Sample records for bond cleavage reaction

  1. Rhodium-catalyzed C-C Bond Cleavage Reactions - An Update

    Czech Academy of Sciences Publication Activity Database

    Korotvička, A.; Nečas, D.; Kotora, Martin


    Roč. 16, č. 10 (2012), s. 1170-1214 ISSN 1385-2728 Grant - others:GA MŠk(CZ) LC06070 Program:LC Institutional research plan: CEZ:AV0Z40550506 Keywords : rhodium * C-C bond cleavage * catalysis * synthesis Subject RIV: CC - Organic Chemistry Impact factor: 3.039, year: 2012

  2. Investigations on organolead compounds V. Lead---lead bond cleavage reactions of hexaphenyldilead

    NARCIS (Netherlands)

    Willemsens, L.C.; Kerk, G.J.M. van der


    It has been shown that a number of nucleophilic and weakly electrophilic reagents (organolithium and organomagnesium compounds, metallic lithium, potassium permanganate, sodium ethoxide, diaryl disulphides, sulphur, ozone, hypochlorous acid and iodine/iodide) selectively cleave the lead---lead bond

  3. Can laccases catalyze bond cleavage in lignin?

    DEFF Research Database (Denmark)

    Munk, Line; Sitarz, Anna Katarzyna; Kalyani, Dayanand


    Modification of lignin is recognized as an important aspect of the successful refining of lignocellulosic biomass, and enzyme-assisted processing and upcycling of lignin is receiving significant attention in the literature. Laccases (EC 1.103.2) are taking the centerstage of this attention, since...... these enzymes may help degrading lignin, using oxygen as the oxidant. Laccases can catalyze polymerization of lignin, but the question is whether and how laccases can directly catalyze modification of lignin via catalytic bond cleavage. Via a thorough review of the available literature and detailed...... illustrations of the putative laccase catalyzed reactions, including the possible reactions of the reactive radical intermediates taking place after the initial oxidation of the phenol-hydroxyl groups, we show that i) Laccase activity is able to catalyze bond cleavage in low molecular weight phenolic lignin...

  4. Bond cleavage reactions of the bridge structure in coal in the presence of hydrogen donating compounds; Suiso kyoyosei kagobutsu sonzaika deno sekitanchu no kakyo kozo no kairetsu hanno

    Energy Technology Data Exchange (ETDEWEB)

    Bando, N.; Kidena, K.; Murata, S.; Nomura, M. [Osaka University, Osaka (Japan). Faculty of Engineering


    In this paper, bond cleavage reactions are discussed in relation to the softening and solubilization of coal. Were used 9,10-dihydroanthracene (DHA) and 9,10-dihydrophenanthrene (DHP) as models of hydrogen donating compounds in coal, and bibenzyl, 1,2-diethane, benzylphenylether, and 1,5-dibenzylnaphthalene were used as models of bridge structure compounds. They were compared mutually, as to reactivity of coal against DHA and DHP. For the homolytic cleavage of bridges, DHA with excellent radical supplement performance provided excellent hydrogen donating performance. While, for the ipso-position cleavage of bridges, it was found that DHP can act as an effective hydrogen donor. For the reaction between coal and hydrogenated aromatic compounds, cleavage of relatively weak bonds, such as ether linkage and dimethylene linkage, occurred at about 380{degree}C, and hydrogen from DHA or DHP was consumed. On the other hand, the results suggested that the cleavage reaction at ipso-position affected by hydrogen donating solvent is also important at temperature range around 420{degree}C. 2 refs., 3 figs., 1 tab.

  5. C(10)-C(19) bond cleavage reaction of 19-oxygenated androst-4-ene-3,6-dione steroids under various conditions. (United States)

    Nagaoka, Masao; Numazawa, Mitsuteru


    C(10)-C(19) bond cleavage reaction of 19-hydroxy- and 19-oxoandrost-4-ene-3,6,17-triones (5, 6) was explored under various conditions. Treatment of steroids 5 and 6 with KOH in MeOH gave the A-ring aromatized product 6-oxoestrone (11) in a fair yield, respectively, in contrast, the treatment with a weak base yielded 4-methyl steroid 17 (20%) in the case of 19-alcohol 5 or 19-nor-Delta(5(10))-steroid 9 (12-67%) along with compound 11 (6-27%) in the case of 19-aldehyde 6. Reaction of compound 6 with HCl in MeOH produced 3-methyl ethers of 6-oxoestrone and Delta(6)-estrone, compounds 12 and 14 (ca. 20% each). Thus, 6-oxosteroids 5 and 6 showed unique C(10)-C(19) bond cleavage reactions with a base or acid.

  6. Can laccases catalyze bond cleavage in lignin? (United States)

    Munk, Line; Sitarz, Anna K; Kalyani, Dayanand C; Mikkelsen, J Dalgaard; Meyer, Anne S


    Modification of lignin is recognized as an important aspect of the successful refining of lignocellulosic biomass, and enzyme-assisted processing and upcycling of lignin is receiving significant attention in the literature. Laccases (EC are taking the centerstage of this attention, since these enzymes may help degrading lignin, using oxygen as the oxidant. Laccases can catalyze polymerization of lignin, but the question is whether and how laccases can directly catalyze modification of lignin via catalytic bond cleavage. Via a thorough review of the available literature and detailed illustrations of the putative laccase catalyzed reactions, including the possible reactions of the reactive radical intermediates taking place after the initial oxidation of the phenol-hydroxyl groups, we show that i) Laccase activity is able to catalyze bond cleavage in low molecular weight phenolic lignin model compounds; ii) For laccases to catalyze inter-unit bond cleavage in lignin substrates, the presence of a mediator system is required. Clearly, the higher the redox potential of the laccase enzyme, the broader the range of substrates, including o- and p-diphenols, aminophenols, methoxy-substituted phenols, benzenethiols, polyphenols, and polyamines, which may be oxidized. In addition, the currently available analytical methods that can be used to detect enzyme catalyzed changes in lignin are summarized, and an improved nomenclature for unequivocal interpretation of the action of laccases on lignin is proposed. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Catalytic diastereoselective tandem conjugate addition-elimination reaction of Morita-Baylis-Hillman C adducts by C-C bond cleavage

    KAUST Repository

    Yang, Wenguo


    Through the cleavage of the C-C bond, the first catalytic tandem conjugate addition-elimination reaction of Morita-Baylis-Hillman C adducts has been presented. Various S N2′-like C-, S-, and P-allylic compounds could be obtained with exclusive E configuration in good to excellent yields. The Michael product could also be easily prepared by tuning the β-C-substituent group of the α-methylene ester under the same reaction conditions. Calculated relative energies of various transition states by DFT methods strongly support the observed chemoselectivity and diastereoselectivity. © 2012 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim.

  8. Kinetics of the competitive reactions of isomerization and peptide bond cleavage at l-α- and d-β-aspartyl residues in an αA-crystallin fragment. (United States)

    Aki, Kenzo; Okamura, Emiko


    d-β-aspartyl (Asp) residue has been found in a living body such as aged lens crystallin, although l-α-amino acids are constituents in natural proteins. Isomerization from l-α- to d-β-Asp probably modulates structures to affect biochemical reactions. At Asp residue, isomerization and peptide bond cleavage compete with each other. To gain insight into how fast each reaction proceeds, the analysis requires the consideration of both pathways simultaneously and independently. No information has been provided, however, about these competitive processes because each reaction has been studied separately. The contribution of Asp isomers to the respective pathways has still been veiled. In this work, the two competitive reactions, isomerization and spontaneous peptide bond cleavage at Asp residue, were simultaneously observed and compared in an αA-crystallin fragment, S 51 LFRTVLD 58 SG 60 containing l-α- and d-β-Asp58 isomers. The kinetics showed that the formation of l- and d-succinimide (Suc) intermediate, as a first step of isomerization, was comparable at l-α- and d-β-Asp. Although l-Suc was converted to l-β-Asp, d-Suc was liable to return to the original d-β-Asp, the reverse reaction marked enough to consider d-β-Asp as apparently stable. d-β-Asp was also resistant to the peptide bond cleavage. Such apparent less reactivity is probably the reason for gradual and abnormal accumulation of d-β-Asp in a living body under physiological conditions. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  9. Cleavage reactions of the lead-carbon bond II. The reaction of tetraorganolead compounds with 1-chloro-1,2,3-benzotriazole

    NARCIS (Netherlands)

    Pant, Bhuvan C.; Noltes, J.G.


    1-(Triorganoplumbyl)-1,2,3-benzotriazoles were synthesized in excellent yields by the cleavage of an organic group from tetraorganolead derivatives with 1-chloro-1,2,3-benzotriazole in benzene at 50–60°. The order of ease of cleavage of organic groups by 1-chloro-l,2,3-benzotriazole in the case of

  10. Regioselectivity in the Reductive Bond Cleavage of Diarylalkylsulfonium Salts

    DEFF Research Database (Denmark)

    Kampmeier, Jack; Mansurul Hoque, AKM; D. Saeva, Franklin


    products vary from regiospecific alkyl cleavage to predominant aryl cleavage as a function of the potential of the reducing agent. We conclude that differences between the reductive cleavages of mono- and diarylsulfonium salts are direct consequences of the structures of the sulfuranyl radical......- tolylethylsulfonium and di-4-tolyl-2-phenylethylsulfonium salts by a variety of one-electron reducing agents ranging in potential from -0.77 to +2.5 eV (vs SCE) and including thermal reductants, indirect electrolyses mediated by a series of cyanoaromatics, and excited singlet states. We report that the cleavage...... intermediates and the bond dissociation energies of the alkyl and aryl bonds. Competitions between the rates of cleavage and oxidation of the intermediate sulfuranyl radicals and between concerted and stepwise mechanisms are discussed to explain the variations in bond cleavage products as a function...

  11. Catalytic constructive deoxygenation of lignin-derived phenols: new C-C bond formation processes from imidazole-sulfonates and ether cleavage reactions. (United States)

    Leckie, Stuart M; Harkness, Gavin J; Clarke, Matthew L


    As part of a programme aimed at exploiting lignin as a chemical feedstock for less oxygenated fine chemicals, several catalytic C-C bond forming reactions utilising guaiacol imidazole sulfonate are demonstrated. These include the cross-coupling of a Grignard, a non-toxic cyanide source, a benzoxazole, and nitromethane. A modified Meyers reaction is used to accomplish a second constructive deoxygenation on a benzoxazole functionalised anisole.

  12. An easy access to α-aryl substituted γ-ketophosphonates: Lewis acid mediated reactions of 1,3-diketones with α-hydroxyphosphonates and tandem regioselective C-C bond cleavage. (United States)

    Pallikonda, Gangaram; Chakravarty, Manab; Sahoo, Manoj K


    A range of α-aryl substituted γ-ketophosphonates is synthesised by Lewis acid mediated reactions of 1,3-diketones and easily accessible, inexpensive benzylic α-hydroxyphosphonates in an operationally simple method under solvent-free conditions without exclusion of air/moisture. A regioselective C-C bond cleavage for 1,3-diketones in a tandem fashion has also been demonstrated. Synthesis of a γ-ketophosphonate with phenol functionality at the α-position (structural analogue of raspberry ketone, a natural product) has also been presented.

  13. Carbon-Oxygen Bond Cleavage by Bis(imino)pyridine Iron Compounds : Catalyst Deactivation Pathways and Observation of Acyl C-O Bond Cleavage in Esters

    NARCIS (Netherlands)

    Trovitch, Ryan J.; Lobkovsky, Emil; Bouwkamp, Marco W.; Chirik, Paul J.


    Investigations into the substrate scope of bis(imino)pyridine iron-catalyzed hydrogenation and [2 pi + 2 pi]. diene cyclization reactions identified C-O bond cleavage as a principal deactivation pathway. Addition of diallyl or allyl ethyl ether to the bis(imino)pyridine iron dinitrogen complex,

  14. Gas-Phase Intercluster Thiyl-Radical Induced C-H Bond Homolysis Selectively Forms Sugar C2-Radical Cations of Methyl D-Glucopyranoside: Isotopic Labeling Studies and Cleavage Reactions (United States)

    Osburn, Sandra; Speciale, Gaetano; Williams, Spencer J.; O'Hair, Richard A. J.


    A suite of isotopologues of methyl D-glucopyranosides is used in conjunction with multistage mass spectrometry experiments to determine the radical site and cleavage reactions of sugar radical cations formed via a recently developed `bio-inspired' method. In the first stage of CID (MS2), collision-induced dissociation (CID) of a protonated noncovalent complex between the sugar and S-nitrosocysteamine, [H3NCH2CH2SNO + M]+, unleashes a thiyl radical via bond homolysis to give the noncovalent radical cation, [H3NCH2CH2S• + M]+. CID (MS3) of this radical cation complex results in dissociation of the noncovalent complex to generate the sugar radical cation. Replacement of all exchangeable OH and NH protons with deuterons reveals that the sugar radical cation is formed in a process involving abstraction of a hydrogen atom from a C-H bond of the sugar coupled with proton transfer to the sugar, to form [M - H• + D+]. Investigation of this process using individual C-D labeled sugars reveals that the main site of H/D abstraction is the C2 position, since only the C2-deuterium labeled sugar yields a dominant [M - D• + H+] product ion. The fragmentation reactions of the distonic sugar radical cation, [M - H•+ H+], were studied by another stage of CID (MS4). 13C-labeling studies revealed that a series of three related fragment ions each contain the C1-C3 atoms; these arise from cross-ring cleavage reactions of the sugar.

  15. Theoretical study on isomerization and peptide bond cleavage at aspartic residue. (United States)

    Sang-aroon, Wichien; Ruangpornvisuti, Vithaya


    Isomerization and peptide bond cleavage at aspartic residue (Asp) in peptide models have been reported. In this study, the mechanisms and energies concerning the isomerization and peptide bond cleavage at Asp residue were investigated by the density functional theory (DFT) at B3LYP/6-311++G(d,p). The integral equation formalism-polarizable continuum model (IEF-PCM) was utilized to calculate solvation effect by single-point calculation of the gas-phase B3LYP/6-311++G(d,p)-optimized structure. Mechanisms and energies of the dehydration in isomerization reaction of Asp residue were comparatively analyzed with the deamidation reaction of Asn residue. The results show that the succinimide intermediate was formed preferentially through the step-wise reaction via the tetrahedral intermediate. The cleavage at C-terminus is more preferential than those at N-terminus. In comparison to isomerization, peptide bond cleavage is ≈ 20 kcal mol(-1) and lower in activation barrier than the isomerization. So, in this case, the isomerization of Asp is inhibited by the peptide bond cleavage.

  16. Aromatase reaction of 3-deoxyandrogens: steric mode of the C-19 oxygenation and cleavage of the C10-C19 bond by human placental aromatase. (United States)

    Numazawa, Mitsuteru; Nagaoka, Masao; Sohtome, Norishige


    Aromatase is a cytochrome P-450 enzyme complex that catalyzes the conversion of androst-4-ene-3,17-dione (AD) to estrone and formic acid through three sequential oxygenations of the 19-methyl group. To gain insight into the catalytic function of aromatase as well as the mechanism of the hitherto uncertain third oxygenation step, we focused on the aromatase-catalyzed 19-oxygenation of 3-deoxyandrogens: 3-deoxy-AD (1), which is a very powerful competitive inhibitor but poor substrate of aromatase, and its 5-ene isomer 4, which is a good competitive inhibitor and effective substrate of the enzyme. In incubations of their 19S-(3)H-labeled 19-hydroxy derivatives 2 and 5 and the corresponding 19R-(3)H isomers with human placental microsomes in the presence of NADPH under air, the radioactivity was liberated in both water and formic acid. The productions of (3)H(2)O and (3)HCOOH were blocked by the substrate AD or the inhibitor 4-hydroxy-AD, indicating that these productions are due to a catalytic function of aromatase. A comparison of the (3)H(2)O production from S-(3)H substrates 2 and 5 with that from the corresponding R-(3)H isomers revealed that the 19-pro-R hydrogen atom was stereospecifically (pro-R:pro-S = 100:0) removed in the conversion of 5-ene substrate 5 into the 19-oxo product 6, whereas 75:25 stereoselectivity for the loss of the pro-R and pro-S hydrogen atoms was observed in the oxygenation of the other substrate, 2. The present results reveal that human placental aromatase catalyzes three sequential oxygenations at C-19 of 3-deoxyandrogens 1 and 4 to cause the cleavage of the C(10)-C(19) bond through their 19-hydroxy (2 and 5) and 19-oxo (3 and 6) intermediates, respectively, where there is a difference in the stereochemistry between the two androgens in the second 19-hydroxylation. It is implied that the aromatase-catalyzed 19-oxygenation of 5-ene steroid 4 but not the 4-ene isomer 1 would proceed in the same steric mechanism as that involved in the AD

  17. Glutamic Acid Selective Chemical Cleavage of Peptide Bonds. (United States)

    Nalbone, Joseph M; Lahankar, Neelam; Buissereth, Lyssa; Raj, Monika


    Site-specific hydrolysis of peptide bonds at glutamic acid under neutral aqueous conditions is reported. The method relies on the activation of the backbone amide chain at glutamic acid by the formation of a pyroglutamyl (pGlu) imide moiety. This activation increases the susceptibility of a peptide bond toward hydrolysis. The method is highly specific and demonstrates broad substrate scope including cleavage of various bioactive peptides with unnatural amino acid residues, which are unsuitable substrates for enzymatic hydrolysis.

  18. Entropic origin of cobalt-carbon bond cleavage catalysis in adenosylcobalamin-dependent ethanolamine ammonia-lyase. (United States)

    Wang, Miao; Warncke, Kurt


    Adenosylcobalamin-dependent enzymes accelerate the cleavage of the cobalt-carbon (Co-C) bond of the bound coenzyme by >10(10)-fold. The cleavage-generated 5'-deoxyadenosyl radical initiates the catalytic cycle by abstracting a hydrogen atom from substrate. Kinetic coupling of the Co-C bond cleavage and hydrogen-atom-transfer steps at ambient temperatures has interfered with past experimental attempts to directly address the factors that govern Co-C bond cleavage catalysis. Here, we use time-resolved, full-spectrum electron paramagnetic resonance spectroscopy, with temperature-step reaction initiation, starting from the enzyme-coenzyme-substrate ternary complex and (2)H-labeled substrate, to study radical pair generation in ethanolamine ammonia-lyase from Salmonella typhimurium at 234-248 K in a dimethylsulfoxide/water cryosolvent system. The monoexponential kinetics of formation of the (2)H- and (1)H-substituted substrate radicals are the same, indicating that Co-C bond cleavage rate-limits radical pair formation. Analysis of the kinetics by using a linear, three-state model allows extraction of the microscopic rate constant for Co-C bond cleavage. Eyring analysis reveals that the activation enthalpy for Co-C bond cleavage is 32 ± 1 kcal/mol, which is the same as for the cleavage reaction in solution. The origin of Co-C bond cleavage catalysis in the enzyme is, therefore, the large, favorable activation entropy of 61 ± 6 cal/(mol·K) (relative to 7 ± 1 cal/(mol·K) in solution). This represents a paradigm shift from traditional, enthalpy-based mechanisms that have been proposed for Co-C bond-breaking in B12 enzymes. The catalysis is proposed to arise from an increase in protein configurational entropy along the reaction coordinate.

  19. C(sp3)-H Bond Functionalization of Benzo[c]oxepines via C-O bond Cleavage: Formal [3+3] Synthesis of Multisubstituted Chromans. (United States)

    Wang, Miao; Tang, Bo-Cheng; Xiang, Jia-Chen; Cheng, Yan; Wang, Zi-Xuan; Ma, Jin-Tian; Wu, Yan-Dong; Wu, An-Xin


    An efficient base-promoted C(sp 3 )-H bond functionalization strategy for the synthesis of multisubstituted chromans from the formal [3+3] cycloaddition of benzo[c]oxepines and electron-rich phenols has been developed. The corresponding 4H-chromenes can be easily obtained in excellent yields by simple filtration from chromans. Preliminary mechanistic studies indicate that the C-O bond cleavage is the key step for the C(sp 3 )-H bond functionalization and that this reaction could have occurred through tandem C-O bond cleavage/Michael addition/annulation reactions.

  20. Cleavage of C-O bonds in lignin model compounds catalyzed by methyldioxorhenium in homogeneous phase. (United States)

    Harms, Reentje G; Markovits, Iulius I E; Drees, Markus; Herrmann, H C Mult Wolfgang A; Cokoja, Mirza; Kühn, Fritz E


    Methyldioxorhenium (MDO)-catalyzed C-O bond cleavage of a variety of lignin β-O-4-model compounds yields phenolic and aldehydic compounds in homogeneous phase under mild reaction conditions. MDO is in situ generated by reduction of methyltrioxorhenium (MTO) and is remarkably stable under the applied reaction conditions allowing its reuse for least five times without significant activity loss. Based on the observed and isolated intermediates, 17 O- and 2 H-isotope labeling experiments, DFT calculations, and several spectroscopic studies, a reaction mechanism is proposed. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. New Insight into the Cleavage Reaction of Nostoc sp. Strain PCC 7120 Carotenoid Cleavage Dioxygenase in Natural and Nonnatural Carotenoids (United States)

    Heo, Jinsol; Kim, Se Hyeuk


    Carotenoid cleavage dioxygenases (CCDs) are enzymes that catalyze the oxidative cleavage of carotenoids at a specific double bond to generate apocarotenoids. In this study, we investigated the activity and substrate preferences of NSC3, a CCD of Nostoc sp. strain PCC 7120, in vivo and in vitro using natural and nonnatural carotenoid structures. NSC3 cleaved β-apo-8′-carotenal at 3 positions, C-13C-14, C-15C-15′, and C-13′C-14′, revealing a unique cleavage pattern. NSC3 cleaves the natural structure of carotenoids 4,4′-diaponeurosporene, 4,4′-diaponeurosporen-4′-al, 4,4′-diaponeurosporen-4′-oic acid, 4,4′-diapotorulene, and 4,4′-diapotorulen-4′-al to generate novel cleavage products (apo-14′-diaponeurosporenal, apo-13′-diaponeurosporenal, apo-10′-diaponeurosporenal, apo-14′-diapotorulenal, and apo-10′-diapotorulenal, respectively). The study of carotenoids with natural or nonnatural structures produced by using synthetic modules could provide information valuable for understanding the cleavage reactions or substrate preferences of other CCDs in vivo and in vitro. PMID:23524669

  2. D-β-aspartyl residue exhibiting uncommon high resistance to spontaneous peptide bond cleavage. (United States)

    Aki, Kenzo; Okamura, Emiko


    Although L-amino acids were selected as main constituents of peptides and proteins during chemical evolution, D-aspartyl (Asp) residue is found in a variety of living tissues. In particular, D-β-Asp is thought to be stable than any other Asp isomers, and this could be a reason for gradual accumulation in abnormal proteins and peptides to modify their structures and functions. It is predicted that D-β-Asp shows high resistance to biomolecular reactions. For instance, less reactivity of D-β-Asp is expected to bond cleavage, although such information has not been provided yet. In this work, the spontaneous peptide bond cleavage was compared between Asp isomers, by applying real-time solution-state NMR to eye lens αΑ-crystallin 51-60 fragment, S(51)LFRTVLD(58)SG(60) and αΒ-crystallin 61-67 analog, F(61)D(62)TGLSG(67) consisting of L-α- and D-β-Asp 58 and 62, respectively. Kinetic analysis showed how tough the uncommon D-β-Asp residue was against the peptide bond cleavage as compared to natural L-α-Asp. Differences in pKa and conformation between L-α- and D-β-Asp side chains were plausible factors to determine reactivity of Asp isomers. The present study, for the first time, provides a rationale to explain less reactivity of D-β-Asp to allow abnormal accumulation.

  3. Catalysis and co-catalysis of bond cleavages in coal and coal analogs

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.


    Progress is reported on the cleavage of bonds in coal and coal analogs. This quarter, 9-Phenylthioanthracene (9-PTA) was chosen as an appropriate substrate to test the hypothesis that reductive cleavage of bonds to aromatic rings caused by heating in hydrogen donor solvents, such as tetralin, may be catalyzed by electron donating agents in the absence of hydrogen bonding or acidic reagents. Ca. 0.02 M solutions of 9-PTA in tetralin (purified by chromatography on neutral alumina) were heated in glass ampoules. It was observed that decomposition of 9-PTA occurs on heating at temperatures as low as 250{degree}C, even in the absence of additives or catalysts. Reductive cleavage (measured by yields of anthracene), however, was invariably a minor process. Two major products, obtained at retention times of ca. 6.5 and 9.0 min., respectively, were observed in all runs. However, these products were obtained in rather variable yields, with an increase in the yield of one product often being accompanied by a decrease in the yield of the other. The nature of the products is unknown. GC-MS analysis is awaited. Addition of 2,6-xylenol, 1,3,5-trimethoxybenzene, or 1,4-dimethoxynaphthalene to the thermolysis mixtures appeared to offer, at best, only slight increases in reaction rates, and little change in product compositions.

  4. Collision Induced Dissociation Products of Disulfide-Bonded Peptides: Ions Result from the Cleavage of More Than One Bond (United States)

    Clark, Daniel F.; Go, Eden P.; Toumi, Melinda L.; Desaire, Heather


    Disulfide bonds are a post-translational modification (PTM) that can be scrambled or shuffled to non-native bonds during recombinant expression, sample handling, or sample purification. Currently, mapping of disulfide bonds is not easy because of various sample requirements and data analysis difficulties. One step towards facilitating this difficult work is developing a better understanding of how disulfide-bonded peptides fragment during collision induced dissociation (CID). Most automated analysis algorithms function based on the assumption that the preponderance of product ions observed during the dissociation of disulfide-bonded peptides result from the cleavage of just one peptide bond, and in this report we tested that assumption by extensively analyzing the product ions generated when several disulfide-bonded peptides are subjected to CID on a quadrupole time of flight (QTOF) instrument. We found that one of the most common types of product ions generated resulted from two peptide bond cleavages, or a double cleavage. We found that for several of the disulfide-bonded peptides analyzed, the number of double cleavage product ions outnumbered those of single cleavages. The influence of charge state and precursor ion size was investigated, to determine if those parameters dictated the amount of double cleavage product ions formed. It was found in this sample set that no strong correlation existed between the charge state or peptide size and the portion of product ions assigned as double cleavages. These data show that these ions could account for many of the product ions detected in CID data of disulfide bonded peptides. We also showed the utility of double cleavage product ions on a peptide with multiple cysteines present. Double cleavage products were able to fully characterize the bonding pattern of each cysteine where typical single b/ y cleavage products could not.

  5. Glycoside bond cleavage in the radiolysis of aqueous solutions of methylglycosides and disaccharides

    International Nuclear Information System (INIS)

    Shadyro, O.I.; Kisel', R.M.


    The kinetics of formation of methylglycoside and disaccharide radiolysis products resulting from the O-glycoside bond cleavage under the action of 137 Cs γ-radiation (0-2.5 kGy radiation doses, 0.28 Gy/s dose rate) was studied, and the yields of these products were determined. It was found that oxygen inhibits these processes. The findings suggest that the fragmentation reaction of C' 2 radicals plays an important role in the formation of carbohydrate degradation products in the radiolysis of aqueous carbohydrate solutions [ru

  6. Supplementary data for the mechanism for cleavage of three typical glucosidic bonds induced by hydroxyl free radical

    Directory of Open Access Journals (Sweden)

    Yujie Dai


    Full Text Available The data presented in this article are related to the research article entitled “The mechanism for cleavage of three typical glucosidic bonds induced by hydroxyl free radical” (Dai et al., 2017 [1]. This article includes the structures of three kinds of disaccharides such as maltose, fructose and cellobiose, the diagrammatic sketch of the hydrogen abstraction reaction of the disaccharides by hydroxyl radical, the structure of the transition states for pyran ring opening of moiety A and cleavage of α(1→2 glycosidic bond starting from the hydrogen abstraction of C6–H in moiety A of sucrose, the transition state structure for cleavage of α(1→2 glycosidic bond starting from the hydrogen abstraction of C1′-H in moiety B of sucrose, the transition state structure, sketch for the reaction process and relative energy change of the reaction pathway for direct cleavage of α(1→4 glycosidic bond starting from hydrogen abstraction of C6′–H of moiety B of maltose.

  7. C-C Double Bond Cleavage of Linear α,β-Unsaturated Ketones

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Sung Gon; Jun, Chul Ho [Yonsei University, Seoul (Korea, Republic of)


    In conclusion, we have demonstrated the C-C double bond cleavage of α,β-unsaturated ketone under a catalytic system consisting of Rh(I) complex, 2-amino-3-picoline, cyclohexylamine, and benzoic acid. This reaction undergoes a retro-Mannich-type fragmentation of α,β-unsaturated ketone through the conjugate addition of cyclohexylamine followed by Rh(I)-catalyzed C-H bond activation. The activation of C-H bonds by transition-metal complexes is one of the most efficient methods to form C-C bonds in organic synthesis. We have successfully developed a Rh(I)-catalyzed C-H bond activation series using 2-amino-pyridine derivatives or benzylamine as a chelation auxiliary to induce cyclometalation. In the course of our studies on chelation-assisted C-H bond activation, we reported a Rh(I)-catalyzed hydroiminoacylation of alkynes with allylamine derivatives or aldehydes, which was further applied to the retro-Mannich-type fragmentation of the resulting α,β-unsaturated ketimine by primary amines. Encouraged by these results, we also developed a Rh(I)-catalyzed C-H bond activation of the ring opening in 2-cycloalkenones and a chelation-assisted β-alkylation of α,β-unsaturated ketone using Rh(I) catalyst and various amines.

  8. C-C Double Bond Cleavage of Linear α,β-Unsaturated Ketones

    International Nuclear Information System (INIS)

    Lim, Sung Gon; Jun, Chul Ho


    In conclusion, we have demonstrated the C-C double bond cleavage of α,β-unsaturated ketone under a catalytic system consisting of Rh(I) complex, 2-amino-3-picoline, cyclohexylamine, and benzoic acid. This reaction undergoes a retro-Mannich-type fragmentation of α,β-unsaturated ketone through the conjugate addition of cyclohexylamine followed by Rh(I)-catalyzed C-H bond activation. The activation of C-H bonds by transition-metal complexes is one of the most efficient methods to form C-C bonds in organic synthesis. We have successfully developed a Rh(I)-catalyzed C-H bond activation series using 2-amino-pyridine derivatives or benzylamine as a chelation auxiliary to induce cyclometalation. In the course of our studies on chelation-assisted C-H bond activation, we reported a Rh(I)-catalyzed hydroiminoacylation of alkynes with allylamine derivatives or aldehydes, which was further applied to the retro-Mannich-type fragmentation of the resulting α,β-unsaturated ketimine by primary amines. Encouraged by these results, we also developed a Rh(I)-catalyzed C-H bond activation of the ring opening in 2-cycloalkenones and a chelation-assisted β-alkylation of α,β-unsaturated ketone using Rh(I) catalyst and various amines

  9. Domainal cleavage as an Anisotropic Reaction-diffusion Process (United States)

    Mulchrone, Kieran; Meere, Patrick


    Domainal cleavage comprises zones dominated by quartz and feldspar (QF-domains) and zones dominated by Mica (M-domains) which form at low metamorphic grades. The protolith is typically fairly homogeneous mudstone, siltstone, sandstone or limestone. Wet diffusion or pressure solution along grain boundaries is a key mechanism in the development of domanial cleavage. However, this does not explain why M-domains become sub-regularly spaced, visually evident in coarser-grained rocks, and take on an anastomising morphology. The ratio of M to QF-domains by volume can range from 1 to 0.1 and lower i.e. in extreme cases M-domains are intermittent but regularly spaced. It is suggested here that an anisotropic reaction-diffusion process model can explain these features. The imposed stress field instantaneously leads to anisotropy of diffusion by narrowing intergranular channels perpendicular to the principal stress. This leads to a preferred diffusion of chemicals parallel to the principal stress direction and lower diffusion rates in the normal direction. Combining this with the chemical reaction of pressure solution produces an anisotropic reaction-diffusion system. Both isotropic and anistropic reaction diffusion systems lead to pattern formation as discovered by Alan Turing on the 1950's as an explanation for patterns found in animal skins such as spots and stripes. Thus domanial cleavage is a striped pattern induced by diffusion anisotropy combined with a chemical reaction. Furthermore, rates of chemical reaction in intergranular fluids is likely to be many orders of magnitude greater that rates of deformation. Therefore we expect domanial cleavage to form relatively rapidly. As deformation progresses the M-domains behave less competently and may be the site of enhanced shearing. An example from Co. Cork, Ireland demonstrates shear folding in low-grade metasedimentary rocks with reverse shear along M-domains at a high angle to the maximum compressive stress.

  10. Tailoring Bond Cleavage in Gas-Phase Biomolecules by Low Energy Electrons (United States)

    Ptasinska, Sylwia


    The high energy quanta of impinging radiation can generate a large number (about 5x104) of secondary electrons per 1 MeV of energy deposited. When ejected in condensed phase water, the kinetic energy distribution of these free or quasi-free electrons is peaked below 10 eV. Low energy electrons also dominate in the secondary emission from biomolecular targets exposed to different energies of primary radiation. Due to the complexity of the radiation-induced processes in the condensed-phase environment, mechanisms of secondary electrons induced damage in biomolecules (BM) still need to be investigated. However, based on results from theory and different experiments accumulated within the last decade, it is now possible to determine the fundamental mechanisms that are involved in many chemical reactions induced in isolated gas-phase biomolecules by low energy electrons. The central finding of earlier research was the discovery of the bond- and site- selectivity in the dissociative electron attachment (DEA) process to biomolecules. It has been demonstrated that by tuning the energy of the incoming electron we can gain control over the location of the bond cleavage. These studies showed the selectivity in single bond cleavage reactions leading to the formation of the dehydrogenated closed shell anion (BM-H)- or the complementary reaction leading to H-. The loss of a hydrogen atom or an anion is fast compared with ring cleavage and the excision of heavier fragments and, hence, this reaction can compete efficiently with autodetachment. Moreover, site selectivity has been also observed in the metastable anion formation via the DEA process. Such delayed fragmentation was studied recently for the dehydrogenated closed-shell anion conversion into NCO- upon DEA proceeded a few μ sec after electron attachment, indicating a rather slow unimolecular decomposition. Interestingly, site selectivity was observed in the prompt as well as the metastable NCO- formation in DEA. The

  11. Use of divalent metal ions in the DNA cleavage reaction of topoisomerase IV (United States)

    Pitts, Steven L.; Liou, Grace F.; Mitchenall, Lesley A.; Burgin, Alex B.; Maxwell, Anthony; Neuman, Keir C.; Osheroff, Neil


    It has long been known that type II topoisomerases require divalent metal ions in order to cleave DNA. Kinetic, mutagenesis and structural studies indicate that the eukaryotic enzymes utilize a novel variant of the canonical two-metal-ion mechanism to promote DNA scission. However, the role of metal ions in the cleavage reaction mediated by bacterial type II enzymes has been controversial. Therefore, to resolve this critical issue, this study characterized the DNA cleavage reaction of Escherichia coli topoisomerase IV. We utilized a series of divalent metal ions with varying thiophilicities in conjunction with oligonucleotides that replaced bridging and non-bridging oxygen atoms at (and near) the scissile bond with sulfur atoms. DNA scission was enhanced when thiophilic metal ions were used with substrates that contained bridging sulfur atoms. In addition, the metal-ion dependence of DNA cleavage was sigmoidal in nature, and rates and levels of DNA cleavage increased when metal ion mixtures were used in reactions. Based on these findings, we propose that topoisomerase IV cleaves DNA using a two-metal-ion mechanism in which one of the metal ions makes a critical interaction with the 3′-bridging atom of the scissile phosphate and facilitates DNA scission by the bacterial type II enzyme. PMID:21300644

  12. Controllable synthesis of silver and silver sulfide nanocrystals via selective cleavage of chemical bonds

    International Nuclear Information System (INIS)

    Tang Aiwei; Wang Yu; Ye Haihang; Zhou Chao; Yang Chunhe; Li Xu; Peng Hongshang; Zhang Fujun; Hou Yanbing; Teng Feng


    A one-step colloidal process has been adopted to prepare silver (Ag) and silver sulfide (Ag 2 S) nanocrystals, thus avoiding presynthesis of an organometallic precursor and the injection of a toxic phosphine agent. During the reaction, a layered intermediate compound is first formed, which then acts as a precursor, decomposing into the nanocrystals. The composition of the as-obtained products can be controlled by selective cleavage of S–C bonds or Ag–S bonds. Pure Ag 2 S nanocrystals can be obtained by directly heating silver acetate (Ag(OAc)) and n-dodecanethiol (DDT) at 200 ° C without any surfactant, and pure Ag nanocrystals can be synthesized successfully if the reaction temperature is reduced to 190 ° C and the amount of DDT is decreased to 1 ml in the presence of a non-coordinating organic solvent (1-octadecene, ODE). Otherwise, the mixture of Ag and Ag 2 S is obtained by directly heating Ag(OAc) in DDT by increasing the reaction temperature or in a mixture of DDT and ODE at 200 ° C. The formation mechanism has been discussed in detail in terms of selective S–C and Ag–S bond dissociation due to the nucleophilic attack of DDT and the lower bonding energy of Ag–S. Interestingly, some products can easily self-assemble into two- or three-dimensional (2D or 3D) highly ordered superlattice structures on a copper grid without any additional steps. The excess DDT plays a key role in the superlattice structure due to the bundling and interdigitation of the thiolate molecules adsorbed on the as-obtained nanocrystals. (paper)

  13. Metal-organic framework catalysts for selective cleavage of aryl-ether bonds (United States)

    Allendorf, Mark D.; Stavila, Vitalie


    The present invention relates to methods of employing a metal-organic framework (MOF) as a catalyst for cleaving chemical bonds. In particular instances, the MOF results in selective bond cleavage that results in hydrogenolyzis. Furthermore, the MOF catalyst can be reused in multiple cycles. Such MOF-based catalysts can be useful, e.g., to convert biomass components.

  14. Thermodynamic and kinetic study of cleavage of the N-O bond of N-oxides by a vanadium(III) complex: enhanced oxygen atom transfer reaction rates for adducts of nitrous oxide and mesityl nitrile oxide. (United States)

    Palluccio, Taryn D; Rybak-Akimova, Elena V; Majumdar, Subhojit; Cai, Xiaochen; Chui, Megan; Temprado, Manuel; Silvia, Jared S; Cozzolino, Anthony F; Tofan, Daniel; Velian, Alexandra; Cummins, Christopher C; Captain, Burjor; Hoff, Carl D


    Thermodynamic, kinetic, and computational studies are reported for oxygen atom transfer (OAT) to the complex V(N[t-Bu]Ar)3 (Ar = 3,5-C6H3Me2, 1) from compounds containing N-O bonds with a range of BDEs spanning nearly 100 kcal mol(-1): PhNO (108) > SIPr/MesCNO (75) > PyO (63) > IPr/N2O (62) > MesCNO (53) > N2O (40) > dbabhNO (10) (Mes = mesityl; SIPr = 1,3-bis(diisopropyl)phenylimidazolin-2-ylidene; Py = pyridine; IPr = 1,3-bis(diisopropyl)phenylimidazol-2-ylidene; dbabh = 2,3:5,6-dibenzo-7-azabicyclo[2.2.1]hepta-2,5-diene). Stopped flow kinetic studies of the OAT reactions show a range of kinetic behavior influenced by both the mode and strength of coordination of the O donor and its ease of atom transfer. Four categories of kinetic behavior are observed depending upon the magnitudes of the rate constants involved: (I) dinuclear OAT following an overall third order rate law (N2O); (II) formation of stable oxidant-bound complexes followed by OAT in a separate step (PyO and PhNO); (III) transient formation and decay of metastable oxidant-bound intermediates on the same time scale as OAT (SIPr/MesCNO and IPr/N2O); (IV) steady-state kinetics in which no detectable intermediates are observed (dbabhNO and MesCNO). Thermochemical studies of OAT to 1 show that the V-O bond in O≡V(N[t-Bu]Ar)3 is strong (BDE = 154 ± 3 kcal mol(-1)) compared with all the N-O bonds cleaved. In contrast, measurement of the N-O bond in dbabhNO show it to be especially weak (BDE = 10 ± 3 kcal mol(-1)) and that dissociation of dbabhNO to anthracene, N2, and a (3)O atom is thermodynamically favorable at room temperature. Comparison of the OAT of adducts of N2O and MesCNO to the bulky complex 1 show a faster rate than in the case of free N2O or MesCNO despite increased steric hindrance of the adducts.

  15. Aliphatic C-C Bond Cleavage in α-Hydroxy Ketones by a Dioxygen-Derived Nucleophilic Iron-Oxygen Oxidant. (United States)

    Bhattacharya, Shrabanti; Rahaman, Rubina; Chatterjee, Sayanti; Paine, Tapan K


    A nucleophilic iron-oxygen oxidant, formed in situ in the reaction between an iron(II)-benzilate complex and O 2 , oxidatively cleaves the aliphatic C-C bonds of α-hydroxy ketones. In the cleavage reaction, α-hydroxy ketones without any α-C-H bond afford a 1:1 mixture of carboxylic acid and ketone. Isotope labeling studies established that one of the oxygen atoms from dioxygen is incorporated into the carboxylic acid product. Furthermore, the iron(II) complex cleaves an aliphatic C-C bond of 17-α-hydroxyprogesterone affording androstenedione and acetic acid. The O 2 -dependent aliphatic C-C bond cleavage of α-hydroxy ketones containing no α-C-H bond bears similarity to the lyase activity of the heme enzyme, cytochrome P450 17A1 (CYP17A1). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Proton-driven amide bond-cleavage pathways of gas-phase peptide ions lacking mobile protons. (United States)

    Bythell, Benjamin J; Suhai, Sándor; Somogyi, Arpád; Paizs, Béla


    The mobile proton model (Dongre, A. R., Jones, J. L., Somogyi, A. and Wysocki, V. H. J. Am. Chem. Soc. 1996, 118 , 8365-8374) of peptide fragmentation states that the ionizing protons play a critical role in the gas-phase fragmentation of protonated peptides upon collision-induced dissociation (CID). The model distinguishes two classes of peptide ions, those with or without easily mobilizable protons. For the former class mild excitation leads to proton transfer reactions which populate amide nitrogen protonation sites. This enables facile amide bond cleavage and thus the formation of b and y sequence ions. In contrast, the latter class of peptide ions contains strongly basic functionalities which sequester the ionizing protons, thereby often hindering formation of sequence ions. Here we describe the proton-driven amide bond cleavages necessary to produce b and y ions from peptide ions lacking easily mobilizable protons. We show that this important class of peptide ions fragments by different means from those with easily mobilizable protons. We present three new amide bond cleavage mechanisms which involve salt-bridge, anhydride, and imine enol intermediates, respectively. All three new mechanisms are less energetically demanding than the classical oxazolone b(n)-y(m) pathway. These mechanisms offer an explanation for the formation of b and y ions from peptide ions with sequestered ionizing protons which are routinely fragmented in large-scale proteomics experiments.

  17. Metabolic Engineering to Develop a Pathway for the Selective Cleavage of Carbon-Nitrogen Bonds

    Energy Technology Data Exchange (ETDEWEB)

    John J. Kilbane II


    The objective of the project is to develop a biochemical pathway for the selective cleavage of C-N bonds in molecules found in petroleum. Specifically a novel biochemical pathway will be developed for the selective cleavage of C-N bonds in carbazole. The cleavage of the first C-N bond in carbazole is accomplished by the enzyme carbazole dioxygenase, that catalyzes the conversion of carbazole to 2-aminobiphenyl-2,3-diol. The genes encoding carbazole dioxygenase were cloned from Sphingomonas sp. GTIN11 and from Pseudomonas resinovorans CA10. The selective cleavage of the second C-N bond has been challenging, and efforts to overcome that challenge have been the focus of recent research in this project. Enrichment culture experiments succeeded in isolating bacterial cultures that can metabolize 2-aminobiphenyl, but no enzyme capable of selectively cleaving the C-N bond in 2-aminobiphenyl has been identified. Aniline is very similar to the structure of 2-aminobiphenyl and aniline dioxygenase catalyzes the conversion of aniline to catechol and ammonia. For the remainder of the project the emphasis of research will be to simultaneously express the genes for carbazole dioxygenase and for aniline dioxygenase in the same bacterial host and then to select for derivative cultures capable of using carbazole as the sole source of nitrogen.

  18. The Generation of Dehydroalanine Residues in Protonated Polypeptides: Ion/Ion Reactions for Introducing Selective Cleavages (United States)

    Peng, Zhou; Bu, Jiexun; McLuckey, Scott A.


    We examine a gas-phase approach for converting a subset of amino acid residues in polypeptide cations to dehydroalanine (Dha). Subsequent activation of the modified polypeptide ions gives rise to specific cleavage N-terminal to the Dha residue. This process allows for the incorporation of selective cleavages in the structural characterization of polypeptide ions. An ion/ion reaction within the mass spectrometer between a multiply protonated polypeptide and the sulfate radical anion introduces a radical site into the multiply protonated polypeptide reactant. Subsequent collisional activation of the polypeptide radical cation gives rise to radical side chain loss from one of several particular amino acid side chains (e.g., leucine, asparagine, lysine, glutamine, and glutamic acid) to yield a Dha residue. The Dha residues facilitate preferential backbone cleavages to produce signature c- and z-ions, demonstrated with cations derived from melittin, mechano growth factor (MGF), and ubiquitin. The efficiencies for radical side chain loss and for subsequent generation of specific c- and z-ions have been examined as functions of precursor ion charge state and activation conditions using cations of ubiquitin as a model for a small protein. It is noted that these efficiencies are not strongly dependent on ion trap collisional activation conditions but are sensitive to precursor ion charge state. Moderate to low charge states show the greatest overall yields for the specific Dha cleavages, whereas small molecule losses (e.g., water/ammonia) dominate at the lowest charge states and proton catalyzed amide bond cleavages that give rise to b- and y-ions tend to dominate at high charge states. [Figure not available: see fulltext.

  19. Nickel-Catalyzed Synthesis of Primary Aryl and Heteroaryl Amines via C–O Bond Cleavage

    KAUST Repository

    Yue, Huifeng


    A nickel-catalyzed protocol for the conversion of aryl and heteroaryl alcohol derivatives to primary and secondary aromatic amines via C(sp2)-O bond cleavage is described. The new amination protocol can be applied to a range of substrates bearing diverse functional groups and uses readily available benzophenone imines as an effective nitrogen source.

  20. Probing Electron-Induced Bond Cleavage at the Single-Molecule Level Using DNA Origami Templates

    DEFF Research Database (Denmark)

    Keller, Adrian Clemens; Bald, Ilko; Rotaru, Alexandru


    specifically designed oligonucleotide targets that are attached to DNA origami templates. In this way, we use a highly selective approach to compare the efficiency of the electron-induced dissociation of a single disulfide bond with the more complex cleavage of the DNA backbone within a TT dinucleotide...

  1. Biotic and abiotic carbon to sulfur bond cleavage. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Frost, J.W.


    The microbial desulfurization of organosulfur compounds occurs by unprecedented and largely unexplored biochemical processes. A study of such biotic desulfurizations can be expected to give rise to new and useful chemistry and enzymology. The potential value of understanding and harnessing these processes is seen in relation to the need for methods for the removal of organically bound sulfur from coal and the degradation of organic sulfur-containing pollutants. This research effort has been directed towards an examination of desulfurization ability in well characterized microorganisms, the isolation of bacteria with desulfurization ability from natural sources, the characterization and mechanistic evaluation of the observed biocatalytic processes, the development of biomimetic synthetic organic chemistry based on biotic desulfurization mechanisms and the design and preparation of improved coal model compounds for use in microbial selection processes. A systematic approach to studying biodesulfurizations was undertaken in which organosulfur compounds have been broken down into classes based on the oxidation state of the sulfur atom and the structure of the rest of the organic material. Microbes have been evaluated in terms of ability to degrade organosulfur compounds with sulfur in its sulfonic acid oxidation state. These compounds are likely intermediates in coal desulfurization and are present in the environment as persistent pollutants in the form of detergents. It is known that oxygen bonded to sulfur lowers the carbon-sulfur bond energy, providing a thermodynamic basis for starting with this class of compounds.

  2. Sodium dichloroiodate promoted C-C bond cleavage: An efficient ...

    Indian Academy of Sciences (India)



    Feb 1, 2018 ... Abstract. An efficient aqueous sodium dichloroiodate (NaICl2) mediated protocol is developed for the synthesis of benzofused azoles by the cyclization of 2-amino anilines/thiophenols/phenols with β- diketone compounds. The reactions gave moderate to good yield of the corresponding 2-substituted.

  3. Efficient Construction of Energetic Materials via Nonmetallic Catalytic Carbon-Carbon Cleavage/Oxime-Release-Coupling Reactions. (United States)

    Zhao, Gang; He, Chunlin; Yin, Ping; Imler, Gregory H; Parrish, Damon A; Shreeve, Jean'ne M


    The exploitation of C-C activation to facilitate chemical reactions is well-known in organic chemistry. Traditional strategies in homogeneous media rely upon catalyst-activated or metal-mediated C-C bonds leading to the design of new processes for applications in organic chemistry. However, activation of a C-C bond, compared with C-H bond activation, is a more challenging process and an underdeveloped area because thermodynamics does not favor insertion into a C-C bond in solution. Carbon-carbon bond cleavage through loss of an oxime moiety has not been reported. In this paper, a new observation of self-coupling via C-C bond cleavage with concomitant loss of oxime in the absence of metals (either metal-complex mediation or catalysis) results in dihydroxylammonium 5,5-bistetrazole-1,10-diolate (TKX-50) as well as N, N'-([3,3'-bi(1,2,4-oxadiazole)]-5,5'-diyl)dinitramine, a potential candidate for a new generation of energetic materials.

  4. Mechanistic insight into conjugated N-N bond cleavage by Rh(III)-catalyzed redox-neutral C-H activation of pyrazolones. (United States)

    Wu, Weirong; Liu, Yuxia; Bi, Siwei


    Density functional theory (DFT) calculations have been performed to investigate the detailed mechanism of Rh(III)-catalyzed redox-neutral C-H activation of pyrazolones with PhC≡CPh. It is found that (1) the methylene C-H activation is prior to the phenyl C-H activation, (2) the N-N bond cleavage is realized via Rh(III) → Rh(I) → Rh(III) rather than via Rh(III) → Rh(V) → Rh(III). The zwitterionic Rh(I) complex is identified to be a key intermediate in promoting the N-N bond cleavage. (3) Different from the Rh(III)-catalyzed hydrazine-directed C-H activation for indole synthesis, the rate-determining step of the reaction studied in this work is the Rh(III) → Rh(I) → Rh(III) process resulting in the N-N bond cleavage rather than the alkyne insertion step. The present theoretical study provides new insight into the mechanism of the conjugated N-N bond cleavage.

  5. Reactivity of hydropersulfides toward the hydroxyl radical unraveled: disulfide bond cleavage, hydrogen atom transfer, and proton-coupled electron transfer. (United States)

    Anglada, Josep M; Crehuet, Ramon; Adhikari, Sarju; Francisco, Joseph S; Xia, Yu


    Hydropersulfides (RSSH) are highly reactive as nucleophiles and hydrogen atom transfer reagents. These chemical properties are believed to be key for them to act as antioxidants in cells. The reaction involving the radical species and the disulfide bond (S-S) in RSSH, a known redox-active group, however, has been scarcely studied, resulting in an incomplete understanding of the chemical nature of RSSH. We have performed a high-level theoretical investigation on the reactions of the hydroxyl radical (˙OH) toward a set of RSSH (R = -H, -CH 3 , -NH 2 , -C(O)OH, -CN, and -NO 2 ). The results show that S-S cleavage and H-atom abstraction are the two competing channels. The electron inductive effect of R induces selective ˙OH substitution at one sulfur atom upon S-S cleavage, forming RSOH and ˙SH for the electron donating groups (EDGs), whereas producing HSOH and ˙SR for the electron withdrawing groups (EWGs). The H-Atom abstraction by ˙OH follows a classical hydrogen atom transfer (hat) mechanism, producing RSS˙ and H 2 O. Surprisingly, a proton-coupled electron transfer (pcet) process also occurs for R being an EDG. Although for RSSH having EWGs hat is the leading channel, S-S cleavage can be competitive or even dominant for the EDGs. The overall reactivity of RSSH toward ˙OH attack is greatly enhanced with the presence of an EDG, with CH 3 SSH being the most reactive species found in this study (overall rate constant: 4.55 × 10 12 M -1 s -1 ). Our results highlight the complexity in RSSH reaction chemistry, the extent of which is closely modulated by the inductive effect of the substituents in the case of the oxidation by hydroxyl radicals.

  6. Assessment of the intermediacy of arylpalladium carboxylate complexes in the direct arylation of benzene: evidence for C-H bond cleavage by "ligandless" species. (United States)

    Tan, Yichen; Hartwig, John F


    Palladium-catalyzed direct arylations of benzene have been proposed to occur by the generation of a phosphine-ligated arylpalladium pivalate complex LPd(Ar)(OPiv) and reaction of this complex with benzene. We have isolated an example of the proposed intermediate and evaluated whether this complex does react with benzene to form the biaryl products of direct arylation. In contrast to the proposed mechanism, no biaryl product was formed from cleavage of the benzene C-H bond by LPd(Ar)(OPiv). However, reactions of LPd(Ar)(OPiv) with benzene and additives that displace or consume the phosphine ligand formed the arylated products in good yield, suggesting that a "ligandless" arylpalladium(II) carboxylate complex undergoes the C-H cleavage step. Consistent with this conclusion, we found that reactions catalyzed by Pd(OAc)(2) without a ligand occur faster than, and with comparable selectivities to, reactions catalyzed by Pd(OAc)(2) and a phosphine ligand.

  7. N-H bond cleavage of ammonia on graphene-like B36 borophene: DFT studies. (United States)

    Rostami, Zahra; Soleymanabadi, Hamed


    Ammonia N-H bond cleavage at metal-free substrates has attracted great attention because of its industrial importance. Here, we investigate the dissociative adsorption of ammonia onto the surface of a B36 borophene sheet by means of density functional theory calculations. We show that the N-H bond may be broken at the edges of B36 even at room temperature, regarding the small energy barrier of 14.1-19.3 kcal mol(-1) at different levels of theory, and more negative Gibbs free energy change. Unlike basis set size, the kind of exchange correlation functional significantly affects the electronic properties of the studied systems. Also, by increasing the percentage of Hartree Fock (HF) exchange of density functionals, the activation and adsorption energies are lowered. A linear relationship between the highest occupied molecular orbital or lowest unoccupied molecular orbital of B36 borophene and the %HF exchange of functionals is predicted. Our work reveals that pure whole boron nanosheets may be promising metal-free materials in N-H bond cleavage, which would raise the potential application of these sheets.


    Energy Technology Data Exchange (ETDEWEB)

    John J. Kilbane II


    The objective of the project is to develop biochemical pathways for the selective cleavage of C-N bonds in molecules found in petroleum. The initial phase of the project was focused on the isolation or development of an enzyme capable of cleaving the C-N bond in aromatic amides, specifically 2-aminobiphenyl. The objective of the second phase of the research will be to construct a biochemical pathway for the selective removal of nitrogen from carbazole by combining the carA genes from Sphingomonas sp. GTIN11 with the gene(s) encoding an appropriate deaminase. The objective of the final phase of the project will be to develop derivative C-N bond cleaving enzymes that have broader substrate ranges and to demonstrate the use of such strains to selectively remove nitrogen from petroleum. During the first year of the project (October, 2002-September, 2003) enrichment culture experiments resulted in the isolation of microbial cultures that utilize aromatic amides as sole nitrogen sources, several amidase genes were cloned and were included in directed evolution experiments to obtain derivatives that can cleave C-N bonds in aromatic amides, and the carA genes from Sphingomonas sp. GTIN11, and Pseudomonas resinovorans CA10 were cloned in vectors capable of replicating in Escherichia coli. During the second year of the project (October, 2003-September, 2004) enrichment culture experiments succeeded in isolating a mixed bacterial culture that can utilize 2-aminobiphenyl as a sole nitrogen source, directed evolution experiments were focused on the aniline dioxygenase enzyme that is capable of deaminating aniline, and expression vectors were constructed to enable the expression of genes encoding C-N bond cleaving enzymes in Rhodococcus hosts. The construction of a new metabolic pathway to selectively remove nitrogen from carbazole and other molecules typically found in petroleum should lead to the development of a process to improve oil refinery efficiency by reducing the

  9. Au@Pd Bimetallic Nanocatalyst for Carbon-Halogen Bond Cleavage: An Old Story with New Insight into How the Activity of Pd is Influenced by Au. (United States)

    Liu, Rui; Chen, Hui-Min; Fang, Li-Ping; Xu, Cuihong; He, Zuoliang; Lai, Yujian; Zhao, Huachao; Bekana, Deribachew; Liu, Jing-Fu


    AuPd bimetallic nanocatalysts exhibit superior catalytic performance in the cleavage of carbon-halogen bonds (C-X) in the hazardous halogenated pollutants. A better understanding of how Au atoms promote the reactivity of Pd sites rather than vaguely interpreting as bimetallic effect and determining which type of Pd sites are necessary for these reactions are crucial factors for the design of atomically precise nanocatalysts that make full use of both the Pd and Au atoms. Herein, we systematically manipulated the coordination number of Pd-Pd, d-orbital occupation state, and the Au-Pd interface of the Pd reactive centers and studied the structure-activity relationship of Au-Pd in the catalyzed cleavage of C-X bonds. It is revealed that Au enhanced the activity of Pd atoms primarily by increasing the occupation state of Pd d-orbitals. Meanwhile, among the Pd sites formed on the Au surface, five to seven contiguous Pd atoms, three or four adjacent Pd atoms, and isolated Pd atoms were found to be the most active in the cleavage of C-Cl, C-Br, and C-I bonds, respectively. Besides, neighboring Au atoms directly contribute to the weakening of the C-Br/C-I bond. This work provides new insight into the rational design of bimetallic metal catalysts with specific catalytic properties.


    Energy Technology Data Exchange (ETDEWEB)

    John J. Kilbane III


    The objective of the project is to develop biochemical pathways for the selective cleavage of C-N bonds in molecules found in petroleum. The initial phase of the project will focus on the isolation or development of an enzyme capable of cleaving the C-N bond in aromatic amides, specifically 2-aminobiphenyl. The objective of the second phase of the research will be to construct a biochemical pathway for the selective removal of nitrogen from carbazole by combining the carA genes from Sphingomonas sp. GTIN11 with the gene(s) encoding an appropriate amidase. The objective of the final phase of the project will be to develop derivative CN bond cleaving enzymes that have broader substrate ranges and to demonstrate the use of such strains to selectively remove nitrogen from petroleum. The project is on schedule and no major difficulties have been encountered. During the first year of the project (October, 2002-September, 2003) enrichment culture experiments have resulted in the isolation of promising cultures that may be capable of cleaving C-N bonds in aromatic amides, several amidase genes have been cloned and are currently undergoing directed evolution to obtain derivatives that can cleave C-N bonds in aromatic amides, and the carA genes from Sphingomonas sp. GTIN11, and Pseudomonas resinovorans CA10 were cloned in vectors capable of replicating in Escherichia coli. Future research will address expression of these genes in Rhodococcus erythropolis. Enrichment culture experiments and directed evolution experiments continue to be a main focus of research activity and further work is required to obtain an appropriate amidase that will selectively cleave C-N bonds in aromatic substrates. Once an appropriate amidase gene is obtained it must be combined with genes encoding an enzyme capable of converting carbazole to 2'aminobiphenyl-2,3-diol: specifically carA genes. The carA genes from two sources have been cloned and are ready for construction of C-N bond cleavage

  11. Mass Spectrometry and Theoretical Studies on N-C Bond Cleavages in the N-Sulfonylamidino Thymine Derivatives (United States)

    Kobetić, Renata; Kazazić, Snježana; Kovačević, Borislav; Glasovac, Zoran; Krstulović, Luka; Bajić, Miroslav; Žinić, Biserka


    The reactivity of new biologically active thymine derivatives substituted with 2-(arylsulfonamidino)ethyl group at N1 and N3 position was investigated in the gas phase using CID experiments (ESI-MS/MS) and by density functional theory (DFT) calculations. Both derivatives show similar chemistry in the negative mode with a retro-Michael addition (Path A-) being the most abundant reaction channel, which correlate well with the fluoride induced retro-Michael addition observed in solution. The difference in the fragmentation of N-3 substituted thymine 5 and N-1 substituted thymine 1 in the positive mode relates to the preferred cleavage of the sulfonyl group ( m/z 155, Path B) in N-3 isomer and the formation of the acryl sulfonamidine 3 ( m/z 309) via Path A in N-1 isomer. Mechanistic studies of the cleavage reaction conducted by DFT calculations give the trend of the calculated activation energies that agree well with the experimental observations. A mechanism of the retro-Michael reaction was interpreted as a McLafferty type of fragmentation, which includes Hβ proton shift to one of the neighboring oxygen atoms in a 1,5-fashion inducing N1(N3)-Cα bond scission. This mechanism was found to be kinetically favorable over other tested mechanisms. Significant difference in the observed fragmentation pattern of N-1 and N-3 isomers proves the ESI-MS/MS technique as an excellent method for tracking the fate of similar sulfonamidine drugs. Also, the observed N-1 and/or N-3 thymine alkylation with in situ formed reactive acryl sulfonamidine 3 as a Michael acceptor may open interesting possibilities for the preparation of other N-3 substituted pyrimidines.

  12. Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: relevance of metal hydride bonds and dihydrogen. (United States)

    Jia, Hong-Peng; Quadrelli, Elsje Alessandra


    Dinitrogen cleavage and hydrogenation by transition-metal centers to produce ammonia is central in industry and in Nature. After an introductory section on the thermodynamic and kinetic challenges linked to N2 splitting, this tutorial review discusses three major classes of transition-metal systems (homogeneous, heterogeneous and biological) capable of achieving dissociation and hydrogenation of dinitrogen. Molecular complexes, solid-state Haber-Bosch catalytic systems, silica-supported tantalum hydrides and nitrogenase will be discussed. Emphasis is focused on the reaction mechanisms operating in the process of dissociation and hydrogenation of dinitrogen, and in particular on the key role played by metal hydride bonds and by dihydrogen in such reactions.

  13. Bond-selective control of a gas-surface reaction (United States)

    Killelea, Daniel R.

    The prospect of using light to selectively control chemical reactions has tantalized chemists since the development of the laser. Unfortunately, the realization of laser-directed chemistry is frequently thwarted by the randomization of energy within the molecule through intramolecular vibrational energy distribution (IVR). However, recent results showing vibrational mode-specific reactivity on metal surfaces suggest that IVR may not always be complete for gas-surface reactions. Here, we combine molecular beam techniques and direct laser excitation to characterize the bond-specific reactivity of trideuteromethane on a Ni(111) surface. Our results reveal important details about how vibrational energy is distributed in the reactive molecule. We use a molecular beam to direct state-selected trideuteromethane (CHD 3) molecules onto a nickel single crystal sample and use the results we obtain to describe the flow of vibrational energy in the methane-surface reaction complex. We show that CHD3 molecules initially excited to v=1, J=2, K=0 of the v 1 symmetric C-H stretching mode will dissociate exclusively via C-H cleavage on Ni(111). This result highlights the localization of vibrational energy in the reaction complex, despite the presence of many energy exchange channels with the high state-density surface. We demonstrate, for the first time, highly parallel bond-selective control of a heterogeneously catalyzed reaction. We place our results in the context of recent experiments investigating IVR for molecules in both the gas phase and liquid solutions. If IVR is fast on the reaction timescale, vibrational energy would be randomly distributed throughout the nascent methane-surface reaction complex and vibrational mode-specific behavior would not occur. The short timescale of a direct gas-surface collision may explain how the exchange of energy via IVR is limited to only a small subset of the energetic configurations available to the reaction complex. This framework

  14. DNA degradation by bleomycin: evidence for 2'R-proton abstraction and for C-O bond cleavage accompanying base propenal formation

    International Nuclear Information System (INIS)

    Ajmera, S.; Wu, J.C.; Worth, L. Jr.; Rabow, L.E.; Stubbe, J.; Kozarich, J.W.


    Reaction of poly(dA-[2'S- 3 H]dU) with activated bleomycin yields [ 3 H] uracil propenal that completely retains the tritium label. In contrast, the authors have previously shown that reaction of poly(dA-[2'R- 3 H]dU) with activated bleomycin affords unlabeled uracil propenal. They have also prepared both cis- and trans-thymine propenals by chemical synthesis and have observed that the trans isomer is the exclusive product of the bleomycin reaction. Moreover, the cis isomer was found to be stable to the conditions of bleomycin-induced DNA degradation. Taken together, these results establish that the formation of trans-uracil propenal occurs via an anti-elimination mechanism with the stereospecific abstraction of the 2R proton. The question of phosphodiester bond cleavage during base propenal formation has also been addressed by the analysis of the fate of oxygen-18 in poly(dA-[3'- 18 O]dT) upon reaction with activated bleomycin. The 5'-monophosphate oligonucleotide ends produced from thymine propenal formation have been converted to inorganic phosphate by the action of alkaline phosphatase, and the phosphate has been analyzed for 18 O content by 31 P NMR spectroscopy. The oxygen-18 is retained in the inorganic phosphate, establishing that the formation of thymine propenal by activated bleomycin proceeds with C-O bond cleavage at the 3-position

  15. Di-µ-hydroxo Bridge Cleavage Reactions between [Co(nta)(µ-OH)] 2 ...

    African Journals Online (AJOL)



    Apr 22, 2004 ... subsequent rate determining steps to form presumably a ligand-substituted, mono-bridged complex, [(nta)(OH)Co-µ-. OH-Co(nta)(L)]2– (L = py/dmap). The latter decomposes rapidly to form the products. The preferred pathway for these bridge cleavage seemed to be the reaction of the mono-µ-hydroxo-.

  16. Horseshoe crab coagulation factor B. A unique serine protease zymogen activated by cleavage of an Ile-Ile bond. (United States)

    Muta, T; Oda, T; Iwanaga, S


    Horseshoe crab factor B is an intracellular serine protease zymogen involved in the bacterial endotoxin-responsive hemolymph coagulation cascade. cDNAs for factor B were isolated utilizing a polymerase chain reaction product using two primers derived from the partial amino acid sequence. The cloned cDNA of 1928 base pairs encoded 400 amino acid residues of factor B precursor. The first 23 amino acid residues constitute a presumed prepropeptide that may be processed by both a signal peptidase and a processing protease, similar to mammalian vitamin K-dependent protease precursors. The mature protein consists of 377 amino acids with a calculated molecular mass of 40,570 Da. The overall structure is highly homologous to that of limulus proclotting enzyme (35.9% identity), the substrate for active factor B in the cascade. Like the proclotting enzyme, mature factor B is composed of an amino-terminal "clip"-like domain and a carboxyl-terminal serine protease domain homologous to that of human plasma prekallikrein (36.5%). Internal sequences encode a unique activation peptide. Surprisingly, the cleavage sites of the zymogen factor B for activation by limulus active factor C were found to be an Arg-Ser and an Ile-Ile bond, the latter of which has not been found in any other protease zymogens. These cleavages result in the release of the activation peptide, which consists of 21 residues with a carboxyl-terminal isoleucine. These results indicate that the intracellular clotting system of the limulus hemocyte, like mammalian plasma clotting cascade, proceeds with the sequential activation of three serine protease zymogens: factor C, factor B, and proclotting enzyme.

  17. Reaction kinetics of bond rotations in graphene

    KAUST Repository

    Skowron, Stephen T.


    The formation and healing processes of the fundamental topological defect in graphitic materials, the Stone-Wales (SW) defect, are brought into a chemical context by considering the rotation of a carbon-carbon bond as chemical reaction. We investigate the rates and mechanisms of these SW transformations in graphene at the atomic scale using transmission electron microscopy. We develop a statistical atomic kinetics formalism, using direct observations obtained under different conditions to determine key kinetic parameters of the reactions. Based on the obtained statistics we quantify thermally and irradiation induced routes, identifying a thermal process of healing with an activation energy consistent with predicted adatom catalysed mechanisms. We discover exceptionally high rates for irradiation induced SW healing, incompatible with the previously assumed mechanism of direct knock-on damage and indicating the presence of an efficient nonadiabatic coupling healing mechanism involving beam induced electronic excitations of the SW defect.

  18. Metal-catalyzed activation of ethers via C-O bond cleavage: a new strategy for molecular diversity. (United States)

    Cornella, Josep; Zarate, Cayetana; Martin, Ruben


    In 1979, the seminal work of Wenkert set the standards for the utilization of aryl and vinyl ethers as coupling partners via C-O bond-cleavage. Although the topic remained dormant for almost three decades, the last few years have witnessed a renaissance in this area of expertise, experiencing an exponential growth and becoming a significant discipline within the cross-coupling arena. The means to utilize readily accessible aryl or vinyl ethers as counterparts does not only represent a practical, powerful and straightforward alternative to organic halides, but also constitutes an excellent opportunity to improve our chemical knowledge about a relatively unexplored area of expertise. This review summarizes the most significant developments in the area of C-O bond-cleavage when employing aryl or vinyl ethers, providing a detailed overview of the current state of the art and including future aspects, when applicable.

  19. Effect of trastuzumab interchain disulfide bond cleavage on Fcγ receptor binding and antibody-dependent tumour cell phagocytosis. (United States)

    Suzuki, Mami; Yamanoi, Ayaka; Machino, Yusuke; Ootsubo, Michiko; Izawa, Ken-ichi; Kohroki, Junya; Masuho, Yasuhiko


    The Fc domain of human IgG1 binds to Fcγ receptors (FcγRs) to induce effector functions such as phagocytosis. There are four interchain disulfide bonds between the H and L chains. In this study, the disulfide bonds within the IgG1 trastuzumab (TRA), which is specific for HER2, were cleaved by mild S-sulfonation or by mild reduction followed by S-alkylation with three different reagents. The cleavage did not change the binding activities of TRA to HER2-bearing SK-BR-3 cells. The binding activities of TRA to FcγRIIA and FcγRIIB were greatly enhanced by modification with mild reduction and S-alkylation with ICH2CONH2 or N-(4-aminophenyl) maleimide, while the binding activities of TRA to FcγRI and FcγRIIIA were decreased by any of the four modifications. However, the interchain disulfide bond cleavage by the different modifications did not change the antibody-dependent cell-mediated phagocytosis (ADCP) of SK-BR-3 cells by activated THP-1 cells. The order of FcγR expression levels on the THP-1 cells was FcγRII > FcγRI > FcγRIII and ADCP was inhibited by blocking antibodies against FcγRI and FcγRII. These results imply that the effect of the interchain disulfide bond cleavage on FcγRs binding and ADCP is dependent on modifications of the cysteine residues and the FcγR isotypes. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  20. Identification and cleavage of breakable single bonds by selective oxidation, reduction, and hydrolysis. Quarterly report No. 12, June 1-September 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Hirschon, A.S.; Zevely, J.; Mayo, F.R.


    We assume that bituminous coal consists mostly of an aggregate of condensed aromatic and aliphatic rings, connected and made insoluble (but swellable) by crosslinks containing single bonds. The objective of this project is to determine the proportions of the various kinds of connecting links and how they can best be broken - in other words, to determine the structure of bituminous coal, with emphasis on the crosslinks and breakable single bonds. The program began with an investigation of the structure of the TIPS fraction of Illinois No. 6 coal, that is, the two-thirds of the 16% extracted by pyridine that is toluene-insoluble, pyridine-soluble, mostly through changes in molecular weight during cleavage reactions in pyridine solution. The most promising of these cleavage reactions are now being applied to the 84% of coal that is insoluble in pyridine and presents the main problem in coal liquefaction, following the progress of the reactions by formation of soluble material and swelling of the insoluble portion. We found that benzylamine (BnNH/sub 2/) would extract an additional 14% (of the original weight of coal) of material from pyridine-extracted coal, and later that an ethylenediamine/dimethyl sulfoxide (EDA/DMSO) mixture would dissolve another 21% of the original coal. The BnNH/sub 2/ extract is soluble in pyridine. Our best present guess is that the BnNH/sub 2/ extract cleaves most of the ester groups in coal and that EDA/DMSO cleaves the remaining ester and most of the ether groups.

  1. Effect of oxygen and nitroaromatic cell radiosensitizers on radiation-induced cleavage of internucleotide bonds: ApA, dApA, and poly(A)

    International Nuclear Information System (INIS)

    Raleigh, J.A.; Kremers, W.; Whitehouse, R.


    Irradiation of the dinucleoside monophosphates ApA and dApA in deoxygenated solution leads to a preferential cleavage of the 3' end of the internucleotide bond. Cleavage at the 3' bond is favored to the extent of 2 to 1 over 5' cleavage. Oxygen and nitroaromatic compounds inhibit 3' bond breaking in ApA and dApA in agreement with earlier findings from studies of 3'- and 5'-mononucleotides. In contrast to the mononucleotide results, no enhancement of 5' cleavage is observed for ApA and dApA irradiated in the presence of oxygen or the nitroaromatic additives. The over-all effect of the additives is to decrease the combined (3' and 5') yield of internucleotide bond breaking in ApA and dApA. This phenomenon is also observed for polyadenylic acid in the presence of the nitroaromatics. Oxygen marginally enhances internucleotide bond breaking in polyadenylic acid (factor 1.1) over that seen in deoxygenated solution. Postirradiation alkaline hydrolysis of dApA leads to further ester cleavage revealing the presence of radiation-induced alkali-labile bonds. The number of these bonds decreases in the order oxygen greater than nitrofurans greater than nitrobenzenes approximately irradiation in the absence of additives

  2. Electrochemical bond cleavage in pesticide ioxynil. Kinetic analysis by voltammetry and impedance spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Sokolová, R.; Giannarelli, S.; Fanelli, N.; Pospíšil, Lubomír


    Roč. 49, SI C (2017), s. 134-138 ISSN 0324-1130 Institutional support: RVO:61388963 Keywords : electrochemical impedance spectroscopy * rate constant * self-protonation * faradaic phase angle * halogen cleavage * EC processes fitting Subject RIV: CG - Electrochemistry OBOR OECD: Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis) Impact factor: 0.238, year: 2016

  3. Cleavage-based hybridization chain reaction for electrochemical detection of thrombin. (United States)

    Chang, Yuanyuan; Chai, Yaqin; Xie, Shunbi; Yuan, Yali; Zhang, Juan; Yuan, Ruo


    In the present work, we constructed a new label-free "inter-sandwich" electrochemical aptasensor for thrombin (TB) detection by employing a cleavage-based hybridization chain reaction (HCR). The designed single-stranded DNA (defined as binding DNA), which contained the thrombin aptamer binding sequence, a DNAzyme cleavage site and a signal reporter sequence, was first immobilized on the electrode. In the absence of a target TB, the designed DNAzymes could combine with the thrombin aptamer binding sequence via complementary base pairing, and then Cu(2+) could cleave the binding DNA. In the presence of a target TB, TB could combine with the thrombin aptamer binding sequence to predominantly form an aptamer-protein complex, which blocked the DNAzyme cleavage site and prevented the binding DNA from being cleaved by Cu(2+)-dependent DNAzyme. As a result, the signal reporter sequence could leave the electrode surface to trigger HCR with the help of two auxiliary DNA single-strands, A1 and A2. Then, the electron mediator hexaammineruthenium (III) chloride ([Ru(NH3)6](3+)) was embedded into the double-stranded DNA (dsDNA) to produce a strong electrochemical signal for the quantitative measurement of TB. For further amplification of the electrochemical signal, graphene reduced by dopamine (PDA-rGO) was introduced as a platform in this work. With this strategy, the aptasensor displayed a wide linearity in the range of 0.0001 nM to 50 nM with a low detection limit of 0.05 pM. Moreover, the resulting aptasensor exhibited good specificity and acceptable reproducibility and stability. Because of these factors, the fabrication protocol proposed in this work may be extended to clinical application.

  4. Effect of copper-sulphur bond on the DNA photo-cleavage activity of ...

    Indian Academy of Sciences (India)

    The Cu-N bond lengths are in the range of 1.968(3) to 2.158(4) Å. The Cu-S bond lengths of 2.599(2) and 2.705(2) Å are significantly long indicating weak covalent interaction between copper and sulphur atoms. The thiomethyl groups are cis to each other giving S-Cu-S angle of 75.82(5)°. The Cu-N(pyridyl) bond distances ...

  5. Cycloaddition Reaction of Hydrogen-Bonded Zn(II)

    Indian Academy of Sciences (India)

    J. Chem. Sci. Vol. 129, No. 2, February 2017, pp. 239–247. c Indian Academy of Sciences. DOI 10.1007/s12039-016-1218-6. REGULAR ARTICLE. Solid-state Photochemical [2+2] Cycloaddition Reaction of. Hydrogen-Bonded Zn(II) Metal Complex Containing Several Parallel. C=C Bonds. ABDUL MALIK P PEEDIKAKKAL.

  6. Structural and Biochemical Characterization of Organotin and Organolead Compounds Binding to the Organomercurial Lyase MerB Provide New Insights into Its Mechanism of Carbon–Metal Bond Cleavage

    Energy Technology Data Exchange (ETDEWEB)

    Wahba, Haytham M. [Département; Faculty; Stevenson, Michael J. [Department; Mansour, Ahmed [Département; Sygusch, Jurgen [Département; Wilcox, Dean E. [Department; Omichinski, James G. [Département


    The organomercurial lyase MerB has the unique ability to cleave carbon–Hg bonds, and structural studies indicate that three residues in the active site (C96, D99, and C159 in E. coli MerB) play important roles in the carbon–Hg bond cleavage. However, the role of each residue in carbon–metal bond cleavage has not been well-defined. To do so, we have structurally and biophysically characterized the interaction of MerB with a series of organotin and organolead compounds. Studies with two known inhibitors of MerB, dimethyltin (DMT) and triethyltin (TET), reveal that they inhibit by different mechanisms. In both cases the initial binding is to D99, but DMT subsequently binds to C96, which induces a conformation change in the active site. In contrast, diethyltin (DET) is a substrate for MerB and the SnIV product remains bound in the active site in a coordination similar to that of HgII following cleavage of organomercurial compounds. The results with analogous organolead compounds are similar in that trimethyllead (TML) is not cleaved and binds only to D99, whereas diethyllead (DEL) is a substrate and the PbIV product remains bound in the active site. Binding and cleavage is an exothermic reaction, while binding to D99 has negligible net heat flow. These results show that initial binding of organometallic compounds to MerB occurs at D99 followed, in some cases, by cleavage and loss of the organic moieties and binding of the metal ion product to C96, D99, and C159. The N-terminus of MerA is able to extract the bound PbVI but not the bound SnIV. These results suggest that MerB could be utilized for bioremediation applications, but certain organolead and organotin compounds may present an obstacle by inhibiting the enzyme.

  7. Selective C-O Bond Cleavage of Sugars with Hydrosilanes Catalyzed by Piers' Borane Generated In Situ. (United States)

    Zhang, Jianbo; Park, Sehoon; Chang, Sukbok


    Described herein is the selective reduction of sugars with hydrosilanes catalyzed by using Piers' borane [(C 6 F 5 ) 2 BH] generated in situ. The hydrosilylative C-O bond cleavage of silyl-protected mono- and disaccharides in the presence of a (C 6 F 5 ) 2 BH catalyst, generated in situ from (C 6 F 5 ) 2 BOH, takes place with excellent chemo- and regioselectivities to provide a range of polyols. A study of the substituent effects of sugars on the catalytic activity and selectivity revealed that the steric environment around the anomeric carbon (C1) is crucial. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Functionalization of N2 to NH3 via direct N ≡ N bond cleavage ...

    Indian Academy of Sciences (India)

    rection (for Heptane, Toluene and THF) was performed using the polarized continuum model (PCM),54–56 nat- ural population analysis (NPA) was performed using same level of theory and basis set. A natural bond orbital analysis (NBO) was carried out to understand more about the electronic structure of the model sys-.

  9. Synthetic Applications and Mechanistic Studies of the Hydroxide-Mediated Cleavage of Carbon-Carbon Bonds in Ketones

    DEFF Research Database (Denmark)

    Mazziotta, Andrea; Makarov, Ilya S.; Fristrup, Peter


    The hydroxide-mediated cleavage of ketones into alkanes and carboxylic acids has been reinvestigated and the substrate scope extended to benzyl carbonyl compounds. The transformation is performed with a 0.05 M ketone solution in refluxing xylene in the presence of 10 equiv of potassium hydroxide....... The reaction constitutes a straightforward protocol for the synthesis of certain phenyl-substituted carboxylic acids from 2-phenylcycloalkanones. The mechanism was investigated by kinetic experiments which indicated a first order reaction in hydroxide and a full negative charge in the rate-determining step....... The studies were complemented by a theoretical investigation where two possible pathways were characterized by DFT/M06-2X. The calculations showed that the scission takes place by nucleophilic attack of hydroxide on the ketone followed by fragmentation of the resulting oxyanion into the carboxylic acid...

  10. Synthetic Applications and Mechanistic Studies of the Hydroxide-Mediated Cleavage of Carbon-Carbon Bonds in Ketones. (United States)

    Mazziotta, Andrea; Makarov, Ilya S; Fristrup, Peter; Madsen, Robert


    The hydroxide-mediated cleavage of ketones into alkanes and carboxylic acids has been reinvestigated and the substrate scope extended to benzyl carbonyl compounds. The transformation is performed with a 0.05 M ketone solution in refluxing xylene in the presence of 10 equiv of potassium hydroxide. The reaction constitutes a straightforward protocol for the synthesis of certain phenyl-substituted carboxylic acids from 2-phenylcycloalkanones. The mechanism was investigated by kinetic experiments which indicated a first order reaction in hydroxide and a full negative charge in the rate-determining step. The studies were complemented by a theoretical investigation where two possible pathways were characterized by DFT/M06-2X. The calculations showed that the scission takes place by nucleophilic attack of hydroxide on the ketone followed by fragmentation of the resulting oxyanion into the carboxylic acid and a benzyl anion.

  11. Selective C-C and C-H bond activation/cleavage of pinene derivatives: synthesis of enantiopure cyclohexenone scaffolds and mechanistic insights. (United States)

    Masarwa, Ahmad; Weber, Manuel; Sarpong, Richmond


    The continued development of transition-metal-mediated C-C bond activation/cleavage methods would provide even more opportunities to implement novel synthetic strategies. We have explored the Rh(I)-catalyzed C-C activation of cyclobutanols resident in hydroxylated derivatives of pinene, which proceed in a complementary manner to the C-C bond cleavage that we have observed with many traditional electrophilic reagents. Mechanistic and computational studies have provided insight into the role of C-H bond activation in the stereochemical outcome of the Rh-catalyzed C-C bond activation process. Using this new approach, functionalized cyclohexenones that form the cores of natural products, including the spiroindicumides and phomactin A, have been accessed.

  12. Selective bond cleavage in potassium collisions with pyrimidine bases of DNA. (United States)

    Almeida, Diogo; Ferreira da Silva, Filipe; García, Gustavo; Limão-Vieira, Paulo


    Electron transfer in alkali-molecule collisions to gas phase thymine and uracil yielding H- formation is selectively controlled in the energy range between 5.3 and 66.1 eV. By tuning the collision energy, electron transfer from the alkali to partly deuterated thymine, methylated thymine at the N1 and methylated uracil at the N3 positions, H- loss proceeds not only through the breaking of the (C-H) against (N-H) bonds but also through N1 against N3 sites. Such selectivity, as far as bond and site are concerned, is here reported for the first time by electron transfer induced dissociation experiments in alkali-molecule collisions.

  13. Pressure bonding molybdenum alloy (TZM) to reaction-bonded silicon nitride

    International Nuclear Information System (INIS)

    Huffsmith, S.A.; Landingham, R.L.


    Topping cycles could boost the energy efficiencies of a variety of systems by using what is now waste heat. One such topping cycle uses a ceramic helical expander and would require that a reaction-bonded silicon nitride (RBSN) rotor be bonded to a shaft of TZM (Mo-0.5 wt % Ti-0.08 wt % Zr). Coupon studies show that TZM can be bonded to RBSN at 1300 0 C and 69 MPa if there is an interlayer of MoSi 2 . A layer of finely ground (10 μm) MoSi 2 facilitates bond formation and provides a thicker bond interface. The hardness and grain structure of the TZM and RBSN were not affected by the temperature and pressure required to bond the coupons

  14. Rapid carbon-carbon bond formation and cleavage revealed by carbon isotope exchange between the carboxyl carbon and inorganic carbon in hydrothermal fluids (United States)

    Glein, C. R.; Cody, G. D.


    The carbon isotopic composition of organic compounds in water-rock systems (e.g., hydrothermal vents, sedimentary basins, and carbonaceous meteorites) is generally interpreted in terms of the isotopic composition of the sources of such molecules, and the kinetic isotope effects of metabolic or abiotic reactions that generate or transform such molecules. This hinges on the expectation that the carbon isotopic composition of many organic compounds is conserved under geochemical conditions. This expectation is reasonable in light of the strength of carbon-carbon bonds (ca. 81 kcal/mol); in general, environmental conditions conducive to carbon-carbon bond cleavage typically lead to transformations of organic molecules (decarboxylation is a notable example). Geochemically relevant reactions that involve isotopic exchange between carbon atoms in organic molecules and inorganic forms of carbon with no change in molecular structure appear to be rare. Notwithstanding such rarity, there have been preliminary reports of relatively rapid carbon isotope exchange between the carboxyl group in carboxylic acids and carbon dioxide in hot water [1,2]. We have performed laboratory hydrothermal experiments to gain insights into the mechanism of this surprising reaction, using phenylacetate as a model structure. By mass spectrometry, we confirm that the carboxyl carbon undergoes facile isotopic exchange with 13C-labeled bicarbonate at moderate temperatures (i.e., 230 C). Detailed kinetic analysis reveals that the reaction rate is proportional to the concentrations of both reactants. Further experiments demonstrate that the exchange reaction only occurs if the carbon atom adjacent to the carboxyl carbon is bonded to a hydrogen atom. As an example, no carbon isotope exchange was observed for benzoate in experiments lasting up to one month. The requirement of an alpha C-H bond suggests that enolization (i.e., deprotonation of the H) is a critical step in the mechanism of the exchange

  15. Unusual C-C bond cleavage in the formation of amine-bis(phenoxy) group 4 benzyl complexes: Mechanism of formation and application to stereospecific polymerization

    KAUST Repository

    Gowda, Ravikumar R.


    Group 4 tetrabenzyl compounds MBn4 (M = Zr, Ti), upon protonolysis with an equimolar amount of the tetradentate amine-tris(phenol) ligand N[(2,4-tBu2C6H2(CH 2)OH]3 in toluene from -30 to 25 °C, unexpectedly lead to amine-bis(phenoxy) dibenzyl complexes, BnCH2N[(2,4- tBu2C6H2(CH2)O] 2MBn2 (M = Zr (1), Ti (2)) in 80% (1) and 75% (2) yields. This reaction involves an apparent cleavage of the >NCH2-ArOH bond (loss of the phenol in the ligand) and formation of the >NCH 2-CH2Bn bond (gain of the benzyl group in the ligand). Structural characterization of 1 by X-ray diffraction analysis confirms that the complex formed is a bis(benzyl) complex of Zr coordinated by a newly derived tridentate amine-bis(phenoxy) ligand arranged in a mer configuration in the solid state. The abstractive activation of 1 and 2 with B(C6F 5)3·THF in CD2Cl2 at room temperature generates the corresponding benzyl cations {BnCH2N[(2,4- tBu2C6H2(CH2)O] 2MBn(THF)}+[BnB(C6F5) 3]- (M = Zr (3), Ti, (4)). These cationic complexes, along with their analogues derived from (imino)phenoxy tri- and dibenzyl complexes, [(2,6-iPr2C6H3)N=C(3,5- tBu2C6H2)O]ZrBn3 (5) and [2,4-Br2C6H2(O)(6-CH2(NC 5H9))CH2N=CH(2-adamantyl-4-MeC 6H2O)]ZrBn2 (6), have been found to effectively polymerize the biomass-derived renewable β-methyl-α-methylene- γ-butyrolactone (βMMBL) at room temperature into the highly stereoregular polymer PβMMBL with an isotacticity up to 99% mm. A combined experimental and DFT study has yielded a mechanistic pathway for the observed unusual C-C bond cleavage in the present protonolysis reaction between ZrBn4 and N[(2,4-tBu2C 6H2(CH2)OH]3 for the formation of complex 1, which involves the benzyl radical and the Zr(III) species, resulting from thermal and photochemical decomposition of ZrBn4, followed by a series of reaction sequences consisting of protonolysis, tautomerization, H-transfer, oxidation, elimination, and radical coupling. © 2014 American Chemical Society.

  16. Reversible Heterolytic Cleavage of the H-H Bond by Molybdenum Complexes: Controlling the Dynamics of Exchange Between Proton and Hydride

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shaoguang; Appel, Aaron M.; Bullock, R. Morris


    Controlling the heterolytic cleavage of the H-H bond of dihydrogen is critically important in catalytic hydrogenations and in the catalytic oxidation of H2. We show how the rate of reversible heterolytic cleavage of H2 can be controlled over nearly four orders of magnitude at 25 °C, from 2.1 × 103 s-1 to ≥107 s-1. Bifunctional Mo complexes, [CpMo(CO)(κ3-P2N2)]+ (P2N2 = 1,5-diaza-3,7-diphosphacyclooctane with alkyl/aryl groups on N and P), have been developed for heterolytic cleavage of H2 into a proton and a hydride, akin to Frustrated Lewis Pairs. The H-H bond cleavage is enabled by the basic amine in the second coordination sphere. The products of heterolytic cleavage of H2, Mo hydride complexes bearing protonated amines, [CpMo(H)(CO)(P2N2H)]+, were characterized by spectroscopic studies and by X-ray crystallography. Variable temperature 1H, 15N and 2-D 1H-1H ROESY NMR spectra indicated rapid exchange of the proton and hydride. The exchange rates are in the order [CpMo(H)(CO)(PPh2NPh2H)]+ > [CpMo(H)(CO)(PtBu2NPh2H)]+ > [CpMo(H)(CO)(PPh2NBn2H)]+ > [CpMo(H)(CO)(PtBu2NBn2H)]+ > [CpMo(H)(CO)(PtBu2NtBu2H)]+. The pKa values determined in acetonitrile range from 9.3 to 17.7, and show a linear correlation with the logarithm of the exchange rates. Thus the exchange dynamics are controlled through the relative acidity of the [CpMo(H)(CO)(P2N2H)]+ and [CpMo(H2)(CO)(P2N2)]+ isomers, providing a design principle for controlling heterolytic cleavage of H2.

  17. Synthesis of diorganoplatinum(IV) complexes by the Ssbnd S bond cleavage with platinum(II) complexes (United States)

    Niroomand Hosseini, Fatemeh; Rashidi, Mehdi; Nabavizadeh, S. Masoud


    Reaction of [PtR2(NN)] (R = Me, p-MeC6H4 or p-MeOC6H4; NN = 2,2‧-bipyridine, 4,4‧-dimethyl-2,2‧-bipyridine, 1,10-phenanthroline or 2,9-dimethyl-1,10-phenanthroline) with MeSSMe gives the platinum(IV) complexes cis,trans-[PtR2(SMe)2(NN)]. They are characterized by NMR spectroscopy and elemental analysis. The geometries and the nature of the frontier molecular orbitals of Pt(IV) complexes containing Ptsbnd S bonds are studied by means of the density functional theory.

  18. Examples of reductive azo cleavage and oxidative azo bond formation on Re2(CO)10 template: isolation and characterization of Re(III) complexes of new azo-aromatic ligands. (United States)

    Paul, Nanda D; Samanta, Subhas; Mondal, Tapan K; Goswami, Sreebrata


    A new example of simultaneous reductive azo bond cleavage and oxidative azo bond formation in an azo-aromatic ligand is introduced. The chemical transformation is achieved by the reaction of Re(2)(CO)(10) with the ligand 2-[(2-N-Arylamino)phenylazo]pyridine (HL(1)). A new and unexpected mononuclear rhenium complex [Re(L(1))(L(3))] (1) was isolated from the above reaction. The new azo-aromatic ligand, H(2)L(3) (H(2)L(3) = 2, 2'-dianilinoazobenzene) is formed in situ from HL(1). A similar reaction of Re(2)(CO)(10) and a closely related azo-ligand, 2,4-ditert-butyl-6-(pyridin-2-ylazo)-phenol (HL(2)), resulted in a seven coordinated compound [Re(L(2)){(L(4))(•-)}(2)] (2; HL(4) = 2-amino-4,6-ditert-butyl-phenol) via reductive cleavage of the azo bond. The complexes have been characterized by using a host of physical methods: X-ray crystallography, nuclear magnetic resonance (NMR), cyclic voltammetry, ultraviolet-visible (UV-vis), electron paramagnetic resonance (EPR) spectroscopy, and density functional theory (DFT). The experimental structures are well reproduced by density functional theory calculations and support the overall electronic structures of the above compounds. Complex 1 is a closed shell singlet, while complex 2 exemplifies a singlet diradical complex where the two partially oxidized aminophenoleto ligands are coupled to each other, yielding the observed diamagnetic ground state. Complexes 1 and 2 showed two successive one-electron redox responses. EPR spectral studies in corroboration with DFT results indicated that all of the redox processes occur at the ligand center without affecting the trivalent state of the metal ion. © 2011 American Chemical Society

  19. Role of aromatic structure in pathways of hydrogen transfer and bond cleavage in coal liquefaction: Theoretical studies

    Energy Technology Data Exchange (ETDEWEB)

    Franz, J.A.; Autrey, T.; Camaioni, D.M. [Pacific Northwest Lab., Richland, WA (United States); Watts, J.D.; Bartlett, R.J. [Univ. of Florida, Gainesville, FL (United States). Quantum Theory Project


    The mechanisms by which strong carbon-carbon bonds between aromatic rings and side chains are cleaved under hydropyrolysis conditions remain a subject of wide interest to fuel science. Recently, the authors have studied in detail an alternate pathway for hydrogen atom transfer to {pi}-systems, radical hydrogen transfer (RHT). RHT is the direct, bimolecular transfer of hydrogen from the {beta}-position of an organic radical to the target {pi}-system. In the initial theoretical study, they examined the reaction ethyl radical + ethylene = ethylene + ethyl at the spin-projected UMP2/6-31G** level of theory. Recently, they have used a calibrated ROHF-MNDO-PM3 method to predict thermoneutral RHT barriers for hydrogen transfer between hydroaryl radicals and the corresponding arene. Because of the inherent limitations of semiempirical methods such as ROHF-MNDO-PM3, they have extended the initial work with the ethyl + ethylene study to examine this reaction at the ROHF-MBPT[2]-6-31G** and ROHF-CCSD[T]-6-31G** levels of ab initio theory. The primary objective was to determine how intrinsic RHT barriers change with conjugative stabilization of the radicals. The spin-restricted ROHF approach has been applied to study several RHT reactions, and they present completed ROHF results for the ethyl + ethylene system and preliminary results for the methallyl + butadiene system. The methallyl + butadiene system serves as a model for highly stabilized hydroaryl radicals: the methallyl radical exhibits a C-H bond strength of 46.5 kcal/mol compared to 9-hydroanthracenyl, 43.1 kcal/mol.

  20. Purification, molecular cloning, and expression of 2-hydroxyphytanoyl- CoA lyase, a peroxisomal thiamine pyrophosphate-dependent enzyme that catalyzes the carbon-carbon bond cleavage during à-oxidation of 3- methyl-branched fatty acids

    CERN Document Server

    Foulon, V; Croes, K; Waelkens, E


    Purification, molecular cloning, and expression of 2-hydroxyphytanoyl- CoA lyase, a peroxisomal thiamine pyrophosphate-dependent enzyme that catalyzes the carbon-carbon bond cleavage during à-oxidation of 3- methyl-branched fatty acids

  1. Reactions of sigma-bonded organochromium(III)complexes

    International Nuclear Information System (INIS)

    Leslie, J.P. II.


    Three projects were carried out, each dealing with the kinetics and mechanism of reactions of sigma-bonded organochromium(III) complexes of the form (H 2 O) 5 CrR 2+ . Part I describes the kinetics of the reaction of dichloromethylchromium(III) ion with chromium(II) ion in aqueous acid. Part II deals with the radioexchange of 4-pyridinomethylchromium(III) ion with 51 Cr 2+ and the kinetics of formation of the organochromium species at 55 0 in 1 M H + . Part III deals with the reactions of Hg 2+ and CH 3 Hg + with a series of (H 2 O) 5 CrR 2+ complexes, in which R is an aliphatic alkyl group, a haloalkyl group, or an aralkyl group

  2. Optimal control of bond selectivity in unimolecular reactions

    International Nuclear Information System (INIS)

    Shi Shenghua; Rabitz, H.


    The optimal control theory approach to designing optimal fields for bond-selective unimolecular reactions is presented. A set of equations for determining the optimal fields, which will lead to the achievement of the objective of bond-selective dissociation is developed. The numerical procedure given for solving these equations requires the repeated calculation of the time propagator for the system with the time-dependent Hamiltonian. The splitting approximation combined with the fast Fourier transform algorithm is used for computing the short time propagator. As an illustrative example, a model linear triatomic molecule is treated. The model system consists of two Morse oscillators coupled via kinetic coupling. The magnitude of the dipoles of the two Morse oscillators are the same, the fundamental frequencies are almost the same, but the dissociation energies are different. The rather demanding objective under these conditions is to break the stronger bond while leaving the weaker one intact. It is encouraging that the present computational method efficiently gives rise to the optimal field, which leads to the excellent achievement of the objective of bond selective dissociation. (orig.)

  3. Detection of bond formations by DNA-programmed chemical reactions and PCR amplification. (United States)

    Li, Yizhou; Zhang, Mingda; Zhang, Chi; Li, Xiaoyu


    A system capable of performing both DNA-templated chemical reactions and detection of bond formations is reported. Photocleavable DNA templates direct reactions. Products from bond-forming events re-ligate original templates, amplifiable by PCR, therefore distinguishing bond formation from background. This system provides a novel approach for discovering potential new chemical reactions.

  4. Determination of Double Bond Positions in Polyunsaturated Fatty Acids Using the Photochemical Paternò-Büchi Reaction with Acetone and Tandem Mass Spectrometry. (United States)

    Murphy, Robert C; Okuno, Toshiaki; Johnson, Christopher A; Barkley, Robert M


    The positions of double bonds along the carbon chain of methylene interrupted polyunsaturated fatty acids are unique identifiers of specific fatty acids derived from biochemical reactions that occur in cells. It is possible to obtain direct structural information as to these double bond positions using tandem mass spectrometry after collisional activation of the carboxylate anions of an acetone adduct at each of the double bond positions formed by the photochemical Paternò-Büchi reaction with acetone. This reaction can be carried out by exposing a small portion of an inline fused silica capillary to UV photons from a mercury vapor lamp as the sample is infused into the electrospray ion source of a mass spectrometer. Collisional activation of [M - H] - yields a series of reverse Paternò-Büchi reaction product ions that essentially are derived from cleavage of the original carbon-carbon double bonds that yield an isopropenyl carboxylate anion corresponding to each double bond location. Aldehydic reverse Paternò-Büchi product ions are much less abundant as the carbon chain length and number of double bonds increase. The use of a mixture of D 0 /D 6 -acetone facilitates identification of these double bonds indicating product ions as shown for arachidonic acid. If oxygen is present in the solvent stream undergoing UV photoactivation, ozone cleavage ions are also observed without prior collisional activation. This reaction was used to determine the double bond positions in a 20:3 fatty acid that accumulated in phospholipids of RAW 264.7 cells cultured for 3 days.

  5. Mechanism of carbon-halogen bond reductive cleavage in activated alkyl halide initiators relevant to living radical polymerization: theoretical and experimental study. (United States)

    Isse, Abdirisak A; Gennaro, Armando; Lin, Ching Yeh; Hodgson, Jennifer L; Coote, Michelle L; Guliashvili, Tamaz


    The mechanism of reductive cleavage of model alkyl halides (methyl 2-bromoisobutyrate, methyl 2-bromopropionate, and 1-bromo-1-chloroethane), used as initiators in living radical polymerization (LRP), has been investigated in acetonitrile using both experimental and computational methods. Both theoretical and experimental investigations have revealed that dissociative electron transfer to these alkyl halides proceeds exclusively via a concerted rather than stepwise manner. The reductive cleavage of all three alkyl halides requires a substantial activation barrier stemming mainly from the breaking C-X bond. The activation step during single electron transfer LRP (SET-LRP) was originally proposed to proceed via formation and decomposition of RX(•-) through an outer sphere electron transfer (OSET) process (Guliashvili, T.; Percec, V. J. Polym. Sci., Part A: Polym. Chem. 2007, 45, 1607). These radical anion intermediates were proposed to decompose via heterolytic rather than homolytic C-X bond dissociation. Here it is presented that injection of one electron into RX produces only a weakly associated charge-induced donor-acceptor type radical anion complex without any significant covalent σ type bond character between carbon-centered radical and associated anion leaving group. Therefore, neither homolytic nor heterolytic bond dissociation applies to the reductive cleavage of C-X in these alkyl halides inasmuch as a true radical anion does not form in the process. In addition, the whole mechanism of SET-LRP has to be revisited since it is based on presumed OSET involving intermediate RX(•-), which is shown here to be nonexistent.

  6. Reversible Heterolytic Cleavage of the H-H Bond by Molybdenum Complexes: Controlling the Dynamics of Exchange Between Proton and Hydride. (United States)

    Zhang, Shaoguang; Appel, Aaron M; Bullock, R Morris


    Controlling the heterolytic cleavage of the H-H bond of dihydrogen is critically important in catalytic hydrogenations and in the catalytic oxidation of H 2 . We show how the rate of reversible heterolytic cleavage of H 2 can be controlled, spanning 4 orders of magnitude at 25 °C, from 2.1 × 10 3 s -1 to ≥10 7 s -1 . Bifunctional Mo complexes, [CpMo(CO)(κ 3 -P 2 N 2 )] + (P 2 N 2 = 1,5-diaza-3,7-diphosphacyclooctane diphosphine ligand with alkyl/aryl groups on N and P), have been developed for heterolytic cleavage of H 2 into a proton and a hydride, akin to frustrated Lewis pairs. The H-H bond cleavage is enabled by the basic amine in the second coordination sphere. The products of heterolytic cleavage of H 2 , Mo hydride complexes bearing protonated amines, [CpMo(H)(CO)(P 2 N 2 H)] + , were characterized by spectroscopic studies and by X-ray crystallography. Variable-temperature 1 H, 15 N, and 2-D 1 H- 1 H ROESY NMR spectra indicated rapid exchange of the proton and hydride. The exchange rates are in the order [CpMo(H)(CO)(P Ph 2 N Ph 2 H)] + > [CpMo(H)(CO)(P t Bu 2 N Ph 2 H)] + > [CpMo(H)(CO)(P Ph 2 N Bn 2 H)] + > [CpMo(H)(CO)(P t Bu 2 N Bn 2 H)] + > [CpMo(H)(CO)(P t Bu 2 N t Bu 2 H)] + . The pK a values determined in acetonitrile range from 9.3 to 17.7 and show a linear correlation with the logarithm of the exchange rates. This correlation likely results from the exchange process involving key intermediates that differ by an intramolecular proton transfer. Specifically, the proton-hydride exchange appears to occur by formation of a molybdenum dihydride or dihydrogen complex, resulting from proton transfer from the pendant amine to the metal hydride. The exchange dynamics are controlled by the relative acidity of the [CpMo(H)(CO)(P 2 N 2 H)] + and [CpMo(H 2 )(CO)(P 2 N 2 )] + isomers, providing a design principle for controlling heterolytic cleavage of H 2 .

  7. From models to lignin: Transition metal catalysis for selective bond cleavage reactions

    NARCIS (Netherlands)

    Deuss, Peter; Barta, Katalin


    In the coming decades major changes are expected in the chemical industry regarding the utilized raw material inputs. Depleting fossil resources will gradually be replaced by renewable feedstocks wherever possible. Because of this transition, new and efficient methodologies are required that enable

  8. Dramatically Enhanced Cleavage of the C–C Bond Using an Electrocatalytically Coupled Reaction

    Czech Academy of Sciences Publication Activity Database

    He, Q. P.; Shyam, B.; Macounová, Kateřina; Krtil, Petr; Ramaker, D.; Mukerjee, S.


    Roč. 134, č. 20 (2012), s. 8655-8661 ISSN 0002-7863 Institutional support: RVO:61388955 Keywords : RAY-ABSORPTION SPECTROSCOPY * IN-SITU XANES * ETHANOL ELECTROOXIDATION Subject RIV: CG - Electrochemistry Impact factor: 10.677, year: 2012

  9. Tomato carotenoid cleavage dioxygenases 1A and 1B: Relaxed double bond specificity leads to a plenitude of dialdehydes, mono-apocarotenoids and isoprenoid volatiles

    KAUST Repository

    Ilg, Andrea


    The biosynthetic processes leading to many of the isoprenoid volatiles released by tomato fruits are still unknown, though previous reports suggested a clear correlation with the carotenoids contained within the fruit. In this study, we investigated the activity of the tomato (Solanum lycopersicum) carotenoid cleavage dioxygenase (SlCCD1B), which is highly expressed in fruits, and of its homolog SlCCD1A. Using in vitro assays performed with purified recombinant enzymes and by analyzing products formed by the two enzymes in carotene-accumulating Escherichia coli strains, we demonstrate that SlCCD1A and, to a larger extent, SlCCD1B, have a very relaxed specificity for both substrate and cleavage site, mediating the oxidative cleavage of cis- and all-. trans-carotenoids as well as of different apocarotenoids at many more double bonds than previously reported. This activity gives rise to a plenitude of volatiles, mono-apocarotenoids and dialdehyde products, including cis-pseudoionone, neral, geranial, and farnesylacetone. Our results provide a direct evidence for a carotenoid origin of these compounds and point to CCD1s as the enzymes catalyzing the formation of the vast majority of tomato isoprenoid volatiles, many of which are aroma constituents. © 2014 The Authors.

  10. Ductile mode grinding of reaction-bonded silicon carbide mirrors. (United States)

    Dong, Zhichao; Cheng, Haobo


    The demand for reaction-bonded silicon carbide (RB-SiC) mirrors has escalated recently with the rapid development of space optical remote sensors used in astronomy or Earth observation. However, RB-SiC is difficult to machine due to its high hardness. This study intends to perform ductile mode grinding to RB-SiC, which produces superior surface integrity and fewer subsurface damages, thus minimizing the workload of subsequent lapping and polishing. For this purpose, a modified theoretical model for grain depth of cut of grinding wheels is presented, which correlates various processing parameters and the material characteristics (i.e., elastic module) of a wheel's bonding matrix and workpiece. Ductile mode grinding can be achieved as the grain depth of cut of wheels decreases to be less than the critical cut depth of workpieces. The theoretical model gives a roadmap to optimize the grinding parameters for ductile mode grinding of RB-SiC and other ultra-hard brittle materials. Its feasibility was validated by experiments. With the optimized grinding parameters for RB-SiC, the ductile mode grinding produced highly specular surfaces (with roughness of ∼2.2-2.8  nm Ra), which means the material removal mechanism of RB-SiC is dominated by plastic deformation rather than brittle fracture. Contrast experiments were also conducted on fused silica, using the same grinding parameters; this produced only very rough surfaces, which further validated the feasibility of the proposed model.

  11. Enhanced photocatalytic degradation of Amaranth dye on mesoporous anatase TiO2: evidence of C-N, N[double bond, length as m-dash]N bond cleavage and identification of new intermediates. (United States)

    Naik, Amarja P; Salkar, Akshay V; Majik, Mahesh S; Morajkar, Pranay P


    The photocatalytic degradation mechanism of Amaranth, a recalcitrant carcinogenic azo dye, was investigated using mesoporous anatase TiO 2 under sunlight. Mesoporous anatase TiO 2 of a high photocatalytic activity has been synthesized using a sol-gel method and its photocatalytic activity for the degradation of Amaranth dye has been evaluated with respect to Degussa P25. The effect of bi-dentate complexing agents like oxalic acid, ethylene glycol and urea on the surface properties of TiO 2 catalyst has been investigated using TG-DTA, FTIR, HR-TEM, SAED, PXRD, EDS, UV-DRS, PL, BET N 2 adsorption-desorption isotherm studies and BJH analysis. The influence of catalyst properties such as the mesoporous network, pore volume and surface area on the kinetics of degradation of Amaranth as a function of irradiation time under natural sunlight has been monitored using UV-Vis spectroscopy. The highest rate constant value of 0.069 min -1 was obtained for the photocatalytic degradation of Amaranth using TiO 2 synthesized via a urea assisted sol-gel synthesis method. The effect of the reaction conditions such as pH, TiO 2 concentration and Amaranth concentration on the photodegradation rate has been investigated. The enhanced photocatalytic activity of synthesized TiO 2 in comparison with P25 is attributed to the mesoporous nature of the catalyst leading to increased pore diameter, pore volume, surface area and enhanced charge carrier separation efficiency. New intermediates of photocatalytic degradation of Amaranth, namely, sodium-3-hydroxynaphthalene-2,7-disulphonate, 3-hydroxynaphthalene, sodium-4-aminonaphthalenesulphonate and sodium-4-aminobenzenesulphonate have been identified using LC-ESI-MS for the very first time, providing direct evidence for simultaneous bond cleavage pathways (-C-N-) and (-N[double bond, length as m-dash]N-). A new plausible mechanism of TiO 2 catalysed photodegradation of Amaranth along with the comparison of its toxicity to that of its degradation

  12. The dual role of oxygen functions in coal pretreatment and liquefaction: Crosslinking and cleavage reactions. Seventh quarterly report, September 30, 1992--December 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Serio, M.A.; Kroo, E.; Charpenay, S.; Solomon, P.R.


    The work during the past quarter under Task 2 has focused on the investigation of FT-IR methods for measuring carboxyl and phenolic functions. Fourier transform infrared (FT-IR) spectra of coal contain a wealth of information that can be utilized in the development of quantitative analysis routines based on least squares curvefitting. Because of the importance of the carboxylate groups in retrogressive reactions, recent efforts have focused on the C=O stretching region. Raw and modified coal samples (acid washed, demineralized, and cation exchanged) were analyzed in order to validate the proposed band assignments in the C=O stretching region. This parameter set differentiates free carbonyl (B2) and hydrogen-bonded carbonyl (B4) from carboxylic acid carbonyl (B3) and carboxylate (B7). One test of these assignments, which are based on literature data, is to plot B3 versus B7. This should be linear, assuming that the sum of the free carboxyl and carboxylate groups is constant and that the intensity of the overlapped aromatic ring band in B7 is also constant. This relationship was found to hold for a set of raw, acid washed, and acid washed/cation-exchanged Zap coals. The work under Task 3 has involved (1) completion of the synthesis of the -C-C-0- linked, methoxy substituted lignin-network polymer, -- C{sub 6}H{sub 3}(o-OMe)-O-CH{sub 2}CH{sub 2}]{sub {eta}} -- polymer, (2) Analysis of the polymer via depolymerization under pyrolysis-FIMS (Py-FIMS) conditions, and (3) testing of several routes to selective cleavage of the O-Methyl bond so that the relative crosslinking tendencies of the methylated and unmethylated versions of the polymer could be determined.

  13. Gallium(III)-Containing, Sandwich-Type Heteropolytungstates: Synthesis, Solution Characterization, and Hydrolytic Studies toward Phosphoester and Phosphoanhydride Bond Cleavage. (United States)

    Kandasamy, Balamurugan; Vanhaecht, Stef; Nkala, Fiona Marylyn; Beelen, Tessa; Bassil, Bassem S; Parac-Vogt, Tatjana N; Kortz, Ulrich


    The gallium(III)-containing heteropolytungstates [Ga4(H2O)10(β-XW9O33)2](6-) (X = As(III), 1; Sb(III), 2) were synthesized in aqueous acidic medium by reaction of Ga(3+) ions with the trilacunary, lone-pair-containing [XW9O33](9-). Polyanions 1 and 2 are isostructural and crystallized as the hydrated sodium salts Na6[Ga4(H2O)10(β-AsW9O33)2]·28H2O (Na-1) and Na6[Ga4(H2O)10(β-SbW9O33)2]·30H2O (Na-2) in the monoclinic space group P21/c, with unit cell parameters a = 16.0218(12) Å, b = 15.2044(10) Å, c = 20.0821(12) Å, and β = 95.82(0)°, as well as a = 16.0912(5) Å, b = 15.2178(5) Å, c = 20.1047(5) Å, and β = 96.2(0)°, respectively. The corresponding tellurium(IV) derivative [Ga4(H2O)10(β-TeW9O33)2](4-) (3) was also prepared, by direct reaction of sodium tungstate, tellurium(IV) oxide, and gallium nitrate. Polyanion 3 crystallized as the mixed rubidium/sodium salt Rb2Na2[Ga4(H2O)10(β-TeW9O33)2]·28H2O (RbNa-3) in the triclinic space group P1̅ with unit cell parameters a = 12.5629(15) Å, b = 13.2208(18) Å, c = 15.474(2) Å, α = 80.52(1)°, β = 84.37(1)°, and γ = 65.83(1)°. All polyanions 1-3 were characterized in the solid state by single-crystal XRD, FT-IR, TGA, and elemental analysis, and polyanion 2 was also characterized in solution by (183)W NMR and UV-vis spectroscopy. Polyanion 2 was used as a homogeneous catalyst toward adenosine triphosphate (ATP) and the DNA model substrate 4-nitrophenylphosphate, monitored by (1)H and (31)P NMR spectroscopy. The encapsulated gallium(III) centers in 2 promote the Lewis acidic synergistic activation of the hydrolysis of ATP and DNA model substrates at a higher rate in near-physiological conditions. A strong interaction of 2 with the P-O bond of ATP was evidenced by changes in chemical shift values and line broadening of the (31)P nucleus in ATP upon addition of the polyanion.

  14. The Dual Role of Oxygen Functions in Coal Pretreatment and Liquefaction: Crosslinking and Cleavage Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Michael Serio; Erik Kroo; Sylvie Charpenay; Peter Solomon


    The overall objective of this project was to elucidate and model the dual role of oxygen functions in thermal pretreatment and liquefaction of low rank coals through the application of analytical techniques and theoretical models. The project was an integrated study of model polymers representative of coal structures, raw coals of primarily low rank, and selectively modified coals in order to provide specific information relevant to the reactions of real coals. The investigations included liquefaction experiments in microautoclave reactors, along with extensive analysis of intermediate solid, liquid and gaseous products. Attempts were made to incorporate the results of experiments on the different systems into a liquefaction model.

  15. Manganese-Oxygen Intermediates in O-O Bond Activation and Hydrogen-Atom Transfer Reactions. (United States)

    Rice, Derek B; Massie, Allyssa A; Jackson, Timothy A


    Biological systems capitalize on the redox versatility of manganese to perform reactions involving dioxygen and its derivatives superoxide, hydrogen peroxide, and water. The reactions of manganese enzymes influence both human health and the global energy cycle. Important examples include the detoxification of reactive oxygen species by manganese superoxide dismutase, biosynthesis by manganese ribonucleotide reductase and manganese lipoxygenase, and water splitting by the oxygen-evolving complex of photosystem II. Although these enzymes perform very different reactions and employ structurally distinct active sites, manganese intermediates with peroxo, hydroxo, and oxo ligation are commonly proposed in catalytic mechanisms. These intermediates are also postulated in mechanisms of synthetic manganese oxidation catalysts, which are of interest due to the earth abundance of manganese. In this Account, we describe our recent efforts toward understanding O-O bond activation pathways of Mn III -peroxo adducts and hydrogen-atom transfer reactivity of Mn IV -oxo and Mn III -hydroxo complexes. In biological and synthetic catalysts, peroxomanganese intermediates are commonly proposed to decay by either Mn-O or O-O cleavage pathways, although it is often unclear how the local coordination environment influences the decay mechanism. To address this matter, we generated a variety of Mn III -peroxo adducts with varied ligand environments. Using parallel-mode EPR and Mn K-edge X-ray absorption techniques, the decay pathway of one Mn III -peroxo complex bearing a bulky macrocylic ligand was investigated. Unlike many Mn III -peroxo model complexes that decay to oxo-bridged-Mn III Mn IV dimers, decay of this Mn III -peroxo adduct yielded mononuclear Mn III -hydroxo and Mn IV -oxo products, potentially resulting from O-O bond activation of the Mn III -peroxo unit. These results highlight the role of ligand sterics in promoting the formation of mononuclear products and mark an important

  16. Extrusion of CO from aryl ketones: rhodium(I)-catalyzed C-C bond cleavage directed by a pyridine group. (United States)

    Lei, Zhi-Quan; Li, Hu; Li, Yang; Zhang, Xi-Sha; Chen, Kang; Wang, Xin; Sun, Jian; Shi, Zhang-Jie


    Snipping tool: the rhodium(I)-catalyzed extrusion of carbon monoxide from biaryl ketones and alkyl/alkenyl aryl ketones was developed to produce biaryls and alkyl/alkenyl arenes, respectively, in high yields. A wide range of functionalities are tolerated. Not only does this method provide an alternative pathway to construct useful scaffolds, but also offers a new strategy for C-C bond activation. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Glycosidic Bond Cleavage is Not Required for Phytosteryl Glycoside-Induced Reduction of Cholesterol Absorption in Mice (United States)

    Lin, Xiaobo; Ma, Lina; Moreau, Robert A.


    Phytosteryl glycosides occur in natural foods but little is known about their metabolism and bioactivity. Purified acylated steryl glycosides (ASG) were compared with phytosteryl esters (PSE) in mice. Animals on a phytosterol-free diet received ASG or PSE by gavage in purified soybean oil along with tracers cholesterol-d7 and sitostanol-d4. In a three-day fecal recovery study, ASG reduced cholesterol absorption efficiency by 45 ± 6% compared with 40 ± 6% observed with PSE. Four hours after gavage, plasma and liver cholesterol-d7 levels were reduced 86% or more when ASG was present. Liver total phytosterols were unchanged after ASG administration but were significantly increased after PSE. After ASG treatment both ASG and deacylated steryl glycosides (SG) were found in the gut mucosa and lumen. ASG was quantitatively recovered from stool samples as SG. These results demonstrate that ASG reduces cholesterol absorption in mice as efficiently as PSE while having little systemic absorption itself. Cleavage of the glycosidic linkage is not required for biological activity of ASG. Phytosteryl glycosides should be included in measurements of bioactive phytosterols. PMID:21538209

  18. Peptide Bond Synthesis by a Mechanism Involving an Enzymatic Reaction and a Subsequent Chemical Reaction. (United States)

    Abe, Tomoko; Hashimoto, Yoshiteru; Zhuang, Ye; Ge, Yin; Kumano, Takuto; Kobayashi, Michihiko


    We recently reported that an amide bond is unexpectedly formed by an acyl-CoA synthetase (which catalyzes the formation of a carbon-sulfur bond) when a suitable acid and l-cysteine are used as substrates. DltA, which is homologous to the adenylation domain of nonribosomal peptide synthetase, belongs to the same superfamily of adenylate-forming enzymes, which includes many kinds of enzymes, including the acyl-CoA synthetases. Here, we demonstrate that DltA synthesizes not only N-(d-alanyl)-l-cysteine (a dipeptide) but also various oligopeptides. We propose that this enzyme catalyzes peptide synthesis by the following unprecedented mechanism: (i) the formation of S-acyl-l-cysteine as an intermediate via its "enzymatic activity" and (ii) subsequent "chemical" S → N acyl transfer in the intermediate, resulting in peptide formation. Step ii is identical to the corresponding reaction in native chemical ligation, a method of chemical peptide synthesis, whereas step i is not. To the best of our knowledge, our discovery of this peptide synthesis mechanism involving an enzymatic reaction and a subsequent chemical reaction is the first such one to be reported. This new process yields peptides without the use of a thioesterified fragment, which is required in native chemical ligation. Together with these findings, the same mechanism-dependent formation of N-acyl compounds by other members of the above-mentioned superfamily demonstrated that all members most likely form peptide/amide compounds by using this novel mechanism. Each member enzyme acts on a specific substrate; thus, not only the corresponding peptides but also new types of amide compounds can be formed. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. A Generic Protocol for Purifying Disulfide-Bonded Domains and Random Protein Fragments Using Fusion Proteins with SUMO3 and Cleavage by SenP2 Protease. (United States)

    Besir, Hüseyin


    Recombinant expression of heterologous proteins in E. coli is well established for a wide range of proteins, although in many cases, purifying soluble and properly folded proteins remains challenging (Sorensen and Mortensen, J Biotechnol 115:113-128, 2005; Correa and Oppezzo, Methods Mol Biol 1258:27-44, 2015). Proteins that contain disulfide bonds (e.g., cytokines, growth factors) are often particularly difficult to purify in soluble form and still need optimizing of protocols in almost every step of the process (Berkmen, Protein Expr Purif 82:240-251, 2012; de Marco, Microb Cell Fact 11:129, 2012). Expression of disulfide bonded proteins in the periplasm of E. coli is one approach that can help to obtain soluble protein with the correct disulfide bridges forming in the periplasm. This offers the appropriate conditions for disulfide formation although periplasmic expression can also result in low expression levels and incorrect folding of the target protein (Schlapschy and Skerra, Methods Mol Biol 705:211-224, 2011). Generation of specific antibodies often requires a specific antigenic sequence of a protein in order to get an efficient immune response and minimize cross-reactivity of antibodies. Larger proteins like GST (Glutathione-S-transferase) or MBP (maltose binding protein) as solubilizing fusion partners are frequently used to keep antigens soluble and immunize animals. This approach has the disadvantage that the immune response against the fusion partner leads to additional antibodies that need to be separated from the antigen-specific antibodies. For both classes of proteins mentioned above, a protocol has been developed and optimized using the human version of small ubiquitin-like modifier 3 (SUMO3) protein and its corresponding protease SenP2. This chapter describes the experimental steps for expression, purification, refolding, and cleavage that are applicable to both disulfide-bonded proteins with a defined structure and random protein fragments for

  20. Formation of aromatics in thermally induced reactions of chemically bonded RP-C18 stationary phase. (United States)

    Prus, Wojciech


    In continuation of the research on the thermally induced chemical transformation of the silica-based chemically bonded stationary phases (C18), the oxidative cleavage of the silicon-carbon bonds with hydrogen peroxide and potassium fluoride was utilized, followed by the gas chromatography coupled with mass spectrometry (GC-MS) study of the resulting products. These investigations allowed determination of the probable structures of certain thermal modification products as the various different alkyl derivatives of the phenylsilane ligands. Apart from aromatic compounds, the products with unsaturated bonds and carbonyl functionalities were found in the analyzed extracts. The analysis of the GC-MS chromatograms reveals that under the applied working conditions, the investigated process runs with relatively low yields. © The Author [2013]. Published by Oxford University Press. All rights reserved. For Permissions, please email:

  1. Continuous monitoring of restriction endonuclease cleavage activity by universal molecular beacon light quenching coupled with real-time polymerase chain reaction. (United States)

    Li, Xiaomin; Song, Chen; Zhao, Meiping; Li, Yuanzong


    We describe a method for sensitive monitoring of restriction endonuclease kinetics and activity by use of a universal molecular beacon (U-MB) coupled with real-time polymerase chain reaction (PCR). The method is used to monitor the progress of DNA cleavage in a sealed reaction tube and offers more accurate and high-throughput detection. The template has a universal tail hybridized with the U-MB and the remaining sequence is complementary to one of the restriction endonuclease digestion products. The U-MB is replaced by the extension of digested product and the fluorescence quenches. With this concept, one universal fluorescence probe can be used in different enzyme analytical systems. In the work described here, homogenous assays were performed with the restriction endonucleases AluI, EcoRI, XhoI, and SacI at smoothly controlled temperature. Cleavage efficiencies were determined, and the potential applications of this method were discussed. Furthermore, the AluI and EcoRI cleavage reactions were monitored online at varying substrate concentrations at the molecular level, and K(m), V(max), and K(cat) values were calculated. The results suggest that U-MB monitoring of restriction endonuclease assays based on real-time PCR will be very useful for high-throughput, sensitive, and precise assays for enzyme activity screening and evolutionary biotechnology analysis.

  2. Substrate and Lewis Acid Coordination Promote O-O Bond Cleavage of an Unreactive L2CuII2(O22-) Species to Form L2CuIII2(O)2 Cores with Enhanced Oxidative Reactivity. (United States)

    Garcia-Bosch, Isaac; Cowley, Ryan E; Díaz, Daniel E; Peterson, Ryan L; Solomon, Edward I; Karlin, Kenneth D


    Copper-dependent metalloenzymes are widespread throughout metabolic pathways, coupling the reduction of O 2 with the oxidation of organic substrates. Small-molecule synthetic analogs are useful platforms to generate L/Cu/O 2 species that reproduce the structural, spectroscopic, and reactive properties of some copper-/O 2 -dependent enzymes. Landmark studies have shown that the conversion between dicopper(II)-peroxo species (L 2 Cu II 2 (O 2 2- ) either side-on peroxo, S P, or end-on trans-peroxo, T P) and dicopper(III)-bis(μ-oxo) (L 2 Cu III 2 (O 2- ) 2 : O) can be controlled through ligand design, reaction conditions (temperature, solvent, and counteranion), or substrate coordination. We recently published ( J. Am. Chem. Soc. 2012 , 134 , 8513 , DOI: 10.1021/ja300674m ) the crystal structure of an unusual S P species [(MeAN) 2 Cu II 2 (O 2 2- )] 2+ ( S P MeAN , MeAN: N-methyl-N,N-bis[3-(dimethylamino)propyl]amine) that featured an elongated O-O bond but did not lead to O-O cleavage or reactivity toward external substrates. Herein, we report that S P MeAN can be activated to generate O MeAN and perform the oxidation of external substrates by two complementary strategies: (i) coordination of substituted sodium phenolates to form the substrate-bound O MeAN -RPhO - species that leads to ortho-hydroxylation in a tyrosinase-like fashion and (ii) addition of stoichiometric amounts (1 or 2 equiv) of Lewis acids (LA's) to form an unprecedented series of O-type species (O MeAN -LA) able to oxidize C-H and O-H bonds. Spectroscopic, computational, and mechanistic studies emphasize the unique plasticity of the S P MeAN core, which combines the assembly of exogenous reagents in the primary (phenolates) and secondary (Lewis acids association to the MeAN ligand) coordination spheres with O-O cleavage. These findings are reminiscent of the strategy followed by several metalloproteins and highlight the possible implication of O-type species in copper-/dioxygen-dependent enzymes

  3. The cleavage of the aryl-O-CH/sub 3/ bond using anisole as a model compound

    Energy Technology Data Exchange (ETDEWEB)

    Afifi, A.I.; Hindermann, J.P.; Chornet, E.; Overend, R.P.


    The thermal decomposition of anisole as a prototype of the aryl-methyl-ether linkage of lignin and coals has been studied under supercritical conditions using tetralin as hydrogen donor solvent. The effect of homogenous Lewis acid catalysts have also been studied under the same conditions. The main reaction products are phenol, benzene, toluene and cresols. At high tetralin to anisole ratios the selectivity to phenol is almost 80% with little or no cresol production. This selective conversion can be carried out rapidly and cleanly at high temperature (>450 degrees C). Kinetic studies were undertaken using pyrolytic, donor solvent hydrogenolytic and Lewis acid catalysed regimes in the temperature range 400-500 degrees C. The kinetics of anisole decomposition in a large excess of tetralin have been found to be in good agreement with those published in the literature. The Lewis acid catalysts lower the activation energy relative to the pyrolytic and hydrogenolytic cases. The kinetic studies and their mechanistic interpretation lead to a mechanism involving surprisingly few radical species: methyl, phenoxy, phenoxymethyl and phenyl radicals. In the presence of FeCl/sub 3/, the selectivity towards phenols and cresols is enhanced, though a side reaction leads to polymerization at low (400-420 degrees C) temperatures. It is concluded that the aryl-O-methyl ether linkage in anisole can easily be broken at high temperatures, 450-500 degrees C, in supercritical hydrogen donor solvent to give phenol in high yield and selectivity. 23 refs., 4 figs., 5 tabs.

  4. Cleavage of peptide bonds bearing ionizable amino acids at P1 by serine proteases with hydrophobic S1 pocket

    International Nuclear Information System (INIS)

    Qasim, Mohammad A.; Song, Jikui; Markley, John L.; Laskowski, Michael


    Research highlights: → Large pK shifts in ionizable groups when buried in the protein interior. → Substrate dependent shifts in pH optimum for serine proteases. → Lys side chain is a stronger acid in serine protease S 1 pocket than Asp side chain. -- Abstract: Enzymatic hydrolysis of the synthetic substrate succinyl-Ala-Ala-Pro-Xxx-pNA (where Xxx = Leu, Asp or Lys) catalyzed by bovine chymotrypsin (CHYM) or Streptomyces griseus protease B (SGPB) has been studied at different pH values in the pH range 3-11. The pH optima for substrates having Leu, Asp, and Lys have been found to be 7.5-8.0, 5.5-6.0, and ∼10, respectively. At the normally reported pH optimum (pH 7-8) of CHYM and SGPB, the substrate with Leu at the reactive site is more than 25,000-fold more reactive than that with Asp. However, when fully protonated, Asp is nearly as good a substrate as Leu. The pK values of the side chains of Asp and Lys in the hydrophobic S 1 pocket of CHYM and SGPB have been calculated from pH-dependent hydrolysis data and have been found to be about 9 for Asp and 7.4 and 9.7 for Lys for CHYM and SGPB, respectively. The results presented in this communication suggest a possible application of CHYM like enzymes in cleaving peptide bonds contributed by acidic amino acids between pH 5 and 6.

  5. The mechanism and kinetics of the electrochemical cleavage of azo bond of 2-hydroxy-5-sulfophenyl-azo-benzoic acids

    International Nuclear Information System (INIS)

    Mandic, Zoran; Nigovic, Biljana; Simunic, Branimir


    The electrochemical reduction of 2-hydroxy-5-[(4-sulfophenyl)azo]benzoic acid, 2-hydroxy-5-[(3-sulfophenyl)azo]benzoic acid, 2-hydroxy-5-[(2-sulfophenyl)azo]benzoic acid and 2-hydroxy-5-azo-benzoic acid has been carried out in aqueous solutions at glassy carbon electrode using cyclic voltammetry and chronoamperometry. The position of sulfo substituent relative to azo bridge as well as pH of the solution have significant impact on the electrochemical behavior of these compounds. It has been proposed that these compounds are reduced predominantly as hydrazone tautomers resulting in corresponding hydrazo compounds. The overall electrochemical reduction follows DISP2 mechanism, ultimately leading to the 5-amino salicylic acid and sulfanilic acid. The rate determining step is the homogenous redox reaction between intermediate hydrazo compound and 5-amino salicylic acid quinoneimine. The mechanism is proposed in which activated complex of 5-amino salicylic acid quinoneimine and intermediate hydrazo compound is formed with the simultaneous loss of one proton

  6. Cycloaddition Reaction of Hydrogen-Bonded Zn(II)

    Indian Academy of Sciences (India)

    2.2 Synthesis of Complexes. 2.2a [{Zn(H2O)3(bpe)2}2(bpe)](NO3)4·3bpe·14H2O. (1): Single crystals of 1 were synthesized based on the reported procedure with a slight modification.12. Zn(NO3)26H2O (14mg, .... ity of coumarin in solid state as shown in Figure 2. Here, θ1 represents rotational angle of one double bond.

  7. Oxygen atom transfer reactions from Mimoun complexes to sulfides and sulfoxides. A bonding evolution theory analysis. (United States)

    González-Navarrete, Patricio; Sensato, Fabricio R; Andrés, Juan; Longo, Elson


    In this research, a comprehensive theoretical investigation has been conducted on oxygen atom transfer (OAT) reactions from Mimoun complexes to sulfides and sulfoxides. The joint use of the electron localization function (ELF) and Thom's catastrophe theory (CT) provides a powerful tool to analyze the evolution of chemical events along a reaction pathway. The progress of the reaction has been monitored by structural stability domains from ELF topology while the changes between them are controlled by turning points derived from CT which reveal that the reaction mechanism can be separated in several steps: first, a rupture of the peroxo O1-O2 bond, then a rearrangement of lone pairs of the sulfur atom occurs and subsequently the formation of S-O1 bond. The OAT process involving the oxidation of sulfides and sulfoxides is found to be an asynchronous process where O1-O2 bond breaking and S-O1 bond formation processes do not occur simultaneously. Nucleophilic/electrophilic characters of both dimethyl sulfide and dimethyl sulfoxide, respectively, are sufficiently described by our results, which hold the key to unprecedented insight into the mapping of electrons that compose the bonds while the bonds change.

  8. Construction of Eight-Membered Carbocycles with Trisubstituted Double Bonds Using the Ring Closing Metathesis Reaction

    Directory of Open Access Journals (Sweden)

    Motoo Tori


    Full Text Available Medium sized carbocycles are particularly difficult to synthesize. Ring closing metathesis reactions (RCM have recently been applied to construct eight-membered carbocycles, but trisubstituted double bonds in the eight-membered rings are more difficult to produce using RCM reactions. In this review, model examples and our own results are cited and the importance of the preparation of suitably designed precursors is discussed. Examples of RCM reactions used in the total synthesis of natural products are also outlined.

  9. Parental bonding during childhood affects stress-coping ability and stress reaction. (United States)

    Ohtaki, Yuh; Ohi, Yuichi; Suzuki, Shun; Usami, Kazuya; Sasahara, Shinichiro; Matsuzaki, Ichiyo


    An online survey examined the effects of parental bonding during childhood on adult workers' stress-coping ability (Sense of Coherence) and stress reactions (General Health Questionnaire and Self-Rating Depression Scale). Participants who completed the questionnaire were grouped into optimal bonding and poor bonding groups. Analyses of covariance by gender with age as a covariate were conducted for the Sense of Coherence, General Health Questionnaire, and Self-Rating Depression Scale scores for 9525 participants. For both genders, the scores of the poor bonding group were significantly lower for the Sense of Coherence and significantly higher for the General Health Questionnaire and Self-Rating Depression Scale compared to those of the optimal bonding group.

  10. On the nature of the olefination reaction involving ditungsten hexaalkoxides and aldehydes or ketones

    Energy Technology Data Exchange (ETDEWEB)

    Chisholm, M.H.; Huffman, J.C.; Lucas, E.A.; Sousa, A.; Streib, W.E. [Indiana Univ., Bloomington, IN (United States)


    Reductive coupling of aldehydes and ketones to olefins under the action of ditungsten hexaalkoxides was investigated. In these reactions, reductive cleavage of the aldehyde or ketone carbonyl is followed by formation of the olefinic C-C bond and breaking of the carbonyl C-O bond of the second aldehyde or ketone. Observations concerning the initial C-O bond cleavage and subsequent C-C bond formation are presented. 10 refs., 4 figs.

  11. Adjusting the Chemical Bonding of SnO2@CNT Composite for Enhanced Conversion Reaction Kinetics. (United States)

    Cheng, Yayi; Huang, Jianfeng; Qi, Hui; Cao, Liyun; Yang, Jun; Xi, Qiao; Luo, Xiaomin; Yanagisawa, Kazumichi; Li, Jiayin


    Carbon nanotubes (CNTs) with excellent electron conductivity are widely used to improve the electrochemical performance of the SnO 2 anode. However, the chemical bonding between SnO 2 and CNTs is not clearly elucidated despite it may affect the lithiation/delithiation behavior greatly. In this work, an SnO 2 @CNT composite with SnC and SnOC bonds as a linkage bridge is reported and the influence of the SnC and SnOC bonds on the lithium storage properties is revealed. It is found that the SnC bond can act as an ultrafast electron transfer path, facilitating the reversible conversion reaction between Sn and Li 2 O to form SnO 2 . Therefore, the SnO 2 @CNT composite with more SnC bond shows high reversible capacity and nearly half capacity contributes from conversion reaction. It is opposite for the SnO 2 @CNT composite with more SnOC bond that the electrons cannot be transferred directly to CNTs, resulting in depressed conversion reaction kinetics. Consequently, this work can provide new insight for exploration and design of metal oxide/carbon composite anode materials in lithium-ion battery. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Transition-metal-catalyzed C-N bond forming reactions using organic azides as the nitrogen source: a journey for the mild and versatile C-H amination. (United States)

    Shin, Kwangmin; Kim, Hyunwoo; Chang, Sukbok


    Owing to the prevalence of nitrogen-containing compounds in functional materials, natural products and important pharmaceutical agents, chemists have actively searched for the development of efficient and selective methodologies allowing for the facile construction of carbon-nitrogen bonds. While metal-catalyzed C-N cross-coupling reactions have been established as one of the most general protocols for C-N bond formation, these methods require starting materials equipped with functional groups such as (hetero)aryl halides or their equivalents, thus generating stoichiometric amounts of halide salts as byproducts. To address this aspect, a transition-metal-catalyzed direct C-H amination approach has emerged as a step- and atom-economical alternative to the conventional C-N cross-coupling reactions. However, despite the significant recent advances in metal-mediated direct C-H amination reactions, most available procedures need harsh conditions requiring stoichiometric external oxidants. In this context, we were curious to see whether a transition-metal-catalyzed mild C-H amination protocol could be achieved using organic azides as the amino source. We envisaged that a dual role of organic azides as an environmentally benign amino source and also as an internal oxidant via N-N2 bond cleavage would be key to develop efficient C-H amination reactions employing azides. An additional advantage of this approach was anticipated: that a sole byproduct is molecular nitrogen (N2) under the perspective catalytic conditions. This Account mainly describes our research efforts on the development of rhodium- and iridium-catalyzed direct C-H amination reactions with organic azides. Under our initially optimized Rh(III)-catalyzed amination conditions, not only sulfonyl azides but also aryl- and alkyl azides could be utilized as facile amino sources in reaction with various types of C(sp(2))-H bonds bearing such directing groups as pyridine, amide, or ketoxime. More recently, a new

  13. Partial vapor-phase hydrolysis of peptide bonds: A method for mass spectrometric determination of O-glycosylated sites in glycopeptides

    DEFF Research Database (Denmark)

    Mirgorodskaya, E; Hassan, H; Wandall, H H


    In this study we present a method for determination of O-glycosylation sites in glycopeptides, based on partial vapor-phase acid hydrolysis in combination with mass spectrometric analysis. Pentafluoropropionic acid and hydrochloric acid were used for the hydrolysis of glycosylated peptides....... The reaction conditions were optimized for efficient polypeptide backbone cleavages with minimal cleavage of glycosidic bonds. The glycosylated residues were identified by mass spectrometric analysis of the hydrolytic cleavage products. Although glycosidic bonds are partially cleaved under acid hydrolysis...

  14. Covalently Bonded Chitosan on Graphene Oxide via Redox Reaction

    Directory of Open Access Journals (Sweden)

    Víctor M. Castaño


    Full Text Available Carbon nanostructures have played an important role in creating a new field of materials based on carbon. Chemical modification of carbon nanostructures through grafting has been a successful step to improve dispersion and compatibility in solvents, with biomolecules and polymers to form nanocomposites. In this sense carbohydrates such as chitosan are extremely valuable because their functional groups play an important role in diversifying the applications of carbon nanomaterials. This paper reports the covalent attachment of chitosan onto graphene oxide, taking advantage of this carbohydrate at the nanometric level. Grafting is an innovative route to modify properties of graphene, a two-dimensional nanometric arrangement, which is one of the most novel and promising nanostructures. Chitosan grafting was achieved by redox reaction using different temperature conditions that impact on the morphology and features of graphene oxide sheets. Transmission Electron Microscopy, Fourier Transform Infrared, Raman and Energy Dispersive spectroscopies were used to study the surface of chitosan-grafted-graphene oxide. Results show a successful modification indicated by the functional groups found in the grafted material. Dispersions of chitosan-grafted-graphene oxide samples in water and hexane revealed different behavior due to the chemical groups attached to the graphene oxide sheet.

  15. Electrophoretic deposition and reaction-bond sintering of Al2O3/Ti ...

    Indian Academy of Sciences (India)

    tering between metallic and ceramic particles. For zirconia coating on a metal substrate, Wang et al12 compounded Al with zirconia which resulted in a dense coating with high hardness. The aim of this study was to improve the reaction bond among particles in coatings fabricated by the EPD process during heat treatment ...

  16. C—C bond formation in the intramolecular Diels-Alder reaction of triene amides

    Directory of Open Access Journals (Sweden)

    Abdelilah Benallou


    Full Text Available The mechanism nature of the intramolecular Diels–Alder reaction has been performed; and thus, the changes of C—C bond forming/breaking along IRC are characterized in this study. Conceptual DFT analyses of the most favorable adduct fused/exo shows that the flux electronic will take place from diene to dienophile moiety. Moreover, ELF topological analysis based on the electron density predicts that C—C bond is formed by the coupling of two pseudoradical centers generated at the most significant atoms of the molecules. However, C2 vs C3, also C1 and C4 interaction comes mainly from the global electron density transfer which takes place along the reaction. Two- stage one-step is the proposed mechanism of this reaction, the first stage aims for the formation of C2—C3 σ bond while the second stage aims for C1—C4 σ bond formation. Interestingly, the observed asynchronicity of this IMDA reaction due principally to the asymmetric reorganization of electron density at the most attractive centers.

  17. Lewis-acid catalysis of carbon carbon bond forming reactions in water

    NARCIS (Netherlands)

    Engberts, JBFN; Feringa, BL; Keller, E; Otto, S


    In this article, we review the recent progress that has been made in the field of Lewis-acid catalysis of carbon carbon-bond-forming reactions in aqueous solution. Since water hampers the hard hard interactions between the catalyst and the reactant, it often complicates catalysis. However, once

  18. Recent aspects of the proton transfer reaction in H-bonded complexes (United States)

    Szafran, Mirosław


    Proton transfer processes cover a very wide range of situations and time scales and they are of great interest from the viewpoint of chemical reactions in solution. These processes can occur via thermally activated crossing or tunneling. This review considers various aspects of this many-faceted field. Spectroscopic, dielectric, colligative and energetic properties and structures of various species with H-bonds are examined. Proton transfer reactions in water and organic solvents, and the contribution of various H-bonded species and ions to these processes are discussed. Among other topics, this survey includes the effects of solvent, acid-base stoichiometry, concentration, temperature and impurity on proton transfer reactions in complexes of phenols and carboxylic acids with amines, pyridines and pyridine N-oxides. The contribution of the nonstoichiometric acid-base complexes and ionic species to the reversible proton transfer mechanism is discussed.

  19. Studying Chemical Reactions, One Bond at a Time, with Single Molecule AFM Techniques (United States)

    Fernandez, Julio M.


    The mechanisms by which mechanical forces regulate the kinetics of a chemical reaction are unknown. In my lecture I will demonstrate how we use single molecule force-clamp spectroscopy and protein engineering to study the effect of force on the kinetics of thiol/disulfide exchange. Reduction of disulfide bond via the thiol/disulfide exchange chemical reaction is crucial in regulating protein function and is of common occurrence in mechanically stressed proteins. While reduction is thought to proceed through a substitution nucleophilic bimolecular (SN2) reaction, the role of a mechanical force in modulating this chemical reaction is unknown. We apply a constant stretching force to single engineered disulfide bonds and measure their rate of reduction by dithiothreitol (DTT). We find that while the reduction rate is linearly dependent on the concentration of DTT, it is exponentially dependent on the applied force, increasing 10-fold over a 300 pN range. This result predicts that the disulfide bond lengthens by 0.34 å at the transition state of the thiol/disulfide exchange reaction. In addition to DTT, we also study the reduction of the engineered disulfide bond by the E. coli enzyme thioredoxin (Trx). Thioredoxins are enzymes that catalyze disulfide bond reduction in all organisms. As before, we apply a mechanical force in the range of 25-450 pN to the engineered disulfide bond substrate and monitor the reduction of these bonds by individual enzymes. In sharp contrast with the data obtained with DTT, we now observe two alternative forms of the catalytic reaction, the first requiring a reorientation of the substrate disulfide bond, causing a shortening of the substrate polypeptide by 0.76±0.07 å, and the second elongating the substrate disulfide bond by 0.21±0.01 å. These results support the view that the Trx active site regulates the geometry of the participating sulfur atoms, with sub-ångström precision, in order to achieve efficient catalysis. Single molecule

  20. Ambient Mechanochemical Solid-State Reactions of Carbon Nanotubes and Their Reactions via Covalent Coordinate Bond in Solution (United States)

    Kabbani, Mohamad A.

    In its first part, this thesis deals with ambient mechanochemical solid-state reactions of differently functionalized multiple walled carbon nanotubes (MWCNTs) while in its second part it investigates the cross-linking reactions of CNTs in solution via covalent coordinate bonds with transitions metals and carboxylate groups decorating their surfaces. In the first part a series of mechanochemical reactions involving different reactive functionalities on the CNTs such as COOH/OH, COOH/NH2 and COCl/OH were performed. The solid-state unzipping of CNTs leading to graphene formation was confirmed using spectroscopic, thermal and electron microscopy techniques. The non-grapheme products were established using in-situ quadruple mass spectroscopy. The experimental results were confirmed by theoretical simulation calculations using the 'hot spots' protocol. The kinetics of the reaction between MWCNT-COOH and MWCNT-OH was monitored using variable temperature Raman spectroscopy. The low activation energy was discussed in terms of hydrogen bond mediated proton transfer mechanism. The second part involves the reaction of MWCNTII COOH with Zn (II) and Cu (II) to form CNT metal-organic frame (MOFs) products that were tested for their effective use as counter-electrodes in dyes sensitized solar cells (DSSC). The thesis concludes by the study of the room temperature reaction between the functionalized graphenes, GOH and G'-COOH followed by the application of compressive loads. The 3D solid graphene pellet product ( 0.6gm/cc) is conductive and reflective with a 35MPa ultimate strength as compared to 10MPa strength of graphite electrode ( 2.2gm/cc).

  1. Absolute rate constants for the reaction of hypochlorous acid with protein side chains and peptide bonds

    DEFF Research Database (Denmark)

    Pattison, D I; Davies, Michael Jonathan


    , absolute second-order rate constants for the reactions of HOCl with protein side chains, model compounds, and backbone amide (peptide) bonds have been determined at physiological pH values. The reactivity of HOCl with potential reactive sites in proteins is summarized by the series: Met (3.8 x 10(7) M(-1......) x s(-1)) > backbone amides (10-10(-3) M(-1) x s(-1)) > Gln(0.03 M(-1) x s(-1)) approximately Asn (0.03 M(-1) x s(-1)). The rate constants for reaction of HOCl with backbone amides (peptide bonds) vary by 4 orders of magnitude with uncharged peptide bonds reacting more readily with HOCl than those....... Proteins are major targets for this oxidant, and such reaction results in side-chain modification, backbone fragmentation, and cross-linking. Despite a wealth of qualitative data for such reactions, little absolute kinetic data is available to rationalize the in vitro and in vivo data. In this study...

  2. Hydroxyalkoxy radicals: importance of intramolecular hydrogen bonding on chain branching reactions in the combustion and atmospheric decomposition of hydrocarbons. (United States)

    Davis, Alexander C; Francisco, Joseph S


    During both the atmospheric oxidation and combustion of volatile organic compounds, sequential addition of oxygen can lead to compounds that contain multiple hydrogen-bonding sites. The presence of two or more of these sites on a hydrocarbon introduces the possibility of intramolecular H-bonding, which can have a stabilizing effect on the reactants, products, and transition states of subsequent reactions. The present work compares the absolute energies of two sets of conformations, those that contain intramolecular H-bonds and those that lack intramolecular H-bonds, for each reactant, product, and transition state species in the 1,2 through 1,7 H-migrations and Cα-Cβ, Cα-H, and Cα-OH-bond scission reactions in the n-hydroxyeth-1-oxy through n-hydroxyhex-1-oxy radicals, for n ranging from 1 to 6. The difference in energy between the two conformations represents the balance between the stabilizing effects of H-bonds and the steric cost of bringing the two H-bonding sites together. The effect of intramolecular H-bonding and the OH group is assessed by comparing the net intramolecular H-bond stabilization energies, the reaction enthalpies, and barrier heights of the n-hydroxyalkoxy radical reactions with the corresponding alkoxy radicals values. The results suggest that there is a complex dependence on the location of the two H-bonding groups, the location of the abstraction or bond scission, and the shape of the transition state that dictates the extent to which intramolecular H-bonding effects the relative importance of H-migration and bond scission reactions for each n-hydroxyalkoxy radical. These findings have important implications for future studies on hydrocarbons with multiple H-bonding sites.

  3. Effect of hot isostatic pressing on reaction-bonded silicon nitride (United States)

    Watson, G. K.; Moore, T. J.; Millard, M. L.


    Specimens of nearly theoretical density have been obtained through the isostatic hot pressing of reaction-bonded silicon nitride under 138 MPa of pressure for two hours at 1850, 1950, and 2050 C. An amorphous phase that is introduced by the hot isostatic pressing partly accounts for the fact that while room temperature flexural strength more than doubles, the 1200 C flexural strength increases significantly only after pressing at 2050 C.

  4. Irreversible bonding of polyimide and polydimethylsiloxane (PDMS) based on a thiol-epoxy click reaction

    International Nuclear Information System (INIS)

    Hoang, Michelle V; Chung, Hyun-Joong; Elias, Anastasia L


    Polyimide is one of the most popular substrate materials for the microfabrication of flexible electronics, while polydimethylsiloxane (PDMS) is the most widely used stretchable substrate/encapsulant material. These two polymers are essential in fabricating devices for microfluidics, bioelectronics, and the internet of things; bonding these materials together is a crucial challenge. In this work, we employ click chemistry at room temperature to irreversibly bond polyimide and PDMS through thiol-epoxy bonds using two different methods. In the first method, we functionalize the surfaces of the PDMS and polyimide substrates with mercaptosilanes and epoxysilanes, respectively, for the formation of a thiol-epoxy bond in the click reaction. In the second method, we functionalize one or both surfaces with mercaptosilane and introduce an epoxy adhesive layer between the two surfaces. When the surfaces are bonded using the epoxy adhesive without any surface functionalization, an extremely small peel strength (<0.01 N mm −1 ) is measured with a peel test, and adhesive failure occurs at the PDMS surface. With surface functionalization, however, remarkably higher peel strengths of ∼0.2 N mm −1 (method 1) and  >0.3 N mm −1 (method 2) are observed, and failure occurs by tearing of the PDMS layer. We envision that the novel processing route employing click chemistry can be utilized in various cases of stretchable and flexible device fabrication. (paper)

  5. Cleavage reactions of the complex ions derived from self-complementary deoxydinucleotides and alkali-metal ions using positive ion electrospray ionization with tandem mass spectrometry. (United States)

    Xiang, Yun; Abliz, Zeper; Takayama, Mitsuo


    The dissociation reactions of the adduct ions derived from the four self-complementary deoxydinucleotides, d(ApT), d(TpA), d(CpG), d(GpC), and alkali-metal ions were studied in detail by positive ion electrospray ionization multiple-stage mass spectrometry (ESI-MS(n)). For the [M + H](+) ions of the four deoxydinucleotides, elimination of 5'-terminus base or loss of both of 5'-terminus base and a deoxyribose were the major dissociation pathway. The ESI-MS(n) spectra showed that Li(+), Na(+), and Cs(+) bind to deoxydinucleotides mainly by substituting the H(+) of phosphate group, and these alkali-metal ions preferred to bind to pyrimidine bases rather than purine bases. For a given deoxydinucleotide, the dissociation pathway of [M + K](+) ions differed clearly from that of [M + Li](+), [M + Na](+), and [M + Cs](+) ions. Some interesting and characteristic cleavage reactions were observed in the product-ion spectra of [M + K](+) ions, including direct elimination of deoxyribose and HPO(3) from molecular ions. The fragmentation behavior of the [M + K](+) and [M + W](+) (W = Li, Na, Cs) adduct ions depend upon the sequence of bases, the interaction between alkali-metal ions and nucleobases, and the steric hindrance caused by bases.

  6. A broken-symmetry density functional study of structures, energies, and protonation states along the catalytic O-O bond cleavage pathway in ba3 cytochrome c oxidase from Thermus thermophilus. (United States)

    Han Du, Wen-Ge; Götz, Andreas W; Yang, Longhua; Walker, Ross C; Noodleman, Louis


    Broken-symmetry density functional calculations have been performed on the [Fea3, CuB] dinuclear center (DNC) of ba3 cytochrome c oxidase from Thermus thermophilus in the states of [Fea3(3+)-(HO2)(-)-CuB(2+), Tyr237(-)] and [Fea3(4+)[double bond, length as m-dash]O(2-), OH(-)-CuB(2+), Tyr237˙], using both PW91-D3 and OLYP-D3 functionals. Tyr237 is a special tyrosine cross-linked to His233, a ligand of CuB. The calculations have shown that the DNC in these states strongly favors the protonation of His376, which is above propionate-A, but not of the carboxylate group of propionate-A. The energies of the structures obtained by constrained geometry optimizations along the O-O bond cleavage pathway between [Fea3(3+)-(O-OH)(-)-CuB(2+), Tyr237(-)] and [Fea3(4+)[double bond, length as m-dash]O(2-)HO(-)-CuB(2+), Tyr237˙] have also been calculated. The transition of [Fea3(3+)-(O-OH)(-)-CuB(2+), Tyr237(-)] → [Fea3(4+)[double bond, length as m-dash]O(2-)HO(-)-CuB(2+), Tyr237˙] shows a very small barrier, which is less than 3.0/2.0 kcal mol(-1) in PW91-D3/OLYP-D3 calculations. The protonation state of His376 does not affect this O-O cleavage barrier. The rate limiting step of the transition from state A (in which O2 binds to Fea3(2+)) to state PM ([Fea3(4+)[double bond, length as m-dash]O(2-), OH(-)-CuB(2+), Tyr237˙], where the O-O bond is cleaved) in the catalytic cycle is, therefore, the proton transfer originating from Tyr237 to O-O to form the hydroperoxo [Fea3(3+)-(O-OH)(-)-CuB(2+), Tyr237(-)] state. The importance of His376 in proton uptake and the function of propionate-A/neutral-Asp372 as a gate to prevent the proton from back-flowing to the DNC are also shown.

  7. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions (United States)

    Cortright, Randy D [Madison, WI; Dumesic, James A [Verona, WI


    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  8. Computational Study of Pincer Iridium Catalytic Systems: C-H, N-H, and C-C Bond Activation and C-C Coupling Reactions (United States)

    Zhou, Tian

    Computational chemistry has achieved vast progress in the last decades in the field, which was considered to be only experimental before. DFT (density functional theory) calculations have been proven to be able to be applied to large systems, while maintaining high accuracy. One of the most important achievements of DFT calculations is in exploring the mechanism of bond activation reactions catalyzed by organometallic complexes. In this dissertation, we discuss DFT studies of several catalytic systems explored in the lab of Professor Alan S. Goldman. Headlines in the work are: (1) (R4PCP)Ir alkane dehydrogenation catalysts are highly selective and different from ( R4POCOP)Ir catalysts, predicting different rate-/selectivity-determining steps; (2) The study of the mechanism for double C-H addition/cyclometalation of phenanthrene or biphenyl by (tBu4PCP)Ir(I) and ( iPr4PCP)Ir illustrates that neutral Ir(III) C-H addition products can undergo a very facile second C-H addition, particularly in the case of sterically less-crowded Ir(I) complexes; (3) (iPr4PCP)Ir pure solid phase catalyst is highly effective in producing high yields of alpha-olefin products, since the activation enthalpy for dehydrogenation is higher than that for isomerization via an allyl pathway; higher temperatures favor the dehydrogenation/isomerization ratio; (4) (PCP)Ir(H)2(N2H4) complex follows a hydrogen transfer mechanism to undergo both dehydrogenation to form N 2 and H2, as well as hydrogen transfer followed by N-N bond cleavage to form NH3, N2, and H2; (5) The key for the catalytic effect of solvent molecule in CO insertion reaction for RMn(CO)5 is hydrogen bond assisted interaction. The basicity of the solvent determines the strength of the hydrogen bond interaction during the catalytic path and determines the catalytic power of the solvent; and (6) Dehydrogenative coupling of unactivated C-H bonds (intermolecular vinyl-vinyl, intramolecular vinyl-benzyl) is catalyzed by precursors of the

  9. Bond-formation versus electron transfer: C-C-coupling reactions of hydrocarbon dications with benzene. (United States)

    Roithová, Jana; Schröder, Detlef


    The bimolecular reactions of several hydrocarbon dications C(m)H(n)(2+) (m = 6-10, n = 4-9) with neutral benzene are investigated by tandem mass spectrometry using a multipole instrument. Not surprisingly, the major reaction of C(m)H(n)(2+) with benzene corresponds to electron transfer from the neutral arene to the dication resulting in the pair of monocationic products C(m)H(n)(+) + C(6)H(6)(+). In addition, also dissociative electron transfer takes place, whereas proton transfer from the C(m)H(n)(2+) dication to neutral benzene is almost negligible. Interestingly, the excess energy liberated upon electron transfer from the neutral arene to the C(m)H(n)(2+) dication is not equally partitioned in the monocationic products in that the cations arising from the dicationic precursor have a higher internal energy content than the monocations formed from the neutral reaction partner. In addition to the reactions leading to monocationic product ions, bond-forming reactions with maintenance of the two-fold charge are observed, which lead to a condensation of the C(m)H(n)(2+) dications with neutral benzene under formation of intermediate C(m+6)H(n+6)(2+) species and then undergo subsequent losses of molecular hydrogen or neutral acetylene. This reaction complements a recently proposed dicationic route for the formation of polycyclic aromatic hydrocarbons under extreme conditions such as they exist in interstellar environments.

  10. Transition-metal-catalyzed enantioselective heteroatom-hydrogen bond insertion reactions. (United States)

    Zhu, Shou-Fei; Zhou, Qi-Lin


    Carbon-heteroatom bonds (C-X) are ubiquitous and are among the most reactive components of organic compounds. Therefore investigations of the construction of C-X bonds are fundamental and vibrant fields in organic chemistry. Transition-metal-catalyzed heteroatom-hydrogen bond (X-H) insertions via a metal carbene or carbenoid intermediate represent one of the most efficient approaches to form C-X bonds. Because of the availability of substrates, neutral and mild reaction conditions, and high reactivity of these transformations, researchers have widely applied transition-metal-catalyzed X-H insertions in organic synthesis. Researchers have developed a variety of rhodium-catalyzed asymmetric C-H insertion reactions with high to excellent enantioselectivities for a wide range of substrates. However, at the time that we launched our research, very few highly enantioselective X-H insertions had been documented primarily because of a lack of efficient chiral catalysts and indistinct insertion mechanisms. In this Account, we describe our recent studies of copper- and iron-catalyzed asymmetric X-H insertion reactions by using chiral spiro-bisoxazoline and diimine ligands. The copper complexes of chiral spiro-bisoxazoline ligands proved to be highly enantioselective catalysts for N-H insertions of α-diazoesters into anilines, O-H insertions of α-diazoesters into phenols and water, O-H insertions of α-diazophosphonates into alcohols, and S-H insertions of α-diazoesters into mercaptans. The iron complexes of chiral spiro-bisoxazoline ligands afforded the O-H insertion of α-diazoesters into alcohols and water with unprecedented enantioselectivities. The copper complexes of chiral spiro-diimine ligands exhibited excellent reactivity and enantioselectivity in the Si-H insertion of α-diazoacetates into a wide range of silanes. These transition-metal-catalyzed X-H insertions have many potential applications in organic synthesis because the insertion products, including chiral

  11. Bond-forming reactions of small triply charged cations with neutral molecules. (United States)

    Fletcher, James D; Parkes, Michael A; Price, Stephen D


    Time-of-flight mass spectrometry reveals that atomic and small molecular triply charged cations exhibit extensive bond-forming chemistry, following gas-phase collisions with neutral molecules. These experiments show that at collision energies of a few eV, I(3+) reacts with a variety of small molecules to generate molecular monocations and molecular dications containing iodine. Xe(3+) and CS2(3+) react in a similar manner to I(3+), undergoing bond-forming reactions with neutrals. A simple model, involving relative product energetics and electrostatic interaction potentials, is used to account for the observed reactivity. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. C-Terminally modified peptides via cleavage of the HMBA linker by O-, N- or S-nucleophiles

    DEFF Research Database (Denmark)

    Hansen, Jonas; Diness, Frederik; Meldal, Morten Peter


    A large variety of C-terminally modified peptides was obtained by nucleophilic cleavage of the ester bond in solid phase linked peptide esters of 4-hydroxymethyl benzamide (HMBA). The developed methods provided peptides, C-terminally functionalized as esters, amides and thioesters, with high purity...... directly from the resin in a single reaction step. A comprehensive screening of the reaction conditions and scope for nucleophilic cleavage of peptides from the HMBA linker was performed....

  13. Selective molecular recognition, C-H bond activation, and catalysis in nanoscale reaction vessels

    Energy Technology Data Exchange (ETDEWEB)

    Fiedler, Dorothea; Leung, Dennis H.; Raymond, Kenneth N.; Bergman, Robert G.


    Supramolecular chemistry represents a way to mimic enzyme reactivity by using specially designed container molecules. We have shown that a chiral self-assembled M{sub 4}L{sub 6} supramolecular tetrahedron can encapsulate a variety of cationic guests, with varying degrees of stereoselectivity. Reactive iridium guests can be encapsulated and the C-H bond activation of aldehydes occurs, with the host cavity controlling the ability of substrates to interact with the metal center based upon size and shape. In addition, the host container can act as a catalyst by itself. By restricting reaction space and preorganizing the substrates into reactive conformations, it accelerates the sigmatropic rearrangement of enammonium cations.

  14. Organometallic Bonding in an Ullmann-Type On-Surface Chemical Reaction Studied by High-Resolution Atomic Force Microscopy. (United States)

    Kawai, Shigeki; Sadeghi, Ali; Okamoto, Toshihiro; Mitsui, Chikahiko; Pawlak, Rémy; Meier, Tobias; Takeya, Jun; Goedecker, Stefan; Meyer, Ernst


    The on-surface Ullmann-type chemical reaction synthesizes polymers by linking carbons of adjacent molecules on solid surfaces. Although an organometallic compound is recently identified as the reaction intermediate, little is known about the detailed structure of the bonded organometallic species and its influence on the molecule and the reaction. Herein atomic force microscopy at low temperature is used to study the reaction with 3,9-diiododinaphtho[2,3-b:2',3'-d]thiophene (I-DNT-VW), which is polymerized on Ag(111) in vacuum. Thermally sublimated I-DNT-VW picks up a Ag surface atom, forming a CAg bond at one end after removing an iodine. The CAg bond is usually short-lived, and a CAgC organometallic bond immediately forms with an adjacent molecule. The existence of the bonded Ag atoms strongly affects the bending angle and adsorption height of the molecular unit. Density functional theory calculations reveal the bending mechanism, which reveals that charge from the terminus of the molecule is transferred via the Ag atom into the organometallic bond and strengths the local adsorption to the substrate. Such deformations vanish when the Ag atoms are removed by annealing and CC bonds are established. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. PhnY and PhnZ comprise a new oxidative pathway for enzymatic cleavage of a carbon-phosphorus bond

    DEFF Research Database (Denmark)

    McSorley, Fern R.; Wyatt, Peter W.; Martinez, Ascuncion


    The sequential activities of PhnY, an α-ketoglutarate/Fe(II)-dependent dioxygenase, and PhnZ, a Fe(II)-dependent enzyme of the histidine-aspartate motif hydrolase family, cleave the carbon-phosphorus bond of the organophosphonate natural product 2-aminoethylphosphonic acid. PhnY adds a hydroxyl g...

  16. Hydrolysis of Surfactants Containing Ester Bonds: Modulation of Reaction Kinetics and Important Aspects of Surfactant Self-Assembly (United States)

    Lundberg, Dan; Stjerndahl, Maria


    The effects of self-assembly on the hydrolysis kinetics of surfactants that contain ester bonds are discussed. A number of examples on how reaction rates and apparent reaction orders can be modulated by changes in the conditions, including an instance of apparent zero-order kinetics, are presented. Furthermore, it is shown that the examples on…

  17. Terminal uranium(V/VI) nitride activation of carbon dioxide and carbon disulfide. Factors governing diverse and well-defined cleavage and redox reactions

    Energy Technology Data Exchange (ETDEWEB)

    Cleaves, Peter A.; Gardner, Benedict M.; Liddle, Stephen T. [School of Chemistry, The University of Manchester (United Kingdom); Kefalidis, Christos E.; Maron, Laurent [LPCNO, CNRS and INSA, Universite Paul Sabatier, Toulouse (France); Tuna, Floriana; McInnes, Eric J.L. [School of Chemistry and Photon Science Institute, The University of Manchester (United Kingdom); Lewis, William [School of Chemistry, The University of Nottingham (United Kingdom)


    The reactivity of terminal uranium(V/VI) nitrides with CE{sub 2} (E=O, S) is presented. Well-defined C=E cleavage followed by zero-, one-, and two-electron redox events is observed. The uranium(V) nitride [U(Tren{sup TIPS})(N)][K(B15C5){sub 2}] (1, Tren{sup TIPS}=N(CH{sub 2}CH{sub 2}NSiiPr{sub 3}){sub 3}; B15C5=benzo-15-crown-5) reacts with CO{sub 2} to give [U(Tren{sup TIPS})(O)(NCO)][K(B15C5){sub 2}] (3), whereas the uranium(VI) nitride [U(Tren{sup TIPS})(N)] (2) reacts with CO{sub 2} to give isolable [U(Tren{sup TIPS})(O)(NCO)] (4); complex 4 rapidly decomposes to known [U(Tren{sup TIPS})(O)] (5) with concomitant formation of N{sub 2} and CO proposed, with the latter trapped as a vanadocene adduct. In contrast, 1 reacts with CS{sub 2} to give [U(Tren{sup TIPS})(κ{sup 2}-CS{sub 3})][K(B15C5){sub 2}] (6), 2, and [K(B15C5){sub 2}][NCS] (7), whereas 2 reacts with CS{sub 2} to give [U(Tren{sup TIPS})(NCS)] (8) and ''S'', with the latter trapped as Ph{sub 3}PS. Calculated reaction profiles reveal outer-sphere reactivity for uranium(V) but inner-sphere mechanisms for uranium(VI); despite the wide divergence of products the initial activation of CE{sub 2} follows mechanistically related pathways, providing insight into the factors of uranium oxidation state, chalcogen, and NCE groups that govern the subsequent divergent redox reactions that include common one-electron reactions and a less-common two-electron redox event. Caution, we suggest, is warranted when utilising CS{sub 2} as a reactivity surrogate for CO{sub 2}. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Phosphinocyclodextrins as confining units for catalytic metal centres. Applications to carbon–carbon bond forming reactions

    Directory of Open Access Journals (Sweden)

    Matthieu Jouffroy


    Full Text Available The capacity of two cavity-shaped ligands, HUGPHOS-1 and HUGPHOS-2, to generate exclusively singly phosphorus-ligated complexes, in which the cyclodextrin cavity tightly wraps around the metal centre, was explored with a number of late transition metal cations. Both cyclodextrin-derived ligands were assessed in palladium-catalysed Mizoroki–Heck coupling reactions between aryl bromides and styrene on one hand, and the rhodium-catalysed asymmetric hydroformylation of styrene on the other hand. The inability of both chiral ligands to form standard bis(phosphine complexes under catalytic conditions was established by high-pressure NMR studies and shown to have a deep impact on the two carbon–carbon bond forming reactions both in terms of activity and selectivity. For example, when used as ligands in the rhodium-catalysed hydroformylation of styrene, they lead to both high isoselectivity and high enantioselectivity. In the study dealing with the Mizoroki–Heck reactions, comparative tests were carried out with WIDEPHOS, a diphosphine analogue of HUGPHOS-2.

  19. Carbon-Heteroatom Bond Formation by an Ultrasonic Chemical Reaction for Energy Storage Systems. (United States)

    Kim, Hyun-Tak; Shin, HyeonOh; Jeon, In-Yup; Yousaf, Masood; Baik, Jaeyoon; Cheong, Hae-Won; Park, Noejung; Baek, Jong-Beom; Kwon, Tae-Hyuk


    The direct formation of CN and CO bonds from inert gases is essential for chemical/biological processes and energy storage systems. However, its application to carbon nanomaterials for improved energy storage remains technologically challenging. A simple and very fast method to form CN and CO bonds in reduced graphene oxide (RGO) and carbon nanotubes (CNTs) by an ultrasonic chemical reaction is described. Electrodes of nitrogen- or oxygen-doped RGO (N-RGO or O-RGO, respectively) are fabricated via the fixation between N 2 or O 2 carrier gas molecules and ultrasonically activated RGO. The materials exhibit much higher capacitance after doping (133, 284, and 74 F g -1 for O-RGO, N-RGO, and RGO, respectively). Furthermore, the doped 2D RGO and 1D CNT materials are prepared by layer-by-layer deposition using ultrasonic spray to form 3D porous electrodes. These electrodes demonstrate very high specific capacitances (62.8 mF cm -2 and 621 F g -1 at 10 mV s -1 for N-RGO/N-CNT at 1:1, v/v), high cycling stability, and structural flexibility. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Effect of loading rate on dynamic fracture of reaction bonded silicon nitride (United States)

    Liaw, B. M.; Kobayashi, A. S.; Emery, A. F.


    Wedge-loaded, modified tapered double cantilever beam (WL-MTDCB) specimens under impact loading were used to determine the room temperature dynamic fracture response of reaction bonded silicon nitride (RBSN). The crack extension history, with the exception of the terminal phase, was similar to that obtained under static loading. Like its static counterpart, a distinct crack acceleration phase, which was not observed in dynamic fracture of steel and brittle polymers, was noted. Unlike its static counterpart, the crack continued to propagate at nearly its terminal velocity under a low dynamic stress intensity factor during the terminal phase of crack propagation. These and previously obtained results for glass and RBSN show that dynamic crack arrest under a positive dynamic stress intensity factor is unlikely in static and impact loaded structural ceramics.

  1. Experimental investigation of the reaction-build-up for plastic bonded explosive JOB-9003

    Directory of Open Access Journals (Sweden)

    Xu Zhang


    Full Text Available In order to measure the shock initiation behavior of JOB-9003 explosives, Al-based embedded multiple electromagnetic particle velocity gauge technique has been developed. In addition, a gauge element called the shock tracker has been used to monitor the progress of the shock front as a function of time, thus providing a position–time trajectory of the wave front as it moves through the explosive sample. The data is used to determine the position and time for shock to detonation transition. All the experimental results show that the rising-up time of Al-based electromagnetic particle velocity gauge is very short (<20 ns; the reaction-build-up velocity profiles and the position–time for shock to detonation transition of HMX-based plastic bonded explosive (PBX JOB-9003 with 1–8 mm depth from the origin of the impact plane under different initiation pressures were obtained with high accuracy.

  2. Bond dissociation enthalpies of a pinoresinol lignin model compound (United States)

    Thomas Elder


    ABSTRACT: The pinoresinol unit is one of the principal interunit linkages in lignin. As such, its chemistry and properties are of major importance in understanding the behavior or the polymer. This work examines the homolytic cleavage of the pinoresinol system, representing the initial step in thermal degradation. The bond dissociation enthalpy of this reaction has...

  3. Variational RRKM calculation of thermal rate constant for C–H bond fission reaction of nitro methane

    Directory of Open Access Journals (Sweden)

    Afshin Taghva Manesh


    Full Text Available The present work provides quantitative results for the rate constants of unimolecular C–H bond fission reactions in the nitro methane at elevated temperatures up to 2000 K. In fact, there are three different hydrogen atoms in the nitro methane. The potential energy surface for each C–H bond fission reaction of nitro methane was investigated by ab initio calculations. The geometry and vibrational frequencies of the species involved in this process were optimized at the MP2 level of theory, using the cc-pvdz basis set. Since C–H bond fission channel is a barrierless reaction, we have used variational RRKM theory to predict rate coefficients. By means of calculated rate coefficients at different temperatures, the Arrhenius expression of the channel over the temperature range of 100–2000 K is k(T = 5.9E19∗exp(−56274.6/T.

  4. Electron transfer and bond breaking: Recent advances (United States)

    Costentin, Cyrille; Robert, Marc; Savéant, Jean-Michel


    After a reminder of concerted/stepwise mechanistic dichotomy and other basic concepts and facts in the field, a series of recent advances is discussed. Particular emphasis is laid on the interactions between the fragments formed upon bond cleavage. These interactions may persist even in polar solvents and have important consequences on dissociative electron transfer kinetics and on the competition between concerted and stepwise pathways. Cleavage of ion radicals and its reverse reaction are examples of single electron transfer reactions concerted with bond cleavage and bond formation, respectively. The case of aromatic carbon-heteroatom bonds is particularly worth examination since symmetry restrictions impose circumventing a conical intersection. Reductive dehalogenases are involved in 'dehalorespiration' of anaerobic bacteria in which the role of dioxygen in aerobic organisms is played by major polychloride pollutants such as tetrachloroethylene. They offer an interesting illustration of how the coupling of electron transfer with bond breaking may be an important issue in natural processes. Applications of dissociative electron transfer concepts and models to mechanistic analysis in this class of enzymes will be discussed.

  5. Stability and Reactivity of Cyclometallated Naphthylamine Complexes in Pd-C Bond Insertion Reactions with Coordinated Alkynylphosphanes

    KAUST Repository

    Chen, Shuli


    Phenylbis(phenylethynyl)phosphane PhP(C≡CPh)2 coordinates regiospecifically to the α-methyl-chiral ortho-platinated and -palladated naphthylamine units at the positions trans to the nitrogen donors. The P→Pt coordination bond is kinetically inert, whereas the P→Pd bond is labile. Upon heating of these phosphane complexes at 70 °C, one of the C≡C bonds in the coordinated PhP(C≡CPh)2 was activated towards an intermolecular Pd-C bond insertion reaction with an external ortho-palladated naphthylamine ring. No intramolecular insertion reaction occurred. In contrast to its palladium analogue, the ortho-platinated ring is not reactive towards coordinated PhP(C≡CPh)2, although it can promote the Pd-C bond insertion reaction. However, despite the high kinetic stability of the P→Pt coordination, the organoplatinum unit is a noticeably weaker activator than its organopalladium counterpart. The chirality of the reacting ortho-metallated naphthylamine ligand exhibited high stereochemical influence on the formation of the new stereogenic phosphorus center during the course of these C-C bond-formation reactions. The coordination chemistry and the absolute stereochemistry of the dimetallic products were determined by single-crystal X-ray crystallographic analysis. The asymmetric monoinsertion of PhP(C≡CPh)2 coordinated to a cyclometallated N,N-dimethyl naphthyl/benzylamine template into the Pd-C bonds of N,N-dimethylnaphthylamine palladacycles has been demonstrated for the synthesis of a variety of new P-stereogenic homo- or heterodimetallic complexes. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Mechanisms of catalytic cleavage of benzyl phenyl ether in aqueous and apolar phases

    Energy Technology Data Exchange (ETDEWEB)

    He, Jiayue; Lu, Lu; Zhao, Chen; Mei, Donghai; Lercher, Johannes A.


    Catalytic pathways for the cleavage of ether bonds in benzyl phenyl ether (BPE) in liquid phase using Ni- and zeolite-based catalysts are explored. In the absence of catalysts, the C-O bond is selectively cleaved in water by hydrolysis, forming phenol and benzyl alcohol as intermediates, followed by alkylation. The hydronium ions catalyzing the reactions are provided by the dissociation of water at 523 K. Upon addition of HZSM-5, rates of hydrolysis and alkylation are markedly increased in relation to proton concentrations. In the presence of Ni/SiO2, the selective hydrogenolysis dominates for cleaving the Caliphatic-O bond. Catalyzed by the dual-functional Ni/HZSM-5, hydrogenolysis occurs as the major route rather than hydrolysis (minor route). In apolar undecane, the non-catalytic thermal pyrolysis route dominates. Hydrogenolysis of BPE appears to be the major reaction pathway in undecane in the presence of Ni/SiO2 or Ni/HZSM-5, almost completely suppressing radical reactions. Density functional theory (DFT) calculations strongly support the proposed C-O bond cleavage mechanisms on BPE in aqueous and apolar phases. These calculations show that BPE is initially protonated and subsequently hydrolyzed in the aqueous phase. Finally, DFT calculations suggest that the radical reactions in non-polar solvents lead to primary benzyl and phenoxy radicals in undecane, which leads to heavier condensation products as long as metals are absent for providing dissociated hydrogen.

  7. AlCl3catalyzed coupling of N-benzylic sulfonamides with 2-substituted cyanoacetates through carbon-nitrogen bond cleavage. (United States)

    Hu, Chen; Hong, Gang; Qian, Xiaofei; Kim, Kwang Rim; Zhu, Xiaoyan; Wang, Limin


    A new cross-coupling reaction of N-benzylic sulfonamides with 2-substituted cyanoacetates for the synthesis of 2-substituted benzylbenzene was reported. In the presence of AlCl 3 , a broad range of N-benzylic sulfonamides reacted smoothly with 2-substituted cyanoacetates to afford structurally diverse benzylbenzenes in moderate to excellent yields. The conversion could be enlarged to gram-scale efficiently. The practicability of this approach was further manifested in the synthesis of a related bioactive agent with high anti-inflammatory activity.

  8. Competition of electron transfer, dissociation, and bond-forming reactions in collisions of CO22+ with neutral CO2

    Czech Academy of Sciences Publication Activity Database

    Ricketts, Claire; Schröder, Detlef; Roithová, Jana; Schwarz, H.; Thissen, R.; Dutuit, O.; Žabka, Ján; Herman, Zdeněk; Price, S. D.


    Roč. 10, č. 33 (2008), s. 5135-5143 ISSN 1463-9076 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z40400503 Keywords : carbon dioxide * bond -forming reactions * dications Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.064, year: 2008

  9. Reactions of 4-nitro-1,2,3-triazole with alkylating agents and compounds with activated multiple bonds

    Energy Technology Data Exchange (ETDEWEB)

    Vereshchagin, L.I.; Kuznetsova, N.I.; Kirillova, L.P.; Shcherbakov, V.V.; Sukhanov, G.T.; Gareev, G.A.


    When 4-nitro-1,2,3-triazole is alkylated, a mixture of N1- and N2-isomers is formed, with the latter usually predominating. The same behavior is also observed in addition reactions of 4-nitrotriazole to activated multiple bonds.

  10. Cyclopalladated complexes containing 2-C6R4PPh2 ligands (R = H, F): one-electron electrochemical reduction leading to metal-carbon σ-bond cleavage via palladium(I). (United States)

    Kar, Gopa; Privér, Steven H; Jones, Lathe A; Guo, Si-Xuan; Torriero, Angel A J; Bond, Alan M; Bennett, Martin A; Bhargava, Suresh K


    Three new ortho-metallated palladium complexes, [Pd(O,O'-hfacac)(κ(2)-2-C6F4PPh2)] (), [Pd2(O,O'-hfacac)2(μ-2-C6F4PPh2)2] () and [Pd(O,O'-hfacac)(κC-2-C6F4PPh2)(PPh3)] () (hfacac = hexafluoroacetylacetonate), have been prepared and fully characterised. The electrochemical reductions of complexes , together with those of other cyclopalladated complexes containing 2-C6R4PPh2 ligands (R = H, F) were studied by cyclic, rotating disk and microelectrode voltammetry. Evidence for the one-electron reduction of [PdI(κ(2)-2-C6F4PPh2)(PPh2Fc)] () was obtained from coulometric analysis, although the product is unstable and undergoes further chemical processes. Preparative electro-reduction of [Pd2(μ-Br)2(κ(2)-2-C6F4PPh2)2] () in CH2Cl2 causes reductive cleavage of its Pd-C σ-bonds and formation of the complex [PdBr2{PPh2(2-C6F4H)}2] (); possible mechanisms are discussed.

  11. Palladium- and copper-mediated N-aryl bond formation reactions for the synthesis of biological active compounds

    Directory of Open Access Journals (Sweden)

    Burkhard Koenig


    Full Text Available N-Arylated aliphatic and aromatic amines are important substituents in many biologically active compounds. In the last few years, transition-metal-mediated N-aryl bond formation has become a standard procedure for the introduction of amines into aromatic systems. While N-arylation of simple aromatic halides by simple amines works with many of the described methods in high yield, the reactions may require detailed optimization if applied to the synthesis of complex molecules with additional functional groups, such as natural products or drugs. We discuss and compare in this review the three main N-arylation methods in their application to the synthesis of biologically active compounds: Palladium-catalysed Buchwald–Hartwig-type reactions, copper-mediated Ullmann-type and Chan–Lam-type N-arylation reactions. The discussed examples show that palladium-catalysed reactions are favoured for large-scale applications and tolerate sterically demanding substituents on the coupling partners better than Chan–Lam reactions. Chan–Lam N-arylations are particularly mild and do not require additional ligands, which facilitates the work-up. However, reaction times can be very long. Ullmann- and Buchwald–Hartwig-type methods have been used in intramolecular reactions, giving access to complex ring structures. All three N-arylation methods have specific advantages and disadvantages that should be considered when selecting the reaction conditions for a desired C–N bond formation in the course of a total synthesis or drug synthesis.

  12. Metal-Ion- and Hydrogen-Bond-Mediated Interstellar Prebiotic Chemistry: The First Step in the Formose Reaction. (United States)

    Thripati, Sorakayala; Ramabhadran, Raghunath O


    The formose reaction, which offers a feasible chemical pathway for the prebiotic synthesis of sugars, is a well-studied reaction for over two hundred and 50 years. Yet huge knowledge gaps exist even in the very first step of the formose reaction. In this work, we provide a new and otherwise unintuitive reaction pathway for the gas-phase conversion of formaldehyde to glycolaldehyde (the first step in the formose reaction) occurring in the interstellar medium (ISM). Employing electronic structure calculations (CCSD(T) and DFT methods), we exhaustively probe the role of various metal ions and small molecules detected in the ISM to propose a new mechanism wherein metal-oxygen interactions and hydrogen bonds cooperatively facilitate an otherwise implausible chemical reaction. The reactions involving Mg 2+ are throughout found to be barrierless, and those featuring Al + ions are noted to only have a small barrier. The proton affinities of the small molecules, metal-oxygen interactions, and the extent of C-C-bond formation are found to be the significant factors that influence the barrier heights. The mechanism is also shown to be consistent with well-known experimental details in the terrestrial formose reaction (which could, however, proceed through a different mechanism). Future experimental and theoretical scope arising out of this paper are subsequently discussed.

  13. Investigation of thermal conductivity and oxidation behaviour of reaction bonded aluminum nitride (RBAN) ceramics

    International Nuclear Information System (INIS)

    Salahi, E; Moztarzadeh, F.; Margoosian, V.; Heinrich, J. G.


    AlN samples have been produced by reaction bonding process using AlN and aluminum powders as starting materials. Different aluminum nitride and aluminum powders ratios were mixed in ethanol media, dried, isostatically and nitrided in (N 2 )atmosphere. Results showed that conversion of to AlN depends strongly on the amount of aluminum starting powder and decreased with increasing after a maximum at 25 Al wt %. Changing the particle size and morphology of the aluminum starting powder leads to change in the conversion ratio and microstructure of RBAN ceramics. Typical scanning electron micrographs of RBAN sample indicating primary and secondary aluminum nitride morphology and pore structure. The oxidation behavior of RABN samples showed the weight gain depends on the average particle size, morphology and amount of Al in starting mixture and pore structure. Samples have been manufactured with equi-axed morphology of Al starting powder have thermal conductivity higher than the samples have been manufactured with flake-like morphology. These differences were directly related to the different microstructure of RBAN samples

  14. Tunable differentiation of tertiary C-H bonds in intramolecular transition metal-catalyzed nitrene transfer reactions. (United States)

    Corbin, Joshua R; Schomaker, Jennifer M


    Metal-catalyzed nitrene transfer reactions are an appealing and efficient strategy for accessing tetrasubstituted amines through the direct amination of tertiary C-H bonds. Traditional catalysts for these reactions rely on substrate control to achieve site-selectivity in the C-H amination event; thus, tunability is challenging when competing C-H bonds have similar steric or electronic features. One consequence of this fact is that the impact of catalyst identity on the selectivity in the competitive amination of tertiary C-H bonds has not been well-explored, despite the potential for progress towards predictable and catalyst-controlled C-N bond formation. In this communication, we report investigations into tunable and site-selective nitrene transfers between tertiary C(sp 3 )-H bonds using a combination of transition metal catalysts, including complexes based on Ag, Mn, Rh and Ru. Particularly striking was the ability to reverse the selectivity of nitrene transfer by a simple change in the identity of the N-donor ligand supporting the Ag(i) complex. The combination of our Ag(i) catalysts with known Rh 2 (ii) complexes expands the scope of successful catalyst-controlled intramolecular nitrene transfer and represents a promising springboard for the future development of intermolecular C-H N-group transfer methods.

  15. Charge-dependent non-bonded interaction methods for use in quantum mechanical modeling of condensed phase reactions (United States)

    Kuechler, Erich R.

    Molecular modeling and computer simulation techniques can provide detailed insight into biochemical phenomena. This dissertation describes the development, implementation and parameterization of two methods for the accurate modeling of chemical reactions in aqueous environments, with a concerted scientific effort towards the inclusion of charge-dependent non-bonded non-electrostatic interactions into currently used computational frameworks. The first of these models, QXD, modifies interactions in a hybrid quantum mechanical/molecular (QM/MM) mechanical framework to overcome the current limitations of 'atom typing' QM atoms; an inaccurate and non-intuitive practice for chemically active species as these static atom types are dictated by the local bonding and electrostatic environment of the atoms they represent, which will change over the course of the simulation. The efficacy QXD model is demonstrated using a specific reaction parameterization (SRP) of the Austin Model 1 (AM1) Hamiltonian by simultaneously capturing the reaction barrier for chloride ion attack on methylchloride in solution and the solvation free energies of a series of compounds including the reagents of the reaction. The second, VRSCOSMO, is an implicit solvation model for use with the DFTB3/3OB Hamiltonian for biochemical reactions; allowing for accurate modeling of ionic compound solvation properties while overcoming the discontinuous nature of conventional PCM models when chemical reaction coordinates. The VRSCOSMO model is shown to accurately model the solvation properties of over 200 chemical compounds while also providing smooth, continuous reaction surfaces for a series of biologically motivated phosphoryl transesterification reactions. Both of these methods incorporate charge-dependent behavior into the non-bonded interactions variationally, allowing the 'size' of atoms to change in meaningful ways with respect to changes in local charge state, as to provide an accurate, predictive and

  16. Bipodal surface organometallic complexes with surface N-donor ligands and application to the catalytic cleavage of C-H and C-C bonds in n -Butane

    KAUST Repository

    Bendjeriou-Sedjerari, Anissa


    We present a new generation of "true vicinal" functions well-distributed on the inner surface of SBA15: [(Sî - Si-NH 2)(≡Si-OH)] (1) and [(≡Si-NH2)2] (2). From these amine-modified SBA15s, two new well-defined surface organometallic species [(≡Si-NH-)(≡Si-O-)]Zr(CH2tBu) 2 (3) and [(≡Si-NH-)2]Zr(CH2tBu) 2 (4) have been obtained by reaction with Zr(CH2tBu) 4. The surfaces were characterized with 2D multiple-quantum 1H-1H NMR and infrared spectroscopies. Energy-filtered transmission electron microscopy (EFTEM), mass balance, and elemental analysis unambiguously proved that Zr(CH2tBu)4 reacts with these vicinal amine-modified surfaces to give mainly bipodal bis(neopentyl)zirconium complexes (3) and (4), uniformly distributed in the channels of SBA15. (3) and (4) react with hydrogen to give the homologous hydrides (5) and (6). Hydrogenolysis of n-butane catalyzed by these hydrides was carried out at low temperature (100 C) and low pressure (1 atm). While (6) exhibits a bis(silylamido)zirconium bishydride, [(≡Si-NH-)2]Zr(H) 2 (6a) (60%), and a bis(silylamido)silyloxozirconium monohydride, [(≡Si-NH-)2(≡Si-O-)]ZrH (6b) (40%), (5) displays a new surface organometallic complex characterized by an 1H NMR signal at 14.46 ppm. The latter is assigned to a (silylimido)(silyloxo)zirconium monohydride, [(≡Si-Nî)(≡Si-O-)]ZrH (5b) (30%), coexistent with a (silylamido)(silyloxo)zirconium bishydride, [(≡Si-NH-)(≡Si-O-)] Zr(H)2 (5a) (45%), and a silylamidobis(silyloxo)zirconium monohydride, [(≡Si-NH-)(≡Si-O-)2]ZrH (5c) (25%). Surprisingly, nitrogen surface ligands possess catalytic properties already encountered with silicon oxide surfaces, but interestingly, catalyst (5) with chelating [N,O] shows better activity than (6) with chelating [N,N]. © 2013 American Chemical Society.

  17. Human topoisomerase IIα uses a two-metal-ion mechanism for DNA cleavage (United States)

    Deweese, Joseph E.; Burgin, Alex B.; Osheroff, Neil


    The DNA cleavage reaction of human topoisomerase IIα is critical to all of the physiological and pharmacological functions of the protein. While it has long been known that the type II enzyme requires a divalent metal ion in order to cleave DNA, the role of the cation in this process is not known. To resolve this fundamental issue, the present study utilized a series of divalent metal ions with varying thiophilicities in conjunction with DNA cleavage substrates that replaced the 3′-bridging oxygen of the scissile bond with a sulfur atom (i.e. 3′-bridging phosphorothiolates). Rates and levels of DNA scission were greatly enhanced when thiophilic metal ions were included in reactions that utilized sulfur-containing substrates. Based on these results and those of reactions that employed divalent cation mixtures, we propose that topoisomerase IIα mediates DNA cleavage via a two-metal-ion mechanism. In this model, one of the metal ions makes a critical interaction with the 3′-bridging atom of the scissile phosphate. This interaction greatly accelerates rates of enzyme-mediated DNA cleavage, and most likely is needed to stabilize the leaving 3′-oxygen. PMID:18653531

  18. Renaissance of Sandmeyer-Type Reactions: Conversion of Aromatic C-N Bonds into C-X Bonds (X = B, Sn, P, or CF3). (United States)

    Mo, Fanyang; Qiu, Di; Zhang, Yan; Wang, Jianbo


    The Sandmeyer reaction represents an important organic transformation that converts an arylamine to an aryl halide using Cu(I) halide via a diazonium salt intermediate. The reaction was first reported by Sandmeyer in 1884, and a number of named reactions closely related to it have been developed and widely applied in organic synthesis throughout the 20th century. These include the Pschorr reaction for the synthesis of biaryl tricycles, the Gomberg-Bachmann reaction for biaryl formations, the Balz-Schiemann reaction for C-F bond formations, and the Meerwein reaction for arylation of α,β-unsaturated carbonyl compounds. However, all these reactions were discovered before 1940. In 1977, Doyle and co-workers reported an organic phase diazotization process, and Kikukawa and Matsuda used aryldiazonium salts in transition metal-catalyzed cross-coupling reactions. However, completely new processes involving diazonium salts have been seldom reported since then, although aryldiazonium salts are widely utilized in modern organic synthesis. In the past few years, diazonium salt chemistry has been revisited and become a fast-growing research topic. Several novel transformations based on diazonium salts have been developed and have been practiced in organic synthesis. In 2010, we reported a direct conversion of arylamines to pinacol boronates through the reaction of in situ generated aryl diazonium salts with B 2 pin 2 . This new strategy is under metal-free conditions and thus completely avoids contamination by transition metals in the boron products. From readily available arylamines various functionalized arylboronates, some of which are difficult to access by other methods, can be easily obtained with this reaction. Mechanistic investigations indicate the reaction likely follows a radical mechanism, which is similar to traditional Sandmeyer-type reactions. Subsequently, modified reaction conditions for this transformation appeared in the literature, which include light

  19. Reaction path analysis of sodium-water reaction phenomena in support of chemical reaction model development

    International Nuclear Information System (INIS)

    Kikuchi, Shin; Ohshima, Hiroyuki; Hashimoto, Kenro


    Computational study of the sodium-water reaction at the gas (water) - liquid (sodium) interface has been carried out using ab initio (first-principle) method. A possible reaction channel has been identified for the stepwise OH bond dissociations of a single water molecule. The energetics including the binding energy of a water molecule to the sodium surface, the activation energies of the bond cleavages, and the reaction energies, have been evaluated, and the rate constants of the first and second OH bond-breakings have been compared. The results are used as the basis for constructing the chemical reaction model used in a multi-dimensional sodium-water reaction code, SERAPHIM, being developed by JAEA toward the safety assessment of the steam generator (SG) in a sodium-cooled fast reactor (SFR). (author)

  20. Hydrogen-bond detection in peptides by 1H-nuclear magnetic resonance through a hydrogen-chlorine exchange reaction

    International Nuclear Information System (INIS)

    Kondo, Michio; Nishi, Ichiro; Yamamoto, Makoto; Jelokhani-Niaraki, M.; Kodama, Hiroaki; Okamoto, Kouji.


    NMR spectroscopy is a versatile method for the conformational analysis of peptides and proteins. The hydrogen-chlorine exchange of amide NH protons is detected by 1 H NMR and used as a method to distinguish between intramolecularly hydrogen-bonded and solvent-exposed NH moieties. The method has been applied to hydrogen bond detection in naturally occurring antibiotic peptides, such as gramicidin S, and CH 3 CONH-X (X=alkyl- or aryl-) derivatives. The deuterium exchange method was compared with this method in parallel experiments. In the case of chlorine exchange, in contrast to deuterium exchange, the hydrogen-bonded amide protons are replaced much faster than their solvent-exposed counterparts and the duration of the experiments is considerably less. It is highly possible that the hydrogen-chlorine exchange reaction under the present experimental conditions, in the dark and at room temperature, proceeds through an electrophilic polar mechanism. (author)

  1. Intramolecular participation of amino groups in the cleavage and isomerization of ribonucleoside 3'-phosphodiesters: the role in stabilization of the phosphorane intermediate. (United States)

    Lain, Luigi; Lönnberg, Harri; Lönnberg, Tuomas


    A dinucleoside-3',5'-phosphodiester model, 5'-amino-4'-aminomethyl-5'-deoxyuridylyl-3',5'-thymidine, incorporating two aminomethyl functions in the 4'-position of the 3'-linked nucleoside has been prepared and its hydrolytic reactions studied over a wide pH range. The amino functions were found to accelerate the cleavage and isomerization of the phosphodiester linkage in both protonated and neutral form. When present in protonated form, the cleavage of the 3',5'-phosphodiester linkage and its isomerization to a 2',5'-linkage are pH-independent and 50-80 times as fast as the corresponding reactions of uridylyl-3',5'-uridine (3',5'-UpU). The cleavage of the resulting 2',5'-isomer is also accelerated, albeit less than with the 3',5'-isomer, whereas isomerization back to the 3',5'-diester is not enhanced. When the amino groups are deprotonated, the cleavage reactions of both isomers are again pH-independent and up to 1000-fold faster than the pH-independent cleavage of UpU. Interestingly, the 2'- to 3'-isomerization is now much faster than its reverse reaction. The mechanisms of these reactions are discussed. The rate accelerations are largely accounted for by electrostatic and hydrogen-bonding interactions of the protonated amino groups with the phosphorane intermediate. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Electron Reorganization in Chemical Reactions. Structural Changes from the Analysis of Bond Order Profiles

    Czech Academy of Sciences Publication Activity Database

    Ponec, Robert; Juzakov, G.; Cooper, D. L.


    Roč. 107, č. 12 (2003), s. 2100-2105 ISSN 0022-3654 R&D Projects: GA AV ČR IAA4072006; GA MŠk OC D9.20 Institutional research plan: CEZ:AV0Z4072921 Keywords : bond orders * bond order profiles * electron reorganization Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.679, year: 2003

  3. Mapping chemical bonding of reaction intermediates with femtosecond X-ray laser spectroscopy


    Wernet, Ph.; Beye, Martin; Kunnus, K.; Leitner, T.; Mazza, T.; Meyer, M.; Nordlund, D.; Odelius, M.; Quevedo, W.; Radcliffe, P.; Rajkovic, I.; Schlotter, B.; de Groot, F.; Scholz, Mirko; Schreck, S.


    We determine the pathways in the photo-dissociation reactions of Fe(CO)$_5$ both in the gas phase and in solution by mapping the valence electronic structure of the reaction intermediates with femtosecond X-ray laser spectroscopy.

  4. Hydrogen bond driven chemical reactions: Beckmann rearrangement of cyclohexanone oxime into epsilon-caprolactam in supercritical water. (United States)

    Boero, Mauro; Ikeshoji, Tamio; Liew, Chee Chin; Terakura, Kiyoyuki; Parrinello, Michele


    Recent experiments have shown that supercritical water (SCW) has the ability to accelerate and make selective synthetic organic reactions, thus replacing the common but environmentally harmful acid and basic catalysts. In an attempt to understand the intimate mechanism behind this observation, we analyze, via first-principles molecular dynamics, the Beckmann rearrangement of cyclohexanone oxime into epsilon-caprolactam in supercritical water, for which accurate experimental evidence has been reported. Differences in the wetting of the hydrophilic parts of the solute, enhanced by SCW, and the disrupted hydrogen bond network are shown to be crucial in triggering the reaction and in making it selective. Furthermore, the enhanced concentrations of H(+) in SCW play an important role in starting the reaction.

  5. Reactions of transition metal complexes with cyclic ethers

    International Nuclear Information System (INIS)

    Milstein, D.


    Three novel reactions of epoxides with homogeneous transition-metal catalysts have been explored: (a) the selective rearrangement of internal epoxides to ketones; (b) the cleavage of C-C bond in epoxides having electron-attracting substituents; (c) the transformation of terminal epoxides into esters. Based on an intensive kinetic study, a general mechanism for the transformations of epoxides is postulated

  6. Reaction dynamics. Extremely short-lived reaction resonances in Cl + HD (v = 1) → DCl + H due to chemical bond softening. (United States)

    Yang, Tiangang; Chen, Jun; Huang, Long; Wang, Tao; Xiao, Chunlei; Sun, Zhigang; Dai, Dongxu; Yang, Xueming; Zhang, Dong H


    The Cl + H2 reaction is an important benchmark system in the study of chemical reaction dynamics that has always appeared to proceed via a direct abstraction mechanism, with no clear signature of reaction resonances. Here we report a high-resolution crossed-molecular beam study on the Cl + HD (v = 1, j = 0) → DCl + H reaction (where v is the vibrational quantum number and j is the rotational quantum number). Very few forward scattered products were observed. However, two distinctive peaks at collision energies of 2.4 and 4.3 kilocalories per mole for the DCl (v' = 1) product were detected in the backward scattering direction. Detailed quantum dynamics calculations on a highly accurate potential energy surface suggested that these features originate from two very short-lived dynamical resonances trapped in the peculiar H-DCl (v' = 2) vibrational adiabatic potential wells that result from chemical bond softening. We anticipate that dynamical resonances trapped in such wells exist in many reactions involving vibrationally excited molecules. Copyright © 2015, American Association for the Advancement of Science.

  7. Nickel-Catalyzed C–O Bond-Cleaving Alkylation of Esters: Direct Replacement of the Ester Moiety by Functionalized Alkyl Chains

    KAUST Repository

    Liu, Xiangqian


    Two efficient protocols for the nickel-catalyzed aryl–alkyl cross-coupling reactions using esters as coupling components have been established. The methods enable the selective oxidative addition of nickel to acyl C–O and aryl C–O bonds and allow the aryl–alkyl cross-coupling via decarbonylative bond cleavage or through cleavage of a C–O bond with high efficiency and good functional group compatibility. The protocols allow the streamlined, unconventional utilization of widespread ester groups and their precursors, carboxylic acids and phenols, in synthetic organic chemistry.

  8. Nickel-Catalyzed Alkoxy-Alkyl Interconversion with Alkylborane Reagents through C−O Bond Activation of Aryl and Enol Ethers

    KAUST Repository

    Guo, Lin


    A nickel-catalyzed alkylation of polycyclic aromatic methyl ethers as well as methyl enol ethers with B-alkyl 9-BBN and trialkylborane reagents that involves the cleavage of stable C(sp2)−OMe bonds is described. The transformation has a wide substrate scope and good chemoselectivity profile while proceeding under mild reaction conditions; it provides a versatile way to form C(sp2)−C(sp3) bonds that does not suffer from β-hydride elimination. Furthermore, a selective and sequential alkylation process by cleavage of inert C−O bonds is presented to demonstrate the advantage of this method.

  9. Symmetric and unsymmetric "dumbbells" of Ru2-alkynyl units via C-C bond formation reactions. (United States)

    Chen, Wei-Zhong; Ren, Tong


    Oxidative homocoupling (Glaser) reaction of Ru2 compounds bearing peripheral ethyne resulted in symmetric dimers. Cross-coupling (Sonogashira) reaction between Ru2 compounds bearing peripheral iodo and ethyne groups yielded an unsymmetric dimer. Voltammetric data indicated that Ru2 units in the symmetric dimers are noninteracting, and the unsymmetric dimer is best described as a weakly coupled push-pull compound.

  10. Radical formation in the FMN-photosensitized reactions of unsaturated fatty acids bearing double bonds at different positions. (United States)

    Nishihama, Nao; Iwahashi, Hideo


    Although the reaction mechanisms through which flavin mononucleotide works as an endogenous photosensitizer have been investigated (Baier et al., 2006; Edwards and Silva, 2001; Pajares et al., 2001; Criado et al., 2003; Massad et al., 2008) [23-27], few studies have been performed for the reactions of flavin mononucleotide with unsaturated fatty acids. To examine the reactions of flavin mononucleotide with unsaturated fatty acids bearing a double bond at different positions, an electron spin resonance, a high performance liquid chromatography-electron spin resonance and a high performance liquid chromatography-electron spin resonance-mass spectrometry were employed. The control reaction mixtures contained 25μmolL(-1) of flavin mononucleotide, 1.0mmolL(-1) of FeSO4(NH4)2SO4, 10mmolL(-1) of cholic acid, 30mmolL(-1) of phosphate buffer (pH 7.4) and 0.1molL(-1) of α-(4-pyridyl-1-oxide)-N-tert-butylnitrone in deuterium oxide. In addition, it also contained 4.3mmolL(-1) of one of the following: (z)-11-octadecenoic acid, (z)-6-octadecenoic acid, (z)-9-octadecenoic acid or (z, z)-9, 12-octadecadienoic acid. The control reaction mixtures without FeSO4(NH4)2SO4 and α-(4-pyridyl-1-oxide)-N-tert-butylnitrone were exposed to the visible light at 436nm (7.8Jcm(-2)). After the irradiation, α-(4-pyridyl-1-oxide)-N-tert-butylnitrone was added. The reactions started from adding FeSO4(NH4)2SO4 and performed at 25°C for 1min. Electron spin resonance measurements of the control reaction mixtures showed prominent signals (α(N)=1.58mT and α(Hβ)=0.26mT). High performance liquid chromatography-electron spin resonance analyses of the control reaction mixtures showed prominent peaks at the retention times of 31.1min {(z)-6-octadecenoic acid}, 39.6min {(z)-9-octadecenoic acid}, 44.9min {(z)-11-octadecenoic acid} and 40.2min {(z, z)-9, 12-octadecadienoic acid}. High performance liquid chromatography-electron spin resonance-mass analyses of the control reaction mixtures showed that 4

  11. Organic reactions of sulfur dioxide. IV. A facile regiospecific hydrogen-deuterium exchange in olefins. Consequence of the intermediacy of allylic sulfinic acids in the ene reaction of sulfur dioxide with double bonds

    International Nuclear Information System (INIS)

    Masilamani, D.; Rogic, M.M.


    It is reported that the isomerization of the double bond, and presumably the rearrangement of the allylic sulfinic acid intermediates is completely suppressed in the presence of water. The reaction of sulfur dioxide with the double bond and the ene reaction in the resulting dipolar ions are apparently not affected. As a consequence, in the presence of deuterium oxide a very facile exchange of the allylic hydrogens and deuterium takes place

  12. Weak Intermolecular Hydrogen Bonds with Fluorine: Detection and Implications for Enzymatic/Chemical Reactions, Chemical Properties, and Ligand/Protein Fluorine NMR Screening. (United States)

    Dalvit, Claudio; Vulpetti, Anna


    It is known that strong hydrogen-bonding interactions play an important role in many chemical and biological systems. However, weak or very weak hydrogen bonds, which are often difficult to detect and characterize, may also be relevant in many recognition and reaction processes. Fluorine serving as a hydrogen-bond acceptor has been the subject of many controversial discussions and there are different opinions about it. It now appears that there is compelling experimental evidence for the involvement of fluorine in weak intramolecular or intermolecular hydrogen bonds. Using established NMR methods, we have previously characterized and measured the strengths of intermolecular hydrogen-bond complexes involving the fluorine moieties CH2 F, CHF2 , and CF3 , and have compared them with the well-known hydrogen-bond complex formed between acetophenone and the strong hydrogen-bond donor p-fluorophenol. We now report evidence for the formation of hydrogen bonds involving fluorine with significantly weaker donors, namely 5-fluoroindole and water. A simple NMR method is proposed for the simultaneous measurement of the strengths of hydrogen bonds between an acceptor and a donor or water. Important implications of these results for enzymatic/chemical reactions involving fluorine, for chemical and physical properties, and for ligand/protein (19) F NMR screening are analyzed through experiments and theoretical simulations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Transition metal catalyzed carbonylation reactions carbonylative activation of C-X bonds

    CERN Document Server

    Beller, Matthias


    This book provides students and researchers in organic synthesis with a detailed discussion of carbonylation from the basics through to applications. It discusses the past, present and future of carbonylation reactions.

  14. Oxidation effects on the mechanical properties of SiC fiber-reinforced reaction-bonded silicon nitride matrix composites (United States)

    Bhatt, Ramakrishna T.


    The room temperature mechanical properties of SiC fiber reinforced reaction bonded silicon nitride composites were measured after 100 hrs exposure at temperatures to 1400 C in nitrogen and oxygen environments. The composites consisted of approx. 30 vol percent uniaxially aligned 142 micron diameter SiC fibers in a reaction bonded Si3N4 matrix. The results indicate that composites heat treated in a nitrogen environment at temperatures to 1400 C showed deformation and fracture behavior equivalent to that of the as-fabricated composites. Also, the composites heat treated in an oxidizing environment beyond 400 C yielded significantly lower tensile strength values. Specifically in the temperature range from 600 to 1000 C, composites retained approx. 40 percent of their as-fabricated strength, and those heat treated in the temperatures from 1200 to 1400 C retained 70 percent. Nonetheless, for all oxygen heat treatment conditions, composite specimens displayed strain capability beyond the matrix fracture stress; a typical behavior of a tough composite.

  15. Residues of E. coli topoisomerase I conserved for interaction with a specific cytosine base to facilitate DNA cleavage (United States)

    Narula, Gagandeep; Tse-Dinh, Yuk-Ching


    Bacterial and archaeal topoisomerase I display selectivity for a cytosine base 4 nt upstream from the DNA cleavage site. Recently, the solved crystal structure of Escherichia coli topoisomerase I covalently linked to a single-stranded oligonucleotide revealed that R169 and R173 interact with the cytosine base at the −4 position via hydrogen bonds while the phenol ring of Y177 wedges between the bases at the −4 and the −5 position. Substituting R169 to alanine changed the selectivity of the enzyme for the base at the −4 position from a cytosine to an adenine. The R173A mutant displayed similar sequence selectivity as the wild-type enzyme, but weaker cleavage and relaxation activity. Mutation of Y177 to serine or alanine rendered the enzyme inactive. Although mutation of each of these residues led to different outcomes, R169, R173 and Y177 work together to interact with a cytosine base at the −4 position to facilitate DNA cleavage. These strictly conserved residues might act after initial substrate binding as a Molecular Ruler to form a protein–DNA complex with the scissile phosphate positioned at the active site for optimal DNA cleavage by the tyrosine hydroxyl nucleophile to facilitate DNA cleavage in the reaction pathway. PMID:22833607

  16. Heterolytic cleavage of ammonia N-H bond by bifunctional activation in silica-grafted single site Ta(V) imido amido surface complex. Importance of the outer sphere NH3 assistance

    KAUST Repository

    Gouré, Eric


    Ammonia N-H bond is cleaved at room temperature by the silica-supported tantalum imido amido complex [(≡SiO)2Ta(NH)(-NH2)], 2, if excess ammonia is present, but requires 150 °C to achieve the same reaction if only one equivalent NH3 is added to 2. MAS solid-state 15N NMR and in situ IR spectroscopic studies of the reaction of either 15N or 2H labeled ammonia with 2 show that initial coordination of the ammonia is followed by scrambling of either 15N or 2H among ammonia, amido and imido groups. Density functional theory (DFT) calculations with a cluster model [{(μ-O)[(H3SiO) 2SiO]2}Ta(NH)(-NH2)(NH3)], 2 q·NH3, show that the intramolecular H transfer from Ta-NH2 to TaNH is ruled out, but the H transfers from the coordinated ammonia to the amido and imido groups have accessible energy barriers. The energy barrier for the ammonia N-H activation by the Ta-amido group is energetically preferred relative to the Ta-imido group. The importance of excess NH3 for getting full isotope scrambling is rationalized by an outer sphere assistance of ammonia acting as proton transfer agent, which equalizes the energy barriers for H transfer from coordinated ammonia to the amido and imido groups. In contrast, additional coordinated ammonia does not favor significantly the H transfer. These results rationalize the experimental conditions used. © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2011.

  17. Evolution of chemical bonding and electron density rearrangements during D(3h) → D(3d) reaction in monolayered TiS2: a QTAIM and ELF study. (United States)

    Ryzhikov, Maxim R; Slepkov, Vladimir A; Kozlova, Svetlana G; Gabuda, Svyatoslav P


    Monolayered titanium disulfide TiS2, a prospective nanoelectronic material, was previously shown to be subject to an exothermic solid-state D3h -D3d reaction that proceeds via a newly discovered transition state. Here, we study the reaction in detail using topological methods of quantum chemistry (quantum theory of atoms in molecules and electron localization function analysis) and show how electron density and chemical bonding between the atoms change in the course of the reaction. The reaction is shown to undergo a series of topological catastrophes, associated with elementary chemical events such as break and formation of bonds (including the unexpected formation of S-S bonding between sulfur layers), and rearrangement of electron density of outer valence and core shells. Copyright © 2014 Wiley Periodicals, Inc.

  18. Structural and medium effects on the reactions of the cumyloxyl radical with intramolecular hydrogen bonded phenols. The interplay between hydrogen-bonding and acid-base interactions on the hydrogen atom transfer reactivity and selectivity. (United States)

    Salamone, Michela; Amorati, Riccardo; Menichetti, Stefano; Viglianisi, Caterina; Bietti, Massimo


    A time-resolved kinetic study on the reactions of the cumyloxyl radical (CumO(•)) with intramolecularly hydrogen bonded 2-(1-piperidinylmethyl)phenol (1) and 4-methoxy-2-(1-piperidinylmethyl)phenol (2) and with 4-methoxy-3-(1-piperidinylmethyl)phenol (3) has been carried out. In acetonitrile, intramolecular hydrogen bonding protects the phenolic O-H of 1 and 2 from attack by CumO(•) and hydrogen atom transfer (HAT) exclusively occurs from the C-H bonds that are α to the piperidine nitrogen (α-C-H bonds). With 3 HAT from both the phenolic O-H and the α-C-H bonds is observed. In the presence of TFA or Mg(ClO4)2, protonation or Mg(2+) complexation of the piperidine nitrogen removes the intramolecular hydrogen bond in 1 and 2 and strongly deactivates the α-C-H bonds of the three substrates. Under these conditions, HAT to CumO(•) exclusively occurs from the phenolic O-H group of 1-3. These results clearly show that in these systems the interplay between intramolecular hydrogen bonding and Brønsted and Lewis acid-base interactions can drastically influence both the HAT reactivity and selectivity. The possible implications of these findings are discussed in the framework of the important role played by tyrosyl radicals in biological systems.

  19. Recent developments in enzyme promiscuity for carbon-carbon bond-forming reactions

    NARCIS (Netherlands)

    Miao, Yufeng; Rahimi, Mehran; Geertsema, Edzard M; Poelarends, Gerrit J

    Numerous enzymes have been found to catalyze additional and completely different types of reactions relative to the natural activity they evolved for. This phenomenon, called catalytic promiscuity, has proven to be a fruitful guide for the development of novel biocatalysts for organic synthesis

  20. Efficient C-O and C-N bond forming cross-coupling reactions catalyzed by core-shell structured Cu/Cu2O nanowires

    KAUST Repository

    Elshewy, Ahmed M.


    Oxygen and Nitrogen containing compounds are of utmost importance due to their interesting and diverse biological activities. The construction of the C-O and C–N bonds is of significance as it opens avenues for the introduction of ether and amine linkages in organic molecules. Despite significant advancements in this field, the construction of C-O and C–N bonds is still a major challenge for organic chemists, due to the involvement of harsh reaction conditions or the use of expensive catalysts or ligands in many cases. Thus, it is a challenge to develop alternative, milder, cheaper and more reproducible methodologies for the construction of these types of bonds. Herein, we introduce a new efficient ligand free catalytic system for C-O and C-N bond formation reactions.

  1. Metal (Co, Fe) tribenzotetraazachlorin-fullerene conjugates: impact of direct p-bonding on the redox behaviour and oxygen reduction reaction

    CSIR Research Space (South Africa)

    Ozoemena, KI


    Full Text Available on the solution electrochemistry of these metallophthalocyanine (MPc)complexes. The more electron-withdrawing C60 substituent suppressed ORR compared to the –SO2Bu Metal (Co, Fe) tribenzotetraazachlorin–fulleren p-bonding on the redox behaviour and oxyge...., Metal (Co, Fe) tribenzotetraa behaviour and oxygen reduction reaction, Electrochem. Commun. (2009), doi:1 zachlorin–fullerene conjugates: Impact of direct p-bonding on the redox 0.1016/j.elecom.2009.04.011 ...

  2. C-C coupling reactions of superstrong CF3 groups with C(sp2)-H bonds: reactivity and synthetic utility of zero-valent niobium catalyst. (United States)

    Fuchibe, Kohei; Mitomi, Ken; Suzuki, Ryo; Akiyama, Takahiko


    It was found that zero-valent niobium is an efficient catalyst for the intramolecular C-C coupling reactions of o-aryl and o-alkenyl alpha,alpha,alpha-trifluorotoluene derivatives. The superstrong C-F bonds of CF3 groups and neighboring C(sp2)-H bonds were doubly activated, and fluorenes and indenes were obtained in good yields. The niobium fluorocarbenoid species is proposed to be the key intermediate.

  3. Thermal Shock Resistance of Si3N4/h -BN Composites Prepared via Catalytic Reaction-Bonding Route (United States)

    Yang, Wanli; Peng, Zhigang; Dai, Lina; Shi, Zhongqi; Jin, Zhihao


    Si3N4/h-BN ceramic matrix composites were prepared via a catalytic reaction-bonding route by using ZrO2 as nitridation catalyst, and the water quenching (fast cooling) and molten aluminum quenching tests (fast heating) were carried out to evaluate the thermal shock resistance of the composites. The results showed that the thermal shock resistance was improved obviously with the increase in h-BN content, and the critical thermal shock temperature difference (Δ T c) reaches as high as 780 °C when the h-BN content was 30 wt.%. The improvement of thermal shock resistance of the composites was mainly due to the crack tending to quasi static propagating at weak bonding interface between Si3N4 and h-BN with the increase in h-BN content. For the molten aluminum quenching test, the residual strength showed no obvious decrease compared with water quenching test, which could be caused by the mild stress condition on the surface. In addition, a calculated parameter, volumetric crack density ( N f), was presented to quantitative evaluating the thermal shock resistance of the composites in contrast to the conventional R parameter.

  4. Thermal effects on the mechanical properties of SiC fibre reinforced reaction-bonded silicon nitride matrix composites (United States)

    Bhatt, R. T.; Phillips, R. E.


    The elevated temperature four-point flexural strength and the room temperature tensile and flexural strength properties after thermal shock were measured for ceramic composites consisting of 30 vol pct uniaxially aligned 142 micron diameter SiC fibers in a reaction bonded Si3N4 matrix. The elevated temperature strengths were measured after 15 min of exposure in air at temperatures to 1400 C. Thermal shock treatment was accomplished by heating the composite in air for 15 min at temperatures to 1200 C and then quenching in water at 25 C. The results indicate no significant loss in strength properties either at temperature or after thermal shock when compared with the strength data for composites in the as-fabricated condition.

  5. Cell-surface acceleration of urokinase-catalyzed receptor cleavage

    DEFF Research Database (Denmark)

    Høyer-Hansen, G; Ploug, M; Behrendt, N


    relative to the reaction in solution. The time course of uPA-catalyzed cleavage of cell-bound uPAR was studied using U937 cells stimulated with phorbol 12-myristate 13-acetate. Only 30 min was required for 10 nM uPA to cleave 50% of the cell-bound uPAR. This uPA-catalyzed cleavage reaction was inhibited...

  6. Methandiide as a non-innocent ligand in carbene complexes: from the electronic structure to bond activation reactions and cooperative catalysis. (United States)

    Becker, Julia; Modl, Tanja; Gessner, Viktoria H


    The synthesis of a ruthenium carbene complex based on a sulfonyl-substituted methandiide and its application in bond activation reactions and cooperative catalysis is reported. In the complex, the metal-carbon interaction can be tuned between a Ru-C single bond with additional electrostatic interactions and a Ru=C double bond, thus allowing the control of the stability and reactivity of the complex. Hence, activation of polar and non-polar bonds (O-H, H-H) as well as dehydrogenation reactions become possible. In these reactions the carbene acts as a non-innocent ligand supporting the bond activation as nucleophilic center in the 1,2-addition across the metal-carbon double bond. This metal-ligand cooperativity can be applied in the catalytic transfer hydrogenation for the reduction of ketones. This concept opens new ways for the application of carbene complexes in catalysis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Reactions of uranium hexafluoride photolysis products (United States)

    Lyman, John L.; Laguna, Glenn; Greiner, N. R.


    This paper confirms that the ultraviolet photolysis reactions of UF6 in the B band spectral region is simple bond cleavage to UF5 and F. The photolysis products may either recombine to UF6 or the UF5 may dimerize, and ultimately polymerize, to solid UF5 particles. We use four methods to set an upper limit for the rate constant for recombination of krUF6 and UF5 after laser photolysis of the UF6 gas sample.

  8. Evidence for nonhydrogen bonded compound II in cyclic reaction of hemoglobin I from Lucina pectinata with hydrogen peroxide. (United States)

    De Jesús-Bonilla, Walleska; Ramírez-Meléndez, Eunice; Cerda, José; López-Garriga, Juan


    Studies that elucidate the behavior of the hemoglobins (Hbs) and myoglobins upon reaction with hydrogen peroxide are essential to the development of oxygen carrier substitutes. Stopped-flow kinetics and resonance Raman data show that the reaction between hydrogen peroxide and oxygenated and deoxygenated ferric Hb I (oxy- and deoxy-HbI) from Lucina pectinata produce compound I and compound II ferryl species. The rate constants ratio (k23/k41) between the formation of compound II from compound I (k23) and the oxidation of the ferrous HbI (k41, i.e., 25 M(-1) s(-1)) of 12 x 10(-4) M suggests that HbI has a peroxidative capacity for removing H2O2 from solution. Resonance Raman presents the formation of both, met-aquo-HbI and compound II ferryl species in the cyclic reaction of HbI with H2O2. The ferric HbI species is maintained by the presence of H2O2; it can produce HbI compound I, or it can be reduced to a deoxy-HbI derivative to form HbI compound II upon reaction with H2O2. The compound II ferryl vibration frequency appears at 805 and 769 cm(-1) for HbIFe(IV)=(16)O and HbIFe(IV)=(18)O species, respectively. This ferryl mode indicates the absence of hydrogen bonding between the carbonyl group of the distal Q64 and the HbIFe(IV)=O ferryl moiety. The observation suggests that both the trans-ligand effect and the polarizabilty of the HbI heme pocket are responsible for the observed ferryl oxo vibrational energy. The vibrational mode also suggests that the carbonyl group of the distal Q64 is oriented toward the iron of the heme group, increasing the distal pocket electron density. Copyright 2002 Wiley Periodicals, Inc.

  9. Elementary Steps of Syngas Reactions on Mo2C(001): Adsorption Thermochemistry and Bond Dissociation

    Energy Technology Data Exchange (ETDEWEB)

    Medford, Andrew


    Density functional theory (DFT) and ab initio thermodynamics are applied in order to investigate the most stable surface and subsurface terminations of Mo{sub 2}C(001) as a function of chemical potential and in the presence of syngas. The Mo-terminated (001) surface is then used as a model surface to evaluate the thermochemistry and energetic barriers for key elementary steps in syngas reactions. Adsorption energy scaling relations and Broensted-Evans-Polanyi relationships are established and used to place Mo{sub 2}C into the context of transition metal surfaces. The results indicate that the surface termination is a complex function of reaction conditions and kinetics. It is predicted that the surface will be covered by either C{sub 2}H{sub 2} or O depending on conditions. Comparisons to transition metals indicate that the Mo-terminated Mo{sub 2}C(001) surface exhibits carbon reactivity similar to transition metals such as Ru and Ir, but is significantly more reactive towards oxygen.

  10. Reaction heats and bond strengths based on a series of lectures given to postgraduate students at the University of Keele, 1960

    CERN Document Server

    Mortimer, C T


    Reaction Heats and Bond Strengths presents the variations in the heats of particular types of reaction. This book covers a variety of topics, including the hydrogenation and polymerization of olefinic compounds, the dissociation of organic and organo-metallic compounds, and the molecular-addition compounds. Organized into 10 chapters, this book begins with an overview of the concept of bond energy that can be very useful where a comparison is being made between two dissimilar molecules. This text then examines the strain in cyclopropane and cyclobutane, which is largely a result of angular str

  11. Electrochemical Formation of FeV (O) and Mechanism of Its Reaction with Water During O-O Bond Formation. (United States)

    Pattanayak, Santanu; Chowdhury, Debarati Roy; Garai, Bikash; Singh, Kundan K; Paul, Amit; Dhar, Basab B; Gupta, Sayam Sen


    A detailed electrochemical investigation of a series of iron complexes (biuret-modified tetraamido iron macrocycles Fe III -bTAML), including the first electrochemical generation of Fe V (O), and demonstration of their efficacy as homogeneous catalysts for electrochemical water oxidation (WO) in aqueous medium are reported. Spectroelectrochemical and mass spectral studies indicated Fe V (O) as the active oxidant, formed due to two redox transitions, which were assigned as Fe IV (O)/Fe III (OH 2 ) and Fe V (O)/Fe IV (O). The spectral properties of both of these high-valent iron oxo species perfectly match those of their chemically synthesised versions, which were thoroughly characterised by several spectroscopic techniques. The O-O bond-formation step occurs by nucleophilic attack of H 2 O on Fe V (O). A kinetic isotope effect of 3.2 indicates an atom-proton transfer (APT) mechanism. The reaction of chemically synthesised Fe V (O) in CH 3 CN and water was directly probed by electrochemistry and was found to be first-order in water. The pK a value of the buffer base plays a critical role in the rate-determining step by increasing the reaction rate several-fold. The electronic effect on redox potential, WO rates, and onset overpotential was studied by employing a series of iron complexes. The catalytic activity was enhanced by the presence of electron-withdrawing groups on the bTAML framework. Changing the substituents from OMe to NO 2 resulted in an eightfold increase in reaction rate, while the overpotential increased threefold. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Factors affecting the equilibrium constant of homolysis of complexes with metal-carbon σ bonds in aqueous solutions. Pulse radiolysis studies

    International Nuclear Information System (INIS)

    Meyerstein, D.; Ben-Gurion Univ. of the Negev, Beersheba


    Pulse-Radiolysis is a powerful technique for the determination of the equilibrium constants of the homolytic cleavage of metal-carbon σ bonds in aqueous solutions. In most systems studied the observed reaction is: L m-1 M (n+1) -R + L ↔ ML m. n + ·R. Therefore the results do not enable a direct determination of the metal-carbon bond dissociation energies. The results obtained indicate that these equilibrium constants are not directly related to the redox potential of either L .m M (n) or of ·R, or to the activation energies for the homolytic cleavage of a family of similarly substituted ethanes. (author)

  13. Bond breaking and bond making in tetraoxygen: analysis of the O2(X3Sigma(g)-) + O2(X3Sigma(g)-) O4 reaction using the electron pair localization function. (United States)

    Scemama, Anthony; Caffarel, Michel; Ramírez-Solís, Alejandro


    We study the nature of the electron pairing at the most important critical points of the singlet potential energy surface of the 2O2 O4 reaction and its evolution along the reaction coordinate using the electron pair localization function (EPLF) [Scemama, A.; Chaquin, P.; Caffarel, M. J. Chem. Phys. 2004, 121, 1725]. To do that, the 3D topology of the EPLF calculated with quantum Monte Carlo (at both variational and fixed-node-diffusion Monte Carlo levels) using Hartree-Fock, multiconfigurational CASSCF, and explicitly correlated trial wave functions is analyzed. At the O4 equilibrium geometry the EPLF analysis reveals four equivalent covalent bonds and two lone pairs on each oxygen atom. Along the reaction path toward dissociation it is found that the two oxygen-oxygen bonds are not broken simultaneously but sequentially, and then the lone pairs are rearranged. In a more general perspective, the usefulness of the EPLF as a unique tool to analyze the topology of electron pairing in nontrivial chemical bonding situations as well as to visualize the major steps involved in chemical reactivity is emphasized. In contrast with most standard schemes to reveal electron localization (atoms in molecules, electron localization function, natural bond orbital, etc.), the newly introduced EPLF function gives a direct access to electron pairings in molecules.

  14. Properties and reactions of manganese methylene complexes in the gas phase. The importance of strong metal: carbene bonds for effective olefin metathesis catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, A.E.; Beauchamp, J.L.


    In this communication the formation, properties and reactions of the gas phase carbenes MnCH/sub 2//sup +/, (CO)/sub 5/MnCH/sub 2//sup +/, and (CO)/sub 4/MnCH/sub 2//sup +/ are described. Reported results include observation of metathesis and abstraction reactions of the methylene ligand with olefins and the first experimental determination of metal-carbene bond dissociation energies. Important points are that: (a) metal-methylene bond energies are extremely strong; and (b) the Mn/sup +/-methylene bond energy is decreased substantially on addition of five carbonyls to the metal center. If the metal-carbene bond energy exceeds 100 kcal/mol, then transfer of the carbene to an olefin to give a cyclopropane or new olefin will be endothermic and thus will not compete with the metathesis reaction. In order to avoid low turnover numbers resulting from consumption of carbene intermediates, strong metal-carbene bonds are a desirable feature of practical metathesis catalysts. (DP)

  15. Catalytic Mechanism of Salicylate Dioxygenase: QM/MM Simulations Reveal the Origin of Unexpected Regioselectivity of the Ring Cleavage. (United States)

    Roy, Subhendu; Kästner, Johannes


    Salicylate 1,2-dioxygenase (SDO) was the first enzyme discovered, in the family of iron dioxygenases, to catalyze the ring cleavage of a monohydroxylated aromatic compound, salicylate, without a proton donor. Salicylate is not electron-rich like the familiar dihydroxy or aromatic substrates with an electron-donating group that are utilized in the well-known dioxygenases. SDO carries out the intramolecular C-C bond cleavage in salicylate bearing the OH and COOH groups with high regioselectivity in comparison with the extradiol and intradiol dioxygenases. The catalytic cleavage of a nonactivated substrate like salicylate that lacks an electron-donating group, also in the absence of a proton source, raises many puzzling questions about the oxy intermediates in the reaction pathway of dioxygenase enzymes in general. To answer these fundamental queries, we have investigated the full catalytic mechanism of SDO by a combination of quantum mechanics and molecular mechanics (QM/MM) calculations. Herein, our QM/MM study has several unexpected and interesting implications for the mechanistic pathway of SDO in comparison to the experimental observations. Importantly, it unravels the basis for the unexpected "intra"-cleavage regioselectivity in SDO. Ostensibly a similar alkylperoxo intermediate is formed in SDO much like in the extradiol and intradiol dioxygenases. In stark contrast to the two diol enzymes, the O-O bond breaking leads to an unprotonated gem-hydroxy carboxylate intermediate, a paradigm analogue of the elusive gem diol intermediate. This unprotonated gem-hydroxy carboxylate intermediate exclusively dictates the C-C cleavage regiospecificity in SDO, which is unprecedented in the family of dioxygenases. It forms a seven-membered lactone species, which eventually forms the ring-cleavage final product by incorporation of two oxygen atoms in the salicylate. Thus, our computational study unravels a detailed reaction pathway of the oxidative cleavage of salicylate

  16. Activation of the Hg-C Bond of Methylmercury by [S2]-Donor Ligands. (United States)

    Karri, Ramesh; Banerjee, Mainak; Chalana, Ashish; Jha, Kunal Kumar; Roy, Gouriprasanna


    Here we report that [S 2 ]-donor ligands Bmm OH , Bmm Me , and Bme Me bind rapidly and reversibly to the mercury centers of organomercurials, RHgX, and facilitate the cleavage of Hg-C bonds of RHgX to produce stable tetracoordinated Hg(II) complexes and R 2 Hg. Significantly, the rate of cleavage of Hg-C bonds depends critically on the X group of RHgX (X = BF 4 - , Cl - , I - ) and the [S 2 ]-donor ligands used to induce the Hg-C bonds. For instance, the initial rate of cleavage of the Hg-C bond of MeHgI induced by Bme Me is almost 2-fold higher than the initial rate obtained by Bmm OH or Bmm Me , indicating that the spacer between the two imidazole rings of [S 2 ]-donor ligands plays a significant role here in the cleavage of Hg-C bonds. Surprisingly, we noticed that the initial rate of cleavage of the Hg-C bond of MeHgI induced by Bme Me (or Bmm Me ) is almost 10-fold and 100-fold faster than the cleavage of Hg-C bonds of MeHgCl and [MeHg]BF 4 respectively, under identical reaction conditions, suggesting that the Hg-C bond of [MeHg]BF 4 is highly inert at room temperature (21 °C). We also show here that the nature of the final stable cleaved products, i.e. Hg(II) complexes, depends on the X group of RHgX and the [S 2 ]-donor ligands. For instance, the reaction of Bmm Me with MeHgCl (1:1 molar ratio) afforded the formation of the 16-membered metallacyclic dinuclear mercury compound (Bmm Me ) 2 Hg 2 Cl 4 , in which the two Cl atoms are located inside the ring, whereas due to the large size of the I atom, a similar reaction with MeHgI yielded polymeric [(Bmm Me ) 2 HgI 2 ] m ·(MeHgI) n . However, the treatment of Bmm Me with ionic [RHg]BF 4 led to the formation of the tetrathione-coordinated mononuclear mercury compound [(Bmm Me ) 2 Hg](BF 4 ) 2 , where BF 4 - serves as a counteranion.

  17. Electron Reorganization in Allowed and Forbidden Reactions: Multicenter Bond Indices as a Measure of Aromaticity and/or Anti-aromaticity in Transition States of Pericyclic Electrocyclizations

    Czech Academy of Sciences Publication Activity Database

    Mandado, M.; Ponec, Robert


    Roč. 22, č. 12 (2009), s. 1225-1232 ISSN 0894-3230 R&D Projects: GA ČR GA203/09/0118 Institutional research plan: CEZ:AV0Z40720504 Keywords : pericycli reactions * aromaticity * multicenter bond indices Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.602, year: 2009

  18. Theoretical Study of Sodium-Water Surface Reaction Mechanism (United States)

    Kikuchi, Shin; Kurihara, Akikazu; Ohshima, Hiroyuki; Hashimoto, Kenro

    Computational study of the sodium-water reaction at the gas (water) - liquid (sodium) interface has been carried out using the ab initio (first-principle) method. A possible reaction channel has been identified for the stepwise OH bond dissociations of a single water molecule. The energetics including the binding energy of a water molecule on the sodium surface, the activation energies of the bond cleavages, and the reaction energies, have been evaluated, and the rate constants of the first and second OH bond-breakings have been compared. It was found that the estimated rate constant of the former was much larger than the latter. The results are the basis for constructing the chemical reaction model used in a multi-dimensional sodium-water reaction code, SERAPHIM, being developed by Japan Atomic Energy Agency (JAEA) toward the safety assessment of the steam generator (SG) in a sodium-cooled fast reactor (SFR).

  19. Theoretical study of sodium-water surface reaction mechanism

    International Nuclear Information System (INIS)

    Kikuchi, Shin; Kurihara, Akikazu; Ohshima, Hiroyuki; Hashimoto, Kenro


    Computational study of the sodium-water reaction at the gas (water) - liquid (sodium) interface has been carried out using the ab initio (first-principle) method. A possible reaction channel has been identified for the stepwise OH bond dissociations of a single water molecule. The energetics including the binding energy of a water molecule on the sodium surface, the activation energies of the bond cleavages, and the reaction energies, have been evaluated, and the rate constants of the first and second OH bond-breakings have been compared. It was found that the estimated rate constant of the former was much larger than the latter. The results are the basis for constructing the chemical reaction model used in a multi-dimensional sodium-water reaction code, SERAPHIM, being developed by Japan Atomic Energy Agency (JAEA) toward the safety assessment of the steam generator (SG) in a sodium-cooled fast reactor (SFR). (author)

  20. An Iron-Catalyzed Bond-Making/Bond-Breaking Cascade Merges Cycloisomerization and Cross-Coupling Chemistry. (United States)

    Echeverria, Pierre-Georges; Fürstner, Alois


    Treatment of readily available enynes with alkyl-Grignard reagents in the presence of catalytic amounts of Fe(acac)3 engenders a remarkably facile and efficient reaction cascade that results in the net formation of two new C-C bonds while a C-Z bond in the substrate backbone is broken. Not only does this new manifold lend itself to the extrusion of heteroelements (Z=O, NR), but it can even be used for the cleavage of activated C-C bonds. The reaction likely proceeds via metallacyclic intermediates, the iron center of which gains ate character before reductive elimination occurs. The overall transformation represents a previously unknown merger of cycloisomerization and cross-coupling chemistry. It provides ready access to highly functionalized 1,3-dienes comprising a stereodefined tetrasubstituted alkene unit, which are difficult to make by conventional means. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Dinitrogen cleavage and functionalization by carbon monoxide promoted by a hafnium complex. (United States)

    Knobloch, Donald J; Lobkovsky, Emil; Chirik, Paul J


    Molecular nitrogen (N(2)) and carbon monoxide (CO) have the two strongest bonds in chemistry and present significant challenges in developing new transformations that exploit these two abundant feedstocks. At the core of this objective is the discovery of transition-metal compounds that promote the six-electron reductive cleavage of N(2) at ambient temperature and pressure and also promote new nitrogen-element bond formation. Here we show that an organometallic hafnium compound induces N(2) cleavage on the addition of CO, with a simultaneous assembly of new nitrogen-carbon and carbon-carbon bonds. Subsequent addition of a weak acid liberates oxamide, which demonstrates that an important agrochemical can be synthesized directly from N(2) and CO. These studies introduce an alternative paradigm for N(2) cleavage and functionalization in which the six-electron reductive cleavage is promoted by both the transition metal and the incoming ligand, CO, used for the new bond formations.

  2. Alkali metal control over N-N cleavage in iron complexes. (United States)

    Grubel, Katarzyna; Brennessel, William W; Mercado, Brandon Q; Holland, Patrick L


    Though N2 cleavage on K-promoted Fe surfaces is important in the large-scale Haber-Bosch process, there is still ambiguity about the number of Fe atoms involved during the N-N cleaving step and the interactions responsible for the promoting ability of K. This work explores a molecular Fe system for N2 reduction, particularly focusing on the differences in the results obtained using different alkali metals as reductants (Na, K, Rb, Cs). The products of these reactions feature new types of Fe-N2 and Fe-nitride cores. Surprisingly, adding more equivalents of reductant to the system gives a product in which the N-N bond is not cleaved, indicating that the reducing power is not the most important factor that determines the extent of N2 activation. On the other hand, the results suggest that the size of the alkali metal cation can control the number of Fe atoms that can approach N2, which in turn controls the ability to achieve N2 cleavage. The accumulated results indicate that cleaving the triple N-N bond to nitrides is facilitated by simultaneous approach of least three low-valent Fe atoms to a single molecule of N2.

  3. Sensitive and fast mutation detection by solid phase chemical cleavage

    DEFF Research Database (Denmark)

    Hansen, Lise Lotte; Justesen, Just; Kruse, Torben A


    We have developed a solid phase chemical cleavage method (SpCCM) for screening large DNA fragments for mutations. All reactions can be carried out in microtiterwells from the first amplification of the patient (or test) DNA through the search for mutations. The reaction time is significantly...... reduced compared to the conventional chemical cleavage method (CCM), and even by using a uniformly labelled probe, the exact position and nature of the mutation can be revealed. The SpCCM is suitable for automatization using a workstation to carry out the reactions and a fluorescent detection-based DNA...

  4. Visualizing phosphodiester-bond hydrolysis by an endonuclease

    DEFF Research Database (Denmark)

    Molina, Rafael; Stella, Stefano; Redondo, Pilar


    The enzymatic hydrolysis of DNA phosphodiester bonds has been widely studied, but the chemical reaction has not yet been observed. Here we follow the generation of a DNA double-strand break (DSB) by the Desulfurococcus mobilis homing endonuclease I-DmoI, trapping sequential stages of a two-metal....... This third metal ion has a crucial role, triggering the consecutive hydrolysis of the targeted phosphodiester bonds in the DNA strands and leaving its position once the DSB is generated. The multiple structures show the orchestrated conformational changes in the protein residues, nucleotides and metals......-ion cleavage mechanism. We captured intermediates of the different catalytic steps, and this allowed us to watch the reaction by 'freezing' multiple states. We observed the successive entry of two metals involved in the reaction and the arrival of a third cation in a central position of the active site...

  5. Ring cleavage of sulfur heterocycles: how does it happen? (United States)

    Bressler, D C; Norman, J A; Fedorak, P M

    Sulfur heterocycles are common constituents of petroleum and liquids derived from coal, and they are found in some secondary metabolites of microorganisms and plants. They exist primarily as saturated rings and thiophenes. There are two major objectives driving investigations of the microbial metabolism of organosulfur compounds. One is the quest to develop a process for biodesulfurization of fossil fuels, and the other is to understand the fates of organosulfur compounds in petroleum- or creosote-contaminated environments which is important in assessing bioremediation processes. For these processes to be successful, cleavage of different types of sulfur heterocyclic rings is paramount. This paper reviews the evidence for microbial ring cleavage of a variety of organosulfur compounds and discusses the few well-studied cases which have shown that the C-S bond is most susceptible to breakage leading to disruption of the ring. In most cases, the introduction of one or more oxygen atom(s) onto the adjacent C atom and/or onto the S atom weakens the C-S bond, facilitating its cleavage. Although much is known about the thiophene ring cleavage in dibenzothiophene, there is still a great deal to be learned about the cleavage of other sulfur heterocycles.

  6. Ring cleavage of sulfur heterocycles: how does it happen?

    Energy Technology Data Exchange (ETDEWEB)

    Bressler, D.C.; Norman, J.A.; Fedorak, P.M. [University of Alberta, Edmonton, AB (Canada). Dept. of Biological Sciences


    Sulfur heterocycles are common constituents of petroleum and liquids derived from coal, and they are found in some secondary metabolites of microorganisms and plants. They exist primarily as saturated rings and thiophenes. There are two major objectives driving investigations of the microbial metabolism of organosulfur compounds. One is the quest to develop a process for biodesulfurization of fossil fuels, and the other is to understand the fates of organosulfur compounds in petroleum-or-creosote-contaminated environments which is important in assessing bioremediation processes. For these processes to be successful, cleavage of different types of sulfur heterocyclic rings is paramount. This paper reviews the evidence for microbial ring cleavage of a variety of organosulfur compounds and discusses the few well-studied cases which have shown that the C-S bond is most susceptible to breakage leading to disruption of the ring. In most cases, the introduction of one or more oxygen atom(s) onto the adjacent C atom and/or onto the S atom weakens the C-S bond, facilitating its cleavage. Although much is known about the thiophene ring cleavage in dibenzothiophene, there is still a great deal to be learned about the cleavage of other sulfur heterocycles.

  7. Proton-transfer and H2-elimination reactions of trimethylamine alane: role of dihydrogen bonding and Lewis acid-base interactions. (United States)

    Filippov, Oleg A; Tsupreva, Victoria N; Golubinskaya, Lyudmila M; Krylova, Antonina I; Bregadze, Vladimir I; Lledos, Agusti; Epstein, Lina M; Shubina, Elena S


    Proton-transfer and H(2)-elimination reactions of aluminum hydride AlH(3)(NMe(3)) (TMAA) with XH acids were studied by means of IR and NMR spectroscopy and DFT calculations. The dihydrogen-bonded (DHB) intermediates in the interaction of the TMAA with XH acids (CH(3)OH, (i)PrOH, CF(3)CH(2)OH, adamantyl acetylene, indole, 2,3,4,5,6-pentafluoroaniline, and 2,3,5,6-tetrachloroaniline) were examined experimentally at low temperatures, and the spectroscopic characteristics, dihydrogen bond strength and structures, and the electronic and energetic characteristics of these complexes were determined by combining experimental and theoretical approaches. The possibility of two different types of DHB complexes with polydentate proton donors (typical monodentate and bidentate coordination with the formation of a symmetrical chelate structure) was shown by DFT calculations and was experimentally proven in solution. The DHB complexes are intermediates of proton-transfer and H(2)-elimination reactions. The extent of this reaction is very dependent on the acid strength and temperature. With temperature increases the elimination of H(2) was observed for OH and NH acids, yielding the reaction products with Al-O and Al-N bonds. The reaction mechanism was computationally studied. Besides the DHB pathway for proton transfer, another pathway starting from a Lewis complex was discovered. Preference for one of the pathways is related to the acid strength and the nucleophilicity of the proton donor. As a consequence of the dual Lewis acid-base nature of neutral aluminum hydride, participation of a second ROH molecule acting as a bifunctional catalyst forming a six-member cycle connecting aluminum and hydride sites notably reduces the reaction barrier. This mechanism could operate for proton transfer from weak OH acids to TMAA in the presence of an excess of proton donor.

  8. Rh2(II)-catalyzed intramolecular aliphatic C-H bond amination reactions using aryl azides as the N-atom source. (United States)

    Nguyen, Quyen; Sun, Ke; Driver, Tom G


    Rhodium(II) dicarboxylate complexes were discovered to catalyze the intramolecular amination of unactivated primary, secondary, or tertiary aliphatic C-H bonds using aryl azides as the N-atom precursor. While a strong electron-withdrawing group on the nitrogen atom is typically required to achieve this reaction, we found that both electron-rich and electron-poor aryl azides are efficient sources for the metal nitrene reactive intermediate. © 2012 American Chemical Society

  9. Rh2(II)-Catalyzed Intramolecular Aliphatic C–H Bond Amination Reactions Using Aryl Azides as the N-Atom Source (United States)

    Nguyen, Quyen; Sun, Ke; Driver, Tom G.


    Rhodium(II) dicarboxylate complexes were discovered to catalyze the intramolecular amination of unactivated primary-, secondary-, or tertiary aliphatic C–H bonds using aryl azides as the N-atom precursor. While a strong electron-withdrawing group on the nitrogen atom is typically required to achieve this reaction, we found that both electron-rich- and electron-poor aryl azides are efficient sources for the metal nitrene reactive intermediate. PMID:22519742

  10. A chiral organic base catalyst with halogen-bonding-donor functionality: asymmetric Mannich reactions of malononitrile with N-Boc aldimines and ketimines. (United States)

    Kuwano, Satoru; Suzuki, Takumi; Hosaka, Yusei; Arai, Takayoshi


    A chiral organic base catalyst with halogen-bonding-donor functionality has been developed. This quinidine-derived acid/base catalyst smoothly promoted the asymmetric Mannich reaction of malononitrile and various N-Boc imines with up to 98% ee. The cooperative interaction with both substrates was responsible for the high activity that allowed a reduction of the catalyst amount to 0.5 mol%.

  11. Reactions of organoaluminum compounds with acetylene as a method for the synthesis of aliphatic derivatives with a z-disubstituted double bond

    Energy Technology Data Exchange (ETDEWEB)

    Andreeva, N.I.; Kuchin, A.V.; Tolstikov, G.A.


    This paper develops a method for the synthesis of aliphatic compounds with a Z-disubstituted double bond, which are important synthons for the preparation of such natural products as insect pheromones, aromatic principles, etc. In the carbalumination reaction of acetylene Z-alkenyldialkylaluminums are formed selectively. A-Alkenyldialkylaluminums are highly reactive and can readily be converted into Z-allyl alcohols and their ethers, and into Z-iodovinyl derivatives. By the reactions of vinyl organoaluminum compounds with the complex CH/sub 3/COClhaAlCl/sub 3/ E-conjugated ketones were obtained.

  12. The origin of enantioselectivity in the l-threonine-derived phosphine-sulfonamide catalyzed aza-Morita-Baylis-Hillman reaction: Effects of the intramolecular hydrogen bonding

    KAUST Repository

    Lee, Richmond


    l-Threonine-derived phosphine-sulfonamide 4 was identified as the most efficient catalyst to promote enantioselective aza-Morita-Baylis-Hillman (MBH) reactions, affording the desired aza-MBH adducts with excellent enantioselectivities. Density functional theory (DFT) studies were carried out to elucidate the origin of the observed enantioselectivity. The importance of the intramolecular N-H⋯O hydrogen-bonding interaction between the sulfonamide and enolate groups was identified to be crucial in inducing a high degree of stereochemical control in both the enolate addition to imine and the subsequent proton transfer step, affording aza-MBH reactions with excellent enantioselectivity. © 2013 The Royal Society of Chemistry.

  13. Reversible swelling-shrinking behavior of hydrogen-bonded free-standing thin film stabilized by catechol reaction. (United States)

    Sun, Jiaxing; Su, Chao; Zhang, Xuejian; Yin, Wenjing; Xu, Jian; Yang, Shuguang


    Dopamine-modified poly(acrylic acid) (PAA-dopa) and poly(vinylpyrrolidone) (PVPON) was layer-by-layer (LbL) assembled to prepare thin film based on hydrogen bonding. The carboxylic group of acrylic acid and the phenolic hydroxyl group of dopamine can both act as hydrogen bond donors. The critical assembly and the critical disintegration pH values of PVPON/PAA-dopa film are enhanced compared with PVPON/PAA film. The hydrogen-bonded PVPON/PAA-dopa thin film can be cross-linked via catechol chemistry of dopamine. After cross-linking, the film can be exfoliated from the substrate in alkaline solution to get a free-standing film. Moreover, by tuning the pH value, deprotonation and protonation of PAA will make the hydrogen bond in the film break and reconstruct, which induces that the free-standing film has a reversible swelling-shrinking behavior.

  14. Cleavage and synthesis function of high and low redox potential laccases towards 4-morpholinoaniline and aminated as well as chlorinated phenols. (United States)

    Hahn, Veronika; Mikolasch, Annett; Schauer, Frieder


    Laccases are able to mediate both cleavage and synthesis processes. The basis for this dual reaction capability lies in the property of the enzyme laccase to oxidize phenolic, and to some extent non-phenolic substances, to reactive radicals which can undergo on the one hand separations of small substitutents or large molecule parts from the parent compound and on the other hand coupling reactions with other radicals or molecules which are not themselves oxidizable by laccase. The cleavage of the non-phenolic compound 4-morpholinoaniline as well as the deamination of 4-aminophenol and the dechlorination of 4-chlorophenol resulted in the formation of 1,4-hydroquinone which is immediately oxidized by laccase to 1,4-benzoquinone. The formation of the 1,4-hydroquinone/1,4-benzoquinone is the rate limiting step for the synthesis of the heteromolecular dimers and trimers composed of 1,4-benzoquinone and one or two molecules of morpholine. In addition to the synthesis of new compounds from the cleavage products, 4-morpholinoaniline polymerized probably via azo groups and C-N bonds to a homomolecular dimer and trimer. Similarities and differences in cleavage and synthesis reactions catalyzed by the low redox potential laccase of Myceliophthora thermophila (0.46 V) and the high redox potential laccase of Pycnoporus cinnabarinus (0.79 V) were determined. In addition, the dependency of the cleavage and synthesis efficiencies on the (a) structure and redox potential of the laccase, (b) structure and redox potential of the substrate, (c) pH value of the buffer used, (d) incubation temperature, (e) solvent concentration, and (f) laccase activity is discussed in general.

  15. Dinuclear Zn(II) complex catalyzed phosphodiester cleavage proceeds via a concerted mechanism: a density functional theory study. (United States)

    Gao, Hui; Ke, Zhuofeng; DeYonker, Nathan J; Wang, Juping; Xu, Huiying; Mao, Zong-Wan; Phillips, David Lee; Zhao, Cunyuan


    Density functional theory (DFT) calculations were used to study the mechanism for the cleavage reaction of the RNA analogue HpPNP (HpPNP = 2-hydroxypropyl-4-nitrophenyl phosphate) catalyzed by the dinuclear Zn(II) complex of 1,3-bis(1,4,7-triazacyclonon-1-yl)-2-hydroxypropane (Zn(2)(L(2)O)). We present a binding mode in which each terminal phosphoryl oxygen atom binds to one zinc center, respectively, and the nucleophilic 2-hydroxypropyl group coordinates to one of the zinc ions, while the hydroxide from deprotonation of a water molecule coordinates to the other zinc ion. Our calculations found a concerted mechanism for the HpPNP cleavage with a 16.5 kcal/mol reaction barrier. An alternative proposed stepwise mechanism through a pentavalent oxyphosphorane dianion reaction intermediate for the HpPNP cleavage was found to be less feasible with a significantly higher energy barrier. In this stepwise mechanism, the deprotonation of the nucleophilic 2-hydroxypropyl group is accompanied with nucleophilic attack in the rate-determining step. Calculations of the nucleophile (18)O kinetic isotope effect (KIE) and leaving (18)O KIE for the concerted mechanism are in reasonably good agreement with the experimental values. Our results indicate a specific-base catalysis mechanism takes place in which the deprotonation of the nucleophilic 2-hydroxypropyl group occurs in a pre-equilibrium step followed by a nucleophilic attack on the phosphorus center. Detailed comparison of the geometric and electronic structure for the HpPNP cleavage reaction mechanisms in the presence/absence of catalyst revealed that the catalyst significantly altered the determining-step transition state to become far more associative or tight, that is, bond formation to the nucleophile was remarkably more advanced than leaving group bond fission in the catalyzed mechanism. Our results are consistent with and provide a reliable interpretation for the experimental observations that suggest the reaction occurs

  16. Formation Mechanism of Atmospheric Ammonium Bisulfate: Hydrogen-Bond-Promoted Nearly Barrierless Reactions of SO3 with NH3 and H2 O. (United States)

    Chen, Shunwei; Zhao, Yanling; Zhang, Ruiqin


    Particulate matter (PM) air pollution threatens the health of people and ecosystems worldwide. As the key component of PM, ammonium sulfate plays a critical role in the formation of aerosol particles; thus, there is an urgent need to know the detailed mechanisms for its formation in the atmosphere. Through a quantum chemistry study, we reveal a series of nearly barrierless reactions that may occur in clusters/droplets in the atmosphere leading to the formation of ammonium bisulfate (NH 4 HSO 4 ), the precursor of ammonium sulfate. In this mechanism, NH 4 HSO 4 is directly formed through one-step reactions of SO 3 with H 2 O and NH 3 promoted by surrounding molecule(s) that substantially lower the reaction activation barrier to ≈0 kcal mol -1 . The promoters of these reactions are found to be various common atmospheric molecules, such as water, ammonia, and sulfuric acid, which can form relatively strong hydrogen bonds with the reaction center. Our results suggest many more similar pathways that can be facilitated by other ambient molecules. Due to its one-step and barrierless reaction characteristics and the great abundance of potential reactions, this mechanism has great implications on the formation of atmospheric ammonium sulfate as well as on the growth of aerosol particles. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Direct Carboxylation of C(sp3-H and C(sp2-H Bonds with CO2 by Transition-Metal-Catalyzed and Base-Mediated Reactions

    Directory of Open Access Journals (Sweden)

    Immacolata Tommasi


    Full Text Available This review focuses on recent advances in the field of direct carboxylation reactions of C(sp3-H and C(sp2-H bonds using CO2 encompassing both transition-metal-catalysis and base-mediated approach. The review is not intended to be comprehensive, but aims to analyze representative examples from the literature, including transition-metal catalyzed carboxylation of benzylic and allylic C(sp3-H functionalities using CO2 which is at a “nascent stage”. Examples of light-driven carboxylation reactions of unactivated C(sp3-H bonds are also considered. Concerning C(sp3-H and C(sp2-H deprotonation reactions mediated by bases with subsequent carboxylation of the carbon nucleophile, few examples of catalytic processes are reported in the literature. In spite of this, several examples of base-promoted reactions integrating “base recycling” or “base regeneration (through electrosynthesis” steps have been reported. Representative examples of synthetically efficient, base-promoted processes are included in the review.

  18. A new reaction mode of germanium-silicon bond formation: insertion reactions of H₂GeLiF with SiH₃X (X = F, Cl, Br). (United States)

    Yan, Bingfei; Li, Wenzuo; Xiao, Cuiping; Li, Qingzhong; Cheng, Jianbo


    A combined density functional and ab initio quantum chemical study of the insertion reactions of the germylenoid H2GeLiF with SiH3X (X = F, Cl, Br) was carried out. The geometries of all the stationary points of the reactions were optimized using the DFT B3LYP method and then the QCISD method was used to calculate the single-point energies. The theoretical calculations indicated that along the potential energy surface, there were one precursor complex (Q), one transition state (TS), and one intermediate (IM) which connected the reactants and the products. The calculated barrier heights relative to the respective precursors are 102.26 (X = F), 95.28 (X = Cl), and 84.42 (X = Br) kJ mol(-1) for the three different insertion reactions, respectively, indicating the insertion reactions should occur easily according to the following order: SiH3-Br > SiH3-Cl > SiH3-F under the same situation. The solvent effects on the insertion reactions were also calculated and it was found that the larger the dielectric constant, the easier the insertion reactions. The elucidations of the mechanism of these insertion reactions provided a new reaction model of germanium-silicon bond formation.

  19. Vertebrate Embryonic Cleavage Pattern Determination. (United States)

    Hasley, Andrew; Chavez, Shawn; Danilchik, Michael; Wühr, Martin; Pelegri, Francisco


    The pattern of the earliest cell divisions in a vertebrate embryo lays the groundwork for later developmental events such as gastrulation, organogenesis, and overall body plan establishment. Understanding these early cleavage patterns and the mechanisms that create them is thus crucial for the study of vertebrate development. This chapter describes the early cleavage stages for species representing ray-finned fish, amphibians, birds, reptiles, mammals, and proto-vertebrate ascidians and summarizes current understanding of the mechanisms that govern these patterns. The nearly universal influence of cell shape on orientation and positioning of spindles and cleavage furrows and the mechanisms that mediate this influence are discussed. We discuss in particular models of aster and spindle centering and orientation in large embryonic blastomeres that rely on asymmetric internal pulling forces generated by the cleavage furrow for the previous cell cycle. Also explored are mechanisms that integrate cell division given the limited supply of cellular building blocks in the egg and several-fold changes of cell size during early development, as well as cytoskeletal specializations specific to early blastomeres including processes leading to blastomere cohesion. Finally, we discuss evolutionary conclusions beginning to emerge from the contemporary analysis of the phylogenetic distributions of cleavage patterns. In sum, this chapter seeks to summarize our current understanding of vertebrate early embryonic cleavage patterns and their control and evolution.

  20. Wire bonding in microelectronics

    CERN Document Server

    Harman, George G


    Wire Bonding in Microelectronics, Third Edition, has been thoroughly revised to help you meet the challenges of today's small-scale and fine-pitch microelectronics. This authoritative guide covers every aspect of designing, manufacturing, and evaluating wire bonds engineered with cutting-edge techniques. In addition to gaining a full grasp of bonding technology, you'll learn how to create reliable bonds at exceedingly high yields, test wire bonds, solve common bonding problems, implement molecular cleaning methods, and much more. Coverage includes: Ultrasonic bonding systems and technologies, including high-frequency systems Bonding wire metallurgy and characteristics, including copper wire Wire bond testing Gold-aluminum intermetallic compounds and other interface reactions Gold and nickel-based bond pad plating materials and problems Cleaning to improve bondability and reliability Mechanical problems in wire bonding High-yield, fine-pitch, specialized-looping, soft-substrate, and extreme-temperature wire bo...

  1. Ultrafast infrared studies of chemical reaction dynamics in room-temperature liquids

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Haw [Univ. of California, Berkeley, CA (United States)


    Femtosecond infrared spectroscopy provides sufficient spectral and temporal resolution to support a detailed investigation of the early events of a photochemical reaction. Previously unreported transient species that arise as intermediates during the course of a reaction may have lifetimes that are too short for conventional characterization. For these species, quantum-mechanical (density functional theoretical and ab initio) electronic structure calculations provide invaluable insight into chemical properties including molecular structure and energetic. With the combination of experimental and theoretical results, it is possible to assemble a comprehensive picture of the reaction dynamics of a system that is intricately influenced by the surrounding solvent molecules. The mechanisms of several important organometallic reactions, such as alkane C– H bond activation by η3-Tp*Rh(CO), silane Si–H bond activation by η5-CpMn(CO)2 and η5-CpRe(CO)2, as well as chlorinated methane C–Cl bond cleavage by the Re(CO)5 radical are elucidated. The results demonstrate the importance of molecular morphology change (C–H and Si–H act ivat ion), solvent rearrangement (Si–H activation), intersystem crossing (Si–H activation), and solvent caging (C–Cl cleavage) in understanding the reactivity of the organometallic species, The nature of the apparent free-energy barrier for C–H, Si–H, and C–Cl bond activation reaction is found to be- cleavage of an alkane C–H bond, rearrangement of a silane molecule HSiR3 (R = alkyl group) from a nonreactive alkyl site to the reactive Si–H bond, and Cl atom transfer from a chlorinated methane molecule to Re(CO)5, respectively. These results support previous d initio calculations for C–H and Si–H bond activation reaction profiles which suggest that cleavage of an alkane C–H bond by a transition metal center, unlike that of a silane

  2. Mechanism of dihydrogen cleavage by high-valent metal oxo compounds: experimental and computational studies. (United States)

    Collman, J P; Slaughter, L M; Eberspacher, T A; Strassner, T; Brauman, J I


    The oxidation of dihydrogen by metal tetraoxo compounds was investigated. Kinetic measurements of the oxidations of H(2) by MnO(4)(-) and RuO(4), performed by UV-vis spectroscopy, showed these reactions to be quite rapid at 25 degrees C (k(1) approximately (3-6) x 10(-2) M(-1) s(-1)). Rates measured for H(2) oxidation by MnO(4)(-) in aqueous solution (using KMnO(4)) and in chlorobenzene (using (n)Bu(4)NMnO(4)) revealed only a minor solvent effect on the reaction rate. Substantial kinetic isotope effects [(k(H)2/k(D)2 = 3.8(2) (MnO(4)(-), aq), 4.5(5) (MnO(4)(-), C(6)H(5)Cl soln), and 1.8(6) (RuO(4), CCl(4) soln)] indicated that H-H bond cleavage is rate determining and that the mechanism of dihydrogen cleavage is likely similar in aqueous and organic solutions. Third-row transition-metal oxo compounds, such as OsO(4), ReO(4)(-), and MeReO(3), were found to be completely unreactive toward H(2). Experiments were performed to probe for a catalytic hydrogen/deuterium exchange between D(2) and H(2)O as possible evidence of dihydrogen sigma-complex intermediates, but no H/D exchange was observed in the presence of various metal oxo compounds at various pH values. In addition, no inhibition of RuO(4)-catalyzed hydrocarbon oxidation by H(2) was observed. On the basis of the available evidence, a concerted mechanism for the cleavage of H(2) by metal tetraoxo compounds is proposed. Theoretical models were developed for pertinent MnO(4)(-) + H(2) transition states using density functional theory in order to differentiate between concerted [2 + 2] and [3 + 2] scissions of H(2). The density functional theory calculations strongly favor the [3 + 2] mechanism and show that the H(2) cleavage shares some mechanistic features with related hydrocarbon oxidation reactions. The calculated activation energy for the [3 + 2] pathway (DeltaH(++) = 15.4 kcal mol(-1)) is within 2 kcal mol(-1) of the experimental value.

  3. RecA-mediated cleavage activates UmuD for mutagenesis: Mechanistic relationship between transcriptional derepression and posttranslational activation

    International Nuclear Information System (INIS)

    Nohmi, Takehiko; Battista, J.R.; Dodson, L.A.; Walker, G.C.


    The products of the SOS-regulated umuDC operon are required for most UV and chemical mutagenesis in Escherichia coli. It has been shown that the UmuD protein shares homology with LexA, the repressor of the SOS genes. In this paper the authors describe a series of genetic experiments that indicate that the purpose of RecA-mediated cleavage of UmuD at its bond between Cys-24 and Gly-25 is to activate UmuD for its role in mutagenesis and that the COOH-terminal fragment of UmuD is necessary and sufficient for the role of UmuD in UV mutagenesis. Other genetic experiments are presented that (i) support the hypothesis that the primary role of Ser-60 in UmuD function is to act as a nucleophile in the RecA-mediated cleavage reaction and (ii) raise the possibility that RecA has a third role in UV mutagenesis besides mediating the cleavage of LexA and UmuD

  4. Peptide bond formation through gas-phase reactions in the interstellar medium: formamide and acetamide as prototypes

    Energy Technology Data Exchange (ETDEWEB)

    Redondo, Pilar; Barrientos, Carmen; Largo, Antonio, E-mail: [Computational Chemistry Group, Departamento de Química Física, Facultad de Ciencias, Universidad de Valladolid, E-47011 Valladolid (Spain)


    A theoretical study of the reactions of NH{sub 4}{sup +} with formaldehyde and CH{sub 5}{sup +} with formamide is carried out. The viability of these gas-phase ion-molecule reactions as possible sources of formamide and acetamide under the conditions of interstellar medium is evaluated. We report a theoretical estimation of the reaction enthalpies and an analysis of their potential energy surfaces. Formation of protonated formamide from the reaction between ammonium cation and formaldehyde is an exothermic process, but all the channels located on the potential energy surface leading to this product present net activation energies. For the reaction between methanium and formamide, different products are possible from a thermodynamic point of view. An analysis of its potential energy surface showed that formation of protonated acetamide and amino acetaldehyde takes place through barrier-free paths. Therefore, this reaction could be a feasible source of acetamide and amino acetaldehyde in space.

  5. Studies of valence-bond based quantum mechanical potential-energy surfaces. I. H2 + D2 exchange reaction. II. LiH + H → Li + H2 and LiH + D → LiD + H reactions

    International Nuclear Information System (INIS)

    Freihaut, B.H.


    The first phase of this investigation involved the construction of a perfect pairing valence-bond (VB) quantum mechanical potential-energy surfaces for the (H 2 D 2 ) system to compare its results for various geometries to the other prior formulations of such. A plausible four-body pathway for the H 2 --D 2 exchange reaction as shown by a semiempirical Huckel method was explored by the current valence-bond procedure. The second phase of the present investigation involves the formation of a VB based potential-energy surface for the LiH + H → Li + H 2 and LiH + D → LiD + H reaction systems for geometries compatible for a three-center reaction mechanism. No energy acceptable four-body reaction pathway was found for the H 2 --D 2 exchange system. Good agreement was demonstrated with previous ''ab initio'' configuration interaction (CI) studies for the various geometries tested. The square configuration for the H 4 system yielded the lowest barrier height of all the four-body geometries tested although it was still considerably higher than the experimental activation energy for the (H 2 ,D 2 ) system. The barrier height energy for the linear LiH--H configuration agreed well with the one previous work on this system. The barrier height for the LiH--H system increases as the Li--H--H bond angle decreases from 180 0 to 90 0 as well as the Li--H distance at the saddle point. The VB method used herein showed markedly good comparison with recent full CI calculations on the lithium-hydrogen system especially in view of the very limited basis set used in the VB procedure

  6. Computational study of the covalent bonding of microcystins to cysteine residues--a reaction involved in the inhibition of the PPP family of protein phosphatases. (United States)

    Pereira, Susana R; Vasconcelos, Vítor M; Antunes, Agostinho


    Microcystins (MCs) are cyclic peptides, produced by cyanobacteria, that are hepatotoxic to mammals. The toxicity mechanism involves the potent inhibition of protein phosphatases, as the toxins bind the catalytic subunits of five enzymes of the phosphoprotein phosphatase (PPP) family of serine/threonine-specific phosphatases: Ppp1 (aka PP1), Ppp2 (aka PP2A), Ppp4, Ppp5 and Ppp6. The interaction with the proteins includes the formation of a covalent bond with a cysteine residue. Although this reaction seems to be accessory for the inhibition of PPP enzymes, it has been suggested to play an important part in the biological role of MCs and furthermore is involved in their nonenzymatic conjugation to glutathione. In this study, the molecular interaction of microcystins with their targeted PPP catalytic subunits is reviewed, including the relevance of the covalent bond for overall inhibition. The chemical reaction that leads to the formation of the covalent bond was evaluated in silico, both thermodynamically and kinetically, using quantum mechanical-based methods. As a result, it was confirmed to be a Michael-type addition, with simultaneous abstraction of the thiol hydrogen by a water molecule, transfer of hydrogen from the water to the α,β-unsaturated carbonyl group of the microcystin and addition of the sulfur to the β-carbon of the microcystin moiety. The calculated kinetics are in agreement with previous experimental results that had indicated the reaction to occur in a second step after a fast noncovalent interaction that inhibited the enzymes per se. © 2011 The Authors Journal compilation © 2011 FEBS.

  7. Hydrogen bonding between the QB site ubisemiquinone and Ser-L223 in the bacterial reaction centre – a combined spectroscopic and computational perspective^


    Martin, Erik; Baldansuren, Amgalanbaatar; Lin, Tzu-Jen; Samoilova, Rimma I.; Wraight, Colin A.; Dikanov, Sergei A.; O’Malley, Patrick J.


    In the QB site of the Rba. sphaeroides photosynthetic reaction centre the donation of a hydrogen bond from the hydroxyl group of Ser-L223 to the ubisemiquinone formed after the first flash is debatable. In this study we use a combination of spectroscopy and quantum mechanics/molecular mechanics (QM/MM) calculations to comprehensively explore this topic. We show that ENDOR, ESEEM and HYSCORE spectroscopic differences between the mutant L223SA and the wild type sample (WT) are negligible, indic...

  8. Double and Triple Si-H-M Bridge Bonds: Matrix Infrared Spectra and Theoretical Calculations for Reaction Products of Silane with Ti, Zr, and Hf Atoms. (United States)

    Xu, Bing; Shi, Peipei; Huang, Tengfei; Wang, Xuefeng; Andrews, Lester


    Infrared spectra of matrix isolated dibridged Si(μ-H) 2 MH 2 and tribridged Si(μ-H) 3 MH molecules (M = Zr and Hf) were observed following the laser-ablated metal atom reactions with SiH 4 during condensation in excess argon and neon, but only the latter species was observed with titanium. Assignments of the major vibrational modes, which included terminal MH, MH 2 and hydrogen bridge Si-H-M stretching modes, were confirmed by the appropriate SiD 4 isotopic shifts and density functional vibrational frequency calculations (B3LYP and BPW91). The Si-H-M hydrogen bridge bond is calculated as weak covalent interaction and compared with the C-H···M agostic interaction in terms of electron localization function (ELF) analysis and noncovalent interaction index (NCI) calculations. Furthermore, the different products of Ti, Zr, and Hf reactions with SiH 4 are discussed in detail.

  9. How Does the C-Halogen Bond Break in the Photosubstitution Reaction of 3-Fluorobenzophenone in Acidic Aqueous Solutions? (United States)

    Huang, Jinqing; Ma, Jiani; Li, Mingde; Liu, Mingyue; Zhang, Xiting; Phillips, David Lee


    The efficient photosubstitution reaction of m-fluorobenzophenone and the related photohydration reactions were systematically investigated in acidic aqueous solutions. The mechanisms and intermediates were directly characterized by femtosecond transient absorption spectroscopy and nanosecond time-resolved resonance Raman spectroscopy, which is supported by density functional theory calculations. This photosubstitution was found to be a two-step process, based on the observation of a meta-hydration intermediate. The protonation of the ketone was confirmed as a crucial precursor step for further photochemical reactions as indicated by the observation of the absorption spectrum of an excited triplet protonated species. More interestingly, the efficient photosubstitution reaction could selectively occur under specific conditions. Control experiments on a series of halogen-substituted benzophenones were conducted to study the influence of the solution acidity, substituent positions, and the kind of substituted halogens on the efficiency in forming the corresponding hydroxyl photosubstitution product. Some practical conditions in predicting the efficiency of the photosubstitution reaction of interest are summarized, and they were successfully used to predict when the photosubstitution reaction takes place for some other halogen-substituted benzophenone derivatives. The driving force of this photosubstitution reaction may provide insights into several possible applications which are also briefly discussed.

  10. Positioning the 5'-flap junction in the active site controls the rate of flap endonuclease-1-catalyzed DNA cleavage

    KAUST Repository

    Song, Bo


    Flap endonucleases catalyze cleavage of single-stranded DNA flaps formed during replication, repair and recombination, and are therefore essential for genome processing and stability. Recent crystal structures of DNA-bound human flap endonuclease (hFEN1) offer new insights into how conformational changes in the DNA and hFEN1 may facilitate the reaction mechanism. For example, previous biochemical studies of DNA conformation performed under non-catalytic conditions with Ca2+ have suggested that base unpairing at the 5\\'-flap:template junction is an important step in the reaction, but the new structural data suggest otherwise. To clarify the role of DNA changes in the kinetic mechanism, we measured a series of transient steps - from substrate binding to product release - during the hFEN1-catalyzed reaction in the presence of Mg2+. We found that while hFEN1 binds and bends DNA at a fast, diffusion-limited rate, much slower Mg2+-dependent conformational changes in DNA around the active site are subsequently necessary and rate-limiting for 5\\'-flap cleavage. These changes are reported overall by fluorescence of 2-aminopurine at the 5\\'-flap:template junction, indicating that local DNA distortion (e.g., disruption of base stacking observed in structures), associated with positioning the 5\\'-flap scissile phosphodiester bond in the hFEN1 active site, controls catalysis. hFEN1 residues with distinct roles in the catalytic mechanism, including those binding metal ions (Asp-34, Asp-181), steering the 5\\'-flap through the active site and binding the scissile phosphate (Lys-93, Arg-100), and stacking against the base 5\\' to the scissile phosphate (Tyr-40), all contribute to these rate-limiting conformational changes, ensuring efficient and specific cleavage of 5\\'-flaps.

  11. Bonds broken and formed during the mixed-linkage glucan : xyloglucan endotransglucosylase reaction catalysed by Equisetum hetero-trans-β-glucanase. (United States)

    Simmons, Thomas J; Fry, Stephen C


    Mixed-linkage glucan∶xyloglucan endotransglucosylase (MXE) is one of the three activities of the recently characterised hetero-trans-β-glucanase (HTG), which among land plants is known only from Equisetum species. The biochemical details of the MXE reaction were incompletely understood - details that would promote understanding of MXE's role in vivo and enable its full technological exploitation. We investigated HTG's site of attack on one of its donor substrates, mixed-linkage (1→3),(1→4)-β-d-glucan (MLG), with radioactive oligosaccharides of xyloglucan as the acceptor substrate. Comparing three different MLG preparations, we showed that the enzyme favours those with a high content of cellotetraose blocks. The reaction products were analysed by enzymic digestion, thin-layer chromatography (TLC), high-pressure liquid chromatography (HPLC) and gel-permeation chromatography (GPC). Equisetum HTG consistently cleaved the MLG at the third consecutive β-(1→4)-bond following (towards the reducing terminus) a β-(1→3)-bond. It then formed a β-(1→4)-bond between the MLG and the non-reducing terminal glucose residue of the xyloglucan oligosaccharide, consistent with its xyloglucan endotransglucosylase/hydrolase subfamily membership. Using size-homogeneous barley MLG as the donor substrate, we showed that HTG does not favour any particular region of the MLG chain relative to the polysaccharide's reducing and non-reducing termini; rather, it selects its target cellotetraosyl unit stochastically along the MLG molecule. This work improves our understanding of how enzymes can exhibit promiscuous substrate specificities and provides the foundations to explore strategies for engineering novel substrate specificities into transglycanases. © 2017 The Author(s).

  12. Reaction pathways of the dissociation of methylal: A DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Frey, H.-M.; Beaud, P.; Gerber, T.; Mischler, B.; Radi, P.P.; Tzannis, A.-P. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)


    Schemata for modelling combustion processes do not yet include reaction rates for oxygenated fuels like methylal (DMM) which is considered as an additive or replacement for diesel due to its low sooting propensity. Density functional theory (DFT) studies of the possible reaction pathways for different dissociation steps of methylal are presented. Cleavage of a hydrogen bond to the methoxy group or the central carbon atom were simulated at the BLYP/6-311++G{sup **} level of theory. The results are compared to the experiment when dissociating and/or ionising DMM with femtosecond pulses. (author) 1 fig., 1 tab., 1 ref.

  13. Copper(II) complex of methionine conjugated bis-pyrazole based ligand promotes dual pathway for DNA cleavage. (United States)

    Bhattacharyya, Sudipta; Sarkar, Amrita; Dey, Suman Kr; Jose, Gregor P; Mukherjee, Arindam; Sengupta, Tapas K


    Three Cu(II) complexes of bis-pyrazole based ligands have been synthesized and structurally characterized by X-ray crystallography. One of the ligand (L2) contains a methionine ester conjugated to a bis-pyrazole carboxylate through an amide linkage. The binding constant for complexes 1-3 with CT DNA are of the order of 10(4) M(-1). The crystal structure suggests that the axial Cu-O bonds (ca. 2.31(4) Å) are relatively labile and hence during the redox cycle with ascorbic acid and oxygen one or both the axial Cu-O bonds might open to promote copper oxygen reaction and generate ROS. The chemical nuclease activity of complexes 1-3 in dark, show complete relaxation of supercoiled DNA at 100 μM concentration in presence of ascorbic acid (H2A). The mechanistic investigation suggests that the complexes 1 and 2 show involvement of peroxo species whereas 3 shows involvement of both singlet oxygen and peroxo species in DNA cleavage. The singlet oxygen formation in dark is otherwise unfavourable but the presence of methionine as pendant arm in L2 might activate the generation of singlet oxygen from the metal generated peroxo species. The results of DNA cleavage studies suggest that methionine based copper(II) complexes can promote dual pathway for DNA cleavage. Probing the cytotoxic activity of these complexes on MCF-7, human breast cancer cell line shows that 3 is the most effective one with an IC50 of 70(2) μM.

  14. Cleavage of mispaired heteroduplex DNA substrates by numerous restriction enzymes. (United States)

    Langhans, Mark T; Palladino, Michael J


    The utility of restriction endonucleases as a tool in molecular biology is in large part due to the high degree of specificity with which they cleave well-characterized DNA recognition sequences. The specificity of restriction endonucleases is not absolute, yet many commonly used assays of biological phenomena and contemporary molecular biology techniques rely on the premise that restriction enzymes will cleave only perfect cognate recognition sites. In vitro, mispaired heteroduplex DNAs are commonly formed, especially subsequent to polymerase chain reaction amplification. We investigated a panel of restriction endonucleases to determine their ability to cleave mispaired heteroduplex DNA substrates. Two straightforward, non-radioactive assays are used to evaluate mispaired heteroduplex DNA cleavage: a PCR amplification method and an oligonucleotide-based assay. These assays demonstrated that most restriction endonucleases are capable of site-specific double-strand cleavage with heteroduplex mispaired DNA substrates, however, certain mispaired substrates do effectively abrogate cleavage to undetectable levels. These data are consistent with mispaired substrate cleavage previously reported for Eco RI and, importantly, extend our knowledge of mispaired heteroduplex substrate cleavage to 13 additional enzymes.

  15. Kinetic study on bonding reaction of gelatin with CdS nanopaticles by UV-visible spectroscopy. (United States)

    Tang, Shihua; Wang, Baiyang; Li, Youqun


    The chemical kinetics on gelatin-CdS direct conjugates has been systematically investigated as a function of different temperature and reactant concentration (i.e. Cd(2+), S(2-) and gelatin) by UV-visible spectroscopy, for the first time. The nonlinear fitting and the differential method were used to calculate the initial rate based on the absorbance-time data. A double logarithmic linear equation for calculating the rate constant (k) and the reaction order (n) was introduced. The reaction kinetic parameters (n, k, Ea, and Z) and activation thermodynamic parameters (ΔG(≠), ΔH(≠), and ΔS(≠)) were obtained from variable temperature kinetic studies. The overall rate equation allowing evaluation of conditions that provide required reaction rate could be expressed as: r = 1.11 × 10(8) exp(-4971/T)[Cd(2+)][gelatin](0.6)[S(2-)](0.6) (M/S) The calculated values of the reaction rate are well coincide with the experimental results. A suitable kinetic model is also proposed. This work will provide guidance for the rational design of gelatin-directed syntheses of metal sulfide materials, and help to understand the biological effects of nanoparticles at the molecular level. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Influence of the Organocatalyst in the Aldol/Mannich-Type Product Selectivities in C−C Bond Forming Reactions

    NARCIS (Netherlands)

    Dominguez de Maria, Pablo; Bracco, Paula; Castelhano, Luiz Fernando; Bargeman, Gerrald


    Several organocatalysts were tested in the cross condensation of isobutyraldehyde and acetone. Formation of aldol-type and Mannich-type (“aldol condensation”) products was assessed, and Aldol/Mannich proportion studied under several reaction conditions and at different conversions. Organocatalysts

  17. Homolytic bond dissociation energies for C-H bonds adjacent to sulfur and aromatic moieties: The effects of substituents of C-H bond strengths of the benzylic positions in coal model compounds

    Energy Technology Data Exchange (ETDEWEB)

    Alnajjar, M.S.; Franz, J.A. [Pacific Northwest Lab., Richland, WA (United States); Gleicher, G.J.; Truksa, S. [Oregon State Univ., Corvallis, OR (United States). Dept. of Chemistry; Bordwell, F.; Zhang, Xian-Man [Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry


    Sulfur-containing compounds are precursors for thiyl radicals at coal liquefaction temperatures due to the weakness of The and S-S bonds. Thiyl radicals play important roles in hydrogen atom shuttling between benzylic positions and catalyze the cleavage and the formation of strong C-C bonds. Although many reactions of thiyl and other sulfur-containing radicals are qualitatively understood, the homolytic bond dissociation energies (EDE`s) and the thermochemistry associated with many key high molecular weight hydrocarbon and sulfur-containing organic structures important to coal is lacking because they are inappropriate for gas-phase techniques. The measurement of BDE`s has been proven to be difficult even in the simplest of molecules.

  18. Sodium dichloroiodate promoted C-C bond cleavage: An efficient ...

    Indian Academy of Sciences (India)



    2-aminoanilines respectively,. 31 however, this method is not useful for the synthe- sis of benzoxazoles, the same authors later reported the synthesis of benzoxazoles from 2-aminophenol and β- diketones using a combination ...

  19. Observation of covalent and electrostatic bonds in nitrogen-containing polycyclic ions formed by gas phase reactions of the benzene radical cation with pyrimidine. (United States)

    Attah, Isaac Kwame; Soliman, Abdel-Rahman; Platt, Sean P; Meot-Ner Mautner, Michael; Aziz, Saaudallah G; Samy El-Shall, M


    Polycyclic aromatic hydrocarbons (PAHs) and polycyclic aromatic nitrogen heterocyclics (PANHs) are present in ionizing environments, including interstellar clouds and solar nebulae, where their ions can interact with neutral PAH and PANH molecules leading to the formation of a variety of complex organics including large N-containing ions. Herein, we report on the formation of a covalently-bonded (benzene·pyrimidine) radical cation dimer by the gas phase reaction of pyrimidine with the benzene radical cation at room temperature using the mass-selected ion mobility technique. No ligand exchange reactions with benzene and pyrimidine are observed indicating that the binding energy of the (benzene·pyrimidine)˙ + adduct is significantly higher than both the benzene dimer cation and the proton-bound pyrimidine dimer. The (benzene·pyrimidine)˙ + adduct shows thermal stability up to 541 K. Thermal dissociation of the (C 6 D 6 ·C 4 H 4 N 2 )˙ + adduct at temperatures higher than 500 K produces C 4 H 4 N 2 D + (m/z 82) suggesting the transfer of a D atom from the C 6 D 6 moiety to the C 4 H 4 N 2 moiety before the dissociation of the adduct. Mass-selected ion mobility of the (benzene·pyrimidine)˙ + dimer reveals the presence of two families of isomers formed by electron impact ionization of the neutral (benzene·pyrimidine) dimer. The slower mobility peak corresponds to a non-covalent family of isomers with larger collision cross sections (76.0 ± 1.8 Å 2 ) and the faster peak is consistent with a family of covalent isomers with more compact structures and smaller collision cross sections (67.7 ± 2.2 Å 2 ). The mobility measurements at 509 K show only one peak corresponding to the family of stable covalently bonded isomers characterized by smaller collision cross sections (66.9 ± 1.9 Å 2 at 509 K). DFT calculations at the M06-2X/6-311++G** level show that the most stable (benzene·pyrimidine)˙ + isomer forms a covalent C-N bond with a binding energy of 49

  20. Spectroscopic investigation and computational analysis of charge transfer hydrogen bonded reaction between 3-aminoquinoline with chloranilic acid in 1:1 stoichiometric ratio (United States)

    Al-Ahmary, Khairia M.; Alenezi, Maha S.; Habeeb, Moustafa M.


    Charge transfer hydrogen bonded reaction between the electron donor (proton acceptor) 3-aminoquinoline with the electron acceptor (proton donor) chloranilic acid (H2CA) has been investigated experimentally and theoretically. The experimental work included the application of UV-vis spectroscopy to identify the charge transfer band of the formed complex, its molecular composition as well as estimating its formation constants in different solvent included acetonitrile (AN), methanol (MeOH), ethanol (EtOH) and chloroform (CHL). It has been recorded the presence of new absorption bands in the range 500-550 nm attributing to the formed complex. The molecular composition of the HBCT complex was found to be 1:1 (donor:acceptor) in all studied solvents based on continuous variation and photometric titration methods. In addition, the calculated formation constants from Benesi-Hildebrand equation recorded high values, especially in chloroform referring to the formation of stable HBCT complex. Infrared spectroscopy has been applied for the solid complex where formation of charge and proton transfer was proven in it. Moreover, 1H and 13C NMR spectroscopies were used to characterize the formed complex where charge and proton transfers were reconfirmed. Computational analysis included the use of GAMESS computations as a package of ChemBio3D Ultr12 program were applied for energy minimization and estimation of the stabilization energy for the produced complex. Also, geometrical parameters (bond lengths and bond angles) of the formed HBCT complex were computed and analyzed. Furthermore, Mullikan atomic charges, molecular potential energy surface, HOMO and LUMO molecular orbitals as well as assignment of the electronic spectra of the formed complex were presented. A full agreement between experimental and computational analysis has been found especially in the existence of the charge and proton transfers and the assignment of HOMO and LUMO molecular orbitals in the formed complex as

  1. Bonding analysis of the [C(2)O(4)](2+) intermediate formed in the reaction of CO(2)(2+) with neutral CO(2). (United States)

    Feixas, Ferran; Ponec, Robert; Fiser, Jirí; Roithová, Jana; Schröder, Detlef; Price, Stephen D


    The bonding patterns of the [C(2)O(4)](2+) dication formed upon interaction of CO(2)(2+) with neutral CO(2) are investigated using the analysis of domain-averaged Fermi holes (DAFHs). The DAFH approach provides an explanation for the previously observed "asymmetry" of the energy deposition in the pair of CO(2)(+) monocations formed in the thermal reaction CO(2)(2+) + CO(2) --> [C(2)O(4)](2+) --> 2 CO(2)(+), specifically that the CO(2)(+) monocation formed from the dication dissociates far more readily than the CO(2)(+) monocation formed from the neutral molecule. The bonding pattern is consistent with a description of intermediate [C(2)O(4)](2+) as a complex between the triplet ground state of CO(2)(2+) with the singlet ground state of neutral CO(2), which can, among other pathways, smoothly proceed to a nondegenerate pair of (4)CO(2)(+) + (2)CO(2)(+) where the former stems from the dication and the latter stems from the neutral reactant. Hence the "electronic history" of the components is retained in the [C(2)O(4)](2+) intermediate. In addition, dissociation of (4)CO(2)(+) is discussed based on CCSD and CASSCF calculations. Equilibrium geometries for the ground electronic states of CO(2)(0/+/2+) and some other relevant structures of CO(2)(+) are determined using the MRCI method.

  2. Thermal effects on the mechanical properties of SiC fiber reinforced reaction bonded silicon nitride matrix (SiC/RBSN) composites (United States)

    Bhatt, R. T.; Phillips, R. E.


    The elevated temperature four-point flexural strength and the room temperature tensile and flexural strength properties after thermal shock were measured for ceramic composites consisting of 30 vol pct uniaxially aligned 142 micron diameter SiC fibers in a reaction bonded Si3N4 matrix. The elevated temperature strengths were measured after 15 min of exposure in air at temperatures to 1400 C. Thermal shock treatment was accomplished by heating the composite in air for 15 min at temperatures to 1200 C and then quenching in water at 25 C. The results indicate no significant loss in strength properties either at temperature or after thermal shock when compared with the strength data for composites in the as-fabricated condition.

  3. Processing development for ceramic structural components: the influence of a presintering of silicon on the final properties of reaction bonded silicon nitride. Final technical report

    Energy Technology Data Exchange (ETDEWEB)


    The influence of a presintering of silicon on the final properties of reaction bonded silicon nitride has been studied using scanning electron and optical microscopy, x-ray diffraction analysis, 4 pt. bend test, and mecury intrusion porosimetry. It has been shown that presintering at 1050/sup 0/C will not affect the final nitrided properties. At 1200/sup 0/C, the oxide layer is removed, promoting the formation of B-phase silicon nitride. Presintering at 1200/sup 0/C also results in compact weight loss due to the volatilization of silicon, and the formation of large pores which severely reduce nitrided strength. The development of the structure of sintered silicon compacts appears to involve a temperature gradient, with greater sintering observed near the surface.

  4. High-temperature plastic behavior of reaction-bonded CuO and TiO{sub 2} co-doped alumina-zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Rodriguez, A.; Jimenez-Melendo, M.; Dominguez-Rodriguez, A.; Bravo-Leon, A


    The high-temperature plastic behavior of reaction-bonded alumina doped with equimolar amounts of copper and titanium oxides has been studied by means of creep and stress relaxation tests in air. Deformation results have been correlated with microstructural observations and X-ray diffraction studies in order to deduce the mechanism responsible for the deformation. The material exhibits plasticity at temperatures as low as 900 deg. C in contrast with other aluminas. At temperatures near 1000 deg. C a linear relation between the strain rate and the stress has been detected (corresponding to mechanism with a stress exponent n equal to one) but both above and below this temperature higher values of n have been observed.

  5. Synthesis of Bioactive 2-(Arylaminothiazolo[5,4-f]-quinazolin-9-ones via the Hügershoff Reaction or Cu- Catalyzed Intramolecular C-S Bond Formation

    Directory of Open Access Journals (Sweden)

    Damien Hédou


    Full Text Available A library of thirty eight novel thiazolo[5,4-f]quinazolin-9(8H-one derivatives (series 8, 10, 14 and 17 was prepared via the Hügershoff reaction and a Cu catalyzed intramolecular C-S bond formation, helped by microwave-assisted technology when required. The efficient multistep synthesis of the key 6-amino-3-cyclopropylquinazolin-4(3H-one (3 has been reinvestigated and performed on a multigram scale from the starting 5-nitroanthranilic acid. The inhibitory potency of the final products was evaluated against five kinases involved in Alzheimer’s disease and showed that some molecules of the 17 series described in this paper are particularly promising for the development of novel multi-target inhibitors of kinases.

  6. Cobalt-Catalyzed Tandem C-H Activation/C-C Cleavage/C-H Cyclization of Aromatic Amides with Alkylidenecyclopropanes. (United States)

    Li, Mingliang; Kwong, Fuk Yee


    A cobalt-catalyzed chelation-assisted tandem C-H activation/C-C cleavage/C-H cyclization of aromatic amides with alkylidenecyclopropanes (ACPs) is reported. This process allows the sequential formation of two C-C bonds, in which it is in sharp contrast to previous report of using Rh catalyst for the formation of C-N bond. Here the inexpensive catalyst system exhibits good functional group compatibility and relatively broad substrate scope. The desired products can be easily transformed into polycyclic lactones with m-CPBA. Mechanistic studies revealed that the tandem reaction proceeds through a sequential C-H cobaltation, β-carbon elimination and intramolecular C-H cobaltation pathway. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Competition of electron transfer, dissociation, and bond-forming processes in the reaction of the CO(2)(2+) dication with neutral CO(2). (United States)

    Ricketts, Claire L; Schröder, Detlef; Roithová, Jana; Schwarz, Helmut; Thissen, Roland; Dutuit, Odile; Zabka, Jan; Herman, Zdenek; Price, Stephen D


    The bimolecular reactivity of the CO(2)(2+) dication with neutral CO(2) is investigated using triple quadrupole and ion-ion coincidence mass spectrometry. Crucial for product analysis is the use of appropriate isotope labelling in the quadrupole experiments in order to distinguish the different reactive pathways. The main reaction corresponds to single-electron transfer from the neutral reagent to the dication, i.e. CO(2)(2+) + CO(2) --> 2CO(2)(+); this process is exothermic by almost 10 eV, if ground state monocations are formed. Interestingly, the results indicate that the CO(2)(+) ion formed when the dication accepts an electron dissociates far more readily than the CO(2)(+) ion formed from the neutral CO(2) molecule. This differentiation of the two CO(2)(+) products is rationalized by showing that the population of the key dissociative states of the CO(2)(+) monocation will be favoured from the CO(2)(2+) dication rather than from neutral CO(2). In addition, two bond-forming reactions are observed as minor channels, one of which leads to CO(+) and O(2)(+) as ionic products and the other affords a long-lived C(2)O(3)(2+) dication.

  8. Effects of Interface Coating and Nitride Enhancing Additive on Properties of Hi-Nicalon SiC Fiber Reinforced Reaction-Bonded Silicon Nitride Composites (United States)

    Bhatt, Ramakrishana T.; Hull, David R.; Eldridge, Jeffrey I.; Babuder, Raymond


    Strong and tough Hi-Nicalon SiC fiber reinforced reaction-bonded silicon nitride matrix composites (SiC/ RBSN) have been fabricated by the fiber lay-up approach. Commercially available uncoated and PBN, PBN/Si-rich PBN, and BN/SiC coated SiC Hi-Nicalon fiber tows were used as reinforcement. The composites contained approximately 24 vol % of aligned 14 micron diameter SiC fibers in a porous RBSN matrix. Both one- and two-dimensional composites were characterized. The effects of interface coating composition, and the nitridation enhancing additive, NiO, on the room temperature physical, tensile, and interfacial shear strength properties of SiC/RBSN matrix composites were evaluated. Results indicate that for all three coated fibers, the thickness of the coatings decreased from the outer periphery to the interior of the tows, and that from 10 to 30 percent of the fibers were not covered with the interface coating. In the uncoated regions, chemical reaction between the NiO additive and the SiC fiber occurs causing degradation of tensile properties of the composites. Among the three interface coating combinations investigated, the BN/SiC coated Hi-Nicalon SiC fiber reinforced RBSN matrix composite showed the least amount of uncoated regions and reasonably uniform interface coating thickness. The matrix cracking stress in SiC/RBSN composites was predicted using a fracture mechanics based crack bridging model.

  9. Identification of the Active Species in Photochemical Hole Scavenging Reactions of Methanol on TiO2

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Mingmin; Henderson, Michael A.


    Molecular and dissociative methanol adsorption species were prepared on rutile TiO2(110) surfaces to study photocatalytic oxidation of methanol in ultrahigh vacuum (UHV) using temperature-programmed desorption (TPD). Adsorbed methoxy groups (CH3O-) were found to be the photoactive form of adsorbed methanol converted to adsorbed formaldehyde and a surface OH group by hole-mediated C-H bond cleavage. These results suggest that adsorbed methoxy is the effective hole scavenger in photochemical reactions involving methanol.

  10. The aryl ether bond reactions with H-donor solvents: guaiacol and tetralin in the presence of catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Afifi, A.I.; Thring, R.W.; Overend, R.P. [Universite de Sherbrooke, Sherbrooke, PQ (Canada). Dept. de Genie Chimique


    The effect of homogenous catalysis by Fe and Ru, on the conversion of guaiacol in tetralin to catechol and phenol has been investigated as a model for the behaviour of the aryl-oxy linkage that is found in wood, peat and younger coals. In the absence of catalyst and at low ratios of guaiacol to tetralin, the primary product is catechol. Kinetic analysis has confirmed that the rate constant for this primary and rate determining step is given by an Arrhenius pre-exponential factor of 10{sup 13.8} s{sup -1} with an activation energy of 215 kJ mol{sup -1}. The activation energy found is in good agreement with those of other investigators and lies between the values proposed for homolytic fission ({gt} 240 kJ mol{sup -1}) and for a concerted or pericyclic reaction (188 kJ mol{sup -1}). In the presence of catalysts the rate is not changed; however, the yield of a secondary product phenol is increased with both Fe and Ru. Separate experiments confirmed that the selectivity of catechol to phenol conversion was markedly increased in the presence of these catalysts. There is strong evidence for the formation of catecholato-iron complexes and this suggests that in pyrolysis and liquefaction of biomass and young coals there may well be a role of homogeneous catalysts in directing the product slate towards useful intermediate chemicals such as phenols. 14 refs., 9 figs., 4 tabs.

  11. Real-time Monitoring of Intermediates Reveals the Reaction Pathway in the Thiol-Disulfide Exchange between Disulfide Bond Formation Protein A (DsbA) and B (DsbB) on a Membrane-immobilized Quartz Crystal Microbalance (QCM) System* (United States)

    Yazawa, Kenjiro; Furusawa, Hiroyuki; Okahata, Yoshio


    Disulfide bond formation protein B (DsbBS-S,S-S) is an inner membrane protein in Escherichia coli that has two disulfide bonds (S-S, S-S) that play a role in oxidization of a pair of cysteine residues (SH, SH) in disulfide bond formation protein A (DsbASH,SH). The oxidized DsbAS-S, with one disulfide bond (S-S), can oxidize proteins with SH groups for maturation of a folding preprotein. Here, we have described the transient kinetics of the oxidation reaction between DsbASH,SH and DsbBS-S,S-S. We immobilized DsbBS-S,S-S embedded in lipid bilayers on the surface of a 27-MHz quartz crystal microbalance (QCM) device to detect both formation and degradation of the reaction intermediate (DsbA-DsbB), formed via intermolecular disulfide bonds, as a mass change in real time. The obtained kinetic parameters (intermediate formation, reverse, and oxidation rate constants (kf, kr, and kcat, respectively) indicated that the two pairs of cysteine residues in DsbBS-S,S-S were more important for the stability of the DsbA-DsbB intermediate than ubiquinone, an electron acceptor for DsbBS-S,S-S. Our data suggested that the reaction pathway of almost all DsbASH,SH oxidation processes would proceed through this stable intermediate, avoiding the requirement for ubiquinone. PMID:24145032

  12. Intermolecular Dehydrative Coupling Reaction of Arylketones with Cyclic Alkenes Catalyzed by a Well-Defined Cationic Ruthenium-Hydride Complex: A Novel Ketone Olefination Method via Vinyl C–H Bond Activation (United States)

    Yi, Chae S.; Lee, Do W.


    Summary The cationic ruthenium-hydride complex [(η6-C6H6)(PCy3)(CO)RuH]+BF4− was found to be a highly effective catalyst for the intermolecular olefination reaction of arylketones with cycloalkenes. The preliminary mechanistic analysis revealed that electrophilic ruthenium-vinyl complex is the key species for mediating both vinyl C–H bond activation and the dehydrative olefination steps of the coupling reaction. PMID:20567607

  13. Application of Ni(II-assisted peptide bond hydrolysis to non-enzymatic affinity tag removal.

    Directory of Open Access Journals (Sweden)

    Edyta Kopera

    Full Text Available In this study, we demonstrate a non-enzymatic method for hydrolytic peptide bond cleavage, applied to the removal of an affinity tag from a recombinant fusion protein, SPI2-SRHWAP-His(6. This method is based on a highly specific Ni(II reaction with (S/TXHZ peptide sequences. It can be applied for the protein attached to an affinity column or to the unbound protein in solution. We studied the effect of pH, temperature and Ni(II concentration on the efficacy of cleavage and developed an analytical protocol, which provides active protein with a 90% yield and ∼100% purity. The method works well in the presence of non-ionic detergents, DTT and GuHCl, therefore providing a viable alternative for currently used techniques.

  14. Anaerobic DNA cleavage in red light by dicopper(II) complexes on ...

    Indian Academy of Sciences (India)


    *For correspondence. Anaerobic DNA cleavage in red light by dicopper(II) complexes on disulphide bond activation. DEBOJYOTI LAHIRI a. , RITANKAR MAJUMDAR b. , ASHIS K PATRA a and. AKHIL R CHAKRAVARTY a,. *. aDepartment of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012.

  15. Electrochemical Protein Cleavage in a Microfluidic Cell with Integrated Boron Doped Diamond Electrodes

    NARCIS (Netherlands)

    van den Brink, Floris T G; Zhang, Tao; Ma, Liwei; Bomer, Johan; Odijk, Mathieu; Olthuis, Wouter; Permentier, Hjalmar P; Bischoff, Rainer; van den Berg, Albert


    Specific electrochemical cleavage of peptide bonds at the C-terminal side of tyrosine and tryptophan generates peptides amenable to liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis for protein identification. To this end we developed a microfluidic electrochemical cell of 160 nL

  16. Electrochemical protein cleavage in a microfluidic cell with integrated boron doped diamond electrodes

    NARCIS (Netherlands)

    van den Brink, Floris Teunis Gerardus; Zhang, Tao; Ma, Liwei; Bomer, Johan G.; Odijk, Mathieu; Olthuis, Wouter; Permentier, Hjalmar P.; Bischoff, Rainer; van den Berg, Albert


    Specific electrochemical cleavage of peptide bonds at the C-terminal side of tyrosine and tryptophan generates peptides amenable to liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis for protein identification. To this end we developed a microfluidic electrochemical cell of 160 nL

  17. Can sucrose cleavage enzymes serve as markers for sink strength and is sucrose a signal molecule during plant sink development? (United States)

    C.C. Black; T. Lobodia; J.-Q Chen; Shi-Jean S. Sung


    Sucrose cleavage is an essential reaction for higher plant cells to initiate intermediary metabolism and to direct its carbon into the host of essential compounds derived therefrom for maintaining the cells of intact plants.This review will focus on: the concentrations of sucrose available to plant cells; some biochemical traits of sucrose cleavage enzymes; the...

  18. Allyl deprotection of galacturonic acid derivatives: mechanistic aspects of mercuric-catalyzed prop-1-enyl acetal cleavage. (United States)

    Barbier, Maximilien; Grand, Eric; Kovensky, José


    Different deallylation methods were assayed for selective deprotection of allyl galactopyranosiduronic acid derivatives. A two-step procedure using DABCO and (Ph(3)P)(3)RhCl followed by mercuric-assisted cleavage gave quantitative yields. Reaction in the presence of [(18)O]water allowed us to obtain evidence about the mechanism of prop-1-enyl cleavage.

  19. Amplified QCM biosensor for type IV collagenase based on collagenase-cleavage of gold nanoparticles functionalized peptide. (United States)

    Dong, Zong-Mu; Jin, Xin; Zhao, Guang-Chao


    The present study develops a rapid, simple and efficient method for the determination of type IV collagenase by using a specific peptide-modified quartz crystal microbalance (QCM). A small peptide (P1), contains a specific sequence (Pro-Gly) and a terminal cysteine, was synthetized and immobilized to the surface of QCM electrode via the reaction between Au and thiol of the cysteine. The peptide bond between proline and glycine can be specific hydrolyzed cleavage by type IV collagenase, which enabled the modified electrode with a high selectivity toward type IV collagenase. The cleaving process caused a frequency change of QCM to give a signal related to the concentration of type IV collagenase. The morphologies of the modified electrodes were characterized by scanning electron microscope (SEM) and the specific hydrolyzed cleavage process was monitored by QCM. When P1 was modified with gold nanoparticles (P1-Au NPs), the signal could be amplified to further enhance the sensitivity of the designed sensor due to the high-mass of the modified Au NPs. Compared the direct unamplified assay, the values obtained for the limit of detection for type IV collagenase was 0.96 ng mL -1 , yielding about 6.5 times of magnitude improvement in sensitivity. This signal enhanced peptide based QCM biosensor for type IV collagenase also showed good selectivity and sensitivity in complex matrix. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Computational analysis of the mechanism of chemical reactions in terms of reaction phases: hidden intermediates and hidden transition States. (United States)

    Kraka, Elfi; Cremer, Dieter


    Computational approaches to understanding chemical reaction mechanisms generally begin by establishing the relative energies of the starting materials, transition state, and products, that is, the stationary points on the potential energy surface of the reaction complex. Examining the intervening species via the intrinsic reaction coordinate (IRC) offers further insight into the fate of the reactants by delineating, step-by-step, the energetics involved along the reaction path between the stationary states. For a detailed analysis of the mechanism and dynamics of a chemical reaction, the reaction path Hamiltonian (RPH) and the united reaction valley approach (URVA) are an efficient combination. The chemical conversion of the reaction complex is reflected by the changes in the reaction path direction t(s) and reaction path curvature k(s), both expressed as a function of the path length s. This information can be used to partition the reaction path, and by this the reaction mechanism, of a chemical reaction into reaction phases describing chemically relevant changes of the reaction complex: (i) a contact phase characterized by van der Waals interactions, (ii) a preparation phase, in which the reactants prepare for the chemical processes, (iii) one or more transition state phases, in which the chemical processes of bond cleavage and bond formation take place, (iv) a product adjustment phase, and (v) a separation phase. In this Account, we examine mechanistic analysis with URVA in detail, focusing on recent theoretical insights (with a variety of reaction types) from our laboratories. Through the utilization of the concept of localized adiabatic vibrational modes that are associated with the internal coordinates, q(n)(s), of the reaction complex, the chemical character of each reaction phase can be identified via the adiabatic curvature coupling coefficients, A(n,s)(s). These quantities reveal whether a local adiabatic vibrational mode supports (A(n,s) > 0) or resists

  1. Mechanism of Cytochrome P450 17A1-Catalyzed Hydroxylase and Lyase Reactions

    DEFF Research Database (Denmark)

    Bonomo, Silvia; Jorgensen, Flemming Steen; Olsen, Lars


    Cytochrome P450 17A1 (CYP17A1) catalyzes C17 hydroxylation of pregnenolone and progesterone and the subsequent C17–C20 bond cleavage (lyase reaction) to form androgen precursors. Compound I (Cpd I) and peroxo anion (POA) are the heme-reactive species underlying the two reactions. We have...... states (TSs) for the two reactions into the active site of CYP17A1 showed that the TS for the C17 hydroxylation needs to be distorted by 13 kJ·mol–1, whereas the TS for the 17,20 lyase reaction easily can be accommodated in the protein. Finally, differences in the hydrogen-bond pattern of the substrates...

  2. What factors affect the regioselectivity of oxidation by cytochrome p450? A DFT study of allylic hydroxylation and double bond epoxidation in a model reaction. (United States)

    de Visser, Sam P; Ogliaro, François; Sharma, Pankaz K; Shaik, Sason


    Epoxidation (C=C) vis-à-vis allylic hydroxylation (C-H) reactions of propene with a model compound I (Cpd I) of the enzyme cytochrome P450 were studied using B3LYP density functional theory. Potential energy profiles and kinetic isotope effects (KIE) were calculated. The interactions in the protein pocket were mimicked by adding two external NH- - -S hydrogen bonds to the thiolate ligand and by introducing a nonpolar medium (with a dielectric constant, epsilon = 5.7) that can exert a polarization effect on the reacting species. A two-state reactivity (TSR) with high-spin (HS) and low-spin (LS) states were located for both processes (Ogliaro, F.; Harris, N.; Cohen, S.; Filatov, M.; de Visser, S. P.; Shaik, S. J. Am. Chem. Soc. 2000, 122, 8977-8989. de Visser, S. P.; Ogilaro, F.; Harris, N.; Shaik, S. J. Am. Chem. Soc. 2001, 123, 3037-3047). The HS processes were found to be stepwise, whereas the LS processes were characterized as nonsynchronous but effectively concerted pathways. The computed KIE for C-H hydroxylation with and without tunneling corrections are large (>7), and they support the assignment of the corresponding transition states as hydrogen-abstraction species (Groves, J. T.; Han, Y.-Z. In Cytochrome P450: Structures, Mechanism and Biochemistry, 2nd ed.; Ortiz de Montellano, P. R., Ed.; Plenum Press: New York, 1995; Chapter 1; pp 3-48). In the gas phase, epoxidation is energetically favorable by 3.4 kcal mol(-1). Inclusion of zero-point energy reduces this difference but still predicts C=C/C-H > 1. Environmental effects were found to have major impact on the C=C/C-H ratio as well as on the stereoselectivity of the processes. Thus, two NH- - -S hydrogen bonds away from the reaction center reverse the regioselectivity and prefer hydroxylation, namely, C=C/C-H J. Am. Chem. Soc. 2000, 122, 12892-12893; Ogliaro, F.; de Visser, S. P.; Cohen, S.; Kaneti, J.; Shaik, S. Chembiochem. 2001, 2, 848-851; Ogliaro, F.; de Visser, S. P.; Groves, J. T.; Shaik, S. Angew

  3. Reactions of group 4 metallocene alkyne complexes with carbodiimides: experimental and theoretical studies of the structure and bonding of five-membered hetero-metallacycloallenes. (United States)

    Kaleta, Katharina; Ruhmann, Martin; Theilmann, Oliver; Beweries, Torsten; Roy, Subhendu; Arndt, Perdita; Villinger, Alexander; Jemmis, Eluvathingal D; Schulz, Axel; Rosenthal, Uwe


    The reaction of the low-valent metallocene(II) sources Cp(2)Ti(η(2)-Me(3)SiC(2)SiMe(3)) (7) and Cp(2)Zr(py)(η(2)-Me(3)SiC(2)SiMe(3)) (11, Cp = η(5)-cyclopentadienyl, py = pyridine) with carbodiimides RN═C═NR (R = Cy, i-Pr, p-Tol) leads to the formation of five membered hetero-metallacycloallenes Cp(2)M{Me(3)SiC═C═C[N(SiMe(3))(R)]-N(R)} (9M-R) (M = Ti, R = i-Pr; M = Zr, R = Cy, i-Pr, p-Tol). Elimination of the alkyne (as the hitherto known reactivity of titanocene and zirconocene alkyne complexes would suggest) was not observed. The molecular structures of the obtained complexes were confirmed by X-ray studies. Moreover, the structure and bonding of the complexes 9Zr-Cy and 9Zr-p-Tol was investigated by DFT calculations. © 2011 American Chemical Society

  4. Single-molecule chemical reactions on DNA origami

    DEFF Research Database (Denmark)

    Voigt, Niels Vinther; Tørring, Thomas; Rotaru, Alexandru


    DNA nanotechnology and particularly DNA origami, in which long, single-stranded DNA molecules are folded into predetermined shapes, can be used to form complex self-assembled nanostructures. Although DNA itself has limited chemical, optical or electronic functionality, DNA nanostructures can serve...... on a DNA origami scaffold by atomic force microscopy. The high yields and chemoselectivities of successive cleavage and bond-forming reactions observed in these experiments demonstrate the feasibility of post-assembly chemical modification of DNA nanostructures and their potential use as locally...

  5. Theoretical studies on thermal degradation reaction mechanism of model compound of bisphenol A polycarbonate. (United States)

    Huang, Jinbao; He, Chao; Li, Xinsheng; Pan, Guiying; Tong, Hong


    Density functional theory methods (DFT) M062X have been used to investigate the thermal degradation processes of model compound of bisphenol A polycarbonate (MPC) and to identify the optimal reaction paths in the thermal decomposition of bisphenol A polycarbonate (PC). The bond dissociation energies of main bonds in MPC were calculated, and it is found that the weakest bond in MPC is the single bond between the methylic carbon and carbon atom and the second weakest bond in MPC is the single bond between oxygen atom and the carbonyl carbon. On the basis of computational results of kinetic parameters, a mechanism is proposed where the hydrolysis (or alcoholysis) reaction is the main degradation pathways for the formation of the evolved products, and the homolytic cleavage and rearrangement reactions are the competitive reaction pathways in the thermal degradation of PC. The proposed mechanism is consistent with experimental observations of CO 2 , bisphenol A and 1,1-bis(4-hydroxyphenyl)-ethane as the main degradation products, together with a small amount of CO, alkyl phenol and diphenyl carbonate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Bulk gold catalyzed oxidation reactions of amines and isocyanides and iron porphyrin catalyzed N-H and O-H bond insertion/cyclization reactions of diamines and aminoalcohols

    Energy Technology Data Exchange (ETDEWEB)

    Klobukowski, Erik [Iowa State Univ., Ames, IA (United States)


    conditions, it was found that the oxidative dehydrogenation of dibenzylamine to Nbenzylidenebenzylamine, with N-methylmorpholine N-oxide (NMMO), was nearly quantitative (96%) within 24 h. However, the reaction with oxygen was much slower, with only a 52% yield of imine product over the same time period. Moreover, the rate of reaction was found to be influenced by the nature of the amine N-oxide. For example, the use of the weakly basic pyridine N-oxide (PyNO) led to an imine yield of only 6% after 24 h. A comparison of amine N-oxide and O2 was also examined in the oxidation of PhCH{sub 2}OH to PhCHO catalyzed by bulk gold. In this reaction, a 52% yield of the aldehyde was achieved when NMMO was used, while only a 7% product yield was afforded when O{sub 2} was the oxidant after 48 h. The bulk gold-catalyzed oxidative dehydrogenation of cyclic amines generates amidines, which upon treatment with Aerosil and water were found to undergo hydrolysis to produce lactams. Moreover, 5-, 6-, and 7-membered lactams could be prepared through a one-pot reaction of cyclic amines by treatment with oxygen, water, bulk gold, and Aerosil. This method is much more atom economical than industrial processes, does not require corrosive acids, and does not generate undesired byproducts. Additionally, the gold and Aerosil catalysts can be readily separated from the reaction mixture. The second project involved studying iron(III) tetraphenylporphyrin chloride, Fe(TPP)Cl, as a homogeneous catalyst for the generation of carbenes from diazo reagents and their reaction with heteroatom compounds. Fe(TPP)Cl, efficiently catalyzed the insertion of carbenes derived from methyl 2-phenyldiazoacetates into O-H bonds of aliphatic and aromatic alcohols. Fe(TPP)Cl was also found to be an effective catalyst for tandem N-H and O-H insertion/cyclization reactions when 1,2-diamines and 1,2-alcoholamines were treated with diazo reagents. This approach provides a one-pot process for synthesizing piperazinones and

  7. Synthesis of 9-oxime-11,12-carbamate ketolides through a novel N-deamination reaction of 11,12-hydrazonocarbamate ketolide. (United States)

    Denis, Alexis; Pejac, Jean-Marie; Bretin, François; Bonnefoy, Alain


    A series of 9-oxime-11,12-carbamate ketolides was synthesized for the first time through a key 11,12-hydrazonocarbamate intermediate that was first oximated and further deaminated to give the corresponding carbamate. The N-N bond cleavage was achieved through an original new reaction using glycoaldehyde dimer as deaminating reagent. The new compounds synthesized were shown to display improved antibacterial activities against Streptococcus pneumoniae and S. pyogenes resistant to erythromycin.

  8. Autoactivation of mouse trypsinogens is regulated by chymotrypsin C via cleavage of the autolysis loop. (United States)

    Németh, Balázs Csaba; Wartmann, Thomas; Halangk, Walter; Sahin-Tóth, Miklós


    Chymotrypsin C (CTRC) is a proteolytic regulator of trypsinogen autoactivation in humans. CTRC cleavage of the trypsinogen activation peptide stimulates autoactivation, whereas cleavage of the calcium binding loop promotes trypsinogen degradation. Trypsinogen mutations that alter these regulatory cleavages lead to increased intrapancreatic trypsinogen activation and cause hereditary pancreatitis. The aim of this study was to characterize the regulation of autoactivation of mouse trypsinogens by mouse Ctrc. We found that the mouse pancreas expresses four trypsinogen isoforms to high levels, T7, T8, T9, and T20. Only the T7 activation peptide was cleaved by mouse Ctrc, causing negligible stimulation of autoactivation. Surprisingly, mouse Ctrc poorly cleaved the calcium binding loop in all mouse trypsinogens. In contrast, mouse Ctrc readily cleaved the Phe-150-Gly-151 peptide bond in the autolysis loop of T8 and T9 and inhibited autoactivation. Mouse chymotrypsin B also cleaved the same peptide bond but was 7-fold slower. T7 was less sensitive to chymotryptic regulation, which involved slow cleavage of the Leu-149-Ser-150 peptide bond in the autolysis loop. Modeling indicated steric proximity of the autolysis loop and the activation peptide in trypsinogen, suggesting the cleaved autolysis loop may directly interfere with activation. We conclude that autoactivation of mouse trypsinogens is under the control of mouse Ctrc with some notable differences from the human situation. Thus, cleavage of the trypsinogen activation peptide or the calcium binding loop by Ctrc is unimportant. Instead, inhibition of autoactivation via cleavage of the autolysis loop is the dominant mechanism that can mitigate intrapancreatic trypsinogen activation.

  9. [Copper-catalyzed cleavage of DNA by arenes]. (United States)

    Koval', O A; Boguslavskiĭ, E G; Oleĭnikova, S B; Chernolovskaia, E L; Litvak, V V; Nadolinnyĭ, V A; Blasov, V V


    DNA was found to be cleaved in neutral solutions containing arenes and copper (II) salts. The reaction is comparable in efficiency with the DNA cleavage by such systems as Cu(II)-phenanthroline and Cu(II)-ascorbic acid, but, in contrast to the latter, the system Cu(2+)-arene does not require the presence of an exogenous reducing agent or hydrogen peroxide. The system Cu(2+)-arene does not cleave DNA under anaerobic conditions. Catalase, sodium azide, and bathocuproine, which is a specific chelator of Cu(I), completely inhibit the reaction. The data obtained allow one to suppose that Cu(I) ions, superoxide radical, and singlet oxygen participate in the reaction. It has been shown by the EPR method using spin traps that the reaction proceeds with formation of alkoxyl radicals, which can insert breaks in the DNA molecule. For effective cleavage of DNA in the Cu(II)-o-bromobenzoic acid system, the radicals have to be generated by a specific copper-DNA-o-bromobenzoic acid complex, in which copper ions are most probably coordinated with oxygen atoms of the DNA phosphate groups. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2003, vol. 29, no. 6; see also

  10. Competition between Dehydrogenative Organometallic Bonding and Covalent Coupling of an Unfunctionalized Porphyrin on Cu(111). (United States)

    Xiang, Feifei; Gemeinhardt, Anja; Schneider, M Alexander


    We studied the formation of linked porphyrin oligomers from 5,15-diphenylporphyrin (2H-DPP) by thermal, substrate-assisted organometallic and dehydrogenation coupling on Cu(111) by scanning tunneling microscopy. In the range of 300-620 K, we find three distinct stages, at 300 K, the intact 2H-DPP molecules self-assemble into linear structures held together by van der Waals forces. Increasing the substrate temperature, self-metalation and intramolecular ring-closing reactions result in planar and isolated DPP species on the surface. By C-H cleavage, porphyrin oligomers bonded by organometallic and covalent bonds between the modified DPP are formed. The amount of covalently bonded DPP oligomers increases strongly with annealing time and temperature, and they become the dominant species at 570 K. In contrast, the number of organometallically bonded DPP oligomers increases moderately even up to 620 K, indicating that in this case the organometallic bond is no precursor of the covalent bond.

  11. Highly Efficient Catalysis of Retro-Claisen Reactions: From a Quinone Derivative to Functionalized Imidazolium Salts. (United States)

    Visbal, Renso; Laguna, Antonio; Gimeno, M Concepción


    A new and efficient method for the preparation of several imidazolium salts containing an ester group in the C4 position of the aromatic ring through a retro-Claisen reaction pathway between a quinone derivative and several alcohols is described. This new organic transformation proceeds in the absence of a catalyst, but it is greatly catalyzed by different Lewis acids, especially with AgOAc at a very low catalyst loading and in very short reaction times. The process takes place by the nucleophilic attack of the carbonyl groups by the alcohol functionality, thus promoting a double C-C bond cleavage and C-H and C-O bond formation. This reaction represents the first example of this type between a quinone derivative and alcohols. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. [Recent knowledge about intestinal absorption and cleavage of carotenoids]. (United States)

    Borel, P; Drai, J; Faure, H; Fayol, V; Galabert, C; Laromiguière, M; Le Moël, G


    Our knowledge about intestinal absorption and cleavage of carotenoids has rapidly grown during the last years. New facts about carotenoid absorption have emerged while some controversies about cleavage are close to end. The knowledge of the absorption and conversion processes is indispensable to understand and interpret the perturbations that can occur in the metabolism of carotenoids and vitamin A. Recently, it has been shown that the absorption of certain carotenoids is not passive - as believed for a long time - but is a facilitated process that requires, at least for lutein, the class B-type 1 scavenger receptor (SR-B1). Various epidemiological and clinical studies have shown wide variations in carotenoid absorption from one subject to another, such differences are now explained by the structure of the concerned carotenoid, by the nature of the food that is absorbed with the carotenoid, by diverse exogenous factors like the intake of medicines or interfering components, by diet factors, by genetic factors, and by the nutritional status of the subject. Recently, the precise mechanism of beta-carotene cleavage by betabeta-carotene 15,15' monooxygenase (EC - formerly called beta-carotene 15,15' dioxygenase (ex EC - has been discovered, and a second enzyme which cleaves asymmetrically the beta-carotene molecule has been found. beta-carotene 15,15' monooxygenase only acts on the 15,15' bond, thus forming two molecules of retinal from one molecule of beta-carotene by central cleavage. Even though the betabeta-carotene 15,15' monooxygenase is much more active on the beta-carotene molecule, a study has shown that it can act on all carotenoids. Searchers now agree that other enzymes that can catalyse an eccentric cleavage of carotenoids probably exist, but under physiological conditions the betabeta-carotene 15,15' monooxygenase is by far the most active, and it is mainly effective in the small bowel mucosa and in the liver. However the

  13. Activation of Dihydrogen by Masked Doubly Bonded Aluminum Species. (United States)

    Nagata, Koichi; Murosaki, Takahiro; Agou, Tomohiro; Sasamori, Takahiro; Matsuo, Tsukasa; Tokitoh, Norihiro


    Activation of dihydrogen by masked dialumenes (Al=Al doubly bonded species) is reported. Reactions of barrelene-type dialumanes, which have the reactivity as masked equivalents of 1,2-diaryldialumenes ArAl=AlAr, with H2 afforded dihydroalumanes ArAlH2 at room temperature (Ar: bulky aryl groups). These dihydroalumanes form hydrogen-bridged dimers [ArHAl(μ-H)]2 in the crystalline state, while a monomer-dimer equilibrium was suggested in solution. The 1,2-diaryldialumenes generated from the barrelene-type dialumanes are the putative active species in the cleavage of H2 . © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Formation of doubly and triply bonded unsaturated compounds HCN, HNC and CH2NH via N + CH4 low temperature solid state reaction: from molecular clouds to solar system objects (United States)

    Mencos, Alejandro; Krim, Lahouari


    We show in the current study carried out in solid phase at cryogenic temperatures, that methane (CH4) ice exposed to nitrogen atoms is a source of two acids HCN, HNC and their corresponding hydrogenated unsaturated species CH2NH, in addition to CH3, C2H6, CN- and three nitrogen hydrides NH, NH2 and NH3. The solid state N + CH4 reaction taken in the ground state seems to be strongly temperature dependent. While at temperatures lower than 10 K only CH3, NH, NH2 and NH3 species formation is promoted due to CH bond dissociation and NH bond formation, stable compounds with CN bonds are formed at temperatures ranged between 10 and 40 K. Many of these reaction products, resulting from CH4 + N reaction, have already been observed in N2-rich regions such as the atmospheres of Titan, Kuiper belt objects and molecular clouds of the interstellar medium. Our results show the power of the solid state N-atom chemistry in the transformation of simple astrochemical relevant species such as CH4 molecules and N atoms into complex organic molecules which are also potentially prebiotic species.

  15. Ultrafast studies of organometallic photochemistry: The mechanism of carbon-hydrogen bond activation in solution

    Energy Technology Data Exchange (ETDEWEB)

    Bromberg, S.E.


    When certain organometallic compounds are photoexcited in room temperature alkane solution, they are able to break or activate the C-H bonds of the solvent. Understanding this potentially practical reaction requires a detailed knowledge of the entire reaction mechanism. Because of the dynamic nature of chemical reactions, time-resolved spectroscopy is commonly employed to follow the important events that take place as reactants are converted to products. For the organometallic reactions examined here, the electronic/structural characteristics of the chemical systems along with the time scales for the key steps in the reaction make ultrafast UV/Vis and IR spectroscopy along with nanosecond Step-Scan FTIR spectroscopy the ideal techniques to use for this study. An initial study of the photophysics of (non-activating) model metal carbonyls centering on the photodissociation of M(CO){sub 6} (M = Cr, W, Mo) was carried out in alkane solutions using ultrafast IR spectroscopy. Next, picosecond UV/vis studies of the C-H bond activation reaction of Cp{sup *}M(CO){sub 2} (M = Rh, Ir), conducted in room temperature alkane solution, are described in an effort to investigate the origin of the low quantum yield for bond cleavage ({approximately}1%). To monitor the chemistry that takes place in the reaction after CO is lost, a system with higher quantum yield is required. The reaction of Tp{sup *}Rh(CO){sub 2} (Tp{sup *} = HB-Pz{sub 3}{sup *}, Pz{sup *} = 3,5-dimethylpyrazolyl) in alkanes has a quantum yield of {approximately}30%, making time resolved spectroscopic measurements possible. From ultrafast IR experiments, two subsequently formed intermediates were observed. The nature of these intermediates are discussed and the first comprehensive reaction mechanism for a photochemical C-H activating organometallic complex is presented.

  16. Catalytic Activity of μ-Carbido-Dimeric Iron(IV) Octapropylporphyrazinate in the 3,5,7,2',4'-Pentahydroxyflavone Oxidation Reaction with tert-Butyl Hydroperoxide (United States)

    Tyurin, D. V.; Zaitseva, S. V.; Kudrik, E. V.


    It is found for the first time that μ-carbido-dimeric iron(IV) octapropylporphyrazinate displays catalytic activity in the oxidation reaction of natural flavonol morin with tert-butyl hydroperoxide, with the catalyst being stable under conditions of the reaction. The kinetics of this reaction are studied. It is shown the reaction proceeds via tentative formation of a complex between the catalyst and the oxidant, followed by O‒O bond homolytic cleavage. The kinetics of the reaction is described in the coordinates of the Michaelis-Menten equation. A linear dependence of the apparent reaction rate constant on the concentration of the catalyst is observed, testifying to its participation in the limiting reaction step. The equilibrium constants and rates of interaction are found. A mechanism is proposed for the reaction on the basis of the experimental data.

  17. Cleavages in Serbia and consolidation of democracy

    Directory of Open Access Journals (Sweden)

    Antonić Slobodan


    Full Text Available The article discusses the sociological obstacles for consolidation in Serbia after 2000. The author claim that the reason for slow consolidation lies squarely with the type of political cleavages that continue to dominate Serbian politics. Throughout Eastern Europe, symbolic conflicts relatively quickly gave way to distributional conflicts during the 1990s. Distributional conflicts typically result in compromise, which is why they are regarded as favorable to consolidation of democracy. Other type of dominant cleavages is ideological and symbolical. Ideological cleavages divide the body politics to those who were loyal to the previous regime and to those who support the current reformists, and symbolical cleavages are identity-based. The inability to remove the symbolical issues from the political agenda in seven years is what undermines the weak foundation for democracy in Serbia today. Due to the resistance of symbolical and ideological cleavages (patriots/- Europeans, old regime forces/reformers etc. rather than socio-economic cleavages, author defines the party system of Serbia as deeply polarized with the existence of anti-system parties. Deep polarization and the existence of the anti system parties is what undermines consolidation of democracy. The author shows that the existence of anti-system parties is precisely the reason why Serbia cannot get out of the spirit of electoral authoritarianism and why electoral democracy keeps failing to consolidate.

  18. Activation of Propane C-H and C-C Bonds by Gas-Phase Pt Atom: A Theoretical Study

    Directory of Open Access Journals (Sweden)

    Chang-Wei Hu


    Full Text Available The reaction mechanism of the gas-phase Pt atom with C3H8 has been systematically investigated on the singlet and triplet potential energy surfaces at CCSD(T//BPW91/6-311++G(d, p, Lanl2dz level. Pt atom prefers the attack of primary over secondary C-H bonds in propane. For the Pt + C3H8 reaction, the major and minor reaction channels lead to PtC3H6 + H2 and PtCH2 + C2H6, respectively, whereas the possibility to form products PtC2H4 + CH4 is so small that it can be neglected. The minimal energy reaction pathway for the formation of PtC3H6 + H2, involving one spin inversion, prefers to start at the triplet state and afterward proceed along the singlet state. The optimal C-C bond cleavages are assigned to C-H bond activation as the first step, followed by cleavage of a C-C bond. The C-H insertion intermediates are kinetically favored over the C-C insertion intermediates. From C-C to C-H oxidative insertion, the lowering of activation barrier is mainly caused by the more stabilizing transition state interaction ΔEint, which is the actual interaction energy between the deformed reactants in the transition state.

  19. 2013 Gordon Research Conference, Inorganic reaction mechanisms, Galveston, TX, March 3-8 2013

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Omar, Mahdi M. [Purdue Univ., West Lafayette, IN (United States)


    The 2013 Gordon Conference on Inorganic Reaction Mechanisms will present cutting-edge research on the molecular aspects of inorganic reactions involving elements from throughout the periodic table and state-of-the art techniques that are used in the elucidation of reaction mechanisms. The Conference will feature a wide range of topics, such as homogeneous and heterogeneous catalysis, metallobiochemistry, electron-transfer in energy reactions, polymerization, nitrogen fixation, green chemistry, oxidation, solar conversion, alkane functionalization, organotransition metal chemistry, and computational chemistry. The talks will cover themes of current interest including energy, materials, and bioinorganic chemistry. Sections cover: Electron-Transfer in Energy Reactions; Catalytic Polymerization and Oxidation Chemistry; Kinetics and Spectroscopy of Heterogeneous Catalysts; Metal-Organic Chemistry and its Application in Synthesis; Green Energy Conversion;Organometallic Chemistry and Activation of Small Molecules; Advances in Kinetics Modeling and Green Chemistry; Metals in Biology and Disease; Frontiers in Catalytic Bond Activation and Cleavage.

  20. Intermetallic Reactions during the Solid-Liquid Interdiffusion Bonding of Bi2Te2.55Se0.45 Thermoelectric Material with Cu Electrodes Using a Sn Interlayer

    Directory of Open Access Journals (Sweden)

    Chien-Hsun Chuang


    Full Text Available The intermetallic compounds formed during the diffusion soldering of a Bi2Te2.55Se0.45 thermoelectric material with a Cu electrode are investigated. For this bonding process, Bi2Te2.55Se0.45 was pre-coated with a 1 μm Sn thin film on the thermoelectric element and pre-heated at 250 °C for 3 min before being electroplated with a Ni barrier layer and a Ag reaction layer. The pre-treated thermoelectric element was bonded with a Ag-coated Cu electrode using a 4 μm Sn interlayer at temperatures between 250 and 325 °C. The results indicated that a multi-layer of Bi–Te–Se/Sn–Te–Se–Bi/Ni3Sn4 phases formed at the Bi2Te2.55Se0.45/Ni interface, ensuring sound cohesion between the Bi2Te2.55Se0.45 thermoelectric material and Ni barrier. The molten Sn interlayer reacted rapidly with both Ag reaction layers to form an Ag3Sn intermetallic layer until it was completely exhausted and the Ag/Sn/Ag sandwich transformed into a Ag/Ag3Sn/Ag joint. Satisfactory shear strengths ranging from 19.3 and 21.8 MPa were achieved in Bi2Te2.55Se0.45/Cu joints bonded at 250 to 300 °C for 5 to 30 min, dropping to values of about 11 MPa for 60 min, bonding at 275 and 300 °C. In addition, poor strengths of about 7 MPa resulted from bonding at a higher temperature of 325 °C for 5 to 60 min.

  1. Synthesis of 3-[(coumarinyl)carbonyl]-3a,8b-dihyroindeno[1,2-b]pyrrole-4(1H)-ones and their conversion to coumarin bearing spiro [isobenzofuran-1,2’-pyrrole] moiety compounds via oxidative cleavage reaction.

    Czech Academy of Sciences Publication Activity Database

    Alizadeh, A.; Ghanbaripour, R.; Feizabadi, M.; Zhu, L.G.; Dušek, Michal


    Roč. 5, č. 98 (2015), s. 80518-80525 ISSN 2046-2069 Institutional support: RVO:68378271 Keywords : coumarin * spirocyclic frameworks * oxidative cleavage Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.289, year: 2015

  2. Recycling of protein subunits during DNA translocation and cleavage by Type I restriction-modification enzymes. (United States)

    Simons, Michelle; Szczelkun, Mark D


    The Type I restriction-modification enzymes comprise three protein subunits; HsdS and HsdM that form a methyltransferase (MTase) and HsdR that associates with the MTase and catalyses Adenosine-5'-triphosphate (ATP)-dependent DNA translocation and cleavage. Here, we examine whether the MTase and HsdR components can 'turnover' in vitro, i.e. whether they can catalyse translocation and cleavage events on one DNA molecule, dissociate and then re-bind a second DNA molecule. Translocation termination by both EcoKI and EcoR124I leads to HsdR dissociation from linear DNA but not from circular DNA. Following DNA cleavage, the HsdR subunits appear unable to dissociate even though the DNA is linear, suggesting a tight interaction with the cleaved product. The MTases of EcoKI and EcoAI can dissociate from DNA following either translocation or cleavage and can initiate reactions on new DNA molecules as long as free HsdR molecules are available. In contrast, the MTase of EcoR124I does not turnover and additional cleavage of circular DNA is not observed by inclusion of RecBCD, a helicase-nuclease that degrades the linear DNA product resulting from Type I cleavage. Roles for Type I restriction endonuclease subunit dynamics in restriction alleviation in the cell are discussed.

  3. Palladium-Catalyzed Cross-Coupling Reactions of Perfluoro Organic Compounds

    Directory of Open Access Journals (Sweden)

    Masato Ohashi


    Full Text Available In this review, we summarize our recent development of palladium(0-catalyzed cross-coupling reactions of perfluoro organic compounds with organometallic reagents. The oxidative addition of a C–F bond of tetrafluoroethylene (TFE to palladium(0 was promoted by the addition of lithium iodide, affording a trifluorovinyl palladium(II iodide. Based on this finding, the first palladium-catalyzed cross-coupling reaction of TFE with diarylzinc was developed in the presence of lithium iodide, affording α,β,β-trifluorostyrene derivatives in excellent yield. This coupling reaction was expanded to the novel Pd(0/PR3-catalyzed cross-coupling reaction of TFE with arylboronates. In this reaction, the trifluorovinyl palladium(II fluoride was a key reaction intermediate that required neither an extraneous base to enhance the reactivity of organoboronates nor a Lewis acid additive to promote the oxidative addition of a C–F bond. In addition, our strategy utilizing the synergetic effect of Pd(0 and lithium iodide could be applied to the C–F bond cleavage of unreactive hexafluorobenzene (C6F6, leading to the first Pd(0-catalyzed cross-coupling reaction of C6F6 with diarylzinc compounds.

  4. Carotenoid-cleavage activities of crude enzymes from Pandanous amryllifolius. (United States)

    Ningrum, Andriati; Schreiner, Matthias


    Carotenoid degradation products, known as norisoprenoids, are aroma-impact compounds in several plants. Pandan wangi is a common name of the shrub Pandanus amaryllifolius. The genus name 'Pandanus' is derived from the Indonesian name of the tree, pandan. In Indonesia, the leaves from the plant are used for several purposes, e.g., as natural colorants and flavor, and as traditional treatments. The aim of this study was to determine the cleavage of β-carotene and β-apo-8'-carotenal by carotenoid-cleavage enzymes isolated from pandan leaves, to investigate dependencies of the enzymatic activities on temperature and pH, to determine the enzymatic reaction products by using Headspace Solid Phase Microextraction Gas Chromatography/Mass Spectrophotometry (HS-SPME GC/MS), and to investigate the influence of heat treatment and addition of crude enzyme on formation of norisoprenoids. Crude enzymes from pandan leaves showed higher activity against β-carotene than β-apo-8'-carotenal. The optimum temperature of crude enzymes was 70°, while the optimum pH value was 6. We identified β-ionone as the major volatile reaction product from the incubations of two different carotenoid substrates, β-carotene and β-apo-8'-carotenal. Several treatments, e.g., heat treatment and addition of crude enzymes in pandan leaves contributed to the norisoprenoid content. Our findings revealed that the crude enzymes from pandan leaves with carotenoid-cleavage activity might provide a potential application, especially for biocatalysis, in natural-flavor industry. Copyright © 2014 Verlag Helvetica Chimica Acta AG, Zürich.

  5. MMP-2 detective silicon nanowire biosensor using enzymatic cleavage reaction. (United States)

    Choi, Jin-Ha; Kim, Han; Kim, Hyun-Soo; Um, Soong Ho; Choi, Jeong-Woo; Oh, Byung-Keun


    Matrix metalloproteinases are proteolytic enzymes that play a significant role in tissue remodeling related with various pathological and physiological processes such as tissue repair, angiogenesis, cirrhosis, morphogenesis, arthritis, and metastasis. Especially, MMP-2 has been shown to be related with benign prostatic hyperplasia and prostate cancer. Therefore, there is a need to make sensors with high sensitivity that can measure MMP-2 concentrations precisely. Silicon nanowires have been used in the development of high sensitive chemical sensors and biosensors. The high sensitivity of silicon nanowire based sensor originates in its high surface to volume ratio and ability to field-effect induced local charge transfers. In this study, 100 nm silicon nanowire based field-effect transistors (FET) device was fabricated by electron-beam lithography and MMP-2 was successfully measured by conductance versus time characteristics within 1 pM to 100 nM.

  6. Role of Mediator and Effects of Temperature on ortho-C-N Bond Fusion Reactions of Aniline Using Ruthenium Templates: Isolation and Characterization of New Ruthenium Complexes of the in-Situ-Generated Ligands. (United States)

    Roy, Suman K; Sengupta, Debabrata; Rath, Santi Prasad; Saha, Tanushri; Samanta, Subhas; Goswami, Sreebrata


    In this work, ortho-C-N bond fusion reactions of aniline are followed by the use of two different ruthenium mediators. Reaction of aniline with [Ru III (terpy)Cl 3 ] (terpy = 2,2':6',2″-terpyridine) resulted in a trans bis-aniline ruthenium(II) complex [1] + which upon oxidation with H 2 O 2 produced compound [2] + of a bidentate ligand, N-phenyl-1,2-benzoquinonediimine, due to an oxidative ortho-C-N bond fusion reaction. Complex [1] + and aniline (neat) at 185 °C produced a bis-chelated ruthenium complex (3). A previously reported complex [Ru II (N-phenyl-1,2-benzoquinonediimine)(aniline) 2 (Cl) 2 ] (5) undergoes similar oxidation by air at 185 °C to produce complex [3]. A separate chemical reaction between aniline and strongly oxidizing tetra-n-propylammonium perruthenate [(n-pr) 4 N] + [RuO 4 ] - in air produced a ruthenium complex [4] of a N 4 -tetraamidophenylmacrocycle ligand via multiple ortho-C-N bond fusion reaction. Notably, the yield of this product is low (5%) at 100 °C but increases to 25% in refluxing aniline. All these complexes are characterized fully by their physicochemical characterizations and X-ray structure determination. From their structural parameters and other spectroscopic studies, complex [2] + is assigned as [Ru II (terpy)(N-phenyl-1,2-benzoquinonediimine)(Cl)] + whereas complex [4] is described as a ruthenium(VI) complex comprised of a reduced deprotonated N-phenyl-1,2-diamidobenzene and N 4 -tetraamidophenylmacrocyclic ligand. Complex [2] + exhibits one reversible oxidation at 1.32 V and one reversible reduction at -0.75 V vs Ag/AgCl reference electrode. EPR of the electrogenerated complexes has revealed that the oxidized complex is a ruthenium(III) complex with an axial EPR spectrum at g av = 2.06. The reduced complex [2], on the other hand, shows a single-line EPR signal at g av = 1.998. In contrast, complex [4] shows two successive one-electron oxidation waves at 0.5 and 0.8 V and an irreversible reduction wave at -0.9 V. EPR

  7. The potato carotenoid cleavage dioxygenase 4 catalyzes a single cleavage of β-ionone ring-containing carotenes and non-epoxidated xanthophylls

    KAUST Repository

    Bruno, Mark


    Down-regulation of the potato carotenoid cleavage dioxygenase 4 (StCCD4) transcript level led to tubers with altered morphology and sprouting activity, which also accumulated higher levels of violaxanthin and lutein leading to elevated carotenoid amounts. This phenotype indicates a role of this enzyme in tuber development, which may be exerted by a cleavage product. In this work, we investigated the enzymatic activity of StCCD4, by expressing the corresponding cDNA in carotenoid accumulating Escherichia coli strains and by performing in vitro assays with heterologously expressed enzyme. StCCD4 catalyzed the cleavage of all-. trans-β-carotene at the C9\\'-C10\\' double bond, leading to β-ionone and all-. trans-β-apo-10\\'-carotenal, both in vivo and in vitro. The enzyme also cleaved β,β-cryptoxanthin, zeaxanthin and lutein either at the C9\\'-C10\\' or the C9-C10 double bond in vitro. In contrast, we did not observe any conversion of violaxanthin and only traces of activity with 9-. cis-β-carotene, which led to 9-. cis-β-apo-10\\'-carotenal. Our data indicate that all-. trans-β-carotene is the likely substrate of StCCD4 in planta, and that this carotene may be precursor of an unknown compound involved in tuber development.

  8. Surface modification of TiO2 nanoparticles via photocataliticaly induced reaction: Influence of functionality of silane coupling agent

    International Nuclear Information System (INIS)

    Tomovska, Radmila; Daniloska, Vesna; Asua, Jose M.


    Highlights: ► TiO 2 nanoparticles were modified by photocatalytic induced surface reaction. ► TiO 2 nanoparticles were subjects of modification and catalysts for the reaction. ► No cleavage of Si-C bond in silane coupling agent 3-triethoxysilyl propyl isocianate. ► High influence of functional group in silane on the Si-C cleavage was determined. ► Different electronegativity of the functionalities in the silane determines reaction way. - Abstract: In the present work the surface modification of TiO 2 nanoparticles by photocatalyticaly induced reaction with silane coupling agent 3-triethoxysilyl propyl isocianate (PIC) has been presented. It was demonstrated establishing of covalent Ti-O-Si bond between the nanoparticles and the PIC molecule. In comparison with previous results, it was demonstrated the high influence of the functional group from the silane coupling agent on the reaction course during surface functionalziation of TiO 2 nanoparticles. Depending on the amount and type (electronegativity of the end-functionalities) of the silane compound, high control of the surface characteristics of TiO 2 nanoparticles could be achieved.

  9. How overdrying wood reduces its bonding to phenol-formaldehyde adhesives : a critical review of the literature. Part II, Chemical reactions (United States)

    Alfred W. Christiansen


    Literature dealing with the effect of excessive drying (overdrying) on wood surface inactivation to bonding is reviewed in two parts and critically evaluated, primarily for phenolic adhesives. Part 1 of the review, published earlier, covers physical mechanisms that could contribute to surface inactivation. The principal physical mechanism is the migration to the...

  10. Carbon-sulfur bond formation by reductive elimination of gold(iii) thiolates. (United States)

    Currie, Lucy; Rocchigiani, Luca; Hughes, David L; Bochmann, Manfred


    Whereas the reaction of the gold(iii) pincer complex (C^N^C)AuCl with 1-adamantyl thiol (AdSH) in the presence of base affords (C^N^C)AuSAd, the same reaction in the absence of base leads to formation of aryl thioethers as the products of reductive elimination of the Au-C and Au-S ligands (C^N^C = dianion of 2-6-diphenylpyridine or 2-6-diphenylpyrazine). Although high chemical stability is usually taken as a characteristic of pincer complexes, results show that thiols are capable of cleaving one of the pincer Au-C bonds. This reaction is not simply a function of S-H acidity, since no cleavage takes place with other more acidic X-H compounds, such as carbazole, amides, phenols and malonates. The reductive C-S elimination follows a second-order rate law, -d[1a]/dt = k[1a][AdSH]. Reductive elimination is enabled by displacement of the N-donor by thiol; this provides the conformational flexibility necessary for C-S bond formation to occur. Alternatively, reductive C-S bond formation can be induced by reaction of pre-formed thiolates (C^N^C)AuSR with a strong Brønsted acid, followed by addition of SMe2 as base. On the other hand, treatment of (C^N^C)AuR (R = Me, aryl, alkynyl) with thiols under similar conditions leads to selective C-C rather than C-S bond formation. The reaction of (C^N^C)AuSAd with H+ in the absence of a donor ligand affords the thiolato-bridged complex [{(C^N-CH)Au(μ-SAd)}2]2+ which was crystallographically characterised.

  11. Proton transfer and unimolecular decay in the low-energy-reaction dynamics of H3O+ with acetone

    International Nuclear Information System (INIS)

    Creasy, W.R.; Farrar, J.M.


    The title reaction has been studied at collision energies of 0.83 and 2.41 eV. Direct reaction dynamics have been observed at both energies and an increasingly high fraction of the total energy appears in product translation as the collision energy increases. This result is consistent with the concept of induced repulsive energy release, which becomes more effective as trajectories sample the corner of the potential energy surface. At the higher collision energy, the protonated acetone cation undergoes two unimolecular decay channels: C-C bond cleavage to CH 3 CO + and CH 4 , and C-O bond cleavagto C 3 H 5 + (presumably to allyl cation) and H 2 O. The CH 3 CO + channel, endothermic relative to ground state protonated acetone cations by 0.74 eV, appears to liberate 0.4 eV in relative product translation while the C 3 H 5 + channel, endothermic by 2.17 eV, liberates only 0.07 eV in relative translation. These results are discussed in terms of the location on the reaction coordinate and magnitudes of potential energy barriers to 1,3-hydrogen atoms shifts which must precede the bond cleavage processes

  12. Mixed chloride/phosphine complexes of the dirhenium core. 10. Redox reactions of an edge-sharing dirhenium(III) non-metal-metal-bonded complex, Re(2)(mu-Cl)(2)Cl(4)(PMe(3))(4). (United States)

    Cotton, F A; Dikarev, E V; Petrukhina, M A


    Reduction and oxidation reactions of the dirhenium(III) non-metal-metal-bonded edge-sharing complex, Re(2)(mu-Cl)(2)Cl(4)(PMe(3))(4) (1), have been studied. Several new mono- and dinuclear rhenium compounds have been isolated and structurally characterized in the course of this study. Reductions of 1 with 1 and 2 equiv of KC(8) result in an unusual face-sharing complex having an Re(2)(5+) core, Re(2)(mu-Cl)(3)Cl(2)(PMe(3))(4) (2), and a triply bonded Re(II) compound, 1,2,7,8-Re(2)Cl(4)(PMe(3))(4) (3), respectively. Two-electron reduction of 1 in the presence of tetrabutylammonium chloride affords a new triply bonded complex of the Re(2)(4+) core, [Bu(n)()(4)N][1,2,7-Re(2)Cl(5)(PMe(3))(3)] (4). Oxidation of 1 with NOBF(4) yields a Re(IV) mononuclear compound, trans-ReCl(4)(PMe(3))(2) (5). Two isomers of the monomeric Re(III) anion, [ReCl(4)(PMe(3))(2)](-) (6, 7), have been isolated as side products. The crystal structures of compounds 2 and 4-7 have been determined by X-ray crystallography. The Re-Re distance in the face-sharing complex 2 of 2.686(1) A is relatively short. The metal-metal bond length in anion 4 of 2.2354(7) A is consistent with the usual values for the triply bonded Re(2)(4+) core compounds. In addition, a cis arrangement of trimethylphosphine ligands in the starting material 1 is retained upon reduction in the dinuclear products 2-4.

  13. Parental Bonding

    Directory of Open Access Journals (Sweden)

    T. Paul de Cock


    Full Text Available Estimating the early parent–child bonding relationship can be valuable in research and practice. Retrospective dimensional measures of parental bonding provide a means for assessing the experience of the early parent–child relationship. However, combinations of dimensional scores may provide information that is not readily captured with a dimensional approach. This study was designed to assess the presence of homogeneous groups in the population with similar profiles on parental bonding dimensions. Using a short version of the Parental Bonding Instrument (PBI, three parental bonding dimensions (care, authoritarianism, and overprotection were used to assess the presence of unobserved groups in the population using latent profile analysis. The class solutions were regressed on 23 covariates (demographics, parental psychopathology, loss events, and childhood contextual factors to assess the validity of the class solution. The results indicated four distinct profiles of parental bonding for fathers as well as mothers. Parental bonding profiles were significantly associated with a broad range of covariates. This person-centered approach to parental bonding has broad utility in future research which takes into account the effect of parent–child bonding, especially with regard to “affectionless control” style parenting.

  14. LAMMPS Framework for Directional Dynamic Bonding

    DEFF Research Database (Denmark)


    and bond types. When breaking bonds, all angular and dihedral interactions involving broken bonds are removed. The framework allows chemical reactions to be modeled, and use it to simulate a simplistic, coarse-grained DNA model. The resulting DNA dynamics illustrates the power of the present framework.......We have extended the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) to support directional bonds and dynamic bonding. The framework supports stochastic formation of new bonds, breakage of existing bonds, and conversion between bond types. Bond formation can be controlled...... to limit the maximal functionality of a bead with respect to various bond types. Concomitant with the bond dynamics, angular and dihedral interactions are dynamically introduced between newly connected triplets and quartets of beads, where the interaction type is determined from the local pattern of bead...

  15. Three methods to measure RH bond energies

    Energy Technology Data Exchange (ETDEWEB)

    Berkowitz, J. [Argonne National Lab., IL (United States); Ellison, G.B. [Univ. of Colorado, Boulder, CO (United States). Dept. of Chemistry and Biochemistry; Gutman, D. [Catholic Univ. of America, Washington, DC (United States). Dept. of Chemistry


    In this paper the authors compare and contrast three powerful methods for experimentally measuring bond energies in polyatomic molecules. The methods are: radical kinetics; gas phase acidity cycles; and photoionization mass spectroscopy. The knowledge of the values of bond energies are a basic piece of information to a chemist. Chemical reactions involve the making and breaking of chemical bonds. It has been shown that comparable bonds in polyatomic molecules, compared to the same bonds in radicals, can be significantly different. These bond energies can be measured in terms of bond dissociation energies.

  16. Three methods to measure RH bond energies

    International Nuclear Information System (INIS)

    Berkowitz, J.; Ellison, G.B.; Gutman, D.


    In this paper the authors compare and contrast three powerful methods for experimentally measuring bond energies in polyatomic molecules. The methods are: radical kinetics; gas phase acidity cycles; and photoionization mass spectroscopy. The knowledge of the values of bond energies are a basic piece of information to a chemist. Chemical reactions involve the making and breaking of chemical bonds. It has been shown that comparable bonds in polyatomic molecules, compared to the same bonds in radicals, can be significantly different. These bond energies can be measured in terms of bond dissociation energies

  17. Photolysis of phosphodiester bonds in plasmid DNA by high intensity UV laser irradiation

    International Nuclear Information System (INIS)

    Croke, D.T.; Blau, Werner; OhUigin, Colm; Kelly, J.M.; McConnell, D.J.


    The cleavage of phosphodiester bonds in DNA exposed to high intensity UV laser pulses in aerated aqueous solution has been investigated using a krypton fluoride excimer laser (248 nm) and bacterial plasmid DNA. The dependence of strand breakage on fluence and intensity has been studied in detail and shows that the process is non-linear with respect to intensity. The relationship between the quantum yield for strand breakage and intensity shows that the strand breakage reaction involves two-photon excitation of DNA bases. The quantum yield rises with intensity from a lower value of 7 x 10 -5 until a maximum value of 4.5 x 10 -4 is attained at intensities of 10 11 W m -2 and above. This value is approximately fifty-fold higher than the quantum yield for strand breakage induced by exposure to low density UV irradiation (254 nm, 12 W m -2 ). DNA sequencing experiments have shown that strand breakage occurs by the specific cleavage of the phosphodiester bond which lies immediately 3' to guanine residues in the DNA, leaving some alkali-labile remnant attached to the terminal phosphate. A mechanism for DNA strand breakage which involves the generation of guanine radical cations is proposed. (author)

  18. Dataset of cocoa aspartic protease cleavage sites

    Directory of Open Access Journals (Sweden)

    Katharina Janek


    Full Text Available The data provide information in support of the research article, “The cleavage specificity of the aspartic protease of cocoa beans involved in the generation of the cocoa-specific aroma precursors” (Janek et al., 2016 [1]. Three different protein substrates were partially digested with the aspartic protease isolated from cocoa beans and commercial pepsin, respectively. The obtained peptide fragments were analyzed by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/TOF-MS/MS and identified using the MASCOT server. The N- and C-terminal ends of the peptide fragments were used to identify the corresponding in-vitro cleavage sites by comparison with the amino acid sequences of the substrate proteins. The same procedure was applied to identify the cleavage sites used by the cocoa aspartic protease during cocoa fermentation starting from the published amino acid sequences of oligopeptides isolated from fermented cocoa beans. Keywords: Aspartic protease, Cleavage sites, Cocoa, In-vitro proteolysis, Mass spectrometry, Peptides

  19. Homolytic Cleavage of Both Heme-Bound Hydrogen Peroxide and Hydrogen Sulfide Leads to the Formation of Sulfheme. (United States)

    Arbelo-Lopez, Hector D; Simakov, Nikolay A; Smith, Jeremy C; Lopez-Garriga, Juan; Wymore, Troy


    Many heme-containing proteins with a histidine in the distal E7 (HisE7) position can form sulfheme in the presence of hydrogen sulfide (H2S) and a reactive oxygen species such as hydrogen peroxide. For reasons unknown, sulfheme derivatives are formed specifically on solvent-excluded heme pyrrole B. Sulfhemes severely decrease the oxygen-binding affinity in hemoglobin (Hb) and myoglobin (Mb). Here, use of hybrid quantum mechanical/molecular mechanical methods has permitted characterization of the entire process of sulfheme formation in the HisE7 mutant of hemoglobin I (HbI) from Lucina pectinata. This process includes a mechanism for H2S to enter the solvent-excluded active site through a hydrophobic channel to ultimately form a hydrogen bond with H2O2 bound to Fe(III). Proton transfer from H2O2 to His64 to form compound (Cpd) 0, followed by hydrogen transfer from H2S to the Fe(III)-H2O2 complex, results in homolytic cleavage of the O-O and S-H bonds to form a reactive thiyl radical (HS(•)), ferryl heme Cpd II, and a water molecule. Subsequently, the addition of HS(•) to Cpd II, followed by three proton transfer reactions, results in the formation of a three-membered ring ferric sulfheme that avoids migration of the radical to the protein matrix, in contrast to that in other peroxidative reactions. The transformation of this three-membered episulfide ring structure to the five-membered thiochlorin ring structure occurs through a significant potential energy barrier, although both structures are nearly isoenergetic. Both three- and five-membered ring structures reveal longer NB-Fe(III) bonds compared with other pyrrole nitrogen-Fe(III) bonds, which would lead to decreased oxygen binding. Overall, these results are in agreement with a wide range of experimental data and provide fertile ground for further investigations of sulfheme formation in other heme proteins and additional effects of H2S on cell signaling and reactivity.

  20. Bonding Analysis of the [C2O4]2+ Intermediate Formed in the Reaction of CO2 2+ with Neutral CO2

    Czech Academy of Sciences Publication Activity Database

    Feixas, F.; Ponec, Robert; Fišer, J.; Roithová, J.; Schröder, Detlef; Price, S.D.


    Roč. 114, č. 24 (2010), s. 6681-6688 ISSN 1089-5639 R&D Projects: GA ČR GA203/09/1223; GA ČR GA203/09/0118 Grant - others:MICINN(ES) AP2005-2997 Institutional research plan: CEZ:AV0Z40720504; CEZ:AV0Z40550506 Keywords : fermi holes * bonding pattern * neutral reactant Subject RIV: CC - Organic Chemistry Impact factor: 2.732, year: 2010

  1. Spectroscopic studies of the intramolecular hydrogen bonding in o-hydroxy Schiff bases, derived from diaminomaleonitrile, and their deprotonation reaction products (United States)

    Szady-Chełmieniecka, Anna; Kołodziej, Beata; Morawiak, Maja; Kamieński, Bohdan; Schilf, Wojciech


    The structural study of five Schiff bases derived from diaminomaleonitrile (DAMN) and 2-hydroxy carbonyl compounds was performed using 1H, 13C and 15N NMR methods in solution and in the solid state as well. ATR-FTIR and X-Ray spectroscopies were used for confirmation of the results obtained by NMR method. The imine obtained from DAMN and benzaldehyde was synthesized as a model compound which lacks intramolecular hydrogen bond. Deprotonation of all synthesized compounds was done by treating with tetramethylguanidine (TMG). NMR data revealed that salicylidene Schiff bases in DMSO solution exist as OH forms without intramolecular hydrogen bonds and independent on the substituents in aromatic ring. In the case of 2-hydroxy naphthyl derivative, the OH proton is engaged into weak intramolecular hydrogen bond. Two of imines (salDAMN and 5-BrsalDAMN) exist in DMSO solution as equilibrium mixtures of two isomers (A and B). The structures of equilibrium mixture in the solid state have been studied by NMR, ATR-FTIR and X-Ray methods. The deprotonation of three studied compounds (salDAMN, 5-BrsalDAMN, and 5-CH3salDAMN) proceeded in two different ways: deprotonation of oxygen atom (X form) or of nitrogen atom of free primary amine group of DAMN moiety (Y form). For 5-NO2salDAMN and naphDAMN only one form (X) was observed.

  2. Constructions of a set of novel hydrogen-bonded supramolecules from reactions of cobalt(II) salt with bis(3,5-dimethylpyrazolyl)methane and different carboxylic acids (United States)

    Li, Qiao-Yun; Tang, Xiao-Yan; Zhang, Wen-Hua; Wang, Jing; Ren, Zhi-Gang; Li, Hong-Xi; Zhang, Yong; Lang, Jian-Ping


    Reactions of CoX 2·6H 2O (X = Cl -, ClO 4-) with bis(3,5-dimethylpyrazolyl)methane (dmpzm) and formic acid, acetic acid, benzoic acid, salicylic acid, maleic acid, or fumaric acid under the presence of KOH solution produced a new family of Co(II)/dmpzm complexes, [Co(dmpzm) 2L]X· nH 2O ( 1: L = O 2CH, X = Cl, n = 2; 2: L = OAc, X = Cl, n = 3; 3: L = benzoate, X = ClO 4, n = 1/3; 4: L = salicylate, X = ClO 4, n = 1/3) and [Co 2(dmpzm) 4L](ClO 4) 2· nSolv ( 5: L = maleate, n = 3, Solv = H 2O; 6: L = fumarate, n = 2, Solv = MeOH). These compounds were structurally characterized by elemental analysis, IR spectroscopy, and single-crystal X-ray diffraction. Compounds 1- 4 are mononuclear while 5- 6 are binuclear. Each cobalt atom of 1- 6 is hexacoordinate, with a distorted octahedral CoN 4O 2 coordination geometry incorporating two N, N'-bidentate dmpzm ligands and one O, O'-bidentate carboxylate ligand. There are rich intra- and intermolecular hydrogen bonds in the crystals of 1- 6, thereby forming either 2D hydrogen-bonded networks ( 1 and 2) or 3D hydrogen-bonded networks ( 3- 6). In addition, the thermal behaviors of 1- 6 were also investigated.

  3. Palladium Catalysts Supported on Mesoporous Molecular Sieves Bearing Nitrogen Donor Groups: Preparation and Use in Heck and Suzuki C-C Bond-Forming Reactions

    Czech Academy of Sciences Publication Activity Database

    Demel, Jan; Lamač, M.; Čejka, Jiří; Štěpnička, P.


    Roč. 2, č. 5 (2009), s. 442-451 ISSN 1864-5631 R&D Projects: GA MŠk(CZ) LC06070; GA ČR GA104/09/0561 Institutional research plan: CEZ:AV0Z40400503 Keywords : supported catalysts * Heck reaction * mesoporous materials * palladium * Suzuki reaction Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.767, year: 2009

  4. Absolute and relative-rate measurement of the rate coefficient for reaction of perfluoro ethyl vinyl ether (C2F5OCF[double bond, length as m-dash]CF2) with OH. (United States)

    Srinivasulu, G; Bunkan, A J C; Amedro, D; Crowley, J N


    The rate coefficient (k 1 ) for the reaction of OH radicals with perfluoro ethyl vinyl ether (PEVE, C 2 F 5 OCF[double bond, length as m-dash]CF 2 ) has been measured as a function of temperature (T = 207-300 K) using the technique of pulsed laser photolysis with detection of OH by laser-induced fluorescence (PLP-LIF) at pressures of 50 or 100 Torr N 2 bath gas. In addition, the rate coefficient was measured at 298 K and in one atmosphere of air by the relative-rate technique with loss of PEVE and reference reactant monitored in situ by IR absorption spectroscopy. The rate coefficient has a negative temperature dependence which can be parameterized as: k 1 (T) = 6.0 × 10 -13  exp[(480 ± 38/T)] cm 3 molecule -1 s -1 and a room temperature value of k 1 (298 K) = (3.0 ± 0.3) × 10 -12 cm 3 molecule -1 s -1 . Highly accurate rate coefficients from the PLP-LIF experiments were achieved by optical on-line measurements of PEVE and by performing the measurements at two different apparatuses. The large rate coefficient and the temperature dependence indicate that the reaction proceeds via OH addition to the C[double bond, length as m-dash]C double bond, the high pressure limit already being reached at 50 Torr N 2 . Based on the rate coefficient and average OH levels, the atmospheric lifetime of PEVE was estimated to be a few days.

  5. Magnitude of intrinsic isotope effects in the dopamine beta-monooxygenase reaction. (United States)

    Miller, S M; Klinman, J P


    Intrinsic primary hydrogen isotope effects (kH/kD) have been obtained for the carbon-hydrogen bond cleavage step catalyzed by dopamine beta-monooxygenase. Irreversibility of this step is inferred from the failure to observe back-exchange of tritium from TOH into substrate under conditions of dopamine turnover; this result cannot be due to solvent inaccessibility at the enzyme active site, since we will demonstrate [Ahn, N., & Klinman, J. P. (1983) Biochemistry (following paper in this issue)] that a solvent-derived proton or triton must be at the enzyme active site prior to substrate activation. As shown by Northrop [Northrop, D. B. (1975) Biochemistry 14, 2644], for enzymatic reactions in which the carbon-hydrogen bond cleavage step is irreversible, comparison of D(V/K) to T(V/K) allows an explicit solution for kH/kD. Employing a double-label tracer method, we have been able to measure deuterium isotope effects on Vmax/Km with high precision, D(V/K) = 2.756 +/- 0.054 at pH 6.0. The magnitude of the tritium isotope effect under comparable experimental conditions is T(V/K) = 6.079 +/- 0.220, yielding kH/kD = 9.4 +/- 1.3. This result was obtained in the presence of saturating concentrations of the anion activator fumarate. Elimination of fumarate from the reaction mixture leads to high observed values for isotope effects on Vmax/Km, together with an essentially invariant value for kH/kD = 10.9 +/- 1.9. Thus, the large disparity between isotope effects, plus or minus fumarate, cannot be accounted for by a change in kH/kD, and we conclude a role for fumarate in the modulation of the partitioning of enzyme-substrate complex between catalysis and substrate dissociation. On the basis of literature correlations of primary hydrogen isotope effects and the thermodynamic properties of hydrogen transfer reactions, the very large magnitude of kH/kD = 9.4-10.9 for dopamine beta-monooxygenase suggests an equilibrium constant not very far from unity for the carbon-hydrogen bond

  6. Cleavage specificity analysis of six type II transmembrane serine proteases (TTSPs using PICS with proteome-derived peptide libraries.

    Directory of Open Access Journals (Sweden)

    Olivier Barré

    Full Text Available Type II transmembrane serine proteases (TTSPs are a family of cell membrane tethered serine proteases with unclear roles as their cleavage site specificities and substrate degradomes have not been fully elucidated. Indeed just 52 cleavage sites are annotated in MEROPS, the database of proteases, their substrates and inhibitors.To profile the active site specificities of the TTSPs, we applied Proteomic Identification of protease Cleavage Sites (PICS. Human proteome-derived database searchable peptide libraries were assayed with six human TTSPs (matriptase, matriptase-2, matriptase-3, HAT, DESC and hepsin to simultaneously determine sequence preferences on the N-terminal non-prime (P and C-terminal prime (P' sides of the scissile bond. Prime-side cleavage products were isolated following biotinylation and identified by tandem mass spectrometry. The corresponding non-prime side sequences were derived from human proteome databases using bioinformatics. Sequencing of 2,405 individual cleaved peptides allowed for the development of the family consensus protease cleavage site specificity revealing a strong specificity for arginine in the P1 position and surprisingly a lysine in P1' position. TTSP cleavage between R↓K was confirmed using synthetic peptides. By parsing through known substrates and known structures of TTSP catalytic domains, and by modeling the remainder, structural explanations for this strong specificity were derived.Degradomics analysis of 2,405 cleavage sites revealed a similar and characteristic TTSP family specificity at the P1 and P1' positions for arginine and lysine in unfolded peptides. The prime side is important for cleavage specificity, thus making these proteases unusual within the tryptic-enzyme class that generally has overriding non-prime side specificity.

  7. [Laparoscopic cleavage in splenic symptomatic cyst]. (United States)

    Fernández-López, Antonio-José; Candel-Arenas, Marifé; González-Valverde, Francisco-Miguel; Luján-Martínez, Delia; Medina-Manuel, Esther; Albarracín Marín-Blázquez, Antonio


    Splenic cysts are rare diseases that are diagnosed incidentally during imaging studies. When cysts are recognized, surgical treatment is recommended adapted to the particular case, depending on the size and location of the cyst and the age of the patient in order to avoid dangerous complications such as spleen rupture or cyst infection with abscess. We report 2patients with symptomatic splenic epidermoid cyst treated by laparoscopic cleavage. Laparoscopic cleavage is a surgical option for splenic cyst, with the goal of reducing postoperative complications while preserving splenic function. Copyright © 2016 Academia Mexicana de Cirugía A.C. Publicado por Masson Doyma México S.A. All rights reserved.

  8. Ultrarapid mutation detection by multiplex, solid-phase chemical cleavage

    Energy Technology Data Exchange (ETDEWEB)

    Rowley, G.; Saad, S.; Giannelli, F.; Green, P.M. [Guy`s & St. Thomas`s Hospitals, London (United Kingdom)


    The chemical cleavage of mismatches in heteroduplexes formed by probe and test DNA detects and locates any sequence change in long DNA segments ({approximately}1.8 kb), and its efficiency has been well tested in the analysis of both average (e.g., coagulation factor IX) and large, complex genes (e.g., coagulation factor VIII and dystrophin). In the latter application RT/PCR products allow the examination of all essential sequences of the gene in a minimum number of reactions. We use two specific chemical reactants (hydroxylamine and osmium tetroxide) and piperidine cleavage of the above procedure to develop a very fast mutation screening method. This is based on: (1) 5{prime} or internal fluorescent labeling to allow concurrent screening of three to four DNA fragments and (2) solid-phase chemistry to use a microliter format and reduce the time required for the procedure, from amplification of sequence to gel loading inclusive, to one person-working-day. We test the two variations of the method, one entailing 5{prime} labeling of probe DNA and the other uniform labeling of both probe and target DNA, by detecting 114 known hemophilia B (coagulation factor IX) mutations and by analyzing 129 new patients. Uniform labeling of both probe and target DNA prior to formation of the heteroduplexes leads to almost twofold redundancy in the ability to detect mutations. Alternatively, the latter procedure may offer very efficient though less than 100% screening for sequence changes with only hydroxylamine. The full method with two chemical reactions (hydroxylamine and osmium tetroxide) should allow one person to screen with virtually 100% accuracy more than 300 kb of sequence in three ABI 373 gels in 1 day. 26 refs., 7 figs., 1 tab.

  9. tri-n-butyltin hydride-mediated radical reaction of a 2-iodobenzamide: formation of an unexpected carbon-tin bond

    International Nuclear Information System (INIS)

    Oliveira, Marcelo T.; Alves, Rosemeire B.; Cesar, Amary; Prado, Maria Auxiliadora F.; Alves, Ricardo J.; Queiroga, Carla G.; Santos, Leonardo S.; Eberlin, Marcos N.


    The tri-n-butyltin hydride-mediated reaction of methyl 2,3-di-O-benzyl-4-O-trans-cinnamyl- 6-deoxy-6-(2-iodobenzoylamino)-α-D-galactopyranoside afforded an unexpected aryltributyltin compound. The structure of this new tetraorganotin(IV) product has been elucidated by 1 H, 13 C NMR spectroscopy, COSY and HMQC experiments and electrospray ionization mass spectrometry (ESI-MS). The formation of this new compound via a radical coupling reaction and a radical addition-elimination process is discussed. (author)

  10. Boron-doped diamond electrodes for the electrochemical oxidation and cleavage of peptides. (United States)

    Roeser, Julien; Alting, Niels F A; Permentier, Hjalmar P; Bruins, Andries P; Bischoff, Rainer


    Electrochemical oxidation of peptides and proteins is traditionally performed on carbon-based electrodes. Adsorption caused by the affinity of hydrophobic and aromatic amino acids toward these surfaces leads to electrode fouling. We compared the performance of boron-doped diamond (BDD) and glassy carbon (GC) electrodes for the electrochemical oxidation and cleavage of peptides. An optimal working potential of 2000 mV was chosen to ensure oxidation of peptides on BDD by electron transfer processes only. Oxidation by electrogenerated OH radicals took place above 2500 mV on BDD, which is undesirable if cleavage of a peptide is to be achieved. BDD showed improved cleavage yield and reduced adsorption for a set of small peptides, some of which had been previously shown to undergo electrochemical cleavage C-terminal to tyrosine (Tyr) and tryptophan (Trp) on porous carbon electrodes. Repeated oxidation with BDD electrodes resulted in progressively lower conversion yields due to a change in surface termination. Cathodic pretreatment of BDD at a negative potential in an acidic environment successfully regenerated the electrode surface and allowed for repeatable reactions over extended periods of time. BDD electrodes are a promising alternative to GC electrodes in terms of reduced adsorption and fouling and the possibility to regenerate them for consistent high-yield electrochemical cleavage of peptides. The fact that OH-radicals can be produced by anodic oxidation of water at elevated positive potentials is an additional advantage as they allow another set of oxidative reactions in analogy to the Fenton reaction, thus widening the scope of electrochemistry in protein and peptide chemistry and analytics.

  11. Effect of thermal tempering on microstructure and mechanical properties of Mg-AZ31/Al-6061 diffusion bonding

    Energy Technology Data Exchange (ETDEWEB)

    Jafarian, Mojtaba [Young Researchers and Elite Club, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Rizi, Mohsen Saboktakin, E-mail: [Department of Materials Engineering, Isfahan University of Technology, Isfahan 8415683111 (Iran, Islamic Republic of); Department of Industrial Engineering, Lenjan Branch, Islamic Azad University, Isfahan (Iran, Islamic Republic of); Jafarian, Morteza [Young Researchers and Elite Club, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Honarmand, Mehrdad [Department of Mechanical Engineering, Tiran Branch, Islamic Azad University, Isfahan (Iran, Islamic Republic of); Javadinejad, Hamid Reza; Ghaheri, Ali [Department of Materials Engineering, Isfahan University of Technology, Isfahan 8415683111 (Iran, Islamic Republic of); Department of Industrial Engineering, Lenjan Branch, Islamic Azad University, Isfahan (Iran, Islamic Republic of); Bahramipour, Mohammad Taghi [Materials Engineering Department, Hakim Sabzevari University, Sabzevar, 397 (Iran, Islamic Republic of); Ebrahimian, Marzieh [Department of Materials Engineering, Isfahan University of Technology, Isfahan 8415683111 (Iran, Islamic Republic of); Department of Industrial Engineering, Lenjan Branch, Islamic Azad University, Isfahan (Iran, Islamic Republic of)


    The objective of this study is to investigate the effect of the types thermal tempering of aluminum alloy on microstructure and mechanical properties of AZ31-O Mg and Al 6061-T6 diffusion bonding. Using Optical Microscope (OM) and Scanning Electron Microscopes (SEM) equipped with EDS analysis and line scan the interfaces of joints were evaluated. The XRD analysis was carried out to characterize phase constitution near the interface zone. The mechanical properties of joints were measured using Vickers micro-hardness and shear strength. According to the results in bonding of AZ31-Mg/Al-6061-O, in less plastic deformation in magnesium alloy, diffusion rate of most magnesium atoms occurred to aluminum alloy and formation of diffusion zone with minimum micro-hardness (140 HV) and maximum shear strength (32 MPa) compared to Al 6061-T6/Mg-AZ31 bonding. Evaluation of fracture surfaces indicates an occurrence of failure from the brittle intermetallic phases. - Highlights: • Diffusion bonding AZ31 to Al-6061withoutany interlayer was successful. • Thermal tempered aluminum alloy plays a vital role in the mechanical properties of joint. • Less thickness of reaction layers and micro-hardness in bonding annealed Al- 6061 layers to AZ31 was achieved. • Fracture surfaces indicated that the onset of fracture from intermetallic compounds resulted in fracture of the cleavage.

  12. Controllable laser thermal cleavage of sapphire wafers (United States)

    Xu, Jiayu; Hu, Hong; Zhuang, Changhui; Ma, Guodong; Han, Junlong; Lei, Yulin


    Laser processing of substrates for light-emitting diodes (LEDs) offers advantages over other processing techniques and is therefore an active research area in both industrial and academic sectors. The processing of sapphire wafers is problematic because sapphire is a hard and brittle material. Semiconductor laser scribing processing suffers certain disadvantages that have yet to be overcome, thereby necessitating further investigation. In this work, a platform for controllable laser thermal cleavage was constructed. A sapphire LED wafer was modeled using the finite element method to simulate the thermal and stress distributions under different conditions. A guide groove cut by laser ablation before the cleavage process was observed to guide the crack extension and avoid deviation. The surface and cross section of sapphire wafers processed using controllable laser thermal cleavage were characterized by scanning electron microscopy and optical microscopy, and their morphology was compared to that of wafers processed using stealth dicing. The differences in luminous efficiency between substrates prepared using these two processing methods are explained.

  13. Calpain cleavage prediction using multiple kernel learning.

    Directory of Open Access Journals (Sweden)

    David A DuVerle

    Full Text Available Calpain, an intracellular Ca²⁺-dependent cysteine protease, is known to play a role in a wide range of metabolic pathways through limited proteolysis of its substrates. However, only a limited number of these substrates are currently known, with the exact mechanism of substrate recognition and cleavage by calpain still largely unknown. While previous research has successfully applied standard machine-learning algorithms to accurately predict substrate cleavage by other similar types of proteases, their approach does not extend well to calpain, possibly due to its particular mode of proteolytic action and limited amount of experimental data. Through the use of Multiple Kernel Learning, a recent extension to the classic Support Vector Machine framework, we were able to train complex models based on rich, heterogeneous feature sets, leading to significantly improved prediction quality (6% over highest AUC score produced by state-of-the-art methods. In addition to producing a stronger machine-learning model for the prediction of calpain cleavage, we were able to highlight the importance and role of each feature of substrate sequences in defining specificity: primary sequence, secondary structure and solvent accessibility. Most notably, we showed there existed significant specificity differences across calpain sub-types, despite previous assumption to the contrary. Prediction accuracy was further successfully validated using, as an unbiased test set, mutated sequences of calpastatin (endogenous inhibitor of calpain modified to no longer block calpain's proteolytic action. An online implementation of our prediction tool is available at

  14. Carotenoid Cleavage Oxygenases from Microbes and Photosynthetic Organisms: Features and Functions. (United States)

    Ahrazem, Oussama; Gómez-Gómez, Lourdes; Rodrigo, María J; Avalos, Javier; Limón, María Carmen


    Apocarotenoids are carotenoid-derived compounds widespread in all major taxonomic groups, where they play important roles in different physiological processes. In addition, apocarotenoids include compounds with high economic value in food and cosmetics industries. Apocarotenoid biosynthesis starts with the action of carotenoid cleavage dioxygenases (CCDs), a family of non-heme iron enzymes that catalyze the oxidative cleavage of carbon-carbon double bonds in carotenoid backbones through a similar molecular mechanism, generating aldehyde or ketone groups in the cleaving ends. From the identification of the first CCD enzyme in plants, an increasing number of CCDs have been identified in many other species, including microorganisms, proving to be a ubiquitously distributed and evolutionarily conserved enzymatic family. This review focuses on CCDs from plants, algae, fungi, and bacteria, describing recent progress in their functions and regulatory mechanisms in relation to the different roles played by the apocarotenoids in these organisms.

  15. Tetraalkylammonium Salts as Hydrogen-Bonding Catalysts


    Shirakawa, Seiji; Liu, Shiyao; Kaneko, Shiho; Kumatabara, Yusuke; Fukuda, Airi; Omagari, Yumi; Maruoka, Keiji


    Although the hydrogen-bonding ability of the α hydrogen atoms on tetraalkylammonium salts is often discussed with respect to phase-transfer catalysts, catalysis that utilizes the hydrogen-bond-donor properties of tetraalkylammonium salts remains unknown. Herein, we demonstrate hydrogen-bonding catalysis with newly designed tetraalkylammonium salt catalysts in Mannich-type reactions. The structure and the hydrogen-bonding ability of the new ammonium salts were investigated by X-ray diffraction...

  16. Cleavage crystallography of liquid metal embrittled aluminum alloys (United States)

    Reynolds, A. P.; Stoner, G. E.


    The crystallography of liquid metal-induced transgranular cleavage in six aluminum alloys having a variety of microstructures has been determined via Laue X-ray back reflection. The cleavage crystallography was independent of alloy microstructure, and the cleavage plane was 100-plane oriented in all cases. It was further determined that the cleavage crystallography was not influenced by alloy texture. Examination of the fracture surface indicated that there was not a unique direction of crack propagation. In addition, the existence of 100-plane cleavage on alloy 2024 fracture surfaces was inferred by comparison of secondary cleavage crack intersection geometry on the 2024 surfaces with the geometry of secondary cleavage crack intersections on the test alloys.

  17. Sequence-specific cleavage of dsRNA by Mini-III RNase. (United States)

    Głów, Dawid; Pianka, Dariusz; Sulej, Agata A; Kozłowski, Łukasz P; Czarnecka, Justyna; Chojnowski, Grzegorz; Skowronek, Krzysztof J; Bujnicki, Janusz M


    Ribonucleases (RNases) play a critical role in RNA processing and degradation by hydrolyzing phosphodiester bonds (exo- or endonucleolytically). Many RNases that cut RNA internally exhibit substrate specificity, but their target sites are usually limited to one or a few specific nucleotides in single-stranded RNA and often in a context of a particular three-dimensional structure of the substrate. Thus far, no RNase counterparts of restriction enzymes have been identified which could cleave double-stranded RNA (dsRNA) in a sequence-specific manner. Here, we present evidence for a sequence-dependent cleavage of long dsRNA by RNase Mini-III from Bacillus subtilis (BsMiniIII). Analysis of the sites cleaved by this enzyme in limited digest of bacteriophage Φ6 dsRNA led to the identification of a consensus target sequence. We defined nucleotide residues within the preferred cleavage site that affected the efficiency of the cleavage and were essential for the discrimination of cleavable versus non-cleavable dsRNA sequences. We have also determined that the loop α5b-α6, a distinctive structural element in Mini-III RNases, is crucial for the specific cleavage, but not for dsRNA binding. Our results suggest that BsMiniIII may serve as a prototype of a sequence-specific dsRNase that could possibly be used for targeted cleavage of dsRNA. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Temperature and chemical bonding-directed self-assembly of cobalt phosphide nanowires in reaction solutions into vertical and horizontal alignments. (United States)

    Zhang, Shuang-Yuan; Ye, Enyi; Liu, Shuhua; Lim, Suo Hon; Tee, Si Yin; Dong, Zhili; Han, Ming-Yong


    The preparation of vertically or horizontally aligned self-assemblies of CoP nanowires is demonstrated for the first time by aging them in the reaction solution for a sufficient time at 20 or 0 °C. This strategy opens up a way for exploring the controlled self-assembly of various highly anisotropic nanostructures into long-range ordered structures with collective properties. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Aromatic C=C bonds as dipolarophiles: facile reactions of uncomplexed electron-deficient benzene derivatives and other aromatic rings with a non-stabilized azomethine ylide. (United States)

    Lee, Sunyoung; Diab, Sonia; Queval, Pierre; Sebban, Muriel; Chataigner, Isabelle; Piettre, Serge R


    Non-stabilized azomethine ylide 4a reacts smoothly at room temperature with a variety of uncomplexed aromatic heterocycles and carbocycles on the condition that the ring contains at least one or two electron-withdrawing substituents, respectively. Aromatic substrates, including pyridine and benzene derivatives, participate as 2π components in [3+2] cycloaddition reactions and interact with one, two, or three equivalent(s) of the ylide, depending on their structure and substitution pattern. Thus, this process affords highly functionalized polycyclic structures that contain between one and three pyrrolidinyl ring(s) in useful yields. These results indicate that the site selectivity of the cycloaddition reactions strongly depends on both the nature and the positions of the substituents. In most cases, the second 1,3-dipolar reaction occurs on the opposite face to the one that contains the first pyrrolidinyl ring. DFT calculations on model compounds indicate that a concerted mechanism features a low activation barrier. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Solid-state interfacial reaction in molybdenum-carbide systems at high temperature-pressure, and its application to bonding technique

    International Nuclear Information System (INIS)

    Horiguchi, Akihiro; Suganuma, Katsuaki; Miyamoto, Yoshinari; Koizumi, Mitsue; Shimada, Masahiko.


    Diffusion couples of molybdenum with several carbides, i.e. SiC, B 4 C, TiC, ZrC, HfC and TaC, were heated at various temperatures ranging from 1500 to 1840 deg C under high pressures of 3 GPa and 100 MPa for up to 4 hr. The couples were then examined for the composition of reaction products, the growth rate of reaction layers, interfacial structures, and tensile strength. In case of Mo-transition metal carbides, Mo 2 C layer was mainly formed, so that the carbides, which had supplied carbon, resulted in having the nonstoichiometric composition near the interface. The activation energy for the growth of Mo 2 C layer in Mo-TiC system was 332 kJ/mol, and that in Mo-TaC system was 366 kJ/mol. In Mo-SiC system, Mo 2 C layer, the mixed phase of Mo 2 C and Mo 5 Si 3 , and Mo 5 Si 3 C layer were formed in order from the Mo side. In Mo-B 4 C system, the mixed phase of Mo 2 B and MoB, and Mo 2 BC layer appeared. The decomposed graphite from B 4 C was also observed between B 4 C and Mo 2 BC phase. The activation energy for the growth of total reaction layer in Mo-SiC system was 531 kJ/mol, and that in Mo-B 4 C system was 183 kJ/mol. It can be said that the growth of reaction layers is controlled by diffusion. The orientation of crystals was observed in all reaction products except for Mo 2 BC phase in Mo-B 4 C system and (Mo, Ta) 2 C phase in Mo-TaC system. In HIPed couples, the magnitude of tensile strength was dependent on the difference in thermal expansion coefficient between Mo and carbides. HIPed Mo-TaC couple had the best weldability among the systems examined in the present investigation. (author)

  1. Theoretical Study on Reaction Pathways Leading to CO and CO2in the Pyrolysis of Resorcinol. (United States)

    Furutani, Yuki; Kudo, Shinji; Hayashi, Jun-Ichiro; Norinaga, Koyo


    Possible pathways for the pyrolysis of resorcinol with the formation of CO and CO 2 as final products were proposed and evaluated using ab initio calculations. Our experimental study revealed that large quantities of CO 2 are generated in the pyrolysis of 1,3-dihydroxybenzene (resorcinol), while the pyrolysis of the dihydroxybenzene isomers 1,2-dihydroxybenzene (catechol) and 1,4-dihydroxybenzene (hydroquinone) produces little CO 2 . The fate of oxygen atoms in catechol and hydroquinone was essentially the formation of CO. In the proposed pathways, the triplet ground state m-benzoquinone was generated initially from simultaneous cleavage of the two O-H bonds in resorcinol. Subsequently, the direct cleavage of a C-C bond of the m-benzoquinone diradical yields 2-oxidanylcyclopenta-2,4-dien-1-yl-methanone, which can be converted via two channels: release of CO from the aldehyde radical group and combination of the ketone radical and carbon atom in the aldehyde radical group to form the 6-oxabicyclo[3.2.0]hepta-2,4-dien-7-one, resulting in the release of CO 2 . Potential energy surfaces along the proposed reaction pathways were calculated employing the CBS-QB3 method, and the rate constants at the high-pressure limit were also evaluated based on transition-state theory to assess the feasibility of the proposed reaction pathways.

  2. Efficient and specific internal cleavage of a retroviral palindromic DNA sequence by tetrameric HIV-1 integrase.

    Directory of Open Access Journals (Sweden)

    Olivier Delelis

    Full Text Available BACKGROUND: HIV-1 integrase (IN catalyses the retroviral integration process, removing two nucleotides from each long terminal repeat and inserting the processed viral DNA into the target DNA. It is widely assumed that the strand transfer step has no sequence specificity. However, recently, it has been reported by several groups that integration sites display a preference for palindromic sequences, suggesting that a symmetry in the target DNA may stabilise the tetrameric organisation of IN in the synaptic complex. METHODOLOGY/PRINCIPAL FINDINGS: We assessed the ability of several palindrome-containing sequences to organise tetrameric IN and investigated the ability of IN to catalyse DNA cleavage at internal positions. Only one palindromic sequence was successfully cleaved by IN. Interestingly, this symmetrical sequence corresponded to the 2-LTR junction of retroviral DNA circles-a palindrome similar but not identical to the consensus sequence found at integration sites. This reaction depended strictly on the cognate retroviral sequence of IN and required a full-length wild-type IN. Furthermore, the oligomeric state of IN responsible for this cleavage differed from that involved in the 3'-processing reaction. Palindromic cleavage strictly required the tetrameric form, whereas 3'-processing was efficiently catalysed by a dimer. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that the restriction-like cleavage of palindromic sequences may be a general physiological activity of retroviral INs and that IN tetramerisation is strongly favoured by DNA symmetry, either at the target site for the concerted integration or when the DNA contains the 2-LTR junction in the case of the palindromic internal cleavage.

  3. The DNA gyrase-quinolone complex. ATP hydrolysis and the mechanism of DNA cleavage

    DEFF Research Database (Denmark)

    Kampranis, S C; Maxwell, A


    , S. C., and Maxwell, A. (1998) J. Biol. Chem. 269, 22606-22614). The kinetics of ATP hydrolysis via this pathway have been studied and found to differ from those of the reaction of the drug-free enzyme. The quinolone-characteristic ATPase rate is DNA-dependent and can be induced in the presence...... binding and drug-induced DNA cleavage are separate processes constituting two sequential steps in the mechanism of action of quinolones on DNA gyrase....

  4. Abyssal fiction: common shares, colonial cleavages

    Directory of Open Access Journals (Sweden)

    Alexandre Montaury


    Full Text Available The paper aims to develop a reflection on the interaction between the legacies of colonialism and traditional symbolic and cultural practices in African Portuguese-speaking spaces. From a preliminary analysis of fictional texts of wide circulation in Brazil, aims to examine the cleavages, or “abyssal lines” that constitute experiences printed in the daily life of the former Portuguese colony of Cape Verde, Mozambique and Angola.---DOI:

  5. Cleavage and formation of molecular dinitrogen in a single system assisted by molybdenum complexes bearing ferrocenyldiphosphine. (United States)

    Miyazaki, Takamasa; Tanaka, Hiromasa; Tanabe, Yoshiaki; Yuki, Masahiro; Nakajima, Kazunari; Yoshizawa, Kazunari; Nishibayashi, Yoshiaki


    The N≡N bond of molecular dinitrogen bridging two molybdenum atoms in the pentamethylcyclopentadienyl molybdenum complexes that bear ferrocenyldiphosphine as an auxiliary ligand is homolytically cleaved under visible light irradiation at room temperature to afford two molar molybdenum nitride complexes. Conversely, the bridging molecular dinitrogen is reformed by the oxidation of the molybdenum nitride complex at room temperature. This result provides a successful example of the cleavage and formation of molecular dinitrogen induced by a pair of two different external stimuli using a single system assisted by molybdenum complexes bearing ferrocenyldiphosphine under ambient conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Oxidative cleavage of erucic acid for the synthesis of brassylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed J. Nasrullah; Pooja Thapliyal; Erica N. Pfarr; Nicholas S. Dusek; Kristofer L. Schiele; James A. Bahr


    The main focus of this work is to synthesize Brassylic Acid (BA) using oxidative cleavage of Erucic Acid (EA). Crambe (Crambe abyssinica) is an industrial oilseed grown in North Dakota. Crambe has potential as an industrial fatty acid feedstock as a source of Erucic acid (EA). It has approximately 50-60 % of EA, a C{sub 22} monounsaturated fatty acid. Oxidative cleavage of unsaturated fatty acids derived from oilseeds produces long chain (9, 11, and 13 carbon atoms) dibasic and monobasic acids. These acids are known commercial feedstocks for the preparation of nylons, polyesters, waxes, surfactants, and perfumes. Other sources of EA are Rapeseed seed oil which 50-60 % of EA. Rapeseed is grown outside USA. The oxidative cleavage of EA was done using a high throughput parallel pressure reactor system. Kinetics of the reaction shows that BA yields reach a saturation at 12 hours. H{sub 2}WO{sub 4} was found to be the best catalyst for the oxidative cleavage of EA. High yields of BA were obtained at 80 C with bubbling of O{sub 2} or 10 bar of O{sub 2} for 12 hours.

  7. Endonuclease active site plasticity allows DNA cleavage with diverse alkaline Earth and transition metal ions. (United States)

    Vasu, Kommireddy; Saravanan, Matheshwaran; Nagaraja, Valakunja


    A majority of enzymes show a high degree of specificity toward a particular metal ion in their catalytic reaction. However, Type II restriction endonuclease (REase) R.KpnI, which is the first member of the HNH superfamily of REases, exhibits extraordinary diversity in metal ion dependent DNA cleavage. Several alkaline earth and transition group metal ions induce high fidelity and promiscuous cleavage or inhibition depending upon their concentration. The metal ions having different ionic radii and co-ordination geometries readily replace each other from the enzyme's active site, revealing its plasticity. Ability of R.KpnI to cleave DNA with both alkaline earth and transition group metal ions having varied ionic radii could imply utilization of different catalytic site(s). However, mutation of the invariant His residue of the HNH motif caused abolition of the enzyme activity with all of the cofactors, indicating that the enzyme follows a single metal ion catalytic mechanism for DNA cleavage. Indispensability of His in nucleophile activation together with broad cofactor tolerance of the enzyme indicates electrostatic stabilization function of metal ions during catalysis. Nevertheless, a second metal ion is recruited at higher concentrations to either induce promiscuity or inhibit the DNA cleavage. Regulation of the endonuclease activity and fidelity by a second metal ion binding is a unique feature of R.KpnI among REases and HNH nucleases. The active site plasticity of R.KpnI opens up avenues for redesigning cofactor specificities and generation of mutants specific to a particular metal ion.

  8. Analysis of the radical hydrogen transfer pathway for cleaving strong bonds in coal

    Energy Technology Data Exchange (ETDEWEB)

    Autrey, S.T.; Camaioni, D.M.; Ferris, K.F.; Franz, J.A.


    Hydrogen transfer processes involving radical intermediates are of key importance in the liquefaction of coal. While the primary function of donor solvents is to transfer H{lg_bullet} to coal-derived radicals that form when weak bonds are cleaved thermolytically, growing evidence suggests that the donor solvent can play a role in promoting cleavage of strong {alpha}-bonds. McMillen and Malhotra have explained the results in terms of a single-step mechanism referred to as radical H-transfer (RHT). Mechanistic kinetic models have been used to suggest the importance of RHT pathways in anthracene- and pyrene-based solvent systems. However, we question the reliability of these approaches because little experimental data exists to support the 16.5 kcal/mol intrinsic barriers they assume for RHT reactions. Unambiguous evidence for RHT is very difficult to obtain experimentally because at the temperatures required to activate the RHT reaction, a suite of multistep reactions can occur, which yield the same products, i.e. H-elimination from hydroaryl radicals followed by ipso addition. For this reason, we have sought to gain insight to barrier heights for RHT from theory. This paper reports our use of Marcus theory in combination with ab initio and semiempirical molecular orbital methods to show how the intrinsic barriers for RHT reactions depend on structural and thermodynamic properties of the reacting partners. In addition, reactions thought to be mediated by RHT are reexamined using mechanistic kinetic modeling (MKM) to determine the extent to which these reactions can be explained by conventional pathways.

  9. Dinitrogen binding and cleavage by multinuclear iron complexes. (United States)

    McWilliams, Sean F; Holland, Patrick L


    The iron-molybdenum cofactor of nitrogenase has unprecedented coordination chemistry, including a high-spin iron cluster called the iron-molybdenum cofactor (FeMoco). Thus, understanding the mechanism of nitrogenase challenges coordination chemists to understand the fundamental N2 chemistry of high-spin iron sites. This Account summarizes a series of studies in which we have synthesized a number of new compounds with multiple iron atoms, characterized them using crystallography and spectroscopy, and studied their reactions in detail. These studies show that formally iron(I) and iron(0) complexes with three- and four-coordinate metal atoms have the ability to weaken and break the triple bond of N2. These reactions occur at or below room temperature, indicating that they are kinetically facile. This in turn implies that iron sites in the FeMoco are chemically reasonable locations for N2 binding and reduction. The careful evaluation of these compounds and their reaction pathways has taught important lessons about what characteristics make iron more effective for N2 activation. Cooperation of two iron atoms can lengthen and weaken the N-N bond, while three working together enables iron atoms to completely cleave the N-N bond to nitrides. Alkali metals (typically introduced into the reaction as part of the reducing agent) are thermodynamically useful because the alkali metal cations stabilize highly reduced complexes, pull electron density into the N2 unit, and make reduced nitride products more stable. Alkali metals can also play a kinetic role, because cation-π interactions with the supporting ligands can hold iron atoms near enough to one another to facilitate the cooperation of multiple iron atoms. Many of these principles may also be relevant to the iron-catalyzed Haber-Bosch process, at which collections of iron atoms (often promoted by the addition of alkali metals) break the N-N bond of N2. The results of these studies teach more general lessons as well. They

  10. N-heterocyclic carbene gold(I) and copper(I) complexes in C-H bond activation. (United States)

    Gaillard, Sylvain; Cazin, Catherine S J; Nolan, Steven P


    Environmental concerns have and will continue to have a significant role in determining how chemistry is carried out. Chemists will be challenged to develop new, efficient synthetic processes that have the fewest possible steps leading to a target molecule, the goal being to decrease the amount of waste generated and reduce energy use. Along this path, chemists will need to develop highly selective reactions with atom-economical pathways producing nontoxic byproduct. In this context, C-H bond activation and functionalization is an extremely attractive method. Indeed, for most organic transformations, the presence of a reactive functionality is required. In Total Synthesis, the "protection and deprotection" approach with such reactive groups limits the overall yield of the synthesis, involves the generation of significant chemical waste, costs energy, and in the end is not as green as one would hope. In turn, if a C-H bond functionalization were possible, instead of the use of a prefunctionalized version of the said C-H bond, the number of steps in a synthesis would obviously be reduced. In this case, the C-H bond can be viewed as a dormant functional group that can be activated when necessary during the synthetic strategy. One issue increasing the challenge of such a desired reaction is selectivity. The cleavage of a C-H bond (bond dissociation requires between 85 and 105 kcal/mol) necessitates a high-energy species, which could quickly become a drawback for the control of chemo-, regio-, and stereoselectivity. Transition metal catalysts are useful reagents for surmounting this problem; they can decrease the kinetic barrier of the reaction yet retain control over selectivity. Transition metal complexes also offer important versatility in having distinct pathways that can lead to activation of the C-H bond. An oxidative addition of the metal in the C-H bond, and a base-assisted metal-carbon bond formation in which the base can be coordinated (or not) to the metal

  11. Chromium(VI) reduction by catechol(amine)s results in DNA cleavage in vitro

    DEFF Research Database (Denmark)

    Pattison, D I; Davies, Michael Jonathan; Levina, A


    ) or 4-tert-butylcatechol (5) do not damage DNA. The Cr(VI)/catechol(amine) reactions have been studied at low added H(2)O(2) concentrations, which lead to enhanced DNA cleavage with 1 and induce DNA cleavage with 4. The Cr(V) and organic intermediates generated by the reactions of Cr(VI) with 1 or 4...... in the presence of H(2)O(2) were characterized by EPR spectroscopy. The detected signals were assigned to Cr(V)-catechol, Cr(V)-peroxo, and mixed Cr(V)-catechol-peroxo complexes. Oxygen consumption during the reactions of Cr(VI) with 1, 2, 4, and 5 was studied, and H(2)O(2) production was quantified. Reactions...... of Cr(VI) with 1 and 2, but not 4 and 5, consume considerable amounts of dissolved O(2), and give extensive H(2)O(2) production. Extents of oxygen consumption and H(2)O(2) production during the reaction of Cr(VI) with enzymatically generated 1 and N-acetyl-DOPA (from the reaction of Tyr and N...

  12. Reaction mechanisms

    International Nuclear Information System (INIS)

    Nguyen Trong Anh


    The 1988 progress report of the Reaction Mechanisms laboratory (Polytechnic School, France), is presented. The research topics are: the valence bond methods, the radical chemistry, the modelling of the transition states by applying geometric constraints, the long range interactions (ion - molecule) in gaseous phase, the reaction sites in gaseous phase and the mass spectroscopy applications. The points of convergence between the investigations of the mass spectroscopy and the theoretical chemistry teams, as well as the purposes guiding the research programs, are discussed. The published papers, the conferences, the congress communications and the thesis, are also reported [fr

  13. Ligand-Controlled Chemoselective C(acyl)–O Bond vs C(aryl)–C Bond Activation of Aromatic Esters in Nickel Catalyzed C(sp2)–C(sp3) Cross-Couplings

    KAUST Repository

    Chatupheeraphat, Adisak


    A ligand-controlled and site-selective nickel catalyzed Suzuki-Miyaura cross-coupling reaction with aromatic esters and alkyl organoboron reagents as coupling partners was developed. This methodology provides a facile route for C(sp2)-C(sp3) bond formation in a straightforward fashion by successful suppression of the undesired β-hydride elimination process. By simply switching the phosphorus ligand, the ester substrates are converted into the alkylated arenes and ketone products, respectively. The utility of this newly developed protocol was demonstrated by its wide substrate scope, broad functional group tolerance and application in the synthesis of key intermediates for the synthesis of bioactive compounds. DFT studies on the oxidative addition step helped rationalizing this intriguing reaction chemoselectivity: whereas nickel complexes with bidentate ligands favor the C(aryl)-C bond cleavage in the oxidative addition step leading to the alkylated product via a decarbonylative process, nickel complexes with monodentate phosphorus ligands favor activation of the C(acyl)-O bond, which later generates the ketone product.

  14. Site-selective reversible Diels-Alder reaction between a biphenylene-based polyarene and a semiconductor surface. (United States)

    Godlewski, Szymon; Engelund, Mads; Peña, Diego; Zuzak, Rafał; Kawai, Hiroyo; Kolmer, Marek; Caeiro, Jorge; Guitián, Enrique; Vollhardt, K Peter C; Sánchez-Portal, Daniel; Szymonski, Marek; Pérez, Dolores


    Understanding the mechanisms involved in the covalent attachment of organic molecules to surfaces is a major challenge for nanotechnology and surface science. On the basis of classical organic chemistry mechanistic considerations, key issues such as selectivity and reactivity of the organic adsorbates could be rationalized and exploited for the design of molecular-scale circuits and devices. Here we use tris(benzocyclobutadieno)triphenylene, a singular Y-shaped hydrocarbon containing antiaromatic cyclobutadienoid rings, as a molecular probe to study the reaction of polycyclic conjugated molecules with atomic scale moieties, dangling-bond (DB) dimers on a hydrogen-passivated Ge(001):H surface. By combining molecular design, synthesis, scanning tunneling microscopy and spectroscopy (STM/STS) and computational modeling, we show that the attachment involves a concerted [4+2] cycloaddition reaction that is completely site-selective and fully reversible. This selectivity, governed by the bond alternation induced by the presence of the cyclobutadienoid rings, allows for the control of the orientation of the molecules with respect to the surface DB-patterning. We also demonstrate that by judicious modification of the electronic levels of the polycyclic benzenoid through substituents, the reaction barrier height can be modified. Finally, we show that after deliberate tip-induced covalent bond cleavage, adsorbed molecules can be used to fine tune the electronic states of the DB dimer. This power to engineer deliberately the bonding configuration and electronic properties opens new perspectives for creating prototypical nanoscale circuitry.

  15. Diffusion bonding

    International Nuclear Information System (INIS)

    Anderson, R.C.


    A method is described for joining beryllium to beryllium by diffusion bonding. At least one surface portion of at least two beryllium pieces is coated with nickel. A coated surface portion is positioned in a contiguous relationship with another surface portion and subjected to an environment having an atmosphere at a pressure lower than ambient pressure. A force is applied on the beryllium pieces for causing the contiguous surface portions to abut against each other. The contiguous surface portions are heated to a maximum temperature less than the melting temperature of the beryllium, and the applied force is decreased while increasing the temperature after attaining a temperature substantially above room temperature. A portion of the applied force is maintained at a temperature corresponding to about maximum temperature for a duration sufficient to effect the diffusion bond between the contiguous surface portions

  16. Bond energies of ThO{sup +} and ThC{sup +}: A guided ion beam and quantum chemical investigation of the reactions of thorium cation with O{sub 2} and CO

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Richard M; Citir, Murat; Armentrout, P. B., E-mail: [Department of Chemistry, University of Utah, Salt Lake City, Utah 84112-0850 (United States); Battey, Samuel R.; Peterson, Kirk A. [Department of Chemistry, Washington State University, Pullman, Washington 99164-4630 (United States)


    Kinetic energy dependent reactions of Th{sup +} with O{sub 2} and CO are studied using a guided ion beam tandem mass spectrometer. The formation of ThO{sup +} in the reaction of Th{sup +} with O{sub 2} is observed to be exothermic and barrierless with a reaction efficiency at low energies of k/k{sub LGS} = 1.21 ± 0.24 similar to the efficiency observed in ion cyclotron resonance experiments. Formation of ThO{sup +} and ThC{sup +} in the reaction of Th{sup +} with CO is endothermic in both cases. The kinetic energy dependent cross sections for formation of these product ions were evaluated to determine 0 K bond dissociation energies (BDEs) of D{sub 0}(Th{sup +}–O) = 8.57 ± 0.14 eV and D{sub 0}(Th{sup +}–C) = 4.82 ± 0.29 eV. The present value of D{sub 0} (Th{sup +}–O) is within experimental uncertainty of previously reported experimental values, whereas this is the first report of D{sub 0} (Th{sup +}–C). Both BDEs are observed to be larger than those of their transition metal congeners, TiL{sup +}, ZrL{sup +}, and HfL{sup +} (L = O and C), believed to be a result of lanthanide contraction. Additionally, the reactions were explored by quantum chemical calculations, including a full Feller-Peterson-Dixon composite approach with correlation contributions up to coupled-cluster singles and doubles with iterative triples and quadruples (CCSDTQ) for ThC, ThC{sup +}, ThO, and ThO{sup +}, as well as more approximate CCSD with perturbative (triples) [CCSD(T)] calculations where a semi-empirical model was used to estimate spin-orbit energy contributions. Finally, the ThO{sup +} BDE is compared to other actinide (An) oxide cation BDEs and a simple model utilizing An{sup +} promotion energies to the reactive state is used to estimate AnO{sup +} and AnC{sup +} BDEs. For AnO{sup +}, this model yields predictions that are typically within experimental uncertainty and performs better than density functional theory calculations presented previously.

  17. Bond energies of ThO+ and ThC+: A guided ion beam and quantum chemical investigation of the reactions of thorium cation with O2 and CO (United States)

    Cox, Richard M.; Citir, Murat; Armentrout, P. B.; Battey, Samuel R.; Peterson, Kirk A.


    Kinetic energy dependent reactions of Th+ with O2 and CO are studied using a guided ion beam tandem mass spectrometer. The formation of ThO+ in the reaction of Th+ with O2 is observed to be exothermic and barrierless with a reaction efficiency at low energies of k/kLGS = 1.21 ± 0.24 similar to the efficiency observed in ion cyclotron resonance experiments. Formation of ThO+ and ThC+ in the reaction of Th+ with CO is endothermic in both cases. The kinetic energy dependent cross sections for formation of these product ions were evaluated to determine 0 K bond dissociation energies (BDEs) of D0(Th+-O) = 8.57 ± 0.14 eV and D0(Th+-C) = 4.82 ± 0.29 eV. The present value of D0 (Th+-O) is within experimental uncertainty of previously reported experimental values, whereas this is the first report of D0 (Th+-C). Both BDEs are observed to be larger than those of their transition metal congeners, TiL+, ZrL+, and HfL+ (L = O and C), believed to be a result of lanthanide contraction. Additionally, the reactions were explored by quantum chemical calculations, including a full Feller-Peterson-Dixon composite approach with correlation contributions up to coupled-cluster singles and doubles with iterative triples and quadruples (CCSDTQ) for ThC, ThC+, ThO, and ThO+, as well as more approximate CCSD with perturbative (triples) [CCSD(T)] calculations where a semi-empirical model was used to estimate spin-orbit energy contributions. Finally, the ThO+ BDE is compared to other actinide (An) oxide cation BDEs and a simple model utilizing An+ promotion energies to the reactive state is used to estimate AnO+ and AnC+ BDEs. For AnO+, this model yields predictions that are typically within experimental uncertainty and performs better than density functional theory calculations presented previously.

  18. Mechanisms of free-radical reactions. XXI. Stereoselectivity of the hydrogen abstraction and chlorine transfer stages in the free-radical chlorination of norbornane by (dichloroiodo) arenes

    International Nuclear Information System (INIS)

    Dneprovskii, A.S.; Pertsikov, B.Z.


    The free-radical chlorination of stereospecifically deuterated norbornane by (dichloroiodo) arenes was studied by the method of competing reactions and by PMR and mass spectroscopy. The hydrogen abstraction stage is realized with preferential cleavage of the exo-C-H bond. exo-2-Chloronorbornane is formed preferentially at the stage of transfer of the chlorine atom to the 2-norbornyl radical. The nature of the stereoselectivity in both stages and the relationships governing its variation with variation in the structure of the chlorinating agent are determined by steric interactions which appear in the transition state

  19. Computational investigation and hydrogen/deuterium exchange of the fixed charge derivative tris(2,4,6-trimethoxyphenyl) phosphonium: implications for the aspartic acid cleavage mechanism. (United States)

    Herrmann, Kristin A; Wysocki, Vicki H; Vorpagel, Erich R


    Aspartic acid (Asp)-containing peptides with the fixed charge derivative tris(2,4,6trimethoxyphenyl) phosphonium (tTMP-P+) were explored computationally and experimentally by hydrogen/deuterium (H/D) exchange and by fragmentation studies to probe the phenomenon of selective cleavage C-terminal to Asp in the absence of a "mobile" proton. Ab initio modeling of the tTMP-P+ electrostatic potential shows that the positive charge is distributed on the phosphonium group and therefore is not initiating or directing fragmentation as would a "mobile" proton. Geometry optimizations and vibrational analyses of different Asp conformations show that the Asp structure with a hydrogen bond between the side-chain hydroxy and backbone carbonyl lies 2.8 kcal/mol above the lowest energy conformer. In reactions with D2O, the phosphonium-derived doubly charged peptide (H+)P+LDIFSDF rapidly exchanges all 12 of its exchangeable hydrogens for deuterium and also displays a nonexchanging population. With no added proton, P+LDIFSDF exchanges a maximum of 4 of 11 exchangeable hydrogens for deuterium. No exchange is observed when all acidic groups are converted to the corresponding methyl esters. Together, these H/D exchange results indicate that the acidic hydrogens are "mobile locally" because they are able to participate in exchange even in the absence of an added proton. Fragmentation of two distinct (H+)P+LDIFSDF ion populations shows that the nonexchanging population displays selective cleavage, whereas the exchanging population fragments more evenly across the peptide backbone. This result indicates that H/D exchange can sometimes distinguish between and provide a means of separation of different protonation motifs and that these protonation motifs can have an effect on the fragmentation.

  20. Structural and functional basis for RNA cleavage by Ire1

    Directory of Open Access Journals (Sweden)

    Stroud Robert M


    Full Text Available Abstract Background The unfolded protein response (UPR controls the protein folding capacity of the endoplasmic reticulum (ER. Central to this signaling pathway is the ER-resident bifunctional transmembrane kinase/endoribonuclease Ire1. The endoribonuclease (RNase domain of Ire1 initiates a non-conventional mRNA splicing reaction, leading to the production of a transcription factor that controls UPR target genes. The mRNA splicing reaction is an obligatory step of Ire1 signaling, yet its mechanism has remained poorly understood due to the absence of substrate-bound crystal structures of Ire1, the lack of structural similarity between Ire1 and other RNases, and a scarcity of quantitative enzymological data. Here, we experimentally define the active site of Ire1 RNase and quantitatively evaluate the contribution of the key active site residues to catalysis. Results This analysis and two new crystal structures suggest that Ire1 RNase uses histidine H1061 and tyrosine Y1043 as the general acid-general base pair contributing ≥ 7.6 kcal/mol and 1.4 kcal/mol to transition state stabilization, respectively, and asparagine N1057 and arginine R1056 for coordination of the scissile phosphate. Investigation of the stem-loop recognition revealed that additionally to the stem-loops derived from the classic Ire1 substrates HAC1 and Xbp1 mRNA, Ire1 can site-specifically and rapidly cleave anticodon stem-loop (ASL of unmodified tRNAPhe, extending known substrate specificity of Ire1 RNase. Conclusions Our data define the catalytic center of Ire1 RNase and suggest a mechanism of RNA cleavage: each RNase monomer apparently contains a separate catalytic apparatus for RNA cleavage, whereas two RNase subunits contribute to RNA stem-loop docking. Conservation of the key residues among Ire1 homologues suggests that the mechanism elucidated here for yeast Ire1 applies to Ire1 in metazoan cells, and to the only known Ire1 homologue RNase L.

  1. Facile reactions of gold(i) complexes with tri(tert-butyl)azadiboriridine. (United States)

    Shang, Rong; Saito, Souta; Jimenez-Halla, J Oscar C; Yamamoto, Yohsuke


    Direct structural evidence for group 11 metal-mediated B-B bond activation was obtained from reactions of tri(tert-butyl)azadiboriridine (1) with AuCl(L) complexes. The AuCl(SMe2) reaction afforded [η2-B,B-B(tBu)N(tBu)B(tBu)]AuCl (2) by ligand displacement. More donating phosphines as co-ligands led to B-B bond cleavage accompanied by either halide or L migration to form boron-gold complexes 3 (L = PPh3) and 4 (L = PMe3). A similar product 5, which is isostructural to 4, was obtained by the addition of dimethylaminopyridine (DMAP) to 2-4. Complexes 2-5 constitute rare examples of metal complexes bearing two Lewis acidic centres. The effect of the boryl ligand was demonstrated in the formation of a gold(i) complex 6 bearing a 5-membered heterocycle from 3 and tert-butylisonitrile. Plausible reaction mechanisms that led to these complexes and their bonding situation were explored computationally at the DFT level.

  2. Cleavage of nicotinamide adenine dinucleotide by the ribosome-inactivating protein from Momordica charantia. (United States)

    Vinkovic, M; Dunn, G; Wood, G E; Husain, J; Wood, S P; Gill, R


    The interaction of momordin, a type 1 ribosome-inactivating protein from Momordica charantia, with NADP(+) and NADPH has been investigated by X-ray diffraction analysis of complexes generated by co-crystallization and crystal soaking. It is known that the proteins of this family readily cleave the adenine-ribose bond of adenosine and related nucleotides in the crystal, leaving the product, adenine, bound to the enzyme active site. Surprisingly, the nicotinamide-ribose bond of oxidized NADP(+) is cleaved, leaving nicotinamide bound in the active site in the same position but in a slightly different orientation to that of the five-membered ring of adenine. No binding or cleavage of NADPH was observed at pH 7.4 in these experiments. These observations are in accord with current views of the enzyme mechanism and may contribute to ongoing searches for effective inhibitors.

  3. Primary retention following nuclear recoil in β-decay: Proposed synthesis of a metastable rare gas oxide ((38)ArO4) from ((38)ClO4(-)) and the evolution of chemical bonding over the nuclear transmutation reaction path. (United States)

    Timm, Matthew J; Matta, Chérif F


    Argon tetroxide (ArO4) is the last member of the N=50 e(-) isoelectronic and isosteric series of ions: SiO4(4-), PO4(3-), SO4(2-), and ClO4(-). A high level computational study demonstrated that while ArO4 is kinetically stable it has a considerable positive enthalpy of formation (of ~298kcal/mol) (Lindh et al., 1999. J. Phys. Chem. A 103, pp. 8295-8302) confirming earlier predictions by Pyykkö (1990. Phys. Scr. 33, pp. 52-53). ArO4 can be expected to be difficult to synthesize by traditional chemistry due to its metastability and has not yet been synthesized at the time of writing. A computational investigation of the changes in the chemical bonding of chlorate (ClO4(-)) when the central chlorine atom undergoes a nuclear transmutation from the unstable artificial chlorine isotope (38)Cl to the stable rare argon isotope (38)Ar through β-decay, hence potentially leading to the formation of ArO4, is reported. A mathematical model is presented that allows for the prediction of yields following the recoil of a nucleus upon ejecting a β-electron. It is demonstrated that below a critical angle between the ejected β-electron and that of the accompanying antineutrino their respective linear momentums can cancel to such an extent as imparting a recoil to the daughter atom insufficient for breaking the Ar-O bond. As a result, a primary retention yield of ~1% of ArO4 is predicted following the nuclear disintegration. The study is conducted at the quadratic configuration interaction with single and double excitations [QCISD/6-311+G(3df)] level of theory followed by an analysis of the electron density by the quantum theory of atoms in molecules (QTAIM). Crossed potential energy surfaces (PES) were used to construct a PES from the metastable ArO4 ground singlet state to the Ar-O bond dissociation product ArO3+O((3)P) from which the predicted barrier to dissociation is ca. 22kcal/mol and the exothermic reaction energy is ca. 28kcal/mol [(U)MP2/6-311+G(d)]. Copyright © 2014

  4. Snake venom serine proteinases specificity mapping by proteomic identification of cleavage sites. (United States)

    Zelanis, André; Huesgen, Pitter F; Oliveira, Ana Karina; Tashima, Alexandre K; Serrano, Solange M T; Overall, Christopher M


    Many snake venom toxins are serine proteases but their specific in vivo targets are mostly unknown. Various act on components of the coagulation cascade, and fibrinolytic and kallikrein-kinin systems to trigger various pathological effects observed in the envenomation. Despite showing high similarity in terms of primary structure snake venom serine proteinases (SVSPs) show exquisite specificity towards macromolecular substrates. Therefore, the characterization of their peptide bond specificity is important for understanding the active site preference associated with effective proteolysis as well as for the design of peptide substrates and inhibitors. Bothrops jararaca contains various SVSPs among which Bothrops protease A is a specific fibrinogenolytic agent and PA-BJ is a platelet-activating enzyme. In this study we used proteome derived peptide libraries in the Proteomic Identification of protease Cleavage Sites (PICS) approach to explore the peptide bond specificity of Bothrops protease A and PA-BJ in order to determine their individual peptide cleavage sequences. A total of 371 cleavage sites (208 for Bothrops protease A and 163 for PA-BJ) were detected and both proteinases displayed a clear preference for arginine at the P1 position. Moreover, the analysis of the specificity profiles of Bothrops protease A and PA-BJ revealed subtle differences in the preferences along P6-P6', despite a common yet unusual preference for Pro at P2. Taken together, these results map the subsite specificity of both SVSPs and shed light in the functional differences between these proteinases. Proteolysis is key to various pathological effects observed upon envenomation by viperid snakes. The use of the Proteomic Identification of protease Cleavage Sites (PICS) approach for the easy mapping of proteinase subsite preferences at both the prime- and non-prime sides concurrently gives rise to a fresh understanding of the interaction of the snake venom serine proteinases with peptide and

  5. "Vibrational bonding": a new type of chemical bond is discovered. (United States)

    Rhodes, Christopher J; Macrae, Roderick M


    A long-sought but elusive new type of chemical bond, occurring on a minimum-free, purely repulsive potential energy surface, has recently been convincingly shown to be possible on the basis of high-level quantum-chemical calculations. This type of bond, termed a vibrational bond, forms because the total energy, including the dynamical energy of the nuclei, is lower than the total energy of the dissociated products, including their vibrational zero-point energy. For this to be the case, the ZPE of the product molecule must be very high, which is ensured by replacing a conventional hydrogen atom with its light isotope muonium (Mu, mass = 1/9 u) in the system Br-H-Br, a natural transition state in the reaction between Br and HBr. A paramagnetic species observed in the reaction Mu +Br2 has been proposed as a first experimental sighting of this species, but definitive identification remains challenging.

  6. Elucidation of reaction mechanism for m -cresol hydrodeoxygenation over Fe based catalysts: A kinetic study

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Yongchun; Wang, Yong


    Fe based catalysts are promising for hydrodeoxygenation (HDO) of lignin derived phenolics due to their high selectivity for aromatics. In this work, the reaction mechanism of m-cresol HDO on Fe catalysts and the kinetic consequence with Pd addition were elucidated by examining the effect of H2, H2O and m-cresol pressures on toluene formation rate on Fe and PdFe catalysts. A direct CO bond cleavage mechanism is proposed for HDO catalysis on both Fe and PdFe catalysts, while Pd provides a facilitated reaction pathway at the PdFe interface and therefore promotes the catalysis on Fe without changing the high selectivity towards aromatics.

  7. Copper(II) and Zinc(II) Complexes of Conformationally Constrained Polyazamacrocycles as Efficient Catalysts for RNA Model Substrate Cleavage in Aqueous Solution at Physiological pH

    Czech Academy of Sciences Publication Activity Database

    Bím, Daniel; Svobodová, E.; Eigner, V.; Rulíšek, Lubomír; Hodačová, J.


    Roč. 22, č. 30 (2016), s. 10426-10437 ISSN 0947-6539 R&D Projects: GA ČR(CZ) GA14-31419S Institutional support: RVO:61388963 Keywords : cleavage reactions * density functional calculations * ligand design * macrocyclic ligands * reaction mechanisms Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.317, year: 2016

  8. The Oxygenase CAO-1 of Neurospora crassa Is a Resveratrol Cleavage Enzyme

    KAUST Repository

    Diaz-Sanchez, V.


    The genome of the ascomycete Neurospora crassa encodes CAO-1 and CAO-2, two members of the carotenoid cleavage oxygenase family that target double bonds in different substrates. Previous studies demonstrated the role of CAO-2 in cleaving the C40 carotene torulene, a key step in the synthesis of the C35 apocarotenoid pigment neurosporaxanthin. In this work, we investigated the activity of CAO-1, assuming that it may provide retinal, the chromophore of the NOP-1 rhodopsin, by cleaving β-carotene. For this purpose, we tested CAO-1 activity with carotenoid substrates that were, however, not converted. In contrast and consistent with its sequence similarity to family members that act on stilbenes, CAO-1 cleaved the interphenyl Cα-Cβ double bond of resveratrol and its derivative piceatannol. CAO-1 did not convert five other similar stilbenes, indicating a requirement for a minimal number of unmodified hydroxyl groups in the stilbene background. Confirming its biological function in converting stilbenes, adding resveratrol led to a pronounced increase in cao-1 mRNA levels, while light, a key regulator of carotenoid metabolism, did not alter them. Targeted Δcao-1 mutants were not impaired by the presence of resveratrol, a phytoalexin active against different fungi, which did not significantly affect the growth and development of wild-type Neurospora. However, under partial sorbose toxicity, the Δcao-1 colonies exhibited faster radial growth than control strains in the presence of resveratrol, suggesting a moderate toxic effect of resveratrol cleavage products.

  9. A novel carotenoid cleavage activity involved in the biosynthesis of Citrus fruit-specific apocarotenoid pigments

    KAUST Repository

    Rodrigo, María J.


    Citrus is the first tree crop in terms of fruit production. The colour of Citrus fruit is one of the main quality attributes, caused by the accumulation of carotenoids and their derivative C30 apocarotenoids, mainly ?-citraurin (3-hydroxy-?-apo-8?-carotenal), which provide an attractive orange-reddish tint to the peel of oranges and mandarins. Though carotenoid biosynthesis and its regulation have been extensively studied in Citrus fruits, little is known about the formation of C30 apocarotenoids. The aim of this study was to the identify carotenoid cleavage enzyme(s) [CCD(s)] involved in the peel-specific C30 apocarotenoids. In silico data mining revealed a new family of five CCD4-type genes in Citrus. One gene of this family, CCD4b1, was expressed in reproductive and vegetative tissues of different Citrus species in a pattern correlating with the accumulation of C30 apocarotenoids. Moreover, developmental processes and treatments which alter Citrus fruit peel pigmentation led to changes of ?-citraurin content and CCD4b1 transcript levels. These results point to the involvement of CCD4b1 in ?-citraurin formation and indicate that the accumulation of this compound is determined by the availability of the presumed precursors zeaxanthin and ?-cryptoxanthin. Functional analysis of CCD4b1 by in vitro assays unequivocally demonstrated the asymmetric cleavage activity at the 7?,8? double bond in zeaxanthin and ?-cryptoxanthin, confrming its role in C30 apocarotenoid biosynthesis. Thus, a novel plant carotenoid cleavage activity targeting the 7?,8? double bond of cyclic C40 carotenoids has been identified. These results suggest that the presented enzyme is responsible for the biosynthesis of C30 apocarotenoids in Citrus which are key pigments in fruit coloration. The Author 2013.

  10. Full Length Research Paper Curcumin induces cleavage of -catenin ...

    African Journals Online (AJOL)

    β-Catenin/Tcf-4 signaling pathway plays important roles in colorectal tumorigenesis. RT-PCR, western blotting and immunoprecipitation were used to study the effects of curcumin on β-catenin/Tcf-4 signaling pathway in HT-29 cells. Treatment of curcumin could induce cleavage of β-catenin and the cleavage could be ...

  11. The Restriction Endonuclease Cleavage Map of Rat Liver Mitochondrial DNA

    NARCIS (Netherlands)

    Bakker, H.; Holtrop, M.; Terpstra, P.


    Mitochondrial DNA from rat liver contains six sites for cleavage by the restriction endonucleases Hind III and EcoRI. A large stretch of DNA, comprising about 40% of the mitochondrial genome is not cleaved by either of the enzymes; eight cleavage sites are located on a DNA stretch of 35% of the

  12. Recent advances in C-S bond formation via C-H bond functionalization and decarboxylation. (United States)

    Shen, Chao; Zhang, Pengfei; Sun, Qiang; Bai, Shiqiang; Hor, T S Andy; Liu, Xiaogang


    The development of mild and general methods for C-S bond formation has received significant attention because the C-S bond is indispensable in many important biological and pharmaceutical compounds. Early examples for the synthesis of C-S bonds are generally limited to the condensation reaction between a metal thiolate and an organic halide. Recent chemical approaches for C-S bond formation, based upon direct C-H bond functionalization and decarboxylative reactions, not only provide new insights into the mechanistic understanding of C-S coupling reactions but also allow the synthesis of sulfur-containing compounds from more effective synthetic routes with high atom economy. This review intends to explore recent advances in C-S bond formation via C-H functionalization and decarboxylation, and the growing opportunities they present to the construction of complex chemical scaffolds for applications encompassing natural product synthesis, synthetic methodology development, and functional materials as well as nanotechnology.

  13. Mechanistic Insights on C-O and C-C Bond Activation and Hydrogen Insertion during Acetic Acid Hydrogenation Catalyzed by Ruthenium Clusters in Aqueous Medium

    Energy Technology Data Exchange (ETDEWEB)

    Shangguan, Junnan; Olarte, Mariefel V.; Chin, Ya-Huei [Cathy


    Catalytic pathways for acetic acid (CH3COOH) and hydrogen (H2) reactions on dispersed Ru clusters in the aqueous medium and the associated kinetic requirements for C-O and C-C bond cleavages and hydrogen insertion are established from rate and isotopic assessments. CH3COOH reacts with H2 in steps that either retain its carbon backbone and lead to ethanol, ethyl acetate, and ethane (47-95 %, 1-23 %, and 2-17 % carbon selectivities, respectively) or break its C-C bond and form methane (1-43 % carbon selectivities) at moderate temperatures (413-523 K) and H2 pressures (10-60 bar, 298 K). Initial CH3COOH activation is the kinetically relevant step, during which CH3C(O)-OH bond cleaves on a metal site pair at Ru cluster surfaces nearly saturated with adsorbed hydroxyl (OH*) and acetate (CH3COO*) intermediates, forming an adsorbed acetyl (CH3CO*) and hydroxyl (OH*) species. Acetic acid turnover rates increase proportionally with both H2 (10-60 bar) and CH3COOH concentrations at low CH3COOH concentrations (<0.83 M), but decrease from first to zero order as the CH3COOH concentration and the CH3COO* coverages increase and the vacant Ru sites concomitantly decrease. Beyond the initial CH3C(O)-OH bond activation, sequential H-insertions on the surface acetyl species (CH3CO*) lead to C2 products and their derivative (ethanol, ethane, and ethyl acetate) and the competitive C-C bond cleavage of CH3CO* causes the eventual methane formation. The instantaneous carbon selectivities towards C2 species (ethanol, ethane, and ethyl acetate) increase linearly with the concentration of proton-type Hδ+ (derived from carboxylic acid dissociation) and chemisorbed H*. The selectivities towards C2 products decrease with increasing temperature, because of higher observed barriers for C-C bond cleavage than H-insertion. This study offers an interpretation of mechanism and energetics and provides kinetic evidence of carboxylic acid assisted proton-type hydrogen (Hδ+) shuffling during H

  14. Core-shell silica nanoparticles synthesized for quantitative study of DNA cleavage by laser-induced fluorescence microscopy. (United States)

    Ko, Jungaa; Lim, H B


    Dye-doped silica nanoparticles (C dots) were synthesized in reverse microemulsions and used to quantitatively examine DNA cleavage in the presence of transition metal ions. The cores were synthesized as fluorescein isothiocyanate (FITC)-doped silica nanoparticles and the shells' surfaces were modified with single-stranded DNA oligomers tagged with Cy5 fluorophores. DNA cleavage induced by heavy metal ions was estimated by comparing the fluorescence of Cy5 before and after reaction with metal ions. For this, a lab-built laser-induced fluorescence microscope equipped with a charge coupled device (CCD) camera, for imaging, and photomultiplier tube, for photon counting, was used. FITC fluorescence from the core was measured as an internal standard to compensate for possible loss of the beads during the treatment. The cleavage of DNA in air in the presence of Pb(2+), Cd(2+), and Hg(2+) at 1 ng/mL was found to be 14%, 6%, and 20%, respectively, and was significantly reduced to below 9% under N(2) gas, indicating that the main cleavage source was oxygen in air. The most significant DNA cleavage was observed with the addition of hydrogen peroxide. This analytical method using dye-doped C dots provided convenient handling and quantification of the estimation of metal-DNA interaction with a detection limit of 34.9 pmol/mL.

  15. SU-8-Induced Strong Bonding of Polymer Ligands to Flexible Substrates via in Situ Cross-Linked Reaction for Improved Surface Metallization and Fast Fabrication of High-Quality Flexible Circuits. (United States)

    Hu, Mingjun; Guo, Qiuquan; Zhang, Tengyuan; Zhou, Shaolin; Yang, Jun


    On account of in situ cross-linked reaction of epoxy SU-8 with poly(4-vinylpyridine) (P4VP) and its strong reactive bonding ability with different pretreated substrates, we developed a simple universal one-step solution-based coating method for fast surface modification of various objects. Through this method, a layer of P4VP molecules with controllable thickness can be tethered tightly onto substrates with the assistance of SU-8. P4VP molecules possess a lot of pyridine ligands to immobilize transitional metal ions that can behave as the catalyst of electroless copper plating for surface metallization while functioning as the adhesion-promoting layer between the substrate and deposited metal. Attributed to interpenetrated entanglement of P4VP molecules and as-deposited metal, ultrathick (>7 μm) strongly adhesive high-quality copper layer can be formed on flexible substrates without any delamination. Then through laser printer to print toner mask, a variety of designed circuits can be easily fabricated on modified flexible PET substrate.

  16. Thermodynamic and kinetic studies of the equilibration reaction between the sulfur and carbon bonded forms of a cobalt(III) complex with the ligands 1,4,7-triazycyclononane and 1,4-diaza-7-thiacyclodecane

    DEFF Research Database (Denmark)

    Song, Y.S.; Becker, J.; Kofod, Pauli


    The new cyclic thioether 1,4-diaza-7-thiacyclodecane, dathicd, has been synthesized and used for the prepn. of the sulfur- and carbon-bonded cobalt(III) complexes: [Co(tacn)(S-dathicd)]Cl3.5H2O and [Co(tacn)(C-dathicd)](ClO4)2 (tacn, 1,4,7-triazacyclononane; C-dathicd, 1,4-diamino-7-thiacyclodecan......-8-ide anion). A thermodn. and kinetic study of the equilibration between these coordination compds. has been performed using UV-VIS absorption spectroscopy, IE-HPLC and 13C NMR ([OH-]=10-5-1.0 M, T=25.0 DegC, I=1.0 M). In basic soln. Co(tacn)(S-dathicd)3+ deprotonates at one of the coordinated amine...... groups and the base dissocn. const. has been detd. to Kb(NH)=0.311(32) M. The equil. const. for the reaction of Co(tacn)(S-dathicd)3+ with hydroxide ions to give Co(tacn)(C-dathicd)2+ has been detd. to Kf=1.8x105 M-1 at 25 DegC. The kinetic data have been interpreted in terms of the intermediate...

  17. Intramolecular Energy Transfer, Charge Transfer & Hydrogen Bond

    Indian Academy of Sciences (India)

    Ultrafast Dynamics of Chemical Reactions in Condensed Phase: Intramolecular Energy Transfer, Charge Transfer & Hydrogen Bond. Dipak K. Palit Radaition & Photochemistry Division Bhabha Atomic Research Centre Mumbai 400 085, India.

  18. LAMMPS Framework for Dynamic Bonding and an Application Modeling DNA

    DEFF Research Database (Denmark)

    Svaneborg, Carsten


    and bond types. When breaking bonds, all angular and dihedral interactions involving broken bonds are removed. The framework allows chemical reactions to be modeled, and use it to simulate a simplistic, coarse-grained DNA model. The resulting DNA dynamics illustrates the power of the present framework.......We have extended the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) to support directional bonds and dynamic bonding. The framework supports stochastic formation of new bonds, breakage of existing bonds, and conversion between bond types. Bond formation can be controlled...... to limit the maximal functionality of a bead with respect to various bond types. Concomitant with the bond dynamics, angular and dihedral interactions are dynamically introduced between newly connected triplets and quartets of beads, where the interaction type is determined from the local pattern of bead...

  19. Measurement of the cleavage energy of graphite. (United States)

    Wang, Wen; Dai, Shuyang; Li, Xide; Yang, Jiarui; Srolovitz, David J; Zheng, Quanshui


    The basal plane cleavage energy (CE) of graphite is a key material parameter for understanding many of the unusual properties of graphite, graphene and carbon nanotubes. Nonetheless, a wide range of values for the CE has been reported and no consensus has yet emerged. Here we report the first direct, accurate experimental measurement of the CE of graphite using a novel method based on the self-retraction phenomenon in graphite. The measured value, 0.37±0.01 J m(-2) for the incommensurate state of bicrystal graphite, is nearly invariant with respect to temperature (22 °C≤T≤198 °C) and bicrystal twist angle, and insensitive to impurities from the atmosphere. The CE for the ideal ABAB graphite stacking, 0.39±0.02 J m(-2), is calculated based on a combination of the measured CE and a theoretical calculation. These experimental measurements are also ideal for use in evaluating the efficacy of competing theoretical approaches.

  20. Quantification of DNA cleavage specificity in Hi-C experiments. (United States)

    Meluzzi, Dario; Arya, Gaurav


    Hi-C experiments produce large numbers of DNA sequence read pairs that are typically analyzed to deduce genomewide interactions between arbitrary loci. A key step in these experiments is the cleavage of cross-linked chromatin with a restriction endonuclease. Although this cleavage should happen specifically at the enzyme's recognition sequence, an unknown proportion of cleavage events may involve other sequences, owing to the enzyme's star activity or to random DNA breakage. A quantitative estimation of these non-specific cleavages may enable simulating realistic Hi-C read pairs for validation of downstream analyses, monitoring the reproducibility of experimental conditions and investigating biophysical properties that correlate with DNA cleavage patterns. Here we describe a computational method for analyzing Hi-C read pairs to estimate the fractions of cleavages at different possible targets. The method relies on expressing an observed local target distribution downstream of aligned reads as a linear combination of known conditional local target distributions. We validated this method using Hi-C read pairs obtained by computer simulation. Application of the method to experimental Hi-C datasets from murine cells revealed interesting similarities and differences in patterns of cleavage across the various experiments considered. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Quantum effects in unimolecular reaction dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Gezelter, Joshua Daniel [Univ. of California, Berkeley, CA (United States)


    This work is primarily concerned with the development of models for the quantum dynamics of unimolecular isomerization and photodissociation reactions. We apply the rigorous quantum methodology of a Discrete Variable Representation (DVR) with Absorbing Boundary Conditions (ABC) to these models in an attempt to explain some very surprising results from a series of experiments on vibrationally excited ketene. Within the framework of these models, we are able to identify the experimental signatures of tunneling and dynamical resonances in the energy dependence of the rate of ketene isomerization. Additionally, we investigate the step-like features in the energy dependence of the rate of dissociation of triplet ketene to form 3B1 CH2 + 1σ+ CO that have been observed experimentally. These calculations provide a link between ab initio calculations of the potential energy surfaces and the experimentally observed dynamics on these surfaces. Additionally, we develop an approximate model for the partitioning of energy in the products of photodissociation reactions of large molecules with appreciable barriers to recombination. In simple bond cleavage reactions like CH3COCl → CH3CO + Cl, the model does considerably better than other impulsive and statistical models in predicting the energy distribution in the products. We also investigate ways of correcting classical mechanics to include the important quantum mechanical aspects of zero-point energy. The method we investigate is found to introduce a number of undesirable dynamical artifacts including a reduction in the above-threshold rates for simple reactions, and a strong mixing of the chaotic and regular energy domains for some model problems. We conclude by discussing some of the directions for future research in the field of theoretical chemical dynamics.

  2. Recent Advances in Adhesive Bonding - The Role of Biomolecules, Nanocompounds, and Bonding Strategies in Enhancing Resin Bonding to Dental Substrates. (United States)

    Münchow, Eliseu A; Bottino, Marco C


    To present an overview on the main agents (i.e., biomolecules and nanocompounds) and/or strategies currently available to amplify or stabilize resin-dentin bonding. According to studies retrieved for full text reading (2014-2017), there are currently six major strategies available to overcome resin-dentin bond degradation: (i) use of collagen crosslinking agents, which may form stable covalent bonds with collagen fibrils, thus strengthening the hybrid layer; (ii) use of antioxidants, which may allow further polymerization reactions over time; (iii) use of protease inhibitors, which may inhibit or inactivate metalloproteinases; (iv) modification of the bonding procedure, which may be performed by using the ethanol wet-bonding technique or by applying an additional adhesive (hydrophobic) coating, thereby strengthening the hybrid layer; (v) laser treatment of the substrate prior to bonding, which may cause specific topographic changes in the surface of dental substrates, increasing bonding efficacy; and (vi) reinforcement of the resin matrix with inorganic fillers and/or remineralizing agents, which may positively enhance physico-mechanical properties of the hybrid layer. With the present review, we contributed to the better understanding of adhesion concepts and mechanisms of resin-dentin bond degradation, showing the current prospects available to solve that problematic. Also, adhesively-bonded restorations may be benefited by the use of some biomolecules, nanocompounds or alternative bonding strategies in order to minimize bond strength degradation.

  3. Rubber Oxygenase and Latex Clearing Protein Cleave Rubber to Different Products and Use Different Cleavage Mechanisms (United States)

    Birke, Jakob


    Two types of enzyme for oxidative cleavage of poly(cis-1,4-isoprene) are known. One is rubber oxygenase (RoxA) that is secreted by Xanthomonas sp. strain 35Y and a few other Gram-negative rubber-degrading bacteria during growth on polyisoprene. RoxA was studied in the past, and the recently solved structure showed a structural relationship to bacterial cytochrome c peroxidases (J. Seidel et al., Proc. Natl. Acad. Sci. U. S. A. 110:13833–13838, 2013, The other enzyme is latex-clearing protein (Lcp) that is secreted by rubber-degrading actinomycetes, but Lcp has not yet been purified. Here, we expressed Lcp of Streptomyces sp. strain K30 in a ΔroxA background of Xanthomonas sp. strain 35Y and purified native (untagged) Lcp. The specific activities of Lcp and RoxA were 0.70 and 0.48 U/mg, respectively. Lcp differed from RoxA in the absence of heme groups and other characteristics. Notably, Lcp degraded polyisoprene via endo-type cleavage to tetra-C20 and higher oligo-isoprenoids with aldehyde and keto end groups, whereas RoxA used an exo-type cleavage mechanism to give the main end product 12-oxo-4,8-dimethyltrideca-4,8-diene-1-al (ODTD). RoxA was able to cleave isolated Lcp-derived oligo-isoprenoid molecules to ODTD. Inhibitor studies, spectroscopic investigations and metal analysis gave no indication for the presence of iron, other metals, or cofactors in Lcp. Our results suggest that Lcp could be a member of the growing group of cofactor-independent oxygenases and differs in the cleavage mechanism from heme-dependent RoxA. In conclusion, RoxA and Lcp represent two different answers to the same biochemical problem, the cleavage of polyisoprene, a polymer that has carbon-carbon double bonds as the only functional groups for enzymatic attack. PMID:24907333

  4. Simulating multiplexed SNP discovery rates using base-specific cleavage and mass spectrometry. (United States)

    Böcker, Sebastian


    Single Nucleotide Polymorphisms (SNPs) are believed to contribute strongly to the genetic variability in living beings, and SNP and mutation discovery are of great interest in today's Life Sciences. A comparatively new method to discover such polymorphisms is based on base-specific cleavage, where resulting cleavage products are analyzed by mass spectrometry (MS). One particular advantage of this method is the possibility of multiplexing the biochemical reactions, i.e. examining multiple genomic regions in parallel. Simulations can help estimating the performance of a method for polymorphism discovery, and allow us to evaluate the influence of method parameters on the discovery rate, and also to investigate whether the method is well suited for a certain genomic region. We show how to efficiently conduct such simulations for polymorphism discovery using base-specific cleavage and MS. Simulating multiplexed polymorphism discovery leads us to the problem of uniformly drawing a multiplex. Given a multiset of natural numbers we want to uniformly draw a subset of fixed cardinality so that the elements sum up to some fixed total length. We show how to enumerate multiplex layouts using dynamic programming, which allows us to uniformly draw a multiplex.

  5. Reaction of hypochlorite with amino acids and peptides : EPR evidence for rapid rearrangement and fragmentation of nitrogen-centred radicals

    International Nuclear Information System (INIS)

    Hawkins, C.L.; Davies, M.J.


    Various amino acid side chains have been shown to be particularly susceptible to attack and modification by hypochlorite (HOCl). It is known that tyrosine is readily chlorinated by HOCl to give 3-chlorotyrosine and this product has been employed as a marker of HOCl-mediated damage to proteins. Cysteine and methionine react rapidly with HOCl to give oxy acids and cystine (from cysteine) and sulphoxides (from methionine). Lysine and amino acids which lack the above functional groups also react with HOCl via the free amino group which results in the generation of unstable chloramine intermediates; subsequent decomposition of these species gives NH 3 , CO 2 and aldehydes. While the products of reaction of HOCl with amino acids and peptides are reasonably well characterised, the mechanism(s) by which these products arise is less well understood. Electron paramagnetic resonance (EPR) spectroscopy with spin trapping and UV/visible spectroscopy has been employed to examine the reaction of HOCl with amino acids and some small peptides. Reaction of HOCl with N-acetyl amino acids or small peptides gives radicals predominantly at α-carbon sites via reaction at N-terminal free amino groups or amide (peptide) bonds. It is proposed that these carbon-centred radicals are produced as a result of the rearrangement of initial nitrogen-centred radicals formed on cleavage of the N-CI bond of the chloramine/chloramide species by a 1,2-shift reaction

  6. Understanding Bonds - Denmark

    DEFF Research Database (Denmark)

    Rimmer, Nina Røhr


    a specified rate of interest during the life of the bond and to repay the face value of the bond (the principal) when it “matures,” or comes due. Among the types of bonds you can choose from are: Government securities, municipal bonds, corporate bonds, mortgage and asset-backed securities, federal agency...

  7. TD-DFT Insight into Photodissociation of Co-C Bond in Coenzyme B12

    Directory of Open Access Journals (Sweden)

    Pawel Michal Kozlowski


    Full Text Available Coenzyme B12 (AdoCbl is one of the most biologically active forms of vitamin B12, and continues to be a topic of active research interest. The mechanism of Co-C bond cleavage in AdoCbl, and the corresponding enzymatic reactions are however, not well understood at the molecular level. In this work, time-dependent density functional theory (TD-DFT has been applied to investigate the photodissociation of coenzyme B12. To reduce computational cost, while retaining the major spectroscopic features of AdoCbl, a truncated model based on ribosylcobalamin (RibCbl was used to simulate Co-C photodissociation. Equilibrium geometries of RibCbl were obtained by optimization at the DFT/BP86/TZVP level of theory, and low-lying excited states were calculated by TD-DFT using the same functional and basis set. The calculated singlet states, and absorption spectra were simulated in both the gas phase, and water, using the polarizable continuum model (PCM. Both spectra were in reasonable agreement with experimental data, and potential energy curves based on vertical excitations were plotted to explore the nature of Co-C bond dissociation. It was found that a repulsive 3(σCo-C → σ*Co-C triplet state became dissociative at large Co-C bond distance, similar to a previous observation for methylcobalamin (MeCbl. Furthermore, potential energy surfaces (PESs obtained as a function of both Co-CRib and Co-NIm distances, identify the S1 state as a key intermediate generated during photoexcitation of RibCbl, attributed to a mixture of a MLCT (metal-to-ligand charge transfer and a σ bonding-ligand charge transfer (SBLCT states.

  8. Metal ion dependence of DNA cleavage by SepMI and EhoI restriction endonucleases. (United States)

    Belkebir, Abdelkarim; Azeddoug, Houssine


    Most of type II restriction endonucleases show an absolute requirement for divalent metal ions as cofactors for DNA cleavage. While Mg(2+) is the natural cofactor other metal ions can substitute it and mediate the catalysis, however Ca(2+) (alone) only supports DNA binding. To investigate the role of Mg(2+) in DNA cleavage by restriction endonucleases, we have studied the Mg(2+) and Mn(2+) concentration dependence of DNA cleavage by SepMI and EhoI. Digestion reactions were carried out at different Mg(2+) and Mn(2+) concentrations at constant ionic strength. These enzymes showed different behavior regarding the ions requirement, SepMI reached near maximal level of activity between 10 and 20mM while no activity was detected in the presence of Mn(2+) and in the presence of Ca(2+) cleavage activity was significantly decreased. However, EhoI was more highly active in the presence of Mn(2+) than in the presence of Mg(2+) and can be activated by Ca(2+). Our results propose the two-metal ion mechanism for EhoI and the one-metal ion mechanism for SepMI restriction endonuclease. The analysis of the kinetic parameters under steady state conditions showed that SepMI had a K(m) value for pTrcHisB DNA of 6.15 nM and a V(max) of 1.79×10(-2)nM min(-1), while EhoI had a K(m) for pUC19 plasmid of 8.66 nM and a V(max) of 2×10(-2)nM min(-1). Copyright © 2012 Elsevier GmbH. All rights reserved.

  9. Cytotoxic, DNA binding, DNA cleavage and antibacterial studies of ...

    Indian Academy of Sciences (India)

    fluoroquinolone complexes. Mohan N ... DNA-binding properties of Ru complexes have been studied by means of absorption spectrophotometry and viscosity measurements as well as their HS DNA cleavage properties by means of agarose gel ...

  10. Detection of nucleic acids by multiple sequential invasive cleavages

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Jeff G; Lyamichev, Victor I; Mast, Andrea L; Brow, Mary Ann D


    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof. The present invention further relates to methods and devices for the separation of nucleic acid molecules based on charge. The present invention also provides methods for the detection of non-target cleavage products via the formation of a complete and activated protein binding region. The invention further provides sensitive and specific methods for the detection of human cytomegalovirus nucleic acid in a sample.

  11. Site accessibility tailors DNA cleavage by restriction enzymes in DNA confined monolayers. (United States)

    Rotella, Chiara; Doni, Giovanni; Bosco, Alessandro; Castronovo, Matteo; De Vita, Alessandro; Casalis, Loredana; Pavan, Giovanni M; Parisse, Pietro


    Density-tunable nanografted monolayers (NAMs) of short oligonucleotide sequences on gold surfaces show novel properties that make them suitable for advanced biosensing applications, and in particular to study the effects of crowding and confinement on biomolecular interactions. Here, combining atomic force microscopy nanolithography, topography measurements and coarse-grained molecular dynamics simulations, we investigated restriction enzyme reaction mechanisms within confined DNA brushes highlighting the role played by the DNA sequence conformation and restriction site position along the chain, respectively, in determining the accessibility of the enzyme, and its consequent cleavage efficiency.

  12. Mechanisms for ribotoxin-induced ribosomal RNA cleavage

    Energy Technology Data Exchange (ETDEWEB)

    He, Kaiyu [Department of Microbiology and Molecular Genetics (United States); Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824 (United States); Zhou, Hui-Ren [Food Science and Human Nutrition (United States); Pestka, James J., E-mail: [Department of Microbiology and Molecular Genetics (United States); Food Science and Human Nutrition (United States); Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824 (United States)


    The Type B trichothecene deoxynivalenol (DON), a ribotoxic mycotoxin known to contaminate cereal-based foods, induces ribosomal RNA (rRNA) cleavage in the macrophage via p38-directed activation of caspases. Here we employed the RAW 264.7 murine macrophage model to test the hypothesis that this rRNA cleavage pathway is similarly induced by other ribotoxins. Capillary electrophoresis confirmed that the antibiotic anisomycin (≥ 25 ng/ml), the macrocylic trichothecene satratoxin G (SG) (≥ 10 ng/ml) and ribosome-inactivating protein ricin (≥ 300 ng/ml) induced 18s and 28s rRNA fragmentation patterns identical to that observed for DON. Also, as found for DON, inhibition of p38, double-stranded RNA-activated kinase (PKR) and hematopoietic cell kinase (Hck) suppressed MAPK anisomycin-induced rRNA cleavage, while, in contrast, their inhibition did not affect SG- and ricin-induced rRNA fragmentation. The p53 inhibitor pifithrin-μ and pan caspase inhibitor Z-VAD-FMK suppressed rRNA cleavage induced by anisomycin, SG and ricin, indicating that these ribotoxins shared with DON a conserved downstream pathway. Activation of caspases 8, 9 and 3 concurrently with apoptosis further suggested that rRNA cleavage occurred in parallel with both extrinsic and intrinsic pathways of programmed cell death. When specific inhibitors of cathepsins L and B (lysosomal cysteine cathepsins active at cytosolic neutral pH) were tested, only the former impaired anisomycin-, SG-, ricin- and DON-induced rRNA cleavage. Taken together, the data suggest that (1) all four ribotoxins induced p53-dependent rRNA cleavage via activation of cathepsin L and caspase 3, and (2) activation of p53 by DON and anisomycin involved p38 whereas SG and ricin activated p53 by an alternative mechanism. Highlights: ► Deoxynivalenol (DON) anisomycin, satratoxin G (SG) and ricin are ribotoxins. ► Ribotoxins induce 18s and 28s rRNA cleavage in the RAW 264.7 macrophage model. ► Ribotoxins induce rRNA cleavage via

  13. A Light-Induced Reaction with Oxygen Leads to Chromophore Decomposition and Irreversible Photobleaching in GFP-Type Proteins. (United States)

    Grigorenko, Bella L; Nemukhin, Alexander V; Polyakov, Igor V; Khrenova, Maria G; Krylov, Anna I


    Photobleaching and photostability of proteins of the green fluorescent protein (GFP) family are crucially important for practical applications of these widely used biomarkers. On the basis of simulations, we propose a mechanism for irreversible bleaching in GFP-type proteins under intense light illumination. The key feature of the mechanism is a photoinduced reaction of the chromophore with molecular oxygen (O2) inside the protein barrel leading to the chromophore's decomposition. Using quantum mechanics/molecular mechanics (QM/MM) modeling we show that a model system comprising the protein-bound Chro(-) and O2 can be excited to an electronic state of the intermolecular charge-transfer (CT) character (Chro(•)···O2(-•)). Once in the CT state, the system undergoes a series of chemical reactions with low activation barriers resulting in the cleavage of the bridging bond between the phenolic and imidazolinone rings and disintegration of the chromophore.

  14. Structures, bonding and reactivity of iron and manganese high ...

    Indian Academy of Sciences (India)

    attributed to the intricate metal–oxygen bonding. By thoroughly probing the bonding in all these species, their reactivity towards common chemical reactions such as C–H activation and oxygen atom transfer are discussed. Keywords. Electronic structures and bonding; DFT calculations; high-valent iron and manganese; oxo- ...

  15. Cleavage events and sperm dynamics in chick intrauterine embryos.

    Directory of Open Access Journals (Sweden)

    Hyung Chul Lee

    Full Text Available This study was undertaken to elucidate detailed event of early embryogenesis in chicken embryos using a noninvasive egg retrieval technique before oviposition. White Leghorn intrauterine eggs were retrieved from 95 cyclic hens aged up to 54-56 weeks and morphogenetic observation was made under both bright field and fluorescent image in a time course manner. Differing from mammals, asymmetric cleavage to yield preblastodermal cells was observed throughout early embryogenesis. The first two divisions occurred synchronously and four polarized preblastodermal cells resulted after cruciform cleavage. Then, asynchronous cleavage continued in a radial manner and overall cell size in the initial cleavage region was smaller than that in the distal area. Numerous sperms were visible, regardless of zygotic nuclei formation. Condensed sperm heads were present mainly in the perivitelline space and cytoplasm, and rarely in the yolk region, while decondensed sperm heads were only visible in the yolk. In conclusion, apparent differences in sperm dynamics and early cleavage events compared with mammalian embryos were detected in chick embryo development, which demonstrated polarized cleavage with penetrating supernumerary sperm into multiple regions.

  16. Functionalization of N 2 to NH 3 via direct N≡ N bond cleavage ...

    Indian Academy of Sciences (India)

    Atmospheric N2 can be cleaved directly to yield metal-nitride (before proceeding to the functionalization of N of coordinated N2) and subsequently functionalized to ammonia using M(III)(NMe2)3 (M = W/Mo) as a catalyst, and suitable proton and electron sources. The calculated energies of thermodynamic and kinetic ...

  17. On the radical scavenging activity of isoflavones: thermodynamics of O–H bond cleavage

    Czech Academy of Sciences Publication Activity Database

    Lengyel, Jozef; Rimarčík, J.; Vagánek, A.; Klein, E.


    Roč. 15, č. 26 (2013), s. 10895-10903 ISSN 1463-9076 R&D Projects: GA ČR GA203/09/0422 Institutional support: RVO:61388955 Keywords : LOSS ELECTRON-TRANSFER * DISSOCIATION ENTHALPIES * ANTIOXIDANT PROPERTIES Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.198, year: 2013

  18. Effect of copper–sulphur bond on the DNA photo-cleavage activity of ...

    Indian Academy of Sciences (India)


    2.1 Materials. All reagents and chemicals were purchased from commercial sources and used without further purifi- cation. Solvents used for electrochemical and spectro- .... UVITEC Gel Documentation System. Due correc- tions were made for the trace of NC DNA present in the SC DNA sample and for the low affinity of EB.

  19. Catalytic C-C Bond Cleavage for the Production of Chemicals from Lignin

    NARCIS (Netherlands)

    Jastrzebski, R.


    Lignin is a major component of lignocellulosic biomass and could be an important renewable feedstock in industry for the production of (aromatic) bulk and fine chemicals. To this end, the development of new catalytic processes is required; both to depolymerise the biopolymer into small aromatic

  20. Electrochemical bond cleavage in pesticide ioxynil. Kinetic analysis by voltammetry and impedance spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Sokolová, Romana; Giannarelli, S.; Fanelli, N.; Pospíšil, Lubomír


    Roč. 49, C (2017), s. 134-138 ISSN 0324-1130 R&D Projects: GA ČR(CZ) GA14-05180S Institutional support: RVO:61388955 Keywords : electrochemical impedance spectroscopy * rate constant * self-protonation Subject RIV: CG - Electrochemistry OBOR OECD: Physical chemistry Impact factor: 0.238, year: 2016

  1. Oxidation of sterols: Energetics of C–H and O–H bond cleavage

    Czech Academy of Sciences Publication Activity Database

    Lengyel, Jozef; Rimarčík, J.; Vagánek, A.; Fedor, J.; Lukeš, V.; Klein, E.


    Roč. 133, č. 4 (2012), s. 1435-1440 ISSN 0308-8146 R&D Projects: GA ČR GAP208/11/0161 Institutional research plan: CEZ:AV0Z40400503 Keywords : phytosterol * oxidation * antioxidant Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.334, year: 2012

  2. Selective bond cleavage in potassium collisions with pyrimidine bases of DNA


    Almeida, Diogo; Ferreira da Silva, F.; García, Gustavo; Limão-Vieira, P.


    Portuguese Foundation for Science and Technology (FCT-MEC) (SFRH/BD/61645/2009) FCT-MEC (PEst-OE/FIS/UI0068/2011) Spanish Ministerio de Economia y Competitividad (FIS 2009-10245; SFRH/BPD/68979/2010) Electron transfer in alkali-molecule collisions to gas phase thymine and uracil yielding H- formation is selectively controlled in the energy range between 5.3 and 66.1 eV. By tuning the collision energy, electron transfer from the alkali to partly deuterated thymine, methylated thymine at the...

  3. Raman characterization of Avocado Sunblotch viroid and its response to external perturbations and self-cleavage. (United States)

    Hui-Bon-Hoa, Gaston; Kaddour, Hussein; Vergne, Jacques; Kruglik, Sergei G; Maurel, Marie-Christine


    Viroids are the smallest pathogens of plants. To date the structural and conformational details of the cleavage of Avocado sunblotch viroid (ASBVd) and the catalytic role of Mg2+ ions in efficient self-cleavage are of crucial interest. We report the first Raman characterization of the structure and activity of ASBVd, for plus and minus viroid strands. Both strands exhibit a typical A-type RNA conformation with an ordered double-helical content and a C3'-endo/anti sugar pucker configuration, although small but specific differences are found in the sugar puckering and base-stacking regions. The ASBVd(-) is shown to self-cleave 3.5 times more actively than ASBVd(+). Deuteration and temperature increase perturb differently the double-helical content and the phosphodiester conformation, as revealed by corresponding characteristic Raman spectral changes. Our data suggest that the structure rigidity and stability are higher and the D2O accessibility to H-bonding network is lower for ASBVd(+) than for ASBVd(-). Remarkably, the Mg2+-activated self-cleavage of the viroid does not induce any significant alterations of the secondary viroid structure, as evidenced from the absence of intensity changes of Raman marker bands that, however exhibit small but noticeable frequency downshifts suggesting several minor changes in phosphodioxy, internal loops and hairpins of the cleaved viroids. Our results demonstrate the sensitivity of Raman spectroscopy in monitoring structural and conformational changes of the viroid and constitute the basis for further studies of its interactions with therapeutic agents and cell membranes.

  4. Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in saffron crocin biosynthesis

    KAUST Repository

    Frusciante, Sarah


    Crocus sativus stigmas are the source of the saffron spice and accumulate the apocarotenoids crocetin, crocins, picrocrocin, and safranal, responsible for its color, taste, and aroma. Through deep transcriptome sequencing, we identified a novel dioxygenase, carotenoid cleavage dioxygenase 2 (CCD2), expressed early during stigma development and closely related to, but distinct from, the CCD1 dioxygenase family. CCD2 is the only identified member of a novel CCD clade, presents the structural features of a bona fide CCD, and is able to cleave zeaxanthin, the presumed precursor of saffron apocarotenoids, both in Escherichia coli and in maize endosperm. The cleavage products, identified through high-resolution mass spectrometry and comigration with authentic standards, are crocetin dialdehyde and crocetin, respectively. In vitro assays show that CCD2 cleaves sequentially the 7,8 and 7′,8′ double bonds adjacent to a 3-OH-β-ionone ring and that the conversion of zeaxanthin to crocetin dialdehyde proceeds via the C30 intermediate 3-OH-β-apo-8′-carotenal. In contrast, zeaxanthin cleavage dioxygenase (ZCD), an enzyme previously claimed to mediate crocetin formation, did not cleave zeaxanthin or 3-OH-β-apo-8′-carotenal in the test systems used. Sequence comparison and structure prediction suggest that ZCD is an N-truncated CCD4 form, lacking one blade of the β-propeller structure conserved in all CCDs. These results constitute strong evidence that CCD2 catalyzes the first dedicated step in crocin biosynthesis. Similar to CCD1, CCD2 has a cytoplasmic localization, suggesting that it may cleave carotenoids localized in the chromoplast outer envelope.

  5. Real-time analysis of cleavage and religation activity of human topoisomerase 1 based on ternary fluorescence resonance energy transfer DNA substrate. (United States)

    Wang, Zhenxing; Ouyang, Hui; Tesauro, Cinzia; Ottaviani, Alessio; He, Yong; Fiorani, Paola; Xie, Hui; Desideri, Alessandro; Fu, Zhifeng


    Human topoisomerase 1B is a ubiquitous and essential enzyme involved in relaxing the topological state of supercoiled DNA to allow the progression of fundamental DNA metabolism. Its enzymatic catalytic cycle consists of cleavage and religation reaction. A ternary fluorescence resonance energy transfer biosensor based on a suicide DNA substrate conjugated with three fluorophores has been developed to monitor both cleavage and religation Topoisomerase I catalytic function. The presence of fluorophores does not alter the specificity of the enzyme catalysis on the DNA substrate. The enzyme-mediated reaction can be tracked in real-time by simple fluorescence measurement, avoiding the use of risky radioactive substrate labeling and time-consuming denaturing gel electrophoresis. The method is applied to monitor the perturbation brought by single mutation on the cleavage or religation reaction and to screen the effect of the camptothecin anticancer drug monitoring the energy transfer decrease during religation reaction. Pathological mutations usually affect only the cleavage or the religation reaction and the proposed approach represent a fast protocol for assessing chemotherapeutic drug efficacy and analyzing mutant's properties. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Reaction Decoder Tool (RDT): extracting features from chemical reactions


    Rahman, Syed Asad; Torrance, Gilliean; Baldacci, Lorenzo; Mart?nez Cuesta, Sergio; Fenninger, Franz; Gopal, Nimish; Choudhary, Saket; May, John W.; Holliday, Gemma L.; Steinbeck, Christoph; Thornton, Janet M.


    Summary: Extracting chemical features like Atom?Atom Mapping (AAM), Bond Changes (BCs) and Reaction Centres from biochemical reactions helps us understand the chemical composition of enzymatic reactions. Reaction Decoder is a robust command line tool, which performs this task with high accuracy. It supports standard chemical input/output exchange formats i.e. RXN/SMILES, computes AAM, highlights BCs and creates images of the mapped reaction. This aids in the analysis of metabolic pathways and...

  7. Characterization of an extensin-modifying metalloprotease: N-terminal processing and substrate cleavage pattern of Pectobacterium carotovorum Prt1. (United States)

    Feng, Tao; Nyffenegger, Christian; Højrup, Peter; Vidal-Melgosa, Silvia; Yan, Kok-Phen; Fangel, Jonatan Ulrik; Meyer, Anne S; Kirpekar, Finn; Willats, William G; Mikkelsen, Jørn D


    Compared to other plant cell wall-degrading enzymes, proteases are less well understood. In this study, the extracellular metalloprotease Prt1 from Pectobacterium carotovorum (formerly Erwinia carotovora) was expressed in Escherichia coli and characterized with respect to N-terminal processing, thermal stability, substrate targets, and cleavage patterns. Prt1 is an autoprocessing protease with an N-terminal signal pre-peptide and a pro-peptide which has to be removed in order to activate the protease. The sequential cleavage of the N-terminus was confirmed by mass spectrometry (MS) fingerprinting and N-terminus analysis. The optimal reaction conditions for the activity of Prt1 on azocasein were at pH 6.0, 50 °C. At these reaction conditions, K M was 1.81 mg/mL and k cat was 1.82 × 10(7) U M(-1). The enzyme was relatively stable at 50 °C with a half-life of 20 min. Ethylenediaminetetraacetic acid (EDTA) treatment abolished activity; Zn(2+) addition caused regain of the activity, but Zn(2+)addition decreased the thermal stability of the Prt1 enzyme presumably as a result of increased proteolytic autolysis. In addition to casein, the enzyme catalyzed degradation of collagen, potato lectin, and plant extensin. Analysis of the cleavage pattern of different substrates after treatment with Prt1 indicated that the protease had a substrate cleavage preference for proline in substrate residue position P1 followed by a hydrophobic residue in residue position P1' at the cleavage point. The activity of Prt1 against plant cell wall structural proteins suggests that this enzyme might become an important new addition to the toolbox of cell-wall-degrading enzymes for biomass processing.

  8. Chemically activated formation of organic acids in reactions of the Criegee intermediate with aldehydes and ketones. (United States)

    Jalan, Amrit; Allen, Joshua W; Green, William H


    Reactions of the Criegee intermediate (CI, ˙CH2OO˙) are important in atmospheric ozonolysis models. In this work, we compute the rates for reactions between ˙CH2OO˙ and HCHO, CH3CHO and CH3COCH3 leading to the formation of secondary ozonides (SOZ) and organic acids. Relative to infinitely separated reactants, the SOZ in all three cases is found to be 48-51 kcal mol(-1) lower in energy, formed via 1,3-cycloaddition of ˙CH2OO˙ across the C=O bond. The lowest energy pathway found for SOZ decomposition is intramolecular disproportionation of the singlet biradical intermediate formed from cleavage of the O-O bond to form hydroxyalkyl esters. These hydroxyalkyl esters undergo concerted decomposition providing a low energy pathway from SOZ to acids. Geometries and frequencies of all stationary points were obtained using the B3LYP/MG3S DFT model chemistry, and energies were refined using RCCSD(T)-F12a/cc-pVTZ-F12 single-point calculations. RRKM calculations were used to obtain microcanonical rate coefficients (k(E)) and the reservoir state method was used to obtain temperature and pressure dependent rate coefficients (k(T, P)) and product branching ratios. At atmospheric pressure, the yield of collisionally stabilized SOZ was found to increase in the order HCHO reactions were found to be the most sensitive parameters determining SOZ and organic acid yield.

  9. Identification and expression pattern of a new carotenoid cleavage dioxygenase gene member from Bixa orellana (United States)

    Rodríguez-Ávila, N. L.; Narváez-Zapata, J. A.; Ramírez-Benítez, J. E.; Aguilar-Espinosa, M. L.; Rivera-Madrid, R.


    Carotenoid cleavage dioxygenases (CCDs) are a class of enzymes involved in the biosynthesis of a broad diversity of secondary metabolites known as apocarotenoids. In plants, CCDs are part of a genetic family with members which cleave specific double bonds of carotenoid molecules. CCDs are involved in the production of diverse and important metabolites such as vitamin A and abscisic acid (ABA). Bixa orellana L. is the main source of the natural pigment annatto or bixin, an apocarotenoid accumulated in large quantities in its seeds. Bixin biosynthesis has been studied and the involvement of a CCD has been confirmed in vitro. However, the CCD genes involved in the biosynthesis of the wide variety of apocarotenoids found in this plant have not been well documented. In this study, a new CCD1 gene member (BoCCD1) was identified and its expression was charaterized in different plant tissues of B. orellana plantlets and adult plants. The BoCCD1 sequence showed high homology with plant CCD1s involved mainly in the cleavage of carotenoids in several sites to generate multiple apocarotenoid products. Here, the expression profiles of the BoCCD1 gene were analysed and discussed in relation to total carotenoids and other important apocarotenoids such as bixin. PMID:21813796

  10. Optimization schemes for selective molecular cleavage with tailored ultrashort laser pulses

    International Nuclear Information System (INIS)

    Krieger, Kevin; Castro, Alberto; Gross, E.K.U.


    Graphical abstract: Isosurface plot of the electronic density, and positions of the nuclei, during the irradiation of a formaldiminium ion with an optimized laser pulse, leading to the selective cleavage of a proton. Display Omitted Highlights: ► We use QOCT in combination with mixed quantum-classical molecular models. ► TDDFT models the electrons coupled to the nuclei through Ehrenfest equations. ► Both gradient-free and gradient-based algorithms are explored for the optimization. ► We explore different options for the definition of the target functional. - Abstract: We present some approaches to the computation of ultra-fast laser pulses capable of selectively breaking molecular bonds. The calculations are based on a mixed quantum-classical description: The electrons are treated quantum mechanically (making use of time-dependent density-functional theory), whereas the nuclei are treated classically. The temporal shape of the pulses is tailored to maximize a control target functional which is designed to produce the desired molecular cleavage. The precise definition of this functional is a crucial ingredient: we explore expressions based on the forces, on the momenta and on the velocities of the nuclei. The algorithm used to find the optimum pulse is also relevant; we test both direct gradient-free algorithms, as well as schemes based on formal optimal control theory. The tests are performed both on one dimensional models of atomic chains, and on first-principles descriptions of molecules.

  11. Addition of Carbon-Fluorine Bonds to a Mg(I)-Mg(I) Bond: An Equivalent of Grignard Formation in Solution


    Bakewell, C; White, AJ; Crimmin, MR


    Addition of the carbon?fluorine bond of a series of perfluorinated and polyfluorinated arenes across the Mg?Mg bond of a simple coordination complex proceeds rapidly in solution. The reaction results in the formation of a new carbon?magnesium bond and a new fluorine?magnesium bond and is analogous to Grignard formation in homogeneous solution.

  12. Mechanisms for ribotoxin-induced ribosomal RNA cleavage. (United States)

    He, Kaiyu; Zhou, Hui-Ren; Pestka, James J


    The Type B trichothecene deoxynivalenol (DON), a ribotoxic mycotoxin known to contaminate cereal-based foods, induces ribosomal RNA (rRNA) cleavage in the macrophage via p38-directed activation of caspases. Here we employed the RAW 264.7 murine macrophage model to test the hypothesis that this rRNA cleavage pathway is similarly induced by other ribotoxins. Capillary electrophoresis confirmed that the antibiotic anisomycin (≥25ng/ml), the macrocylic trichothecene satratoxin G (SG) (≥10ng/ml) and ribosome-inactivating protein ricin (≥300ng/ml) induced 18s and 28s rRNA fragmentation patterns identical to that observed for DON. Also, as found for DON, inhibition of p38, double-stranded RNA-activated kinase (PKR) and hematopoietic cell kinase (Hck) suppressed MAPK anisomycin-induced rRNA cleavage, while, in contrast, their inhibition did not affect SG- and ricin-induced rRNA fragmentation. The p53 inhibitor pifithrin-μ and pan caspase inhibitor Z-VAD-FMK suppressed rRNA cleavage induced by anisomycin, SG and ricin, indicating that these ribotoxins shared with DON a conserved downstream pathway. Activation of caspases 8, 9 and 3 concurrently with apoptosis further suggested that rRNA cleavage occurred in parallel with both extrinsic and intrinsic pathways of programmed cell death. When specific inhibitors of cathepsins L and B (lysosomal cysteine cathepsins active at cytosolic neutral pH) were tested, only the former impaired anisomycin-, SG-, ricin- and DON-induced rRNA cleavage. Taken together, the data suggest that (1) all four ribotoxins induced p53-dependent rRNA cleavage via activation of cathepsin L and caspase 3, and (2) activation of p53 by DON and anisomycin involved p38 whereas SG and ricin activated p53 by an alternative mechanism. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Successive heterolytic cleavages of H2 achieve N2 splitting on silica-supported tantalum hydrides: A DFT proposed mechanism

    KAUST Repository

    Soláns, Xavier Luis


    DFT(B3PW91) calculations have been carried out to propose a pathway for the N2 cleavage by H2 in the presence of silica-supported tantalum hydride complexes [(≡ SiO)2TaHx] that forms [(≡SiO)2Ta(NH)(NH2)] (Science2007, 317, 1056). The calculations, performed on the cluster models {μ-O[(HO)2SiO] 2}TaH1 and {μ-O[(HO)2SiO] 2}TaH3, labelled as (≡SiO)2TaH x (x = 1, 3), show that the direct hydride transfers to coordinated N-based ligands in (≡SiO)2TaH(η2-N2) and (≡SiO)2TaH(η2-HNNH) have high energy barrier barriers. These high energy barriers are due in part to a lack of energetically accessible empty orbitals in the negatively charged N-based ligands. It is shown that a succession of proton transfers and reduction steps (hydride transfer or 2 electron reduction by way of dihydride reductive coupling) to the nitrogen-based ligands leads to more energetically accessible pathways. These proton transfers, which occur by way of heterolytic activation of H2, increase the electrophilicity of the resulting ligand (diazenido, N 2H-, and hydrazido, NHNH2-, respectively) that can thus accept a hydride with a moderate energy barrier. In the case of (≡SiO)2TaH(η2-HNNH), the H 2 molecule that is adding across the Ta-N bond is released after the hydride transfer step by heterolytic elimination from (≡SiO) 2TaH(NH2)2, suggesting that dihydrogen has a key role in assisting the final steps of the reaction without itself being consumed in the process. This partly accounts for the experimental observation that the addition of H2 is needed to convert an intermediate, identified as a diazenido complex [(≡SiO)2TaH(η 2-HNNH)] from its ν(N-H) stretching frequency of 3400 cm -1, to the final product. Throughout the proposed mechanism, the tantalum remains in its preferred high oxidation state and avoids redox-type reactions, which are more energetically demanding. © 2012 American Chemical Society.

  14. Benchmark reaction rates, the stability of biological molecules in water, and the evolution of catalytic power in enzymes. (United States)

    Wolfenden, Richard


    The rates of enzyme reactions fall within a relatively narrow range. To estimate the rate enhancements produced by enzymes, and their expected affinities for transition state analog inhibitors, it is necessary to measure the rates of the corresponding reactions in water in the absence of a catalyst. This review describes the spontaneous cleavages of C-C, C-H, C-N, C-O, P-O, and S-O bonds in biological molecules, as well as the uncatalyzed reactions that correspond to phosphoryl transfer reactions catalyzed by kinases and to peptidyl transfer in the ribosome. The rates of these reactions, some with half-lives in excess of one million years, span an overall range of 10¹⁹-fold. Moreover, the slowest reactions tend to be most sensitive to temperature, with rates that increase as much as 10⁷-fold when the temperature is raised from 25° to 100°C. That tendency collapses, by many orders of magnitude, the time that would have been required for chemical evolution on a warm earth. If the catalytic effect of primitive enzymes, like that of modern enzymes and many nonenzymatic catalysts, were mainly to reduce a reaction's enthalpy of activation, then the resulting rate enhancement would have increased automatically as the surroundings cooled. By reducing the time required for early chemical evolution in a warm environment, these findings counter the view that not enough time has passed for terrestrial life to have evolved to its present level of complexity.

  15. Peptidase specificity from the substrate cleavage collection in the MEROPS database and a tool to measure cleavage site conservation. (United States)

    Rawlings, Neil D


    One peptidase can usually be distinguished from another biochemically by its action on proteins, peptides and synthetic substrates. Since 1996, the MEROPS database ( has accumulated a collection of cleavages in substrates that now amounts to 66,615 cleavages. The total number of peptidases for which at least one cleavage is known is 1700 out of a total of 2457 different peptidases. This paper describes how the cleavages are obtained from the scientific literature, how they are annotated and how cleavages in peptides and proteins are cross-referenced to entries in the UniProt protein sequence database. The specificity profiles of 556 peptidases are shown for which ten or more substrate cleavages are known. However, it has been proposed that at least 40 cleavages in disparate proteins are required for specificity analysis to be meaningful, and only 163 peptidases (6.6%) fulfil this criterion. Also described are the various displays shown on the website to aid with the understanding of peptidase specificity, which are derived from the substrate cleavage collection. These displays include a logo, distribution matrix, and tables to summarize which amino acids or groups of amino acids are acceptable (or not acceptable) in each substrate binding pocket. For each protein substrate, there is a display to show how it is processed and degraded. Also described are tools on the website to help with the assessment of the physiological relevance of cleavages in a substrate. These tools rely on the hypothesis that a cleavage site that is conserved in orthologues is likely to be physiologically relevant, and alignments of substrate protein sequences are made utilizing the UniRef50 database, in which in each entry sequences are 50% or more identical. Conservation in this case means substitutions are permitted only if the amino acid is known to occupy the same substrate binding pocket from at least one other substrate cleaved by the same peptidase

  16. Overexpression of the rice carotenoid cleavage dioxygenase 1 gene in Golden Rice endosperm suggests apocarotenoids as substrates in planta. (United States)

    Ilg, Andrea; Yu, Qiuju; Schaub, Patrick; Beyer, Peter; Al-Babili, Salim


    Carotenoids are converted by carotenoid cleavage dioxygenases that catalyze oxidative cleavage reactions leading to apocarotenoids. However, apocarotenoids can also be further truncated by some members of this enzyme family. The plant carotenoid cleavage dioxygenase 1 (CCD1) subfamily is known to degrade both carotenoids and apocarotenoids in vitro, leading to different volatile compounds. In this study, we investigated the impact of the rice CCD1 (OsCCD1) on the pigmentation of Golden Rice 2 (GR2), a genetically modified rice variety accumulating carotenoids in the endosperm. For this purpose, the corresponding cDNA was introduced into the rice genome under the control of an endosperm-specific promoter in sense and anti-sense orientations. Despite high expression levels of OsCCD1 in sense plants, pigment analysis revealed carotenoid levels and patterns comparable to those of GR2, pleading against carotenoids as substrates in rice endosperm. In support, similar carotenoid contents were determined in anti-sense plants. To check whether OsCCD1 overexpressed in GR2 endosperm is active, in vitro assays were performed with apocarotenoid substrates. HPLC analysis confirmed the cleavage activity of introduced OsCCD1. Our data indicate that apocarotenoids rather than carotenoids are the substrates of OsCCD1 in planta.

  17. Methods, setup and safe handling for anhydrous hydrogen fluoride cleavage in Boc solid-phase peptide synthesis. (United States)

    Muttenthaler, Markus; Albericio, Fernando; Dawson, Philip E


    Solid-phase peptide synthesis (SPPS) using tert-butyloxycarbonyl (Boc)/benzyl (Bzl) chemistry is an indispensable technique in many laboratories around the globe, and it provides peptides to the pharmaceutical industry and to thousands of scientists working in basic research. The Boc/Bzl strategy has several advantages, including reliability in the synthesis of long and difficult polypeptides, alternative orthogonality regarding protecting groups and ease of producing C-terminal thioesters for native chemical ligation applications. In this process, anhydrous hydrogen fluoride (HF) is used to remove the side chain protecting groups of the assembled peptide and to release the peptide from the resin, a process typically described as 'HF cleavage'. This protocol describes the general methodology, apparatus setup and safe handling of HF, with the aim of providing comprehensive information on the safe use of this valuable, well-studied and validated cleavage technique. We explain the cleavage mechanism, the physicochemical properties and risks of HF, first aid measures and the correct use of the apparatus. In addition, we provide advice on scavenger selection, as well as a troubleshooting section and video material illustrating key steps of the procedure. The protocol comprises precleavage sample preparation (30 min-2.5 h), complete HF cleavage procedure (2 h) and reaction workup (30 min).

  18. X hydrogen bonds

    Indian Academy of Sciences (India)

    sigma electrons, can be hydrogen bond acceptors.11–14. The recent IUPAC report and recommendation on hydro gen bond have recognised the diverse nature of hydro- gen bond donors and acceptors.13,14. Unlike methane, hydrogen bonding by higher alkanes has not received much attention. One of the earlier works.

  19. DNA-binding, DNA cleavage and cytotoxicity studies of two anthraquinone derivatives. (United States)

    Gholivand, M B; Kashanian, S; Peyman, H


    The interaction of native calf thymus DNA (CT-DNA) with two anthraquinones including quinizarin (1,4-dihydroxy anthraquinone) and danthron (1,8-dihydroxy anthraquinone) in a mixture of 0.04M Brittone-Robinson buffer and 50% of ethanol were studied at physiological pH by spectrofluorometric and cyclic voltammetry techniques. The former technique was used to calculate the binding constants of anthraquinones-DNA complexes at different temperatures. Thermodynamic study indicated that the reactions of both anthraquinone-DNA systems are predominantly entropically driven. Furthermore, the binding mechanisms on the reaction of the two anthraquinones with DNA and the effect of ionic strength on the fluorescence property of the system have also been investigated. The results of the experiments indicated that the binding modes of quinizarin and danthron with DNA were evaluated to be groove binding. Moreover, the cytotoxic activity of both compounds against human chronic myelogenous leukemia K562 cell line and DNA cleavage were investigated. The results indicated that these compounds slightly cleavage pUC18 plasmid DNA and showed minor antitumor activity against K562 (human chronic myeloid leukemia) cell line. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Adhesive wafer bonding (United States)

    Niklaus, F.; Stemme, G.; Lu, J.-Q.; Gutmann, R. J.


    Wafer bonding with intermediate polymer adhesives is an important fabrication technique for advanced microelectronic and microelectromechanical systems, such as three-dimensional integrated circuits, advanced packaging, and microfluidics. In adhesive wafer bonding, the polymer adhesive bears the forces involved to hold the surfaces together. The main advantages of adhesive wafer bonding include the insensitivity to surface topography, the low bonding temperatures, the compatibility with standard integrated circuit wafer processing, and the ability to join different types of wafers. Compared to alternative wafer bonding techniques, adhesive wafer bonding is simple, robust, and low cost. This article reviews the state-of-the-art polymer adhesive wafer bonding technologies, materials, and applications.

  1. Clarification of the Mechanism of Acylation Reaction and Origin of Substrate Specificity of the Serine-Carboxyl Peptidase Sedolisin through QM/MM Free Energy Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qin [ORNL; Yao, Jianzhuang [ORNL; Wiodawer, Alexander [SAIC-Frederick, Inc., National Cancer Institute at Frederick, Frederick, MD; Guo, Hong [ORNL


    Quantum mechanical/molecular mechanical (QM/MM) free energy simulations are applied for understanding the mechanism of the acylation reaction catalyzed by sedolisin, a representative serine-carboxyl peptidase, leading to the acyl-enzyme (AE) and first product from the enzyme-catalyzed reaction. One of the interesting questions to be addressed in this work is the origin of the substrate specificity of sedolisin that shows a relatively high activity on the substrates with Glu at P1 site. It is shown that the bond making and breaking events of the acylation reaction involving a peptide substrate (LLE*FL) seem to be accompanied by local conformational changes, proton transfers as well as the formation of alternative hydrogen bonds. The results of the simulations indicate that the conformational change of Glu at P1 site and its formation of a low barrier hydrogen bond with Asp-170 (along with the transient proton transfer) during the acylation reaction might play a role in the relatively high specificity for the substrate with Glu at P1 site. The role of some key residues in the catalysis is confirmed through free energy simulations. Glu-80 is found to act as a general base to accept a proton from Ser-287 during the nucleophilic attack and then as a general acid to protonate the leaving group (N H of P1 -Phe) during the cleavage of the scissile peptide bond. Another acidic residue, Asp-170, acts as a general acid catalyst to protonate the carbonyl of P1-Glu during the formation of the tetrahedral intermediate and as a general base for the formation of the acyl-enzyme. The energetic results from the free energy simulations support the importance of proton transfer from Asp-170 to the carbonyl of P1-Glu in the stabilization of the tetrahedral intermediate and the formation of a low-barrier hydrogen bond between the carboxyl group of P1-Glu and Asp-170 in the lowering of the free energy barrier for the cleavage of the peptide bond. Detailed analyses of the proton transfers

  2. Cleavage entropy as quantitative measure of protease specificity.

    Directory of Open Access Journals (Sweden)

    Julian E Fuchs


    Full Text Available A purely information theory-guided approach to quantitatively characterize protease specificity is established. We calculate an entropy value for each protease subpocket based on sequences of cleaved substrates extracted from the MEROPS database. We compare our results with known subpocket specificity profiles for individual proteases and protease groups (e.g. serine proteases, metallo proteases and reflect them quantitatively. Summation of subpocket-wise cleavage entropy contributions yields a measure for overall protease substrate specificity. This total cleavage entropy allows ranking of different proteases with respect to their specificity, separating unspecific digestive enzymes showing high total cleavage entropy from specific proteases involved in signaling cascades. The development of a quantitative cleavage entropy score allows an unbiased comparison of subpocket-wise and overall protease specificity. Thus, it enables assessment of relative importance of physicochemical and structural descriptors in protease recognition. We present an exemplary application of cleavage entropy in tracing substrate specificity in protease evolution. This highlights the wide range of substrate promiscuity within homologue proteases and hence the heavy impact of a limited number of mutations on individual substrate specificity.

  3. Palladium-Catalyzed Reductive Insertion of Alcohols into Aryl Ether Bonds

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Meng [Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA; Gutiérrez, Oliver Y. [Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA; Camaioni, Donald M. [Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA; Lercher, Johannes A. [Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA; Department of Chemistry and Catalysis Research Institute, TU München, Lichtenbergstrasse 4 85748 Garching Germany


    Pd/C catalyzes C-O bond cleavage of aryl ethers (diphenyl ether and cyclohexyl phenyl ether) by methanol in H2. The aromatic C-O bond is cleaved by reductive methanolysis, which is initiated by Pd-catalyzed partial hydrogenation of one phenyl ring to form an enol ether. The enol ether reacts rapidly with methanol to form a ketal, which generates methoxycyclohexene by eliminating phenol or an alkanol. Subsequent hydrogenation leads to methoxycyclohexane.

  4. Microstructure and properties of hot roll bonding layer of dissimilar metals. 2. Bonding interface microstructure of Zr/stainless steel by hot roll bonding and its controlling

    International Nuclear Information System (INIS)

    Yasuyama, Masanori; Ogawa, Kazuhiro; Taka, Takao; Nakasuji, Kazuyuki; Nakao, Yoshikuni; Nishimoto, Kazutoshi.


    The hot roll bonding of zirconium and stainless steel inserted with tantalium was investigated using the newly developed rolling mill. The effect of hot rolling temperatures of zirconium/stainless steel joints on bonding interface structure was evaluated. Intermetallic compound layer containing cracks was observed at the bonding interface between stainless steel and tantalium when the rolling temperature was above 1373K. The hardness of the bonding layer of zirconium and tantalium bonded above 1273K was higher than tantalium or zirconium base metal in spite of absence of intermetallic compound. The growth of reaction layer at the stainless steel and tantalium interface and at the tantalium and zirconium interface was conforming a parabolic low when that was isothermally heated after hot roll bonding, and the growth rate was almost same as that of static diffusion bonding without using hot roll bonding process. It is estimated that the strain caused by hot roll bonding gives no effect on the growth of reaction layer. It was confirmed that the dissimilar joint of zirconium and stainless steel with insert of tantalium having the sound bonding interface were obtained at the suitable bonding temperature of 1173K by the usage of the newly developed hot roll bonding process. (author)

  5. A new cultural cleavage in post-modern society

    Directory of Open Access Journals (Sweden)

    Jan-Erik Lane


    Full Text Available The attitudes towards gender and homosexuality tend to be linked at the micro level (individuals, which explains the political saliency of this newly emerging cleavage. At the macro level (country, the main finding is that the value orientations towards gender and homosexuality are strongly embedded in the basic cultural or civilisation differences among countries. As developing countries modernise and enter post-modernity, they will also experience the gender cleavage, especially when they adhere to an individualistic culture. Cultural cleavages in the post-modern society, whether in rich or developing countries, can only be properly researched by the survey method. It opens up a large area for both micro and macro analyses in the social sciences.

  6. Uncovering the Protocatechuate 2,3-Cleavage Pathway Genes▿ †


    Kasai, Daisuke; Fujinami, Toshihiro; Abe, Tomokuni; Mase, Kohei; Katayama, Yoshihiro; Fukuda, Masao; Masai, Eiji


    Paenibacillus sp. (formerly Bacillus macerans) strain JJ-1b is able to grow on 4-hydroxybenzoate (4HB) as a sole source of carbon and energy and is known to degrade 4HB via the protocatechuate (PCA) 2,3-cleavage pathway. However, none of the genes involved in this pathway have been identified. In this study, we identified and characterized the JJ-1b genes for the 4HB catabolic pathway via the PCA 2,3-cleavage pathway, which consisted of praR and praABEGFDCHI. Based on the enzyme activities of...

  7. Oxone-mediated oxidative cleavage of β-keto esters and 1,3-diketones to α-keto esters and 1,2-diketones in aqueous medium. (United States)

    Stergiou, Anastasios; Bariotaki, Anna; Kalaitzakis, Dimitris; Smonou, Ioulia


    A versatile and highly efficient method for the direct synthesis of α-keto esters and 1,2-diketones has been developed. This approach utilizes the oxidative cleavage of a variety of β-keto esters and 1,3-diketones mediated by an Oxone/aluminum trichloride system. The simple one-step oxidation reaction proceeded selectively in aqueous media to afford products in high yields, short reaction times, and environmentally benign conditions.

  8. The influence of junction conformation on RNA cleavage by the hairpin ribozyme in its natural junction form. (United States)

    Thomson, J B; Lilley, D M


    In the natural form of the hairpin ribozyme the two loop-carrying duplexes that comprise the majority of essential bases for activity form two adjacent helical arms of a four-way RNA junction. In the present work we have manipulated the sequence around the junction in a way known to perturb the global folding properties. We find that replacement of the junction by a different sequence that has the same conformational properties as the natural sequence gives closely similar reaction rate and Arrhenius activation energy for the substrate cleavage reaction. By comparison, rotation of the natural sequence in order to alter the three-dimensional folding of the ribozyme leads to a tenfold reduction in the kinetics of cleavage. Replacement with the U1 four-way junction that is resistant to rotation into the antiparallel structure required to allow interaction between the loops also gives a tenfold reduction in cleavage rate. The results indicate that the conformation of the junction has a major influence on the catalytic activity of the ribozyme. The results are all consistent with a role for the junction in the provision of a framework by which the loops are presented for interaction in order to create the active form of the ribozyme. PMID:10024170

  9. The reactions of anthronylidene carbene with some heterocyclic compounds

    International Nuclear Information System (INIS)

    Divisia, Bernadette


    The action of the anthronylidene carbene, generated by photochemical decomposition of 9-diazo 10-anthron, on four heterocyclic compounds (furan, thiophene, 1-methyl-pyrrole and 2,5-dihydrofuran) has been examined. Two classical carbene reactions have been observed: the addition on double bond (furan, thiophene, 1-methylpyrrole) and hydrogen atom abstraction of the heterocyclic compound (2,5-dihydrofuran). In the case of furan and thiophene, the cyclo-propanic compound resulting from the addition is spontaneously transformed into an ethylenic derivative by valence isomerization. The furan derivative undergoes a cis-trans isomerization, while the thiophene one undergoes an extra carbene attack. In the case of 1-methylpyrrole, the corresponding cyclo-propanic compound undergoes a ring cleavage, followed by a hydrogen atom migration leading to the formation of a substituted anthron. Only an allylic hydrogen atom selective abstraction of heterocyclic compound takes place in the reaction of anthronylidene carbene with 2,5-dihydrofuran. The asymmetrical coupling of radicals so obtained yields the corresponding substituted anthron. (author) [fr

  10. Semiconductor Photocatalysis for Chemoselective Radical Coupling Reactions. (United States)

    Kisch, Horst


    Photocatalysis at semiconductor surfaces is a growing field of general photocatalysis because of its importance for the chemical utilization of solar energy. By analogy with photoelectrochemistry the basic mechanism of semiconductor photocatalysis can be broken down into three steps: photogenerated formation of surface redox centers (electron-hole pairs), interfacial electron transfer from and to substrates (often coupled with proton-transfer), and conversion of primary redox intermediates into the products. Sun driven water cleavage and carbon dioxide fixation are still in the state of basic research whereas aerial degradation reactions of pollutants have reached practical application for the cleaning of air. In addition, a great variety of organic transformations (not syntheses) have been reported. They include cis-trans isomerizations, valence isomerizations, cycloaddition reactions, intramolecular or intermolecular C-N and C-C couplings, partial oxidations, and reductions. In all cases, well-known products were formed but very rarely also isolated. As compared to conventional homogeneous organic synthesis, the photocatalytic reaction mode is of no advantage, although the opposite is quite often claimed in the literature. It is also noted that a high quantum yield does not implicate a high product yield, since it is measured at very low substrate conversion in order to minimize secondary photoreactions. That is especially important in semiconductor photocatalysis since photocorrosion of the photocatalyst often prevents long-time irradiation, as is the case for colloidal metal sulfide semiconductors, which in general are photochemically too unstable to be used in synthesis. In this Account, we first classify the numerous organic photoreactions catalyzed by semiconductor powders. The classification is based on easily obtainable experimental facts, namely the nature of the light absorbing reaction component and the reaction stoichiometry. Next we discuss the

  11. Involvement of a cytosine side chain in proton transfer in the rate-determining step of ribozyme self-cleavage (United States)

    Shih, I-hung; Been, Michael D.


    Ribozymes of hepatitis delta virus have been proposed to use an active-site cytosine as an acid-base catalyst in the self-cleavage reaction. In this study, we have examined the role of cytosine in more detail with the antigenomic ribozyme. Evidence that proton transfer in the rate-determining step involved cytosine 76 (C76) was obtained from examining cleavage activity of the wild-type and imidazole buffer-rescued C76-deleted (C76Δ) ribozymes in D2O and H2O. In both reactions, a similar kinetic isotope effect and shift in the apparent pKa indicate that the buffer is functionally substituting for the side chain in proton transfer. Proton inventory of the wild-type reaction supported a mechanism of a single proton transfer at the transition state. This proton transfer step was further characterized by exogenous base rescue of a C76Δ mutant with cytosine and imidazole analogues. For the imidazole analogues that rescued activity, the apparent pKa of the rescue reaction, measured under kcat/KM conditions, correlated with the pKa of the base. From these data a Brønsted coefficient (β) of 0.51 was determined for the base-rescued reaction of C76Δ. This value is consistent with that expected for proton transfer in the transition state. Together, these data provide strong support for a mechanism where an RNA side chain participates directly in general acid or general base catalysis of the wild-type ribozyme to facilitate RNA cleavage. PMID:11171978

  12. Selective C-H Bond Oxidation Catalyzed by the Fe-bTAML Complex: Mechanistic Implications. (United States)

    Ghosh, Munmun; Pattanayak, Santanu; Dhar, Basab B; Singh, Kundan K; Panda, Chakadola; Sen Gupta, Sayam


    Nonheme iron complexes bearing tetradentate N-atom-donor ligands with cis labile sites show great promise for chemoselective aliphatic C-H hydroxylation. However, several challenges still limit their widespread application. We report a mechanism-guided development of a peroxidase mimicking iron complex based on the bTAML macrocyclic ligand framework (Fe-bTAML: biuret-modified tetraamido macrocyclic ligand) as a catalyst to perform selective oxidation of unactivated 3° bonds with unprecedented regioselectivity (3°:2° of 110:1 for adamantane oxidation), high stereoretention (99%), and turnover numbers (TONs) up to 300 using mCPBA as the oxidant. Ligand decomposition pathways involving acid-induced demetalation were identified, and this led to the development of more robust and efficient Fe-bTAML complexes that catalyzed chemoselective C-H oxidation. Mechanistic studies, which include correlation of the product formed with the Fe V (O) reactive intermediates generated during the reaction, indicate that the major pathway involves the cleavage of C-H bonds by Fe V (O). When these oxidations were performed in the presence of air, the yield of the oxidized product doubled, but the stereoretention remained unchanged. On the basis of 18 O labeling and other mechanistic studies, we propose a mechanism that involves the dual activation of mCPBA and O 2 by Fe-bTAML, leading to formation of the Fe V (O) intermediate. This high-valent iron oxo remains the active intermediate for most of the reaction, resulting in high regio- and stereoselectivity during product formation.

  13. Production of dicarboxylic acids from novel unsaturated fatty acids by laccase-catalyzed oxidative cleavage. (United States)

    Takeuchi, Michiki; Kishino, Shigenobu; Park, Si-Bum; Kitamura, Nahoko; Watanabe, Hiroko; Saika, Azusa; Hibi, Makoto; Yokozeki, Kenzo; Ogawa, Jun


    The establishment of renewable biofuel and chemical production is desirable because of global warming and the exhaustion of petroleum reserves. Sebacic acid (decanedioic acid), the material of 6,10-nylon, is produced from ricinoleic acid, a carbon-neutral material, but the process is not eco-friendly because of its energy requirements. Laccase-catalyzing oxidative cleavage of fatty acid was applied to the production of dicarboxylic acids using hydroxy and oxo fatty acids involved in the saturation metabolism of unsaturated fatty acids in Lactobacillus plantarum as substrates. Hydroxy or oxo fatty acids with a functional group near the carbon-carbon double bond were cleaved at the carbon-carbon double bond, hydroxy group, or carbonyl group by laccase and transformed into dicarboxylic acids. After 8 h, 0.58 mM of sebacic acid was produced from 1.6 mM of 10-oxo-cis-12,cis-15-octadecadienoic acid (αKetoA) with a conversion rate of 35% (mol/mol). This laccase-catalyzed enzymatic process is a promising method to produce dicarboxylic acids from biomass-derived fatty acids.

  14. DNA cleavage agents from Schisandra propinqua var. sinensis ...

    African Journals Online (AJOL)

    DNA cleavage agents from Schisandra propinqua var. sinensis. Y Chen, L Hai, Y Liu, X Liao. Abstract. No Abstract. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians ...

  15. Cleavage of desmin by cysteine proteases: Calpains and cathepsin B

    DEFF Research Database (Denmark)

    Baron, Caroline; Jacobsen, S.; Purslow, P.P.


    The intermediate filament protein, desmin, was purified from pork longissimus dorsi and incubated with either P-calpain, m-calpain or cathepsin B. Proteolysis of desmin was followed using SDS-PAGE and Western blotting. After incubation of desmin with the proteases, cleavage sites on the desmin...

  16. DNA binding and cleavage activity of a structurally characterized Ni ...

    Indian Academy of Sciences (India)

    1375–1381. c Indian Academy of Sciences. DOI 10.1007/s12039-015-0900-4. DNA binding and cleavage activity of a structurally characterized Ni(II). Schiff base complex. SARAT CHANDRA KUMARa, ABHIJIT PALa, MERRY MITRAa,. V M MANIKANDAMATHAVANb, CHIA -HER LINc, BALACHANDRAN UNNI NAIRb,∗.

  17. Early post-cleavage stages and abnormalities identified in the ...

    African Journals Online (AJOL)

    Six early, post-cleavage embryonic stages for chokka squid Loligo vulgaris reynaudii eggs that were developed in an aquarium are identified and described, expanding the embryonic stages for this species from 14 to 20. The influence of water temperature on embryonic development is described. At temperatures  ...

  18. Fe-Catalyzed Oxidative Cleavage of Unsaturated Fatty Acids

    NARCIS (Netherlands)

    Spannring, P.|info:eu-repo/dai/nl/325783802


    The oxidative cleavage of unsaturated fatty acids into aldehydes or carboxylic acids gives access to valuable products. The products can be used as chemical building blocks, as emulsifiers or in the paint or polymer industry. Ozonolysis is applied industrially to cleave the fatty acid oleic acid

  19. Detection of meta - and ortho -cleavage dioxygenases in bacterial ...

    African Journals Online (AJOL)

    In contrast, isolates S-5, Sea-8, W-6, W-15 and Pla-1 showed activity with the enzyme catalyzing the second step in the phenol degradation meta-cleavage pathway, catechol-2,3-dioxygenase. On the basis of our previous and present analysis, the investigated isolates are considered to have a good potential for application ...

  20. Photo-induced antimicrobial and DNA cleavage studies of ...

    Indian Academy of Sciences (India)

    J. Chem. Sci. Vol. 125, No. 5, September 2013, pp. 1015–1027. c Indian Academy of Sciences. Photo-induced antimicrobial and DNA cleavage studies ... †Present address: Department of Chemistry, Bannari Amman Institute of Technology, Sathyamangalam, India. #Present address: ..... C overnight and exam- ined for ...

  1. DNA cleavage agents from Schisandra propinqua var. sinensis

    African Journals Online (AJOL)



    Sep 15, 2009 ... DNA strand breakage process is involved in various bio- logical stages such as inflammation, mutagenesis, carci- nogenesis, or aging (Mibu et al., 2003; Chen et al., 2006). As a consequence of the clinical utility of DNA cleavage ..... and its use in folk medicine to treat fracture, chronic gas- tritis and ...

  2. Definition issues of concepts of social cleavages in Africa | Raphael ...

    African Journals Online (AJOL)

    The main problem is whether the definitions of concepts are coherent to reflect the complex social realities. Based on the theoretical framework and on the analysis of the definitions, it becomes clear that the social cleavage concepts are not consistent once applied to African societies. For the Rwandan society in particular, ...

  3. DNA binding and cleavage activity of a structurally characterized Ni ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 127; Issue 8. DNA binding and cleavage activity of a structurally characterized Ni(II) Schiff base complex. Sarat Chandra Kumar Abhijit Pal Merry Mitra V M Manikandamathavan Chia -Her Lin Balachandran Unni Nair Rajarshi Ghosh. Regular Articles Volume 127 ...

  4. Kinetics of phycocyanobilin cleavage from C-phycocyanin by methanolysis

    DEFF Research Database (Denmark)

    Malwade, Chandrakant Ramkrishna; Roda Serrat, Maria Cinta; Christensen, Knud Villy


    Phycocyanobilin (PCB) is an important linear tetrapyrrolic molecule for food as well as pharmaceutical industry. It is obtained from blue-green algae, where it is attached covalently to phycobiliproteins (C-PC and APC) present in the light harvesting complexes. In this work, cleavage of PCB from...

  5. Reactions of Cyclopropanone Acetals with Alkyl Azides: Carbonyl Addition versus Ring-Opening Pathways (United States)

    Grecian, Scott; Desai, Pankaj; Mossman, Craig; Poutsma, Jennifer L.; Aubé, Jeffrey


    The Lewis acid-mediated reactions of substituted cyclopropanone acetals with alkyl azides were found to strongly depend on the structure of the ketone component. When cyclopropanone acetal was treated with alkyl azides, N-substituted 2-azetidinones and ethyl carbamate products were obtained, arising from azide addition to the carbonyl, followed by ring expansion or rearrangement, respectively. When 2,2-dimethylcyclopropanone acetals were reacted with azides in the presence of BF3•OEt2, the products obtained were α-amino-α′-diazomethyl ketones, which arose from C2–C3 bond cleavage of the corresponding cyclopropanone, giving oxyallyl cations, that were captured by azides. Aryl-substituted cyclopropanone acetals, when subjected to these conditions, afforded [1,2,3]oxaborazoles exclusively, which were also the result of C2–C3 bond rupture, azide capture and then loss of nitrogen. In the reactions of n-hexyl-substituted cyclopropanone acetals with alkyl azides, a mixture of 2-azetidinones and regioisomeric [1,2,3]oxaborazoles were obtained. The reasons for the different behavior of the various systems is discussed. PMID:17985920

  6. Enantiomer-Selective Photo-Induced Reaction of Protonated Tryptophan with Disaccharides in the Gas Phase (United States)

    Doan, Thuc N.; Fujihara, Akimasa


    In order to investigate chemical evolution in interstellar molecular clouds, enantiomer-selective photo-induced chemical reactions between an amino acid and disaccharides in the gas phase were examined using a tandem mass spectrometer containing an electrospray ionization source and a cold ion trap. Ultraviolet photodissociation mass spectra of cold gas-phase noncovalent complexes of protonated tryptophan (Trp) enantiomers with disaccharides consisting of two d-glucose units, such as d-maltose or d-cellobiose, were obtained by photoexcitation of the indole ring of Trp. NH2CHCOOH loss via cleavage of the Cα-Cβ bond in Trp induced by hydrogen atom transfer from the NH3 + group of a protonated Trp was observed in a noncovalent heterochiral H+( l-Trp)( d-maltose) complex. In contrast, a photo-induced chemical reaction forming the product ion with m/z 282 occurs in homochiral H+( d-Trp)( d-maltose). For d-cellobiose, both NH2CHCOOH elimination and the m/z 282 product ion were observed, and no enantiomer-selective phenomena occurred. The m/z 282 product ion indicates that the photo-induced C-glycosylation, which links d-glucose residues to the indole moiety of Trp via a C-C bond, can occur in cold gas-phase noncovalent complexes, and its enantiomer-selectivity depends on the structure of the disaccharide.

  7. Cleavage and crosslinking of polymeric coal structures during pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    McMillen, D.F.; Malhotra, R.


    The ultimate objective of this project was to develop a better understanding of volatiles production to help optimize the yield and character of condensable coproducts during coal pyrolysis or mild gasification. The specific objectives were to (1) Develop pyrolysis procedures that minimize secondary reactions; and (2) Develop coal pretreatments that current knowledge suggests will prorate bond scission or prevent retrograde reactions. Our approach was to study the pyrolysis of coals and tar-loaded coals by using several techniques that span a range of heating rates and pressures. Slow-heating pyrolyses were performed at low pressures in the inlet of a field ionization mass spectrometer and at atmospheric pressures in a thermogravimetric analyzer. Moderately rapid-heating pyrolyses were performed in a vacuum TGA apparatus and in sealed silica ampules heated in a molten-salt bath. The fastest heating rates were achieved with laser pyrolysis at about 30,000 X/s. The high tar yield seen in this work where the entire volume of the coal particle becomes hot and fluid at very nearly the same time, taken together with the evident non-vapor transport of the tar under these conditions, emphasizes the importance of better understanding the development of fluidity during coal heating. This specifically includes the profound effects--long-recognized but poorly understood that mild oxidation has in suppressing coal fluidity. It also includes the more recently recognized fact that heating in the presence of an inert gas produced substantially greater fluidity than does heating in the presence of combustion gases, even if the conditions are very fuel rich and all the oxygen itself has already been consumed when the coal particles are encountered.

  8. Synthesis and reactivity of compounds containing ruthenium-carbon, -nitrogen, and -oxygen bonds

    Energy Technology Data Exchange (ETDEWEB)

    Hartwig, J.F.


    The products and mechanisms of the thermal reactions of several complexes of the general structure (PMe{sub 3}){sub 4}Ru(X)(Y) and (DMPM){sub 2}Ru(X)(Y) where X and Y are hydride, aryl, and benzyl groups, have been investigated. The mechanism of decomposition depends critically on the structure of the complex and the medium in which the thermolysis is carried out. The alkyl hydride complexes are do not react with alkane solvent, but undergo C-H activation processes with aromatic solvents by several different mechanisms. Thermolysis of (PMe{sub 3}){sub 4}Ru(Ph)(Me) or (PMe{sub 3}){sub 4}Ru(Ph){sub 2} leads to the ruthenium benzyne complex (PMe{sub 3}){sub 4}Ru({eta}{sup 2}-C{sub 6}H{sub 4}) (1) by a mechanism which involves reversible dissociation of phosphine. In many ways its chemistry is analogous to that of early rather than late organo transition metal complexes. The synthesis, structure, variable temperature NMR spectroscopy and reactivity of ruthenium complexes containing aryloxide or arylamide ligands are reported. These complexes undergo cleavage of a P-C bond in coordinated trimethylphosphine, insertion of CO and CO{sub 2} and hydrogenolysis. Mechanistic studies on these reactions are described. The generation of a series of reactive ruthenium complexes of the general formula (PMe{sub 3}){sub 4}Ru(R)(enolate) is reported. Most of these enolates have been shown to bind to the ruthenium center through the oxygen atom. Two of the enolate complexes 8 and 9 exist in equilibrium between the O- and C-bound forms. The reactions of these compounds are reported, including reactions to form oxygen-containing metallacycles. The structure and reactivity of these ruthenium metallacycles is reported, including their thermal chemistry and reactivity toward protic acids, electrophiles, carbon monoxide, hydrogen and trimethylsilane. 243 refs., 10 tabs.

  9. Synthesis and reactivity of compounds containing ruthenium-carbon, -nitrogen, and -oxygen bonds

    International Nuclear Information System (INIS)

    Hartwig, J.F.


    The products and mechanisms of the thermal reactions of several complexes of the general structure (PMe 3 ) 4 Ru(X)(Y) and (DMPM) 2 Ru(X)(Y) where X and Y are hydride, aryl, and benzyl groups, have been investigated. The mechanism of decomposition depends critically on the structure of the complex and the medium in which the thermolysis is carried out. The alkyl hydride complexes are do not react with alkane solvent, but undergo C-H activation processes with aromatic solvents by several different mechanisms. Thermolysis of (PMe 3 ) 4 Ru(Ph)(Me) or (PMe 3 ) 4 Ru(Ph) 2 leads to the ruthenium benzyne complex (PMe 3 ) 4 Ru(η 2 -C 6 H 4 ) (1) by a mechanism which involves reversible dissociation of phosphine. In many ways its chemistry is analogous to that of early rather than late organo transition metal complexes. The synthesis, structure, variable temperature NMR spectroscopy and reactivity of ruthenium complexes containing aryloxide or arylamide ligands are reported. These complexes undergo cleavage of a P-C bond in coordinated trimethylphosphine, insertion of CO and CO 2 and hydrogenolysis. Mechanistic studies on these reactions are described. The generation of a series of reactive ruthenium complexes of the general formula (PMe 3 ) 4 Ru(R)(enolate) is reported. Most of these enolates have been shown to bind to the ruthenium center through the oxygen atom. Two of the enolate complexes 8 and 9 exist in equilibrium between the O- and C-bound forms. The reactions of these compounds are reported, including reactions to form oxygen-containing metallacycles. The structure and reactivity of these ruthenium metallacycles is reported, including their thermal chemistry and reactivity toward protic acids, electrophiles, carbon monoxide, hydrogen and trimethylsilane. 243 refs., 10 tabs

  10. Cu-catalyzed cross-dehydrogenative coupling: A versatile strategy for C-C bond formations via the oxidative activation of sp3 C-H bonds (United States)

    Li, Zhiping; Bohle, D. Scott; Li, Chao-Jun


    Cu-catalyzed cross-dehydrogenative coupling (CDC) methodologies were developed based on the oxidative activation of sp3 C-H bonds adjacent to a nitrogen atom. Various sp, sp2, and sp3 C-H bonds of pronucleophiles were used in the Cu-catalyzed CDC reactions. Based on these results, the mechanisms of the CDC reactions also are discussed. C-H activation | catalysis | Baylis-Hillman reaction | Mannich reaction | Friedel-Crafts reaction

  11. Reductive cleavage of chlorine from 6-chloronicotinic acid on mercury electrodes

    International Nuclear Information System (INIS)

    Ruiz Montoya, M.; Pintado, S.; Rodriguez Mellado, J.M.


    Highlights: → Dissociation constants (as pK) of 6 chloronicotinic acid (6CNA) obtained by UV-vis spectroscopy: -0.80 ± 0.05 (-COOH group) and 3.2 ± 0.1 (pyridinic nitrogen). → Electrolysis of 6CNA evidenced the reductive cleavage of chlorine from the molecule. → Kinetic parameters (Tafel slopes and reaction orders) determined at the foot of the waves. → Reduction pathways have been proposed. - Abstract: This paper presents polarographic (direct current, dc, and differential pulse, DP) and voltammetric (linear-sweep cyclic voltammetry) studies on the electroreduction of 6-chloronicotinic acid (6CNA) on mercury electrodes. In order to obtain the dissociation constants of 6CNA, UV-vis spectra were recorded as a function of pH. pK values of -0.80 ± 0.05 (-COOH group) and 3.2 ± 0.1 (pyridinic nitrogen) were obtained. The electrochemical studies were performed in the acidity range 6 M H 2 SO 4 to pH 8. Above the last pH value no signals were obtained. Electrolysis made at potentials corresponding to the limiting current of the first wave indicates that there is a reductive cleavage of chlorine from the molecule. This was confirmed by dc and DP polarografic results and also by voltammetric results. Kinetic parameters such as Tafel slopes and electrochemical reaction orders have been determined at potentials corresponding to the foot of the waves. From these results, together with those obtained by cyclic voltammetry, a reaction pathway is proposed, in which the rate-determining step of the process is the release of a chloride ion from the radical formed after the uptake of a H + ion and an electron.

  12. Reductive cleavage of chlorine from 6-chloronicotinic acid on mercury electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz Montoya, M., E-mail: mmontoya@uhu.e [Departamento de Ingenieria Quimica, Quimica Fisica y Quimica Organica, Universidad de Huelva, Campus El Carmen, Facultad de Ciencias Experimentales, E-21071 Huelva (Spain); Pintado, S., E-mail: q02pibes@uco.e [Departamento de Quimica Fisica y Termodinamica Aplicada, Universidad de Cordoba, Campus Universitario de Rabanales, edificio ' Marie Curie' ., E-14014 Cordoba (Spain); Rodriguez Mellado, J.M., E-mail: jmrodriguez@uco.e [Departamento de Quimica Fisica y Termodinamica Aplicada, Universidad de Cordoba, Campus Universitario de Rabanales, edificio ' Marie Curie' ., E-14014 Cordoba (Spain)


    Highlights: Dissociation constants (as pK) of 6 chloronicotinic acid (6CNA) obtained by UV-vis spectroscopy: -0.80 {+-} 0.05 (-COOH group) and 3.2 {+-} 0.1 (pyridinic nitrogen). Electrolysis of 6CNA evidenced the reductive cleavage of chlorine from the molecule. Kinetic parameters (Tafel slopes and reaction orders) determined at the foot of the waves. Reduction pathways have been proposed. - Abstract: This paper presents polarographic (direct current, dc, and differential pulse, DP) and voltammetric (linear-sweep cyclic voltammetry) studies on the electroreduction of 6-chloronicotinic acid (6CNA) on mercury electrodes. In order to obtain the dissociation constants of 6CNA, UV-vis spectra were recorded as a function of pH. pK values of -0.80 {+-} 0.05 (-COOH group) and 3.2 {+-} 0.1 (pyridinic nitrogen) were obtained. The electrochemical studies were performed in the acidity range 6 M H{sub 2}SO{sub 4} to pH 8. Above the last pH value no signals were obtained. Electrolysis made at potentials corresponding to the limiting current of the first wave indicates that there is a reductive cleavage of chlorine from the molecule. This was confirmed by dc and DP polarografic results and also by voltammetric results. Kinetic parameters such as Tafel slopes and electrochemical reaction orders have been determined at potentials corresponding to the foot of the waves. From these results, together with those obtained by cyclic voltammetry, a reaction pathway is proposed, in which the rate-determining step of the process is the release of a chloride ion from the radical formed after the uptake of a H{sup +} ion and an electron.

  13. β-Dystroglycan cleavage by matrix metalloproteinase-2/-9 disturbs aquaporin-4 polarization and influences brain edema in acute cerebral ischemia. (United States)

    Yan, W; Zhao, X; Chen, H; Zhong, D; Jin, J; Qin, Q; Zhang, H; Ma, S; Li, G


    Dystroglycan (DG) is widely expressed in various tissues, and throughout the cerebral microvasculature. It consists of two subunits, α-DG and β-DG, and the cleavage of the latter by matrix metalloproteinase (MMP)-2 and -9 underlies a number of physiological and pathological processes. However, the involvement of MMP-2/-9-mediated β-DG cleavage in cerebral ischemia remains uncertain. In astrocytes, DG is crucial for maintaining the polarization of aquaporin-4 (AQP4), which plays a role in the regulation of cytotoxic and vasogenic edema. The present study aimed to explore the effects of MMP-2/-9-mediated β-DG cleavage on AQP4 polarization and brain edema in acute cerebral ischemia. A model of cerebral ischemia was established via permanent middle cerebral artery occlusion (pMCAO) in male C57BL/6 mice. Western blotting, real-time polymerase chain reaction (PCR), immunohistochemical staining, immunofluorescent staining, electron microscopy, and light microscopy were used. Captopril was applied as a selective MMP-2/-9 inhibitor. Recombinant mouse MMP (rmMMP)-2 and -9 were used in an in vitro cleavage experiment. The present study demonstrated evidence of β-DG cleavage by MMP-2/-9 in pMCAO mouse brains; this cleavage was implicated in AQP4 redistribution and brain edema in cerebral ischemia. In addition, captopril exacerbated cytotoxic edema and ameliorated vasogenic edema at 24h after pMCAO, and alleviated brain edema and neurological deficit at 48h and 72h. In conclusion, this study provides novel insight into the effects of MMP-2/-9-mediated β-DG cleavage in acute cerebral ischemia. Such findings might facilitate the development of a therapeutic strategy for the optimization of MMP-2/-9 targeted treatment in cerebral ischemia. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Australia's Bond Home Bias


    Anil V. Mishra; Umaru B. Conteh


    This paper constructs the float adjusted measure of home bias and explores the determinants of bond home bias by employing the International Monetary Fund's high quality dataset (2001 to 2009) on cross-border bond investment. The paper finds that Australian investors' prefer investing in countries with higher economic development and more developed bond markets. Exchange rate volatility appears to be an impediment for cross-border bond investment. Investors prefer investing in countries with ...

  15. Transition path sampling with quantum/classical mechanics for reaction rates. (United States)

    Gräter, Frauke; Li, Wenjin


    Predicting rates of biochemical reactions through molecular simulations poses a particular challenge for two reasons. First, the process involves bond formation and/or cleavage and thus requires a quantum mechanical (QM) treatment of the reaction center, which can be combined with a more efficient molecular mechanical (MM) description for the remainder of the system, resulting in a QM/MM approach. Second, reaction time scales are typically many orders of magnitude larger than the (sub-)nanosecond scale accessible by QM/MM simulations. Transition path sampling (TPS) allows to efficiently sample the space of dynamic trajectories from the reactant to the product state without an additional biasing potential. We outline here the application of TPS and QM/MM to calculate rates for biochemical reactions, by means of a simple toy system. In a step-by-step protocol, we specifically refer to our implementation within the MD suite Gromacs, which we have made available to the research community, and include practical advice on the choice of parameters.

  16. Detailed Molecular Dynamics of the Photochromic Reaction of Spiropyran: A Semiclassical Dynamics Study

    Directory of Open Access Journals (Sweden)

    Gaohong Zhai


    Full Text Available A realistic semiclassical dynamics simulation study is reported for the photoinduced ring-opening reaction of spiropyran. The main simulation results show that one pathway involves hydrogen out-of-plane (HOOP torsion of phenyl ring nearby N atom in 254 fs on the excited state and the isomerization from cis- to trans-SP that is complete in about 10 ps on the ground state after the electron transition πσ*; the other dominate pathway corresponds to the ring-opening reaction of trans-SP to form the most stable merocyanine (MC product. Unlike the previous theoretical finding, one C−C bond cleavage on the real molecule rather than the C−N dissociation of the model one is more probable than the ring-opening reaction after the photoexcitation of SP. The simulation findings provide more important complementarity for interpreting experimental observations, confirming the previously theoretical studies of photochromic ring-opening process and even supplying other possible reaction mechanisms.

  17. Amination of biorefinery technical lignins using Mannich reaction synergy with subcritical ethanol depolymerization. (United States)

    Wang, Bing; Chen, Tian-Ying; Wang, Han-Min; Li, Han-Yin; Liu, Chuan-Fu; Wen, Jia-Long


    The alcoholic depolymerization and Mannich reaction were conducted to improve the chemical activity of biorefinery technical lignins and introduce amino groups into lignins, respectively. To understand the chemical structural transformations and examine the reaction mechanism, GPC and solution-state NMR techniques were performed. Element analysis was also used to quantify the amount of amine groups. The NMR characterization the depolymerized lignins indicated of the depolymerization, demethoxylation, and bond cleavage of linkages occurred during the depolymerization process. Results showed that the depolymerization temperature instead of the addition of capping reagents was the main factor for improving the reactivity of lignin under the given conditions. The Mannich reaction was very selective, primarily occurred at H 3,5 and G 5 positions, and the H units present a higher chemical reactivity. It is believed that the understanding of the fundamental chemistry of lignin during depolymerization and Mannich reaction process will contribute to the extension of high value-added applications of biorefinery lignin. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. In-capillary self-assembly and proteolytic cleavage of polyhistidine peptide capped quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jianhao; Li, Jingyan; Li, Jinchen; Liu, Feifei [School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, Jiangsu, 213164 (China); Zhou, Xiang; Yao, Yi [Changzhou Qianhong Bio-pharma Co. Ltd, Changzhou 213164, Jiangsu (China); Wang, Cheli [School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, Jiangsu, 213164 (China); Qiu, Lin, E-mail: [School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, Jiangsu, 213164 (China); Jiang, Pengju, E-mail: [School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, Jiangsu, 213164 (China); State Key Laboratory of Pharmaceutical Biotechnology, Nanjing, Jiangsu (China)


    A new method using fluorescence coupled capillary electrophoresis (CE-FL) for monitoring self-assembly and proteolytic cleavage of hexahistidine peptide capped quantum dots (QDs) inside a capillary has been developed in this report. QDs and the ATTO 590-labeled hexahistidine peptide (H6-ATTO) were injected into a capillary, sequentially. Their self-assembly inside the capillary was driven by a metal-affinity force which yielded a new fluorescence signal due to Förster resonance energy transfer (FRET). The highly efficient separation of fluorescent complexes and the FRET process were analyzed using CE-FL. The self-assembly of QDs and biomolecules was found to effectively take place inside the capillary. The kinetics of the assembly was monitored by CE-FL, and the approach was extended to the study of proteolytic cleavage of surface conjugated peptides. Being the first in-depth analysis of in-capillary nanoparticle–biomolecule assembly, the novel approach reported here provides inspiration to the development of QD-based FRET probes for biomedical applications. - Highlights: • We examined the self-assembly QDs with H6-ATTO inside a capillary. • We prove CE-FL to be a powerful method to resolve QDs-H6-ATTO complex. • We achieve chromatographic separation of QDs-H6-ATTO complex. • We discovered a novel strategy for the online detection of thrombin. • This technique integrated “injection, mixing, reaction, separation and detection”.

  19. Two combinatorial optimization problems for SNP discovery using base-specific cleavage and mass spectrometry. (United States)

    Chen, Xin; Wu, Qiong; Sun, Ruimin; Zhang, Louxin


    The discovery of single-nucleotide polymorphisms (SNPs) has important implications in a variety of genetic studies on human diseases and biological functions. One valuable approach proposed for SNP discovery is based on base-specific cleavage and mass spectrometry. However, it is still very challenging to achieve the full potential of this SNP discovery approach. In this study, we formulate two new combinatorial optimization problems. While both problems are aimed at reconstructing the sample sequence that would attain the minimum number of SNPs, they search over different candidate sequence spaces. The first problem, denoted as SNP - MSP, limits its search to sequences whose in silico predicted mass spectra have all their signals contained in the measured mass spectra. In contrast, the second problem, denoted as SNP - MSQ, limits its search to sequences whose in silico predicted mass spectra instead contain all the signals of the measured mass spectra. We present an exact dynamic programming algorithm for solving the SNP - MSP problem and also show that the SNP - MSQ problem is NP-hard by a reduction from a restricted variation of the 3-partition problem. We believe that an efficient solution to either problem above could offer a seamless integration of information in four complementary base-specific cleavage reactions, thereby improving the capability of the underlying biotechnology for sensitive and accurate SNP discovery.

  20. Chemical bond fundamental aspects of chemical bonding

    CERN Document Server

    Frenking, Gernot


    This is the perfect complement to ""Chemical Bonding - Across the Periodic Table"" by the same editors, who are two of the top scientists working on this topic, each with extensive experience and important connections within the community. The resulting book is a unique overview of the different approaches used for describing a chemical bond, including molecular-orbital based, valence-bond based, ELF, AIM and density-functional based methods. It takes into account the many developments that have taken place in the field over the past few decades due to the rapid advances in quantum chemica

  1. Intercalation chemistry and chemical bonding (United States)

    Hagenmuller, Paul

    In contrast to amphoteric graphite, the layer-type oxides or chalcogenides generally play the role of acceptors in chemical or electrochemical intercalation reactions. Due to the more ionic character of the MO bonds, the structural evolution of the oxides may usually be explained on hand of electrostatic considerations, or in terms of cation oxido-reduction. For the more covalent chalcogenides, the occupancy of higher energy levels in the band structure by the transferred electrons constitute mostly a prevailing factor, giving rise to structural changes but also to modifications of the physical properties. The ionic character of the MO bonds accounts for the strong tendency of the oxides to undergo 2D→3D transformations as a result of intercalation processes. Such features are determining for the choice of the electrode materials for lithium-ion batteries as far as users require high electrode capacity, stability, and cyclability.

  2. Structure and reactivity of bis(silyl) dihydride complexes (PMe(3))(3)Ru(SiR(3))(2)(H)(2): model compounds and real intermediates in a dehydrogenative C-Si bond forming reaction. (United States)

    Dioumaev, Vladimir K; Yoo, Bok R; Procopio, Leo J; Carroll, Patrick J; Berry, Donald H


    A series of stable complexes, (PMe(3))(3)Ru(SiR(3))(2)(H)(2) ((SiR(3))(2) = (SiH(2)Ph)(2), 3a; (SiHPh(2))(2), 3b; (SiMe(2)CH(2)CH(2)SiMe(2)), 3c), has been synthesized by the reaction of hydridosilanes with (PMe(3))(3)Ru(SiMe(3))H(3) or (PMe(3))(4)Ru(SiMe(3))H. Compounds 3a and 3c adopt overall pentagonal bipyramidal geometries in solution and the solid state, with phosphine and silyl ligands defining trigonal bipyramids and ruthenium hydrides arranged in the equatorial plane. Compound 3a exhibits meridional phosphines, with both silyl ligands equatorial, whereas the constraints of the chelate in 3c result in both axial and equatorial silyl environments and facial phosphines. Although there is no evidence for agostic Si-H interactions in 3a and 3b, the equatorial silyl group in 3c is in close contact with one hydride (1.81(4) A) and is moderately close to the other hydride (2.15(3) A) in the solid state and solution (nu(Ru.H.Si) = 1740 cm(-)(1) and nu(RuH) = 1940 cm(-)(1)). The analogous bis(silyl) dihydride, (PMe(3))(3)Ru(SiMe(3))(2)(H)(2) (3d), is not stable at room temperature, but can be generated in situ at low temperature from the 16e(-) complex (PMe(3))(3)Ru(SiMe(3))H (1) and HSiMe(3). Complexes 3b and 3d have been characterized by multinuclear, variable temperature NMR and appear to be isostructural with 3a. All four complexes exhibit dynamic NMR spectra, but the slow exchange limit could not be observed for 3c. Treatment of 1 with HSiMe(3) at room temperature leads to formation of (PMe(3))(3)Ru(SiMe(2)CH(2)SiMe(3))H(3) (4b) via a CH functionalization process critical to catalytic dehydrocoupling of HSiMe(3) at higher temperatures. Closer inspection of this reaction between -110 and -10 degrees C by NMR reveals a plethora of silyl hydride phosphine complexes formed by ligand redistribution prior to CH activation. Above ca. 0 degrees C this mixture converts cleanly via silane dehydrogenation to the very stable tris(phosphine) trihydride carbosilyl complex 4b

  3. Reação de bis-inserção de 1,2-difenilacetileno na ligação Pd-C de ciclometalados Bis insertion reaction of 1,2-diphenylacetilene into Pd-C bond of cyclometallated species

    Directory of Open Access Journals (Sweden)

    Sandra Regina Ananias


    Full Text Available The present paper deals with the bis-insertion reactions of 1,2-diphenylacetylene into Pd-C bond of the cyclopalladated complexes [Pd(dmba(µ-NCO]2 (1 and [Pd(dmba(MeCN2](NO3 (2 (dmba = N,N-dimethylbenzylamine, MeCN = acetonitrile. Two new complexes [Pd{PhC=CPh-CPh=CPhC6H4CH2N(CH 32}(NCO] (3 and [Pd{PhC=CPh-CPh=CPhC6H4CH2N(CH 32}(NO3 ] (4 were obtained and characterized by IR and NMR spectroscopy and elemental analysis.

  4. Chain-amplified photochemical fragmentation of N-alkoxypyridinium salts: proposed reaction of alkoxyl radicals with pyridine bases to give pyridinyl radicals. (United States)

    Shukla, Deepak; Adiga, Shashishekar P; Ahearn, Wendy G; Dinnocenzo, Joseph P; Farid, Samir


    Photoinduced electron transfer to N-alkoxypyridiniums, which leads to N–O bond cleavage and alkoxyl radical formation, is highly chain amplified in the presence of a pyridine base such as lutidine. Density functional theory calculations support a mechanism in which the alkoxyl radicals react with lutidine via proton-coupled electron transfer (PCET) to produce lutidinyl radicals (BH•). A strong electron donor, BH• is proposed to reduce another alkoxypyridinium cation, leading to chain amplification, with quantum yields approaching 200. Kinetic data and calculations support the formation of a second, stronger reducing agent: a hydrogen-bonded complex between BH• and another base molecule (BH•···B). Global fitting of the quantum yield data for the reactions of four pyridinium salts (4-phenyl and 4-cyano with N-methoxy and N-ethoxy substituents) led to a consistent set of kinetic parameters. The chain nature of the reaction allowed rate constants to be determined from steady-state kinetics and independently determined chain-termination rate constants. The rate constant of the reaction of CH3O• with lutidine to form BH•, k1, is ~6 × 10(6) M(–1) s(–1); that of CH3CH2O• is ~9 times larger. Reaction of CD3O• showed a deuterium isotope effect of ~6.5. Replacing lutidine by 3-chloropyridine, a weaker base, decreases k1 by a factor of ~400.

  5. Ion beam modifications of defect sub-structure of calcite cleavages

    Indian Academy of Sciences (India)

    , brought about by He+ ion-bombardment of calcite cleavages (100), have been carried out. Optical and scanning ... stimulation. Planar plastic anisotropy has been studied on irradiated calcite cleavages by measurement of microhardness.

  6. Experimental and computational investigations of Ser10 and Lys13 in the binding and cleavage of DNA substrates by Escherichia coli DNA topoisomerase I (United States)

    Strahs, Daniel; Zhu, Chang-Xi; Cheng, Bokun; Chen, Jason; Tse-Dinh, Yuk-Ching


    Ser10 and Lys13 found near the active site tyrosine of Escherichia coli DNA topoisomerase I are conserved among the type IA topoisomerases. Site-directed mutagenesis of these two residues to Ala reduced the relaxation and DNA cleavage activity, with a more severe effect from the Lys13 mutation. Changing Ser10 to Thr or Lys13 to Arg also resulted in loss of DNA cleavage and relaxation activity of the enzyme. In simulations of the open form of the topoisomerase–DNA complex, Lys13 interacts directly with Glu9 (proposed to be important in the catalytic mechanism). This interaction is removed in the K13A mutant, suggesting the importance of lysine as either a proton donor or a stabilizing cation during strand cleavage, while the Lys to Arg mutation significantly distorts catalytic residues. Ser10 forms a direct hydrogen bond with a phosphate group near the active site and is involved in direct binding of the DNA substrate; this interaction is disturbed in the S10A and S10T mutants. This combination of a lysine and a serine residue conserved in the active site of type IA topoisomerases may be required for correct positioning of the scissile phosphate and coordination of catalytic residues relative to each other so that DNA cleavage and subsequent strand passage can take place. PMID:16582104

  7. Bonding silicon nitride using glass-ceramic

    International Nuclear Information System (INIS)

    Dobedoe, R.S.


    Silicon nitride has been successfully bonded to itself using magnesium-aluminosilicate glass and glass-ceramic. For some samples, bonding was achieved using a diffusion bonder, but in other instances, following an initial degassing hold, higher temperatures were used in a nitrogen atmosphere with no applied load. For diffusion bonding, a small applied pressure at a temperature below which crystallisation occurs resulted in intimate contact. At slightly higher temperatures, the extent of the reaction at the interface and the microstructure of the glass-ceramic joint was highly sensitive to the bonding temperature. Bonding in a nitrogen atmosphere resulted in a solution-reprecipitation reaction. A thin layer of glass produced a ''dry'', glass-free joint, whilst a thicker layer resulted in a continuous glassy join across the interface. The chromium silicide impurities within the silicon nitride react with the nucleating agent in the glass ceramic, which may lead to difficulty in producing a fine glass-ceramic microstructure. Slightly lower temperatures in nitrogen resulted in a polycrystalline join but the interfacial contact was poor. It is hoped that one of the bonds produced may be developed to eventually form part of a graded joint between silicon nitride and a high temperature nickel alloy. (orig.)

  8. Fluoroquinolones stimulate the DNA cleavage activity of topoisomerase IV by promoting the binding of Mg(2+) to the second metal binding site. (United States)

    Oppegard, Lisa M; Schwanz, Heidi A; Towle, Tyrell R; Kerns, Robert J; Hiasa, Hiroshi


    Fluoroquinolones target bacterial type IIA topoisomerases, DNA gyrase and topoisomerase IV (Topo IV). Fluoroquinolones trap a topoisomerase-DNA covalent complex as a topoisomerase-fluoroquinolone-DNA ternary complex and ternary complex formation is critical for their cytotoxicity. A divalent metal ion is required for type IIA topoisomerase-catalyzed strand breakage and religation reactions. Recent studies have suggested that type IIA topoisomerases use two metal ions, one structural and one catalytic, to carry out the strand breakage reaction. We conducted a series of DNA cleavage assays to examine the effects of fluoroquinolones and quinazolinediones on Mg(2+)-, Mn(2+)-, or Ca(2+)-supported DNA cleavage activity of Escherichia coli Topo IV. In the absence of any drug, 20-30 mM Mg(2+) was required for the maximum levels of the DNA cleavage activity of Topo IV, whereas approximately 1mM of either Mn(2+) or Ca(2+) was sufficient to support the maximum levels of the DNA cleavage activity of Topo IV. Fluoroquinolones promoted the Topo IV-catalyzed strand breakage reaction at low Mg(2+) concentrations where Topo IV alone could not efficiently cleave DNA. At low Mg(2+) concentrations, fluoroquinolones may stimulate the Topo IV-catalyzed strand breakage reaction by promoting Mg(2+) binding to metal binding site B through the structural distortion in DNA. As Mg(2+) concentration increases, fluoroquinolones may inhibit the religation reaction by either stabilizing Mg(2+) at site B or inhibition the binding of Mg(2+) to site A. This study provides a molecular basis of how fluoroquinolones stimulate the Topo IV-catalyzed strand breakage reaction by modulating Mg(2+) binding. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Fluoroquinolones stimulate the DNA cleavage activity of topoisomerase IV by promoting the binding of Mg2+ to the second metal binding site (United States)

    Oppegard, Lisa M.; Schwanz, Heidi A.; Towle, Tyrell R.; Kerns, Robert J.; Hiasa, Hiroshi


    Background Fluoroquinolones target bacterial type IIA topoisomerases, DNA gyrase and topoisomerase IV (Topo IV). Fluoroquinolones trap a topoisomerase-DNA covalent complex as a topoisomerase-fluoroquinolone-DNA ternary complex and ternary complex formation is critical for their cytotoxicity. A divalent metal ion is required for type IIA topoisomerase-catalyzed strand breakage and religation reactions. Recent studies have suggested that type IIA topoisomerases use two metal ions, one structural and one catalytic, to carry out the strand breakage reaction. Methods We conducted a series of DNA cleavage assays to examine the effects of fluoroquinolones and quinazolinediones on Mg2+-, Mn2+-, or Ca2+-supported DNA cleavage activity of Esherichia coli Topo IV. Results In the absence of any drug, 20–30 mM Mg2+ was required for the maximum levels of the DNA cleavage activity of Topo IV, whereas approximately 1 mM of either Mn2+ or Ca2+ was sufficient to support the maximum levels of the DNA cleavage activity of Topo IV. Fluoroquinolones promoted the Topo IV-catalyzed strand breakage reaction at low Mg2+ concentrations where Topo IV alone could not efficiently cleave DNA. Conclusions and General Significance At low Mg2+ concentrations, fluoroquinolones may stimulate the Topo IV-catalyzed strand breakage reaction by promoting Mg2+ binding to metal binding site B through the structural distortion in DNA. As Mg2+ concentration increases, fluoroquinolones may inhibit the religation reaction by either stabilizing Mg2+ at site B or inhibition the binding of Mg2+ to site A. This study provides a molecular basis of how fluoroquinolones stimulate the Topo IV-catalyzed strand breakage reaction by modulating Mg2+ binding. PMID:26723176

  10. Reversible conversion of valence-tautomeric copper metal-organic frameworks dependent single-crystal-to-single-crystal oxidation/reduction: a redox-switchable catalyst for C-H bonds activation reaction. (United States)

    Huang, Chao; Wu, Jie; Song, Chuanjun; Ding, Ran; Qiao, Yan; Hou, Hongwei; Chang, Junbiao; Fan, Yaoting


    Upon single-crystal-to-single-crystal (SCSC) oxidation/reduction, reversible structural transformations take place between the anionic porous zeolite-like Cu(I) framework and a topologically equivalent neutral Cu(I)Cu(II) mixed-valent framework. The unique conversion behavior of the Cu(I) framework endowed it as a redox-switchable catalyst for the direct arylation of heterocycle C-H bonds.

  11. Mechanistic Exploration of the Competition Relationship between a Ketone and C═C, C═N, or C═S Bond in the Rh(III)-Catalyzed Carbocyclization Reactions. (United States)

    Xing, Yang-Yang; Liu, Jian-Biao; Sun, Chuan-Zhi; Huang, Fang; Chen, De-Zhan


    The introduction of a C═O, C═C, C═S, or C═N bond has emerged as an effective strategy for carbocycle synthesis. A computational mechanistic study of Rh(III)-catalyzed coupling of alkynes with enaminones, sulfoxonium ylides, or α-carbonyl-nitrones was carried out. Our results uncover the roles of dual directing groups in the three substrates and confirm that the ketone acts as the role of the directing group while the C═C, C═N, or C═S bond serves as the cyclization site. By comparing the coordination of the ketone versus the C═C, C═N, or C═S bond, as well as the chemoselectivity concerning the six- versus five-membered formation, a competition relationship is revealed within the dual directing groups. Furthermore, after the alkyne insertion, instead of the originally proposed direct reductive elimination mechanism, the ketone enolization is found to be essential prior to the reductive elimination. The following C(sp 2 )-C(sp 2 ) reductive elimination is more favorable than the C(sp 3 )-C(sp 2 ) formation, which can be explained by the aromaticity difference in the corresponding transition states. The substituent effect on controlling the selectivity was also discussed.

  12. Frustration across the periodic table: heterolytic cleavage of dihydrogen by metal complexes. (United States)

    Bullock, R Morris; Chambers, Geoffrey M


    This perspective examines frustrated Lewis pairs (FLPs) in the context of heterolytic cleavage of H 2 by transition metal complexes, with an emphasis on molecular complexes bearing an intramolecular Lewis base. FLPs have traditionally been associated with main group compounds, yet many reactions of transition metal complexes support a broader classification of FLPs that includes certain types of transition metal complexes with reactivity resembling main group-based FLPs. This article surveys transition metal complexes that heterolytically cleave H 2 , which vary in the degree that the Lewis pairs within these systems interact. Many of the examples include complexes bearing a pendant amine functioning as the base with the metal functioning as the hydride acceptor. Consideration of transition metal compounds in the context of FLPs can inspire new innovations and improvements in transition metal catalysis.This article is part of the themed issue 'Frustrated Lewis pair chemistry'. © 2017 The Author(s).

  13. Frustration across the periodic table: heterolytic cleavage of dihydrogen by metal complexes

    Energy Technology Data Exchange (ETDEWEB)

    Bullock, R. Morris; Chambers, Geoffrey M.


    This Perspective examines the field of Frustrated Lewis Pairs (FLPs) in the context of transition metal mediated heterolytic cleavage of H2, with a particular emphasis on molecular complexes bearing an intramolecular Lewis base. FLPs have traditionally been associated with group compounds, yet many transition metal reactions support a broader classification of FLPs to include certain types of transition metal complexes with reactivity resembling main group based FLPs. This article surveys transition metal complexes that heterolytically cleave H2, which vary in the degree that the Lewis pairs within these systems interact. Particular attention is focused on complexes bearing a pendant amine function as the base. Consideration of transition metal compounds in the context of FLPs can inspire new innovations and improvements in transition metal catalysis.

  14. Prediction of proteasome cleavage motifs by neural networks

    DEFF Research Database (Denmark)

    Kesimir, C.; Nussbaum, A.K.; Schild, H.


    physiological conditions. Our algorithm has been trained not only on in vitro data, but also on MHC Class I ligand data, which reflect a combination of immunoproteasome and constitutive proteasome specificity. This feature, together with the use of neural networks, a non-linear classification technique, make...... the prediction of MHC Class I ligand boundaries more accurate: 65% of the cleavage sites and 85% of the non-cleavage sites are correctly determined. Moreover, we show that the neural networks trained on the constitutive proteasome data learns a specificity that differs from that of the networks trained on MHC...... algorithms published so far were trained on data from in vitro digestion experiments with constitutive proteasomes. As a result, they did not take into account the characteristics of the structurally modified proteasomes-often called immunoproteasomes-found in cells stimulated by gamma-interferon under...

  15. Sequence specific inhibition of DNA restriction enzyme cleavage by PNA

    DEFF Research Database (Denmark)

    Nielsen, P.E.; Egholm, M.; Berg, R.H.


    Plasmids containing double-stranded 10-mer PNA (peptide nucleic acid chimera) targets proximally flanked by two restriction enzyme sites were challenged with the complementary PNA or PNAs having one or two mismatches, and the effect on the restriction enzyme cleavage of the flanking sites...... was assayed. The following PNAs were used: T10-LysNH2, T5CT4-LysNH2 and T2CT2CT4-LysNH2 and the corresponding targets cloned into pUC 19 were flanked by BamH1, Sal1 or Pstl sites, respectively. In all cases it was found that complete inhibition of restriction enzyme cleavage was obtained...

  16. Material grain size and crack size influences on cleavage fracturing. (United States)

    Armstrong, Ronald W


    A review is given of the analogous dependence on reciprocal square root of grain size or crack size of fracture strength measurements reported for steel and other potentially brittle materials. The two dependencies have much in common. For onset of cleavage in steel, attention is focused on relationship of the essentially athermal fracture stress compared with a quite different viscoplastic yield stress behaviour. Both grain-size-dependent stresses are accounted for in terms of dislocation pile-up mechanics. Lowering of the cleavage stress occurs in steel because of carbide cracking. For crack size dependence, there is complication of localized crack tip plasticity in fracture mechanics measurements. Crack-size-dependent conventional and indentation fracture mechanics measurements are described also for results obtained on the diverse materials: polymethylmethacrylate, silicon crystals, alumina polycrystals and WC-Co (cermet) composites. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  17. Effects of Cysteamine on Sheep Embryo Cleavage Rates

    Directory of Open Access Journals (Sweden)

    Sinem Ö. ENGİNLER


    Full Text Available Oxidative stress during in vitro culture leads to defects in development of gametes and embryos. Several antioxidants such as cysteamine, L-ascorbic acid, beta mercaptoethanol, cysteine, glutathione, proteins, vitamins have been used to supplement culture media to counter the oxidative stress. This study was conducted to detect the effect of adding cysteamine to the maturation medium to subsequent cleavage rates of sheep embryos. Totally 604 ovaries were obtained by ten replica and 2060 oocytes were collected. The cumulus oocyte complexes were recovered by the slicing method. A total of 1818 selected oocytes were divided into two groups and used for maturation (88.25%. The first group was created as supplemented with cysteamine (Group A and second group (Group B, control without cysteamine in TCM-199. The two groups were incubated for 24 h at 38.8 °C in an atmosphere of 5% CO2 in humidified air for in vitro maturation (IVM. After IVM, oocytes were fertilized with 50 x 107 / mL fresh ram semen in BSOF medium for 18 h. After fertilization, maturation groups were divided into two subgroups with different culture media: Group AI-SOF (Synthetic Oviduct Fluid medium, Group AII-CR1aa (Charles Rosencrans medium, Group BI-SOF and Group BII-CR1aa were achieved. Cleavage rates were evaluated at day 2. post insemination. The rates of cleavage were detected as 59.54% (184/309, 55.44% (173/312, 65.34% (215/329, 59.34% (200/337 respectively, with showing no statistically significant difference between the groups at the level of P>0.05. In conclusion, supplementing cysteamine to maturation media in TCM-199 did not affect the cleavage rates of sheep embryos in SOF and CR1aa culture media.

  18. Fracture behaviour and cleavage initiation in hypoeutectoid pearlitic steel

    Czech Academy of Sciences Publication Activity Database

    Holzmann, Miloslav; Jurášek, L.; Dlouhý, Ivo


    Roč. 148, č. 1 (2007), s. 13-28 ISSN 0376-9429 R&D Projects: GA AV ČR IAA200410502; GA AV ČR 1QS200410502 Institutional research plan: CEZ:AV0Z20410507 Keywords : cleavage fracture * fracture initiation * pearlitic steel Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.003, year: 2007

  19. A Secreted Protein Promotes Cleavage Furrow Maturation during Cytokinesis


    Xu, Xuehong; Vogel, Bruce E.


    Developmental modifications in cell shape depend on dynamic interactions between the extracellular matrix and cytoskeleton. In contrast, existing models of cytokinesis describe substantial cell surface remodeling that involves many intracellular regulatory and structural proteins but includes no contribution from the extracellular matrix [1–3]. Here, we show that extracellular hemicentins assemble at the cleavage furrow of dividing cells in the C. elegans germline and in preimplantation mouse...

  20. C-S Bond formation by

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 129; Issue 2. Transition metal-promoted synthesis of 2-aryl/heteroaryl-thioquinazoline: C-S Bond formation by “Chan-Lam Cross-Coupling” Reaction. SATYA KARUNA PULAKHANDAM NARESH KUMAR KATARI RAVI PRAKASH REDDY MANDA. Regular Article ...

  1. New Architectures in Hydrogen Bond Catalysis (United States)

    Rodriguez, Andrew A.; Yoo, Hoseong; Ziller, Joseph W.; Shea, Kenneth J.


    New achiral sulfamide, phosphoric triamide, and thiophosphoric triamide compounds have been synthesized. Their activity as hydrogen bond catalysts for the Friedel-Crafts and Baylis-Hillman reactions compares favorably with that of a known and active thiourea catalyst. The new compounds were also studied by X-ray crystallography and their solid state structures are described. PMID:20160884

  2. DNA cleavage by Type ISP Restriction–Modification enzymes is initially targeted to the 3′-5′ strand (United States)

    van Aelst, Kara; Šišáková, Eva; Szczelkun, Mark D.


    The mechanism by which a double-stranded DNA break is produced following collision of two translocating Type I Restriction–Modification enzymes is not fully understood. Here, we demonstrate that the related Type ISP Restriction–Modification enzymes LlaGI and LlaBIII can cooperate to cleave DNA following convergent translocation and collision. When one of these enzymes is a mutant protein that lacks endonuclease activity, DNA cleavage of the 3′-5′ strand relative to the wild-type enzyme still occurs, with the same kinetics and at the same collision loci as for a reaction between two wild-type enzymes. The DNA nicking activity of the wild-type enzyme is still activated by a protein variant entirely lacking the Mrr nuclease domain and by a helicase mutant that cannot translocate. However, the helicase mutant cannot cleave the DNA despite the presence of an intact nuclease domain. Cleavage by the wild-type enzyme is not activated by unrelated protein roadblocks. We suggest that the nuclease activity of the Type ISP enzymes is activated following collision with another Type ISP enzyme and requires adenosine triphosphate binding/hydrolysis but, surprisingly, does not require interaction between the nuclease domains. Following the initial rapid endonuclease activity, additional DNA cleavage events then occur more slowly, leading to further processing of the initial double-stranded DNA break. PMID:23221632

  3. Copper(II) complexes with 4-hydroxyacetophenone-derived acylhydrazones: Synthesis, characterization, DNA binding and cleavage properties (United States)

    Gup, Ramazan; Gökçe, Cansu; Aktürk, Selçuk


    Two new Cu(II) complexes of Schiff base-hydrazone ligands, hydroxy-N‧-[(1Z)-1-(4-hydroxyphenyl)ethylidene]benzohydrazide [H3L1] and ethyl 2-(4-(1-(2-(4-(2-ethoxy-2-oxoethoxy)benzoyl)hydrazono)ethyl)phenoxy)acetate (HL2) have been synthesized and then characterized by microcopy and spectral studies. X-ray powder diffraction illustrates that [Cu(L2)2] complex is crystalline in nature whereas [Cu(H2L1)2]·2H2O has an amorphous structure. Binding of the copper complexes with Calf thymus DNA (CT-DNA) has been investigated by UV-visible spectra, exhibiting non-covalent binding to CT-DNA. DNA cleavage experiments have been also investigated by agarose gel electrophoresis in the presence and absence of an oxidative agent (H2O2). The effect of complex concentration on the DNA cleavage reaction has been also studied. Both copper complexes show nuclease activity, which significantly depends on concentrations of the complexes, in the presence of H2O2 through oxidative mechanism whereas they slightly cleavage DNA in the absence an oxidative agent.

  4. DNA cleavage by Type ISP Restriction-Modification enzymes is initially targeted to the 3'-5' strand. (United States)

    van Aelst, Kara; Šišáková, Eva; Szczelkun, Mark D


    The mechanism by which a double-stranded DNA break is produced following collision of two translocating Type I Restriction-Modification enzymes is not fully understood. Here, we demonstrate that the related Type ISP Restriction-Modification enzymes LlaGI and LlaBIII can cooperate to cleave DNA following convergent translocation and collision. When one of these enzymes is a mutant protein that lacks endonuclease activity, DNA cleavage of the 3'-5' strand relative to the wild-type enzyme still occurs, with the same kinetics and at the same collision loci as for a reaction between two wild-type enzymes. The DNA nicking activity of the wild-type enzyme is still activated by a protein variant entirely lacking the Mrr nuclease domain and by a helicase mutant that cannot translocate. However, the helicase mutant cannot cleave the DNA despite the presence of an intact nuclease domain. Cleavage by the wild-type enzyme is not activated by unrelated protein roadblocks. We suggest that the nuclease activity of the Type ISP enzymes is activated following collision with another Type ISP enzyme and requires adenosine triphosphate binding/hydrolysis but, surprisingly, does not require interaction between the nuclease domains. Following the initial rapid endonuclease activity, additional DNA cleavage events then occur more slowly, leading to further processing of the initial double-stranded DNA break.

  5. DNAzyme-Controlled Cleavage of Dimer and Trimer Origami Tiles. (United States)

    Wu, Na; Willner, Itamar


    Dimers of origami tiles are bridged by the Pb(2+)-dependent DNAzyme sequence and its substrate or by the histidine-dependent DNAzyme sequence and its substrate to yield the dimers T1-T2 and T3-T4, respectively. The dimers are cleaved to monomer tiles in the presence of Pb(2+)-ions or histidine as triggers. Similarly, trimers of origami tiles are constructed by bridging the tiles with the Pb(2+)-ion-dependent DNAzyme sequence and the histidine-dependent DNAzyme sequence and their substrates yielding the trimer T1-T5-T4. In the presence of Pb(2+)-ions and/or histidine as triggers, the programmed cleavage of trimer proceeds. Using Pb(2+) or histidine as trigger cleaves the trimer to yield T5-T4 and T1 or the dimer T1-T5 and T4, respectively. In the presence of Pb(2+)-ions and histidine as triggers, the cleavage products are the monomer tiles T1, T5, and T4. The different cleavage products are identified by labeling the tiles with 0, 1, or 2 streptavidin labels and AFM imaging.

  6. Numerical modeling of ductile tearing effects on cleavage fracture toughness

    International Nuclear Information System (INIS)

    Dodds, R.H. Jr.; Tang, M.; Anderson, T.L.


    Experimental studies demonstrate a significant effect of specimen size, a/W ratio and prior ductile tearing on cleavage fracture toughness values (J c ) measured in the ductile-to-brittle transition region of ferritic materials. In the lower-transition region, cleavage fracture often occurs under conditions of large-scale yielding but without prior ductile crack extension. The increased toughness develops when plastic zones formed at the crack tip interact with nearby specimen surfaces which relaxes crack-tip constraint (stress triaxiality). In the mid-to-upper transition region, small amounts of ductile crack extension (often c -values. Previous work by the authors described a micromechanics fracture model to correct measured J c -values for the mechanistic effects of large-scale yielding. This new work extends the model to also include the influence of ductile crack extension prior to cleavage. The paper explores development of the new model, provides necessary graphs and procedures for its application and demonstrates the effects of the model on fracture data sets for two pressure vessel steels (A533B and A515)


    Latefi, Nazlie S.; Pedraza, Liliana; Schohl, Anne; Li, Ziwei; Ruthazer, Edward S.


    Cadherins are initially synthesized bearing a prodomain that is thought to limit adhesion during early stages of biosynthesis. Functional cadherins lack this prodomain, raising the intriguing possibility that cells may utilize prodomain cleavage as a means to temporally or spatially regulate adhesion after delivery of cadherin to the cell surface. In support of this idea, immunostaining for the prodomain of zebrafish N-cadherin revealed enriched labeling at neuronal surfaces at the soma and along axonal processes. To determine whether post-translational cleavage of the prodomain affects synapse formation, we imaged Rohon-Beard cells in zebrafish embryos expressing GFP-tagged wild-type N-cadherin (NCAD-GFP) or a GFP-tagged N-cadherin mutant expressing an uncleavable prodomain (PRON-GFP) rendering it non-adhesive. NCAD-GFP accumulated at synaptic microdomains in a developmentally regulated manner, and its overexpression transiently accelerated synapse formation. PRON-GFP was much more diffusely distributed along the axon and its overexpression delayed synapse formation. Our results support the notion that N-cadherin serves to stabilize pre- to postsynaptic contacts early in synapse development and suggests that regulated cleavage of the N-cadherin prodomain may be a mechanism by which the kinetics of synaptogenesis are regulated. PMID:19365814

  8. Stable gold(III) catalysts by oxidative addition of a carbon-carbon bond. (United States)

    Wu, Chung-Yeh; Horibe, Takahiro; Jacobsen, Christian Borch; Toste, F Dean


    Low-valent late transition-metal catalysis has become indispensable to chemical synthesis, but homogeneous high-valent transition-metal catalysis is underdeveloped, mainly owing to the reactivity of high-valent transition-metal complexes and the challenges associated with synthesizing them. Here we report a carbon-carbon bond cleavage at ambient conditions by a Au(i) complex that generates a stable Au(iii) cationic complex. In contrast to the well-established soft and carbophilic Au(i) catalyst, this Au(iii) complex exhibits hard, oxophilic Lewis acidity. For example, we observed catalytic activation of α,β-unsaturated aldehydes towards selective conjugate additions as well as activation of an unsaturated aldehyde-allene for a [2 + 2] cycloaddition reaction. The origin of the regioselectivity and catalytic activity was elucidated by X-ray crystallographic analysis of an isolated Au(iii)-activated cinnamaldehyde intermediate. The concepts revealed suggest a strategy for accessing high-valent transition-metal catalysis from readily available precursors.

  9. Structures, bonding and reactivity of iron and manganese high ...

    Indian Academy of Sciences (India)

    Direct structural comparison to iron and manganese-oxo species are made and the observed similarity and differences among them are attributed to the intricate metal–oxygen bonding. By thoroughly probing the bonding in all these species, their reactivity towards common chemical reactions such as C–H activation and ...

  10. Hydrogen bond and lifetime dynamics in diluted alcohols

    NARCIS (Netherlands)

    Salamatova, Evgeniia; Cunha, Ana V.; Shinokita, Keisuke; Jansen, Thomas L. C.; Pshenichnikov, Maxim S.


    Hydrogen-bonding plays a crucial role in many chemical and biochemical reactions. Alcohols, with their hydrophilic and hydrophobic groups, constitute an important class of hydrogen-bonding molecules with functional tuning possibilities through changes in the hydrophobic tails. Recent studies

  11. Copper wire bonding

    CERN Document Server

    Chauhan, Preeti S; Zhong, ZhaoWei; Pecht, Michael G


    This critical volume provides an in-depth presentation of copper wire bonding technologies, processes and equipment, along with the economic benefits and risks.  Due to the increasing cost of materials used to make electronic components, the electronics industry has been rapidly moving from high cost gold to significantly lower cost copper as a wire bonding material.  However, copper wire bonding has several process and reliability concerns due to its material properties.  Copper Wire Bonding book lays out the challenges involved in replacing gold with copper as a wire bond material, and includes the bonding process changes—bond force, electric flame off, current and ultrasonic energy optimization, and bonding tools and equipment changes for first and second bond formation.  In addition, the bond–pad metallurgies and the use of bare and palladium-coated copper wires on aluminum are presented, and gold, nickel and palladium surface finishes are discussed.  The book also discusses best practices and re...

  12. Quantification of the selective activation of C--H bonds in short chain alkanes: The reactivity of ethane, propane, isobutane, n-butane, and neopentane on Ir(111)

    International Nuclear Information System (INIS)

    Johnson, D.F.; Weinberg, W.H.


    The initial probabilities of precursor-mediated, dissociative chemisorption of the saturated hydrocarbons 13 C-labeled ethane, propane, isobutane, n-butane, and neopentane on the close-packed Ir(111) surface have been measured. The selective activation of primary (1 degree), secondary (2 degree), and tertiary (3 degree) C--H bonds has been quantified by examining the reactivities of the selectively deuterated isotopomers of propane, C 3 H 8 , CH 3 CD 2 CH 3 , and C 3 D 8 , and of isobutane, (CH 3 ) 3 CH, (CH 3 ) 3 CD, and (CD 3 ) 3 CH. With respect to the bottom of the physically adsorbed well for each hydrocarbon, the apparent C--H bond activation energies have been found to be 10.4±0.3 kcal/mol (ethane), 11.4±0.3 kcal/mol (propane), 11.5±0.3 kcal/mol (n-butane), 11.3±0.3 kcal/mol (i-butane), and 11.3±0.3 kcal/mol (neopentane). For all the alkanes examined, the ratios of the preexponential factors of the rate coefficients of reaction and desorption are 1x10 -2 . The C--D bond activation energies are higher than the corresponding C--H bond activation energies by 480 cal/mol (ethane), 630 cal/mol (propane), and 660 cal/mol (i-butane). By analyzing the primary kinetic isotope effects for the selectively deuterated isotopomers of propane and isobutane, the 2 degree C--H bond activation energy is found to be 310±160 cal/mol less than the 1 degree C--H bond activation energy on this surface, and similarly, 3 degree C--H bond cleavage is less by 80±70 cal/mol. The quantification of the branching ratios within the C--H bond activation channel for propane and isobutane on this surface shows that the formation of 1 degree-alkyl intermediates is, in general, favored over the formation of either 2 degree- or 3 degree-alkyl intermediates. (Abstract Truncated)

  13. γ-Secretase Modulators and APH1 Isoforms Modulate γ-Secretase Cleavage but Not Position of ε-Cleavage of the Amyloid Precursor Protein (APP.

    Directory of Open Access Journals (Sweden)

    Christian B Lessard

    Full Text Available The relative increase in Aβ42 peptides from familial Alzheimer disease (FAD linked APP and PSEN mutations can be related to changes in both ε-cleavage site utilization and subsequent step-wise cleavage. Cleavage at the ε-site releases the amyloid precursor protein (APP intracellular domain (AICD, and perturbations in the position of ε-cleavage are closely associated with changes in the profile of amyloid β-protein (Aβ species that are produced and secreted. The mechanisms by which γ-secretase modulators (GSMs or FAD mutations affect the various γ-secretase cleavages to alter the generation of Aβ peptides have not been fully elucidated. Recent studies suggested that GSMs do not modulate ε-cleavage of APP, but the data were derived principally from recombinant truncated epitope tagged APP substrate. Here, using full length APP from transfected cells, we investigated whether GSMs modify the ε-cleavage of APP under more native conditions. Our results confirmed the previous findings that ε-cleavage is insensitive to GSMs. In addition, fenofibrate, an inverse GSM (iGSM, did not alter the position or kinetics of ε-cleavage position in vitro. APH1A and APH1B, a subunit of the γ-secretase complex, also modulated Aβ42/Aβ40 ratio without any alterations in ε-cleavage, a result in contrast to what has been observed with PS1 and APP FAD mutations. Consequently, GSMs and APH1 appear to modulate γ-secretase activity and Aβ42 generation by altering processivity but not ε-cleavage site utilization.

  14. Mechanism for cyclization reaction by clavaminic acid synthase. Insights from modeling studies. (United States)

    Borowski, Tomasz; de Marothy, Sven; Broclawik, Ewa; Schofield, Christopher J; Siegbahn, Per E M


    The mechanism of the oxidative cyclization reaction catalyzed by clavaminic acid synthase (CAS) was studied in silico. First, a classical molecular dynamics (MD) simulation was performed to obtain a realistic structure of the CAS-Fe(IV)=O-succinate-substrate complex; then potential of mean force (PMF) was calculated to assess the feasibility of the beta-lactam ring, more specifically its C4' corner, approaching the oxo atom. Based on the MD structure, a relatively large model of the active site region was selected and used in the B3LYP investigation of the reaction mechanism. The computational results suggest that once the oxoferryl species is formed, the oxidative cyclization catalyzed by CAS most likely involves either a mechanism involving C4'(S)-H bond cleavage of the monocyclic beta-lactam ring, or a biosynthetically unprecedented mechanism comprising (1) oxidation of the hydroxyl group of PCA to an O-radical, (2) retro-aldol-like decomposition of the O-radical to an aldehyde and a C-centered radical, which is stabilized by the captodative effect, (3) abstraction of a hydrogen atom from the C4'(S) position of the C-centered radical by the Fe(III)-OH species yielding an azomethine ylide, and (4) 1,3-dipolar cycloaddition to the ylide with aldehyde acting as a dipolarophile. Precedent for the new proposed mechanism comes from the reported synthesis of oxapenams via 1,3-dipolar cycloaddition reactions of aldehydes and ketones.

  15. Reaction product imaging

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, D.W. [Sandia National Laboratories, Livermore, CA (United States)


    Over the past few years the author has investigated the photochemistry of small molecules using the photofragment imaging technique. Bond energies, spectroscopy of radicals, dissociation dynamics and branching ratios are examples of information obtained by this technique. Along with extending the technique to the study of bimolecular reactions, efforts to make the technique as quantitative as possible have been the focus of the research effort. To this end, the author has measured the bond energy of the C-H bond in acetylene, branching ratios in the dissociation of HI, the energetics of CH{sub 3}Br, CD{sub 3}Br, C{sub 2}H{sub 5}Br and C{sub 2}H{sub 5}OBr dissociation, and the alignment of the CD{sub 3} fragment from CD{sub 3}I photolysis. In an effort to extend the technique to bimolecular reactions the author has studied the reaction of H with HI and the isotopic exchange reaction between H and D{sub 2}.

  16. Facile electrochemical detection of botulinum neurotoxin type E using a two-step proteolytic cleavage. (United States)

    Park, Seonhwa; Shin, Yu Mi; Song, Ji-Joon; Yang, Haesik


    Facile electrochemical methods for measuring protease concentration or protease activity are essential for point-of-care testing of toxic proteases. However, electrochemical detection of proteases, such as botulinum neurotoxin type E (BoNT/E), that cleave a peptide bond between two specific amino acid residues is challenging. This study reports a facile and sensitive electrochemical method for BoNT/E detection. The method is based on a two-step proteolytic cleavage using a target BoNT/E light chain (BoNT/E-LC) and an externally supplemented exopeptidase, L-leucine-aminopeptidase (LAP). BoNT/E-LC cleaves a peptide bond between arginine and isoleucine in IDTQNRQIDRI-4-amino-1-naphthol (oligopeptide-AN) to generate isoleucine-AN. Subsequently, LAP cleaves a bond between isoleucine and AN to liberate a free electroactive AN species. The liberated AN participates in electrochemical-chemical-chemical (ECC) redox cycling involving Ru(NH3)6(3+), AN, and a reducing agent, which allows a high signal amplification. Electrochemical detection is carried out without surface modification of indium-tin oxide electrodes. We show that dithiothreitol is beneficial for enhancing the enzymatic activity of BoNT/E-LC and also for achieving a fast ECC redox cycling. An incubation temperature of 37°C and the use of phosphate buffered saline (PBS) buffer resulted in optimal signal-to-background ratios for efficient BoNT/E detection. BoNT/E-LC could be detected at concentrations of approximately 2.0 pg/mL, 0.2, and 3 ng/mL after 4h, 2h, and 15 min incubation in PBS buffer, respectively, and approximately 0.3 ng/mL after 2-h incubation in bottled water. The method developed could be applied in fast, sensitive, and selective detection of any protease that cleaves a peptide bond between two specific amino acid residues. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Reaction of a germylene, stannylene, or plumbylene with trimethylaluminum and trimethylgallium: insertion into Al-C or ga-C bonds, a reversible metal-carbon insertion equilibrium, and a new route to diplumbenes. (United States)

    Erickson, Jeremy D; Fettinger, James C; Power, Philip P


    The reaction of the tetrylenes Ge(Ar((Me)6))2, Sn(Ar((Me)6))2, and Pb(Ar((Me)6))2 [Ar((Me)6) = C6H3-2,6-(C6H2-2,4,6-(CH3)3)2] with the group 13 metal alkyls trimethylaluminum and trimethylgallium afforded (Ar((Me)6))2Ge(Me)AlMe2 (1), (Ar((Me)6))2Ge(Me)GaMe2 (2), and (Ar(Me6))2Sn(Me)GaMe2 (3) in good yields via insertion reaction routes. In contrast, the reaction of AlMe3 with Sn(Ar((Me)6))2 afforded the [1.1.1]propellane analogue Sn2{Sn(Me)Ar((Me)6)}3 (5) in low yield, and the reaction of AlMe3 or GaMe3 with Pb(Ar((Me)6))2 resulted in the formation of the diplumbene {Pb(Me)Ar((Me)6)}2 (6) and AlAr((Me)6)Me2 (7) or GaAr((Me)6)Me2 (8) via metathesis. The reaction of Sn(Ar((Me)6))2 with gallium trialkyls was found to be reversible under ambient conditions and analyzed through the reaction of Sn(Ar((Me)6))2 with GaEt3 to form (Ar((Me)6))2Sn(Et)GaEt2 (4), which displayed a dissociation constant Kdiss and ΔGdiss of 8.09(6) × 10(-3) and 11.8(9) kJ mol(-1) at 296 °C. The new compounds were characterized by X-ray crystallography, NMR ((1)H, (13)C, (119)Sn, and (207)Pb), IR, and UV-vis spectroscopies.

  18. Phenylpropanoid 2,3-dioxygenase involved in the cleavage of the ferulic acid side chain to form vanillin and glyoxylic acid in Vanilla planifolia. (United States)

    Negishi, Osamu; Negishi, Yukiko


    Enzyme catalyzing the cleavage of the phenylpropanoid side chain was partially purified by ion exchange and gel filtration column chromatography after (NH 4 ) 2 SO 4 precipitation. Enzyme activities were dependent on the concentration of dithiothreitol (DTT) or glutathione (GSH) and activated by addition of 0.5 mM Fe 2+ . Enzyme activity for ferulic acid was as high as for 4-coumaric acid in the presence of GSH, suggesting that GSH acts as an endogenous reductant in vanillin biosynthesis. Analyses of the enzymatic reaction products with quantitative NMR (qNMR) indicated that an amount of glyoxylic acid (GA) proportional to vanillin was released from ferulic acid by the enzymatic reaction. These results suggest that phenylpropanoid 2,3-dioxygenase is involved in the cleavage of the ferulic acid side chain to form vanillin and GA in Vanilla planifolia.

  19. Shape Bonding method (United States)

    Pontius, James T. (Inventor)


    The present invention is directed to a method of bonding at least two surfaces together. The methods step of the present invention include applying a strip of adhesive to a first surface along a predefined outer boundary of a bond area and thereby defining a remaining open area there within. A second surface, or gusset plate, is affixed onto the adhesive before the adhesive cures. The strip of adhesive is allowed to cure and then a second amount of adhesive is applied to cover the remaining open area and substantially fill a void between said first and second surfaces about said bond area. A stencil may be used to precisely apply the strip of adhesive. When the strip cures, it acts as a dam to prevent overflow of the subsequent application of adhesive to undesired areas. The method results in a precise bond area free of undesired shapes and of a preferred profile which eliminate the drawbacks of the prior art bonds.

  20. Corporate Bonds in Denmark

    DEFF Research Database (Denmark)

    Tell, Michael


    Corporate financing is the choice between capital generated by the corporation and capital from external investors. However, since the financial crisis shook the markets in 2007–2008, financing opportunities through the classical means of financing have decreased. As a result, corporations have...... to think in alternative ways such as issuing corporate bonds. A market for corporate bonds exists in countries such as Norway, Germany, France, the United Kingdom and the United States, while Denmark is still behind in this trend. Some large Danish corporations have instead used foreign corporate bonds...... markets. However, NASDAQ OMX has introduced the First North Bond Market in December 2012 and new regulatory framework came into place in 2014, which may contribute to a Danish based corporate bond market. The purpose of this article is to present the regulatory changes in Denmark in relation to corporate...

  1. Corporate Bonds in Denmark

    DEFF Research Database (Denmark)

    Tell, Michael


    Corporate financing is the choice between capital generated by the corporation and capital from external investors. However, since the financial crisis shook the markets in 2007–2008, financing opportunities through the classical means of financing have decreased. As a result, corporations have...... markets. However, NASDAQ OMX has introduced the First North Bond Market in December 2012 and new regulatory framework came into place in 2014, which may contribute to a Danish based corporate bond market. The purpose of this article is to present the regulatory changes in Denmark in relation to corporate...... bonds. The purpose is further to analyse the tax consequences of issuing bonds in both a direct issue of bonds and through securitization....

  2. Bond selective chemistry beyond the adiabatic approximation

    Energy Technology Data Exchange (ETDEWEB)

    Butler, L.J. [Univ. of Chicago, IL (United States)


    One of the most important challenges in chemistry is to develop predictive ability for the branching between energetically allowed chemical reaction pathways. Such predictive capability, coupled with a fundamental understanding of the important molecular interactions, is essential to the development and utilization of new fuels and the design of efficient combustion processes. Existing transition state and exact quantum theories successfully predict the branching between available product channels for systems in which each reaction coordinate can be adequately described by different paths along a single adiabatic potential energy surface. In particular, unimolecular dissociation following thermal, infrared multiphoton, or overtone excitation in the ground state yields a branching between energetically allowed product channels which can be successfully predicted by the application of statistical theories, i.e. the weakest bond breaks. (The predictions are particularly good for competing reactions in which when there is no saddle point along the reaction coordinates, as in simple bond fission reactions.) The predicted lack of bond selectivity results from the assumption of rapid internal vibrational energy redistribution and the implicit use of a single adiabatic Born-Oppenheimer potential energy surface for the reaction. However, the adiabatic approximation is not valid for the reaction of a wide variety of energetic materials and organic fuels; coupling between the electronic states of the reacting species play a a key role in determining the selectivity of the chemical reactions induced. The work described below investigated the central role played by coupling between electronic states in polyatomic molecules in determining the selective branching between energetically allowed fragmentation pathways in two key systems.

  3. Synthesis of heterobimetallic Ru-Mn complexes and the coupling reactions of epoxides with carbon dioxide catalyzed by these complexes. (United States)

    Man, Man Lok; Lam, King Chung; Sit, Wing Nga; Ng, Siu Man; Zhou, Zhongyuan; Lin, Zhenyang; Lau, Chak Po


    The heterobimetallic complexes [(eta5-C5H5)Ru(CO)(mu-dppm)Mn(CO)4] and [(eta5-C5Me5)Ru(mu-dppm)(mu-CO)2Mn(CO)3] (dppm = bis-diphenylphosphinomethane) have been prepared by reacting the hydridic complexes [(eta5-C5H5)Ru(dppm)H] and [(eta5-C5Me5)Ru(dppm)H], respectively, with the protonic [HMn(CO)5] complex. The bimetallic complexes can also be synthesized through metathetical reactions between [(eta5-C5R5)Ru(dppm)Cl] (R = H or Me) and Li+[Mn(CO)5]-. Although the complexes fail to catalyze the hydrogenation of CO2 to formic acid, they catalyze the coupling reactions of epoxides with carbon dioxide to yield cyclic carbonates. Two possible reaction pathways for the coupling reactions have been proposed. Both routes begin with heterolytic cleavage of the RuMn bond and coordination of an epoxide molecule to the Lewis acidic ruthenium center. In Route I, the Lewis basic manganese center activates the CO2 by forming the metallocarboxylate anion which then ring-opens the epoxide; subsequent ring-closure gives the cyclic carbonate. In Route II, the nucleophilic manganese center ring-opens the ruthenium-attached epoxide to afford an alkoxide intermediate; CO2 insertion into the RuO bond followed by ring-closure yields the product. Density functional calculations at the B3LYP level of theory were carried out to understand the structural and energetic aspects of the two possible reaction pathways. The results of the calculations indicate that Route II is favored over Route I.

  4. Difference in Energy between Two Distinct Types of Chalcogen Bonds Drives Regioisomerization of Binuclear (Diaminocarbene)PdIIComplexes. (United States)

    Mikherdov, Alexander S; Kinzhalov, Mikhail A; Novikov, Alexander S; Boyarskiy, Vadim P; Boyarskaya, Irina A; Dar'in, Dmitry V; Starova, Galina L; Kukushkin, Vadim Yu


    The reaction of cis-[PdCl 2 (CNXyl) 2 ] (Xyl = 2,6-Me 2 C 6 H 3 ) with various 1,3-thiazol- and 1,3,4-thiadiazol-2-amines in chloroform gives a mixture of two regioisomeric binuclear diaminocarbene complexes. For 1,3-thiazol-2-amines the isomeric ratio depends on the reaction conditions and kinetically (KRs) or thermodynamically (TRs) controlled regioisomers were obtained at room temperature and on heating, respectively. In CHCl 3 solutions, the isomers are subject to reversible isomerization accompanied with the cleavage of Pd-N and С-N bonds in the carbene fragment XylNCN(R)Xyl. Results of DFT calculations followed by the topological analysis of the electron density distribution within the formalism of Bader's theory (AIM method) reveal that in CHCl 3 solution the relative stability of the regioisomers (∆G exp = 1.2 kcal/mol; ∆G calcd = 3.2 kcal/mol) is determined by the energy difference between two types of the intramolecular chalcogen bonds, viz. S•••Cl in KRs (2.8-3.0 kcal/mol) and S•••N in TRs (4.6-5.3 kcal/mol). In the case of the 1,3,4-thiadiazol-2-amines, the regioisomers are formed in approximately equal amounts and, accordingly, the energy difference between these species is only 0.1 kcal/mol in terms of ∆G exp (∆G calcd = 2.1 kcal/mol). The regioisomers were characterized by elemental analyses (C, H, N), HRESI + -MS and FTIR, 1D ( 1 H, 13 C) and 2D ( 1 H, 1 H-COSY, 1 H, 1 H-NOESY, 1 H, 13 C-HSQC, 1 H, 13 C-HMBC) NMR spectroscopies, and structures of six complexes (three KRs and three TRs) were elucidated by single-crystal X-ray diffraction.

  5. Di-μ-hydroxo Bridge Cleavage Reactions between [Co(nta)(μ-OH)] 2 ...

    African Journals Online (AJOL)

    2en (en = ethylenediamine and N,N-Et2en = N,N-diethylethylene-diamine) has been investigated. [Co(nta)(μ-OH)]22– equilibrates rapidly in aqueous basic solutions, yielding a mono-μ-hydroxo-bridged Co(III) complex [pKOH = 3.3(1)] and ...

  6. Demonstration of the Principles of Restriction Endonuclease Cleavage Reactions Using Thermostable Bfl I from "Anoxybacillus Flavithermus" (United States)

    Sharma, Prince; D'Souza, David R.; Bhandari, Deepali; Parashar, Vijay; Capalash, Neena


    Restriction enzymes are basic tools in recombinant DNA technology. To shape the molecular biology experiments, the students must know how to work with these molecular scissors. Here, we describe an integrated set of experiments, introduced in the "Advances in Molecular Biology and Biotechnology" postgraduate course, which covers the important…

  7. RecA-mediated cleavage reaction of Lambda repressor and DNA ...

    African Journals Online (AJOL)



    Jan 11, 2010 ... 00237 77 05 25 11. Accepted 4 January, 2010. DNA pairing and strand exchange activities are essential for genetic recombination. When DNA is damaged, RecA ... and the ability of RecA to promote DNA strand exchange. It was observed ..... hydrolyze the half of ATP after 6 min (t1) and 12 min (t2) after.

  8. Drosha regulates gene expression independently of RNA cleavage function

    DEFF Research Database (Denmark)

    Gromak, Natalia; Dienstbier, Martin; Macias, Sara


    Drosha is the main RNase III-like enzyme involved in the process of microRNA (miRNA) biogenesis in the nucleus. Using whole-genome ChIP-on-chip analysis, we demonstrate that, in addition to miRNA sequences, Drosha specifically binds promoter-proximal regions of many human genes in a transcription......-terminal protein-interaction domain, which associates with the RNA-binding protein CBP80 and RNA Polymerase II. Consequently, we uncover a previously unsuspected RNA cleavage-independent function of Drosha in the regulation of human gene expression....

  9. Amine Oxidative N-Dealkylation via Cupric Hydroperoxide Cu–OOH Homolytic Cleavage Followed by Site-Specific Fenton Chemistry (United States)

    Kim, Sunghee; Ginsbach, Jake W.; Lee, Jung Yoon; Peterson, Ryan L.; Liu, Jeffrey J.; Siegler, Maxime A.; Sarjeant, Amy A.; Solomon, Edward I.; Karlin, Kenneth D.


    Copper(II)-hydroperoxide species are significant intermediates in processes such as fuel cells and (bio)chemical oxidations, all involving stepwise reduction of molecular oxygen. We previously reported a CuII-OOH species that performs oxidative N-dealkylation on a dibenzylamino group that is appended to the 6-position of a pyridyl donor of a tripodal tetradentate ligand. To obtain insights into the mechanism of this process, reaction kinetics and products were determined employing ligand substrates with various para- substituent dibenzyl pairs (-H,-H; -H,-Cl; -H,-OMe and -Cl,-OMe), or with partially or fully deuterated dibenzyl N-(CH2Ph)2 moieties. A series of ligand-copper(II) bis-perchlorate complexes were synthesized, characterized, and the X-ray structures of the -H, -OMe analog was were determined. The corresponding metastable CuII-OOH species were generated by addition of H2O2/base in acetone at –90 °C. These convert (t1/2 ~ 53 s) to oxidatively N-dealkylated products, producing para-substituted benzaldehydes. Based on the experimental observations and supporting DFT calculations, a reaction mechanism involving dibenzylamine H-atom abstraction or electron-transfer oxidation by the CuII-OOH entity could be ruled out. It is concluded that the chemistry proceeds by rate limiting Cu–O homolytic cleavage of the CuII–(OOH) species, followed by site-specific copper Fenton chemistry. As a process of broad interest in copper as well as iron oxidative (bio)chemistries, a detailed computational analysis was performed, indicating that a CuIOOH species undergoes O–O homolytic cleavage to yield a hydroxyl radical and CuIIOH rather than heterolytic cleavage to yield water and a CuII-O•−. PMID:25706825

  10. Efficient hydrolytic cleavage of plasmid DNA by chloro-cobalt(II) complexes based on sterically hindered pyridyl tripod tetraamine ligands: synthesis, crystal structure and DNA cleavage. (United States)

    Massoud, Salah S; Perkins, Richard S; Louka, Febee R; Xu, Wu; Le Roux, Anne; Dutercq, Quentin; Fischer, Roland C; Mautner, Franz A; Handa, Makoto; Hiraoka, Yuya; Kreft, Gabriel L; Bortolotto, Tiago; Terenzi, Hernán


    Four new cobalt(ii) complexes [Co(6-MeTPA)Cl]ClO4/PF6 (2/2a), [Co(6-Me2TPA)Cl]ClO4/PF6 (3/3a), [Co(BPQA)Cl]ClO4/PF6 (4/4a) and [Co(BQPA)Cl]ClO4/PF6 (5/5a) as well as [Co(TPA)Cl]ClO4 (1) where TPA = tris(2-pyridylmethyl)amine, 6-MeTPA = ((6-methyl-2-pyridyl)methyl)bis(2-pyridylmethyl)amine, 6-Me2TPA = bis(6-methyl-2-pyridyl)methyl)-(2-pyridylmethyl)amine, BPQA = bis(2-pyridylmethyl)-(2-quinolylmethyl)-amine and BQPA = bis(2-quinolylmethyl)-(2-pyridylmethyl)amine were synthesized and structurally characterized. Single crystal X-ray crystallography confirmed the distorted trigonal bipyramidal geometries of complexes 2a-5a. Spectrophotometric titrations and conductivity measurements of the complexes in the CH3CN-H2O mixture showed that the chloro complexes exist in equilibrium with the corresponding hydrolyzed aqua species, [Co(L)(H2O)](2+). The pKa values of the coordinated H2O in aqua complexes vary from 8.4 to 8.7 (37 °C). The interactions of the complexes (1-5) with DNA have been investigated at pH = 7.0 and 9.0 (10 mM Tris-HCl buffer) and 37 °C where very high catalytic cleavage was observed. Under pseudo Michaelis-Menten kinetic conditions, the catalytic rate constants, kcat, decrease in the order 4>2>5>1>3. At pH 7.0 (10 mM Tris-HCl buffer) and 37 °C, the kcat value for complex 4 (6.02 h(-1)), where [Co(BPQA)(H2O)](2+) is the major species, corresponds to 170 million rate enhancement over the non-catalyzed DNA. Electrophoretic experiments conducted in the presence and absence of radical scavengers (DMSO, KI, NaN3) ruled out the oxidative mechanistic pathway of the reaction and suggested that the hydrolytic mechanism is the preferred one. This finding was in agreement with the observed increase in the kcat values at pH 9.0 compared to the corresponding values at pH 7.0 as a result of the increased concentration of the reactive hydroxo species, [Co(L)(OH)](+). The reactivity of the synthesized complexes in catalyzing the DNA cleavage is discussed in relation to

  11. Transversely Compressed Bonded Joints

    DEFF Research Database (Denmark)

    Hansen, Christian Skodborg; Schmidt, Jacob Wittrup; Stang, Henrik


    The load capacity of bonded joints can be increased if transverse pressure is applied at the interface. The transverse pressure is assumed to introduce a Coulomb-friction contribution to the cohesive law for the interface. Response and load capacity for a bonded single-lap joint was derived using...... non-linear fracture mechanics. The results indicated a good correlation between theory and tests. Furthermore, the model is suggested as theoretical base for determining load capacity of bonded anchorages with transverse pressure, in externally reinforced concrete structures....

  12. A Novel Strategy for Biomass Upgrade: Cascade Approach to the Synthesis of Useful Compounds via C-C Bond Formation Using Biomass-Derived Sugars as Carbon Nucleophiles. (United States)

    Yamaguchi, Sho; Baba, Toshihide


    Due to the depletion of fossil fuels, biomass-derived sugars have attracted increasing attention in recent years as an alternative carbon source. Although significant advances have been reported in the development of catalysts for the conversion of carbohydrates into key chemicals (e.g., degradation approaches based on the dehydration of hydroxyl groups or cleavage of C-C bonds via retro-aldol reactions), only a limited range of products can be obtained through such processes. Thus, the development of a novel and efficient strategy targeted towards the preparation of a range of compounds from biomass-derived sugars is required. We herein describe the highly-selective cascade syntheses of a range of useful compounds using biomass-derived sugars as carbon nucleophiles. We focus on the upgrade of C2 and C3 oxygenates generated from glucose to yield useful compounds via C-C bond formation. The establishment of this novel synthetic methodology to generate valuable chemical products from monosaccharides and their decomposed oxygenated materials renders carbohydrates a potential alternative carbon resource to fossil fuels.

  13. Carotenoids biosynthesis and cleavage related genes from bacteria to plants. (United States)

    Liang, Ming-Hua; Zhu, Jianhua; Jiang, Jian-Guo


    Carotenoids are essential for photosynthesis and photoprotection in photosynthetic organisms and beneficial for human health. Apocarotenoids derived from carotenoid degradation can serve critical functions including hormones, volatiles, and signals. They have been used commercially as food colorants, animal feed supplements, and nutraceuticals for cosmetic and pharmaceutical purposes. This review focuses on the molecular evolution of carotenogenic enzymes and carotenoid cleavage oxygenases (CCOs) from bacteria, fungi, cyanobacteria, algae, and plants. The diversity of carotenoids and apocarotenoids as well as their complicated biosynthetic pathway in different species can shed light on the history of early molecular evolution. Some carotenogenic genes (such as phytoene synthases) have high protein sequence similarity from bacteria to land plants, but some (such as phytoene desaturases, lycopene cyclases, carotenoid hydroxylases, and CCOs) have low similarity. The broad diversity of apocarotenoid volatile compounds can be attributed to large numbers of carotenoid precursors and the various cleavage sites catalyzed by CCOs enzymes. A variety of carotenogenic enzymes and CCOs indicate the functional diversification of carotenoids and apocrotenoids in different species. New carotenoids, new apocarotenoids, new carotenogenic enzymes, new CCOs, and new pathways still need to be explored.

  14. Stress-induced cleavage of Myc promotes cancer cell survival (United States)

    Conacci-Sorrell, Maralice; Ngouenet, Celine; Anderson, Sarah; Brabletz, Thomas; Eisenman, Robert N.


    Evasion of apoptosis is critical in Myc-induced tumor progression. Here we report that cancer cells evade death under stress by activating calpain-mediated proteolysis of Myc. This generates Myc-nick, a cytoplasmic, transcriptionally inactive cleavage product of Myc. We found conversion of Myc into Myc-nick in cell lines and tissues derived from multiple cancers. In colon cancer, the production of Myc-nick is enhanced under stress conditions such as hypoxia and nutrient deprivation. Under these conditions, ectopic expression of Myc-nick promotes anchorage-independent growth and cell survival at least in part by promoting autophagy. Myc-nick also delays colon cancer cell death after treatment with chemotherapeutic drugs such as etoposide, cisplatin, and imatinib. Furthermore, colon cancer cells expressing a cleavage-resistant form of Myc undergo extensive apoptosis but are rescued by overexpression of Myc-nick. We also found that ectopic expression of Myc-nick results in the induction of the actin-bundling protein fascin, formation of filopodia, and increased cell motility—all mediators of tumor metastasis. Myc-nick-induced survival, autophagy, and motility require Myc box II (MBII), a region of Myc-nick that recruits acetyltransferases that in turn modify cytoplasmic proteins, including α-tubulin and ATG3. Our results suggest that Myc-nick-induced survival and motility contribute to colon cancer progression and metastasis. PMID:24696454

  15. Effect of different chemical bonds in pegylation of zinc protoporphyrin that affects drug release, intracellular uptake, and therapeutic effect in the tumor. (United States)

    Tsukigawa, Kenji; Nakamura, Hideaki; Fang, Jun; Otagiri, Masaki; Maeda, Hiroshi


    Pegylated zinc protoporphyrin (PEG-ZnPP) is a water-soluble inhibitor of heme oxygenase-1. In this study, we prepared two types of PEG-ZnPP conjugates with different chemical bonds between PEG and ZnPP, i.e., ester bonds and ether bonds, where both conjugates also contain amide bonds. Cleavability of these bonds in vitro and in vivo, especially cancer tissue, and upon intracellular uptake, was investigated in parallel with biological activities of the conjugates. Each conjugate showed different cleavability by plasma esterases and tumor proteases, as revealed by HPLC analyses. PEG-ZnPP with ester bond (esPEG-ZnPP) was more sensitive than PEG-ZnPP with ether bond (etPEG-ZnPP) for cleavage of PEG chains. etPEG-ZnPP showed no cleavage of PEG chains and had lower intracellular uptake and antitumor activity than did esPEG-ZnPP. The degradation of esPEG-ZnPP appeared to be facilitated by both serine and cysteine proteases in tumor tissues, whereas it was significantly slower in normal organs except the liver. Depegylated products such as free ZnPP had higher intracellular uptake than did intact PEG-ZnPP. We also studied hydrolytic cleavage by blood plasma of different animal species; mouse plasma showed the fastest cleavage whereas human plasma showed the slowest. These results suggest that ester-linked conjugates manifest more efficient cleavage of PEG, and greater yield of the active principle from the conjugates in tumor tissues than in normal tissues. More efficient intracellular uptake and thus an improved therapeutic effect with ester-linked conjugates are thus anticipated with fain stability, particularly in human blood. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Unusual H-Bond Topology and Bifurcated H-bonds in the 2-Fluoroethanol Trimer. (United States)

    Thomas, Javix; Liu, Xunchen; Jäger, Wolfgang; Xu, Yunjie


    By using a combination of rotational spectroscopy and ab initio calculations, an unusual H-bond topology was revealed for the 2-fluoroethanol trimer. The trimer exhibits a strong heterochiral preference and adopts an open OH⋅⋅⋅OH H-bond topology while utilizing two types of bifurcated H-bonds involving organic fluorine. This is in stark contrast to the cyclic OH⋅⋅⋅OH H-bond topology adopted by trimers of water and other simple alcohols. The strengths of different H-bonds in the trimer were analyzed by using the quantum theory of atoms in molecules. The study showcases a remarkable example of a chirality-induced switch in H-bond topology in a simple transient chiral fluoroalcohol. It provides important insight into the H-bond topologies of small fluoroalcohol aggregates, which are proposed to play a key role in protein folding and in enantioselective reactions and separations where fluoroalcohols serve as a (co)solvent. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Chemisorption bonding and catalysis

    International Nuclear Information System (INIS)

    Danese, J.B.; Schrieffer, J.R.


    The general features of the LCAO--MO, Green's function, and multiple-scattering chi α methods and their applications to surfaces and surface-related problems are discussed. Emphasis is placed on the localization of bonding in surface complexes

  18. Tile-bonding tool (United States)

    Haynie, C. C.; Holt, J. W.


    Device applies uniform, constant, precise pressure to hold tiles in place during bonding. Tool consists of pressure bladders supported by adjustable pole. Pole can accomodate single or multiple bladders. Tiles can be flat or contoured.

  19. Bond markets in Africa

    Directory of Open Access Journals (Sweden)

    Yibin Mu


    Full Text Available African bond markets have been steadily growing in recent years, but nonetheless remain undeveloped. African countries would benefit from greater access to financing and deeper financial markets. This paper compiles a unique set of data on government securities and corporate bond markets in Africa. It then applies an econometric model to analyze the key determinants of African government securities market and corporate bond market capitalization. Government securities market capitalization is directly related to better institutions and interest rate volatility, and inversely related to smaller fiscal deficits, higher interest rate spreads, exchange rate volatility, and current and capital account openness. Corporate bond market capitalization is directly linked to economic size, the level of development of the economy and financial markets, better institutions, and interest rate volatility, and inversely related to higher interest rate spreads and current account openness. Policy implications follow.

  20. Melamine-modified urea formaldehyde resin for bonding particleboards (United States)

    Chung-Yun Hse; Feng Fu; Hui Pan


    For the development of a cost-effective melamine-modified urea formaldehyde resin (MUF), the study evaluated the effects of reaction pH and melamine content on resin properties and bond performance of the MUF resin adhesive systems. Eight resins, each with three replicates, were prepared in a factorial experiment that included two formulation variables: two reaction...