WorldWideScience

Sample records for bond lengths

  1. Pi Bond Orders and Bond Lengths

    Science.gov (United States)

    Herndon, William C.; Parkanyi, Cyril

    1976-01-01

    Discusses three methods of correlating bond orders and bond lengths in unsaturated hydrocarbons: the Pauling theory, the Huckel molecular orbital technique, and self-consistent-field techniques. (MLH)

  2. Quantum graphs with time dependent bond lengths

    International Nuclear Information System (INIS)

    Usually a graph is considered to be built up by vertices connected by bonds with fixed lengths. In experimental realizations of graphs, for example by optical fiber networks, the bonds usually slightly change their lengths randomly caused e.g. by thermal fluctuations. We study perturbatively the effect of these fluctuations on the properties of graphs and discuss the experimental relevance.

  3. Influence of substituents on bond lengths

    OpenAIRE

    Hayd, Helmut; Savin, Andreas; Stoll, Hermann; Preuss, Heinzwerner; Becker, Gerd

    1988-01-01

    Pseudopotential SCF calculations for Y3C-X, Y=H, F; X=H, F, Cl, PH2, PF2 and a simple model, simulating the substituents by a homogeneous, electric field, are presented in order to rationalize the substitution effect on the C-X bond.

  4. V-V Bond-Length Fluctuations in Vox

    OpenAIRE

    Goodenough, J. B.; Rivadulla, F.; E. Winkler; Zhou, J. -S.

    2002-01-01

    We report a significantly stronger suppression of the phonon contribution to the thermal conductivity in VOx than can be accounted for by disorder of the 16 % atomic vacancies present in VO. Since the transition from localized to itinerant electronic behavior is first-order and has been shown to be characterized by bond-length fluctuations in several transition-metal oxides with the perovskite structure, we propose that cooperative V-V bond-length fluctuations play a role in VO similar to the...

  5. Bond-length distributions for ions bonded to oxygen: alkali and alkaline-earth metals.

    Science.gov (United States)

    Gagné, Olivier Charles; Hawthorne, Frank Christopher

    2016-08-01

    Bond-length distributions have been examined for 55 configurations of alkali-metal ions and 29 configurations of alkaline-earth-metal ions bonded to oxygen, for 4859 coordination polyhedra and 38 594 bond distances (alkali metals), and for 3038 coordination polyhedra and 24 487 bond distances (alkaline-earth metals). Bond lengths generally show a positively skewed Gaussian distribution that originates from the variation in Born repulsion and Coulomb attraction as a function of interatomic distance. The skewness and kurtosis of these distributions generally decrease with increasing coordination number of the central cation, a result of decreasing Born repulsion with increasing coordination number. We confirm the following minimum coordination numbers: ([3])Li(+), ([3])Na(+), ([4])K(+), ([4])Rb(+), ([6])Cs(+), ([3])Be(2+), ([4])Mg(2+), ([6])Ca(2+), ([6])Sr(2+) and ([6])Ba(2+), but note that some reported examples are the result of extensive dynamic and/or positional short-range disorder and are not ordered arrangements. Some distributions of bond lengths are distinctly multi-modal. This is commonly due to the occurrence of large numbers of structure refinements of a particular structure type in which a particular cation is always present, leading to an over-representation of a specific range of bond lengths. Outliers in the distributions of mean bond lengths are often associated with anomalous values of atomic displacement of the constituent cations and/or anions. For a sample of ([6])Na(+), the ratio Ueq(Na)/Ueq(bonded anions) is partially correlated with 〈([6])Na(+)-O(2-)〉 (R(2) = 0.57), suggesting that the mean bond length is correlated with vibrational/displacement characteristics of the constituent ions for a fixed coordination number. Mean bond lengths also show a weak correlation with bond-length distortion from the mean value in general, although some coordination numbers show the widest variation in mean bond length for zero distortion, e.g. Li(+) in

  6. Bond Length Dependence on Quantum States as Shown by Spectroscopy

    Science.gov (United States)

    Lim, Kieran F.

    2005-01-01

    A discussion on how a spreadsheet simulation of linear-molecular spectra could be used to explore the dependence of rotational band spacing and contours on average bond lengths in the initial and final quantum states is presented. The simulation of hydrogen chloride IR, iodine UV-vis, and nitrogen UV-vis spectra clearly show whether the average…

  7. Bond Length and Bond Order in One of the Shortest Cr-Cr Bonds

    OpenAIRE

    La Macchia, Giovanni; Aquilante, Francesco; Veryazov, Valera; Roos, Bjorn O.; Gagliardi, Laura

    2008-01-01

    Multiconfigurational quantum chemical calculations on the R-diimines dichromium compound confirm that the Cr-Cr bond, 1.80 A, is among the shortest Cr (I)-Cr (I) bonds. However, the bond between the two Cr atoms is only a quadruple bond rather than a quintuple bond. The reason why the bond is so short has to be attributed to the strain in the NCCN ligand moieties.

  8. Bond lengths and bond strengths in compounds of the 5f elements

    International Nuclear Information System (INIS)

    The variation of bond length (D) with bond strength (S) in normal valence compounds of 3d, 4d, 5d-4f, and 6d-5f elements can be represented approximately as D(S)=D(0.5) F(S), where D(0.5) is a characteristic constant for a given bond and F(S) an empirical function which is the same for all bonds. A bond strength Ssub(ij)=Ssub(ji) is assigned to the bond between atoms i and j such that Σsub(j)Ssub(ij)=Vsub(i) and Σsub(i)Ssub(ij)=Vsub(j), where Vsub(i) and Vsub(j) are the normal valences of the two atoms. The function F(S) decreases monotonically with increasing S, and is normalized to unity at S=0.5, so that the constant D(0.5) has the physical meaning of being the bond length adjusted to S=0.5. In this paper, this method of interpretation is used to interpret and systematize the experimental results on bond lengths in oxides, halides and oxy-halides of the 5f elements. (Auth.)

  9. The Influences of Overlap Length, Bond Line Thickness and Pretreatmant on the Mechanical Properties of Adhesives: Focussing on Bonding Glass

    OpenAIRE

    Vervloed, J.; Kwakernaak, A.; Poulis, H.

    2008-01-01

    This paper focuses on the influences of overlap length, bond line thickness and pretreatment on the mechanical properties of adhesive bonds. In order to determine the bond strength, lap shear tests were performed. The researched adhesives are a 2 component epoxy and MS polymer. The smallest overlap length of the epoxy adhesive results in the highest maximum bond stress. However, there is nosignificant difference in maximum bond stresses due to different overlap lengths of the MS polymer. When...

  10. The extended variant of the bond valence-bond length correlation curve for boron(III)-oxygen bonds

    International Nuclear Information System (INIS)

    The extended variant of the bond valence (s)-bond length (r) correlation curve for boron(III)-oxygen bonds has been closely approximated using the three-parameter function s = [k/(r - l)] - m, where s is measured in valence units (vu), r is measured in Aa, k = 0.53 Aa.vu, l = 0.975(1) Aa and m = 0.32 vu. The function s = exp[(r0 - r)/b] traditionally used in the modern bond valence model requires the separate set of the bond valence parameters (r0 = 1.362 Aa; b = 0.23 Aa) in order to approximate the above s-r curve for the bonds shorter than ∝1.3 Aa.

  11. The extended variant of the bond valence-bond length correlation curve for boron(III)-oxygen bonds

    Energy Technology Data Exchange (ETDEWEB)

    Sidey, Vasyl [Uzhgorod National Univ. (Ukraine). Dept. of Chemistry and Research Institute for Physics and Chemistry of Solids

    2015-07-01

    The extended variant of the bond valence (s)-bond length (r) correlation curve for boron(III)-oxygen bonds has been closely approximated using the three-parameter function s = [k/(r - l)] - m, where s is measured in valence units (vu), r is measured in Aa, k = 0.53 Aa.vu, l = 0.975(1) Aa and m = 0.32 vu. The function s = exp[(r{sub 0} - r)/b] traditionally used in the modern bond valence model requires the separate set of the bond valence parameters (r{sub 0} = 1.362 Aa; b = 0.23 Aa) in order to approximate the above s-r curve for the bonds shorter than ∝1.3 Aa.

  12. Bond-length fluctuations in the copper oxide superconductors

    CERN Document Server

    Goodenough, J B

    2003-01-01

    Superconductivity in the copper oxides occurs at a crossover from localized to itinerant electronic behaviour, a transition that is first order. A spinodal phase segregation is normally accomplished by atomic diffusion; but where it occurs at too low a temperature for atomic diffusion, it may be realized by cooperative atomic displacements. Locally cooperative, fluctuating atomic displacements may stabilize a distinguishable phase lying between a localized-electron phase and a Fermi-liquid phase; this intermediate phase exhibits quantum-critical-point behaviour with strong electron-lattice interactions making charge transport vibronic. Ordering of the bond-length fluctuations at lower temperatures would normally stabilize a charge-density wave (CDW), which suppresses superconductivity. It is argued that in the copper oxide superconductors, crossover occurs at an optimal doping concentration for the formation of ordered two-electron/two-hole bosonic bags of spin S = 0 in a matrix of localized spins; the correl...

  13. Various Carbon to Carbon Bond Lengths Inter-related via the Golden Ratio, and their Linear Dependence on Bond Energies

    CERN Document Server

    Heyrovska, Raji

    2008-01-01

    This work presents the relations between the carbon to carbon bond lengths in the single, double and triple bonds and in graphite, butadiene and benzene. The Golden ratio, which was shown to divide the Bohr radius into two parts pertaining to the charged particles, the electron and proton, and to divide inter-atomic distances into their cationic and anionic radii, also plays a role in the carbon-carbon bonds and in the ionic/polar character of those in graphite, butadiene and benzene. Further, the bond energies of the various CC bonds are shown to vary linearly with the bond lengths.

  14. Anharmonic Potential Constants and Their Dependence Upon Bond Length

    Science.gov (United States)

    Herschbach, D. R.; Laurie, V. W.

    1961-01-01

    Empirical study of cubic and quartic vibrational force constants for diatomic molecules shows them to be approximately exponential functions of internuclear distance. A family of curves is obtained, determined by the location of the bonded atoms in rows of the periodic table. Displacements between successive curves correspond closely to those in Badger's rule for quadratic force constants (for which the parameters are redetermined to accord with all data now available). Constants for excited electronic and ionic states appear on practically the same curves as those for the ground states. Predictions based on the diatomic correlations agree with the available cubic constants for bond stretching in polyatomic molecules, regardless of the type of bonding involved. Implications of these regularities are discussed. (auth)

  15. Bond Lengths and Bond Strengths in Weak and Strong Chemisorption: N2, CO, and CO/H on Nickel Surfaces

    OpenAIRE

    Sayago, David I.; Hoeft, Jon T.; Polcik, Martin; Kittel, Martin; Toomes, Rachel L.; Robinson, J.; Woodruff, David Phillip; Pascal, Mathieu; Lamont, Christine L. A.; Nisbet, Gareth

    2003-01-01

    New chemical-state-specific scanned-energy mode photoelectron diffraction experiments and density functional theory calculations, applied to CO, CO/H, and N2 adsorption on Ni(100), show that chemisorption bond length changes associated with large changes in bond strength are small, but those associated with changes in bond order are much larger, and are similar to those found in molecular systems. Specifically, halving the bond strength of atop CO to Ni increases the Ni-C distance by 0.06 Å...

  16. Correlation between carbon-carbon bond length and the ease of retro Diels-Alder reaction

    Indian Academy of Sciences (India)

    Sambasivarao Kotha; Shaibal Banerjee; Mobin Shaikh

    2014-09-01

    The bond length between C8-C9 in (1′R,4′S,4a′R,8a′S)-6′,7′-dimethyl-1′,4′,4a′,8a′-tetrahydrospiro [cyclopropane-1,9′-[1,4]methanonaphthalene]-5′,8′-dione is 1.571 (2) Å and between C7-C12 is 1.567 (2) Å which are longer than the corresponding bond length for saturated bicyclic systems (1.531-1.535Å). This paper reports the correlation between bond length and the ease of retro Diels−Alder reaction.

  17. Effect of rebar cover and development length on bond and slip in high strength concrete

    International Nuclear Information System (INIS)

    Composite behavior of reinforced concrete requires adequate bond between concrete and steel reinforcement that can transfer stresses between them. The bond strength is influenced by cover to the reinforcement and development length. Experimental investigation was carried out and twisted steel bars conforming to BS 4461 were used in high strength concrete to study bond strength characteristics. The post peak bond behavior was studied by using displacement controlled universal testing machine. The results of this experimentation confirmed that by increasing the cover/bar diameter ratio, bond strength increased and slip decreased for both small and large diameter twisted steel bars. This increased confinement reduced the uneven bond stress distribution along the development length. Stress concentration on the front key (concrete between two ribs) was reduced due to its continuity along the twisted steel bar. Hence it offered maximum possible resistance to bond failure and the bond strength increased. Similarly by increasing the development length, bond strength and corresponding slip both increased. Another fact visible from all figures and observed in all samples, is that as the first concrete key failed there was a sudden drop in bond strength due to the formation of longitudinal splitting cracks. These cracks are visible from the surface of the cylinder. Once a key is failed, failure propagated immediately. (author)

  18. Bond lengths differences between the mollusk-made and geological calcium carbonate

    International Nuclear Information System (INIS)

    We used high-resolution neutron powder diffraction technique in order to accurately measure the atomic positions and bond lengths in calcium carbonates of biogenic (mollusk-made) and geological origin. As a result, in biogenic calcium carbonate we identified atomic bonds, first of all the C-O bonds and some O-O bonds, which obey significant modification (about 1%) with respect to those in geological calcium carbonate. Bond length changes are presumably due to the organic/inorganic interactions in natural bio-composites. Generally, the effect is more pronounced for aragonite, which is structurally more flexible (nine unfixed parameters in atomic positions) than calcite (one parameter of this kind only). The observed bond modifications can be a source of the reported changes in the frequencies of normal vibrations of the carbonate groups measured by Raman or Fourier-transform infrared spectroscopy (FTIR) techniques.

  19. Various Carbon to Carbon Bond Lengths Inter-related via the Golden Ratio, and their Linear Dependence on Bond Energies

    OpenAIRE

    Heyrovska, Raji

    2008-01-01

    This work presents the relations between the carbon to carbon bond lengths in the single, double and triple bonds and in graphite, butadiene and benzene. The Golden ratio, which was shown to divide the Bohr radius into two parts pertaining to the charged particles, the electron and proton, and to divide inter-atomic distances into their cationic and anionic radii, also plays a role in the carbon-carbon bonds and in the ionic/polar character of those in graphite, butadiene and benzene. Further...

  20. Sacrificial Bonds and Hidden Length: Unraveling Molecular Mesostructures in Tough Materials

    OpenAIRE

    Fantner, Georg E.; Oroudjev, Emin; Schitter, Georg; Golde, Laura S.; Thurner, Philipp; Finch, Marquesa M.; Turner, Patricia; Gutsmann, Thomas; Morse, Daniel E.; Hansma, Helen; Hansma, Paul K.

    2005-01-01

    Sacrificial bonds and hidden length in structural molecules and composites have been found to greatly increase the fracture toughness of biomaterials by providing a reversible, molecular-scale energy-dissipation mechanism. This mechanism relies on the energy, of order 100 eV, needed to reduce entropy and increase enthalpy as molecular segments are stretched after being released by the breaking of weak bonds, called sacrificial bonds. This energy is relatively large compared to the energy need...

  1. Relationship between metal–metal bond length and internal rotation in diruthenium tetracarboxylate paddlewheel complexes

    OpenAIRE

    Gracia, Raquel; Adams, Harry; Patmore, Nathan J.

    2009-01-01

    The Ru–Ru bond length for Ru2II,III and Ru2II,II paddlewheel complexes containing the bulky carboxylate ligand 2,4,6-triisopropylbenzoate was found to decrease despite a reduction in Ru–Ru bond order, due to increased internal rotation.

  2. Effect of Different Bar Embedment Length on Bond-Slip in Plain and Fiber Reinforced Concrete

    NARCIS (Netherlands)

    Jankovic, D.; Chopra, M.B.; Kunnath, S.K.

    2001-01-01

    This research aims to study the behaviour of the concrete-steel bond using numerical models, taking into account the effect of the different bar embedment length. Both plain and fiber reinforced concrete (FRC) are modeled. The interface bond stress as well as load-displacement response of the reinfo

  3. NEXAFS Chemical State and Bond Lengths of p-Aminobenzoic Acid in Solution and Solid State

    Science.gov (United States)

    Stevens, J. S.; Gainar, A.; Suljoti, E.; Xiao, J.; Golnak, R.; Aziz, E. F.; Schroeder, S. L. M.

    2016-05-01

    Solid-state and solution pH-dependent NEXAFS studies allow direct observation of the electronic state of para-aminobenzoic acid (PABA) as a function of its chemical environment, revealing the chemical state and bonding of the chemical species. Variations in the ionization potential (IP) and 1s→π* resonances unequivocally identify the chemical species (neutral, cationic, or anionic) present and the varying local environment. Shifts in σ* shape resonances relative to the IP in the NEXAFS spectra vary with C-N bond length, and the important effect of minor alterations in bond length is confirmed with nitrogen FEFF calculations, leading to the possibility of bond length determination in solution.

  4. Bond length effects during the dissociation of O2 on Ni(1 1 1)

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • The dissociation of O2 on Ni(1 1 1) has been investigated using the Nudged Elastic Band (NEB) technique. • An exceptional correlation has been identified between the O/Ni bond order and the O2 bond length for a series of sterically different reaction paths. • Direct magnetic phenomena accompany these processes suggesting further mechanisms for experimental control. - Abstract: The interaction between O2 and Ni(1 1 1) has been investigated using spin-polarised density functional theory. A series of low activation energy (EA = 103–315 meV) reaction pathways corresponding to precursor and non-precursor mediated adsorption have been identified. It has been seen that a predominantly pathway-independent correlation exists between O−Ni bond order and the O2 bond length. This correlation demonstrates that the O−O interaction predominantly determines the bonding of this system

  5. Bond length and local energy density property connections for non-transition-metal oxide-bonded interactions.

    Science.gov (United States)

    Gibbs, G V; Spackman, M A; Jayatilaka, D; Rosso, K M; Cox, D F

    2006-11-01

    For a variety of molecules and earth materials, the theoretical local kinetic energy density, G(r(c)), increases and the local potential energy density, V(r(c)), decreases as the M-O bond lengths (M = first- and second-row metal atoms bonded to O) decrease and the electron density, rho(r(c)), accumulates at the bond critical points, r(c). Despite the claim that the local kinetic energy density per electronic charge, G(r(c))/rho(r(c)), classifies bonded interactions as shared interactions when less than unity and closed-shell when greater, the ratio was found to increase from 0.5 to 2.5 au as the local electronic energy density, H(r(c)) = G(r(c)) + V(r(c)), decreases and becomes progressively more negative. The ratio appears to be a measure of the character of a given M-O bonded interaction, the greater the ratio, the larger the value of rho(r(c)), the smaller the coordination number of the M atom and the more shared the bonded interaction. H(r(c))/rho(r(c)) versus G(r(c))/rho(r(c)) scatter diagrams categorize the M-O bonded interactions into domains with the local electronic energy density per electron charge, H(r(c))/rho(r(c)), tending to decrease as the electronegativity differences for the bonded pairs of atoms decrease. The values of G(r(c)) and V(r(c)), estimated with a gradient-corrected electron gas theory expression and the local virial theorem, are in good agreement with theoretical values, particularly for the bonded interactions involving second-row M atoms. The agreement is poorer for shared C-O and N-O bonded interactions. PMID:17078623

  6. Atomic Structures of the Molecular Components in DNA and RNA based on Bond Lengths as Sums of Atomic Radii

    OpenAIRE

    Heyrovska, Raji

    2007-01-01

    The interpretation by the author in recent years of bond lengths as sums of the relevant atomic or ionic radii has been extended here to the bonds in the skeletal structures of adenine, guanine, thymine, cytosine, uracil, ribose, deoxyribose and phosphoric acid. On examining the bond length data in the literature, it has been found that the averages of the bond lengths are close to the sums of the corresponding atomic covalent radii of carbon, nitrogen, oxygen, hydrogen and phosphorus. Thus, ...

  7. Theoretical Electron Density Distributions for Fe- and Cu-Sulfide Earth Materials: A Connection between Bond Length, Bond Critical Point Properties, Local Energy Densities, and Bonded Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Gibbs, Gerald V.; Cox, David F.; Rosso, Kevin M.; Ross, Nancy L.; Downs, R. T.; Spackman, M. A.

    2007-03-01

    Bond critical point and local energy density properties together with net atomic charges were calculated for theoretical electron density distributions, F(r), generated for a variety of Fe and Cu metal-sulfide materials with high- and low-spin Fe atoms in octahedral coordination and high-spin Fe atoms in tetrahedral coordination. The electron density, F(rc), the Laplacian, 32F(rc), the local kinetic energy, G(rc), and the oxidation state of Fe increase as the local potential energy density, V(rc), the Fe-S bond lengths, and the coordination numbers of the Fe atoms decrease. The properties of the bonded interactions for the octahedrally coordinated low-spin Fe atoms for pyrite and marcasite are distinct from those for high-spin Fe atoms for troilite, smythite, and greigite. The Fe-S bond lengths are shorter and the values of F(rc) and 32F(rc) are larger for pyrite and marcasite, indicating that the accumulation and local concentration of F(r) in the internuclear region are greater than those involving the longer, high-spin Fe-S bonded interactions. The net atomic charges and the bonded radii calculated for the Fe and S atoms in pyrite and marcasite are also smaller than those for sulfides with high-spin octahedrally coordinated Fe atoms. Collectively, the Fe-S interactions are indicated to be intermediate in character with the low-spin Fe-S interactions having greater shared character than the highspin interactions. The bond lengths observed for chalcopyrite together with the calculated bond critical point properties are consistent with the formula Cu+Fe3+S2. The bond length is shorter and the F(rc) value is larger for the FeS4 tetrahedron displayed by metastable greigite than those displayed by chalcopyrite and cubanite, consistent with a proposal that the Fe atom in greigite is tetravalent. S-S bond paths exist between each of the surface S atoms of adjacent slabs of FeS6 octahedra comprising the layer sulfide smythite, suggesting that the neutral Fe3S4 slabs are

  8. Theoretical electron density distributions for Fe- and Cu-sulfide earth materials: a connection between bond length, bond critical point properties, local energy densities, and bonded interactions.

    Science.gov (United States)

    Gibbs, G V; Cox, D F; Rosso, K M; Ross, N L; Downs, R T; Spackman, M A

    2007-03-01

    Bond critical point and local energy density properties together with net atomic charges were calculated for theoretical electron density distributions, rho(r), generated for a variety of Fe and Cu metal-sulfide materials with high- and low-spin Fe atoms in octahedral coordination and high-spin Fe atoms in tetrahedral coordination. The electron density, rho(rc), the Laplacian, triangle down2rho(rc), the local kinetic energy, G(rc), and the oxidation state of Fe increase as the local potential energy density, V(rc), the Fe-S bond lengths, and the coordination numbers of the Fe atoms decrease. The properties of the bonded interactions for the octahedrally coordinated low-spin Fe atoms for pyrite and marcasite are distinct from those for high-spin Fe atoms for troilite, smythite, and greigite. The Fe-S bond lengths are shorter and the values of rho(rc) and triangle down2rho(rc) are larger for pyrite and marcasite, indicating that the accumulation and local concentration of rho(r) in the internuclear region are greater than those involving the longer, high-spin Fe-S bonded interactions. The net atomic charges and the bonded radii calculated for the Fe and S atoms in pyrite and marcasite are also smaller than those for sulfides with high-spin octahedrally coordinated Fe atoms. Collectively, the Fe-S interactions are indicated to be intermediate in character with the low-spin Fe-S interactions having greater shared character than the high-spin interactions. The bond lengths observed for chalcopyrite together with the calculated bond critical point properties are consistent with the formula Cu+Fe3+S2. The bond length is shorter and the rho(rc) value is larger for the FeS4 tetrahedron displayed by metastable greigite than those displayed by chalcopyrite and cubanite, consistent with a proposal that the Fe atom in greigite is tetravalent. S-S bond paths exist between each of the surface S atoms of adjacent slabs of FeS6 octahedra comprising the layer sulfide smythite

  9. Cavity partition and functionalization of a [2+3] organic molecular cage by inserting polar P[double bond, length as m-dash]O bonds.

    Science.gov (United States)

    Feng, Genfeng; Liu, Wei; Peng, Yuxin; Zhao, Bo; Huang, Wei; Dai, Yafei

    2016-07-28

    The cavity of a [2+3] organic molecular cage was partitioned and functionalized by inserting inner-directed P[double bond, length as m-dash]O bonds, which shows CO2 capture and CH4 exclusion due to the size-matching and polarity effects. Computational results demonstrate that the successful segmentation via polar P[double bond, length as m-dash]O bonds facilitates the CO2 molecules to reside selectively inside the cavity. PMID:27356151

  10. Isotopic fractionation in proteins as a measure of hydrogen bond length

    Science.gov (United States)

    McKenzie, Ross H.; Athokpam, Bijyalaxmi; Ramesh, Sai G.

    2015-07-01

    If a deuterated molecule containing strong intramolecular hydrogen bonds is placed in a hydrogenated solvent, it may preferentially exchange deuterium for hydrogen. This preference is due to the difference between the vibrational zero-point energy for hydrogen and deuterium. It is found that the associated fractionation factor Φ is correlated with the strength of the intramolecular hydrogen bonds. This correlation has been used to determine the length of the H-bonds (donor-acceptor separation) in a diverse range of enzymes and has been argued to support the existence of short low-barrier H-bonds. Starting with a potential energy surface based on a simple diabatic state model for H-bonds, we calculate Φ as a function of the proton donor-acceptor distance R. For numerical results, we use a parameterization of the model for symmetric O-H⋯O bonds [R. H. McKenzie, Chem. Phys. Lett. 535, 196 (2012)]. We consider the relative contributions of the O-H stretch vibration, O-H bend vibrations (both in plane and out of plane), tunneling splitting effects at finite temperature, and the secondary geometric isotope effect. We compare our total Φ as a function of R with NMR experimental results for enzymes, and in particular with an earlier model parametrization Φ(R), used previously to determine bond lengths.

  11. Isotopic fractionation in proteins as a measure of hydrogen bond length

    International Nuclear Information System (INIS)

    If a deuterated molecule containing strong intramolecular hydrogen bonds is placed in a hydrogenated solvent, it may preferentially exchange deuterium for hydrogen. This preference is due to the difference between the vibrational zero-point energy for hydrogen and deuterium. It is found that the associated fractionation factor Φ is correlated with the strength of the intramolecular hydrogen bonds. This correlation has been used to determine the length of the H-bonds (donor-acceptor separation) in a diverse range of enzymes and has been argued to support the existence of short low-barrier H-bonds. Starting with a potential energy surface based on a simple diabatic state model for H-bonds, we calculate Φ as a function of the proton donor-acceptor distance R. For numerical results, we use a parameterization of the model for symmetric O–H⋯O bonds [R. H. McKenzie, Chem. Phys. Lett. 535, 196 (2012)]. We consider the relative contributions of the O–H stretch vibration, O–H bend vibrations (both in plane and out of plane), tunneling splitting effects at finite temperature, and the secondary geometric isotope effect. We compare our total Φ as a function of R with NMR experimental results for enzymes, and in particular with an earlier model parametrization Φ(R), used previously to determine bond lengths

  12. Isotopic fractionation in proteins as a measure of hydrogen bond length

    Energy Technology Data Exchange (ETDEWEB)

    McKenzie, Ross H., E-mail: r.mckenzie@uq.edu.au [School of Mathematics and Physics, University of Queensland, Brisbane 4072 (Australia); Athokpam, Bijyalaxmi; Ramesh, Sai G. [Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012 (India)

    2015-07-28

    If a deuterated molecule containing strong intramolecular hydrogen bonds is placed in a hydrogenated solvent, it may preferentially exchange deuterium for hydrogen. This preference is due to the difference between the vibrational zero-point energy for hydrogen and deuterium. It is found that the associated fractionation factor Φ is correlated with the strength of the intramolecular hydrogen bonds. This correlation has been used to determine the length of the H-bonds (donor-acceptor separation) in a diverse range of enzymes and has been argued to support the existence of short low-barrier H-bonds. Starting with a potential energy surface based on a simple diabatic state model for H-bonds, we calculate Φ as a function of the proton donor-acceptor distance R. For numerical results, we use a parameterization of the model for symmetric O–H⋯O bonds [R. H. McKenzie, Chem. Phys. Lett. 535, 196 (2012)]. We consider the relative contributions of the O–H stretch vibration, O–H bend vibrations (both in plane and out of plane), tunneling splitting effects at finite temperature, and the secondary geometric isotope effect. We compare our total Φ as a function of R with NMR experimental results for enzymes, and in particular with an earlier model parametrization Φ(R), used previously to determine bond lengths.

  13. Effect of bond length and radius on superconducting transition temperature for FeAs-based superconductors

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    By comparing the data of lattice parameters of more than 50 new FeAs-based high temperature superconductors in two syetems, the effect of bondlength on superconducting transition temperature (T C ) was found that, for both FeAs superconductor systems with similar ionic radii of cation A, the bond length L As-A between Arsenic atom and its nearest neighbor cation at the A site is in an inverse proportion to T C , i.e. the larger the bond length L As-A , the lower the T C . In addition, we also found a noticeable effect of ionic radius on T C , in which deviation from the tendency line of bond length vs. T C decreases with the increasing ionic radius. Both bond length-T C and ionic radii-T C relations indicate that the interaction of cation A and As ion have significant effect on superconductivity. The analysis on the electronic structure indicates that there exists the proximity of the secondary-outer p-orbit of the cation A and the 4s orbit of the As ion, both in energy space and in real space. Some high frequency individual vibrating modes would be established through exchange coupling on their inner orbits. It is worth of mention that the superconducting condensation is influenced by the interaction between the cation A and the As atoms.

  14. Prediction of the bond lengths, vibrational frequencies, and bond dissociation energy of octahedral seaborgium hexacarbonyl, Sg(CO)6

    International Nuclear Information System (INIS)

    The recent syntheses of several new elements (including the recent reports of elements 116 and 118), coupled with the controversy surrounding the naming of elements 104--109, have stimulated a great interest in the chemistry of the transactinide elements. This contribution addresses hypothetical hexacarbonyl complex of seaborgium (Sg, element 106), which is predicted to be a 6d-block transition element with six valence electrons, analogous to Cr, Mo, and W. The authors have previously predicted that, if it were to exist, Sg(CO)6 would exhibit metal-carbonyl bonding that is very similar to that in Cr(CO)6, Mo(CO)6, and W(CO)6, and quite unlike that of the unknown valence isoelectronic actinide complex U(CO)6. This finding is in accord with the scant experimental data available for Sg. The relativistic DV-Xα method used in the earlier paper facilitated the analysis of the molecular orbitals of Sg(CO)6, but did not allow for the calculation of total-energy properties, such as bond lengths and vibrational frequencies. Here the authors will use the superior methodology they have applied to other transactinide molecules to compare the bond lengths, vibrational frequencies, and CO dissociation energy of hypothetical Sg(CO)6 to those of Mo(CO)6 and W(CO)6

  15. Scaling of the critical free length for progressive unfolding of self-bonded graphene

    Energy Technology Data Exchange (ETDEWEB)

    Kwan, Kenny; Cranford, Steven W., E-mail: s.cranford@neu.edu [Laboratory of Nanotechnology in Civil Engineering (NICE), Department of Civil and Environmental Engineering, Northeastern University, 400 Snell Engineering, 360 Huntington Avenue, Boston, Massachusetts 02115 (United States)

    2014-05-19

    Like filled pasta, rolled or folded graphene can form a large nanocapsule surrounding a hollow interior. Use as a molecular carrier, however, requires understanding of the opening of such vessels. Here, we investigate a monolayer sheet of graphene as a theoretical trial platform for such a nanocapsule. The graphene is bonded to itself via aligned disulfide (S-S) bonds. Through theoretical analysis and atomistic modeling, we probe the critical nonbonded length (free length, L{sub crit}) that induces fracture-like progressive unfolding as a function of folding radius (R{sub i}). We show a clear linear scaling relationship between the length and radius, which can be used to determine the necessary bond density to predict mechanical opening/closing. However, stochastic dissipated energy limits any exact elastic formulation, and the required energy far exceeds the dissociation energy of the S-S bond. We account for the necessary dissipated kinetic energy through a simple scaling factor (Ω), which agrees well with computational results.

  16. Relationship between the lengths of covalent and intermolecular bonds in X-H...Y bridges

    International Nuclear Information System (INIS)

    The formula exp(-ln2((rXH - r0XH)/(rsymXH - r0XH))5/3) + exp(-ln2((rYH - r0YH)/(rsymYH - r0YH))5/3) = 1 is proposed, which relates the lengths of both covalent and hydrogen bonds in homo- and heterobridges. This formula is justified by the experimental data from the CSD bank, which was obtained by neutron diffraction for 108 O-H...N hydrogen bridges with bond angles exceeding 170o.

  17. Isotopic fractionation in proteins as a measure of hydrogen bond length

    CERN Document Server

    McKenzie, Ross H; Ramesh, Sai

    2015-01-01

    If a deuterated molecule containing strong intramolecular hydrogen bonds is placed in a hydrogenated solvent it may preferentially exchange deuterium for hydrogen. This preference is due to the difference between the vibrational zero-point energy for hydrogen and deuterium. It is found that the associated fractionation factor $\\Phi$ is correlated with the strength of the intramolecular hydrogen bonds. This correlation has been used to determine the length of the H-bonds (donor-acceptor separation) in a diverse range of enzymes and has been argued to support the existence of short low-barrier H-bonds. Starting with a potential energy surface based on a simple diabatic state model for H-bonds we calculate $\\Phi$ as a function of the proton donor-acceptor distance $R$. For numerical results, we use a parameterization of the model for symmetric O-H.... O bonds. We consider the relative contributions of the O-H stretch vibration, O-H bend vibrations (both in plane and out of plane), tunnelling splitting effects at...

  18. Mathematical Simulation of Graphene With Modified c-c Bond Length and Transfer Energy

    Directory of Open Access Journals (Sweden)

    P.A. Alvi

    2011-01-01

    Full Text Available In nanotechnology research, allotropes of carbon like Graphene, Fullerene (Buckyball and Carbon nanotubes are widely used due to their remarkable properties. Electrical and mechanical properties of those allotropes vary with their molecular geometry. This paper is specially based on modeling and simulation of graphene in order to calculate energy band structure in k space with varying the C-C bond length and C-C transfer energy. Significant changes have been observed in the energy band structure of graphene due to variation in C-C bond length and C-C transfer energy. In particular, this paper focuses over the electronic structure of graphene within the frame work of tight binding approximation. It has been reported that conduction and valence states in graphene only meet at two points in k-space and that dispersion around these special points is conical.

  19. Atomic Structures of the Molecular Components in DNA and RNA based on Bond Lengths as Sums of Atomic Radii

    CERN Document Server

    Heyrovska, Raji

    2007-01-01

    The interpretation by the author in recent years of bond lengths as sums of the relevant atomic or ionic radii has been extended here to the bonds in the skeletal structures of adenine, guanine, thymine, cytosine, uracil, ribose, deoxyribose and phosphoric acid. On examining the bond length data in the literature, it has been found that the averages of the bond lengths are close to the sums of the corresponding atomic covalent radii of carbon, nitrogen, oxygen, hydrogen and phosphorus. Thus, the conventional molecular structures have been resolved here, for the first time, into probable atomic structures.

  20. Influence of fibreglass post design and lengths on the bond strength

    OpenAIRE

    Paulo César Freitas Santos Filho; Bruno Rodrigues Reis; Crisnicaw Veríssimo; Paulo Vinicius Soares; Murilo Souza Menezes; Carlos José Soares

    2013-01-01

    Post retention in root canal is an important factor on the clinical success of restorations in endodontically treated teeth. AIM: To evaluate the effect of luting agent, fibreglass post design and lengths on the bond strength of posts. MATERIALS AND METHOD: One hundred eighty single-rooted teeth were root filled and prepared to receive either a parallel-sided and serrated fibreglass post or a tapered and smooth fibreglass post (n=90). The posts were cemented with the following resin cements: ...

  1. Charge transfer mobility of naphthodithiophenediimide derivative: Normal-mode and bond length relaxation analysis

    Science.gov (United States)

    Liu, Xiaoyan; Liu, Yujuan; Zheng, Yujun

    2016-02-01

    In this letter, the charge transfer mobility of naphthalenediimide (NDTI) derivative is investigated. By employing the normal-mode analysis and bond length relaxation analysis, the influences of chemical elements on reorganization energies and intermolecular electronic couplings are investigated in NDTI derivative. The results show that the introduction of atom O would decrease reorganization energy in hole-hopping process and increase electronic coupling. This analysis encourages the molecular and material design in organic semiconductors.

  2. NEXAFS Sensitivity to Bond Lengths in Complex Molecular Materials: A Study of Crystalline Saccharides.

    Science.gov (United States)

    Gainar, Adrian; Stevens, Joanna S; Jaye, Cherno; Fischer, Daniel A; Schroeder, Sven L M

    2015-11-12

    Detailed analysis of the C K near-edge X-ray absorption fine structure (NEXAFS) spectra of a series of saccharides (fructose, xylose, glucose, galactose, maltose monohydrate, α-lactose monohydrate, anhydrous β-lactose, cellulose) indicates that the precise determination of IPs and σ* shape resonance energies is sensitive enough to distinguish different crystalline saccharides through the variations in their average C-OH bond lengths. Experimental data as well as FEFF8 calculations confirm that bond length variations in the organic solid state of 10(-2) Å can be experimentally detected, opening up the possibility to use NEXAFS for obtaining incisive structural information for molecular materials, including noncrystalline systems without long-range order such as dissolved species in solutions, colloids, melts, and similar amorphous phases. The observed bond length sensitivity is as good as that originally reported for gas-phase and adsorbed molecular species. NEXAFS-derived molecular structure data for the condensed phase may therefore be used to guide molecular modeling as well as to validate computationally derived structure models for such systems. Some results indicate further analytical value in that the σ* shape resonance analysis may distinguish hemiketals from hemiacetals (i.e., derived from ketoses and aldoses) as well as α from β forms of otherwise identical saccharides. PMID:26459024

  3. Atomic Structures of Riboflavin (Vitamin B2) and its Reduced Form with Bond Lengths Based on Additivity of Atomic Radii

    OpenAIRE

    Heyrovska, Raji

    2008-01-01

    It has been shown recently that chemical bond lengths, in general, like those in the components of nucleic acids, caffeine related compounds, all essential amino acids, methane, benzene, graphene and fullerene are sums of the radii of adjacent atoms constituting the bond. Earlier, the crystal ionic distances in all alkali halides and lengths of many partially ionic bonds were also accounted for by the additivity of ionic as well as covalent radii. Here, the atomic structures of riboflavin and...

  4. Scaling relation for the bond length, mass density, and packing order of water ice

    CERN Document Server

    Sun, Chang Q

    2013-01-01

    The packing order of molecules and the distance between adjacent oxygen atoms (dOO) in water and ice are most basic yet puzzling. Here we present a scaling solution for this purpose based only on the mass density (gcm-3), (Equation) where dL is the length ({\\AA}) of the O:H van der Waals bond and dH the H-O polar-covalent bond projecting on the O---O line. Validated by the measured proton symmetrization of compressed ice, dOO of water and ice, and dOO expansion at water surface, this solution confirms that the fluctuated, tetrahedrally-coordinated structure is unique for water ice.

  5. Comparative study on direct and indirect bracket bonding techniques regarding time length and bracket detachment

    Directory of Open Access Journals (Sweden)

    Jefferson Vinicius Bozelli

    2013-12-01

    Full Text Available OBJECTIVE: The aim of this study was to assess the time spent for direct (DBB - direct bracket bonding and indirect (IBB - indirect bracket bonding bracket bonding techniques. The time length of laboratorial (IBB and clinical steps (DBB and IBB as well as the prevalence of loose bracket after a 24-week follow-up were evaluated. METHODS: Seventeen patients (7 men and 10 women with a mean age of 21 years, requiring orthodontic treatment were selected for this study. A total of 304 brackets were used (151 DBB and 153 IBB. The same bracket type and bonding material were used in both groups. Data were submitted to statistical analysis by Wilcoxon non-parametric test at 5% level of significance. RESULTS: Considering the total time length, the IBB technique was more time-consuming than the DBB (p < 0.001. However, considering only the clinical phase, the IBB took less time than the DBB (p < 0.001. There was no significant difference (p = 0.910 for the time spent during laboratorial positioning of the brackets and clinical session for IBB in comparison to the clinical procedure for DBB. Additionally, no difference was found as for the prevalence of loose bracket between both groups. CONCLUSION: the IBB can be suggested as a valid clinical procedure since the clinical session was faster and the total time spent for laboratorial positioning of the brackets and clinical procedure was similar to that of DBB. In addition, both approaches resulted in similar frequency of loose bracket.

  6. Bond Lengths and Bond Strengths in Weak and Strong Chemisorption: N2, CO, and CO/H on Nickel Surfaces

    OpenAIRE

    Sayago, D.; Hoeft, J.; Polcik, M.; Kittel, M; Toomes, R.; Robinson, J.; Woodruff, D.; Pascal, M.; LaMont, C.; Nisbet, G.

    2003-01-01

    New chemical-state-specific scanned-energy mode photoelectron diffraction experiments and density functional theory calculations, applied to CO, CO/H, and N2 adsorption on Ni(100), show that chemisorption bond length changes associated with large changes in bond strength are small, but those associated with changes in bond order are much larger, and are similar to those found in molecular systems. Specifically, halving the bond strength of atop CO to Ni increases the Ni-C distance by 0.06 Å, ...

  7. Misleading evidence for covalent bonding from EuIIIX and AmIIIX density functional theory bond lengths

    International Nuclear Information System (INIS)

    Graphical abstract: Density functional calculations are frequently found to yield too long Eu-S bond distances. - Highlights: • Density functional theory provides too long Eu-S bond distances. • Ab initio structure optimizations needed to obtain reliable Eu-S bond distances. • Am-S bonds not necessarily more covalent than Eu-S bonds. - Abstract: In complexes of trivalent Eu and Am standard unrestricted Kohn–Sham density functional calculations tend to yield shorter bond distances for the Am-X than for the Eu-X bonds, especially when X is a so-called soft ligand. Since the ionic radius of AmIII is larger than the one of EuIII the reversed order of the bond distances is sometimes explained by a higher covalency of the Am-X bond compared to the one of the Eu-X bond. A comparison of density functional with wavefunction-based correlated calculations for several model systems reveals, however, that the energetically low-lying and spatially compact 4f shell of EuIII often is erroneously filled with significantly more than 6 electrons at the density functional theory level, thus yielding considerably too long bond distances. Particularly claims based on comparisons of structures optimized at the density functional level that the strong preference of the Cyanex 301 ligand for AmIII over EuIII is due to an increased covalency in the Am-S bonds should be viewed with some reservation

  8. Atomic Structures of Riboflavin (Vitamin B2) and its Reduced Form with Bond Lengths Based on Additivity of Atomic Radii

    CERN Document Server

    Heyrovska, Raji

    2008-01-01

    It has been shown recently that chemical bond lengths, in general, like those in the components of nucleic acids, caffeine related compounds, all essential amino acids, methane, benzene, graphene and fullerene are sums of the radii of adjacent atoms constituting the bond. Earlier, the crystal ionic distances in all alkali halides and lengths of many partially ionic bonds were also accounted for by the additivity of ionic as well as covalent radii. Here, the atomic structures of riboflavin and its reduced form are presented based on the additivity of the same set of atomic radii as for other biological molecules.

  9. Models for mean bonding length, melting point and lattice thermal expansion of nanoparticle materials

    Energy Technology Data Exchange (ETDEWEB)

    Omar, M.S., E-mail: dr_m_s_omar@yahoo.com [Department of Physics, College of Science, University of Salahaddin-Erbil, Arbil, Kurdistan (Iraq)

    2012-11-15

    Graphical abstract: Three models are derived to explain the nanoparticles size dependence of mean bonding length, melting temperature and lattice thermal expansion applied on Sn, Si and Au. The following figures are shown as an example for Sn nanoparticles indicates hilly applicable models for nanoparticles radius larger than 3 nm. Highlights: ► A model for a size dependent mean bonding length is derived. ► The size dependent melting point of nanoparticles is modified. ► The bulk model for lattice thermal expansion is successfully used on nanoparticles. -- Abstract: A model, based on the ratio number of surface atoms to that of its internal, is derived to calculate the size dependence of lattice volume of nanoscaled materials. The model is applied to Si, Sn and Au nanoparticles. For Si, that the lattice volume is increases from 20 Å{sup 3} for bulk to 57 Å{sup 3} for a 2 nm size nanocrystals. A model, for calculating melting point of nanoscaled materials, is modified by considering the effect of lattice volume. A good approach of calculating size-dependent melting point begins from the bulk state down to about 2 nm diameter nanoparticle. Both values of lattice volume and melting point obtained for nanosized materials are used to calculate lattice thermal expansion by using a formula applicable for tetrahedral semiconductors. Results for Si, change from 3.7 × 10{sup −6} K{sup −1} for a bulk crystal down to a minimum value of 0.1 × 10{sup −6} K{sup −1} for a 6 nm diameter nanoparticle.

  10. Dependence of the length of the hydrogen bond on the covalent and cationic radii of hydrogen, and additivity of bonding distances

    Czech Academy of Sciences Publication Activity Database

    Heyrovská, Raji

    2006-01-01

    Roč. 432, č. 1-3 (2006), s. 348-351. ISSN 0009-2614 R&D Projects: GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z50040507 Keywords : length of the hydrogen bond * ionic radius * Golden ratio Subject RIV: BO - Biophysics Impact factor: 2.462, year: 2006

  11. Determination of Hydrogen Bond Structure in Water versus Aprotic Environments To Test the Relationship Between Length and Stability

    Energy Technology Data Exchange (ETDEWEB)

    Sigala, Paul A.; Ruben, Eliza A.; Liu, Corey W.; Piccoli, Paula M. B.; Hohenstein, Edward G.; Martinez, Todd J.; Schultz, Arthur J.; Herschiag, Daniel

    2015-05-06

    Hydrogen bonds profoundly influence the architecture and activity of biological macromolecules. Deep appreciation of hydrogen bond contributions to biomolecular function thus requires a detailed understanding of hydrogen bond structure and energetics and the relationship between these properties. Hydrogen bond formation energies (Delta G(f)) are enormously more favorable in aprotic solvents than in water, and two classes of contributing factors have been proposed to explain this energetic difference, focusing respectively on the isolated and hydrogen-bonded species: (I) water stabilizes the dissociated donor and acceptor groups much better than aprotic solvents, thereby reducing the driving force for hydrogen bond formation; and (II) water lengthens hydrogen bonds compared to aprotic environments, thereby decreasing the potential energy within the hydrogen bond. Each model has been proposed to provide a dominant contribution to Delta G(f), but incisive tests that distinguish the importance of these contributions are lacking. Here we directly test the structural basis of model II. Neutron crystallography, NMR spectroscopy, and quantum mechanical calculations demonstrate that O-H center dot center dot center dot O hydrogen bonds in crystals, chloroform, acetone, and water have nearly identical lengths and very similar potential energy surfaces despite Delta G(f) differences >8 kcal/mol across these solvents. These results rule out a substantial contribution from solvent-dependent differences in hydrogen bond structure and potential energy after association (model II) and thus support the conclusion that differences in hydrogen bond Delta G(f) are predominantly determined by solvent interactions with the dissociated groups (model I). These findings advance our understanding of universal hydrogen-bonding interactions and have important implications for biology and engineering.

  12. Electron-electron interactions in the chemical bond: ``1/3” Effect in the bond length of hydrogen molecule

    Indian Academy of Sciences (India)

    P Ganguly

    2001-10-01

    The prominent ``1/3” effect observed in the Hall effect plateaus of twodimensional electron gas (2DEG) systems has been postulated to indicating 1/3 fractional charge quasiparticle excitations arising from electron-electron interactions. Tunneling shot-noise experiments on 2DEF exhibiting fractional quantum Hall effect (FQHE) shows evidence for tunnelling of particles with and /3 charges for a constant band mass. A ``1/3” effect in the hydrogen molecule is seen in as much as its internuclear distance, - = - + +, with |+/-| = 1/3. This is examined in terms of electron-electron interactions involving electron- and hole quasiparticles, (-) and (ℎ+), equivalent to those observed in FQHE shot-noise experiments. The (/) ratio of the (-) and (ℎ+) quasiparticles is kept at 1: -3. Instead of a 2DEG, these particles are treated as being in flat Bohr orbits. A treatment in the language of charge-flux tube composites for the hydrogen atom as well as the hydrogen molecule is attempted. Such treatment gives important insights into changes in chemical potential and bond energy on crossing a phase boundary during the atom-bond transition as well as on models for FQHE itself.

  13. Atomic Structures of all the Twenty Essential Amino Acids and a Tripeptide, with Bond Lengths as Sums of Atomic Covalent Radii

    OpenAIRE

    Heyrovska, Raji

    2008-01-01

    Recently, the bond lengths of the molecular components of nucleic acids and of caffeine and related molecules were shown to be sums of the appropriate covalent radii of the adjacent atoms. Thus, each atom was shown to have its specific contribution to the bond length. This enabled establishing their atomic structures for the first time. In this work, the known bond lengths for amino acids and the peptide bond are similarly shown to be sums of the atomic covalent radii. Based on this result, t...

  14. Atomic Structures of the Amino Acids, Glycine, Alanine and Serine and Their Tripeptide, with Bond Lengths as Sums of Atomic Covalent Radii

    CERN Document Server

    Heyrovska, Raji

    2008-01-01

    Recently, the bond lengths of the molecular components of nucleic acids and of caffeine and related molecules were shown to be sums of the appropriate covalent radii of the adjacent atoms. Thus, each atom was shown to have its specific contribution to the bond length. This enabled establishing their atomic structures for the first time. In this work, the known bond lengths for amino acids and the peptide bond are similarly shown to be sums of the atomic covalent radii. Based on this result, the atomic structures of glycine, alanine and serine and their tripeptide have been presented.

  15. A fluorescent sensor for Zn(2+) and NO2(-) based on the rational control of C[double bond, length as m-dash]N isomerization.

    Science.gov (United States)

    Liu, Zheng; Peng, Cuina; Wang, Ying; Pei, Meishan; Zhang, Guangyou

    2016-05-01

    A new strategy for the ultrasensitive sensing of cations and anions based on the control of C[double bond, length as m-dash]N isomerization has been developed. Imine-derived ligand is non-fluorescent due to the C[double bond, length as m-dash]N isomerization process, whereas its ternary complex with ZnCl2 is moderately fluorescent because of the partial inhibition of C[double bond, length as m-dash]N isomerization. Such a ternary complex can give a remarkable fluorescence increase when it interacts with nitrite because of the much more efficient suppression of C[double bond, length as m-dash]N isomerization. This modulation process of C[double bond, length as m-dash]N isomerization can thus be used for the highly selective detection of Zn(2+) and NO2(-) in an aqueous solution. PMID:27075971

  16. Influence of steel fibres on bond and development length of deformed bars in normal strength concrete

    Science.gov (United States)

    Tenzey, Ugyen

    Transverse reinforcement (stirrups) plays an important role in improving bond and anchorage of deformed bars in reinforced concrete structures. Steel fibres or steel fibre reinforced concrete (SFRC) can be used in lieu of stirrups to provide a similar beneficial effect. The application of steel fibres in lieu of stirrups is not recognized in codes of practice for concrete structures because of limited research for this type of application. The results of this study are based on 18 large scale test beams (250 mm wide by 300 mm high and 3.4 m long). Control cylinders and flexure prisms are used to obtain the required concrete material properties together with tension tests of the steel rebar. The focus of this research is to investigate the influence of steel fibres to enhance bond and development of deformed reinforcing bars in normal strength reinforced concrete beams. An attempt is also made to develop an understanding and rationale of the effect SFRC has on improving bond. Longitudinal reinforcement in most of the beams is lap spliced with different types of confinement in the spliced region (plain concrete, plain concrete with stirrups, SFRC, and SFRC with stirrups), and evaluated under third point loading to ensure the spliced bars are subjected to a constant tensile force in the region of constant moment. All of the beams with spliced reinforcement failed in bond before yielding of the longitudinal reinforcement. The SFRC mix uses steel fibres at an 80 kg/m3 dosage (1% by volume). The plain concrete beams without any transverse reinforcement failed suddenly without any warning. The presence of steel fibres did not affect the flexural cracking load of the specimens, but did provide a consistent increase in the load capacity at bond failure and ensure a more controlled failure. The spliced beams with SFRC exhibited a 22.5% increase in the bond failure load capacity compared with the plain concrete beams. The combined effect of fibres and transverse reinforcement

  17. Distinguishing the Effects of Bond-Length Alternation versus Bond-Order Alternation on the Nonlinear Optical Properties of π-Conjugated Chromophores

    KAUST Repository

    Gieseking, Rebecca L.

    2015-06-18

    Understanding the relationships between the molecular nonlinear optical (NLO) properties and the bond-length alternation (BLA) or π-bond-order alternation (BOA) along the molecular backbone of linear π-conjugated systems has proven widely useful in the development of NLO organic chromophores and materials. Here, we examine model polymethines to elucidate the reliability of these relationships. While BLA is solely a measure of molecular geometric structure, BOA includes information pertaining to the electronic structure. As a result, BLA is found to be a good predictor of NLO properties only when optimized geometries are considered, whereas BOA is more broadly applicable. Proper understanding of the distinction between BLA and BOA is critical when designing computational studies of NLO properties, especially for molecules in complex environments or in nonequilibrium geometries. © 2015 American Chemical Society.

  18. Accurate rotational constant and bond lengths of hexafluorobenzene by femtosecond rotational Raman coherence spectroscopy and ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Den, Takuya S.; Frey, Hans-Martin; Leutwyler, Samuel, E-mail: leutwyler@dcb.unibe.ch [Departement für Chemie und Biochemie, Universität Bern, Freiestrasse 3, CH-3000 Bern 9 (Switzerland)

    2014-11-21

    The gas-phase rotational motion of hexafluorobenzene has been measured in real time using femtosecond (fs) time-resolved rotational Raman coherence spectroscopy (RR-RCS) at T = 100 and 295 K. This four-wave mixing method allows to probe the rotation of non-polar gas-phase molecules with fs time resolution over times up to ∼5 ns. The ground state rotational constant of hexafluorobenzene is determined as B{sub 0} = 1029.740(28) MHz (2σ uncertainty) from RR-RCS transients measured in a pulsed seeded supersonic jet, where essentially only the v = 0 state is populated. Using this B{sub 0} value, RR-RCS measurements in a room temperature gas cell give the rotational constants B{sub v} of the five lowest-lying thermally populated vibrationally excited states ν{sub 7/8}, ν{sub 9}, ν{sub 11/12}, ν{sub 13}, and ν{sub 14/15}. Their B{sub v} constants differ from B{sub 0} by between −1.02 MHz and +2.23 MHz. Combining the B{sub 0} with the results of all-electron coupled-cluster CCSD(T) calculations of Demaison et al. [Mol. Phys. 111, 1539 (2013)] and of our own allow to determine the C-C and C-F semi-experimental equilibrium bond lengths r{sub e}(C-C) = 1.3866(3) Å and r{sub e}(C-F) = 1.3244(4) Å. These agree with the CCSD(T)/wCVQZ r{sub e} bond lengths calculated by Demaison et al. within ±0.0005 Å. We also calculate the semi-experimental thermally averaged bond lengths r{sub g}(C-C)=1.3907(3) Å and r{sub g}(C-F)=1.3250(4) Å. These are at least ten times more accurate than two sets of experimental gas-phase electron diffraction r{sub g} bond lengths measured in the 1960s.

  19. Reliable vibrational wavenumbers for C[double bond, length as m-dash]O and N-H stretchings of isolated and hydrogen-bonded nucleic acid bases.

    Science.gov (United States)

    Fornaro, Teresa; Biczysko, Malgorzata; Bloino, Julien; Barone, Vincenzo

    2016-03-16

    The accurate prediction of vibrational wavenumbers for functional groups involved in hydrogen-bonded bridges remains an important challenge for computational spectroscopy. For the specific case of the C[double bond, length as m-dash]O and N-H stretching modes of nucleobases and their oligomers, the paucity of experimental reference values needs to be compensated by reliable computational data, which require the use of approaches going beyond the standard harmonic oscillator model. Test computations performed for model systems (formamide, acetamide and their cyclic homodimers) in the framework of the second order vibrational perturbation theory (VPT2) confirmed that anharmonic corrections can be safely computed by global hybrid (GHF) or double hybrid (DHF) functionals, whereas the harmonic part is particularly challenging. As a matter of fact, GHFs perform quite poorly and even DHFs, while fully satisfactory for C[double bond, length as m-dash]O stretchings, face unexpected difficulties when dealing with N-H stretchings. On these grounds, a linear regression for N-H stretchings has been obtained and validated for the heterodimers formed by 4-aminopyrimidine with 6-methyl-4-pyrimidinone (4APM-M4PMN) and by uracil with water. In view of the good performance of this computational model, we have built a training set of B2PLYP-D3/maug-cc-pVTZ harmonic wavenumbers (including linear regression scaling for N-H) for six-different uracil dimers and a validation set including 4APM-M4PMN, one of the most stable hydrogen-bonded adenine homodimers, as well as the adenine-uracil, adenine-thymine, guanine-cytosine and adenine-4-thiouracil heterodimers. Because of the unfavourable scaling of DHF harmonic wavenumbers with the dimensions of the investigated systems, we have optimized a linear regression of B3LYP-D3/N07D harmonic wavenumbers for the training set, which has been next checked against the validation set. This relatively cheap model, which shows very good agreement with

  20. Dynamic single-molecule force spectroscopy: bond rupture analysis with variable spacer length

    International Nuclear Information System (INIS)

    Dynamic force spectroscopy is a valuable technique to explore the energy landscape of molecular interactions. Polymer spacers are typically used to couple the binding partners to the surfaces. To illustrate the impact of polymer spacers on the measured rupture force and loading rate distributions we used a Monte Carlo simulation, which was adjusted step by step towards realistic experimental conditions. We found that the introduction of a polymer spacer with a discrete length had only a marginal effect. However, a distribution of polymer spacers with different lengths may induce drastic changes on the distributions. Three different methods for data analysis were then tested with regard to their ability to reproduce the input values of the Monte Carlo simulations. We found that simple linearization of all data points leads to an analysis error up to one order of magnitude for the dissociation rate and one-third for the potential width. The best results are achieved by determining the dissociation rate and the potential width directly with a probability density function for the rupture forces and the loading rates as a fit function that uses the dissociation rate and the potential width as fit parameters. By applying this method the analysis errors could be reduced below 25% for the dissociation rate and only 3% for the potential width. Applied to a set of experimental data this method proved to be extremely useful and provided detailed information on the distributions. We are able to discriminate specific and non-specific contributions of an aptamer-ligand interaction and correct for the non-specific background. In addition, this procedure allowed us to account for the low force instrumentation cut-off and reconstruct the rupture force and force rate distributions

  1. The accuracy of molecular bond lengths computed by multireference electronic structure methods

    International Nuclear Information System (INIS)

    We compare experimental Re values with computed Re values for 20 molecules using three multireference electronic structure methods, MCSCF, MR-SDCI, and MR-AQCC. Three correlation-consistent orbital basis sets are used, along with complete basis set extrapolations, for all of the molecules. These data complement those computed previously with single-reference methods. Several trends are observed. The SCF Re values tend to be shorter than the experimental values, and the MCSCF values tend to be longer than the experimental values. We attribute these trends to the ionic contamination of the SCF wave function and to the corresponding systematic distortion of the potential energy curve. For the individual bonds, the MR-SDCI Re values tend to be shorter than the MR-AQCC values, which in turn tend to be shorter than the MCSCF values. Compared to the previous single-reference results, the MCSCF values are roughly comparable to the MP4 and CCSD methods, which are more accurate than might be expected due to the fact that these MCSCF wave functions include no extra-valence electron correlation effects. This suggests that static valence correlation effects, such as near-degeneracies and the ability to dissociate correctly to neutral fragments, play an important role in determining the shape of the potential energy surface, even near equilibrium structures. The MR-SDCI and MR-AQCC methods predict Re values with an accuracy comparable to, or better than, the best single-reference methods (MP4, CCSD, and CCSD(T)), despite the fact that triple and higher excitations into the extra-valence orbital space are included in the single-reference methods but are absent in the multireference wave functions. The computed Re values using the multireference methods tend to be smooth and monotonic with basis set improvement. The molecular structures are optimized using analytic energy gradients, and the timings for these calculations show the practical advantage of using variational wave

  2. 纤维束埋置长度对纤维编织网与混凝土的黏结性能的影响%Influence of initial bond length on bond behavior between textile and concrete

    Institute of Scientific and Technical Information of China (English)

    金贺楠; 王伯昕; 满腾

    2014-01-01

    纤维编织网与混凝土能否协调工作取决于两者之间的黏结强度。通过拉拔试验,分析了纤维束埋置长度对纤维网与混凝土黏结性能的影响,分析了纤维编织网与混凝土之间应力传递的机理。试验结果表明:随纤维束埋长增长,纤维束的极限拉拔力不断增加,平均黏结强度降低。最后提出了最佳埋置长度的取值和基本锚固长度的计算公式。%Whether textile and concrete can coordinate with each other is related to their bond behavior.The influence of initial bond length on bond behavior between textile and concrete was investigated based on the pull-out tests.Meanwhile the mechanism of the bond stress how is transferred from concrete matrix to textile is reviewed.The results showed that the ultimate pull force increases and the aver-age bond strength declines with the enhancement of initial bond length.Finally the best value of initial bond length and the formula of basic anchorage length are recommended in this paper.

  3. Effect of alcohol chain length, concentration and polarity on separations in high-performance liquid chromatography using bonded cyclodextrin columns.

    Science.gov (United States)

    Atamna, I Z; Muschik, G M; Issaq, H J

    1990-01-19

    The effect of alcohol chain length, concentration and polarity on separation in high-performance liquid chromatography using beta-cyclodextrin-bonded silica is discussed. The results show that retention times cannot be predicted merely from the polarity of the binary mobile phase. Although organic modifiers with the same physico-chemical properties and from the same solvent group were used, the retention times obtained using binary mobile phases having the same polarity, were different. It was also observed that normal-chain carbon alcohols gave retention times shorter than those obtained with a branched-chain alcohol (n-propanol vs. isopropanol), and the longer the alcohol chain the shorter the retention times. A plot of ln k' vs. alcohol volume fraction for benzene, toluene, ethylbenzene, propylbenzene, butylbenzene, 1-phenylhexane and 1-phenyloctane gave a linear relationship in methanol, ethanol and propanol (except for 1-phenylhexane). A non-linear relationship was obtained for all the solutes in isopropanol, tert.-butanol and 1-butanol, in the alcohol volume fraction studied. PMID:2324212

  4. Linear optical properties and their bond length dependence of yttrium bromide from ab initio and density functional theory calculations

    International Nuclear Information System (INIS)

    Graphical abstract: The electronic properties such as the static dipole polarizability, anisotropy of the polarizability, and dipole moment of yttrium bromide, YBr (X1Σ) have been theoretically studied. Highlights: → Conventional ab initio and density functional theory methods were employed to study linear optical properties of YBr molecule. → Properties derivatives and their level of theory dependence were studied. → Electron correlation effects and rovibrational corrections have also been discussed. - Abstract: We have employed conventional ab initio and density functional theory methods to study the electronic properties such as the mean static dipole polarizability, α-bar, anisotropy of the polarizability, Δα, and dipole moment, μ, of yttrium bromide. The bond length dependence of properties is determined at different levels of theory and appropriate expansions around experimental internuclear distance have been presented. Moreover, the first and second geometrical derivatives for each property are quantified and their level of theory dependence has been analyzed. To study the effect of molecular rotation and vibration on the electronic properties, the rovibrational corrections have also been carried out. It is found that these corrections are less pronounced for considered properties of YBr. In all calculations, the electron correlation effects have been considered and discussed. The obtained results show that the electron correlation is more significant in the calculation of the mean and the anisotropy of dipole polarizability.

  5. Determination of Fe-ligand bond lengths and the Fe-N-O bond angles in soybean ferrous and ferric nitrosylleghemoglobin a using multiple-scattering XAFS analyses.

    Science.gov (United States)

    Rich, A M; Ellis, P J; Tennant, L; Wright, P E; Armstrong, R S; Lay, P A

    1999-12-14

    The NO adducts of leghemoglobin (Lb) are implicated in biological processes, but only the adduct with ferrous Lb (Lb(II)NO) has been characterized previously. We report the first characterization of ferric nitrosylleghemoglobin (Lb(III)NO) and XAS experiments performed on frozen aqueous solutions of Lb(II)NO and Lb(III)NO at 10 K. The XANES and electronic spectra of the NO adducts are similar in shape and energies to the myoglobin (Mb) analogues. The environment of the Fe atom has been refined using multiple-scattering (MS) analyses of the XAFS data. For Lb(II)NO, the MS analysis resulted in an averaged Fe-N(p)(pyrrole) distance of 2.02 A, an Fe-N(epsilon)(imidazole) distance of 1.98 A, an Fe-N(NO) distance of 1.77 A, and an Fe-N-O angle of 147 degrees. The Fe-N(NO) distance and Fe-N-O angle obtained from the analysis of Lb(II)NO are in good agreement with those determined crystallographically for [Fe(TPP)(NO)] (TPP, tetraphenylporphyrinato), with and without 1-methylimidazole (1-MeIm) as the sixth ligand, and the MS XAFS structures reported previously for the myoglobin (Mb(II)NO) analogue and [Fe(TPP)(NO)]. The MS analysis of Lb(III)NO yielded an average Fe-N(p) distance of 2.00 A, an Fe-N(epsilon) distance of 1.89 A, an Fe-N(NO) distance of 1.68 A, and an Fe-N-O angle of 173 degrees. These bond lengths and angles are consistent with those determined previously for the myoglobin analogue (Mb(III)NO) and the crystal structures of the model complexes, [Fe(III)(TPP)(NO)(OH(2))](+) and [Fe(OEP)(NO)](+) (OEP, octaethylporphyrinato). The final XAFS R values were 16.1 and 18.2% for Lb(II)NO and Lb(III)NO, respectively. PMID:10600110

  6. Atomic Structures of Graphene, Benzene and Methane with Bond Lengths as Sums of the Single, Double and Resonance Bond Radii of Carbon

    CERN Document Server

    Heyrovska, Raji

    2008-01-01

    Two dimensional layers of graphene are currently drawing a great attention in fundamental and applied nanoscience. Graphene consists of interconnected hexagons of carbon atoms as in graphite. This article presents for the first time the structures of graphene at the atomic level and shows how it differs from that of benzene, due to the difference in the double bond and resonance bond based radii of carbon. The carbon atom of an aliphatic compound such as methane has a longer covalent single bond radius as in diamond. All the atomic structures presented here have been drawn to scale.

  7. Atomic Structures of Graphene, Benzene and Methane with Bond Lengths as Sums of the Single, Double and Resonance Bond Radii of Carbon

    OpenAIRE

    Heyrovska, Raji

    2008-01-01

    Two dimensional layers of graphene are currently drawing a great attention in fundamental and applied nanoscience. Graphene consists of interconnected hexagons of carbon atoms as in graphite. This article presents for the first time the structures of graphene at the atomic level and shows how it differs from that of benzene, due to the difference in the double bond and resonance bond based radii of carbon. The carbon atom of an aliphatic compound such as methane has a longer covalent single b...

  8. The Hydrogen Bonded Structures of Two 5-Bromobarbituric Acids and Analysis of Unequal C5–X and C5–X′ Bond Lengths (X = X′ = F, Cl, Br or Me in 5,5-Disubstituted Barbituric Acids

    Directory of Open Access Journals (Sweden)

    Thomas Gelbrich

    2016-04-01

    Full Text Available The crystal structure of the methanol hemisolvate of 5,5-dibromobarbituric acid (1MH displays an H-bonded layer structure which is based on N–H∙∙∙O=C, N–H∙∙∙O(MeOH and (MeOHO–H∙∙∙O interactions. The barbiturate molecules form an H-bonded substructure which has the fes topology. 5,5′-Methanediylbis(5-bromobarbituric acid 2, obtained from a solution of 5,5-dibromobarbituric acid in nitromethane, displays a N–H···O=C bonded framework of the sxd type. The conformation of the pyridmidine ring and the lengths of the ring substituent bonds C5–X and C5–X′ in crystal forms of 5,5-dibromobarbituric acid and three closely related analogues (X = X′ = Br, Cl, F, Me have been investigated. In each case, a conformation close to a C5-endo envelope is correlated with a significant lengthening of the axial C5–X′ in comparison to the equatorial C5–X bond. Isolated molecule geometry optimizations at different levels of theory confirm that the C5-endo envelope is the global conformational energy minimum of 5,5-dihalogenbarbituric acids. The relative lengthening of the axial bond is therefore interpreted as an inherent feature of the preferred envelope conformation of the pyrimidine ring, which minimizes repulsive interactions between the axial substituent and pyrimidine ring atoms.

  9. Origin of bulklike structure and bond length disorder of Pt37 and Pt6Ru31 clusters on carbon: comparison of theory and experiment.

    Science.gov (United States)

    Wang, Lin-Lin; Khare, Sanjay V; Chirita, Valeriu; Johnson, D D; Rockett, Angus A; Frenkel, Anatoly I; Mack, Nathan H; Nuzzo, Ralph G

    2006-01-11

    We describe a theoretical analysis of the structures of self-organizing nanoparticles formed by Pt and Ru-Pt on carbon support. The calculations provide insights into the nature of these metal particle systems-ones of current interest for use as the electrocatalytic materials of direct oxidation fuel cells-and clarify complex behaviors noted in earlier experimental studies. With clusters deposited via metallo-organic Pt or PtRu(5) complexes, previous experiments [Nashner et al. J. Am. Chem. Soc. 1997, 119, 7760; Nashner et al. J. Am. Chem. Soc. 1998, 120, 8093; Frenkel et al. J. Phys. Chem. B 2001, 105, 12689] showed that the Pt and Pt-Ru based clusters are formed with fcc(111)-stacked cuboctahedral geometry and essentially bulklike metal-metal bond lengths, even for the smallest (few atom) nanoparticles for which the average coordination number is much smaller than that in the bulk, and that Pt in bimetallic [PtRu(5)] clusters segregates to the ambient surface of the supported nanoparticles. We explain these observations and characterize the cluster structures and bond length distributions using density functional theory calculations with graphite as a model for the support. The present study reveals the origin of the observed metal-metal bond length disorder, distinctively different for each system, and demonstrates the profound consequences that result from the cluster/carbon-support interactions and their key role in the structure and electronic properties of supported metallic nanoparticles. PMID:16390140

  10. A method of coupling the Paternò-Büchi reaction with direct infusion ESI-MS/MS for locating the C[double bond, length as m-dash]C bond in glycerophospholipids.

    Science.gov (United States)

    Stinson, Craig A; Xia, Yu

    2016-06-21

    Tandem mass spectrometry (MS/MS) coupled with soft ionization is established as an essential platform for lipid analysis; however, determining high order structural information, such as the carbon-carbon double bond (C[double bond, length as m-dash]C) location, remains challenging. Recently, our group demonstrated a method for sensitive and confident lipid C[double bond, length as m-dash]C location determination by coupling online the Paternò-Büchi (PB) reaction with nanoelectrospray ionization (nanoESI) and MS/MS. Herein, we aimed to expand the scope of the PB reaction for lipid analysis by enabling the reaction with infusion ESI-MS/MS at much higher flow rates than demonstrated in the nanoESI setup (∼20 nL min(-1)). In the new design, the PB reaction was effected in a fused silica capillary solution transfer line, which also served as a microflow UV reactor, prior to ESI. This setup allowed PB reaction optimization and kinetics studies. Under optimized conditions, a maximum of 50% PB reaction yield could be achieved for a standard glycerophosphocholine (PC) within 6 s of UV exposure over a wide flow rate range (0.1-10 μL min(-1)). A solvent composition of 7 : 3 acetone : H2O (with 1% acid or base modifier) allowed the highest PB yields and good lipid ionization, while lower yields were obtained with an addition of a variety of organic solvents. Radical induced lipid peroxidation was identified to induce undesirable side reactions, which could be effectively suppressed by eliminating trace oxygen in the solution via N2 purge. Finally, the utility of coupling the PB reaction with infusion ESI-MS/MS was demonstrated by analyzing a yeast polar lipid extract where C[double bond, length as m-dash]C bond locations were revealed for 35 glycerophospholipids (GPs). PMID:26892746

  11. The properties of mesoporous silica nanoparticles functionalized with different PEG-chain length via the disulfide bond linker and drug release in glutathione medium.

    Science.gov (United States)

    Xie, Zhifei; Gong, Huameng; Liu, Mingxing; Zhu, Hongda; Sun, Honghao

    2016-01-01

    In this paper, a novel drug-loaded material (MSNs-SS-PEG) was obtained by grafting the thiol-linked methoxy polyethylene glycol (MeOPEG-SH) onto the thiol-functionalized mesoporous silica nanoparticles (MSNs-SH) via the disulfide bond linker. In our designed experiment, three different chain lengths of PEG (PEG(1000), PEG(5000), and PEG(1000)-PEG(5000)) were used. The silica materials were characterized by Fourier transform infrared spectroscopy (FT-IR), dynamic light scattering, field emission scanning electron microscopy, transmission electron microscopy, nitrogen adsorption-desorption measurements, and X-ray diffraction. The morphology of the MSNs-SS-PEG was spherical with an average diameter of about 150 nm. Due to the covalent modification of hydrophilic MeOPEG, the MSNs-SS-PEG was coated by a thin polymer shell, showing stable and inerratic MCM-41 type mesoporous structure as well as high specific surface areas and large pore volumes. Moreover, the releases of doxorubicin hydrochloride (DOX) from these materials at 10 mM of glutathione were investigated. The PEG functionalization could effectively cap drugs in the mesoporous channels. The release of DOX from the MSNs-SS-PEG(n) revealed redox-responsive characteristic. The obtained results showed that the MSNs-SS-PEG might be promising drug delivery carrier materials, which could play an important role in the development of drug delivery. PMID:26540096

  12. The origin of unequal bond lengths in the $\\mathrm{\\tilde{C}}$ $^1$B$_2$ state of SO$_2$: Signatures of high-lying potential energy surface crossings in the low-lying vibrational structure

    CERN Document Server

    Park, G Barratt; Field, Robert W

    2016-01-01

    The $\\mathrm{\\tilde{C}}$ $^1$B$_2$ state of SO$_2$ has a double-minimum potential in the antisymmetric stretch coordinate, such that the minimum energy geometry has nonequivalent SO bond lengths. The asymmetry in the potential energy surface is expressed as a staggering in the energy levels of the $\

  13. A Series of Diamagnetic Pyridine Monoimine Rhenium Complexes with Different Degrees of Metal-to-Ligand Charge Transfer: Correlating (13) C NMR Chemical Shifts with Bond Lengths in Redox-Active Ligands.

    Science.gov (United States)

    Sieh, Daniel; Kubiak, Clifford P

    2016-07-18

    A set of pyridine monoimine (PMI) rhenium(I) tricarbonyl chlorido complexes with substituents of different steric and electronic properties was synthesized and fully characterized. Spectroscopic (NMR and IR) and single-crystal X-ray diffraction analyses of these complexes showed that the redox-active PMI ligands are neutral and that the overall electronic structure is little affected by the choices of the substituent at the ligand backbone. One- and two-electron reduction products were prepared from selected starting compounds and could also be characterized by multiple spectroscopic methods and X-ray diffraction. The final product of a one-electron reduction in THF is a diamagnetic metal-metal-bonded dimer after loss of the chlorido ligand. Bond lengths in and NMR chemical shifts of the PMI ligand backbone indicate partial electron transfer to the ligand. Two-electron reduction in THF also leads to the loss of the chlorido ligand and a pentacoordinate complex is obtained. The comparison with reported bond lengths and (13) C NMR chemical shifts of doubly reduced free pyridine monoaldimine ligands indicates that both redox equivalents in the doubly reduced rhenium complex investigated here are located in the PMI ligand. With diamagnetic complexes varying over three formal reduction stages at the PMI ligand we were, for the first time, able to establish correlations of the (13) C NMR chemical shifts with the relevant bond lengths in redox-active ligands over a full redox series. PMID:27319753

  14. Temperature and composition dependence of short-range order and entropy, and statistics of bond length: the semiconductor alloy (GaN)1−x(ZnO)x

    International Nuclear Information System (INIS)

    We present total energy and force calculations for the (GaN)1−x(ZnO)x alloy. Site-occupancy configurations are generated from Monte Carlo (MC) simulations, on the basis of a cluster expansion model proposed in a previous study. Local atomic coordinate relaxations of surprisingly large magnitude are found via density-functional calculations using a 432-atom periodic supercell, for three representative configurations at x = 0.5. These are used to generate bond-length distributions. The configurationally averaged composition- and temperature-dependent short-range order (SRO) parameters of the alloys are discussed. The entropy is approximated in terms of pair distribution statistics and thus related to SRO parameters. This approximate entropy is compared with accurate numerical values from MC simulations. An empirical model for the dependence of the bond length on the local chemical environments is proposed. (paper)

  15. An investigation on the chemistry of the R2P[double bond, length as m-dash]P ligand: reactions of a phosphanylphosphinidene complex of tungsten(vi) with electrophilic reagents.

    Science.gov (United States)

    Grubba, Rafał; Ordyszewska, Anna; Ponikiewski, Łukasz; Gudat, Dietrich; Pikies, Jerzy

    2016-02-01

    The nucleophilic properties of the title compound [(2,6-i-Pr2C6H3N)2(Cl)W(η(2)-t-Bu2P[double bond, length as m-dash]P)]Li·3DME (1) were investigated in reactions with selected electrophilic reagents such as MeI, M(CO)5THF (M = Cr, Mo, W), AlCl3, and GaCl3. Methylation of 1 by MeI yields phosphanylphosphido complexes [(2,6-i-Pr2C6H3N)2W(X)(1,2-η-t-Bu2P[double bond, length as m-dash]P-CH3)] (X = Cl, I) (2-Cl/2-I) with the formation of a new P-C bond. Moreover, 1 reacts with electrophilic compounds [(OC)5M·THF] (M = Cr, Mo, W) to yield a series of novel dinuclear phosphanylphosphinidene complexes [(2,6-i-Pr2C6H3N)2(Cl)W(1,2-η-t-Bu2P[double bond, length as m-dash]P-M(CO)5)]Li·3DME (3, 4, 5) with very long P-M distances. Adducts [(2,6-i-Pr2C6H3N)2(Cl)W(1,2-η-t-Bu2P[double bond, length as m-dash]P-MCl3)]Li·3DME (6, 7) formed by reaction of 1 with GaCl3 and AlCl3 are labile and dissociate into 1 and MCl3 (M = Ga, Al). The outcomes of reactions were monitored by (31)P-NMR spectroscopy. Furthermore, the structures of the isolated complexes 2-Cl/2-I, 3, 4, and [(2,6-i-Pr2C6H3N)2(Cl)W(1,2-η-t-Bu2P[double bond, length as m-dash]P-W(t-Bu2PH)(CO)3COLi·2DME] (5-P) were confirmed unambiguously by X-ray diffraction studies. PMID:26556527

  16. Possible interstellar formation of glycine through a concerted mechanism: a computational study on the reaction of CH2[double bond, length as m-dash]NH, CO2 and H2.

    Science.gov (United States)

    Nhlabatsi, Zanele P; Bhasi, Priya; Sitha, Sanyasi

    2016-07-27

    Glycine being the simplest amino acid and also having significant astrobiological implications, has meant that intensive investigations have been carried out in the past, starting from its detection in the interstellar medium (ISM) to analysis of meteorites and cometary samples and laboratory synthesis, as well as computational studies on the possible reaction paths. In this present work quantum chemical calculations have been performed to investigate the possible interstellar formation of glycine via two different paths; (1) in a two-step process via a dihydroxy carbene intermediate and (2) through a one-step concerted mechanism, starting from reactants like CH2[double bond, length as m-dash]NH, CO, CO2, H2O and H2. For the two reactions representing the carbene route, it was observed that the formation of dihydroxy carbene from either CO + H2O or CO2 + H2 is highly endothermic with large barrier heights, whereas the subsequent step of interaction of this carbene with CH2[double bond, length as m-dash]NH to give glycine is exothermic and the barrier is below the reactants. Based on this observation it is suggested that the formation of glycine via the carbene route is a least favourable or even unfavourable path. On the other hand, the two reactions CH2[double bond, length as m-dash]NH + CO + H2O and CH2[double bond, length as m-dash]NH + CO2 + H2 representing the concerted paths were found to be favourable in leading to the formation of glycine. After an extensive study on the first concerted reaction in our previous work (Phys. Chem. Chem. Phys., 2016, 18, 375-381), in this work a detailed investigation has been carried out for the second concerted reaction, CH2[double bond, length as m-dash]NH + CO2 + H2, which can possibly lead to the interstellar formation of glycine. It was observed that this reaction proceeds through a large barrier and at the same time the transition state shows prominent hydrogen dynamics, indicating a tunnelling possibility for this

  17. Engineering a disulfide bond in the lid hinge region of Rhizopus chinensis lipase: increased thermostability and altered acyl chain length specificity.

    Directory of Open Access Journals (Sweden)

    Xiao-Wei Yu

    Full Text Available The key to enzyme function is the maintenance of an appropriate balance between molecular stability and structural flexibility. The lid domain which is very important for "interfacial activation" is the most flexible part in the lipase structure. In this work, rational design was applied to explore the relationship between lid rigidity and lipase activity by introducing a disulfide bond in the hinge region of the lid, in the hope of improving the thermostability of R. chinensis lipase through stabilization of the lid domain without interfering with its catalytic performance. A disulfide bridge between F95C and F214C was introduced into the lipase from R. chinensis in the hinge region of the lid according to the prediction of the "Disulfide by Design" algorithm. The disulfide variant showed substantially improved thermostability with an eleven-fold increase in the t(1/2 value at 60°C and a 7°C increase of T(m compared with the parent enzyme, probably contributed by the stabilization of the geometric structure of the lid region. The additional disulfide bond did not interfere with the catalytic rate (k(cat and the catalytic efficiency towards the short-chain fatty acid substrate, however, the catalytic efficiency of the disulfide variant towards pNPP decreased by 1.5-fold probably due to the block of the hydrophobic substrate channel by the disulfide bond. Furthermore, in the synthesis of fatty acid methyl esters, the maximum conversion rate by RCLCYS reached 95% which was 9% higher than that by RCL. This is the first report on improving the thermostability of the lipase from R. chinensis by introduction of a disulfide bond in the lid hinge region without compromising the catalytic rate.

  18. A New Series of Complexes Possessing Rare “Tertiary” Sulfonamide Nitrogen-to-Metal Bonds of Normal Length: fac-[Re(CO)3(N(SO2R)dien)]PF6 Complexes with Hydrophilic Sulfonamide Ligands

    OpenAIRE

    Abhayawardhana, Pramuditha L.; Marzilli, Patricia A.; Fronczek, Frank R.; Marzilli, Luigi G.

    2014-01-01

    Tertiary sulfonamide nitrogen-to-metal bonds of normal length are very rare. We recently discovered such a bond in one class of fac-[Re(CO)3(N(SO2R)(CH2Z)2)]n complexes (Z = 2-pyridyl) with N(SO2R)dpa ligands derived from di-(2-picolyl)amine (N(H)dpa). fac-[M(CO)3(N(SO2R)(CH2Z)2)]n agents (M = 186/188Re, 99mTc) could find use as radiopharmaceutical bioconjugates when R is a targeting moiety. However, the planar, electron-withdrawing 2-pyridyl groups of N(SO2R)dpa destabilize the ligand to bas...

  19. 3D, 2D and 1D networks via N-H…O and N-H…N hydrogen bonding by the bis-amide analogues: Effect of chain lengths and odd-even spacers

    Indian Academy of Sciences (India)

    Gargi Mukherjee; Kumar Biradha

    2014-09-01

    The synthesis, crystal structures and hydrogen bonding networks of four members of the bis(pyridinecarboxamido)alkane and bis(pyridyl)alkanediamides series (1 ≤ ≤ 8), where the amide moieties are separated by alkyl chain (-(CH2)-) having even or odd number of -(CH2)-groups are explored and correlated with the previously reported structures. The odd members (n= odd) of both the series are found to adopt three-dimensional networks in contrast to the 1D or 2D structures of the even members (n= even). This odd-even effect on the dimensionality of the networks however disappears with increase in chain length.

  20. Doping and bond length contributions to Mn K-edge shift in La1-SrMnO3 (=0-0.7) and their correlation with electrical transport properties

    Indian Academy of Sciences (India)

    S K Pandey; R Bindu; Ashwini Kumar; S Khalid; A V Pimpale

    2008-02-01

    The room temperature experimental Mn K-edge X-ray absorption spectra of La1-SrMnO3 ( = 0-0.7) are compared with the band structure calculations using spin polarized density functional theory. It is explicitly shown that the observed shift in the energy of Mn K-edge on substitution of divalent Sr on trivalent La sites corresponds to the shift in the center of gravity of the unoccupied Mn 4-band contributing to the Mn K-absorption edge region. This correspondence is then used to separate the doping and size contributions to the edge shift due to variation in the number of electrons in valence band and Mn-O bond lengths, respectively, when Sr is doped into LaMnO3. Such separation is helpful to find the localization behaviour of charge carriers and to understand the observed transport properties of these compounds.

  1. The origin of unequal bond lengths in the C̃ (1)B2 state of SO2: Signatures of high-lying potential energy surface crossings in the low-lying vibrational structure.

    Science.gov (United States)

    Park, G Barratt; Jiang, Jun; Field, Robert W

    2016-04-14

    The C̃ (1)B2 state of SO2 has a double-minimum potential in the antisymmetric stretch coordinate, such that the minimum energy geometry has nonequivalent SO bond lengths. The asymmetry in the potential energy surface is expressed as a staggering in the energy levels of the ν3(') progression. We have recently made the first observation of low-lying levels with odd quanta of v3('), which allows us-in the current work-to characterize the origins of the level staggering. Our work demonstrates the usefulness of low-lying vibrational level structure, where the character of the wavefunctions can be relatively easily understood, to extract information about dynamically important potential energy surface crossings that occur at much higher energy. The measured staggering pattern is consistent with a vibronic coupling model for the double-minimum, which involves direct coupling to the bound 2 (1)A1 state and indirect coupling with the repulsive 3 (1)A1 state. The degree of staggering in the ν3(') levels increases with quanta of bending excitation, which is consistent with the approach along the C̃ state potential energy surface to a conical intersection with the 2 (1)A1 surface at a bond angle of ∼145°. PMID:27083727

  2. The origin of unequal bond lengths in the C ˜ 1B2 state of SO2: Signatures of high-lying potential energy surface crossings in the low-lying vibrational structure

    Science.gov (United States)

    Park, G. Barratt; Jiang, Jun; Field, Robert W.

    2016-04-01

    The C ˜ 1B2 state of SO2 has a double-minimum potential in the antisymmetric stretch coordinate, such that the minimum energy geometry has nonequivalent SO bond lengths. The asymmetry in the potential energy surface is expressed as a staggering in the energy levels of the ν3' progression. We have recently made the first observation of low-lying levels with odd quanta of v3', which allows us—in the current work—to characterize the origins of the level staggering. Our work demonstrates the usefulness of low-lying vibrational level structure, where the character of the wavefunctions can be relatively easily understood, to extract information about dynamically important potential energy surface crossings that occur at much higher energy. The measured staggering pattern is consistent with a vibronic coupling model for the double-minimum, which involves direct coupling to the bound 2 1A1 state and indirect coupling with the repulsive 3 1A1 state. The degree of staggering in the ν3' levels increases with quanta of bending excitation, which is consistent with the approach along the C ˜ state potential energy surface to a conical intersection with the 2 1A1 surface at a bond angle of ˜145°.

  3. Flame Length

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Flame length was modeled using FlamMap, an interagency fire behavior mapping and analysis program that computes potential fire behavior characteristics. The tool...

  4. Supersymmetric Valence Bond Solid States

    OpenAIRE

    Arovas, Daniel P.; Hasebe, Kazuki; Qi, Xiao-Liang; Zhang, Shou-Cheng

    2009-01-01

    In this work we investigate the supersymmetric version of the valence bond solid (SVBS) state. In one dimension, the SVBS states continuously interpolate between the valence bond states for integer and half-integer spin chains, and they generally describe superconducting valence bond liquid states. Spin and superconducting correlation functions can be computed exactly for these states, and their correlation lengths are equal at the supersymmetric point. In higher dimensions, the wave function...

  5. Bond Boom

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The Ministry of Finance recently kick-started a pilot program allowing local governments of Shanghai and Shenzhen,and Zhejiang and Guangdong provinces to issue bonds for the first time.How will the new policy affect fiscal capacities of local governments and the broader economy? What else should the country do to build a healthy bond market? Economists and experts discussed these issues in an interview with the Shanghai Securities Journal.Edited excerpts follow.

  6. Bond Boom

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The Ministry of Finance recently kick-started a pilot program allowing local governments of Shanghai and Shenzhen, and Zhejiang and Guangdong provinces to issue bonds for the first time. How will the new policy affect fiscal capacities of local governments and the broader economy? What else should the country do to build a healthy bond market? Economists and experts discussed these issues in an interview with the ShanghaiSecuritiesJournal. Edited excerpts follow:

  7. 1 mil gold bond wire study.

    Energy Technology Data Exchange (ETDEWEB)

    Huff, Johnathon; McLean, Michael B.; Jenkins, Mark W.; Rutherford, Brian Milne

    2013-05-01

    In microcircuit fabrication, the diameter and length of a bond wire have been shown to both affect the current versus fusing time ratio of a bond wire as well as the gap length of the fused wire. This study investigated the impact of current level on the time-to-open and gap length of 1 mil by 60 mil gold bond wires. During the experiments, constant current was provided for a control set of bond wires for 250ms, 410ms and until the wire fused; non-destructively pull-tested wires for 250ms; and notched wires. The key findings were that as the current increases, the gap length increases and 73% of the bond wires will fuse at 1.8A, and 100% of the wires fuse at 1.9A within 60ms. Due to the limited scope of experiments and limited data analyzed, further investigation is encouraged to confirm these observations.

  8. Raman spectroscopy of supported chromium oxide catalysts : determination of chromium-oxygen bond distances and bond orders

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Wachs, I.E.

    1996-01-01

    An empirical correlation is described for relating Raman stretching frequencies of chromium—oxygen (Cr—O) bonds to their bond lengths in chromium oxide reference compounds. An exponential fit of crystallographically determined Cr—O bond lengths to Cr—O Raman symmetric stretching frequencies (800–130

  9. Estimation of genome length

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The genome length is a fundamental feature of a species. This note outlined the general concept and estimation method of the physical and genetic length. Some formulae for estimating the genetic length were derived in detail. As examples, the genome genetic length of Pinus pinaster Ait. and the genetic length of chromosome Ⅵ of Oryza sativa L. were estimated from partial linkage data.

  10. Counting Fixed-Length Permutation Patterns

    OpenAIRE

    Cheyne Homberger

    2012-01-01

    We consider the problem of packing fixed-length patterns into a permutation, and develop a connection between the number of large patterns and the number of bonds in a permutation. Improving upon a result of Kaplansky and Wolfowitz, we obtain exact values for the expectation and variance for the number of large patterns in a random permutation. Finally, we are able to generalize the idea of bonds to obtain results on fixed-length patterns of any size, and present a construction that maximizes...

  11. NMR-based metabolomics reveals that conjugated double bond content and lipid storage efficiency in HepG2 cells are affected by fatty acid cis/trans configuration and chain length

    DEFF Research Database (Denmark)

    Najbjerg, Heidi; Young, Jette F; Bertram, Hanne Christine S.

    2011-01-01

    :0), myristic acid (C14:0), or palmitic acid (C16:0), an effect of fatty acid length was also evident, and data indicated that short-chain fatty acids (C4C6) are immediately converted, whereas mediumlong-chain fatty acids (C1216) are incorporated into triglycerides and deposited in the cells. In conclusion, the......In the present study the metabolic response to various fatty acids was investigated in HepG2 cells by using a 1HNMRbased approach. To elucidate the effect of cis/trans configuration, the cells were exposed to either oleic acid (C18:1 cis-9), elaidic acid (C18:1 trans-9), vaccenic acid (C18:1 trans......-11), linoleic acid (C18:2), or palmitic acid (C16:0), and multivariate data analysis revealed a strong effect of fatty acid on the lipophilic metabolite fraction. Inspection of the spectra revealed that the difference between the observed responses could be ascribed to the appearance of resonances...

  12. Distinguishing Bonds.

    Science.gov (United States)

    Rahm, Martin; Hoffmann, Roald

    2016-03-23

    The energy change per electron in a chemical or physical transformation, ΔE/n, may be expressed as Δχ̅ + Δ(VNN + ω)/n, where Δχ̅ is the average electron binding energy, a generalized electronegativity, ΔVNN is the change in nuclear repulsions, and Δω is the change in multielectron interactions in the process considered. The last term can be obtained by the difference from experimental or theoretical estimates of the first terms. Previously obtained consequences of this energy partitioning are extended here to a different analysis of bonding in a great variety of diatomics, including more or less polar ones. Arguments are presented for associating the average change in electron binding energy with covalence, and the change in multielectron interactions with electron transfer, either to, out, or within a molecule. A new descriptor Q, essentially the scaled difference between the Δχ̅ and Δ(VNN + ω)/n terms, when plotted versus the bond energy, separates nicely a wide variety of bonding types, covalent, covalent but more correlated, polar and increasingly ionic, metallogenic, electrostatic, charge-shift bonds, and dispersion interactions. Also, Q itself shows a set of interesting relations with the correlation energy of a bond. PMID:26910496

  13. Definition and Application of Topological Index Based on Bond Connectivity

    Institute of Scientific and Technical Information of China (English)

    WANG Zhen-dong; YANG Feng; YANG Hai-lang; LUO Ming-dao; QU Song-sheng

    2003-01-01

    Bond connectivity topological index Si based on chemical bonds was defined by using a matrix method.And Si is formed by atomic parameters such as the number of valence electrons,the number of the highest main quantum of atoms and the bonding electrons and bond parameters such as the length of bonds,the electronegativity difference of bonding atoms.The molecular bond connectivity topological index S is composed of Si.The thermodynamic properties of saturated hydrocarbons,unsaturated hydrocarbons,oxygen organic,methane halide and transitional element compounds and the molecular bond connectivity topological index S have an optimal correlative relationship.

  14. Redshift or adduct stabilization -- a computational study of hydrogen bonding in adducts of protonated carboxylic acids

    DEFF Research Database (Denmark)

    Olesen, Solveig Gaarn; Hammerum, Steen

    2009-01-01

    always yield consistent predictions, as illustrated by the hydrogen bonds formed by the E and Z OH groups of protonated carboxylic acids. The delta-PA and the stabilization of a series of hydrogen bonded adducts indicate that the E OH group forms the stronger hydrogen bonds, whereas the bond length...... carboxylic acids are different. The OH bond length and IR redshift afford the better measure of hydrogen bond strength....

  15. Diffusion bonding

    Science.gov (United States)

    Anderson, Robert C.

    1976-06-22

    1. A method for joining beryllium to beryllium by diffusion bonding, comprising the steps of coating at least one surface portion of at least two beryllium pieces with nickel, positioning a coated surface portion in a contiguous relationship with an other surface portion, subjecting the contiguously disposed surface portions to an environment having an atmosphere at a pressure lower than ambient pressure, applying a force upon the beryllium pieces for causing the contiguous surface portions to abut against each other, heating the contiguous surface portions to a maximum temperature less than the melting temperature of the beryllium, substantially uniformly decreasing the applied force while increasing the temperature after attaining a temperature substantially above room temperature, and maintaining a portion of the applied force at a temperature corresponding to about maximum temperature for a duration sufficient to effect the diffusion bond between the contiguous surface portions.

  16. HYDROGEN BONDING IN THE METHANOL DIMER

    Science.gov (United States)

    In this work, two methanol molecules are placed in different arrangements to study hydrogen bonding in carbohydrate materials such as cellulose. Energy was calculated as a function of both hydrogen bond length and angle over wide ranges, using quantum mechanics (QM). The QM wavefunctions are analyze...

  17. Einstein's Length Concept

    International Nuclear Information System (INIS)

    Einstein's length measuring procedure of a rod moving with velocity υ (0 ≤ |υ| < c) is discussed. The part of this procedure, namely measuring the length of the resting (υ = 0) rod, is realizable and leads to the elongation of the moving rod. The other part of Einstein's procedure, measuring the length of the moving (υ ≠ 0) rod, is not realizable and leads to the contraction of the moving rod. As the result of this procedure the moving rod contraction concept is supposed physically unfounded. (author). 8 refs; 1 fig

  18. A Characteristic Particle Length

    CERN Document Server

    Roberts, Mark D

    2015-01-01

    It is argued that there are characteristic intervals associated with any particle that can be derived without reference to the speed of light $c$. Such intervals are inferred from zeros of wavefunctions which are solutions to the Schr\\"odinger equation. The characteristic length is $\\ell=\\beta^2\\hbar^2/(8Gm^3)$, where $\\beta=3.8\\dots$; this length might lead to observational effects on objects the size of a virus.

  19. Cross Shear Roll Bonding

    DEFF Research Database (Denmark)

    Bay, Niels; Bjerregaard, Henrik; Petersen, Søren. B;

    1994-01-01

    The present paper describes an investigation of roll bonding an AlZn alloy to mild steel. Application of cross shear roll bonding, where the two equal sized rolls run with different peripheral speed, is shown to give better bond strength than conventional roll bonding. Improvements of up to 20......-23% in bond strength are found and full bond strength is obtained at a reduction of 50% whereas 65% is required in case of conventional roll bonding. Pseudo cross shear roll bonding, where the cross shear effect is obtained by running two equal sized rolls with different speed, gives the same results....

  20. Wire bonding in microelectronics

    CERN Document Server

    Harman, George G

    2010-01-01

    Wire Bonding in Microelectronics, Third Edition, has been thoroughly revised to help you meet the challenges of today's small-scale and fine-pitch microelectronics. This authoritative guide covers every aspect of designing, manufacturing, and evaluating wire bonds engineered with cutting-edge techniques. In addition to gaining a full grasp of bonding technology, you'll learn how to create reliable bonds at exceedingly high yields, test wire bonds, solve common bonding problems, implement molecular cleaning methods, and much more. Coverage includes: Ultrasonic bonding systems and technologies, including high-frequency systems Bonding wire metallurgy and characteristics, including copper wire Wire bond testing Gold-aluminum intermetallic compounds and other interface reactions Gold and nickel-based bond pad plating materials and problems Cleaning to improve bondability and reliability Mechanical problems in wire bonding High-yield, fine-pitch, specialized-looping, soft-substrate, and extreme-temperature wire bo...

  1. On Bond Portfolio Management

    OpenAIRE

    Vladislav Kargin

    2002-01-01

    This paper describes a new method of bond portfolio optimization based on stochastic string models of correlation structure in bond returns. The paper shows how to approximate correlation function of bond returns, compute the optimal portfolio allocation using Wiener-Hopf factorization, and check whether a collection of bonds presents arbitrage opportunities.

  2. Multicenter bonds, bond valence and bond charge apportion

    International Nuclear Information System (INIS)

    In the same way that the valence of an atom issues from the definition of bond index, we shoe here that the three-center bond index lends itself to the definition of a bond valence. Within the charge of a bond, we show that its self-charge (i.e., the amount of electron kept by the atoms involved in the bond) is parted in a such a way that the more electronegative atom tends to allot more electronic charge than the other atom. We give examples of these quantities and discuss the results for different kinds of chemical systems. We also show some results for four-center indices and report six-center indices for hexagonal rings. (author). 54 refs., 4 figs., 8 tabs

  3. A revised set of values of single-bond radii derived from the observed interatomic distances in metals by correction for bond number and resonance energy

    OpenAIRE

    Pauling, Linus; Kamb, Barclay

    1986-01-01

    An earlier discussion [Pauling, L. (1947) J. Am. Chem. Soc. 69, 542] of observed bond lengths in elemental metals with correction for bond number and resonance energy led to a set of single-bond metallic radii with values usually somewhat less than the corresponding values obtained from molecules and complex ions. A theory of resonating covalent bonds has now been developed that permits calculation of the number of resonance structures per atom and of the effective resonance energy per bond. ...

  4. Relativistic length agony continued

    Directory of Open Access Journals (Sweden)

    Redžić D.V.

    2014-01-01

    Full Text Available We made an attempt to remedy recent confusing treatments of some basic relativistic concepts and results. Following the argument presented in an earlier paper (Redžić 2008b, we discussed the misconceptions that are recurrent points in the literature devoted to teaching relativity such as: there is no change in the object in Special Relativity, illusory character of relativistic length contraction, stresses and strains induced by Lorentz contraction, and related issues. We gave several examples of the traps of everyday language that lurk in Special Relativity. To remove a possible conceptual and terminological muddle, we made a distinction between the relativistic length reduction and relativistic FitzGerald-Lorentz contraction, corresponding to a passive and an active aspect of length contraction, respectively; we pointed out that both aspects have fundamental dynamical contents. As an illustration of our considerations, we discussed briefly the Dewan-Beran-Bell spaceship paradox and the ‘pole in a barn’ paradox. [Projekat Ministarstva nauke Republike Srbije, br. 171028

  5. Hydrogen bonded supramolecular structures

    CERN Document Server

    Li, Zhanting

    2015-01-01

    This book covers the advances in the studies of hydrogen-bonding-driven supramolecular systems  made over the past decade. It is divided into four parts, with the first introducing the basics of hydrogen bonding and important hydrogen bonding patterns in solution as well as in the solid state. The second part covers molecular recognition and supramolecular structures driven by hydrogen bonding. The third part introduces the formation of hollow and giant macrocycles directed by hydrogen bonding, while the last part summarizes hydrogen bonded supramolecular polymers. This book is designed to b

  6. Bond Alternation, Polarizability and Resonance Detuning in Methine Dyes

    CERN Document Server

    Olsen, Seth

    2010-01-01

    Many organic molecules with a high nonlinear polarizability have a "Brooker dye" structure, featuring electron accepting or donating groups separated by an unsaturated (methine or polyene) hydrocarbon bridge. These systems have been the topic of much discussion with regard to their structure-property relationships - particularly relationships linking nonlinear response to bond-length alternation. Here, we show that these relationships can be subsumed within the conceptual framework of a Brooker dye color proposed by Platt [J.R. Platt, J. Chem. Phys. 25 80 (1956)]. The key quantities of Platt's model are the Brooker basicity difference and the isoexcitation energy. These concepts provide a spectroscopic definition of the resonant (cyanine) limit, which is independent of other descriptors commonly used (e.g. bond length alternation). We establish a relation ship between the bond length and the Brooker basicity difference, with which we establish a natural origin for bond length alternation coordinates in asymme...

  7. Bond Properties and Experimental Methods of Textile Reinforced Concrete

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Textile reinforced concrete(TRC, for short) allows the low size production and offers a high effectiveness of the reinforcement by using continuous roving instead of short-chopped fibers. However, whether textiles can cooperate with concrete very well depends on the bond between them. In this paper, the bonding mechanism that the stress was transferred from fine concrete to textile was analyzed, and the influences of the initial bond length of textile, the surface treatment of textile, the strength and workability of concrete as well as the level of prestressing force on bond behavior were investigated on the basis of pull-out tests. The results reveal that with initial bond length increasing, the maximum pull force increases, and increasing concrete strength and improving workability of concrete matrix, epoxy resin impregnating and sand covering of textile as well as prestressing textile can obviously increase the bond strength between the textile and concrete.

  8. Fatigue de-bond growth in adhesively bonded single lap joints

    Indian Academy of Sciences (India)

    P K Sahoo; B Dattaguru; C M Manjunatha; C R L Murthy

    2012-02-01

    The fatigue de-bond growth studies have been conducted on adhesively bonded lap joint specimens between aluminium and aluminium with Redux-319A adhesive with a pre-defined crack of 3 mm at the bond end. The correlations between fracture parameters and the de-bond growth data are established using both numerical and experimental techniques. In the numerical method, geometrically non-linear finite element analyses were carried out on adhesively bonded joint specimen for various de-bond lengths measured from the lap end along the mid-bond line of the adhesive. The finite element results were post processed to estimate the SERR components $G_I$ and $G_{II}$ using the Modified Virtual Crack Closure Integral (MVCCI) procedure. In experimental work, specimens were fabricated and fatigue de-bond growth tests were conducted at a stress ratio $R = −1$. The results obtained from both numerical analyses and testing have been used to generate de-bond growth curve and establish de-bond growth law in the Paris regime for such joints. The de-bond growth rate is primarily function of mode-I SERR component $G_I$ since the rate of growth in shear mode is relatively small. The value of Paris exponent is found to be 6.55. The high value of de-bond growth exponent in Paris regime is expected, since the adhesive is less ductile than conventional metallic materials. This study is important for estimating the life of adhesively bonded joints under both constant and variable amplitude fatigue loads.

  9. Bonding silicones with epoxies

    Energy Technology Data Exchange (ETDEWEB)

    Tira, J.S.

    1980-01-01

    It is shown that silicones, both room temperature vulcanizing (RTV) and millable rubber (press cured) can be successfully bonded to other materials using plasma treatment and epoxy adhesives. The plasma treatment using dry air atmosphere increases the surface energy of the silicone and thus provides a lower water contact angle. This phenomenon allows the epoxy adhesive to wet the silicone surface and ultimately bond. Bond strengths are sufficiently high to result in failures in the silicone materials rather than the adhesive bond.

  10. Australia's Bond Home Bias

    OpenAIRE

    Mishra, Anil V; Umaru B. Conteh

    2014-01-01

    This paper constructs the float adjusted measure of home bias and explores the determinants of bond home bias by employing the International Monetary Fund's high quality dataset (2001 to 2009) on cross-border bond investment. The paper finds that Australian investors' prefer investing in countries with higher economic development and more developed bond markets. Exchange rate volatility appears to be an impediment for cross-border bond investment. Investors prefer investing in countries with ...

  11. Malaysia : Bond Market Development

    OpenAIRE

    International Monetary Fund; World Bank

    2013-01-01

    This paper pertains to the bond market development in Malaysia, and provides an overview of the market scenario in the country. Malaysia has been successful in developing the capital markets, particularly bond markets, in the recent past. Now, it faces the challenge of how to improve broader access and efficiency of the bond market. A high degree of investor concentration, dominated by gov...

  12. Chemical bond fundamental aspects of chemical bonding

    CERN Document Server

    Frenking, Gernot

    2014-01-01

    This is the perfect complement to ""Chemical Bonding - Across the Periodic Table"" by the same editors, who are two of the top scientists working on this topic, each with extensive experience and important connections within the community. The resulting book is a unique overview of the different approaches used for describing a chemical bond, including molecular-orbital based, valence-bond based, ELF, AIM and density-functional based methods. It takes into account the many developments that have taken place in the field over the past few decades due to the rapid advances in quantum chemica

  13. An Investigation of Bonding-Layer Characteristics of Substrate-Bonded Fiber Bragg Grating

    Science.gov (United States)

    Cheng, Chih-Chun; Lo, Yu-Lung; Pun, B. S.; Chang, Y. M.; Li, W. Y.

    2005-11-01

    An analytic model of a bonding layer for a fiber Bragg grating (FBG) bonded on a substrate was developed to predict the strain transfer from the substrate to the FBG when the substrate is subjected to external forces. This model provides a guide on how to bond an FBG on a substrate as a strain sensor or as a chirp FBG spectrum-tuning device used in telecommunications. In addition, an inverse approach based on an optimization technique was developed to investigate which part of the strain distribution along the FBG causes sidebands and ripples when an FBG is stretched to become a chirped FBG (CFBG) using the substrate-straining technique. Results show that the primary influence of an unacceptable bonding layer on the strain transfer from the substrate to the FBG is near the two ends of the FBG, which causes sidebands in the reflective spectrum. Using a glue with a high shear modulus, we can increase the bonding length and reduce the bonding-layer thickness to effectively improve the strain transmissibility of the bonding layer. However, if the strain transfer from the substrate to the FBG exhibits fluctuations due to an improper bonding process or a deteriorating bonding layer, ripples occur in the corresponding wavelength spectra. The number and amplitude of the ripples correlate strongly to those of strain fluctuations in the FBG.

  14. Weak bond screening system

    Science.gov (United States)

    Chuang, S. Y.; Chang, F. H.; Bell, J. R.

    Consideration is given to the development of a weak bond screening system which is based on the utilization of a high power ultrasonic (HPU) technique. The instrumentation of the prototype bond strength screening system is described, and the adhesively bonded specimens used in the system developmental effort are detailed. Test results obtained from these specimens are presented in terms of bond strength and level of high power ultrasound irradiation. The following observations were made: (1) for Al/Al specimens, 2.6 sec of HPU irradiation will screen weak bond conditions due to improper preparation of bonding surfaces; (2) for composite/composite specimens, 2.0 sec of HPU irradiation will disrupt weak bonds due to under-cured conditions; (3) for Al honeycomb core with composite skin structure, 3.5 sec of HPU irradiation will disrupt weak bonds due to bad adhesive or oils contamination of bonding surfaces; and (4) for Nomex honeycomb with Al skin structure, 1.3 sec of HPU irradiation will disrupt weak bonds due to bad adhesive.

  15. Bond Strength of Composite CFRP Reinforcing Bars in Timber

    Directory of Open Access Journals (Sweden)

    Marco Corradi

    2015-07-01

    Full Text Available The use of near-surface mounted (NSM fibre-reinforced polymer (FRP bars is an interesting method for increasing the shear and flexural strength of existing timber members. This article examines the behaviour of carbon FRP (CFRP bars in timber under direct pull-out conditions. The objective of this experimental program is to investigate the bond strength between composite bars and timber: bars were epoxied into small notches made into chestnut and fir wood members using a commercially-available epoxy system. Bonded lengths varied from 150 to 300 mm. Failure modes, stress and strain distributions and the bond strength of CFRP bars have been evaluated and discussed. The pull-out capacity in NSM CFRP bars at the onset of debonding increased with bonded length up to a length of 250 mm. While CFRP bar’s pull-out was achieved only for specimens with bonded lengths of 150 and 200 mm, bar tensile failure was mainly recorded for bonded lengths of 250 and 300 mm.

  16. The Bondons: The Quantum Particles of the Chemical Bond

    Directory of Open Access Journals (Sweden)

    Mihai V. Putz

    2010-10-01

    Full Text Available By employing the combined Bohmian quantum formalism with the U(1 and SU(2 gauge transformations of the non-relativistic wave-function and the relativistic spinor, within the Schrödinger and Dirac quantum pictures of electron motions, the existence of the chemical field is revealed along the associate bondon particle  characterized by its mass (mΒ, velocity (vΒ, charge (eΒ, and life-time (tΒ. This is quantized either in ground or excited states of the chemical bond in terms of reduced Planck constant ħ, the bond energy Ebond and length Xbond, respectively. The mass-velocity-charge-time quaternion properties of bondons’ particles were used in discussing various paradigmatic types of chemical bond towards assessing their covalent, multiple bonding, metallic and ionic features. The bondonic picture was completed by discussing the relativistic charge and life-time (the actual zitterbewegung problem, i.e., showing that the bondon equals the benchmark electronic charge through moving with almost light velocity. It carries negligible, although non-zero, mass in special bonding conditions and towards observable femtosecond life-time as the bonding length increases in the nanosystems and bonding energy decreases according with the bonding length-energy relationship Ebond[kcal/mol]*Xbond[A]=182019, providing this way the predictive framework in which the particle may be observed. Finally, its role in establishing the virtual states in Raman scattering was also established.

  17. Bond Markets in Africa

    OpenAIRE

    Yibin Mu; Peter Phelps; Janet Gale Stotsky

    2013-01-01

    African bond markets have been steadily growing in recent years, but nonetheless remain undeveloped. African countries would benefit from greater access to financing and deeper financial markets. This paper compiles a unique set of data on corporate bond markets in Africa. It then applies an econometric model to analyze the key determinants of African government securities market and corporate bond market capitalization. Government securities market capitalization is directly related to bette...

  18. Build America Bonds

    OpenAIRE

    Andrew Ang; Vineer Bhansali; Yuhang Xing

    2010-01-01

    Build America Bonds (BABs) are a new form of municipal financing introduced in 2009. Investors in BAB municipal bonds receive interest payments that are taxable, but issuers receive a subsidy from the U.S. Treasury. The BAB program has succeeded in lowering the cost of funding for state and local governments with BAB issuers obtaining finance 54 basis points lower, on average, compared to issuing regular municipal bonds. For institutional investors, BAB issue yields are 116 basis points highe...

  19. The Bond Market's q

    OpenAIRE

    Thomas Philippon

    2006-01-01

    I propose an implementation of the q-theory of investment using bond prices instead of equity prices. Credit risk makes corporate bond prices sensitive to future asset values, and q can be inferred from bond prices. The bond market's q performs much better than the usual measure in standard investment equations. With aggregate data, the fit is three times better, cash flows are driven out and the implied adjustment costs are reduced by more than an order of magnitude. The new measure also imp...

  20. Copper wire bonding

    CERN Document Server

    Chauhan, Preeti S; Zhong, ZhaoWei; Pecht, Michael G

    2014-01-01

    This critical volume provides an in-depth presentation of copper wire bonding technologies, processes and equipment, along with the economic benefits and risks.  Due to the increasing cost of materials used to make electronic components, the electronics industry has been rapidly moving from high cost gold to significantly lower cost copper as a wire bonding material.  However, copper wire bonding has several process and reliability concerns due to its material properties.  Copper Wire Bonding book lays out the challenges involved in replacing gold with copper as a wire bond material, and includes the bonding process changes—bond force, electric flame off, current and ultrasonic energy optimization, and bonding tools and equipment changes for first and second bond formation.  In addition, the bond–pad metallurgies and the use of bare and palladium-coated copper wires on aluminum are presented, and gold, nickel and palladium surface finishes are discussed.  The book also discusses best practices and re...

  1. Hydrogen bonding and anaesthesia

    Science.gov (United States)

    Sándorfy, C.

    2004-12-01

    General anaesthetics act by perturbing intermolecular associations without breaking or forming covalent bonds. These associations might be due to a variety of van der Waals interactions or hydrogen bonding. Neurotransmitters all contain OH or NH groups, which are prone to form hydrogen bonds with those of the neurotransmitter receptors. These could be perturbed by anaesthetics. Aromatic rings in amino acids can act as weak hydrogen bond acceptors. On the other hand the acidic hydrogen in halothane type anaesthetics are weak proton donors. These two facts together lead to a probable mechanism of action for all general anaesthetics.

  2. A DFT Study on Intramolecular Hydrogen Bond in Substituted Catechols and Their Radicals

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Density functional theory (DFT) at B3LYP/6-31G(d,p) level was employed to calculate intramolecular hydrogen bond enthalpies (HIHB), O-H charge differences, O-H bond lengths and bond orders for various substituted catechols and their radicals generated after H-abstraction. It was found that although the charge difference between hydrogen-bonded H and O played a role in determining HIHB, HIHB was mainly governed by the hydrogen bond length. As the oxygen-centered radical has great tendency to form a chemical bond with the H atom, hydrogen bond lengths in catecholic radicals are systematically shorter than those in catechols. Hence, the HIHB for the former are higher than those for the latter.

  3. Theoretical study for Bond between Reinforcement steel and Concrete

    Directory of Open Access Journals (Sweden)

    usama mostafa mahran

    2013-04-01

    Full Text Available The behavior and load carrying behavior of reinforced concrete structures is influence by the interaction between the concrete and reinforcement. The stress transfer between reinforcement and concrete in the longitudinal direction of the bars is called bond. An essential feature of reinforced concrete is the bond between steel and concrete. Anchorage of reinforcement depends on the bond between steel and concrete, crack width and crack spacing are mainly governed by it. So, stiffness, deformation and dynamic behavior are influenced by it, and in reverse loading damping and energy dissipation is a function of bond. This is one of the reasons why bond has been, and still is, a topic of fundamental and applied research. Bond stress is the equivalent unit shear stress acting in parallel to the reinforcing bar on the interface between reinforcing steel bar and concrete. Due to the transfer of forces through bond stress, between the reinforcing rebar and concrete, the force in the reinforcing bar changes along its length. Because bond stress is thought of as stress per unit area of bar surface, it is related to the rate of change of steel stress. Consequently, to have bond stress it is necessary to have a changing steel stress. In cases of high stress at the contact interface, near cracks or end anchorages, the bond stresses are related to relative displacements between concrete and steel. These relative displacements, which are caused by different average strains in the concrete and the steel, are usually called bond-slip (t-d.

  4. Comparison of Gold Bonding with Mercury Bonding

    NARCIS (Netherlands)

    Kraka, Elfi; Filatov, Michael; Cremer, Dieter

    2009-01-01

    Nine AuX molecules (X = H, O, S, Se, Te, F, Cl, Br, I), their isoelectronic HgX(+) analogues, and the corresponding neutral HgX diatomics have been investigated using NESC (Normalized Elimination of the Small Component) and B3LYP theory to determine relativistic effects for bond dissociation energie

  5. Coupled valence bond theory

    NARCIS (Netherlands)

    Havenith, R.W.A.

    2005-01-01

    In this Letter, the formulation and implementation of a parallel response property code for non-orthogonal, valence bond wave-functions are described. Test calculations on benzene and cyclobutadiene show that the polarisability and magnetisability tensors obtained using valence bond theory are compa

  6. Bonded labour in Pakistan

    OpenAIRE

    Ercelawn, Aly; Nauman, Muhammad

    2001-01-01

    Examines the continuing prevalence of debt bondage in the 1990s despite the introduction of national legislation banning the practice. Makes recommendations to the Government and the international community for actions to be taken to eliminate bonded labour and provide rehabilitation for freed workers. Includes texts of Land Reforms Regulations, 1972, the Sindh Tenancy Act, 1950 and the Bonded Labour System (Abolition) Act, 1992.

  7. The samurai bond market

    OpenAIRE

    Frank Packer; Elizabeth Reynolds

    1997-01-01

    Issuance in the samurai bond market has more than tripled over the past several years. Some observers have attributed this growth to a systematic underestimation of credit risk in the market. A detailed review of credit quality, ratings differences, and initial issue pricing in the samurai bond market, however, turns up little evidence to support this concern.

  8. Money and Nominal Bonds

    OpenAIRE

    Marchesiani, Alessandro; Senesi, Pietro

    2007-01-01

    This paper studies an economy with trading frictions, ex post heterogeneity and nominal bonds in a model à la Lagos and Wright (2005). It is shown that a strictly positive interest rate is a sufficient condition for the allocation with nominal bonds to be welfare improving. This result comes from the protection against the inflation tax.

  9. Hydrogen bonding in polyanilines

    Energy Technology Data Exchange (ETDEWEB)

    Bahceci, S. (Department of Chemistry, Middle East Technical University, Ankara 06531 (Turkey)); Toppare, L. (Department of Chemistry, Middle East Technical University, Ankara 06531 (Turkey)); Yurtsever, E. (Department of Chemistry, Middle East Technical University, Ankara 06531 (Turkey))

    1994-11-29

    Hydrogen bonding between poly(bisphenol A carbonate) (PC) and polyaniline (PAn) is analyzed using semi-empirical quantum methodology. Fully optimized AM1 molecular orbital calculations are reported for various aniline structures (monomer, dimer and trimer), the monomer of the PC and the hydrogen-bonded model of PAn-PC oligomer. ((orig.))

  10. Shape Bonding method

    Science.gov (United States)

    Pontius, James T. (Inventor)

    2010-01-01

    The present invention is directed to a method of bonding at least two surfaces together. The methods step of the present invention include applying a strip of adhesive to a first surface along a predefined outer boundary of a bond area and thereby defining a remaining open area there within. A second surface, or gusset plate, is affixed onto the adhesive before the adhesive cures. The strip of adhesive is allowed to cure and then a second amount of adhesive is applied to cover the remaining open area and substantially fill a void between said first and second surfaces about said bond area. A stencil may be used to precisely apply the strip of adhesive. When the strip cures, it acts as a dam to prevent overflow of the subsequent application of adhesive to undesired areas. The method results in a precise bond area free of undesired shapes and of a preferred profile which eliminate the drawbacks of the prior art bonds.

  11. Water's Hydrogen Bond Strength

    CERN Document Server

    Chaplin, Martin

    2007-01-01

    Water is necessary both for the evolution of life and its continuance. It possesses particular properties that cannot be found in other materials and that are required for life-giving processes. These properties are brought about by the hydrogen bonded environment particularly evident in liquid water. Each liquid water molecule is involved in about four hydrogen bonds with strengths considerably less than covalent bonds but considerably greater than the natural thermal energy. These hydrogen bonds are roughly tetrahedrally arranged such that when strongly formed the local clustering expands, decreasing the density. Such low density structuring naturally occurs at low and supercooled temperatures and gives rise to many physical and chemical properties that evidence the particular uniqueness of liquid water. If aqueous hydrogen bonds were actually somewhat stronger then water would behave similar to a glass, whereas if they were weaker then water would be a gas and only exist as a liquid at sub-zero temperature...

  12. FETAL FOOT LENGTH AND HAND LENGTH: RELATIONSHIP WITH CROWN RUMP LENGTH AND GESTATIONAL AGE

    Directory of Open Access Journals (Sweden)

    Garima

    2015-12-01

    Full Text Available BACKGROUND Estimation of gestational age of fetus is of great medicolegal importance. Multiple parameters of the fetal anatomical measurements are in use. However, gestational age assessment may be difficult in fetus with anencephaly, hydrocephalus, short limb dysplasia, post mortem destruction or in mutilated case. Study of literature suggests that fetal foot has a characteristic pattern of normal growth and the fetal foot shows gradual increase in length relative to the length of the embryo and could be used to estimate gestational age. The purpose of the present study is to determine the accuracy in estimating gestational age using fetal foot and hand length by studying its relation with crown rump length in the foetuses of Manipuri origin. AIMS AND OBJECTIVES 1 To study the relationship between fetal crown rump length and fetal hand and foot length, thereby determining the accuracy in estimating gestational age by a cross-sectional study. MATERIALS AND METHODS A total of 100 formalin fixed fetuses of Manipuri origin, obtained from the Department of Obstetrics and Gynaecology, Regional Institute of Medical Sciences, Imphal, were included in the study, carried out in the Department of Anatomy, from February 2015 to July 2015. The parameters studied were crown rump length, foot length and hand length of fetuses. The data was analysed using SPSS software by regression analysis. Graphs were also plotted to determine pattern of growth and their correlation with crown rump length if any. RESULTS A total of 100 fetuses were studied, of which 43 were females and 57 were males. The mean foot length and hand length progressively increased with increase in crown rump length. Measurements were not significantly different in right or left side or among male and female fetuses. A statistically significant linear relationship was seen between foot length and crown rump length of the fetus (r=0.980, p<0.0001 and hand length and crown rump length of the fetus

  13. Corporate Bonds in Denmark

    DEFF Research Database (Denmark)

    Tell, Michael

    2015-01-01

    Corporate financing is the choice between capital generated by the corporation and capital from external investors. However, since the financial crisis shook the markets in 2007–2008, financing opportunities through the classical means of financing have decreased. As a result, corporations have...... to think in alternative ways such as issuing corporate bonds. A market for corporate bonds exists in countries such as Norway, Germany, France, the United Kingdom and the United States, while Denmark is still behind in this trend. Some large Danish corporations have instead used foreign corporate bonds...

  14. Transversely Compressed Bonded Joints

    DEFF Research Database (Denmark)

    Hansen, Christian Skodborg; Schmidt, Jacob Wittrup; Stang, Henrik

    2012-01-01

    The load capacity of bonded joints can be increased if transverse pressure is applied at the interface. The transverse pressure is assumed to introduce a Coulomb-friction contribution to the cohesive law for the interface. Response and load capacity for a bonded single-lap joint was derived using...... non-linear fracture mechanics. The results indicated a good correlation between theory and tests. Furthermore, the model is suggested as theoretical base for determining load capacity of bonded anchorages with transverse pressure, in externally reinforced concrete structures....

  15. The Halogen Bond

    Science.gov (United States)

    2016-01-01

    The halogen bond occurs when there is evidence of a net attractive interaction between an electrophilic region associated with a halogen atom in a molecular entity and a nucleophilic region in another, or the same, molecular entity. In this fairly extensive review, after a brief history of the interaction, we will provide the reader with a snapshot of where the research on the halogen bond is now, and, perhaps, where it is going. The specific advantages brought up by a design based on the use of the halogen bond will be demonstrated in quite different fields spanning from material sciences to biomolecular recognition and drug design. PMID:26812185

  16. Functionalized alkynyl-chlorogermanes: hydrometallation, Ge-Cl bond activation, Ge-H bond formation and chlorine-tert-butyl exchange via a transient germyl cation.

    Science.gov (United States)

    Honacker, Christian; Qu, Zheng-Wang; Tannert, Jens; Layh, Marcus; Hepp, Alexander; Grimme, Stefan; Uhl, Werner

    2016-04-14

    Treatment of alkynyl-arylchlorogermanes ArylnGe(Cl)(C[triple bond, length as m-dash]C-(t)Bu)3-n (n = 1, 2) with HM(t)Bu2 (M = Al, Ga) yielded mixed Al or Ga alkenyl-alkynylchlorogermanes via hydrometallation reactions. Intramolecular interactions between the Lewis-basic Cl atoms and the Lewis-acidic Al or Ga atoms afforded MCGeCl heterocycles. The endocyclic M-Cl distances were significantly lengthened compared to the starting compounds and indicated Ge-Cl bond activation. Dual hydrometallation succeeded only with HGa(t)Bu2. One Ga atom of the product was involved in a Ga-Cl bond, while the second one had an interaction to a C-H bond of a phenyl group. In two cases treatment of chlorogermanes with two equivalents of HAl(t)Bu2 resulted in hydroalumination of one alkynyl group and formation of unprecedented Ge-H functionalized germanes, Aryl-Ge(H)(C[triple bond, length as m-dash]C-(t)Bu)[C(Al(t)Bu2)[double bond, length as m-dash]C(H)-(t)Bu] (Aryl = mesityl, triisopropylphenyl). The Al atoms of these compounds interacted with the α-C atoms of the alkynyl groups. Ph(Cl)Ge(C[triple bond, length as m-dash]C-(t)Bu)[C(Al(t)Bu2}[double bond, length as m-dash]C(H)-(t)Bu] reacted in an unusual Cl/(t)Bu exchange to yield the tert-butylgermane Ph((t)Bu)Ge(C[triple bond, length as m-dash]C-(t)Bu)[C{Al((t)Bu)(Cl)}[double bond, length as m-dash]C(H)-(t)Bu]. Quantum chemical calculations suggested the formation of a germyl cation as a transient intermediate. PMID:26610394

  17. Traveling time and traveling length for flow in porous media

    OpenAIRE

    Lee, Youngki; Andrade Jr., Jose S.; Buldyrev, Sergey V.; Dokholyan, Nikolay V.; Havlin, Shlomo; King, Peter R.; Paul, Gerald; Stanley, H. Eugene

    1999-01-01

    We study traveling time and traveling length for tracer dispersion in porous media. We model porous media by two-dimensional bond percolation, and we model flow by tracer particles driven by a pressure difference between two points separated by Euclidean distance $r$. We find that the minimal traveling time $t_{min}$ scales as $t_{min} \\sim r^{1.40}$, which is different from the scaling of the most probable traveling time, ${\\tilde t} \\sim r^{1.64}$. We also calculate the length of the path c...

  18. Roll bonding of 6061 aluminum alloy plates

    International Nuclear Information System (INIS)

    The roll bonding process is an important application of the solid state welding . in principle, two or more slabs of the materials to be bonded are placed in contact and welded around the edges. then, this assembled set is heated and rolled until the required thickness is obtained. this process is applied to clad the nuclear fuel, with high strength aluminum alloys during fabrication of plate type nuclear fuel elements for research reactors, or to produce many new constructions which have special uses in industrial applications. in the present work, the steps of the hot roll bonding of 6061 aluminum alloy plates were studies by using both microscopic examination and mechanical test namely singe lap shear strength test. also the effect of reduction degree in thickness, the sequence of hot rolling , surface roughness, degassing opening length and holding time on roll bonding process were studied. the results obtained due to variations in the above parameters are discussed with respect to their effects on the roll bonding of 6061 aluminum alloy plates as well as their effects on the specifications of the fuel plates

  19. EXPERIMENTAL INVESTIGATION ON THE EFFECT OF NATURAL TROPICAL WEATHER ON INTERFACIAL BONDING PERFORMANCE OF CFRP-CONCRETE BONDING SYSTEM

    Directory of Open Access Journals (Sweden)

    MOHD H. MOHD HASHIM

    2016-04-01

    Full Text Available The existing reinforced concrete structures may require rehabilitation and strengthening to overcome deficiencies due to defect and environmental deterioration. Fibre Reinforced Polymer (FRP-concrete bonding systems can provide solution for the deficiencies, but the durability of the bonded joint needs to be investigated for reliable structural performance. In this research the interfacial bonding behaviour of CFRP-concrete system under tropical climate exposure is main interest. A 300 mm concrete prism was bonded with CFRP plate on its two sides and exposed for 3, 6, and 9 months to laboratory environment, continuous natural weather, and wet-dry exposure in 3.5% saltwater solution at room and 40 °C temperature. The prisms were subjected to tension and compression load under bonding test to measure the strain and determine stress distribution and shear stress transfer behaviour. The results of the bonding test showed that load transfer was fairly linear and uniform at lower load level and changed to non-linear and non- uniform at higher load level. The force transfers causes the shear stress distribution being shifted along the bonded length. The combination of climate effects may have provided better curing of the bonded joints, but longer duration of exposure may be required to weaken the bond strength. Nevertheless, CFRP-concrete bonding system was only minimally affected under the tropical climate and salt solution.

  20. Bond dissociation & electronegativity equalization

    OpenAIRE

    Verstraelen, Toon; Ayers, Paul W.; Van Speybroeck, Veronique; Waroquier, Michel

    2012-01-01

    It is well known that the Electrongativity Equalization Mtehod (EEM) fails to describe the charge distribution upon bond dissocation. In this presentation, the bond dissocation is studied with the Atom-Condensed Kohn-Sham DFT approximated to second order (ACKS2). After reviewing the basic equations, a two-fragment system is studied in the dissociation limit. The limiting behavior of the Coulomb interaction (1/r) and the Kohn-Sham matrix elements (exponentially decaying) are plugged into the e...

  1. Anodic bonded graphene

    OpenAIRE

    Balan, Adrian; Kumar, Rakesh; Boukhicha, Mohamed; Beyssac, Olivier; Bouillard, Jean-Claude; Taverna, Dario; Sacks, William; Marangolo, Massimiliano; Lacaze, Emmanuelle; Escoffier, Walter; Poumirol, Jean-Marie; Shukla, Abhay

    2010-01-01

    Abstract We show how to prepare graphene samples on a glass substrate with the anodic bonding method. In this method, a graphite precursor in flake form is bonded to a glass substrate with the help of an electrostatic field and then cleaved off to leave few layer graphene on the substrate. Now that several methods are available for producing graphene, the relevance of our method is in its simplicity and practicality for producing graphene samples of about 100 ?m lateral dimensions. This me...

  2. Handbook of wafer bonding

    CERN Document Server

    Ramm, Peter; Taklo, Maaike M V

    2011-01-01

    Written by an author and editor team from microsystems companies and industry-near research organizations, this handbook and reference presents dependable, first-hand information on bonding technologies.In the first part, researchers from companies and institutions around the world discuss the most reliable and reproducible technologies for the production of bonded wafers. The second part is devoted to current and emerging applications, including microresonators, biosensors and precise measuring devices.

  3. Using Excel To Study The Relation Between Protein Dihedral Angle Omega And Backbone Length

    Science.gov (United States)

    Shew, Christopher; Evans, Samari; Tao, Xiuping

    How to involve the uninitiated undergraduate students in computational biophysics research? We made use of Microsoft Excel to carry out calculations of bond lengths, bond angles and dihedral angles of proteins. Specifically, we studied protein backbone dihedral angle omega by examining how its distribution varies with the length of the backbone length. It turns out Excel is a respectable tool for this task. An ordinary current-day desktop or laptop can handle the calculations for midsized proteins in just seconds. Care has to be taken to enter the formulas for the spreadsheet column after column to minimize the computing load. Supported in part by NSF Grant #1238795.

  4. Effect of coordination on bond properties: A first principles study

    Indian Academy of Sciences (India)

    Jaita Paul; Shobhana Narasimhan

    2008-06-01

    We have used density functional theory to obtain the binding curves for a variety of hypothetical periodic structures of Al, Si, Pb, Sn and Au. Upon examining the resulting database of results for equilibrium bond lengths and radial force constants (within a nearest-neighbour model), we find that both decrease smoothly as coordination is reduced. The effect of dimensionality appears to be small. We find that the force constants at equilibrium vary as the inverse eighth power of the equilibrium bond length. We also find evidence that the force constants are sensitive only to the bond length, and not to the coordination number. We believe these results will be useful in formulating interatomic potentials, e.g., for nanosystems.

  5. Distortion of Vz+On coordination polyhedra and parameters of the bond valence model for V-O bonds in inorganic crystals

    International Nuclear Information System (INIS)

    The dependences of average V-O distances in inorganic compounds of vanadium of different valence on the degree of distortion of coordination polyhedra have been obtained by careful statistical treatment of modern structural data banks. Values of bond lengths in undistorted (regular) polyhedra are recommended. Theoretical analysis of the statistical data made it possible to calculate the most likely values of the parameters of the bond valence model: the interatomic distance for the single (two-electron) bond, corresponding to the single valence, and the bond softness parameter. Calculations of the sums of bond valences for some complicated cases (different coordination numbers, mixed vanadium valence) confirmed reliability of the recommended parameters.

  6. Universal bond correlation function for two-dimensional polymer rings

    OpenAIRE

    Sakaue, Takahiro; Witz, Guillaume; Dietler, Giovanni; Wada, Hirofumi

    2010-01-01

    The bond orientational correlation function (BCF) of a semiflexible ring polymer on a flat surface is studied theoretically. For a stiff chain, we give an exact analytic form of BCF with perturbation calculations. For a chain sufficiently longer than its persistence length, the conventional exponential decay vanishes and a long-range order along the chain contour appears. We demonstrate that the bond orientational correlation satisfies the scaling properties, and construct an interpolating fo...

  7. Experimental bond behavior of FRP sheets glued on brick masonry

    OpenAIRE

    Oliveira, Daniel V.; Basílio, Ismael; Lourenço, Paulo B.

    2011-01-01

    This paper deals with the experimental characterization of the mechanical tensile and shear bond behavior of fiber reinforced polymer (FRP) sheets externally glued on masonry prisms, in terms of load capacity and stress distribution along the bonded length. The brick masonry adopted tries to replicate ancient brick masonry, by using handmade low strength solids bricks and low strength lime based mortar. Key parameters relative to the FRP-masonry interface response, particularly bo...

  8. Minimum Length from First Principles

    CERN Document Server

    Calmet, X; Hsu, S D H; Calmet, Xavier; Graesser, Michael; Hsu, Stephen D. H.

    2005-01-01

    We show that no device or gedanken experiment is capable of measuring a distance less than the Planck length. By "measuring a distance less than the Planck length" we mean, technically, resolve the eigenvalues of the position operator to within that accuracy. The only assumptions in our argument are causality, the uncertainty principle from quantum mechanics and a dynamical criteria for gravitational collapse from classical general relativity called the hoop conjecture. The inability of any gedanken experiment to measure a sub-Planckian distance suggests the existence of a minimal length.

  9. The Influence of Disorder in Multifilament Yarns on the Bond Performance in Textile Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    M. Konrad

    2004-01-01

    Full Text Available In this paper we analyze the performance of a bond layer between the multi-filament yarn and the cementitious matrix. The performance of the bond layer is a central issue in the development of textile-reinforced concrete. The changes in the microstructure during the loading result in distinguished failure mechanisms on the micro, meso and macro scales. The paper provides a brief review of these effects and describes a modeling strategy capable of reflecting the failure process. Using the model of the bond layer we illuminate the correspondence between the disorder in the microstructure of the yarn and the bonding behavior at the meso- and macro level. Particular interest is paid to the influence of irregularities in the micro-structure (relative differences in filament lengths, varying bond quality, bond-free length for different levels of local bond quality between the filament surface and the matrix. 

  10. Definition of Magnetic Exchange Length

    Energy Technology Data Exchange (ETDEWEB)

    Abo, GS; Hong, YK; Park, J; Lee, J; Lee, W; Choi, BC

    2013-08-01

    The magnetostatic exchange length is an important parameter in magnetics as it measures the relative strength of exchange and self-magnetostatic energies. Its use can be found in areas of magnetics including micromagnetics, soft and hard magnetic materials, and information storage. The exchange length is of primary importance because it governs the width of the transition between magnetic domains. Unfortunately, there is some confusion in the literature between the magnetostatic exchange length and a similar distance concerning magnetization reversal mechanisms in particles known as the characteristic length. This confusion is aggravated by the common usage of two different systems of units, SI and cgs. This paper attempts to clarify the situation and recommends equations in both systems of units.

  11. Minimum Length from First Principles

    OpenAIRE

    Calmet, Xavier; Graesser, Michael; Hsu, Stephen D. H.

    2005-01-01

    We show that no device or gedanken experiment is capable of measuring a distance less than the Planck length. By "measuring a distance less than the Planck length" we mean, technically, resolve the eigenvalues of the position operator to within that accuracy. The only assumptions in our argument are causality, the uncertainty principle from quantum mechanics and a dynamical criteria for gravitational collapse from classical general relativity called the hoop conjecture. The inability of any g...

  12. Two-valued breakup length of a water jet issuing from a finite-length nozzle under normal gravity.

    Science.gov (United States)

    Umemura, Akira; Kawanabe, Sho; Suzuki, Sousuke; Osaka, Jun

    2011-09-01

    Laboratory experiments are conducted in which water is issued vertically downward from a finite-length nozzle at a constant speed using a piston. The results of these experiments indicate that the breakup length of the liquid jet is two-valued at Weber numbers greater than unity but less than a certain value, which depends on the nozzle length-to-radius ratio and the Bond number. In addition to a long breakup length, which is consistent with the conventional observation, another shorter breakup length is realized at the same jet issue speed. Each experimental run for a specific jet issue speed begins from the start of liquid issue so that each run is independent of the other runs. Transition between the two breakup lengths seldom occurs in each run. Which of the two breakup lengths occurs is determined at the start of liquid issue, when the capillary wave produced by the liquid jet tip contraction easily reaches the nozzle exit. Unlike the conventional belief, which is based on the Plateau-Rayleigh instability theory, this experimental evidence demonstrates that liquid jet disintegration occurs in a deterministic manner. The previously proposed self-destabilizing mechanism of a liquid jet in microgravity, in which the origin of the unstable wave responsible for the breakups is attributed to the formation of an upstream propagating capillary wave at every breakup, is extended to explore the physics underlying the observed liquid jet disintegration behaviors. PMID:22060494

  13. A Protein Data Bank survey reveals shortening of intermolecular hydrogen bonds in ligand-protein complexes when a halogenated ligand is an H-bond donor.

    Directory of Open Access Journals (Sweden)

    Jarosław Poznański

    Full Text Available Halogen bonding in ligand-protein complexes is currently widely exploited, e.g. in drug design or supramolecular chemistry. But little attention has been directed to other effects that may result from replacement of a hydrogen by a strongly electronegative halogen. Analysis of almost 30000 hydrogen bonds between protein and ligand demonstrates that the length of a hydrogen bond depends on the type of donor-acceptor pair. Interestingly, lengths of hydrogen bonds between a protein and a halogenated ligand are visibly shorter than those estimated for the same family of proteins in complexes with non-halogenated ligands. Taking into account the effect of halogenation on hydrogen bonding is thus important when evaluating structural and/or energetic parameters of ligand-protein complexes. All these observations are consistent with the concept that halogenation increases the acidity of the proximal amino/imino/hydroxyl groups and thus makes them better, i.e. stronger, H-bond donors.

  14. Stability of Cu-Nb layered nanocomposite from chemical bonding

    Science.gov (United States)

    Saikia, Ujjal; Sahariah, Munima B.; Pandey, Ravindra

    2016-07-01

    The potential use of layered metallic nanocomposites in radiation-resistant materials has been recognized with ultra-high mechanical strengths. Here we present results on layered Cu-Nb composite examining its stability in terms of chemical bond via charge density and transfer analysis, QTAIM, electron localization function and density of states using DFT. An intermediate character of bonding with a significant amount of charge transfer at the interface has been predicted. Shortening of intraplanar bond length is a good manifestation of their observed structural stability which may be due to electron promotion of 3 d → (4 s, 4 p) orbitals associated with the constituent atoms of the composite.

  15. Alkyl Radicals as Hydrogen Bond Acceptors: Computational Evidence

    DEFF Research Database (Denmark)

    Hammerum, Steen

    2009-01-01

    Spectroscopic, energetic and structural information obtained by DFT and G3-type computational studies demonstrates that charged proton donors can form moderately strong hydrogen bonds to simple alkyl radicals. The presence of these bonds stabilizes the adducts and modifies their structure, and...... gives rise to pronounced shifts of IR stretching frequencies and to increased absorption intensities. The hydrogen bond acceptor properties of alkyl radicals equal those of many conventional acceptors, e.g., the bond length changes and IR red-shifts suggest that tert-butyl radicals are slightly better...... acceptors than formaldehyde molecules, while propyl radicals are as good as H2O. The hydrogen bond strength appears to depend on the proton affinity of the proton donor and on the ionization energy of the acceptor alkyl radical, not on the donor-acceptor proton affinity difference, reflecting that the...

  16. Romanian government bond market

    Directory of Open Access Journals (Sweden)

    Cornelia POP

    2012-12-01

    Full Text Available The present paper aims to present the level of development reached by Romanian government bond market segment, as part of the country financial market. The analysis will be descriptive (the data series available for Romania are short, based on the secondary data offered by the official bodies involved in the process of issuing and trading the Romanian government bonds (Romanian Ministry of Public Finance, Romanian National Bank and Bucharest Stock Exchange, and also on secondary data provided by the Federation of European Stock Exchanges.To enhance the market credibility as a benchmark, a various combination of measures is necessary; among these measures are mentioned: the extension of the yield curve; the issuance calendars in order to improve transparency; increasing the disclosure of information on public debt issuance and statistics; holding regular meetings with dealers, institutional investors and rating agencies; introducing a system of primary dealers; establishing a repurchase (repo market in the government bond market. These measures will be discussed based on the evolution presented inside the paper.The paper conclude with the fact that, until now, the Romanian government bond market did not provide a benchmark for the domestic financial market and that further efforts are needed in order to increase the government bond market transparency and liquidity.

  17. TEXT tf coil bonding system

    International Nuclear Information System (INIS)

    An extensive bond test program was conducted prior to manufacturing and bonding the toroidal field (TF) coils for the Texas Experimental Tokamak (TEXT). The bonding materials consisted of fiberglass cloth with pre-impregnated, 'B' staged Hexcel F-159 resin. Approximately 100 double lap bond samples were constructed to test quality, strength, and repeatability of the bonds. The variables investigated included surface machining methods, surface preparations, bond sample size (planform area), bonding pressure, bonding temperature, and the number of laminations bonded simultaneously. Double lap shear tests conducted at room temperature resulted in ultimate shear strengths for all variables in the range of 3000 to 7000 psi with an average value of 5650 psi. Fatigue tests were also conducted to demonstrate bond integrity over the anticipated cycle lifetime of the TEXT machine (10/sup 6/ cycles) under simulated worst case conditions. 2 refs

  18. Insulation bonding test system

    Science.gov (United States)

    Beggs, J. M.; Johnston, G. D.; Coleman, A. D.; Portwood, J. N.; Saunders, J. M.; Redmon, J. W.; Porter, A. C. (Inventor)

    1984-01-01

    A method and a system for testing the bonding of foam insulation attached to metal is described. The system involves the use of an impacter which has a calibrated load cell mounted on a plunger and a hammer head mounted on the end of the plunger. When the impacter strikes the insulation at a point to be tested, the load cell measures the force of the impact and the precise time interval during which the hammer head is in contact with the insulation. This information is transmitted as an electrical signal to a load cell amplifier where the signal is conditioned and then transmitted to a fast Fourier transform (FFT) analyzer. The FFT analyzer produces energy spectral density curves which are displayed on a video screen. The termination frequency of the energy spectral density curve may be compared with a predetermined empirical scale to determine whether a igh quality bond, good bond, or debond is present at the point of impact.

  19. The Illiquidity of Corporate Bonds

    OpenAIRE

    Bao, Jack; Pan, Jun; Wang, Jiang

    2011-01-01

    This paper examines the illiquidity of corporate bonds and its asset-pricing implications. Using transactions data from 2003 to 2009, we show that the illiquidity in corporate bonds is substantial, significantly greater than what can be explained by bid–ask spreads. We establish a strong link between bond illiquidity and bond prices. In aggregate, changes in market-level illiquidity explain a substantial part of the time variation in yield spreads of high-rated (AAA through A) bonds, overshad...

  20. Anodic bonded graphene

    Energy Technology Data Exchange (ETDEWEB)

    Balan, Adrian; Kumar, Rakesh; Boukhicha, Mohamed; Beyssac, Olivier; Bouillard, Jean-Claude; Taverna, Dario; Sacks, William; Shukla, Abhay [Universite Pierre et Marie Curie-Paris 6, CNRS-UMR7590, Institut de Mineralogie et de Physique des Milieux Condenses, 140 rue de Lourmel, Paris, F-75015 France (France); Marangolo, Massimiliano; Lacaze, Emanuelle; Gohler, Roger [Universite Pierre et Marie Curie-Paris 6, CNRS-UMR7588, Institut des Nanosciences de Paris, 140 rue de Lourmel, Paris, F-75015 France (France); Escoffier, Walter; Poumirol, Jean-Marie, E-mail: abhay.shukla@upmc.f [Laboratoire National des Champs Magnetiques Intenses, INSA UPS CNRS, UPR 3228, Universite de Toulouse, 143 avenue de Rangueil, 31400 Toulouse (France)

    2010-09-22

    We show how to prepare graphene samples on a glass substrate with the anodic bonding method. In this method, a graphite precursor in flake form is bonded to a glass substrate with the help of an electrostatic field and then cleaved off to leave few layer graphene on the substrate. Now that several methods are available for producing graphene, the relevance of our method is in its simplicity and practicality for producing graphene samples of about 100 {mu}m lateral dimensions. This method is also extensible to other layered materials. We discuss some detailed aspects of the fabrication and results from Raman spectroscopy, local probe microscopy and transport measurements on these samples.

  1. The Trouble With Bonds

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ In early June,global financial markets gyrated downwards in the wake of central banks'tough language on inflation.At one point bond prices reflected expectations of four rate hikes by the US Federal Reserve (Fed) in the next 12 months.As a result,the dollar firmed,oil prices stabilized,and yield curves flattened around the world.If all these inflation-fighting measures are real,the situation bodes well for bonds.But,I think otherwise.

  2. Effective crack lengths by compliance measurement for ARALL-2 laminates

    Science.gov (United States)

    Wilson, Christopher D.; Wilson, Dale A.

    1991-01-01

    As a means of determining a stress intensity factor solution, the compliance properties of an ARALL-2 laminated-sheet composite were investigated. Fatigue crack growth rate (FCGR) tests were conducted on middle crack tension (MT) specimens fabricated from a layup consisting of three sheets of 2024-T3 aluminum bonded together with unidirectional aramid fibers embedded in epoxy. Excellent fatigue crack growth properties are obtained by the presence of unbroken aramid fibers in the wake of the crack tip. These unbroken fibers act as a bridging mechanism to inhibit further crack growth. To quantify the effect of maximum fatigue load on compliance, a series of FCGR tests were performed. Effective crack lengths were determined to be at least 10 mm shorter than surface measured crack lengths for a 76-mm-wide specimen. The bridging zone was estimated to be at least 5 mm. Compliance and stress intensity factor as functions of effective crack length were determined.

  3. Topological properties of hydrogen bonds and covalent bonds from charge densities obtained by the maximum entropy method (MEM)

    International Nuclear Information System (INIS)

    The maximum-entropy charge densities of six amino acids and peptides reveal systematic dependencies of the properties at bond critical points on bond lengths. MEM densities demonstrate that low-order multipoles (lmax = 1) and isotropic atomic displacement parameters for H atoms in the multipole model are insufficient for capturing all the features of charge densities in hydrogen bonds. Charge densities have been determined by the Maximum Entropy Method (MEM) from the high-resolution, low-temperature (T ≃ 20 K) X-ray diffraction data of six different crystals of amino acids and peptides. A comparison of dynamic deformation densities of the MEM with static and dynamic deformation densities of multipole models shows that the MEM may lead to a better description of the electron density in hydrogen bonds in cases where the multipole model has been restricted to isotropic displacement parameters and low-order multipoles (lmax = 1) for the H atoms. Topological properties at bond critical points (BCPs) are found to depend systematically on the bond length, but with different functions for covalent C—C, C—N and C—O bonds, and for hydrogen bonds together with covalent C—H and N—H bonds. Similar dependencies are known for AIM properties derived from static multipole densities. The ratio of potential and kinetic energy densities |V(BCP)|/G(BCP) is successfully used for a classification of hydrogen bonds according to their distance d(H⋯O) between the H atom and the acceptor atom. The classification based on MEM densities coincides with the usual classification of hydrogen bonds as strong, intermediate and weak [Jeffrey (1997) ▶. An Introduction to Hydrogen Bonding. Oxford University Press]. MEM and procrystal densities lead to similar values of the densities at the BCPs of hydrogen bonds, but differences are shown to prevail, such that it is found that only the true charge density, represented by MEM densities, the multipole model or some other method can lead

  4. When Does Length Cause the Word Length Effect?

    Science.gov (United States)

    Jalbert, Annie; Neath, Ian; Bireta, Tamra J.; Surprenant, Aimee M.

    2011-01-01

    The word length effect, the finding that lists of short words are better recalled than lists of long words, has been termed one of the benchmark findings that any theory of immediate memory must account for. Indeed, the effect led directly to the development of working memory and the phonological loop, and it is viewed as the best remaining…

  5. Continuously variable focal length lens

    Science.gov (United States)

    Adams, Bernhard W; Chollet, Matthieu C

    2013-12-17

    A material preferably in crystal form having a low atomic number such as beryllium (Z=4) provides for the focusing of x-rays in a continuously variable manner. The material is provided with plural spaced curvilinear, optically matched slots and/or recesses through which an x-ray beam is directed. The focal length of the material may be decreased or increased by increasing or decreasing, respectively, the number of slots (or recesses) through which the x-ray beam is directed, while fine tuning of the focal length is accomplished by rotation of the material so as to change the path length of the x-ray beam through the aligned cylindrical slows. X-ray analysis of a fixed point in a solid material may be performed by scanning the energy of the x-ray beam while rotating the material to maintain the beam's focal point at a fixed point in the specimen undergoing analysis.

  6. Graduated compression stockings: knee length or thigh length.

    Science.gov (United States)

    Benkö, T; Cooke, E A; McNally, M A; Mollan, R A

    2001-02-01

    The mechanisms by which graduated compression stockings prevent deep venous thrombosis are not completely understood. In the current study the physiologic effect of low-pressure graduated compression stockings on the venous blood flow in the lower limb and the practical aspects of their use were assessed. Patients having elective orthopaedic surgery at a university orthopaedic department were randomized into five groups to wear two different types of graduated compression stockings in thigh and knee lengths. Patients in the fifth control group did not wear graduated compression stockings. Venous occlusion strain gauge plethysmography was used to measure venous flow. After 20-minutes bed rest there was a highly significant increase in venous capacitance and venous outflow in patients in all of the four groups wearing stockings. There was no difference in the mean of the percentage change of venous capacitance in patients in the four groups wearing stockings. The knee length Brevet stockings were less efficient in increasing the venous outflow. There was no significant change in the venous capacitance and venous outflow in patients in the control group. Visual assessment of the fit and use of stockings was done, and patients' subjective opinion of comfort was sought. The knee length graduated compression stockings wrinkled significantly less, and significantly fewer patients reported discomfort with them. All stockings were reported to be difficult to use. Thigh and knee length stockings have a significant effect on decreasing venous stasis of the lower limb. Knee length graduated compression stockings are similarly efficient in decreasing venous stasis, but they are more comfortable to wear, and they wrinkle less. PMID:11210954

  7. Flax Fiber - Interfacial Bonding

    Science.gov (United States)

    Measured flax fiber physical and chemical properties potentially impact bonding and thus stress transfer between the matrix and fiber within composites. These first attempts at correlating flax fiber quality and biofiber composites contain the initial steps towards identifying key flax fiber charac...

  8. Bonds Between Atoms.

    Science.gov (United States)

    Holden, Alan

    The field of inquiry into how atoms are bonded together to form molecules and solids crosses the borderlines between physics and chemistry encompassing methods characteristic of both sciences. At one extreme, the inquiry is pursued with care and rigor into the simplest cases; at the other extreme, suggestions derived from the more careful inquiry…

  9. Thread bonds in molecules

    CERN Document Server

    Ivlev, B

    2015-01-01

    Unusual chemical bonds are proposed. Each bond is almost covalent but is characterized by the thread of a small radius $\\sim 0.6\\times 10^{-11}$cm, between two nuclei in a molecule. The main electron density is concentrated outside the thread as in a covalent bond. The thread is formed by the electron wave function which has a tendency to be singular on it. The singularity along the thread is cut off by electron "vibrations" due to the interaction with zero point electromagnetic oscillations. The electron energy has its typical value of (1-10)eV. Due to the small tread radius the uncertainty of the electron momentum inside the thread is large resulting in a large electron kinetic energy $\\sim 1 MeV$. This energy is compensated by formation of a potential well due to the reduction of the energy of electromagnetic zero point oscillations. This is similar to formation of a negative van der Waals potential. Thread bonds are stable and cannot be created or destructed in chemical or optical processes.

  10. Summary of neutron scattering lengths

    International Nuclear Information System (INIS)

    All available neutron-nuclei scattering lengths are collected together with their error bars in a uniform way. Bound scattering lengths are given for the elements, the isotopes, and the various spin-states. They are discussed in the sense of their use as basic parameters for many investigations in the field of nuclear and solid state physics. The data bank is available on magnetic tape, too. Recommended values and a map of these data serve for an uncomplicated use of these quantities. (orig.)

  11. Slip length measurement using BBM

    Science.gov (United States)

    Ahmadzadegan, Adib; Snoeyink, Craig

    2015-11-01

    We will be presenting experimental characterizations of slip lengths of fluids in nano/micro channels. These channels are becoming increasingly important in sensor and separations applications. However, crucial questions still remain on the mechanisms that govern slip-length behavior. We used Bessel Beam microscopy (BBM), a novel super-resolution imaging system, in conjunction with TIRF system. These two, together led us to be able to do Particle Tracking Velocimetry with significantly higher accuracy than previously possible. We will be presenting results demonstrating the feasibility of this approach and advantages that make this method unique.

  12. Unified description of hydrogen bonding by a two-state effective Hamiltonian

    CERN Document Server

    McKenzie, Ross H

    2011-01-01

    An effective Hamiltonian is considered for hydrogen bonding between two molecules due to the quantum mechanical interaction between the orbitals of the H-atom and the donor and acceptor atoms in the molecules. The Hamiltonian acts on two diabatic states and has a simple chemically motivated form for its matrix elements. The model gives insight into the "H-bond puzzle", describes different classes of bonds, and empirical correlations between the donor-acceptor distance $R$ and binding energies, bond lengths, and the softening of vibrational frequencies. A key prediction is the UV photo-dissociation of H-bonded complexes via an excited electronic state with an exalted vibrational frequency.

  13. Vector-based model of elastic bonds for DEM simulation of solids

    CERN Document Server

    Kuzkin, Vitaly A

    2012-01-01

    A new model for computer simulation of solids, composed of bonded particles, is proposed. Vectors rigidly connected with particles are used for description of deformation of a single bond. The expression for potential energy of the bond and corresponding expressions for forces and moments are proposed. Formulas, connecting parameters of the model with longitudinal, shear, bending and torsional stiffnesses of the bond, are derived. It is shown that the model allows to describe any values of the bond stiffnesses exactly. Two different calibration procedures depending on bond length/thickness ratio are proposed. It is shown that parameters of model can be chosen so that under small deformations the bond is equivalent to either Bernoulli-Euler or Timoshenko rod or short cylinder connecting particles. Simple expressions, connecting parameters of V-model with geometrical and mechanical characteristics of the bond, are derived. Computer simulation of dynamical buckling of the straight discrete rod and discrete half-...

  14. Remark on pion scattering lengths

    CERN Document Server

    Black, Deirdre; Jora, Renata; Park, Nae Woong; Schechter, Joseph; Shahid, M Naeem

    2009-01-01

    It is noted that the pattern of chiral perturbation theory predictions for both the isotopic spin 0 and isotopic spin 2 s-wave pion-pion scattering lengths to orders $p^2$, $p^4$ and $p^6$ seems to agree with the corresponding pattern of the tree level predictions of the SU(2) linear sigma model.

  15. Cavity length below chute aerators

    Institute of Scientific and Technical Information of China (English)

    WU JianHua; RUAN ShiPing

    2008-01-01

    It is proved that air entrainment is one of the efficient measures dealing with cavitation control for the release works of hydropower projects. There are many factors to be considered in designing a chute aerator. One of the most important factors concerns the cavity length below the aerator, which has outstanding effects on air entrainment against cavitation damage. It is crucial to determine reasonable emergence angle for the calculation of the cavity length. In the present paper the overall effects of structural and hydraulic parameters on the emergence angle of the flow from the aerator were analyzed. Four improved expressions of the emergence angle with weight coefficient were investigated through experimental data of 68 points observed from 12 aerators of 6 hydropower projects, of both model and prototype, on the basis of error theory. A method to calculate the cavity length below aerators was suggested, which considers overall effects of the above mentioned parameters. Comparison between the method in this paper and the other five methods of calculating the cavity length showed that the present method is much more reliable than the existing methods while the mean error of the method is less than others.

  16. Cavity length below chute aerators

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    It is proved that air entrainment is one of the efficient measures dealing with cavi-tation control for the release works of hydropower projects. There are many factors to be considered in designing a chute aerator. One of the most important factors concerns the cavity length below the aerator,which has outstanding effects on air entrainment against cavitation damage. It is crucial to determine reasonable emergence angle for the calculation of the cavity length. In the present paper the overall effects of structural and hydraulic parameters on the emergence angle of the flow from the aerator were analyzed. Four improved expressions of the emer-gence angle with weight coefficient were investigated through experimental data of 68 points observed from 12 aerators of 6 hydropower projects,of both model and prototype,on the basis of error theory. A method to calculate the cavity length be-low aerators was suggested,which considers overall effects of the above men-tioned parameters. Comparison between the method in this paper and the other five methods of calculating the cavity length showed that the present method is much more reliable than the existing methods while the mean error of the method is less than others.

  17. Cyclic Codes of Length 2

    Indian Academy of Sciences (India)

    Manju Pruthi

    2001-11-01

    In this paper explicit expressions of + 1 idempotents in the ring $R = F_q[X]/\\langle X^{2^m}-1\\rangle$ are given. Cyclic codes of length 2 over the finite field , of odd characteristic, are defined in terms of their generator polynomials. The exact minimum distance and the dimension of the codes are obtained.

  18. Seismic Hazard and Fault Length

    Science.gov (United States)

    Black, N. M.; Jackson, D. D.; Mualchin, L.

    2005-12-01

    If mx is the largest earthquake magnitude that can occur on a fault, then what is mp, the largest magnitude that should be expected during the planned lifetime of a particular structure? Most approaches to these questions rely on an estimate of the Maximum Credible Earthquake, obtained by regression (e.g. Wells and Coppersmith, 1994) of fault length (or area) and magnitude. Our work differs in two ways. First, we modify the traditional approach to measuring fault length, to allow for hidden fault complexity and multi-fault rupture. Second, we use a magnitude-frequency relationship to calculate the largest magnitude expected to occur within a given time interval. Often fault length is poorly defined and multiple faults rupture together in a single event. Therefore, we need to expand the definition of a mapped fault length to obtain a more accurate estimate of the maximum magnitude. In previous work, we compared fault length vs. rupture length for post-1975 earthquakes in Southern California. In this study, we found that mapped fault length and rupture length are often unequal, and in several cases rupture broke beyond the previously mapped fault traces. To expand the geologic definition of fault length we outlined several guidelines: 1) if a fault truncates at young Quaternary alluvium, the fault line should be inferred underneath the younger sediments 2) faults striking within 45° of one another should be treated as a continuous fault line and 3) a step-over can link together faults at least 5 km apart. These definitions were applied to fault lines in Southern California. For example, many of the along-strike faults lines in the Mojave Desert are treated as a single fault trending from the Pinto Mountain to the Garlock fault. In addition, the Rose Canyon and Newport-Inglewood faults are treated as a single fault line. We used these more generous fault lengths, and the Wells and Coppersmith regression, to estimate the maximum magnitude (mx) for the major faults in

  19. Reorientational motion and hydrogen-bond stretching dynamics in liquid water

    Science.gov (United States)

    Bakker, H. J.; Woutersen, S.; Nienhuys, H.-K.

    2000-08-01

    The reorientational motion of the molecules in liquid water is investigated by measuring the anisotropy decay of the O-H stretching mode of HDO dissolved in D 2O using femtosecond mid-infrared pump-probe spectroscopy. We observe that the anisotropy shows a non-exponential decay with an initial fast component of which the amplitude increases with increasing lengths of the O-H⋯O hydrogen bond. The experimental results can be accurately described with a model in which the dependence of the reorientation rate on the hydrogen-bond length and the stochastic modulation of this length are accounted for. It is found that the O-H group of a water molecule can only reorient after the O-H⋯O hydrogen bond has sufficiently lengthened. As a result, the effective rate of reorientation of the molecules in liquid water is determined by the rate at which the length of the hydrogen bonds is modulated.

  20. Convertible bond valuation focusing on Chinese convertible bond market

    OpenAIRE

    Yang, Ke

    2010-01-01

    This paper mainly discusses the methods of valuation of convertible bonds in Chinese market. Different from common convertible bonds in European market, considering the complicate features of Chinese convertible bond, this paper represents specific pricing approaches for pricing convertible bonds with different provisions along with the increment of complexity of these provisions. More specifically, this paper represents the decomposing method and binomial tree method for pricing both of Non-...

  1. Domestic Bond Market Development

    OpenAIRE

    Jonathan A. Batten; Szilagyi, Peter G.

    2007-01-01

    A two-tiered approach to financial market development aimed at both bank and bond market reform would also be complementary to longer term economic development, provided services could be delivered through efficient financial and legal institutions (Chakraborty and Ray 2006) and there was strong protection for investors and sound fiscal and monetary policy management by government (Burger and Warnock 2006b). Historically, local issuers tend to issue in the major currencies (U.S. dollars, yen,...

  2. Bond behaviour of deformed bars in NSC and HSC: Experimental study

    OpenAIRE

    Bigaj, A.J.

    1995-01-01

    In order to derive a general bond stress - slip relationship for deformed bars in concrete, tests have been carried out on bond behaviour of bars in normal strength and high strength concrete, for various confining conditions. This report focuses on a first test series, which was carried out on bars with large embedment lengths, cast into massive concrete specimens. The experimental results of this test series are used to formulate bond stress - slip relation. Proposed model considers the eff...

  3. Unprecedented spin localisation in a metal-metal bonded dirhenium complex

    OpenAIRE

    Yan, Yong; Mague, Joel T.; Donahue, James; Sproules, Stephen

    2015-01-01

    he molecular and electronic structure of edge-sharing bioctahedral [N(n-Bu)4]3[Re2(mnt)5] is reported here. Despite the short intermetal bond length of 2.6654(2) Å with computed bond order of 1.2, the unpaired electron is localised by the asymmetric ligand distribution, as demonstrated by its remarkable EPR spectrum.

  4. Influence of metal bonding layer on strain transfer performance of FBG

    Science.gov (United States)

    Liu, Hao; Chen, Weimin; Zhang, Peng; Liu, Li; Shu, Yuejie; Wu, Jun

    2013-01-01

    Metal bonding layer seriously affects the strain transfer performance of Fiber Bragg Grating (FBG). Based on the mode of FBG strain transfer, the influence of the length, the thickness, Poisson's ratio, elasticity modulus of metal bonding layer on the strain transfer coefficient of FBG is analyzed by numerical simulation. FBG is packaged to steel wire using metal bonding technology of FBG. The tensile tests of different bonding lengths and elasticity modulus are carried out. The result shows the strain transfer coefficient of FBGs are 0.9848,0.962 and their average strain sensitivities are 1.076 pm/μɛ,1.099 pm/μɛ when the metal bonding layer is zinc, whose lengths are 15mm, 20mm, respectively. The strain transfer coefficient of FBG packaged by metal bonding layer raises 8.9 percent compared to epoxy glue package. The preliminary experimental results show that the strain transfer coefficient increases with the length of metal bonding layer, decreases with the thickness of metal bonding layer and the influence of Poisson's ratio can be ignored. The experiment result is general agreement with the analysis and provides guidance for metal package of FBG.

  5. Molecular orbital studies of bonding characters of Al-N, Al-C and N-C bonds in organometallic precursors to AlN thin films

    International Nuclear Information System (INIS)

    Electronic structures and properties of the organometallic precursors [Me2AlNHR]2 (R=Me, iPr, and tBu) have been calculated by the semiempirical (ASED-MO, MNDO, AM1 and PM3) methods. Optimized structures obtained from the MNDO, AM1, and PM3 calculations indicate that the N-C bond lengths are considerably affected by the change of the R groups bonded to nitrogen, but the bond lengths of the Al-N and Al-C bonds are little affected. This result is useful in explaining the experimental results for the elimination of the R groups bonded to nitrogen, and could serve as a guide in designing an optimum precursor for the AlN thin film formation

  6. Disulfide bonds of acetylcholinesterase

    International Nuclear Information System (INIS)

    The positions of the inter- and intrasubunit disulfide bridges were established for the 11S form of acetylcholinesterase (AChE) isolated from Torpedo californica. A major form of AChE localized within the basal lamina of the synapse is a dimensionally asymmetric molecule which contains either two (13S) or three (17S) sets of catalytic subunits linked to collagenous and non-collagenous structural subunits. Limited proteolysis yields a tetramer of catalytic subunits which sediments at 11S. Each catalytic subunit contains 8 cysteine residues. Initially, these Cys residues were identified following trypsin digestion of the reduced protein alkylated with [14C]-iodoacetate. Peptides were resolved by gel filtration followed by reverse phase HPLC. To determine the disulfide bonding profile, native non-reduced 11S AChE was treated with a fluorescent, sulfhydryl-specific reagent, monobromobimane, prior to proteolytic digestion. One fluorescent Cys peptide was identified indicating that a single sulfhydryl residue was present in its reduced form. Three pairs of disulfide bonded peptides were identified, sequenced, and localized in the polypeptide chain. The Cys residue that is located in the C-terminal tryptic peptide was disulfide bonded to an identical peptide and thus forms the intersubunit crosslink. Finally, the cysteine positions have been compared with the sequence of the homologous protein, thyroglobulin. Both likely share a common pattern of folding

  7. Integration of European Bond Markets

    OpenAIRE

    Christiansen, Charlotte

    2012-01-01

    I investigate the time variation in the integration of EU government bond markets. The integration is measured by the explanatory power of European factor portfolios for the individual bond markets for each year. The integration of the government bond markets is stronger for EMU than non-EMU members and stronger for old than new EU members. The integration is weaker for the sovereign debt crisis countries than for other countries. The integration of the EU bond markets is decreasing over time...

  8. Doseringsutrustningen SafeBond Electronic

    OpenAIRE

    Bodegren, Patrik

    2003-01-01

    This thesis for the Master of Science degree was performed at Oppunda Electronics AB. The assignment was to further develop an existing prototype of a dispensing equipment. The dispensing equipment doses a kind of glue, bonding which dentist use to mend teeth. The dispensing equipment is adjusted to dose 12 micro litres of bonding. With the dispensing equipment SafeBond Electronic the user can reduce the bonding consumption with approximately 50 percent. Furthermore will the handling of the b...

  9. INTERPOLATION WITH RESTRICTED ARC LENGTH

    Institute of Scientific and Technical Information of China (English)

    Petar Petrov

    2003-01-01

    For given data (ti,yi), I= 0,1,…,n,0 = t0 <t1 <…<tn = 1we study constrained interpolation problem of Favard type inf{‖f"‖∞|f∈W2∞[0,1],f(ti)=yi,i=0,…,n,l(f;[0,1])≤l0}, wherel(f";[0,1])=∫1 0 / 1+f'2(x)dx is the arc length off in [0,1]. We prove the existence of a solution f* of the above problem, that is a quadratic spline with a second derivative f"* , which coincides with one of the constants - ‖f"*‖∞,0,‖f"*‖∞ between every two consecutive knots. Thus, we extend a result ofKarlin concerning Favard problem, to the case of restricted length interpolation.

  10. Length of a Hanging Cable

    Directory of Open Access Journals (Sweden)

    Eric Costello

    2011-01-01

    Full Text Available The shape of a cable hanging under its own weight and uniform horizontal tension between two power poles is a catenary. The catenary is a curve which has an equation defined by a hyperbolic cosine function and a scaling factor. The scaling factor for power cables hanging under their own weight is equal to the horizontal tension on the cable divided by the weight of the cable. Both of these values are unknown for this problem. Newton's method was used to approximate the scaling factor and the arc length function to determine the length of the cable. A script was written using the Python programming language in order to quickly perform several iterations of Newton's method to get a good approximation for the scaling factor.

  11. Variable focal length deformable mirror

    Science.gov (United States)

    Headley, Daniel; Ramsey, Marc; Schwarz, Jens

    2007-06-12

    A variable focal length deformable mirror has an inner ring and an outer ring that simply support and push axially on opposite sides of a mirror plate. The resulting variable clamping force deforms the mirror plate to provide a parabolic mirror shape. The rings are parallel planar sections of a single paraboloid and can provide an on-axis focus, if the rings are circular, or an off-axis focus, if the rings are elliptical. The focal length of the deformable mirror can be varied by changing the variable clamping force. The deformable mirror can generally be used in any application requiring the focusing or defocusing of light, including with both coherent and incoherent light sources.

  12. Minimal Length, Measurability and Gravity

    Directory of Open Access Journals (Sweden)

    Alexander Shalyt-Margolin

    2016-03-01

    Full Text Available The present work is a continuation of the previous papers written by the author on the subject. In terms of the measurability (or measurable quantities notion introduced in a minimal length theory, first the consideration is given to a quantum theory in the momentum representation. The same terms are used to consider the Markov gravity model that here illustrates the general approach to studies of gravity in terms of measurable quantities.

  13. Hamiltonian formulation of bond graphs

    NARCIS (Netherlands)

    Golo, Goran; Schaft, van der Arjan; Breedveld, Peter C.; Maschke, Bernhard M.; Johansson, R.; Rantzer, A.

    2003-01-01

    This paper deals with the mathematical formulation of bond graphs. It is proven that the power continuous part of bond graphs, the junction structure, can be associated with a Dirac structure and that the equations describing a bond graph model correspond to a port Hamiltonian system. The conditions

  14. ASEAN+3 Bond Market Guides

    OpenAIRE

    Asian Development Bank (ADB)

    2012-01-01

    The ASEAN+3 Bond Market Guide contains the comprehensive reports of the ASEAN+3 Bond Market Forum Sub-Forum 1 (SF1) and Sub-Forum 2 (SF2). The SF1 report (Volume 1) analyzes the harmonization and standardization of the existing bond markets in the ASEAN+3. It also contains the individual market guides of 11 economies under the ASEAN+3 Bond Market Forum (ABMF). The SF2 report (Volume 2) provides an overview of the ASEAN+3 bond markets and their infrastructures, as well as issues confronted by ...

  15. Optimal Investment in Structured Bonds

    DEFF Research Database (Denmark)

    Jessen, Pernille; Jørgensen, Peter Løchte

    The paper examines the role of structured bonds in the optimal portfolio of a small retail investor. We consider the typical structured bond essentially repacking an exotic option and a zero coupon bond, i.e. an investment with portfolio insurance. The optimal portfolio is found when the investment...... opportunities consist of a risky reference fund, a risk-free asset and a structured bond. Key model elements are the trading strategy and utility function of the investor. Our numerical results indicate structured bonds do have basis for consideration in the optimal portfolio. The product holdings are...

  16. Bayes Estimation of Queue Length

    Czech Academy of Sciences Publication Activity Database

    Dohnal, Pavel

    Praha : ÚTIA AV ČR, 2006 - (Přikryl, J.; Šmídl, V.). s. 47-48 [International PhD Workshop on Interplay of Societal and Technical Decision-Making, Young Generation Viewpoint /7./. 25.09.2006-30.09.2006, Hrubá Skála] R&D Projects: GA AV ČR 1ET100750401; GA MŠk 1M0572 Institutional research plan: CEZ:AV0Z10750506 Keywords : traffic flow * queue length * occupancy * intensity Subject RIV: BC - Control Systems Theory

  17. Bayes Estimation of Queue Length

    Czech Academy of Sciences Publication Activity Database

    Dohnal, Pavel

    Praha : ÚTIA AV ČR, 2006 - ( And rýsek, J.), s. 1-8 [International PhD Workshop on Interplay of Societal and Technical Decision-Making, Young Generation Viewpoint /7./. Hrubá Skála (CZ), 25.09.2006-30.09.2006] R&D Projects: GA MŠk 1M0572; GA AV ČR 1ET100750401 Institutional research plan: CEZ:AV0Z10750506 Keywords : Bayes estimation * queue length * traffic flow * occupancy * intensity Subject RIV: BC - Control Systems Theory

  18. Minimal Length, Measurability and Gravity

    CERN Document Server

    Shalyt-Margolin, A E

    2016-01-01

    The present work is a continuation of the previous papers written by the author on the subject. In terms of the measurability (or measurable quantities) notion introduced in a minimal length theory, first the consideration is given to a quantum theory in the momentum representation. The same terms are used to consider the Markov gravity model that here illustrates the general approach to studies of gravity in terms of measurable quantities. This paper is dedicated to the 75th Anniversary of Professor Vladimir Grigor'evich Baryshevsky.

  19. Bonding stress-slip constitutive behavior between bars and grout concrete

    Institute of Scientific and Technical Information of China (English)

    ZHENG Yi; LIU Ming; ZHOU Jing-hai; WANG Bing

    2009-01-01

    To establish bonding stress--slip constitutive model between bars and grout concrete, 13 test specimens were employed to study the bonding behavior and the force transfer of bars adhered to grout concrete. The bonding stress development of bars adhered to grout concrete was analyzed. The local bonding stress--slip curve was obtained. Based on the test results, a new bonding stress--slip constitutive model between bars and grout concrete was proposed. The results show that the maximum bonding stress is not influenced by the bar bond length, but it is strengthened when the splitting strength of grout concrete is increased. The model matches the experimental results well, and the regressing coefficient equals 1.7.

  20. Vector-based model of elastic bonds for simulation of granular solids

    Science.gov (United States)

    Kuzkin, Vitaly A.; Asonov, Igor E.

    2012-11-01

    A model (further referred to as the V model) for the simulation of granular solids, such as rocks, ceramics, concrete, nanocomposites, and agglomerates, composed of bonded particles (rigid bodies), is proposed. It is assumed that the bonds, usually representing some additional gluelike material connecting particles, cause both forces and torques acting on the particles. Vectors rigidly connected with the particles are used to describe the deformation of a single bond. The expression for potential energy of the bond and corresponding expressions for forces and torques are derived. Formulas connecting parameters of the model with longitudinal, shear, bending, and torsional stiffnesses of the bond are obtained. It is shown that the model makes it possible to describe any values of the bond stiffnesses exactly; that is, the model is applicable for the bonds with arbitrary length/thickness ratio. Two different calibration procedures depending on bond length/thickness ratio are proposed. It is shown that parameters of the model can be chosen so that under small deformations the bond is equivalent to either a Bernoulli-Euler beam or a Timoshenko beam or short cylinder connecting particles. Simple analytical expressions, relating parameters of the V model with geometrical and mechanical characteristics of the bond, are derived. Two simple examples of computer simulation of thin granular structures using the V model are given.

  1. Silicon carbide wafer bonding by modified surface activated bonding method

    Science.gov (United States)

    Suga, Tadatomo; Mu, Fengwen; Fujino, Masahisa; Takahashi, Yoshikazu; Nakazawa, Haruo; Iguchi, Kenichi

    2015-03-01

    4H-SiC wafer bonding has been achieved by the modified surface activated bonding (SAB) method without any chemical-clean treatment and high temperature annealing. Strong bonding between the SiC wafers with tensile strength greater than 32 MPa was demonstrated at room temperature under 5 kN force for 300 s. Almost the entire wafer has been bonded very well except a small peripheral region and few voids. The interface structure was analyzed to verify the bonding mechanism. It was found an amorphous layer existed as an intermediate layer at the interface. After annealing at 1273 K in vacuum for 1 h, the bonding tensile strength was still higher than 32 MPa. The interface changes after annealing were also studied. The results show that the thickness of the amorphous layer was reduced to half after annealing.

  2. Credit default swaps, bond spreads and the bond market

    OpenAIRE

    Zhu, Meicheng

    2014-01-01

    With the rapid development of the credit default swap (CDS) market, the issue of how the introduction of CDSs affects the corporate bond market has been of particular interest to researchers and policy makers. This has been investigated in the literature from two perspectives. One is to examine the relationship between the CDS and the bond markets in price discovery, and the other is concerned with researching the CDS trading effects on bond spreads. Referring to the former approach, most rel...

  3. Solder extrusion pressure bonding process and bonded products produced thereby

    Science.gov (United States)

    Beavis, Leonard C.; Karnowsky, Maurice M.; Yost, Frederick G.

    1992-01-01

    Production of soldered joints which are highly reliable and capable of surviving 10,000 thermal cycles between about -40.degree. C. and 110.degree. C. Process involves interposing a thin layer of a metal solder composition between the metal surfaces of members to be bonded and applying heat and up to about 1000 psi compression pressure to the superposed members, in the presence of a reducing atmosphere, to extrude the major amount of the solder composition, contaminants including fluxing gases and air, from between the members being bonded, to form a very thin, strong intermetallic bonding layer having a thermal expansion tolerant with that of the bonded members.

  4. Avoiding silicon/glass bonding damage with fusion bonding method

    Institute of Scientific and Technical Information of China (English)

    Daohong Yang(杨道虹); Chen Xu(徐晨); Guangdi Shen(沈光地)

    2004-01-01

    A novel fusion bonding method between silicon and glass with Nd:YAG laser is described.This method overcomes the movable mechanical parts damage caused by the electrostatics force in micro-electronic machine-system(MEMS)device during the anodic bonding. The diameter of laser spot is 300 μm,the power of laser is 100 W,the laser velocity for bonding is 0.05 m/s,the average bonding tension is 6.3 MPa.It could distinctly reduce and eliminate the defects and damage,especially in movable sensitive mechanical parts of MEMS device.

  5. 19 CFR 113.12 - Bond application.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Bond application. 113.12 Section 113.12 Customs... CUSTOMS BONDS Bond Application and Approval of Bond § 113.12 Bond application. (a) Single entry bond application. In order to insure that the revenue is adequately protected the port director may require...

  6. LAMMPS Framework for Directional Dynamic Bonding

    DEFF Research Database (Denmark)

    2012-01-01

    We have extended the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) to support directional bonds and dynamic bonding. The framework supports stochastic formation of new bonds, breakage of existing bonds, and conversion between bond types. Bond formation can be controlled to li...

  7. Ligand chain length conveys thermochromism.

    Science.gov (United States)

    Ganguly, Mainak; Panigrahi, Sudipa; Chandrakumar, K R S; Sasmal, Anup Kumar; Pal, Anjali; Pal, Tarasankar

    2014-08-14

    Thermochromic properties of a series of non-ionic copper compounds have been reported. Herein, we demonstrate that Cu(II) ion with straight-chain primary amine (A) and alpha-linolenic (fatty acid, AL) co-jointly exhibit thermochromic properties. In the current case, we determined that thermochromism becomes ligand chain length-dependent and at least one of the ligands (A or AL) must be long chain. Thermochromism is attributed to a balanced competition between the fatty acids and amines for the copper(II) centre. The structure-property relationship of the non-ionic copper compounds Cu(AL)2(A)2 has been substantiated by various physical measurements along with detailed theoretical studies based on time-dependent density functional theory. It is presumed from our results that the compound would be a useful material for temperature-sensor applications. PMID:24943491

  8. Geometry of area without length

    Science.gov (United States)

    Ho, Pei-Ming; Inami, Takeo

    2016-01-01

    To define a free string by the Nambu-Goto action, all we need is the notion of area, and mathematically the area can be defined directly in the absence of a metric. Motivated by the possibility that string theory admits backgrounds where the notion of length is not well defined but a definition of area is given, we study space-time geometries based on the generalization of a metric to an area metric. In analogy with Riemannian geometry, we define the analogues of connections, curvatures, and Einstein tensor. We propose a formulation generalizing Einstein's theory that will be useful if at a certain stage or a certain scale the metric is ill defined and the space-time is better characterized by the notion of area. Static spherical solutions are found for the generalized Einstein equation in vacuum, including the Schwarzschild solution as a special case.

  9. Geometry of Area Without Length

    CERN Document Server

    Ho, Pei-Ming

    2015-01-01

    To define a free string by the Nambu-Goto action, all we need is the notion of area, and mathematically the area can be defined directly in the absence of a metric. Motivated by the possibility that string theory admits backgrounds where the notion of length is not well defined but a definition of area is given, we study space-time geometries based on the generalization of metric to area metric. In analogy with Riemannian geometry, we define the analogues of connections, curvatures and Einstein tensor. We propose a formulation generalizing Einstein's theory that will be useful if at a certain stage or a certain scale the metric is ill-defined and the space-time is better characterized by the notion of area. Static spherical solutions are found for the generalized Einstein equation in vacuum, including the Schwarzschild solution as a special case.

  10. Solvent effects on hydrogen bonding between primary alcohols and esters

    Institute of Scientific and Technical Information of China (English)

    DHARMALINGAM K.; RAMACHANDRAN K.; SIVAGURUNATHAN P.

    2006-01-01

    The interaction by hydrogen bond formation of some primary alcohols (1-heptanol, 1-octanol and 1-decanol) with esters (methyl methacrylate, ethyl methacrylate and butyl methacrylate) was investigated in non-polar solvents viz., n-heptane,CCh and benzene by means of FTIR spectroscopy. Formation constants and free energy changes of complex formation were determined. The dependence of the equilibrium constants and free energy changes of complex formation on the alkyl chain length of both the alcohols and esters are discussed. The solvent effect on the hydrogen bond formation is discussed in terms of specific interaction between the solute and solvent.

  11. Integration of European Bond Markets

    DEFF Research Database (Denmark)

    Christiansen, Charlotte

    2014-01-01

    I investigate the time variation in the integration of EU government bond markets. The integration is measured by the explanatory power of European factor portfolios for the individual bond markets for each year. The integration of the government bond markets is stronger for EMU than non-EMU memb......I investigate the time variation in the integration of EU government bond markets. The integration is measured by the explanatory power of European factor portfolios for the individual bond markets for each year. The integration of the government bond markets is stronger for EMU than non......-EMU members and stronger for old than new EU members. For EMU countries, the integration is weaker the lower the credit rating is. During the recent crisis periods, the integration is weaker, particularly for EMU countries....

  12. Additional disulfide bonds in insulin

    DEFF Research Database (Denmark)

    Vinther, Tine N; Pettersson, Ingrid; Huus, Kasper;

    2015-01-01

    -chain is flexible and can adapt multiple conformations. We examined how well disulfide bond predictions algorithms could identify disulfide bonds in this region of insulin. In order to identify stable insulin analogues with additional disulfide bonds, which could be expressed, the Cβ cut-off distance had...... higher yields in comparison to analogues with additional disulfide bonds that were more difficult to predict. In contrast, addition of the fourth disulfide bond rendered all analogues resistant to fibrillation under stress conditions and all stable analogues bound to the insulin receptor with picomolar...... predicts four additional four disulfide insulin analogues which could be expressed. Although the location of the additional disulfide bonds is only slightly shifted, this shift impacts both stability and activity of the resulting insulin analogues....

  13. Mezzanine finance and corporate bonds

    OpenAIRE

    Libena TETREVOVA

    2009-01-01

    The article deals with the problems of mezzanine finance in relation to corporate bonds. Firstly, attention is paid to definition of mezzanine finance. The term mezzanine finance is used as a term for hybrid forms of financing that combine elements of debt and equity financing. Mezzanine finance represents an alternative form of financing corporate activities. Secondly, possible forms of mezzanine finance are characterized. We can say that special types of corporate bonds (convertible bonds a...

  14. Hydrogen Bonds Involving Metal Centers

    OpenAIRE

    Pavlović, G.; N. Raos

    2006-01-01

    Hydrogen bonds involving metal center as a hydrogen donor or hydrogen acceptor are only a specific type of metal-hydrogen interactions; it is therefore not easy to differentiate hydrogen bond from other metal-hydrogen interactions, especially agostic ones. The first part of the review is therefore devoted to the results of structural chemistry and molecular spectroscopy (NMR, IR), as a tool for differentiating hydrogen bondings from other hydrogen interactions. The classical examples of Pt···...

  15. Quantum stability and magic lengths of metal atom wires

    Science.gov (United States)

    Cui, Ping; Choi, Jin-Ho; Lan, Haiping; Cho, Jun-Hyung; Niu, Qian; Yang, Jinlong; Zhang, Zhenyu

    2016-06-01

    Metal atom wires represent an important class of nanomaterials in the development of future electronic devices and other functional applications. Using first-principles calculations within density functional theory, we carry out a systematic study of the quantum stability of freestanding atom wires consisting of prototypical metal elements with s -, s p -, and s d -valence electrons. We explore how the quantum mechanically confined motion and local bonding of the valence electrons in these different wire systems can dictate their overall structural stability and find that the formation energy of essentially all the wires oscillates with respect to their length measured by the number n of atoms contained in the wires, establishing the existence of highly preferred (or magic) lengths. Furthermore, different wire classes exhibit distinctively different oscillatory characteristics and quantum stabilities. Alkali metal wires possessing an unpaired s valence electron per atom exhibit simple damped even-odd oscillations. In contrast, Al and Ga wires containing three s2p1 valence electrons per atom generally display much larger and undamped even-odd energy oscillations due to stronger local bonding of the p orbitals. Among the noble metals, the s -dominant Ag wires behave similarly to the linear alkali metal wires, while Au and Pt wires distinctly prefer to be structurally zigzagged due to strong relativistic effects. These findings are discussed in connection with existing experiments and should also be instrumental in future experimental realization of different metal atom wires in freestanding or supported environments with desirable functionalities.

  16. Influence of chain topology and bond potential on the glass transition of polymer chains simulated with the bond fluctuation model

    Energy Technology Data Exchange (ETDEWEB)

    Freire, J J [Departamento de Ciencias y Tecnicas FisicoquImicas, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia (UNED), Senda del Rey 9, 28040 Madrid (Spain)], E-mail: jfreire@invi.uned.es

    2008-07-16

    The bond fluctuation model with a bond potential has been applied to investigation of the glass transition of linear chains and chains with a regular disposition of small branches. Cooling and subsequent heating curves are obtained for the chain energies and also for the mean acceptance probability of a bead jump. In order to mimic different trends to vitrification, a factor B gauging the strength of the bond potential with respect to the long-range potential (i.e. the intramolecular or intermolecular potential between indirectly bonded beads) has been introduced. (A higher value of B leads to a preference for the highest bond lengths and a higher total energy, implying a greater tendency to vitrify.) Different cases have been considered for linear chains: no long-range potential, no bond potential and several choices for B. Furthermore, two distinct values of B have been considered for alternate bonds in linear chains. In the case of the branched chains, mixed models with different values of B for bonds in the main chain and in the branches have also been investigated. The possible presence of ordering or crystallization has been characterized by calculating the collective light scattering function of the different samples after annealing at a convenient temperature below the onset of the abrupt change in the curves associated with a thermodynamic transition. It is concluded that ordering is inherited more efficiently in the systems with branched chains and also for higher values of B. The branched molecules with the highest B values in the main chain bonds exhibit two distinct transitions in the heating curves, which may be associated with two glass transitions. This behavior has been detected experimentally for chains with relatively long flexible branches.

  17. Photoinduced hydrogen-bonding dynamics.

    Science.gov (United States)

    Chu, Tian-Shu; Xu, Jinmei

    2016-09-01

    Hydrogen bonding dynamics has received extensive research attention in recent years due to the significant advances in femtolaser spectroscopy experiments and quantum chemistry calculations. Usually, photoexcitation would cause changes in the hydrogen bonding formed through the interaction between hydrogen donor and acceptor molecules on their ground electronic states, and such transient strengthening or weakening of hydrogen bonding could be crucial for the photophysical transformations and the subsequent photochemical reactions that occurred on a time scale from tens of femtosecond to a few nanoseconds. In this article, we review the combined experimental and theoretical studies focusing on the ultrafast electronic and vibrational hydrogen bonding dynamics. Through these studies, new mechanisms and proposals and common rules have been put forward to advance our understanding of the hydrogen bondings dynamics in a variety of important photoinduced phenomena like photosynthesis, dual fluorescence emission, rotational reorientation, excited-state proton transfer and charge transfer processes, chemosensor fluorescence sensing, rearrangements of the hydrogen-bond network including forming and breaking hydrogen bond in water. Graphical Abstract We review the recent advances on exploring the photoinduced hydrogen bonding dynamics in solutions through a joint approach of laser spectroscopy and theoretical calculation. The reviewed studies have put forward a new mechanism, new proposal, and new rule for a variety of photoinduced phenomena such as photosynthesis, dual fluorescence emission, rotational reorientation, excited-state proton transfer and charge transfer, chemosensor fluorescence sensing, and rearrangements of the hydrogen-bond network in water. PMID:27491849

  18. Wafer bonding applications and technology

    CERN Document Server

    Gösele, Ulrich

    2004-01-01

    During the past decade direct wafer bonding has developed into a mature materials integration technology. This book presents state-of-the-art reviews of the most important applications of wafer bonding written by experts from industry and academia. The topics include bonding-based fabrication methods of silicon-on-insulator, photonic crystals, VCSELs, SiGe-based FETs, MEMS together with hybrid integration and laser lift-off. The non-specialist will learn about the basics of wafer bonding and its various application areas, while the researcher in the field will find up-to-date information about this fast-moving area, including relevant patent information.

  19. A simplified indirect bonding technique

    Directory of Open Access Journals (Sweden)

    Radha Katiyar

    2014-01-01

    Full Text Available With the advent of lingual orthodontics, indirect bonding technique has become an integral part of practice. It involves placement of brackets initially on the models and then their transfer to teeth with the help of transfer trays. Problems encountered with current indirect bonding techniques used are (1 the possibility of adhesive flash remaining around the base of the brackets which requires removal (2 longer time required for the adhesive to gain enough bond strength for secure tray removal. The new simplified indirect bonding technique presented here overcomes both these problems.

  20. Reactive Bonding Film for Bonding Carbon Foam Through Metal Extrusion

    CERN Document Server

    Chertok, Maxwell; Irving, Michael; Neher, Christian; Tripathi, Mani; Wang, Ruby; Zheng, Gayle

    2016-01-01

    Future tracking detectors, such as those under development for the High Luminosity LHC, will require mechanical structures employing novel materials to reduce mass while providing excellent strength, thermal conductivity, and radiation tolerance. Adhesion methods for such materials are under study at present. This paper demonstrates the use of reactive bonding film as an adhesion method for bonding carbon foam.

  1. Digital Control of Bonding Force for Gold Wire Bonding Machine

    Directory of Open Access Journals (Sweden)

    Xiaochu Wang

    2013-01-01

    Full Text Available In order to digitally control the bonding force of a wire bonder precisely, this paper uses a DC solenoid as a force source, and by controlling the solenoid’s current, which causes the electromagnetic force, we can control the bonding force that capillary applies. The bonding force control system in this paper is composed of PC (Personal Computer and hypogyny MCU (Micro Controller Unit, which communicate using a RS485 interface. The digital value of a given bonding force is given by the PC to the MCU. By comparing the sampling current of the solenoid, and through PID regulation, D/A converter of the digital potentiometer and the solenoid driver circuit, the half-closed loop control system of bonding force is accomplished. Tuning of the PID parameters is accomplished with fuzzy adaptive control theory and simulated by Matlab simulink. The control system is tested by comparing the desired bonding force and the force actually applied and examming the relationship between bonding quality and bonding force.

  2. Physical mechanisms of copper-copper wafer bonding

    Energy Technology Data Exchange (ETDEWEB)

    Rebhan, B., E-mail: b.rebhan@evgroup.com [EV Group, DI E. Thallner Straße 1, 4782 St. Florian/Inn (Austria); Christian Doppler Labor für mikroskopische und spektroskopische Materialcharakterisierung, Zentrum für Oberflächen-und Nanoanalytik, Johannes Kepler Universität, Altenberger Straße 69, 4040 Linz (Austria); Hingerl, K., E-mail: kurt.hingerl@jku.at [Center for Surface- and Nano Analytics, Johannes Kepler University, 4040 Linz (Austria)

    2015-10-07

    The study of the physical mechanisms driving Cu-Cu wafer bonding allowed for reducing the bonding temperatures below 200 °C. Metal thermo-compression Cu-Cu wafer bonding results obtained at such low temperatures are very encouraging and suggest that the process is possible even at room temperature if some boundary conditions are fulfilled. Sputtered (PVD) and electroplated Cu thin layers were investigated, and the analysis of both metallization techniques demonstrated the importance of decreasing Cu surface roughness. For an equal surface roughness, the bonding temperature of PVD Cu wafers could be even further reduced due to the favorable microstructure. Their smaller grain size enhances the length of the grain boundaries (observed on the surface prior bonding), acting as efficient mass transfer channels across the interface, and hence the grains are able to grow over the initial bonding interface. Due to the higher concentration of random high-angle grain boundaries, this effect is intensified. The model presented is explaining the microstructural changes based on atomic migration, taking into account that the reduction of the grain boundary area is the major driving force to reduce the Gibbs free energy, and predicts the subsequent microstructure evolution (grain growth) during thermal annealing.

  3. Perimeter ring currents in benzenoids from Pauling bond orders.

    Science.gov (United States)

    Fowler, Patrick W; Myrvold, Wendy; Jenkinson, Daniel; Bird, William H

    2016-04-28

    It is shown that the ring currents in perimeter hexagonal rings of Kekulean benzenoids, as estimated within the Randić conjugated-circuit model, can be calculated directly without tedious pairwise comparison of Kekulé structures or Kekulé counting for cycle-deleted subgraphs. Required are only the Pauling bond orders of perimeter bonds and the number of Kekulé structures of the benzenoid, both readily available from the adjacency matrix of the carbon skeleton. This approach provides easy calculation of complete current maps for benzenoids in which every face has at least one bond on the perimeter (as in the example of cata-condensed benzenoids), and allows qualitative evaluation of the main ring-current contributions to (1)H chemical shifts in general benzenoids. A combined Randić-Pauling model for correlation of ring current and bond length through bond order is derived and shown to be consistent with resilience of current under bond alternation. PMID:26762560

  4. Short hydrogen bonds in the catalytic mechanism of serine proteases

    Directory of Open Access Journals (Sweden)

    VLADIMIR LESKOVAC

    2008-04-01

    Full Text Available The survey of crystallographic data from the Protein Data Bank for 37 structures of trypsin and other serine proteases at a resolution of 0.78–1.28 Å revealed the presence of hydrogen bonds in the active site of the enzymes, which are formed between the catalytic histidine and aspartate residues and are on average 2.7 Å long. This is the typical bond length for normal hydrogen bonds. The geometric properties of the hydrogen bonds in the active site indicate that the H atom is not centered between the heteroatoms of the catalytic histidine and aspartate residues in the active site. Taken together, these findings exclude the possibility that short “low-barrier” hydrogen bonds are formed in the ground state structure of the active sites examined in this work. Some time ago, it was suggested by Cleland that the “low-barrier hydrogen bond” hypothesis is operative in the catalytic mechanism of serine proteases, and requires the presence of short hydrogen bonds around 2.4 Å long in the active site, with the H atom centered between the catalytic heteroatoms. The conclusions drawn from this work do not exclude the validity of the “low-barrier hydrogen bond” hypothesis at all, but they merely do not support it in this particular case, with this particular class of enzymes.

  5. Physical mechanisms of copper-copper wafer bonding

    International Nuclear Information System (INIS)

    The study of the physical mechanisms driving Cu-Cu wafer bonding allowed for reducing the bonding temperatures below 200 °C. Metal thermo-compression Cu-Cu wafer bonding results obtained at such low temperatures are very encouraging and suggest that the process is possible even at room temperature if some boundary conditions are fulfilled. Sputtered (PVD) and electroplated Cu thin layers were investigated, and the analysis of both metallization techniques demonstrated the importance of decreasing Cu surface roughness. For an equal surface roughness, the bonding temperature of PVD Cu wafers could be even further reduced due to the favorable microstructure. Their smaller grain size enhances the length of the grain boundaries (observed on the surface prior bonding), acting as efficient mass transfer channels across the interface, and hence the grains are able to grow over the initial bonding interface. Due to the higher concentration of random high-angle grain boundaries, this effect is intensified. The model presented is explaining the microstructural changes based on atomic migration, taking into account that the reduction of the grain boundary area is the major driving force to reduce the Gibbs free energy, and predicts the subsequent microstructure evolution (grain growth) during thermal annealing

  6. Making End-Bonded Contacts to Carbon Nanotubes

    Science.gov (United States)

    Tang, Jianshi; Cao, Qing; Tulevski, George; Han, Shu-Jen

    As a promising candidate for post-Si era, the implementation of carbon nanotube (CNT)-based CMOS technology requires both high-quality channel and electrical contacts that can be scaled down to sub-10 nm. In the efforts of making scalable contacts to CNT, we have recently demonstrated low-resistance end-bonded carbide contacts, formed by the reaction of Mo with CNT through high-temperature annealing (>800 oC). Such end-bonded contact scheme leads to a size-independent contact resistance of about 30 kilo-ohms, which overcomes the scaling limit of conventional side contacts. In this talk, we will present another strategy to make end-bonded contacts to CNTs through thermal annealing at much lower temperatures (400-600 oC). The contact metals are carefully chosen to have a high carbon solubility, so that the carbon atoms could dissolve into the contacts to inherently form end-bonded contacts. Experimental results, including Raman, SEM, and electrical measurements, with different annealing temperatures will be presented. The length-dependent contact resistance for this new end-bonded contact will be evaluated and compared with that of conventional side contact and also end-bonded carbide contact.

  7. Doubly ionic hydrogen bond interactions within the choline chloride-urea deep eutectic solvent.

    Science.gov (United States)

    Ashworth, Claire R; Matthews, Richard P; Welton, Tom; Hunt, Patricia A

    2016-07-21

    Deep eutectic solvents (DESs) are exemplars of systems with the ability to form neutral, ionic and doubly ionic H-bonds. Herein, the pairwise interactions of the constituent components of the choline chloride-urea DES are examined. Evidence is found for a tripodal CHCl doubly ionic H-bond motif. Moreover it is found that the covalency of doubly ionic H-bonds can be greater than, or comparable with, neutral and ionic examples. In contrast to many traditional solvents, an "alphabet soup" of many different types of H-bond (OHO[double bond, length as m-dash]C, NHO[double bond, length as m-dash]C, OHCl, NHCl, OHNH, CHCl, CHO[double bond, length as m-dash]C, NHOH and NHNH) can form. These H-bonds exhibit substantial flexibility in terms of number and strength. It is anticipated that H-bonding will have a significant impact on the entropy of the system and thus could play an important role in the formation of the eutectic. The 2 : 1 urea : choline-chloride eutectic point of this DES is often associated with the formation of a [Cl(urea)2](-) complexed anion. However, urea is found to form a H-bonded urea[choline](+) complexed cation that is energetically competitive with [Cl(urea)2](-). The negative charge on [Cl(urea)2](-) is found to remain localised on the chloride, moreover, the urea[choline](+) complexed cation forms the strongest H-bond studied here. Thus, there is potential to consider a urea[choline](+)·urea[Cl](-) interaction. PMID:27328990

  8. Experimental Assessment on the Flexural Bonding Performance of Concrete Beam with GFRP Reinforcing Bar under Repeated Loading

    Directory of Open Access Journals (Sweden)

    Minkwan Ju

    2015-01-01

    Full Text Available This study intends to investigate the flexural bond performance of glass fiber-reinforced polymer (GFRP reinforcing bar under repeated loading. The flexural bond tests reinforced with GFRP reinforcing bars were carried out according to the BS EN 12269-1 (2000 specification. The bond test consisted of three loading schemes: static, monotonic, and variable-amplitude loading to simulate ambient loading conditions. The empirical bond length based on the static test was 225 mm, whereas it was 317 mm according to ACI 440 1R-03. Each bond stress on the rib is released and bonding force is enhanced as the bond length is increased. Appropriate level of bond length may be recommended with this energy-based analysis. For the monotonic loading test, the bond strengths at pullout failure after 2,000,000 cycles were 10.4 MPa and 6.5 MPa, respectively: 63–70% of the values from the static loading test. The variable loading test indicated that the linear cumulative damage theory on GFRP bonding may not be appropriate for estimating the fatigue limit when subjected to variable-amplitude loading.

  9. Multiple Bonds Between Metal Atoms

    CERN Document Server

    Cotton, F Albert; Walton, Richard A

    2006-01-01

    Provides a discussion of preparations, reactions, bonding, and physical properties for two of the d-block transition metals in groups 5-10. This title includes catalytic and chemotherapeutic applications, and discusses metal-metal bonds of orders 0.5 to 4 discussed in than 4000 compounds, with citations to approximately 2500 references.

  10. Bondings for tubular solar collectors

    International Nuclear Information System (INIS)

    We studied the following four models of constructing solar collectors: tubes bonded above the absorber plate, tubes bonded under the absorber plate tubes in-line with the absorber plate and bondless tubes in-line with the absorber plate. 2 refs, 6 figs

  11. Computational Chemistry of Adhesive Bonds

    Science.gov (United States)

    Phillips, Donald H.

    1999-01-01

    This investigation is intended to determine the electrical mechanical, and chemical properties of adhesive bonds at the molecular level. The initial determinations will be followed by investigations of the effects of environmental effects on the chemistry and properties of the bond layer.

  12. Fragility and cooperativity concepts in hydrogen-bonded organic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Delpouve, N., E-mail: delpouve.nicolas@gmail.com [AMME-LECAP EA 4528 International Laboratory, University of Rouen, Avenue de l' Universite BP 12, 76801 Saint Etienne du Rouvray (France); Vuillequez, A.; Saiter, A.; Youssef, B.; Saiter, J.M. [AMME-LECAP EA 4528 International Laboratory, University of Rouen, Avenue de l' Universite BP 12, 76801 Saint Etienne du Rouvray (France)

    2012-09-01

    Molecular dynamics at the glass transition of three lactose/oil glassy systems have been investigated according to the cooperativity and fragility approaches. From Donth's approach, the cooperativity length is estimated by modulated temperature calorimetric measurements. Results reveal that modification of the disaccharide by oil leads to increase the disorder degree in the lactose, the size of the cooperative domains and the fragility index. These particular hydrogen-bonded organic glasses follow the general tendency observed on organic and inorganic polymers: the higher the cooperativity length, the higher the value of the fragility index at T{sub g}.

  13. Fragility and cooperativity concepts in hydrogen-bonded organic glasses

    International Nuclear Information System (INIS)

    Molecular dynamics at the glass transition of three lactose/oil glassy systems have been investigated according to the cooperativity and fragility approaches. From Donth's approach, the cooperativity length is estimated by modulated temperature calorimetric measurements. Results reveal that modification of the disaccharide by oil leads to increase the disorder degree in the lactose, the size of the cooperative domains and the fragility index. These particular hydrogen-bonded organic glasses follow the general tendency observed on organic and inorganic polymers: the higher the cooperativity length, the higher the value of the fragility index at Tg.

  14. Information, polarization and term length in democracy

    DEFF Research Database (Denmark)

    Schultz, Christian

    2008-01-01

    This paper considers term lengths in a representative democracy where the political issue divides the population on the left-right scale. Parties are ideologically different and better informed about the consequences of policies than voters are. A short term length makes the government more accou...... the uncertainty is large and parties are not very polarized. Partisan voters always prefer a long term length. When politicians learn while in office a long term length becomes more attractive for swing voters....

  15. Length Mutations in Human Mitochondrial DNA

    OpenAIRE

    Cann, R. L.; Wilson, A. C.

    1983-01-01

    By high-resolution, restriction mapping of mitochondrial DNAs purified from 112 human individuals, we have identified 14 length variants caused by small additions and deletions (from about 6 to 14 base pairs in length). Three of the 14 length differences are due to mutations at two locations within the D loop, whereas the remaining 11 occur at seven sites that are probably within other noncoding sequences and at junctions between coding sequences. In five of the nine regions of length polymor...

  16. Scaling of avian primary feather length

    OpenAIRE

    Nudds, Robert L.; Kaiser, Gary V.; Dyke, Gareth J.

    2011-01-01

    The evolution of the avian wing has long fascinated biologists, yet almost no work includes the length of primary feathers in consideration of overall wing length variation. Here we show that the length of the longest primary feather ( ) contributing to overall wing length scales with negative allometry against total arm (ta = humerus+ulna+manus). The scaling exponent varied slightly, although not significantly so, depending on whether a species level analysis was used or phylogeny was contro...

  17. Quantum Confinement in Hydrogen Bond

    CERN Document Server

    Santos, Carlos da Silva dos; Ricotta, Regina Maria

    2015-01-01

    In this work, the quantum confinement effect is proposed as the cause of the displacement of the vibrational spectrum of molecular groups that involve hydrogen bonds. In this approach the hydrogen bond imposes a space barrier to hydrogen and constrains its oscillatory motion. We studied the vibrational transitions through the Morse potential, for the NH and OH molecular groups inside macromolecules in situation of confinement (when hydrogen bonding is formed) and non-confinement (when there is no hydrogen bonding). The energies were obtained through the variational method with the trial wave functions obtained from Supersymmetric Quantum Mechanics (SQM) formalism. The results indicate that it is possible to distinguish the emission peaks related to the existence of the hydrogen bonds. These analytical results were satisfactorily compared with experimental results obtained from infrared spectroscopy.

  18. Roll bonding of strained aluminium

    DEFF Research Database (Denmark)

    Staun, Jakob M.

    2003-01-01

    This report investigates roll bonding of pre-strained (å ~ 4) aluminium sheets to produce high strain material from high purity aluminium (99.996%) and commercial pure aluminium (99.6%). The degree of bonding is investigated by optical microscopy and ultrasonic scanning. Under the right...... circumstances both materials show good bonding, but the high purity material is excluded because of recrystallisation and the resulting loss of mechanical properties. The effect of cross stacking and roll bonding pre-strained sheets of the commercial purity material is investigated and some dependence of the...... cross rolled volume fraction is found. To further asses this effect, and the anisotropy, it is necessary to acquire knowledge about both texture and microstructure, e.g. by TEM. Roll bonding of pre-strained aluminium is found to be a possible alternative to ARB in the quest for ultra-fine grained...

  19. Hydrogen Bond Formation between the Carotenoid Canthaxanthin and the Silanol Group on MCM-41 Surface.

    Science.gov (United States)

    Gao, Yunlong; Xu, Dayong; Kispert, Lowell D

    2015-08-20

    The formation of one or two hydrogen bonds (H-bonds) between canthaxanthin (CAN), a dye, and the silanol group(s) on the MCM-41 surface has been studied by density functional theory (DFT) calculations and calorimetric experiments. It was found that the formation of the H-bond(s) stabilized the CAN molecule more than its radical cation (CAN(•+)). The charge distribution, bond lengths, and the HOMO and LUMO energies of CAN are also affected. The formation of the H-bond(s) explains the lower photoinduced electron transfer efficiency of CAN imbedded in Cu-MCM-41 versus that for β-carotene (CAR) imbedded in Cu-MCM-41 where complex formation with Cu(2+) dominates. These calculations show that to achieve high electron transfer efficiency for a dye-sensitized solar cell, H-bonding between the dye and the host should be avoided. PMID:26230844

  20. Dentin-bonding agents

    Directory of Open Access Journals (Sweden)

    João Carlos Gomes

    2008-01-01

    Full Text Available New dental restorative materials have been developed to meet not only the functional demands, but esthetics as well, and in the last few years an enormous range of new materials has appeared for use in dentistry. Among them, several adhesive systems, and different operative techniques for each group materials. Therefore, is indispensable for the professional to know about the properties, characteristics, and association of these materials with the dental structures, in order to select and use them correctly. Should conventional self-etching adhesive systems be used? This question encouraged this literature review to be conducted, with the aim of comparing the conventional adhesive systems with the self-etching systems and to look for scientific data that would help professionals to choose which adhesive system to use. When compared to conventional systems, it was noted that the self-etching systems show less sensitivity to technique, especially as regards errors the operator could commit. The self-etching systems, particularly the 2-step type, have shown equivalent values of bond strength, marginal microleakage and performance, therefore, will be an option for direct composite resin restorations in posterior teeth.

  1. 28 CFR 551.4 - Hair length.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Hair length. 551.4 Section 551.4 Judicial... Hair length. (a) The Warden may not restrict hair length if the inmate keeps it neat and clean. (b) The Warden shall require an inmate with long hair to wear a cap or hair net when working in food service...

  2. A Study of Bond of Structural Timber and Carbon Fiber Reinforced Polymer Plate

    Directory of Open Access Journals (Sweden)

    Yongtaeg LEE

    2015-11-01

    Full Text Available The increase of well-being culture of problem related to environmental depletion of resource is not the growing interest in timber the natural material of construction markets. Also, the perception for historic preservation has been increased in respond to heightened interest. However, it is fairly difficult for architectural properties to maintain their durability because it was made by timber construction. Preventing traditional structure from damage and structural performance reduction is paramount in maintenance problem. A number of studies of reinforced method have been conducted in order to solve such a problem. In this paper, external bonded reinforcement and near-surface mounted was used as a way to reinforce timber structure’s durability. Bond strength for specimens with different bond length was investigated. As a result showed, maximum bond strength in bond length 300 mm from all method, was found to be not increased of bond strength over the certain bond length.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9702

  3. Continuum in the X-Z---Y weak bonds: Z= main group elements.

    Science.gov (United States)

    Joy, Jyothish; Jose, Anex; Jemmis, Eluvathingal D

    2016-01-15

    The Continuum in the variation of the X-Z bond length change from blue-shifting to red-shifting through zero- shifting in the X-Z---Y complex is inevitable. This has been analyzed by ab-initio molecular orbital calculations using Z= Hydrogen, Halogens, Chalcogens, and Pnicogens as prototypical examples. Our analysis revealed that, the competition between negative hyperconjugation within the donor (X-Z) molecule and Charge Transfer (CT) from the acceptor (Y) molecule is the primary reason for the X-Z bond length change. Here, we report that, the proper tuning of X- and Y-group for a particular Z- can change the blue-shifting nature of X-Z bond to zero-shifting and further to red-shifting. This observation led to the proposal of a continuum in the variation of the X-Z bond length during the formation of X-Z---Y complex. The varying number of orbitals and electrons available around the Z-atom differentiates various classes of weak interactions and leads to interactions dramatically different from the H-Bond. Our explanations based on the model of anti-bonding orbitals can be transferred from one class of weak interactions to another. We further take the idea of continuum to the nature of chemical bonding in general. PMID:26279192

  4. Modelling of dynamic contact length in rail grinding process

    Science.gov (United States)

    Zhi, Shaodan; Li, Jianyong; Zarembski, A. M.

    2014-09-01

    Rails endure frequent dynamic loads from the passing trains for supporting trains and guiding wheels. The accumulated stress concentrations will cause the plastic deformation of rail towards generating corrugations, contact fatigue cracks and also other defects, resulting in more dangerous status even the derailment risks. So the rail grinding technology has been invented with rotating grinding stones pressed on the rail with defects removal. Such rail grinding works are directed by experiences rather than scientifically guidance, lacking of flexible and scientific operating methods. With grinding control unit holding the grinding stones, the rail grinding process has the characteristics not only the surface grinding but also the running railway vehicles. First of all, it's important to analyze the contact length between the grinding stone and the rail, because the contact length is a critical parameter to measure the grinding capabilities of stones. Moreover, it's needed to build up models of railway vehicle unit bonded with the grinding stone to represent the rail grinding car. Therefore the theoretical model for contact length is developed based on the geometrical analysis. And the calculating models are improved considering the grinding car's dynamic behaviors during the grinding process. Eventually, results are obtained based on the models by taking both the operation parameters and the structure parameters into the calculation, which are suitable for revealing the process of rail grinding by combining the grinding mechanism and the railway vehicle systems.

  5. Physical Nature of Hydrogen Bond

    CERN Document Server

    Zhyganiuk, I V

    2015-01-01

    The physical nature and the correct definition of hydrogen bond (H-bond) are considered.\\,\\,The influence of H-bonds on the thermodynamic, kinetic, and spectroscopic properties of water is analyzed.\\,\\,The conventional model of H-bonds as sharply directed and saturated bridges between water molecules is incompatible with the behavior of the specific volume, evaporation heat, and self-diffusion and kinematic shear viscosity coefficients of water. On the other hand, it is shown that the variation of the dipole moment of a water molecule and the frequency shift of valence vibrations of a hydroxyl group can be totally explained in the framework of the electrostatic model of H-bond.\\,\\,At the same time, the temperature dependences of the heat capacity of water in the liquid and vapor states clearly testify to the existence of weak H-bonds.\\,\\,The analysis of a water dimer shows that the contribution of weak H-bonds to its ground state energy is approximately 4--5 times lower in comparison with the energy of electr...

  6. 49 CFR 387.323 - Electronic filing of surety bonds, trust fund agreements, certificates of insurance and...

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Electronic filing of surety bonds, trust fund... Electronic filing of surety bonds, trust fund agreements, certificates of insurance and cancellations. (a... number of fields and same length. The record layouts for ASCII electronic transactions are described...

  7. Tensile Bond Strength of Latex-Modified Bonded Concrete Overlays

    Science.gov (United States)

    Dubois, Cameron; Ramseyer, Chris

    2010-10-01

    The tensile bond strength of bonded concrete overlays was tested using the in-situ pull-off method described in ASTM C 1583 with the goal of determining whether adding latex to the mix design increases bond strength. One slab of ductile concrete (f'c > 12,000 psi) was cast with one half tined, i.e. roughened, and one half steel-troweled, i.e. smooth. The slab surface was sectioned off and overlay mixtures containing different latex contents cast in each section. Partial cores were drilled perpendicular to the surface through the overlay into the substrate. A tensile loading device applied a direct tensile load to each specimen and the load was increased until failure occurred. The tensile bond strength was then calculated for comparison between the specimens.

  8. Bonding Low-density Nanoporous Metal Foams Using Sputtered Solder

    Energy Technology Data Exchange (ETDEWEB)

    Bono, M; Cervantes, O; Akaba, C; Hamza, A; Foreman, R; Teslich, N

    2007-08-21

    could benefit from the bonding technology developed in this study, such as small-scale lightweight structural members, high-strength thermal insulating layers for electronics, and micro-scale mechanical dampers, to name but a few. Each of these applications requires one or more small metal foam components precisely bonded to a substrate. Several methods for bonding metal foam components have been developed by previous researchers. Macroscopic metal foam parts have been successfully bonded by laser welding to create T-sections and butt joints. Ultrasonic welding has been used to join aluminum sheet metal to aluminum foam for structural applications. These methods work well for bonding large foam components, but reducing these methods to a smaller length scale would be challenging. One method that has shown great potential for bonding layers of metal foams to substrates is a brazing process that uses a sputter-deposited interface material. Shirzadi et al.[9] have demonstrated bonds between stainless steel foam and a stainless steel substrate using a layer of copper-titanium filler metal that is sputtered onto the interface surfaces. The foam pieces that they bonded were approximately 10 mm in diameter and 10 mm thick with a cell size of approximately 200 {micro}m. After depositing the filler material, pressing the materials together, and heating them with an induction heater, bonds were achieved without causing significant damage to the foam. The current study also uses a sputter-deposited interface material to bond foam to a substrate. However, in contrast to previous work, the current study examines bonding microscale pieces of fragile nanoporous metal foam. In this study, a method is developed to bond a thin sheet of fragile, low-density nanoporous copper foam to an aluminum foil substrate of thickness 40 {micro}m. By sputter depositing an indium-silver alloy onto the foam and the substrate, a solder joint with a thickness of less than 2 {micro}m was achieved.

  9. The chemisorptive bond basic concepts

    CERN Document Server

    Clark, Alfred

    1974-01-01

    The Chemisorptive Bond: Basic Concepts describes the basic concepts of the chemisorptive bond on solid surfaces from the simple analogies with ordinary chemical bonds to the quantum-mechanical approaches.This book is composed of 10 chapters and begins with discussions of simple formulas for correlating measurable quantities in chemisorptions and catalysis. The succeeding chapters deal with theories based on quantum-mechanical principles that describe the mutual interactions of atoms of the solid and foreign atoms on the surface. The remaining chapters consider the possible arrangements

  10. Direct Bonded Pontic (Laporan Kasus

    Directory of Open Access Journals (Sweden)

    Suhandi Sidjaja

    2015-10-01

    Full Text Available Advanced science and technology in dentistry enable dental practitioners to modified she bonding techniques in tooth replacement. A pontic made of composite resin bonded to etched enamel of the adjacent teeth can be used in the replacement of one missing anterior tooth with a virgin or sowed adpicent tooth. The advantages of this technique include a one visit treatment, cow cost, good esthetics, less side effects and easy repair or rebounding. Clinical evaluation showed a high success rate therefore with a proper diagnosis and a perfect skill of the direct bonded technique this treatment can be used as an alternative restoration.

  11. A COMPARATIVE EVALUATION OF BOND - STRENGTH BETWEEN NORMAL DENTIN AND CARIES AFFECTED DENTIN: AN INVITRO STUDY

    Directory of Open Access Journals (Sweden)

    Arun

    2015-03-01

    Full Text Available INTRODUCTION: The concept of adhesive dentistry has taken leaps forward and has resulted in a concept of more conservation of tooth structure which in turn enhance the life of teeth. The bonding agent forms a hybrid layer with dentin and its other side co - polymerize with the matrix p hase of dental composite, producing strong micro - mechanical bonding. AIMS AND OBJECTIVE: To evaluate the bond strength of adhesive agent to normal dentin and caries affected dentin and also to compare the bond strength between different bonding agents. METHOD: 20 mandibular molar were collected, washed and stored in normal saline. Each tooth was cut longitudinally. Healthy tooth structure of each half of the tooth represents the control group and the carious portion of the same tooth represents as experi mental group. Thus, 80 samples were prepared. The groups were then further subdivided into 4 sub - groups of 4 different bonding agents. The dentin surface of all the sub groups were etched by 37% of phosphoric acid gel for 10 - 15 secs and respective bonding agent were used and cured for 20 secs. Cylindrical composite resin was prepared using a plastic module of internal diameter of 3mm and length 5mm. Statistical analysis was done using mean standard deviation (S.D, student ‘t’ test and level of significance ‘P’. RESULTS: For both the control and experimental group, 3M single bond has showed the strongest bond strength followed by Prime and Bond NT, Excite and PQ1.

  12. On the Correlation between the Blue Shift of Hydrogen Bonding and the Proton Donor-Proton Acceptor Distance

    Institute of Scientific and Technical Information of China (English)

    WANG,Jin-Ti(王金姼); FENG,Yong(封勇); LIU,Lei(刘磊); LI,Xiao-Song(李晓松); GUO,Qing-Xiang(郭庆祥)

    2004-01-01

    It is demonstrated that in all types of hydrogen bonds (X-H…Y) there is a balance between the long-range attractive orbital interactions and short-range Pauli/nucleus repulsions. When the proton acceptor approaches the proton donor from distance, the hydrogen bonding energy becomes more negative at relatively large distance, goes through a minimum, and then starts to become less negative when the short-range repulsive forces come into effect.Meanwhile, the X-H bond length increases at relatively large distances, goes through a maximum and starts to shorten when the short-range repulsive forces come into effect. Whether the hydrogen bond is red or blue shifted is dictated by the energy minimum position. If at the energy minimum position the X-H bond length is shorter than that for the free monomer, the hydrogen bond is blue shifted and vice versa. Further studies demonstrate that the recent report about the correlation of C-H bond lengths with proton donor-acceptor distance in F3C-H…OH2 and F3C-H…Cl- is not fully correct because the authors conducted an inappropriate comparison. Furthermore, it is shown for the first time that the Pauli/nucleus repulsion theory is applicable to the blue-shifted hydrogen bonds in the X-H…π complexes and the blue-shifted lithium bonds in the X-Li…Y complexes.

  13. O:H-O Bond Anomalous Relaxation Resolving Mpemba Paradox

    CERN Document Server

    Huang, Xi Zhang Yongli; Sun, Chang Q

    2013-01-01

    We demonstrate that the Mpemba paradox arises intrinsically from the release rate of energy initially stored in the covalent H-O part of the O:H-O bond in water albeit experimental conditions. Generally, heating raises the energy of a substance by lengthening and softening all bonds involved. However, the O:H nonbond in water follows actively the general rule of thermal expansion and drives the H-O covalent bond to relax oppositely in length and energy because of the inter-electron-electron pair coupling [J Phys Chem Lett 4, 2565 (2013); ibid 4, 3238 (2013)]. Heating stores energy into the H-O bond by shortening and stiffening it. Cooling the water as the source in a refrigerator as a drain, the H-O bond releases its energy at a rate that depends exponentially on the initially storage of energy, and therefore, Mpemba effect happens. This effect is formulated in terms of the relaxation time tau to represent all possible processes of energy loss. Consistency between predictions and measurements revealed that th...

  14. DFT investigation on dihydrogen-bonded amine-borane complexes.

    Science.gov (United States)

    Yan, Shihai; Zou, Hongmei; Kang, Wukui; Sun, Lixiang

    2016-01-01

    The DFT method has been employed in the exploration on dihydrogen-bonded amine-borane complexes, with a special emphasis on the dimerization and substituent group effect. Stable dihydrogen bonded complexes can be generated from these amine-borane monomers with the appearance of NH(δ+)…H(δ-)B interactions. The binding energy decreases gradually with the increase of the steric effect of the substituents. The substituent group number mainly varies the C-N bond length. The dimerization generates close H…H and influences predominantly the N-B distance. The effect of dimerization on IR and vibrational circular dichroism (VCD) spectra is stronger than that of the number of substituent groups, which leads to distinct NBO charge variation on α-C. Both the substituent group number and dimerization enhance the chemical shift difference between hydrogen atoms covalently bonded to N and B, Δδ H-H, which can be hired as an index for structural determination. It is proposed that amine-borane complexes with more substituent groups in higher degree of polymerization are potentially interesting materials for hydrogen storage. Graphical Abstract Both the number of substituent group and dimerization enhance the chemical shift difference of hydrogen atoms covalently bonded on N and B, Δδ H-H, which can be employed as an index for the structural determination. PMID:26696542

  15. Reaction-bonded silicon nitride

    International Nuclear Information System (INIS)

    Reaction-bonded silicon nitride (RBSN) has been characterized. The oxidation behaviour in air up to 15000C and 3000 h and the effects of static and cyclic oxidation on room-temperature strength have been studied. (orig./IHOE)

  16. Optimal Investment in Structured Bonds

    DEFF Research Database (Denmark)

    Jessen, Pernille; Jørgensen, Peter Løchte

    2012-01-01

    of the article is to provide possible explanations for the puzzle of why small retail investors hold structured bonds. The investment universe consists of a stock index, a risk-free bank account, and a structured bond containing an option written on another index. We apply expected utility......Retail structured products regularly receive much criticism from financial experts but seem to remain popular with investors. This article considers a generic structured product: the principal-protected index-linked note (structured bond), which resembles a portfolio insurance contract. The purpose...... maximization and consider different utility functions and trading strategies. Our results show that investors should include structured bonds in their optimal portfolio only if they cannot access the index underlying the option directly and only if the products then provide sufficient diversification to...

  17. Low temperature GRISM direct bonding

    Science.gov (United States)

    Kalkowski, Gerhard; Harnisch, Gerd; Grabowski, Kevin; Benkenstein, Tino; Ehrhardt, Sascha; Zeitner, Uwe; Risse, Stefan

    2015-09-01

    For spectroscopy in space, GRISM elements -obtained by patterning gratings on a prism surface - are gaining increasing interest. Originally developed as dispersive elements for insertion into an imaging light path without deflecting the beam, they are progressively found in sophisticated multi stage dispersion optics. We report on GRISM manufacturing by joining the individual functional elements -prisms and gratings - to suitable components. Fused silica was used as glass material and the gratings were realized by e-beam lithography und dry etching. Alignment of the grating dispersion direction to the prism angle was realized by passive adjustment. Materials adapted bonds of high transmission, stiffness and strength were obtained at temperatures of about 200°C in vacuum by hydrophilic direct bonding. Examples for bonding uncoated as well as coated fused silica surfaces are given. The results illustrate the great potential of hydrophilic glass direct bonding for manufacturing transmission optics to be used under highly demanding environmental conditions, as typical in space.

  18. Adhesives for orthodontic bracket bonding

    Directory of Open Access Journals (Sweden)

    Déborah Daniella Diniz Fonseca

    2010-04-01

    Full Text Available The advent of acid etching, introduced by Buonocore in 1955, brought the possibility of bonding between the bracket base and enamel, contributing to more esthetic and conservative orthodontics. This direct bracket bonding technique has brought benefits such as reduced cost and time in performing the treatment, as well as making it easier to perform oral hygiene. The aim of this study was to conduct a survey of published studies on orthodontic bracket bonding to dental enamel. It was verified that resin composites and glass ionomer are the most studied and researched materials for this purpose. Resin-modified glass ionomer, with its biocompatibility, capacity of releasing fluoride and no need for acid etching on the tooth structure, has become increasingly popular among dentists. However, due to the esthetic and mechanical properties of light polymerizable resin composite, it continues to be one of the adhesives of choice in the bracket bonding technique and its use is widely disseminated.

  19. Performance of a Nonempirical Density Functional on Molecules and Hydrogen-Bonded Complexes

    CERN Document Server

    Mo, Yuxiang; Car, Roberto; Staroverov, Viktor N; Scuseria, Gustavo E; Tao, Jianmin

    2016-01-01

    Recently, Tao and Mo (TM) derived a new meta-generalized gradient approximation based on a model exchange hole. In this work, the performance of this functional is assessed on standard test sets, using the 6-311++G(3df,3pd) basis set. These test sets include 223 G3/99 enthalpies of formation, 58 electron affinities, 8 proton affinities, 96 bond lengths, 82 harmonic vibrational frequencies, and 10 hydrogen-bonded molecular complexes. Our calculations show that the TM functional can achieve remarkable accuracy for most molecular properties, improving upon non-empirical density functionals considered here. In particular, it delivers the best accuracy for proton affinities, harmonic vibrational frequencies, and hydrogen-bonded dissociation energies and bond lengths, compared to other semilocal density-functional approximations considered in this work.

  20. Fundamental indexation for bond markets

    OpenAIRE

    Marielle de Jong; Hongwen Wu

    2014-01-01

    Purpose – The purpose of this paper is to build alternative indices weighing using a measure of fundamental value rather than debt size. The official bond indices built to reflect general price trends are market weighted, meaning that the bonds are weighted by their debt size. The more indebted, the more weight in the index, which mechanically increments the investment risks that are inherent. Those market indices are shown to be return-to-risk inefficient in recent studies compared to indice...

  1. Hydrogen Bonds in Polymer Folding

    OpenAIRE

    Borg, J; Jensen, M. H.; K. Sneppen; Tiana, G.

    2000-01-01

    The thermodynamics of a homopolymeric chain with both Van der Waals and highly-directional hydrogen bond interaction is studied. The effect of hydrogen bonds is to reduce dramatically the entropy of low-lying states and to give raise to long-range order and to conformations displaying secondary structures. For compact polymers a transition is found between helix-rich states and low-entropy sheet-dominated states. The consequences of this transition for protein folding and, in particular, for ...

  2. Horizontal well length optimization considering wellbore hydraulics

    OpenAIRE

    Syed, Adnan

    2014-01-01

    Horizontal wells covering entire length of the reservoirs are not economically suitable. Frictional pressure drops increases with the increase in well length and flow rates. Optimal Horizontal length is estimated through economic analysis i.e. Net present Value of the project (NPV). Well construction costs including incremental costs of drilling horizontal section, friction losses in horizontal section, Hydrocarbon prices and Drainage area affect NPV. This thesis work estimates NPV and Produc...

  3. Measuring Crack Length in Coarse Grain Ceramics

    Science.gov (United States)

    Salem, Jonathan A.; Ghosn, Louis J.

    2010-01-01

    Due to a coarse grain structure, crack lengths in precracked spinel specimens could not be measured optically, so the crack lengths and fracture toughness were estimated by strain gage measurements. An expression was developed via finite element analysis to correlate the measured strain with crack length in four-point flexure. The fracture toughness estimated by the strain gaged samples and another standardized method were in agreement.

  4. Fibonacci Lengths of Certain Nilpotent 2-Groups

    Institute of Scientific and Technical Information of China (English)

    H. DOOSTIE; A. T. ADNANI

    2007-01-01

    In this paper, we study two classes of 2-generated 2-groups of nilpotency class 2 classified by Kluempen in 2002 and also a class of finite 2-groups of high nilpotency class for their Fibonacci lengths.Their involvement in certain interesting sequences of Tribonacci numbers gives us some explicit formulas for the Fibonacci lengths and this adds to the small class of finite groups for which the Fibonacci length are known.

  5. A Bond-order Theory on the Phonon Scattering by Vacancies in Two-dimensional Materials

    OpenAIRE

    Guofeng Xie; Yulu Shen; Xiaolin Wei; Liwen Yang; Huaping Xiao; Jianxin Zhong; Gang Zhang

    2014-01-01

    We theoretically investigate the phonon scattering by vacancies, including the impacts of missing mass and linkages ( ) and the variation of the force constant of bonds associated with vacancies ( ) by the bond-order-length-strength correlation mechanism. We find that in bulk crystals, the phonon scattering rate due to change of force constant is about three orders of magnitude lower than that due to missing mass and linkages . In contrast to the negligible in bulk materials, in two-dimension...

  6. Crystal stability and structural transition pressures of sp-bonded solids

    International Nuclear Information System (INIS)

    It is shown that the structural phase transformations and relative stabilities among cubic phases of sp-bonded nonmetals can be successfully predicted within a simple, universal tight-binding model by a total-energy-minimization procedure. The model elucidates the physical mechanisms determining the chemical trends and predicts semiquantitatively the stable crystal structures, bond lengths, bulk moduli, and transition pressures of structural phase transformations. The theory explains the puzzling strong cation and weak anion dependence of the observed structural transition pressures

  7. Bond between textile-reinforced mortar (TRM) and concrete substrates: experimental investigation

    OpenAIRE

    Raoof, Saad M.; Koutas, Lampros N.; Bournas, Dionysios A.

    2016-01-01

    This paper presents an extended experimental study on the bond behaviour between textile-reinforced mortar (TRM) and concrete substrates. The parameters examined include: (a) the bond length (from 50 mm to 450 mm); (b) the number of TRM layers (from one to four); (c) the concrete surface preparation (grinding versus sandblasting); (d) the concrete compressive strength (15 MPa or 30 MPa); (e) the textile coating; and (f) the anchorage through wrapping with TRM jackets. For this purpose, a tota...

  8. Bond between textile-reinforced mortar (TRM) and concrete substrates: Experimental investigation

    OpenAIRE

    Raoof, Saad M.; Koutas, Lampros N.; Bournas, Dionysios A.

    2016-01-01

    This paper presents an extended experimental study on the bond behaviour between textile-reinforced mortar (TRM) and concrete substrates. The parameters examined include: (a) the bond length (from 50 mm to 450 mm); (b) the number of TRM layers (from one to four); (c) the concrete surface preparation (grinding versus sandblasting); (d) the concrete compressive strength (15 MPa or 30 MPa); (e) the textile coating; and (f) the anchorage through wrapping with TRM jackets. For this purpose, a tota...

  9. Optimising hydrogen bonding in solid wood

    DEFF Research Database (Denmark)

    Engelund, Emil Tang

    2009-01-01

    The chemical bonds of wood are both covalent bonds within the wood polymers and hydrogen bonds within and between the polymers. Both types of bonds are responsible for the coherence, strength and stiffness of the material. The hydrogen bonds are more easily modified by changes in load, moisture and...... temperature distorting the internal bonding state. A problem arises when studying hydrogen bonding in wood since matched wood specimens of the same species will have very different internal bonding states. Thus, possible changes in the bonding state due to some applied treatment such as conditioning or...... maintaining 100 % moisture content of the wood. The hypothesis was that this would enable a fast stress relaxation as a result of reorganization of bonds, since moisture plasticizes the material and temperature promotes faster kinetics. Hereby, all past bond distortions caused by various moisture, temperature...

  10. Chain length dependent alkane/β-cyclodextrin nonamphiphilic supramolecular building blocks.

    Science.gov (United States)

    Zhou, Chengcheng; Huang, Jianbin; Yan, Yun

    2016-02-01

    In this work we report the chain length dependent behavior of the nonamphiphilic supramolecular building blocks based on the host-guest inclusion complexes of alkanes and β-cyclodextrins (β-CD). (1)H NMR, ESI-MS, and SAXS measurements verified that upon increasing the chain length of alkanes, the building blocks for vesicle formation changed from channel type 2alkane@2β-CD via channel type alkane@2β-CD to non-channel type 2alkane@2β-CD. FT-IR and TGA experiments indicated that hydrogen bonding is the extensive driving force for vesicle formation. It revealed that water molecules are involved in vesicle formation in the form of structural water. Upon changing the chain length, the average number of water molecules associated with per building block is about 16-21, depending on the chain length. PMID:26660592

  11. INFLUENCE OF FIBER LENGTH IN THE WEAR BEHAVIOUR OF BORASSUS FRUIT FIBER REINFORCED EPOXY COMPOSITES

    Directory of Open Access Journals (Sweden)

    L. BOOPATHI

    2012-09-01

    Full Text Available In this paper, the wear behavior of Borassus fruit fiber reinforced epoxy composites has been explored. The composites were prepared with raw and 5% alkali treated Borassus fruit fibers of three different fiber lengths 3 mm, 5 mm and 7 mm respectively. The wear tests were made on a pin-on-disc machine when sliding against stainless steel disc by varying loads from 15N – 30 N under dry conditions and the speed of the disc from 300 – 500 rpm. It was observed that the alkali treatment to the fibers improved the wear properties. The influence of fiber length is a key factor in the reinforcement of composites and the results revealed that the 5 mm length alkali treated fiber reinforced composites exhibited superior wear properties than that of others. The Scanning Electron Microscopy image revealed that the 5 mm length alkali treated fiber had better bonding with the epoxy matrix.

  12. New Generalizations of Migdal-Kadanoff Bond-Moving Recursion Procedures and Their Applications

    Institute of Scientific and Technical Information of China (English)

    王春阳; 杨文献; 闫志伟; 杜红; 孔祥木; 张玉奇; 张凌宇

    2012-01-01

    Considering in symmetrical half-length bond operations,we present in this paper two types of newlydeveloped generalizations of the remarkable Migdal-Kadanoff bond-moving renormalization group transformation recursion procedures.The predominance in application of these generalized procedures are illustrated by making use of them to study the critical behavior of the spin-continuous Gaussian model constructed on the typical translational invariant lattices and fractals respectively.Results such as the correlation length critical exponents obtained by these means are found to be in good conformity with the classical results from other previous studies.

  13. Relaxation of the chemical bond skin chemisorption size matter ZTP mechanics H2O myths

    CERN Document Server

    Sun, Chang Q

    2014-01-01

    The aim of this book is to explore the detectable properties of a material to the parameters of bond and non-bond involved and to clarify the interdependence of various properties. This book is composed of four parts; Part I deals with the formation and relaxation dynamics of bond and non-bond during chemisorptions with uncovering of the correlation among the chemical bond, energy band, and surface potential barrier (3B) during reactions; Part II is focused on the relaxation of bonds between atoms with fewer neighbors than the ideal in bulk with unraveling of the bond order-length-strength (BOLS) correlation mechanism, which clarifies the nature difference between nanostructures and bulk of the same substance; Part III deals with the relaxation dynamics of bond under heating and compressing with revealing of rules on the temperature-resolved elastic and plastic properties of low-dimensional materials; Part IV is focused on the asymmetric relaxation dynamics of the hydrogen bond (O:H-O) and the anomalous behav...

  14. The chain-length dependence test.

    Science.gov (United States)

    Stone, Matthew T; Heemstra, Jennifer M; Moore, Jeffrey S

    2006-01-01

    Trends obtained from systematic studies based on chain-length variation have provided valuable insight and understanding into the behavior of m-phenylene ethynylene foldamers. The generalization of this experimental approach, the chain-length dependence test, is useful for studying solution conformation, packing in the solid state, specific intrachain interactions, and the contributions of end groups to a particular property. PMID:16411735

  15. Analysis of ureteral length in adult cadavers

    Directory of Open Access Journals (Sweden)

    Hugo F. F. Novaes

    2013-04-01

    Full Text Available Introduction In some occasions, correlations between human structures can help planning surgical intra-abdominal interventions. The previous determination of ureteral length helps pre-operatory planning of surgeries, reduces costs of auxiliary exams, the correct choice of double-J catheter with low morbidity and fewer symptoms, and an adequate adhesion to treatment. Objective To evaluate ureteral length in adult cadavers and to analyze its correlation with anthropometric measures. Materials and Methods: From April 2009 to January 2012 we determined ureteral length of adult cadavers submitted to necropsy and obtained the following measures: height, distance from shoulder to wrist, elbow-wrist, xiphoid appendix-umbilicus, umbilicus-pubis, xiphoid appendix-pubis and between iliac spines. We analyzed the correlations between ureteral length and those anthropometric measures. Results We dissected 115 ureters from 115 adult corpses from April 2009 to January 2012. Median ureteral length didn't vary between sexes or according to height. It was observed no correlation among ureteral length and all considered anthropometric measures in all analyzed subgroups and in general population. There were no significant differences between right and left ureteral measures. Conclusions There is no difference of ureteral length in relation to height or gender (male or female. There is no significant correlation among ureteral length and the considered anthropometric measures.

  16. Individual Telomere Lengths in Chronic Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Oumar Samassekou

    2009-11-01

    Full Text Available Chronic myeloid leukemia (CML is a neoplasia characterized by proliferation of a myeloid cell lineage and chromosome translocation t(9;22 (q34;q11.2. As in the case of most cancers, the average telomere length in CML cells is shorter than that in normal blood cells. However, there are currently no data available concerning specific individual telomere length in CML. Here, we studied telomere length on each chromosome arm of CML cells. In situ hybridization with peptide nucleic acid probes was performed on CML cells in metaphase. The fluorescence intensity of each specific telomere was converted into kilobases according to the telomere restriction fragment results for each sample. We found differences in telomere length between short arm ends and long arm ends. We observed recurrent telomere length changes as well as telomere length maintenance and elongation in some individual telomeres. We propose a possible involvement of individual telomere length changes to some chromosomal abnormalities in CML. We suggest that individual telomere length maintenance is chromosome arm-specific associated with leukemia cells.

  17. Non-Pincer-Type Mononuclear Scandium Alkylidene Complexes: Synthesis, Bonding, and Reactivity.

    Science.gov (United States)

    Wang, Chen; Zhou, Jiliang; Zhao, Xuefei; Maron, Laurent; Leng, Xuebing; Chen, Yaofeng

    2016-01-22

    The first non-pincer-type mononuclear scandium alkylidene complexes were synthesized and structurally characterized. These complexes exhibited short Sc-C bond lengths and even one of the shortest reported to date (2.1134(18) Å). The multiple character of the Sc-C bond was highlighted by a DFT calculation. This was confirmed by experimental reactivity study where the complex underwent [2+1] cycloaddition with elemental selenium and [2+2] cycloaddition with imine. DFT calculation also revealed a strong nucleophilic behavior of the alkylidene complex that was experimentally demonstrated by the C-H bond activation of phenylacetylene. PMID:26617412

  18. Quantitative bond energetics in atomic-scale junctions with significant van der Waals character

    Science.gov (United States)

    Venkataraman, Latha; Aradhya, Sriharsha; Hybertsen, Mark

    2015-03-01

    A direct measurement of the potential energy surface that characterizes individual chemical bonds in complex materials has fundamental significance for many disciplines. Here, we demonstrate that the energy profile for metallic single-atom contacts and single-molecule junctions can be mapped by fitting ambient atomic force microscope measurements carried out in the near-equilibrium regime to a physical, but simple, functional form. In particular we are able to extract bond energies for metal-molecule link bonds in cases where the interaction has significant contribution from nonspecific interactions attributed to van der Waals (vdW) interactions at short length scale in addition to specific donor-acceptor bonds. Our approach significantly expands the quantitative information extracted from these measurements, allowing direct comparisons to density functional theory (DFT) calculations instead of relying on trends in bond rupture forces alone. Currently at Cornell University.

  19. A femtosecond midinfrared pump-probe study of hydrogen-bonding in ethanol

    Science.gov (United States)

    Woutersen, S.; Emmerichs, U.; Bakker, H. J.

    1997-08-01

    We present a femtosecond midinfrared pump-probe study of hydrogen bonding. It is shown that upon excitation of the OH-stretching vibration of hydrogen-bonded ethanol dissolved in CCl4, the hydrogen bonds are predissociated on a femtosecond time scale. The measured predissociation time constant depends strongly on the excitation frequency, and ranged from ˜250 fs at 3330 cm-1 to ˜900 fs at 3450 cm-1. The time constant of the subsequent reassociation of the hydrogen bonds was found to be 15 ps, in accordance with previous picosecond studies. Furthermore, polarization-resolved measurements show that orientational relaxation takes place on a time scale much shorter than the pulse length of ˜200 fs. This rapid orientational relaxation can be explained from the fast delocalization of the O-H stretching excitation over the hydrogen-bonded ethanol oligomers. The orientational anisotropy R reaches a value of 0.15 instantaneously, and remains constant for all delays.

  20. Test for Design Equation of Development Length on High - Strength Reinforcement in Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Yim, Sang Jun; Lee, Byung Soo; Bang, Chang Joon [KHNP CRI, Seoul (Korea, Republic of)

    2014-10-15

    In Korea, NPP (Nuclear Power Plant) structures are constructed with Gr. 60 rebars. The use of high strength rebars with higher grade (Gr. 80) offers advantages: reducing the required amount of rebar materials and area; and improving the construct ability and economics of NPP reinforced concrete structures by increasing rebar spacing. This research studied the ACI 349-13 design codes and conducted bending member tests with high strength rebars, to compare and analyze use and non-use of development length calculation formulas.This test analyzed the impact of development length on the bond stress when using high strength rebars. It was found that the use of Gr. 80 increased the development length (or length of lap splice), resulting in the ACI 349-13 design formula overestimating the bond stress. Therefore, the use of high strength rebar with transverse reinforcement can allow application of the ACI 349-13 design formula without using the safety factor of 1.2. Furthermore, to propose the proper calculation methods of development length for high strength rebar, more tests should be conducted in the future, taking account of the impact of transverse reinforcement.

  1. Test for Design Equation of Development Length on High - Strength Reinforcement in Nuclear Power Plant

    International Nuclear Information System (INIS)

    In Korea, NPP (Nuclear Power Plant) structures are constructed with Gr. 60 rebars. The use of high strength rebars with higher grade (Gr. 80) offers advantages: reducing the required amount of rebar materials and area; and improving the construct ability and economics of NPP reinforced concrete structures by increasing rebar spacing. This research studied the ACI 349-13 design codes and conducted bending member tests with high strength rebars, to compare and analyze use and non-use of development length calculation formulas.This test analyzed the impact of development length on the bond stress when using high strength rebars. It was found that the use of Gr. 80 increased the development length (or length of lap splice), resulting in the ACI 349-13 design formula overestimating the bond stress. Therefore, the use of high strength rebar with transverse reinforcement can allow application of the ACI 349-13 design formula without using the safety factor of 1.2. Furthermore, to propose the proper calculation methods of development length for high strength rebar, more tests should be conducted in the future, taking account of the impact of transverse reinforcement

  2. Halogen Bonding versus Hydrogen Bonding: A Molecular Orbital Perspective

    OpenAIRE

    Wolters, Lando P.; Bickelhaupt, F. Matthias

    2012-01-01

    We have carried out extensive computational analyses of the structure and bonding mechanism in trihalides DX⋅⋅⋅A− and the analogous hydrogen-bonded complexes DH⋅⋅⋅A− (D, X, A=F, Cl, Br, I) using relativistic density functional theory (DFT) at zeroth-order regular approximation ZORA-BP86/TZ2P. One purpose was to obtain a set of consistent data from which reliable trends in structure and stability can be inferred over a large range of systems. The main objective was to achieve a detailed unders...

  3. Bond-centered, bond-ordered stripes in doped antiferromagnets

    OpenAIRE

    Wrobel, P.; Maciag, A; Eder, R.

    2004-01-01

    Motivated by recent inelastic neutron scattering experiments on cuprates, we discuss the formation of bond order in the stripe phase. We suggest that the spin Peierls order emerges in hole-rich domain walls (DWs) formed between hole-poor regions in which long-range antiferromagnetic (AF) correlations exist. On the example of a single stripe we analyze the stability of such structures. The motion of a hole inside the DW which takes the form of a bond ordered ladder is in principle unrestricted...

  4. String matching with variable length gaps

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li; Vildhøj, Hjalte Wedel;

    2012-01-01

    We consider string matching with variable length gaps. Given a string T and a pattern P consisting of strings separated by variable length gaps (arbitrary strings of length in a specified range), the problem is to find all ending positions of substrings in T that match P. This problem is a basic...... primitive in computational biology applications. Let m and n be the lengths of P and T, respectively, and let k be the number of strings in P. We present a new algorithm achieving time O(nlogk+m+α) and space O(m+A), where A is the sum of the lower bounds of the lengths of the gaps in P and α is the total...

  5. Oregon School Bond Manual. Sixth Edition.

    Science.gov (United States)

    Oregon State Dept. of Education, Salem. Office of School District Services.

    Given that purchasers of Oregon school bonds rely on recommendations of accredited bond attorneys, this document is designed to assist school districts in complying with state statutes regulating the issuance of school bond issues in order that attorney opinions may be favorable. Six initial steps toward a bond sale and Oregon laws regarding bonds…

  6. Reduced form models of bond portfolios

    OpenAIRE

    Matti Koivu; Teemu Pennanen

    2010-01-01

    We derive simple return models for several classes of bond portfolios. With only one or two risk factors our models are able to explain most of the return variations in portfolios of fixed rate government bonds, inflation linked government bonds and investment grade corporate bonds. The underlying risk factors have natural interpretations which make the models well suited for risk management and portfolio design.

  7. 27 CFR 19.516 - Bond account.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Bond account. 19.516... Determination and Payment of Tax § 19.516 Bond account. Where the proprietor has furnished a withdrawal or unit... maximum penal sum, he shall maintain an account of his bond and he shall charge the bond with the...

  8. Atomistic spectrometrics of local bond-electron-energy pertaining to Na and K clusters

    Energy Technology Data Exchange (ETDEWEB)

    Bo, Maolin [Key Laboratory of Low-Dimensional Materials and Application Technologies, Ministry of Education, Xiangtan University, Hunan 411105 (China); Wang, Yan, E-mail: YWang8@hnust.edu.cn [School of Information and Electronic Engineering, Hunan University of Science and Technology, Hunan 411201 (China); Huang, Yongli; Liu, Yonghui [Key Laboratory of Low-Dimensional Materials and Application Technologies, Ministry of Education, Xiangtan University, Hunan 411105 (China); Li, Can [Center for Coordination Bond Engineering, School of Materials Science and Engineering, China Jiliang University, Hangzhou 330018 (China); Sun, Chang Q., E-mail: ecqsun@ntu.edu.sg [NOVITAS, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2015-01-15

    Graphical abstract: - Highlights: • Coordination environment resolves electron binding-energy shift of Na and K clusters. • Cohesive energy of the representative bond determines the core-level shift. • XPS derives the energy level of an isolated atom and its bulk shift. • XPS derives the local bond length, bond energy, binding energy density. - Abstract: Consistency between density functional theory calculations and photoelectron spectroscopy measurements confirmed our predications on the undercoordination-induced local bond relaxation and core level shift of Na and K clusters. It is clarified that the shorter and stronger bonds between under-coordinated atoms cause local densification and local potential well depression and shift the electron binding-energy accordingly. Numerical consistency turns out the energy levels for an isolated Na (E{sub 2p} = 31.167 eV) and K (E{sub 3p} = 18.034 eV) atoms and their respective bulk shifts of 2.401 eV and 2.754 eV, which is beyond the scope of conventional approaches. This strategy has also resulted in quantification of the local bond length, bond energy, binding energy density, and atomic cohesive energy associated with the undercoordinated atoms.

  9. Properties of atoms under pressure: bonded interactions of the atoms in three perovskites.

    Science.gov (United States)

    Gibbs, G V; Wang, D; Hin, C; Ross, N L; Cox, D F; Crawford, T D; Spackman, M A; Angel, R J

    2012-10-28

    The crystal structures for the three perovskites, CaSnO(3), YAlO(3), and LaAlO(3), were geometry optimized at the density functional theory level for a wide range of simulated isotropic pressures up to 80 GPa. The connections between the geometry optimized bond lengths, R(M-O), the values of the electron density, ρ(r(c)), the local kinetic, G(r(c)), potential, V(r(c)), energy densities, H(r(c)), and the Laplacian, ∇(2)(r(c)), at the bond critical points, r(c), for the M-O nonequivalent bonded interactions were examined. With increasing pressure, ρ(r(c)) increases along four distinct trends when plotted in terms of the Al-O, Ca-O, Sn-O, Y-O, and La-O bond lengths, but when the bond lengths were plotted in terms of ρ(r(c))/r where r is the periodic table row number of the M atoms, the data scatter along a single trend modeled by the power law regression expression R(M-O) = 1.41(ρ(r(c))/r)(-0.21), an expression that is comparable with that obtained for the bonded interactions for a large number of silicate and oxides crystals, R(M-O) = 1.46(ρ(r(c))/r)(-0.19) and that obtained for a relatively large number of hydroxyacid molecules R(M-O) = 1.39(s/r)(-0.22) where s is the Pauling bond strength of a bonded interaction. The similarity of the expressions determined for the perovskites, silicate and oxides crystals, and hydroxyacid molecules suggest that the bonded interactions in molecules and crystal are not only similar and comparable. The close correspondence of the expressions for the perovskites, the silicate and oxide crystals, and the molecules indicates that Pauling bond strength and ρ(r(c)) are comparable measures of the bonded interactions, the larger the accumulation of the electron density between the bonded atoms the larger the value of s, the shorter the bond lengths. It also indicates that the bonded interactions that govern the bond length variations behave as if largely short ranged. Like ρ(r(c))/r, the values of G(r(c))/r, V(r(c))/r, ∇(2)(r

  10. Low temperature anodic bonding to silicon nitride

    DEFF Research Database (Denmark)

    Weichel, Steen; Reus, Roger De; Bouaidat, Salim;

    2000-01-01

    Low-temperature anodic bonding to stoichiometric silicon nitride surfaces has been performed in the temperature range from 3508C to 4008C. It is shown that the bonding is improved considerably if the nitride surfaces are either oxidized or exposed to an oxygen plasma prior to the bonding. Both bulk...... and thin-film glasses were used in the bonding experiments. Bond quality was evaluated using a tensile test on structured dies. The effect of oxygen-based pre-treatments of the nitride surface on the bond quality has been evaluated. Bond strengths up to 35 Nrmm2 and yields up to 100% were obtained....

  11. Three methods to measure RH bond energies

    International Nuclear Information System (INIS)

    In this paper the authors compare and contrast three powerful methods for experimentally measuring bond energies in polyatomic molecules. The methods are: radical kinetics; gas phase acidity cycles; and photoionization mass spectroscopy. The knowledge of the values of bond energies are a basic piece of information to a chemist. Chemical reactions involve the making and breaking of chemical bonds. It has been shown that comparable bonds in polyatomic molecules, compared to the same bonds in radicals, can be significantly different. These bond energies can be measured in terms of bond dissociation energies

  12. A Phenomenographic Study on Chemical Bonding

    Directory of Open Access Journals (Sweden)

    Şenol Şen

    2013-12-01

    Full Text Available This study aims to reveal how students perceive and identify the concept of chemical bonding, and to identify and explain the misconceptions of students on this subject through phenomenographic research method, as well. The present study included 17 2nd grade students who enrolled to Inorganic Chemistry course in the Faculty of Education. Concept maps and lotus blossom technique were used as data collection tools in order to determine the perceptions and definitions of students about chemical bonding. Data analysis results determined the misconceptions of students about chemical bonding classified misconceptions under seven categories, which are, according to the results of the study, physical changes and bonding, ionic bond, formation of chemical bonding, the existence of chemical bonding, covalent bonds, metallic bonds and intermolecular bonding.

  13. Special Issue: Intramolecular Hydrogen Bonding

    Directory of Open Access Journals (Sweden)

    Ronald K. Castellano

    2014-09-01

    Full Text Available Intramolecular hydrogen bonds play critical structure- and function-serving roles in biological and synthetic molecular systems. This special issue, through eight contributions, showcases the prominence of these non-covalent interactions within several scientific disciplines, and in various structural contexts and environments. Reported, for example, are the consequences of intramolecular hydrogen bonds on the structures of molecules that show biological activity, for biological mechanisms, and for the conformational switching of functional synthetic molecules. Also showcased in the contributions are the state-of-the-art experimental and theoretical methods available for the characterization of intramolecular hydrogen bonds, which critically report on their strengths, geometries, and spectroscopic signatures in the gas, solid, and solution phases.

  14. Rethinking hydrogen-bond kinetics

    CERN Document Server

    Prada-Gracia, Diego

    2013-01-01

    At the fundamental level, our understanding of water hydrogen-bond dynamics has been largely built on the detailed analysis of classical molecular simulations. The latter served to develop a plethora of hydrogen bond definitions based on different properties, including geometrical distances, topology and energetics. Notwithstanding, no real consensus emerged from these approaches, making the development of a consistent and reliable definition elusive. In this contribution, a framework to study hydrogen bonds in liquid water based purely on kinetics is presented. This approach makes use of the analysis of commitment probabilities without relying on arbitrarily chosen order parameters and cutoffs. Our results provide evidence for a self-consistent description, resulting in a clear multi-exponential behavior of the kinetics.

  15. Bond percolation on multiplex networks

    CERN Document Server

    Hackett, A; Gómez, S; Arenas, A; Gleeson, J P

    2015-01-01

    We present an analytical approach for bond percolation on multiplex networks and use it to determine the expected size of the giant connected component and the value of the critical bond occupation probability in these networks. We advocate the relevance of these tools to the modeling of multilayer robustness and contribute to the debate on whether any benefit is to be yielded from studying a full multiplex structure as opposed to its monoplex projection, especially in the seemingly irrelevant case of a bond occupation probability that does not depend on the layer. Although we find that in many cases the predictions of our theory for multiplex networks coincide with previously derived results for monoplex networks, we also uncover the remarkable result that for a certain class of multiplex networks, well described by our theory, new critical phenomena occur as multiple percolation phase transitions are present. We provide an instance of this phenomenon in a multipex network constructed from London rail and Eu...

  16. Anion Transport with Chalcogen Bonds.

    Science.gov (United States)

    Benz, Sebastian; Macchione, Mariano; Verolet, Quentin; Mareda, Jiri; Sakai, Naomi; Matile, Stefan

    2016-07-27

    In this report, we introduce synthetic anion transporters that operate with chalcogen bonds. Electron-deficient dithieno[3,2-b;2',3'-d]thiophenes (DTTs) are identified as ideal to bind anions in the focal point of the σ holes on the cofacial endocyclic sulfur atoms. Anion binding in solution and anion transport across lipid bilayers are found to increase with the depth of the σ holes of the DTT anionophores. These results introduce DTTs and related architectures as a privileged motif to engineer chalcogen bonds into functional systems, complementary in scope to classics such as 2,2'-bipyrroles or 2,2'-bipyridines that operate with hydrogen bonds and lone pairs, respectively. PMID:27433964

  17. FATHER, SOCIAL BOND AND WOMEN

    Directory of Open Access Journals (Sweden)

    SYLVIA DE CASTRO KORGI

    2006-05-01

    Full Text Available On the cross-point of two of the most important and inseparable Freudian questions: What is a father?and, What a woman wants?, this paper begins a reflection about the women’s place in the Freudianarticulation of the relationship between the father and the social bond. In fact, the Freudian father, thanksto the law mediation which he is its agent, has as a function the regulation of the pleasure that participatesin the social bond, making this way possible the human community. On the other hand, the support ofthe human community is the bond among brothers, as well as Freud presents it in his foundational textof the Law. How to precise the women’s place in this arrangement? The reflection stands out this thatexceeds the Father’s Law and that Freud sets on women’s account, initially under the figure of heropposition to the culture.

  18. Kidney Length in Normal Korean Children

    International Nuclear Information System (INIS)

    Renal length offers important information to detect or follow-up various renal diseases. The purpose of this study was to determine the kidney length of normal Korean children in relation to age, height, weight, body surface area (BSA), and body mass index (BMI). Children between 1 month and 15 years of age without urological abnormality were recruited. Children below 3rd percentile and over 97th percentile for height or weight were excluded. Both renal lengths were measured in the prone position three times and then averaged by experienced radiologists. The mean length and standard deviation for each age group was obtained, and regression equation was calculated between renal length and age, weight, height, BSA, and BMI, respectively. Renal length was measured in 550 children. Renal length grows rapidly until 24 month, while the growth rate is reduced thereafter. The regression equation for age is: renal length (mm) = 45.953 + 1.064 x age (month, ≤ 24 months) (R2 = 0.720) or 62.173 + 0.203 x age (months, > 24 months) (R2 = 0.711). The regression equation for height is: renal length (mm) = 24.494 + 0.457 x height (cm) (R2 = 0.894). The regression equation for weight is: renal length (mm) = 38.342 + 2.117 x weight (kg, ≤18 kg) (R2 = 0.852) or 64.498 + 0.646 x weight (kg, > 18 kg) (R2 = 0.651). The regression equation for BSA is: renal length (mm) = 31.622 + 61.363 x BSA (m2, ≤ 0.7) (R2 = 0.857) or 52.717 + 29.959 x BSA (m2, > 0.7) (R2 = 0.715). The regression equation for BMI is: renal length (mm) = 44.474 + 1.163 x BMI (R2 = 0.079). This study provides data on the normal renal length and its association with age, weight, height, BSA and BMI. The results of this study will guide the detection and follow-up of renal diseases in Korean children

  19. Stable alkanes containing very long carbon-carbon bonds.

    Science.gov (United States)

    Fokin, Andrey A; Chernish, Lesya V; Gunchenko, Pavel A; Tikhonchuk, Evgeniya Yu; Hausmann, Heike; Serafin, Michael; Dahl, Jeremy E P; Carlson, Robert M K; Schreiner, Peter R

    2012-08-22

    The metal-induced coupling of tertiary diamondoid bromides gave highly sterically congested hydrocarbon (hetero)dimers with exceptionally long central C-C bonds of up to 1.71 Å in 2-(1-diamantyl)[121]tetramantane. Yet, these dimers are thermally very stable even at temperatures above 200 °C, which is not in line with common C-C bond length versus bond strengths correlations. We suggest that the extraordinary stabilization arises from numerous intramolecular van der Waals attractions between the neighboring H-terminated diamond-like surfaces. The C-C bond rotational dynamics of 1-(1-adamantyl)diamantane, 1-(1-diamantyl)diamantane, 2-(1-adamantyl)triamantane, 2-(1-diamantyl)triamantane, and 2-(1-diamantyl)[121]tetramantane were studied through variable-temperature (1)H- and (13)C NMR spectroscopies. The shapes of the inward (endo) CH surfaces determine the dynamic behavior, changing the central C-C bond rotation barriers from 7 to 33 kcal mol(-1). We probe the ability of popular density functional theory (DFT) approaches (including BLYP, B3LYP, B98, B3LYP-Dn, B97D, B3PW91, BHandHLYP, B3P86, PBE1PBE, wB97XD, and M06-2X) with 6-31G(d,p) and cc-pVDZ basis sets to describe such an unusual bonding situation. Only functionals accounting for dispersion are able to reproduce the experimental geometries, while most DFT functionals are able to reproduce the experimental rotational barriers due to error cancellations. Computations on larger diamondoids reveal that the interplay between the shapes and the sizes of the CH surfaces may even allow the preparation of open-shell alkyl radical dimers (and possibly polymers) that are strongly held together exclusively by dispersion forces. PMID:22835264

  20. Probing the Hydrogen Bond Strength at Single Bond Limit

    Science.gov (United States)

    Guo, Jing; Lü, Jing-Tao; Chen, Ji; Peng, Jinbo; Meng, Xiangzhi; Wang, Zhichang; Li, Xin-Zheng; Wang, Enge; Jiang, Ying

    2015-03-01

    Many extraordinary physical, chemical and biological properties of water are determined by hydrogen-bonding interaction between the water molecules. So far, the routine way to determine the hydrogen-bonding strength of water is probing the frequency shift of O-H stretching mode using various spectroscopic techniques, which all suffer from the difficulty of spectral assignment and the broadening of vibrational signals due to the lack of spatial resolution. In this talk, we show the ability to probe the hydrogen-bonding strength of interfacial water at single bond limit using resonantly enhanced inelastic electron tunneling spectroscopy (IETS) with a scanning tunneling microscope (STM). The conventional IET signals of water molecules are extremely weak and far beyond the experimental detection limit due to the negligible molecular density of states (DOS) around the Fermi level. This difficulty can be surmounted by turning on the tip-water coupling, which shifts and broadens the frontier molecular orbitals of water to the proximity of Fermi level, resulting in a resonantly enhanced IET process. International Center for Quantum Materials, School of Physics, Peking University.

  1. To Bond or Not to Bond? That Is the Question

    Science.gov (United States)

    Balzer, Wayne E.

    2015-01-01

    This case, inspired by a real school district scenario, was developed for use in a graduate-level course in school finance. James Spencer had just been selected as the new superintendent of a low-income, 400-student, rural school district in need of many capital improvements. The previous superintendent had refused to hold a bond election because…

  2. Performance bond: conditional or unconditional

    OpenAIRE

    Supardi, Azizan; Yaakob, Jamaluddin; Adnan, Hamimah

    2009-01-01

    In construction contracts, a 'performance bond' is a bond taken out by the contractor, usually with a bank or insurance company (in return for payment of a premium), for the benefit of and at the request of the employer, in a stipulated maximum sum of liability and enforceable by the employer in the event of the contractor's default, repudiation or insolvency, as stated by Nigel M Robinson et. al. in his book, Construction Law in Singapore and Malaysia. He further added that there are two typ...

  3. Weld bonding of stainless steel

    DEFF Research Database (Denmark)

    Santos, I. O.; Zhang, Wenqi; Goncalves, V.M.;

    2004-01-01

    This paper presents a comprehensive theoretical and experimental investigation of the weld bonding process with the purpose of evaluating its relative performance in case of joining stainless steel parts, against alternative solutions based on structural adhesives or conventional spot-welding. The...... overall assessment of the weld bonding process is made using several commercial adhesives with varying working times under different surface conditions. The quality of the resulting joints is evaluated by means of macroetching observations, tension-shear tests and peel tests. The theoretical investigation...

  4. Penile length and circumference: an Indian study.

    Science.gov (United States)

    Promodu, K; Shanmughadas, K V; Bhat, S; Nair, K R

    2007-01-01

    Apprehension about the normal size of penis is a major concern for men. Aim of the present investigation is to estimate the penile length and circumference of Indian males and to compare the results with the data from other countries. Results will help in counseling the patients worried about the penile size and seeking penis enlargement surgery. Penile length in flaccid and stretched conditions and circumference were measured in a group of 301 physically normal men. Erected length and circumference were measured for 93 subjects. Mean flaccid length was found to be 8.21 cm, mean stretched length 10.88 cm and circumference 9.14 cm. Mean erected length was found to be 13.01 cm and erected circumference was 11.46 cm. Penile dimensions are found to be correlated with anthropometric parameters. Insight into the normative data of penile size of Indian males obtained. There are significant differences in the mean penile length and circumference of Indian sample compared to the data reported from other countries. Study need to be continued with a large sample to establish a normative data applicable to the general population. PMID:17568760

  5. Axial length variability in cataract surgery

    International Nuclear Information System (INIS)

    To determine the mean axial length and biometric measures in patients undergoing cataract surgery and further compare the variability of axial length between the gender and with age. Study Design: Cross-sectional observational study. Place and Duration of Study: Eye Unit I, Department of Ophthalmology, Liaquat University of Medical and Health Sciences, Hyderabad, Pakistan from January 2010 to December 2012. Methodology: All patients referred for cataract surgery were assessed. The study included 886 eyes which were straightforward cataract cases with no other ocular problem. The data was collected for axial length, keratometric values and Intra-Ocular Lens (IOL) power prior to cataract surgery. The collected data was then analyzed using SPSS version 19 for windows software. Results: Gender based comparison showed significant difference in age, axial length, keratometric values and IOL power between the two groups (p=0.000). 86% of the eyes had an axial length between 21.00 mm and 23.99 mm. In univariate analysis there was significant (p=0.000) relation between overall age and axial length. The keratometric values ranged between 36.75 D and 52.50 D. Majority of the IOL powers ranged between 20.00 D and 23.00 D. Conclusion: The mean axial length of patients undergoing cataract surgery was 22.96 +- 1.04 mm, was comparable to Indian and Chinese population but shorter than the Western population. Females had shorter axial lengths, similar to other studies. Axial length was positively associated with age among the females, the cause of which is yet to be determined. (author)

  6. Sub-picosecond electron bunch length measurement

    International Nuclear Information System (INIS)

    A subpicosecond electron bunch length measuring system has been developed at the SUNSHINE facility. The method is based on an autocorrelation technique in the frequency domain utilizing the coherent radiation emitted from the electron bunch at wavelengths equal and longer than the bunch length. The radiation spectrum is the Fourier transform of the electron bunch distribution and measuring this spectrum in a far-infrared Michelson interferometer allows the determination of the bunch length down to the femto-second regime. The experimental setup and measurement of subpicosecond electron pulses including possible improvements to maximize the bunch information available from an interferogram will be described

  7. Paternal age and telomere length in twins

    DEFF Research Database (Denmark)

    Hjelmborg, Jacob B; Dalgård, Christine; Mangino, Massimo; Spector, Tim D; Halekoh, Ulrich; Möller, Sören; Kimura, Masayuki; Horvath, Kent; Kark, Jeremy D; Christensen, Kaare; Kyvik, Kirsten O; Aviv, Abraham

    2015-01-01

    Telomere length, a highly heritable trait, is longer in offspring of older fathers. This perplexing feature has been attributed to the longer telomeres in sperm of older men and it might be an 'epigenetic' mechanism through which paternal age plays a role in telomere length regulation in humans....... Based on two independent (discovery and replication) twin studies, comprising 889 twin pairs, we show an increase in the resemblance of leukocyte telomere length between dizygotic twins of older fathers, which is not seen in monozygotic twins. This phenomenon might result from a paternal age...

  8. Stylish lengths: Mate choice in flowers

    Indian Academy of Sciences (India)

    B T Ramesha; M D Yetish; G Ravikanth; K N Ganeshaiah; Jaboury Ghazoul; R Uma Shaanker

    2011-06-01

    The styles of flowers may represent an arena for pollen competition in the race to fertilize ovules. Accordingly, selection should favour a longer ‘race’ to better discriminate among variable pollen by increasing style length. Sampling across a taxonomically diverse range of wild and outcrossed species, we found that the distribution of style lengths within plants were skewed towards longer styles, as predicted. In self-pollinated domesticated species, where discrimination among pollen is less important, we found no such pattern. We conclude that style length is under directional selection towards longer styles as a mechanism for mate choice among pollen of variable quality.

  9. Reduced Fetal Telomere Length in Gestational Diabetes

    OpenAIRE

    Xu, Jian; Ye, Junyi; Wu, Yanting; Zhang, Hong; Luo, Qiong; Han, Cong; Ye, Xiaoqun; Wang, Hanzhi; Jing HE; Huang, Hefeng; Liu, Yun; Dong, Minyue

    2014-01-01

    Gestational diabetes mellitus (GDM) is an important complication of pregnancy that poses significant threats to women and their offspring. Telomere length shortens as cellular damage increases and is associated with metabolic diseases. Telomere length in fetal leucocytes was determined in 82 infants of women with GDM (N = 82) and 65 normal pregnant women (N = 65). Women with preeclampsia (N = 45) and gestational hypertension (N = 23) were also studied. In the GDM group, telomere length was si...

  10. Bunch Length Measurements in SPEAR3

    Energy Technology Data Exchange (ETDEWEB)

    Corbett, W.J.; Fisher, A.; Huang, X.; Safranek, J.; Sebek, J.; /SLAC; Lumpkin, A.; /Argonne; Sannibale, F.; /LBL, Berkeley; Mok, W.; /Unlisted

    2007-11-28

    A series of bunch length measurements were made in SPEAR3 for two different machine optics. In the achromatic optics the bunch length increases from the low-current value of 16.6ps rms to about 30ps at 25ma/bunch yielding an inductive impedance of -0.17{Omega}. Reducing the momentum compaction factor by a factor of {approx}60 [1] yields a low-current bunch length of {approx}4ps rms. In this paper we review the experimental setup and results.

  11. Inproved grade length limitation of freeways

    Institute of Scientific and Technical Information of China (English)

    XING En-hui; PEI Yu-long

    2006-01-01

    A method of ascertaining grade length limitation of freeways in mountain terrain is presented. The relationship models between 15th percentile speeds and grades were built through the surveys and analyses of operation speeds on 7 typical sections of 3 freeways in mountain terrain. Using 15th percentile and 85th percentile as speed limitations, the methods of determining admitted velocities were put forward according to the grades. Deceleration distances of longitudinal slopeways were analyzed utilizing the theories of vehicle. According to the results of analysis, grade length limitation was loosed. Finally the values of grade length limitation for freeways were put forward. The results could be used as references for freeway design.

  12. The tree length of an evolving coalescent

    CERN Document Server

    Pfaffelhuber, Peter; Weisshaupt, Heinz

    2009-01-01

    A well-established model for the genealogy of a large population in equilibrium is Kingman's coalescent. For the population together with its genealogy evolving in time, this gives rise to a time-stationary tree-valued process. We study the sum of the branch lengths, briefly denoted as tree length, and prove that the (suitably compensated) sequence of tree length processes converges, as the population size tends to infinity, to a limit process with cadlag paths, infinite infinitesimal variance, and a Gumbel distribution as its equilibrium.

  13. NDT evaluation of long-term bond durability of CFRP-structural systems applied to RC highway bridges

    Science.gov (United States)

    Crawford, Kenneth C.

    2016-03-01

    The long-term durability of CFRP structural systems applied to reinforced-concrete (RC) highway bridges is a function of the system bond behavior over time. The sustained structural load performance of strengthened bridges depends on the carbon fiber-reinforced polymer (CFRP) laminates remaining 100 % bonded to concrete bridge members. Periodic testing of the CFRP-concrete bond condition is necessary to sustain load performance. The objective of this paper is to present a non-destructive testing (NDT) method designed to evaluate the bond condition and long-term durability of CFRP laminate (plate) systems applied to RC highway bridges. Using the impact-echo principle, a mobile mechanical device using light impact hammers moving along the length of a bonded CFRP plate produces unique acoustic frequencies which are a function of existing CFRP plate-concrete bond conditions. The purpose of this method is to test and locate CFRP plates de-bonded from bridge structural members to identify associated deterioration in bridge load performance. Laboratory tests of this NDT device on a CFRP plate bonded to concrete with staged voids (de-laminations) produced different frequencies for bonded and de-bonded areas of the plate. The spectra (bands) of frequencies obtained in these tests show a correlation to the CFRP-concrete bond condition and identify bonded and de-bonded areas of the plate. The results of these tests indicate that this NDT impact machine, with design improvements, can potentially provide bridge engineers a means to rapidly evaluate long lengths of CFRP laminates applied to multiple highway bridges within a national transportation infrastructure.

  14. NDT evaluation of long-term bond durability of CFRP-structural systems applied to RC highway bridges

    Science.gov (United States)

    Crawford, Kenneth C.

    2016-06-01

    The long-term durability of CFRP structural systems applied to reinforced-concrete (RC) highway bridges is a function of the system bond behavior over time. The sustained structural load performance of strengthened bridges depends on the carbon fiber-reinforced polymer (CFRP) laminates remaining 100 % bonded to concrete bridge members. Periodic testing of the CFRP-concrete bond condition is necessary to sustain load performance. The objective of this paper is to present a non-destructive testing (NDT) method designed to evaluate the bond condition and long-term durability of CFRP laminate (plate) systems applied to RC highway bridges. Using the impact-echo principle, a mobile mechanical device using light impact hammers moving along the length of a bonded CFRP plate produces unique acoustic frequencies which are a function of existing CFRP plate-concrete bond conditions. The purpose of this method is to test and locate CFRP plates de-bonded from bridge structural members to identify associated deterioration in bridge load performance. Laboratory tests of this NDT device on a CFRP plate bonded to concrete with staged voids (de-laminations) produced different frequencies for bonded and de-bonded areas of the plate. The spectra (bands) of frequencies obtained in these tests show a correlation to the CFRP-concrete bond condition and identify bonded and de-bonded areas of the plate. The results of these tests indicate that this NDT impact machine, with design improvements, can potentially provide bridge engineers a means to rapidly evaluate long lengths of CFRP laminates applied to multiple highway bridges within a national transportation infrastructure.

  15. Suppressed black hole production from minimal length

    International Nuclear Information System (INIS)

    Large extra dimensions lower the Planck scale to values soon accessible. Motivated by string theory, the models of large extra dimensions predict a vast number of new effects in the energy range of the lowered Planck scale, among them the production of TeV-mass black holes. But not only is the Planck scale the energy scale at which effects of modified gravity become important. String theory as well as non-commutative quantum mechanics suggest that the Planck length acts a minimal length in nature, providing a natural ultraviolet cutoff and a limit to the possible resolution of spacetime. The minimal length effects thus become important in the same energy range in which the black holes are expected to form. In this Letter we examine the influence of the minimal length on the expected production rate of the black holes

  16. Order 1 autoregressive process of finite length

    CERN Document Server

    Vamos, Calin; Craciun, Maria

    2007-01-01

    The stochastic processes of finite length defined by recurrence relations request additional relations specifying the first terms of the process analogously to the initial conditions for the differential equations. As a general rule, in time series theory one analyzes only stochastic processes of infinite length which need no such initial conditions and their properties are less difficult to be determined. In this paper we compare the properties of the order 1 autoregressive processes of finite and infinite length and we prove that the time series length has an important influence mainly if the serial correlation is significant. These different properties can manifest themselves as transient effects produced when a time series is numerically generated. We show that for an order 1 autoregressive process the transient behavior can be avoided if the first term is a Gaussian random variable with standard deviation equal to that of the theoretical infinite process and not to that of the white noise innovation.

  17. CPS Trawl Life History Length Frequency Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Length distribution of a subset of individuals from a species (mainly non-target) caught during SWFSC-FRD fishery independent trawl surveys of coastal pelagic...

  18. Atomic frequency-time-length standards

    International Nuclear Information System (INIS)

    The principles of operative of atomic frequency-time-length standards and their principle characteristics are described. The role of quartz crystal oscillators which are sloved to active or passive standards is presented. (authors)

  19. Mixing lengths scaling in a gravity flow

    Energy Technology Data Exchange (ETDEWEB)

    Ecke, Robert E [Los Alamos National Laboratory; Rivera, Micheal [Los Alamos National Laboratory; Chen, Jun [Los Alamos National Laboratory; Ecke, Robert E [Los Alamos National Laboratory

    2009-01-01

    We present an experimental study of the mixing processes in a gravity current. The turbulent transport of momentum and buoyancy can be described in a very direct and compact form by a Prandtl mixing length model [1]: the turbulent vertical fluxes of momentum and buoyancy are found to scale quadraticatly with the vertical mean gradients of velocity and density. The scaling coefficient is the square of the mixing length, approximately constant over the mixing zone of the stratified shear layer. We show in this paper how, in different flow configurations, this length can be related to the shear length of the flow {radical}({var_epsilon}/{partial_derivative}{sub z}u{sup 3}).

  20. Essays on European bond markets

    NARCIS (Netherlands)

    Y.C. Cheung

    2005-01-01

    This dissertation focused on a number of issues that are of importance in the current European bond market. In the past years, the fiscal policy of the Eurozone members, advances in the technology of trading platforms and the introduction of a single currency have reshaped the fixed income markets i

  1. Covered bonds vs. assets securitization

    OpenAIRE

    Silviu Eduard DINCĂ

    2014-01-01

    During the past few years, in the recent post-crisis global banking and capital markets context, financial institutions around the globe are exploring new options to better secure their financing and refinancing demands. We will exhibit herewith a comparison between covered bonds and asset securitizations as financial markets-based funding techniques, highlighting certain key structuring and implementation specifics on each of them.

  2. On double bonds in fullerenes

    OpenAIRE

    Stepenshchikov D. G.; Voytekhovsky Yu. L.

    2016-01-01

    Various distributions of double carbon bonds in the fullerenes have been considered in the paper from the point that they are absent in the pentagonal rings. The appropriate classification of the fullerenes has been built. The results may be used when modeling the fullerenes of a given topology and calculating their physical-chemical properties

  3. Flux saturation length of sediment transport

    OpenAIRE

    Pähtz, T.; Kok, JF; Parteli, EJR; Herrmann, HJ

    2013-01-01

    Sediment transport along the surface drives geophysical phenomena as diverse as wind erosion and dune formation. The main length-scale controlling the dynamics of sediment erosion and deposition is the saturation length $L_\\mathrm{s}$, which characterizes the flux response to a change in transport conditions. Here we derive, for the first time, an expression predicting $L_\\mathrm{s}$ as a function of the average sediment velocity under different physical environments. Our expression accounts ...

  4. Length and coverage of inhibitory decision rules

    KAUST Repository

    Alsolami, Fawaz

    2012-01-01

    Authors present algorithms for optimization of inhibitory rules relative to the length and coverage. Inhibitory rules have a relation "attribute ≠ value" on the right-hand side. The considered algorithms are based on extensions of dynamic programming. Paper contains also comparison of length and coverage of inhibitory rules constructed by a greedy algorithm and by the dynamic programming algorithm. © 2012 Springer-Verlag.

  5. Primitive geodesic lengths and (almost) arithmetic progressions

    OpenAIRE

    Lafont, Jean-François; McReynolds, D. B.

    2014-01-01

    In this article, we investigate when the set of primitive geodesic lengths on a Riemannian manifold have arbitrarily long arithmetic progressions. We prove that in the space of negatively curved metrics, a metric having such arithmetic progressions is quite rare. We introduce almost arithmetic progressions, a coarsification of arithmetic progressions, and prove that every negatively curved, closed Riemannian manifold has arbitrarily long almost arithmetic progressions in its primitive length ...

  6. Evolutionary Optimization with Cumulative Step Length Adaptation

    OpenAIRE

    Arnold, Dirk V.; Beyer, Hans-Georg

    2003-01-01

    Iterative algorithms for numerical optimization in continuous spaces typically need to adapt their step lengths in the course of the search. While some strategies employ fixed schedules for reducing the step lengths over time, others attempt to adapt interactively in response to either the outcome of trial steps or to the history of the search process. Evolutionary algorithms are of the latter kind. One of the control strategies that is commonly used in evolution strategies is the cumulative ...

  7. Electron Effective-Attenuation-Length Database

    Science.gov (United States)

    SRD 82 NIST Electron Effective-Attenuation-Length Database (PC database, no charge)   This database provides values of electron effective attenuation lengths (EALs) in solid elements and compounds at selected electron energies between 50 eV and 2,000 eV. The database was designed mainly to provide EALs (to account for effects of elastic-eletron scattering) for applications in surface analysis by Auger-electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS).

  8. Hydrogen Bonding to Alkanes: Computational Evidence

    DEFF Research Database (Denmark)

    Hammerum, Steen; Olesen, Solveig Gaarn

    2009-01-01

    The structural, vibrational, and energetic properties of adducts of alkanes and strong cationic proton donors were studied with composite ab initio calculations. Hydrogen bonding in [D-H+ H-alkyl] adducts contributes to a significant degree to the interactions between the two components, which is...... substantiated by NBO and AIM results. The hydrogen bonds manifest themselves in the same manner as conventional hydrogen bonds, D-H bond elongation, D-H vibrational stretching frequency red shift and intensity increase, and adduct stabilization. The alkane adducts also exhibit elongation of the C-H bonds...... involved and a concurrent red shift, which is rationalized in terms of charge-transfer interactions that cause simultaneous weakening of both the O-H and C-H bonds. Like other dihydrogen-bonded adducts, the adducts possess a bent structure and asymmetric bifurcated hydrogen bonds. The hydrogen bonds are...

  9. Progressive Failure Analysis on the Single Lap Bonded Joints

    Directory of Open Access Journals (Sweden)

    Kadir TURAN

    2010-03-01

    Full Text Available In this study, the failure analysis on the single lap bonded joint, which is used for joined two composite plates each other with adhesive, is investigated experimentally and numerically. In the joint, the epoxy resin is used for adhesive and the four layered carbon fiber reinforced epoxy matrix resin composite plates are used for adherent. Numerical study is performed in the ANSYS software which is used finite element method for solution. For obtained numerical failure loads, the progressive failure analysis is used with material property degradation rules. In the failure analysis the Hashin Failure Criterion is used for composite plates and the Maximum Principal Stress failure criterion is used for adhesive. The effects of the adhesive thickness overlap lengths and plate weight on the joint strength is investigated with numerically. As a result it is seen that the failure loads is affected the bond face area. The results are presented with graphs and tables.

  10. Tracheoesophageal fistula length decreases over time.

    Science.gov (United States)

    Jiang, Nancy; Kearney, Ann; Damrose, Edward J

    2016-07-01

    The objectives of this study were to demonstrate that the length of the tracheoesophageal voice prosthesis changes over time and to determine whether the prosthesis length over time increased, decreased, or showed no predictable change in size. A retrospective chart review was performed at a tertiary care referral center. Patients who underwent either primary or secondary tracheoesophageal puncture between January 2006 and August 2014 were evaluated. Patients were excluded if the tracheoesophageal prosthesis size was not consistently recorded or if they required re-puncturing for an extruded prosthesis. Data analyzed included patient demographics and the length of the tracheoesophageal voice prosthesis at each change. A total of 37 patients were identified. The mean age was 64 years. Seventy-six percent were male. 24 % underwent primary tracheoesophageal puncture and 76 % underwent secondary tracheoesophageal puncture. The length of the prosthesis decreased over time (median Kendall correlation coefficient = -0.60; mean = -0.44) and this correlation between length and time was significant (p = 0.00085). Therefore, in conclusion, tracheoesophageal prosthesis length is not constant over time. The tracheoesophageal wall thins, necessitating placement of shorter prostheses over time. Patients with a tracheoesophageal voice prosthesis will require long-term follow-up and repeat sizing of their prosthesis. Successful tracheoesophageal voicing will require periodic reevaluation of these devices, and insurers must, therefore, understand that long-term professional care will be required to manage these patients and their prostheses. PMID:26951219

  11. Hydrogen bonded C-H···Y (Y = O, S, Hal) molecular complexes: A natural bond orbital analysis

    Science.gov (United States)

    Isaev, A. N.

    2016-03-01

    Hydrogen bonded C-H···Y complexes formed by H2O, H2S molecules, hydrogen halides, and halogen-ions with methane, halogen substituted methane as well as with the C2H2 and NCH molecules were studied at the MP2/aug-cc-pVDZ level. The structure of NBOs corresponding to lone pair of acceptor Y, n Y, and vacant anti-σ-bond C-H of proton donor was analyzed and estimates of second order perturbation energy E(2) characterizing donor-acceptor n Y → σ C-H * charge-transfer interaction were obtained. Computational results for complexes of methane and its halogen substituted derivatives show that for each set of analogous structures, the EnY→σ*C-H (2) energy tends to grow with an increase in the s-component percentage in the lone pair NBO of acceptor Y. Calculations for different C···Y distances show that the equilibrium geometries of complexes lie in the region where the E(2) energy is highest and it changes symbatically with the length of the covalent E-H bond when the R(C···Y) distance is varied. The performed analysis allows us to divide the hydrogen bonded complexes into two groups, depending on the pattern of overlapping for NBOs of the hydrogen bridge.

  12. Effect of moisture, saliva, and blood contamination on the shear bond strength of brackets bonded with a conventional bonding system and self-etched bonding system

    Science.gov (United States)

    Prasad, Mandava; Mohamed, Shamil; Nayak, Krishna; Shetty, Sharath Kumar; Talapaneni, Ashok Kumar

    2014-01-01

    Background: The success of bonding brackets to enamel with resin bonding systems is negatively affected by contamination with oral fluids such as blood and saliva. The new self-etch primer systems combine conditioning and priming agents into a single application, making the procedure more cost effective. Objective: The purpose of the study was to investigate the effect of moisture, saliva and blood contamination on shear bond strength of orthodontic brackets bonded with conventional bonding system and self-etch bonding system. Materials and Methods: Each system was examined under four enamel surface conditions (dry, water, saliva, and blood), and 80 human teeth were divided into two groups with four subgroups each of 10 according to enamel surface condition. Group 1 used conventional bonding system and Group 2 used self-etched bonding system. Subgroups 1a and 2a under dry enamel surface conditions; Subgroups 1b and 2b under moist enamel surface condition; Subgroups 3a and 3b under saliva enamel surface condition and Subgroup 4a and 4b under blood enamel surface condition. Brackets were bonded, and all the samples were then submitted to a shear bond test with a universal testing machine with a cross head speed of 1mm/sec. Results: The results showed that the contamination reduced the shear bond strength of all groups. In self-etch bonding system water and saliva had significantly higher bond strength when compared to other groups. Conclusion: It was concluded that the blood contamination showed lowest bond strength from both bonding systems. Self-etch bonding system resulted in higher bond strength than conventional bonding system under all conditions except the dry enamel surface. PMID:24678210

  13. Comparison of bond behavior of hot rolled and cold twisted steel reinforcement in high strength concrete

    International Nuclear Information System (INIS)

    Efficient bond performance ensures the composite action of reinforced concrete. Hot rolled deformed and cold twisted steel bars are used in Pakistan as reinforcement. Experimental investigation was carried out using twisted steel bars as per BS-4461 and hot rolled deformed steel bars according to ASTMA 615 in high strength concrete. The post peak bond behavior was studied by using strain controlled universal testing machine. The results of this experiment show that by using cold twisted steel bars bond strength and corresponding slip increased. In hot rolled deformed steel bars, concrete key circles around the steel bar like an independent ring subjected to hoop stresses. During the twisting operation to manufacture cold twisted bars, pattern of ribs was changed and they spiraled around the central core. A continuous concrete key was formed, that is considered as skewed for bond action. Stress concentration in the initial part of the helical key was reduced and the stresses were distributed over a longer length as compared with front key in case of hot rolled deformed steel bar. Hence it offered maximum possible resistance to bond failure and the bond strength increased. In high strength concrete stress concentration on the loaded end may cause longitudinal splitting cracks that lead to premature bond failure. Another fact observed in all samples of hot rolled deformed and cold twisted steel bars is that as the first longitudinal splitting crack forms there is a sudden drop in bond strength. These cracks were visible even from the surface of the specimen. (author)

  14. Why Static O-H Bond Parameters Cannot Characterize the Free Radical Scavenging Activity of Phenolic Antioxidants: ab initio Study

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The static O-H bond parameters including O-H bond length, O-H charge difference, O-H Mulliken population and O-H bond stretching force constant (k) for 17 phenols were calculated by ab initio method HF/6-31G**. In combination with the O-H bond dissociation enthalpies (BDE) of the phenols determined by experiment, it was found that there were poor correlationships between the static O-H bond parameters and O-H BDE. Considering the good correlationship between O-H BDE and logarithm of free radical scavenging rate constant for phenolic antioxidant, it is reasonable to believe that the ineffectiveness of static O-H bond parameters in characterizing antioxidant activity arises from the fact that they cannot measure the O-H BDE.

  15. Strength of Bond Covenants and Bond Assessment Framework

    Directory of Open Access Journals (Sweden)

    Noel Yahanpath

    2012-06-01

    Full Text Available We examine bond covenants of 29 New Zealand bond issues between 2001 and 2007.Results from the study indicate that protection provided for bondholders is weak and limited.On average, only 2-3 types of covenants are embedded with the issues and only 27% of thesecovenants provide full protection to the bondholders. However, bondholders are not compensated for taking the additional risk. We propose an alternative assessment framework that directly assesses the level of protection offered to bondholders. We calculate thecovenant quality score for the issues and classify them into four levels of protection: very high protection, moderate, low and very low. Recent legislative changes will go some way towards improving investor protection and confidence, but the effect is yet to be seen. This proposed scoring framework can be used by potential investors to complement the traditional credit ratings when making their investment decisions.

  16. Bond strength of cementitious borehole plugs in welded tuff

    International Nuclear Information System (INIS)

    Axial loads on plugs or seals in an underground repository due to gas, water pressures and temperature changes induced subsequent to waste and plug emplacement lead to shear stresses at the plug/rock contact. Therefore, the bond between the plug and rock is a critical element for the design and effectiveness of plugs in boreholes, shafts or tunnels. This study includes a systematic investigation of the bond strength of cementitious borehole plugs in welded tuff. Analytical and numerical analysis of borehole plug-rock stress transfer mechanics is performed. The interface strength and deformation are studied as a function of Young's modulus ratio of plug and rock, plug length and rock cylinder outside-to-inside radius ratio. The tensile stresses in and near an axially loaded plug are analyzed. The frictional interface strength of an axially loaded borehole plug, the effect of axial stress and lateral external stress, and thermal effects are also analyzed. Implications for plug design are discussed. The main conclusion is a strong recommendation to design friction plugs in shafts, drifts, tunnels or boreholes with a minimum length to diameter ratio of four. Such a geometrical design will reduce tensile stresses in the plug and in the host rock to a level which should minimize the risk of long-term deterioration caused by excessive tensile stresses. Push-out tests have been used to determine the bond strength by applying an axial load to cement plugs emplaced in boreholes in welded tuff cylinders. A total of 130 push-out tests have been performed as a function of borehole size, plug length, temperature, and degree of saturation of the host tuff. The use of four different borehole radii enables evaluation of size effects. 119 refs., 42 figs., 20 tabs

  17. Chemical bonding characterization, expansivity and compressibility of RECrO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Li, Huaiyong, E-mail: huaiyong.lee@gmail.com [Department of Materials Science and Engineering, Liaocheng University, Liaocheng 252059 (China); Noh, Hyeon Mi; Moon, Byung Kee; Choi, Byung Chun [Department of Physics, Pukyong National University, Busan 608-737 (Korea, Republic of); Jeong, Jung Hyun, E-mail: jhjeong@pknu.ac.kr [Department of Physics, Pukyong National University, Busan 608-737 (Korea, Republic of)

    2014-01-05

    Highlights: • The chemical bonding characterization of RECrO{sub 4} is presented. • The thermal expansion coefficients and bulk moduli of RECrO{sub 4} are predicted. • The predicted bulk moduli agree well with the experimental values. • RE–O bonds contribute less to lattice energy. • RE–O bonds contribute more to bulk modulus and thermal expansion coefficient. -- Abstract: Theoretical researches were performed on zircon-type RECrO{sub 4} (RE = rare earth elements) compounds by using dielectric chemical bond theory of complex crystals. The characterization of the chemical bonding, the expansivity and compressibility of the compounds were studied. The results revealed that both RE–O and Cr–O bonds were ionically dominated, and the ionicity fraction decreased gradually with the decreasing of the RE–O bond length. Cr–O bonds had a low linear thermal expansion coefficients (LTEC) and high bulk modulus than RE–O bonds. While the LTEC and bulk modulus of the compounds were mainly determined by RE–O bonds because they had a large bond volume. When RE varied from Pr to Lu, the LTEC decreased linearly from 6.00 to 5.71 10{sup −6}/K and the bulk modulus increased from 117.9 to 132.2 GPa. YCrO{sub 4} in zircon-phase had high lattice energy than YCrO{sub 4} in scheelite-phase, the bulk moduli of YCrO{sub 4} in zircon- and scheelite-phase were determined to be 135 GPa and 153 GPa, respectively, which agreed well with the experimental values.

  18. Covalent bond orders for non-bonded atoms: The case for carbon-carbon interactions

    International Nuclear Information System (INIS)

    The Cioslowski-Mixon (CM) covalent bond order and the atoms-in-molecules (AIM) delocalization index can be used to study bonding characteristics between atoms not bonded in the conventional chemical sense. In particular, the bond orders between atoms (AIM basins) with one intervening atom evolve in a predictable manner and are related to the bond orders of conventionally bonded species. The CM approach shows that it is the tails of the incompletely localized orbitals that provide for such interactions. Single, multiple, and resonant bond effects are seen which are physically meaningful and useful as an additional characterization of molecular bonding. The important case of carbon-carbon interactions is studied here.

  19. Locking a molecular bond: A case study of CsI

    DEFF Research Database (Denmark)

    Szakács, Tamás; Amstrup, Bjarne; Gross, Peter;

    1994-01-01

    This paper treats the problem of locking a molecular bond at a length other than the equilibrium distance, with the help of optical electric fields. Locking conditions for single-color fields are examined, and slowly decaying locked wave functions are sought. These were functions are then used as...

  20. Structural and bonding trends in platinum-carbon clusters

    OpenAIRE

    Miller, Thomas F., III; Hall, Michael B.

    1999-01-01

    Density functional calculations with the B3-LYP functional were used to optimize the platinum−carbon cationic clusters, PtC_x^+, 1 ≤ x ≤ 16, in both the doublet and quartet states of the linear, fan, open-ring, closed-ring, and one-carbon-ring geometries. Trends in stability, Pt^+−C_x binding energy, doublet-quartet excitation energy, and Pt−C bond lengths were investigated. Explanations for these patterns are provided in terms of orbital interactions and changes imposed on the carbon chain b...

  1. Strain measurement of fiber optic sensor surface bonding on host material

    Institute of Scientific and Technical Information of China (English)

    Shiuh-Chuan HER; Chang-Yu TSAI

    2009-01-01

    Fiber optic sensor has been widely used as a structural health monitoring device by either embedding into or surface bonding onto the structures. The strain of optic fiber induced by the host material is strongly dependent on the bonding characteristics which include the protective coating, adhesive layer and the length of bonding. The strains between the fiber optics and host structure are not exact the same. The existence of the protective coating and adhesive layer would affect the strain measured by the surface bonding optic sensor. The analytical expression of the strain in the optic fiber induced by the host material was presented. The results were validated by the finite element method. The theoretical predictions reveal that the strain in the optical fiber is lower than the strain of host material. Parametric study shows that a long bonding length and high modulus of protective coating would increase the percentage of strain transferring into the optical fiber. Experiments were conducted by using Mach-Zehnder interferometer to measure the strain of the surface bonding optic fiber induced by the host structure. Good agreements were observed in comparison with the experimental results and theoretical predictions.

  2. Theory of tunneling across hydrogen-bonded base pairs for DNA recognition and sequencing

    Science.gov (United States)

    Lee, Myeong H.; Sankey, Otto F.

    2009-05-01

    We present the results of first-principles calculations for the electron tunnel current through hydrogen-bonded DNA base pairs and for (deoxy)nucleoside-nucleobase pairs. Electron current signals either through a base pair or through a deoxynucleoside-nucleobase pair are a potential mechanism for recognition or identification of the DNA base on a single-stranded DNA polymer. Four hydrogen-bonded complexes are considered: guanine-cytosine, diaminoadenine-thymine, adenine-thymine, and guanine-thymine. First, the electron tunneling properties are examined through their complex band structure (CBS) and the metal contact’s Fermi-level alignment. For gold contacts, the metal Fermi level lies near the highest occupied molecular orbital for all DNA base pairs. The decay constant determined by the complex band structure at the gold Fermi level shows that tunnel current decays more slowly for base pairs with three hydrogen bonds (guanine-cytosine and diaminoadenine-thymine) than for base pairs with two hydrogen bonds (adenine-thymine and guanine-thymine). The decay length and its dependence on hydrogen-bond length are examined. Second, the conductance is computed using density functional theory Green’s-function scattering methods and these results agree with estimates made from the tunneling decay constant obtained from the CBS. Changing from a base pair to a deoxynucleoside-nucleobase complex shows a significant decrease in conductance. It also becomes difficult to distinguish the current signal by only the number of hydrogen bonds.

  3. Scaling of avian primary feather length.

    Directory of Open Access Journals (Sweden)

    Robert L Nudds

    Full Text Available The evolution of the avian wing has long fascinated biologists, yet almost no work includes the length of primary feathers in consideration of overall wing length variation. Here we show that the length of the longest primary feather (f(prim contributing to overall wing length scales with negative allometry against total arm (ta = humerus+ulna+manus. The scaling exponent varied slightly, although not significantly so, depending on whether a species level analysis was used or phylogeny was controlled for using independent contrasts: f(prim is proportional to ta(0.78-0.82. The scaling exponent was not significantly different from that predicted (0.86 by earlier work. It appears that there is a general trend for the primary feathers of birds to contribute proportionally less, and ta proportionally more, to overall wingspan as this dimension increases. Wingspan in birds is constrained close to mass (M(1/3 because of optimisation for lift production, which limits opportunities for exterior morphological change. Within the wing, variations in underlying bone and feather lengths nevertheless may, in altering the joint positions, permit a range of different flight styles by facilitating variation in upstroke kinematics.

  4. SEXUAL DIMORPHISM OF MAXIMUM FEMORAL LENGTH

    Directory of Open Access Journals (Sweden)

    Pandya A M

    2011-04-01

    Full Text Available Sexual identification from the skeletal parts has medico legal and anthropological importance. Present study aims to obtain values of maximum femoral length and to evaluate its possible usefulness in determining correct sexual identification. Study sample consisted of 184 dry, normal, adult, human femora (136 male & 48 female from skeletal collections of Anatomy department, M. P. Shah Medical College, Jamnagar, Gujarat. Maximum length of femur was considered as maximum vertical distance between upper end of head of femur and the lowest point on femoral condyle, measured with the osteometric board. Mean Values obtained were, 451.81 and 417.48 for right male and female, and 453.35 and 420.44 for left male and female respectively. Higher value in male was statistically highly significant (P< 0.001 on both sides. Demarking point (D.P. analysis of the data showed that right femora with maximum length more than 476.70 were definitely male and less than 379.99 were definitely female; while for left bones, femora with maximum length more than 484.49 were definitely male and less than 385.73 were definitely female. Maximum length identified 13.43% of right male femora, 4.35% of right female femora, 7.25% of left male femora and 8% of left female femora. [National J of Med Res 2011; 1(2.000: 67-70

  5. Length expectation values in quantum Regge calculus

    Energy Technology Data Exchange (ETDEWEB)

    Khatsymovsky, V.M

    2004-04-29

    Regge calculus configuration superspace can be embedded into a more general superspace where the length of any edge is defined ambiguously depending on the 4-tetrahedron containing the edge. Moreover, the latter superspace can be extended further so that even edge lengths in each the 4-tetrahedron are not defined, only area tensors of the 2-faces in it are. We make use of our previous result concerning quantization of the area tensor Regge calculus which gives finite expectation values for areas. Also our result is used showing that quantum measure in the Regge calculus can be uniquely fixed once we know quantum measure on (the space of the functionals on) the superspace of the theory with ambiguously defined edge lengths. We find that in this framework quantization of the usual Regge calculus is defined up to a parameter. The theory may possess nonzero (of the order of Planck scale) or zero length expectation values depending on whether this parameter is larger or smaller than a certain value. Vanishing length expectation values means that the theory is becoming continuous, here dynamically in the originally discrete framework.

  6. Explaining the length threshold of polyglutamine aggregation

    International Nuclear Information System (INIS)

    The existence of a length threshold, of about 35 residues, above which polyglutamine repeats can give rise to aggregation and to pathologies, is one of the hallmarks of polyglutamine neurodegenerative diseases such as Huntington’s disease. The reason why such a minimal length exists at all has remained one of the main open issues in research on the molecular origins of such classes of diseases. Following the seminal proposals of Perutz, most research has focused on the hunt for a special structure, attainable only above the minimal length, able to trigger aggregation. Such a structure has remained elusive and there is growing evidence that it might not exist at all. Here we review some basic polymer and statistical physics facts and show that the existence of a threshold is compatible with the modulation that the repeat length imposes on the association and dissociation rates of polyglutamine polypeptides to and from oligomers. In particular, their dramatically different functional dependence on the length rationalizes the very presence of a threshold and hints at the cellular processes that might be at play, in vivo, to prevent aggregation and the consequent onset of the disease. (paper)

  7. Tactile length contraction as Bayesian inference.

    Science.gov (United States)

    Tong, Jonathan; Ngo, Vy; Goldreich, Daniel

    2016-08-01

    To perceive, the brain must interpret stimulus-evoked neural activity. This is challenging: The stochastic nature of the neural response renders its interpretation inherently uncertain. Perception would be optimized if the brain used Bayesian inference to interpret inputs in light of expectations derived from experience. Bayesian inference would improve perception on average but cause illusions when stimuli violate expectation. Intriguingly, tactile, auditory, and visual perception are all prone to length contraction illusions, characterized by the dramatic underestimation of the distance between punctate stimuli delivered in rapid succession; the origin of these illusions has been mysterious. We previously proposed that length contraction illusions occur because the brain interprets punctate stimulus sequences using Bayesian inference with a low-velocity expectation. A novel prediction of our Bayesian observer model is that length contraction should intensify if stimuli are made more difficult to localize. Here we report a tactile psychophysical study that tested this prediction. Twenty humans compared two distances on the forearm: a fixed reference distance defined by two taps with 1-s temporal separation and an adjustable comparison distance defined by two taps with temporal separation t ≤ 1 s. We observed significant length contraction: As t was decreased, participants perceived the two distances as equal only when the comparison distance was made progressively greater than the reference distance. Furthermore, the use of weaker taps significantly enhanced participants' length contraction. These findings confirm the model's predictions, supporting the view that the spatiotemporal percept is a best estimate resulting from a Bayesian inference process. PMID:27121574

  8. Structure and bonding in clusters

    International Nuclear Information System (INIS)

    We review here the recent progress made in the understanding of the electronic and atomic structure of small clusters of s-p bonded materials using the density functional molecular dynamics technique within the local density approximation. Starting with a brief description of the method, results are presented for alkali metal clusters, clusters of divalent metals such as Mg and Be which show a transition from van der Waals or weak chemical bonding to metallic behaviour as the cluster size grows and clusters of Al, Sn and Sb. In the case of semiconductors, we discuss results for Si, Ge and GaAs clusters. Clusters of other materials such as P, C, S, and Se are also briefly discussed. From these and other available results we suggest the possibility of unique structures for the magic clusters. (author). 69 refs, 7 figs, 1 tab

  9. Manufacturing study of beryllium bonded structures

    International Nuclear Information System (INIS)

    Manufacturing study has been conducted on Be-bonded structures employed in the first-wall panel of the blanket system for the ITER. For Be tiles bonded to the Cu-Cr-Zr alloy heat sink with stainless-steel cooling pipes, a one-axis hot press with two heating process has been used to bond the three materials. First, Cu-alloy and SS materials are bonded diffusively. Then, Be tiles are bonded to the pre-bonded structure under 20 MPa and at 560 degree C. An Al-Si base interlayer has been used to bond Be to the Cu-Alloy. Because of the limited heat processes using a conventional hot press, the manufacturing cost can be minimized. Using the above bonding techniques, a partial mockup of a blanket first-wall panel with 16 Be tiles (with 50 mm in size) has been successfully manufactured. (author)

  10. Essays on European bond markets

    OpenAIRE

    Cheung, Y.C.

    2005-01-01

    This dissertation focused on a number of issues that are of importance in the current European bond market. In the past years, the fiscal policy of the Eurozone members, advances in the technology of trading platforms and the introduction of a single currency have reshaped the fixed income markets in Europe. These developments have resulted in a far going integration of Eurozone capital markets. Moreover, the massive amounts of debt issued by Japan and the United States combined with the dete...

  11. Absorption lengths in the holographic plasma

    International Nuclear Information System (INIS)

    We consider the effect of a periodic perturbation with frequency ω on the holographic N = 4 plasma represented by the planar AdS black hole. The response of the system is given by exponentially decaying waves. The corresponding complex wave numbers can be found by solving wave equations in the AdS black hole background with infalling boundary conditions on the horizon in an analogous way as in the calculation of quasinormal modes. The complex momentum eigenvalues have an interpretation as poles of the retarded Green's functions, where the inverse of the imaginary part gives an absorption length λ. At zero frequency we obtain the screening length for a static field. These are directly related to the glueball masses in the dimensionally reduced theory. We also point out that the longest screening length corresponds to an operator with non-vanishing R-charge and thus does not have an interpretation as a QCD3 glueball

  12. Superconducting insertion devices with switchable period length

    International Nuclear Information System (INIS)

    Superconducting insertion devices (IDs) are very attractive for synchrotron light sources since they offer the possibility to enhance the tuning range and functionality significantly by period length switching. Period length switching can be realized by employing two or more individually powerable subsets of superconducting coils and reverse the current in a part of the winding. So far, the first demonstration mock-up coil allowing period length tripling was fabricated and tested successfully (A. Grau et al., accepted for publication in IEEE Transactions on Applied Superconductivity). Here, we report on the feasibility of a superconducting switch implemented as proposed by A. Madur et al., Proc. of the 10th International Conference on Synchrotron Radiation Instrumentation 2009, Melbourne, Australia.

  13. Superconducting insertion devices with switchable period length

    Energy Technology Data Exchange (ETDEWEB)

    Holubek, Tomas; Baumbach, Tilo; Casalbuoni, Sara; Gerstl, Stefan; Grau, Andreas; Hagelstein, Michael; Saez de Jauregui, David [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Boffo, Cristian; Walter, Wolfgang [Babcock Noell GmbH, Wuerzburg (Germany)

    2011-07-01

    Superconducting insertion devices (IDs) are very attractive for synchrotron light sources since they offer the possibility to enhance the tuning range and functionality significantly by period length switching. Period length switching can be realized by employing two or more individually powerable subsets of superconducting coils and reverse the current in a part of the winding. So far, the first demonstration mock-up coil allowing period length tripling was fabricated and tested successfully (A. Grau et al., accepted for publication in IEEE Transactions on Applied Superconductivity). Here, we report on the feasibility of a superconducting switch implemented as proposed by A. Madur et al., Proc. of the 10th International Conference on Synchrotron Radiation Instrumentation 2009, Melbourne, Australia.

  14. Minimal Length Scale Scenarios for Quantum Gravity

    Directory of Open Access Journals (Sweden)

    Sabine Hossenfelder

    2013-01-01

    Full Text Available We review the question of whether the fundamental laws of nature limit our ability to probe arbitrarily short distances. First, we examine what insights can be gained from thought experiments for probes of shortest distances, and summarize what can be learned from different approaches to a theory of quantum gravity. Then we discuss some models that have been developed to implement a minimal length scale in quantum mechanics and quantum field theory. These models have entered the literature as the generalized uncertainty principle or the modified dispersion relation, and have allowed the study of the effects of a minimal length scale in quantum mechanics, quantum electrodynamics, thermodynamics, black-hole physics and cosmology. Finally, we touch upon the question of ways to circumvent the manifestation of a minimal length scale in short-distance physics.

  15. Environmental stresses disrupt telomere length homeostasis.

    Directory of Open Access Journals (Sweden)

    Gal Hagit Romano

    Full Text Available Telomeres protect the chromosome ends from degradation and play crucial roles in cellular aging and disease. Recent studies have additionally found a correlation between psychological stress, telomere length, and health outcome in humans. However, studies have not yet explored the causal relationship between stress and telomere length, or the molecular mechanisms underlying that relationship. Using yeast as a model organism, we show that stresses may have very different outcomes: alcohol and acetic acid elongate telomeres, whereas caffeine and high temperatures shorten telomeres. Additional treatments, such as oxidative stress, show no effect. By combining genome-wide expression measurements with a systematic genetic screen, we identify the Rap1/Rif1 pathway as the central mediator of the telomeric response to environmental signals. These results demonstrate that telomere length can be manipulated, and that a carefully regulated homeostasis may become markedly deregulated in opposing directions in response to different environmental cues.

  16. Length and boundary effects on a nanorod

    Directory of Open Access Journals (Sweden)

    Wonbae Kim

    2012-12-01

    Full Text Available We investigate length and boundary effects on the equilibrium strain of a ⟨100⟩ copper nanorod with {100} or {110} surfaces. Unlike a nanowire, a free-edged nanorod has finite length and has two more surfaces at both tip and root. Although the area of these two edge surfaces is generally much smaller than that of side surfaces, the effect of the edge surfaces should not be ignored in the equilibrium configuration of a nanorod. In this letter, an analytical model to estimate the equilibrium strain of the nanorod is proposed, and molecular statics simulations are performed to prove the proposed model. As the length of a nanorod increases, the equilibrium strain increases and converges to that of a nanowire. As for the boundary effect, we compare the equilibrium strain of a clamped nanorod with that of a free-edged nanorod.

  17. Length-length relationship, length-weight relationship and condition factor of freshwater fish species of Bangladesh

    Directory of Open Access Journals (Sweden)

    M. Manjurul Alam

    2013-09-01

    Full Text Available The objectives of this study were to describe the length-length relationship (LLR, length-weight relationship (LWR and condition factor of four important freshwater fish species Esomus danricus, Amblypharyngodon mola, Pethia ticto and Glossogobius giuris, collected from different fish market of Gomastapur subdistrict, Chapai Nawabganj, Bangladesh from December 2009 to November 2010. Relationship equations among different body length parameters of each species were found highly significant (p 3.01, 0.025 TL3.03, 0.043 TL2.93 and 0.021 TL2.91 for E. danricus, A. mola, P. ticto and G. giuris respectively. The study period was divided into three major seasons summer (March to June, rainy (July to October and winter (November to February for studying the growth and condition of the specimens. The values of the Fulton’s and relative condition factors indicated apparent growth variation in different seasons. All the species showed maximum robustness in summer and rainy seasons. The information obtained from this study will be helpful for the fishery managers to implement adequate adaption-centric regulations for sustainable fishery management in the water bodies of Gomastapur as well as the other parts of the country.

  18. Attachment bonding of delinquent adolescents

    Directory of Open Access Journals (Sweden)

    Čačić Sandra

    2013-01-01

    Full Text Available Main objective of this research is to define adolescence bonding as well as to identify their typical bonding type. The bonding was observed in two ways. The analysis was based on seven attachment dimensions that were defined by N. Hanak, as well as on the basis of Bartholomew’s four-style attachment model. The research was conducted at multiple sites: two secondary schools in Sombor, the Juvenile Correctional Institution in Kruševac and the Juvenile Correctional Facility in Niš. It included 524 persons, 421 adolescents and 103 delinquents. Adolescents are the second and the third grade students of the Secondary Technical School and the Second­ary School of Economics, while delinquents were testable juveniles. All of them are under correctional measures in the above mentioned institutions. All results are in accordance with the theoretical expectations. Delinquents attach in insecure way more frequently: 68, 9% delinquents from our sample showed insecure attachment. The fearful type of attachment appears to be typical of delinquents. Delinquents are facing difficulties in obtaining support of close persons, as well as in using significant persons they are related to as safe harbours in stressful situations. In addition, they would see themselves as not worthy of attention and love. There is a high level of painful feelings related to childhood and family, as well as ambivalent and nega­tive current family relations.

  19. Valuing Convertible Bonds Based on LSRQM Method

    OpenAIRE

    Jian Liu; Lizhao Yan; Chaoqun Ma

    2014-01-01

    Convertible bonds are one of the essential financial products for corporate finance, while the pricing theory is the key problem to the theoretical research of convertible bonds. This paper demonstrates how to price convertible bonds with call and put provisions using Least-Squares Randomized Quasi-Monte Carlo (LSRQM) method. We consider the financial market with stochastic interest rates and credit risk and present a detailed description on calculating steps of convertible bonds value. The e...

  20. Assessment of bond between asphalt layers

    OpenAIRE

    Muslich, Sutanto

    2010-01-01

    Asphalt pavements are usually constructed in several layers and most of pavement design and evaluation techniques assume that adjacent asphalt layers are fully bonded together and no displacement is developed between them. However, full bonding is not always achieved and a number of pavement failures have been linked to poor bond condition Theoretical research showed that the distribution of stresses, strains and deflections within the pavement structure is highly influenced by the bond c...

  1. Diversification, original sin, and international bond portfolios

    OpenAIRE

    John D. Burger; Warnock, Francis E.

    2003-01-01

    This paper has two main goals: to analyze country allocations in international bond portfolios and to describe the development of bond markets around the world. In the primary analysis, we find that country weights in U.S. investors' foreign bond portfolios are determined by the openness of capital accounts and potential diversification benefits. Positions in local-currency-denominated bonds are particularly sensitive to past and prospective volatility of returns. Analysis of reallocations in...

  2. Three Essays on Corporate Bond Market Liquidity

    OpenAIRE

    Dick-Nielsen, Jens

    2010-01-01

    The three essays study the US corporate bond market with special attention to bond liquidity. All essays are empirical studies which rely heavily on the availability of transactions data. Earlier studies had to use quoted bond prices for empirical studies, but with the introduction of the TRACE system and with the following dissemination of transaction prices the data quality on corporate bonds has improved immensely. In the years after 2000 a range of studies assessed the p...

  3. European corporate bond liquidity and yield spreads

    OpenAIRE

    Pukka, Juhamatti

    2010-01-01

    PURPOSE OF THE STUDY The purpose of this study is to provide new empirical evidence on European corporate bond liquidity determinants and the liquidity effect on yield spreads. European corporate bond market is mostly ignored in corporate bond liquidity literature and this thesis’ purpose is to contribute to literature by being among the first papers to estimate liquidity determinants with comprehensive European corporate bond data, covering both investment grade and speculative grade rati...

  4. Bond graph modeling of centrifugal compression systems

    OpenAIRE

    Uddin, Nur; Gravdahl, Jan Tommy

    2015-01-01

    A novel approach to model unsteady fluid dynamics in a compressor network by using a bond graph is presented. The model is intended in particular for compressor control system development. First, we develop a bond graph model of a single compression system. Bond graph modeling offers a different perspective to previous work by modeling the compression system based on energy flow instead of fluid dynamics. Analyzing the bond graph model explains the energy flow during compressor surge. Two pri...

  5. Thermally activated solvent bonding of polymers

    OpenAIRE

    Ng, S H; Tjeung, R. T.; Z. F. Wang; Lu, A. C. W.; Rodriguez, I.; de Rooij, Nicolaas F.

    2010-01-01

    We present a thermally activated solvent bonding technique for the formation of embedded microstructures in polymer. It is based on the temperature dependent solubility of polymer in a liquid that is not a solvent at room temperature. With thermal activation, the liquid is transformed into a solvent of the polymer, creating a bonding capability through segmental or chain interdiffusion at the bonding interface. The technique has advantages over the more commonly used thermal bonding due to it...

  6. The length of day in the past

    OpenAIRE

    Arbab, Arbab I.

    2003-01-01

    We have found an empirical law for the variation of the length of the Earth's day with geologic time employing Wells's data. We attribute the lengthening of the Earth's day to the present cosmic expansion of the Universe. The prediction of law has been found to be in agreement with the astronomical and geological data. The day increases at a present rate of 0.002 sec/century. The length of the day is found to be 6 hours when the Earth formed. We have also found a new limit for the value of th...

  7. How Cells Measure Length on Subcellular Scales.

    Science.gov (United States)

    Marshall, Wallace F

    2015-12-01

    Cells are not just amorphous bags of enzymes, but precise and complex machines. With any machine, it is important that the parts be of the right size, yet our understanding of the mechanisms that control size of cellular structures remains at a rudimentary level in most cases. One problem with studying size control is that many cellular organelles have complex 3D structures that make their size hard to measure. Here we focus on linear structures within cells, for which the problem of size control reduces to the problem of length control. We compare and contrast potential mechanisms for length control to understand how cells solve simple geometry problems. PMID:26437596

  8. Isospin odd pi K scattering length

    OpenAIRE

    J. Schweizer

    2005-01-01

    We make use of the chiral two-loop representation of the pi K scattering amplitude [J. Bijnens, P. Dhonte and P. Talavera, JHEP 0405 (2004) 036] to investigate the isospin odd scattering length at next-to-next-to-leading order in the SU(3) expansion. This scattering length is protected against contributions of m_s in the chiral expansion, in the sense that the corrections to the current algebra result are of order M_pi^2. In view of the planned lifetime measurement on pi K atoms at CERN it is...

  9. Scattering lengths of calcium and barium isotopes

    OpenAIRE

    Dammalapati, U.; Willmann, L.; Knoop, S.

    2011-01-01

    We have calculated the s-wave scattering length of all the even isotopes of calcium (Ca) and barium (Ba), in order to investigate the prospect of Bose-Einstein condensation (BEC). For Ca we have used an accurate molecular potential based on detailed spectroscopic data. Our calculations show that Ca does not provide other isotopes alternative to the recently Bose condensed 40Ca that suffers strong losses because of a very large scattering length. For Ba we show by using a model potential that ...

  10. Algorithms of Ancestral Gene Length Reconstruction

    Directory of Open Access Journals (Sweden)

    Alexander Bolshoy

    2013-01-01

    Full Text Available Ancestral sequence reconstruction is a well-known problem in molecular evolution. The problem presented in this study is inspired by sequence reconstruction, but instead of leaf-associated sequences we consider only their lengths. We call this problem ancestral gene length reconstruction. It is a problem of finding an optimal labeling which minimizes the total length’s sum of the edges, where both a tree and nonnegative integers associated with corresponding leaves of the tree are the input. In this paper we give a linear algorithm to solve the problem on binary trees for the Manhattan cost function .

  11. Carbene insertion into a P-H bond: parent phosphinidene-carbene adducts from PH3 and bis(phosphinidene)mercury complexes.

    Science.gov (United States)

    Bispinghoff, Mark; Tondreau, Aaron M; Grützmacher, Hansjörg; Faradji, Charly A; Pringle, Paul G

    2016-04-14

    PH3 reacts with the in situ generated N-heterocyclic carbene DippNHC* (DippNHC* = 1,3-bis(2,6-diisopropylphenyl)imidazolin-2-ylidene) to give the phosphanyl-imidazolidine [(Dipp)NHC*-H]-[PH2]. Upon treatment with an ortho-quinone, [(Dipp)NHC*-H]-[PH2] is dehydrogenated to give the parent phosphinidene-carbene adduct (Dipp)NHC*[double bond, length as m-dash]PH. Alternative routes to [(Dipp)NHC*-H]-[PH2] and (Dipp)NHC*[double bond, length as m-dash]PH employ NaPH2 and (TMS)3P7 (TMS = trimethylsilyl), respectively, as phosphorus sources. The adduct (Dipp)NHC*[double bond, length as m-dash]PH and the related adduct (Dipp)NHC[double bond, length as m-dash]PH ((Dipp)NHC = bis(2,6-diisopropylphenyl)imidazol-2-ylidene) possessing an unsaturated NHC backbone both react with HgCl2 to give the bis(carbene-phosphinidenyl) complexes [((Dipp)NHC*[double bond, length as m-dash]P)2Hg] and [((Dipp)NHC[double bond, length as m-dash]P)2Hg]. PMID:26122315

  12. 78 FR 46528 - Surety Bond Guarantee Program

    Science.gov (United States)

    2013-08-01

    ... definition to the maximum amounts of any Contract or Order when SBA guarantees the bond in connection with a...; ] SMALL BUSINESS ADMINISTRATION 13 CFR Part 115 RIN 3245-AG56 Surety Bond Guarantee Program AGENCY: U.S... regulations governing the Surety Bond Guarantee Program to certain provisions of the National...

  13. Bond Valuation for Colleges and Universities.

    Science.gov (United States)

    National Association of College and University Business Officers, Washington, DC.

    Bond valuation is examined to provide college administrators a more thorough understanding of the process to help them in developing their market values, or to help them in moving to a market valuation on bond holdings. Two methods presently used to value bonds, a matrix system and a trader quotation method, are described. An overview of bond…

  14. Implicit Hamiltonian formulation of bond graphs

    NARCIS (Netherlands)

    Golo, G.; Schaft, A.J. van der; Breedveld, P.C.; Maschke, B.M.

    2003-01-01

    This paper deals with mathematical formulation of bond graphs. It is proven that the power continuous part of bond graphs, the junction structure, can be associated with a Dirac structure and that equations describing a bond graph model correspond to an implicit port-controlled Hamiltonian system wi

  15. Sensor/ROIC Integration using Oxide Bonding

    OpenAIRE

    Ye, Zhenyu; Group, for the Fermilab Pixel R&D

    2009-01-01

    We explore the Ziptronix Direct Bond Interconnect technology for the integration of sensors and readout integrated circuits (ROICs) for high energy physics. The technology utilizes an oxide bond to form a robust mechanical connection between layers which serves to assist with the formation of metallic interlayer connections. We report on testing results of sample sensors bonded to ROICs and thinned to 100 microns.

  16. 36 CFR 223.35 - Performance bond.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Performance bond. 223.35 Section 223.35 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND... Performance bond. Timber sale contracts may require the purchaser to furnish a performance bond...

  17. 36 CFR 9.13 - Performance bond.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Performance bond. 9.13... MINERALS MANAGEMENT Mining and Mining Claims § 9.13 Performance bond. (a) Upon approval of a plan of operations the operator shall be required to file a suitable performance bond with satisfactory...

  18. 25 CFR 216.8 - Performance bond.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Performance bond. 216.8 Section 216.8 Indians BUREAU OF... RECLAMATION OF LANDS General Provisions § 216.8 Performance bond. (a) Upon approval of an exploration plan or mining plan, the operator shall be required to file a suitable performance bond of not less than...

  19. 43 CFR 23.9 - Performance bond.

    Science.gov (United States)

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Performance bond. 23.9 Section 23.9 Public... LANDS § 23.9 Performance bond. (a)(1) Upon approval of an exploration plan or mining plan, the operator shall be required to file a suitable performance bond of not less than $2,000 with satisfactory...

  20. Sighting optics including an optical element having a first focal length and a second focal length

    Science.gov (United States)

    Crandall, David Lynn

    2011-08-01

    One embodiment of sighting optics according to the teachings provided herein may include a front sight and a rear sight positioned in spaced-apart relation. The rear sight includes an optical element having a first focal length and a second focal length. The first focal length is selected so that it is about equal to a distance separating the optical element and the front sight and the second focal length is selected so that it is about equal to a target distance. The optical element thus brings into simultaneous focus, for a user, images of the front sight and the target.

  1. Hydrogen bond dynamics in liquid water: Ab initio molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheolhee; Kim, Eunae [College of Pharmacy, Chosun University, Gwangju (Korea, Republic of); Yeom, Min Sun [Korea Institute of Science and Technology Information, Daejeon (Korea, Republic of)

    2016-01-15

    The effect of intermolecular interaction on the distribution of the harmonic vibrational frequencies of water molecules was investigated through ab initio molecular dynamics simulations based on the Born-Oppenheimer approach. For single water, the effect of the dynamics of the oxygen atom in single water and the simulation time step on the frequency distribution were examined. The distributions of the OH stretching and HOH bending vibrational frequencies of liquid water were compared to those of single water. The probability distributions of the change in OH bond length and the lifetime of the dangling OH bond were also obtained. The distribution of the frequencies was strongly affected by the long lifetime of the dangling OH bond, resulting in the formation of hydrogen bonds between water molecules.

  2. 19 CFR 125.32 - Merchandise delivered to a bonded store or bonded warehouse.

    Science.gov (United States)

    2010-04-01

    ... warehouse. 125.32 Section 125.32 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND... Merchandise delivered to a bonded store or bonded warehouse. When merchandise is carried, carted or lightered to and received in a bonded store or bonded warehouse, the proprietor or his representative...

  3. Main Chain Noncentrosymmetric Hydrogen Bonded Macromolecules Incorporating Aniline, Alkanol, and Alkanoic Acid Hydrogen Bond Donors

    OpenAIRE

    Jeremy R. Wolf

    2014-01-01

    The syntheses and characterization of three noncentrosymmetric main chain hydrogen bonded macromolecules which incorporate aniline, alkanoic acid, and alkanol hydrogen bond donor units are reported. These macromolecules participate in weak intermolecular hydrogen bonding as demonstrated using attenuated total reflectance (ATR) FTIR. The phase transitions of these macromolecules depend on the identity of the hydrogen bond donor.

  4. The persistence length of adsorbed dendronized polymers.

    Science.gov (United States)

    Grebikova, Lucie; Kozhuharov, Svilen; Maroni, Plinio; Mikhaylov, Andrey; Dietler, Giovanni; Schlüter, A Dieter; Ullner, Magnus; Borkovec, Michal

    2016-07-21

    The persistence length of cationic dendronized polymers adsorbed onto oppositely charged substrates was studied by atomic force microscopy (AFM) and quantitative image analysis. One can find that a decrease in the ionic strength leads to an increase of the persistence length, but the nature of the substrate and of the generation of the side dendrons influence the persistence length substantially. The strongest effects as the ionic strength is being changed are observed for the fourth generation polymer adsorbed on mica, which is a hydrophilic and highly charged substrate. However, the observed dependence on the ionic strength is much weaker than the one predicted by the Odijk, Skolnik, and Fixman (OSF) theory for semi-flexible chains. Low-generation polymers show a variation with the ionic strength that resembles the one observed for simple and flexible polyelectrolytes in solution. For high-generation polymers, this dependence is weaker. Similar dependencies are found for silica and gold substrates. The observed behavior is probably caused by different extents of screening of the charged groups, which is modified by the polymer generation, and to a lesser extent, the nature of the substrate. For highly ordered pyrolytic graphite (HOPG), which is a hydrophobic and weakly charged substrate, the electrostatic contribution to the persistence length is much smaller. In the latter case, we suspect that specific interactions between the polymer and the substrate also play an important role. PMID:27353115

  5. Mapping Images with the Coherence Length Diagrams

    CERN Document Server

    Sparavigna, A

    2008-01-01

    Statistical pattern recognition methods based on the Coherence Length Diagram (CLD) have been proposed for medical image analyses, such as quantitative characterisation of human skin textures, and for polarized light microscopy of liquid crystal textures. Further investigations are made on image maps originated from such diagram and some examples related to irregularity of microstructures are shown.

  6. Non-Gaussianity and finite length inflation

    CERN Document Server

    Takami, Shiro Hirai Tomoyuki

    2010-01-01

    In the present paper, certain inflation models are shown to have large non-Gaussianity in special cases. Namely, finite length inflation models with an effective higher derivative interaction, in which slow-roll inflation is adopted as inflation and a scalar-matter-dominated period or power inflation is adopted as pre-inflation, are considered. Using Holman and Tolley's formula of the nonlinearity parameter $f^\\textrm{\\tiny flattened}_\\textrm{\\tiny NL}$, we calculate the value of $f^\\textrm{\\tiny flattened}_\\textrm{\\tiny NL}$. A large value of $f^\\textrm{\\tiny flattened}_\\textrm{\\tiny NL}(f^\\textrm{\\tiny flattened}_\\textrm{\\tiny NL} > 100)$ can be obtained for all of the models considered herein when the length of inflation is 60-63 $e$-folds and $f_\\textrm{\\tiny NL}$ has strong dependence on the length of inflation. Interestingly, this length is similar to that for the case in which the suppression of the CMB angular power spectrum of $l=2$ was derived using the inflation models described in our previous pap...

  7. Fall Colors, Temperature, and Day Length

    Science.gov (United States)

    Burton, Stephen; Miller, Heather; Roossinck, Carrie

    2007-01-01

    Along with the bright hues of orange, red, and yellow, the season of fall represents significant changes, such as day length and temperature. These changes provide excellent opportunities for students to use science process skills to examine how abiotic factors such as weather and temperature impact organisms. In this article, the authors describe…

  8. Hydrodynamic slip length as a surface property

    Science.gov (United States)

    Ramos-Alvarado, Bladimir; Kumar, Satish; Peterson, G. P.

    2016-02-01

    Equilibrium and nonequilibrium molecular dynamics simulations were conducted in order to evaluate the hypothesis that the hydrodynamic slip length is a surface property. The system under investigation was water confined between two graphite layers to form nanochannels of different sizes (3-8 nm). The water-carbon interaction potential was calibrated by matching wettability experiments of graphitic-carbon surfaces free of airborne hydrocarbon contamination. Three equilibrium theories were used to calculate the hydrodynamic slip length. It was found that one of the recently reported equilibrium theories for the calculation of the slip length featured confinement effects, while the others resulted in calculations significantly hindered by the large margin of error observed between independent simulations. The hydrodynamic slip length was found to be channel-size independent using equilibrium calculations, i.e., suggesting a consistency with the definition of a surface property, for 5-nm channels and larger. The analysis of the individual trajectories of liquid particles revealed that the reason for observing confinement effects in 3-nm nanochannels is the high mobility of the bulk particles. Nonequilibrium calculations were not consistently affected by size but by noisiness in the smallest systems.

  9. Minimal length elements of finite Coxeter groups

    OpenAIRE

    He, Xuhua; Nie, Sian

    2012-01-01

    We give a geometric proof that any minimal length element in a (twisted) conjugacy class of a finite Coxeter group $W$ has remarkable properties with respect to conjugation, taking powers in the associated braid monoid and taking the centralizer in $W$ .

  10. Optimality Of Variable-Length Codes

    Science.gov (United States)

    Yeh, Pen-Shu; Miller, Warner H.; Rice, Robert F.

    1994-01-01

    Report presents analysis of performances of conceptual Rice universal noiseless coders designed to provide efficient compression of data over wide range of source-data entropies. Includes predictive preprocessor that maps source data into sequence of nonnegative integers and variable-length-coding processor, which adapts to varying entropy of source data by selecting whichever one of number of optional codes yields shortest codeword.

  11. Twin correlations of telomere length metrics

    DEFF Research Database (Denmark)

    Hjelmborg, Jacob B; Dalgård, Christine; Möller, Sören;

    2015-01-01

    BACKGROUND: Leucocyte telomere length (LTL) is a complex trait associated with ageing and longevity. LTL dynamics are defined by LTL and its age-dependent attrition. Strong, but indirect evidence suggests that LTL at birth and its attrition during childhood largely explains interindividual LTL va...

  12. Link lengths and their growth powers

    International Nuclear Information System (INIS)

    For a certain infinite family F of knots or links, we study the growth power ratios of their stick number, lattice stick number, minimum lattice length and minimum ropelength compared with their minimum crossing number c(K) for every K∈F. It is known that the stick number and lattice stick number grow between the (1/2) and linear power of the crossing number, and minimum lattice length and minimum ropelength grow with at least the (3/4) power of crossing number (which is called the four-thirds power law). Furthermore, the minimal lattice length and minimum ropelength grow at most as O (c(K)[ln(c(K))]5), but it is unknown whether any family exhibits superlinear growth. For any real number r between (1/2) and 1, we give an infinite family of non-splittable prime links in which the stick number and lattice stick number grow exactly as the rth power of crossing number. Furthermore for any real number r between (3/4) and 1, we give another infinite family of non-splittable prime links in which the minimum lattice length and minimum ropelength grow exactly as the rth power of crossing number. (paper)

  13. On the Longest Length of Consecutive Integers

    Institute of Scientific and Technical Information of China (English)

    Min Zhi ZHAO; Qi-Man SHAO

    2011-01-01

    Choose m numbers from the set {1, 2,…, n} at random without replacement. In this paper we first establish the limiting distribution of the longest length of consecutive integers and then apply the result to test randomness of selecting numbers without replacement.

  14. Bunch length measurements using synchrotron ligth monitor

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Mahmoud [Old Dominion University, Norfolk, VA; Tiefenback, Michael G. [Jefferson Lab, Newport News, VA

    2015-09-01

    The bunch length is measured at CEBAF using an invasive technique. The technique depends on applying an energy chirp for the electron bunch and imaging it through a dispersive region. The measurements are taken through Arc1 and Arc2 at CEBAF. The fundamental equations, procedure and the latest results are given.

  15. Telomere length in human liver diseases.

    Science.gov (United States)

    Urabe, Y; Nouso, K; Higashi, T; Nakatsukasa, H; Hino, N; Ashida, K; Kinugasa, N; Yoshida, K; Uematsu, S; Tsuji, T

    1996-10-01

    To determine the role of telomere-mediated gene stability in hepatocarcinogenesis, we examined the telomere length of human liver with or without chronic liver diseases and hepatocellular carcinomas (HCC). The mean telomere restriction fragment (TRF) length of normal liver (n = 13), chronic hepatitis (n = 11), liver cirrhosis (n = 24) and HCC (n = 24) was 7.8 +/- 0.2, 7.1 +/- 0.3, 6.4 +/- 0.2 and 5.2 +/- 0.2 kb, respectively (mean +/- standard error). TRF length decreased with a progression of chronic liver diseases and that in HCC was significantly shorter than that in other chronic liver diseases (p HCC to that of corresponding surrounding liver of well differentiated (n = 7), moderately differentiated (n = 10) and poorly differentiated (n = 4) HCCs were 0.83 +/- 0.06, 0.75 +/- 0.05 and 0.98 +/- 0.09, respectively. The ratio of poorly differentiated HCC was significantly higher than that of moderately differentiated HCC (p telomere length ratio of moderately differentiated HCCs revealed a decrease of the ratio with size until it reached 50 mm in diameter. In contrast, the ratio increased as the size enlarged over 50 mm. These findings suggest that the gene stability of the liver cells mediated by the telomere is reduced as chronic liver disease progresses and that telomerase is activated in poorly differentiated HCC and moderately differentiated HCC over 50 mm in diameter. PMID:8938628

  16. The effect of washing water temperature on resin-dentin micro-shear bond strength

    Science.gov (United States)

    Malekipour, Mohammad Reza; Shirani, Farzaneh; Ebrahimi, Mehrnoush

    2016-01-01

    Background: The purpose of this study was to evaluate the effect of washing water temperature on the micro-shear bond strength (μSBS) of composite resin to dentin using a two-step etch-and-rinse system and a two-step self-etching system. Materials and Methods: In this in vitro study, the intact dentins of buccal and lingual surfaces of healthy third molars were exposed. Dentin surfaces were rinsed with different temperatures of distilled water (20 s) before applying Single Bond (SB) or Clearfil SE Bond(SE). After applying the adhesive, composite cylinders (0.8 mm diameter and 1 mm length) were bonded to the teeth surfaces. After storing the specimens in 37°C distilled water for 48 h and thermocycling, μSBS test was done. Data were analyzed using analysis of variance, post hoc Tukey tests, paired samples t-test, and Fisher exact test (α = 0.05). Results: Temperature and interaction of temperature and type of bonding agent affected the bond strength. The bond strength of SB groups was significantly higher at 50°C washing than 5°C (P = 0.003) and 22°C (P = 0.019), but no significant difference was observed between SE groups. The bond strength of SE was significantly higher at 22°C than that of SB (P = 0.031), whereas the bond strength of SB was significantly higher at 50°C than that of SE (P = 0.007). Conclusion: The use of high-temperature washing water is an appropriate method to enhance bond strength in etch-and-rinse systems. PMID:27076833

  17. Bond strengths of New Carbon-nitride-Related material C2N2(CH2)

    International Nuclear Information System (INIS)

    A new carbon-nitride-related material C2N2(CH2) nanopletelet was synthesized by subjecting a precursor C3N4HxOy+Au in a laser-heating diamond anvil cell (LHDAC) to the pressure of 40 GPa and the temperature of 1200-2000 K. The synthesized C2N2(CH2) was accordingly found to be an orthorhombic unit cell of the space group Cmc21 with lattice constants a = 7.625Å, b = 4.490Å, and c = 4.047Å. The bulk modulus B0 was determined to be B0 = 258 ± 3.4 GPa, only the 60 % that of the diamond. C2N2(CH2) consists of the tetrahedrally coordinated C with three C-N single bond and the one C-C single bond, and the bridging carbon with the C-CH2-C bond. The C-N single bond length of the tetrahedron ranges from 1.444 to 1.503 Å. This bond length is close to the C-N single bond of 1.447 to 1.458 Å in the superhard β-C3N4. The compressibility of the C-N and C-C single bond of C2N2(CH2) ranges from 0.976 to 0.982 with the pressure of 30 GPa. These values are very close to the compressibility of the C-N and C-C single bond of 0.978 to 0.982 in β-C3N4, cubic-C3N4, and diamond.

  18. Fracturing Behavior of Direct Bonded Ti with Mg Alloys by Solid State Bonding

    OpenAIRE

    Pripanapong, Patchara; Takahashi, Makoto; Umeda, Junko; Kondoh, Katsuyoshi

    2014-01-01

    Ti and Mg alloys (AZ61, AZ80 and AZ91) were directly bonded together by state bonding method in vacuum. These two materials appeared to be bonded well together although there was no intermetallic compound between Ti and Mg. Al element existing in Mg alloys seems to be an important factor involved in the bonding mechanism. The high bonding efficiency as 86% obtained from Ti bonded with AZ91 at 400 ℃ for 1 hr by applying 40 MPa was guaranteed in the successful bonding.

  19. Valuing Convertible Bonds Based on LSRQM Method

    Directory of Open Access Journals (Sweden)

    Jian Liu

    2014-01-01

    Full Text Available Convertible bonds are one of the essential financial products for corporate finance, while the pricing theory is the key problem to the theoretical research of convertible bonds. This paper demonstrates how to price convertible bonds with call and put provisions using Least-Squares Randomized Quasi-Monte Carlo (LSRQM method. We consider the financial market with stochastic interest rates and credit risk and present a detailed description on calculating steps of convertible bonds value. The empirical results show that the model fits well the market prices of convertible bonds in China’s market and the LSRQM method is effective.

  20. Hexacoordinate bonding and aromaticity in silicon phthalocyanine.

    Science.gov (United States)

    Yang, Yang

    2010-12-23

    Si-E bondings in hexacoordinate silicon phthalocyanine were analyzed using bond order (BO), energy partition, atoms in molecules (AIM), electron localization function (ELF), and localized orbital locator (LOL). Bond models were proposed to explain differences between hexacoordinate and tetracoordinate Si-E bondings. Aromaticity of silicon phthalocyanine was investigated using nucleus-independent chemical shift (NICS), harmonic oscillator model of aromaticity (HOMA), conceptual density functional theory (DFT), ring critical point (RCP) descriptors, and delocalization index (DI). Structure, energy, bonding, and aromaticity of tetracoordinate silicon phthalocyanine were studied and compared with hexacoordinate one. PMID:21105726

  1. Copper Wire Bonding Concerns and Best Practices

    Science.gov (United States)

    Chauhan, Preeti; Zhong, Z. W.; Pecht, Michael

    2013-08-01

    Copper wire bonding of microelectronic parts has developed as a means to cut the costs of using the more mature technology of gold wire bonding. However, with this new technology, changes in the bonding processes as well as bonding metallurgy can affect product reliability. This paper discusses the challenges associated with copper wire bonding and the solutions that the industry has been implementing. The paper also provides information to enable customers to conduct qualification and reliability tests on microelectronic packages to facilitate adoption in their target applications.

  2. Topographical length scales of hierarchical superhydrophobic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Dhillon, P.K. [Department of Physics, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab 140001 (India); Brown, P.S.; Bain, C.D.; Badyal, J.P.S. [Department of Chemistry, Science Laboratories, Durham University, Durham DH1 3LE, England (United Kingdom); Sarkar, S., E-mail: sarkar@iitrpr.ac.in [Department of Physics, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab 140001 (India)

    2014-10-30

    Highlights: • Hydrophobic CF{sub 4} plasma fluorinated polybutadiene surfaces has been characterised using AFM. • Micro, Nano, and Micro + Nano topographies generated by altering plasma power and duration. • Dynamic scaling theory and FFT analysis used to characterize these surfaces quantitatively. • Roughnesses are different for different length scales of the surfaces considered. • Highest local roughness obtained from scaling analysis for shorter length scales of about 500 nm explains the superhydrophobicity for the Micro + Nano surface. - Abstract: The morphology of hydrophobic CF{sub 4} plasma fluorinated polybutadiene surfaces has been characterised using atomic force microscopy (AFM). Judicious choice of the plasma power and exposure duration leads to formation of three different surface morphologies (Micro, Nano, and Micro + Nano). Scaling theory analysis shows that for all three surface topographies, there is an initial increase in roughness with length scale followed by a levelling-off to a saturation level. At length scales around 500 nm, it is found that the roughness is very similar for all three types of surfaces, and the saturation roughness value for the Micro + Nano morphology is found to be intermediate between those for the Micro and Nano surfaces. Fast Fourier Transform (FFT) analysis has shown that the Micro + Nano topography comprises a hierarchical superposition of Micro and Nano morphologies. Furthermore, the Micro + Nano surfaces display the highest local roughness (roughness exponent α = 0.42 for length scales shorter than ∼500 nm), which helps to explain their superhydrophobic behaviour (large water contact angle (>170°) and low hysteresis (<1°))

  3. Hydrogen bonding at C=Se acceptors in selenoureas, selenoamides and selones.

    Science.gov (United States)

    Bibelayi, Dikima; Lundemba, Albert S; Allen, Frank H; Galek, Peter T A; Pradon, Juliette; Reilly, Anthony M; Groom, Colin R; Yav, Zéphyrin G

    2016-06-01

    In recent years there has been considerable interest in chalcogen and hydrogen bonding involving Se atoms, but a general understanding of their nature and behaviour has yet to emerge. In the present work, the hydrogen-bonding ability and nature of Se atoms in selenourea derivatives, selenoamides and selones has been explored using analysis of the Cambridge Structural Database and ab initio calculations. In the CSD there are 70 C=Se structures forming hydrogen bonds, all of them selenourea derivatives or selenoamides. Analysis of intramolecular geometries and ab initio partial charges show that this bonding stems from resonance-induced C(δ+)=Se(δ-) dipoles, much like hydrogen bonding to C=S acceptors. C=Se acceptors are in many respects similar to C=S acceptors, with similar vdW-normalized hydrogen-bond lengths and calculated interaction strengths. The similarity between the C=S and C=Se acceptors for hydrogen bonding should inform and guide the use of C=Se in crystal engineering. PMID:27240763

  4. Indirect consideration of un-bonded tendons in 1/4 PCCV model

    International Nuclear Information System (INIS)

    This paper concentrates on the development of a tendon model which can simulate slip behavior between un-bonded tendons and concrete for finite element modeling of 1/4 PCCV (1:4-scale prestressed concrete containment vessel) model. Differently from the bonded tendon depended on structural section, a stress increase beyond the effective value of initial prestress in the un-bonded tendon is mainly depended on the structural member. Therefore, the tendon stress in the un-bonded tendon can be represented as having uniform distribution along the length of the member if the friction loss is not included. To trace the structural response of prestressed concrete structures, accordingly, a modified stress-strain curve for the un-bonded tendon can be derived through performing the successive iterations. This indirect tendon model can take into account the slip effect between un-bonded tendon and concrete, and then it is incorporated into commercialized programs such as DIANA and ABAQUS which have the fundamental limitation in simulating the un-bonded tendon. Finally, the ultimate pressure capacity analyses of 1/4 PCCV model are carried out to evaluate the efficiency and applicability of this tendon model. The numerical results show that 1/4 PCCV represents the ultimate resisting capacity larger than 3 times of the design pressure. (authors)

  5. Liquidity in Government versus Covered Bond Markets

    DEFF Research Database (Denmark)

    Dick-Nielsen, Jens; Gyntelberg, Jacob; Sangill, Thomas

    We present findings on the secondary market liquidity of government and covered bonds in Denmark before, during and after the 2008 financial crisis. The analysis focuses on wholesale trading in the two markets and is based on a complete transaction level dataset covering November 2007 until end...... 2011. Overall, our findings suggest that Danish benchmark covered bonds by and large are as liquid as Danish government bonds - including in periods of market stress. Before the financial crisis of 2008, government bonds were slightly more liquid than covered bonds. During the crisis, trading continued...... in both markets but the government bond market experienced a brief but pronounced decline in market liquidity while liquidity in the covered bond market was more robust - partly reflective of a number of events as well as policy measures introduced in the autumn of 2008. After the crisis, liquidity...

  6. Bonding PMMA microfluidics using commercial microwave ovens

    International Nuclear Information System (INIS)

    In this paper, a novel low-cost, rapid substrate-bonding technique is successfully applied to polymethyl methacrylate (PMMA) microfluidics bonding for the first time. This technique uses a thin intermediate metallic microwave susceptor layer at the interface of the bonding site (microchannels) which produces localized heating required for bonding during microwave irradiation. The metallic susceptor pattern is designed using a multiphysics simulation model developed in ANSYS Multiphysics software (high-frequency structural simulation (HFSS) coupled with ANSYS-Thermal). In our experiments, the required microwave energy for bonding is delivered using a relatively inexpensive, widely accessible commercial microwave oven. Using this technique, simple PMMA microfluidics prototypes are successfully bonded and sealed in less than 35 seconds with a minimum measured bond strength of 1.375 MPa. (paper)

  7. From covalent bonding to coalescence of metallic nanorods

    Directory of Open Access Journals (Sweden)

    Lee Soohwan

    2011-01-01

    Full Text Available Abstract Growth of metallic nanorods by physical vapor deposition is a common practice, and the origin of their dimensions is a characteristic length scale that depends on the three-dimensional Ehrlich-Schwoebel (3D ES barrier. For most metals, the 3D ES barrier is large so the characteristic length scale is on the order of 200 nm. Using density functional theory-based ab initio calculations, this paper reports that the 3D ES barrier of Al is small, making it infeasible to grow Al nanorods. By analyzing electron density distributions, this paper shows that the small barrier is the result of covalent bonding in Al. Beyond the infeasibility of growing Al nanorods by physical vapor deposition, the results of this paper suggest a new mechanism of controlling the 3D ES barrier and thereby nanorod growth. The modification of local degree of covalent bonding, for example, via the introduction of surfactants, can increase the 3D ES barrier and promote nanorod growth, or decrease the 3D ES barrier and promote thin film growth.

  8. Bonding in ZnSb

    DEFF Research Database (Denmark)

    Bjerg, Lasse; Madsen, Georg K. H.; Iversen, Bo Brummerstedt

    Thermoelectric materials are capable of converting waste heat into usable electric energy. The conversion efficiency depends critically on the electronic band structure. Theoretical calculations predict the semiconducting ZnSb to have a promising efficiency if it is n-doped. The details of the...... lowest conduction band have therefore been investigated. Electrons placed in the lowest conduction band are predicted to increase the bonding between second nearest neighbour atoms. This causes a lowering of the energy at special points in the first Brillouin zone. Thereby, the dispersion of the lowest...

  9. Liquids with Chiral Bond Order

    OpenAIRE

    Kamien, Randall

    1995-01-01

    I describe new phases of a chiral liquid crystal with nematic and hexatic order. I find a conical phase, similar to that of a cholesteric in an applied magnetic field for Frank elastic constants $K_2>K_3$. I discuss the role of fluctuations in the context of this phase and the possibility of satisfying the inequality for sufficiently long polymers. In addition I discuss the topological constraint relating defects in the bond order field to textures of the nematic and elucidate its physical me...

  10. Actor bonds after relationship dissolution

    DEFF Research Database (Denmark)

    Skaates, Maria Anne

    2000-01-01

    Most of the presented papers at the 1st NoRD Workshop can be classified as belonging to the business marketing approach to relationship dissolution. Two papers were conceptual, and the remaining six were empirical studies. The first conceptual study by Skaates (2000) focuses on the nature of the ...... actor bonds that remain after a business relationship has ended. The study suggests that an interdisciplinary approach would provide a richer understanding of the phenomenon; this could be achieved by using e.g. Bourdieu's sociological concepts in dissolution research....

  11. Bonds futures: Delta? No gamma!

    OpenAIRE

    Henrard, Marc

    2006-01-01

    Bond futures are liquid but complex instruments. Here they are analysed in a one-factor Gaussian HJM model. The in-the-model delta and out-of-the-model delta and gamma are studied. An explicit formula is provided for in-the-model delta. The out-of-the-model delta and gamma are equivalent to partial derivatives with respect to discount factors. In particular cases the derivative can not be obtained by standard techniques. The same situations lead to cases where the gammas (second order partial...

  12. Bonds and bands in semiconductors

    CERN Document Server

    Phillips, Jim

    2009-01-01

    This classic work on the basic chemistry and solid state physics of semiconducting materials is now updated and improved with new chapters on crystalline and amorphous semiconductors. Written by two of the world's pioneering materials scientists in the development of semiconductors, this work offers in a single-volume an authoritative treatment for the learning and understanding of what makes perhaps the world's most important engineered materials actually work. Readers will find: --' The essential principles of chemical bonding, electron energy bands and their relationship to conductive and s

  13. Impact of Alkyl Spacer Length on Aggregation Pathways in Kinetically Controlled Supramolecular Polymerization.

    Science.gov (United States)

    Ogi, Soichiro; Stepanenko, Vladimir; Thein, Johannes; Würthner, Frank

    2016-01-20

    We have investigated the kinetic and thermodynamic supramolecular polymerizations of a series of amide-functionalized perylene bisimide (PBI) organogelator molecules bearing alkyl spacers of varied lengths (ethylene to pentylene chains, PBI-1-C2 to PBI-1-C5) between the amide and PBI imide groups. These amide-functionalized PBIs form one-dimensional fibrous nanostructures as the thermodynamically favored states in solvents of low polarity. Our in-depth studies revealed, however, that the kinetic behavior of their supramolecular polymerization is dependent on the spacer length. Propylene- and pentylene-tethered PBIs follow a similar polymerization process as previously observed for the ethylene-tethered PBI. Thus, the monomers of these PBIs are kinetically trapped in conformationally restricted states through intramolecular hydrogen bonding between the amide and imide groups. In contrast, the intramolecularly hydrogen-bonded monomers of butylene-tethered PBI spontaneously self-assemble into nanoparticles, which constitute an off-pathway aggregate state with regard to the thermodynamically stable fibrous supramolecular polymers obtained. Thus, for this class of π-conjugated system, an unprecedented off-pathway aggregate with high kinetic stability could be realized for the first time by introducing an alkyl linker of optimum length (C4 chain) between the amide and imide groups. Our current system with an energy landscape of two competing nucleated aggregation pathways is applicable to the kinetic control over the supramolecular polymerization by the seeding approach. PMID:26699283

  14. Effect of silicon nitride layers on the minority carrier diffusion length in c-Si wafers

    International Nuclear Information System (INIS)

    Silicon nitride layers prepared from silane and ammonia based gases by microwave assisted plasma enhanced chemical vapor deposition (PECVD) and by low pressure chemical vapor deposition (LPCVD) techniques on p-type c-silicon substrates were studied via the methods of surface photovoltage (SPV), Fourier transform infrared (FTIR), and secondary-ion-mass spectroscopy (SIMS). The effective diffusion length in silicon was evaluated by the SPV method, and it was strongly influenced by the deposited SiNx layer. The FTIR spectra show the form of chemical bond of hydrogen in the layer. Two absorption bands belonging to Si-H and N-H groups and their modification after temperature treatment were found in the spectra of PECVD samples, while in the spectra of LPCVD samples only N-H bonds were recognized. Transport of H from PECVD silicon nitride into Si subsurface layer during the annealing process is shown by SIMS profiles of hydrogen. Positive influence of the penetrated H manifests in passivation of defects in the subsurface Si layer and, consequently, in better operation of the space charge region below the nitride and in longer effective diffusion length of minority carriers in the Si bulk. The average value of the diffusion length in the Si samples with the LPCVD nitride was shorter and dependent on the location of wafers in the reactor

  15. Teaching Chemical Bonding: A Resource Book for Senior Chemistry.

    Science.gov (United States)

    Lindsay, Margaret

    This document presents an instructional strategy for teaching chemical bonding using parables and music. Games, student interactions, and worksheets are included in the lesson plans. Topics include metallic bonding, covalent bonding including molecular and network structure, and ionic bonding. (JRH)

  16. Short, strong hydrogen bonds on enzymes: NMR and mechanistic studies

    Science.gov (United States)

    Mildvan, A. S.; Massiah, M. A.; Harris, T. K.; Marks, G. T.; Harrison, D. H. T.; Viragh, C.; Reddy, P. M.; Kovach, I. M.

    2002-09-01

    The lengths of short, strong hydrogen bonds (SSHBs) on enzymes have been determined with high precision (±0.05 Å) from the chemical shifts ( δ), and independently from the D/ H fractionation factors ( φ) of the highly deshielded protons involved. These H-bond lengths agree well with each other and with those found by protein X-ray crystallography, within the larger errors of the latter method (±0.2 to±0.8 Å) [Proteins 35 (1999) 275]. A model dihydroxynaphthalene compound shows a SSHB of 2.54±0.04 Å based on δ=17.7 ppm and φ=0.56±0.04, in agreement with the high resolution X-ray distance of 2.55±0.06 Å. On ketosteroid isomerase, a SSHB is found (2.50±0.02 Å), based on δ=18.2 ppm and φ=0.34, from Tyr-14 to the 3-O - of estradiol, an analog of the enolate intermediate. Its strength is ˜7 kcal/mol. On triosephosphate isomerase, SSHBs are found from Glu-165 to the 1-NOH of phosphoglycolohydroxamic acid (PGH), an analog of the enolic intermediate (2.55±0.05 Å), and from His-95 to the enolic-O - of PGH (2.62±0.02 Å). In the methylglyoxal synthase-PGH complex, a SSHB (2.51±0.02 Å) forms between Asp-71 and the NOH of PGH with a strength of ≥4.7 kcal/mol. When serine proteases bind mechanism-based inhibitors which form tetrahedral Ser-adducts analogous to the tetrahedral intermediates in catalysis, the Asp⋯His H-bond of the catalytic triad becomes a SSHB [Proc. Natl Acad. Sci. USA 95 (1998) 14664], 2.49-2.63 Å in length. Similarly, on the serine-esterase, butyrylcholinesterase complexed with the mechanism-based inhibitor m-( N, N, N-trimethylammonio)-2,2,2-trifluoroacetophenone, a SSHB forms between Glu-327 and His-438 of the catalytic triad, 2.61±0.04 Å in length, based on δ=18.1 ppm and φ=0.65±0.10. Very similar results are obtained with (human) acetylcholinesterase. The strength of this SSHB is at least 4.9 kcal/mol.

  17. Anomalous length dependence of the conductance of graphene nanoribbons with zigzag edges

    KAUST Repository

    Bilić, Ante

    2013-01-01

    Charge transport through two sets of symmetric graphene nanoribbons with zigzag shaped edges in a two-terminal device has been investigated, using density functional theory combined with the non-equilibrium Green\\'s function method. The conductance has been explored as a function of nanoribbon length, bias voltage, and the strength of terminal coupling. The set of narrower nanoribbons, in the form of thiolated linear acenes, shows an anomalous length dependence of the conductance, which at first exhibits a drop and a minimum, followed by an evident rise. The length trend is shown to arise because of a gradual transformation in the transport mechanism, which changes from being governed by a continuum of out-of-plane π type and in-plane state channels to being fully controlled by a single, increasingly more resonant, occupied π state channel. For the set of nanoribbons with a wider profile, a steady increase is observed across the whole length range, owing to the absence of the former transport mechanism. The predicted trends are confirmed by the inclusion of self-interaction correction in the calculations. For both sets of nanoribbons the replacement of the strongly coupling thiol groups by weakly bonding phenathroline has been found to cause a strong attenuation with the length and a generally low conductance. © 2013 American Institute of Physics.

  18. Investigations on quantum mechanics with minimal length

    International Nuclear Information System (INIS)

    We consider a modified quantum mechanics where the coordinates and momenta are assumed to satisfy a non-standard commutation relation of the form( Xi, Pj) = iℎ(δij (1+βP2)+β'PiPj). Such an algebra results in a generalized uncertainty relation which leads to the existence of a minimal observable length. Moreover, it incorporates an UV/IR mixing and non commutative position space. We analyse the possible representations in terms of differential operators. The latter are used to study the low energy effects of the minimal length by considering different quantum systems : the harmonic oscillator, the Klein-Gordon oscillator, the spinless Salpeter Coulomb problem, and the Dirac equation with a linear confining potential. We also discuss whether such effects are observable in precision measurements on a relativistic electron trapped in strong magnetic field.

  19. Persistence Length of DNA Macromolecule with Kinks

    CERN Document Server

    Simonov, Kyrylo

    2014-01-01

    The study of configurational parameters of deformed DNA is a relevant problem in research of such important biological process as double helix compactization in cell. The deformations accompanied with local disruptions of the regular macromolecule structure cause significant bending of the double helix, or kinks. In this paper an approach for Kratky-Porod model to calculate persistence length of DNA macromolecule with kinks is developed. The presented approach considers kinks of arbitrary configuration, including two basic types of kinks, type 1 - sharp kink caused by unstacking a single base pair step, and type 2 - intrinsic-induced kink that involves several base pairs. Within developed approach analytical expressions for persistence length, coil size and gyration radius of kinky double helix were obtained.

  20. Distance and Cable Length Measurement System

    Science.gov (United States)

    Hernández, Sergio Elias; Acosta, Leopoldo; Toledo, Jonay

    2009-01-01

    A simple, economic and successful design for distance and cable length detection is presented. The measurement system is based on the continuous repetition of a pulse that endlessly travels along the distance to be detected. There is a pulse repeater at both ends of the distance or cable to be measured. The endless repetition of the pulse generates a frequency that varies almost inversely with the distance to be measured. The resolution and distance or cable length range could be adjusted by varying the repetition time delay introduced at both ends and the measurement time. With this design a distance can be measured with centimeter resolution using electronic system with microsecond resolution, simplifying classical time of flight designs which require electronics with picosecond resolution. This design was also applied to position measurement. PMID:22303169

  1. Length-scale dependent phonon interactions

    CERN Document Server

    Srivastava, Gyaneshwar

    2014-01-01

    This book presents  a comprehensive description of phonons and their interactions in systems with different dimensions and length scales. Internationally-recognized leaders describe theories and measurements of phonon interactions  in relation to the design of materials with exotic properties such as metamaterials, nano-mechanical systems, next-generation electronic, photonic, and acoustic devices, energy harvesting, optical information storage, and applications of phonon lasers in a variety of fields. The emergence of techniques for control of semiconductor properties and geometry has enabled engineers to design structures in which functionality is derived from controlling electron behavior. As manufacturing techniques have greatly expanded the list of available materials and the range of attainable length scales, similar opportunities now exist for designing devices whose functionality is derived from controlling phonon behavior. However, progress in this area is hampered by gaps in our knowledge of phono...

  2. Analytical calculation of chain length in ferrofluids

    Indian Academy of Sciences (India)

    M Devi; P P Dutta; D Mohanta

    2015-02-01

    The response of a typical ferrofluid (FF) lies in its explicit property of chain formation of magnetic nanoparticles. The most significant magneto-optic (MO) and magneto-viscous (MV) effects of FF are attributed to chaining effect. In the present research, an effort was made to analytically justify the dependence of the structure evolution of FFs on different measurable parameters involved in MO and MV effects. The problem is treated with the help of dimensional analysis and an empirical relation is formulated relating the equilibrium chain length with Verdet coefficient (constant), particle diameter, viscosity of the carrier fluid, particle density, magnetization and shear rate. The formulated relation of chain length is supported by error analysis to yield the uncertainty in the result. The maximum uncertainty in four sets of data is found as ∼0.75.

  3. Some Aspects of Minimal Length Quantum Mechanics

    CERN Document Server

    Nozari, K; Nozari, Kourosh; Azizi, Tahereh

    2005-01-01

    String theory, quantum geometry, loop quantum gravity and black hole physics all indicate the existence of a minimal observable length on the order of Planck length. This feature leads to a modification of Heisenberg uncertainty principle. Such a modified Heisenberg uncertainty principle is referred as gravitational uncertainty principle(GUP) in literatures. This proposal has some novel implications on various domains of theoretical physics. Here, we study some consequences of GUP in the spirit of Quantum mechanics. We consider two problem: a particle in an one-dimensional box and momentum space wave function for a "free particle". In each case we will solve corresponding perturbational equations and compare the results with ordinary solutions.

  4. Random Test Run Length and Effectiveness

    Science.gov (United States)

    Andrews, James H.; Groce, Alex; Weston, Melissa; Xu, Ru-Gang

    2008-01-01

    A poorly understood but important factor in many applications of random testing is the selection of a maximum length for test runs. Given a limited time for testing, it is seldom clear whether executing a small number of long runs or a large number of short runs maximizes utility. It is generally expected that longer runs are more likely to expose failures -- which is certainly true with respect to runs shorter than the shortest failing trace. However, longer runs produce longer failing traces, requiring more effort from humans in debugging or more resources for automated minimization. In testing with feedback, increasing ranges for parameters may also cause the probability of failure to decrease in longer runs. We show that the choice of test length dramatically impacts the effectiveness of random testing, and that the patterns observed in simple models and predicted by analysis are useful in understanding effects observed.

  5. Generation of Length Distribution, Length Diagram, Fibrogram, and Statistical Characteristics by Weight of Cotton Blends

    Directory of Open Access Journals (Sweden)

    B. Azzouz

    2007-01-01

    Full Text Available The textile fibre mixture as a multicomponent blend of variable fibres imposes regarding the proper method to predict the characteristics of the final blend. The length diagram and the fibrogram of cotton are generated. Then the length distribution, the length diagram, and the fibrogram of a blend of different categories of cotton are determined. The length distributions by weight of five different categories of cotton (Egyptian, USA (Pima, Brazilian, USA (Upland, and Uzbekistani are measured by AFIS. From these distributions, the length distribution, the length diagram, and the fibrogram by weight of four binary blends are expressed. The length parameters of these cotton blends are calculated and their variations are plotted against the mass fraction x of one component in the blend .These calculated parameters are compared to those of real blends. Finally, the selection of the optimal blends using the linear programming method, based on the hypothesis that the cotton blend parameters vary linearly in function of the components rations, is proved insufficient.

  6. Golden Sections of Interatomic Distances as Exact Ionic Radii and Additivity of Atomic and Ionic Radii in Chemical Bonds

    CERN Document Server

    Heyrovska, Raji

    2009-01-01

    The Golden ratio which appears in the geometry of a variety of creations in Nature is found to arise right in the Bohr radius of the hydrogen atom due to the opposite charges of the electron and proton. The bond length of the hydrogen molecule is the diagonal of a square on the Bohr radius and hence also has two Golden sections, which form the cationic and anionic radii of hydrogen. It is shown here that these radii account for the bond lengths of many hydrides when added to the atomic and Golden ratio based ionic radii of many other atoms.

  7. Golden Sections of Interatomic Distances as Exact Ionic Radii and Additivity of Atomic and Ionic Radii in Chemical Bonds

    OpenAIRE

    Heyrovska, Raji

    2009-01-01

    The Golden ratio which appears in the geometry of a variety of creations in Nature is found to arise right in the Bohr radius of the hydrogen atom due to the opposite charges of the electron and proton. The bond length of the hydrogen molecule is the diagonal of a square on the Bohr radius and hence also has two Golden sections, which form the cationic and anionic radii of hydrogen. It is shown here that these radii account for the bond lengths of many hydrides when added to the atomic and Go...

  8. Facile synthesis and characterization of novel thermo-chromism cholesteryl-containing hydrogen-bonded liquid crystals

    Institute of Scientific and Technical Information of China (English)

    Wan Li He; Tao Liu; Zhou Yang; Dong Yu Zhao; Wei Huang; Hui Cao; Guo Jie Wang; Huai Yang

    2009-01-01

    Two series of novel cholesteryl-containing H-bonded liquid crystals were prepared through facile self-assembly between cholesteryl isonicotinate (proton acceptor) exhibiting a monotropic cholesteric phase, and the 4-alkoxy-benzoic acid or 4-alkoxy cinnamic acid (proton donor). It was found that the increase of the conjugate length as well as the terminal length can contribute to enhance the interaction of molecules and thus significantly influenced the thermal behaviors of H-bonded LCs. The cholesteric reflection spectra of the induced mesogenic complexes were located in the visible region with the color tuneable thermo-sensitivity, which could be used for display application.

  9. Minimum length effects in black hole physics

    CERN Document Server

    Casadio, Roberto; Nicolini, Piero

    2014-01-01

    We review the main consequences of the possible existence of a minimum measurable length, of the order of the Planck scale, on quantum effects occurring in black hole physics. In particular, we focus on the ensuing minimum mass for black holes and how modified dispersion relations affect the Hawking decay, both in four space-time dimensions and in models with extra spatial dimensions. In the latter case, we briefly discuss possible phenomenological signatures.

  10. Finite-Length Analysis of BATS Codes

    OpenAIRE

    Yang, Shenghao; Ng, Tsz-Ching; Yeung, Raymond W.

    2013-01-01

    BATS codes were proposed for communication through networks with packet loss. A BATS code consists of an outer code and an inner code. The outer code is a matrix generation of a fountain code, which works with the inner code that comprises random linear coding at the intermediate network nodes. In this paper, the performance of finite-length BATS codes is analyzed with respect to both belief propagation (BP) decoding and inactivation decoding. Our results enable us to evaluate efficiently the...

  11. Listing Contract Length and Time on Market

    OpenAIRE

    Bennie D. Waller; Ray Brastow; Ken H. Johnson

    2010-01-01

    Miceli (1989) in a search for the optimal time to allow a broker to market property provides a theoretical model which posits that the principal (seller) may use the length of the listing contract to motivate the agent (listing broker) to better align incentives. Expanding slightly on Miceli, this present work predicts that longer time allotted the broker to market residential property will decrease broker effort resulting in lower search intensity and eventually a longer marketing span for p...

  12. Stochastic chains with memory of variable length

    OpenAIRE

    Galves, Antonio; Loecherbach, Eva

    2008-01-01

    International audience Stochastic chains with memory of variable length constitute an interesting family of stochastic chains of infinite order on a finite alphabet. The idea is that for each past, only a finite suffix of the past, called context, is enough to predict the next symbol. These models were first introduced in the information theory literature by Rissanen (1983) as a universal tool to perform data compression. Recently, they have been used to model up scientific data in areas a...

  13. Correlation length facilitates Voigt wave propagation

    OpenAIRE

    Mackay, Tom G.; Lakhtakia, Akhlesh

    2004-01-01

    Under certain circumstances, Voigt waves can propagate in a biaxial composite medium even though the component material phases individually do not support Voigt wave propagation. This phenomenon is considered within the context of the strong--permittivity--fluctuation theory. A generalized implementation of the theory is developed in order to explore the propagation of Voigt waves in any direction. It is shown that the correlation length--a parameter characterizing the distributional statisti...

  14. Plasma plume length characterization

    OpenAIRE

    Sarron, Vanessa; Robert, Éric; Fontane, Jérôme; Darny, Thibault; Riès, Delphine; Dozias, Sébastien; Joly, Laurent; Pouvesle, Jean-Michel

    2013-01-01

    In this paper, neon and helium plume length, generated by a plasma gun (PG) are studied. The combination of ICCD imaging, Schlieren visualization and Pitot glass probe allow to characterize the strong influence of the plasma on rare gas flow. Beyond the shifting of the transition from laminar to turbulent, a plasma induced channeling of turbulent flow is achieved. Finally, the benefit of using a capillary for plasma propagation before in-air expansion is evidenced through the generation of lo...

  15. Bias Adaptation for Vocal Tract Length Normalization

    OpenAIRE

    Saheer, Lakshmi; Yamagishi, Junichi; Garner, Philip N.; Dines, John

    2013-01-01

    Vocal tract length normalisation (VTLN) is a well known rapid adaptation technique. VTLN as a linear transformation in the cepstral domain results in the scaling and translation factors. The warping factor represents the spectral scaling parameter. While, the translation factor represented by bias term captures more speaker characteristics especially in a rapid adaptation framework without having the risk of over-fitting. This paper presents a complete and comprehensible derivation of the bia...

  16. Measuring the orbit length of the Tevatron

    International Nuclear Information System (INIS)

    The orbit length in the Tevatron was measured when coasting beam was first obtained. The method was time-of-flight, using a vernier phase comparison between beam pickup signals and a synthesizer sine wave. Some effort was spent making a stable phase detector so that it would not be a limiting factor. The results exhibited a repeatability of a few Hz at 53 MHz, corresponding to a mean radius measurement to 0.1 mm. 5 refs., 4 figs

  17. Experimental investigation of bond in concrete members reinforced with shape memory alloy bars

    Science.gov (United States)

    Daghash, S. M.; Sherif, M. M.; Ozbulut, O. E.

    2015-04-01

    Conventional seismic design of reinforced concrete structures relies on yielding of steel reinforcement to dissipate energy while undergoing residual deformations. Therefore, reinforced concrete structures subjected to strong earthquakes experience large permanent displacements and are prone to severe damage or collapse. Shape memory alloys (SMAs) have gained increasing acceptance in recent years for use in structural engineering due to its attractive properties such as high corrosion resistance, excellent re-centering ability, good energy dissipation capacity, and durability. SMAs can undergo large deformations in the range of 6-8% strain and return their original undeformed position upon unloading. Due to their appealing characteristics, SMAs have been considered as an alternative to traditional steel reinforcement in concrete structures to control permanent deformations. However, the behavior of SMAs in combination with concrete has yet to be explored. In particular, the bond strength is important to ensure the composite action between concrete and SMA reinforcements. This study investigates the bond behavior between SMA bars and concrete through pull-out tests. To explore the size effect on bond strength, the tests are performed using various diameters of SMA bars. For the same diameter, the tests are also conducted with different embedment length to assess the effect of embedment length on bond properties of SMA bars. To monitor the slippage of the SMA reinforcement, an optical Digital Image Correlation method is used and the bond-slip curves are obtained.

  18. Factors influencing bonding fixed restorations

    Directory of Open Access Journals (Sweden)

    Medić Vesna

    2008-01-01

    Full Text Available INTRODUCTION Crown displacement often occurs because the features of tooth preparations do not counteract the forces directed against restorations. OBJECTIVE The purpose of this study was to evaluate the effect of preparation designs on retention and resistance of fixed restorations. METHOD The study was performed on 64 differently sized stainless steel dies. Also, caps which were used for evaluated retention were made of stainless steel for each die. After cementing the caps on experimental dies, measuring of necessary tensile forces to separate cemented caps from dies was done. Caps, which were made of a silver-palladium alloy with a slope of 60° to the longitudinal axis formed on the occlusal surface, were used for evaluating resistance. A sudden drop in load pressure recorded by the test machine indicated failure for that cap. RESULTS A significant difference was found between the tensile force required to remove the caps from the dies with different length (p<0.05 and different taper (p<0.01. The greatest retentive strengths (2579.2 N and 2989.8 N were noticed in experimental dies with the greatest length and smallest taper. No statistically significant (p>0.05 differences were found between tensile loads for caps cemented on dies with different diameter. Although there was an apparent slight increase in resistance values for caps on dies with smaller tapers, the increase in resistance for those preparation designs was not statistically significant. There was a significant difference among the resistance values for caps on dies with different length (p<0.01 and diameter (p<0.05. CONCLUSION In the light of the results obtained, it could be reasonably concluded that retention and resistance of the restoration is in inverse proportion to convergence angle of the prepared teeth. But, at a constant convergence angle, retention and resistance increase with rising length and diameter.

  19. Development of the Heated Length Correction Factor

    International Nuclear Information System (INIS)

    The Critical Heat Flux (CHF) on a nuclear fuel is defined by the function of flow channel geometry and flow condition. According to the selection of the explanatory variable, there are three hypotheses to explain CHF at uniformly heated vertical rod (inlet condition hypothesis, exit condition hypothesis, local condition hypothesis). For inlet condition hypothesis, CHF is characterized by function of system pressure, rod diameter, rod length, mass flow and inlet subcooling. For exit condition hypothesis, exit quality substitutes for inlet subcooling. Generally the heated length effect on CHF in exit condition hypothesis is smaller than that of other variables. Heated length is usually excluded in local condition hypothesis to describe the CHF with only local fluid conditions. Most of commercial plants currently use the empirical CHF correlation based on local condition hypothesis. Empirical CHF correlation is developed by the method of fitting the selected sensitive local variables to CHF test data using the multiple non-linear regression. Because this kind of method can not explain physical meaning, it is difficult to reflect the proper effect of complex geometry. So the recent CHF correlation development strategy of nuclear fuel vendor is making the basic CHF correlation which consists of basic flow variables (local fluid conditions) at first, and then the geometrical correction factors are compensated additionally. Because the functional forms of correction factors are determined from the independent test data which represent the corresponding geometry separately, it can be applied to other CHF correlation directly only with minor coefficient modification

  20. Radiation length imaging with high resolution telescopes

    CERN Document Server

    Stolzenberg, U; Schwenker, B; Wieduwilt, P; Marinas, C; Lütticke, F

    2016-01-01

    The construction of low mass vertex detectors with a high level of system integration is of great interest for next generation collider experiments. Radiation length images with a sufficient spatial resolution can be used to measure and disentangle complex radiation length $X$/$X_0$ profiles and contribute to the understanding of vertex detector systems. Test beam experiments with multi GeV particle beams and high-resolution tracking telescopes provide an opportunity to obtain precise 2D images of the radiation length of thin planar objects. At the heart of the $X$/$X_0$ imaging is a spatially resolved measurement of the scattering angles of particles traversing the object under study. The main challenges are the alignment of the reference telescope and the calibration of its angular resolution. In order to demonstrate the capabilities of $X$/$X_0$ imaging, a test beam experiment has been conducted. The devices under test were two mechanical prototype modules of the Belle II vertex detector. A data sample of ...

  1. Importance of cervical length in dysmenorrhoea aetiology.

    Science.gov (United States)

    Zebitay, Ali G; Verit, Fatma F; Sakar, M Nafi; Keskin, Seda; Cetin, Orkun; Ulusoy, A Ibrahim

    2016-05-01

    The objective of this prospective case-control study was to determine whether uterine corpus and cervical length measurements have a role in dysmenorrhoea aetiology in virgins. Patients with severe primary dysmenorrhoea with visual analog scale scores of ≥7 composed the dysmenorrhoea group (n = 51), while the control group (n = 51) was of women with painless menstrual cycles or with mild pain. Longitudinal and transverse axes of the uterine cervix and uterine corpus were measured. Correlation between severity of dysmenorrhoea and uterine cervix and corpus axes was calculated. Longitudinal and transverse axes of uterine cervix as well as uterine cervix volume were significantly higher in the dysmenorrhoea group compared to the controls. There was a significant positive correlation between severity of dysmenorrhoea and the length of cervical longitudinal and transverse axes and uterine cervical volume. Our findings reveal longer cervical length and greater cervical volume in young virgin patients with dysmenorrhoea and severe pain compared to those with no or less pain. PMID:27012227

  2. Contribution of Hydrogen Bonds to Protein Stability

    Science.gov (United States)

    Pace, Nick

    2014-03-01

    I will discuss the contribution of the burial of polar groups and their hydrogen bonds to the conformational stability of proteins. We measured the change in stability, Δ(Δ G), for a series of hydrogen bonding mutants in four proteins: villin head piece subdomain (VHP) containing 36 residues, a surface protein from Borrelia burgdorferi (VlsE) containing 341 residues, and two proteins previously studied in our laboratory, ribonucleases Sa (RNase Sa) and T1 (RNase T1). Crystal structures were determined for three of the hydrogen bonding mutants of RNase Sa: S24A (1.1Å), Y51F(1.5Å), and T95A(1.3Å). The structures are very similar to wild type RNase Sa and the hydrogen bonding partners always form intermolecular hydrogen bonds to water in the mutants. We compare our results with previous studies of similar mutants in other proteins and reach the following conclusions: 1) Hydrogen bonds contribute favorably to protein stability. 2) The contribution of hydrogen bonds to protein stability is strongly context dependent. 3) Hydrogen bonds by side chains and peptide groups make similar contributions to protein stability. 4) Polar group burial can make a favorable contribution to protein stability even if the polar groups are not hydrogen bonded. 5) The contribution of hydrogen bonds to protein stability is similar for VHP, a small protein, and VlsE, a large protein.

  3. Chemical Bonding: The Orthogonal Valence-Bond View

    Directory of Open Access Journals (Sweden)

    Alexander F. Sax

    2015-04-01

    Full Text Available Chemical bonding is the stabilization of a molecular system by charge- and spin-reorganization processes in chemical reactions. These processes are said to be local, because the number of atoms involved is very small. With multi-configurational self-consistent field (MCSCF wave functions, these processes can be calculated, but the local information is hidden by the delocalized molecular orbitals (MO used to construct the wave functions. The transformation of such wave functions into valence bond (VB wave functions, which are based on localized orbitals, reveals the hidden information; this transformation is called a VB reading of MCSCF wave functions. The two-electron VB wave functions describing the Lewis electron pair that connects two atoms are frequently called covalent or neutral, suggesting that these wave functions describe an electronic situation where two electrons are never located at the same atom; such electronic situations and the wave functions describing them are called ionic. When the distance between two atoms decreases, however, every covalent VB wave function composed of non-orthogonal atomic orbitals changes its character from neutral to ionic. However, this change in the character of conventional VB wave functions is hidden by its mathematical form. Orthogonal VB wave functions composed of orthonormalized orbitals never change their character. When localized fragment orbitals are used instead of atomic orbitals, one can decide which local information is revealed and which remains hidden. In this paper, we analyze four chemical reactions by transforming the MCSCF wave functions into orthogonal VB wave functions; we show how the reactions are influenced by changing the atoms involved or by changing their local symmetry. Using orthogonal instead of non-orthogonal orbitals is not just a technical issue; it also changes the interpretation, revealing the properties of wave functions that remain otherwise undetected.

  4. Manufacturing miniature Langmuir probes by fusing platinum bond wires

    International Nuclear Information System (INIS)

    This paper reports on a novel method for manufacturing microscopic Langmuir probes with spherical tips from platinum bond wires by fusing for plasma characterization in microplasma sources. Here, the resulting endpoints, formed by droplets on the ends of a fused wire, are intended to act as spherical Langmuir probes. For studying the fusing behavior, bond wires were wedge bonded over a 2 mm wide slit, to emulate the final application, and fused with different voltages and currents. For electrical isolation, a set of wires were coated with a 4 μm thick layer of Parylene before they were fused. After fusing, the gap size, as well as the shape and area of the ends of the remaining stubs were measured. The yield of the process was also investigated, and the fusing event was studied using a high-speed camera for analyzing its dynamics. Four characteristic tip shapes were observed: spherical, folded, serpentine shaped and semi-spherical. The stub length leveled out at  ∼400 μm as the fusing power increased. The fusing of the coated wires required a higher power to yield a spherical shape. Finally, a Parylene coated bond wire was integrated into a stripline split-ring resonator (SSRR) microplasma source, and was fused to form two Langmuir probes with spherical endpoints. These probes were used for measuring the I–V characteristics of a plasma generated by the SSRR. In a voltage range between  −60 V and 60 V, the fused stubs exhibited the expected behavior of spherical Langmuir probes, and will be considered for further integration. (paper)

  5. Human lung volume, alveolar surface area, and capillary length

    DEFF Research Database (Denmark)

    Wiebe, B. M.; Laursen, Henning

    1995-01-01

    Cavalieri's principle, length density, morphometry, stereology, surface density, vertical sections, vertical slices......Cavalieri's principle, length density, morphometry, stereology, surface density, vertical sections, vertical slices...

  6. Isotopic effects in hydrogen-bonded crystals with order-disorder phase transition

    International Nuclear Information System (INIS)

    The influence of geometric isotopic effects on the Curie temperature for hydrogen-containing crystals is considered. The experimental pressure dependence of the Curie temperature for iodate crystals, obtained by us, and the known concentration dependences of the Curie temperature for some KDP-kind crystal are explained in the frame of pseudo spin Ising's model, by taking into account the geometry changes of hydrogen bonds under pressure and due to the isotopic exchange. For the first time, the analytic equations for the dependence of the Curie temperature on the length of a hydrogen bond is obtained

  7. Performance of a Nonempirical Density Functional on Molecules and Hydrogen-Bonded Complexes

    OpenAIRE

    Mo, Yuxiang; Tian, Guocai; Car, Roberto; Viktor N. Staroverov; Scuseria, Gustavo E.; Tao, Jianmin

    2016-01-01

    Recently, Tao and Mo (TM) derived a new meta-generalized gradient approximation based on a model exchange hole. In this work, the performance of this functional is assessed on standard test sets, using the 6-311++G(3df,3pd) basis set. These test sets include 223 G3/99 enthalpies of formation, 58 electron affinities, 8 proton affinities, 96 bond lengths, 82 harmonic vibrational frequencies, and 10 hydrogen-bonded molecular complexes. Our calculations show that the TM functional can achieve rem...

  8. Bond behavior between glulam and GFRP’s using pullout direct tests

    OpenAIRE

    Jorge, Marco; Sena-Cruz, José; Branco, Jorge M.; Barros, Joaquim A. O.; Dalfré, Gláucia

    2011-01-01

    To evaluate the bond behavior between glulam and GFRP rods using the near-surface mounted (NSM) strengthening technique, an experimental program was carried out by means of direct pullout tests. In this experimental program three variables were analyzed: the GFRP type (2 types), the GFRP location/groove size (2 types) and the bond length (Lb=30 mm, 60 mm, 120 mm and 180 mm). The instrumentation includes the loaded and free end slips, as well as the pullout force. Thirty seven specimens were t...

  9. Strain transfer of surface-bonded fiber Bragg grating sensors for airship envelope structural health monitoring

    Institute of Scientific and Technical Information of China (English)

    Hai-tao ZHAO; Quan-bao WANG; Ye QIU; Ji-an CHEN; Yue-ying WANG; Zhen-min FAN

    2012-01-01

    This paper deals with an improved bonding approach ofsurface-bonded fiber Bragg grating (FBG) sensors for airship envelope structural health monitoring (SHM) under the strain transfer theory.A theoretical formula is derived from the proposed model to predict the strain transfer relationship between the airship envelope and fiber core.Then theoretical predictions are validated by numerical analysis using the finite element method (FEM).Finally,on the basis of the theoretical approach and numerical validation,parameters that influence the strain transfer rate from the airship envelope to fiber core and the ratio of effective sensing length are analyzed,and some meaningful conclusions are provided.

  10. The Nature of the Hydrogen Bond Outline of a Comprehensive Hydrogen Bond Theory

    CERN Document Server

    Gilli, Gastone

    2009-01-01

    Hydrogen bond (H-bond) effects are known: it makes sea water liquid, joins cellulose microfibrils in trees, shapes DNA into genes and polypeptide chains into wool, hair, muscles or enzymes. Its true nature is less known and we may still wonder why O-H...O bond energies range from less than 1 to more than 30 kcal/mol without apparent reason. This H-bond puzzle is re-examined here from its very beginning and presented as an inclusive compilation of experimental H-bond energies andgeometries.New concepts emerge from this analysis: new classes of systematically strong H-bonds (CAHBs and RAHBs: cha

  11. Intramolecular and intermolecular hydrogen bonds in aminophenols

    International Nuclear Information System (INIS)

    IR-Fourier spectroscopy methods are adopted to study intramolecular and intermolecular hydrogen bonds that form in CCl4 solutions of aminophenol derivatives and in a solid phase of these compounds pressed in KBr. If a hydroxyl group is present in the molecule in the ortho-position to an amino group, then intramolecular interactions between OH and NH groups will take place in aminophenol solutions. Intramolecular O-HO=S=O and N-H...O=S=O hydrogen bonds are found in solutions of compounds containing a sulfonamide fragment. Additional acylation of the amino group causes an intramolecular O-H...O=C hydrogen bond to form in solutions. Functional groups OH, NH, SO2, and C=O interact with one another in various ways in the solid phase to form intermolecular hydrogen bonds in aminophenols. (authors) Keywords aminophenol - IR spectrum - intramolecular hydrogen bond - intermolecular hydrogen bond

  12. Zero Steric Potential and bond order

    Science.gov (United States)

    Ghasemi, S.; Noorizadeh, S.

    2016-05-01

    The variation of Zero Steric Potential (ZSP) through a C-C bond shows two maximums, which their values depend on the bond order (BO). A good relationship (R2 = 1) is observed between the mean values of maximum ZSPs and the bond orders of C-C bonds in ethane, ethylene and acetylene, as reference molecules (Ln BO = 1.956ZSP‾max - 0.898). The obtained equation is used to predict the C-C bond orders of more than twenty aromatic and aliphatic hydrocarbons. The results show that the obtained bond orders from ZSP‾max are more reliable than those which are evaluated using NBO and Laplacian methods.

  13. Theoretical investigation of compounds with triple bonds

    International Nuclear Information System (INIS)

    In this thesis, compounds with potential triple-bonding character involving the heavier main-group elements, Group 4 transition metals, and the actinides uranium and thorium were studied by using molecular quantum mechanics. The triple bonds are described in terms of the individual orbital contributions (σ, π parallel, and π perpendicular to), involving electron-sharing covalent or donor-acceptor interactions between the orbitals of two atoms or fragments. Energy decomposition, natural bond orbital, and atoms in molecules analyses were used for the bonding analysis of the triple bonds. The results of this thesis suggest that the triple-bonding character between the heavier elements of the periodic table is important and worth further study and exploration.

  14. Decomposing European bond and equity volatility

    DEFF Research Database (Denmark)

    Christiansen, Charlotte

    The paper investigates volatility spillover from US and aggregate European asset markets into European national asset markets. A main contribution is that bond and equity volatilities are analyzed simultaneously. A new model belonging to the "volatilityspillover" family is suggested: The...... conditional variance of e.g. the unexpected German stock return is divided into separate effects from the contemporaneous idiosyncratic variance of US bonds, US stocks, European bonds, European stocks, German bonds, and German stocks. Significant volatility-spillover effects are found. The national bond...... (stock) volatilities are mainly influenced by bond (stock) effects. Global, regional, and local volatility effects are all important. The introduction of the euro is associated with a structural break....

  15. Valuing Catastrophe Bonds Involving Credit Risks

    OpenAIRE

    Jian Liu; Jihong Xiao; Lizhao Yan; Fenghua Wen

    2014-01-01

    Catastrophe bonds are the most important products in catastrophe risk securitization market. For the operating mechanism, CAT bonds may have a credit risk, so in this paper we consider the influence of the credit risk on CAT bonds pricing that is different from the other literature. We employ the Jarrow and Turnbull method to model the credit risks and get access to the general pricing formula using the Extreme Value Theory. Furthermore, we present an empirical pricing study of the Property C...

  16. Protein folding guides disulfide bond formation

    OpenAIRE

    Qin, Meng; Wang, Wei; Thirumalai, D.

    2015-01-01

    Anfinsen inferred the principles of protein folding by studying a protein containing four disulfide bonds in the native state. However, how protein folding drives disulfide bond formation is poorly understood despite the role such proteins play in variety of extracellular and intracellular functions. We developed a method to mimic the complex chemistry of disulfide bond formation in molecular simulations, which is used to decipher the mechanism of folding of bovine pancreatic trypsin inhibito...

  17. Sunspots and Inflation-indexed Bonds

    OpenAIRE

    Minwook KANG

    2014-01-01

    An economy with incomplete ?nancial markets, as described by Cass (1989), typically has in?ation volatility driven by sunspots. The purpose of this paper is to investigate how the introduction of in?ation- indexed bonds to the ?Cass?economy in?uences a monetary market, an indexed bond market, and welfare. The introduction of indexed bonds is considered a sunspot-stabilizing policy. However, this introduction unrealistically causes the complete shutdown of monetary markets. This problem can be...

  18. Cyanoacrylate bonding of thick resists for LIGA

    Science.gov (United States)

    Rogers, James G., IV; Marques, Christophe; Kelly, Kevin W.; Sangishetty, Venkat; Khan Malek, Chantal G.

    1996-09-01

    The MicroSystems Engineering Team ((mu) SET) at Louisiana State University, in close collaboration with the Center for Advanced Microstructures and Devices, has successfully completed the lithography and electroplating steps of the LIGA process sequence using cyanoacrylate to bond a PMMA resist layer to a nickel surface. Nickel microstructures 300 micrometers in height have been electroplated. Tests were performed which indicate that the bond between cyanoacrylate and nickel is much stronger than the bond between PMMA and nickel.

  19. Bond between concrete and reinforcing steel

    OpenAIRE

    Dežman, Andraž

    2015-01-01

    This thesis researches bond characteristics between the 12mm steel reinforcing bar and various types of concrete. Standard Eurocode 2 and FIB Model Code 2010 define ultimate bond stress, which acts like shear stress around the reinforcing bar. In correlation with bond, high strength concrete is poorly represented, furthermore, research and information on fibre concrete are lacking. Therefore, a series of pull-out tests, based on standard SIST EN 10080:2005, have been conducted....

  20. Liquidity Issues in Indian Sovereign Bond Market

    OpenAIRE

    Nath, Golaka

    2013-01-01

    Liquidity is one of the most important factors after credit risk that affects the bond yields. The paper uses various measures of liquidity to understand their determinants in Indian sovereign bond market. The Liquidity measured by parameters like Turnover Ratio and Amihud Illiquidity Indicator show that these parameters not only have instantaneous relationship with bond yield but contemporaneous relationship with themselves. Impact Cost is not found to have any explanatory power. Financial c...

  1. The Development of James Bond Through Time

    OpenAIRE

    Thorsen, Pernille Groth; Dreyer, Maria; Stepputat, Frida; Minssieux, Nelly

    2012-01-01

    Our main focus in the project is finding out how James Bond has changed through time and culture, while also investigating what an audience finds appealing in a character on screen. We have analyzed the character of James Bond using the method of characterization along with Anthony Giddens’ theory of globalization in order to prove the change in character we believe there is. We will discuss if and why an audience finds the character of James Bond appealing by using Identification and the ...

  2. Perspectives on bond lending and specialness

    OpenAIRE

    Hansen, Lars Jul; Hesselberg, Stig; Mogensen, Louise

    2005-01-01

    This working paper provides a basic introduction to bond lending and reviews the main results from the academic literature. These results are compared with actual price data on bond lending from the US and European markets for the period from 3 March 2003 to 14 May 2004. Three specific issues regarding bond lending are subsequently discussed. Firstly, the differences between the markets for securities lending in the US and in Europe are explored and a number of factors that explain this diffe...

  3. Intramolecular versus intermolecular hydrogen bonding in solution

    OpenAIRE

    Vliegenthart, J. F. G.; Kroon, Jan; Kroon-Batenburg, L.M.J.; Leeflang, B.R.

    1994-01-01

    The balance between intra- and intermolecular hydrogen bonding is studied for a solution of methyl beta-cellobioside in water and dimethylsulfoxide by 1H NMR and molecular dynamics simulations. In water O(3) predominantly interacts with water molecules, whereas in dimethylsulfoxide it is intramolecularly hydrogen bonded to O(5Œ). The temperature coefficient of the chemical shift of the hydroxy groups appears to be a reliable indicator of intermolecular hydrogen-bond formation, whereas the ex...

  4. Aspects of solvents in dentine bonding

    OpenAIRE

    Ekambaram, Manikandan

    2015-01-01

    Degradation starts at the resin-dentine bonded interfaces within a few months’ of bonding. There are two major causes of degradation of the bonded interfaces over time. The simplified dental adhesives that are routinely used in the contemporary clinical dental practice are extremely hydrophilic and are prone to water sorption, leading to hydrolytic degradation. Dentine matrix-bound metalloproteinases (MMPs) and cysteine cathepsins (CCs) are proteolytic enzymes that have been shown to degrade ...

  5. Sensor/ROIC Integration using Oxide Bonding

    International Nuclear Information System (INIS)

    We explore the Ziptronix Direct Bond Interconnect (DBI) technology (2) for the integration of sensors and readout integrated circuits (ROICs) for high energy physics. The technology utilizes an oxide bond to form a robust mechanical connection between layers which serves to assist with the formation of metallic interlayer connections. We report on testing results of sample sensors bonded to ROICs and thinned to 100 (micro)m

  6. Sensor/ROIC Integration using Oxide Bonding

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Zhenyu; /Fermilab

    2009-02-01

    We explore the Ziptronix Direct Bond Interconnect (DBI) technology [2] for the integration of sensors and readout integrated circuits (ROICs) for high energy physics. The technology utilizes an oxide bond to form a robust mechanical connection between layers which serves to assist with the formation of metallic interlayer connections. We report on testing results of sample sensors bonded to ROICs and thinned to 100 {micro}m.

  7. Self-organization on multiple length scales in "hairy rod"-coil block copolymer supramolecular complexes

    OpenAIRE

    Hammond, Matthew R.; Klok, Harm-Anton; Mezzenga, Raffaele

    2008-01-01

    A peptide-synthetic hybrid block copolymer, poly(ethylene oxide)-block-poly(L-glutamic acid), is shown to form supramolecular complexes with primary alkylamines of varying alkyl chain lengths (8 to 18 methylene units) in organic solvents via acid-base proton transfer and subsequent ionic bonding. The peptidic block being in the α-helical conformation, these materials behave as coil-"hairy rod" block copolymers, and show hierarchically self-organized nanostructures in the solid state. X-ray sc...

  8. Coassembly of Tobacco Mosaic Virus Coat Proteins into Nanotubes with Uniform Length and Improved Physical Stability.

    Science.gov (United States)

    Zhou, Kun; Eiben, Sabine; Wang, Qiangbin

    2016-06-01

    Using tobacco mosaic virus coat proteins (TMVcp) from both sources of the plant and bacterial expression systems as building blocks, we demonstrate here a coassembly strategy of TMV nanotubes in the presence of RNA. Specifically, plant-expressed cp (cpp) efficiently dominates the genomic RNA encapsidation to determine the length of assembled TMV nanotubes, whereas the incorporated Escherichia coli-expressed cp (cpec) improves the physical stability of TMV nanotubes by introducing disulfide bonds between the interfaces of subunits. We expect this coassembly strategy can be expanded to other virus nanomaterials to obtain desired properties based on rationally designed protein-RNA and protein-protein interfacial interactions. PMID:27188634

  9. Cohesive Fracture Study of a Bonded Coarse Silica Sand Aggregate Bond Interface Subjected to Mixed-Mode Bending Conditions

    Directory of Open Access Journals (Sweden)

    Donna Chen

    2013-12-01

    Full Text Available One of the primary objectives in the design of composite structures is the prevention of premature bond failure. Therefore, the characterization of cohesive behavior is an important field of study in structural engineering. Using fracture mechanics principles, the cohesive behavior of an epoxy bonded coarse silica sand aggregate bond interface is studied in this paper, with a focus on finding a general analytical form of idealizing its behavior when used in a specimen possessing asymmetric and inhomogeneous qualities. Two series of small-scale specimens were experimentally tested under mixed-mode bending (MMB conditions, where it was found that there was negligible influence exerted on the fracture energy of the interface due to changes in the mixed-mode ratio or initial crack length. Using finite element analysis (FEA methods, an appropriate bilinear traction-separation model was developed to both validate as well as obtain a set of consistent parameters applicable to all tested specimens. Comparison of the Global Method and the Local Method, used to obtain partitioned Mode I and Mode II fracture energy values from MMB specimens, were made, with the conclusion that both methods are adequate in the calculation of the total fracture energy though the Local Method should be used to obtain accurate partitioned Mode I and Mode II fracture energy values. Idealization of the bond interface using the cohesive parameters derived can be accurately achieved by the use of both contact interactions and cohesive elements in two-dimensional and three-dimensional FE models, though the results obtained using contact interactions would be expected to exhibit greater global stiffness.

  10. Bond percolation on isoradial graphs

    CERN Document Server

    Grimmett, Geoffrey

    2012-01-01

    In an investigation of percolation on isoradial graphs, we prove the criticality of canonical bond percolation on isoradial embeddings of planar graphs, thus extending celebrated earlier results for homogeneous and inhomogeneous square, triangular, and other lattices. This is achieved via the star-triangle transformation, by transporting the box-crossing property across the family of isoradial graphs. As a consequence, we obtain the universality of these models at the critical point, in the sense that the one-arm and 2j-alternating-arm critical exponents (and therefore also the connectivity and volume exponents) are constant across the family of such percolation processes. The isoradial graphs in question are those that satisfy certain weak conditions on their embedding and on their track system. This class of graphs includes, for example, isoradial embeddings of periodic graphs, and graphs derived from rhombic Penrose tilings.

  11. Coherent Control of Bond Making

    CERN Document Server

    Levin, Liat; Rybak, Leonid; Kosloff, Ronnie; Koch, Christiane P; Amitay, Zohar

    2014-01-01

    We demonstrate for the first time coherent control of bond making, a milestone on the way to coherent control of photo-induced bimolecular chemical reactions. In strong-field multiphoton femtosecond photoassociation experiments, we find the yield of detected magnesium dimer molecules to be enhanced for positively chirped pulses and suppressed for negatively chirped pulses. Our ab initio model shows that control is achieved by purification via Franck-Condon filtering combined with chirp-dependent Raman transitions. Experimental closed-loop phase optimization using a learning algorithm yields an improved pulse that utilizes vibrational coherent dynamics in addition to chirp-dependent Raman transitions. Our results show that coherent control of binary photo-reactions is feasible even under thermal conditions.

  12. Quantitative assessment of the multiplicity of carbon-halogen bonds: carbenium and halonium ions with F, Cl, Br, and I.

    Science.gov (United States)

    Kalescky, Robert; Zou, Wenli; Kraka, Elfi; Cremer, Dieter

    2014-03-13

    CX (X = F, Cl, Br, I) and CE bonding (E = O, S, Se, Te) was investigated for a test set of 168 molecules using the local CX and CE stretching force constants k(a) calculated at the M06-2X/cc-pVTZ level of theory. The stretching force constants were used to derive a relative bond strength order (RBSO) parameter n. As alternative bond strength descriptors, bond dissociation energies (BDE) were calculated at the G3 level or at the two-component NESC (normalized elimination of the small component)/CCSD(T) level of theory for molecules with X = Br, I or E = Se, Te. RBSO values reveal that both bond lengths and BDE values are less useful when a quantification of the bond strength is needed. CX double bonds can be realized for Br- or I-substituted carbenium ions where as suitable reference the double bond of the corresponding formaldehyde homologue is used. A triple bond cannot be realized in this way as the diatomic CX(+) ions with a limited π-donor capacity for X are just double-bonded. The stability of halonium ions increases with the atomic number of X, which is reflected by a strengthening of the fractional (electron-deficient) CX bonds. An additional stability increase of up to 25 kcal/mol (X = I) is obtained when the X(+) ion can form a bridged halonium ion with ethene such that a more efficient 2-electron-3-center bonding situation is created. PMID:24555526

  13. Strong covalent bonding between two graphene layers

    OpenAIRE

    Andres, P. L. de; Ramírez, Rafael; Vergés, José A.

    2008-01-01

    We show that two graphene layers stacked directly on top of each other (AA stacking) form strong chemical bonds when the distance between planes is 0.156 nm. Simultaneously, C-C in-plane bonds are considerably weakened from partial double-bond (0.141 nm) to single bond (0.154 nm). This polymorphic form of graphene bilayer is meta-stable w.r.t. the one bound by van der Waals forces at a larger separation (0.335 nm) with an activation energy of 0.16 eV/cell. Similarly to the structure found in ...

  14. Cold pressure welding - the mechanisms governing bonding

    DEFF Research Database (Denmark)

    Bay, Niels

    1979-01-01

    Investigations of the bonding surface in scanning electron microscope after fracture confirm the mechanisms of bond formation in cold pressure welding to be: fracture of work-hardened surface layer, surface expansion increasing the area of virgin surface, extrusion of virgin material through cracks...... of the original surface layer, and establishment of real contact and bonding between virgin material. This implies that normal pressure as well as surface expansion are basic parameters governing the bond strength. Experimental investigations of pressure welding Al-Al under plane strain compression...

  15. On the photostability of the disulfide bond

    DEFF Research Database (Denmark)

    Stephansen, Anne Boutrup; Larsen, Martin Alex Bjørn; Klein, Liv Bærenholdt;

    2014-01-01

    Photostability is an essential property of molecular building blocks of nature. Disulfides are central in the structure determination of proteins, which is in striking contradiction to the result that the S-S bond is a photochemically labile structural entity that cleaves to form free radicals upon...... sub 50 fs timescale without further ado. In a cyclic motif resembling the cysteine-disulfide bond in proteins, light can perturb the S-S bond to generate short-lived diradicaloid species, but the sulfur atoms are conformationally restricted by the ring that prevents the sulfur atoms from flying apart...... photostability of disulfide-bonds must be ascribed a cyclic structural arrangement....

  16. The corporate bond credit spread puzzle

    OpenAIRE

    Jens H. E. Christensen

    2008-01-01

    It is common to view interest on a corporate bond as reflecting the risk-free, longer-term interest rate, such as that on a 10-year Treasury bond, plus a spread related to the credit risk of the corporation issuing the bond. However, empirical analysis of the determinants of corporate bond rates has turned out to be more demanding than it appears on the surface. This has led researchers to talk about a credit spread puzzle. In this Economic Letter we will first detail the evidence for the exi...

  17. Tetraalkylammonium Salts as Hydrogen-Bonding Catalysts.

    Science.gov (United States)

    Shirakawa, Seiji; Liu, Shiyao; Kaneko, Shiho; Kumatabara, Yusuke; Fukuda, Airi; Omagari, Yumi; Maruoka, Keiji

    2015-12-21

    Although the hydrogen-bonding ability of the α hydrogen atoms on tetraalkylammonium salts is often discussed with respect to phase-transfer catalysts, catalysis that utilizes the hydrogen-bond-donor properties of tetraalkylammonium salts remains unknown. Herein, we demonstrate hydrogen-bonding catalysis with newly designed tetraalkylammonium salt catalysts in Mannich-type reactions. The structure and the hydrogen-bonding ability of the new ammonium salts were investigated by X-ray diffraction analysis and NMR titration studies. PMID:26564098

  18. Fusion bonding of silicon nitride surfaces

    DEFF Research Database (Denmark)

    Reck, Kasper; Østergaard, Christian; Thomsen, Erik Vilain;

    2011-01-01

    While silicon nitride surfaces are widely used in many micro electrical mechanical system devices, e.g. for chemical passivation, electrical isolation or environmental protection, studies on fusion bonding of two silicon nitride surfaces (Si3N4–Si3N4 bonding) are very few and highly application...... specific. Often fusion bonding of silicon nitride surfaces to silicon or silicon dioxide to silicon surfaces is preferred, though Si3N4–Si3N4 bonding is indeed possible and practical for many devices as will be shown in this paper. We present an overview of existing knowledge on Si3N4–Si3N4 bonding and new...... results on bonding of thin and thick Si3N4 layers. The new results include high temperature bonding without any pretreatment, along with improved bonding ability achieved by thermal oxidation and chemical pretreatment. The bonded wafers include both unprocessed and processed wafers with a total silicon...

  19. Electric current characteristic of anodic bonding

    International Nuclear Information System (INIS)

    In this paper, a novel current–time model of anodic bonding is proposed and verified experimentally in order to investigate underlying mechanisms of anodic bonding and to achieve real-time monitoring of bonding procedure. The proposed model provides a thorough explanation for the electric current characteristic of anodic bonding. More significantly, it explains two issues which other models cannot explain. One is the sharp rise in current when a voltage is initially applied during anodic bonding. The other is the unexpected large width of depletion layers. In addition, enlargement of the intimately contacted area during anodic bonding can be obtained from the proposed model, which can be utilized to monitor the bonding process. To verify the proposed model, Borofloat33 glass and silicon wafers were adopted in bonding experiments in SUSS SB6 with five different bonding conditions (350 °C 1200 V; 370 °C 1200 V; 380 °C 1200 V; 380 °C 1000 V; and 380 °C 1400 V). The results indicate that the observed current data highly coincide with the proposed current-time model. For widths of depletion layers, depth profiling using secondary ion mass spectrometry demonstrates that the calculated values by the model are basically consistent with the experimental values as well. (paper)

  20. Scale Length of the Galactic Thin Disk

    Indian Academy of Sciences (India)

    D. Κ. Ojha

    2000-06-01

    This paper presents an analysis of the first 2MASS (The Two Micron All Sky Survey) sampler data as observed at lower Galactic latitude in our Galaxy. These new near-infrared data provide insight into the structure of the thin disk of our Galaxy, The interpretation of star counts and color distributions of stars in the near-infrared with the synthetic stellar population model, gives strong evidence that the Galactic thin disk density scale length, ℎ, is rather short (2.7 ± 0.1 kpc).

  1. Long Length Contaminated Equipment Maintenance Plan

    International Nuclear Information System (INIS)

    The purpose of this document is to provide the maintenance requirements of the Long Length Contaminated Equipment (LLCE) trailers and provide a basis for the maintenance frequencies selected. This document is applicable to the LLCE Receiver trailer and Transport trailer assembled by Mobilized Systems Inc. (MSI). Equipment used in conjunction with, or in support of, these trailers is not included. This document does not provide the maintenance requirements for checkout and startup of the equipment following the extended lay-up status which began in the mid 1990s. These requirements will be specified in other documentation

  2. Crack Length Detection by Digital Image Processing

    DEFF Research Database (Denmark)

    Lyngbye, Janus; Brincker, Rune

    1990-01-01

    It is described how digital image processing is used for measuring the length of fatigue cracks. The system is installed in a Personal Computer equipped with image processing hardware and performs automated measuring on plane metal specimens used in fatigue testing. Normally one can not achieve a...... resolution better then that of the image processing equipment. To overcome this problem an extrapolation technique is used resulting in a better resolution. The system was tested on a specimen loaded with different loads. The error σa was less than 0.031 mm, which is of the same size as human measuring with...

  3. Exercices with the neutrino oscillation length

    CERN Document Server

    Lévy, J M

    2000-01-01

    Forsaking the traditionnal hand-waving in the treatment of the motion allows to show that the ultra-relativistic approximation and the equality of kinematical variables are unnecessary ingredients in the derivation of the oscillation length using plane waves, at least in a two flavor world. It ensues that the formula is valid as it is in the non relativistic regime, provided one uses the correct variable which is found to be momentum, not energy, and that the precise production kinematics is irrelevant. Applications to more realistic three neutrino cases are briefly discussed.

  4. Correlation length facilitates Voigt wave propagation

    CERN Document Server

    Mackay, Tom G

    2004-01-01

    Under certain circumstances, Voigt waves can propagate in a biaxial composite medium even though the component material phases individually do not support Voigt wave propagation. This phenomenon is considered within the context of the strong--permittivity--fluctuation theory. A generalized implementation of the theory is developed in order to explore the propagation of Voigt waves in any direction. It is shown that the correlation length--a parameter characterizing the distributional statistics of the component material phases--plays a crucial role in facilitating the propagation of Voigt waves in the homogenized composite medium.

  5. The external length in Kingman's coalescent

    CERN Document Server

    Kersting, Goetz

    2010-01-01

    In this paper we prove asymptotic normality of the total length of external branches in Kingman's coalescent. The proof uses an embedded Markov chain, which can be descriped as follows: Take an urn with $n$ {\\em black} balls. Empty it in $n$ steps according to the rule: In each step remove a randomly chosen pair of balls and replace it by one {\\em red} ball. Finally remove the last remaining ball. Then the number $U_k$, $0 \\le k \\le n$, of red balls after $k$ steps exhibits an unexpected property: $(U_0,U_n)$ and $(U_n, U_0)$ are equal in distribution.

  6. The external lengths in Kingman's coalescent

    OpenAIRE

    Janson, Svante; Kersting, Götz

    2010-01-01

    In this paper we prove asymptotic normality of the total length of external branches in Kingman's coalescent. The proof uses an embedded Markov chain, which can be descriped as follows: Take an urn with n black balls. Empty it in n steps according to the rule: In each step remove a randomly chosen pair of balls and replace it by one red ball. Finally remove the last remaining ball. Then the numbers U_k, 0 \\leq k \\leq n, of red balls after k steps exhibits an unexpected property: (U_0,...,U_n)...

  7. Silica aerogel radiators for bunch length measurements

    International Nuclear Information System (INIS)

    Cherenkov radiators based on silica aerogel are used to measure the electron bunch length at the photo injector test facility at DESY Zeuthen (PITZ). The energy range of those electrons is 4-5 MeV. In this paper, the time resolution defined by the usage of aerogel is calculated analytically and Monte Carlo simulations are performed. It is shown that silica aerogel gives the possibility to reach a time resolution of about 0.1 ps for high photon intensities and a time resolution of about 0.02 ps can be obtained for thin silica aerogel radiators

  8. Influence of the chain length on the biological behaviour of /sup 131/I fatty acids

    Energy Technology Data Exchange (ETDEWEB)

    Riche, F.; Mathieu, J.P.; Comet, M.; Vidal, M.; Pernin, C.; Marti-Batlle, D.; Busquet, G. (Universite de Grenoble, 38 (France)); Bardy, A. (C.E.A.-ORIS, 91 - Gif-sur-Yvette (France))

    1983-01-01

    Saturated and acetylenic fatty acids labeled with /sup 131/I in ..omega.. position, differing by their chain length (C8 to C20) and the number odd or even of their carbon atoms are injected in mice. The evolution of the activity in myocardium, blood, liver and kidney is measured until 10 minutes after injection. The myocardial activity increases with chain length from C8 to C16 then decreases for C18 and C20. The odd or even number of carbon atoms does not influence myocardial activity but in the liver, activity is inferior with the odd fatty acids. The presence of a triple bond accelerates the output of activity from the myocardium and these fatty acids are not well suited for the study of myocardial metabolism.

  9. Influence of the chain length on the biological behaviour of 131I fatty acids

    International Nuclear Information System (INIS)

    Saturated and acetylenic fatty acids labeled with 131I in ω position, differing by their chain length (C8 to C20) and the number odd or even of their carbon atoms are injected in mice. The evolution of the activity in myocardium, blood, liver and kidney is measured until 10 minutes after injection. The myocardial activity increases with chain length from C8 to C16 then decreases for C18 and C20. The odd or even number of carbon atoms does not influence myocardial activity but in the liver, activity is inferior with the odd fatty acids. The presence of a triple bond accelerates the output of activity from the myocardium and these fatty acids are not well suited for the study of myocardial metabolism

  10. Impact of vibrational entropy on the stability of unsolvated peptide helices with increasing length

    CERN Document Server

    Rossi, Mariana; Scheffler, Matthias

    2012-01-01

    Helices are a key folding motif in protein structure. The question which factors determine helix stability for a given polypeptide or protein is an ongoing challenge. Here we use van der Waals corrected density-functional theory to address a part of this question in a bottom-up approach. We show how intrinsic helical structure is stabilized with length and temperature for a series of experimentally well studied unsolvated alanine based polypeptides, Ac-Alan-LysH+. By exploring extensively the conformational space of these molecules, we find that helices emerge as the preferred structure in the length range n=4-8 not just due to enthalpic factors (hydrogen bonds and their cooperativity, van der Waals dispersion interactions, electrostatics), but importantly also by a vibrational entropic stabilization over competing conformers at room temperature. The stabilization is shown to be due to softer low-frequency vibrational modes in helical conformers than in more compact ones. This observation is corroborated by i...

  11. Hierarchy of bond stiffnesses within icosahedral-based gold clusters protected by thiolates

    Science.gov (United States)

    Yamazoe, Seiji; Takano, Shinjiro; Kurashige, Wataru; Yokoyama, Toshihiko; Nitta, Kiyofumi; Negishi, Yuichi; Tsukuda, Tatsuya

    2016-01-01

    Unique thermal properties of metal clusters are believed to originate from the hierarchy of the bonding. However, an atomic-level understanding of how the bond stiffnesses are affected by the atomic packing of a metal cluster and the interfacial structure with the surrounding environment has not been attained to date. Here we elucidate the hierarchy in the bond stiffness in thiolate-protected, icosahedral-based gold clusters Au25(SC2H4Ph)18, Au38(SC2H4Ph)24 and Au144(SC2H4Ph)60 by analysing Au L3-edge extended X-ray absorption fine structure data. The Au-Au bonds have different stiffnesses depending on their lengths. The long Au-Au bonds, which are more flexible than those in the bulk metal, are located at the icosahedral-based gold core surface. The short Au-Au bonds, which are stiffer than those in the bulk metal, are mainly distributed along the radial direction and form a cyclic structural backbone with the rigid Au-SR oligomers.

  12. Model building of disulfide bonds in proteins with known three-dimensional structure.

    Science.gov (United States)

    Hazes, B; Dijkstra, B W

    1988-07-01

    As an aid in the selection of sites in a protein where a disulfide bond might be engineered, a computer program has been developed. The algorithm starts with the generation of C beta positions from the N, C alpha and C atom coordinates available from a three-dimensional model. A first set of residue pairs that might form a disulfide bond is selected on the basis of C beta-C beta distances between residues. Then, for each residue in this set, S gamma positions are generated, which satisfy the requirement that, with ideal values for the C alpha-C beta and C beta-S gamma bond lengths and for the bond angle at C beta, the distance between S gamma of residue 1 and C beta of residue 2 in a pair (determined by the bond angle at S gamma 2) is at, or very close to its ideal value. Usually two acceptable S gamma positions are found for each half cystine, resulting in up to four different conformations for the disulfide bond. Finally, these conformations are subjected to an energy minimization procedure to remove large deviations from ideal geometry and their final energies are calculated. User input determines which final conformations are energetically acceptable. These conformations are written to a file to allow further analysis and e.g. inspection on a computer graphics device. PMID:3244694

  13. Average path length for Sierpinski pentagon

    CERN Document Server

    Peng, Junhao

    2011-01-01

    In this paper,we investigate diameter and average path length(APL) of Sierpinski pentagon based on its recursive construction and self-similar structure.We find that the diameter of Sierpinski pentagon is just the shortest path lengths between two nodes of generation 0. Deriving and solving the linear homogenous recurrence relation the diameter satisfies, we obtain rigorous solution for the diameter. We also obtain approximate solution for APL of Sierpinski pentagon, both diameter and APL grow approximately as a power-law function of network order $N(t)$, with the exponent equals $\\frac{\\ln(1+\\sqrt{3})}{\\ln(5)}$. Although the solution for APL is approximate,it is trusted because we have calculated all items of APL accurately except for the compensation($\\Delta_{t}$) of total distances between non-adjacent branches($\\Lambda_t^{1,3}$), which is obtained approximately by least-squares curve fitting. The compensation($\\Delta_{t}$) is only a small part of total distances between non-adjacent branches($\\Lambda_t^{1...

  14. The length distribution of frangible biofilaments.

    Science.gov (United States)

    Michaels, Thomas C T; Yde, Pernille; Willis, Julian C W; Jensen, Mogens H; Otzen, Daniel; Dobson, Christopher M; Buell, Alexander K; Knowles, Tuomas P J

    2015-10-28

    A number of different proteins possess the ability to polymerize into filamentous structures. Certain classes of such assemblies can have key functional roles in the cell, such as providing the structural basis for the cytoskeleton in the case of actin and tubulin, while others are implicated in the development of many pathological conditions, including Alzheimer's and Parkinson's diseases. In general, the fragmentation of such structures changes the total number of filament ends, which act as growth sites, and hence is a key feature of the dynamics of filamentous growth phenomena. In this paper, we present an analytical study of the master equation of breakable filament assembly and derive closed-form expressions for the time evolution of the filament length distribution for both open and closed systems with infinite and finite monomer supply, respectively. We use this theoretical framework to analyse experimental data for length distributions of insulin amyloid fibrils and show that our theory allows insights into the microscopic mechanisms of biofilament assembly to be obtained beyond those available from the conventional analysis of filament mass only. PMID:26520548

  15. Cellular Mechanisms of Ciliary Length Control

    Directory of Open Access Journals (Sweden)

    Jacob Keeling

    2016-01-01

    Full Text Available Cilia and flagella are evolutionarily conserved, membrane-bound, microtubule-based organelles on the surface of most eukaryotic cells. They play important roles in coordinating a variety of signaling pathways during growth, development, cell mobility, and tissue homeostasis. Defects in ciliary structure or function are associated with multiple human disorders called ciliopathies. These diseases affect diverse tissues, including, but not limited to the eyes, kidneys, brain, and lungs. Many processes must be coordinated simultaneously in order to initiate ciliogenesis. These include cell cycle, vesicular trafficking, and axonemal extension. Centrioles play a central role in both cell cycle progression and ciliogenesis, making the transition between basal bodies and mitotic spindle organizers integral to both processes. The maturation of centrioles involves a functional shift from cell division toward cilium nucleation which takes place concurrently with its migration and fusion to the plasma membrane. Several proteinaceous structures of the distal appendages in mother centrioles are required for this docking process. Ciliary assembly and maintenance requires a precise balance between two indispensable processes; so called assembly and disassembly. The interplay between them determines the length of the resulting cilia. These processes require a highly conserved transport system to provide the necessary substances at the tips of the cilia and to recycle ciliary turnover products to the base using a based microtubule intraflagellar transport (IFT system. In this review; we discuss the stages of ciliogenesis as well as mechanisms controlling the lengths of assembled cilia.

  16. The length distribution of frangible biofilaments

    Science.gov (United States)

    Michaels, Thomas C. T.; Yde, Pernille; Willis, Julian C. W.; Jensen, Mogens H.; Otzen, Daniel; Dobson, Christopher M.; Buell, Alexander K.; Knowles, Tuomas P. J.

    2015-10-01

    A number of different proteins possess the ability to polymerize into filamentous structures. Certain classes of such assemblies can have key functional roles in the cell, such as providing the structural basis for the cytoskeleton in the case of actin and tubulin, while others are implicated in the development of many pathological conditions, including Alzheimer's and Parkinson's diseases. In general, the fragmentation of such structures changes the total number of filament ends, which act as growth sites, and hence is a key feature of the dynamics of filamentous growth phenomena. In this paper, we present an analytical study of the master equation of breakable filament assembly and derive closed-form expressions for the time evolution of the filament length distribution for both open and closed systems with infinite and finite monomer supply, respectively. We use this theoretical framework to analyse experimental data for length distributions of insulin amyloid fibrils and show that our theory allows insights into the microscopic mechanisms of biofilament assembly to be obtained beyond those available from the conventional analysis of filament mass only.

  17. Electron plasma oscillations at arbitrary Debye lengths

    International Nuclear Information System (INIS)

    A solution is presented for electron plasma oscillation in a thermalized homogeneous plasma, at arbitrary ratios between the Debye length λD and the perturbation wave length λ. The limit λD D >> λ corresponds to the free-streaming limit of strong kinetic phase-mixing due to large particle excursions. A strong large Debye distance (LDD) effect already appears when λD > approx λ. The initial amplitude of the fluid-like contribution to the macroscopic density perturbation then becomes small as compared to the contribution from the free-streaming part. As a consequence, only a small fraction of the density perturbation remains after a limited number of kinetic damping times of the free-streaming part. The analysis further shows that a representation in terms of normal model of the form exp(-iωt) leads to amplitude factors of these modes which are related to each other and which depend on the combined free-streaming and fluid behaviour of the plasma. Consequently, these modes are coupled and cannot be treated as being independent of each other. (au)

  18. The probabilistic distribution of metal whisker lengths

    Energy Technology Data Exchange (ETDEWEB)

    Niraula, D., E-mail: Dipesh.Niraula@rockets.utoledo.edu; Karpov, V. G., E-mail: victor.karpov@utoledo.edu [Department of Physics and Astronomy, University of Toledo, Toledo, Ohio 43606 (United States)

    2015-11-28

    Significant reliability concerns in multiple industries are related to metal whiskers, which are random high aspect ratio filaments growing on metal surfaces and causing shorts in electronic packages. We derive a closed form expression for the probabilistic distribution of metal whisker lengths. Our consideration is based on the electrostatic theory of metal whiskers, according to which whisker growth is interrupted when its tip enters a random local “dead region” of a weak electric field. Here, we use the approximation neglecting the possibility of thermally activated escapes from the “dead regions,” which is later justified. We predict a one-parameter distribution with a peak at a length that depends on the metal surface charge density and surface tension. In the intermediate range, it fits well the log-normal distribution used in the experimental studies, although it decays more rapidly in the range of very long whiskers. In addition, our theory quantitatively explains how the typical whisker concentration is much lower than that of surface grains. Finally, it predicts the stop-and-go phenomenon for some of the whiskers growth.

  19. Localization length of nearly periodic layered metamaterials

    CERN Document Server

    del Barco, O

    2015-01-01

    We have analyzed numerically the localization length of light $\\xi$ for nearly periodic arrangements of homogeneous stacks (formed exclusively by right-handed materials) and mixed stacks (with alternating right and left-handed metamaterials). Layers with index of refraction $n_1$ and thickness $L_1$ alternate with layers of index of refraction $n_2$ and thickness $L_2$. Positional disorder has been considered by shifting randomly the positions of the layer boundaries with respect to periodic values. For homogeneous stacks, we have shown that the localization length is modulated by the corresponding bands and that $\\xi$ is enhanced at the center of each allowed band. In the limit of long-wavelengths $\\lambda$, the parabolic behavior previously found in purely disordered systems is recovered, whereas for $\\lambda \\ll L_1 + L_2$ a saturation is reached. In the case of nearly periodic mixed stacks with the condition $|n_1 L_1|=|n_2 L_2|$, instead of bands there is a periodic arrangement of Lorenztian resonances, ...

  20. Are Bonding Agents being Effective on the Shear Bond Strength of Orthodontic Brackets Bonded to the Composite?

    Directory of Open Access Journals (Sweden)

    Fahimeh Farzanegan

    2014-06-01

    Full Text Available Introduction: One of the clinical problems in orthodontics is the bonding of brackets tocomposite restorations. The aim of this study was to evaluate the shear bondstrength of brackets bonded to composite restorations using Excite. Methods:Forty brackets were bonded to composite surfaces, which were embedded inacrylic resin. One of the following four protocols was employed for surfacepreparation of the composite: group 1 37% phosphoric acid for 60 seconds, group2 roughening with a diamond bur plus 37% phosphoric acid for 60 seconds, group3 37% phosphoric acid for 60 seconds and the applying Excite®, group4 roughening with diamond bur plus 37% phosphoric acid for 60 seconds andapplying Excite®. Maxillary central brackets were bonded onto thecomposite prepared samples with Transbond XT. Shear Bond Strength (SBS wasmeasured by a universal testing machine. The ANOVA and Tukey test was utilizedfor data analysis. Results: There was a significant difference betweenthe four groups (P