

    Gutiérrez, Orlando M; Luzuriaga-McPherson, Alexandra; Lin, Yiming; Gilbert, Linda C; Ha, Shin-Woo; Beck, George R

    2015-11-01

    Phosphorus-based food additives can substantially increase total phosphorus intake per day, but the effect of these additives on endocrine factors regulating bone and mineral metabolism is unclear. This study aimed to examine the effect of phosphorus additives on markers of bone and mineral metabolism. Design and Setting, and Participants: This was a feeding study of 10 healthy individuals fed a diet providing ∼1000 mg of phosphorus/d using foods known to be free of phosphorus additives for 1 week (low-additive diet), immediately followed by a diet containing identical food items; however, the foods contained phosphorus additives (additive-enhanced diet). Parallel studies were conducted in animals fed low- (0.2%) and high- (1.8%) phosphorus diets for 5 or 15 weeks. The changes in markers of mineral metabolism after each diet period were measured. Participants were 32 ± 8 years old, 30% male, and 70% black. The measured phosphorus content of the additive-enhanced diet was 606 ± 125 mg higher than the low-additive diet (P additive diet, consuming the additive-enhanced diet for 1 week significantly increased circulating fibroblast growth factor 23 (FGF23), osteopontin, and osteocalcin concentrations by 23, 10, and 11%, respectively, and decreased mean sclerostin concentrations (P foods can disturb bone and mineral metabolism in humans. The results of the animal studies suggest that this may compromise bone health.

  17. The importance of pulsed lavage on interface temperature and ligament tension force in cemented unicompartmental knee arthroplasty.

    Science.gov (United States)

    Clarius, M; Seeger, J B; Jaeger, S; Mohr, G; Bitsch, R G

    2012-05-01

    Mechanical loosening is the most common cause of revision in unicompartmental knee arthroplasty. We determined the effect of bone lavage on tibial cement penetration and interface temperature with controlled ligament tension forces. We presumed pulsed lavage would allow increased cement penetration compared with syringe lavage. Cemented unicompartmental knee arthroplasty was performed in 12 pairs of fresh-frozen knees. Lavage was performed using pulsed lavage on one side (A) and syringe lavage on the other (B). Cement penetration pressure, interface temperature, and ligament tension forces were continuously monitored during the operation. Screened radiographs were taken and cement penetration under the tibial plateau was measured. The pulsed lavage group showed a mean cement penetration area of 187.24 (SD 36.37) mm², whereas 144.29 (SD 35.74) mm(2) was measured in the group with syringe lavage. Cement penetration pressure was 13.29 (SD 8.69) kPa in Group A and 20.21 (SD 7.78) kPa in Group B. Maximum interface temperatures of 46.99°C were observed in Group A and 45.02°C in Group B. Our data showed pulsed lavage cleansing of the cancellous tibial bone substantially improved cement penetration compared with syringe lavage without reaching the temperature threshold for bone necrosis. We recommend the routine use of pulsed lavage to improve long-term fixation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Red mud addition in the raw meal for the production of Portland cement clinker.

    Science.gov (United States)

    Tsakiridis, P E; Agatzini-Leonardou, S; Oustadakis, P

    2004-12-10

    The aim of the present research work was to investigate the possibility of adding red mud, an alkaline leaching waste, which is obtained from bauxite during the Bayer process for alumina production, in the raw meal for the production of Portland cement clinker. For that reason, two samples of raw meals were prepared: one with ordinary raw materials, as a reference sample ((PC)Ref), and another with 3.5% red mud ((PC)R/M). The effect on the reactivity of the raw mix was evaluated on the basis of the unreacted lime content in samples sintered at 1350, 1400 and 1450 degrees C. Subsequently, the clinkers were produced by sintering the two raw meals at 1450 degrees C. The results of chemical and mineralogical analyses as well as the microscopic examination showed that the use of the red mud did not affect the mineralogical characteristics of the so produced Portland cement clinker. Furthermore, both clinkers were tested by determining the grindability, setting time, compressive strength and expansibility. The hydration products were examined by XRD analysis at 2, 7, 28 and 90 days. The results of the physico-mechanical tests showed that the addition of the red mud did not negatively affect the quality of the produced cement.

  19. In Vivo Osteogenic Potential of Biomimetic Hydroxyapatite/Collagen Microspheres: Comparison with Injectable Cement Pastes

    Science.gov (United States)

    Manzanares, Maria-Cristina; Ginebra, Maria-Pau; Franch, Jordi

    2015-01-01

    The osteogenic capacity of biomimetic calcium deficient hydroxyapatite microspheres with and without collagen obtained by emulsification of a calcium phosphate cement paste has been evaluated in an in vivo model, and compared with an injectable calcium phosphate cement with the same composition. The materials were implanted into a 5 mm defect in the femur condyle of rabbits, and bone formation was assessed after 1 and 3 months. The histological analysis revealed that the cements presented cellular activity only in the margins of the material, whereas each one of the individual microspheres was covered with osteogenic cells. Consequently, bone ingrowth was enhanced by the microspheres, with a tenfold increase compared to the cement, which was associated to the higher accessibility for the cells provided by the macroporous network between the microspheres, and the larger surface area available for osteoconduction. No significant differences were found in terms of bone formation associated with the presence of collagen in the materials, although a more extensive erosion of the collagen-containing microspheres was observed. PMID:26132468

  20. In Vivo Osteogenic Potential of Biomimetic Hydroxyapatite/Collagen Microspheres: Comparison with Injectable Cement Pastes.

    Directory of Open Access Journals (Sweden)

    Erika Cuzmar

    Full Text Available The osteogenic capacity of biomimetic calcium deficient hydroxyapatite microspheres with and without collagen obtained by emulsification of a calcium phosphate cement paste has been evaluated in an in vivo model, and compared with an injectable calcium phosphate cement with the same composition. The materials were implanted into a 5 mm defect in the femur condyle of rabbits, and bone formation was assessed after 1 and 3 months. The histological analysis revealed that the cements presented cellular activity only in the margins of the material, whereas each one of the individual microspheres was covered with osteogenic cells. Consequently, bone ingrowth was enhanced by the microspheres, with a tenfold increase compared to the cement, which was associated to the higher accessibility for the cells provided by the macroporous network between the microspheres, and the larger surface area available for osteoconduction. No significant differences were found in terms of bone formation associated with the presence of collagen in the materials, although a more extensive erosion of the collagen-containing microspheres was observed.

  1. Physical and chemical characterization of pastes of bone cements with ZrO{sub 2}; Caracterizacion fisica y quimica de pastas de cementos oseos con ZrO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Quinto H, A. [Instituto Tecnologico de Zacatepec, A.P. 45, 62900 Zacatepec, Morelos (Mexico); Pina B, M.C. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, A.P. 70-360, 04510 Mexico D.F. (Mexico)

    2003-07-01

    Setting times and temperature of sixteen calcium phosphate cements added with ZrO{sub 2} were evaluated. Their behaviors were analysed to be used like injectable formulations in surgery of bone. Two cements of calcium phosphates enriched with ZrO{sub 2} with the best characteristics in setting times and temperature, were mechanically tested after 1 and 7 days of prepared. Density was determined using a pycnometer, chemical composition was determined by X-ray diffraction and the molecular structure was determined by infrared spectroscopy. (Author)

  2. Sustainable Development of the Cement Industry and Blended Cements to Meet Ecological Challenges

    OpenAIRE

    Sobolev, Konstantin

    2003-01-01

    The world production of cement has greatly increased in the past 10 years. This trend is the most significant factor affecting technological development and the updating of manufacturing facilities in the cement industry. Existing technology for the production of cement clinker is ecologically damaging; it consumes much energy and natural resources and also emits pollutants. A new approach to the production of blended or high-volume mineral additive (HVMA) cement helps to improve its ecologi...

  3. In vitro and in vivo study of commercial calcium phosphate cement HydroSet™.

    Science.gov (United States)

    Kent, Niall W; Blunn, Gordon; Karpukhina, Natalia; Davis, Graham; de Godoy, Roberta Ferro; Wilson, Rory M; Coathup, Melanie; Onwordi, Lyris; Quak, Wen Yu; Hill, Robert

    2018-01-01

    The commercial calcium phosphate cement, HydroSet™, was investigated in vitro, studying phase formation, compressive strength and setting time, followed by an ovine in vivo study to measure osseointegration, bone apposition and bone-to-graft contact. The X-ray diffraction and 31 P Magic Angle Spinning Nuclear Magnetic Resonance (MAS NMR) results showed the initial formation of octacalcium phosphate and hydroxyapatite at one hour. Over 7 days the octacalcium phosphate transformed to apatite, which was the only crystalline phase of the cement at 28 days. This apatite phase is thought to be a calcium deficient apatite. In the scanning electron microscopy, histological images of 12-week ovine in vivo results showed a high degree of osseointegration, 92.5%. Compressive strength comparisons between in vitro and in vivo measurements showed a dramatic difference between the in vitro measurements (highest 25.4 MPa) and in vivo (95 MPa), attributed to bone ingrowth into the cement in vivo. To the best of our knowledge this is the first time phase evolution of HydroSet™ and the properties studied in vitro complement the in vivo evaluation of the cement in a publication. The significance of the new finding of initial formation of octacalcium phosphate in this cement is discussed. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 21-30, 2018. © 2016 Wiley Periodicals, Inc.

  4. Ultrafine portland cement performance

    Directory of Open Access Journals (Sweden)

    C. Argiz

    2018-04-01

    Full Text Available By mixing several binder materials and additions with different degrees of fineness, the packing density of the final product may be improved. In this work, ultrafine cement and silica fume mixes were studied to optimize the properties of cement-based materials. This research was performed in mortars made of two types of cement (ultrafine Portland cement and common Portland cement and two types of silica fume with different particle-size distributions. Two Portland cement replacement ratios of 4% and 10% of silica fume were selected and added by means of a mechanical blending method. The results revealed that the effect of the finer silica fume mixed with the coarse cement enhances the mechanical properties and pore structure refinement at a later age. This improvement is somewhat lower in the case of ultrafine cement with silica fume.

  5. Automatic Detection of Cortical Bones Haversian Osteonal Boundaries

    Directory of Open Access Journals (Sweden)

    Ilige Hage

    2015-10-01

    Full Text Available This work aims to automatically detect cement lines in decalcified cortical bone sections stained with H&E. Employed is a methodology developed previously by the authors and proven to successfully count and disambiguate the micro-architectural features (namely Haversian canals, canaliculi, and osteocyte lacunae present in the secondary osteons/Haversian system (osteon of cortical bone. This methodology combines methods typically considered separately, namely pulse coupled neural networks (PCNN, particle swarm optimization (PSO, and adaptive threshold (AT. In lieu of human bone, slides (at 20× magnification from bovid cortical bone are used in this study as proxy of human bone. Having been characterized, features with same orientation are used to detect the cement line viewed as the next coaxial layer adjacent to the outermost lamella of the osteon. Employed for this purpose are three attributes for each and every micro-sized feature identified in the osteon lamellar system: (1 orientation, (2 size (ellipse perimeter and (3 Euler number (a topological measure. From a training image, automated parameters for the PCNN network are obtained by forming fitness functions extracted from these attributes. It is found that a 3-way combination of these features attributes yields good representations of the overall osteon boundary (cement line. Near-unity values of classical metrics of quality (precision, sensitivity, specificity, accuracy, and dice suggest that the segments obtained automatically by the optimized artificial intelligent methodology are of high fidelity as compared with manual tracing. For bench marking, cement lines segmented by k-means did not fare as well. An analysis based on the modified Hausdorff distance (MHD of the segmented cement lines also testified to the quality of the detected cement lines vis-a-vis the k-means method.

  6. Effect of blastfurnace slag addition to Portland cement for cationic exchange resins encapsulation

    Directory of Open Access Journals (Sweden)

    Stefan L.

    2013-07-01

    Full Text Available In the nuclear industry, cement-based materials are extensively used to encapsulate spent ion exchange resins (IERs before their final disposal in a repository. It is well known that the cement has to be carefully selected to prevent any deleterious expansion of the solidified waste form, but the reasons for this possible expansion are not clearly established. This work aims at filling the gap. The swelling pressure of IERs is first investigated as a function of ions exchange and ionic strength. It is shown that pressures of a few tenths of MPa can be produced by decreases in the ionic strength of the bulk solution, or by ion exchanges (2Na+ instead of Ca2+, Na+ instead of K+. Then, the chemical evolution of cationic resins initially in the Na+ form is characterized in CEM I (Portland cement and CEM III (Portland cement + blastfurnace slag cements at early age and an explanation is proposed for the better stability of CEM III material.

  7. Simulation of the mechanical behavior of a HIP implant. Implant fixed to bone by cementation under arbitrary load

    Science.gov (United States)

    Oldani, C. R.; Dominguez, A. A.

    2007-11-01

    In a previous work a finite elements model was constructed to simulate a fatigue assay according to the norm IRAM 9422-3. Three materials were studied, two of them are the most used in this type of implant (Stainless steel 3161 and alloy T16A14V) and the third was a new developed titanium alloy (Ti35Nb7Zr5Ta). Static loads were applied to the model according to the highest requirements of the norm and the stress - strain distribution were determined. In this study a simplified analysis of the material's fatigue was done according to the previous work. The best behavior of the titanium alloys vs. the stainless steel was evident. With the objective of studying the behavior of both: the implant and the femur bone, new finite elements models were realized, in which the presence of the bone was considered. Inside the bone, the femoral component of the implant was placed in a similar way of a cemented prosthesis in a total hip arthroplasty. The advantage of the titanium implant related to the stainless steel one, was very clear.

  8. Simulation of the mechanical behavior of a HIP implant. Implant fixed to bone by cementation under arbitrary load

    Energy Technology Data Exchange (ETDEWEB)

    Oldani, C R [Materials Department - FCEFyN - Universidad Nacional de Cordoba, Av.Velez Sarsfield 1611 (5016) Cordoba (Argentina); Dominguez, A A [INTI Cordoba, Av. Velez Sarsfield 1561 (5016) Cordoba (Argentina)

    2007-11-15

    In a previous work a finite elements model was constructed to simulate a fatigue assay according to the norm IRAM 9422-3. Three materials were studied, two of them are the most used in this type of implant (Stainless steel 3161 and alloy T16A14V) and the third was a new developed titanium alloy (Ti35Nb7Zr5Ta). Static loads were applied to the model according to the highest requirements of the norm and the stress - strain distribution were determined. In this study a simplified analysis of the material's fatigue was done according to the previous work. The best behavior of the titanium alloys vs. the stainless steel was evident. With the objective of studying the behavior of both: the implant and the femur bone, new finite elements models were realized, in which the presence of the bone was considered. Inside the bone, the femoral component of the implant was placed in a similar way of a cemented prosthesis in a total hip arthroplasty. The advantage of the titanium implant related to the stainless steel one, was very clear.

  9. Industrial Wastes as Auxiliary Additives to Cement/Lime Stabilization of Soils

    OpenAIRE

    James, Jijo; Pandian, P. Kasinatha

    2016-01-01

    Chemical stabilization involves the use of chemical agents for initiating reactions within the soil for modification of its geotechnical properties. Cement and lime stabilization have been the most common stabilization methods adopted for soil treatment. Cement stabilization results in good compressive strengths and is preferred for cohesionless to moderately cohesive soil but loses effectiveness when the soil is highly plastic. Lime stabilization is the most preferred method for plastic clay...

  10. Evaluation of contiguous implants with cement-retained implant-abutment connections. A minipig study

    Directory of Open Access Journals (Sweden)

    Raquel Rezende Martins de Barros

    2014-03-01

    Full Text Available Aim: The presence of a microgap at the implant-abutment interface may permit bacterial contamination and lead to bone resorption, interfering with papillae formation. The present study evaluated adjacent implants with cement-retained abutments as an option to control such deleterious effects. Materials and methods Seven minipigs had their bilateral mandibular premolars previously extracted. After 8 weeks, four implants were installed in each hemi-mandible of each animal. The adjacent implants were randomly inserted on one side at the crestal bone level and on the other, 1.5 mm subcrestally. Immediately, a non-submerged healing and functional loading were provided with the abutments cementation and prostheses installation. Clinical examination and histomorphometry served to analyze the implant success. Results A total of 52 implants were evaluated at the end of the study. The subcrestal group achieved statistical better results when compared to the crestal group, clinically in papillae formation (1.97 x 1.57 mm and histomorphometrically in crestal bone remodeling (1.17 x 1.63 mm, bone density (52.39 x 45.22% and bone-implant contact (54.13 x 42.46%. Conclusion The subcrestal placement of cement-retained abutment implants showed better indexes of osseointegration and also improved papillae formation and crestal bone remodeling at the interimplant area after immediate loading, making them a promising option for the treatment of esthetic regions.

  11. The Effect of TiO₂ Doped Photocatalytic Nano-Additives on the Hydration and Microstructure of Portland and High Alumina Cements.

    Science.gov (United States)

    Pérez-Nicolás, María; Navarro-Blasco, Íñigo; Fernández, José M; Alvarez, José Ignacio

    2017-10-14

    Mortars with two different binders (Portland cement (PC) and high alumina cement (HAC)) were modified upon the bulk incorporation of nano-structured photocatalytic additives (bare TiO₂, and TiO₂ doped with either iron (Fe-TiO₂) or vanadium (V-TiO₂)). Plastic and hardened state properties of these mortars were assessed in order to study the influence of these nano-additives. Water demand was increased, slightly by bare TiO₂ and Fe-TiO₂, and strongly by V-TiO₂, in agreement with the reduction of the particle size and the tendency to agglomerate. Isothermal calorimetry showed that hydration of the cementitious matrices was accelerated due to additional nucleation sites offered by the nano-additives. TiO₂ and doped TiO₂ did not show pozzolanic reactivity in the binding systems. Changes in the pore size distribution, mainly the filler effect of the nano-additives, accounted for the increase in compressive strengths measured for HAC mortars. A complex microstructure was seen in calcium aluminate cement mortars, strongly dependent on the curing conditions. Fe-TiO₂ was found to be homogeneously distributed whereas the tendency of V-TiO₂ to agglomerate was evidenced by elemental distribution maps. Water absorption capacity was not affected by the nano-additive incorporation in HAC mortars, which is a favourable feature for the application of these mortars.

  12. Infill Optimization for Additive Manufacturing - Approaching Bone-like Porous Structures

    DEFF Research Database (Denmark)

    Wu, Jun; Aage, Niels; Westermann, Ruediger

    2018-01-01

    Porous structures such as trabecular bone are widely seen in nature. These structures exhibit superior mechanical properties whilst being lightweight. In this paper, we present a method to generate bone-like porous structures asl ightweight infill for additive manufacturing. Our method builds upon...

  13. Advanced cementation concepts

    International Nuclear Information System (INIS)

    Howard, C.G.

    1989-10-01

    The purpose of this programme of work was to investigate whether improvements could be made to existing formulations for cement suitable for the immobilization of intermediate level radioactive waste. Two additives were selected, microsilica and limestone flour. Improvements to the cement were only slight. (author)

  14. Fixation strength analysis of cup to bone material using finite element simulation

    NARCIS (Netherlands)

    Anwar, Iwan Budiwan; Saputra, Eko; Ismail, Rifky; Jamari, J.; Van Der Heide, Emile

    2016-01-01

    Fixation of acetabular cup to bone material is an important initial stability for artificial hip joint. In general, the fixation in cement less-type acetabular cup uses press-fit and screw methods. These methods can be applied alone or together. Based on literature survey, the additional screw

  15. Evaluation of stainless steel crowns cemented with glass-ionomer and resin-modified glass-ionomer luting cements.

    Science.gov (United States)

    Yilmaz, Yucel; Simsek, Sera; Dalmis, Anya; Gurbuz, Taskin; Kocogullari, M Elcin

    2006-04-01

    To evaluate in vitro and in vivo conditions of stainless steel crowns (SSC) cemented using one luting glass-ionomer cement (Aqua Meron) and one luting resin-modified glass-ionomer cement (Vitremer). In the in vitro part of this study, retentive properties of SSCs cemented using Aqua Meron and Vitremer on extracted primary first molars were tested. In addition, two specimens of each group were used to evaluate the tooth hard tissue-cement, within the cement itself, cement-SSC, and tooth hard tissue-cement-SSC under scanning electron microscope (SEM). In the in vivo part of this study, 152 SSCs were placed on the first or second primary molars of 86 children, and cemented using either Aqua Meron or Vitremer. The crowns were examined for retention. In addition, the clinical views of the crowns were recorded with an intraoral camera. No significant difference was found between the mean retentive forces of Aqua Meron and Vitremer (P> 0.05). SSCs cemented with Aqua Meron and Vitremer had an average lifespan of 26.44 and 24.07 months respectively. Only one (0.66%) of 152 SSCs was lost from the Aqua Meron group during post-cementation periods. Nineteen of the 152 SSCs (12.5%) had dents or perforations.

  16. Femoral Component Revision with Use of Impaction Bone-Grafting and a Cemented Polished Stem: A Concise Follow-up, at Fifteen to Twenty Years, of a Previous Report*

    NARCIS (Netherlands)

    Te Stroet, M.A.; Gardeniers, J.W.M.; Verdonschot, N.J.; Rijnen, W.H.C.; Slooff, T.J.J.H.; Schreurs, B.W.

    2012-01-01

    We previously reported our results for thirty-three consecutive femoral component revisions with impaction bone-grafting, performed with the X-change femoral revision system and a cemented polished Exeter stem, at a minimum of eight years of follow-up. The present updated study shows the results

  17. Effects of NbC additions on the microstructure and properties of non-uniform structure WC-Co cemented carbides

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yang; Yan, Ming-Yuan, E-mail: 704878879@qq.com; Luo, Bing-Hui, E-mail: luobinghui@csu.edu.cn; Ouyang, Sheng; Chen, Wei; Bai, Zhen-hai; Jing, Hui-bo; Zhang, Wen-Wen

    2017-02-27

    In this work, the effects of NbC additions on microstructure and properties of non-uniform structure WC-7Co cemented carbides were investigated X-ray diffractometer, scanning electron microscopy (SEM), electron probe microanalysis (EPMA), mechanical properties tester and electrochemical workstation, respectively. The results show that WC phase can be partially dissolved into the NbC to form a (Nb,W)C solid solution. According to EPMA analysis, the amount of W atoms, dissolving into the NbC grains, increases with the NbC addition. Moreover, when the content of NbC is beyond 1%, the WC-Co cemented carbides with non-uniform structure are formed with significant reduction of average grain size of WC. With NbC addition increasing from 0 wt% to 2 wt%, the hardness is increased from 1475 MPa to 1570 MPa while the fracture toughness decreased from 12.1 MPa m{sup 1/2} to 10.3 MPa m{sup 1/2}. However, with the further addition of NbC, the hardness slightly decreased. With NbC addition between 0 and 1 wt%, the TRS is gradually decreased from 2982 MPa to 2745 MPa, while, as the NbC content exceeds 1 wt%, the TRS leveled off. Because of the decrease of grain size and the (Nb,W)C phase formation, caused by NbC addition, the crack defection was weakened, which led to the decrease of fracture toughness. Meanwhile, the corrosion resistance of non-uniform structure WC-Co cemented carbides can be significantly improved by adding NbC to the material due to increased α-Co in binder phase.

  18. Anterior cement augmentation of adjacent levels after vertebral body replacement leads to superior stability of the corpectomy cage under cyclic loading-a biomechanical investigation.

    Science.gov (United States)

    Oberkircher, Ludwig; Krüger, Antonio; Hörth, Dominik; Hack, Juliana; Ruchholtz, Steffen; Fleege, Christoph; Rauschmann, Michael; Arabmotlagh, Mohammad

    2018-03-01

    In the operative treatment of osteoporotic vertebral body fractures, a dorsal stabilization in combination with a corpectomy of the fractured vertebral body might be necessary with respect to the fracture morphology, whereby the osteoporotic bone quality may possibly increase the risk of implant failure. To achieve better stability, it is recommended to use cement-augmented screws for dorsal instrumentation. Besides careful end plate preparation, cement augmentation of the adjacent end plates has also been reported to lead to less reduction loss. The aim of the study was to evaluate biomechanically under cyclic loading whether an additional cement augmentation of the adjacent end plates leads to improved stability of the inserted cage. Methodical cadaver study. Fourteen fresh frozen human thoracic spines with proven osteoporosis were used (T2-T7). After removal of the soft tissues, the spine was embedded in Technovit (Kulzer, Germany). Subsequently, a corpectomy of T5 was performed, leaving the dorsal ligamentary structures intact. After randomization with respect to bone quality, two groups were generated: Dorsal instrumentation (cemented pedicle screws, Medtronic, Minneapolis, MN, USA)+cage implantation (CAPRI Corpectomy Cage, K2M, Leesburg, VA, USA) without additional cementation of the adjacent endplates (Group A) and dorsal instrumentation+cage implantation with additional cement augmentation of the adjacent end plates (Group B). The subsequent axial and cyclic loading was performed at a frequency of 1 Hz, starting at 400 N and increasing the load within 200 N after every 500 cycles up to a maximum of 2,200 N. Load failure was determined when the cages sintered macroscopically into the end plates (implant failure) or when the maximum load was reached. One specimen in Group B could not be clamped appropriately into the test bench for axial loading because of a pronounced scoliotic misalignment and had to be excluded. The mean strength for implant

  19. Murine osteoblastic and osteoclastic differentiation on strontium releasing hydroxyapatite forming cements

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Satish S., E-mail: sss42@pitt.edu [Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Roy, Abhijit, E-mail: abr20@pitt.edu [Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Lee, Boeun, E-mail: bol11@pitt.edu [Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Parekh, Shrey, E-mail: smp116@pitt.edu [Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Kumta, Prashant N., E-mail: pkumta@pitt.edu [Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Department of Mechanical Engineering and Materials Science, University of Pittsburgh, PA 15261 (United States); Center for Complex Engineered Multifunctional Materials, University of Pittsburgh, PA 15261 (United States)

    2016-06-01

    Ionic substitutions in hydroxyapatite (HA) scaffolds and self-setting cements containing Sr{sup 2+} ions incorporated are particularly of interest in bone regeneration. To date, the approach widely used to incorporate Sr{sup 2+} ions into HA cements has been the addition of Sr{sup 2+} containing salts, such as SrCO{sub 3}, SrCl{sub 2} ∙ 6H{sub 2}O, or SrHPO{sub 4}. However, this approach is dependent upon the relative solubility of Sr{sup 2+} containing salts with respect to calcium phosphate (CaP) precursors. Therefore, in the current study Sr{sup 2+} substituted dicalcium phosphate dihydrate (DCPD) was first synthesized and directly reacted with tetracalcium phosphate (TTCP) to form Sr{sup 2+} substituted HA forming cements. Rietveld refinement indicated that after one week of aging in phosphate buffered saline, cements prepared with and without Sr{sup 2+} were composed of 75% HA and 25% unreacted TTCP by weight. Cements prepared with 10% Sr{sup 2+} DCPD exhibited increased compressive strengths in comparison to unsubstituted cements. Increased MC3T3-E1 proliferation and differentiation were also observed on the cements prepared with increasing Sr{sup 2+} content. It was concluded that both the scaffold microstructure and Sr{sup 2+} ion release supported osteogenic differentiation. With respect to osteoclastic differentiation, no statistically significant differences in TRAP activity or cell morphology were observed. This suggests that the amount of Sr{sup 2+} released may have been too low to influence osteoclast formation in comparison to unsubstituted cements. The results obtained herein demonstrate that the use of Sr{sup 2+} substituted DCPD precursors rather than individually separate Sr{sup 2+} containing salts may be a useful approach to prepare Sr{sup 2+} containing HA cements. - Highlights: • Sr{sup 2+} containing HA cement was prepared by reacting TTCP with Sr{sup 2+} substituted DCPD. • Cements with increased Sr{sup 2+} supported increased

  20. Effects of Hydroxyapatite on Bone Graft Resorption in an Experimental Model of Maxillary Alveolar Arch Defects

    Directory of Open Access Journals (Sweden)

    Ozgur Pilanci

    2013-06-01

    Full Text Available Most commonly used treatments use autologous bone grafts to address bony defects in patients with cleft palate. Major disadvantages of autogenous bone grafts include donor site morbidity and resorption. Suggestions to overcome such problems include biomaterials that can be used alone or in combination with bone. We examined the effect of hydroxyapatite cement on bone graft resorption in a rabbit maxillary alveolar defect model. We divided 16 young adult albino New Zealand rabbits into two groups. A defect 1 cm wide was created in each rabbit's maxillary arch. In Group 1, the removed bone was disrupted, and the pieces were replaced in the defect. In the other group, the pieces were replaced after mixing (1:1 with hydroxyapatite cement. Quantitative computed tomographic evaluation of these grafts was performed in axial and coronal planes for each rabbit at 2 and 12 weeks. In axial images at 12 weeks, the group without cement showed mean bone resorption of 15%. In the cement group, a mean volumetric increase of 68% was seen. No resorption occurred when bone grafts were mixed with hydroxyapatite cement. [Arch Clin Exp Surg 2013; 2(3.000: 170-175

  1. Physicochemical Properties of MTA and Portland Cement after Addition of Aloe Vera.

    Science.gov (United States)

    Henrique Borges, Alvaro; Aguirre Guedes, Orlando; Evaristo Ricci Volpato, Luiz; Siebert Filho, Gilberto; Meireles Borba, Alexandre; Zina, Omar; Piva, Evandro; Estrela, Carlos

    2017-01-01

    The aim of this in vitro study was to determine the liquid-powder ratio, setting time, solubility, dimensional change, pH, and radiopacity of white structural and non-structural Portland cement, ProRoot MTA and MTA Bio, associated with a 2% glycolic solution containing Aloe Vera, as vehicle. Five samples of each material were used for each test, according to the American National Standards Institute/American Dental Association (ANSI/ADA) specification No. 57. Statistical analyses were performed using ANOVA and Tukey's test at 5% significance. When sample distribution was not normal, non-parametric analysis of variance and the Kruskal-Wallis test were used ( α =0.05). No statistical differences were found in liquid-powder ratios among the tested materials. ProRoot MTA showed the longest setting time. Dimensional change values were acceptable in all groups. Also, no significant differences were found in pH values and pH was alkaline in all samples throughout the experiment. Mean radiopacity results obtained for white Portland cements did not meet ANSI/ADA requirements, and were significantly lower than those obtained for MTA-based cements. Finally, Portland cements showed significantly higher mean solubility values compared to the other samples. The physicochemical properties of the tested materials in association with Aloe Vera were compatible with ANSI/ADA requirements, except for the white Portland cements, which failed to meet the radiopacity specification.

  2. Human embryonic stem cell-encapsulation in alginate microbeads in macroporous calcium phosphate cement for bone tissue engineering

    Science.gov (United States)

    Tang, Minghui; Chen, Wenchuan; Weir, Michael D.; Thein-Han, Wahwah; Xu, Hockin H. K.

    2012-01-01

    Human embryonic stem cells (hESCs) are exciting for regenerative medicine applications because of their strong proliferative ability and multilineage differentiation capability. To date there has been no report on hESC seeding with calcium phosphate cement (CPC). The objective of this study was to investigate hESC-derived mesenchymal stem cell (hESCd-MSC) encapsulation in hydrogel microbeads in macroporous CPC for bone tissue engineering. hESCs were cultured to form embryoid bodies (EBs), and the MSCs were then migrated out of the EBs. hESCd-MSCs had surface markers characteristic of MSCs, with positive alkaline phosphatase (ALP) staining when cultured in osteogenic medium. hESCd-MSCs were encapsulated in alginate at a density of 1 million cells/mL, with an average microbead size of 207 µm. CPC contained mannitol porogen to create a porosity of 64% and macropores with size of 218 µm, with 20% absorbable fibers for additional porosity when the fibers degrade. hESCd-MSCs encapsulated in microbeads in CPC had good viability from 1 to 21 d. ALP gene expression at 21 d was 25-fold that at 1 d. Osteocalcin (OC) at 21 d was two orders of magnitude of that at 1 d. ALP activity in colorimetric p-nitrophenyl phosphate assay at 21 d was 5-fold that at 1 d. Mineral synthesis by the encapsulated hESCd-MSCs at 21 d was 7-fold that at 1 d. Potential benefits of the CPC-stem cell paste include injectability, intimate adaptation to complex-shaped bone defects, ease in contouring to achieve esthetics in maxillofacial repairs, and in situ setting ability. In conclusion, hESCd-MSCs were encapsulated in alginate microbeads in macroporous CPC showing good cell viability, osteogenic differentiation and mineral synthesis for the first time. The hESCd-MSC-encapsulating macroporous CPC construct is promising for bone regeneration in a wide range of orthopedic and maxillofacial applications. PMID:22633970

  3. β-Dicalcium silicate-based cement: synthesis, characterization and in vitro bioactivity and biocompatibility studies.

    Science.gov (United States)

    Correa, Daniel; Almirall, Amisel; García-Carrodeguas, Raúl; dos Santos, Luis Alberto; De Aza, Antonio H; Parra, Juan; Delgado, José Ángel

    2014-10-01

    β-dicalcium silicate (β-Ca₂ SiO₄, β-C₂ S) is one of the main constituents in Portland cement clinker and many refractory materials, itself is a hydraulic cement that reacts with water or aqueous solution at room/body temperature to form a hydrated phase (C-S-H), which provides mechanical strength to the end product. In the present investigation, β-C₂ S was synthesized by sol-gel process and it was used as powder to cement preparation, named CSiC. In vitro bioactivity and biocompatibility studies were assessed by soaking the cement samples in simulated body fluid solutions and human osteoblast cell cultures for various time periods, respectively. The results showed that the sol-gel process is an available synthesis method in order to obtain a pure powder of β-C₂ S at relatively low temperatures without chemical stabilizers. A bone-like apatite layer covered the material surface after soaking in SBF and its compressive strength (CSiC cement) was comparable with that of the human trabecular bone. The extracts of this cement were not cytotoxic and the cell growth and relative cell viability were comparable to negative control. © 2013 Wiley Periodicals, Inc.

  4. Obtaining a pozzolanic addition from the controlled calcination of paper mill sludge. Performance in cement matrices

    Directory of Open Access Journals (Sweden)

    San José, J. T.

    2006-09-01

    Full Text Available Mineralogically, the paper mill sludge consists essentially of calcite, kaolinite, talc and other philosilicates (illite, chlorite. When such sludge is subjected to controlled thermal treatment, its kaolinite component may be transformed into metakaolin, yielding a product with high pozzolanic reactivity. This study was designed to analyze a number of scientific questions around the production of pozzolanic additions via controlled thermal activation of paper mill sludge and to evaluate the performance of such additions when included in a cement matrix. The findings show that paper mill waste activation is optimal when the sludge is calcined for 2 hours at 700 ºC in the 700-800 ºC interval. A comparative study between the cement made with the new addition and a commercial cement (CEM I-42.5R used as a reference led to highlight the scientific and technical viability of this waste as a cementing secondary material.Los lodos de destintado del papel están constituidos,mineralógicamente, por calcita, caolinita, talco y otros filosilicatos (ilita, clorita. Cuando al lodo se le somete aun tratamiento térmico controlado, la caolinita puede transformarse en metacaolín, dando origen a un producto de alta reactividad puzolánica.El objeto de este trabajo es analizar diferentes aspectos científicos relativos al proceso de obtención de una adiciónpuzolánica a partir de la activación térmica controlada de lodos de destintado del papel, así como evaluar el comportamiento de la nueva adición cuando se incorpora en una matriz de cemento. Los resultados obtenidos ponen de manifiesto la recomendación de utilizar 700 ºC durante 2 horas de permanencia en el horno, como condiciones más óptimas para activar los residuos de lodos de papel en el intervalo 700-800 ºC. Del estudio comparativo del cemento elaborado con la nueva adición con respecto a un cemento comercial (CEM I-42,5R, se puede destacar la viabilidad científica y técnica de

  5. Cement Types, Composition, Uses and Advantages of Nanocement, Environmental Impact on Cement Production, and Possible Solutions

    Directory of Open Access Journals (Sweden)

    S. P. Dunuweera

    2018-01-01

    Full Text Available We first discuss cement production and special nomenclature used by cement industrialists in expressing the composition of their cement products. We reveal different types of cement products, their compositions, properties, and typical uses. Wherever possible, we tend to give reasons as to why a particular cement type is more suitable for a given purpose than other types. Cement manufacturing processes are associated with emissions of large quantities of greenhouse gases and environmental pollutants. We give below quantitative and qualitative analyses of environmental impact of cement manufacturing. Controlling pollution is a mandatory legal and social requirement pertinent to any industry. As cement industry is one of the biggest CO2 emitters, it is appropriate to discuss different ways and means of CO2 capture, which will be done next. Finally, we give an account of production of nanocement and advantages associated with nanocement. Nanofillers such as nanotitania, nanosilica, and nanoalumina can be produced in large industrial scale via top-down approach of reducing size of naturally available bulk raw materials to those in the nanorange of 1 nm–100 nm. We mention the preparation of nanotitania and nanosilica from Sri Lankan mineral sands and quartz deposits, respectively, for the use as additives in cement products to improve performance and reduce the amount and cost of cement production and consequent environmental impacts. As of now, mineral sands and other treasures of minerals are exported without much value addition. Simple chemical modifications or physical treatments would add enormous value to these natural materials. Sri Lanka is gifted with highly pure quartz and graphite from which silica and graphite nanoparticles, respectively, can be prepared by simple size reduction processes. These can be used as additives in cements. Separation of constituents of mineral sands is already an ongoing process.

  6. Root perforations treatment using mineral trioxide aggregate and Portland cements.

    Science.gov (United States)

    Silva Neto, José Dias da; Brito, Rafael Horácio de; Schnaider, Taylor Brandão; Gragnani, Alfredo; Engelman, Mírian; Ferreira, Lydia Masako

    2010-12-01

    Clinical, radiological and histological evaluation of root perforations treated with mineral trioxide aggregate (MTA) or Portland cements, and calcium sulfate barrier. One molar and 11 premolar teeth of a male mongrel dog received endodontic treatment and furcations were perforated with a high-speed round bur and treated with a calcium sulfate barrier. MTA, Portland cement type II (PCII) and type V (PCV), and white Portland cement (WPC) were used as obturation materials. The teeth were restored with composite resin and periapical radiographs were taken. The animal was euthanized 120 days post-surgery for treatment evaluation. Right lower first premolar (MTA), right lower third premolar (PCV), left lower second premolar (MTA), and right lower second premolar (WPC): clinically normal, slightly radio-transparent area on the furcation, little inflammatory infiltrate, and new-bone formation. Left lower third premolar (PCII), right upper first premolar (WPC), right upper third premolar (PCII), and left upper first molar (PCV): clinically normal, radiopaque area on the furcation, and new-bone formation. Right upper second premolar (MTA), left upper second premolar (WPC), left upper third premolar (PCII): presence of furcation lesion, large radiolucent area, and intense inflammatory infiltrate. All obturation materials used in this study induced new-bone formation.

  7. Bioactive coatings on Portland cement substrates: Surface precipitation of apatite-like crystals

    International Nuclear Information System (INIS)

    Gallego, Daniel; Higuita, Natalia; Garcia, Felipe; Ferrell, Nicholas; Hansford, Derek J.

    2008-01-01

    We report a method for depositing bioactive coatings onto cement materials for bone tissue engineering applications. White Portland cement substrates were hydrated under a 20% CO 2 atmosphere, allowing the formation of CaCO 3 . The substrates were incubated in a calcium phosphate solution for 1, 3, and 6 days (CPI, CPII, and CPIII respectively) at 37 deg. C to induce the formation of carbonated apatite. Cement controls were prepared and hydrated with and without CO 2 atmosphere (C+ and C- respectively). The presence of apatite-like crystals was verified by Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). The substrate cytocompatibility was evaluated via SEM after 24 hour cell cultures. SEM revealed the presence Ca(OH) 2 on C-, and CaCO 3 on C+. Apatite-like crystals were detected only on CPIII, confirmed by phosphorus EDS peaks only for CPIII. Cells attached and proliferated similarly well on all the substrates except C-. These results prove the feasibility of obtaining biocompatible and bioactive coatings on Portland cement for bone tissue engineering applications

  8. Use of antibiotic-loaded cement in total knee arthroplasty.

    Science.gov (United States)

    Hinarejos, Pedro; Guirro, Pau; Puig-Verdie, Lluis; Torres-Claramunt, Raul; Leal-Blanquet, Joan; Sanchez-Soler, Juan; Monllau, Joan Carles

    2015-12-18

    Bone cement has the capacity to release antibiotic molecules if any antibiotic is included in it, and these elution properties are improved as cement porosity is increased. In vitro studies have shown high local antibiotic concentration for many hours or few days after its use. Antibiotic loaded bone cement (ALBC) is helpful when treating an infection in total knee arthroplasty (TKA) revision surgery. The purpose of this paper was to review the evidence for the routine use of ALBC in TKA in the literature, its pros and cons. Many authors have recommended the use of ALBC also in primary TKA for infection prophylaxis, but the evidence based on data from National Registries, randomized clinical trials and meta-analysis suggest a protective effect of ALBC against infection when used in hips, but not (or only mild) in knees. A possible explanation to this finding is that the duration and quantity of locally elevated antibiotic levels after surgery are smaller in TKA, due to the smaller amount of cement used for fixation in TKA-only a layer in the bone surface. There are some concerns about the routine use of ALBC in primary TKA as prophylaxis against infection: Firstly, there is a risk of hypersensivity or toxicity even when the chance is highly improbable. Secondly, there is a reduction in the mechanical properties of the cement, but this can be probably neglected if the antibiotic is used in low doses, not more than 1 g per 40 g cement package. Another significant concern is the increased economic cost, which could be overlooked if there were enough savings in treating fewer prosthetic infections. Finally, there is also a risk of selection of antibiotic-resistant strains of bacteria and this could be the main concern. If used, the choice of the antibiotic mixed in ALBC should consider microbiological aspects (broad antimicrobial spectrum and low rate of resistant bacteria), physical and chemical aspects (thermal stability, high water solubility), pharmacological

  9. Crown and bridge cements: clinical applications.

    Science.gov (United States)

    Bunek, Sabiha S; Powers, John M

    2012-12-01

    Cement selection can be confusing because factors such as substrate, the type of restoration, and patient needs must be considered. Some substrates require additional treatment before cementation. This article describes the most commonly used traditional crown and bridge cements (GI and RMGI) used for metal and metal-ceramic restorations, and resin cements used for all-ceramic restorations. Advantages, disadvantages, indications, and contraindications of cements have been reviewed. Recommended uses of cements for metal, ceramic, and laboratory composite restorations have been presented. General guidelines for surface treatment ot silica- and zirconia-based restorations when using resin cements have been discussed.

  10. Strontium doped injectable bone cement for potential drug delivery applications.

    Science.gov (United States)

    Taha, Ali; Akram, Muhammad; Jawad, Zaidoon; Alshemary, Ammar Z; Hussain, Rafaqat

    2017-11-01

    Microwave assisted wet precipitation method was used to synthesize calcium deficient strontium doped β-tricalcium phosphate (Sr-βTCP) with a chemical formula of Ca 2.96-x Sr x (PO 4 ) 2 . Sr-βTCP was reacted with monocalcium phosphate monohydrate [Ca(H 2 PO 4 ) 2 .H 2 O, MCPM] in presence of water to furnish corresponding Sr containing brushite cement (Sr-Brc). The samples were characterized by using X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscopy (FESEM). Strontium content in the prepared samples was determined by using inductively coupled plasma optical emission spectrometry (ICP-OES). The effect of Sr 2+ ions on the structural, mechanical, setting properties and drug release of the cement is reported. Incorporation of Sr 2+ ions improved the injectability, setting time and mechanical properties of the Brc. The release profiles of antibiotics incorporated in Brc and Sr-Brc confirmed that the Sr incorporation into the Brc results in the efficient release of the antibiotics from the cement. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Influence of Superplasticizer-Microsilica Complex on Cement Hydration, Structure and Properties of Cement Stone

    Science.gov (United States)

    Ivanov, I. M.; Kramar, L. Ya; Orlov, A. A.

    2017-11-01

    According to the study results, the influence of complex additives based on microsilica and superplasticizers on the processes of the heat release, hydration, hardening, formation of the structure and properties of cement stone was determined. Calorimetry, derivatography, X-ray phase analysis, electronic microscopy and physical-mechanical methods for analyzing the properties of cement stone were used for the studies. It was established that plasticizing additives, in addition to the main water-reducing and rheological functions, regulate cement solidification and hardening while polycarboxylate superplasticizers even contribute to the formation of a special, amorphized microstructure of cement stone. In a complex containing microsilica and a polycarboxylate superplasticizer the strength increases sharply with a sharp drop in the capillary porosity responsible for the density, permeability, durability, and hence, the longevity of concrete. All this is a weighty argument in favor of the use of microsilica jointly with a polycarboxylate superplasticizer in road concretes operated under aggressive conditions.

  12. Total Hip Arthroplasty Using a Polished Tapered Cemented Stem in Hereditary Multiple Exostosis

    Science.gov (United States)

    Kanda, Akio; Kaneko, Kazuo; Obayashi, Osamu; Mogami, Atsuhiko

    2016-01-01

    A 61-year-old Japanese man underwent right total hip arthroplasty for hereditary multiple exostosis. At first presentation, he had suffered from coxalgia for a long time. On radiographic images, there was a gigantic femoral head, increased shaft angle, and large diameter of the femoral neck. He had also developed coxarthrosis and severe pain of the hip joint. The transformation of the proximal femur bone causes difficulty in setting a cementless total hip prosthesis. Therefore, total hip arthroplasty using a cemented polished tapered stem was performed via a direct lateral approach. Using a cemented polished tapered stem allowed us to deal with the femoral bone transformation and bone substance defectiveness due to exostosis and also minimized the invasiveness of the operation. PMID:27127668

  13. Rationale for one stage exchange of infected hip replacement using uncemented implants and antibiotic impregnated bone graft.

    Science.gov (United States)

    Winkler, Heinz

    2009-09-04

    Infection of a total hip replacement (THR) is considered a devastating complication, necessitating its complete removal and thorough debridement of the site. It is undoubted that one stage exchange, if successful, would provide the best benefit both for the patient and the society. Still the fear of re-infection dominates the surgeons decisions and in the majority of cases directs them to multiple stage protocols. However, there is no scientifically based argument for that practice. Successful eradication of infection with two stage procedures is reported to average 80% to 98%. On the other hand a literature review of Jackson and Schmalzried (CORR 2000) summarizing the results of 1,299 infected hip replacements treated with direct exchange (almost exclusively using antibiotic loaded cement), reports of 1,077 (83%) having been successful. The comparable results suggest, that the major factor for a successful outcome with traditional approaches may be found in the quality of surgical debridement and dead space management. Failures in all protocols seem to be caused by small fragments of bacterial colonies remaining after debridement, whereas neither systemic antibiotics nor antibiotic loaded bone cement (PMMA) have been able to improve the situation significantly. Reasons for failure may be found in the limited sensitivity of traditional bacterial culturing and reduced antibiotic susceptibility of involved pathogens, especially considering biofilm formation. Whenever a new prosthesis is implanted into a previously infected site the surgeon must be aware of increased risk of failure, both in single or two stage revisions. Eventual removal therefore should be easy with low risk of additional damage to the bony substance. On the other hand it should also have potential of a good long term result in case of success. Cemented revisions generally show inferior long term results compared to uncemented techniques; the addition of antibiotics to cement reduces its

  14. Bone cement in the management of cystic tumour defects of bone at ...

    African Journals Online (AJOL)

    Cystic bony defects are characteristics of bone tumours especially benign ones e.g. Giant cell tumours of bone [GCT] and some metastatic tumours to bone. These patients present late with significant cystic cavities at a time the cost and availability of prosthetic implants to replace these defects sometimes precludes ...

  15. [Early application of the antibiotic-laden bone cement (ALBC) combined with the external fixation support in treating the open fractures of lower limbs complicated with bone defect].

    Science.gov (United States)

    Xiao, Jian; Mao, Zhao-Guang; Zhu, Hui-Hua; Guo, Liang

    2017-03-25

    To discuss the curative effect of the early application of the antibiotic-laden bone cement (ALBC) combined with the external fixation support in treating the open fractures of lower limbs complicated with bone defect. From December 2013 to January 2015, 36 cases of lower limb open comminuted fractures complicated with bone defects were treated by the vancomycin ALBC combined with the external fixation support, including 26 males and 10 females with an average age of 38.0 years old ranging from 19 to 65 years old. The included cases were all open fractures of lower limbs complicated with bone defects with different degree of soft tissue injuries. Among them, 25 cases were tibial fractures, 11 cases were femoral fractures. The radiographs indicated a presence of bone defects, which ranged from 3.0 to 6.1 cm with an average of 4.0 cm. The Gustilo classification of open fractures:24 cases were type IIIA, 12 cases were typr IIIB. The percentage of wound infection, bone grafting time, fracture healing time and postoperative joint function of lower limb were observed. The function of injured limbs was evaluated at 1 month after the clinical healing of fracture based on Paley evaluation criterion. All cases were followed up for 3 to 24 months with an average of (6.0±3.0) months. The wound surface was healed well, neither bone infections nor unhealed bone defects were presented. The reoperation of bone grafting was done at 6 weeks after the patients received an early treatment with ALBC, some of them were postponed to 8 weeks till the approximate healing of fractures, the treatment course lasted for 4 to 8 months with an average of(5.5±1.5) months. According to Paley and other grading evaluations of bone and function, there were 27 cases as excellent, 5 cases as good, 3 cases as ordinary. The ALBC combined with external fixation support was an effective method for early treatment to treat the traumatic lower limb open fractures complicated with bone defects. This method

  16. Metakaolin sand – a promising addition for Portland cement

    Directory of Open Access Journals (Sweden)

    Janotka, I.

    2010-06-01

    Full Text Available The kaolin sand resource at the Vyšný Petrovec quarry in Slovakia comes to a total of 20 megatonnes. The metakaolin material obtained by heating kaolin sand at 650 ºC contains from 31.5 to 40% (wt metakaolinite, as well as illite, muscovite, quartz and feldspar. The aim of this study was to verify whether this calcined sand (MK1 is a pozzolanic material and characterize the cements and mortars prepared with it. The hydration reactions taking place in the blends were assessed with conduction calorimetry, X-ray diffraction (XRD and differential thermal analysis-thermogravimetry (DTA-TG. Blend and mortar strength development and pore structure were also evaluated. The results obtained showed that this metakaolin sand (MK-1 is a pozzolanic material apt for use as a cement addition and for making mortars.

    Las reservas de arena caolínica de la cantera eslovaca de Vyšný Petrovec ascienden a un total de 20 millones de toneladas. El material metacaolínico, que resulta al calentar la arena caolínica a 650 ºC, contiene entre un 31,5 y un 40% de metacaolinita, además de ilita, moscovita, cuarzo y feldespato. El objetivo de este estudio ha sido comprobar que esa arena calcinada es un material puzolánico; así como caracterizar los cementos y morteros preparados con dicha arena (MK-1. La hidratación de las mezclas se evaluó mediante calorimetría de conducción, y difracción de rayos X (DRX y Análisis térmico-diferencial y termogravimétrico (ATD-TG. Se ha evaluado el desarrollo resistente de las mezclas y morteros; así como su estructura porosa. Los resultados obtenidos han demostrado que esa arena metacolínica (MK-1 es un material puzolánico y que podría utilizarse como adición al cemento y en la preparación de morteros.

  17. Calcium phosphate cements with strontium halides as radiopacifiers.

    Science.gov (United States)

    López, Alejandro; Montazerolghaem, Maryam; Engqvist, Håkan; Ott, Marjam Karlsson; Persson, Cecilia

    2014-02-01

    High radiopacity is required to monitor the delivery and positioning of injectable implants. Inorganic nonsoluble radiopacifiers are typically used in nondegradable bone cements; however, their usefulness in resorbable cements is limited due to their low solubility. Strontium halides, except strontium fluoride, are ionic water-soluble compounds that possess potential as radiopacifiers. In this study, we compare the radiopacity, mechanical properties, composition, and cytotoxicity of radiopaque brushite cements prepared with strontium fluoride (SrF2 ), strontium chloride (SrCl2 ·6H2 O), strontium bromide (SrBr2 ), or strontium iodide (SrI2 ). Brushite cements containing 10 wt % SrCl2 ·6H2 O, SrBr2 , or SrI2 exhibited equal to or higher radiopacity than commercial radiopaque cements. Furthermore, the brushite crystal lattice in cements that contained the ionic radiopacifiers was larger than in unmodified cements and in cements that contained SrF2 , indicating strontium substitution. Despite the fact that the strontium halides increased the solubility of the cements and affected their mechanical properties, calcium phosphate cements containing SrCl2 ·6H2 O, SrBr2 , and SrI2 showed no significant differences in Saos-2 cell viability and proliferation with respect to the control. Strontium halides: SrCl2 ·6H2 O, SrBr2 , and SrI2 may be potential candidates as radiopacifiers in resorbable biomaterials although their in vivo biocompatibility, when incorporated into injectable implants, is yet to be assessed. Copyright © 2013 Wiley Periodicals, Inc.

  18. Influence of Waste Glass Powder Addition on the Pore Structure and Service Properties of Cement Mortars

    Directory of Open Access Journals (Sweden)

    José Marcos Ortega

    2018-03-01

    Full Text Available At present, reusing waste constitutes an important challenge in order to reach a more sustainable environment. The cement industry is an important pollutant industrial sector. Therefore, the reduction of its CO2 emissions is now a popular topic of study. One way to lessen those emissions is partially replacing clinker with other materials. In this regard, the reuse of waste glass powder as a clinker replacement could be possible. This is a non-biodegradable residue that permanently occupies a large amount of space in dumping sites. The aim of this work is to study the long-term effects (400 days of the addition of waste glass powder on the microstructure and service properties of mortars that incorporate up to 20% of this addition as clinker replacement. The microstructure has been characterised using the non-destructive impedance spectroscopy technique and mercury intrusion porosimetry. Furthermore, differential thermal analysis was also performed. Compressive strength and both steady-state and non-steady-state chloride diffusion coefficients have also been determined. Considering the obtained results, mortars with 10% and 20% waste glass powder showed good service properties until 400 days, similar to or even better than those made with ordinary Portland cement without additions, with the added value of contributing to sustainability.

  19. Bone graft substitutes for the treatment of traumatic fractures of the extremities.

    Science.gov (United States)

    Hagen, Anja; Gorenoi, Vitali; Schönermark, Matthias P

    2012-01-01

    HEALTH POLITICAL AND SCIENTIFIC BACKGROUND: Bone graft substitutes are increasingly being used as supplements to standard care or as alternative to bone grafts in the treatment of traumatic fractures. The efficacy and cost-effectiveness of bone graft substitutes for the treatment of traumatic fractures as well as the ethical, social and legal implications of their use are the main research questions addressed. A systematic literature search was conducted in electronic medical databases (MEDLINE, EMBASE etc.) in December 2009. Randomised controlled trials (RCT), where applicable also containing relevant health economic evaluations and publications addressing the ethical, social and legal aspects of using bone graft substitutes for fracture treatment were included in the analysis. After assessment of study quality the information synthesis of the medical data was performed using metaanalysis, the synthesis of the health economic data was performed descriptively. 14 RCT were included in the medical analysis, and two in the heath economic evaluation. No relevant publications on the ethical, social and legal implications of the bone graft substitute use were found. In the RCT on fracture treatment with bone morphogenetic protein-2 (BMP-2) versus standard care without bone grafting (RCT with an elevated high risk of bias) there was a significant difference in favour of BMP-2 for several outcome measures. The RCT of calcium phosphate (CaP) cement and bone marrow-based composite materials versus autogenous bone grafts (RCT with a high risk of bias) revealed significant differences in favour of bone graft substitutes for some outcome measures. Regarding the other bone graft substitutes, almost all comparisons demonstrated no significant difference. The use of BMP-2 in addition to standard care without bone grafting led in the study to increased treatment costs considering all patients with traumatic open fractures. However, cost savings through the additional use of BMP-2

  20. Examination of the jarosite-alunite precipitate addition in the raw meal for the production of sulfoaluminate cement clinker.

    Science.gov (United States)

    Katsioti, M; Tsakiridis, P E; Leonardou-Agatzini, S; Oustadakis, P

    2006-04-17

    The aim of the present research work was to investigate the possibility of adding a jarosite-alunite chemical precipitate, a waste product of a new hydrometallurgical process developed to treat economically low-grade nickel oxides ores, in the raw meal for the production of sulfoaluminate cement clinker. For that reason, two samples of raw meals were prepared, one contained 20% gypsum, as a reference sample ((SAC)Ref) and another with 11.31% jarosite-alunite precipitate ((SAC)J/A). Both raw meals were sintered at 1300 degrees C. The results of chemical and mineralogical analyses as well as the microscopic examination showed that the use of the jarosite-alunite precipitate did not affect the mineralogical characteristics of the so produced sulfoaluminate cement clinker and there was confirmed the formation of the sulfoaluminate phase (C4A3S), the most typical phase of this cement type. Furthermore, both clinkers were tested by determining the grindability, setting time, compressive strength and expansibility. The hydration products were examined by XRD analysis at 2, 7, 28 and 90 days. The results of the physico-mechanical tests showed that the addition of jarosite-alunite precipitate did not negatively affect the quality of the produced cement.

  1. Production of portland cement using Moroccan oil shale and comparative study between conventional cement plant and cement plant using oil shale

    International Nuclear Information System (INIS)

    Doumbouya, M.; Kacemi, K.E.; Kitane, S.

    2012-01-01

    Like the use of coal ash from power plants as an addition to cement, oil shale are used for cement production on an industrial scale in Estonia, China, USA and Germany. Oil shale can be utilized in manufacturing the cement. In addition to the utilization of these by-products after combustion, it can also reduce the required temperature for the clinkering reactions during the production of Portland clinker. We performed a study on the Moroccan oil shale to maximize the use of oil shale ash in the manufacturing of Portland cement. We found that Moroccan oil shale ash can be used up to 30% with 70% Portland clinker without altering its principle properties. The corresponding temperature required to generate the required liquid for the clinkering reactions as well as the essential ingredients for clinker was found to be around 850 to 1000 deg. C. The operating temperatures for this optimized blend ratio were found to 1000 deg. C. The resulting Portland clinker from this ratio will need further testing in accordance with international standards for Portland cement to examine properties like strength and setting time. (author)

  2. Development of hydroxyapatite bone cement for controlled drug ...

    Indian Academy of Sciences (India)

    ing with water, cement forms hydroxyapatite as the only final product (Takagi ... nistered to defect regions to induce therapeutic effects. (Lebugle et al 2002 .... the pore of the product, and the more the large pores. But ... of curve is nearly linear with a weak slope. ... energy is decreased, and thus the thermodynamic stability of.

  3. Nanohydroxyapatite Silicate-Based Cement Improves the Primary Stability of Dental Implants: An In Vitro Study

    Directory of Open Access Journals (Sweden)

    Hooman Khorshidi

    2017-01-01

    Full Text Available Objectives. Insufficient cortical bone volume when placing implants can lead to lack of primary stability. The use of cement as a bone fill material in bone defects around dental implant could result in better clinical outcome. HA has shown excellent biological properties in implant dentistry. The purpose of this study was to evaluate the effect of nanohydroxyapatite powder (Nano-HA in combination with accelerated Portland cement (APC on implant primary stability in surgically created circumferential bone defects in a bovine rib in vitro model. Materials and Methods. Sixteen bovine rib bones and thirty-six implants of same type and size (4 mm × 10 mm were used. Implants were divided into six groups: no circumferential bone defect, defect and no grafting, bone chips grafting, Nano-HA grafting, APC grafting, and Nano-HA mixed to APC grafting (Nano-HA-APC. Circumferential defects around the implants were prepared. The implant stability quotient (ISQ values were measured before and after the grafting. Results. APC exhibited the highest ISQ values. A significant increase of ISQ values following the grafting of Nano-HA-APC (18.08±5.82 and APC alone (9.50±4.12 was achieved. Increase of ISQ values after 72 hours was 24.16±5.01 and 17.58±4.89, respectively. Nano-HA grafting alone exhibited the least rise in ISQ values. Conclusions. Nanohydroxyapatite silicate-based cement could improve the primary stability of dental implants in circumferential bone defect around implants.

  4. The Effect of TiO2 Doped Photocatalytic Nano-Additives on the Hydration and Microstructure of Portland and High Alumina Cements

    Directory of Open Access Journals (Sweden)

    María Pérez-Nicolás

    2017-10-01

    Full Text Available Mortars with two different binders (Portland cement (PC and high alumina cement (HAC were modified upon the bulk incorporation of nano-structured photocatalytic additives (bare TiO2, and TiO2 doped with either iron (Fe-TiO2 or vanadium (V-TiO2. Plastic and hardened state properties of these mortars were assessed in order to study the influence of these nano-additives. Water demand was increased, slightly by bare TiO2 and Fe-TiO2, and strongly by V-TiO2, in agreement with the reduction of the particle size and the tendency to agglomerate. Isothermal calorimetry showed that hydration of the cementitious matrices was accelerated due to additional nucleation sites offered by the nano-additives. TiO2 and doped TiO2 did not show pozzolanic reactivity in the binding systems. Changes in the pore size distribution, mainly the filler effect of the nano-additives, accounted for the increase in compressive strengths measured for HAC mortars. A complex microstructure was seen in calcium aluminate cement mortars, strongly dependent on the curing conditions. Fe-TiO2 was found to be homogeneously distributed whereas the tendency of V-TiO2 to agglomerate was evidenced by elemental distribution maps. Water absorption capacity was not affected by the nano-additive incorporation in HAC mortars, which is a favourable feature for the application of these mortars.

  5. SYNTHESIS OF EXPANDER TO PREVENT CONTRACTION OF CEMENT STONE

    Directory of Open Access Journals (Sweden)

    Elenova Aurika Almazovna

    2017-03-01

    Full Text Available This article contains the results of studies of the use of additives containing crystallization components significantly affecting the curing of cement, improving the structure of cement stone and concrete. The crystalline component is obtained using the rotary-pulse unit, which provides not only the grinding of agents, but their interaction with each other as well in order to accelerate the hydration and structure formation in cement stone. The degree, and kinetics of hydration, the composition of hydrated phases, the structure of the additives and cement stone was studied using the following methods: x-ray diffraction (XRD, differential thermal analysis (DTA, scanning electron microscope (SEM. Mechanical properties of cement were determined by standard methods and techniques. The expander produced by means of hydrodynamic activation of the sulfoaluminate clinker (SAC consists of ettringite and hydrated calcium silicates, which are characterized by high dispersion rate (less than 10 µm and reactivity as the seed for the crystallization of hydrated compounds. The introduction of the ultrafine additives of the crystalline SAC (within 1-5% was discovered to cause expansion of the cement stone. Implementation of the additives increases cement hydration and contributes to the formation of active centers of crystallization that lead to the fast formation of ettringite, hydrated calcium aluminates and calcium silicates. The activated crystalline additive provides for significant reduction of porosity, initial curing, and high strength of cement stone. In addition, the additive is an expansive component, forming needle-like crystals of ettringite during hydration. These microcrystals grow in the capillaries of cement stone, filling them, and create conditions for improving the crack resistance of cement concrete.

  6. Ageing of Dry Cement Mixes for Finishing Purposes

    Directory of Open Access Journals (Sweden)

    Bronius VEKTARIS

    2013-09-01

    Full Text Available Dry building mixes, stored in the air, absorb water vapor and CO2 gas and ageing because properties of binding materials, mostly Portland cement, deteriorate after its prehydration and carbonation. In this paper the ageing singularities of dry cement mixes for finishing purposes and additives for retarding this process has been determinated. Ordinary and quickly hardening Portland cements absorb H2O and CO2 more than white cement – about 70 % – 75 % and 30 % – 38 % per month of innitial mass, respectively. White cement is more resistant to prehydration and carbonation, because it contains less C3A, C4AF and alkali, characterized initial activity. Dry mixes with white cement, although slower, but still worse after stored. Influence of routine dry mortar mixes ingredients and additives (methyl cellulose, pigments, sand and lime on prehydration properties of the mixes for finishing purpose is not substantial. Significant positive influence comes from the addition of fatty acid salts (zinc stearate or sodium oleate. The dry cement mixes for finishing purpose has been recomended to hydrophobisate with one of these additives, adding about 1 % by weight of cement during preducing mixes. DOI: http://dx.doi.org/10.5755/j01.ms.19.3.5243

  7. Ageing of Dry Cement Mixes for Finishing Purposes

    Directory of Open Access Journals (Sweden)

    Bronius VEKTARIS

    2013-09-01

    Full Text Available Dry building mixes, stored in the air, absorb water vapor and CO2 gas and ageing because properties of binding materials, mostly Portland cement, deteriorate after its prehydration and carbonation. In this paper the ageing singularities of dry cement mixes for finishing purposes and additives for retarding this process has been determinated. Ordinary and quickly hardening Portland cements absorb H2O and CO2 more than white cement – about 70 % – 75 % and 30 % – 38 % per month of innitial mass, respectively. White cement is more resistant to prehydration and carbonation, because it contains less C3A, C4AF and alkali, characterized initial activity. Dry mixes with white cement, although slower, but still worse after stored. Influence of routine dry mortar mixes ingredients and additives (methyl cellulose, pigments, sand and lime on prehydration properties of the mixes for finishing purpose is not substantial. Significant positive influence comes from the addition of fatty acid salts (zinc stearate or sodium oleate. The dry cement mixes for finishing purpose has been recomended to hydrophobisate with one of these additives, adding about 1 % by weight of cement during preducing mixes. DOI: http://dx.doi.org/10.5755/j01.ms.19.3.5243

  8. Alkali-activated blast furnace slag-zeolite cements and concretes

    International Nuclear Information System (INIS)

    Rakhimov, R.; Rakhimova, N.

    2012-01-01

    The aim of this work has been the study of alkali-activated slag-zeolite cements and concretes based on them. Various compositions have been tested and some characteristics such as the compressive strength have been measured versus zeolite additions. A table lists the specific surface area and particle size distributions of different cements. The conclusions of the study are the following. First, alkali-activated slag cements and concretes based on them are effective for immobilization of radioactive wastes and the production of building structures, designed for high radiation load. Secondly, zeolite-containing mineral additions are able to increase the immobilization capacity and radiation resistance of alkali-activated blast furnace slag cements and concretes. Thirdly, the efficiency of different zeolite-containing additions - 10% to increase alkali-activated blast furnace slag-zeolite cement strength was established. It is with alkaline components of water-glass, sodium carbonate, sodium sulphate. Fourth, the effective way of introducing zeolite additions in alkali-activated blast furnace slag-zeolite cement is inter-grinding of the slag and addition. Increase in strength of alkali-activated blast furnace slag-zeolite cement stone is 40% higher than that of the stone of a mixture of separately milled components. Fifth, Alkali-activated blast furnace slag-zeolite cements with zeolite-containing additions with a compressive strength of 10.1 to 140 MPa; alkali-activated blast furnace slag-zeolite cements mortars with compressive strength from 35.2 to 97.7 MPa; alkali-activated blast furnace slag-zeolite cements concretes with compressive strength up to 84.5 MPa and frost resistant up to 800 cycles were obtained

  9. An Ice Block: A Novel Technique of Successful Prevention of Cement Leakage Using an Ice Ball

    Energy Technology Data Exchange (ETDEWEB)

    Uri, Ishaq Fahmi, E-mail: uri.isaac@gmail.com [The Royal National Orthopaedic Hospital (United Kingdom); Garnon, Julien, E-mail: juliengarnon@gmail.com; Tsoumakidou, Georgia, E-mail: georgia.tsoumakidou@chru-strasbourg.fr; Gangi, Afshin, E-mail: gangi@unistra.fr [Hôpital Universitaire de Strasbourg, Service d’Imagerie Interventionnelle (France)

    2015-04-15

    We report three cases of painful bone metastases with extraosseous invasion treated with cementoplasty and cryoablation. Due to significant cortical loss in all cases, the ice ball was used simultaneously during cementoplasty to deter potential cement leakage. This was achieved by direct application of the ice ball against the cortical surface, resulting in adequate consolidation and successful containment of the cement within the treated bones. To the authors’ knowledge, this is the first report to describe such a combined technique.

  10. [Progress of Masquelet technique to repair bone defect].

    Science.gov (United States)

    Yin, Qudong; Sun, Zhenzhong; Gu, Sanjun

    2013-10-01

    To summarize the progress of Masquelet technique to repair bone defect. The recent literature concerning the application of Masquelet technique to repair bone defect was extensively reviewed and summarized. Masquelet technique involves a two-step procedure. First, bone cement is used to fill the bone defect after a thorough debridement, and an induced membrane structure surrounding the spacer formed; then the bone cement is removed after 6-8 weeks, and rich cancellous bone is implanted into the induced membrane. Massive cortical bone defect is repaired by new bone forming and consolidation. Experiments show that the induced membrane has vascular system and is also rich in vascular endothelial growth factor, transforming growth factor beta1, bone morphogenetic protein 2, and bone progenitor cells, so it has osteoinductive property; satisfactory results have been achieved in clinical application of almost all parts of defects, various types of bone defect and massive defect up to 25 cm long. Compared with other repair methods, Masquelet technique has the advantages of reliable effect, easy to operate, few complications, low requirements for recipient site, and wide application. Masquelet technique is an effective method to repair bone defect and is suitable for various types of bone defect, especially for bone defects caused by infection and tumor resection.

  11. Vibrational investigation of calcium-silicate cements for endodontics in simulated body fluids

    Science.gov (United States)

    Taddei, Paola; Modena, Enrico; Tinti, Anna; Siboni, Francesco; Prati, Carlo; Gandolfi, Maria Giovanna

    2011-05-01

    Calcium-silicate MTA (Mineral Trioxide Aggregate) cements have been recently developed for oral and endodontic surgery. This study was aimed at investigating commercial (White ProRoot MTA, White and Grey MTA-Angelus) and experimental (wTC-Bi) accelerated calcium-silicate cements with regards to composition, hydration products and bioactivity upon incubation for 1-28 days at 37 °C, in Dulbecco's Phosphate Buffered Saline (DPBS). Deposits on the surface of the cements and the composition changes during incubation were investigated by micro-Raman and ATR/FT-IR spectroscopy, and pH measurements. Vibrational techniques disclosed significant differences in composition among the unhydrated cements, which significantly affected the bioactivity as well as pH, and hydration products of the cements. After one day in DPBS, all the cements were covered by a more or less homogeneous layer of B-type carbonated apatite. The experimental cement maintained a high bioactivity, only slightly lower than the other cements and appears a valid alternative to commercial cements, in view of its adequate setting time properties. The bioactivity represents an essential property to favour bone healing and makes the calcium-silicate cements the gold standard materials for root-apical endodontic surgery.

  12. In vivo XCT bone characterization of lattice structured implants fabricated by additive manufacturing

    Directory of Open Access Journals (Sweden)

    A-F. Obaton

    2017-08-01

    Full Text Available Several cylindrical specimens and dental implants, presenting diagonal lattice structures with different cell sizes (600, 900 and 1200 μm were additively manufactured by selective laser melting process. Then they were implanted for two months in a sheep. After removal, they were studied by Archimedes’ method as well as X-ray computed tomography in order to assess the penetration of bone into the lattice. We observed that the additive manufactured parts were geometrically conformed to the theoretical specifications. However, several particles were left adhering to the surface of the lattice, thereby partly or entirely obstructing the cells. Nevertheless, bone penetration was clearly visible. We conclude that the 900 μm lattice cell size is more favourable to bone penetration than the 1200 μm lattice cell size, as the bone penetration is 84% for 900 μm against 54% for 1200 μm cell structures. The lower bone penetration value for the 1200 μm lattice cell could possibly be attributed to the short residence time in the sheep. Our results lead to the conclusion that lattice implants additively manufactured by selective laser melting enable better bone integration.

  13. Percutaneous Cement-Augmented Screws Fixation in the Fractures of the Aging Spine: Is It the Solution?

    Directory of Open Access Journals (Sweden)

    Sébastien Pesenti

    2014-01-01

    Full Text Available Introduction. Management of elderly patients with thoracolumbar fractures is still challenging due to frequent osteoporosis and risk of screws pull-out. The aim of this study was to evaluate results of a percutaneous-only procedure to treat these fragile patients using cement-augmented screws. Methods. 12 patients diagnosed with a thoracolumbar fracture associated with an important loss of bone stock were included in this prospective study. Surgical procedure included systematically a percutaneous osteosynthesis using cemented fenestrated screws. When necessary, additional anterior support was performed using a kyphoplasty procedure. Clinical and radiographic evaluations were performed using CT scan. Results. On the whole series, 15 fractures were diagnosed and 96 cemented screws were inserted. The difference between the pre- and postoperative vertebral kyphosis was statistically significant (12.9° versus 4.4°, P=0.0006. No extrapedicular screw was reported and one patient was diagnosed with a cement-related pulmonary embolism. During follow-up period, no infectious complications, implant failures, or pull-out screws were noticed. Discussion. Aging spine is becoming an increasing public health issue. Management of these patients requires specific attention due to the augmented risk of complications. Using percutaneous-only screws fixation with cemented screw provides satisfactory results. A rigorous technique is mandatory in order to achieve best outcomes.

  14. Development of Cranial Bone Surrogate Structures Using Stereolithographic Additive Manufacturing

    Science.gov (United States)

    2017-09-29

    Additive Manufacturing by Jared M Gardner and Thomas A Plaisted Approved for public release; distribution is unlimited...Laboratory Development of Cranial Bone Surrogate Structures Using Stereolithographic Additive Manufacturing by Thomas A Plaisted Weapons...Structures Using Stereolithographic Additive Manufacturing 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Jared

  15. Laboratory Investigation on Compressive Strength and Micro-structural Features of Foamed Concrete with Addition of Wood Ash and Silica Fume as a Cement Replacement

    Directory of Open Access Journals (Sweden)

    Othuman Mydin M.A.

    2014-01-01

    Full Text Available Wood Ash (WA and Silica Fume (SF exhibit good cementation properties and have great potential as supplementary binder materials for the concrete production industry. This study will focus on enhancing the micro-structural formation and compressive strength of foamed concrete with the addition of WA and SF. A total of 3 mixes were prepared with the addition of WA and SF at various cement replacement levels by total binder weight. For this particular study, the combination of WA (5%, 10%, and 15% by binder weight and SF (5%, 10%, and 15% by binder weight were utilized as supplementary binder materials to produce foamed concrete mixes. As was made evident from micrographs obtained in the study, the improvement observed in the compressive strength of the foamed concrete was due to a significant densification in the microstructure of the cement paste matrix in the presence of WA and SF hybrid supplementary binders. Experimental results indicated that the combination of 15% SF and 5% WA by binder weight had a more substantial influence on the compressive strength of foamed concrete compared to the control mix. Furthermore, the addition of WA and SF significantly prolonged the setting times of the blended cement paste of the foamed concrete.

  16. Tantalum oxide and barium sulfate as radiopacifiers in injectable calcium phosphate-poly(lactic-co-glycolic acid) cements for monitoring in vivo degradation.

    Science.gov (United States)

    Hoekstra, Jan Willem M; van den Beucken, Jeroen J J P; Leeuwenburgh, Sander C G; Bronkhorst, Ewald M; Meijer, Gert J; Jansen, John A

    2014-01-01

    Monitoring the degradation of calcium phosphate-based bone substitute materials in vivo by means of noninvasive techniques (e.g., radiography) is often a problem due to the chemical resemblance of those substitutes with the mineral phase of bone. In the view of that, the present study aimed at enhancing the radiopacity of calcium phosphate cement enriched with poly(lactic-co-glycolic acid) (CPC-PLGA) microspheres, by adding tantalum oxide (Ta2O5) or the more traditional radiopacifier barium sulfate (BaSO4). The radiopacifying capacity of these radiopacifiers was first evaluated in vitro by microcomputed tomography (μCT). Thereafter, both radiopacifiers were tested in vivo using a distal femoral condyle model in rabbits, with subsequent ex vivo μCT analysis in parallel with histomorphometry. Addition of either one of the radiopacifiers proved to enhance radiopacity of CPC-PLGA in vitro. The in vivo experiment showed that both radiopacifiers did not induce alterations in biological performance compared to plain CPC-PLGA, hence both radiopacifiers can be considered safe and biocompatible. The histomorphometrical assessment of cement degradation and bone formation showed similar values for the three experimental groups. Interestingly, μCT analysis showed that monitoring cement degradation becomes feasible upon incorporation of either type of radiopacifier, albeit that BaSO4 showed more accuracy compared to Ta2O5. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.

  17. Pullout strength of cement-augmented and wide-suture transosseous fixation in the greater tuberosity.

    Science.gov (United States)

    Shi, Brendan Y; Diaz, Miguel; Belkoff, Stephen M; Srikumaran, Uma

    2017-12-01

    Obtaining strong fixation in low-density bone is increasingly critical in surgical repair of rotator cuff tears because of the aging population. To evaluate two new methods of improving pullout strength of transosseous rotator cuff repair in low-density bone, we analyzed the effects of 1) using 2-mm suture tape instead of no. 2 suture and 2) augmenting the lateral tunnel with cement. Eleven pairs of osteopenic or osteoporotic cadaveric humeri were identified by dual-energy x-ray absorptiometry. One bone tunnel and one suture were placed in the heads of 22 specimens. Five randomly selected pairs were repaired with no. 2 suture; the other six pairs were repaired with 2-mm suture tape. One side of each pair received lateral tunnel cement augmentation. Specimens were tested to suture pullout. Data were fitted to multivariate models that accounted for bone mineral density and other specimen characteristics. Two specimens were excluded because of knot-slipping during testing. Use of suture tape versus no. 2 suture conferred a 75-N increase (95% CI: 37, 113) in pullout strength (PCement augmentation conferred a 42-N improvement (95% CI: 10, 75; P=0.011). Other significant predictors of pullout strength were age, sex, and bone mineral density. We show two methods of improving the fixation strength of transosseous rotator cuff repairs in low-density bone: using 2-mm suture tape instead of no. 2 suture and augmenting the lateral tunnel with cement. These methods may improve the feasibility of transosseous repairs in an aging patient population. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Histological Analysis of the Effect of Accelerated Portland Cement as a Bone Graft Substitute on Experimentally-Created Three-Walled Intrabony Defects in Dogs

    Directory of Open Access Journals (Sweden)

    Mohamad Javad Ashraf

    2007-12-01

    Full Text Available

    Background and aims. Recent literature shows that accelerated Portland cement (APC is a non-toxic material that may have potential to promote bone healing. The objective of this study was to histologically evaluate periodontal healing focusing on new bone regeneration following implantation of APC into intra-bony defects in dogs.

    Materials and methods. Three-wall intra-bony periodontal defects were surgically created at the mesial aspect of the first molar in both sides of mandible in six dogs. One side was randomly filled with the material and other received a flap operation only. The animals were euthanized eight weeks post-surgery when block sections of the defect sites were collected and prepared for qualitative histological analysis.

    Results. Compared to control group, stimulation of growth of new bone tissue in the cavity containing APC was significantly prominent in three of six cases, showing osteoid formation with osteoblastic rimming and new bone trabeculla. New bone formation was observed just close to cavity containing APC. Connective tissue proliferation and downgrowth of epithelium were significantly less than those of control group.

    Conclusion. Our results are encouraging for the use of APC as a bone substitute, but more comprehensive study are necessary before warranting clinical use.

  19. A study on the compressive and tensile strength of foamed concrete containing pulverized bone as a partial replacement of cement

    International Nuclear Information System (INIS)

    Falade, F.

    2013-01-01

    In this study, structural properties of foamed aerated concrete with and without pulverized bone were investigated. These properties are workability, plastic and testing densities, compressive strength, and tensile strength at the design density of 1600kg/m/sub 3/. The tensile strength was evaluated by subjecting 150 x 150 x750mm unreinforced foamed concrete beams to flexural test and 150x300mm cylinder specimens were subjected to splitting test. 150mm cube specimens were used for the determination of both the compressive strength and the testing density of the foamed aerated concrete. The plastic density was investigated using a container of known volume, and its workability determined using the slump test. The pulverized bone content was varied from 0 to 20% at interval of 5%. The specimens without the pulverized bone served as the control. At the designed density of 1600 kg/m/sub 3/, the results for the control specimens at 28-day curing age are 15.43 and 13.89N/mm/sub 2/ for air-and water-cured specimens respectively. The modulus of rupture and splitting tensile strength are 2.53 and 1.63N/mm/sub 2/ respectively. The results for specimens with pulverized bone did not differ significantly from the specimens without pulverized bone. From the results of this investigation, it can be concluded that foamed aerated concrete used for this study has potential for structural applications. Also pulverized bone can be used to reduce (partially replace) the quantity of cement used in aerated concrete production; thus ridding our environment of potentially harmful wastes, as well as reduce the consumption of non-renewable resources. (author)

  20. Comparison of CT characteristics of extravertebral cement leakages after vertebroplasty performed by different navigation and injection techniques

    International Nuclear Information System (INIS)

    Kaso, G.; Horvath, Z.; Doczi, T.; Szenohradszky, K.; Sandor, J.

    2008-01-01

    This study was intended to assess the results of post-operative CT scans in three groups of patients following percutaneous vertebroplasty (VP) using different navigation and injection methods, in an attempt to explain the radiological characteristics of extravertebral cement leakage with relation to needle placement and focused on the ventral epidural accumulation of bone cement. Furthermore, we have suggested a morphological (and functional) classification of the types of cement leakage. Between July 2001 and February 2005, 123 percutaneous VP procedures were performed during 75 sessions in 65 patients for treatment of painful osteoporotic vertebral body compression fractures. These included: group 1: 28 patients, 33 sessions; 50 right sided unilateral VP under fluoroscopic control with central position of the tip of the needle within the bone marrow. Group 2: 27 patients, 28 sessions; 50 bilateral VP under fluoroscopic control with separate cement injections into both 'hemivertebrae'. Group 3: 14 patients, 14 sessions; 23 bilateral VP navigated by frameless stereotaxy (neuronavigation). Needles were positioned strictly into the lateral thirds of the vertebral bodies. Leakages were classified as epidural, foraminal, intradiscal, venous paravertebral, compact extravertebral on the post-operative CT scans, and their frequency was compared in relation to the navigation method and the position of the tip of the needle. Group 1: extravertebral cement was detected in 23 patients (82 %), and in 35 (70 %) of the 50 vertebrae treated (ventral epidural: 23 vertebrae = 46 %; intradiscal: 12 vertebrae = 24 %; venous paravertebral: 8 vertebrae = 16 %; intraforaminal: 7 vertebrae = 14 %; and compact extravertebral: 3 vertebrae = 6 %). Group 2: extravertebral cement was detected in 20 patients (74 %), and in 38 (76 %) of the 50 vertebrae treated (ventral epidural: 12 vertebrae = 24 %; intradiscal: 12 vertebrae = 24 %; venous paravertebral: 9 vertebrae = 18 %; and foraminal: 1

  1. Treatment of root fracture with accompanying resorption using cermet cement.

    Science.gov (United States)

    Lui, J L

    1992-02-01

    A method of treating an apical root fracture with accompanying resorption at the junction of the fracture fragments using glass-cermet cement is described. Endodontically, the material had previously been used for repair of lateral resorptive root defects and retrograde root fillings. Complete bone regeneration was observed three years post-operatively following treatment of the root fracture in the conventional manner. The various advantages of glass-cermet cement as a root filling material used in the technique described are discussed.

  2. Radioactive Wastes Cementation during Decommissioning Of Salaspils Research Reactor

    International Nuclear Information System (INIS)

    Abramenkova, G.; Klavins, M.; Abramenkovs, A.

    2009-01-01

    This paper deals with information on the radioactive wastes cementation technology for decommissioning of Salaspils Research Reactor (SRR). Dismantled radioactive materials were cemented in concrete containers using tritiated water-cement mortar. The laboratory tests system was developed to meet the waste acceptance criteria for disposal of containers with cemented radioactive wastes in near-surface repository 'Radons'. The viscosity of water-cement mortar, mechanical tests of solidified mortar's samples, change of temperature of the samples during solidification time and leakage of Cs-137 and T-3 radionuclides was studied for different water-cement compositions with different additives. The pH and electro conductivity of the solutions during leakage tests were controlled. It was shown, that water/cement ratio significantly influences on water-cement mortar's viscosity and solidified samples mechanical stability. Increasing of water ratio from 0.45 up to 0.62 decreases water-cement mortar's viscosity from 1100 mPas up to 90 mPas and decreases mechanical stability of water-cement samples from 23 N/mm 2 to the 12 N/mm 2 . The role of additives - fly ash and Penetron admix in reduction of solidification temperature is discussed. It was found, that addition of fly ash to the cement-water mortar can reduce the solidification temperature from 81 deg. C up to 62 deg. C. The optimal interval of water ratio in cement mortar is discussed. Tritium and Cs-137 leakage tests show, that radionuclides release curves has a complicate structure. The possible radionuclides release mechanisms are discussed. Experimental results indicated that addition of fly ash result in facilitation of tritium and cesium leakage in water phase. Further directions of investigations are drafted. (authors)

  3. Influence of Cements Containing Calcareous Fly Ash as a Main Component Properties of Fresh Cement Mixtures

    Science.gov (United States)

    Gołaszewski, Jacek; Kostrzanowska-Siedlarz, Aleksandra; Ponikiewski, Tomasz; Miera, Patrycja

    2017-10-01

    The main goal of presented research was to examine usability of cements containing calcareous fly ash (W) from technological point of view. In the paper the results of tests concerning the influence of CEM II and CEM IV cements containing fly ash (W) on rheological properties, air content, setting times and plastic shrinkage of mortars are presented and discussed. Moreover, compatibility of plasticizers with cements containing fly ash (W) was also studied. Additionally, setting time and hydration heat of cements containing calcareous fly ash (W) were determined. In a broader aspect, the research contributes to promulgation of the possibility of using calcareous fly ash (W) in cement and concrete technology, what greatly benefits the environment protection (utilization of waste fly ash). Calcareous fly ash can be used successfully as the main component of cement. Cements produced by blending with processed fly ash or cements produced by interginding are characterized by acceptable technological properties. In respect to CEM I cements, cements containing calcareous fly ash worsen workability, decrease air content, delay setting time of mixtures. Cements with calcareous fly ash show good compatibility with plasticizers.

  4. Surgical strategies to improve fixation in the osteoporotic spine: the effects of tapping, cement augmentation, and screw trajectory.

    Science.gov (United States)

    Kuhns, Craig A; Reiter, Michael; Pfeiffer, Ferris; Choma, Theodore J

    2014-02-01

    Study Design Biomechanical study of pedicle screw fixation in osteoporotic bone. Objective To investigate whether it is better to tap or not tap osteoporotic bone prior to placing a cement-augmented pedicle screw. Methods Initially, we evaluated load to failure of screws placed in cancellous bone blocks with or without prior tapping as well as after varying the depths of tapping prior to screw insertion. Then we evaluated load to failure of screws placed in bone block models with a straight-ahead screw trajectory as well as with screws having a 23-degree cephalad trajectory (toward the end plate). These techniques were tested with nonaugmented (NA) screws as well as with bioactive cement (BioC) augmentation prior to screw insertion. Results In the NA group, pretapping decreased fixation strength in a dose-dependent fashion. In the BioC group, the tapped screws had significantly greater loads to failure (p tapping prior to cement augmentation will substantially improve fixation when compared with not tapping. Angulating screws more cephalad also seems to enhance aging spine fixation.

  5. Elastic properties and strain-to-crack-initiation of calcium phosphate bone cements: Revelations of a high-resolution measurement technique.

    Science.gov (United States)

    Ajaxon, Ingrid; Acciaioli, Alice; Lionello, Giacomo; Ginebra, Maria-Pau; Öhman-Mägi, Caroline; Baleani, Massimiliano; Persson, Cecilia

    2017-10-01

    Calcium phosphate cements (CPCs) should ideally have mechanical properties similar to those of the bone tissue the material is used to replace or repair. Usually, the compressive strength of the CPCs is reported and, more rarely, the elastic modulus. Conversely, scarce or no data are available on Poisson's ratio and strain-to-crack-initiation. This is unfortunate, as data on the elastic response is key to, e.g., numerical model accuracy. In this study, the compressive behaviour of brushite, monetite and apatite cements was fully characterised. Measurement of the surface strains was done using a digital image correlation (DIC) technique, and compared to results obtained with the commonly used built-in displacement measurement of the materials testers. The collected data showed that the use of fixed compression platens, as opposed to spherically seated ones, may in some cases underestimate the compressive strength by up to 40%. Also, the built-in measurements may underestimate the elastic modulus by up to 62% as compared to DIC measurements. Using DIC, the brushite cement was found to be much stiffer (24.3 ± 2.3GPa) than the apatite (13.5 ± 1.6GPa) and monetite (7.1 ± 1.0GPa) cements, and elastic moduli were inversely related to the porosity of the materials. Poisson's ratio was determined to be 0.26 ± 0.02 for brushite, 0.21 ± 0.02 for apatite and 0.20 ± 0.03 for monetite. All investigated CPCs showed low strain-to-crack-initiation (0.17-0.19%). In summary, the elastic modulus of CPCs is substantially higher than previously reported and it is concluded that an accurate procedure is a prerequisite in order to properly compare the mechanical properties of different CPC formulations. It is recommended to use spherically seated platens and measuring the strain at a relevant resolution and on the specimen surface. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Gait analysis, bone and muscle density assessment for patients undergoing total hip arthroplasty

    Directory of Open Access Journals (Sweden)

    Benedikt Magnússon

    2012-12-01

    Full Text Available Total hip arthroplasty (THA is performed with or without the use of bone cement. Facing the lack of reliable clinical guidelines on decision making whether a patient should receive THA with or without bone cement, a joint clinical and engineering approach is proposed here with the objective to assess patient recovery developing monitoring techniques based on gait analysis, measurements of bone mineral density and structural and functional changes of quadriceps muscles. A clinical trial was conducted with 36 volunteer patients that were undergoing THA surgery for the first time: 18 receiving cemented implant and 18 receiving non-cemented implant. The patients are scanned with Computer Tomographic (CT modality prior-, immediately- and 12 months post-surgery. The CT data are further processed to segment muscles and bones for calculating bone mineral density (BMD. Quadriceps muscle density Hounsfield (HU based value is calculated from the segmented file on healthy and operated leg before and after THA surgery. Furthermore clinical assessment is performed using gait analysis technologies such as a sensing carpet, wireless electrodes and video. Patients undergo these measurements prior-, 6 weeks post - and 52 weeks post-surgery. The preliminary results indicate computational tools and methods that are able to quantitatively analyze patient’s condition pre and post-surgery: The spatial parameters such as step length and stride length increase 6 weeks post op in the patient group receiving cemented implant while the angle in the toe in/out parameter decrease in both patient groups.

  7. Energy economy and industrial ecology in the Brazilian cement sector

    International Nuclear Information System (INIS)

    Tavares, Marina Elisabete Espinho; Schaeffer, Roberto

    1999-01-01

    The article discusses the following issues of the Brazilian cement sector: the Brazilian cement main types specification, cement quantities evolution produced in Brazil from 1987 to 1997, energy conservation in the cement production process with additives, energy economy cost estimates from the utilization of additives, and several technologies energy economy cost used in the industrial sector

  8. Cementation and solidification of Rocky Flats Plant incinerator ash

    International Nuclear Information System (INIS)

    Phillips, J.A.; Semones, G.B.

    1994-01-01

    Cementation studies on various aqueous waste streams at Rocky Flats have shown this technology to be effective for immobilizing the RCRA constituents in the waste. Cementation is also being evaluated for encapsulation of incinerator ash. Experiments will initially evaluate a surrogate ash waste using a Taguchi experimental design to optimize the cement formulation and waste loading levels for this application. Variables of waste loading, fly ash additions, water/cement ratio, and cement type will be tested at three levels each during the course of this work. Tests will finally be conducted on actual waste using the optimized cement formulation developed from this testing. This progression of tests will evaluate the effectiveness of cement encapsulation for this waste stream without generating any additional wastes

  9. Bone SPECT-CT: An additional diagnostic tool for undiagnosed wrist pain.

    Science.gov (United States)

    Shirley, R A; Dhawan, R T; Rodrigues, J N; Evans, D M

    2016-10-01

    Diagnosis of wrist pain can be difficult to determine with clinical examination and conventional imaging techniques alone. Bone SPECT-CT (single-photon emission tomography with computerized tomography) is a hybrid imaging technique that overlays functional bone scintigraphy in tomographic/3D mode with conventional CT. Data from the two modalities are complementary; areas of abnormal bone metabolism can be localized with anatomical precision, hitherto lacking in conventional bone scans, while structural information from the CT scan further embellishes the diagnostic information. Over the last 6 years, one surgeon (David Evans) has used bone SPECT and later bone SPECT-CT as an additional line of investigation. This is a series of 21 consecutive patients with wrist pain that could not be diagnostically resolved with the usual combination of history, examination, and conventional imaging, and therefore underwent bone SPECT-CT. Clinical and imaging findings, management, and outcomes of these cases are discussed to explore the potential role of this hybrid functional modality in hand and wrist surgical practice. Copyright © 2016. Published by Elsevier Ltd.

  10. Local induction of inflammation affects bone formation

    NARCIS (Netherlands)

    Croes, M; Kruyt, M C; Loozen, L; Kragten, A H; Yuan, H; Dhert, W J; Öner, F C; Alblas, J

    2017-01-01

    To explore the influence of inflammatory processes on bone formation, we applied a new in vivo screening model. Confined biological pockets were first created in rabbits as a response to implanted bone cement discs. These biomembrane pockets were subsequently used to study the effects of

  11. Influence of temperature on the synthesis of calcining cement α--tricalcium phosphate

    International Nuclear Information System (INIS)

    Vieira, R.S.; Thurmer, M.B.; Coelho, W.T.; Fernandes, J.M.; Santos, L.A.

    2011-01-01

    The calcium phosphate cement (CFCs) bone substitutes are of great potential use in medical and dental. However, one of the great difficulties of using this type of cement is its low mechanical strength due to the presence of undesirable phases, such as beta-tricalcium phosphate. The step of obtaining this compound is done at high temperature by solid state reaction. With the aim of obtaining calcium phosphate cements more resistant, we studied the conditions for obtaining an alpha-TCP at temperatures of 1300, 1400 and 1500 ° C with time 2h calcination. The samples were analyzed for crystalline phases, density, porosity and mechanical strength. The results show that the synthesis parameters studied strongly influence the obtained phases and the mechanical properties of cement. (author)

  12. INFLUENCE OF WINE ACID ON RHEOLOGICAL PROPERTIES OF WELL BORE CEMENT SLURRIES AND HARDENED CEMENT PROPERTIES

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    1989-12-01

    Full Text Available Adaptation of commercial types of domestic cements for use in cementing the deep wells is a process by which Yugoslav oil industry tends to solve problems of completion of those wells independently. In order to design a domestic, cheep and effective retarder, tests of applicability of wine acid on cement slurries have been carried out. Besides examining the necessary wine acid content to achieve desirable Theological properties, the influence of this additive on properties of hardened cement samples has been tested too (the paper is published in Croatian.

  13. Additional chemical polymerization of dual resin cements: reality or a goal to be achieved?

    Directory of Open Access Journals (Sweden)

    Luzia Sakaguti UMETSUBO

    Full Text Available Abstract Introduction This study serves as a warning to dentists and researchers that dual-cured resin cements may not polymerize completely under some prosthetic crowns. Objective The aim of this study was to analyse the polymerization degree of dual-cured resin cements under prosthetic barrier, by microhardness test. Material and method Three cements (Bistite II, RelyX ARC and Variolink II were light-cured through different barriers, placed between the cement and the light source: G1: without barrier; G2: composite resin (Cesead; G3: Inceram alumina; G4: IPS Empress; G5: Inceram zirconia; G6: tooth fragment. Photopolymerization was carried out using a halogen light unit (650 mW/cm2; microhardness was evaluated using the Microhardness Tester FM 700, under a load of 50gf with a dwell time of 15s, at two evaluation times (30min and 24h. Result The results were submitted to ANOVA and Tukey tests (5%. Both Inceram alumina and Inceram zirconia ceramic barriers hindered polymerization. Bistite, followed by RelyX and Variolink, exhibited the highest microhardness values (p<0.05. As the highest values were obtained without a barrier, it was determined that the barrier, followed by the tooth, influenced microhardness. Both Empress and Cesead had the smallest microhardness values but with no statistically significant difference between them. Conclusion The barrier negatively affected the microhardness of dual-cured resin cements; evaluation time did not affect microhardness values for most of the conditions tested. There is a limited effect of the chemical activator on the polymerization of some dual-cured cements, and their performance is product specific.

  14. Development of an Injectable Calcium Phosphate/Hyaluronic Acid Microparticles System for Platelet Lysate Sustained Delivery Aiming Bone Regeneration.

    Science.gov (United States)

    Babo, Pedro S; Santo, Vítor E; Gomes, Manuela E; Reis, Rui L

    2016-11-01

    Despite the biocompatibility and osteoinductive properties of calcium phosphate (CaP) cements their low biodegradability hampers full bone regeneration. Herein the incorporation of CaP cement with hyaluronic acid (HAc) microparticles loaded with platelet lysate (PL) to improve the degradability and biological performance of the cements is proposed. Cement formulations incorporating increasing weight ratios of either empty HAc microparticles or microparticles loaded with PL (10 and 20 wt%) are developed as well as cements directly incorporating PL. The direct incorporation of PL improves the mechanical properties of the plain cement, reaching values similar to native bone. Morphological analysis shows homogeneous particle distribution and high interconnectivity between the HAc microparticles. The cements incorporating PL (with or without the HAc microparticles) present a sustained release of PL proteins for up to 8 d. The sustained release of PL modulates the expression of osteogenic markers in seeded human adipose tissue derived stem cells, thus suggesting the stimulatory role of this hybrid system toward osteogenic commitment and bone regeneration applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Effect of lavage and brush preparation on cement penetration and primary stability in tibial unicompartmental total knee arthroplasty: An experimental cadaver study.

    Science.gov (United States)

    Scheele, Christian; Pietschmann, Matthias F; Schröder, Christian; Grupp, Thomas; Holderied, Melanie; Jansson, Volmar; Müller, Peter E

    2017-03-01

    Unicompartmental total knee arthroplasty (UKA) is a well-established treatment option for unicondylar osteoarthritis, and generally leads to better functional results than tricompartimental total knee arthroplasty (TKA). However, revision rates of UKAs are reported as being higher; a major reason for this is aseptic loosening of the tibial component due to implant-cement-bone interface fatigue. The objective of this study was to determine the effects of trabecular bone preparation, prior to implantation of tibial UKAs, on morphological and biomechanical outcomes in a cadaver study. Cemented UKAs were performed in 18 human cadaver knees after the bone bed was cleaned using pulsed lavage (Group A), conventional brush (Group B) or no cleaning at all (Group C, control). Morphologic cement penetration and primary stability were measured. The area proportion under the tibial component without visible cement penetration was significantly higher in Group C (21.9%, SD 11.9) than in both Group A (7.1%, SD 5.8), and Group B (6.5%, SD 4.2) (P=0.007). The overall cement penetration depth did not differ between groups. However, in the posterior part, cement penetration depth was significantly higher in Group B (1.9mm, SD 0.3) than in both Group A (1.3mm, SD 0.3) and Group C (1.4mm, SD 0.3) (P=0.015). The mode of preparation did not show a substantial effect on primary stability tested under dynamic compression-shear test conditions (P=0.910). Bone preparation significantly enhances cement interdigitation. The application of a brush shows similar results compared with the application of pulsed lavage. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. The biological performance of injectable calcium phosphate/PLGA cement in osteoporotic rats

    International Nuclear Information System (INIS)

    Van de Watering, Floor C J; Cuijpers, Vincent M; Jansen, John A; Van den Beucken, Jeroen J J P; Laverman, Peter; Gotthardt, Martin; Boerman, Otto C; Bronkhorst, Ewald M

    2013-01-01

    Calcium phosphate cements (CPCs) including poly(D,L-lactic-co-glycolic) acid (PLGA) microparticles are promising candidates for bone regenerative applications. Previous studies with CPC/PLGA demonstrated that the material is non-toxic, biocompatible and osteoconductive. However, the outcome of these studies was based on healthy individuals and consequently does not provide information on bone substitute material performance in a compromised situation, such as osteoporosis. Therefore, this study comparatively evaluated the performance of injectable CPC/PLGA in healthy (SHAM) and osteoporotic rats (OVX) using a rat femoral condyle defect with implantation periods of 4 and 12 weeks. It was hypothesized that in OVX rats the degradation of CPC/PLGA would increase due to a higher osteoclastic activity present in osteoporotic animals and that the obtained space would be rapidly filled with newly formed bone. The results revealed an accelerated degradation of the used CPC/PLGA in osteoporotic animals, but bone formation was less compared to that in healthy animals at 4 and 12 weeks after implantation. In addition, after 4 weeks, the amount of newly formed bone under osteoporotic conditions was less in the femoral condyle defect compared to that present in a non-defect, osteoporotic control femoral condyle, but equal after 12 weeks. On the other hand, in healthy animals, the amount of newly formed bone in the femoral condyle defect was equal to that present in a non-defect control femoral condyle at 4 weeks, while higher after 12 weeks. This indicates that bone regeneration at a defect site under osteoporotic conditions is slower, but can reach native amounts after longer time periods. Consequently, bone regenerative treatments under osteoporotic conditions seem to require additional empowerment of bone substitute materials. (paper)

  17. Characterization and chemical activity of Portland cement and two experimental cements with potential for use in dentistry.

    Science.gov (United States)

    Camilleri, J

    2008-09-01

    To evaluate the chemical activity of Portland cement and two other cement types with similar chemical composition to mineral trioxide aggregate with the aim of developing these cements for further applications in dentistry. The chemical composition of the three cement types namely Portland cement, calcium sulpho-aluminate cement and calcium fluoro-aluminate cement was evaluated by elemental analysis using energy dispersive analysis with X-ray under the scanning electron microscope and by X-ray diffraction analysis (XRD) to determine the phases. The constituents of the hydration reaction by-products were evaluated by XRD analysis of the set cements at 1, 7, 28 and 56 days and by analysis of the leachate by ion chromatography. The pH of both cements and leachate was determined at different time intervals. Cements admixed with micro-silica were also tested to determine the effect of micro-silica on the reaction by-products. All three cement types were composed of tricalcium silicate as the main constituent phase. The hydration reaction of Portland cement produced calcium hydroxide. However, this was not present in the other cements tested at all ages. Admixed micro-silica had little or no effect on the cements with regard to reaction by-products. The pH of all cements tested was alkaline. Both the experimental calcium sulpho-aluminate cement and calcium fluoro-aluminate cement had different hydration reactions to that of Portland cement even though calcium silicate was the major constituent element of both cement types. No calcium hydroxide was produced as a by-product to cement hydration. Micro-silica addition to the cement had no effect on the hydration reaction.

  18. Efficiency modeling of solidification/stabilization of multi-metal contaminated industrial soil using cement and additives.

    Science.gov (United States)

    Voglar, Grega E; Leštan, Domen

    2011-08-30

    In a laboratory study, formulations of 15% (w/w) of ordinary Portland cement (OPC), calcium aluminate cement (CAC) and pozzolanic cement (PC) and additives: plasticizers cementol delta ekstra (PCDE) and cementol antikorodin (PCA), polypropylene fibers (PPF), polyoxyethylene-sorbitan monooleate (Tween 80) and aqueous acrylic polymer dispersion (Akrimal) were used for solidification/stabilization (S/S) of soils from an industrial brownfield contaminated with up to 157, 32,175, 44,074, 7614, 253 and 7085mg kg(-1) of Cd, Pb, Zn, Cu, Ni and As, respectively. Soils formed solid monoliths with all cementitious formulations tested, with a maximum mechanical strength of 12N mm(-2) achieved after S/S with CAC+PCA. To assess the S/S efficiency of the used formulations for multi-element contaminated soils, we propose an empirical model in which data on equilibrium leaching of toxic elements into deionized water and TCLP (toxicity characteristic leaching procedure) solution and the mass transfer of elements from soil monoliths were weighed against the relative potential hazard of the particular toxic element. Based on the model calculation, the most efficient S/S formulation was CAC+Akrimal, which reduced soil leachability of Cd, Pb, Zn, Cu, Ni and As into deionized water below the limit of quantification and into TCLP solution by up to 55, 185, 8750, 214, 4.7 and 1.2-times, respectively; and the mass transfer of elements from soil monoliths by up to 740, 746, 104,000, 4.7, 343 and 181-times, respectively. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Corrosivity of cement pastes with addition of sludge generated in water treatment plant

    International Nuclear Information System (INIS)

    Rodrigues, R.A.; Martins, B.E.D.B.S.; Couto, V.M.P.; Carvalho, L.J.; Almeida, V.C.

    2011-01-01

    The amount of sludge produced in a water treatment plant (WTP) is an important economic factor in the context of waste treatment. The present article has the objective of study the corrosion of cement pastes produced with blended sludge. Aqueous extracts were produced from the milling of masses containing 5%, 10% and 30% of sludge in relation to cement after 28 days of healing. These extracts were used for polarization assays in order to determine the corrosiveness of the folders when in contact with the used fittings. Moreover, other chemical analysis tests were carried out for sludge characterization: X-ray fluorescence and X-ray diffraction. The obtained results point to the possibility of use of the studied cement masses in the development of construction materials promoting the economic reuse of WTP sludge before discarded in landfills. (author)

  20. Analysis of risk factors causing short-term cement leakages and long-term complications after percutaneous kyphoplasty for osteoporotic vertebral compression fractures.

    Science.gov (United States)

    Gao, Chang; Zong, Min; Wang, Wen-Tao; Xu, Lei; Cao, Da; Zou, Yue-Fen

    2018-05-01

    Background Percutaneous kyphoplasty (PKP) is a common treatment modality for painful osteoporotic vertebral compression fractures (OVCFs). Pre- and postoperative identification of risk factors for cement leakage and follow-up complications would therefore be helpful but has not been systematically investigated. Purpose To evaluate pre- and postoperative risk factors for the occurrence of short-term cement leakages and long-term complications after PKP for OVCFs. Material and Methods A total of 283 vertebrae with PKP in 239 patients were investigated. Possible risk factors causing cement leakage and complications during follow-up periods were retrospectively assessed using multivariate analysis. Cement leakage in general, three fundamental leakage types, and complications during follow-up period were directly identified through postoperative computed tomography (CT). Results Generally, the presence of cortical disruption ( P = 0.001), large volume of cement ( P = 0.012), and low bone mineral density (BMD) ( P = 0.002) were three strong predictors for cement leakage. While the presence of intravertebral cleft and Schmorl nodes ( P = 0.045 and 0.025, respectively) were respectively identified as additional risk factors for paravertebral and intradiscal subtype of cortical (C-type) leakages. In terms of follow-up complications, occurrence of cortical leakage was a strong risk factor both for new VCFs ( P = 0.043) and for recompression ( P = 0.004). Conclusion The presence of cortical disruption, large volume of cement, and low BMD of treated level are general but strong predictors for cement leakage. The presence of intravertebral cleft and Schmorl nodes are additional risk factors for cortical leakage. During follow-up, the occurrence of C-type leakage is a strong risk factor, for both new VCFs and recompression.

  1. ULTRA-LIGHTWEIGHT CEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Fred Sabins

    2001-10-23

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). Work reported herein addresses tasks performed in the fourth quarter as well as the other three quarters of the past year. The subjects that were covered in previous reports and that are also discussed in this report include: Analysis of field laboratory data of active cement applications from three oil-well service companies; Preliminary findings from a literature review focusing on problems associated with ultra-lightweight cements; Summary of pertinent information from Russian ultra-lightweight cement literature review; and Comparison of compressive strengths of ULHS systems using ultrasonic and crush methods Results reported from the fourth quarter include laboratory testing of ULHS systems along with other lightweight cement systems--foamed and sodium silicate slurries. These comparison studies were completed for two different densities (10.0 and 11.5 lb/gal) and three different field application scenarios. Additional testing included the mechanical properties of ULHS systems and other lightweight systems. Studies were also performed to examine the effect that circulation by centrifugal pump during mixing has on breakage of ULHS.

  2. Development of road soil cement compositions modified with complex additive based on polycarboxylic ether

    Science.gov (United States)

    Bulanov, P. E.; Vdovin, E. A.; Mavliev, L. F.; Kuznetsov, D. A.

    2018-03-01

    The paper is focused on the research results of the main physical and technical properties of the cement-stabilized polymineral clay modified with a complex hydrophobic plasticizer based on polycarboxylate and octyltriethoxysilane ethers. A graphical result interpretation of the mathematic model which shows the influence of the complex hydrophobic plasticizer components on the cement-stabilized polymineral clay, containing more than 85% of relict minerals, has been designed. The research significance for the building sector lies in the fact that applying a complex hydrophobic plasticizer provides increasing the compressive strength of the cement-stabilized polymineral clay up to 102%, the tensile bending strength – up to 88%, the freeze-thaw resistance – up to 114%.

  3. Radiobiological waste treatment-ashing treatment and immobilization with cement

    Energy Technology Data Exchange (ETDEWEB)

    Shengtao, Feng; Li, Gong; Li, Cheng; Benli, Wang; Lihong, Wang [China Inst. for Radiation Protection, Taiyuan, Shanxi (China)

    1997-02-01

    This report describes the results of the study on the treatment of radioactive biological waste in the China Institute for Radiation Protection (CIRP). The possibility of radiobiological waste treatment was investigated by using a RAF-3 type rapid ashing apparatus together with the immobilization of the resulted ash. This rapid ashing apparatus, developed by CIRP, is usually used for pretreatment of samples prior to chemical analysis and physical measurements. The results show that it can ash 3 kg of animal carcasses a batch, the ashing time is 5-7 h and the ash content is less than 4 wt%. The ashing temperature not exceeding 450 deg. C was used without any risk of high losses of radionuclides. The ash from the rapid ashing apparatus was demonstrated to be immobilized with ordinary silicate cement. The optimum cement/ash/water formulation of the cemented waste form was 35 {+-} 5 wt% cement, 29 {+-} 2 wt% water, and 36 {+-} 6 wt% ash. The performance of the waste form was in compliance with the technical requirements except for impact resistance. Mixing additives in immobilization formulations can improve the performance of the cemented ash waste form. The additives chosen were DH{sub 4A} flow promoter as a cement additive and vermiculite or zeolite as a supplement. The recommended formulation, i.e. an improved formulation of the cemented ash waste form is that additives DH{sub 4A} flow promoter and vermiculite (or zeolite) are added on the ground of optimum cement/ash/water formulation of the cemented waste form, the dosage of water, DH{sub 4A} and vermiculite (or zeolite) is 70 wt%, 0.5 wt% and {<=} 5 wt% of the cement dosage, respectively. The cemented ash waste forms obtained meet all the requirements for disposal. (author). 12 refs, 7 figs, 13 tabs.

  4. Radiobiological waste treatment-ashing treatment and immobilization with cement

    International Nuclear Information System (INIS)

    Feng Shengtao; Gong Li; Cheng Li; Wang Benli; Wang Lihong

    1997-01-01

    This report describes the results of the study on the treatment of radioactive biological waste in the China Institute for Radiation Protection (CIRP). The possibility of radiobiological waste treatment was investigated by using a RAF-3 type rapid ashing apparatus together with the immobilization of the resulted ash. This rapid ashing apparatus, developed by CIRP, is usually used for pretreatment of samples prior to chemical analysis and physical measurements. The results show that it can ash 3 kg of animal carcasses a batch, the ashing time is 5-7 h and the ash content is less than 4 wt%. The ashing temperature not exceeding 450 deg. C was used without any risk of high losses of radionuclides. The ash from the rapid ashing apparatus was demonstrated to be immobilized with ordinary silicate cement. The optimum cement/ash/water formulation of the cemented waste form was 35 ± 5 wt% cement, 29 ± 2 wt% water, and 36 ± 6 wt% ash. The performance of the waste form was in compliance with the technical requirements except for impact resistance. Mixing additives in immobilization formulations can improve the performance of the cemented ash waste form. The additives chosen were DH 4A flow promoter as a cement additive and vermiculite or zeolite as a supplement. The recommended formulation, i.e. an improved formulation of the cemented ash waste form is that additives DH 4A flow promoter and vermiculite (or zeolite) are added on the ground of optimum cement/ash/water formulation of the cemented waste form, the dosage of water, DH 4A and vermiculite (or zeolite) is 70 wt%, 0.5 wt% and ≤ 5 wt% of the cement dosage, respectively. The cemented ash waste forms obtained meet all the requirements for disposal. (author). 12 refs, 7 figs, 13 tabs

  5. Synthesis and characterization of cement slurries additives with epoxy resins - kinetics, thermodynamic and calorimetric analysis; Sintese e caracterizacao de pastas de cimento aditivadas com resinas epoxi - analises cineticas, termodinamicas e calorimetricas

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, A.M.G.; Andrade Junior, M.A.S.; Cestari, A.R.; Vieira, E.F.S., E-mail: macleybiane@gmail.co [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil)

    2010-07-01

    Cement has been used in the world, presenting a wide versatility. However, due to its chemical nature, it is subject to several types of chemical damages, especially for agents of acidic nature. With the purpose of increase its life-time, new cement slurries have been modified with the addition of specific additives. The objective of this work is to modify cement slurries with epoxy resins, which promote higher resistance of those materials in relation to acid attacks. Three cement slurries were synthesized with epoxy resins and a standard slurries, which was composed by cement and water. After 30 days of hydration, the samples were characterized by XDR, FTIR and thermal analysis (TG and DSC). The hydration processes of the cement slurries were studied by heat-conduction microcalorimetry. A kinetic study of HCl interaction with the new slurries were performed by the batch methodology at 25, 35, 45 e 55 deg C. It was verified that the addition of the polymers delayed the processes of hydration of the slurries, decreasing the flow of heat released as a function of the amount of added resin and, increased the resistance of those slurries to the acid attack. (author)

  6. Portland cement versus MTA as a root-end filling material. A pilot study.

    Science.gov (United States)

    da Silva, Sérgio Ribeiro; da Silva Neto, José Dias; Veiga, Daniela Francescato; Schnaider, Taylor Brandão; Ferreira, Lydia Masako

    2015-02-01

    To assess periradicular lesions clinically and by computed tomography (CT) after endodontic surgery using either Portland cement or mineral trioxide aggregate (MTA) as a root-end filling material. Three patients diagnosed with periradicular lesions by cone-beam CT underwent endodontic surgery with root-end filling. Patient A was treated with MTA as the root-end filling material, patient B was treated with Portland cement and patient C had two teeth treated, one with MTA and the other with Portland cement. Six months after surgery, the patients were assessed clinically and by CT scan and the obtained results were compared. Periradicular tissue regeneration was observed in all cases, with no significant differences in bone formation when comparing the use of MTA and Portland cement as root-end filling materials. Both mineral trioxide aggregate and Portland cement were successful in the treatment of periradicular lesions.

  7. Long-term studies on the leachability of cemented and non-cemented iodine-129 loaded sorption material

    International Nuclear Information System (INIS)

    Kaempffer, R.; Furrer, J.

    1989-01-01

    Leaching tests on the load AC 6120 iodine sorption material (12 wt.% Ag) in water and salt brines were performed over a rather long period of time to allow better judgement of the behavior of radioactive waste disposed of in a salt dome. The utilization of capacity of the loaded iodine sorption material from the Karlsruhe reprocessing plant (WAK) was 95% related to the amount of silver added. The result of the stationary leaching tests has been a leaching rate of the material not embedded in cement of < 0.1%, whereas the leaching rate of the iodine sorption material embedded in cement has been < 0.01% of the total iodine-129 inventory. After addition of carbon steel to the sorption material embedded in cement the same leaching rates were measured as for material not embedded in cement. The addition of stainless steel exerted but little influence on the leaching rate. (orig.)

  8. Influence of ferrite phase in alite-calcium sulfoaluminate cements

    Science.gov (United States)

    Duvallet, Tristana Yvonne Francoise

    Since the energy crisis in 1970's, research on low energy cements with low CO2- emissions has been increasing. Numerous solutions have been investigated, and the goal of this original research is to create a viable hybrid cement with the components of both Ordinary Portland cement (OPC) and calcium sulfoaluminate cement (CSAC), by forming a material that contains both alite and calcium sulfoaluminate clinker phases. Furthermore, this research focuses on keeping the cost of this material reasonable by reducing aluminum requirements through its substitution with iron. The aim of this work would produce a cement that can use large amounts of red mud, which is a plentiful waste material, in place of bauxite known as an expensive raw material. Modified Bogue equations were established and tested to formulate this novel cement with different amounts of ferrite, from 5% to 45% by weight. This was followed by the production of cement from reagent chemicals, and from industrial by-products as feedstocks (fly ash, red mud and slag). Hydration processes, as well as the mechanical properties, of these clinker compositions were studied, along with the addition of gypsum and the impact of a ferric iron complexing additive triisopropanolamine (TIPA). To summarize this research, the influence of the addition of 5-45% by weight of ferrite phase, was examined with the goal of introducing as much red mud as possible in the process without negatively attenuate the cement properties. Based on this PhD dissertation, the production of high-iron alite-calcium sulfoaluminateferrite cements was proven possible from the two sources of raw materials. The hydration processes and the mechanical properties seemed negatively affected by the addition of ferrite, as this phase was not hydrated entirely, even after 6 months of curing. The usage of TIPA counteracted this decline in strength by improving the ferrite hydration and increasing the optimum amount of gypsum required in each composition

  9. Influence of Silica Fume Addition in the Long-Term Performance of Sustainable Cement Grouts for Micropiles Exposed to a Sulphate Aggressive Medium

    Directory of Open Access Journals (Sweden)

    José Marcos Ortega

    2017-08-01

    Full Text Available At present, sustainability is of major importance in the cement industry, and the use of additions such as silica fume as clinker replacement contributes towards that goal. Special foundations, and particularly micropiles, are one of the most suitable areas for the use of sustainable cements. The aim of this research is to analyse the effects in the very long-term (for 600 days produced by sulphate attack in the microstructure of grouts for micropiles in which OPC (ordinary Portland cement has been replaced by 5% and 10% silica fume. This line of study is building on a previous work, where these effects were studied in slag and fly ash grouts. Grouts made using a commercial sulphate-resisting Portland cement were also studied. The non-destructive impedance spectroscopy technique, mercury intrusion porosimetry, and Wenner resistivity testing were used. Mass variation and the compressive strength have also been analysed. Apparently, impedance spectroscopy is the most suitable technique for studying sulphate attack development. According to the results obtained, grouts for micropiles with a content of silica fume up to 10% and exposed to an aggressive sulphate medium, have a similar or even better behaviour in the very long-term, compared to grouts prepared using sulphate-resisting Portland cement.

  10. Comparative analysis of compressive strength tests at age of 28 and 90 days and density of products using chemical additives in cementing radioactive waste

    International Nuclear Information System (INIS)

    Vieira, Vanessa Mota; Tello, Cledola Cassia Oliveira de

    2013-01-01

    In this research it has been studied the effects of chemical additives (admixtures) in the cementation process of radioactive wastes, which are used to improve the properties of waste cementation process, both of the paste and of the solidified product. However there are a large variety of these materials that are frequently changed or taken out of the market, then it is essential to know the commercially available materials and their effects. The tests were carried out with a solution simulating the evaporator concentrate waste coming from PWR nuclear reactors. It was cemented using two formulations, A and B, incorporating higher or lower amount of waste, respectively. It was added chemical admixtures from two manufacturers (S and H), which were: accelerators, set retarders and superplasticizers. The experiments were organized by a factorial design 2 3 . The measured parameters were the viscosity, the setting time, the paste and product density and the compressive strength. In this study we performed comparative analyzes of the results of compressive strength at age of 28 and 90 days and between the densities of the samples at the same ages.The compressive strength test at age of 28 days is considered a parameter essential issues related to security handling, transport and storage of cemented waste product. The results showed that the addition of accelerators improved the compressive strength of the cemented product, but presented lower values density products. (author)

  11. Influence of Microencapsulated Phase Change Material (PCM) Addition on (Micro) Mechanical Properties of Cement Paste

    Science.gov (United States)

    Schlangen, Erik

    2017-01-01

    Excessive cracking can be a serious durability problem for reinforced concrete structures. In recent years, addition of microencapsulated phase change materials (PCMs) to concrete has been proposed as a possible solution to crack formation related to temperature gradients. However, the addition of PCM microcapsules to cementitious materials can have some drawbacks, mainly related to strength reduction. In this work, a range of experimental techniques has been used to characterize the microcapsules and their effect on properties of composite cement pastes. On the capsule level, it was shown that they are spherical, enabling good distribution in the material during the mixing process. Force needed to break the microcapsules was shown to depend on the capsule diameter and the temperature, i.e., whether it is below or above the phase change temperature. On the cement paste level, a marked drop of compressive strength with increasing PCM inclusion level was observed. The indentation modulus has also shown to decrease, probably due to the capsules themselves, and to a lesser extent due to changes in porosity caused by their inclusion. Finally, a novel micro-cube splitting technique was used to characterize the tensile strength of the material on the micro-meter length scale. It was shown that the strength decreases with increasing PCM inclusion percentage, but this is accompanied by a decrease in measurement variability. This study will contribute to future developments of cementitious composites incorporating phase change materials for a variety of applications. PMID:28773225

  12. Design of Fit-for-Purpose Cement to Restore Cement-Caprock Seal Integrity

    Science.gov (United States)

    Provost, R.

    2015-12-01

    This project aims to study critical research needs in the area of rock-cement interfaces, with a special focus on crosscutting applications in the Wellbore Integrity Pillar of the SubTER initiative. This study will focus on design and test fit-for-purpose cement formulations. The goals of this project are as follows: 1) perform preliminary study of dispersing nanomaterial admixtures in Ordinary Portland Cement (OPC) mixes, 2) characterize the cement-rock interface, and 3) identify potential high-performance cement additives that can improve sorption behavior, chemical durability, bond strength, and interfacial fracture toughness, as appropriate to specific subsurface operational needs. The work presented here focuses on a study of cement-shale interfaces to better understand failure mechanisms, with particular attention to measuring bond strength at the cement-shale interface. Both experimental testing and computational modeling were conducted to determine the mechanical behavior at the interface representing the interaction of cement and shale of a typical wellbore environment. Cohesive zone elements are used in the finite element method to computationally simulate the interface of the cement and rock materials with varying properties. Understanding the bond strength and mechanical performance of the cement-formation interface is critical to wellbore applications such as sequestration, oil and gas production and exploration and nuclear waste disposal. Improved shear bond strength is an indication of the capability of the interface to ensure zonal isolation and prevent zonal communication, two crucial goals in preserving wellbore integrity. Understanding shear bond strength development and interface mechanics will provide an idea as to how the cement-formation interface can be altered under environmental changes (temperature, pressure, chemical degradation, etc.) so that the previously described objectives can be achieved. Sandia National Laboratories is a multi

  13. Low pH Cements

    International Nuclear Information System (INIS)

    Savage, David; Benbow, Steven

    2007-05-01

    speciation of silicon at pH 10 has a significant impact upon the solubility of montmorillonite and would thus constitute a logical choice of pH limit for cement-derived pore fluids, but it is unlikely that cement-based grouts could be developed to meet this limit. Control of mass transport by diffusion processes serves as a significant constraint over the amount of bentonite that can be degraded. Computer simulations indicate that porosity reduction is likely at the interface between cement and bentonite. However, it is not clear how the transport properties of bentonite may be modified due to mineral alteration processes. There are considerable uncertainties concerning the precise mechanism of the rate of montmorillonite dissolution at elevated pH. The rate of dissolution may be inhibited by the presence of dissolved Si (and perhaps Al), but this mechanism has yet to be confirmed at high pH. The type of secondary minerals assumed to form from cement-bentonite interaction will also have a significant impact upon the rate of montmorillonite dissolution. Low-pH cement systems have received little attention thus far regarding the development of models for the chemical evolution of pore fluids. Low Ca/Si CSH gels show preferential leaching of Si, which is in marked contrast with gels of greater Ca/Si ratio. Models apparently capable of predicting pore fluid composition coexisting with low Ca/Si CSH gels are a modified Berner model and a solid-solution model proposed by Sugiyama and Fujita. The solubility of silica in pore fluids coexisting with low Ca/Si gels may exceed that of amorphous silica, and may pose problems regarding the stability of montmorillonite in relation to framework silicates such as feldspars. However, the potential rate of conversion of montmorillonite to feldspar under repository conditions is uncertain. It is necessary to use additives such as super plasticiser to improve the workability of low-pH cements. These organic additives have the potential to

  14. Low pH Cements

    Energy Technology Data Exchange (ETDEWEB)

    Savage, David; Benbow, Steven [Quintessa Ltd., Henley-on-Thames (United Kingdom)

    2007-05-15

    speciation of silicon at pH 10 has a significant impact upon the solubility of montmorillonite and would thus constitute a logical choice of pH limit for cement-derived pore fluids, but it is unlikely that cement-based grouts could be developed to meet this limit. Control of mass transport by diffusion processes serves as a significant constraint over the amount of bentonite that can be degraded. Computer simulations indicate that porosity reduction is likely at the interface between cement and bentonite. However, it is not clear how the transport properties of bentonite may be modified due to mineral alteration processes. There are considerable uncertainties concerning the precise mechanism of the rate of montmorillonite dissolution at elevated pH. The rate of dissolution may be inhibited by the presence of dissolved Si (and perhaps Al), but this mechanism has yet to be confirmed at high pH. The type of secondary minerals assumed to form from cement-bentonite interaction will also have a significant impact upon the rate of montmorillonite dissolution. Low-pH cement systems have received little attention thus far regarding the development of models for the chemical evolution of pore fluids. Low Ca/Si CSH gels show preferential leaching of Si, which is in marked contrast with gels of greater Ca/Si ratio. Models apparently capable of predicting pore fluid composition coexisting with low Ca/Si CSH gels are a modified Berner model and a solid-solution model proposed by Sugiyama and Fujita. The solubility of silica in pore fluids coexisting with low Ca/Si gels may exceed that of amorphous silica, and may pose problems regarding the stability of montmorillonite in relation to framework silicates such as feldspars. However, the potential rate of conversion of montmorillonite to feldspar under repository conditions is uncertain. It is necessary to use additives such as super plasticiser to improve the workability of low-pH cements. These organic additives have the potential to

  15. Development of an Improved Cement for Geothermal Wells

    Energy Technology Data Exchange (ETDEWEB)

    Trabits, George [Trabits Group, LLC, Wasilla, AK (United States)

    2015-04-20

    After an oil, gas, or geothermal production well has been drilled, the well must be stabilized with a casing (sections of steel pipe that are joined together) in order to prevent the walls of the well from collapsing. The gap between the casing and the walls of the well is filled with cement, which locks the casing into place. The casing and cementing of geothermal wells is complicated by the harsh conditions of high temperature, high pressure, and a chemical environment (brines with high concentrations of carbon dioxide and sulfuric acid) that degrades conventional Portland cement. During the 1990s and early 2000s, the U.S. Department of Energy’s Geothermal Technologies Office (GTO) provided support for the development of fly-ash-modified calcium aluminate phosphate (CaP) cement, which offers improved resistance to degradation compared with conventional cement. However, the use of CaP cements involves some operational constraints that can increase the cost and complexity of well cementing. In some cases, CaP cements are incompatible with chemical additives that are commonly used to adjust cement setting time. Care must also be taken to ensure that CaP cements do not become contaminated with leftover conventional cement in pumping equipment used in conventional well cementing. With assistance from GTO, Trabits Group, LLC has developed a zeolite-containing cement that performs well in harsh geothermal conditions (thermal stability at temperatures of up to 300°C and resistance to carbonation) and is easy to use (can be easily adjusted with additives and eliminates the need to “sterilize” pumping equipment as with CaP cements). This combination of properties reduces the complexity/cost of well cementing, which will help enable the widespread development of geothermal energy in the United States.

  16. Characterization of monolith block of spent resin cementation

    International Nuclear Information System (INIS)

    Prayitno; Endro-Kismolo; Isman MT

    1996-01-01

    Spent resin immobilization process with cement was done to prevent release of radionuclide in the ultimate storage or disposal. The varied Composition of water/cement ratio in the cementation process were 0.3; 0.4; 0.5 and the various weight of resin waste are 25 g, 37.5 g and 50 gram. The compressive strength of the various water/cement ratio without spent resin was bigger than 0.3. This investigation proved that the compressive strength of Tiga Roda cement was bigger than those of Gresik cement or Nusantara cement. The compressive of the cement block of were the spent resin cementation was influenced by the water/cement ratio and the total spent resin addition. The best condition reached at the water/cement ratio of 0.3 and 25 gram spent resin, was compressive strength of 17.86 N/mm 2 . Leaching rate of the various weight composition of spent resin cementation for 91 days were between 10 -2 - 10 -4 gram.cm -2 .day -1

  17. Achievement of 900kgf/cm[sup 2] super workable high strength concrete with belite portland cement. (elevator building of cement silo in Chichibu cement). Part 1. ; Development of cement for super workable high strength concrete. Ko belite kei cement de 900kgf/cm[sup 2] wo tassei (Chichibu cement cement sairo no elevaor to). 1. ; Koryudo kokyodo concrete yo no cement no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, M.; Fukaya, Y.; Nawa, T. (Chichibu Cement Co. Ltd., Tokyo (Japan))

    1993-08-01

    This paper describes the features of high belite Portland cement which can make the super workable high strength concrete, and the properties of concrete using this. The super workable concrete is required an excellent segregation resistance property as well as high flow property. Since the high belite Portland cement contains a small amount of C[sub 3]S in the clinker, the amounts of C[sub 3]A and C[sub 4]AF can be reduced without hindering the calcination of clinker. Additionally, since it contains a large amount of C[sub 2]S with low heat of hydration, an increase in the temperature of members can be suppressed. 'Chichibu High Flow Cement' having characteristics of this high belite Portland cement was developed for the super workable high strength concrete. The concrete using the High Flow Cement exhibited the maximum flow value of 70cm. It also exhibited the strength of 1,075 kgf/cm[sup 2] at the age of 91 days, and 1,100 kgf/cm[sup 2] at the age of 14 days under insulating. 4 refs., 8 figs., 2 tabs.

  18. Optimization of properties of cement-bonded particleboard manufactured from cotton stalk and sawdust containing calcium chloride CaCl2 as an additive

    Directory of Open Access Journals (Sweden)

    morteza nazerian

    2016-06-01

    Full Text Available The aim of this study was investigation of hydration behavior and mechanical properties of cement-bonded particleboard manufactured from different ratio of cotton stalk to poplar wood particle, sawdust content and CaCl2 as additive at different weight ratios. At the first, curing time of cement paste containing different amount of additive (CaCl2 and wood and cotton fines was determined. Besides, the effect of additive (CaCl2 content, weight ratio of cotton to poplar wood particles and percentage of sawdust on modulus of rupture (MOR, modulus of elasticity (MOE and internal bonding (IB of cement-bonded particleboard was evaluated by response surface methodology (RSM. In order to optimize the properties of panels, a mathematical model equation (second order plan was done by a computer simulation program. According to results, there is a good coincidence between predicted values and actual values (R2 for MOR, MOE and IB was 0.93, 0.90 and 0.95, respectively. This study showed that the response surface methodology (RSM can be effectively used for modeling of panel properties. Results showed that using weight ratio of cotton to poplar particle 43:57 the MOR, MOE and IB of panels can be reached to maximum values (12.5, 2545 and 0.35 MPa, respectively. Simultaneously, application of 4.5% additive and 9% sawdust at had a positive effect on the properties of the panels.

  19. Modified pavement cement concrete

    Science.gov (United States)

    Botsman, L. N.; Ageeva, M. S.; Botsman, A. N.; Shapovalov, S. M.

    2018-03-01

    The paper suggests design principles of pavement cement concrete, which covers optimization of compositions and structures at the stage of mixture components selection due to the use of plasticizing agents and air-retaining substances that increase the viability of a concrete mixture. It also demonstrates advisability of using plasticizing agents together with air-retaining substances when developing pavement concrete compositions, which provides for the improvement of physical and mechanical properties of concrete and the reduction of cement binding agent consumption thus preserving strength indicators. The paper shows dependences of the main physical-mechanical parameters of concrete on cement consumption, a type and amount of additives.

  20. Peat Soil Stabilization using Lime and Cement

    Directory of Open Access Journals (Sweden)

    Mohd Zambri Nadhirah

    2018-01-01

    Full Text Available This paper presents a study of the comparison between two additive Lime and Cement for treating peat soil in term of stabilization. Peat and organic soils are commonly known for their high compressibility, extremely soft, and low strength. The aim of this paper is to determine the drained shear strength of treated peat soil from Perlis for comparison purposes. Direct Shear Box Test was conducted to obtain the shear strength for all the disturbed peat soil samples. The quick lime and cement was mixed with peat soil in proportions of 10% and 20% of the dry weight peat soil. The experiment results showed that the addition of additives had improved the strength characteristics of peat soil by 14% increment in shear strength. In addition, the mixture of lime with peat soil yield higher result in shear strength compared to cement by 14.07% and 13.5% respectively. These findings indicate that the lime and cement is a good stabilizer for peat soil, which often experienced high amount of moisture content.

  1. Peat Soil Stabilization using Lime and Cement

    Science.gov (United States)

    Zambri, Nadhirah Mohd; Ghazaly, Zuhayr Md.

    2018-03-01

    This paper presents a study of the comparison between two additive Lime and Cement for treating peat soil in term of stabilization. Peat and organic soils are commonly known for their high compressibility, extremely soft, and low strength. The aim of this paper is to determine the drained shear strength of treated peat soil from Perlis for comparison purposes. Direct Shear Box Test was conducted to obtain the shear strength for all the disturbed peat soil samples. The quick lime and cement was mixed with peat soil in proportions of 10% and 20% of the dry weight peat soil. The experiment results showed that the addition of additives had improved the strength characteristics of peat soil by 14% increment in shear strength. In addition, the mixture of lime with peat soil yield higher result in shear strength compared to cement by 14.07% and 13.5% respectively. These findings indicate that the lime and cement is a good stabilizer for peat soil, which often experienced high amount of moisture content.

  2. Radon exhalation study from cement, cement slabs and concrete slabs with variation in fly ash

    International Nuclear Information System (INIS)

    Sharma, Nisha; Singh, Jaspal

    2012-01-01

    Fly ash is a waste product from coal-fired power plants. Fly ash has become a subject of world-wide interest in recent years because of its diverse uses, e.g. in the manufacture of concrete for building purposes, for the filling of underground cavities, or as a component of building material. The fly ash may contain enhanced levels of the natural radionuclides in the uranium and thorium series and by using the fly ash in building materials, the radiation levels in houses may thus be technologically enhanced. Because of its relatively high radionuclide contents (including 226 Ra), fly ash may, however, present a potential hazard to the population through its radon emanation, which would be highly undesirable. Since fly ash is frequently used as a building material, the idea of the experiment was to mix fly ash in different proportions in the cement in the powder form, cemented slabs and concrete slabs to study the combined behaviors. Alpha sensitive LR-115 type II plastic track detector, commonly known as Solid State Nuclear Track Detectors (SSNTDs), were used to measure the radon concentration. The alpha particles emitted from the radon causes the radiation damaged tracks. The chemical etching in NaOH at 60°C for about 90 minutes was done to reveal these latent tracks, which were then scanned and counted by an optical microscope of suitable magnification. By calculating the track density of registered tracks, the radon concentrations were determined. In case of cement in the powder form and in cemented slab, starting from the pure cement, fly ash was added up to 70% by weight. In this case the radon exhalation rate has increased by addition of fly ash in the cement and in case of concrete slabs by the addition of fly ash in the cement the radon exhalation increases up to 60% and then decreases. Therefore, on the basis of our investigations we concluded that in general radon exhalation rate increases with the addition of fly ash. (author)

  3. EFFECT OF CALCIUM ADDITION ON THE DEFLUORIDATION CAPACITY OF BONE CHAR

    DEFF Research Database (Denmark)

    Jacobsen, P.; Dahi, Elian

    1997-01-01

    Dosage of small amounts of calcium chloride to fluoride water prior to contact with bone char which has already been saturated with fluoride is shown to provide an additional fluoride removal capacity. The additionally obtained removal capacity increases with slower filtration velocities...... to be capable of reducing the fluoride concentration form 10 to about 0.5 mgF/L. The additionally saturated column is shown to be regenerated by simple adjustment of the pH of the water to 11 and allowing to flow for a few bed volumes. The useful regeneration capacity, where the fluoride concentration...... and increasing calcium dosage. A filtration velocity of 0.07 m/h, corresponding to a contact time of about 2 hours, and a dosage of 100 mgCa/L, are shown to provide an additional removal capacity of about 3 mgF/g, i.e. almost a doubling of the genuine removal capacity of the bone char. The process is shown...

  4. Polypropylene fumarate/phloroglucinol triglycidyl methacrylate blend for use as partially biodegradable orthopaedic cement.

    Science.gov (United States)

    Jayabalan, M; Thomas, V; Rajesh, P N

    2001-10-01

    Polypropylene fumarate/phloroglucinol triglycidyl methacrylate oligomeric blend-based bone cement was studied. Higher the percentage of phloroglucinol triglycidyl methacrylate, lesser the setting time. An optimum setting time could be arrived with 50:50 blend composition of the two oligomers. Composite cement of 50:50 blend prepared with hydroxyapatite granules of particle size 125 microm binds bovine rib bones. The tensile strength of this adhesive bond was found to be 1.11 kPa. The thermal studies suggest the onset of cross-linking reaction in the cured blend if the blend is heated. The absence of softening endotherm in the cured blend shows the thermosetting-like amorphous nature of blend system, which may restrict the changes in creep properties. The in vitro biodegradation studies reveal possible association of calcium ions with negatively charged units of degrading polymer chain resulting in slow down of degradation. Relatively slow degradation was observed in Ringer's solution. The study reveals the potential use of polypropylene fumarate/phloroglucinol triglycidyl methacrylate as partially degradable polymeric cement for orthopaedic applications.

  5. A comparison of resistance to fracture among four commercially available forms of hydroxyapatite cement.

    Science.gov (United States)

    Miller, Lee; Guerra, Aldo Benjamin; Bidros, Rafi Sirop; Trahan, Christopher; Baratta, Richard; Metzinger, Stephen Eric

    2005-07-01

    Hydroxyapatite cement is a relatively new biomaterial that has found widespread use in craniomaxillofacial surgery. Despite its common usage, complication rates as high as 32% have been reported. When failed implants are removed, implant fracture has been cited as a potential cause of failure. The purpose of this study was to evaluate resistance to fracture among 4 commercially available hydroxyapatite cement formulations. The materials tested included Norian Craniofacial Repair System (carbonated apatite cement) (AO North America, Devon, PA), Norian CRS Fast Set Putty (carbonated apatite cement) (AO North America), BoneSource (hydroxyapatite cement) (Stryker Leibinger, Portage, MI), and Mimix (hydroxyapatite cement) (Walter Lorenz Surgical, Inc, Jacksonville, FL). To ensure consistency, all materials were embedded in acrylic wells. Each material was placed into a well 2.54 cm in diameter and 0.953 cm in thickness. The materials were prepared per manufacturer specifications. All materials were incubated at 37.0 degrees C, in 6% CO2, 100% humidity for 36 hours. Using the Bionix MTS Test System, a 12-mm-diameter probe applied incremental force to the center of the disk at a rate of 0.1 mm per second. The transmitted force was measured using a Bionix MTS Axial-Torsional Load Transducer for each disk. The force which resulted in fracture was recorded for each material. Ten disks of each material were processed by this method, for a total of 40 disks. The significance of resistance to fracture for the 4 compounds was analyzed using 1-way analysis of variance with post hoc Scheffe method. Mean fracture force with related P values was plotted for direct comparison of group outcomes. Material type contributed significantly to variance in fracture force for the biomaterials studied. Norian CRS required the greatest mean fracture force (1385 N, SD+/-292 N), followed by Norian CRS Fast Set Putty (1143 N, SD+/-193 N). Mimix required a mean fracture force of 740 N, SD+/-79 N

  6. [Experimental study of percutaneous vertebroplasty with a novel bone void filling container system].

    Science.gov (United States)

    Wang, Tai-Ping; Zhang, Kui-bo; Zheng, Zhao-min; Liu, Hui; Yu, Bin-sheng

    2011-04-19

    To investigate vertebral augmentation with a novel reticulate bone filling container system by polymethyl methacrylate (PMMA) injection in cadaveric simulated vertebral compressive fracture and explore the effect of reticulate bone filling container on cement distribution controlling within vertebral body and the restoration of biomechanical properties after augmentation. A total of 28 freshly frozen human vertebrae specimens were randomly divided into 4 groups. After the measurements of bone mineral density (BMD) and vertebral height, each vertebra received an axle load by a MTS (material testing system) machine to test the initial strength and stiffness. Subsequently a simultaneous compressive fracture model was created to measure the stiffness and height of fractured vertebrae. Then the augmentation procedure was performed. Afterward the biomechanical properties and the vertebral height were similarly measured as pre-operatively. The expansion of bone filling container and the distribution of cement within vertebral body were morphologically observed by crossing the specimens in sagittal midline and also integrated with the radiographic results. Stiffness was significantly restored comparing with that of fractured level (P container groups while it was irregular in single-layer groups. After crossing, the double-layer version expanded well in vertebral body and could enwrap most of injected cement. There was only a little leakage near the vessel layer. But the single-layer version had a poor expansion and a large amount of cement leakage. This novel reticulate bone void filling container system with different layers may restore both the biomechanical properties and the height of fractured vertebrae. But, with the benefit of reducing cement leakage, a double-layer design can enwrap most of injected PMMA and has a brighter prospect of clinical application.

  7. Gas migration through cement slurries analysis: A comparative laboratory study

    Directory of Open Access Journals (Sweden)

    Arian Velayati

    2015-12-01

    Full Text Available Cementing is an essential part of every drilling operation. Protection of the wellbore from formation fluid invasion is one of the primary tasks of a cement job. Failure in this task results in catastrophic events, such as blow outs. Hence, in order to save the well and avoid risky and operationally difficult remedial cementing, slurry must be optimized to be resistant against gas migration phenomenon. In this paper, performances of the conventional slurries facing gas invasion were reviewed and compared with modified slurry containing special gas migration additive by using fluid migration analyzer device. The results of this study reveal the importance of proper additive utilization in slurry formulations. The rate of gas flow through the slurry in neat cement is very high; by using different types of additives, we observe obvious changes in the performance of the cement system. The rate of gas flow in neat class H cement was reported as 36000 ml/hr while the optimized cement formulation with anti-gas migration and thixotropic agents showed a gas flow rate of 13.8 ml/hr.

  8. Predictors of unsuccessful outcome in cemented femoral revisions using bone impaction grafting; Cox regression analysis of 208 cases.

    Science.gov (United States)

    Te Stroet, Martijn A J; Rijnen, Wim H C; Gardeniers, Jean W M; Schreurs, B Willem; Hannink, Gerjon

    2016-09-29

    Despite improvements in the technique of femoral impaction bone grafting, reconstruction failures still can occur. Therefore, the aim of our study was to determine risk factors for the endpoint re-revision for any reason. We used prospectively collected demographic, clinical and surgical data of all 202 patients who underwent 208 femoral revisions using the X-change Femoral Revision System (Stryker-Howmedica), fresh-frozen morcellised allograft and a cemented polished Exeter stem in our department from 1991 to 2007. Univariable and multivariable Cox regression analyses were performed to identify potential factors associated with re-revision. The mean follow-up was 10.6 (5-21) years. The cumulative re-revision rate was 6.3% (13/208). After univariable selection, sex, age, body mass index (BMI), American Association of Anesthesiologists (ASA) classification, type of removed femoral component, and mesh used for reconstruction were included in multivariable regression analysis.In the multivariable analysis, BMI was the only factor that was significantly associated with the risk of re-revision after bone impaction grafting (BMI ≥30 vs. BMI <30, HR = 6.54 [95% CI 1.89-22.65]; p = 0.003). BMI was the only factor associated with the risk of re-revision for any reason. Besides BMI also other factors, such as Endoklinik score and the type of removed femoral component, can provide guidance in the process of preclinical decision making. With the knowledge obtained from this study, preoperative patient selection, informed consent, and treatment protocols can be better adjusted to the individual patient who needs to undergo a femoral revision with impaction bone grafting.

  9. Therapeutic ion-releasing bioactive glass ionomer cements with improved mechanical strength and radiopacity

    Directory of Open Access Journals (Sweden)

    Maximilian eFuchs

    2015-10-01

    Full Text Available Bioactive glasses (BG are used to regenerate bone, as they degrade and release therapeutic ions. Glass ionomer cements (GIC are used in dentistry, can be delivered by injection and set in situ by a reaction between an acid-degradable glass and a polymeric acid. Our aim was to combine the advantages of BG and GIC, and we investigated the use of alkali-free BG (SiO2-CaO-CaF2-MgO with 0 to 50% of calcium replaced by strontium, as the beneficial effects of strontium on bone formation are well documented. When mixing BG and poly(vinyl phosphonic-co-acrylic acid, ions were released fast (up to 90% within 15 minutes at pH 1, which resulted in GIC setting, as followed by infrared spectroscopy. GIC mixed well and set to hard cements (compressive strength up to 35 MPa, staying hard when in contact with aqueous solution. This is in contrast to GIC prepared with poly(acrylic acid, which were shown previously to become soft in contact with water. Strontium release from GIC increased linearly with strontium for calcium substitution, allowing for tailoring of strontium release depending on clinical requirements. Furthermore, strontium substitution increased GIC radiopacity. GIC passed ISO10993 cytotoxicity test, making them promising candidates for use as injectable bone cements.

  10. Experimental studies on a new bioactive material: HAIonomer cements.

    Science.gov (United States)

    Yap, A U J; Pek, Y S; Kumar, R A; Cheang, P; Khor, K A

    2002-02-01

    The lack of exotherm during setting, absence of monomer and improved release of incorporated therapeutic agents has resulted in the development of glass ionomer cements (GICs) for biomedical applications. In order to improve biocompatibility and biomechanically match GICs to bone, hydroxyapatite-ionomer (HAIonomer) hybrid cements were developed. Ultra-fine hydroxyapatite (HA) powders were produced using a new induction spraying technique that utilizes a radio-frequency source to spheriodize an atomized suspension containing HA crystallites. The spheriodized particulates were then held at 800 degrees C for 4 h in a carbolite furnace using a heating and cooling rate of 25 degrees C/min to obtain almost fully crystalline HA powders. The heat-treated particles were characterized and introduced into a commercial glass ionomer cement. 4 (H4), 12 (H12) and 28 (H28) vol% of fluoroalumino silicate were substituted by crystalline HA particles that were dispersed using a high-speed dispersion technique. The HAIonomer cements were subjected to hardness, compressive and diametral tensile strength testing based upon BS6039:1981. The storage time were extended to one week to investigate the effects of cement maturation on mechanical properties. Commercially available capsulated GIC (GC) and GIC at maximum powder:liquid ratio (GM) served as comparisons. Results were analyzed using factorial ANOVA/Scheffe's post-hoc tests and independent samples t-test at significance level 0.05. The effect of time on hardness was material dependent. With the exception of H12, a significant increase in hardness was observed for all materials at one week. A significant increase in compressive strength was, however, observed for H12 over time. At 1 day and 1 week, the hardness of H28 was significantly lower than for GM, H4, and H12. No significant difference in compression and diametral tensile strengths were observed between materials at both time intervals. Results show that HAIonomers is a

  11. Preparing hydraulic cement from oil-shale residue

    Energy Technology Data Exchange (ETDEWEB)

    1921-08-28

    A process for preparation of hydraulic cement from oil-shale residue is characterized in that, as flux is used, rich-in-lime poor-in-sulfur portland-cement clinker, by which the usual gypsum addition, is avoided.

  12. Zinc phosphate as a definitive cement for implant-supported crowns and fixed dentures

    Directory of Open Access Journals (Sweden)

    Flanagan D

    2017-11-01

    Full Text Available Dennis Flanagan Private Practice, Willimantic, CT, USA Abstract: Implant-supported dental prostheses can be retained by a screw or cement. Implant-supported fixed partial dentures have a passive fit. A passive fit means there is an internal gap between the abutment surface and the intaglio of the retainer to insure that there is no lateral pressure on the supporting implants or friction upon seating of the prosthesis. This gap is filled with cement for retention of the prosthesis. Any lateral pressure may cause marginal bone loss or periimplantitis. Also, there is usually a microscopic gap at the margin of a crown retainer that exposes the cement to oral fluids. The solubility of zinc phosphate (ZOP cement is a definite liability due to the risk for cement dissolution. In fixed prostheses, the dissolution of the cement of one or more retainers would cause a transfer of the occlusal load to the retained unit(s. The resulting rotation and lifting of the cement-retained implants from occlusal and parafunctional loads could cause loss of osseointegration of the abutment-retained implant(s. ZOP cement may not be indicated for implant-supported fixed partial dentures or splints. Cement dissolution in single unit probably only involves re-cementation, if the patient does not swallow or aspirate the crown. Keywords: passive fit, retention, film thickness, fixed, marginal gap 

  13. Laboratory Electrical Resistivity Studies on Cement Stabilized Soil

    Science.gov (United States)

    Lokesh, K. N.; Jacob, Jinu Mary

    2017-01-01

    Electrical resistivity measurement of freshly prepared uncured and cured soil-cement materials is done and the correlations between the factors controlling the performance of soil-cement and electrical resistivity are discussed in this paper. Conventional quality control of soil-cement quite often involves wastage of a lot of material, if it does not meet the strength criteria. In this study, it is observed that, in soil-cement, resistivity follows a similar trend as unconfined compressive strength, with increase in cement content and time of curing. Quantitative relations developed for predicting 7-day strength of soil-cement mix, using resistivity of the soil-cement samples at freshly prepared state, after 1-hour curing help to decide whether the soil-cement mix meets the desired strength and performance criteria. This offers the option of the soil-cement mix to be upgraded (possibly with additional cement) in its fresh state itself, if it does not fulfil the performance criteria, rather than wasting the material after hardening. PMID:28540364

  14. Cementation of Radioactive Waste from a PWR with Calcium Sulfoaluminate Cement

    International Nuclear Information System (INIS)

    Li, J.

    2013-01-01

    Spent radioactive ion-exchange resin (SIER) and evaporation concentrates are radioactive wastes that are produced at by pressurized water reactor (PWR) nuclear power stations. Borate, which is used as a retardent for cement, is also present as a moderator in a PWR, therefore, borate will be present in both ion-exchange resins and evaporation concentrates. In this study the use of Calcium sulfoaluminate cements (SAC) as encapsulation medium for these waste streams was investigated. The study involved the manufacturing of different cement test samples with different amounts of SAC cement, waste resins (50% water content) and admixtures. In order to reduce hydration heat during 200 L solidification experiments, different admixtures were investigated. Initial results based on compressive strength tests and hydration temperature studies, indicated that zeolite was the best admixture for the current waste form. Experiments indicated that the addition of resin material into the current cement matrix reduces the hydration heat during curing Experimental results indicated that a combination of SAC (35 wt. %), zeolite (7 wt. %) mix with 42 wt. % resins (50% water content) and 16 wt. % of water forms a optimum cured monolith with low hydration heat. The microstructures of hydrated OPC, SAC and SAC with zeolite addition were studied using a Scanning Electron Microscopy (SEM). SEM results indicated that the SAC matrices consist of a needle type structure that changed gradually into a flake type structure with the addition of zeolite. Additionally, the presence of zeolite material inside the SAC matrix reduced the leaching rates of radionuclides significantly. In a final 200 L grouting test, measured results indicated a hydration temperature below 90oC withno thermal cracks after solidified. The influence of radiation on the compressive strength and possible gas generation (due to radiolysis) on cement waste forms containing different concentrations ion exchange resin was

  15. Efficiency modeling of solidification/stabilization of multi-metal contaminated industrial soil using cement and additives

    International Nuclear Information System (INIS)

    Voglar, Grega E.; Lestan, Domen

    2011-01-01

    Highlights: → We assess the feasibility of using soil S/S for industrial land reclamation. → Retarders, accelerators, plasticizers were used in S/S cementitious formulation. → We proposed novel S/S efficiency model for multi-metal contaminated soils. - Abstract: In a laboratory study, formulations of 15% (w/w) of ordinary Portland cement (OPC), calcium aluminate cement (CAC) and pozzolanic cement (PC) and additives: plasticizers cementol delta ekstra (PCDE) and cementol antikorodin (PCA), polypropylene fibers (PPF), polyoxyethylene-sorbitan monooleate (Tween 80) and aqueous acrylic polymer dispersion (Akrimal) were used for solidification/stabilization (S/S) of soils from an industrial brownfield contaminated with up to 157, 32,175, 44,074, 7614, 253 and 7085 mg kg -1 of Cd, Pb, Zn, Cu, Ni and As, respectively. Soils formed solid monoliths with all cementitious formulations tested, with a maximum mechanical strength of 12 N mm -2 achieved after S/S with CAC + PCA. To assess the S/S efficiency of the used formulations for multi-element contaminated soils, we propose an empirical model in which data on equilibrium leaching of toxic elements into deionized water and TCLP (toxicity characteristic leaching procedure) solution and the mass transfer of elements from soil monoliths were weighed against the relative potential hazard of the particular toxic element. Based on the model calculation, the most efficient S/S formulation was CAC + Akrimal, which reduced soil leachability of Cd, Pb, Zn, Cu, Ni and As into deionized water below the limit of quantification and into TCLP solution by up to 55, 185, 8750, 214, 4.7 and 1.2-times, respectively; and the mass transfer of elements from soil monoliths by up to 740, 746, 104,000, 4.7, 343 and 181-times, respectively.

  16. Efficiency modeling of solidification/stabilization of multi-metal contaminated industrial soil using cement and additives

    Energy Technology Data Exchange (ETDEWEB)

    Voglar, Grega E. [RDA - Regional Development Agency Celje, Kidriceva ulica 25, 3000 Celje (Slovenia); Lestan, Domen, E-mail: domen.lestan@bf.uni-lj.si [Agronomy Department, Centre for Soil and Environmental Science, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana (Slovenia)

    2011-08-30

    Highlights: {yields} We assess the feasibility of using soil S/S for industrial land reclamation. {yields} Retarders, accelerators, plasticizers were used in S/S cementitious formulation. {yields} We proposed novel S/S efficiency model for multi-metal contaminated soils. - Abstract: In a laboratory study, formulations of 15% (w/w) of ordinary Portland cement (OPC), calcium aluminate cement (CAC) and pozzolanic cement (PC) and additives: plasticizers cementol delta ekstra (PCDE) and cementol antikorodin (PCA), polypropylene fibers (PPF), polyoxyethylene-sorbitan monooleate (Tween 80) and aqueous acrylic polymer dispersion (Akrimal) were used for solidification/stabilization (S/S) of soils from an industrial brownfield contaminated with up to 157, 32,175, 44,074, 7614, 253 and 7085 mg kg{sup -1} of Cd, Pb, Zn, Cu, Ni and As, respectively. Soils formed solid monoliths with all cementitious formulations tested, with a maximum mechanical strength of 12 N mm{sup -2} achieved after S/S with CAC + PCA. To assess the S/S efficiency of the used formulations for multi-element contaminated soils, we propose an empirical model in which data on equilibrium leaching of toxic elements into deionized water and TCLP (toxicity characteristic leaching procedure) solution and the mass transfer of elements from soil monoliths were weighed against the relative potential hazard of the particular toxic element. Based on the model calculation, the most efficient S/S formulation was CAC + Akrimal, which reduced soil leachability of Cd, Pb, Zn, Cu, Ni and As into deionized water below the limit of quantification and into TCLP solution by up to 55, 185, 8750, 214, 4.7 and 1.2-times, respectively; and the mass transfer of elements from soil monoliths by up to 740, 746, 104,000, 4.7, 343 and 181-times, respectively.

  17. The effect of Al and Cr additions on pack cementation zinc coatings

    International Nuclear Information System (INIS)

    Chaliampalias, D.; Papazoglou, M.; Tsipas, S.; Pavlidou, E.; Skolianos, S.; Stergioudis, G.; Vourlias, G.

    2010-01-01

    Zinc is widely used as a protective coating material due to its corrosion resistant properties. The structure and oxidation resistance of Al and Cr mixed zinc coatings, deposited by pack cementation process, is thoroughly examined in this work. The morphology and chemical composition of the as-deposited and oxidized samples was accomplished by electron microscopy while the phase identification was performed by XRD diffraction analysis. The experimental results showed that the addition of aluminum or chromium in the pack mixture forms only Al and Cr rich phases on the surface of the specimens without affecting significantly the phase composition of the rest zinc coatings. In the case of Zn-Al coatings, the overlying layer contains high concentrations of Al together with lower amounts of zinc and iron and in Zn-Cr coatings this layer contains Cr, Fe and Zn atoms and has much smaller thickness. The presence of these additional layers promotes significantly the oxidation resistance of the zinc pack coatings and they preserve most of their initial thickness and chemical content when exposed to an aggressive environment while their oxidation mass gain was measured at low levels during the oxidation tests.

  18. Effect of Cement Composition in Lampung on Concrete Strength

    OpenAIRE

    Riyanto, Hery

    2014-01-01

    The strength and durability of concrete depends on the composition of its constituent materials ie fine aggregate, coarse aggregate, cement, water and other additives. The cement composition is about 10% acting as a binder paste material fine and coarse aggregates. In the Lampung market there are several brands of portland cement used by the community to make concrete construction. Although there is a standard of the government of portland cement composition, yet each brand of cement has diff...

  19. Corrosion-resistant Foamed Cements for Carbon Steels

    Energy Technology Data Exchange (ETDEWEB)

    Sugama T.; Gill, S.; Pyatina, T., Muraca, A.; Keese, R.; Khan, A.; Bour, D.

    2012-12-01

    The cementitious material consisting of Secar #80, Class F fly ash, and sodium silicate designed as an alternative thermal-shock resistant cement for the Enhanced Geothermal System (EGS) wells was treated with cocamidopropyl dimethylamine oxide-based compound as foaming agent (FA) to prepare numerous air bubble-dispersed low density cement slurries of and #61603;1.3 g/cm3. Then, the foamed slurry was modified with acrylic emulsion (AE) as corrosion inhibitor. We detailed the positive effects of the acrylic polymer (AP) in this emulsion on the five different properties of the foamed cement: 1) The hydrothermal stability of the AP in 200 and #61616;C-autoclaved cements; 2) the hydrolysis-hydration reactions of the slurry at 85 and #61616;C; 3) the composition of crystalline phases assembled and the microstructure developed in autoclaved cements; 4) the mechanical behaviors of the autoclaved cements; and, 5) the corrosion mitigation of carbon steel (CS) by the polymer. For the first property, the hydrothermal-catalyzed acid-base interactions between the AP and cement resulted in Ca-or Na-complexed carboxylate derivatives, which led to the improvement of thermal stability of the AP. This interaction also stimulated the cement hydration reactions, enhancing the total heat evolved during cement’s curing. Addition of AP did not alter any of the crystalline phase compositions responsible for the strength of the cement. Furthermore, the AP-modified cement developed the porous microstructure with numerous defect-free cavities of disconnected voids. These effects together contributed to the improvement of compressive-strength and –toughness of the cured cement. AP modification of the cement also offered an improved protection of CS against brine-caused corrosion. There were three major factors governing the corrosion protection: 1) Reducing the extents of infiltration and transportation of corrosive electrolytes through the cement layer deposited on the underlying CS

  20. The influence of the amount addition and kind of the active silica fume in the mechanical properties of the cement Portland concrete

    International Nuclear Information System (INIS)

    Silva, I.J. da; Melo, A.B. de; Liborio, J.B.L.; Souza, M.F. de

    1998-01-01

    This study presents an evaluation of the influence of the amount addition and of active silica type deriving from residues of the production of Iron-Silicon alloys of brasilian industries, on the mechanical properties of the concrete made with basaltic aggregates with D max ≥9,5 mm using Portland cements CP II E 32. The study has for objective to evaluate the efficiency of the active silica on the mechanical resistance of the high performance concrete (CAD), when used in substitution of the Portland cement, even so maintaining the same amount of agglomerant material. They are appraised amount of 5%, 8%, 10%, 12% and 15% of active silica in relation to Portland cement mass. The results suggest that for the appraised silicas there is little efficiency. Other aspects related to the mixtures just with addictive water reducers are commented with the purpose of also providing a high performance concrete. (author)

  1. A new method to produce macroporous Mg-phosphate bone growth substitutes

    Energy Technology Data Exchange (ETDEWEB)

    Babaie, Elham, E-mail: Elham.Babaie@rockets.utoledo.edu [Department of Biomedical Engineering, University of Toledo, Toledo, OH 43606 (United States); Lin, Boren [Department of Biomedical Engineering, University of Toledo, Toledo, OH 43606 (United States); Bhaduri, Sarit B. [Department of Mechanical, Industrial and Manufacturing Engineering, University of Toledo, Toledo, OH 43606 (United States); Department of Surgery (Dentistry), University of Toledo, Toledo, OH 43614 (United States)

    2017-06-01

    This paper is a sequel to our previous effort in developing Mg-phosphate orthopedic cements using amorphous Mg-phosphate (AMP) as the precursor. In this paper, we report a new real-time in situ technique to create macroporous bone growth substitute (BGS). The method uses biodegradable Mg-particles as the porogen. As opposed to the conventional wisdom of providing corrosion protection layers to biodegradable Mg-alloys, the present method uses the fast corrosion kinetics of Mg to create macropores in real time during the setting of the cement. An aqueous solution of PVA was used as the setting solution. Using this technique, a macroporous cement containing up to 91% porosity is obtained, as determined by pycnometry. Due to formation of H{sub 2} gas bubbles from corrosion of Mg, the cement becomes macroporous. The pore sizes as big as 760 μm were observed. The results of SBF soaking indicated change in crystallinity as confirmed via scanning electron microscopy (SEM) and X-ray diffraction (XRD). Our in vitro cytocompatibility evaluation also revealed that the macroporous bone growth substitute composed of bobierrite is cytocompatible and can improve gene expression. - Highlights: • We report a new real time, in situ technique to fabricate macroporous bone grafts. • Self-corroding Mg granules act as porogens. • Compositions containing AMP and PVA self-set within a reasonable time. • The final bone graft substitute showed promising biocompatibility. • The results provide important information on the porosity content and bioactivity.

  2. Hydraulic Conductivity of Residual Soil-Cement Mix

    Science.gov (United States)

    Govindasamy, P.; Taha, M. R.

    2016-07-01

    In Malaysia, although there are several researches on engineering properties of residual soils, however study on the hydraulic conductivity properties of metasedimentary residual soils is still lacking. Construction of containment walls like slurry wall techniques can be achieved with hydraulic conductivity of approximately 5 x 10-7cm/sec. The objectives of the study were to determine the physical properties of metasedimentary residual soils and to determine the influence of 1%, 3%, 5% and 10% of cement on hydraulic conductivity parameters. The coefficient of hydraulic conductivity of the soil naturally and soil-cement mixtures were determined by using the falling head test. According to the test, the hydraulic conductivity of the original soil was 4.16 x 10-8 m/s. The value decreases to 3.89 x 10-8 m/s, 2.78 x 10-8 m/s then 6.83 x 10-9 m/s with the addition of 1%, 3% and 5% of cement additives, respectively. During the hydration process, cement hydrates is formed followed by the increase in pH value and Ca(OH)2 which will alter the modification of pores size and distribution. When the quantity of cement increases, the pores size decrease. But, the addition of 10% cement gives an increased hydraulic conductivity value to 2.78 x 10-8 m/s. With 10%, the pore size increase might due to flocculation and agglomeration reaction. The generated hydraulic conductivity values will indirectly become a guide in the preliminary soil cement stabilization to modify the properties of the soil to become more like the properties of a soft rock.1. Introduction

  3. Solidification of liquid radioactive concentrates by fixation with cement

    International Nuclear Information System (INIS)

    Pekar, A.; Breza, M.; Timulak, J.; Krajc, T.

    1985-01-01

    In testing the technology of liquid radioactive wastes cementation, the effect was mainly studied of the content of boric acid and its salts on cement solidification, the effect of additives on radionuclide leachability and the effect of the salt content on the cementation product. On the basis of experimental work carried out on laboratory scale with model samples and samples of radioactive concentrate from the V-1 nuclear power plant, the following suitable composition of the cementation mixture was determined: 40% Portland cement, 40% zeolite containing material and 20% power plant ash. The most suitable ratio of liquid radioactive wastes and the cementation mixture is 0.5. As long as in such case the salt content of the concentrate ranges between 20 and 25%, the cementation product will have a maximum salt content of 10% and a leachability of the order of 10 -3 to 10 -4 g/cm 2 per day with a mechanical strength allowing safe handling. It was also found that the quality processing of the cement paste with degassing, e.g., by vibration, is more effective for the production of a pore-free cementation product than the application of various additives which are supposed to eliminate pore formation. (Z.M.)

  4. THERMOCHEMISTRY OF INTERACTION REACTIONS FOR SODIUM AND ALUMINUM SULPHATES WITH COMPONENTS OF HYDRATING PORTLAND CEMENT

    Directory of Open Access Journals (Sweden)

    P. I. Yukhnevskiy

    2018-01-01

    Full Text Available Chemical additives are widely used in the technology of concrete with the purpose to solve various problems and sulphate-containing additives-electrolytes are also used as accelerators for setting and hardening of cement. Action mechanism of additive accelerators for setting and hardening of cement is rather complicated and can not be considered as well-established. An influence of sulfate-containing additives such as sodium sulfate is reduced to acceleration of cement silicate phase hydration by increasing ionic strength of the solution. In addition to it, exchange reactions of anion additive with portlandite phase (Ca(OH2 and aluminate phases of hardening cement have a significant effect on hardening process that lead to formation of readily soluble hydroxides and hardly soluble calcium salts. The influence of sulfate-containing additives on properties of water cement paste and cement stone is quite diverse and depends on salt concentration and cation type. For example, the action of the aluminum sulphate additive becomes more complicated if the additive is subjected to hydrolysis in water, which is aggravated in an alkaline medium of the water cement paste. Formation of hydrolysis products and their reaction with aluminate phases and cement portlandite lead to a significant acceleration of setting. Thus, despite the similarity of additives ensuring participation of anions in the exchange reactions, the mechanism of their influence on cement setting and hardening varies rather significantly. The present paper considers peculiar features concerning the mechanism of interaction of sodium and aluminum sulfate additives in cement compositions from the viewpoint of thermochemistry. Thermochemical equations for reactions of sulfate-containing additives with phases of hydrated cement clinker have been given in the paper. The paper contains description how to calculate thermal effects of chemical reactions and determine an influence of the formed

  5. What is the risk of death or severe harm due to bone cement implantation syndrome among patients undergoing hip hemiarthroplasty for fractured neck of femur? A patient safety surveillance study

    Science.gov (United States)

    Rutter, Paul D; Panesar, Sukhmeet S; Darzi, Ara; Donaldson, Liam J

    2014-01-01

    Objective To estimate the risk of death or severe harm due to bone cement implantation syndrome (BCIS) among patients undergoing hip hemiarthroplasty for fractured neck of femur. Setting Hospitals providing secondary and tertiary care throughout the National Health Service (NHS) in England and Wales. Participants Cases reported to the National Reporting and Learning System (NRLS) in which the reporter clearly describes severe acute patient deterioration associated with cement use in hip hemiarthroplasty for fractured neck of femur (assessed independently by two reviewers). Outcome measures Primary—number of reported deaths, cardiac arrests and periarrests per year. Secondary—timing of deterioration and outcome in relation to cement insertion. Results Between 2005 and 2012, the NRLS received 62 reports that clearly describe death or severe harm associated with the use of cement in hip hemiarthroplasty for fractured neck of femur. There was one such incident for every 2900 hemiarthroplasties for fractured neck of femur during the period. Of the 62 reports, 41 patients died, 14 were resuscitated from cardiac arrest and 7 from periarrest. Most reports (55/62, 89%) describe acute deterioration occurring during or within a few minutes of cement insertion. The vast majority of deaths (33/41, 80%) occurred on the operating table. Conclusions These reports provide narrative evidence from England and Wales that cement use in hip hemiarthroplasty for fractured neck of femur is associated with instances of perioperative death or severe harm consistent with BCIS. In 2009, the National Patient Safety Agency publicised this issue and encouraged the use of mitigation measures. Three-quarters of the deaths in this study have occurred since that alert, suggesting incomplete implementation or effectiveness of those mitigation measures. There is a need for stronger evidence that weighs the risks and benefits of cement in hip hemiarthroplasty for fractured neck of femur. PMID

  6. Effect of calcium carbonate on hardening, physicochemical properties, and in vitro degradation of injectable calcium phosphate cements.

    NARCIS (Netherlands)

    Sariibrahimoglu, K.; Leeuwenburgh, S.C.G.; Wolke, J.G.C.; Yubao, L.; Jansen, J.A.

    2012-01-01

    The main disadvantage of apatitic calcium phosphate cements (CPCs) is their slow degradation rate, which limits complete bone regeneration. Carbonate (CO(3)(2)(-)) is the common constituent of bone and it can be used to improve the degradability of the apatitic calcium phosphate ceramics. This study

  7. LOW WATER DEMAND CEMENTS - WAY OF EFFICIENT USE OF CLINKER AND MINERAL FILLERS IN CONCRETES

    Directory of Open Access Journals (Sweden)

    Khokhryakov Oleg Viktorovich

    2017-10-01

    Full Text Available Subject: the provisions in the updated edition of the technical specifications for cements are analyzed. A trend to decrease the clinker volume in Portland cement due to the wider use of mineral additives, up to 95%, was observed. Research objectives: substantiation of the most complete and efficient use of Portland cement and mineral additives in the composition of low water demand cements. Materials and methods: portland cement, mineral additives and superplasticizer were used as raw materials for obtaining cements of low water demand. The experimental methods comply with the current standards. Results: comparative properties of low water demand cements and cements with mineral additives are presented. The properties of cement-water suspensions of these binders have been studied, and, on their basis, heavy concretes have been made. The results of the grindability of Portland cement and mineral components with a superplasticizer are given. Conclusions: it is shown that the cement of low water demand, in which the advantages of both Portland cement and mineral additives are more fully and efficiently presented, complies with the tendency to decrease the clinker volume to the greatest degree. It is established that the clinker volume index for heavy concrete prepared on low water demand cement is almost four times lower than that for heavy concrete based on common Portland cement.

  8. Addition of blood to a phycogenic bone substitute leads to increased in vivo vascularization

    International Nuclear Information System (INIS)

    Barbeck, Mike; Sader, Robert; Ghanaati, Shahram; Najman, Stevo; Stojanović, Sanja; Živković, Jelena M; Mitić, Žarko; Choukroun, Joseph; Kovačević, Predrag; James Kirkpatrick, C

    2015-01-01

    The present study aimed to analyze the effects of the addition of blood to the phycogenic bone substitute Algipore ® on the severity of in vivo tissue reaction. Initially, Fourier-transform infrared spectroscopy (FTIR) of the bone substitute was conducted to analyze its chemical composition. The subcutaneous implantation model in Balb/c mice was then applied for up to 30 d to analyze the tissue reactions on the basis of specialized histochemical, immunohistochemical, and histomorphometrical methods. The data of the FTIR analysis showed that the phycogenic bone substitute material is mainly composed of hydroxyapatite with some carbonate content. The in vivo analyses revealed that the addition of blood to Algipore ® had a major impact on both angiogenesis and vessel maturation. The higher vascularization seemed to be based on significantly higher numbers of multinucleated TRAP-positive cells. However, mostly macrophages and a relatively low number of multinucleated giant cells were involved in the tissue reaction to Algipore ® . The presented data show that the addition of blood to a bone substitute impacts the tissue reaction to it. In particular, the immune response and the vascularization were influenced, and these are believed to have a major impact on the regenerative potential of the process of bone tissue regeneration. (paper)

  9. Bioactivation of calcium deficient hydroxyapatite with foamed gelatin gel. A new injectable self-setting bone analogue.

    Science.gov (United States)

    Dessì, M; Alvarez-Perez, M A; De Santis, R; Ginebra, M P; Planell, J A; Ambrosio, L

    2014-02-01

    An alternative approach to bone repair for less invasive surgical techniques, involves the development of biomaterials directly injectable into the injury sites and able to replicate a spatially organized platform with features of bone tissue. Here, the preparation and characterization of an innovative injectable bone analogue made of calcium deficient hydroxyapatite and foamed gelatin is presented. The biopolymer features and the cement self-setting reaction were investigated by rheological analysis. The porous architecture, the evolution of surface morphology and the grains dimension were analyzed with electron microscopy (SEM/ESEM/TEM). The physico-chemical properties were characterized by X-ray diffraction and FTIR analysis. Moreover, an injection test was carried out to prove the positive effect of gelatin on the flow ensuing that cement is fully injectable. The cement mechanical properties are adequate to function as temporary substrate for bone tissue regeneration. Furthermore, MG63 cells and bone marrow-derived human mesenchymal stem cells (hMSCs) were able to migrate and proliferate inside the pores, and hMSCs differentiated to the osteoblastic phenotype. The results are paving the way for an injectable bone substitute with properties that mimic natural bone tissue allowing the successful use as bone filler for craniofacial and orthopedic reconstructions in regenerative medicine.

  10. Pre-cementation of deep shaft

    Science.gov (United States)

    Heinz, W. F.

    1988-12-01

    Pre-cementation or pre-grouting of deep shafts in South Africa is an established technique to improve safety and reduce water ingress during shaft sinking. The recent completion of several pre-cementation projects for shafts deeper than 1000m has once again highlighted the effectiveness of pre-grouting of shafts utilizing deep slimline boreholes and incorporating wireline technique for drilling and conventional deep borehole grouting techniques for pre-cementation. Pre-cementation of deep shaft will: (i) Increase the safety of shaft sinking operation (ii) Minimize water and gas inflow during shaft sinking (iii) Minimize the time lost due to additional grouting operations during sinking of the shaft and hence minimize costly delays and standing time of shaft sinking crews and equipment. (iv) Provide detailed information of the geology of the proposed shaft site. Informations on anomalies, dykes, faults as well as reef (gold bearing conglomerates) intersections can be obtained from the evaluation of cores of the pre-cementation boreholes. (v) Provide improved rock strength for excavations in the immediate vicinity of the shaft area. The paper describes pre-cementation techniques recently applied successfully from surface and some conclusions drawn for further considerations.

  11. Umbilical cord stem cells released from alginate-fibrin microbeads inside macroporous and biofunctionalized calcium phosphate cement for bone regeneration

    Science.gov (United States)

    Chen, Wenchuan; Zhou, Hongzhi; Weir, Michael D.; Bao, Chongyun; Xu, Hockin H.K.

    2012-01-01

    The need for bone repair has increased as the population ages. The objectives of this study were to (1) develop a novel biofunctionalized and macroporous calcium phosphate cement (CPC) containing alginate-fibrin microbeads encapsulating human umbilical cord mesenchymal stem cells (hUCMSCs); and (2) investigate hUCMSC proliferation and osteogenic differentiation inside CPC for the first time. Macroporous CPC was developed using calcium phosphate powders, chitosan, and gas-foaming porogen. Five types of CPCs were fabricated: CPC control, CPC + 0.05% fibronectin (Fn), CPC + 0.1% Fn, CPC + 0.1% Arg-Gly-Asp (RGD), and CPC + 0.1% Fn + 0.1% RGD. Alginate-fibrin microbeads containing 106 hUCMSCs/mL were encapsulated in the CPC paste. After CPC had set, the degradable microbeads released hUCMSCs inside CPC. hUCMScs proliferated inside CPC, with cell density at 21 d being 4-fold that at 1 d. CPC + 0.1% RGD had the highest cell density, which was 4-fold that of CPC control. The released cells differentiated into the osteogenic lineage and synthesized bone minerals. hUCMSCs inside the CPC + 0.1% RGD construct had gene expressions of alkaline phosphatase (ALP), osteocalcin (OC) and collagen I, which were twice those of CPC control. Mineral synthesis by hUCMSCs inside the CPC + 0.1% RGD construct was 2-fold that in CPC control. RGD and Fn incorporation in CPC did not compromise the strength of CPC, which matched the reported strength of cancellous bone. In conclusion, degradable microbeads released the hUCMSCs which proliferated, differentiated and synthesized minerals inside the macroporous CPC for the first time. CPC with RGD greatly enhanced cell functions. The novel biofunctionalized and macroporous CPC-microbead-hUCMSC construct is promising for bone tissue engineering applications. PMID:22391411

  12. Fabrication and characterization of calcium phosphate cement scaffolds

    International Nuclear Information System (INIS)

    Sousa, E. de; Motisuke, M.; Bertran, C.A.

    2011-01-01

    In Tissue Engineering, the need for scaffolds which are capable of guiding the organization, differentiation and growth of cells leading to the formation of new tissues is highly relevant. For the development of new scaffolds focused on bone tissue therapy, calcium phosphate cements (CPC) have great potential, because besides their resorbability, they present morphology and chemical composition similar to the bone mineral phase. Moreover, there are several processing techniques to produce ceramic scaffolds: polymeric sponge replication, incorporation of organic material into the ceramic powder, gelcasting, emulsion, among others. The aim of this work was to obtain CPCs scaffolds by using two techniques, emulsion and gelcasting. The scaffolds were characterized by their physical and mechanical properties and the crystalline phases formed after the setting reaction of cement were determined by X-ray diffraction. The samples obtained by both methods presented porosity between 61-65% and the microstructure consists of nearly spherical pores (d5o = 50-100 μm). The mechanical strength of the samples ranged from 5.5 to 1.5 MPa. The crystalline phases found were monetite (CaHPO 4 ) and brushite (CaHPO 4 2H 2 O). (author)

  13. A Histologic Evaluation on Tissue Reaction to Three Implanted Materials (MTA, Root MTA and Portland Cement Type I in the Mandible of Cats

    Directory of Open Access Journals (Sweden)

    F. Sasani

    2004-09-01

    Full Text Available Statement of Problem: Nowadays Mineral Trioxide aggregate (MTA is widely used for root end fillings, pulp capping, perforation repair and other endodontic treatments.Investigations have shown similar physical and chemical properties for Portland cement and Root MTA with those described for MTA.Purpose: The aim of this in vitro study was to evaluate the tissue reaction to implanted MTA, Portland cement and Root MTA in the mandible of cats.Materials and Methods: Under asepsis condition and general anesthesia, a mucoperiosteal flap, following the application of local anesthesia, was elevated to expose mandibular symphysis. Two small holes in both sides of mandible were drilled. MTA, Portland cement and Root MTA were mixed according to the manufacturers, recommendation and placed in bony cavities. In positive control group, the test material was Zinc oxide powder plus tricresoformalin. In negative control group, the bony cavities were left untreated. After 3,6 and 12 weeks, the animals were sacrificed and the mandibular sections were prepared for histologic examination under light microscope. The presence and thickness of inflammation, presence of fibrosis capsule, the severity of fibrosis and bone formation were investigated. The data were submitted to Exact Fisher test, chi square test and Kruskal-Wallis test for statistical analysis.Results: No statistically significant differences were found in the degree of inflammation,presence of fibrotic capsule, severity of fibrosis and inflammation thickness between Root MTA, Portland cement and MTA (P>0.05. There was no statistical difference in boneformation between MTA and Portland cement (P>0.05. However, bone formation was not found in any of the Root MTA specimens and the observed tissue was exclusively of fibrosis type.Conclusion: The physical and histological results observed with MTA are similar to those of Root MTA and Portland cement. Additionally, all of these three materials are biocompatible

  14. Antibiotic-Impregnated Bone Grafts in Orthopaedic and Trauma Surgery: A Systematic Review of the Literature

    Directory of Open Access Journals (Sweden)

    Konstantinos Anagnostakos

    2012-01-01

    Full Text Available There exist several options for local antibiotic therapy in orthopaedic and trauma surgery. Over the past years, the use of antibiotic-impregnated bone grafts (AIBGs has become a popular procedure in the treatment of bone and joint infections. A major advantage of AIBGs involves the possibility of impregnation of various antibiotics depending on the sensitivity profile of the causative organism, whereas an additional surgery with removal of the antibiotic carrier is not necessary, as in the use of antibiotic-loaded bone cement. However, generalized conclusions cannot be clearly drawn from the existing literature due to differences of bone used, impregnation method, antibiotics, their doses, laboratory circumstances, or clinical indications. The present work reviews the literature regarding this topic and sheds some light onto the choice of bone and antibiotics, manufacturing details, and clinical experience.

  15. Additive Genetic Effects on Circulating Periostin Contribute to the Heritability of Bone Microstructure.

    Science.gov (United States)

    Bonnet, N; Biver, E; Durosier, C; Chevalley, T; Rizzoli, R; Ferrari, S

    2015-07-01

    Genetic factors account for 60-80% of the areal bone mineral density (aBMD) variance, whereas the heritability of bone microstructure is not clearly established. aBMD and microstructure are under the control of osteocytes, which regulate bone formation through the expression of molecules such as sclerostin (SOST) and periostin (POSTN). We hypothesized that additive genetic effects contribute to serum levels of SOST and POSTN and thereby to the individual variance of bone microstructure. In a retrospective analysis of 432 subjects from the Geneva Retiree Cohort age 64.9 ± 1.4 years and 96 of their offspring age 37.9 ± 5.7 years, we measured serum SOST (sSOST) and serum POSTN (sPOSTN), distal radius and tibia microstructure, hip and lumbar spine aBMD, and bone turnover markers, Heritability (h(2), %) was calculated as twice the slope of the regression (β) between parents and offspring. cPOSTN levels were significantly higher in men than women and in offspring than parents. h(2) values for bone microstructural traits ranged from 22-64% depending on the envelope (trabecular [Tb] or cortical [Ct]) and skeletal site (radius or tibia), whereas h(2) for sPOSTN and sSOST was 50% and 40%, respectively. sPOSTN was positively associated with Tb bone volume on total volume and Ct thickness, and negatively with Ct porosity. The associations for Ct parameters remain significant after adjustment for propetide of type-I procollagen, cross-linked telopeptide of type I collagen, femoral neck aBMD, sex or age. After adjustment of bone traits for sPOSTN, h(2) values decreased for several Tb and Ct bone parameters, but not for aBMD. In contrast, adjusting for sSOST did not alter h(2) values for bone traits. Additive genetic effects account for a substantial proportion of the individual variance of bone microstructure, sPOSTN, and sSOST. sPOSTN is largely inherited as a sex-related trait and carries an important contribution to the heritability of bone microstructure, indicating that

  16. Modelling porewater chemistry in hydrated Portland cement

    International Nuclear Information System (INIS)

    Berner, U.R.

    1987-01-01

    Extensive employment of concrete is foreseen in radioactive waste repositories. A prerequisite for modelling the interactions between concrete and formation waters is characterization of the concrete system. Available experimental data from high pressure squeezing of cement pore-water indicate that, besides the high pH due to alkali hydroxide dissolution, cement composition itself influences the solubility determining solid phases. A model which simulates the hydration of Portland cement assuming complete hydration of the main clinker minerals is presented. The model also includes parameters describing the reactions between the cement and blending agents. Comparison with measured pore-water data generally gives a consistent picture and, as expected, the model gives correct predictions for pure Portland cements. For blended cements, the required additional parameters can, to some extent, be derived from pore-water analysis. 14 references, 1 figure, 4 tables

  17. Diffusion of radon through varying depths of cement

    International Nuclear Information System (INIS)

    Takriti, S.; Shweikani, R.; Ali, A.F.; Hushari, M.; Kheitou, M.

    2001-01-01

    Portland cement was mixed with different concentrations of radium chloride (1200, 2400 and 3600 Bq) to produce radioactive sources. These sources were surrounded with cement of different thickness (1, 2 and 4 cm). The release of radon from these sources (before and after being surrounded) was studied. The results showed that radon release from the sources itself was less then its release from the same source after being surrounded by cement, and the release did not change with the thickness of cement. Samples were covered with a thin layer of polyethylene before being surrounded with cement. It was found that this additional layer reduced the radon exhalation. This thin layer stopped any reaction between the source and the surrounding cement during solidification of the cement layers. These reactions are thought to be the reason for the increase of radon exhalation from the sources surrounded by cement

  18. Use of a strontium-enriched calcium phosphate cement in accelerating the healing of soft-tissue tendon graft within the bone tunnel in a rabbit model of anterior cruciate ligament reconstruction.

    Science.gov (United States)

    Kuang, G M; Yau, W P; Lu, W W; Chiu, K Y

    2013-07-01

    We investigated whether strontium-enriched calcium phosphate cement (Sr-CPC)-treated soft-tissue tendon graft results in accelerated healing within the bone tunnel in reconstruction of the anterior cruciate ligament (ACL). A total of 30 single-bundle ACL reconstructions using tendo Achillis allograft were performed in 15 rabbits. The graft on the tested limb was treated with Sr-CPC, whereas that on the contralateral limb was untreated and served as a control. At timepoints three, six, nine, 12 and 24 weeks after surgery, three animals were killed for histological examination. At six weeks, the graft-bone interface in the control group was filled in with fibrovascular tissue. However, the gap in the Sr-CPC group had already been completely filled in with new bone, and there was evidence of the early formation of Sharpey fibres. At 24 weeks, remodelling into a normal ACL-bone-like insertion was found in the Sr-CPC group. Coating of Sr-CPC on soft tissue tendon allograft leads to accelerated graft healing within the bone tunnel in a rabbit model of ACL reconstruction using Achilles tendon allograft.

  19. Effect of irradiation on acrylic cement with special reference to fixation of pathological fractures

    International Nuclear Information System (INIS)

    Eftekhar, N.S.; Thurston, C.W.

    1975-01-01

    Self-curing cement is generally used in conjunction with conventional metallic devices. If the acrylic cement was supplemented, the primary goal would be a rigid immobiliztion of the fracture to alleviate the pain; usually, however, the final aim is toward osteosynthesis. During the course of rehabilitation, it is often desirous to supplement the treatment by irradiation. Although the industrial, dental and surgical literature has adequately dealt with many aspects of bone cement; for example, physical and chemical properties in joint replacement, and so on, the effects of irradiation on the acrylic cement have not been previously reported. It is the purpose of this paper to analyze the experimental studies conducted to evaluate the mechanical properties of the polymethylmethacrylate when subjected to irradiation within a maximum range of a therapeutic dose

  20. In vitro bioactivity of a tricalcium silicate cement

    Energy Technology Data Exchange (ETDEWEB)

    Morejon-Alonso, L.; Bareiro, O.; Santos, L.A. dos, E-mail: loreley.morejon@ufrgs.b [Universidade Federal do Rio Grande do Sul (UFRG), Porto Alegre, RS (Brazil). Escola de Engenharia. Dep. de Materiais; Carrodeguas R, Garcia [Consejo Superior de Investigaciones Cientificas (CSIC), Madrid (Spain). Inst. de Ceramica y Vidrio. Dept. de Ceramica

    2009-07-01

    Tricalcium silicate is the major constituent of Portland cement and the responsible for their mechanical strength at early stages. In order to be used as and additive of conventional calcium phosphate cement (CPC), in vitro bioactivity of a calcium silicate cement (CSC) after soaking in simulated body fluid (SBF) for 14 days was study. The cement was obtained by mixing Ca{sub 3}SiO{sub 5}, obtained by sol-gel process, and a Na{sub 2}HPO{sub 4} solution. The morphological and structural changes of the material before and after soaking were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed the formation of a layer of a Hydroxyapatite (HA) onto the CSC cement after soaking for 1h in SBF that became denser with the increase of soaking time. The study suggests that Ca{sub 3}SiO{sub 5} would be an effective additive to improve the bioactivity and long term strength of conventional CPC. (author)