WorldWideScience

Sample records for bomb radiation dosimetry

  1. Workshop Report on Atomic Bomb Dosimetry--Residual Radiation Exposure: Recent Research and Suggestions for Future Studies

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-06

    There is a need for accurate dosimetry for studies of health effects in the Japanese atomic bomb survivors because of the important role that these studies play in worldwide radiation protection standards. International experts have developed dosimetry systems, such as the Dosimetry System 2002 (DS02), which assess the initial radiation exposure to gamma rays and neutrons but only briefly consider the possibility of some minimal contribution to the total body dose by residual radiation exposure. In recognition of the need for an up-to-date review of the topic of residual radiation exposure in Hiroshima and Nagasaki, recently reported studies were reviewed at a technical session at the 57th Annual Meeting of the Health Physics Society in Sacramento, California, 22-26 July 2012. A one-day workshop was also held to provide time for detailed discussion of these newer studies and to evaluate their potential use in clarifying the residual radiation exposures to the atomic-bomb survivors at Hiroshima and Nagasaki. Suggestions for possible future studies are also included in this workshop report.

  2. Workshop report on atomic bomb dosimetry-residual radiation exposure: recent research and suggestions for future studies.

    Science.gov (United States)

    Kerr, George D; Egbert, Stephen D; Al-Nabulsi, Isaf; Beck, Harold L; Cullings, Harry M; Endo, Satoru; Hoshi, Masaharu; Imanaka, Tetsuji; Kaul, Dean C; Maruyama, Satoshi; Reeves, Glen I; Ruehm, Werner; Sakaguchi, Aya; Simon, Steven L; Spriggs, Gregory D; Stram, Daniel O; Tonda, Tetsuji; Weiss, Joseph F; Weitz, Ronald L; Young, Robert W

    2013-08-01

    There is a need for accurate dosimetry for studies of health effects in the Japanese atomic bomb survivors because of the important role that these studies play in worldwide radiation protection standards. International experts have developed dosimetry systems, such as the Dosimetry System 2002 (DS02), which assess the initial radiation exposure to gamma rays and neutrons but only briefly consider the possibility of some minimal contribution to the total body dose by residual radiation exposure. In recognition of the need for an up-to-date review of the topic of residual radiation exposure in Hiroshima and Nagasaki, recently reported studies were reviewed at a technical session at the 57th Annual Meeting of the Health Physics Society in Sacramento, California, 22-26 July 2012. A one-day workshop was also held to provide time for detailed discussion of these newer studies and to evaluate their potential use in clarifying the residual radiation exposures to the atomic-bomb survivors at Hiroshima and Nagasaki. Suggestions for possible future studies are also included in this workshop report.

  3. Development of A-bomb survivor dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, G.D.

    1995-12-31

    An all important datum in risk assessment is the radiation dose to individual survivors of the bombings in Hiroshima and Nagasaki. The first set of dose estimates for survivors was based on a dosimetry system developed in 1957 by the Oak Ridge National Laboratory (ORNL). These Tentative 1957 Doses (T57D) were later replaced by a more extensive and refined set of Tentative 1965 Doses (T65D). The T65D system of dose estimation for survivors was also developed at ORNL and served as a basis for risk assessment throughout the 1970s. In the late 1970s, it was suggested that there were serious inadequacies with the T65D system, and these inadequacies were the topic of discussion at two symposia held in 1981. In early 1983, joint US- Japan research programs were established to conduct a thorough review of all aspects of the radiation dosimetry for the Hiroshima and Nagasaki A-bomb survivors. A number of important contributions to this review were made by ORNL staff members. The review was completed in 1986 and a new Dosimetry System 1986 (DS86) was adopted for use. This paper discusses the development of the various systems of A-bomb survivor dosimetry, and the status of the current DS86 system as it is being applied in the medical follow-up studies of the A-bomb survivors and their offspring.

  4. Radiation dosimetry

    CERN Document Server

    Hine, Gerald J; Hine, Gerald J

    1956-01-01

    Radiation Dosimetry focuses on the advancements, processes, technologies, techniques, and principles involved in radiation dosimetry, including counters and calibration and standardization techniques. The selection first offers information on radiation units and the theory of ionization dosimetry and interaction of radiation with matter. Topics include quantities derivable from roentgens, determination of dose in roentgens, ionization dosimetry of high-energy photons and corpuscular radiations, and heavy charged particles. The text then examines the biological and medical effects of radiation,

  5. Radiation dosimetry.

    OpenAIRE

    Cameron, J

    1991-01-01

    This article summarizes the basic facts about the measurement of ionizing radiation, usually referred to as radiation dosimetry. The article defines the common radiation quantities and units; gives typical levels of natural radiation and medical exposures; and describes the most important biological effects of radiation and the methods used to measure radiation. Finally, a proposal is made for a new radiation risk unit to make radiation risks more understandable to nonspecialists.

  6. Workshop Report on Atomic Bomb Dosimetry--Review of Dose Related Factors for the Evaluation of Exposures to Residual Radiation at Hiroshima and Nagasaki.

    Science.gov (United States)

    Kerr, George D; Egbert, Stephen D; Al-Nabulsi, Isaf; Bailiff, Ian K; Beck, Harold L; Belukha, Irina G; Cockayne, John E; Cullings, Harry M; Eckerman, Keith F; Granovskaya, Evgeniya; Grant, Eric J; Hoshi, Masaharu; Kaul, Dean C; Kryuchkov, Victor; Mannis, Daniel; Ohtaki, Megu; Otani, Keiko; Shinkarev, Sergey; Simon, Steven L; Spriggs, Gregory D; Stepanenko, Valeriy F; Stricklin, Daniela; Weiss, Joseph F; Weitz, Ronald L; Woda, Clemens; Worthington, Patricia R; Yamamoto, Keiko; Young, Robert W

    2015-12-01

    Groups of Japanese and American scientists, supported by international collaborators, have worked for many years to ensure the accuracy of the radiation dosimetry used in studies of health effects in the Japanese atomic bomb survivors. Reliable dosimetric models and systems are especially critical to epidemiologic studies of this population because of their importance in the development of worldwide radiation protection standards. While dosimetry systems, such as Dosimetry System 1986 (DS86) and Dosimetry System 2002 (DS02), have improved, the research groups that developed them were unable to propose or confirm an additional contribution by residual radiation to the survivor's total body dose. In recognition of the need for an up-to-date review of residual radiation exposures in Hiroshima and Nagasaki, a half-day technical session was held for reports on newer studies at the 59 th Annual HPS Meeting in 2014 in Baltimore, MD. A day-and-a-half workshop was also held to provide time for detailed discussion of the newer studies and to evaluate their potential use in clarifying the residual radiation exposure to atomic bomb survivors at Hiroshima and Nagasaki. The process also involved a re-examination of very early surveys of radioisotope emissions from ground surfaces at Hiroshima and Nagasaki and early reports of health effects. New insights were reported on the potential contribution to residual radiation from neutron-activated radionuclides in the airburst's dust stem and pedestal and in unlofted soil, as well as from fission products and weapon debris from the nuclear cloud. However, disparate views remain concerning the actual residual radiation doses received by the atomic bomb survivors at different distances from the hypocenter. The workshop discussion indicated that measurements made using thermal luminescence and optically stimulated luminescence, like earlier measurements, especially in very thin layers of the samples, could be expanded to detect possible

  7. Topics in radiation dosimetry radiation dosimetry

    CERN Document Server

    1972-01-01

    Radiation Dosimetry, Supplement 1: Topics in Radiation Dosimetry covers instruments and techniques in dealing with special dosimetry problems. The book discusses thermoluminescence dosimetry in archeological dating; dosimetric applications of track etching; vacuum chambers of radiation measurement. The text also describes wall-less detectors in microdosimetry; dosimetry of low-energy X-rays; and the theory and general applicability of the gamma-ray theory of track effects to various systems. Dose equivalent determinations in neutron fields by means of moderator techniques; as well as developm

  8. Dosimetry for radiation processing

    DEFF Research Database (Denmark)

    Miller, Arne

    1986-01-01

    During the past few years significant advances have taken place in the different areas of dosimetry for radiation processing, mainly stimulated by the increased interest in radiation for food preservation, plastic processing and sterilization of medical products. Reference services both...... and sterilization dosimetry, optichromic dosimeters in the shape of small tubes for food processing, and ESR spectroscopy of alanine for reference dosimetry. In this paper the special features of radiation processing dosimetry are discussed, several commonly used dosimeters are reviewed, and factors leading...

  9. Nuclear medicine radiation dosimetry

    CERN Document Server

    McParland, Brian J

    2010-01-01

    Complexities of the requirements for accurate radiation dosimetry evaluation in both diagnostic and therapeutic nuclear medicine (including PET) have grown over the past decade. This is due primarily to four factors: growing consideration of accurate patient-specific treatment planning for radionuclide therapy as a means of improving the therapeutic benefit, development of more realistic anthropomorphic phantoms and their use in estimating radiation transport and dosimetry in patients, design and use of advanced Monte Carlo algorithms in calculating the above-mentioned radiation transport and

  10. Status of radiation processing dosimetry

    DEFF Research Database (Denmark)

    Miller, A.

    1993-01-01

    Several milestones have marked the field of radiation processing dosimetry since IMRP 7. Among them are the IAEA symposium on High Dose Dosimetry for Radiation Processing and the international Workshops on Dosimetry for Radiation Processing organized by the ASTM. Several standards have been...... or are being published by the ASTM in this field, both on dosimetry procedures and on the proper use of specific dosimeter systems. Several individuals are involved in this international cooperation which contribute significantly to the broader understanding of the role of dosimetry in radiation processing....... The importance of dosimetry is emphasized in the standards on radiation sterilization which are currently drafted by the European standards organization CEN and by the international standards organization ISO. In both standards, dosimetry plays key roles in characterization of the facility, in qualification...

  11. The dosimetry of ionizing radiation

    CERN Document Server

    1990-01-01

    A continuation of the treatise The Dosimetry of Ionizing Radiation, Volume III builds upon the foundations of Volumes I and II and the tradition of the preceeding treatise Radiation Dosimetry. Volume III contains three comprehensive chapters on the applications of radiation dosimetry in particular research and medical settings, a chapter on unique and useful detectors, and two chapters on Monte Carlo techniques and their applications.

  12. Fundamentals of Radiation Dosimetry

    Science.gov (United States)

    Bos, Adrie J. J.

    2011-05-01

    The basic concepts of radiation dosimetry are reviewed on basis of ICRU reports and text books. The radiation field is described with, among others, the particle fluence. Cross sections for indirectly ionizing radiation are defined and indicated is how they are related to the mass energy transfer and mass energy absorption coefficients. Definitions of total and restricted mass stopping powers of directly ionizing radiation are given. The dosimetric quantities, kerma, absorbed dose and exposure together with the relations between them are discussed in depth. Finally it is indicated how the absorbed dose can be measured with a calorimeter by measuring the temperature increase and with an ionisation chamber measuring the charge produced by the ionizing radiation and making use of the Bragg-Gray relation.

  13. A-bomb radiation effects digest

    Energy Technology Data Exchange (ETDEWEB)

    Shigematsu, Itsuzo; Akiyama, Mitoshi; Sasaki, Hideo (Radiation Effects Research Foundation, Hiroshima (Japan)); Ito, Chikako; Kamada, Nanao.

    1993-01-01

    This publication is the digest of the book 'Genbaku Hoshasen no Jintai Eikyo (Effects of A-bomb Radiation on the Human Body)' (365p.), published in Japanese by Hiroshima International Council for Medical Care of the Radiation-Exposed. Following a brief description on the damage of the atomic bomb, the subjects of malignant tumors, endocrine and metabolic deseases, ocular lesions, dermatologic effects, prenatal exposure, chromosoal aberrations, mutations, sensitivity to radiation, immune function, genetic effects and other effects of radiation are summarized. (J.P.N.).

  14. Mathematical phantoms for use in reassessment of radiation doses to Japanese atomic-bomb survivors

    Energy Technology Data Exchange (ETDEWEB)

    Cristy, M.

    1985-07-01

    In 1972 committees of the United Nations and the US National Academy of Sciencs emphasized the need for organ dose estimates on the Japanese atomic-bomb survivors. These estimates were then supplied by workers in Japan and the US, and they were used with the so-called T65D estimates of a survivor's radiation exposure to assess risk from radiation. Recently the T65D estimates have been questioned, and programs for reassessment of atomic-bomb radiation dosimetry have been started in Japan and the US. As a part of this new effort a mathematical analogue of the human body (or ''mathematical phantom''), to be used in estimating organ doses in adult survivors, is presented here. Recommendations on organ dosimetry for juvenile survivors are also presented and discussed. 57 refs., 10 figs., 6 tabs.

  15. Development of radiation biological dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Chul Koo; Kim, Tae Hwan; Lee, Yun Sil; Son, Young Sook; Kim, Soo Kwan; Jang, Won Suk; Le, Sun Joo; Jee, Young Heun; Jung, Woo Jung

    1999-04-01

    Up until now, only a few methods have been developed for radiation biological dosimetry such as conventional chromosome aberration and micronucleus in peripheral blood cell. However, because these methods not only can be estimated by the expert, but also have a little limitation due to need high technique and many times in the case of radiation accident, it is very difficult to evaluate the absorbed dose of victims. Therefore, we should develop effective, easy, simple and rapid biodosimetry and its guideline (triage) to be able to be treated the victims as fast as possible. We established the premature chromosome condensation assay and apoptotic fragment assay which was the significant relationship between dose and cell damages to evaluate the irradiation dose as correct and rapid as possible using lymphocytes and crypt cells, and compared with conventional chromosome aberration assay and micronuclei assay.

  16. The cohort of the atomic bomb survivors major basis of radiation safety regulations

    CERN Document Server

    Rühm, W; Nekolla, E A

    2006-01-01

    Since 1950 about 87 000 A-bomb survivors from Hiroshima and Nagasaki have been monitored within the framework of the Life Span Study, to quantify radiation-induced late effects. In terms of incidence and mortality, a statistically significant excess was found for leukemia and solid tumors. In another major international effort, neutron and gamma radiation doses were estimated, for those survivors (Dosimetry System DS02). Both studies combined allow the deduction of risk coefficients that serve as a basis for international safety regulations. As an example, current results on all solid tumors combined suggest an excess relative risk of 0.47 per Sievert for an attained age of 70 years, for those who were exposed at an age of 30 years. After exposure to an effective dose of one Sievert the solid tumor mortality would thus be about 50% larger than that expected for a similar cohort not exposed to any ionizing radiation from the bombs.

  17. Advanced materials in radiation dosimetry

    CERN Document Server

    Bruzzi, M; Nava, F; Pini, S; Russo, S

    2002-01-01

    High band-gap semiconductor materials can represent good alternatives to silicon in relative dosimetry. Schottky diodes made with epitaxial n-type 4 H SiC and Chemical Vapor Deposited diamond films with ohmic contacts have been exposed to a sup 6 sup 0 Co gamma-source, 20 MeV electrons and 6 MV X photons from a linear accelerator to test the current response in on-line configuration in the dose range 0.1-10 Gy. The released charge as a function of the dose and the radiation-induced current as a function of the dose-rate are found to be linear. No priming effects have been observed using epitaxial SiC, due to the low density of lattice defects present in this material.

  18. Introduction to radiological physics and radiation dosimetry

    CERN Document Server

    Attix, Frank Herbert

    2004-01-01

    A straightforward presentation of the broad concepts underlying radiological physics and radiation dosimetry for the graduate-level student. Covers photon and neutron attenuation, radiation and charged particle equilibrium, interactions of photons and charged particles with matter, radiotherapy dosimetry, as well as photographic, calorimetric, chemical, and thermoluminescence dosimetry. Includes many new derivations, such as Kramers X-ray spectrum, as well as topics that have not been thoroughly analyzed in other texts, such as broad-beam attenuation and geometrics, and the reciprocity theorem

  19. Bayesian Methods for Radiation Detection and Dosimetry

    CERN Document Server

    Groer, Peter G

    2002-01-01

    We performed work in three areas: radiation detection, external and internal radiation dosimetry. In radiation detection we developed Bayesian techniques to estimate the net activity of high and low activity radioactive samples. These techniques have the advantage that the remaining uncertainty about the net activity is described by probability densities. Graphs of the densities show the uncertainty in pictorial form. Figure 1 below demonstrates this point. We applied stochastic processes for a method to obtain Bayesian estimates of 222Rn-daughter products from observed counting rates. In external radiation dosimetry we studied and developed Bayesian methods to estimate radiation doses to an individual with radiation induced chromosome aberrations. We analyzed chromosome aberrations after exposure to gammas and neutrons and developed a method for dose-estimation after criticality accidents. The research in internal radiation dosimetry focused on parameter estimation for compartmental models from observed comp...

  20. Impact on the Japanese atomic bomb survivors of radiation received from the bombs.

    Science.gov (United States)

    Cullings, Harry M

    2014-02-01

    The Radiation Effects Research Foundation (RERF) studies various cohorts of Japanese atomic bomb survivors, the largest being the Life Span Study (LSS), which includes 93,741 persons who were in Hiroshima or Nagasaki at the times of the bombings; there are also cohorts of persons who were exposed in utero and survivors' children. This presentation attempts to summarize the total impact of the radiation from the bombs on the survivors from both an individual perspective (both age-specific and integrated lifetime risk, along with a measure of life expectancy that describes how the risk affects the individual given age at exposure) and a group perspective (estimated numbers of excess occurrences in the cohort), including both early and late effects. As survivors' doses ranged well into the acutely lethal range at closer distances, some of them experienced acute signs and symptoms of radiation exposure in addition to being at risk of late effects. Although cancer has always been a primary concern among late effects, estimated numbers of excess cancers and hematopoietic malignancies in the LSS are a small fraction of the total due to the highly skewed dose distribution, with most survivors receiving small doses. For example, in the latest report on cancer incidence, 853 of 17,448 incident solid cancers were estimated to be attributable to radiation from the bombs. RERF research indicates that risk of radiation-associated cancer varies among sites and that some benign tumors such as uterine myoma are also associated with radiation. Noncancer late effects appear to be in excess in proportion to radiation dose but with an excess relative risk about one-third that of solid cancer and a correspondingly small overall fraction of cases attributable to radiation. Specific risks were found for some subcategories, particularly circulatory disease, including stroke and precedent conditions such as hypertension. Radiation-related cataract in the atomic bomb survivors is well known

  1. Dosimetry of Low-Energy Beta Radiation

    DEFF Research Database (Denmark)

    Borg, Jette

    Useful techniques and procedures for derermination of absorbed doses from exposure in a low-energy beta radiation were studied and evaluated. The four techniques included were beta spectrometry, extrapolation chamber dosimetry, Monte Carlo (MC) calculations, and exoelectron dosimetry. As a typical...... low-energy beta radiation field a moderated spectrum from a carbon-14 source was used. The measured responce of a Si(Li) detector to photons (bremsstrahlung) showed fine agreemant with the MC calculated photon response, whereas the difference between measured and MC calculated response to electrons...

  2. Dosimetry of Low-Energy Beta Radiation

    DEFF Research Database (Denmark)

    Borg, Jette

    Useful techniques and procedures for derermination of absorbed doses from exposure in a low-energy beta radiation were studied and evaluated. The four techniques included were beta spectrometry, extrapolation chamber dosimetry, Monte Carlo (MC) calculations, and exoelectron dosimetry. As a typical...... low-energy beta radiation field a moderated spectrum from a carbon-14 source was used. The measured responce of a Si(Li) detector to photons (bremsstrahlung) showed fine agreemant with the MC calculated photon response, whereas the difference between measured and MC calculated response to electrons...

  3. Dosimetry of ionising radiation in modern radiation oncology

    Science.gov (United States)

    Kron, Tomas; Lehmann, Joerg; Greer, Peter B.

    2016-07-01

    Dosimetry of ionising radiation is a well-established and mature branch of physical sciences with many applications in medicine and biology. In particular radiotherapy relies on dosimetry for optimisation of cancer treatment and avoidance of severe toxicity for patients. Several novel developments in radiotherapy have introduced new challenges for dosimetry with small and dynamically changing radiation fields being central to many of these applications such as stereotactic ablative body radiotherapy and intensity modulated radiation therapy. There is also an increasing awareness of low doses given to structures not in the target region and the associated risk of secondary cancer induction. Here accurate dosimetry is important not only for treatment optimisation but also for the generation of data that can inform radiation protection approaches in the future. The article introduces some of the challenges and highlights the interdependence of dosimetric calculations and measurements. Dosimetric concepts are explored in the context of six application fields: reference dosimetry, small fields, low dose out of field, in vivo dosimetry, brachytherapy and auditing of radiotherapy practice. Recent developments of dosimeters that can be used for these purposes are discussed using spatial resolution and number of dimensions for measurement as sorting criteria. While dosimetry is ever evolving to address the needs of advancing applications of radiation in medicine two fundamental issues remain: the accuracy of the measurement from a scientific perspective and the importance to link the measurement to a clinically relevant question. This review aims to provide an update on both of these.

  4. Thermoluminescence Dosimetry Applied to Radiation Protection

    DEFF Research Database (Denmark)

    Christensen, Poul; Bøtter-Jensen, Lars; Majborn, Benny

    1982-01-01

    This is a general review of the present state of the development and application of thermoluminescence dosimetry (TLD) for radiation protection purposes. A description is given of commonly used thermoluminescent dosimeters and their main dosimetric properties, e.g. energy response, dose range...

  5. Applied physics of external radiation exposure dosimetry and radiation protection

    CERN Document Server

    Antoni, Rodolphe

    2017-01-01

    This book describes the interaction of living matter with photons, neutrons, charged particles, electrons and ions. The authors are specialists in the field of radiation protection. The book synthesizes many years of experiments with external radiation exposure in the fields of dosimetry and radiation shielding in medical, industrial and research fields. It presents the basic physical concepts including dosimetry and offers a number of tools to be used by students, engineers and technicians to assess the radiological risk and the means to avoid them by calculating the appropriate shields. The theory of radiation interaction in matter is presented together with empirical formulas and abacus. Numerous numerical applications are treated to illustrate the different topics. The state of the art in radiation protection and dosimetry is presented in detail, especially in the field of simulation codes for external exposure to radiation, medical projects and advanced research. Moreover, important data spread in differ...

  6. Reconstructive dosimetry for cutaneous radiation syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Lima, C.M.A.; Lima, A.R.; Degenhardt, Ä.L.; Da Silva, F.C.A., E-mail: dasilva@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Valverde, N.J. [Fundacao Eletronuclear de Assistencia Medica, Rio de Janeiro, RJ (Brazil)

    2015-10-15

    According to the International Atomic Energy Agency (IAEA), a relatively significant number of radiological accidents have occurred in recent years mainly because of the practices referred to as potentially high-risk activities, such as radiotherapy, large irradiators and industrial radiography, especially in gammagraphy assays. In some instances, severe injuries have occurred in exposed persons due to high radiation doses. In industrial radiography, 80 cases involving a total of 120 radiation workers, 110 members of the public including 12 deaths have been recorded up to 2014. Radiological accidents in industrial practices in Brazil have mainly resulted in development of cutaneous radiation syndrome (CRS) in hands and fingers. Brazilian data include 5 serious cases related to industrial gammagraphy, affecting 7 radiation workers and 19 members of the public; however, none of them were fatal. Some methods of reconstructive dosimetry have been used to estimate the radiation dose to assist in prescribing medical treatment. The type and development of cutaneous manifestations in the exposed areas of a person is the first achievable gross dose estimation. This review article presents the state-of-the-art reconstructive dosimetry methods enabling estimation of local radiation doses and provides guidelines for medical handling of the exposed individuals. The review also presents the Chilean and Brazilian radiological accident cases to highlight the importance of reconstructive dosimetry. (author)

  7. Reconstructive dosimetry for cutaneous radiation syndrome.

    Science.gov (United States)

    Lima, C M A; Lima, A R; Degenhardt, Ä L; Valverde, N J; Silva, F C A da

    2015-10-01

    According to the International Atomic Energy Agency (IAEA), a relatively significant number of radiological accidents have occurred in recent years mainly because of the practices referred to as potentially high-risk activities, such as radiotherapy, large irradiators and industrial radiography, especially in gammagraphy assays. In some instances, severe injuries have occurred in exposed persons due to high radiation doses. In industrial radiography, 80 cases involving a total of 120 radiation workers, 110 members of the public including 12 deaths have been recorded up to 2014. Radiological accidents in industrial practices in Brazil have mainly resulted in development of cutaneous radiation syndrome (CRS) in hands and fingers. Brazilian data include 5 serious cases related to industrial gammagraphy, affecting 7 radiation workers and 19 members of the public; however, none of them were fatal. Some methods of reconstructive dosimetry have been used to estimate the radiation dose to assist in prescribing medical treatment. The type and development of cutaneous manifestations in the exposed areas of a person is the first achievable gross dose estimation. This review article presents the state-of-the-art reconstructive dosimetry methods enabling estimation of local radiation doses and provides guidelines for medical handling of the exposed individuals. The review also presents the Chilean and Brazilian radiological accident cases to highlight the importance of reconstructive dosimetry.

  8. Reconstructive dosimetry for cutaneous radiation syndrome

    Directory of Open Access Journals (Sweden)

    C.M.A. Lima

    2015-01-01

    Full Text Available According to the International Atomic Energy Agency (IAEA, a relatively significant number of radiological accidents have occurred in recent years mainly because of the practices referred to as potentially high-risk activities, such as radiotherapy, large irradiators and industrial radiography, especially in gammagraphy assays. In some instances, severe injuries have occurred in exposed persons due to high radiation doses. In industrial radiography, 80 cases involving a total of 120 radiation workers, 110 members of the public including 12 deaths have been recorded up to 2014. Radiological accidents in industrial practices in Brazil have mainly resulted in development of cutaneous radiation syndrome (CRS in hands and fingers. Brazilian data include 5 serious cases related to industrial gammagraphy, affecting 7 radiation workers and 19 members of the public; however, none of them were fatal. Some methods of reconstructive dosimetry have been used to estimate the radiation dose to assist in prescribing medical treatment. The type and development of cutaneous manifestations in the exposed areas of a person is the first achievable gross dose estimation. This review article presents the state-of-the-art reconstructive dosimetry methods enabling estimation of local radiation doses and provides guidelines for medical handling of the exposed individuals. The review also presents the Chilean and Brazilian radiological accident cases to highlight the importance of reconstructive dosimetry.

  9. Radiation dosimetry by potassium feldspar

    Indian Academy of Sciences (India)

    Arun Pandya; S G Vaijapurkar; P K Bhatnagar

    2000-04-01

    The thermoluminescence (TL) properties of raw and annealed feldspar have been studied for their use in gamma dosimetry. The raw gamma exposed feldspar shows glow peaks at 120°C and 319°C. Gamma dose beyond 500 cGy can be measured without any significant fading even after 40 days of termination of exposure. The annealed feldspar shows a glow peak at 120°C after gamma exposure. This peak can be used to measure gamma doses beyond 25 cGy when the TL is measured after 24 h from termination of exposure.

  10. (41)Ca in Tooth Enamel. Part II: A means for retrospective biological neutron dosimetry in atomic bomb survivors.

    Science.gov (United States)

    Rühm, W; Wallner, A; Cullings, H; Egbert, S D; El-Faramawy, N; Faestermann, T; Kaul, D; Knie, K; Korschinek, G; Nakamura, N; Roberts, J; Rugel, G

    2010-08-01

    (41)Ca is produced mainly by absorption of low-energy neutrons on stable (40)Ca. We used accelerator mass spectrometry (AMS) to measure (41)Ca in enamel of 16 teeth from 13 atomic bomb survivors who were exposed to the bomb within 1.2 km from the hypocenter in Hiroshima. In our accompanying paper (Wallner et al., Radiat. Res. 174, 000-000, 2010), we reported that the background-corrected (41)Ca/Ca ratio decreased from 19.5 x 10(-15) to 2.8 x 10(-15) with increasing distance from the hypocenter. Here we show that the measured ratios are in good correlation with gamma-ray doses assessed by electron paramagnetic resonance (EPR) in the same enamel samples, and agree well with calculated ratios based on either the current Dosimetry System 2002 (DS02) or more customized dose estimates where the regression slope as obtained from an errors-in-variables linear model was about 0.85. The calculated DS02 neutron dose to the survivors was about 10 to 80 mGy. The low-energy neutrons responsible for (41)Ca activation contributed variably to the total neutron dose depending on the shielding conditions. Namely, the contribution was smaller (10%) when shielding conditions were lighter (e.g., outside far away from a single house) and was larger (26%) when they were heavier (e.g., in or close to several houses) because of local moderation of neutrons by shielding materials. We conclude that AMS is useful for verifying calculated neutron doses under mixed exposure conditions with gamma rays.

  11. Exposure to Atomic Bomb Radiation and Age-Related Macular Degeneration in Later Life: The Hiroshima-Nagasaki Atomic Bomb Survivor Study.

    Science.gov (United States)

    Itakura, Katsumasa; Takahashi, Ikuno; Nakashima, Eiji; Yanagi, Masahide; Kawasaki, Ryo; Neriishi, Kazuo; Wang, Jie Jin; Wong, Tien Yin; Hida, Ayumi; Ohishi, Waka; Kiuchi, Yoshiaki

    2015-08-01

    To investigate the association between radiation exposure from the atomic bombings and the prevalence of age-related macular degeneration (AMD) among older residents of Hiroshima and Nagasaki. The Adult Health Study is a cohort study of atomic bomb survivors living in Hiroshima and Nagasaki, comprising 2153 participants who underwent examinations with retinal fundus photographs in 2006-2008. The radiation dose to the eye for the analysis was estimated with the revised dosimetry system (DS02). The retinal photographs were graded according to the Wisconsin Age-Related Maculopathy Grading System modified for nonstereoscopic retinal images. Early and late AMD were defined according to the type of lesion detected in the worse eye of the participants. Person-specific data were analyzed by using a logistic regression model to assess the association between radiation dose and AMD. Among the 1824 subjects with gradable retinal images (84.7% of the overall participants), the estimated eye dose was widely distributed, with a mean of 0.45 Gy and standard deviation of 0.74 Gy. The prevalence of early and late AMD was 10.5% and 0.3%, respectively. There were no significant associations between radiation dose and AMD, with each 1-Gy increase in exposure, adjusted odds ratio was 0.93 (95% confidence interval [CI], 0.75-1.15) for early AMD and 0.79 (95% CI, 0.21-2.94) for late AMD. No significant associations were found between atomic bomb irradiation early in life and the prevalence of early or late AMD later in life among Japanese atomic bomb survivors.

  12. Long-term epidemiological studies of atomic bomb survivors in Hiroshima and Nagasaki: study populations, dosimetry and summary of health effects.

    Science.gov (United States)

    Okubo, Toshiteru

    2012-10-01

    The Radiation Effects Research Foundation succeeded 28 years' worth of activities of the Atomic Bomb Casualty Commission on long-term epidemiological studies in Hiroshima and Nagasaki. It has three major cohorts of atomic bomb survivors, i.e. the Life Span Study (LSS) of 120,000 people, the In Utero Cohort of 3600 and the Second Generation Study (F(1)) of 77,000. The LSS and F(1) studies include a periodic health examination for each sub-cohort, i.e. the Adult Health Study and the F(1) Clinical Study, respectively. An extensive individual dose estimation was conducted and the system was published as the Dosimetry System established in 2002 (DS02). As results of these studies, increases of cancers in relation to dose were clearly shown. Increases of other mortality causes were also observed, including heart and respiratory diseases. There has been no evidence of genetic effects in the survivors' children, including cancer and other multi-factorial diseases. The increase in the expected mortality number in the next 10 y would allow the analyses of further details of the observed effects related to atomic bomb exposures.

  13. Association of Acute Radiation Syndrome and Rain after the Bombings in Atomic Bomb Survivors.

    Science.gov (United States)

    Ozasa, K; Sakata, R; Cullings, H M; Grant, E J

    2016-06-01

    Acute radiation-induced symptoms reported in survivors after the atomic bombings in Hiroshima and Nagasaki have been suspected to be associated with rain that fell after the explosions, but this association has not been evaluated in an epidemiological study that considers the effects of the direct dose from the atomic bombs and other factors. The aim of this study was to evaluate this association using information from a fixed cohort, comprised of 93,741 members of the Life Span Study who were in the city at the time of the bombing. Information on acute symptoms and exposure to rain was collected in surveys conducted by interviewers, primarily in the 1950s. The proportion of survivors developing severe epilation was around 60% at levels of direct radiation doses of 3 Gy or higher and less than 0.2% at levels <0.005 Gy regardless of reported rain exposure status. The low prevalence of acute symptoms at low direct doses indicates that the reported fallout rain was not homogeneously radioactive at a level sufficient to cause a substantial probability of acute symptoms. We observed that the proportion of reported acute symptoms was slightly higher among those who reported rain exposure in some subgroups, however, suggestions that rain was the cause of these reported symptoms are not supported by analyses specific to the known areas of radioactive fallout. Misclassification of exposure and outcome, including symptoms due to other causes and recall bias, appears to be a more plausible explanation. However, the insufficient and retrospective nature of the available data limited our ability to quantify the attribution to those possible causes.

  14. Radiation and cancer risk in atomic-bomb survivors.

    Science.gov (United States)

    Kodama, K; Ozasa, K; Okubo, T

    2012-03-01

    With the aim of accurately assessing the effects of radiation exposure in the Japanese atomic-bomb survivors, the Radiation Effects Research Foundation has, over several decades, conducted studies of the Life Span Study (LSS) cohort, comprising 93 000 atomic-bomb survivors and 27 000 controls. Solid cancer: the recent report on solid cancer incidence found that at age 70 years following exposure at age 30 years, solid cancer rates increase by about 35%  Gy(-1) for men and 58% Gy(-1) for women. Age-at-exposure is an important risk modifier. In the case of lung cancer, cigarette smoking has been found to be an important risk modifier. Radiation has similar effects on first-primary and second-primary cancer risks. Finally, radiation-associated increases in cancer rates appear to persist throughout life. Leukaemia: the recent report on leukaemia mortality suggests that radiation effects on leukaemia mortality persisted for more than 50 years. Moreover, significant dose-response for myelodysplastic syndrome was observed in Nagasaki LSS members even 40-60 years after radiation exposure. Future perspective: given the continuing solid cancer increase in the survivor population, the LSS will likely continue to provide important new information on radiation exposure and solid cancer risks for another 15-20 years, especially for those exposed at a young age.

  15. Dosimetry for the external radiation therapy. Dosimetry with alanine; Dosimetrie fuer die externe Strahlentherapie. Dosimetrie mit Alanin

    Energy Technology Data Exchange (ETDEWEB)

    Anton, Mathias [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany). Arbeitsgruppe ' Alanin-Dosimetrie'

    2013-06-15

    The alanine-ESR dosimetry in the PTB is described. The response power of alanine related to the water energy dose for X-rays with average energy of 10-1000 keV is presented. Furthermore the application of alanine for the quality assurance in the radiation therapy is described by means of the prostate irradiation and the therapy of a tumor in the neck region as examples. (HSI)

  16. Characterization of brazilian wollastonite for radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Souza, D.N. [Departamento de Fisica, Universidade Federal de Sergipe, Sao Cristovao/SE (Brazil); Melo, A.P.; Gazano, V.S.O.; Caldas, L.V.E. [Instituto de Pesquisas Energeticas e Nucleares, Comissao Nacional de Energia Nuclear, Sao Paulo (Brazil)]. e-mail: dnsouza@fisca.ufs.br

    2006-07-01

    In these work preliminary results of the characterization analyses of Brazilian Wollastonite for radiation dosimetry are presented. Wollastonite is a silicate of calcium, Ca(SiO{sub 3}), and it was acquired in the form of rude mineral with Andradite inclusions. The sample was cleaned and prepared for obtained selected grains of Wollastonite. The analyses of chemical and mineralogical compositions were obtained using the neutron activation and X-ray powder diffraction techniques. The thermoluminescent (TL) glow curve of the material shows a prominent peak at about 200 C. TL emission spectra, and photoinduced emission spectra were also obtained. (Author)

  17. The radiation dosimetry of intrathecally administered radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Stabin, M.G. [Oak Ridge Inst. for Science and Education, TN (United States); Evans, J.F. [Ohio State Univ., Columbus, OH (United States)

    1999-01-01

    The radiation dose to the spine, spinal cord, marrow, and other organs of the body from intrathecal administration of several radiopharmaceuticals was studied. Anatomic models were developed for the spine, spinal cerebrospinal fluid (CSF), spinal cord, spinal skeleton, cranial skeleton, and cranial CSF. A kinetic model for the transport of CSF was used to determine residence times in the CSF; material leaving the CSF was thereafter assumed to enter the bloodstream and follow the kinetics of the radiopharmaceutical as if intravenously administered. The radiation transport codes MCNP and ALGAMP were used to model the electron and photon transport and energy deposition. The dosimetry of Tc-99m DTPA and HSA, In-111 DTPA, I-131 HSA, and Yb-169 DTPA was studied. Radiation dose profiles for the spinal cord and marrow in the spine were developed and average doses to all other organs were estimated, including dose distributions within the bone and marrow.

  18. Estimation of radiation doses for atomic-bomb survivors in the Hiroshima University Registry

    Energy Technology Data Exchange (ETDEWEB)

    Hoshi, M.; Matsuura, M.; Hayakawa, N.; Kamada, N. [Hiroshima Univ., Kasumi (Japan); Ito, C. [Hiroshima A-bomb Casualty Council Health Management Promotion Center, Senda-machi Naka-ku (Japan)

    1996-05-01

    The present study presents the Hiroshima University Registry of atomic bomb survivors, of which the total number is about 270,000, and application of absorbed doses. From this registry, we picked up 49,102 survivors and applied organ doses based on the dosimetry system 1986 (DS86), which is named the Atomic Bomb Survivor 1993 Dose (ABS93D). The applied dose data are based on the tables listed in the DS86 final report such as the free-in-air kermas, the house shielding factors, and organ dose factors for the active bone marrow and the breast. Calculations for the 13 other organs provided in DS86 are possible. To obtained the organ doses for each survivor, it is necessary to obtain information concerning (1) place exposed, (2) whether they were shielded or not, and (3) age. ABS93D body transmission factors for active bone marrow for neutrons and gamma rays agreed with DS 86 to within a few percent. Of the survivors studied, 35, 123 of them were used for the relative risk estimation of leukemia mortality, adopting the same method as the Radiation Effects Research Foundation (RERF) for comparison. For the observation period from 1968 to 1989, the analyzed relative risks for leukemia mortality at 1 Gy by shielded kerm and by active bone marrow dose are 2.01 and 2.37, respectively, which are consistent with the RERF results. 11 refs., 1 fig., 3 tabs.

  19. Dosimetry of low-energy beta radiation

    Energy Technology Data Exchange (ETDEWEB)

    Borg, J.

    1996-08-01

    Useful techniques and procedures for determination of absorbed doses from exposure in a low-energy {beta} radiation field were studied and evaluated in this project. The four different techniques included were {beta} spectrometry, extrapolation chamber dosimetry, Monte Carlo (MC) calculations, and exoelectron dosimetry. As a typical low-energy {beta} radiation field a moderated spectrum from a {sup 14}C source (E{sub {beta}},{sub max} =156 keV) was chosen for the study. The measured response of a Si(Li) detector to photons (bremsstrahlung) showed fine agreement with the MC calculated photon response, whereas the difference between measured and MC calculated responses to electrons indicates an additional dead layer thickness of about 12 {mu}m in the Si(Li) detector. The depth-dose profiles measured with extrapolation chambers at two laboratories agreed very well, and it was confirmed that the fitting procedure previously reported for {sup 147}Pm depth-dose profiles is also suitable for {beta} radiation from {sup 14}C. An increasing difference between measured and MC calculated dose rates for increasing absorber thickness was found, which is explained by limitations of the EGS4 code for transport of very low-energy electrons (below 10-20 keV). Finally a study of the thermally stimulated exoelectron emission (TSEE) response of BeO thin film dosemeters to {beta} radiation for radiation fields with maximum {beta} energies ranging from 67 keV to 2.27 MeV is reported. For maximum {beta} energies below approximately 500 keV, a decrease in the response amounting to about 20% was observed. It is thus concluded that a {beta} dose higher than about 10 {mu}Gy can be measured with these dosemeters to within 0 to -20% independently of the {beta}energy for E{sub {beta}},{sub max} values down to 67 keV. (au) 12 tabs., 38 ills., 71 refs.

  20. High sensitive radiation detector for radiology dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Valente, M.; Malano, F. [Instituto de Fisica Enrique Gaviola, Oficina 102 FaMAF - UNC, Av. Luis Medina Allende, Ciudad Universitaria, 5000 Cordoba (Argentina); Molina, W.; Vedelago, J., E-mail: valente@famac.unc.edu.ar [Laboratorio de Investigaciones e Instrumentacion en Fisica Aplicada a la Medicina e Imagenes por Rayos X, Laboratorio 448 FaMAF - UNC, Ciudad Universitaria, 5000 Cordoba (Argentina)

    2014-08-15

    Fricke solution has a wide range of applications as radiation detector and dosimetry. It is particularly appreciated in terms of relevant comparative advantages, like tissue equivalence when prepared in aqueous media like gel matrix, continuous mapping capability, dose rate recorded and incident direction independence as well as linear dose response. This work presents the development and characterization of a novel Fricke gel system, based on modified chemical compositions making possible its application in clinical radiology. Properties of standard Fricke gel dosimeter for high dose levels are used as starting point and suitable chemical modifications are introduced and carefully investigated in order to attain high resolution for low dose ranges, like those corresponding to radiology interventions. The developed Fricke gel radiation dosimeter system achieves the expected typical dose dependency, actually showing linear response in the dose range from 20 up to 4000 mGy. Systematic investigations including several chemical compositions are carried out in order to obtain a good enough dosimeter response for low dose levels. A suitable composition among those studied is selected as a good candidate for low dose level radiation dosimetry consisting on a modified Fricke solution fixed to a gel matrix containing benzoic acid along with sulfuric acid, ferrous sulfate, xylenol orange and ultra-pure reactive grade water. Dosimeter samples are prepared in standard vials for its in phantom irradiation and further characterization by spectrophotometry measuring visible light transmission and absorbance before and after irradiation. Samples are irradiated by typical kV X-ray tubes and calibrated Farmer type ionization chamber is used as reference to measure dose rates inside phantoms in at vials locations. Once sensitive material composition is already optimized, dose-response curves show significant improvement regarding overall sensitivity for low dose levels. According to

  1. Proton minibeam radiation therapy: Experimental dosimetry evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Peucelle, C.; Martínez-Rovira, I.; Prezado, Y., E-mail: prezado@imnc.in2p3.fr [IMNC-UMR 8165, CNRS, Paris 7 and Paris 11 Universities, 15 rue Georges Clemenceau, Orsay Cedex 91406 (France); Nauraye, C.; Patriarca, A.; Hierso, E.; Fournier-Bidoz, N. [Institut Curie - Centre de Protonthérapie d’Orsay, Campus Universitaire, Bât. 101, Orsay 91898 (France)

    2015-12-15

    Purpose: Proton minibeam radiation therapy (pMBRT) is a new radiotherapy (RT) approach that allies the inherent physical advantages of protons with the normal tissue preservation observed when irradiated with submillimetric spatially fractionated beams. This dosimetry work aims at demonstrating the feasibility of the technical implementation of pMBRT. This has been performed at the Institut Curie - Proton Therapy Center in Orsay. Methods: Proton minibeams (400 and 700 μm-width) were generated by means of a brass multislit collimator. Center-to-center distances between consecutive beams of 3200 and 3500 μm, respectively, were employed. The (passive scattered) beam energy was 100 MeV corresponding to a range of 7.7 cm water equivalent. Absolute dosimetry was performed with a thimble ionization chamber (IBA CC13) in a water tank. Relative dosimetry was carried out irradiating radiochromic films interspersed in a IBA RW3 slab phantom. Depth dose curves and lateral profiles at different depths were evaluated. Peak-to-valley dose ratios (PVDR), beam widths, and output factors were also assessed as a function of depth. Results: A pattern of peaks and valleys was maintained in the transverse direction with PVDR values decreasing as a function of depth until 6.7 cm. From that depth, the transverse dose profiles became homogeneous due to multiple Coulomb scattering. Peak-to-valley dose ratio values extended from 8.2 ± 0.5 at the phantom surface to 1.08 ± 0.06 at the Bragg peak. This was the first time that dosimetry in such small proton field sizes was performed. Despite the challenge, a complete set of dosimetric data needed to guide the first biological experiments was achieved. Conclusions: pMBRT is a novel strategy in order to reduce the side effects of RT. This works provides the experimental proof of concept of this new RT method: clinical proton beams might allow depositing a (high) uniform dose in a brain tumor located in the center of the brain (7.5 cm depth

  2. [Instrumental radiofrequency electromagnetic radiation dosimetry: general principals and modern methodology].

    Science.gov (United States)

    Perov, S Iu; Kudriashov, Iu B; Rubtsova, N B

    2012-01-01

    The modern experimental radiofrequency electromagnetic field dosimetry approach has been considered. The main principles of specific absorbed rate measurement are analyzed for electromagnetic field biological effect assessment. The general methodology of specific absorbed rate automated dosimetry system applied to establish the compliance of radiation sources with the safety standard requirements (maximum permissible levels and base restrictions) is described.

  3. Neutron dosimetry and radiation damage calculations for HFBR

    Energy Technology Data Exchange (ETDEWEB)

    Greenwood, L.R.; Ratner, R.T. [Pacific Northwest National Lab., TN (United States)

    1998-03-01

    Neutron dosimetry measurements have been conducted for various positions of the High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory (BNL) in order to measure the neutron flux and energy spectra. Neutron dosimetry results and radiation damage calculations are presented for positions V10, V14, and V15.

  4. Advances in nuclear particle dosimetry for radiation protection and medicine - Ninth Symposium on Neutron Dosimetry (Editorial Material, English)

    Energy Technology Data Exchange (ETDEWEB)

    Zoetelief, J; Bos, A J.; Schuhmacher, H; McDonald, Joseph C.; Schultz, F W.; Pihet, P

    2004-12-15

    The Ninth Symposium on Neutron Dosimetry has been expanded to cover not only neutron radiation but heavy charged particle dosimetry as well. The applications are found in such fields as radiation protection, aircrew dosimetry, medicine, nuclear power and accelerator health physics. Scientists from many countries from around the world presented their work, and described the latest developments in techniques and instrumentation.

  5. Radiation Dosimetry for Quality Control of Food Preservation and Disinfestation

    DEFF Research Database (Denmark)

    McLaughlin, W.L.; Miller, Arne; Uribe, R.M.

    1983-01-01

    In the use of x and gamma rays and scanned electron beams to extend the shelf life of food by delay of sprouting and ripening, killing of microbes, and control of insect population, quality assurance is provided by standardized radiation dosimetry. By strategic placement of calibrated dosimeters...... speed) to meet changes that occur in product and source parameters (e.g. bulk density and radiation spectrum). Routine dosimetry methods and certain corrections of dosimetry data may be selected for the radiations used in typical food processes....

  6. Subwavelength films for standoff radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Alvine, Kyle J.; Bernacki, Bruce E.; Bennett, Wendy D.; Schemer-Kohrn, Alan L.; Suter, Jonathan D.

    2015-05-22

    We present optical subwavelength nanostructure architecture suitable for standoff radiation dosimetry with remote optical readout in the visible or infrared spectral regions. To achieve this, films of subwavelength structures are fabricated over several square inches via the creation of a 2D non-close packed (NCP) array template of radiation-sensitive polymeric nanoparticles, followed by magnetron sputtering of a metallic coating to form a 2D array of separated hemispherical nanoscale metallic shells. The nanoshells are highly reflective at resonance in the visible or infrared depending on design. These structures and their behavior are based on the open ring resonator (ORR) architecture and have their analog in resonant inductive-capacitive (LC) circuits, which display a resonance wavelength that is inversely proportional to the square root of the product of the inductance and capacitance. Therefore, any modification of the nanostructure material properties due to radiation alters the inductive or capacitive behavior of the subwavelength features, which in turn changes their optical properties resulting in a shift in the optical resonance. This shift in resonance may be remotely interrogated actively using either laser illumination or passively by hyperspectral or multispectral sensing with broadband illumination. These structures may be designed to be either anisotropic or isotropic, which can also offer polarization-sensitive interrogation. We present experimental measurements of a radiation induced shift in the optical resonance of a subwavelength film after exposure to an absorbed dose of gamma radiation from 2 Mrad up to 62 Mrad demonstrating the effect. Interestingly the resonance shift is non-monotonic for this material system and possible radiation damage mechanisms to the nanoparticles are discussed.

  7. Thermoluminescence dosimetry of gamma rays from the Hiroshima atomic bomb at distances of 1.27 to 1.46 kilometers from the hypocenter.

    Science.gov (United States)

    Ichikawa, Y; Nagatomo, T; Hoshi, M; Kondo, S

    1987-04-01

    Sixteen ornamental tile samples were collected from 1982 to 1983 from the rooftops of two buildings at Hiroshima University, Hiroshima, Japan. Quartz grains 50-150 microns in size extracted from the samples were analyzed for their thermoluminescence (TL) intensities. Conversion of TL intensity to 60Co gamma exposure resulted in the following estimates: 40.5 to 27.6 mC kg-1 (157 to 107 R) for five samples (one each) collected from five sites at distances of 1.27 to 1.34 km from the hypocenter of the atomic bomb detonated in 1945; 23.7 +/- 1.4 mC kg-1 (92 +/- 5 R) for three samples from one site at a distance of 1.39 km; 21.4 to 17.0 mC kg-1 (83 to 66 R) for three samples (one sample per site) from three sites at distances of 1.40 to 1.43 km; 19.8 +/- 1.3 mC kg-1 (77 +/- 5 R) for four samples from one site at a distance of 1.45 km; and 13.2 mC kg-1 (51 R) for one sample at a distance of 1.46 km. At face value, these estimates are greater by a factor of about 2.5 than previous estimates based on the tentative 1965 radiation dose estimates for atomic bomb survivors (a tentative dosimetry model proposed in 1965), but agree within +32% to -13% (+15% on the average) with recent estimates using modern computational techniques using an improved model of the atomic bomb explosion.

  8. Review of the near-earth space radiation dosimetry

    Science.gov (United States)

    Guo, Jianming; Chen, Xiaoqian; Li, Shiyou

    2016-07-01

    The near-earth space radiation environment has a great effect to the spacecraft and maybe do harm to the astronaut's health. Thus, how to measure the radiation has become a serious challenge. In order to provide sufficient protection both for astronauts and for instruments on-board, dose equivalent and linear energy transfer should be measured instead of merely measuring total radiation dose. This paper reviews the methods of radiation measurement and presents a brief introduction of dosimetry instruments. The method can be divided into two different kinds, i.e., positive dosimetry and passive dosimetry. The former usually includes electronic devices which can be used for data storage and can offer simultaneous monitoring on space radiation. The passive dosimetry has a much simple structure, and need extra operation after on-orbit missions for measuring. To get more reliable data of radiation dosimetry, various instruments and methods had been applied in the spacecrafts and the manned spacecrafts in particular. The outlook of the development in the space radiation dosimetry measurement is also presented.

  9. Subwavelength films for standoff radiation dosimetry

    Science.gov (United States)

    Alvine, Kyle J.; Bernacki, Bruce E.; Bennett, Wendy D.; Schemer-Kohrn, Alan; Suter, Jonathan D.

    2015-05-01

    We present optical subwavelength nanostructure architecture suitable for standoff radiation dosimetry with remote optical readout in the visible or infrared spectral regions. To achieve this, films of subwavelength structures are fabricated over several square inches via the creation of a 2D non-close packed (NCP) array template of radiationsensitive polymeric nanoparticles, followed by magnetron sputtering of a metallic coating to form a 2D array of separated hemispherical nanoscale metallic shells. The nanoshells are highly reflective at resonance in the visible or infrared depending on design. These structures and their behavior are based on the open ring resonator (ORR) architecture and have their analog in resonant inductive-capacitive (LC) circuits, which display a resonance wavelength that is inversely proportional to the square root of the product of the inductance and capacitance. Therefore, any modification of the nanostructure material properties due to radiation alters the inductive or capacitive behavior of the subwavelength features, which in turn changes their optical properties resulting in a shift in the optical resonance. This shift in resonance may be remotely interrogated actively using either laser illumination or passively by hyperspectral or multispectral sensing with broadband illumination. These structures may be designed to be either anisotropic or isotropic, which can also offer polarization-sensitive interrogation. We present experimental measurements of a radiation induced shift in the optical resonance of a subwavelength film after exposure to an absorbed dose of gamma radiation from 2 Mrad up to 62 Mrad demonstrating the effect. Interestingly the resonance shift is non-monotonic for this material system and possible radiation damage mechanisms to the nanoparticles are discussed.

  10. Genetic radiation effects of Hiroshima and Nagasaki atomic bombs

    Energy Technology Data Exchange (ETDEWEB)

    Srsen, S. (Komenskeho Univ., Bratislava (Czechoslovakia). Lekarska Fakulta)

    1984-05-01

    A group of researchers examined persons who had survived the Hiroshima and Nagasaki bombs and were irradiated and their progeny with the aim of getting an idea of the genetic effects of these explosions. Teratogenic effects are not discussed. In the lymphocytes of the peripheral blood of persons who had been exposed to high dose irradiation the researchers found a significant increase in chromosomal aberrations by conventional and more recent methods of chromosomal analysis. In parents who had survived the atomic holocaust there were no significant deviations as against the rest of the population in still births, neonatal defects, infant mortality, and mortality of first generation progeny, in neonate weight, the sex ratio, increased occurence of leukosis and chromosomal aberrations in their children. These negative findings in the first generation do not signify that there is no danger from atomic bomb blasts for human kind. They only indicate that the effects of radiation were too small to be found by routine methods or that the methods used were not suitable.

  11. Beta-particle dosimetry in radiation synovectomy

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, L.S. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Nuclear Engineering; Yanch, J.C. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Nuclear Engineering; Shortkroff, S. [Department of Orthopedic Surgery, Brigham and Women`s Hospital, Boston, MA (United States); Barnes, C.L. [Department of Orthopedic Surgery, Brigham and Women`s Hospital, Boston, MA (United States); Spitzer, A.I. [Department of Orthopedic Surgery, Brigham and Women`s Hospital, Boston, MA (United States); Sledge, C.B. [Department of Orthopedic Surgery, Brigham and Women`s Hospital, Boston, MA (United States)

    1995-09-01

    Beta-particle dosimetry of various radionuclides used in the treatment of rheumatoid arthritis was estimated using Monte Carlo radiation transport simulation coupled with experiments using reactor-produced radionuclides and radiachromic film dosimeters inserted into joint phantoms and the knees of cadavers. Results are presented as absorbed dose factors (cGy-cm{sup 2}/MBq-s) versus depth in a mathematical model of the rheumatoid joint which includes regions of bone, articular cartilage, joint capsule, and tissue (synovium) found in all synovial joints. The factors can be used to estimate absorbed dose and dose rate distributions in treated joints. In particular, guidance is provided for those interested in (a) a given radionuclide`s therapeutic range, (b) the amount of radioactivity to administer on a case-by-case basis, (c) the expected therapeutic dose to synovium, and (d) the radiation dose imparted to other, nontarget components in the joint, including bone and articular cartilage. (orig.). With 6 figs., 6 tabs.

  12. Radiation dosimetry onboard the International Space Station ISS.

    Science.gov (United States)

    Berger, Thomas

    2008-01-01

    Besides the effects of the microgravity environment, and the psychological and psychosocial problems encountered in confined spaces, radiation is the main health detriment for long duration human space missions. The radiation environment encountered in space differs in nature from that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones encountered on earth for occupational radiation workers. Therefore the determination and the control of the radiation load on astronauts is a moral obligation of the space faring nations. The requirements for radiation detectors in space are very different to that on earth. Limitations in mass, power consumption and the complex nature of the space radiation environment define and limit the overall construction of radiation detectors. Radiation dosimetry onboard the International Space Station (ISS) is onboard the International Space Station (ISS) is accomplished to one part as "operational" dosimetry accomplished to one part as "operational" dosimetry aiming for area monitoring of the radiation environment as well as astronaut surveillance. Another part focuses on "scientific" dosimetry aiming for a better understanding of the radiation environment and its constitutes. Various research activities for a more detailed quantification of the radiation environment as well as its distribution in and outside the space station have been accomplished in the last years onboard the ISS. The paper will focus on the current radiation detectors onboard the ISS, their results, as well as on future planned activities.

  13. Proceedings of the third conference on radiation protection and dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Swaja, R.E.; Sims, C.S.; Casson, W.H. [eds.

    1991-10-01

    The Third Conference on Radiation Protection and Dosimetry was held during October 21--24, 1991, at the Sheraton Plaza Hotel in Orlando, Florida. This meeting was designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection, and providing them with sufficient information to evaluate their programs. To meet these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection was prepared. General topics considered in the technical session included external dosimetry, internal dosimetry, instruments, accident dosimetry, regulations and standards, research advances, and applied program experience. In addition, special sessions were held to afford attendees the opportunity to make short presentations of recent work or to discuss topics of general interest. Individual reports are processed separately on the database.

  14. Genomic instability in the epidermis induced by atomic bomb (A-bomb) radiation: a long-lasting health effect in A-bomb survivors.

    Science.gov (United States)

    Naruke, Yuki; Nakashima, Masahiro; Suzuki, Keiji; Kondo, Hisayoshi; Hayashi, Tomayoshi; Soda, Midori; Sekine, Ichiro

    2009-08-15

    Radiation etiology is suggested in the occurrence of basal cell carcinoma (BCC) of the skin among atomic bomb (A-bomb) survivors. Any genotoxicity, including ionizing radiation, can induce a DNA damage response (DDR), leading to genomic instability (GIN), which allows the accumulation of mutations during tumorigenesis. In this study, the authors evaluated the presence of GIN in the epidermis of survivors as a late effect of A-bomb radiation. In total, 146 BCCs, including 23 cases arising from nonexposed skin, were identified in survivors from 1968 to 1999. The incidence rate (IR) of BCC was calculated with stratification by distance in kilometers from the hypocenter ( or =3 km). Nineteen epidermal samples surrounding BCC at the nonexposed sites were collected and tested for p53 binding protein 1 (53BP1) expression with immunofluorescence. 53BP1 rapidly forms nuclear foci at the sites of DNA double strand breaks (DSBs). Because 1 manifestation of GIN is the induction of endogenous DSBs, the level of 53BP1-focus formation (DDR type) can be considered as a marker for GIN. : The incidence rate of BCC increased significantly as exposure distance approached the hypocenter. Of the 7 epidermal samples from the proximal group ( or =3 km) and all samples from the control group predominantly expressed the stable type of 53BP1 expression in the epidermis. : The current results demonstrated the endogenous activation of DDR in the epidermis surrounding BCC in the proximal group, suggesting the presence of a GIN in the survivors as a late effect of A-bomb radiation, which may indicate a predisposition to cancer.

  15. Basic principles in the radiation dosimetry of nuclear medicine.

    Science.gov (United States)

    Stabin, Michael; Xu, Xie George

    2014-05-01

    The basic principles of the use of radiation dosimetry in nuclear medicine are reviewed. The basic structure of the main mathematical equations are given and formal dosimetry systems are discussed. An extensive overview of the history and current status of anthropomorphic models (phantoms) is given. The sources and magnitudes of uncertainties in calculated internal dose estimates are reviewed. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. A practical three-dimensional dosimetry system for radiation therapy

    OpenAIRE

    Guo, Pengyi; Adamovics, John; Oldham, Mark

    2006-01-01

    There is a pressing need for a practical three-dimensional (3D) dosimetry system, convenient for clinical use, and with the accuracy and resolution to enable comprehensive verification of the complex dose distributions typical of modern radiation therapy. Here we introduce a dosimetry system that can achieve this challenge, consisting of a radiochromic dosimeter (PRESAGE™) and a commercial optical computed tomography (CT) scanning system (OCTOPUS™). PRESAGE™ is a transparent material with com...

  17. Effects of A-bomb radiation on the human body. Genbaku hoshasen no jintai eikyo 1992

    Energy Technology Data Exchange (ETDEWEB)

    Shigematsu, Itsuzo; Akiyama, Mitoshi; Sasaki, Hideo (Radiation Effects Research Foundation, Hiroshima (Japan)); Ito, Chikato; Kamada, Nanao (eds.)

    1992-01-01

    This publication consists of contributions by 39 authors in Hiroshima who are active in the forefront of research, diagnosis and treatment concerning atomic bomb survivors. Following a brief description on the damage of the atomic bomb, the subjects of malignant tumors, endocrine and metabolic diseases, ocular lesions, dermatologic effects, prenatal exposure, chromosomal aberrations, mutations, sensitivity to radiation, immune function, genetic effects and other effects of radiation are described. All of the 45 chapters are indexed individually. (J.P.N.).

  18. Simulation-extrapolation method to address errors in atomic bomb survivor dosimetry on solid cancer and leukaemia mortality risk estimates, 1950-2003.

    Science.gov (United States)

    Allodji, Rodrigue S; Schwartz, Boris; Diallo, Ibrahima; Agbovon, Césaire; Laurier, Dominique; de Vathaire, Florent

    2015-08-01

    Analyses of the Life Span Study (LSS) of Japanese atomic bombing survivors have routinely incorporated corrections for additive classical measurement errors using regression calibration. Recently, several studies reported that the efficiency of the simulation-extrapolation method (SIMEX) is slightly more accurate than the simple regression calibration method (RCAL). In the present paper, the SIMEX and RCAL methods have been used to address errors in atomic bomb survivor dosimetry on solid cancer and leukaemia mortality risk estimates. For instance, it is shown that using the SIMEX method, the ERR/Gy is increased by an amount of about 29 % for all solid cancer deaths using a linear model compared to the RCAL method, and the corrected EAR 10(-4) person-years at 1 Gy (the linear terms) is decreased by about 8 %, while the corrected quadratic term (EAR 10(-4) person-years/Gy(2)) is increased by about 65 % for leukaemia deaths based on a linear-quadratic model. The results with SIMEX method are slightly higher than published values. The observed differences were probably due to the fact that with the RCAL method the dosimetric data were partially corrected, while all doses were considered with the SIMEX method. Therefore, one should be careful when comparing the estimated risks and it may be useful to use several correction techniques in order to obtain a range of corrected estimates, rather than to rely on a single technique. This work will enable to improve the risk estimates derived from LSS data, and help to make more reliable the development of radiation protection standards.

  19. Incidence of dementia among atomic-bomb survivors--Radiation Effects Research Foundation Adult Health Study.

    Science.gov (United States)

    Yamada, Michiko; Kasagi, Fumiyoshi; Mimori, Yasuyo; Miyachi, Takafumi; Ohshita, Tomohiko; Sasaki, Hideo

    2009-06-15

    Radiotherapy has been reported to cause neuropsychological dysfunction. Here we examined whether exposure to atomic bomb radiation affected the incidence of dementia among 2286 atomic bomb survivors and controls - all members of the Adult Health Study cohort. Study subjects were non-demented and aged >or=60 years at baseline examination and had been exposed in 1945 at >or=13 years of age to a relatively low dose (or=500 mGy group. Alzheimer disease was the predominant type of dementia in each dose category. After adjustment for potential risk factors, radiation exposure did not affect the incidence rate of either all dementia or any of its subtypes. No case of dementia had a history of therapeutic cranial irradiation. Although we found no relationship between radiation exposure and the development of dementia among atomic bomb survivors exposed at >or=13 years old in this longitudinal study, effects on increased risk of early death among atomic bomb survivors will be considered.

  20. Ophthalmologic survey of atomic bomb survivors in Japan, 1949. Atomic bomb radiation cataract case report with histopathologic study. Medical examination of Hiroshima patients with radiation cataracts

    Energy Technology Data Exchange (ETDEWEB)

    Cogan, D.G.; Martin, S.F.; Kimura, S.J.; Ikui, Hiroshi; Fillmore, P.G.

    1959-01-01

    This document contains 3 reports dealing with the delayed effects of radiation on the eyes of survivors of the atomic explosions in Hiroshima and Nagasaki. In the first study, 1000 persons who were listed as having been in the open and within two kilometers of the hypocenter at the time of the explosion were selected at random from the census files of the Atomic Bomb Casualty Commission for study. In addition, 231 others, comprising the total available number of surviving persons listed at present in the census files as having been within one kilometer of the hypocenter, were examined, as were several hundred others who were contacted through newspaper publicity, referrals from local ophthalmologists, or through hearsay. The survey resulted in bringing in persons having, or having had, a variety of ocular conditions. Those connected with the atomic bomb included the following diagnoses; multiple injuries of eyes and eyelids; keratoconjunctivitis from ultraviolet and ionizing radiations; thermal burn of the cornea and of the retina; retinitis proliferans; and radiation cataracts. The cataracts were the only delayed manifestations of ocular injury from the atomic bomb. The second paper is a case report of a histopathologic study of atomic bomb radiation cataract. The third paper presents the results of medical examinations of survivors having radiation induced cataracts. 32 references, 8 figures. (DMC)

  1. Radiation protection dosimetry in medicine - Report of the working group n.9 of the European radiation dosimetry group (EURADOS) - coordinated network for radiation dosimetry (CONRAD - contract EC N) fp6-12684; Dosimetrie pour la radioprotection en milieu medical - rapport du groupe de travail n. 9 du European radiation dosimetry group (EURADOS) - coordinated netword for radiation dosimetry (CONRAD - contrat CE fp6-12684)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    This report present the results achieved within the frame of the work the WP 7 (Radiation Protection Dosimetry of Medical Staff) of the coordination action CONRAD (Coordinated Network for Radiation Dosimetry) funded through the 6. EU Framework Program. This action was coordinated by EURADOS (European Radiation Dosimetry Group). EURADOS is an organization founded in 1981 to advance the scientific understanding and the technical development of the dosimetry of ionising radiation in the fields of radiation protection, radiobiology, radiation therapy and medical diagnosis by promoting collaboration between European laboratories. WP7 coordinates and promotes European research for the assessment of occupational exposures to staff in therapeutic and diagnostic radiology workplaces. Research is coordinated through sub-groups covering three specific areas: 1. Extremity dosimetry in nuclear medicine and interventional radiology: this sub-group coordinates investigations in the specific fields of the hospitals and studies of doses to different parts of the hands, arms, legs and feet; 2. Practice of double dosimetry: this sub-group reviews and evaluates the different methods and algorithms for the use of dosemeters placed above and below lead aprons in large exposure during interventional radiology procedures, especially to determine effective doses to cardiologists during cardiac catheterization; and 3. Use of electronic personal dosemeters in interventional radiology: this sub-group coordinates investigations in laboratories and hospitals, and intercomparisons with passive dosemeters with the aim to enable the formulation of standards. (authors)

  2. Third conference on radiation protection and dosimetry. Program and abstracts

    Energy Technology Data Exchange (ETDEWEB)

    None

    1991-01-01

    This conference has been designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection and providing them with sufficient information to evaluate their programs. To partly fulfill these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection has been prepared. General topics include external dosimetry, internal dosimetry, instruments, regulations and standards, accreditation and test programs, research advances, and applied program experience. This publication provides a summary of the technical program and a collection of abstracts of the oral presentations.

  3. Effects of radiation on the incidence of prostate cancer among Nagasaki atomic bomb survivors.

    Science.gov (United States)

    Kondo, Hisayoshi; Soda, Midori; Mine, Mariko; Yokota, Kenichi

    2013-10-01

    Atomic bomb survivors have been reported to have an increased risk of some cancers, especially leukemia. However, the risk of prostate cancer in atomic bomb survivors is not known to have been examined previously. This study examined the association between atomic bomb radiation and the incidence of prostate cancer among male Nagasaki atomic bomb survivors. The subjects were classified by distance from the hypocenter into a proximal group (atomic bomb survivors who were alive in 1996. The Cox proportional hazard model was used to estimate the risk of prostate cancer development, with adjustment for age at atomic bomb explosion, attained age, smoking status, and alcohol consumption. Compared with the distal group, the proximal group had significant increased risks of total, localized, and high-grade prostate cancer (relative risk and 95% confidence interval: 1.51 [1.21-1.89]; 1.80 [1.26-2.57]; and 1.88 [1.20-2.94], respectively). This report is the first known to reveal a significant relationship between atomic bomb radiation and prostate cancer. © 2013 Japanese Cancer Association.

  4. Personnel radiation dosimetry symposium: program and abstracts

    Energy Technology Data Exchange (ETDEWEB)

    1984-10-01

    The purpose was to provide applied and research dosimetrists with sufficient information to evaluate the status and direction of their programs relative to the latest guidelines and techniques. A technical program was presented concerning experience, requirements, and advances in gamma, beta, and neutron personnel dosimetry.

  5. Radiation Protection and Dosimetry An Introduction to Health Physics

    CERN Document Server

    Stabin, Michael G

    2007-01-01

    This comprehensive text provides an overview of all relevant topics in the field of radiation protection (health physics). Radiation Protection and Dosimetry serves as an essential handbook for practicing health physics professionals, and is also ideal as a teaching text for courses at the university level. The book is organized to introduce the reader to basic principles of radiation decay and interactions, to review current knowledge and historical aspects of the biological effects of radiation, and to cover important operational topics such as radiation shielding and dosimetry. In addition to presenting the most up to date treatment of the topics and references to the literature, most chapters contain numerical problems with their solutions for use in teaching or self assessment. One chapter is devoted to Environmental Health Physics, which was written in collaboration with leading professionals in the area.

  6. Epidemiological research on radiation-induced cancer in atomic bomb survivors.

    Science.gov (United States)

    Ozasa, Kotaro

    2016-08-01

    The late effects of exposure to atomic bomb radiation on cancer occurrence have been evaluated by epidemiological studies on three cohorts: a cohort of atomic bomb survivors (Life Span Study; LSS), survivors exposed IN UTERO : , and children of atomic bomb survivors (F1). The risk of leukemia among the survivors increased remarkably in the early period after the bombings, especially among children. Increased risks of solid cancers have been evident since around 10 years after the bombings and are still present today. The LSS has clarified the dose-response relationships of radiation exposure and risk of various cancers, taking into account important risk modifiers such as sex, age at exposure, and attained age. Confounding by conventional risk factors including lifestyle differences is not considered substantial because people were non-selectively exposed to the atomic bomb radiation. Uncertainty in risk estimates at low-dose levels is thought to be derived from various sources, including different estimates of risk at background levels, uncertainty in dose estimates, residual confounding and interaction, strong risk factors, and exposure to residual radiation and/or medical radiation. The risk of cancer in subjects exposed IN UTERO : is similar to that in LSS subjects who were exposed in childhood. Regarding hereditary effects of radiation exposure, no increased risk of cancers associated with parental exposure to radiation have been observed in the F1 cohort to date. In addition to biological and pathogenetic interpretations of the present results, epidemiological investigations using advanced technology should be used to further analyze these cohorts. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  7. Medical radiation dosimetry theory of charged particle collision energy loss

    CERN Document Server

    McParland, Brian J

    2014-01-01

    Accurate radiation dosimetry is a requirement of radiation oncology, diagnostic radiology and nuclear medicine. It is necessary so as to satisfy the needs of patient safety, therapeutic and diagnostic optimisation, and retrospective epidemiological studies of the biological effects resulting from low absorbed doses of ionising radiation. The radiation absorbed dose received by the patient is the ultimate consequence of the transfer of kinetic energy through collisions between energetic charged particles and atoms of the tissue being traversed. Thus, the ability of the medical physicist to both measure and calculate accurately patient dosimetry demands a deep understanding of the physics of charged particle interactions with matter. Interestingly, the physics of charged particle energy loss has an almost exclusively theoretical basis, thus necessitating an advanced theoretical understanding of the subject in order to apply it appropriately to the clinical regime. ​ Each year, about one-third of the worl...

  8. Retrospective assessment of radiation exposure using biological dosimetry: chromosome painting, electron paramagnetic resonance and the glycophorin a mutation assay.

    Science.gov (United States)

    Kleinerman, R A; Romanyukha, A A; Schauer, D A; Tucker, J D

    2006-07-01

    Biological monitoring of dose can contribute important, independent estimates of cumulative radiation exposure in epidemiological studies, especially in studies in which the physical dosimetry is lacking. Three biodosimeters that have been used in epidemiological studies to estimate past radiation exposure from external sources will be highlighted: chromosome painting or FISH (fluorescence in situ hybridization), the glycophorin A somatic mutation assay (GPA), and electron paramagnetic resonance (EPR) with teeth. All three biodosimeters have been applied to A-bomb survivors, Chernobyl clean-up workers, and radiation workers. Each biodosimeter has unique advantages and limitations depending upon the level and type of radiation exposure. Chromosome painting has been the most widely applied biodosimeter in epidemiological studies of past radiation exposure, and results of these studies provide evidence that dose-related translocations persist for decades. EPR tooth dosimetry has been used to validate dose models of acute and chronic radiation exposure, although the present requirement of extracted teeth has been a disadvantage. GPA has been correlated with physically based radiation dose after high-dose, acute exposures but not after low-dose, chronic exposures. Interindividual variability appears to be a limitation for both chromosome painting and GPA. Both of these techniques can be used to estimate the level of past radiation exposure to a population, whereas EPR can provide individual dose estimates of past exposure. This paper will review each of these three biodosimeters and compare their application in selected epidemiological studies.

  9. A practical three-dimensional dosimetry system for radiation therapy.

    Science.gov (United States)

    Guo, Pengyi; Adamovics, John; Oldham, Mark

    2006-10-01

    There is a pressing need for a practical three-dimensional (3D) dosimetry system, convenient for clinical use, and with the accuracy and resolution to enable comprehensive verification of the complex dose distributions typical of modern radiation therapy. Here we introduce a dosimetry system that can achieve this challenge, consisting of a radiochromic dosimeter (PRESAGE) and a commercial optical computed tomography (CT) scanning system (OCTOPUS). PRESAGE is a transparent material with compelling properties for dosimetry, including insensitivity of the dose response to atmospheric exposure, a solid texture negating the need for an external container (reducing edge effects), and amenability to accurate optical CT scanning due to radiochromic optical contrast as opposed to light-scattering contrast. An evaluation of the performance and viability of the PRESAGE/OCTOPUS, combination for routine clinical 3D dosimetry is presented. The performance of the two components (scanner and dosimeter) was investigated separately prior to full system test. The optical CT scanner has a spatial resolution of OCTOPUS system was evaluated with respect to a simple known 3D dose distribution, by comparison with GAFCHROMIC EBT film and the calculated dose from a commissioned planning system. The "measured" dose distribution in a cylindrical PRESAGE dosimeter (16 cm diameter and 11 cm height) was determined by optical-CT, using a filtered backprojection reconstruction algorithm. A three-way Gamma map comparison (4% dose difference and 4 mm distance to agreement), between the PRESAGE, EBT and calculated dose distributions, showed full agreement in measurable region of PRESAGE dosimeter (approximately 90% of radius). The EBT and PRESAGE distributions agreed more closely with each other than with the calculated plan, consistent with penumbral blurring in the planning data which was acquired with an ion chamber. In summary, our results support the conclusion that the PRESAGE optical

  10. [Cohort studies of the atomic bomb survivors at the Radiation Effects Research Foundation].

    Science.gov (United States)

    Ozasa, Kotaro

    2012-03-01

    The Radiation Effects Research Foundation has been evaluating the risk of atomic bomb radiation for various diseases since the beginning of its former organization, the Atomic Bomb Casualty Commission. Cohorts of atomic-bomb survivors, in-utero survivors, and survivors' offspring have been followed up. The risk of all solid cancers at 1 Gy was estimated as ERR = 0.47 and EAR = 52/10,000 person-years for people who were exposed at 30 years of age and had reached 70 years of age, based on the cancer incidence during 1958-1998. The risk seemed to be increased in the in-utero survivors, but was rather lower than the risk for the survivors exposed at a young age. Effects on the offspring of survivors have not been shown to be significant. Continuing the research is important in order to more accurately estimate and understand radiation-induced health effects.

  11. Radiation exposure and circulatory disease risk: Hiroshima and Nagasaki atomic bomb survivor data, 1950-2003.

    Science.gov (United States)

    Shimizu, Yukiko; Kodama, Kazunori; Nishi, Nobuo; Kasagi, Fumiyoshi; Suyama, Akihiko; Soda, Midori; Grant, Eric J; Sugiyama, Hiromi; Sakata, Ritsu; Moriwaki, Hiroko; Hayashi, Mikiko; Konda, Manami; Shore, Roy E

    2010-01-14

    To investigate the degree to which ionising radiation confers risk of mortality from heart disease and stroke. Prospective cohort study with more than 50 years of follow-up. Atomic bomb survivors in Hiroshima and Nagasaki, Japan. 86 611 Life Span Study cohort members with individually estimated radiation doses from 0 to >3 Gy (86% received atomic bomb radiation. About 9600 participants died of stroke and 8400 died of heart disease between 1950 and 2003. For stroke, the estimated excess relative risk per gray was 9% (95% confidence interval 1% to 17%, P=0.02) on the basis of a linear dose-response model, but an indication of possible upward curvature suggested relatively little risk at low doses. For heart disease, the estimated excess relative risk per gray was 14% (6% to 23%, Patomic bomb survivors.

  12. Radiation Effects on Cognitive Function Among Atomic Bomb Survivors Exposed at or After Adolescence.

    Science.gov (United States)

    Yamada, Michiko; Landes, Reid D; Mimori, Yasuyo; Nagano, Yoshito; Sasaki, Hideo

    2016-06-01

    The objective of this study was to investigate radiation effects on longitudinal pre-dementia cognitive decline among participants who developed dementia as well as on those who did not develop dementia during follow-up. Measuring cognitive function with the Cognitive Abilities Screening Instrument approximately every 2 years, we followed 1844 atomic bomb survivors participating in the Adult Health Study of the Radiation Effects Research Foundation from 1992 to 2011. Participants were adolescents or older when exposed to between 0 and 4 Gy. Approximately 15% and 40% of participants were exposed to ≥1 Gy and atomic bomb survivors exposed at or after adolescence. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. A-bomb radiation and diseases; M proteinemia

    Energy Technology Data Exchange (ETDEWEB)

    Fujimura, Kingo (Hiroshima Univ. (Japan). Research Inst. for Nuclear Medicine and Biology); Ito, Chikako

    1994-03-01

    Mass health screening was conducted in 65,483 A-bomb survivors (23,153 men and 42,336 women). Among them, 553 (0.84%) was found to have M proteinemia. The incidence of M proteinemia was higher in men (1.1%) than women (0.72%). M proteinemia was simply classified as benign monoclonal gammopathy (BMG) in 372 A-bomb survivors (67.3%), pre-myeloma (PreMM) in 81 (14.6%), myeloma (MM) in 77 (13.9%), and macroglobulinemia in 23 (4.2%). A higher incidence of M proteinemia was associated with aging; it was rapidly increased in the age-group of 70. Death was seen in 45 (8%) of all cases, frequently due to vascular disorder and cancer. Some of the BMG cases had a long process or developed either PreMM or MM. The incidence of BMG was significantly higher in the group of A-bomb survivors exposed to 100 rad or more than the control group. (N.K.).

  14. Recent developments of optically stimulated luminescence materials and techniques for radiation dosimetry and clinical applications

    Directory of Open Access Journals (Sweden)

    Pradhan A

    2008-01-01

    Full Text Available During the last 10 years, optically stimulated luminescence (OSL has emerged as a formidable competitor not only to thermoluminescence dosimetry (TLD but also to several other dosimetry systems. Though a large number of materials have been synthesized and studied for OSL, Al 2 O 3 :C continues to dominate the dosimetric applications. Re-investigations of OSL in BeOindicate that this material might provide an alternative to Al 2 O 3 :C. Study of OSL of electronic components of mobile phones and ID cards appears to have opened up a feasibility of dosimetry and dose reconstruction using the electronic components of gadgets of everyday use in the events of unforeseen situations of radiological accidents, including the event of a dirty bomb by terrorist groups. Among the newly reported materials, a very recent development of NaMgF 3 :Eu 2+ appears fascinating because of its high OSL sensitivity and tolerable tissue equivalence. In clinical dosimetry, an OSL as a passive dosimeter could do all that TLD can do, much faster with a better or at least the same efficiency; and in addition, it provides a possibility of repeated readout unlike TLD, in which all the dose information is lost in a single readout. Of late, OSL has also emerged as a practical real-time dosimeter for in vivo measurements in radiation therapy (for both external beams and brachytherapy and in various diagnostic radiological examinations including mammography and CT dosimetry. For in vivo measurements, a probe of Al 2 O 3 :C of size of a fraction of a millimeter provides the information on both the dose rate and the total dose from the readout of radioluminescence and OSL signals respectively, from the same probe. The availability of OSL dosimeters in various sizes and shapes and their performance characteristics as compared to established dosimeters such as plastic scintillation dosimeters, diode detectors, MOSFET detectors, radiochromic films, etc., shows that OSL may soon become

  15. Proceedings of the second conference on radiation protection and dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Swaja, R. E.; Sims, C. S. [eds.

    1988-11-01

    The Second Conference on Radiation Protection and Dosimetry was held during October 31--November 3, 1988, at the Holiday Inn, Crowne Plaza Hotel in Orlando, Florida. This meeting was designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection and providing them with sufficient information to evaluate their programs. To facilitate meeting these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection was prepared. General topics considered in the technical sessions included external dosimetry, internal dosimetry, calibration, standards and regulations, instrumentation, accreditation and test programs, research advances, and applied program experience. In addition, special sessions were held to afford attendees the opportunity to make short presentations of recent work or to discuss topics of general interest. This document provides a summary of the conference technical program and a partial collection of full papers for the oral presentations in order of delivery. Individual papers were processed separately for the data base.

  16. Dosimetry; La dosimetrie

    Energy Technology Data Exchange (ETDEWEB)

    Le Couteulx, I.; Apretna, D.; Beaugerie, M.F. [Electricite de France (EDF), 75 - Paris (France)] [and others

    2003-07-01

    Eight articles treat the dosimetry. Two articles evaluate the radiation doses in specific cases, dosimetry of patients in radiodiagnosis, three articles are devoted to detectors (neutrons and x and gamma radiations) and a computer code to build up the dosimetry of an accident due to an external exposure. (N.C.)

  17. Radiation dosimetry by ESR in bone

    Energy Technology Data Exchange (ETDEWEB)

    Gallegos, R. (Universidad de San Agustin de Arequipa (Peru)); Marticorena, B. (Instituto Peruano de Energia Nuclear, Lima)

    1983-05-01

    The absorption speed in bovine bone samples irradiated with a /sup 90/Sr ..beta..-source of 45 mCi is studied with ESR. The signal changes linearly with the absorbed quantity of radiation to a maximum dose of 1.5 x 10/sup 6/ rads. This positive result allows to foresee the use of bone as a radiation dosimeter.

  18. Quality management system in the CIEMAT Radiation Dosimetry Service.

    Science.gov (United States)

    Martín, R; Navarro, T; Romero, A M; López, M A

    2011-03-01

    This paper describes the activities realised by the CIEMAT Radiation Dosimetry Service (SDR) for the implementation of a quality management system (QMS) in order to achieve compliance with the requirements of ISO/IEC 17025 and to apply for the accreditation for testing measurements of radiation dose. SDR has decided the accreditation of the service as a whole and not for each of its component laboratories. This makes it necessary to design a QMS common to all, thus ensuring alignment and compliance with standard requirements, and simplifying routine works as possible.

  19. Greetings: 50 years of Atomic Bomb Casualty Commission–Radiation Effects Research Foundation studies

    Science.gov (United States)

    Shigematsu, Itsuzo

    1998-01-01

    The Atomic Bomb Casualty Commission was established in Hiroshima in 1947 and in Nagasaki in 1948 under the auspices of the U.S. National Academy of Sciences to initiate a long-term and comprehensive epidemiological and genetic study of the atomic bomb survivors. It was replaced in 1975 by the Radiation Effects Research Foundation which is a nonprofit Japanese foundation binationally managed and supported with equal funding by the governments of Japan and the United States. Thanks to the cooperation of the survivors and the contributions of a multitude of scientists, these studies flourish to this day in what must be the most successful long-term research collaboration between the two countries. Although these studies are necessarily limited to the effects of acute, whole-body, mixed gamma-neutron radiation from the atom bombs, their comprehensiveness and duration make them the most definitive descriptions of the late effects of radiation in humans. For this reason, the entire world relies heavily on these data to set radiation standards. As vital as the study results are, they still represent primarily the effects of radiation on older survivors. Another decade or two should correct this deficiency and allow us to measure definitively the human risk of heritable mutation from radiation. We look to the worldwide radiation and risk community as well as to the survivors who have contributed so much to what has been done already to accomplish this goal. PMID:9576897

  20. Late effect of atomic bomb radiation on myeloid disorders: leukemia and myelodysplastic syndromes.

    Science.gov (United States)

    Tsushima, Hideki; Iwanaga, Masako; Miyazaki, Yasushi

    2012-03-01

    Leukemia was the first malignancy linked to radiation exposure in atomic bomb survivors. Clear evidence of the dose-dependent excess risk of three major types of leukemia (acute lymphocytic leukemia, acute myeloid leukemia [AML], and chronic myeloid leukemia) was found, especially in people exposed at young ages. Such leukemia risks were at their highest in the late 1950s, and declined gradually thereafter over the past 50 years. Findings from recent risk analyses, however, suggest the persistence of AML risk even after 1990, and evidence of increased risk of myelodysplastic syndromes (MDS) due to atomic bomb radiation has recently been shown. High-risk MDS and forms involving complex chromosomal aberrations were found to be much more frequent in people exposed to higher radiation doses. These lines of epidemiological evidence suggest that the risk of radiation-induced hematological malignancies has persisted for six decades since the initial exposure.

  1. Alternative statistical methods for cytogenetic radiation biological dosimetry

    CERN Document Server

    Fornalski, Krzysztof Wojciech

    2014-01-01

    The paper presents alternative statistical methods for biological dosimetry, such as the Bayesian and Monte Carlo method. The classical Gaussian and robust Bayesian fit algorithms for the linear, linear-quadratic as well as saturated and critical calibration curves are described. The Bayesian model selection algorithm for those curves is also presented. In addition, five methods of dose estimation for a mixed neutron and gamma irradiation field were described: two classical methods, two Bayesian methods and one Monte Carlo method. Bayesian methods were also enhanced and generalized for situations with many types of mixed radiation. All algorithms were presented in easy-to-use form, which can be applied to any computational programming language. The presented algorithm is universal, although it was originally dedicated to cytogenetic biological dosimetry of victims of a nuclear reactor accident.

  2. Radiation effects analysis in a group of interventional radiologists using biological and physical dosimetry methods

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, M., E-mail: WEMLmirapas@iqn.upv.e [Department of Chemical and Nuclear Engineering, Polytechnic University of Valencia, Camino de Vera s/n, 46022 Valencia (Spain); Montoro, A.; Almonacid, M. [Radiation Protection Service, Hospital Universitario La Fe Valencia (Spain); Ferrer, S. [Department of Chemical and Nuclear Engineering, Polytechnic University of Valencia, Camino de Vera s/n, 46022 Valencia (Spain); Barquinero, J.F. [Biological Dosimetry Service, Unit of Anthropology, Department of Animal and Vegetable Biology and Ecology, Universitat Autonoma de Barcelona (UAB) (Spain); Tortosa, R. [Radiation Protection Service, Hospital Universitario La Fe Valencia (Spain); Verdu, G. [Department of Chemical and Nuclear Engineering, Polytechnic University of Valencia, Camino de Vera s/n, 46022 Valencia (Spain); Rodriguez, P. [Biological Dosimetry Service, Unit of Anthropology, Department of Animal and Vegetable Biology and Ecology, Universitat Autonoma de Barcelona (UAB) (Spain); Barrios, L.L. [Department of Physiology and Cellular Biology, Unit of Cellular Biology (UAB) (Spain); Villaescusa, J.I. [Radiation Protection Service, Hospital Universitario La Fe Valencia (Spain)

    2010-08-15

    Interventional radiologists and staff members are frequently exposed to protracted and fractionated low doses of ionizing radiation, which extend during all their professional activities. These exposures can derive, due to the effects of direct and scattered radiation, in deterministic effects (radiodermitis, aged skin, cataracts, telangiectasia in nasal region, vasocellular epitelioms, hands depilation) and/or stochastic ones (cancer incidence). A methodology has been proposed for estimating the radiation risk or detriment from a group of six exposed interventional radiologists of the Hospital Universitario La Fe (Valencia, Spain), which had developed general exposition symptoms attributable to deterministic effects of ionizing radiation. Equivalent doses have been periodically registered using TLD's and wrist dosimeters, H{sub p}(10) and H{sub p}(0.07), respectively, and estimated through the observation of translocations in lymphocytes of peripheral blood (biological methods), by extrapolating the yield of translocations to their respective dose-effect curves. The software RADRISK has been applied for estimating radiation risks in these occupational radiation exposures. This software is based on transport models from epidemiological studies of population exposed to external sources of ionizing radiation, such as Hiroshima and Nagasaki atomic bomb survivors [UNSCEAR, Sources and effects of ionizing radiation: 2006 report to the general assembly, with scientific annexes. New York: United Nations; 2006]. The minimum and maximum average excess ratio for skin cancer has been, using wrist physical doses, of [1.03x10{sup -3}, 5.06x10{sup -2}], concluding that there is not an increased risk of skin cancer incidence. The minimum and maximum average excess ratio for leukemia has been, using TLD physical doses, of [7.84x10{sup -2}, 3.36x10{sup -1}], and using biological doses, of [1.40x10{sup -1}, 1.51], which is considerably higher than incidence rates, showing an

  3. Handbook of anatomical models for radiation dosimetry

    CERN Document Server

    Eckerman, Keith F

    2010-01-01

    Covering the history of human model development, this title presents the major anatomical and physical models that have been developed for human body radiation protection, diagnostic imaging, and nuclear medicine therapy. It explores how these models have evolved and the role that modern technologies have played in this development.

  4. Radiation effect on non-cancer diseases among a-bomb survivors

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, G.; Akahoshi, M.; Fujiwara, S.; Neriishi, K.; Yamada, M.; Hakoda, M. [Radiation Effect Research Foundation, Hiroshima (Japan)

    2002-07-01

    It has been well documented in the literature that radiation induces DNA damages and increases cancer risk. Besides cancer risk, the Life Span Study (LSS) on A-bomb survivors in Hiroshima and Nagasaki that has been conducted since 1950 by RERF demonstrated an increase in non-cancer death by cardiovascular diseases and chronic liver diseases (1). Since LSS analysis depends on death certificate, a physiological mechanism has not been elucidated how radiation increases the incidence of non-cancer diseases. In order to elucidate radiation effect on non-fatal disorders, RERF has conducted the Adult Health Study (AHS) since 1958 where 23,000 A-bomb survivors have been examined every other year. This study suggested that radiation exposure about 55 years before reduced the immune response to pathogens such as HB virus and Chlamydia pneumoniae, increased the levels of serum inflammatory markers, the prevalence of chronic hepatitis/liver cirrhosis and senile cataract, and the incidence of cardiovascular diseases. Our colleagues reported a dose-dependent decrease in the CD4 T cell number among A-bomb survivors (2,3). Since chronic inflammation and oxidative stress are causative of atherogenic cardiovascular diseases or cataract, we speculate a decrease in the immune response to pathogens, at least in part, is one of the mechanisms that A-bomb exposure increased non-cancer diseases. When the levels of inflammatory marker, C-reactive protein (CRP), were analyzed among subjects with evidence of Chlamydia pneumoniae infection, significantly higher levels of CRP were associated with antibodies to Chlamydia pneumoniae in those subjects receiving >1Gy than those receiving <5mGy. It is well known that high CRP is one of the risk factors of arteriosclerosis (4,5). Thus, A-bomb exposure seems to augment inflammatory response to pathogens, though of which mechanisms are not clear now.

  5. Recombination methods in the dosimetry of mixed radiation

    Energy Technology Data Exchange (ETDEWEB)

    Golnik, N. [Institute of Atomic Energy, Otwock-Swierk (Poland)

    1996-12-31

    The work describes the state of art of recombination methods developed for the dosimetry of mixed radiation fields. The existing theories of initial recombination of ions in gases is given. Recombination methods developed in IAE are reviewed in detail. The methods described here can be applied in mixed radiation fields of poorly known composition and practically unlimited energy range. Main dosimetric parameters such as absorbed dose, photon component to the absorbed dose, radiation quality factor, dose equivalent, ambient dose equivalent and some other quantities can be determined in single instrument. A novel method has been developed for determination of the energy loss distribution in the nanometric region. Experimental tests showed that the method is promising not only for radiation protection but also for radiobiological investigations. (author). 166 refs, 62 figs, 16 tabs.

  6. Standard Guide for Performance Characterization of Dosimeters and Dosimetry Systems for Use in Radiation Processing

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This guide provides guidance on determining the performance characteristics of dosimeters and dosimetry systems used in radiation processing. 1.2 This guide describes the influence quantities that might affect the performance of dosimeters and dosimetry systems and that should be considered during dosimeter/dosimetry system characterization. 1.3 Users of this guide are directed to existing standards and literature for procedures to determine the effects from individual influence quantities and from combinations of more than one influence quantity. 1.4 Guidance is provided regarding the roles of the manufacturers, suppliers, and users in the characterization of dosimeters and dosimetry systems. 1.5 This guide does not address how the dosimeter/dosimetry system characterization information is to be used in radiation processing applications or in the calibration of dosimetry systems. Note 1—For guidance on the use of dosimeter/dosimetry system characterization information for the selection and use o...

  7. Colour dosemeters for high level radiation dosimetry

    DEFF Research Database (Denmark)

    Schönbacher, H.; Coninckx, F.; Miller, A.;

    1990-01-01

    interpretation or a dose measurement with a simple instrument such as a portable reflecting densitometer in the range of 10(3) to 10(6) Gy. Two projects were investigated: (1) a thin plastic film with a self adhesive tape containing a radiochromic dye which induces a colour change when exposed to ionising...... radiation; and (2) a paint containing a base substance with a pigment. The paint dosemeter remained unaffected by irradiation up to 3 x 10(4) Gy while the film dosemeter showed a measurable colour change from 10(4) Gy to 5 x 10(5) Gy. Above 10(6) Gy the film dosemeter is destroyed by radiation. Samples...

  8. Reconstructive dosimetry for cutaneous radiation syndrome

    OpenAIRE

    Lima, C.M.A.; Lima, A. R.; Degenhardt,Ä.L.; Valverde, N.J.; Da Silva,F.C.A.

    2015-01-01

    According to the International Atomic Energy Agency (IAEA), a relatively significant number of radiological accidents have occurred in recent years mainly because of the practices referred to as potentially high-risk activities, such as radiotherapy, large irradiators and industrial radiography, especially in gammagraphy assays. In some instances, severe injuries have occurred in exposed persons due to high radiation doses. In industrial radiography, 80 cases involving a total of 120 radiatio...

  9. Radiation-related risks of non-cancer outcomes in the atomic bomb survivors.

    Science.gov (United States)

    Ozasa, K; Takahashi, I; Grant, E J

    2016-06-01

    Risks of non-cancer outcomes after exposure to atomic bomb (A-bomb) radiation have been evaluated among the Life Span Study (LSS) cohort and its subcohort, the Adult Health Study (AHS). Information regarding non-cancer outcomes in the LSS is obtained from death certificates. In the AHS, members undergo clinical examinations biennially to determine their health status. Many AHS studies have been limited to participants attending the clinic over a limited period, and therefore have varying degrees of inferential utility; as such, care is required for comparison with the LSS results. Disease structure of non-cancer diseases in Japan has changed over the long follow-up period since the end of World War II. The health status of the A-bomb survivors may be associated with the hardships of living in a devastated city and impoverished country following the prolonged war effort, in addition to the direct effects of radiation exposure. Radiation-related risk of cardiovascular disease may have increased due to radiation-related increased risk of hypertension and other secondary associations, and the risk of atherosclerotic disorders has also been reported recently. These results should be interpreted with caution because of changes in disease definitions over the follow-up period. The radiation-related risk of non-cancer respiratory diseases also appears to have increased over the follow-up period, but the shapes of the dose-response curves have shown little consistency. © The International Society for Prosthetics and Orthotics.

  10. Reproducibility of operator processing for radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Sui Shen; DeNardo, Gerald L.; DeNardo, Sally J.; Aina, Yuan; DeNardo, Diane A.; Lamborn, Kathleen R

    1997-01-01

    Reproducibility of operator processing for radiation dose and biological half-life was assessed for radioimmunotherapy. Mean coefficient of variation for intra-operator consecutive processing and for inter-operator processing was less than 15% for all tissues. The mean coefficient of variation for intra-operator processing over 2 wk or inter-operator processing comparing an experienced and less experienced operator was generally greater, and particularly so for tumors. Satisfactory reproducibility was achievable using visual determination of regions of interests after 80 h of training.

  11. Applications of Cherenkov Light Emission for Dosimetry in Radiation Therapy

    Science.gov (United States)

    Glaser, Adam Kenneth

    Since its discovery in the 1930's, the Cherenkov effect has been paramount in the development of high-energy physics research. It results in light emission from charged particles traveling faster than the local speed of light in a dielectric medium. The ability of this emitted light to describe a charged particle's trajectory, energy, velocity, and mass has allowed scientists to study subatomic particles, detect neutrinos, and explore the properties of interstellar matter. However, only recently has the phenomenon been considered in the practical context of medical physics and radiation therapy dosimetry, where Cherenkov light is induced by clinical x-ray photon, electron, and proton beams. To investigate the relationship between this phenomenon and dose deposition, a Monte Carlo plug-in was developed within the Geant4 architecture for medically-oriented simulations (GAMOS) to simulate radiation-induced optical emission in biological media. Using this simulation framework, it was determined that Cherenkov light emission may be well suited for radiation dosimetry of clinically used x-ray photon beams. To advance this application, several novel techniques were implemented to realize the maximum potential of the signal, such as time-gating for maximizing the signal to noise ratio (SNR) and Cherenkov-excited fluorescence for generating isotropic light release in water. Proof of concept experiments were conducted in water tanks to demonstrate the feasibility of the proposed method for two-dimensional (2D) projection imaging, three-dimensional (3D) parallel beam tomography, large field of view 3D cone beam tomography, and video-rate dynamic imaging of treatment plans for a number of common radiotherapy applications. The proposed dosimetry method was found to have a number of unique advantages, including but not limited to its non-invasive nature, water-equivalence, speed, high-resolution, ability to provide full 3D data, and potential to yield data in-vivo. Based on

  12. Freeware for reporting radiation dosimetry following the administration of radiopharmaceuticals.

    Science.gov (United States)

    Gómez Perales, Jesús Luis; García Mendoza, Antonio

    2015-09-01

    This work describes the development of a software application for reporting patient radiation dosimetry following radiopharmaceutical administration. The resulting report may be included within the patient's medical records. The application was developed in the Visual Basic programming language. The dosimetric calculations are based on the values given by the International Commission on Radiological Protection (ICRP). The software is available in both Spanish and English and can be downloaded at no cost from www.radiopharmacy.net. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Evidence supporting radiation hormesis in atomic bomb survivor cancer mortality data.

    Science.gov (United States)

    Doss, Mohan

    2012-12-01

    A recent update on the atomic bomb survivor cancer mortality data has concluded that excess relative risk (ERR) for solid cancers increases linearly with dose and that zero dose is the best estimate for the threshold, apparently validating the present use of the linear no threshold (LNT) model for estimating the cancer risk from low dose radiation. A major flaw in the standard ERR formalism for estimating cancer risk from radiation (and other carcinogens) is that it ignores the potential for a large systematic bias in the measured baseline cancer mortality rate, which can have a major effect on the ERR values. Cancer rates are highly variable from year to year and between adjacent regions and so the likelihood of such a bias is high. Calculations show that a correction for such a bias can lower the ERRs in the atomic bomb survivor data to negative values for intermediate doses. This is consistent with the phenomenon of radiation hormesis, providing a rational explanation for the decreased risk of cancer observed at intermediate doses for which there is no explanation based on the LNT model. The recent atomic bomb survivor data provides additional evidence for radiation hormesis in humans.

  14. Clinical features and prognosis of patients with myelodysplastic syndromes who were exposed to atomic bomb radiation in Nagasaki.

    Science.gov (United States)

    Matsuo, Masatoshi; Iwanaga, Masako; Kondo, Hisayoshi; Soda, Midori; Jo, Tatsuro; Horio, Kensuke; Takasaki, Yumi; Kawaguchi, Yasuhisa; Tsushima, Hideki; Imaizumi, Yoshitaka; Imanishi, Daisuke; Taguchi, Jun; Sawayama, Yasushi; Hata, Tomoko; Miyazaki, Yasushi

    2016-10-01

    There is evidence that radiation exposure is a causative factor of myelodysplastic syndromes (MDS). However, little is known about whether radiation exposure is also a prognostic factor of MDS. We investigated the impact of radiation exposure on the prognosis of MDS in Nagasaki atomic bomb survivors using the International Prognostic Scoring System (IPSS) and the revised version (IPSS-R). Subjects were 140 patients with primary MDS diagnosed between 1985 and 2011 and evaluable for IPSS, IPSS-R, and exposure distance. Of those, 31 were exposed at atomic bomb survivors, but exposure distance was not associated with any poor outcomes. These suggest that exposure to the greater dose of atomic bomb radiation is associated with developing poor cytogenetic abnormalities in MDS, which might consequently lead to overt leukemia among atomic bomb survivors. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  15. Epitaxial sic devices for radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Bruzzi, M; Menichelli, D.; Pini, S.; Sciortino, S. [INFN, Firenze (Italy); Firenze Univ., Firenze (Italy). Dipartimento di Energetica; Bucciolini, M. [INFN, Firenze (Italy); Firenze Univ., Firenze (Italy). Dipartimento di Fisiopatologia Clinica; Nava, F. [Modena Univ., Modena (Italy). Dipartimento di Fisica; INFN, Bologna (Italy)

    2002-07-01

    The current response of SiC on-line dosimeters to {gamma}-radiation from{sup 60}Co and {sup 167}Cs {gamma}-sources, X-photons and 22MeV electrons from linear accelerator has been investigated. The devices used are 4H-SiC epitaxial n-type layer deposited onto a 4H-SiC n{sup +} type substrate wafer doped with nitrogen. Single-pad Schottky contacts have been produced by deposition of a 1000A gold film on the epitaxial layer and ohmic contacts have been deposited on the rear substrate side. The detector has been then embedded in epoxy resin and studied in the dose and dose-rate ranges 0.1-1 Gy 0.1-10Gy/min. A signal response comparable to that of silicon standard dosimeters has been measured with the unbiased SiC device. The released charge and induced current have been observed to increase linearly respectively with the dose and dose-rate. A preliminary study on the changes in the sensibility of the device after a {gamma}-rays accumulated dose up to 10kGy is also presented.

  16. Radiation dose, reproductive history, and breast cancer risk among Japanese A-bomb survivors

    Energy Technology Data Exchange (ETDEWEB)

    Land, C.E. [National Cancer Institute, Bethesda, MD (United States)

    1992-06-01

    Excess risk of female breast cancer is among the most comprehensively documented late effects of exposure to substantial doses of ionizing radiation, based on studies of medically irradiated populations and the survivors of the A-bombings of Hiroshima and Nagasaki. This study looks at the interaction of dose with epidemiological factors like age at first full-term pregnancy and family history of breast cancer, most closely associated with risk in epidemiological studies of non-irradiatied populations. 1 fig., 2 tabs.

  17. The MCART radiation physics core: the quest for radiation dosimetry standardization.

    Science.gov (United States)

    Kazi, Abdul M; MacVittie, Thomas J; Lasio, Giovanni; Lu, Wei; Prado, Karl L

    2014-01-01

    Dose-related radiobiological research results can only be compared meaningfully when radiation dosimetry is standardized. To this purpose, the National Institute of Allergy and Infectious Diseases (NIAID)-sponsored Medical Countermeasures Against Radiological Threats (MCART) consortium recently created a Radiation Physics Core (RPC) as an entity to assume responsibility of standardizing radiation dosimetry practices among its member laboratories. The animal research activities in these laboratories use a variety of ionizing photon beams from several irradiators such as 250-320 kVp x-ray generators, Cs irradiators, Co teletherapy machines, and medical linear accelerators (LINACs). In addition to this variety of sources, these centers use a range of irradiation techniques and make use of different dose calculation schemes to conduct their experiments. An extremely important objective in these research activities is to obtain a Dose Response Relationship (DRR) appropriate to their respective organ-specific models of acute and delayed radiation effects. A clear and unambiguous definition of the DRR is essential for the development of medical countermeasures. It is imperative that these DRRs are transparent between centers. The MCART RPC has initiated the establishment of standard dosimetry practices among member centers and is introducing a Remote Dosimetry Monitoring Service (RDMS) to ascertain ongoing quality assurance. This paper will describe the initial activities of the MCART RPC toward implementing these standardization goals. It is appropriate to report a summary of initial activities with the intent of reporting the full implementation at a later date.

  18. High-resolution ultrasonic thermometer for radiation dosimetry.

    Science.gov (United States)

    Malyarenko, Eugene V; Heyman, Joseph S; Chen-Mayer, H Heather; Tosh, Ronald E

    2008-12-01

    This paper describes recent developments in the area of high-precision ultrasonic thermometry with the potential to provide on-site direct determination of radiation doses administered for cancer treatment. Conventional calorimeters used for this purpose measure radiation-induced heating in a water phantom at one point in space by means of immersed thermistors and are subject to various thermal disturbances due to Ohmic heating and interactions of the radiation with the sensor probes. By contrast, the method described here is based on a high-resolution ultrasonic system that determines the change of the speed of sound due to small temperature changes in an acoustic propagation path in the radiation-heated water, thereby avoiding such undesired thermal effects. The thermometer is able to measure tens of microkelvin changes in the water temperature averaged over the acoustic path of about 60 cm at room temperature, with root-mean-squared noise of about 5 microK. Both incandescent and ionizing radiation heating data are presented for analog and digital implementations of a laboratory prototype. This application of the ultrasonic technique opens up possibilities for a new approach to performing therapy-level radiation dosimetry for medical clinics and standards laboratories.

  19. Radiation dosimetry of a conformal heat-brachytherapy applicator.

    Science.gov (United States)

    Taschereau, Richard; Stauffer, Paul R; Hsu, I-Chow; Schlorff, Jaime L; Milligan, Andrew J; Pouliot, Jean

    2004-08-01

    The purpose of this paper is to report the radiation dosimetric characteristics of a new combination applicator for delivering heat and radiation simultaneously to large area superficial disease conformal printed circuit board microwave antenna array (for heat generation), and a body-conforming 5-10 mm thick temperature-controlled water bolus. The rationale for applying both modalities simultaneously includes the potential for significantly higher response rate due to enhanced synergism of modalities, and lower peak toxicity due to temporal extension of heat and radiation induced toxicities. Treatment plans and radiation dosimetry are calculated with IPSA (an optimization tool developed at UCSF) for 15 x 15 cm(2) and 35 x 24 cm(2) applicators, lesion thicknesses of 5 to 15 mm, flat and curved surfaces, and catheter separation of 5 and 10 mm. The effect on skin dose of bolus thickness and presence of thin copper antenna structures between radiation source and tissue are also evaluated. Results demonstrate the ability of the applicator to provide conformal radiation dose coverage for up to 15 mm deep target volumes under the applicator. For clinically acceptable plans, tumor coverage is > 98%, homogeneity index > 0.95 and the percentage of normal tissue irradiated is antenna array is of the order 0.25% and secondary electron emissions are absorbed completely within 5 mm of water bolus and plastic layers. Both phenomena can then be neglected in dose calculations allowing commercial software to be used for treatment planning. This novel applicator should prove useful for the treatment of diffuse chestwall disease located over contoured anatomy that may be difficult to treat with single field external beam therapy. By delivering heat and radiation simultaneously, increased synergism is expected with a TER in the range of 2-5. Lowering radiation dose by an equivalent factor may produce lower radiation toxicity with similar efficacy, while preserving the option of

  20. Long-lasting alterations of the immune system by ionizing radiation exposure: implications for disease development among atomic bomb survivors.

    Science.gov (United States)

    Kusunoki, Yoichiro; Hayashi, Tomonori

    2008-01-01

    The immune systems of the atomic-bomb (A-bomb) survivors were damaged proportionately to irradiation levels at the time of the bombing over 60 years ago. Although the survivor's immune system repaired and regenerated as the hematopoietic system has recovered, significant residual injury persists, as manifested by abnormalities in lymphoid cell composition and function. This review summarizes the long-lasting alterations in immunological functions associated with atomic-bomb irradiation, and discusses the likelihood that damaging effects of radiation on the immune system may be involved partly in disease development so frequently observed in A-bomb survivors. Significant immunological alterations noted include: (i) attrition of T-cell functions, as reductions in mitogen-dependent proliferation and interleukin-2 (IL-2) production; (ii) decrease in helper T-cell populations; and (iii) increase in blood inflammatory cytokine levels. These findings suggest that A-bomb radiation exposure perturbed one or more of the primary processes responsible for T-cell homeostasis and the balance between cell renewal and survival and cell death among naive and memory T cells. Such perturbed T-cell homeostasis may result in acceleration of immunological aging. Persistent inflammation, linked in some way to the perturbation of T-cell homeostasis, is key in addressing whether such noted immunological changes observed in A-bomb survivors are in fact associated with disease development.

  1. Perspectives on radiation dose estimates for A-bomb survivors

    Energy Technology Data Exchange (ETDEWEB)

    Loewe, W.E.

    1986-12-01

    Four decades after the actual events, quantitative characterization of the radiation fields at Hiroshima and Nagasaki continues to be sought, with high accuracy a goal justified by the unique contribution to radiation protection standards that is represented by the medical records of exposed survivors. The most recent effort is distinguished by its reliance on computer modeling and concomitant detail, and by its decentralized direction, both internationally and internally to the US and Japan, with resultant ongoing peer review and wide scope of inquiry. A new system for individual dose estimation has been agreed upon, and its scientific basis has been elaborated in the literature as well as in a comprehensive treatise to be published in the Spring of 1987. In perspective, this new system appears to be an unusually successful achievement that offers the expectation of reliable estimates with the desired accuracy. Some aspects leading to this expectation, along with a caveat, are discussed here. 4 refs., 8 figs., 3 tabs.

  2. European questionnaire on the use of computer programs in radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Gualdrini, G. [ENEA, Centro Ricerche Ezio Clementel, Bologna (Italy). Dipt. Ambiente; Grosswendt, B.; Sielbert, B.R.L. [Physikalish-Technische Bundesanstalt, Braunschweig (Germany); Tanner, R. [National Radiological Protection Board, Oxon (United Kingdom). Dosimetry Development Group; Terisol, M. [Paul Sabatier Univ., Toulose (France). Centre de Physique Atomique

    1999-07-01

    The report discusses the results obtained from the questionnaire on the massive use of computer programmes in radiation protection and dosimetry applications motivated by the Concerted Action Investigation and Quality Assurance of Numerical Methods in Radiation Protection Dosimetry of the fourth framework programme of the European Commission. [Italian] L'impiego massiccio di programmi di calcolo nel campo della radioprotezione e della dosimetria ha spinto la Concerted Action Investigation and Quality Assurence of Numericla Methods in Radiation Protection Dosimetry del 4th framework programme della Commissione Europea a preparare, distribuire ed analizzare un questionario sull'impiego di questi codici. I risultati raccolti vengono analizzati nel presente lavoro.

  3. Thermoluminescent characteristics of diopside-teflon composites for radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Melo, A.P.; Caldas, L.V.E. [Instituto de Pesquisas Energeticas e Nucleares, Comissao Nacional de Energia Nuclear, Sao Paulo (Brazil)]. e-mail: apmelo@ipen.br

    2006-07-01

    Diopside - Teflon composites were been studied in relation to their dosimetric properties for high-dose dosimetry. Diopside from Minas Gerais, Brazil, CaMg(Si{sub 2}O{sub 6}), was obtained in form of rude mineral with inclusions of quartz. The samples were prepared and only Diopside grains obtained. Pellets of Diopside-Teflon composites were prepared in the proportion of 2(Teflon): 1 (Diopside).The TL response repeatability presented a maximum coefficient of variation of 7.5%. The calibration curve is linear between 0.5 Gy and 1 kGy. TL emission spectra present three emissions of similar intensities at 570 nm, 590 nm and between 610-635 nm. The results suggest that the material presents good characteristics for use as high-dose radiation detectors. (Author)

  4. New method of preparation of CaSO{sub 4}: Dy for ionizing radiation dosimetry; Nuevo metodo de preparacion del CaSO{sub 4}: Dy para dosimetria de radiacion ionizante

    Energy Technology Data Exchange (ETDEWEB)

    Roman L, J.; Rivera M, T.; Alarcon F, G.; Guzman M, J. [CICATA-IPN, 11500 Mexico D.F. (Mexico); Azorin N, J.; Sosa F, R. [UAM-I, 09340 Mexico D.F. (Mexico); Serrano F, A.K. [Hospital Juarez General de Mexico, 07760 Mexico D.F. (Mexico)]. e-mail: holand_jeos@hotmail.com

    2008-07-01

    In this work some results of the characterization of solid state materials exposed at a gamma radiation beam coming from a {sup 60} Co bomb for medical use are presented. These thermoluminescent dosemeters are prepared and proposed for the ionizing radiations dosimetry using the thermoluminescence method. The passive dosemeters of CaSO{sub 4}: Dy are developed in the polycrystalline powder form being used a new synthesis route by means of the precipitation method. To determine the sensibility of the pellets of CaSO{sub 4}: Dy before gamma radiation, these were exposed before a gamma radiation beam coming from a {sup 60} Co bomb. The morphological and structural characteristics were also studied and present two in this work. (Author)

  5. Late effects of radiation: Neglected aspects of A-bomb data

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, A.M.; Kneale, G.W. [Dept. of Public Health and Epidemiology, Birmingham Univ., Edgbaston (United Kingdom)

    2001-07-01

    Both from the Oxford Survey of Childhood Cancers, and from recent surveys of nuclear workers at Hanford and Oak Ridge, have come risk estimates for cancer effects of radiation that are much higher than the ones based on a life span study cohort of A-bomb survivors. Furthermore, relations between the age when exposed and the cancer risk were radically different for workers and survivors. Therefore, there was clearly a need to discover whether the LSS cohort was a normal homogeneous population or, alternatively, whether persons who had shown signs of acute radiation effects constituted a special, radiosensitive subgroup of survivors. Statistical tests of the alternative hypotheses revealed significant differences between 63,072 survivors who denied having any of the following injuries and 2,601 survivors who claimed two or more of them: radiation, burns, purpura, oropharyngeal lesions and epilation. The tests also showed that the group differences were largely the result of exposures before 10 or after 55 years of age being exceptionally dangerous; that cancer was not the only late effect of the A-bomb radiation, and that it was only among the survivors with multiple injuries that the leukaemia death rate was exceptionally high. (orig.)

  6. Dosimetry in radiation fields around high-energy proton accelerators

    CERN Document Server

    Agosteo, S; Silari, M; Theis, C

    2008-01-01

    Radiation dosimetry at high-energy proton accelerators is a difficult task because of the complexity of the stray radiation field. A good knowledge of this mixed radiation field is very important to be able to select the type of detectors (active and/or passive) to be employed for routine area monitoring and to choose the personal dosimeter legally required for estimating the effective dose received by individuals. At the same time, the response function of the detectors to the mixed field must be thoroughly understood. A proper calibration of a device, which may involve a complex series of measurements in various reference fields, is needed. Monte Carlo simulations provide a complementary – and sometimes the principal – mean of determining the response function. The ambient dose equivalent rates during operation range from a few hundreds of μSv per year to a few mSv per year. To measure such rates one needs detectors of high sensitivity and/or capable of integrating over long periods. The main challenge...

  7. Radiation risk of individual multifactorial diseases in offspring of the atomic-bomb survivors: a clinical health study.

    Science.gov (United States)

    Tatsukawa, Yoshimi; Cologne, John B; Hsu, Wan-Ling; Yamada, Michiko; Ohishi, Waka; Hida, Ayumi; Furukawa, Kyoji; Takahashi, Norio; Nakamura, Nori; Suyama, Akihiko; Ozasa, Kotaro; Akahoshi, Masazumi; Fujiwara, Saeko; Shore, Roy

    2013-06-01

    There is no convincing evidence regarding radiation-induced heritable risks of adult-onset multifactorial diseases in humans, although it is important from the standpoint of protection and management of populations exposed to radiation. The objective of the present study was to examine whether parental exposure to atomic-bomb (A-bomb) radiation led to an increased risk of common polygenic, multifactorial diseases-hypertension, hypercholesterolaemia, diabetes mellitus, angina pectoris, myocardial infarction or stroke-in the first-generation (F1) offspring of A-bomb survivors. A total of 11,951 F1 offspring of survivors in Hiroshima or Nagasaki, conceived after the bombing, underwent health examinations to assess disease prevalence. We found no evidence that paternal or maternal A-bomb radiation dose, or the sum of their doses, was associated with an increased risk of any multifactorial diseases in either male or female offspring. None of the 18 radiation dose-response slopes, adjusted for other risk factors for the diseases, was statistically significantly elevated. However, the study population is still in mid-life (mean age 48.6 years), and will express much of its multifactorial disease incidence in the future, so ongoing longitudinal follow-up will provide increasingly informative risk estimates regarding hereditary genetic effects for incidence of adult-onset multifactorial disease.

  8. Standard Practice for Dosimetry of Proton Beams for use in Radiation Effects Testing of Electronics

    Energy Technology Data Exchange (ETDEWEB)

    McMahan, Margaret A.; Blackmore, Ewart; Cascio, Ethan W.; Castaneda, Carlos; von Przewoski, Barbara; Eisen, Harvey

    2008-07-25

    Representatives of facilities that routinely deliver protons for radiation effect testing are collaborating to establish a set of standard best practices for proton dosimetry. These best practices will be submitted to the ASTM International for adoption.

  9. DOSIMETRY

    CERN Multimedia

    Service de dosimétrie individuelle

    2000-01-01

    From the distribution Novembre/Decembre 2000 (film colour green), the people who worked in LEP experiments and who have not announced their participation to LEP dismantling or new activities in another experiment or group will be taken out from the regular distribution list of the Individual Dosimetry Service. Please contact Individual Dosimetry Service, tel. 72155 or e-mail to Jeannine.Fraisse@cern.ch We inform all staff and users under regular dosimetric control that the dosimeters for the monitoring period SEPTEMBER/OCTOBER will be available from their usual dispatchers on the 1st of September 2000. Please have your films changed before the 12th of September. The colour of the dosimeter valid in SEPTEMBER/OCTOBER is RED. The service will be closed exceptionally on Friday 8 September.

  10. Development of radiation biological dosimetry and treatment of radiation-induced damaged tissue

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Chul Koo; Kim, Tae Hwan; Lee, Yun Sil [and others

    2000-04-01

    Util now, only a few methods have been developed for radiation biological dosimetry such as conventional chromosome aberration and micronucleus in peripheral blood cell. However, because these methods not only can be estimated by the expert, but also have a little limitation due to need high technique and many times in the case of radiation accident, it is very difficult to evaluate the absorbed dose of victims. Therefore, we should develop effective, easy, simple and rapid biodosimetry and its guideline(triage) to be able to be treated the victims as fast as possible. We established the apoptotic fragment assay, PCC, comet assay, and micronucleus assay which was the significant relationship between dose and cell damages to evaluate the irradiated dose as correct and rapid as possible using lymphocytes and crypt cells, and compared with chromosome dosimetry and micronucleus assay.

  11. Real-time dosimetry in external beam radiation therapy

    Institute of Scientific and Technical Information of China (English)

    Ramachandran; Prabhakar

    2013-01-01

    With growing complexity in radiotherapy treatment delivery,it has become mandatory to check each and every treatment plan before implementing clinically.This process is currently administered by an independent secondary check of all treatment parameters and as a pre-treatment quality assurance (QA) check for intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy treatment plans.Although pre-treatment IMRT QA is aimed to ensure the correct dose is delivered to the patient,it does not necessarily predict the clinically relevant patient dose errors.During radiotherapy,treatment uncertainties can affect tumor control and may increase complications to surrounding normal tissues.To combat this,image guided radiotherapy is employed to help ensure the plan conditions are mimicked on the treatment machine.However,it does not provide information on actual delivered dose to the tumor volume.Knowledge of actual dose delivered during treatment aid in confirming the prescribed dose and also to replan/reassess the treatment in situations where the planned dose is not delivered as expected by the treating physician.Major accidents in radiotherapy would have been averted if real time dosimetry is incorporated as part of the routine radiotherapy procedure.Of late real-time dosimetry is becoming popular with complex treatments in radiotherapy.Realtime dosimetry can be either in the form of point doses or planar doses or projected on to a 3D image dataset to obtain volumetric dose.They either provide entrance dose or exit dose or dose inside the natural cavities of a patient.In external beam radiotherapy,there are four different established platforms whereby the delivered dose information can be obtained:(1)Collimator;(2)Patient;(3)Couch;and(4)Electronic Portal Imaging Device.Current real-time dosimetric techniques available in radiotherapy have their own advantages and disadvantages and a combination of one or more of these methods provide vital information

  12. DOSIMETRY

    CERN Multimedia

    2001-01-01

    From the month of May on, the neutron dosimeter will be worn in an extra package distinct from the usual film-badge. We will give you more ample information in Weekly Bulletin No. 18/2001 of April 30, 2001. In the week following Easter (17 - 20. 4. 2001) the Individual Dosimetry Service will be opened in the mornings from 8:30 to 11:30 h only. The Service will be closed on April 30.

  13. Radiation dose and cataract surgery incidence in atomic bomb survivors, 1986-2005.

    Science.gov (United States)

    Neriishi, Kazuo; Nakashima, Eiji; Akahoshi, Masazumi; Hida, Ayumi; Grant, Eric J; Masunari, Naomi; Funamoto, Sachiyo; Minamoto, Atsushi; Fujiwara, Saeko; Shore, Roy E

    2012-10-01

    To examine the incidence of clinically important cataracts in relation to lens radiation doses between 0 and approximately 3 Gy to address risks at relatively low brief doses. Informed consent was obtained, and human subjects procedures were approved by the ethical committee at the Radiation Effects Research Foundation. Cataract surgery incidence was documented for 6066 atomic bomb survivors during 1986-2005. Sixteen risk factors for cataract, such as smoking, hypertension, and corticosteroid use, were not confounders of the radiation effect on the basis of Cox regression analysis. Radiation dose-response analyses were performed for cataract surgery incidence by using Poisson regression analysis, adjusting for demographic variables and diabetes mellitus, and results were expressed as the excess relative risk (ERR) and the excess absolute risk (EAR) (ie, measures of how much radiation multiplies [ERR] or adds to [EAR] the risk in the unexposed group). Of 6066 atomic bomb survivors, 1028 underwent a first cataract surgery during 1986-2005. The estimated threshold dose was 0.50 Gy (95% confidence interval [CI]: 0.10 Gy, 0.95 Gy) for the ERR model and 0.45 Gy (95% CI: 0.10 Gy, 1.05 Gy) for the EAR model. A linear-quadratic test for upward curvature did not show a significant quadratic effect for either the ERR or EAR model. The linear ERR model for a 70-year-old individual, exposed at age 20 years, showed a 0.32 (95% CI: 0.09, 0.53) [corrected] excess risk at 1 Gy. The ERR was highest for those who were young at exposure. These data indicate a radiation effect for vision-impairing cataracts at doses less than 1 Gy. The evidence suggests that dose standards for protection of the eye from brief radiation exposures should be 0.5 Gy or less. © RSNA, 2012.

  14. EPR dosimetry of radiation background in the Urals region

    Energy Technology Data Exchange (ETDEWEB)

    Shishkina, E.A.; Degteva, M.O.; Shved, V.A. [Urals Research Center for Radiation Medicine, 48-A Vorovsky, Chelyabinsk 454076 (Russian Federation); Fattibene, P.; Onori, S. [Istituto Superiore di Sanita and Istituto Nazionale di Fisica Nucleare (Italy); Wieser, A. [GSF, Forschungszentrum fuer Umwelt und Gesundheit, Ingolstaedter Landstr (Germany); Ivanov, D.V.; Bayankin, S.N. [Institute of Metal Physics, Russian Academy of Sciences (Russian Federation); Knyazev, V.A.; Vasilenko, E.I.; Gorelov, M. [ZAO, Closed Corporation ' Company GEOSPETSECOLOGIA' (Russian Federation)

    2006-07-01

    Method of Electron Paramagnetic Resonance is extensively applied to individual retrospective dosimetry. The background dose is unavoidable component of cumulative absorbed dose in the tooth enamel accumulated during the lifetime of donor. Estimation of incidental radiation dose using tooth enamel needs in extraction of background dose. Moreover, the variation of background doses in the population is a limited factor for reliable detection of additional irradiation especially for low dose level. Therefore the accurate knowledge of the natural background radiation dose is a critical element of EPR studies of exposed populations. In the Urals region the method applies for such two large cohorts as the workers of Mayak (Ozersk citizens) and Techa River riverside inhabitants (rural population). Current study aimed to investigate the Urals radiation background detected by EPR spectrometry. For this aim two group of unexposed Urals residents were separated, viz: citizens of Ozersk and rural inhabitants of Chelyabinsk region. Comparison of two investigated territories has demonstrated that from the point of view of radiation background it is impossible to assume the Urals population as uniform. The reliable difference between the urban and rural residents has been found. The average background doses of Ozersk donors is in average 50 mGy higher than those detected for rural residents. The individual variability of background doses for Osersk has been higher than in the rural results. The difference in background dose levels between two population results in different limits of accidental dose detection and individualization. The doses for 'Mayak' workers (Ozyorsk citizens) can be classed as anthropogenic if the EPR measurements exceed 120 mGy for teeth younger than 40 years, and 240 mGy for teeth older than 70 years. The anthropogenic doses for Techa River residents (rural population) would be higher than 95 mGy for teeth younger than 50 years and 270 mGy for

  15. Genetic effects of radiation in atomic-bomb survivors and their children: past, present and future.

    Science.gov (United States)

    Nakamura, Nori

    2006-01-01

    Genetic studies in the offspring of atomic bomb survivors have been conducted since 1948 at the Atomic Bomb Casualty Commission and its successor, the Radiation Effects Research Foundation, in Hiroshima and Nagasaki. Past studies include analysis of birth defects (untoward pregnancy outcome; namely, malformation, stillbirth, and perinatal death), chromosome aberrations, alterations of plasma and erythrocyte proteins as well as epidemiologic study on mortality (any cause) and cancer incidence (the latter study is still ongoing). There is, thus far, no indication of genetic effects in the offspring of survivors. Recently, the development of molecular biological techniques and human genome sequence databases made it possible to analyze DNA from parents and their offspring (trio-analysis). In addition, a clinical program is underway to establish the frequency of adult-onset multi-factorial diseases (diabetes mellitus, high blood pressure, and cardiovascular disease etc) in the offspring. The complementary kinds of data that will emerge from this three-pronged approach (clinical, epidemiologic, and molecular aspects) promise to shed light on health effects in the offspring of radiation-exposed people.

  16. Radiation dosimetry using nano-BaSO{sub 4}:Eu

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, A.; Sharma R, K. [University of Delhi, Department of Physics, Sri Venkateswara College, Benito Juarez Road, Dhaula Kuan, 110021 New Delhi (India); Bahl, S.; Kumar, P. [Medical Physics Unit, IRCH, AIIMS, 110029 New Delhi (India); Pal L, S., E-mail: apandey@svc.ac.in [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, 110067 New Delhi (India)

    2015-10-15

    Nanocrystalline barium sulfate doped with europium (BaSO{sub 4}:Eu) was successfully prepared by the chemical co-precipitation technique and its thermoluminescence (Tl) dosimetry characteristics were studied for gamma radiation. Initially the dopant (Eu) concentration was varied, starting from 0.05 mol % to up to 1.00 mol %, and it was found that the nano phosphor BaSO{sub 4}:Eu with the dopant concentration of 0.2 mol % had the highest sensitivity within the given lot. The nano phosphor was also optimized for its annealing temperature in order to obtain the best results and was thereafter tested for its reusability and fading features. Further the nano phosphor was compared with the commercially available standard Tl dosimeter material LiF:Mg,Ti (popularly referred to as TLD-100) and it was found that the nano phosphor not only had a higher Tl sensitivity compared to the standard material over a wide range of doses but also had a Tl response which was linear even beyond the dose of 1 kGy. Linearity in Tl response to up to such high doses (∼1 kGy) is typical of nanocrystalline Tl phosphors. All the samples were irradiated by Co-60 source (having 1.25 MeV average energy) of gamma radiation. In order to test the energy independence of the nano phosphor (an important characteristic of an ideal Tl dosimeter) further studies are being carried out to examine the response of the nano phosphor to ionizing radiations of different energies. (Author)

  17. Papillary Microcarcinoma of the Thyroid among Atomic Bomb Survivors: Tumor Characteristics and Radiation Risk

    Science.gov (United States)

    Hayashi, Yuzo; Lagarde, Frederic; Tsuda, Nobuo; Funamoto, Sachiyo; Preston, Dale L.; Koyama, Kojiro; Mabuchi, Kiyohiko; Ron, Elaine; Kodama, Kazunori; Tokuoka, Shoji

    2009-01-01

    Background Radiation exposure is an established cause of clinical thyroid cancer, but little is known about radiation effects on papillary microcarcinoma (PMC) of the thyroid, a relatively common subclinical thyroid malignancy. Because the incidence of these small thyroid cancers has been increasing, it is important to better understand them and their relationship to radiation. Methods PMCs were identified in a subset of 7659 members of the Life Span Study of atomic-bomb survivors who had archived autopsy or surgical materials. We conducted a pathology review of these specimens and evaluated the histological features of the tumors and the association between PMCs and thyroid radiation dose. Results From 1958 to1995, 458 PMCs were detected among 313 study subjects. The majority of cancers exhibited pathologic features of papillary thyroid cancers. Overall, 81% of the PMCs were of the sclerosing variant and 91% were nonencapsulated, psammoma bodies occurred in 13% and calcification was observed in 23%. Over 95% had papillary or papillary-follicular architecture and most displayed nuclear overlap, clear nuclei, and nuclear grooves. Several of these features increased with increasing tumor size, but no association was found with radiation dose. A significant radiation-dose response was found for the prevalence of PMCs (estimated excess odds ratio/Gy=0.57; 95% CI: 0.01-1.55), with the excess risk observed primarily among females. Conclusion Low-to-moderate doses of ionizing radiation appears to increase the risk of thyroid PMCs, even when exposure occurs during adulthood. PMID:20120034

  18. GENII (Generation II): The Hanford Environmental Radiation Dosimetry Software System: Volume 3, Code maintenance manual: Hanford Environmental Dosimetry Upgrade Project

    Energy Technology Data Exchange (ETDEWEB)

    Napier, B.A.; Peloquin, R.A.; Strenge, D.L.; Ramsdell, J.V.

    1988-09-01

    The Hanford Environmental Dosimetry Upgrade Project was undertaken to incorporate the internal dosimetry models recommended by the International Commission on Radiological Protection (ICRP) in updated versions of the environmental pathway analysis models used at Hanford. The resulting second generation of Hanford environmental dosimetry computer codes is compiled in the Hanford Environmental Dosimetry System (Generation II, or GENII). This coupled system of computer codes is intended for analysis of environmental contamination resulting from acute or chronic releases to, or initial contamination of, air, water, or soil, on through the calculation of radiation doses to individuals or populations. GENII is described in three volumes of documentation. This volume is a Code Maintenance Manual for the serious user, including code logic diagrams, global dictionary, worksheets to assist with hand calculations, and listings of the code and its associated data libraries. The first volume describes the theoretical considerations of the system. The second volume is a Users' Manual, providing code structure, users' instructions, required system configurations, and QA-related topics. 7 figs., 5 tabs.

  19. Effect of radiation on age at menopause among atomic bomb survivors.

    Science.gov (United States)

    Sakata, Ritsu; Shimizu, Yukiko; Soda, Midori; Yamada, Michiko; Hsu, Wan-Ling; Hayashi, Mikiko; Ozasa, Kotaro

    2011-12-01

    Exposure to ionizing radiation has been thought to induce ovarian failure and premature menopause. Proximally exposed female atomic bomb survivors were reported to experience menopause immediately after the exposure more often than those who were distally exposed. However, it remains unclear whether such effects were caused by physical injury and psychological trauma or by direct effects of radiation on the ovaries. The objective of this study was to see if there are any late health effects associated with the exposure to atomic bomb radiation in terms of age at menopause in a cohort of 21,259 Life Span Study female A-bomb survivors. Excess absolute rates (EAR) of natural and artificial menopause were estimated using Poisson regression. A linear threshold model with a knot at 0.40 Gy [95% confidence interval (CI): 0.13, 0.62] was the best fit for a dose response of natural menopause (EAR at 1 Gy at age of 50 years = 19.4/1,000 person-years, 95% CI: 10.4, 30.8) and a linear threshold model with a knot at 0.22 Gy (95% CI: 0.14, 0.34) was the best fit for artificial menopause (EAR at 1 Gy at age of 50 years for females who were exposed at age of 20 years = 14.5/1,000 person-years, 95% CI: 10.2, 20.1). Effect modification by attained age indicated that EARs peaked around 50 years of age for both natural and artificial menopause. Although effect modification by age at exposure was not significant for natural menopause, the EAR for artificial menopause tended to be larger in females exposed at young ages. On the cumulative incidence curve of natural menopause, the median age at menopause was 0.3 years younger in females exposed to radiation of 1 Gy compared with unexposed females. The median age was 1 year younger for combined natural and artificial menopause in the same comparison. In conclusion, age at menopause was thought to decrease with increasing radiation dose for both natural and artificial menopause occurring at least 5 years after the exposure.

  20. Effects of IL-10 haplotype and atomic bomb radiation exposure on gastric cancer risk.

    Science.gov (United States)

    Hayashi, Tomonori; Ito, Reiko; Cologne, John; Maki, Mayumi; Morishita, Yukari; Nagamura, Hiroko; Sasaki, Keiko; Hayashi, Ikue; Imai, Kazue; Yoshida, Kengo; Kajimura, Junko; Kyoizumi, Seishi; Kusunoki, Yoichiro; Ohishi, Waka; Fujiwara, Saeko; Akahoshi, Masazumi; Nakachi, Kei

    2013-07-01

    Gastric cancer (GC) is one of the cancers that reveal increased risk of mortality and incidence in atomic bomb survivors. The incidence of gastric cancer in the Life Span Study cohort of the Radiation Effects Research Foundation (RERF) increased with radiation dose (gender-averaged excess relative risk per Gy = 0.28) and remains high more than 65 years after exposure. To assess a possible role of gene-environment interaction, we examined the dose response for gastric cancer incidence based on immunosuppression-related IL-10 genotype, in a cohort study with 200 cancer cases (93 intestinal, 96 diffuse and 11 other types) among 4,690 atomic bomb survivors participating in an immunological substudy. Using a single haplotype block composed of four haplotype-tagging SNPs (comprising the major haplotype allele IL-10-ATTA and the minor haplotype allele IL-10-GGCG, which are categorized by IL-10 polymorphisms at -819A>G and -592T>G, +1177T>C and +1589A>G), multiplicative and additive models for joint effects of radiation and this IL-10 haplotyping were examined. The IL-10 minor haplotype allele(s) was a risk factor for intestinal type gastric cancer but not for diffuse type gastric cancer. Radiation was not associated with intestinal type gastric cancer. In diffuse type gastric cancer, the haplotype-specific excess relative risk (ERR) for radiation was statistically significant only in the major homozygote category of IL-10 (ERR = 0.46/Gy, P = 0.037), whereas estimated ERR for radiation with the minor IL-10 homozygotes was close to 0 and nonsignificant. Thus, the minor IL-10 haplotype might act to reduce the radiation related risk of diffuse-type gastric cancer. The results suggest that this IL-10 haplotyping might be involved in development of radiation-associated gastric cancer of the diffuse type, and that IL-10 haplotypes may explain individual differences in the radiation-related risk of gastric cancer. © 2013 by Radiation Research Society

  1. Evaluation of systemic markers of inflammation in atomic-bomb survivors with special reference to radiation and age effects.

    Science.gov (United States)

    Hayashi, Tomonori; Morishita, Yukari; Khattree, Ravindra; Misumi, Munechika; Sasaki, Keiko; Hayashi, Ikue; Yoshida, Kengo; Kajimura, Junko; Kyoizumi, Seishi; Imai, Kazue; Kusunoki, Yoichiro; Nakachi, Kei

    2012-11-01

    Past exposure to atomic bomb (A-bomb) radiation has exerted various long-lasting deleterious effects on the health of survivors. Some of these effects are seen even after >60 yr. In this study, we evaluated the subclinical inflammatory status of 442 A-bomb survivors, in terms of 8 inflammation-related cytokines or markers, comprised of plasma levels of reactive oxygen species (ROS), interleukin (IL)-6, tumor necrosis factor α (TNF-α), C-reactive protein (CRP), IL-4, IL-10, and immunoglobulins, and erythrocyte sedimentation rate (ESR). The effects of past radiation exposure and natural aging on these markers were individually assessed and compared. Next, to assess the biologically significant relationship between inflammation and radiation exposure or aging, which was masked by the interrelationship of those cytokines/markers, we used multivariate statistical analyses and evaluated the systemic markers of inflammation as scores being calculated by linear combinations of selected cytokines and markers. Our results indicate that a linear combination of ROS, IL-6, CRP, and ESR generated a score that was the most indicative of inflammation and revealed clear dependences on radiation dose and aging that were found to be statistically significant. The results suggest that collectively, radiation exposure, in conjunction with natural aging, may enhance the persistent inflammatory status of A-bomb survivors.

  2. Risk of myelodysplastic syndromes in people exposed to ionizing radiation: a retrospective cohort study of Nagasaki atomic bomb survivors.

    Science.gov (United States)

    Iwanaga, Masako; Hsu, Wan-Ling; Soda, Midori; Takasaki, Yumi; Tawara, Masayuki; Joh, Tatsuro; Amenomori, Tatsuhiko; Yamamura, Masaomi; Yoshida, Yoshiharu; Koba, Takashi; Miyazaki, Yasushi; Matsuo, Tatsuki; Preston, Dale L; Suyama, Akihiko; Kodama, Kazunori; Tomonaga, Masao

    2011-02-01

    The risk of myelodysplastic syndromes (MDS) has not been fully investigated among people exposed to ionizing radiation. We investigate MDS risk and radiation dose-response in Japanese atomic bomb survivors. We conducted a retrospective cohort study by using two databases of Nagasaki atomic bomb survivors: 64,026 people with known exposure distance in the database of Nagasaki University Atomic-Bomb Disease Institute (ABDI) and 22,245 people with estimated radiation dose in the Radiation Effects Research Foundation Life Span Study (LSS). Patients with MDS diagnosed from 1985 to 2004 were identified by record linkage between the cohorts and the Nagasaki Prefecture Cancer Registry. Cox and Poisson regression models were used to estimate relationships between exposure distance or dose and MDS risk. There were 151 patients with MDS in the ABDI cohort and 47 patients with MDS in the LSS cohort. MDS rate increased inversely with exposure distance, with an excess relative risk (ERR) decay per km of 1.2 (95% CI, 0.4 to 3.0; P atomic bomb survivors 40 to 60 years after radiation exposure. Clinicians should perform careful long-term follow-up of irradiated people to detect MDS as early as possible.

  3. DS02R1: Improvements to Atomic Bomb Survivors' Input Data and Implementation of Dosimetry System 2002 (DS02) and Resulting Changes in Estimated Doses.

    Science.gov (United States)

    Cullings, H M; Grant, E J; Egbert, S D; Watanabe, T; Oda, T; Nakamura, F; Yamashita, T; Fuchi, H; Funamoto, S; Marumo, K; Sakata, R; Kodama, Y; Ozasa, K; Kodama, K

    2017-01-01

    Individual dose estimates calculated by Dosimetry System 2002 (DS02) for the Life Span Study (LSS) of atomic bomb survivors are based on input data that specify location and shielding at the time of the bombing (ATB). A multi-year effort to improve information on survivors' locations ATB has recently been completed, along with comprehensive improvements in their terrain shielding input data and several improvements to computational algorithms used in combination with DS02 at RERF. Improvements began with a thorough review and prioritization of original questionnaire data on location and shielding that were taken from survivors or their proxies in the period 1949-1963. Related source documents varied in level of detail, from relatively simple lists to carefully-constructed technical drawings of structural and other shielding and surrounding neighborhoods. Systematic errors were reduced in this work by restoring the original precision of map coordinates that had been truncated due to limitations in early data processing equipment and by correcting distortions in the old (WWII-era) maps originally used to specify survivors' positions, among other improvements. Distortion errors were corrected by aligning the old maps and neighborhood drawings to orthophotographic mosaics of the cities that were newly constructed from pre-bombing aerial photographs. Random errors that were reduced included simple transcription errors and mistakes in identifying survivors' locations on the old maps. Terrain shielding input data that had been originally estimated for limited groups of survivors using older methods and data sources were completely re-estimated for all survivors using new digital terrain elevation data. Improvements to algorithms included a fix to an error in the DS02 code for coupling house and terrain shielding, a correction for elevation at the survivor's location in calculating angles to the horizon used for terrain shielding input, an improved method for truncating

  4. Radiation and smoking effects on lung cancer incidence by histological types among atomic bomb survivors.

    Science.gov (United States)

    Egawa, Hiromi; Furukawa, Kyoji; Preston, Dale; Funamoto, Sachiyo; Yonehara, Shuji; Matsuo, Takeshi; Tokuoka, Shoji; Suyama, Akihiko; Ozasa, Kotaro; Kodama, Kazunori; Mabuchi, Kiyohiko

    2012-09-01

    While the risk of lung cancer associated separately with smoking and radiation exposure has been widely reported, it is not clear how smoking and radiation together contribute to the risk of specific lung cancer histological types. With individual smoking histories and radiation dose estimates, we characterized the joint effects of radiation and smoking on type-specific lung cancer rates among the Life Span Study cohort of Japanese atomic bomb survivors. Among 105,404 cohort subjects followed between 1958 and 1999, 1,803 first primary lung cancer incident cases were diagnosed and classified by histological type. Poisson regression methods were used to estimate excess relative risks under several interaction models. Adenocarcinoma (636 cases), squamous-cell carcinoma (330) and small-cell carcinoma (194) made up 90% of the cases with known histology. Both smoking and radiation exposure significantly increased the risk of each major lung cancer histological type. Smoking-associated excess relative risks were significantly larger for small-cell and squamous-cell carcinomas than for adenocarcinoma. The gender-averaged excess relative risks per 1 Gy of radiation (for never-smokers at age 70 after radiation exposure at age 30) were estimated as 1.49 (95% confidence interval 0.1-4.6) for small-cell carcinoma, 0.75 (0.3-1.3) for adenocarcinoma, and 0.27 (0-1.5) for squamous-cell carcinoma. Under a model allowing radiation effects to vary with levels of smoking, the nature of the joint effect of smoking and radiation showed a similar pattern for different histological types in which the radiation-associated excess relative risk tended to be larger for moderate smokers than for heavy smokers. However, in contrast to analyses of all lung cancers as a group, such complicated interactions did not describe the data significantly better than either simple additive or multiplicative interaction models for any of the type-specific analyses.

  5. Relationship between anthropometric factors, radiation exposure, and colon cancer incidence in the Life Span Study cohort of atomic bomb survivors.

    Science.gov (United States)

    Semmens, Erin O; Kopecky, Kenneth J; Grant, Eric; Mathes, Robert W; Nishi, Nobuo; Sugiyama, Hiromi; Moriwaki, Hiroko; Sakata, Ritsu; Soda, Midori; Kasagi, Fumiyoshi; Yamada, Michiko; Fujiwara, Saeko; Akahoshi, Masazumi; Davis, Scott; Kodama, Kazunori; Li, Christopher I

    2013-01-01

    We examined colon cancer risk in atomic bomb survivors to investigate whether excess body weight after the bombings alters sensitivity to radiation effects. Of the 56,064 Japanese atomic bomb survivors with follow-up through 2002 with self-reported anthropometric data obtained from periodic mail surveys, 1,142 were diagnosed with colon cancer. We evaluated the influence of body mass index (BMI) and height on radiation-associated colon cancer risk using Poisson regression. We observed a similar linear dose-response relationship for the 56,064 subjects included in our analysis and the entire cohort of Japanese atomic bomb survivors [excess relative risk (ERR) per Gray (Gy) = 0.53, 95 % confidence interval (CI) 0.25-0.86]. Elevation in earliest reported BMI, BMI reported closest to colon cancer diagnosis, and time-varying BMI were associated with an elevated risk of colon cancer [relative risk (RR) per 5 kg/m(2) increase in BMI = 1.14, 95 % CI 1.03-1.26; RR = 1.16, 95 % CI 1.05-1.27; and RR = 1.15, 95 % CI 1.04-1.27, respectively]. Height was not significantly related to colon cancer risk. Inclusion of anthropometric variables in models had little impact on radiation risk estimates, and there was no evidence that sensitivity to the effect of radiation on colon cancer risk depended on BMI. Radiation exposure and BMI are both risk factors for colon cancer. BMI at various times after exposure to the atomic bombings does not significantly influence the relationship between radiation dose and colon cancer risk, suggesting that BMI and radiation impact colon cancer risk independently of each other.

  6. Computer codes in nuclear safety, radiation transport and dosimetry; Les codes de calcul en radioprotection, radiophysique et dosimetrie

    Energy Technology Data Exchange (ETDEWEB)

    Bordy, J.M.; Kodeli, I.; Menard, St.; Bouchet, J.L.; Renard, F.; Martin, E.; Blazy, L.; Voros, S.; Bochud, F.; Laedermann, J.P.; Beaugelin, K.; Makovicka, L.; Quiot, A.; Vermeersch, F.; Roche, H.; Perrin, M.C.; Laye, F.; Bardies, M.; Struelens, L.; Vanhavere, F.; Gschwind, R.; Fernandez, F.; Quesne, B.; Fritsch, P.; Lamart, St.; Crovisier, Ph.; Leservot, A.; Antoni, R.; Huet, Ch.; Thiam, Ch.; Donadille, L.; Monfort, M.; Diop, Ch.; Ricard, M

    2006-07-01

    The purpose of this conference was to describe the present state of computer codes dedicated to radiation transport or radiation source assessment or dosimetry. The presentations have been parted into 2 sessions: 1) methodology and 2) uses in industrial or medical or research domains. It appears that 2 different calculation strategies are prevailing, both are based on preliminary Monte-Carlo calculations with data storage. First, quick simulations made from a database of particle histories built though a previous Monte-Carlo simulation and secondly, a neuronal approach involving a learning platform generated through a previous Monte-Carlo simulation. This document gathers the slides of the presentations.

  7. Development a high-resolution radiation dosimetry system based on Fricke solutions

    Energy Technology Data Exchange (ETDEWEB)

    Vedelago, J. [Laboratorio de Investigaciones e Instrumentacion en Fisica Aplicada a la Medicina e Imagenes por Rayos X, Laboratorio 448 FaMAF - UNC, Ciudad Universitaria, 5000 Cordoba (Argentina); Mattea, F. [Universidad Nacional de Cordoba, Facultad de Ciencias Quimicas, Departamento de Quimica Organica, Ciudad Universitaria, 5000 Cordoba (Argentina); Valente, M., E-mail: josevedelago@gmail.com [Instituto de Fisica E. Gaviola, Oficina 102 FaMAF - UNC, Ciudad Universitaria, 5000 Cordoba (Argentina)

    2014-08-15

    Due to the growing complexity of modern medical procedures involving the use of ionizing radiation, dosimetry by non-conventional techniques is one of the research areas in the field of greatest interest nowadays. Tissue-equivalent high-resolution dosimetry systems capable of attaining continuous dose mapping are required. In this scenario, Fricke gel dosimetry is a very promising option for in-phantom dose measurements in complex radiation techniques. Implementation of this technique requires dedicated instruments capable of measuring and performing the immediate in situ analysis of the acquired data at the radiation facility. The versatility of Fricke gel dosimetry in different applications depending on the chemical and isotopic composition of the dosimeter extends its application to different high performance conventional and non-conventional radiation procedures involving diverse types of radiation treatments and also radiation diagnosis procedures. This work presents an integral dosimetry system, based on Fricke gel solutions and their analysis by optical techniques, aiming for an increase in the precision on dose determinations. The chemical synthesis and dosimeter preparation were accomplished at LIIFAMIRx facilities, following the procedures and protocols described in previous works. Additionally, specific instrumentation for optical sample analysis was completely designed and constructed at LIIFAMIRx facilities. The main outcome of this work was the development of a methodology that improves the integral dose determination performance by the pre-irradiation of Fricke gel dosimeters. (author)

  8. Radiation hardness of the storage phosphor europium doped potassium chloride for radiation therapy dosimetry

    Science.gov (United States)

    Driewer, Joseph P.; Chen, Haijian; Osvet, Andres; Low, Daniel A.; Li, H. Harold

    2011-01-01

    Purpose: An important property of a reusable dosimeter is its radiation hardness, that is, its ability to retain its dosimetric merits after irradiation. The radiation hardness of europium doped potassium chloride (KCl:Eu2+), a storage phosphor material recently proposed for radiation therapy dosimetry, is examined in this study. Methods: Pellet-style KCl:Eu2+ dosimeters, 6 mm in diameter, and 1 mm thick, were fabricated in-house for this study. The pellets were exposed by a 6 MV photon beam or in a high dose rate 137Cs irradiator. Macroscopic properties, such as radiation sensitivity, dose response linearity, and signal stability, were studied with a laboratory photostimulated luminescence (PSL) readout system. Since phosphor performance is related to the state of the storage centers and the activator, Eu2+, in the host lattice, spectroscopic and temporal measurements were carried out in order to explore radiation-induced changes at the microscopic level. Results: KCl:Eu2+ dosimeters retained approximately 90% of their initial signal strength after a 5000 Gy dose history. Dose response was initially supralinear over the dose range of 100–700 cGy but became linear after 60 Gy. Linearity did not change significantly in the 0–5000 Gy dose history spanned in this study. Annealing high dose history chips resulted in a return of supralinearity and a recovery of sensitivity. There were no significant changes in the PSL stimulation spectra, PSL emission spectra, photoluminescence spectra, or luminescence lifetime, indicating that the PSL signal process remains intact after irradiation but at a reduced efficiency due to reparable radiation-induced perturbations in the crystal lattice. Conclusions: Systematic studies of KCl:Eu2+ material are important for understanding how the material can be optimized for radiation therapy dosimetry purposes. The data presented here indicate that KCl:Eu2+ exhibits strong radiation hardness and lends support for further investigations

  9. Cancer risk at low doses of ionizing radiation: artificial neural networks inference from atomic bomb survivors.

    Science.gov (United States)

    Sasaki, Masao S; Tachibana, Akira; Takeda, Shunichi

    2014-05-01

    Cancer risk at low doses of ionizing radiation remains poorly defined because of ambiguity in the quantitative link to doses below 0.2 Sv in atomic bomb survivors in Hiroshima and Nagasaki arising from limitations in the statistical power and information available on overall radiation dose. To deal with these difficulties, a novel nonparametric statistics based on the 'integrate-and-fire' algorithm of artificial neural networks was developed and tested in cancer databases established by the Radiation Effects Research Foundation. The analysis revealed unique features at low doses that could not be accounted for by nominal exposure dose, including (i) the presence of a threshold that varied with organ, gender and age at exposure, and (ii) a small but significant bumping increase in cancer risk at low doses in Nagasaki that probably reflects internal exposure to (239)Pu. The threshold was distinct from the canonical definition of zero effect in that it was manifested as negative excess relative risk, or suppression of background cancer rates. Such a unique tissue response at low doses of radiation exposure has been implicated in the context of the molecular basis of radiation-environment interplay in favor of recently emerging experimental evidence on DNA double-strand break repair pathway choice and its epigenetic memory by histone marking.

  10. Amorphous chalcogenide semiconductors for dosimetry of high-energy ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Shpotyuk, O.I. [Institute of Materials, Lviv (Ukraine). Dept. of New Perspective Developments

    1995-10-01

    The possible application of amorphous chalogenide semiconductors as radiation-sensitive elements of high-energy (E>1 MeV) dosimetry systems are analyzed. It is shown that some of these materials are characterized by a broader region of absorbed doses and low-temperature thresholds of radiation induced bleaching than conventional colouring oxide glasses. (author).

  11. Dosimetry in radiation processing in the U.S.S.R.

    Science.gov (United States)

    Generalova, V. V.; Gurskii, M. N.; Pikaev, A. K.

    The paper is devoted to the methods of dosimetry used in radiation processing in the USSR. The information on film, solid state and liquid dosimeters is presented. The special attention is paid to the dosimeters that are lot produced. The examples of the application of dosimeters in different radiation technological processes are described. The aspects of standartization of dosimetric measurements are discussed.

  12. Academic Training - The use of Monte Carlo radiation transport codes in radiation physics and dosimetry

    CERN Multimedia

    Françoise Benz

    2006-01-01

    2005-2006 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 27, 28, 29 June 11:00-12:00 - TH Conference Room, bldg. 4 The use of Monte Carlo radiation transport codes in radiation physics and dosimetry F. Salvat Gavalda,Univ. de Barcelona, A. FERRARI, CERN-AB, M. SILARI, CERN-SC Lecture 1. Transport and interaction of electromagnetic radiation F. Salvat Gavalda,Univ. de Barcelona Interaction models and simulation schemes implemented in modern Monte Carlo codes for the simulation of coupled electron-photon transport will be briefly reviewed. Different schemes for simulating electron transport will be discussed. Condensed algorithms, which rely on multiple-scattering theories, are comparatively fast, but less accurate than mixed algorithms, in which hard interactions (with energy loss or angular deflection larger than certain cut-off values) are simulated individually. The reliability, and limitations, of electron-interaction models and multiple-scattering theories will be analyzed. Benchmark comparisons of simu...

  13. Ionizing radiation exposure and the development of soft-tissue sarcomas in atomic-bomb survivors.

    Science.gov (United States)

    Samartzis, Dino; Nishi, Nobuo; Cologne, John; Funamoto, Sachiyo; Hayashi, Mikiko; Kodama, Kazunori; Miles, Edward F; Suyama, Akihiko; Soda, Midori; Kasagi, Fumiyoshi

    2013-02-06

    Very high levels of ionizing radiation exposure have been associated with the development of soft-tissue sarcoma. The effects of lower levels of ionizing radiation on sarcoma development are unknown. This study addressed the role of low to moderately high levels of ionizing radiation exposure in the development of soft-tissue sarcoma. Based on the Life Span Study cohort of Japanese atomic-bomb survivors, 80,180 individuals were prospectively assessed for the development of primary soft-tissue sarcoma. Colon dose in gray (Gy), the excess relative risk, and the excess absolute rate per Gy absorbed ionizing radiation dose were assessed. Subject demographic, age-specific, and survival parameters were evaluated. One hundred and four soft-tissue sarcomas were identified (mean colon dose = 0.18 Gy), associated with a 39% five-year survival rate. Mean ages at the time of the bombings and sarcoma diagnosis were 26.8 and 63.6 years, respectively. A linear dose-response model with an excess relative risk of 1.01 per Gy (95% confidence interval [CI]: 0.13 to 2.46; p = 0.019) and an excess absolute risk per Gy of 4.3 per 100,000 persons per year (95% CI: 1.1 to 8.9; p = 0.001) were noted in the development of soft-tissue sarcoma. This is one of the largest and longest studies (fifty-six years from the time of exposure to the time of follow-up) to assess ionizing radiation effects on the development of soft-tissue sarcoma. This is the first study to suggest that lower levels of ionizing radiation may be associated with the development of soft-tissue sarcoma, with exposure of 1 Gy doubling the risk of soft-tissue sarcoma development (linear dose-response). The five-year survival rate of patients with soft-tissue sarcoma in this population was much lower than that reported elsewhere.

  14. Computational hybrid anthropometric paediatric phantom library for internal radiation dosimetry

    Science.gov (United States)

    Xie, Tianwu; Kuster, Niels; Zaidi, Habib

    2017-04-01

    Hybrid computational phantoms combine voxel-based and simplified equation-based modelling approaches to provide unique advantages and more realism for the construction of anthropomorphic models. In this work, a methodology and C++ code are developed to generate hybrid computational phantoms covering statistical distributions of body morphometry in the paediatric population. The paediatric phantoms of the Virtual Population Series (IT’IS Foundation, Switzerland) were modified to match target anthropometric parameters, including body mass, body length, standing height and sitting height/stature ratio, determined from reference databases of the National Centre for Health Statistics and the National Health and Nutrition Examination Survey. The phantoms were selected as representative anchor phantoms for the newborn, 1, 2, 5, 10 and 15 years-old children, and were subsequently remodelled to create 1100 female and male phantoms with 10th, 25th, 50th, 75th and 90th body morphometries. Evaluation was performed qualitatively using 3D visualization and quantitatively by analysing internal organ masses. Overall, the newly generated phantoms appear very reasonable and representative of the main characteristics of the paediatric population at various ages and for different genders, body sizes and sitting stature ratios. The mass of internal organs increases with height and body mass. The comparison of organ masses of the heart, kidney, liver, lung and spleen with published autopsy and ICRP reference data for children demonstrated that they follow the same trend when correlated with age. The constructed hybrid computational phantom library opens up the prospect of comprehensive radiation dosimetry calculations and risk assessment for the paediatric population of different age groups and diverse anthropometric parameters.

  15. Prejudice and Health Anxiety about Radiation Exposure from Second-Generation Atomic Bomb Survivors: Results from a Qualitative Interview Study.

    Science.gov (United States)

    Kamite, Yuka

    2017-01-01

    The effect of atomic bomb radiation exposure on the survivors and their children has been a worrisome problem since soon after the 1945 Hiroshima and Nagasaki bombings. Researchers have examined physical and genetic effects; however, no research has focused on second-generation survivors' (SGS) psychological effects. Consequently, this study shed light on the SGS' experience of discrimination and prejudice and their anxiety concerning the genetic effects of radiation exposure. This study utilized semi-structured interviews with 14 SGS (10 women, mean age = 56 ± 6.25 years, range = 46-68 years). Data were analyzed using a modified version of the grounded theory approach. Three categories were extracted: low awareness as an SGS, no health anxiety regarding the effect of radiation, and health anxiety regarding the effect of radiation. The results did not reveal that SGS who grew up in the bombed areas experienced discrimination or prejudice. They had little health anxiety from childhood to adolescence. In this study, some of the SGS developed health anxiety about their third-generation children, but only among female participants. Perhaps the transgenerational transmission of anxiety concerning the genetic effects of radiation exposure causes stress, particularly among women with children. However, a change was seen in adulthood health anxiety regarding the effects of radiation, suggesting the possibility that changes in the psychological experiences of SGS can be observed throughout their lifetimes and that their own health status, and that of their children, the third-generation survivors, affects their health anxiety regarding radiation.

  16. Prejudice and Health Anxiety about Radiation Exposure from Second-Generation Atomic Bomb Survivors: Results from a Qualitative Interview Study

    Directory of Open Access Journals (Sweden)

    Yuka Kamite

    2017-08-01

    Full Text Available The effect of atomic bomb radiation exposure on the survivors and their children has been a worrisome problem since soon after the 1945 Hiroshima and Nagasaki bombings. Researchers have examined physical and genetic effects; however, no research has focused on second-generation survivors’ (SGS psychological effects. Consequently, this study shed light on the SGS’ experience of discrimination and prejudice and their anxiety concerning the genetic effects of radiation exposure. This study utilized semi-structured interviews with 14 SGS (10 women, mean age = 56 ± 6.25 years, range = 46–68 years. Data were analyzed using a modified version of the grounded theory approach. Three categories were extracted: low awareness as an SGS, no health anxiety regarding the effect of radiation, and health anxiety regarding the effect of radiation. The results did not reveal that SGS who grew up in the bombed areas experienced discrimination or prejudice. They had little health anxiety from childhood to adolescence. In this study, some of the SGS developed health anxiety about their third-generation children, but only among female participants. Perhaps the transgenerational transmission of anxiety concerning the genetic effects of radiation exposure causes stress, particularly among women with children. However, a change was seen in adulthood health anxiety regarding the effects of radiation, suggesting the possibility that changes in the psychological experiences of SGS can be observed throughout their lifetimes and that their own health status, and that of their children, the third-generation survivors, affects their health anxiety regarding radiation.

  17. Low dose radiation risks for women surviving the a-bombs in Japan: generalized additive model.

    Science.gov (United States)

    Dropkin, Greg

    2016-11-24

    Analyses of cancer mortality and incidence in Japanese A-bomb survivors have been used to estimate radiation risks, which are generally higher for women. Relative Risk (RR) is usually modelled as a linear function of dose. Extrapolation from data including high doses predicts small risks at low doses. Generalized Additive Models (GAMs) are flexible methods for modelling non-linear behaviour. GAMs are applied to cancer incidence in female low dose subcohorts, using anonymous public data for the 1958 - 1998 Life Span Study, to test for linearity, explore interactions, adjust for the skewed dose distribution, examine significance below 100 mGy, and estimate risks at 10 mGy. For all solid cancer incidence, RR estimated from 0 - 100 mGy and 0 - 20 mGy subcohorts is significantly raised. The response tapers above 150 mGy. At low doses, RR increases with age-at-exposure and decreases with time-since-exposure, the preferred covariate. Using the empirical cumulative distribution of dose improves model fit, and capacity to detect non-linear responses. RR is elevated over wide ranges of covariate values. Results are stable under simulation, or when removing exceptional data cells, or adjusting neutron RBE. Estimates of Excess RR at 10 mGy using the cumulative dose distribution are 10 - 45 times higher than extrapolations from a linear model fitted to the full cohort. Below 100 mGy, quasipoisson models find significant effects for all solid, squamous, uterus, corpus, and thyroid cancers, and for respiratory cancers when age-at-exposure > 35 yrs. Results for the thyroid are compatible with studies of children treated for tinea capitis, and Chernobyl survivors. Results for the uterus are compatible with studies of UK nuclear workers and the Techa River cohort. Non-linear models find large, significant cancer risks for Japanese women exposed to low dose radiation from the atomic bombings. The risks should be reflected in protection standards.

  18. Atomic Bomb Survivors Life-Span Study: Insufficient Statistical Power to Select Radiation Carcinogenesis Model.

    Science.gov (United States)

    Socol, Yehoshua; Dobrzyński, Ludwik

    2015-01-01

    The atomic bomb survivors life-span study (LSS) is often claimed to support the linear no-threshold hypothesis (LNTH) of radiation carcinogenesis. This paper shows that this claim is baseless. The LSS data are equally or better described by an s-shaped dependence on radiation exposure with a threshold of about 0.3 Sievert (Sv) and saturation level at about 1.5 Sv. A Monte-Carlo simulation of possible LSS outcomes demonstrates that, given the weak statistical power, LSS cannot provide support for LNTH. Even if the LNTH is used at low dose and dose rates, its estimation of excess cancer mortality should be communicated as 2.5% per Sv, i.e., an increase of cancer mortality from about 20% spontaneous mortality to about 22.5% per Sv, which is about half of the usually cited value. The impact of the "neutron discrepancy problem" - the apparent difference between the calculated and measured values of neutron flux in Hiroshima - was studied and found to be marginal. Major revision of the radiation risk assessment paradigm is required.

  19. Performance of a parallel plate ionization chamber in beta radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Antonio, Patricia L.; Caldas, Linda V.E., E-mail: patrilan@ipen.b, E-mail: lcaldas@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    A homemade parallel plate ionization chamber with graphite collecting electrode, and developed for use in mammography beams, was tested in relation to its usefulness in beta radiation dosimetry at the Calibration Laboratory of IPEN. Characterization tests of this ionization chamber were performed, using the Sr-90 + Y-90, Kr-85 and Pm-147 sources of a beta secondary standard system. The results of saturation, leakage current, stabilization time, response stability, linearity, angular dependence, and calibration coefficients are within the recommended limits of international recommendations that indicate that this chamber may be used for beta radiation dosimetry. (author)

  20. Precision dosimetry system suited for low temperature radiation damage experiments

    DEFF Research Database (Denmark)

    Andersen, H.H.; Hanke, C.C.; Sørensen, H.

    1967-01-01

    A calorimetric system for dosimetry on a beam of charged particles is described. The calorimeter works at liquid helium temperature. The total dose may be measured with an accuracy of 0.3%, and the dose per area with 0.4%. No theoretical corrections are needed. © 1967 The American Institute...

  1. The history and principles of chemical dosimetry for 3-D radiation fields: gels, polymers and plastics.

    Science.gov (United States)

    Doran, Simon J

    2009-03-01

    Over recent decades, modern protocols of external beam radiotherapy have been developed that involve very steep dose gradients and are thus extremely sensitive to errors in treatment delivery. A recent credentialling study by the Radiological Physics Center at the MD Anderson Cancer Center (Texas, USA) has noted potentially significant inaccuracies in test treatments at a variety of institutions. 3-D radiation dosimetry (often referred to as "gel dosimetry") may have an important role in commissioning new treatment protocols, to help prevent this type of error. This article discusses the various techniques of 3-D radiation dosimetry, with a focus on the types of radiosensitive samples used and on the optical computed tomography readout technique.

  2. Fourth conference on radiation protection and dosimetry: Proceedings, program, and abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Casson, W.H.; Thein, C.M.; Bogard, J.S. [eds.

    1994-10-01

    This Conference is the fourth in a series of conferences organized by staff members of Oak Ridge National Laboratory in an effort to improve communication in the field of radiation protection and dosimetry. Scientists, regulators, managers, professionals, technologists, and vendors from the United States and countries around the world have taken advantage of this opportunity to meet with their contemporaries and peers in order to exchange information and ideas. The program includes over 100 papers in 9 sessions, plus an additional session for works in progress. Papers are presented in external dosimetry, internal dosimetry, radiation protection programs and assessments, developments in instrumentation and materials, environmental and medical applications, and on topics related to standards, accreditation, and calibration. Individual papers are indexed separately on EDB.

  3. Association of radiation dose with prevalence of thyroid nodules among atomic bomb survivors exposed in childhood (2007-2011).

    Science.gov (United States)

    Imaizumi, Misa; Ohishi, Waka; Nakashima, Eiji; Sera, Nobuko; Neriishi, Kazuo; Yamada, Michiko; Tatsukawa, Yoshimi; Takahashi, Ikuno; Fujiwara, Saeko; Sugino, Keizo; Ando, Takao; Usa, Toshiro; Kawakami, Atsushi; Akahoshi, Masazumi; Hida, Ayumi

    2015-02-01

    Few studies have evaluated the association of radiation dose with thyroid nodules among adults exposed to radiation in childhood. To evaluate radiation dose responses on the prevalence of thyroid nodules in atomic bomb survivors exposed in childhood. This survey study investigated 3087 Hiroshima and Nagasaki atomic bomb survivors who were younger than 10 years at exposure and participated in the thyroid study of the Adult Health Study at the Radiation Effects Research Foundation. Thyroid examinations including thyroid ultrasonography were conducted between October 2007 and October 2011, and solid nodules underwent fine-needle aspiration biopsy. Data from 2668 participants (86.4% of the total participants; mean age, 68.2 years; 1213 men; and 1455 women) with known atomic bomb thyroid radiation doses (mean dose, 0.182 Gy; median dose, 0.018 Gy; dose range, 0-4.040 Gy) were analyzed. The prevalence of all thyroid nodules having a diameter of 10 mm or more (consisting of solid nodules [malignant and benign] and cysts), prevalence of small thyroid nodules that were less than 10 mm in diameter detected by ultrasonography, and atomic bomb radiation dose-responses. Thyroid nodules with a diameter of 10 mm or more were identified in 470 participants (17.6%): solid nodules (427 cases [16.0%]), malignant tumors (47 cases [1.8%]), benign nodules (186 cases [7.0%]), and cysts (49 cases [1.8%]), and all were significantly associated with thyroid radiation dose. Excess odds ratios per gray unit were 1.65 (95% CI, 0.89-2.64) for all nodules, 1.72 (95% CI, 0.93-2.75) for solid nodules, 4.40 (95% CI, 1.75-9.97) for malignant tumors, 2.07 (95% CI, 1.16-3.39) for benign nodules, and 1.11 (95% CI, 0.15-3.12) for cysts. The interaction between age at exposure and the dose was significant for the prevalence of all nodules (P = .003) and solid nodules (P atomic bomb survivors 62 to 66 years after their exposure in childhood. However, radiation exposure is not associated with small

  4. Mathematics in medicine: tumor detection, radiation dosimetry, and simulation in psychotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Bellman, R.; Kashef, B.; Smith, C.P.; Ueno, S.; Vasudevan, R.

    1975-05-01

    Work done in the application of mathematics to medicine over the last 20 years is briefly reviewed. Scan-rescan processes, radiation dosimetry, and medical interviewing are discussed. The first uses dynamic programming, the second invariant imbedding, and the third simulation. (ACR)

  5. Guidelines for the Calibration of Routine Dosimetry Systems for use in Radiation Processing

    DEFF Research Database (Denmark)

    Sharpe, Peter; Miller, Arne

    A set of guidelines has been developed to assist in the calibration of routine dosimetry systems for use in industrial radiation processing plants. Topics covered include the calibration of equipment, the performance of calibration irradiations and the derivation of mathematical functions...

  6. A scintillating GEM for 2D-dosimetry in radiation therapy

    NARCIS (Netherlands)

    Timmer, JH; van Vuure, TL; Bom, [No Value; van Eijk, CW; de Haas, J; Schippers, JM

    2002-01-01

    The first results of a study on the properties of a gaseous scintillation detector based on a Gas Electron Multiplier (GEM) are reported. The detector is designed for use in position-sensitive dosimetry applications in radiation therapy. A double GEM system, operating in a 90 10% Ar-CO2 gas mixture

  7. Fostering a culture of interprofessional education for radiation therapy and medical dosimetry students

    Energy Technology Data Exchange (ETDEWEB)

    Lavender, Charlotte, E-mail: charlavender@gmail.com; Miller, Seth; Church, Jessica; Chen, Ronald C.; Muresan, Petronella A.; Adams, Robert D.

    2014-04-01

    A less-studied aspect of radiation therapy and medical dosimetry education is experiential learning through attendance at interprofessional conferences. University of North Carolina radiation therapy and medical dosimetry students regularly attended morning conferences and daily pretreatment peer review, including approximately 145 hours of direct interaction with medical attending physicians and residents, medical physicists, and other faculty. We herein assessed the effect of their participation in these interprofessional conferences on knowledge and communication. The students who graduated from our radiation therapy and medical dosimetry programs who were exposed to the interprofessional education initiative were compared with those who graduated in the previous years. The groups were compared with regard to their knowledge (as assessed by grades on end-of-training examinations) and team communication (assessed via survey). The results for the 2 groups were compared via exact tests. There was a trend for the examination scores for the 2012 cohort to be higher than for the 2007 to 2011 groups. Survey results suggested that students who attended the interprofessional education sessions were more comfortable speaking with attending physicians, residents, physicists, and faculty compared with earlier students who did not attend these educational sessions. Interprofessional education, particularly vertical integration, appears to provide an enhanced educational experience both in regard to knowledge (per the examination scores) and in building a sense of communication (via the survey results). Integration of interprofessional education into radiation therapy and medical dosimetry educational programs may represent an opportunity to enrich the learning experience in multiple ways and merits further study.

  8. Scenario of a dirty bomb in an urban environment and acute management of radiation poisoning and injuries.

    Science.gov (United States)

    Chin, F K C

    2007-10-01

    In the new security environment, there is a clear and present danger of terrorists using non-conventional weapons to inflict maximum psychological and economic damage on their targets. This article examines two scenarios of radiation contamination and injury, one accidental in nature leading to environmental contamination, and another of deliberate intent resulting in injury and death. This article also discusses the management of injury from radiological dispersion devices or dirty bombs, with emphasis on the immediate aftermath as well as strategy recommendations.

  9. Radiation risks in lung cancer screening programs: a comparison with nuclear industry workers and atomic bomb survivors.

    Science.gov (United States)

    McCunney, Robert J; Li, Jessica

    2014-03-01

    The National Lung Cancer Screening Trial (NLST) demonstrated that screening with low-dose CT (LDCT) scan reduced lung cancer and overall mortality by 20% and 7%, respectively. The LDCT scanning involves an approximate 2-mSv dose, whereas full-chest CT scanning, the major diagnostic study used to follow up nodules, may involve a dose of 8 mSv. Radiation associated with CT scanning and other diagnostic studies to follow up nodules may present an independent risk of lung cancer. On the basis of the NLST, we estimated the incidence and prevalence of nodules detected in screening programs. We followed the Fleischner guidelines for follow-up of nodules to assess cumulative radiation exposure over 20- and 30-year periods. We then evaluated nuclear worker cohort studies and atomic bomb survivor studies to assess the risk of lung cancer from radiation associated with long-term lung cancer screening programs. The findings indicate that a 55-year-old lung screening participant may experience a cumulative radiation exposure of up to 280 mSv over a 20-year period and 420 mSv over 30 years. These exposures exceed those of nuclear workers and atomic bomb survivors. This assessment suggests that long-term (20-30 years) LDCT screening programs are associated with nontrivial cumulative radiation doses. Current lung cancer screening protocols, if conducted over 20- to 30-year periods, can independently increase the risk of lung cancer beyond cigarette smoking as a result of cumulative radiation exposure. Radiation exposures from LDCT screening and follow-up diagnostic procedures exceed lifetime radiation exposures among nuclear power workers and atomic bomb survivors.

  10. Application of biological dosimetry in accidental radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Nosal, M.; Batora, I.; Kolesar, D.; Stojkovic, J. (Komenskeho Univ., Bratislava (Czechoslovakia). Lekarska Fakulta); Gaal, P.; Sklovsky, A. (Krajska Hygienicka Stanica, Bratislava (Czechoslovakia)); Cizova, O. (Sexuologicka Ambulancia KUNZ, Bratislava (Czechoslovakia))

    1982-03-01

    The case is described of accidental irradiation of a male person with /sup 137/Cs of an activity of 24.71 GBq. The first estimate induced a reasonable suspicion that the absorbed dose could be very high and life-threatening. On the other hand the clinical picture, usual laboratory examinations, findings in the fluorescent blood count, the analysis of chromosomal count of lymphocytes in the peripheral blood, the spermiogram, and the negative post-irradiation porphyrinuria suggested that the absorbed dose could be much lower than the original estimate. The results of dosimetry obtained after the reconstruction of the accident by measuring on a phantom revealed that the actual dose was very close to that presumed from the results of biological dosimetry during the first days of examination of the patient.

  11. Autopsy studies of Hashimoto's thyroiditis in Hiroshima and Nagasaki (1954-1974): relation to atomic bomb radiation

    Energy Technology Data Exchange (ETDEWEB)

    Asano, M. (Radiation Effects Research Foundation, Hiroshima, Japan); Norman, J.E. Jr.; Kato, H.; Yagawa, K.

    1978-01-01

    The authors examined 155 autopsy cases of Hashimoto's thyroiditis in the Life Span Study sample including both A-bomb survivors and controls in Hiroshima and Nagasaki (1954 to 1974). Hashimoto's thyroiditis was classified into lymphoid, diffuse and fibrous types and the following results were obtained. No difference existed in the effects of A-bomb radiation in the incidence and ATB. The ratio of males to females did not reveal statistical significance, even though reversed ratio was noted in the high dose group. The variation of thyroid gland weight in T65 dose or by variant showed no significant pattern, even though the smallest average weight was found in the highest radiation exposure group. The complications in the patients with Hashimoto's thyroiditis were noted to have high prevalance of ovarian cancer and low prevalence of stomach cancer and total cancer. Only two patients with Hashimoto's thyroiditis were found to be complicated with thyroid carcinoma. Among collagen diseases, the prevalence of rheumatic fever and rheumatoid arthritis was high as complication. And the prevalence of combined diseases suggested that no late effect of A-bomb radiation existed.

  12. RADIATION DOSIMETRY AT THE BNL HIGH FLUX BEAM REACTOR AND MEDICAL RESEARCH REACTOR.

    Energy Technology Data Exchange (ETDEWEB)

    HOLDEN,N.E.

    1999-09-10

    RADIATION DOSIMETRY MEASUREMENTS HAVE BEEN PERFORMED OVER A PERIOD OF MANY YEARS AT THE HIGH FLUX BEAM REACTOR (HFBR) AND THE MEDICAL RESEARCH REACTOR (BMRR) AT BROOKHAVEN NATIONAL LABORATORY TO PROVIDE INFORMATION ON THE ENERGY DISTRIBUTION OF THE NEUTRON FLUX, NEUTRON DOSE RATES, GAMMA-RAY FLUXES AND GAMMA-RAY DOSE RATES. THE MCNP PARTICLE TRANSPORT CODE PROVIDED MONTE CARLO RESULTS TO COMPARE WITH VARIOUS DOSIMETRY MEASUREMENTS PERFORMED AT THE EXPERIMENTAL PORTS, AT THE TREATMENT ROOMS AND IN THE THIMBLES AT BOTH HFBR AND BMRR.

  13. Electromagnetic and heat transfer computations for non-ionizing radiation dosimetry.

    Science.gov (United States)

    Samaras, T; Regli, P; Kuster, N

    2000-08-01

    Reliable information on the heat distribution inside biological tissues is essential for the planning and optimization of experiments which aim to study the effects of non-ionizing radiation (NIR). In electrodynamics, the finite-difference time-domain (FDTD) technique has become the dominant technique for radiofrequency dosimetry. In order to obtain the electromagnetic field and heat distributions within the same simulation run without changing discretization, a heat diffusion solver has been directly integrated into an advanced electrodynamic FDTD kernel. The implementation enables both coupled and sequential simulations. It also includes the ability to work with complex bodies and to accelerate heat diffusion. This paper emphasizes the importance of this combination in the field of NIR dosimetry. Two examples from this area are given: the validation of dosimetry with temperature probes and the estimation of the highest thermal load during bioexperiments.

  14. Dosimetry methods

    DEFF Research Database (Denmark)

    McLaughlin, W.L.; Miller, A.; Kovacs, A.;

    2003-01-01

    Chemical and physical radiation dosimetry methods, used for the measurement of absorbed dose mainly during the practical use of ionizing radiation, are discussed with respect to their characteristics and fields of application.......Chemical and physical radiation dosimetry methods, used for the measurement of absorbed dose mainly during the practical use of ionizing radiation, are discussed with respect to their characteristics and fields of application....

  15. Development of gas microstrip detectors for digital x-ray imaging and radiation dosimetry

    CERN Document Server

    Dixit, M S; Dubeau, J; Gobbi, D G; Johns, P C; Karlen, Dean A; Oakham, F G; Waker, A J

    1998-01-01

    Our recent work in the application of gas microstrip detector (GMD) technology to the fields of digital X-ray imaging and radiation dosimetry Is described. The GMD can measure the position and the energy of individual photons at the high counting rates encountered in X-ray imaging. GMD-based imaging systems have high detective quantum efficiency and permit improvement of image quality and contrast using display windowing and measured energy information. Results are presented on the performance of a prototype GMD imaging system operated with a xenon/methane 90/10 gas mixture at 1 atm. Results are also presented on the performance of a GMD filled with tissue equivalent gases for applications in the field of radiation dosimetry in mixed neutron and gamma fields. The results show that the GMD can be used for dosimetric discrimination between different types of radiation in mixed-field environments.

  16. Transient impedance changes in venous endothelial monolayers as a biological radiation dosimetry response

    Directory of Open Access Journals (Sweden)

    Erik Fossum Young

    2012-10-01

    Full Text Available In March of 2011, a magnitude 9.0 earthquake and subsequent 14 m-high tsunami caused major damage to the Fukushima Daiichi nuclear power plant in Japan.  While cancer incidence in the radiation-exposed population is a logical concern, the complex effects of radiation on the heart and cardiovascular system are also of interest.  Immediate and early vascular radiation effects could be exploited as a dosimetry modality.  To test whether non-coronary vasculature exhibited transient perturbation in barrier function, video microscopy studies and Electric Cell Substrate Impedance Sensing technology were used to probe very subtle changes in primary human vascular endothelium.  Human umbilical vein endothelial cell (HUVEC monolayers exhibit a transient, statistically significant decrease (P = 0.017 in monolayer resistance 3 h after irradiation with 5.0 Gy of g rays.  Radiation induced perturbations in HUVEC monolayer permeability are similar in magnitude and kinetics to those observed in coronary arterial endothelium.  Therefore, at least two types of vasculature respond to radiation on ECIS arrays with an early transient disruption in permeability.  The finding supports the use of early passage HUVECs for use in bioelectric dosimetry studies of vasculature and suggests that permeability of vessels could potentially serve as a biological dosimetry tool.

  17. Review of the correlation between results of cytogenetic dosimetry from blood lymphocytes and EPR dosimetry from tooth enamel for victims of radiation accidents.

    Science.gov (United States)

    Khvostunov, I K; Ivannikov, A I; Skvortsov, V G; Nugis, V Yu; Golub, E V

    2015-03-01

    The goal of this study was to compare dose estimates from electron paramagnetic resonance (EPR) dosimetry with teeth and cytogenetic dosimetry with blood lymphocytes for 30 victims of radiation accidents. The whole-body exposures estimated by tooth enamel EPR dosimetry were ranging from 0.01 to 9.3 Gy. Study group comprised victims exposed to acute and prolonged irradiation at high and low dose rate in different accidents. Blood samples were taken from each of them for cytogenetic analysis. Aberrations were scored and analysed according to International Atomic Energy Agency (IAEA) guidelines for conventional and FISH analysis. Tooth samples were collected in dental clinics after they had been extracted during ordinary practice. EPR dosimetry was performed according to the IAEA protocol. EPR dosimetry showed good correlation with dosimetry based on chromosomal analysis. All estimations of cytogenetic dose below detection limit coincide with EPR dose estimates within the ranges of uncertainty. The differences between cytogenetic and EPR assays may occur in a case of previous unaccounted exposure, non-homogeneous irradiation and due to contribution to absorbed dose from neutron irradiation.

  18. The grave is wide: the Hibakusha of Hiroshima and Nagasaki and the legacy of the Atomic Bomb Casualty Commission and the Radiation Effects Research Foundation.

    Science.gov (United States)

    O'Malley, Gerald F

    2016-07-01

    Following the atomic bomb attacks on Japan in 1945, scientists from the United States and Japan joined together to study the Hibakusha - the bomb affected people in what was advertised as a bipartisan and cooperative effort. In reality, despite the best efforts of some very dedicated and earnest scientists, the early years of the collaboration were characterized by political friction, censorship, controversy, tension, hostility, and racism. The 70-year history, scientific output and cultural impact of the Atomic Bomb Casualty Commission and the Radiation Effects Research Foundation are described in the context of the development of Occupied Japan.

  19. Quality assurance in personal dosimetry of external radiation: present situation and future needs

    Energy Technology Data Exchange (ETDEWEB)

    Ma, N. [Malaysian Institue For Nuclear Technology Research (MINT), Bangi, Selangor (Malaysia)

    2006-07-01

    Whole body personal dosimetry is well established for the individual monitoring of radiation workers. High quality radiation dosimetry is essential for workers who rely upon personal dosemeters to record the amount of radiation to which they are exposed. The mandate has been given to the Personal Dosimetry, (secondary standard dosimetry laboratories) S.S.D.L., (Malaysian institute for nuclear energy research) M.I.N.T. to assure the individual monitoring for radiation workers in Malaysia. In 2005, the S.S.D.L;-M.I.N.T. supply, process and read out of personal dosemeters of nearly 13,000 dosimeters monthly, whereby. 12,000 are films and 1,000 are T.L.D.s. The objective of individual monitoring is not limited to the measurement of doses delivered to individuals, but it should demonstrate that limits of exposure have not been exceeded and that working conditions have not unexpectedly deteriorated. Dosimetry measurements are an important component of radiation protection programs and must be of high quality. The exposure of workers to radiation must be controlled and monitored in order to comply with regulatory requirements. S.S.D.L.-M.I.N.T; demonstrates that its performance is at an acceptable level by implementing overall system performance, as evidenced by the ISO 9001 certification of the Personal Dosimetry Service in 2002 and ISO/I.E.C. 17025 accreditation to the calibration laboratory in 2004. The certification and accreditation processes achieved the goal by formalizing the recognition of satisfactory performance, and providing evidence of this performance. Overall performances are assessed, personnel operating the system will be trained and are well qualified and all actions will be documented. The paper describes the overview of the Q.M.S. carried out at the S.S. D.L.-M.I.N.T.. During the implementation of Q.M.S. a few areas has been identified for future consideration. These include performance specification and type testing of dosemeters, which provide a

  20. Advances in dosimetry and biological predictors of radiation-induced esophagitis

    Directory of Open Access Journals (Sweden)

    Yu Y

    2016-01-01

    Full Text Available Yang Yu,1 Hui Guan,1 Yuanli Dong,1 Ligang Xing,2 Xiaolin Li2 1School of Medicine and Life Sciences, Shandong Academy of Medical Sciences, University of Jinan, Jinan, 2Department of Radiation Oncology, Shandong Cancer Hospital, Jinan, Shandong Province, People’s Republic of China Objective: To summarize the research progress about the dosimetry and biological predictors of radiation-induced esophagitis.Methods: We performed a systematic literature review addressing radiation esophagitis in the treatment of lung cancer published between January 2009 and May 2015 in the PubMed full-text database index systems.Results: Twenty-eight eligible documents were included in the final analysis. Many clinical factors were related to the risk of radiation esophagitis, such as elder patients, concurrent chemoradiotherapy, and the intense radiotherapy regimen (hyperfractionated radiotherapy or stereotactic body radiotherapy. The parameters including Dmax, Dmean, V20, V30, V50, and V55 may be valuable in predicting the occurrence of radiation esophagitis in patients receiving concurrent chemoradiotherapy. Genetic variants in inflammation-related genes are also associated with radiation-induced toxicity.Conclusion: Dosimetry and biological factors of radiation-induced esophagitis provide clinical information to decrease its occurrence and grade during radiotherapy. More prospective studies are warranted to confirm their prediction efficacy. Keywords: lung cancer, esophagitis, radiation injuries, predictors

  1. Small Radiation Beam Dosimetry for Radiosurgery of Trigeminal Neuralgia: One Case Analysis

    Science.gov (United States)

    García-Garduño, O. A.; Lárraga-Gutiérrez, J. M.; Rodríguez-Villafuerte, M.; Martínez-Dávalos, A.; Moreno-Jiménez, S.; Suárez-Campos, J. J.; Celis, M. A.

    2008-08-01

    The use of small radiation beams for trigeminal neuralgia (TN) treatment requires high precision and accuracy in dose distribution calculations and delivery. Special attention must be kept on the type of detector to be used. In this work, the use of GafChromic EBT® radiochromic and X-OMAT V2 radiographic films for small radiation beam characterization is reported. The dosimetric information provided by the films (total output factors, tissue maximum ratios and off axis ratios) is compared against measurements with a shielded solid state (diode) reference detector. The film dosimetry was used for dose distribution calculations for the treatment of trigeminal neuralgia radiosurgery. Comparison of the isodose curves shows that the dosimetry produced with the X-OMAT radiographic film overestimates the dose distributions in the penumbra region.

  2. Metrology and quality of radiation therapy dosimetry of electron, photon and epithermal neutron beams

    Energy Technology Data Exchange (ETDEWEB)

    Kosunen, A

    1999-08-01

    In radiation therapy using electron and photon beams the dosimetry chain consists of several sequential phases starting by the realisation of the dose quantity in the Primary Standard Dosimetry Laboratory and ending to the calculation of the dose to a patient. A similar procedure can be described for the dosimetry of epithermal neutron beams in boron neutron capture therapy (BNCT). To achieve the required accuracy of the dose delivered to a patient the quality of all steps in the dosimetry procedure has to be considered. This work is focused on two items in the dosimetry chains: the determination of the dose in the reference conditions and the evaluation of the accuracy of dose calculation methods. The issues investigated and discussed in detail are: a)the calibration methods of plane parallel ionisation chambers used in electron beam dosimetry, (b) the specification of the critical dosimetric parameter i.e. the ratio of stopping powers for water to air, (S I ?){sup water} {sub air}, in photon beams, (c) the feasibility of the twin ionization chamber technique for dosimetry in epithermal neutron beams applied to BNCT and (d) the determination accuracy of the calculated dose distributions in phantoms in electron, photon, and epithermal neutron beams. The results demonstrate that up to a 3% improvement in the consistency of dose determinations in electron beams is achieved by the calibration of plane parallel ionisation chambers in high energy electron beams instead of calibrations in {sup 60}Co gamma beams. In photon beam dosimetry (S I ?){sup water} {sub air} can be determined with an accuracy of 0.2% using the percentage dose at the 10 cm depth, %dd(10), as a beam specifier. The use of %odd(10) requires the elimination of the electron contamination in the photon beam. By a twin ionisation chamber technique the gamma dose can be determined with uncertainty of 6% (1 standard deviation) and the total neutron dose with an uncertainty of 15 to 20% (1 standard deviation

  3. Dosimetry of ionizing radiations by Electron paramagnetic resonance; Dosimetria de radiaciones ionizantes por resonancia paramagnetica electronica

    Energy Technology Data Exchange (ETDEWEB)

    Azorin N, J. [UAM-I, Av. San Rafael Atlixco 186, 09340 Mexico D.F. (Mexico)

    2005-07-01

    In this work, some historical and theoretical aspects about the Electron Paramagnetic Resonance (EPR), its characteristics, the resonance detection, the paramagnetic species, the radiation effects on inorganic and organic materials, the diagrams of the instrumentation for the EPR detection, the performance of an EPR spectrometer, the coherence among EPR and dosimetry and, practical applications as well as in the food science there are presented. (Author)

  4. Atomic bomb health benefits.

    Science.gov (United States)

    Luckey, T D

    2008-01-01

    Media reports of deaths and devastation produced by atomic bombs convinced people around the world that all ionizing radiation is harmful. This concentrated attention on fear of miniscule doses of radiation. Soon the linear no threshold (LNT) paradigm was converted into laws. Scientifically valid information about the health benefits from low dose irradiation was ignored. Here are studies which show increased health in Japanese survivors of atomic bombs. Parameters include decreased mutation, leukemia and solid tissue cancer mortality rates, and increased average lifespan. Each study exhibits a threshold that repudiates the LNT dogma. The average threshold for acute exposures to atomic bombs is about 100 cSv. Conclusions from these studies of atomic bomb survivors are: One burst of low dose irradiation elicits a lifetime of improved health.Improved health from low dose irradiation negates the LNT paradigm.Effective triage should include radiation hormesis for survivor treatment.

  5. ASSESSMENT OF UNCERTAINTY IN THE RADIATION DOSES FOR THE TECHA RIVER DOSIMETRY SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Napier, Bruce A.; Degteva, M. O.; Anspaugh, L. R.; Shagina, N. B.

    2009-10-23

    In order to provide more accurate and precise estimates of individual dose (and thus more precise estimates of radiation risk) for the members of the ETRC, a new dosimetric calculation system, the Techa River Dosimetry System-2009 (TRDS-2009) has been prepared. The deterministic version of the improved dosimetry system TRDS-2009D was basically completed in April 2009. Recent developments in evaluation of dose-response models in light of uncertain dose have highlighted the importance of different types of uncertainties in the development of individual dose estimates. These include uncertain parameters that may be either shared or unshared within the dosimetric cohort, and also the nature of the type of uncertainty as aleatory or epistemic and either classical or Berkson. This report identifies the nature of the various input parameters and calculational methods incorporated in the Techa River Dosimetry System (based on the TRDS-2009D implementation), with the intention of preparing a stochastic version to estimate the uncertainties in the dose estimates. This report reviews the equations, databases, and input parameters, and then identifies the author’s interpretations of their general nature. It presents the approach selected so that the stochastic, Monte-Carlo, implementation of the dosimetry System - TRDS-2009MC - will provide useful information regarding the uncertainties of the doses.

  6. Application of Lead Sulphide Nanoparticles for Dosimetry of Ionizing Radiation

    OpenAIRE

    Dehtjars, J; Kovaļovs, P; Reisfeld, R.; Rešetņikova, A; Romanova, M.; Saraidarov, T; Surkova, I

    2015-01-01

    The aim of the research is to design a dosimeter that provides measurements of doses of ionizing radiation absorbed in nano-sized objects. Such dosimeters can be useful for radiobiology in order to study effects of radiation on nanosized biological structures such as DNA molecule. We offer to use radiation-sensitive semiconductor nanoparticles as nanosized active elements of the dosimeter. Nanoparticles have to be embedded into a dielectric matrix that provides physical and chemical stabil...

  7. Calculation codes in radiation protection, radiation physics and dosimetry; Codes de calcul en radioprotection, radiophysique et dosimetrie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    These scientific days had for objective to draw up the situation of calculation codes of radiation transport, of sources estimation, of radiation doses managements and to draw the future perspectives. (N.C.)

  8. Optical fiber detectors as in-vivo dosimetry method of quality assurance in radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Plazas, M.C. [Universidad Nacional de Colombia, Bogota (Colombia). Physics Dept. Medical Physics Group; Justus, B.L.; Falkenstein, P.; Huston, A.L. [Naval Research Laboratory, Washington, DC (United States). Optical Sciences Div.; Ning, H.; Miller, R. [National Cancer Institute, Bethesda, MD (United States). Radiation Oncology Branch

    2004-07-01

    A new in-vivo dosimetry system has been under development for some time using radio luminescent phosphors. These phosphors are activated, metal ion doped glasses (Ex: Cu{sup 1{+-}} doped quartz fiber), have excellent optical transparency and offer several potential advantages for radiation dosimetry; including: small size, high sensitivity, linearity of dose response insensitivity to electromagnetic interference. The utility of these phosphors as a detection modality has been limited in real-time dosimetry applications due to the production of Cerenkov radiation in the carrier fiber, which produces a contaminant signal proportional to dose rate as well as the size of the radiation field. One possible method for eliminating this signal is using an electronic gating signal from the accelerator to delay data acquisition during the actual beam pulse, when Cerenkov radiation is produced. Due to the intrinsic properties of our particular scintillator, this method offers the best mechanism for eliminating Cerenkov noise, while retaining the ability to detect individual beam pulses. The dosimeter was tested using an external beam radiotherapy machine that provided pulses of 6 MeV x-rays. Gated detection was used to discriminate the signal collected during the radiation pulses, which included contributions from Cerenkov radiation and native fiber fluorescence, from the signal collected between the radiation pulses, which contained only the long-lived phosphorescence from the Cu{sup 1{+-}} doped fused quartz detector. Gated detection of the phosphorescence provided accurate, real-time dose measurements that were linear with absorbed dose, independent of dose rate and that were accurate for all field sizes studied. (author)

  9. Acute radiation disease and biological dosimetry in 1993.

    Science.gov (United States)

    Vorobiev, A I

    1997-01-01

    Mankind is at risk for accidental exposure to ionizing radiation. The experience in evaluating and treating victims of radiation exposure is briefly reviewed based upon accidents occurring over the past 25 years. Individual cases of acute toxicities to the skin, gastrointestinal tract, liver and bone marrow are presented. Biodosimetry (utilizing chromosome analysis of peripheral blood lymphocytes and bone marrow and electron spin resonance spectrometry of dental enamel) has been utilized in radiation accidents to assess individual dose. Variability in the dose of ionizing radiation received is typical among the population affected by the Chernobyl accident. Whereas the acute radiation syndrome resulting in a high mortality has been well-documented, little information is available regarding the effects of chronic, low-level exposure from the Chernobyl accident.

  10. Micrometer-resolved film dosimetry using a microscope in microbeam radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Bartzsch, Stefan, E-mail: stefan.bartzsch@icr.ac.uk; Oelfke, Uwe [The Institute of Cancer Research, 15 Cotswold Road, Sutton SM2 5NG (United Kingdom); Lott, Johanna; Welsch, Katrin [Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, D-69120 Heidelberg (Germany); Bräuer-Krisch, Elke [European Synchrotron Radiation Facility, 6 rue Jules Horowitz, Grenoble Cedex 9 38043 (France)

    2015-07-15

    Purpose: Microbeam radiation therapy (MRT) is a still preclinical tumor therapy approach that uses arrays of a few tens of micrometer wide parallel beams separated by a few 100 μm. The production, measurement, and planning of such radiation fields are a challenge up to now. Here, the authors investigate the feasibility of radiochromic film dosimetry in combination with a microscopic readout as a tool to validate peak and valley doses in MRT, which is an important requirement for a future clinical application of the therapy. Methods: Gafchromic{sup ®} HD-810 and HD-V2 films are exposed to MRT fields at the biomedical beamline ID17 of the European Synchrotron Radiation Facility (ESRF) and are afterward scanned with a microscope. The measured dose is compared with Monte Carlo calculations. Image analysis tools and film handling protocols are developed that allow accurate and reproducible dosimetry. The performance of HD-810 and HD-V2 films is compared and a detailed analysis of the resolution, noise, and energy dependence is carried out. Measurement uncertainties are identified and analyzed. Results: The dose was measured with a resolution of 5 × 1000 μm{sup 2} and an accuracy of 5% in the peak and between 10% and 15% in the valley region. As main causes for dosimetry uncertainties, statistical noise, film inhomogeneities, and calibration errors were identified. Calibration errors strongly increase at low doses and exceeded 3% for doses below 50 and 70 Gy for HD-V2 and HD-810 films, respectively. While the grain size of both film types is approximately 2 μm, the statistical noise in HD-V2 is much higher than in HD-810 films. However, HD-810 films show a higher energy dependence at low photon energies. Conclusions: Both film types are appropriate for dosimetry in MRT and the microscope is superior to the microdensitometer used before at the ESRF with respect to resolution and reproducibility. However, a very careful analysis of the image data is required

  11. Advances in dosimetry and biological predictors of radiation-induced esophagitis

    Science.gov (United States)

    Yu, Yang; Guan, Hui; Dong, Yuanli; Xing, Ligang; Li, Xiaolin

    2016-01-01

    Objective To summarize the research progress about the dosimetry and biological predictors of radiation-induced esophagitis. Methods We performed a systematic literature review addressing radiation esophagitis in the treatment of lung cancer published between January 2009 and May 2015 in the PubMed full-text database index systems. Results Twenty-eight eligible documents were included in the final analysis. Many clinical factors were related to the risk of radiation esophagitis, such as elder patients, concurrent chemoradiotherapy, and the intense radiotherapy regimen (hyperfractionated radiotherapy or stereotactic body radiotherapy). The parameters including Dmax, Dmean, V20, V30, V50, and V55 may be valuable in predicting the occurrence of radiation esophagitis in patients receiving concurrent chemoradiotherapy. Genetic variants in inflammation-related genes are also associated with radiation-induced toxicity. Conclusion Dosimetry and biological factors of radiation-induced esophagitis provide clinical information to decrease its occurrence and grade during radiotherapy. More prospective studies are warranted to confirm their prediction efficacy. PMID:26869804

  12. The Application of FLUKA to Dosimetry and Radiation Therapy

    Science.gov (United States)

    Wilson, Thomas L.; Andersen, Victor; Pinsky, Lawrence; Ferrari, Alfredo; Battistoni, Giusenni

    2005-01-01

    Monte Carlo transport codes like FLUKA are useful for many purposes, and one of those is the simulation of the effects of radiation traversing the human body. In particular, radiation has been used in cancer therapy for a long time, and recently this has been extended to include heavy ion particle beams. The advent of this particular type of therapy has led to the need for increased capabilities in the transport codes used to simulate the detailed nature of the treatment doses to the Y O U S tissues that are encountered. This capability is also of interest to NASA because of the nature of the radiation environment in space.[l] While in space, the crew members bodies are continually being traversed by virtually all forms of radiation. In assessing the risk that this exposure causes, heavy ions are of primary importance. These arise both from the primary external space radiation itself, as well as fragments that result from interactions during the traversal of that radiation through any intervening material including intervening body tissue itself. Thus the capability to characterize the details of the radiation field accurately within a human body subjected to such external 'beams" is of critical importance.

  13. Computational dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Siebert, B.R.L.; Thomas, R.H.

    1996-01-01

    The paper presents a definition of the term ``Computational Dosimetry`` that is interpreted as the sub-discipline of computational physics which is devoted to radiation metrology. It is shown that computational dosimetry is more than a mere collection of computational methods. Computational simulations directed at basic understanding and modelling are important tools provided by computational dosimetry, while another very important application is the support that it can give to the design, optimization and analysis of experiments. However, the primary task of computational dosimetry is to reduce the variance in the determination of absorbed dose (and its related quantities), for example in the disciplines of radiological protection and radiation therapy. In this paper emphasis is given to the discussion of potential pitfalls in the applications of computational dosimetry and recommendations are given for their avoidance. The need for comparison of calculated and experimental data whenever possible is strongly stressed.

  14. Significance of HER2 and C-MYC oncogene amplifications in breast cancer in atomic bomb survivors: associations with radiation exposure and histologic grade.

    Science.gov (United States)

    Miura, Shiro; Nakashima, Masahiro; Ito, Masahiro; Kondo, Hisayoshi; Meirmanov, Serik; Hayashi, Tomayoshi; Soda, Midori; Matsuo, Takeshi; Sekine, Ichiro

    2008-05-15

    It has been postulated that radiation induces breast cancers in atomic bomb (A-bomb) survivors. Oncogene amplification is an important mechanism during breast carcinogenesis and also serves as an indicator of genomic instability (GIN). The objective of this study was to clarify the association of oncogene amplification in breast cancer in A-bomb survivors with radiation exposure. In total, 593 breast cancers were identified in A-bomb survivors from 1968 to 1999, and the association between breast cancer incidence and A-bomb radiation exposure was evaluated. Invasive ductal cancers from 67 survivors and 30 nonsurvivors were analyzed for amplification of the HER2 and C-MYC genes by fluorescence in situ hybridization, and expression levels of hormone receptors were analyzed by immunostaining. The incidence rate increased significantly as exposure distance decreased from the hypocenter (hazard ratio per 1-km decrement, 1.47; 95% confidence interval [95% CI], 1.30-1.66). The incidence of HER2 and C-MYC amplification was increased significantly in the order of the control group, the distal group (P = .0238), and the proximal group (P = .0128). Multivariate analyses revealed that distance was a risk factor for the coamplification of C-MYC and HER2 in breast cancer in survivors (odds ratio per 1-km increment, 0.17; 95% CI, 0.01-0.63). The histologic grade of breast cancers became significantly higher in the order of the control group, the distal group, and the proximal group and was associated with oncogene amplifications. The current results suggested that A-bomb radiation may affect the development of oncogene amplification by inducing GIN and may be associated with a higher histologic grade in breast cancer among A-bomb survivors. (c) 2008 American Cancer Society.

  15. Metabolic Profile as a Potential Modifier of Long-Term Radiation Effects on Peripheral Lymphocyte Subsets in Atomic Bomb Survivors.

    Science.gov (United States)

    Yoshida, Kengo; Nakashima, Eiji; Kyoizumi, Seishi; Hakoda, Masayuki; Hayashi, Tomonori; Hida, Ayumi; Ohishi, Waka; Kusunoki, Yoichiro

    2016-09-01

    Immune system impairments reflected by the composition and function of circulating lymphocytes are still observed in atomic bomb survivors, and metabolic abnormalities including altered blood triglyceride and cholesterol levels have also been detected in such survivors. Based on closely related features of immune and metabolic profiles of individuals, we investigated the hypothesis that long-term effects of radiation exposure on lymphocyte subsets might be modified by metabolic profiles in 3,113 atomic bomb survivors who participated in health examinations at the Radiation Effect Research Foundation, Hiroshima and Nagasaki, in 2000-2002. The lymphocyte subsets analyzed involved T-, B- and NK-cell subsets, and their percentages in the lymphocyte fraction were assessed using flow cytometry. Health examinations included metabolic indicators, body mass index, serum levels of total cholesterol, high-density lipoprotein cholesterol, C-reactive protein and hemoglobin A1c, as well as diabetes and fatty liver diagnoses. Standard regression analyses indicated that several metabolic indicators of obesity/related disease, particularly high-density lipoprotein cholesterol levels, were positively associated with type-1 helper T- and B-cell percentages but were inversely associated with naïve CD4 T and NK cells. A regression analysis adjusted for high-density lipoprotein cholesterol revealed a radiation dose relationship with increasing NK-cell percentage. Additionally, an interaction effect was suggested between radiation dose and C-reactive protein on B-cell percentage with a negative coefficient of the interaction term. Collectively, these findings suggest that radiation exposure and subsequent metabolic profile changes, potentially in relationship to obesity-related inflammation, lead to such long-term alterations in lymphocyte subset composition. Because this study is based on cross-sectional and exploratory analyses, the implications regarding radiation exposure, metabolic

  16. Radiation chemistry of L-Alanine: application to EPR dosimetry (1)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, M. J.; Jeo, Y. H.; Ha, Y. K.; Park, Y. S.; Choi, I. G. [KAERI, Taejon (Korea, Republic of)

    2003-10-01

    High energy ionizing radiation leaves stable radicals to certain organic materials, such as alanine and tartrate. Electron Paramagnetic Resonance (EPR) spectroscopy is a powerful tool for the identification and quantification of these radiation-induced radicals. An EPR method has been applied to study the radical characteristics of L-alanine after gamma radiation dose in the range of {approx}mGy to 60 kGy. The free radicals induced by gamma radiation were fairly stable, and EPR intensity, radical concentration, was proportional to the absorbed dose up to 60 kGy. From the results of our EPR measurements, it can be concluded that an alanine/EPR method is a useful technique for gamma radiation dosimetry from very low to high dose range.

  17. Radiochromic film containing methyl viologen for radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Lavalle, M. [ISOF-CNR, Via P. Gobetti 101, 40129 Bologna (Italy)]. E-mail: lavalle@isof.cnr.it; Corda, U. [ISOF-CNR, Via P. Gobetti 101, 40129 Bologna (Italy); Fuochi, P.G. [ISOF-CNR, Via P. Gobetti 101, 40129 Bologna (Italy); Caminati, S. [ISOF-CNR, Via P. Gobetti 101, 40129 Bologna (Italy); Venturi, M. [Dipartimento di Chimica ' G. Ciamician' , Universita di Bologna, Via Selmi 2, 40126 Bologna (Italy); Kovacs, A. [Institute of Isotopes, HAS, P.O. Box 77, 1525 Budapest (Hungary); Baranyai, M. [Institute of Isotopes, HAS, P.O. Box 77, 1525 Budapest (Hungary); Safrany, A. [Institute of Isotopes, HAS, P.O. Box 77, 1525 Budapest (Hungary); Miller, A. [High Dose Reference Laboratory, Riso National Laboratory, DK-4000, Roskilde (Denmark)

    2007-08-15

    Poly(vinyl alcohol) (PVA) films containing methyl viologen (MV{sup 2+}) that colours blue upon exposure to ionizing radiation were investigated as possible dosimeters for use in radiation processing applications. In order to find the most suitable composition of the PVA-MV{sup 2+} film, different concentrations of the dye have been studied. The absorbance values at selected wavelengths, obtained from irradiation of the PVA film containing the most suitable MV{sup 2+} concentration, can be satisfactorily related to the absorbed dose over a wide range, from 50 Gy up to 40 kGy. The effects of dose, dose rate, humidity and temperature on the response of the PVA-MV{sup 2+} dosimeter film have been studied under laboratory conditions. We conclude that the PVA film containing MV{sup 2+} is a promising tool for the absorbed dose measurements in several industrial applications of ionizing radiations.

  18. Dosimeters for small radiation fields; Dosimetrie fuer kleine Strahlungsfelder

    Energy Technology Data Exchange (ETDEWEB)

    Illemann, Jens [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany)

    2013-06-15

    For radiation-therapeutic accelerators for the first time a patented concept exists, by which reference-dose measurements become possible in spite of smallest chamber dimension in few seconds measuring time per point. Because of the additionally obtained microdosimetric information in the future statements can be made on the relative biological effectiveness for the treatment of patients.

  19. Using polyvinyl chloride dyed with bromocresol purple in radiation dosimetry.

    Science.gov (United States)

    Kattan, Munzer; al Kassiri, Haroun; Daher, Yarob

    2011-02-01

    Polyvinyl chloride (PVC) dyed with bromocresol purple was investigated as a high-dose radiation dosimeter. The absorbance at 417 nm depends linearly on the dose below 50 kGy. The response depends neither on dose rate nor on the irradiation temperature. The effects of post-irradiation storage in the dark and in indirect sunlight are also discussed.

  20. Radiochromic film containing methyl viologen for radiation dosimetry

    DEFF Research Database (Denmark)

    Lavalle, M.; Corda, U.; Fuochi, P.G.;

    2007-01-01

    , humidity and temperature on the response of the PVA-MV2+ dosimeter film have been studied under laboratory conditions. We conclude that the PVA film containing MV2+ is a promising tool for the absorbed dose measurements in several industrial applications of ionizing radiations. (C) 2007 Elsevier Ltd. All...

  1. Bibliographical database of radiation biological dosimetry and risk assessment: Part 1, through June 1988

    Energy Technology Data Exchange (ETDEWEB)

    Straume, T.; Ricker, Y.; Thut, M.

    1988-08-29

    This database was constructed to support research in radiation biological dosimetry and risk assessment. Relevant publications were identified through detailed searches of national and international electronic databases and through our personal knowledge of the subject. Publications were numbered and key worded, and referenced in an electronic data-retrieval system that permits quick access through computerized searches on publication number, authors, key words, title, year, and journal name. Photocopies of all publications contained in the database are maintained in a file that is numerically arranged by citation number. This report of the database is provided as a useful reference and overview. It should be emphasized that the database will grow as new citations are added to it. With that in mind, we arranged this report in order of ascending citation number so that follow-up reports will simply extend this document. The database cite 1212 publications. Publications are from 119 different scientific journals, 27 of these journals are cited at least 5 times. It also contains reference to 42 books and published symposia, and 129 reports. Information relevant to radiation biological dosimetry and risk assessment is widely distributed among the scientific literature, although a few journals clearly dominate. The four journals publishing the largest number of relevant papers are Health Physics, Mutation Research, Radiation Research, and International Journal of Radiation Biology. Publications in Health Physics make up almost 10% of the current database.

  2. The radiation oncology workforce: A focus on medical dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Gregg F., E-mail: grobinson@medicaldosimetry.org [American Association of Medical Dosimetrists, Herndon, VA (United States); Mobile, Katherine [American Association of Medical Dosimetrists, Herndon, VA (United States); Yu, Yan [Thomas Jefferson University, Philadelphia, PA (United States)

    2014-07-01

    The 2012 Radiation Oncology Workforce survey was conducted to assess the current state of the entire workforce, predict its future needs and concerns, and evaluate quality improvement and safety within the field. This article describes the dosimetrist segment results. The American Society for Radiation Oncology (ASTRO) Workforce Subcommittee, in conjunction with other specialty societies, conducted an online survey targeting all segments of the radiation oncology treatment team. The data from the dosimetrist respondents are presented in this article. Of the 2573 dosimetrists who were surveyed, 890 responded, which resulted in a 35% segment response rate. Most respondents were women (67%), whereas only a third were men (33%). More than half of the medical dosimetrists were older than 45 years (69.2%), whereas the 45 to 54 years age group represented the highest percentage of respondents (37%). Most medical dosimetrists stated that their workload was appropriate (52%), with respondents working a reported average of 41.7 ± 4 hours per week. Overall, 86% of medical dosimetrists indicated that they were satisfied with their career, and 69% were satisfied in their current position. Overall, 61% of respondents felt that there was an oversupply of medical dosimetrists in the field, 14% reported that supply and demand was balanced, and the remaining 25% felt that there was an undersupply. The medical dosimetrists' greatest concerns included documentation/paperwork (78%), uninsured patients (80%), and insufficient reimbursement rates (87%). This survey provided an insight into the dosimetrist perspective of the radiation oncology workforce. Though an overwhelming majority has conveyed satisfaction concerning their career, the study allowed a spotlight to be placed on the profession's current concerns, such as insufficient reimbursement rates and possible oversupply of dosimetrists within the field.

  3. Phantom dosimetry at 15 MV conformal radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Larissa; Campos, Tarcisio P.R., E-mail: larissathompson@hotmail.com, E-mail: tprcampos@yahoo.com.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Dias, Humberto G., E-mail: fisicamedica.hl@mariopenna.org.br [Luxemburgo Hospital, Mario Penna Institute, Belo Horizonte, MG (Brazil)

    2015-07-01

    The main goal of this work was to evaluate the spatial dose distribution into a tumor simulator inside a head phantom exposed to a 15MV 3D conformal radiation therapy in order to validate internal doses. A head and neck phantom developed by the Ionizing Radiation Research Group (NRI) was used on the experiments. Therapy Radiation planning (TPS) was performed based on those CT images, satisfying a 200 cGy prescribed dose split in three irradiation fields. The TPS assumed 97% of prescribed dose cover the prescribed treatment volume (PTV). Radiochromic films in a solid water phantom provided dose response as a function of optical density. Spatial dosimetric distribution was generated by radiochromic film samples inserted into tumor simulator and brain. The spatial dose profiles held 70 to 120% of the prescribed dose. In spite of the stratified profile, as opposed to the smooth dose profile from TPS, the tumor internal doses were within a 5% deviation from 214.4 cGy evaluated by TPS. 83.2% of the points with a gamma value of less than 1 (3%/3mm) for TPS and experimental values, respectively. At the tumor, a few dark spots in the film caused the appearance of outlier points in 13-15% of dose deviation percentage. As final conclusion, such dosimeter choice and the physical anthropomorphic and anthropometric phantom provided an efficient method for validating radiotherapy protocols. (author)

  4. Computation of cosmic radiation spectra and application to aircrew dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Song Jae

    2002-02-15

    Using the Monte Carlo radiation transport code FLUKA- 99, secondary cosmic radiation energy spectra and intensities of neutrons, protons, photons, electrons, and muons were calculated for different geographical latitude and longitude at the commercial jet's altitudes ranging from 27000 ft to 41000 ft. The Badhwar's proton model was used to construct the primary cosmic radiation spectrum and effect of the vertical cutoff rigidity was considered after spectra similar to those given in literature were resulted. By applying the effective dose conversion factors, a calculation tool for aircrew doses was developed. According to the resulting dose rate distribution, effective dose rate over North pole region is around three times of that over equator region due to the geomagnetical shielding effect. Illustrative assessments of aircrew doses were made for four distinctive routes of Korean airliners : Seoul - New York (USA), London (UK), Sydney (Australia) and Mumbai(India). The effective doses to aircrew incurred from a round trip were 0.047, 0.055, 0.018, and 0.018{mu}Sv, respectively. If aircrew work 500 hour s a year at the cruise altitude of a international airline, the individual dose would reach 2 mSv which is about the same size as the average annual dose of workers at a nuclear power plant.

  5. Phantom dosimetry at 15 MV conformal radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Larissa; Campos, Tarcisio P.R., E-mail: larissathompson@hotmail.com, E-mail: tprcampos@yahoo.com.br [Universidade Federal de Minas Gerais (UFMG), Minas Gerais, MG (Brazil). Dept. de Engenharia Nuclear; Dias, Humberto G., E-mail: fisicamedica.hl@mariopenna.org.br [Instituto Mario Penna, Minas Gerais, MG (Brazil). Hospital Luxemburgo

    2013-07-01

    The main goal of this work was to evaluate the spatial dose distribution into a tumor simulator inside a head phantom exposed to a 15MV 3D conformal radiation therapy in order to validate internal doses. A head and neck phantom developed by the Ionizing Radiation Research Group (NRI) was used on the experiments. Therapy Radiation planning (TPS) was performed based on those CT images, satisfying a 200 cGy prescribed dose split in three irradiation fields. The TPS assumed 97% of prescribed dose cover the prescribed treatment volume (PTV). Radiochromic films in a solid water phantom provided dose response as a function of optical density. Spatial dosimetric distribution was generated by radiochromic film samples inserted into tumor simulator and brain. The spatial dose profiles held 70 to 120% of the prescribed dose. In spite of the stratified profile, as opposed to the smooth dose profile from TPS, the tumor internal doses were within a 5% deviation from 214.4 cGy evaluated by TPS. 83.2% of the points with a gamma value of less than 1 (3%/3mm) for TPS and experimental values, respectively. At the tumor, a few dark spots in the film caused the appearance of outlier points in 13-15% of dose deviation percentage. As final conclusion, such dosimeter choice and the physical anthropomorphic and anthropometric phantom provided an efficient method for validating radiotherapy protocols. (author)

  6. What happens when spins meet for ionizing radiation dosimetry?

    Science.gov (United States)

    Pavoni, Juliana F.; Neves-Junior, Wellington F. P.; Baffa, Oswaldo

    2016-07-01

    Electron spin resonance (ESR) and magnetic resonance imaging (MRI) can be used to measure radiation dose deposited in different milieu through its effects. Radiation can break chemical bonds and if they produce stable free radicals, ESR can measure their concentration through their spins and a dose can be inferred. Ionizing radiation can also promote polymerization and in this case proton relaxation times can be measured and an image weighed by T2 can be produced giving spatial information about dose. A review of the basics of these applications is presented concluding with an end-to-end test using a composite Gel-Alanine phantom to validate 3-dimensionally dose distribution delivered in a simulation of Volume Modulated Arch Therapy on the simultaneous treatment of multiple brain metastases. The results obtained with the gel and alanine dosimeters are consistent with the expected by the treatment planning system, showing the potential of this multidosimetric approach and validating dosimetrically the multiple brain metastases treatment using VMAT.

  7. Estimates of Radiation Effects on Cancer Risks in the Mayak Worker, Techa River and Atomic Bomb Survivor Studies.

    Science.gov (United States)

    Preston, Dale L; Sokolnikov, Mikhail E; Krestinina, Lyudmila Yu; Stram, Daniel O

    2017-04-01

    For almost 50 y, the Life Span Study cohort of atomic bomb survivor studies has been the primary source of the quantitative estimates of cancer and non-cancer risks that form the basis of international radiation protection standards. However, the long-term follow-up and extensive individual dose reconstruction for the Russian Mayak worker cohort (MWC) and Techa River cohort (TRC) are providing quantitative information about radiation effects on cancer risks that complement the atomic bomb survivor-based risk estimates. The MWC, which includes ~26 000 men and women who began working at Mayak between 1948 and 1982, is the primary source for estimates of the effects of plutonium on cancer risks and also provides information on the effects of low-dose rate external gamma exposures. The TRC consists of ~30 000 men and women of all ages who received low-dose-rate, low-dose exposures as a consequence of Mayak's release of radioactive material into the Techa River. The TRC data are of interest because the exposures are broadly similar to those experienced by populations exposed as a consequence of nuclear accidents such as Chernobyl. In this presentation, it is described the strengths and limitations of these three cohorts, outline and compare recent solid cancer and leukemia risk estimates and discussed why information from the Mayak and Techa River studies might play a role in the development and refinement of the radiation risk estimates that form the basis for radiation protection standards. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. History of International Workshop on Mini-Micro- and Nano- Dosimetry (MMND) and Innovation Technologies in Radiation Oncology (ITRO)

    Science.gov (United States)

    Rosenfeld, Anatoly B.; Zaider, Marco; Yamada, Josh; Zelefsky, Michael J.

    2017-01-01

    The biannual MMND (former MMD) - IPCT workshops was founded in collaboration between the Centre for Medical Radiation Physics, University of Wollongong and the Memorial Sloan Kettering Cancer Center (MSKCC) in 2001 and has become an important international multidisciplinary forum for the discussion of advanced quality assurance (QA) dosimetry technology for radiation therapy and space science, as well as advanced technologies for clinical cancer treatment.

  9. THERMOLUMINESCENT DOSIMETRY

    African Journals Online (AJOL)

    2005-10-20

    Oct 20, 2005 ... abo area of the city has the least radiation dose rate while Obantoku area has the upper limit. aking this as ... 'n Abeokuta. eywords: Environmental radiation, thermoluminescent dosimetry, Abeokuta, outdoor ... Both 238U and 232Th have long decay series with ... effects of radiation exposure (Hanson and.

  10. THERMOLUMINESCENT DOSIMETRY

    African Journals Online (AJOL)

    2005-10-20

    Oct 20, 2005 ... abo area of the city has the least radiation dose rate while Obantoku area has the upper limit. aking this as ... “n Abeokuta. eywords: Environmental radiation, thermoluminescent dosimetry, Abeokuta, outdoor ... Both 238U and 232Th have long decay series with ... effects of radiation exposure (Hanson and.

  11. Overview of novel techniques for radiation protection and dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Agosteo, Stefano, E-mail: stefano.agosteo@polimi.i [Politecnico of Milano, Dipartimento di Energia, Sezione di Ingegneria Nucleare - CeSNEF, via Ponzio 34/3, 20133 Milano (Italy); INFN, Sezione di Milano, via Celoria 16, 20133 Milano (Italy)

    2010-12-15

    Generally, the main approaches for assessing the radiation protection (RP) quantities in neutron fields are: i) the use of an instrument with a response to the protection quantity quasi-independent of energy; ii) neutron spectrometry; iii) microdosimetry. The techniques based on the first approach include rem-meters, superheated emulsions and the electronic personal dosemeters. Passive rem-meters have recently been developed for assessing the ambient dose equivalent in pulsed neutron fields around particle accelerators for hadrontherapy and research. Most of these instruments are characterised by a response extended to high-energies (up to a few GeV). An example is given by the GSI-ball, which employs a pair of LiF TLDs as a thermal neutron detector. It is likely that passive instruments will play a fundamental role also for monitoring the neutron fields generated by ultra-high intensity lasers, where the duration of a single pulse is of the order of hundreds femtoseconds. Arrays of tissue-equivalent proportional counters (TEPCs) of a millimetric/sub-millimetric physical size have been developed both for assessing the quality of therapeutic radiation beams and for estimating the RP quantities in low-intensity fields, which may limit the use of conventional microdosemeters. Very satisfactory results were obtained with GEM-based TEPCs and gas microstrip detectors (GMDs). Moreover, mini-TEPCs have been constructed and tested for measuring the quality of hadrontherapy beams (BNCT included). Silicon microdosemeters have also been demonstrated to be very promising for characterizing proton and ion beams for radiation therapy and for estimating the occurrence of single event effects in space applications.

  12. TU-H-BRB-01: Physics and Dosimetry for Radiation Countermeasure Research.

    Science.gov (United States)

    Bourland, J

    2016-06-01

    The US government has substantial research and development activities underway for medical countermeasures that will insure the long-term safety and survival of the country's population after unfortunate large-scale biological, chemical and radiological and nuclear events. Preparedness includes research and development of medical countermeasures to address radiation-induced cutaneous and internal injury from radiation and nuclear events as well as for minimizing radiation risks incurred during and after travel in space. Other important research and development efforts include the repurposing of countermeasures and development of radioprotectors and mitigators to improve the outcome of radiation treatment. Participating agencies include NIAID, BARDA, NCI, and NASA, with examples of research and development funding that includes the Centers for Medical Countermeasures against Radiation (CMCR) consortia (NIAID) and primary and sub-contracts with commercial entities (BARDA). Each of these programs requires substantial medical and health physics effort in collaboration with biology colleagues to provide a range of radiation sources, dosimetry instrumentation and assessment methods, and animal models for specific radiation-induced effects and injuries. Radiation countermeasure activities for government agencies will be reviewed, the importance of model development will be stressed, example radiation countermeasure research projects will be reviewed, and the roles for medical physicists will be discussed.

  13. Megagray Dosimetry (or Monitoring of Very Large Radiation Doses)

    DEFF Research Database (Denmark)

    McLaughlin, W.L.; Uribe, R.M.; Miller, Arne

    1983-01-01

    A number of suitably calibrated plastic and dyed films and solid-state systems can provide mapping of very intense radiation fields with high spatial resolution and reasonable limits of uncertainty of absorbed dose assessment. Although most systems of this type suffer from rate dependence...... and temperature dependence of response when irradiated with charged particle beams at high dose rates, a few are stable, easily calibrated, and capable of faithful imaging of detailed dose profiles, even at doses up to 106 Gy and dose rates up to 108 Gy·s−1. Candidates include certain undyed plastic films (e...

  14. Organ dose conversions from ESR measurements using tooth enamel of atomic bomb survivors.

    Science.gov (United States)

    Takahashi, Fumiaki; Sato, Kaoru

    2012-03-01

    Dose conversions were studied for dosimetry of atomic bomb survivors based upon electron spin resonance (ESR) measurements of tooth enamel. Previously analysed data had clarified that the tooth enamel dose could be much larger than other organ doses from a low-energy photon exposure. The radiation doses to other organs or whole-body doses, however, are assumed to be near the tooth enamel dose for photon energies which are dominant in the leakage spectrum of the Hiroshima atomic bomb assumed in DS02. In addition, the thyroid can be a candidate for a surrogate organ in cases where the tooth enamel dose is not available in organ dosimetry. This paper also suggests the application of new Japanese voxel phantoms to derive tooth enamel doses by numerical analyses.

  15. Review on the characteristics of radiation detectors for dosimetry and imaging

    Science.gov (United States)

    Seco, Joao; Clasie, Ben; Partridge, Mike

    2014-10-01

    The enormous advances in the understanding of human anatomy, physiology and pathology in recent decades have led to ever-improving methods of disease prevention, diagnosis and treatment. Many of these achievements have been enabled, at least in part, by advances in ionizing radiation detectors. Radiology has been transformed by the implementation of multi-slice CT and digital x-ray imaging systems, with silver halide films now largely obsolete for many applications. Nuclear medicine has benefited from more sensitive, faster and higher-resolution detectors delivering ever-higher SPECT and PET image quality. PET/MR systems have been enabled by the development of gamma ray detectors that can operate in high magnetic fields. These huge advances in imaging have enabled equally impressive steps forward in radiotherapy delivery accuracy, with 4DCT, PET and MRI routinely used in treatment planning and online image guidance provided by cone-beam CT. The challenge of ensuring safe, accurate and precise delivery of highly complex radiation fields has also both driven and benefited from advances in radiation detectors. Detector systems have been developed for the measurement of electron, intensity-modulated and modulated arc x-ray, proton and ion beams, and around brachytherapy sources based on a very wide range of technologies. The types of measurement performed are equally wide, encompassing commissioning and quality assurance, reference dosimetry, in vivo dosimetry and personal and environmental monitoring. In this article, we briefly introduce the general physical characteristics and properties that are commonly used to describe the behaviour and performance of both discrete and imaging detectors. The physical principles of operation of calorimeters; ionization and charge detectors; semiconductor, luminescent, scintillating and chemical detectors; and radiochromic and radiographic films are then reviewed and their principle applications discussed. Finally, a general

  16. Development and evaluation of a phantom for multi-purpose dosimetry in intensity-modulated radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hae Sun; Kim, Chan Hyeong [Hanyang University, Seoul (Korea, Republic of); Park, Joo Hwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Han, Young Yih [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Kum, O Yeon [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2011-08-15

    A LEGO-type multi-purpose dosimetry phantom was developed for intensity-modulated radiation therapy (IMRT), which requires various types of challenging dosimetry. Polystyrene, polyethylene, polytetrafluoroethylene (PTFE), and polyurethane foam (PU-F) were selected to represent muscle, fat, bone, and lung tissue, respectively, after considering the relevant mass densities, elemental compositions, effective atomic numbers, and photon interaction coefficients. The phantom, which is composed of numerous small pieces that are similar to LEGO blocks, provides dose and dose distribution measurements in homogeneous and heterogeneous media. The phantom includes dosimeter holders for several types of dosimeters that are frequently used in IMRT dosimetry. An ion chamber and a diode detector were used to test dosimetry in heterogeneous media under radiation fields of various sizes. The data that were measured using these dosimeters were in disagreement when the field sizes were smaller than 1.5 x 1.5 cm{sup 2} for polystyrene and PTFE, or smaller than 3 x 3 cm{sup 2} for an air cavity. The discrepancy was as large as 41% for the air cavity when the field size was 0.7 x 0.7 cm{sup 2}, highlighting one of the challenges of IMRT small field dosimetry. The LEGO-type phantom is also very useful for two-dimensional dosimetry analysis, which elucidates the electronic dis-equilibrium phenomena on or near the heterogeneity boundaries

  17. Evaluation of adverse events in atomic bomb survivors receiving curative-intent radiation therapy from 2005 to 2010.

    Science.gov (United States)

    Doi, Yoshiko; Murakami, Yuji; Kenjo, Masahiro; Imano, Nobuki; Kimura, Tomoki; Nagata, Yasushi

    2016-01-01

    To evaluate the safety of radiation therapy (RT) in atomic bomb (A-bomb) survivors (ABS), we evaluated the frequency of RT-associated adverse events (AEs) in ABS. We selected patients who underwent curative external-beam RT (EBRT) at Hiroshima University Hospital between January 2005 and December 2010 and were born before August 1946; the patients were divided into ABS and non-ABS groups, which groups received identical treatments without stratification. We retrospectively reviewed the medical records of 220 ABS and 753 non-ABS patients. The median age was 72 years. The median observation durations were 41 and 37 months for the ABS and non-ABS groups, respectively. The ABS group had higher frequencies of women, breast cancer patients, and concurrent chemotherapy and had a lower incidence of only acute hematological AEs. However this tendency disappeared when breast cancer patients were excluded, and no significant differences were observed between the ABS and non-ABS groups regarding Grade ⩾ 3 other acute and late AEs. The overall cumulative incidence of Grade ⩾ 3 late AEs did not significantly differ between the ABS and non-ABS groups. Notable increases in AEs were not observed during or after RT among ABS. This study clarified that stratification is not required when treating ABS with RT. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Initial Results from the Radiation Dosimetry Experiment (RaD-X) Balloon Flight Mission

    Science.gov (United States)

    Mertens, Christopher J.

    2015-01-01

    The NASA Radiation Dosimetry Experiment (RaD-X) high-altitude balloon mission was successfully launched from Fort Sumner, New Mexico USA on 25 September, 2015. Over 15 hours of science data were obtained from four dosimeters at altitudes above about 25 km. The four dosimeters flown on the RaD-X science payload are a Hawk version 3.0 Tissue Equivalent Proportional Counter (TEPC) manufactured by Far West Technologies, a Liulin dosimeter-spectrometer produced by the Solar Research and Technology Institute, Bulgarian Academy of Sciences, a total ionizing dose detector manufactured by Teledyne Microelectronic Technologies, and the RaySure detector provided by the University of Surrey.

  19. Designing and Dosimetry of a Shield for Photon Fields of Radiation Therapy in Oral Cavity Cancer

    OpenAIRE

    Jabbari, Keyvan; Senobari, Somayeh; Roayaei, Mahnaz; Rostampour, Masoumeh

    2015-01-01

    The cancer of oral cavity is related to lesions of mucous membrane of tongue and gum that can be treated with radiation therapy. A lateral photon field can be used to treat this kind of tumor, which has a side-effect on normal tissue in the opposite side of the oral cavity. In this study the dosimetric effect of the various shields in oral cavity is evaluated. In this study, a special phantom similar to the structure of oral cavity with capability of film dosimetry was designed and constructe...

  20. New normoxic N-(Hydroxymethyl)acrylamide based polymer gel for 3D dosimetry in radiation therapy.

    Science.gov (United States)

    Rabaeh, Khalid A; Basfar, Ahmed A; Almousa, Akram A; Devic, Slobodan; Moftah, Belal

    2017-01-01

    A novel composition of normoxic polymer gel dosimeters based on radiation-induced polymerization of N-(Hydroxymethyl)acrylamide (NHMA) is introduced in this study for 3D dosimetry for Quality Assurance (QA) in radiation therapy. Dosimeters were irradiated by 6, 10 and 18MV photon beams of a medical linear accelerator at various dose rates to doses of up to 20Gy. The dose response of polymer gel dosimeters was studied using nuclear magnetic resonance (NMR) spin-spin relaxation rate (R2) of hydrogen protons within the water molecule. Also, we measured gel response using absorption spectroscopy and found that this novel gel can be successfully utilized for both MRI- and OCT- (Optical Computed Tomography) based 3D dosimetry. We investigated dosimetric properties of six different compositions of the new NHMA-based gel in terms of dose rate, radiation beam quality and stability of dose-dependent polymerization after irradiation. We found no significant effects of these parameters on the novel gel dosimeter performance in both relaxation rate and absorbance measurements.

  1. Radiation dosimetry in digital breast tomosynthesis: Report of AAPM Tomosynthesis Subcommittee Task Group 223

    Energy Technology Data Exchange (ETDEWEB)

    Sechopoulos, Ioannis, E-mail: isechop@emory.edu [Departments of Radiology and Imaging Sciences, Hematology and Medical Oncology and Winship Cancer Institute, Emory University, 1701 Uppergate Drive Northeast, Suite 5018, Atlanta, Georgia 30322 (United States); Sabol, John M. [GE Healthcare, Global Diagnostic X-Ray, Mailstop W-701, 3000 North Grandview Boulevard, Waukesha, Wisconsin 53188 (United States); Berglund, Johan [Research and Development, Philips Women' s Healthcare, Solna (Sweden); Bolch, Wesley E. [J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611 (United States); Brateman, Libby [University of Florida, Gainesville, Florida 32611 (United States); Christodoulou, Emmanuel; Goodsitt, Mitchell [Department of Radiology, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, Michigan 48109 (United States); Flynn, Michael [Department of Radiology, Henry Ford Health System, Radiology Research 2F, 1 Ford Place, Detroit, Michigan 48202 (United States); Geiser, William [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030-4009 (United States); Kyle Jones, A. [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Lo, Joseph Y.; Paul Segars, W. [Department of Radiology, Medical Physics Graduate Program, and Department of Biomedical Engineering, Carl E. Ravin Advanced Imaging Laboratories, Duke University, Durham, North Carolina 27705 (United States); Maidment, Andrew D. A. [Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104-4206 (United States); Nishino, Kazuyoshi [R and D X-ray Products Group, Shimadzu Corporation, Tokyo (Japan); Nosratieh, Anita [Biomedical Engineering Graduate Group, Department of Radiology, University of California, Davis, California 95817 (United States); and others

    2014-09-15

    The radiation dose involved in any medical imaging modality that uses ionizing radiation needs to be well understood by the medical physics and clinical community. This is especially true of screening modalities. Digital breast tomosynthesis (DBT) has recently been introduced into the clinic and is being used for screening for breast cancer in the general population. Therefore, it is important that the medical physics community have the required information to be able to understand, estimate, and communicate the radiation dose levels involved in breast tomosynthesis imaging. For this purpose, the American Association of Physicists in Medicine Task Group 223 on Dosimetry in Tomosynthesis Imaging has prepared this report that discusses dosimetry in breast imaging in general, and describes a methodology and provides the data necessary to estimate mean breast glandular dose from a tomosynthesis acquisition. In an effort to maximize familiarity with the procedures and data provided in this Report, the methodology to perform the dose estimation in DBT is based as much as possible on that used in mammography dose estimation.

  2. Study on the establishment of retrospective dosimetry system for nuclear radiation accident(II)

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Jae Shik; Chai, Ha Seok; Lee, Jong Ok [Chungnam National Univ., Taejon (Korea, Republic of)

    1999-03-15

    This study was driven forward centering around physical techniques in retrospective dosimetry system for encountering nuclear radiation accident. The results obtained through this study are summarized as follow : the minimal facilities based on physical techniques should be assured at KINS for appropriate operation and establishment of retrospective accident dosimetry system, the necessary apparatus and man power for retrospective dose assessment by physical techniques might be operated flexibly, however, CL and TL/OSL readers should be equipped with the highest priority, a series of comparative examination of several physical techniques for retrospective dose assessment revealed that most of the irradiated materials around accident sites are usable for the dose assessment, if a priori study on the dosimetrical characteristics of those materials is preceded in accordance with the species of the collectable samples, the results of the study on the CL-dose response and radiation energy dependence of sugar and sorbitol, showed the nonlinearity in CL-dose relationship at the range of low dose(less than 5 Gy), and it led us to perform a study on the correction of the nonlinearity, and in the later study, CL output showed heavy dependence on radiation energy in the energy below around 100 keV and accordingly, a study on the correction for the energy dependence was also carried out, ve were able to obtain good results as a first attempt to carry out such corrections.

  3. Radiation dosimetry in digital breast tomosynthesis: report of AAPM Tomosynthesis Subcommittee Task Group 223.

    Science.gov (United States)

    Sechopoulos, Ioannis; Sabol, John M; Berglund, Johan; Bolch, Wesley E; Brateman, Libby; Christodoulou, Emmanuel; Flynn, Michael; Geiser, William; Goodsitt, Mitchell; Jones, A Kyle; Lo, Joseph Y; Maidment, Andrew D A; Nishino, Kazuyoshi; Nosratieh, Anita; Ren, Baorui; Segars, W Paul; Von Tiedemann, Miriam

    2014-09-01

    The radiation dose involved in any medical imaging modality that uses ionizing radiation needs to be well understood by the medical physics and clinical community. This is especially true of screening modalities. Digital breast tomosynthesis (DBT) has recently been introduced into the clinic and is being used for screening for breast cancer in the general population. Therefore, it is important that the medical physics community have the required information to be able to understand, estimate, and communicate the radiation dose levels involved in breast tomosynthesis imaging. For this purpose, the American Association of Physicists in Medicine Task Group 223 on Dosimetry in Tomosynthesis Imaging has prepared this report that discusses dosimetry in breast imaging in general, and describes a methodology and provides the data necessary to estimate mean breast glandular dose from a tomosynthesis acquisition. In an effort to maximize familiarity with the procedures and data provided in this Report, the methodology to perform the dose estimation in DBT is based as much as possible on that used in mammography dose estimation.

  4. European questionnaire on the use of computer programmes in radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Gualdrini, G. [ENEA, Centro Ricerche Ezio Clementel, Bologna (Italy). Dipt. Ambiente; Grosswendt, B.; Siebert, B.R.L. [Braunschweig (Germany); Tanner, R. [NRPB, Dosimetry Development Group, Chilton, Didcot, Oxon (United Kingdom); Terrisol, M. [CPAT, Univ. Paul Sabatier, Toulouse (France)

    1999-07-01

    Because of a potential reduction of necessary experimental efforts, the combination of measurements and supplementing calculations, also in the field of radiation dosimetry, may allow time and money to be saved if computational methods are used which are well suited to reproduce experimental data in a satisfactory quality. The dramatic increase in computing power in recent years now permits the use of computational tools for dosimetry also in routine applications. Many institutions dealing with radiation protection, however, have small groups which, in addition to their routine work, often cannot afford to specialise in the field of computational dosimetry. This means that not only experts but increasingly also casual users employ complicated computational tools such as general-purpose transport codes. This massive use of computer programmes in radiation protection and dosimetry applications motivated the Concerted Action Investigation and Quality Assurance of Numerical Methods in Radiation Protection Dosimetry of the 4. framework programme of the European Commission to prepare, distribute and evaluate a questionnaire on the use of such codes. A significant number of scientists from nearly all the countries of the European Community (and some countries outside Europe) contributed to the questionnaire, that allowed to obtain a satisfactory overview of the state of the art in this field. The results obtained from the questionnaire and summarised in the present Report are felt to be indicative of the situation of using sophisticated computer codes within the European Community although the group of participating scientist may not be a representative sample in a strict statistical sense. [Italian] A causa della progressiva diminuzione dell'impegno sperimentale, la combinazione di misure e valutazioni numeriche supplementari puo' consentire, anche nel campo della dosimetria delle radiazioni, risparmi di tempo e risorse purche' sia garantito l

  5. the history of the natural sources dosimetry laboratory in st. petersburg research institute of radiation hygiene after professor p.v. ramzaev: 1. 1956–1970

    Directory of Open Access Journals (Sweden)

    J. P. Lisachenk

    2015-01-01

    Full Text Available In 2016, St. Petersburg Research Institute of Radiation Hygiene after Professor P.V. Ramzaev celebrates 60-th anniversary since its’ foundation. Mindful of the Institute as the research organization 60 years is not too much but it was exactly that time period which spanned radiation hygiene’s origination and development as science. The Institute was established only just 11 years after Hiroshima and Nagasaki bombings, against the backdrop of nuclear weapons tests when the awareness of ionizing radiation’s disastrous consequences for population and environment was not just confined to a narrow circle of specialists. By that time the famous F-1 reactor had already been in operation and new perspectives of nuclear energy peaceful use were lying ahead. There had been an urgent need for scientific studies on personnel and population safety, for development of research hardware, for special personnel in-service training etc. So the Institute’s creation was necessitated by life itself, by objectives unthinkable without a specialized scientific research organization. Since the very beginning, the Institute specialists mostly aimed at studying technogenic radiation sources. That was the very purpose of the Institute’s creation. Nevertheless almost simultaneously with that the Institute had initiated studies on natural  radioactivity. New devices had been created in order to identify natural and technogenic radionuclides at such levels which are hardly achievable even these days. It will be demonstrated below that some of the 1970s and 1980s hardware  developments retained their uniqueness. Mindful of the upcoming jubilee we consider it expedient to think back to the most outstanding scientists who had made a profound contribution into the establishment of the Institute as the contemporary scientific school of radiation hygiene and domestic hygienic science. This publication describes the infancy of the natural sources dosimetry laboratory

  6. Overview of the Radiation Dosimetry Experiment (RaD-X) flight mission

    Science.gov (United States)

    Mertens, Christopher J.

    2016-11-01

    The NASA Radiation Dosimetry Experiment (RaD-X) stratospheric balloon flight mission addresses the need to reduce the uncertainty in predicting human exposure to cosmic radiation in the aircraft environment. Measurements were taken that characterize the dosimetric properties of cosmic ray primaries, the ultimate source of aviation radiation exposure, and the cosmic ray secondary radiations that are produced and transported to aviation altitudes. In addition, radiation detectors were flown to assess their potential application to long-term, continuous monitoring of the aircraft radiation environment. RaD-X was successfully launched from Fort Sumner, New Mexico (34.5°N, 104.2°W), on 25 September 2015. Over 18 h of science data were obtained from a total of four different type dosimeters at altitudes above 20 km. The RaD-X flight mission was supported by laboratory radiation exposure testing of the balloon flight dosimeters and also by coordinated radiation measurements taken on ER-2 and commercial aircraft. This paper provides the science background and motivation for the RaD-X flight mission, a brief description of the balloon flight profile and the supporting aircraft flights, and a summary of the articles included in the RaD-X special collection and their contributions to the science goals of the RaD-X mission.

  7. Micro-Mini & Nano-Dosimetry & Innovative Technologies in Radiation Therapy (MMND&ITRO2016)

    Science.gov (United States)

    2017-01-01

    The biennial MMND (formerly MMD) - IPCT workshops, founded in collaboration with Memorial Sloan Kettering Cancer Center (MSKCC) in 2001, has become an important international multidisciplinary forum for the discussion of advanced dosimetric technology for radiation therapy quality assurance (QA) and space science, as well as advanced technologies for prostate cancer treatment. In more recent years, the interests of participants and the scope of the workshops have extended far beyond prostate cancer treatment alone to include all aspects of radiation therapy, radiation science and technology. We therefore decided to change the name in 2016 to Innovative Technologies in Radiation Oncology (ITRO). MMND ITRO 2016 was held on 26-31 January, 2016 at the beautiful Wrest Point Hotel in Hobart, Tasmania and attracted an outstanding international faculty and nearly 200 delegates from 18 countries (http://mmnditro2016.com/) The MMND 2016 program continued to cover advanced medical physics aspects of IMRT, IGRT, VMAT, SBRT, MRI LINAC, innovative brachytherapy, and synchrotron MRT. The demand for sophisticated real time and high temporal and spatial resolution (down to the submillimetre scale) dosimetry methods and instrumentation for end-to-end QA for these radiotherapy technologies is increasing. Special attention was paid to the contribution of advanced imaging and the application of nanoscience to the recent improvements in imaging and radiotherapy. The last decade has seen great progress in charged particle therapy technology which has spread throughout the world and attracted strong current interest in Australia. This demands a better understanding of the fundamental aspects of ion interactions with biological tissue and the relative biological effectiveness (RBE) of protons and heavy ions. The further development of computational and experimental micro-and nano-dosimetry for ions has important application in radiobiology based treatment planning and space radiation

  8. Trends in Radiation Dosimetry: preliminary overview of active growth areas, research trends and hot topics from 2011-2015

    Science.gov (United States)

    Baldock, C.

    2017-01-01

    The themes and trends of the radiation dosimetry research field were bibliometrically explored by way of co-occurrence term maps using the titles and abstracts text corpora from the Web of Science database for the period from 2011 to 2015. Visualisation of similarities was used by way of the VOSviewer visualization tool to generate cluster maps of radiation dosimetry knowledge domains and the associated citation impact of topics within the domains. Heat maps were then generated to assist in the understanding of active growth areas, research trends, and emerging and hot topics.

  9. SU-D-213-06: Dosimetry of Modulated Electron Radiation Therapy Using Fricke Gel Dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Gawad, M Abdel; Elgohary, M; Hassaan, M; Emam, M [Al Azhar University, Cairo Egypt (Egypt); Desouky, O [National center for radiation research and technology-Egyptian atomic energy, Cairo (Egypt); Eldib, A [Al Azhar University, Cairo Egypt (Egypt); Fox Chase Cancer Center, Philadelphia, PA (United States); Ma, C [Fox Chase Cancer Center, Philadelphia, PA (United States)

    2015-06-15

    Purpose: Modulated electron radiation therapy (MERT) has been proposed as an effective modality for treatment of superficial targets. MERT utilizes multiple beams of different energies which are intensity modulated to deliver optimized dose distribution. Energy independent dosimeters are thus needed for quantitative evaluations of MERT dose distributions and measurements of absolute doses delivered to patients. Thus in the current work we study the feasibility of Fricke gel dosimeters in MERT dosimetry. Methods: Batches of radiation sensitive Fricke gel is fabricated and poured into polymethyl methacrylate cuvettes. The samples were irradiated in solid water phantom and a thick layer of bolus was used as a buildup. A spectrophotometer system was used for measuring the color changes (the absorbance) before and after irradiation and then we calculate net absorbance. We constructed calibration curves to relate the measured absorbance in terms of absorbed dose for all available electron energies. Dosimetric measurements were performed for mixed electron beam delivery and we also performed measurement for segmented field delivery with the dosimeter placed at the junction of two adjacent electron beams of different energies. Dose measured by our gel dosimetry is compared to that calculation from our precise treatment planning system. We also initiated a Monte Carlo study to evaluate the water equivalence of our dosimeters. MCBEAM and MCSIM codes were used for treatment head simulation and phantom dose calculation. PDDs and profiles were calculated for electron beams incident on a phantom designed with 1cm slab of Fricke gel. Results: The calibration curves showed no observed energy dependence with all studied electron beam energies. Good agreement was obtained between dose calculated and that obtained by gel dosimetry. Monte Carlo results illustrated the tissue equivalency of our Gel dosimeters. Conclusion: Fricke Gel dosimeters represent a good option for the dosimetric

  10. Dosimetry Service

    CERN Multimedia

    Dosimetry Service

    2005-01-01

    Please remember to read your dosimeter at least once every month. A regular read-out is indispensable to ensure periodic monitoring of your personal dose. You must read your dosimeter even if you have not visited the controlled areas. Film badges are no longer valid at CERN and holders of film badges are no longer allowed to enter the controlled radiation areas or work with a source. Dosimetry Service Tel. 72155 http://cern.ch/rp-dosimetry

  11. Benchmark experiment to verify radiation transport calculations for dosimetry in radiation therapy; Benchmark-Experiment zur Verifikation von Strahlungstransportrechnungen fuer die Dosimetrie in der Strahlentherapie

    Energy Technology Data Exchange (ETDEWEB)

    Renner, Franziska [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany)

    2016-11-01

    Monte Carlo simulations are regarded as the most accurate method of solving complex problems in the field of dosimetry and radiation transport. In (external) radiation therapy they are increasingly used for the calculation of dose distributions during treatment planning. In comparison to other algorithms for the calculation of dose distributions, Monte Carlo methods have the capability of improving the accuracy of dose calculations - especially under complex circumstances (e.g. consideration of inhomogeneities). However, there is a lack of knowledge of how accurate the results of Monte Carlo calculations are on an absolute basis. A practical verification of the calculations can be performed by direct comparison with the results of a benchmark experiment. This work presents such a benchmark experiment and compares its results (with detailed consideration of measurement uncertainty) with the results of Monte Carlo calculations using the well-established Monte Carlo code EGSnrc. The experiment was designed to have parallels to external beam radiation therapy with respect to the type and energy of the radiation, the materials used and the kind of dose measurement. Because the properties of the beam have to be well known in order to compare the results of the experiment and the simulation on an absolute basis, the benchmark experiment was performed using the research electron accelerator of the Physikalisch-Technische Bundesanstalt (PTB), whose beam was accurately characterized in advance. The benchmark experiment and the corresponding Monte Carlo simulations were carried out for two different types of ionization chambers and the results were compared. Considering the uncertainty, which is about 0.7 % for the experimental values and about 1.0 % for the Monte Carlo simulation, the results of the simulation and the experiment coincide.

  12. Genetic effect of A-bomb radiation- Analysis of minisatellite regions detected by DNA fingerprint probe

    Energy Technology Data Exchange (ETDEWEB)

    Kodaira, Mieko [Radiation Effects Research Foundation, Hiroshima (Japan)

    1999-06-01

    In author's laboratory, screening of mutation in germ cells of A-bomb survivors is under investigation with use of 8 single-locus minisatellite probes and no increase in mutation rate has been detected hitherto. This paper reported results of screening on the minisatellite region, which consisting of short repeated base sequence, using a DNA fingerprint probe for 33.15 core sequence. Subjects were 50 A-bomb survivor families exposed to mean dose of 1.9 Sv (exposed group) or 0 Gy (control), having 64 or 60 children, respectively. DNA was extracted from their B cells established by EB virus and subjected to agarose-gel electrophoresis followed by southern blotting with some improvements for fingerprinting. On the fingerprints, numbers of the band detected in regions of >3.5 kb were 1080 in children of the exposed group (16.9/child) and 1024 (17.1) in the control group, indicating no detectable effect of exposure on the germ cell mutation rate in the region.(K.H.)

  13. Biological dosimetry -- cytogenetics findings at persons occupationally exposed to ionizing radiation.

    Science.gov (United States)

    Catović, Amra; Tanacković, Fikreta

    2006-05-01

    A large number of physical and chemical agents are capable to course chromosomal aberrations. Ionizing radiation is frequent and well known course of chromosomal aberrations. If deoxyribonucleic acid (DNA) is irradiated before synthesis chromosomal-type aberrations are caused. Chromatid-type aberrations are results of DNA damages occurred during or after synthesis. Some of these changes could exist at patients several years after exposition. Biological dosimetry-cytogenetics analysis of persons occupational exposed to ionizing radiation in Federation of Bosnia and Herzegovina have been carried out in "Center for Human Genetics" of Medical Faculty in Sarajevo. In this study we have evaluated cytogenetics findings of persons employed in a zone of radiation. Cytogenetics findings have been demonstrated in allowed limit in 154 (81.1%) examinees, and cytogenetics findings were out of normal values in 36 (18.9%) examinees. The majorities who have been employed in a zone of ionizing radiation were in age group 40-44 (25.3%) and age group 45-49 (24.7%). Radiological technicians (35.7%) were exposed the most to ionizing radiation, than clinical nurse specialists (14.7%), radiologists (11.1), physicians (7.4%) machines technicians (6.3%), pneumologists (4.7%), orthopedists (4.2%) and scrub nurses (4.2%). Biological dosimetry-cytogenetics analysis have been carried out at 108 (56.8%) male and 82 (43.2%) female examinees. The most frequent aberration have been presented with 26.8% in the form of acentric fragments, than chromatid fragments with 21.2%, dicentric chromosomes with 19.5%, gaps with 18.7%, minutes with 12.2% and inter-arm interchanges with 1.6%.

  14. Designing and Dosimetry of a Shield for Photon Fields of Radiation Therapy in Oral Cavity Cancer

    Science.gov (United States)

    Jabbari, Keyvan; Senobari, Somayeh; Roayaei, Mahnaz; Rostampour, Masoumeh

    2015-01-01

    The cancer of oral cavity is related to lesions of mucous membrane of tongue and gum that can be treated with radiation therapy. A lateral photon field can be used to treat this kind of tumor, which has a side-effect on normal tissue in the opposite side of the oral cavity. In this study the dosimetric effect of the various shields in oral cavity is evaluated. In this study, a special phantom similar to the structure of oral cavity with capability of film dosimetry was designed and constructed. The various shield slabs were made of five materials: Lead, Plexiglas, Acrylic resin, Silicon and Plaster. For irradiation, Cobalt 60 (60Co) and 6 MV photon beams were used. The film dosimetry before and after the shield was performed using GAFCHROMIC EBT2 films. The film before the shield measures the magnitude of backscattering radiation from the shield. The prescribed dose was 150 cGy. Results showed that 3 cm of the lead in both energies had the maximum absorption of radiation. The absorbed dose to opposite side of shield for 6 MV photon beams and 60Co were 21 and 32 cGy, respectively. The minimum attenuation on radiation was observed in silicon shield for which the dose of opposite side were 116 and 147 cGy for 6 MV and 60Co respectively. The maximum backscattered dose was measured 177 cGy and 219 cGy using 3 cm thickness of lead, which was quite considerable. The minimum backscattering where for acrylic resin 101 and 118 cGy for 6 MV and cobalt. In this study, it was concluded that the amount of backscattering for 3 cm Lead shield is quite considerable and increases the dose significantly. A composite layer of shield with 1–2 cm lead and 1 cm acrylic resin can have the protective effect and low backscattering radiation at the same time. PMID:26120570

  15. Liver cancer in atomic-bomb survivors. Histological characteristics and relationships to radiation and hepatitis B and C viruses

    Energy Technology Data Exchange (ETDEWEB)

    Fukuhara, Toshiyuki [Hiroshima Prefectural Hospital (Japan); Sharp, G.B.; Mizuno, Terumi (and others)

    2001-06-01

    Histological features of primary liver cancer among atomic-bomb survivors and their relationship to hepatitis B (HBV) and C viral (HCV) infections are of special interest because of the increased risk of liver cancer in persons exposed to ionizing radiation and the high and increasing liver cancer rates in Japan and elsewhere. We conducted a pathology review of liver cancers occurring from 1958 to 1987 among subjects in the 120,321 member cohort of 1945 Hiroshima and Nagasaki residents. A panel of pathologists classified tumor histological types and defined accompanying cirrhotic changes of the liver. Archival tissue samples were assessed for HBV using pathology stains and PCR. Reverse transcriptase (RT) PCR was used to determine HCV status. We used unconditional logistic regression to compare 302 hepatocellular carcinoma (HCC) cases to 53 cholangiocarcinoma (CC) cases, adjusting for age, year of diagnosis, sex and viral status. Cirrhotic changes occurred significantly more often among HCC than CC cases (76% in HCC and 6% in CC). Compared to CC cases, HCC cases were 10.9 times more likely to be HBV-positive (95% confidence interval: 2.1-83.2) and 4.3 times more likely to be HCV-positive (95% confidence interval: 1.1-20.5) No significant differences were found between HCC and CC cases in radiation exposures. The predominance of HCC in the atomic-bomb survivors follows the background liver cancer pattern in Japan. Our findings suggest that HBV and HCV are involved in the pathogenesis of HCC with or without cirrhosis and are significantly less important in that of CC. (author)

  16. Radiation May Indirectly Impair Growth Resulting in Reduced Standing Height via Subclinical Inflammation in Atomic-Bomb Survivors Exposed at Young Ages

    Directory of Open Access Journals (Sweden)

    Eiji Nakashima

    2015-01-01

    Full Text Available For young atomic-bomb (A-bomb survivors, A-bomb radiation’s (total effect on standing height is thought to comprise the sum of direct effect and indirect effect via inflammation. With the data of five inflammatory markers—white blood cell count, sialic acid, corrected erythrocyte sedimentation rate (ESR, α1 globulin, and α2 globulin—obtained in adulthood during the period 1988 to 1992, a summary inflammatory index was constructed as a surrogate for the five subclinical inflammatory markers. For 3,327 A-bomb survivors exposed at ages of less than 25 years, a structural equation model was analyzed to measure direct radiation effects on adult height as well as mediating effect of radiation via inflammation on the height after adjustment for other risk factors, smoking, cancer, inflammatory disease, obesity, and diabetes mellitus. The mediation proportion of the radiation effect on height via inflammation was approximately 5% for both sexes for all ages, and indirect dose effects via inflammation were statistically significant for both sexes combined and for females exposed at ages 0 to 5 years. Indirect dose effects for all ages via sialic acid, corrected ESR, and α2 globulin were marginally significant for both sexes combined and for females. These proportions are likely underestimated.

  17. Thermoluminescence characteristics of different dimensions of Ge-doped optical fibers in radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Begum, M.; Mizanur R, A. K. M.; Abdul R, H. A.; Yusoff, Z. [Multimedia University, Faculty of Engineering, 63100 Cyberjaya, Selangor Darul Ehsan (Malaysia); Begum, M. [Bangladesh Atomic Energy Commission, E-12/A, Agargaon, Sher-e-Blanga Nagar Dhaka-1207 (Bangladesh); Mat-Sharif, K. A. [Lingkaran Teknokrat Timur, Telekom Research and Development, 63000 Cyberjaya, Selangor Darul Ehsan (Malaysia); Amin, Y. M. [University of Malaya, Faculty of Science, Depatment of Physics, 50603 Kuala Lumpur (Malaysia); Bradley, D. A., E-mail: go2munmun@yahoo.com [University of Surrey, Department of Physics, Guildford GU2 7XH (United Kingdom)

    2014-08-15

    Important thermoluminescence (Tl) properties of five (5) different core sizes Ge doped optical fibers have been studied to develop new Tl material with better response. These are drawn from same preform applying different speed and tension during drawing phase. The results of the investigations are also compared with most commonly used standard TLD-100 chips (LiF:Mg,Ti) and commercial multimode Ge doped optical fiber (Yangtze Optical Fiber, China). Scanning Electron Microscope (Sem) and EDX analysis of the fibers are also performed to map Ge distribution across the deposited region. Standard Gamma radiation source in SSDL (Secondary Standard Dosimetry Lab) was used for irradiation covering dose range from 1 Gy to 10 Gy. The essential dosimetric parameters that have been studied are Tl linearity, reproducibility and fading. Prior to irradiation all samples ∼0.5 cm length are annealed at temperature of 400 grades C for 1 hour period to standardize their sensitivities and background. Standard TLD-100 chips are also annealed for 1 hour at 400 grades C and subsequently 2 hours at 100 grades C to yield the highest sensitivity. Tl responses of these fibers show linearity over a wide gamma radiation dose that is an important property for radiation dosimetry. Among all fibers used in this study, 100 μm core diameter fiber provides highest response that is 2.6 times than that of smallest core (20 μm core) optical fiber. These fiber-samples demonstrate better response than commercial multi-mode optical fiber and also provide low degree of fading about 20% over a period of fifteen days for gamma radiation. Effective atomic number (Z{sub eff}) is found in the range (13.25 to 13.69) that is higher than soft tissue (7.5) however within the range of human-bone (11.6-13.8). All the fibers can also be re-used several times as a detector after annealing. Tl properties of the Ge-doped optical fibers indicate promising applications in ionizing radiation dosimetry. (author)

  18. Standard Guide for Dosimetry In Radiation Processing of Fluidized Beds and Fluid Streams

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2004-01-01

    1.1 This guide describes several dosimetry systems and methods suitable for the documentation of the irradiation of product transported as fluid or in a fluidized bed. 1.2 The sources of penetrating ionizing radiation included in this guide are electron beams, X-rays (bremsstrahlung) and gamma rays. 1.3 Absorbed doses from 10 to 100,000 gray are considered, including applications such as disinfestation, disinfection, bioburden reduction, sterilization, crosslinking and graft modification of products, particularly powders and aggregates. 1.4 This guide does not purport to address the safety concerns, if any, associated with the use of fluidized beds and streams incorporating sources of ionizing radiation. It is the responsibility of the user of this guide to establish appropriate safety and health practices and to determine compliance with regulatory limitations prior to use.

  19. Characterization of Tandem systems of commercial ionization chambers for radiation dosimetry (radiotherapy level)

    CERN Document Server

    Galhardo, E P

    1998-01-01

    The use of X rays for radiotherapy purposes is of great importance for Medicine, and it is necessary to control periodically the performance of the ionization chambers and the radiation beams in order to obtain the best results. The verification of the beam characteristics is made by using standard dosimetry procedures which include the determination of the half-value layers and the exposure rates or the absorbed dose rates in air. Several Tandem systems were set up and tested, using commercial ionization chambers in the energy interval from 14 up to 130 KeV at the Instrumentation Calibration Laboratory of IPEN and at other three institutions, in substitution to the routine conventional procedure of determination of half-value layers using absorbers. The obtained results show the usefulness of these Tandem system for the routine dosimetric procedures of radiotherapy X radiation beams.

  20. Evaluation of detectors for the small field measurements used for clinical radiation dosimetry

    Science.gov (United States)

    Markovic, Miljenko

    Advanced radiation therapy treatments with very small field sizes are complex. Increasingly higher doses delivered in single or few fractions are being commonly used for the treatments of the small target volume. Absolute or relative small field dosimetry is difficult due to radiation transport. Therefore it is very important to understand characteristics of the small field, detector selection as well as correction factors that have to be taken into account for the accurate measurements. Reducing uncertainty in relative dose measurement and modeling dose on treatment planning systems are factors contributing to the accuracy of the small field radiation treatments. Several challenges in small field dosimetry arise because of the lack of lateral charge particle equilibrium as well as the occlusion of the direct photon beam source and collimator settings. Presence of low-density media in irradiation geometry does complicate dosimetry even more. All those conditions are representing the challenge when it comes to dosimetric measurements. Size and construction are crucial when it comes to choice of the detector. Depending on beam energy, resolving the beam profile and penumbra for the small field sizes are a challenge and practically impossible with detectors commonly used in clinics. With decreasing field size and due to changes in particle spectrum, variations in radiological parameters have to be taken into account. To measure percent depth dose, tissue maximum ratios, tissue phantom ratios as well as output factors for the small field size experimental studies and Monte Carlo simulations have been conducted to determine appropriate detectors for the measurements. The primary goal of Specific Aim 1 was experimental quantification of the performance parameters for single detectors used for dosimetric verification of the small fields in radiotherapy. The proposed method and qualitative value for appropriate detectors selection defined by field size has been set. The

  1. The assessment of risks from exposure to low-levels of ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, E.S.

    1992-06-01

    This report is concerned with risk assessments for human populations receiving low level radiation doses; workers routinely exposed to radiation, Japanese victims of nuclear bombs, and the general public are all considered. Topics covered include risk estimates for cancer, mortality rates, risk estimates for nuclear site workers, and dosimetry.

  2. SU-E-QI-15: Single Point Dosimetry by Means of Cerenkov Radiation Energy Transfer (CRET)

    Energy Technology Data Exchange (ETDEWEB)

    Volotskova, O; Jenkins, C; Xing, L [Stanford University, Stanford, CA (United States)

    2014-06-15

    Purpose: Cerenkov light is generated when a charged particles with energy greater then 250 keV, moves faster than the speed of light in a given medium. Both x-ray photons and electrons produce optical Cerenkov photons during the static megavoltage linear accelerator (LINAC) operational mode. Recently, Cerenkov radiation gained considerable interest as possible candidate as a new imaging modality. Optical signals generated by Cerenkov radiation may act as a surrogate for the absorbed superficial radiation dose. We demonstrated a novel single point dosimetry method for megavoltage photon and electron therapy utilizing down conversion of Cerenkov photons. Methods: The custom build signal characterization system was used: a sample holder (probe) with adjacent light tight compartments was connected via fiber-optic cables to a photon counting photomultiplier tube (PMT). One compartment contains a medium only while the other contains medium and red-shifting nano-particles (Q-dots, nanoclusters). By taking the difference between the two signals (Cerenkov photons and CRET photons) we obtain a measure of the down-converted light, which we expect to be proportional to dose as measured with an adjacent ion chamber. Experimental results are compared to Monte Carlo simulations performed using the GEANT4 code. Results: The signal correlation between CR signal, CRET readings and dose produced by LINAC at a single point were investigated. The experimental results were compared with simulations. The dose linearity, signal to noise ratio and dose rate dependence were tested with custom build CRET based probe. Conclusion: Performance characteristics of the proposed single point CRET based probe were evaluated. The direct use of the induced Cerenkov emission and CRET in an irradiated single point volume as an indirect surrogate for the imparted dose was investigated. We conclude that CRET is a promising optical based dosimetry method that offers advantages over those already proposed.

  3. Improving patient care and accuracy of given doses in radiation therapy using in vivo dosimetry verification*

    Institute of Scientific and Technical Information of China (English)

    Ahmed Shawky Shawata; Tarek El Nimr; Khaled M. Elshahat

    2015-01-01

    Objective This work aims to verify and improve the dose given for cancer patients in radiation therapy by using diodes to enhance patient in vivo dosimetry on a routine basis. Some characteristics of two available semi-conductor diode dosimetry systems were evaluated.Methods The diodes had been calibrated to read the dose at Dmax below the surface. Correction factors of clinical relevance were quantified to convert the diode readings into patient dose. The diode was irradiated at various gantry angles (increments of 45°), various Field Sizes and various Source to Surface Distances (SSDs).Results The maximal response variation in the angular response with respect to an arbitrary angle of 0° was 1.9%, and the minimum variation was 0.5%. The response of the diode with respect to various field sizes showed the minimum and the maximum variations in the measured dose from the diode; the calculated doses were -1.6% (for 5 cm x 5 cm field size) and 6.6% (for 40 cm x 40 cm field size). The diode exhibited a significant perturbation in the response, which decreased with increasing SSD. No discrepancies larger than 5% were detected between the expected dose and the measured dose.Conclusion The results indicate that the diodes exhibit excellent linearity, dose reproducibility and minimal anisotropy; that they can be used with confidence for patient dose verification. Furthermore, diodes render real time verification of the dose delivered to patients.

  4. Whole body [{sup 11}C]-dihydrotetrabenazine imaging of baboons: biodistribution and human radiation dosimetry estimates

    Energy Technology Data Exchange (ETDEWEB)

    Murthy, Rajan [Columbia University College of Physicians and Surgeons, Department of Psychiatry, New York, NY (United States); New York State Psychiatric Institute, Department of Neuroscience, Division of Brain Imaging, New York, NY (United States); Harris, Paul; Leibel, Rudolph [Columbia University College of Physicians and Surgeons, Department of Medicine, New York, NY (United States); Simpson, Norman; Parsey, Ramin [Columbia University College of Physicians and Surgeons, Department of Psychiatry, New York, NY (United States); Van Heertum, Ronald [Columbia University College of Physicians and Surgeons, Department of Radiology, New York, NY (United States); New York State Psychiatric Institute, Department of Neuroscience, Division of Brain Imaging, New York, NY (United States); Mann, J.J. [Columbia University College of Physicians and Surgeons, Department of Psychiatry, New York, NY (United States); Columbia University College of Physicians and Surgeons, Department of Radiology, New York, NY (United States); New York State Psychiatric Institute, Department of Neuroscience, Division of Brain Imaging, New York, NY (United States)

    2008-04-15

    Vesicular monoamine transporter type 2 abundance quantified using the radiotracer [{sup 11}C]-dihydrotetrabenazine (DTBZ) has been used to study diagnosis and pathogenesis of dementia and psychiatric disorders in humans. In addition, it may be a surrogate marker for insulin-producing pancreatic beta cell mass, useful for longitudinal measurements using positron emission tomography to track progression of autoimmune diabetes. To support the feasibility of long-term repeated administrations, we estimate the biodistribution and dosimetry of [{sup 11}C]-DTBZ in humans. Five baboon studies were acquired using a Siemens ECAT camera. After transmission scanning, 165-210 MBq of [{sup 11}C]-DTBZ were injected, and dynamic whole body emission scans were conducted. Time-activity data were used to obtain residence times and estimate absorbed radiation dose according to the MIRD model. Most of the injected tracer localized to the liver and the lungs, followed by the intestines, brain, and kidneys. The highest estimated absorbed radiation dose was in the stomach wall. The largest radiation dose from [{sup 11}C]-DTBZ is to the stomach wall. This dose estimate, as well as the radiation dose to other radiosensitive organs, must be considered in evaluating the risks of multiple administrations. (orig.)

  5. Radiation exposure and dosimetry in transplant patients due to Nuclear Medicine studies

    Energy Technology Data Exchange (ETDEWEB)

    El-Maghraby, T. A. F. [Leiden Univ., Leiden (Netherlands). Dept. of Radiology, Div. of Nuclear Medicine; Cairo Univ., Cairo (Egypt). Faculty of Medicine, Dept. of Oncology and Nuclear Medicine; Camps, J. A. J.; Geleyns, J.; Pauwels, E. K. J. [Leiden Univ., Leiden (Netherlands). Dept. of Radiology, Div. of Nuclear Medicine

    2000-12-01

    Organ transplantation is now an accepted method of therapy for treating patients with end stage failure of kidneys, liver, heart or lung. Nuclear Medicine may provide functional data and semi-quantitative parameters. However, one serious factor that hampers the use of nuclear medicine procedures in transplant patients is the general clinical concern about radiation exposure to the patient. This lead the researcher to discuss the effective doses and radiation dosimetry associated with radionuclide procedures used in the management and follow-up of transplant patients. A simple way to place the risk associated with Nuclear Medicine studies in an appropriate context is to compare the dose with that received from more familiar source of exposure such as from a diagnostic X-ray procedure. The radiation dose for the different radiopharmaceuticals used to study transplant organ function ranges between 0.1 and 5.3 mSv which is comparable to X-ray procedures with the exception of {sup 201}Tl and {sup 111}In-antimyosin. Thus Nuclear Medicine studies do not bear a higher radiation risk than the often used X-ray studies in transplant patients.

  6. Radiation dosimetry of 2 (/sup 18/F)fluoro-2-deoxy-D-glucose in man

    Energy Technology Data Exchange (ETDEWEB)

    Jones, S.C.; Alavi, A.; Christman, D.; Montanez, I.; Wolf, A.P.; Reivich, M.

    1982-07-01

    Bladder and brain time-activity measurements in humans were performed after the intravenous administration of 2-(/sup 18/F)fluoro-2-deoxy-D-glucose. Radiation doses were calculated using the MIRD schema. The bladder wall received an average of 440 mrad/mCi (s.e. 76) in ten subjects who voided at 2 hr after administration of tracer. If these subjects had voided at 1 hr, the bladder-wall dose would have been reduced to 220 mrad/mCi. The brain received an average of 81 mrad/mCi in eight subjects. The doses to other organs, calculated from published dog biodistribution data, are between 50 and 85 mrad/mCi except for spleen and heart, which both received 160 mrad/mCi. These time-activity measurements for the critical organ in the human avoid the assumptions made in using animal biodistribution data for human dosimetry calculations.

  7. Radiation dosimetry using decreasing TL intensity in a few variety of silicate crystals.

    Science.gov (United States)

    Watanabe, Shigueo; Cano, Nilo F; Gundu Rao, T K; Oliveira, Letícia M; Carmo, Lucas S; Chubaci, Jose F D

    2015-11-01

    This study shows that there are some ionic crystals which after irradiation with high gamma dose Dm and subsequent irradiation with low doses ranging up to 500Gy present a decreasing TL intensity as dose increases. This interesting feature can be used as a calibration curve in radiation dosimetry. Such behavior can be found in green quartz, three varieties of beryl and pink tourmaline. In all these silicate crystals it can be shown that irradiation with increasing γ-dose there is a dose Dm for which the TL intensity is maximum. Of course, Dm varies depending on the crystal and irradiated crystal with the dose Dm is stable. If one of these crystals is taken and irradiated with doses from low values up to 400-500Gy, a curve of decreasing TL intensity is obtained; such a curve can be used as a calibration curve. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. A scintillating GEM for 2D-dosimetry in radiation therapy

    CERN Document Server

    Timmer, J; Bom, V; Eijk, C W; Haas, J D; Schippers, J M

    2002-01-01

    The first results of a study on the properties of a gaseous scintillation detector based on a Gas Electron Multiplier (GEM) are reported. The detector is designed for use in position-sensitive dosimetry applications in radiation therapy. A double GEM system, operating in a 90-10% Ar-CO sub 2 gas mixture at a gas amplification factor of approx 3000, emits a sufficient amount of detectable light to perform measurements of approx 1 Gy doses in two dimensions. The light yield does not suffer from quenching processes when particles with high stopping power are detected. This operation mode of GEMs offers the dosimetric advantages of a gas-filled detector and the 2D read-out can be performed with a CCD camera. Compared to the existing dosimeters, this system is relatively simple and no complex multi-electrode read-out is necessary.

  9. Polycarbonate-based benzo-δ-sultam films for high-dose dosimetry in radiation processing

    Energy Technology Data Exchange (ETDEWEB)

    Feizi, Shazad [University of Tehran, Tehran (India). School of Chemistry; Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of). Radiation Application Research School; Ziaie, Farhood [Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of). Radiation Application Research School; Ghandi, Mehdi [University of Tehran, Tehran (India). School of Chemistry

    2015-05-01

    In this work characteristics of the polycarbonate films with 20 μm in thickness containing different weight percentage of Benzo-δ-sultam were studied for use as a high dose dosimetry system in radiation processing facilities. The sensitivity of the dosimeters and the linearity of dose-response curves were investigated under {sup 60}Co γ-rays in a dose range of 0-100 kGy, and obtained results were compared with the commercial CTA and FWT film dosimeters. The results show that the absorbance at 348 nm depends linearly on the dose in the investigated dose range. The effects of pre-irradiation (shelf-life) and post-irradiation storage in dark and in indirect sunlight are also discussed. The results show that the dosimeters characteristics are stable within 1% at 25 C, 3 months after the irradiation.

  10. Terrorist bombing

    Science.gov (United States)

    Mayo, Ami; Kluger, Yoram

    2006-01-01

    Bombings and explosion incidents directed against innocent civilians are the primary instrument of global terror. In the present review we highlight the major observations and lessons learned from these events. Five mechanisms of blast injury are outlined and the different type of injury that they cause is described. Indeed, the consequences of terror bombings differ from those of non-terrorism trauma in severity and complexity of injury, and constitute a new class of casualties that differ from those of conventional trauma. The clinical implications of terror bombing, in treatment dilemmas in the multidimensional injury, ancillary evaluation and handling of terror bombing mass casualty event are highlighted. All this leads to the conclusion that thorough medical preparedness to cope with this new epidemic is required, and that understanding of detonation and blast dynamics and how they correlate with the injury patterns is pivotal for revision of current mass casualty protocols. PMID:17101058

  11. Targeted radiotherapy dosimetry of 153Sm hydroxide macroaggregates for radiation synovectomy

    Science.gov (United States)

    Villarreal, José E.; Ferro, Guillermina; Hernández, Omar; Carmona, Juan

    2001-10-01

    The dosimetry of the recently developed 153Sm hydroxide macroaggregates (153Sm-MH) for radiation synovectomy has been studied as an agent for the treatment of arthritic synovial joint diseases. This pharmaceutical formulation presents optimal properties in terms of particle size (average 4 μm) sedimentation (0.008 cm min-1) and biological behavior. Direct measurements of depth dose distributions for this beta-gamma emitter present a difficult task; therefore, calculations of depth dose profiles are an invaluable tool for investigating the effectiveness of this therapeutic technique. In spite of the importance of these calculations there are only a few studies dealing with the experimental validation of these calculated depth dose distributions. On the present work the Monte Carlo (MCNP4B) calculated beta-gamma depth dose profiles for a liquid 153Sm beta-gamma source used in radiation synovectomy are compared with experimental depth dose distribution obtained using radiochromic dye film dosimetry (GafChromic™). The calculated and experimental depth dose distribution showed a very good agreement (within 5%) on the region where the dose deposition is dominated by the bëta-particle component (first 800 microns depth on tissue equivalent material). The agreement worsens reaching a maximum deviation of 15% at depths close to the maximum range of the beta-particles. Finally the agreement improves for the region where the gamma component accounts for one third of the total absorbed dose (depths>1 mm). The possible contributions to these differences are discussed as well as their relevance for the application of 153Sm for the treatment of rheumatoid arthritis.

  12. External dosimetry for ionising radiation. From the national standard to the users in radiotherapy and radiation protection; La dosimetrie externe des rayonnements ionisants de la reference nationale aux utilisateurs en radiotherapie et en radioprotection

    Energy Technology Data Exchange (ETDEWEB)

    Bordy, J.M

    2009-07-01

    This report presents a review of the external dosimetry of the ionising radiations for the protection of the human being. Looking at this topic, at first we are confronted with its diversity: the protection of the workers and the public against radiations, the medical exposures for radiotherapy, diagnosis and surgery, and the accidental situations. These aspects are often artificially separated so that the global comprehension becomes more difficult. We underline the points of convergence and the bonds which exist between the concepts of dosimetry adopted to deal with its different aspects. It also appeared useful to avoid proposing a dictionary of definitions copied in the reports of the international commissions, and adopting the formalism of the ICRU reports. This is why the definitions, when they are essential, are put in appendix. This text presents the reasons which led to the adoption of the system of quantity used today for the external dosimetry of the ionising radiations. After an introduction dealing with the general principle, the first chapter deals with the 'physical' quantities and the methods used for the determination of the national references. The second chapter, through the protection against radiation of the workers and the public, describes the bonds between the measurable 'operational' quantities and the non measurable 'protections' quantities which allow establishing the radiation protection limits and check that they are respected. The third chapter deals with the difficulties encountered for the measurements in area and personal dosimetry. The fourth chapter deals with the specificities of the medical exposures with the 'practical' quantities, the principle of optimisation and how radiotherapy is implemented. The fifth chapter briefly describes the case of the concerted exposures and of the accident. In conclusion, we analyse the needs and some potential new avenues of work for the metrology of the

  13. Terrorist bombing

    OpenAIRE

    Kluger Yoram; Mayo Ami

    2006-01-01

    Abstract Bombings and explosion incidents directed against innocent civilians are the primary instrument of global terror. In the present review we highlight the major observations and lessons learned from these events. Five mechanisms of blast injury are outlined and the different type of injury that they cause is described. Indeed, the consequences of terror bombings differ from those of non-terrorism trauma in severity and complexity of injury, and constitute a new class of casualties that...

  14. Reanalysis of cancer mortality in Japanese A-bomb survivors exposed to low doses of radiation: bootstrap and simulation methods

    Directory of Open Access Journals (Sweden)

    Dropkin Greg

    2009-12-01

    Full Text Available Abstract Background The International Commission on Radiological Protection (ICRP recommended annual occupational dose limit is 20 mSv. Cancer mortality in Japanese A-bomb survivors exposed to less than 20 mSv external radiation in 1945 was analysed previously, using a latency model with non-linear dose response. Questions were raised regarding statistical inference with this model. Methods Cancers with over 100 deaths in the 0 - 20 mSv subcohort of the 1950-1990 Life Span Study are analysed with Poisson regression models incorporating latency, allowing linear and non-linear dose response. Bootstrap percentile and Bias-corrected accelerated (BCa methods and simulation of the Likelihood Ratio Test lead to Confidence Intervals for Excess Relative Risk (ERR and tests against the linear model. Results The linear model shows significant large, positive values of ERR for liver and urinary cancers at latencies from 37 - 43 years. Dose response below 20 mSv is strongly non-linear at the optimal latencies for the stomach (11.89 years, liver (36.9, lung (13.6, leukaemia (23.66, and pancreas (11.86 and across broad latency ranges. Confidence Intervals for ERR are comparable using Bootstrap and Likelihood Ratio Test methods and BCa 95% Confidence Intervals are strictly positive across latency ranges for all 5 cancers. Similar risk estimates for 10 mSv (lagged dose are obtained from the 0 - 20 mSv and 5 - 500 mSv data for the stomach, liver, lung and leukaemia. Dose response for the latter 3 cancers is significantly non-linear in the 5 - 500 mSv range. Conclusion Liver and urinary cancer mortality risk is significantly raised using a latency model with linear dose response. A non-linear model is strongly superior for the stomach, liver, lung, pancreas and leukaemia. Bootstrap and Likelihood-based confidence intervals are broadly comparable and ERR is strictly positive by bootstrap methods for all 5 cancers. Except for the pancreas, similar estimates of

  15. The UF family of hybrid phantoms of the developing human fetus for computational radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Maynard, Matthew R; Geyer, John W; Bolch, Wesley [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL (United States); Aris, John P [Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL (United States); Shifrin, Roger Y, E-mail: wbolch@ufl.edu [Department of Radiology, University of Florida, Gainesville, FL (United States)

    2011-08-07

    Historically, the development of computational phantoms for radiation dosimetry has primarily been directed at capturing and representing adult and pediatric anatomy, with less emphasis devoted to models of the human fetus. As concern grows over possible radiation-induced cancers from medical and non-medical exposures of the pregnant female, the need to better quantify fetal radiation doses, particularly at the organ-level, also increases. Studies such as the European Union's SOLO (Epidemiological Studies of Exposed Southern Urals Populations) hope to improve our understanding of cancer risks following chronic in utero radiation exposure. For projects such as SOLO, currently available fetal anatomic models do not provide sufficient anatomical detail for organ-level dose assessment. To address this need, two fetal hybrid computational phantoms were constructed using high-quality magnetic resonance imaging and computed tomography image sets obtained for two well-preserved fetal specimens aged 11.5 and 21 weeks post-conception. Individual soft tissue organs, bone sites and outer body contours were segmented from these images using 3D-DOCTOR(TM) and then imported to the 3D modeling software package Rhinoceros(TM) for further modeling and conversion of soft tissue organs, certain bone sites and outer body contours to deformable non-uniform rational B-spline surfaces. The two specimen-specific phantoms, along with a modified version of the 38 week UF hybrid newborn phantom, comprised a set of base phantoms from which a series of hybrid computational phantoms was derived for fetal ages 8, 10, 15, 20, 25, 30, 35 and 38 weeks post-conception. The methodology used to construct the series of phantoms accounted for the following age-dependent parameters: (1) variations in skeletal size and proportion, (2) bone-dependent variations in relative levels of bone growth, (3) variations in individual organ masses and total fetal masses and (4) statistical percentile variations

  16. The UF family of hybrid phantoms of the developing human fetus for computational radiation dosimetry

    Science.gov (United States)

    Maynard, Matthew R.; Geyer, John W.; Aris, John P.; Shifrin, Roger Y.; Bolch, Wesley

    2011-08-01

    Historically, the development of computational phantoms for radiation dosimetry has primarily been directed at capturing and representing adult and pediatric anatomy, with less emphasis devoted to models of the human fetus. As concern grows over possible radiation-induced cancers from medical and non-medical exposures of the pregnant female, the need to better quantify fetal radiation doses, particularly at the organ-level, also increases. Studies such as the European Union's SOLO (Epidemiological Studies of Exposed Southern Urals Populations) hope to improve our understanding of cancer risks following chronic in utero radiation exposure. For projects such as SOLO, currently available fetal anatomic models do not provide sufficient anatomical detail for organ-level dose assessment. To address this need, two fetal hybrid computational phantoms were constructed using high-quality magnetic resonance imaging and computed tomography image sets obtained for two well-preserved fetal specimens aged 11.5 and 21 weeks post-conception. Individual soft tissue organs, bone sites and outer body contours were segmented from these images using 3D-DOCTOR™ and then imported to the 3D modeling software package Rhinoceros™ for further modeling and conversion of soft tissue organs, certain bone sites and outer body contours to deformable non-uniform rational B-spline surfaces. The two specimen-specific phantoms, along with a modified version of the 38 week UF hybrid newborn phantom, comprised a set of base phantoms from which a series of hybrid computational phantoms was derived for fetal ages 8, 10, 15, 20, 25, 30, 35 and 38 weeks post-conception. The methodology used to construct the series of phantoms accounted for the following age-dependent parameters: (1) variations in skeletal size and proportion, (2) bone-dependent variations in relative levels of bone growth, (3) variations in individual organ masses and total fetal masses and (4) statistical percentile variations in

  17. Epid Dosimetry

    Science.gov (United States)

    Greer, Peter B.; Vial, Philip

    2011-05-01

    Electronic portal imaging devices (EPIDs) were introduced originally for patient position verification. The idea of using EPIDs for dosimetry was realised in the 1980s. Little was published on the topic until the mid 1990's, when the interest in EPIDs for dosimetry increased rapidly and continues to grow. The increasing research on EPID dosimetry coincided with the introduction of intensity modulated radiation therapy (IMRT). EPIDs are well suited to IMRT dosimetry because they are high resolution, two-dimensional (2D) digital detectors. They are also pre-existing on almost all modern linear accelerators. They generally show a linear response to increasing dose. Different types of EPIDs have been clinically implemented, and these have been described in several review papers. The current generation of commercially available EPIDs are indirect detection active matrix flat panel imagers, also known as amorphous silicon (a-Si) EPIDs. Disadvantages of a-Si EPIDs for dosimetry include non-water equivalent construction materials, and the energy sensitivity and optical scatter of the phosphor scintillators used to create optical signal from the megavoltage beam. This report discusses current knowledge regarding a-Si EPIDs for dosimetry.

  18. Analysis of MIR-18 results for physical and biological dosimetry: radiation shielding effectiveness in LEO

    Science.gov (United States)

    Cucinotta, F. A.; Wilson, J. W.; Williams, J. R.; Dicello, J. F.

    2000-01-01

    We compare models of radiation transport and biological response to physical and biological dosimetry results from astronauts on the Mir space station. Transport models are shown to be in good agreement with physical measurements and indicate that the ratio of equivalent dose from the Galactic Cosmic Rays (GCR) to protons is about 3/2:1 and that this ratio will increase for exposures to internal organs. Two biological response models are used to compare to the Mir biodosimetry for chromosome aberration in lymphocyte cells; a track-structure model and the linear-quadratic model with linear energy transfer (LET) dependent weighting coefficients. These models are fit to in vitro data for aberration formation in human lymphocytes by photons and charged particles. Both models are found to be in reasonable agreement with data for aberrations in lymphocytes of Mir crew members: however there are differences between the use of LET dependent weighting factors and track structure models for assigning radiation quality factors. The major difference in the models is the increased effectiveness predicted by the track model for low charge and energy ions with LET near 10 keV/micrometers. The results of our calculations indicate that aluminum shielding, although providing important mitigation of the effects of trapped radiation, provides no protective effect from the galactic cosmic rays (GCR) in low-earth orbit (LEO) using either equivalent dose or the number of chromosome aberrations as a measure until about 100 g/cm 2 of material is used.

  19. Biological dosimetry: the potential use of radiation-induced apoptosis in human T-lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Menz, R.; Andres, R.; Larsson, B.; Ozsahin, M.; Crompton, N.E.A. [Department of Life Sciences, Paul Scherrer Institute, CH-5232 Villigen-PSI (Switzerland); Trott, K. [St. Bartholemew`s and the Royal London School of Medicine and Dentistry, University of London (United Kingdom)

    1997-09-01

    An assay for biological dosimetry based on the induction of apoptosis in human T-lymphocytes is described. Radiation-induced apoptosis was assessed by flow cytometric identification of cells displaying apoptosis-associated DNA condensation. CD4 and CD8 T-lymphocytes were analysed. They were recognized on the basis of their cell-surface antigens. Four parameters were measured for both cell types: cell size, granularity, antigen immunofluorescence and DNA content. Apoptosis was quantified as the fraction of CD4-, or CD8-positive cells with a characteristic reduction of cell size and DNA content. At doses below 1 Gy, levels of radiation-induced apoptosis increased for up to 5 days after irradiation. Optimal dose discrimination was observed 4 days after irradiation, at which time the dose-response curves were linear, with a slope of 8% {+-} 0.5% per 0.1 Gy. In controlled, dose-response experiments the lowest dose level at which the radiation-induced apoptosis frequency was still significantly above control was 0.05 Gy. After 5 days post-irradiation incubation, intra- and interdonor variations were measured and found to be similar; thus, apoptotic levels depend more on the dose than on the donor. The results demonstrate the potential of this assay as a biological dosimeter. (orig.) With 5 figs., 2 tabs., 19 refs.

  20. Changes in Occupational Radiation Exposures after Incorporation of a Real-time Dosimetry System in the Interventional Radiology Suite.

    Science.gov (United States)

    Poudel, Sashi; Weir, Lori; Dowling, Dawn; Medich, David C

    2016-08-01

    A statistical pilot study was retrospectively performed to analyze potential changes in occupational radiation exposures to Interventional Radiology (IR) staff at Lawrence General Hospital after implementation of the i2 Active Radiation Dosimetry System (Unfors RaySafe Inc, 6045 Cochran Road Cleveland, OH 44139-3302). In this study, the monthly OSL dosimetry records obtained during the eight-month period prior to i2 implementation were normalized to the number of procedures performed during each month and statistically compared to the normalized dosimetry records obtained for the 8-mo period after i2 implementation. The resulting statistics included calculation of the mean and standard deviation of the dose equivalences per procedure and included appropriate hypothesis tests to assess for statistically valid differences between the pre and post i2 study periods. Hypothesis testing was performed on three groups of staff present during an IR procedure: The first group included all members of the IR staff, the second group consisted of the IR radiologists, and the third group consisted of the IR technician staff. After implementing the i2 active dosimetry system, participating members of the Lawrence General IR staff had a reduction in the average dose equivalence per procedure of 43.1% ± 16.7% (p = 0.04). Similarly, Lawrence General IR radiologists had a 65.8% ± 33.6% (p=0.01) reduction while the technologists had a 45.0% ± 14.4% (p=0.03) reduction.

  1. Two-parametric model of electron beam in computational dosimetry for radiation processing

    Science.gov (United States)

    Lazurik, V. M.; Lazurik, V. T.; Popov, G.; Zimek, Z.

    2016-07-01

    Computer simulation of irradiation process of various materials with electron beam (EB) can be applied to correct and control the performances of radiation processing installations. Electron beam energy measurements methods are described in the international standards. The obtained results of measurements can be extended by implementation computational dosimetry. Authors have developed the computational method for determination of EB energy on the base of two-parametric fitting of semi-empirical model for the depth dose distribution initiated by mono-energetic electron beam. The analysis of number experiments show that described method can effectively consider random displacements arising from the use of aluminum wedge with a continuous strip of dosimetric film and minimize the magnitude uncertainty value of the electron energy evaluation, calculated from the experimental data. Two-parametric fitting method is proposed for determination of the electron beam model parameters. These model parameters are as follow: E0 - energy mono-energetic and mono-directional electron source, X0 - the thickness of the aluminum layer, located in front of irradiated object. That allows obtain baseline data related to the characteristic of the electron beam, which can be later on applied for computer modeling of the irradiation process. Model parameters which are defined in the international standards (like Ep- the most probably energy and Rp - practical range) can be linked with characteristics of two-parametric model (E0, X0), which allows to simulate the electron irradiation process. The obtained data from semi-empirical model were checked together with the set of experimental results. The proposed two-parametric model for electron beam energy evaluation and estimation of accuracy for computational dosimetry methods on the base of developed model are discussed.

  2. A dosimetry evaluation of 90y-stent implantation in intracoronary radiation treatment

    Directory of Open Access Journals (Sweden)

    Karimian Alireza

    2013-01-01

    Full Text Available Ionizing particles have been used for the treatment of atherosclerosis. Internal irradiation is commonly carried out by means of several methods (catheter-based systems, radioactive stents or balloons to reduce the probability of restenosis. 90Y, due to some of its characteristics, is an appropriate radioisotope for intravascular brachytherapy. However, since there are some critical tissues in the vicinity of the heart like the breast and lymph nodes, it is necessary to perform a dosimetry calculation around the artery under radiotherapy to justify the treatment method. In this study, a 3-D dose distribution was obtained for the coronary vessel and its surrounding tissues for a standard 90Y stent in a MCNPX program. The results were compared with other investigations on restenosis prevention using 90Y-coated stents. The calculations represented a 28-day cumulative dose between 1230 cGy and 2400 cGy at 0.1 mm from the stent surface, while this quantity was about 23.8 cGy at 8.5 mm from the stent surface. An assessment of the dose equivalent and effective dose was also performed at r = 8.5 mm for the mentioned surrounding tissues which may be located in the area, based on the latest changes in ICRP recommendations. Additionally, the dose equivalent calculated within the treatment period for these organs was compared with published dosimetry data for 90Sr/90Y seed sources in order to evaluate radiation protection concerns about these two radiotherapy methods. It has been found that, depending on stent parameters, 90Y stent implantation might increase the unfavorable side effects for the patient, but to a much lesser degree than the other methods.

  3. EBT GAFCHROMIC{sup TM} film dosimetry in compensator-based intensity modulated radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Vaezzadeh, Seyedali [Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Allahverdi, Mahmoud, E-mail: alahverdi@sina.tums.ac.ir [Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Radiotherapy—Oncology, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Nedaie, Hasan A. [Department of Radiotherapy—Oncology, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Ay, Mohammadreza [Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Shirazi, Alireza; Yarahmadi, Mehran [Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2013-07-01

    The electron benefit transfer (EBT) GAFCHROMIC films possess a number of features making them appropriate for high-quality dosimetry in intensity-modulated radiation therapy (IMRT). Compensators to deliver IMRT are known to change the beam-energy spectrum as well as to produce scattered photons and to contaminate electrons; therefore, the accuracy and validity of EBT-film dosimetry in compensator-based IMRT should be investigated. Percentage-depth doses and lateral-beam profiles were measured using EBT films in perpendicular orientation with respect to 6 and 18 MV photon beam energies for: (1) different thicknesses of cerrobend slab (open, 1.0, 2.0, 4.0, and 6.0 cm), field sizes (5×5, 10×10, and 20×20 cm{sup 2}), and measurement depths (D{sub max}, 5.0 and 10.0 cm); and (2) step-wedged compensator in a solid phantom. To verify results, same measurements were implemented using a 0.125 cm{sup 3} ionization chamber in a water phantom and also in Monte Carlo simulations using the Monte Carlo N-particle radiation transport computer code. The mean energy of photons was increased due to beam hardening in comparison with open fields at both 6 and 18 MV energies. For a 20×20 cm{sup 2} field size of a 6 MV photon beam and a 6.0 cm thick block, the surface dose decreased by about 12% and percentage-depth doses increased up to 3% at 30.0 cm depth, due to the beam-hardening effect induced by the block. In contrast, at 18 MV, the surface dose increased by about 8% and depth dose reduced by 3% at 30.0 cm depth. The penumbral widths (80% to 20%) increase with block thickness, field size, and beam energy. The EBT film results were in good agreement with the ionization chamber dose profiles and Monte Carlo N-particle radiation transport computer code simulation behind the step-wedged compensator. Also, there was a good agreement between the EBT-film and the treatment-planning results on the anthropomorphic phantom. The EBT films can be accurately used as a 2D dosimeter for dose

  4. The Impact of Iterative Reconstruction on Computed Tomography Radiation Dosimetry: Evaluation in a Routine Clinical Setting.

    Directory of Open Access Journals (Sweden)

    Rachael E Moorin

    Full Text Available To evaluate the effect of introduction of iterative reconstruction as a mandated software upgrade on radiation dosimetry in routine clinical practice over a range of computed tomography examinations.Random samples of scanning data were extracted from a centralised Picture Archiving Communication System pertaining to 10 commonly performed computed tomography examination types undertaken at two hospitals in Western Australia, before and after the introduction of iterative reconstruction. Changes in the mean dose length product and effective dose were evaluated along with estimations of associated changes to annual cancer incidence.We observed statistically significant reductions in the effective radiation dose for head computed tomography (22-27% consistent with those reported in the literature. In contrast the reductions observed for non-contrast chest (37-47%; chest pulmonary embolism study (28%, chest/abdominal/pelvic study (16% and thoracic spine (39% computed tomography. Statistically significant reductions in radiation dose were not identified in angiographic computed tomography. Dose reductions translated to substantial lowering of the lifetime attributable risk, especially for younger females, and estimated numbers of incident cancers.Reduction of CT dose is a priority Iterative reconstruction algorithms have the potential to significantly assist with dose reduction across a range of protocols. However, this reduction in dose is achieved via reductions in image noise. Fully realising the potential dose reduction of iterative reconstruction requires the adjustment of image factors and forgoing the noise reduction potential of the iterative algorithm. Our study has demonstrated a reduction in radiation dose for some scanning protocols, but not to the extent experimental studies had previously shown or in all protocols expected, raising questions about the extent to which iterative reconstruction achieves dose reduction in real world clinical

  5. Gallium nitride based thin films for photon and particle radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Hofstetter, Markus

    2012-07-23

    Ionization chambers have been used since the beginning of the 20th century for measuring ionizing radiation and still represent the ''gold standard'' in dosimetry. However, since the sensitivity of the devices is proportional to the detection volume, ionization chambers are not common in numerous medical applications, such as imaging. In these fields, spatially resolved dose information is, beside film-systems, usually measured with scintillators and photo-multipliers, which is a relatively complex and expensive technique. For thus much effort has been focused on the development of novel detection systems in the last decades and especially in the last few years. Examples include germanium or silicon photoconductive detectors, MOSFETs, and PIN-diodes. Although for these systems, miniaturization for spatially resolved detection is possible, they suffer from a range of disadvantages. Characteristics such as poor measurement stability, material degradation, and/or a limited measurement range prevent routine application of these techniques in medical diagnostic devices. This work presents the development and evaluation of gallium nitride (GaN) thin films and heterostructures to validate their application in x-ray detection in the medical regime. Furthermore, the impact of particle radiation on device response was investigated. Although previous publications revealed relatively low energy absorption of GaN, it is possible to achieve very high signal amplification factors inside the material due to an appropriate sensor configuration, which, in turn, compensates the low energy absorption. Thus, gallium nitride can be used as a photo-conductor with ohmic contacts. The conductive volume of the sensor changes in the presence of external radiation, which results in an amplified measurement signal after applying a bias voltage to the device. Experiments revealed a sensitivity of the device between air kerma rates of 1 {mu}Gy/s and 20 mGy/s. In this range

  6. Development of polyaniline thin films for gamma radiation dosimetry; Desenvolvimento de filmes finos de polianilina para dosimetria da radiacao gama

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Ana Paula; Araujo, Elmo S. [Pernambuco Univ., Recife, PE (Brazil). Dept. de Energia Nuclear; Azevedo, Walter M. de [Pernambuco Univ., Recife, PE (Brazil). Dept. de Quimica Fundamental

    2001-07-01

    The increasing applications of the ionizing radiation added to the difficulty on operation of some dosimeters have became necessary the development of news materials and news dosimetry techniques. On the other hand, the study of the properties of conducts polymers are quite recent as well as its research in the dosimetry field is still superficial. The utilization of polyaniline (PANI) as a dosimetric material is of great relevancy, because this polymer has got good quality in the dosimetry. It is easy to operation, the devices may be fabricated in different geometry, it is a low cost material, and the electrical properties variation measurement system is simple. In addition, it does not exist previously study that characterizes this polymer as a dosimeter. Some early results have showed that doped PANI when irradiated with gamma rays ({sup 60} Co), dose range from 0 to 10kGy, responds proportionally to the doses above 1kGy. Thus, it is possible the utilization this polymer in high-energy dosimetry. Studies much more detailed are being made in order to complete the evidence of PANI as a dosimetric material. (author)

  7. Synthesis of the scientific French speaking days on numerical codes in radiation protection, in radio physics and in dosimetry; Synthese des journees scientifiques francophones portant sur les codes de calculs en radioprotection, radiophysique et dosimetrie

    Energy Technology Data Exchange (ETDEWEB)

    Paul, D. [Universite de la Mediterranee, Faculte de Pharmacie, Service de Medecine et Sante au Travail, Lab. de Biogenotoxicologie et Mutagenese Environnement (EA 1784-IFR PMSE 112), 13 - Marseille (France); Makovicka, L. [Centre National de la Recherche Scientifique (CNRS), RMA/CREST/FEMTO-ST, UMR 6174, 25 - Montbeliard (France); Ricard, M. [Institut Gustave Roussy, Service de Physique, 94 - Villejuif (France)

    2005-03-01

    Synthesis of the scientific French speaking days on numerical codes in radiation protection, in radio-physics and in dosimetry. The paper carries the title of 'French speaking' scientific days co-organized on October 2-3, 2003 in Sochaux by the SFRP, SFPM and FIRAM societies. It has for objective to establish the scientific balance sheet of this international event, to give the synthesis of current tendencies in the field of the development and of the use of the numerical codes in radiation protection, in radio-physics and in dosimetry. (author)

  8. Britain's bomb

    Science.gov (United States)

    Corfield, Richard

    2012-10-01

    On the 60th anniversary of Britain's first nuclear test, Richard Corfield explores how Operation Hurricane - the British effort to develop the atomic bomb in the 1940s and 1950s - compares with states such as Iran that today wish to have such devices.

  9. Biological dosimetry of ionizing radiation: Evaluation of the dose with cytogenetic methodologies by the construction of calibration curves

    Science.gov (United States)

    Zafiropoulos, Demetre; Facco, E.; Sarchiapone, Lucia

    2016-09-01

    In case of a radiation accident, it is well known that in the absence of physical dosimetry biological dosimetry based on cytogenetic methods is a unique tool to estimate individual absorbed dose. Moreover, even when physical dosimetry indicates an overexposure, scoring chromosome aberrations (dicentrics and rings) in human peripheral blood lymphocytes (PBLs) at metaphase is presently the most widely used method to confirm dose assessment. The analysis of dicentrics and rings in PBLs after Giemsa staining of metaphase cells is considered the most valid assay for radiation injury. This work shows that applying the fluorescence in situ hybridization (FISH) technique, using telomeric/centromeric peptide nucleic acid (PNA) probes in metaphase chromosomes for radiation dosimetry, could become a fast scoring, reliable and precise method for biological dosimetry after accidental radiation exposures. In both in vitro methods described above, lymphocyte stimulation is needed, and this limits the application in radiation emergency medicine where speed is considered to be a high priority. Using premature chromosome condensation (PCC), irradiated human PBLs (non-stimulated) were fused with mitotic CHO cells, and the yield of excess PCC fragments in Giemsa stained cells was scored. To score dicentrics and rings under PCC conditions, the necessary centromere and telomere detection of the chromosomes was obtained using FISH and specific PNA probes. Of course, a prerequisite for dose assessment in all cases is a dose-effect calibration curve. This work illustrates the various methods used; dose response calibration curves, with 95% confidence limits used to estimate dose uncertainties, have been constructed for conventional metaphase analysis and FISH. We also compare the dose-response curve constructed after scoring of dicentrics and rings using PCC combined with FISH and PNA probes. Also reported are dose response curves showing scored dicentrics and rings per cell, combining

  10. (Biological dosimetry)

    Energy Technology Data Exchange (ETDEWEB)

    Preston, R.J.

    1990-12-17

    The traveler attended the 1st International Conference on Biological Dosimetry in Madrid, Spain. This conference was organized to provide information to a general audience of biologists, physicists, radiotherapists, industrial hygiene personnel and individuals from related fields on the current ability of cytogenetic analysis to provide estimates of radiation dose in cases of occupational or environmental exposure. There is a growing interest in Spain in biological dosimetry because of the increased use of radiation sources for medical and occupational uses, and with this the anticipated and actual increase in numbers of overexposure. The traveler delivered the introductory lecture on Biological Dosimetry: Mechanistic Concepts'' that was intended to provide a framework by which the more applied lectures could be interpreted in a mechanistic way. A second component of the trip was to provide advice with regard to several recent cases of overexposure that had been or were being assessed by the Radiopathology and Radiotherapy Department of the Hospital General Gregorio Maranon'' in Madrid. The traveler had provided information on several of these, and had analyzed cells from some exposed or purportedly exposed individuals. The members of the biological dosimetry group were referred to individuals at REACTS at Oak Ridge Associated Universities for advice on follow-up treatment.

  11. Background radiation and individual dosimetry in the costal area of Tamil Nadu, India.

    Science.gov (United States)

    Matsuda, Naoki; Brahmanandhan, G M; Yoshida, Masahiro; Takamura, Noboru; Suyama, Akihiko; Koguchi, Yasuhiro; Juto, Norimichi; Raj, Y Lenin; Winsley, Godwin; Selvasekarapandian, S

    2011-07-01

    South coast of India is known as the high-level background radiation area (HBRA) mainly due to beach sands that contain natural radionuclides as components of the mineral monazite. The rich deposit of monazite is unevenly distributed along the coastal belt of Tamil Nadu and Kerala. An HBRA site that laid in 2×7 m along the sea was found in the beach of Chinnavillai, Tamil Nadu, where the maximum ambient dose equivalent reached as high as 162.7 mSv y(-1). From the sands collected at the HBRA spot, the high-purity germanium semi-conductor detector identified six nuclides of thorium series, four nuclides of uranium series and two nuclides belonging to actinium series. The highest radioactivity observed was 43.7 Bq g(-1) of Th-228. The individual dose of five inhabitants in Chinnavillai, as measured by the radiophotoluminescence glass dosimetry system, demonstrated the average dose of 7.17 mSv y(-1) ranging from 2.79 to 14.17 mSv y(-1).

  12. Long-term Radiation-Related Health Effects in a Unique Human Population: Lessons Learned from the Atomic Bomb Survivors of Hiroshima and Nagasaki

    Science.gov (United States)

    Douple, Evan B.; Mabuchi, Kiyohiko; Cullings, Harry M.; Preston, Dale L.; Kodama, Kazunori; Shimizu, Yukiko; Fujiwara, Saeko; Shore, Roy E.

    2014-01-01

    For 63 years scientists in the Atomic Bomb Casualty Commission and its successor, the Radiation Effects Research Foundation, have been assessing the long-term health effects in the survivors of the atomic bombings of Hiroshima and Nagasaki and in their children. The identification and follow-up of a large population (approximately a total of 200 000, of whom more than 40% are alive today) that includes a broad range of ages and radiation exposure doses, and healthy representatives of both sexes; establishment of well-defined cohorts whose members have been studied longitudinally, including some with biennial health examinations and a high survivor participation rate; and careful reconstructions of individual radiation doses have resulted in reliable excess relative risk estimates for radiation-related health effects, including cancer and noncancer effects in humans, for the benefit of the survivors and for all humankind. This article reviews those risk estimates and summarizes what has been learned from this historic and unique study. PMID:21402804

  13. Long-Term Effects of Radiation Exposure and Metabolic Status on Telomere Length of Peripheral Blood T Cells in Atomic Bomb Survivors.

    Science.gov (United States)

    Yoshida, Kengo; Misumi, Munechika; Kubo, Yoshiko; Yamaoka, Mika; Kyoizumi, Seishi; Ohishi, Waka; Hayashi, Tomonori; Kusunoki, Yoichiro

    2016-10-01

    In a series of studies of atomic bomb survivors, radiation-dose-dependent alterations in peripheral T-cell populations have been reported. For example, reduced size in naïve T-cell pools and impaired proliferation ability of T cells were observed. Because these alterations are also generally observed with human aging, we hypothesized that radiation exposure may accelerate the aging process of the T-cell immune system. To further test this hypothesis, we conducted cross-sectional analyses of telomere length, a hallmark of cellular aging, of naïve and memory CD4 T cells and total CD8 T cells in the peripheral blood of 620 atomic bomb survivors as it relates to age and radiation dose, using fluorescence in situ hybridization with flow cytometry. Since telomere shortening has been recently demonstrated in obesity-related metabolic abnormalities and diseases, the modifying effects of metabolic status were also examined. Our results indicated nonlinear relationships between T-cell telomere length and prior radiation exposure, i.e., longer telomeres with lower dose exposure and a decreasing trend of telomere length with individuals exposed to doses higher than 0.5 Gy. There were associations between shorter T-cell telomeres and higher hemoglobin Alc levels or fatty liver development. In naïve and memory CD4 T cells, radiation dose and high-density lipoprotein (HDL) cholesterol were found to positively interact with telomere length, suggesting that the decreasing trend of telomere length from a higher radiation dose was less conspicuous in individuals with a higher HDL cholesterol. It is therefore likely that radiation exposure perturbs T-cell homeostasis involving telomere length maintenance by multiple biological mechanisms, depending on dose, and that long-term-radiation-induced effects on the maintenance of T-cell telomeres may be modified by the subsequent metabolic conditions of individuals.

  14. After the bomb drops: a new look at radiation-induced multiple organ dysfunction syndrome (MODS).

    Science.gov (United States)

    Williams, Jacqueline P; McBride, William H

    2011-08-01

    There is increasing concern that, since the Cold War era, there has been little progress regarding the availability of medical countermeasures in the event of either a radiological or nuclear incident. Fortunately, since much is known about the acute consequences that are likely to be experienced by an exposed population, the probability of survival from the immediate hematological crises after total body irradiation (TBI) has improved in recent years. Therefore focus has begun to shift towards later down-stream effects, seen in such organs as the gastrointestinal tract (GI), skin, and lung. However, the mechanisms underlying therapy-related normal tissue late effects, resulting from localised irradiation, have remained somewhat elusive and even less is known about the development of the delayed syndrome seen in the context of whole body exposures, when it is likely that systemic perturbations may alter tissue microenvironments and homeostasis. The sequence of organ failures observed after near-lethal TBI doses are similar in many ways to that of multiple organ dysfunction syndrome (MODS), leading to multiple organ failure (MOF). In this review, we compare the mechanistic pathways that underlie both MODS and delayed normal tissue effects since these may impact on strategies to identify radiation countermeasures.

  15. A study of four radiochromic films currently used for (2D) radiation dosimetry

    Science.gov (United States)

    Yao, Tiantian; Luthjens, Leonard H.; Gasparini, Alessia; Warman, John M.

    2017-04-01

    We have measured the dose, D, and dose rate, D', dependences of the radiation-induced change in optical absorption of four radiochromic films currently used for (2D) dosimetry: GafChromic® types EBT3, MD-V3, HD-V2 and HD-810. We have irradiated the films using two 60Co γ-ray sources with dose rates of 2 and 30 Gy/min and a 200 kVp X-ray source with dose rates from 0.2 to 1.0 Gy/min. The 48-bit RGB image files of the films, obtained using an Epson V700 flatbed scanner, were color-channel separated and the red, green and blue pixel levels, P(D), were determined using ImageJ software. The relationship P(D)/P(0)=[1+hD/m]/[1+D/m] is found to provide a good description of the dose dependence for all four films at all dose rates. The parameter h is the "plateau level" of P(D)/P(0) approached at high doses, i.e. P(∞)/P(0). The parameter m is the "median-dose" for which P(D)/P(0)(1+h)/2 which is the half point in the dynamic range of the particular film. The best-fit values of m over the dose rate range from 0.2 to 25 Gy/min using the red pixels were 1.42±0.03, 11.1±0.4, 63.6±0.9 and 60.6±1.6 Gy for EBT3, MD-V3, HD-V2 and HD-810 respectively. Using the green pixels the median dose is 1.8 times larger for the first 3 films and 2.5 times larger for HD-810. The blue pixels are considered unsuitable for dosimetry because of the large value of h (>0.4) and the resulting small dynamic range.

  16. An investigation of PRESAGE® 3D dosimetry for IMRT and VMAT radiation therapy treatment verification

    Science.gov (United States)

    Jackson, Jake; Juang, Titania; Adamovics, John; Oldham, Mark

    2015-03-01

    The purpose of this work was to characterize three formulations of PRESAGE® dosimeters (DEA-1, DEA-2, and DX) and to identify optimal readout timing and procedures for accurate in-house 3D dosimetry. The optimal formulation and procedure was then applied for the verification of an intensity modulated radiation therapy (IMRT) and a volumetric modulated arc therapy (VMAT) treatment technique. PRESAGE® formulations were studied for their temporal stability post-irradiation, sensitivity, and linearity of dose response. Dosimeters were read out using a high-resolution optical-CT scanner. Small volumes of PRESAGE® were irradiated to investigate possible differences in sensitivity for large and small volumes (‘volume effect’). The optimal formulation and read-out technique was applied to the verification of two patient treatments: an IMRT plan and a VMAT plan. A gradual decrease in post-irradiation optical-density was observed in all formulations with DEA-1 exhibiting the best temporal stability with less than 4% variation between 2-22 h post-irradiation. A linear dose response at the 4 h time point was observed for all formulations with an R2 value >0.99. A large volume effect was observed for DEA-1 with sensitivity of the large dosimeter being ~63% less than the sensitivity of the cuvettes. For the IMRT and VMAT treatments, the 3D gamma passing rates for 3%/3 mm criteria using absolute measured dose were 99.6 and 94.5% for the IMRT and VMAT treatments, respectively. In summary, this work shows that accurate 3D dosimetry is possible with all three PRESAGE® formulations. The optimal imaging windows post-irradiation were 3-24 h, 2-6 h, and immediately for the DEA-1, DEA-2, and DX formulations, respectively. Because of the large volume effect, small volume cuvettes are not yet a reliable method for calibration of larger dosimeters to absolute dose. Finally, PRESAGE® is observed to be a useful method of 3D verification when careful consideration is given

  17. Epid cine acquisition mode for in vivo dosimetry in dynamic arc radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Fidanzio, Andrea [U.O. di Fisica Sanitaria Policlinico A. Gemelli, Universita Cattolica S. Cuore, Rome (Italy)], E-mail: andrea.fidanzio@rm.unicatt.it; Mameli, Alessandra; Placidi, Elisa; Greco, Francesca [U.O. di Fisica Sanitaria Policlinico A. Gemelli, Universita Cattolica S. Cuore, Rome (Italy); Stimato, Gerardina; Gaudino, Diego; Ramella, Sara; D' Angelillo, Rolando; Cellini, Francesco; Trodella, Lucio [U.O. di Radioterapia, Universita Campus Bio-Medico, Rome (Italy); Cilla, Savino; Grimaldi, Luca; D' Onofrio, Guido [U.O. di Fisica Sanitaria, Centro di Ricerca e Formazione ad Alta Tecnologia nelle Scienze Biomediche dell' Universita Cattolica S. Cuore, Campobasso (Italy); Azario, Luigi; Piermattei, Angelo [Istituto di Fisica, Universita Cattolica del S. Cuore, Rome (Italy)

    2008-02-15

    In this paper the cine acquisition mode of an electronic portal imaging device (EPID) has been calibrated and tested to determine the in vivo dose for dynamic conformal arc radiation therapy (DCAT). The EPID cine acquisition mode, that allows a frame acquisition rate of one image every 1.66 s, was studied with a monitor unit rate equal to 100 UM/min. In these conditions good signal stability, {+-}1% (2SD) evaluated during three months, signal reproducibility within {+-}0.8% (2SD) and linearity with dose and dose rate within {+-}1% (2SD) were obtained. The transit signal, S{sub t}, (due to the transmitted beam below the phantom) measured by the EPID cine acquisition mode was used to determine, (i) a set of correlation functions, F(w,L), defined as the ratio between S{sub t} and the dose at half thickness, D{sub m}, measured in solid water phantoms of different thicknesses, w and with square fields of side L, (ii) a set of factors, f(d,L), that take into account the different X-ray scatter contribution from the phantom to the S{sub t} signal as a function of the variation, d, of the air gap between the phantom and the EPID. The reconstruction of the isocenter dose, D{sub iso}, for DCAT was obtained convolving the transit signal values, obtained at different gantry angles, with the respective reconstruction factors determined by a house-made software. The method was tested with cylindrical and anthropomorphic phantoms and the results show that the reconstructed D{sub iso} values can be obtained with an accuracy within {+-}2.5% in cylindrical phantom and within {+-}3.4% for anthropomorphic phantom. In conclusion, the transit dosimetry by EPID was assessed to be adequate to perform DCAT in vivo dosimetry, that is not realizable with the other traditional techniques. Moreover, the method proposed here could be implemented to supply in vivo dose values in real time.

  18. Human biodistribution and radiation dosimetry of novel PET probes targeting the deoxyribonucleoside salvage pathway

    Energy Technology Data Exchange (ETDEWEB)

    Schwarzenberg, Johannes [David Geffen School of Medicine, University of California, Department of Molecular and Medical Pharmacology, Ahmanson Biological Imaging Division, Los Angeles, CA (United States); Medical University of Vienna, Department of Pediatrics, Vienna (Austria); Radu, Caius G.; Tran, Andrew Q.; Phelps, Michael E.; Satyamurthy, Nagichettiar [David Geffen School of Medicine, University of California, Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging, Los Angeles, CA (United States); Benz, Matthias; Fueger, Barbara; Czernin, Johannes; Schiepers, Christiaan [David Geffen School of Medicine, University of California, Department of Molecular and Medical Pharmacology, Ahmanson Biological Imaging Division, Los Angeles, CA (United States); Witte, Owen N. [David Geffen School of Medicine, University of California, Howard Hughes Medical Institute and Department of Microbiology, Immunology, and Molecular Genetics, Los Angeles, CA (United States)

    2011-04-15

    Deoxycytidine kinase (dCK) is a rate-limiting enzyme in deoxyribonucleoside salvage, a metabolic pathway involved in the production and maintenance of a balanced pool of deoxyribonucleoside triphosphates (dNTPs) for DNA synthesis. dCK phosphorylates and therefore activates nucleoside analogs such as cytarabine, gemcitabine, decitabine, cladribine, and clofarabine that are used routinely in cancer therapy. Imaging probes that target dCK might allow stratifying patients into likely responders and nonresponders with dCK-dependent prodrugs. Here we present the biodistribution and radiation dosimetry of three fluorinated dCK substrates, {sup 18}F-FAC, L-{sup 18}F-FAC, and L-{sup 18}F-FMAC, developed for positron emission tomography (PET) imaging of dCK activity in vivo. PET studies were performed in nine healthy human volunteers, three for each probe. After a transmission scan, the radiopharmaceutical was injected intravenously and three sequential emission scans acquired from the base of the skull to mid-thigh. Regions of interest encompassing visible organs were drawn on the first PET scan and copied to the subsequent scans. Activity in target organs was determined and absorbed dose estimated with OLINDA/EXM. The standardized uptake value was calculated for various organs at different times. Renal excretion was common to all three probes. Bone marrow had higher uptake for L-{sup 18}F-FAC and L-{sup 18}F-FMAC than {sup 18}F-FAC. Prominent liver uptake was seen in L-{sup 18}F-FMAC and L-{sup 18}F-FAC, whereas splenic activity was highest for {sup 18}F-FAC. Muscle uptake was also highest for {sup 18}F-FAC. The critical organ was the bladder wall for all three probes. The effective dose was 0.00524, 0.00755, and 0.00910 mSv/MBq for {sup 18}F-FAC, L-{sup 18}F-FAC, and L-{sup 18}F-FMAC, respectively. The biodistribution of {sup 18}F-FAC, L-{sup 18}F-FAC, and L-{sup 18}F-FMAC in humans reveals similarities and differences. Differences may be explained by different probe

  19. Digital holographic interferometry: a novel optical calorimetry technique for radiation dosimetry.

    Science.gov (United States)

    Cavan, Alicia; Meyer, Juergen

    2014-02-01

    To develop and demonstrate the proof-of-principle of a novel optical calorimetry method to determine radiation absorbed dose in a transparent medium. The calorimetric property of water is measured during irradiation by means of an interferometer, which detects temperature-induced changes in the refractive index that can be mathematically related to absorbed dose. The proposed method uses a technique called digital holographic interferometry (DHI), which comprises an optical laser interferometer setup and consecutive physical reconstruction of the recorded wave fronts by means of the Fresnel transform. This paper describes the conceptual framework and provides the mathematical basis for DHI dosimetry. Dose distributions from a high dose rate Brachytherapy source were measured by a prototype optical setup to demonstrate the feasibility of the approach. The developed DHI dosimeter successfully determined absorbed dose distributions in water in the region adjacent to a high dose rate Brachytherapy source. A temperature change of 0.0381 K across a distance of 6.8 mm near the source was measured, corresponding to a dose of 159.3 Gy. The standard deviation in a typical measurement set was ± 3.45 Gy (corresponding to an uncertainty in the temperature value of ± 8.3 × 10(-4) K). The relative dose fall off was in agreement with treatment planning system modeled data. First results with a prototype optical setup and a Brachytherapy source demonstrate the proof-of-principle of the approach. The prototype achieves high spatial resolution of approximately 3 × 10(-4) m. The general approach is fundamentally independent of the radiation type and energy. The sensitivity range determined indicates that the method is predominantly suitable for high dose rate applications. Further work is required to determine absolute dose in all three dimensions.

  20. Biodistribution and radiation dosimetry of [{sup 11}C]raclopride in healthy volunteers

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Maria-Joao; Bourgeois, Sandrine; Lievre, Marie-Angele; Bottlaender, Michel; Gervais, Philippe; Dolle, Frederic; Syrota, Andre [Commissariat a l' Energie Atomique, Departement de Recherche Medicale, Orsay (France); Ricard, Marcel [Institut Gustave Roussy, Service de Physique, Villejuif (France)

    2005-08-01

    This study reports on the whole-body biodistribution and radiation dosimetry of [{sup 11}C]raclopride, a dopamine D{sub 2} receptor antagonist. In three healthy male volunteers, whole-body scans were performed up to 2 h following i.v. injection of 320{+-}65 MBq [{sup 11}C]raclopride. Transmission scans (3 min per step, eight or nine steps according to the height of the subject) in 2D mode were used for subsequent attenuation correction of emission scans. Emission scans (1 min per step, eight or nine steps) were acquired over 2 h. Venous blood samples and urine were collected up to 2 h after injection of the radiotracer. For each subject, the percentage of injected activity measured in regions of interest over brain, intestine, lungs, kidneys and liver was fitted to a mono-exponential model, as an uptake phase followed by a mono-exponential washout, for urinary bladder to generate time-activity curves. Using the MIRD method, several source organs were considered in estimating residence time and mean effective radiation absorbed doses. Blood pressure and ECG findings remained unchanged after tracer injection. The analysed blood and urine pharmacological parameters did not change significantly after [{sup 11}C]raclopride injection. The primary routes of clearance were renal and intestinal. Ten minutes after injection, high activities were observed in the gall-bladder, kidneys and liver. High activity was observed in the gall-bladder during the whole study. The kidneys, urinary bladder wall, liver and gall-bladder received the highest absorbed doses. The average effective dose of [{sup 11}C]raclopride was estimated to be 6.7{+-}0.4 {mu}Sv/MBq. The amount of [{sup 11}C]raclopride required for adequate dopamine D{sub 2} receptor imaging results in an acceptable effective dose equivalent, permitting two or three repeated clinical PET imaging studies, with the injection of 222 MBq for each study. (orig.)

  1. Validation of QuickScan dicentric chromosome analysis for high throughput radiation biological dosimetry.

    Science.gov (United States)

    Flegal, F N; Devantier, Y; Marro, L; Wilkins, R C

    2012-02-01

    Currently, the dicentric chromosome assay (DCA) is used to estimate radiation doses to individuals following accidental radiological and nuclear overexposures when traditional dosimetry methods are not available. While being an exceptionally sensitive method for estimating doses by radiation, conventional DCA is time-intensive and requires highly trained expertise for analysis. For this reason, in a mass casualty situation, triage-quality conventional DCA struggles to provide dose estimations in a timely manner for triage purposes. In Canada, a new scoring technique, termed DCA QuickScan, has been devised to increase the throughput of this assay. DCA QuickScan uses traditional DCA sample preparation methods while adapting a rapid scoring approach. In this study, both conventional and QuickScan methods of scoring the DCA assay were compared for accuracy and sensitivity. Dose response curves were completed on four different donors based on the analysis of 1,000 metaphases or 200 events at eight to nine dose points by eight different scorers across two laboratories. Statistical analysis was performed on the data to compare the two methods within and across the laboratories and to test their respective sensitivities for dose estimation. This study demonstrated that QuickScan is statistically similar to conventional DCA analysis and is capable of producing dose estimates as low as 0.1 Gy but up to six times faster. Therefore, DCA QuickScan analysis can be used as a sensitive and accurate method for scoring samples for radiological biodosimetry in mass casualty situations or where faster dose assessment is required.

  2. Digital holographic interferometry: A novel optical calorimetry technique for radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Cavan, Alicia, E-mail: alicia.cavan@cdhb.health.nz [Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand and Christchurch Hospital, Private Bag 4710, Christchurch 8140 (New Zealand); Meyer, Juergen, E-mail: juergen@uw.edu [Department of Radiation Oncology, University of Washington, 1959 Northeast Pacific Street, Box 356043, Seattle, Washington 98195 (United States)

    2014-02-15

    Purpose: To develop and demonstrate the proof-of-principle of a novel optical calorimetry method to determine radiation absorbed dose in a transparent medium. Methods: The calorimetric property of water is measured during irradiation by means of an interferometer, which detects temperature-induced changes in the refractive index that can be mathematically related to absorbed dose. The proposed method uses a technique called digital holographic interferometry (DHI), which comprises an optical laser interferometer setup and consecutive physical reconstruction of the recorded wave fronts by means of the Fresnel transform. This paper describes the conceptual framework and provides the mathematical basis for DHI dosimetry. Dose distributions from a high dose rate Brachytherapy source were measured by a prototype optical setup to demonstrate the feasibility of the approach. Results: The developed DHI dosimeter successfully determined absorbed dose distributions in water in the region adjacent to a high dose rate Brachytherapy source. A temperature change of 0.0381 K across a distance of 6.8 mm near the source was measured, corresponding to a dose of 159.3 Gy. The standard deviation in a typical measurement set was ±3.45 Gy (corresponding to an uncertainty in the temperature value of ±8.3 × 10{sup −4} K). The relative dose fall off was in agreement with treatment planning system modeled data. Conclusions: First results with a prototype optical setup and a Brachytherapy source demonstrate the proof-of-principle of the approach. The prototype achieves high spatial resolution of approximately 3 × 10{sup −5} m. The general approach is fundamentally independent of the radiation type and energy. The sensitivity range determined indicates that the method is predominantly suitable for high dose rate applications. Further work is required to determine absolute dose in all three dimensions.

  3. Framework for radiation pneumonitis risk stratification based on anatomic and perfused lung dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Dhami, Gurleen; Zeng, Jing; Patel, Shilpen A.; Rengan, Ramesh [University of Washington School of Medicine, Department of Radiation Oncology, Seattle, WA (United States); Vesselle, Hubert J.; Kinahan, Paul E.; Miyaoka, Robert S. [University of Washington School of Medicine, Department of Radiology, Seattle, WA (United States); Bowen, Stephen R. [University of Washington School of Medicine, Department of Radiation Oncology, Seattle, WA (United States); University of Washington School of Medicine, Department of Radiology, Seattle, WA (United States)

    2017-05-15

    To design and apply a framework for predicting symptomatic radiation pneumonitis in patients undergoing thoracic radiation, using both pretreatment anatomic and perfused lung dose-volume parameters. Radiation treatment planning CT scans were coregistered with pretreatment [{sup 99m}Tc]MAA perfusion SPECT/CT scans of 20 patients who underwent definitive thoracic radiation. Clinical radiation pneumonitis was defined as grade ≥ 2 (CTCAE v4 grading system). Anatomic lung dose-volume parameters were collected from the treatment planning scans. Perfusion dose-volume parameters were calculated from pretreatment SPECT/CT scans. Equivalent doses in 2 Gy per fraction were calculated in the lung to account for differences in treatment regimens and spatial variations in lung dose (EQD2{sub lung}). Anatomic lung dosimetric parameters (MLD) and functional lung dosimetric parameters (pMLD{sub 70%}) were identified as candidate predictors of grade ≥ 2 radiation pneumonitis (AUC > 0.93, p < 0.01). Pairing of an anatomic and functional dosimetric parameter (e.g., MLD and pMLD{sub 70%}) may further improve prediction accuracy. Not all individuals with high anatomic lung dose (MLD > 13.6 GyEQD2{sub lung}, 19.3 Gy for patients receiving 60 Gy in 30 fractions) developed radiation pneumonitis, but all individuals who also had high mean dose to perfused lung (pMLD{sub 70%} > 13.3 GyEQD2) developed radiation pneumonitis. The preliminary application of this framework revealed differences between anatomic and perfused lung dosimetry in this limited patient cohort. The addition of perfused lung parameters may help risk stratify patients for radiation pneumonitis, especially in treatment plans with high anatomic mean lung dose. Further investigations are warranted. (orig.) [German] Erstellung und Anwendung eines Rahmenwerks zur Vorhersage symptomatischer Strahlenpneumonitis bei Patienten mit einer Thorax-Bestrahlung anhand anatomischer und perfundierter Lungendosis-Volumen-Parameter in der

  4. Neutron and gamma ray calculation for Hiroshima-type atomic bomb

    Energy Technology Data Exchange (ETDEWEB)

    Hoshi, Masaharu; Endo, Satoru; Takada, Jun [Hiroshima Univ. (Japan). Research Inst. for Radiation Biology and Medicine; Iwatani, Kazuo; Oka, Takamitsu; Shizuma, Kiyoshi; Fujita, Shoichiro; Hasai, Hiromi

    1998-03-01

    We looked at the radiation dose of Hiroshima and Nagasaki atomic bomb again in 1986. We gave it the name of ``Dosimetry System 1986`` (DS86). We and other groups have measured the expose dose since 1986. Now, the difference between data of {sup 152}Eu and the calculation result on the basis of DS86 was found. To investigate the reason, we carried out the calculations of neutron transport and neutron absorption gamma ray for Hiroshima atomic bomb by MCNP3A and MCNP4A code. The problems caused by fast neutron {sup 32}P from sulfur in insulator of pole. To correct the difference, we investigated many models and found agreement of all data within 1 km. (S.Y.)

  5. Radiation dose reduction without degrading image quality during computed tomography examinations: Dosimetry and quality control study

    Directory of Open Access Journals (Sweden)

    George Felix Acquah

    2014-08-01

    enough to produce acceptable level of image quality which leads to adequate diagnosis without unnecessary doses to patients.......................................................Cite this article as:Acquah GF, Schiestl B,Cofie AY, Nkansah JO. Radiation dose reduction without degrading image quality during computed tomography examinations: Dosimetry and quality control study. Int J Cancer Ther Oncol 2014; 2(3:02039.  DOI: 10.14319/ijcto.0203.9

  6. Radiation fields, dosimetry, biokinetics and biophysical models for cancer induction by ionising radiation 1996 - 1999. Mid-term reports for the period 1996-1997

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, P.; Paretzke, H.G.; Roth, P. [GSF - Forschungszentrum fuer Umwelt und Gesundheit Neuherberg GmbH, Oberschleissheim (Germany). Inst. fuer Strahlenschutz; Michael, B.D. [Mount Vernon Hospital, Northwood (United Kingdom). Gray Lab.; O`Sullivan, D. [Dublin Inst. for Advanced Studies (Ireland)

    1998-12-31

    The main objectives of the first dosimetry project are the measurement of neutron and charged particle flux and energy spectra at altitudes in civil aviation, the determination of response characteristics for detectors, the investigation of calibration procedures, and the evaluation of exposures of aircrews. The overall objective of the second dosimetry project is to improve estimates of dose following the intake of radionuclides by adults and children. The work includes the development of biokinetic and dosimetric models, including models of the gastrointestinal tract, for the systemic behaviour of radionuclides, and for the developing embryo and foetus. Further subjects are target cell dosimetry for short-range particles and the development of computational tools for sensitivity and uncertainty analysis models. The third dosimetry project encompasses the study of different methods for retrospective dose assessments for individuals or groups of individuals accidentally exposed to increased levels of radiation. The methods investigated include electron paramagnetic resonance (EPR) of tooth enamel and chromosome painting (FISH) for lymphocytes in peripheral blood for individual retrospective dose assessments, luminescence techniques on materials in inhabited environment (ceramics, bricks) and model calculations using environmental data as input. (orig.)

  7. NASA astronaut dosimetry: Implementation of scalable human phantoms and benchmark comparisons of deterministic versus Monte Carlo radiation transport

    Science.gov (United States)

    Bahadori, Amir Alexander

    Astronauts are exposed to a unique radiation environment in space. United States terrestrial radiation worker limits, derived from guidelines produced by scientific panels, do not apply to astronauts. Limits for astronauts have changed throughout the Space Age, eventually reaching the current National Aeronautics and Space Administration limit of 3% risk of exposure induced death, with an administrative stipulation that the risk be assured to the upper 95% confidence limit. Much effort has been spent on reducing the uncertainty associated with evaluating astronaut risk for radiogenic cancer mortality, while tools that affect the accuracy of the calculations have largely remained unchanged. In the present study, the impacts of using more realistic computational phantoms with size variability to represent astronauts with simplified deterministic radiation transport were evaluated. Next, the impacts of microgravity-induced body changes on space radiation dosimetry using the same transport method were investigated. Finally, dosimetry and risk calculations resulting from Monte Carlo radiation transport were compared with results obtained using simplified deterministic radiation transport. The results of the present study indicated that the use of phantoms that more accurately represent human anatomy can substantially improve space radiation dose estimates, most notably for exposures from solar particle events under light shielding conditions. Microgravity-induced changes were less important, but results showed that flexible phantoms could assist in optimizing astronaut body position for reducing exposures during solar particle events. Finally, little overall differences in risk calculations using simplified deterministic radiation transport and 3D Monte Carlo radiation transport were found; however, for the galactic cosmic ray ion spectra, compensating errors were observed for the constituent ions, thus exhibiting the need to perform evaluations on a particle

  8. SU-E-J-17: A Study of Accelerator-Induced Cerenkov Radiation as a Beam Diagnostic and Dosimetry Tool

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, F; Tosh, R [NIST, Gaithersburg, MD (United States)

    2014-06-01

    Purpose: To investigate accelerator-induced Cerenkov radiation imaging as a possible beam diagnostic and medical dosimetry tool. Methods: Cerenkov emission produced by clinical accelerator beams in a water phantom was imaged using a camera system comprised of a high-sensitivity thermoelectrically-cooled CCD camera coupled to a large aperture (f/0.75) objective lens with 16:1 magnification. This large format lens allows a significant amount of the available Cerenkov light to be collected and focused onto the CCD camera to form the image. Preliminary images, obtained with 6 MV photon beams, used an unshielded camera mounted horizontally with the beam normal to the water surface, and confirmed the detection of Cerenkov radiation. Several improvements were subsequently made including the addition of radiation shielding around the camera, and altering of the beam and camera angles to give a more favorable geometry for Cerenkov light collection. A detailed study was then undertaken over a range of electron and photon beam energies and dose rates to investigate the possibility of using this technique for beam diagnostics and dosimetry. Results: A series of images were obtained at a fixed dose rate over a range of electron energies from 6 to 20 MeV. The location of maximum intensity was found to vary linearly with the energy of the beam. A linear relationship was also found between the light observed from a fixed point on the central axis and the dose rate for both photon and electron beams. Conclusion: We have found that the analysis of images of beam-induced Cerenkov light in a water phantom has potential for use as a beam diagnostic and medical dosimetry tool. Our future goals include the calibration of the light output in terms of radiation dose and development of a tomographic system for 3D Cerenkov imaging in water phantoms and other media.

  9. New radiation-induced effects in optical fibres feasible for dosimetry; Nouveaux effets induits par rayonnement dans des fibres optiques dediees a la dosimetrie

    Energy Technology Data Exchange (ETDEWEB)

    Tomashuk, A.L.; Golant, K.M.; Dianov, E.M.; Nikolin, I.V. [Fibre Optics Research Centre (FORC), Moscow (Russian Federation); Zakharkin, I.I.; Stepanov, V.A. [Institute of Physics and Power Engineering, SSC RF, Obninsk (Russian Federation)

    1999-07-01

    Three new radiation-induced effects in silica optical fibres suitable for dosimetry are proposed: 1) in fibres with a high-OH cladding and a low-OH core, ionizing radiation disrupts the O-H bonds to let hydrogen diffuse into the core. This results in an increase in the OH-group absorption band amplitude, 2) the polymers used to coat optical fibres consist of hydrogen to the extent of about 50 %. Energetic neutrons produce recoil protons in the fibre coating, which can ''stick'' in the core, turn into hydrogen, and enter the glass network in the form of OH-group, and 3) in N-doped silica fibres irradiated with thermal neutrons, the following reaction {sub 7}N{sup 14}({sub 0}n{sup 1},{sub 1}p{sup 1}){sub 6}C{sup 14} occurs and produces protons with energy 620 keV. With this energy, propagation length of protons in silica is 7 {mu}m which means that the escape of protons from a 50 {mu}m core is very weak. In fact all 3 effects lead to the irreversible increase in the OH-group absorption bands, which is proportional to the absorbed dose. With the help of these effects, temperature and dose-rate independent measurements of high doses become possible.

  10. Personal dosimetry TLD 100 in orthopedic surgeons exposed to ionizing radiation in Bogota - Colombia; Dosimetria personal TLD 110 en medicos ortopedistas expuestos a radiacion ionizante en Bogota - Colombia

    Energy Technology Data Exchange (ETDEWEB)

    Sierra C, B. Y.; Jimenez, Y. [Universidad Nacional de Colombia, Departamento de Fisica, Grupo de Fisica Medica, Carrera 45 No. 26-85, Bogota (Colombia); Plazas, M. C. [Hospital Universitario Fundacion Santa Fe de Bogota, Instituto de Oncologia Carlos Ardila Lulle, Calle 119, No. 7-90, 220246 Bogota (Colombia); Eslava S, J. [Universidad Nacional de Colombia, Instituto de Investigaciones Clinicas, Grupo Equidad en Salud, Carrera 45 No. 26-85, Bogota (Colombia); Groot R, H., E-mail: brigith.sierra@gmail.com [Universidad de los Andes, Laboratorio de Genetica Humana, Carrera 1 No. 18A -12, Bogota (Colombia)

    2014-08-15

    Orthopedic surgeons should be considered as professionals occupationally exposed to ionizing radiation, for using C arc (fluoroscope) an equipment of X type radiation emission, during surgical procedures for imaging generation. Some health institutes, use of C arc under uncontrolled circumstances, such a lack of dosimetry control, incomplete or absence of personnel protective elements and protective measures, which in turn, lead to a high exposition to the personnel. Materials and methods. Study of double match cohort by age and gender, was conducted, in four health institutions of second and third level of attention in Bogota city. Personal dosimetry measurements with TLD-100 dosimetry crystals in both cohorts and environmental dosimetry in each of operation rooms used for orthopedic procedures, were carry out during six months of follow up. Dosimetry crystals were read in a Harshaw 4500 - Bicron equipment, in the Medical Physics Laboratory of National University of Colombia. Results. Dosimetry measurements are compatibles with those of occupationally exposed personnel 3.44 mSv/6 m CI 95% (1.66-3.99), even does not overpass ICRP recommendations, are higher as were expect at the beginning of the study. The median of effective accumulative dose in thorax is 3,4 mSv CI 95% (1,66-3,99), higher in comparison with neck value 2,7 mSv CI 95% (1,73-3,80) and hand dosimetry 1,42 mSv CI 95% (0,96-2,34). Conclusions: Orthopedic surgeons should be considered occupational exposed to ionizing radiation, who has to accomplish to the radiological protection measures, dosimetric follow up and maintenance of the used X ray equipment. It was confirm throughout this study that dosimetry shows higher levels as expected at the beginning of the study, compatible with occupationally exposed personnel. (Author)

  11. The use of Monte Carlo radiation transport codes in radiation physics and dosimetry

    CERN Document Server

    CERN. Geneva; Ferrari, Alfredo; Silari, Marco

    2006-01-01

    Transport and interaction of electromagnetic radiation Interaction models and simulation schemes implemented in modern Monte Carlo codes for the simulation of coupled electron-photon transport will be briefly reviewed. In these codes, photon transport is simulated by using the detailed scheme, i.e., interaction by interaction. Detailed simulation is easy to implement, and the reliability of the results is only limited by the accuracy of the adopted cross sections. Simulations of electron and positron transport are more difficult, because these particles undergo a large number of interactions in the course of their slowing down. Different schemes for simulating electron transport will be discussed. Condensed algorithms, which rely on multiple-scattering theories, are comparatively fast, but less accurate than mixed algorithms, in which hard interactions (with energy loss or angular deflection larger than certain cut-off values) are simulated individually. The reliability, and limitations, of electron-interacti...

  12. Interest of numerical dosimetry in radiation protection: mean of substitution or measurements consolidation?; Interet de la dosimetrie numerique en radioprotection: moyen de substitution ou de consolidation des mesures?

    Energy Technology Data Exchange (ETDEWEB)

    Lahaye, T.; Chau, Q. [Institut de Radioprotection et de Surete Nucleaire (IRSN/DPHD/SDOS), Service Dosimetrie, 92 - Fontenay-aux-Roses (France); Ferragut, A.; Gillot, J.Y. [SAPHYMO, 91 - Massy (France)

    2003-07-01

    The use of calculation codes allows to reduce the costs and the time limits. These codes brings to operators elements to reinforce their projected dosimetry. In the cases of accidental overexposure, the numerical dosimetry comes in complement of clinical and biological investigations to give an estimation as precise as possible of the received dose. For particular situations where it does not exist an adapted instrumentation, the numerical dosimetry can substitute to conventional techniques used by regulatory dosimetry (project for aviation personnel). (N.C.)

  13. Video-rate optical dosimetry and dynamic visualization of IMRT and VMAT treatment plans in water using Cherenkov radiation

    Energy Technology Data Exchange (ETDEWEB)

    Glaser, Adam K., E-mail: Adam.K.Glaser@dartmouth.edu, E-mail: Brian.W.Pogue@dartmouth.edu; Andreozzi, Jacqueline M.; Davis, Scott C. [Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 (United States); Zhang, Rongxiao [Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States); Pogue, Brian W., E-mail: Adam.K.Glaser@dartmouth.edu, E-mail: Brian.W.Pogue@dartmouth.edu [Department of Physics and Astronomy and Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 (United States); Fox, Colleen J.; Gladstone, David J. [Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03766 (United States)

    2014-06-15

    Purpose: A novel technique for optical dosimetry of dynamic intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) plans was investigated for the first time by capturing images of the induced Cherenkov radiation in water. Methods: A high-sensitivity, intensified CCD camera (ICCD) was configured to acquire a two-dimensional (2D) projection image of the Cherenkov radiation induced by IMRT and VMAT plans, based on the Task Group 119 (TG-119) C-Shape geometry. Plans were generated using the Varian Eclipse treatment planning system (TPS) and delivered using 6 MV x-rays from a Varian TrueBeam Linear Accelerator (Linac) incident on a water tank doped with the fluorophore quinine sulfate. The ICCD acquisition was gated to the Linac target trigger pulse to reduce background light artifacts, read out for a single radiation pulse, and binned to a resolution of 512 × 512 pixels. The resulting videos were analyzed temporally for various regions of interest (ROI) covering the planning target volume (PTV) and organ at risk (OAR), and summed to obtain an overall light intensity distribution, which was compared to the expected dose distribution from the TPS using a gamma-index analysis. Results: The chosen camera settings resulted in 23.5 frames per second dosimetry videos. Temporal intensity plots of the PTV and OAR ROIs confirmed the preferential delivery of dose to the PTV versus the OAR, and the gamma analysis yielded 95.9% and 96.2% agreement between the experimentally captured Cherenkov light distribution and expected TPS dose distribution based upon a 3%/3 mm dose difference and distance-to-agreement criterion for the IMRT and VMAT plans, respectively. Conclusions: The results from this initial study demonstrate the first documented use of Cherenkov radiation for video-rate optical dosimetry of dynamic IMRT and VMAT treatment plans. The proposed modality has several potential advantages over alternative methods including the real

  14. Potential of Hybrid Computational Phantoms for Retrospective Heart Dosimetry After Breast Radiation Therapy: A Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Moignier, Alexandra, E-mail: alexandra.moignier@irsn.fr [Institut de Radioprotection et de Surete Nucleaire, Fontenay-aux-Roses (France); Derreumaux, Sylvie; Broggio, David; Beurrier, Julien [Institut de Radioprotection et de Surete Nucleaire, Fontenay-aux-Roses (France); Chea, Michel; Boisserie, Gilbert [Groupe Hospitalier Pitie Salpetriere, Service de Radiotherapie, Paris (France); Franck, Didier; Aubert, Bernard [Institut de Radioprotection et de Surete Nucleaire, Fontenay-aux-Roses (France); Mazeron, Jean-Jacques [Groupe Hospitalier Pitie Salpetriere, Service de Radiotherapie, Paris (France)

    2013-02-01

    Purpose: Current retrospective cardiovascular dosimetry studies are based on a representative patient or simple mathematic phantoms. Here, a process of patient modeling was developed to personalize the anatomy of the thorax and to include a heart model with coronary arteries. Methods and Materials: The patient models were hybrid computational phantoms (HCPs) with an inserted detailed heart model. A computed tomography (CT) acquisition (pseudo-CT) was derived from HCP and imported into a treatment planning system where treatment conditions were reproduced. Six current patients were selected: 3 were modeled from their CT images (A patients) and the others were modelled from 2 orthogonal radiographs (B patients). The method performance and limitation were investigated by quantitative comparison between the initial CT and the pseudo-CT, namely, the morphology and the dose calculation were compared. For the B patients, a comparison with 2 kinds of representative patients was also conducted. Finally, dose assessment was focused on the whole coronary artery tree and the left anterior descending coronary. Results: When 3-dimensional anatomic information was available, the dose calculations performed on the initial CT and the pseudo-CT were in good agreement. For the B patients, comparison of doses derived from HCP and representative patients showed that the HCP doses were either better or equivalent. In the left breast radiation therapy context and for the studied cases, coronary mean doses were at least 5-fold higher than heart mean doses. Conclusions: For retrospective dose studies, it is suggested that HCP offers a better surrogate, in terms of dose accuracy, than representative patients. The use of a detailed heart model eliminates the problem of identifying the coronaries on the patient's CT.

  15. Risks of circulatory diseases among Mayak PA workers with radiation doses estimated using the improved Mayak Worker Dosimetry System 2008

    Energy Technology Data Exchange (ETDEWEB)

    Moseeva, Maria B.; Azizova, Tamara V.; Grigoryeva, Evgenia S. [Southern Urals Biophysics Institute (SUBI), Ozyorsk, Chelyabinsk Region (Russian Federation); Haylock, Richard [Public Health of England, London (United Kingdom)

    2014-05-15

    The new Mayak Worker Dosimetry System 2008 (MWDS-2008) was published in 2013 and supersedes the Doses-2005 dosimetry system for Mayak Production Association (PA) workers. It provides revised external and internal dose estimates based on the updated occupational history data. Using MWDS-2008, a cohort of 18,856 workers first employed at one of the main Mayak PA plants during 1948-1972 and followed up to 2005 was identified. Incidence and mortality risks from ischemic heart disease (IHD) (International Classification of Diseases (ICD)-9 codes 410-414) and from cerebrovascular diseases (CVD) (ICD-9 codes 430-438) were examined in this cohort and compared with previously published risk estimates in the same cohort based on the Doses-2005 dosimetry system. Significant associations were observed between doses from external gamma-rays and IHD and CVD incidence and also between internal doses from alpha-radiation and IHD mortality and CVD incidence. The estimates of excess relative risk (ERR)/Gy were consistent with those estimates from the previous studies based on Doses-2005 system apart from the relationship between CVD incidence and internal liver dose where the ERR/Gy based on MWDS-2008 was just over three times higher than the corresponding estimate based on Doses-2005 system. Adjustment for smoking status did not show any effect on the estimates of risk from internal alpha-particle exposure. (orig.)

  16. Evaluation of individual dosimetry in mixed neutron and photon radiation fields (EVIDOS). Part I: Scope and methods of the project.

    Science.gov (United States)

    d'Errico, F; Bartlett, D; Bolognese-Milsztajn, T; Boschung, M; Coeck, M; Curzio, G; Fiechtner, A; Kyllönen, J-E; Lacoste, V; Lindborg, L; Luszik-Bhadra, M; Reginatto, M; Schuhmacher, H; Tanner, R; Vanhavere, F

    2007-01-01

    Supported by the European Commission, the EVIDOS project started in November 2001 with the broad goal of evaluating state of the art dosimetry techniques in representative workplaces of the nuclear industry. Seven European institutes joined efforts with end users at nuclear power plants, at fuel processing and reprocessing plants, and at transport and storage facilities. A comprehensive programme was devised to evaluate capabilities and limitations of standard and innovative personal dosemeters in relation to the mixed neutron-photon fields of concern to the nuclear industry. This paper describes the criteria behind the selection of dosimetry techniques and workplaces that were analysed, as well as the organisation of the measurement campaigns. Particular emphasis was placed on the evaluation of a variety of electronic personal dosemeters, either commercially available or previously developed by the partners. The estimates provided by these personal dosemeters were compared to reference values of dose equivalent quantities derived from spectrometry and fluence-to-dose equivalent conversion coefficients. Spectrometry was performed both with conventional multisphere and with some original instrumentation providing energy and direction resolution, based on silicon detectors and superheated drop detectors mounted on or in spherical moderators. The results were collected in a large, searchable database and are intended to be used in the harmonisation of dosimetric procedures for mixed radiation fields and for the approval of dosimetry services in Europe.

  17. The UF family of reference hybrid phantoms for computational radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Choonsik [Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institute of Health, Bethesda, MD 20852 (United States); Lodwick, Daniel; Hurtado, Jorge; Pafundi, Deanna [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL 32611 (United States); Williams, Jonathan L [Department of Radiology, University of Florida, Gainesville, FL 32611 (United States); Bolch, Wesley E [Departments of Nuclear and Radiological and Biomedical Engineering, University of Florida, Gainesville, FL 32611 (United States)], E-mail: wbolch@ufl.edu

    2010-01-21

    Computational human phantoms are computer models used to obtain dose distributions within the human body exposed to internal or external radiation sources. In addition, they are increasingly used to develop detector efficiencies for in vivo whole-body counters. Two classes of computational human phantoms have been widely utilized for dosimetry calculation: stylized and voxel phantoms that describe human anatomy through mathematical surface equations and 3D voxel matrices, respectively. Stylized phantoms are flexible in that changes to organ position and shape are possible given avoidance of region overlap, while voxel phantoms are typically fixed to a given patient anatomy, yet can be proportionally scaled to match individuals of larger or smaller stature, but of equivalent organ anatomy. Voxel phantoms provide much better anatomical realism as compared to stylized phantoms which are intrinsically limited by mathematical surface equations. To address the drawbacks of these phantoms, hybrid phantoms based on non-uniform rational B-spline (NURBS) surfaces have been introduced wherein anthropomorphic flexibility and anatomic realism are both preserved. Researchers at the University of Florida have introduced a series of hybrid phantoms representing the ICRP Publication 89 reference newborn, 15 year, and adult male and female. In this study, six additional phantoms are added to the UF family of hybrid phantoms-those of the reference 1 year, 5 year and 10 year child. Head and torso CT images of patients whose ages were close to the targeted ages were obtained under approved protocols. Major organs and tissues were segmented from these images using an image processing software, 3D-DOCTOR(TM). NURBS and polygon mesh surfaces were then used to model individual organs and tissues after importing the segmented organ models to the 3D NURBS modeling software, Rhinoceros(TM). The phantoms were matched to four reference datasets: (1) standard anthropometric data, (2) reference

  18. Monte Carlo modeling in CT-based geometries: dosimetry for biological modeling experiments with particle beam radiation.

    Science.gov (United States)

    Diffenderfer, Eric S; Dolney, Derek; Schaettler, Maximilian; Sanzari, Jenine K; McDonough, James; Cengel, Keith A

    2014-03-01

    The space radiation environment imposes increased dangers of exposure to ionizing radiation, particularly during a solar particle event (SPE). These events consist primarily of low energy protons that produce a highly inhomogeneous dose distribution. Due to this inherent dose heterogeneity, experiments designed to investigate the radiobiological effects of SPE radiation present difficulties in evaluating and interpreting dose to sensitive organs. To address this challenge, we used the Geant4 Monte Carlo simulation framework to develop dosimetry software that uses computed tomography (CT) images and provides radiation transport simulations incorporating all relevant physical interaction processes. We found that this simulation accurately predicts measured data in phantoms and can be applied to model dose in radiobiological experiments with animal models exposed to charged particle (electron and proton) beams. This study clearly demonstrates the value of Monte Carlo radiation transport methods for two critically interrelated uses: (i) determining the overall dose distribution and dose levels to specific organ systems for animal experiments with SPE-like radiation, and (ii) interpreting the effect of random and systematic variations in experimental variables (e.g. animal movement during long exposures) on the dose distributions and consequent biological effects from SPE-like radiation exposure. The software developed and validated in this study represents a critically important new tool that allows integration of computational and biological modeling for evaluating the biological outcomes of exposures to inhomogeneous SPE-like radiation dose distributions, and has potential applications for other environmental and therapeutic exposure simulations.

  19. 3D dosimetry estimation for selective internal radiation therapy (SIRT) using SPECT/CT images: a phantom study

    Science.gov (United States)

    Debebe, Senait A.; Franquiz, Juan; McGoron, Anthony J.

    2015-03-01

    Selective Internal Radiation Therapy (SIRT) is a common way to treat liver cancer that cannot be treated surgically. SIRT involves administration of Yttrium - 90 (90Y) microspheres via the hepatic artery after a diagnostic procedure using 99mTechnetium (Tc)-macroaggregated albumin (MAA) to detect extrahepatic shunting to the lung or the gastrointestinal tract. Accurate quantification of radionuclide administered to patients and radiation dose absorbed by different organs is of importance in SIRT. Accurate dosimetry for SIRT allows optimization of dose delivery to the target tumor and may allow for the ability to assess the efficacy of the treatment. In this study, we proposed a method that can efficiently estimate radiation absorbed dose from 90Y bremsstrahlung SPECT/CT images of liver and the surrounding organs. Bremsstrahlung radiation from 90Y was simulated using the Compton window of 99mTc (78keV at 57%). 99mTc images acquired at the photopeak energy window were used as a standard to examine the accuracy of dosimetry prediction by the simulated bremsstrahlung images. A Liqui-Phil abdominal phantom with liver, stomach and two tumor inserts was imaged using a Philips SPECT/CT scanner. The Dose Point Kernel convolution method was used to find the radiation absorbed dose at a voxel level for a three dimensional dose distribution. This method will allow for a complete estimate of the distribution of radiation absorbed dose by tumors, liver, stomach and other surrounding organs at the voxel level. The method provides a quantitative predictive method for SIRT treatment outcome and administered dose response for patients who undergo the treatment.

  20. Thermoluminescent properties of CVD diamond: applications to ionising radiation dosimetry; Proprietes thermoluminescentes du diamant CVD: applications a la dosimetrie des rayonnements ionisants

    Energy Technology Data Exchange (ETDEWEB)

    Petitfils, A

    2007-09-15

    Remarkable properties of synthetic diamond (human soft tissue equivalence, chemical stability, non-toxicity) make this material suitable for medical application as thermoluminescent dosimeter (TLD). This work highlights the interest of this material as radiotherapy TLD. In the first stage of this work, we looked after thermoluminescent (TL) and dosimetric properties of polycrystalline diamond made by Chemically Vapor Deposited (CVD) synthesis. Dosimetric characteristics are satisfactory as TLD for medical application. Luminescence thermal quenching on diamond has been investigated. This phenomenon leads to a decrease of dosimetric TL peak sensitivity when the heating rate increases. The second part of this work analyses the use of synthetic diamond as TLD in radiotherapy. Dose profiles, depth dose distributions and the cartography of an electron beam obtained with our samples are in very good agreement with results from an ionisation chamber. It is clearly shown that CVD) diamond is of interest to check beams of treatment accelerators. The use of these samples in a control of treatment with Intensity Modulated Radiation Therapy underlines good response of synthetic diamond in high dose gradient areas. These results indicate that CVD diamond is a promising material for radiotherapy dosimetry. (author)

  1. Reactor Dosimetry Applications Using RAPTOR-M3G:. a New Parallel 3-D Radiation Transport Code

    Science.gov (United States)

    Longoni, Gianluca; Anderson, Stanwood L.

    2009-08-01

    The numerical solution of the Linearized Boltzmann Equation (LBE) via the Discrete Ordinates method (SN) requires extensive computational resources for large 3-D neutron and gamma transport applications due to the concurrent discretization of the angular, spatial, and energy domains. This paper will discuss the development RAPTOR-M3G (RApid Parallel Transport Of Radiation - Multiple 3D Geometries), a new 3-D parallel radiation transport code, and its application to the calculation of ex-vessel neutron dosimetry responses in the cavity of a commercial 2-loop Pressurized Water Reactor (PWR). RAPTOR-M3G is based domain decomposition algorithms, where the spatial and angular domains are allocated and processed on multi-processor computer architectures. As compared to traditional single-processor applications, this approach reduces the computational load as well as the memory requirement per processor, yielding an efficient solution methodology for large 3-D problems. Measured neutron dosimetry responses in the reactor cavity air gap will be compared to the RAPTOR-M3G predictions. This paper is organized as follows: Section 1 discusses the RAPTOR-M3G methodology; Section 2 describes the 2-loop PWR model and the numerical results obtained. Section 3 addresses the parallel performance of the code, and Section 4 concludes this paper with final remarks and future work.

  2. Partial-body dosimetry for photons and beta radiation; Teilkoerperdosimetrie fuer Photonen und Betastrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Behrens, Rolf [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany). Arbeitsgruppe ' Betadosimetrie'

    2013-06-15

    After a description of typical application positions of partial-body dosimetry in medicine the technical details of such dosemeters mostly based on thermoluminescence detectors are described. then especially eye and finger-ring dosemeters are described more detailedly. Finally different applied dosemeter types are considered. (HSI)

  3. Anthropomorphic Phantom Radiation Dosimetry at the NATO Standard Reference Point at Aberdeen Proving Ground,

    Science.gov (United States)

    1987-04-01

    will have a non-isotropic angular dependance . Thus, for free-field dosimetry, while the bubble detector results could be directly transformed * into...these experiments was the bubble dosimeter temperature dependance . In all experiments, the phantom was surrounded by a tent arrangement (see figs) in

  4. Biodistribution and radiation dosimetry for the tau tracer (18)F-THK-5351 in healthy human subjects.

    Science.gov (United States)

    Hsiao, Ing-Tsung; Lin, Kun-Ju; Huang, Kuo-Lun; Huang, Chin-Chang; Chen, Han-Shiuan; Wey, Shiaw-Pyng; Yen, Tzu-Chen; Okamura, Nobuyuki; Hsu, Jung-Lung

    2017-03-23

    (18)F-THK-5351 is a novel radiotracer that demonstrates high binding selectivity and affinity for tau pathology and exhibits better pharmacokinetics in the living brain than previous THK tau probes. The aim of the present study was to estimate the radiation dose of (18)F-THK-5351 in humans and to compare the clinical radiation dosimetry results to estimations published previously with preclinical data. Methods: Serial whole-body positron emission tomography/computed tomography (PET/CT) imaging was performed for 240 min on 12 healthy volunteers after injecting (18)F-THK-5351 (mean administered activity: 377.8 ± 14.0 MBq, range: 340-397 MBq). The bladder and gallbladder were delineated on PET images, while the other organs were delineated on CT images. Voided urine activity was recorded. The decay-corrected and normalized (18)F-THK-5351 activity of 15 source organ regions as a function of time was entered into the OLINDA/EXM software to calculate the effective dose for each subject following the medical internal radiation dosimetry schema. Results: Overall, the (18)F-THK-5351 injection was well tolerated. The highest mean initial uptakes at 10 min post-injection were measured in the liver (11.4 ± 2.0%), lung (5.7 ± 2.1%), intestine (3.4 ± 0.8%), and kidney (1.4 ± 0.3%). The highest mean absorbed doses of radiation were in the gallbladder wall (242.2 ± 105.2 µGy/MBq), upper large intestine (90.0 ± 15.8 µGy/MBq), small intestine (79.5 ± 13.8 µGy/MBq), and liver (55.8 ± 6.1 µGy/MBq). The resultant whole-body effective dose was 22.7 ± 1.3 µSv/MBq. Conclusion: Our results suggest that a routine injection of 370 MBq of (18)F-THK-5351 would lead to an estimated effective dose of 8.4 mSv; hence, (18)F-THK-5351 shows similar radiation burdens to other commonly used clinical tracers. Our findings in humans were compatible with recently published preclinical dosimetry data extrapolated from mice.

  5. The clinical safety, biodistribution and internal radiation dosimetry of [{sup 18}F]fluciclovine in healthy adult volunteers

    Energy Technology Data Exchange (ETDEWEB)

    McParland, Brian J. [Imaging Technology Group, GE Healthcare Medical Diagnostics, Amersham, Buckinghamshire (United Kingdom); Wall, Anders; Soerensen, Jens [Uppsala University, Section of Nuclear Medicine and PET, Department of Radiology, Oncology and Radiation Sciences, Uppsala (Sweden); Johansson, Silvia [Uppsala University, Section of Oncology, Department of Radiology, Oncology and Radiation Sciences, Uppsala (Sweden)

    2013-08-15

    We report on the biodistribution and internal radiation dosimetry in humans of [{sup 18}F]fluciclovine, a synthetic L-leucine analogue being investigated as a potential diagnostic biomarker for neoplasia. Whole-body positron emission tomography (PET) scans of 6 healthy volunteers were acquired at up to 16 time points up to about 5 h after a bolus administration of [{sup 18}F]fluciclovine (153.8 {+-} 2.2 MBq). Venous blood samples were taken up to about 4 h post-injection from which {sup 18}F activity concentrations in whole blood and plasma were measured. Urine was collected as voided up to 4 h post-injection, from which the excreted {sup 18}F activity was measured. Absolute values of the {sup 18}F activity contained in up to 11 source regions (brain, salivary glands, lung, heart, pancreas, spleen, liver, red bone marrow, kidneys, uterus and urinary bladder contents) were determined directly from quantitative analysis of the images. For each source region, the {sup 18}F activity decay-corrected and normalised to that injected, as a function of time, was fit by an analytical function which was subsequently integrated to yield the cumulated activity normalised to the injected activity. These normalised cumulated activities were then used as input to the Organ Level INternal Dose Assessment/EXponential Modelling (OLINDA/EXM) package to calculate the internal radiation dosimetry of each subject following the Medical Internal Radiation Dose (MIRD) schema. An effective dose was then estimated for each subject. [{sup 18}F]Fluciclovine was clinically well tolerated in this study. Very little {sup 18}F was excreted with only a mean value of 3.3 % present in the urine at about 4 h post-injection; no activity within the intestinal contents was noted. The highest mean initial uptakes were measured in the liver (13.8 %), red bone marrow (11.1 %) and lung (7.1 %). The highest mean radiation absorbed doses per unit administered activity were received by the pancreas (102.2 {mu

  6. Trends of international standard procedures on dosimetry systems and irradiated foods applied in the multi-purpose radiation processing facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwang Hoon; Kim, Kwan Soo; Park, Soon Yeon [Greenpia Technology Inc., Yeojoo (Korea, Republic of); Lee, Young Keun [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Yook, Hong Sun [Chungnam National University, Daejeon (Korea, Republic of)

    2009-06-15

    Recently, with new radiation technology being developed and used in advanced industries, the business opportunity of radiation processing has been increasing. For the industrial application of developed products, it is required to review scientific and technical aspects of standard procedures applied to radiation processes. Standard procedures describe requirements of products manufactured under standard processing conditions. In fields related to the operation control of the multi-purpose radiation processing facilities, the ISO 11137 and Codex stan-106 are famous standards adopted as national standards in the advanced countries. The ISO 11137 is applied to supply criteria of medical devices for the validation and routine control of radiation sterilization including variability and uncertainty of dosimetry systems. Korean national standards on the food irradiation are significantly different from Codex stan-106 in parts such as the labelling. Therefore, prior to implementation of the labelling on the labelling on irradiated foods starting from year 2010, it is necessary to revise the inconsistent labelling to the reasonable level of international standard for the promotion and reenforcement of competition in industries using radiation processing technology.

  7. Order of the 30 December 2004 relative to the individual sheet of medical follow-up and to the individual information concerning the dosimetry of workers exposed to ionizing radiations; Arrete du 30 decembre 2004 relatif a la carte individuelle de suivi medical et aux informations individuelles de dosimetrie des travailleurs exposes aux rayonnements ionisants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-12-15

    This order concerns the content and the modalities of grant of the individual sheet of medical follow-up, the collect and the centralization of dosimetry individual information by the Institute of Radiation Protection and Safety (IRSN), and the access to individual results of external and internal dosimetry. (A.L.B.)

  8. The Quality Control of Intensity Modulated Radiation Therapy (IMRT for ONCOR Siemens Linear Accelerators Using Film Dosimetry

    Directory of Open Access Journals (Sweden)

    Keyvan Jabbari

    2012-03-01

    Full Text Available Introduction Intensity Modulated Radiation Therapy (IMRT has made a significant progress in radiation therapy centers in recent years. In this method, each radiation beam is divided into many subfields that create a field with a modulated intensity. Considering the complexity of this method, the quality control for IMRT is a topic of interest for researchers. This article is about the various steps of planning and quality control of Siemens linear accelerators for IMRT, using film dosimetry. This article in addition to review of the techniques, discusses the details of experiments and possible sources of errors which are not mentioned in the protocols and other references. Materials and Methods This project was carried out in Isfahan Milad hospital which has two Siemens ONCOR linear accelerators. Both accelerators are equipped with Multi-Leaf Collimators (MLC which enables us to perform IMRT delivery in the step-and-shoot method. The quality control consists of various experiments related to the sections of radiation therapy. In these experiments, the accuracy of some components such as treatment planning system, imaging device (CT, MLC, control system of accelerator, and stability of the output are evaluated. The dose verification is performed using film dosimetry method. The films were KODAK-EDR2, which were calibrated before the experiments. One of the important steps is the comparison of the calculated dose with planning system and the measured dose in experiments. Results The results of the experiments in various steps have been acceptable according to the standard protocols. The calibration of MLC and evaluation of the leakage through the leaves of MLC was performed by using the film dosimetry and visual check. In comparison with calculated and measured dose, more that 80% of the points have to be in agreement within 3% of the value. In our experiments, between 85 and 90% of the points had such an agreement with IMRT delivery. Conclusion

  9. Application of the planar-scanning technique to the near-field dosimetry of millimeter-wave radiators.

    Science.gov (United States)

    Zhao, Jianxun; Lu, Hongmin; Deng, Jun

    2015-02-01

    The planar-scanning technique was applied to the experimental measurement of the electric field and power flux density (PFD) in the exposure area close to the millimeter-wave (MMW) radiator. In the near-field region, the field and PFD were calculated from the plane-wave spectrum of the field sampled on a scan plane far from the radiator. The measurement resolution was improved by reducing the spatial interval between the field samples to a fraction of half the wavelength and implementing multiple iterations of the fast Fourier transform. With the reference to the results from the numerical calculation, an experimental evaluation of the planar-scanning measurement was made for a 50 GHz radiator. Placing the probe 1 to 3 wavelengths from the aperture of the radiator, the direct measurement gave the near-field data with significant differences from the numerical results. The planar-scanning measurement placed the probe 9 wavelengths away from the aperture and effectively reduced the maximum and averaged differences in the near-field data by 70.6% and 65.5%, respectively. Applied to the dosimetry of an open-ended waveguide and a choke ring antenna for 60 GHz exposure, the technique proved useful to the measurement of the PFD in the near-field exposure area of MMW radiators.

  10. Radiation-Induced Color Centers in LiF for Dosimetry at High Absorbed Dose Rates

    DEFF Research Database (Denmark)

    McLaughlin, W. L.; Miller, Arne; Ellis, S. C.

    1980-01-01

    Color centers formed by irradiation of optically clear crystals of pure LiF may be analyzed spectrophotometrically for dosimetry in the absorbed dose range from 102 to 107 Gy. Routine monitoring of intense electron beams is an important application. Both 6LiF and 7LiF forms are commercially avail...... available, and when used with filters as albedo dosimeters in pairs, they provide discrimination of neutron and gamma-ray doses....

  11. BiodosEPR-2006 Meeting: Acute dosimetry consensus committee recommendations on biodosimetry applications in events involving uses of radiation by terrorists and radiation accidents

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, George A. [U.S. Department of Health and Human Services, Office of Preparedness and Emergency Operations, 200 Independence Avenue, SW, Room 403B-1, Washington, DC 20201 (United States); Swartz, Harold M. [Dept. of Radiology and Physiology Dept., Dartmouth Medical School, HB 7785, Vail 702, Rubin 601, Hanover, NH 03755 (United States); Amundson, Sally A. [Center for Radiological Research, Columbia University Medical Center, 630 W. 168th Street, VC11-215, New York, NY 10032 (United States); Blakely, William F. [Armed Forces Radiobiology Research Inst., 8901 Wisconsin Avenue, Bethesda, MD 20889-5603 (United States)], E-mail: blakely@afrri.usuhs.mil; Buddemeier, Brooke [Science and Technology, U.S. Department of Homeland Security, Washington, DC 20528 (United States); Gallez, Bernard [Biomedical Magnetic Resonance Unit and Lab. of Medicinal Chemistry and Radiopharmacy, Univ. Catholique de Louvain, Brussels (Belgium); Dainiak, Nicholas [Dept. of Medicine, Bridgeport Hospital, 267 Grant Street, Bridgeport, CT 06610 (United States); Goans, Ronald E. [MJW Corporation, 1422 Eagle Bend Drive, Clinton, TN 37716-4029 (United States); Hayes, Robert B. [Remote Sensing Lab., MS RSL-47, P.O. Box 98421, Las Vegas, NV 89193 (United States); Lowry, Patrick C. [Radiation Emergency Assistance Center/Training Site (REAC/TS), Oak Ridge Associated Universities, P.O. Box 117, Oak Ridge, TN 37831-0117 (United States); Noska, Michael A. [Food and Drug Administration, FDA/CDRH, 1350 Piccard Drive, HFZ-240, Rockville, MD 20850 (United States); Okunieff, Paul [Dept. of Radiation Oncology (Box 647), Univ. of Rochester, 601 Elmwood Avenue, Rochester, NY 14642 (United States); Salner, Andrew L. [Helen and Harry Gray Cancer Center, Hartford Hospital, 80 Seymour Street, Hartford, CT 06102 (United States); Schauer, David A. [National Council on Radiation Protection and Measurements, 7910 Woodmont Avenue, Suite 400, Bethesda, MD 20814-3095 (United States)] (and others)

    2007-07-15

    In the aftermath of a radiological terrorism incident or mass-casualty radiation accident, first responders and receivers require prior guidance and pre-positioned resources for assessment, triage and medical management of affected individuals [NCRP, 2005. Key elements of preparing emergency responders for nuclear and radiological terrorism. NCRP Commentary No. 19, Bethesda, Maryland, USA]. Several recent articles [Dainiak, N., Waselenko, J.K., Armitage, J.O., MacVittie, T.J., Farese, A.M., 2003. The hematologist and radiation casualties. Hematology (Am. Soc. Hematol. Educ. Program) 473-496; Waselenko, J.K., MacVittie, T.J., Blakely, W.F., Pesik, N., Wiley, A.L., Dickerson, W.E., Tsu, H., Confer, D.L., Coleman, C.N., Seed, T., Lowry, P., Armitage, J.O., Dainiak, N., Strategic National Stockpile Radiation Working Group, 2004. Medical management of the acute radiation syndrome: recommendations of the Strategic National Stockpile Radiation Working Group. Ann. Intern. Med. 140(12), 1037-1051; Blakely, W.F., Salter, C.A., Prasanna, P.G., 2005. Early-response biological dosimetry-recommended countermeasure enhancements for mass-casualty radiological incidents and terrorism. Health Phys. 89(5), 494-504; Goans, R.E., Waselenko, J.K., 2005. Medical management of radiation casualties. Health Phys. 89(5), 505-512; Swartz, H.M., Iwasaki, A., Walczak, T., Demidenko, E., Salikhov, I., Lesniewski, P., Starewicz, P., Schauer, D., Romanyukha, A., 2005. Measurements of clinically significant doses of ionizing radiation using non-invasive in vivo EPR spectroscopy of teeth in situ. Appl. Radiat. Isot. 62, 293-299; . Acute radiation injury: contingency planning for triage, supportive care, and transplantation. Biol. Blood Marrow Transplant. 12(6), 672-682], national [. Management of persons accidentally contaminated with radionuclides. NCRP Report No. 65, Bethesda, Maryland, USA; . Management of terrorist events involving radioactive material. NCRP Report No. 138, Bethesda, Maryland

  12. Manufacture of polystyrene phantoms for beta radiation dosimetry; Confeccao de objetos simuladores em poliestireno para dosimetria da radiacao beta

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Marcia L.; Caldas, Linda V.E. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)]. E-mail: mlolivei@ipen.br; lcaldas@ipen.br

    2005-07-01

    {sup 90}Sr+{sup 90}Y beta radiation sources should be specified in terms of absorbed dose rate to water, following recent international recommendations. Due to the high dose gradients near source surfaces, the accurate determination of the distances involved in calibration procedures is extremely important, since the calibration of these sources is performed at 1 mm from their surfaces, in their central symmetry axis. To guarantee the adequate and reproducible positioning between the source during the calibration procedure and the radiation detector, the use of solid phantoms is convenient. Recent papers show that the most appropriate material as water substitute for beta radiation is the polystyrene. In this work, polystyrene phantoms were manufactured for thermoluminescent samples of LiF, CaF{sub 2}:Dy and CaF{sub 2}:Mn. A {sup 90}Sr+{sup 90}Y plane applicator was utilized to irradiate the samples. The maximum sample response variation was equal to: 4.9% for LiF; 3.7% for CaF{sub 2}:Dy; and 3.3% for CaF{sub 2}:Mn. The obtained results show the feasibility of the use of polystyrene phantoms in beta radiation dosimetry. The low cost phantoms guaranteed the reproducible positioning between the {sup 90}Sr+{sup 90}Y source and the samples, as desired. (author)

  13. Energy absorption buildup factors, exposure buildup factors and Kerma for optically stimulated luminescence materials and their tissue equivalence for radiation dosimetry

    Science.gov (United States)

    Singh, Vishwanath P.; Badiger, N. M.

    2014-11-01

    Optically stimulated luminescence (OSL) materials are sensitive dosimetric materials used for precise and accurate dose measurement for low-energy ionizing radiation. Low dose measurement capability with improved sensitivity makes these dosimeters very useful for diagnostic imaging, personnel monitoring and environmental radiation dosimetry. Gamma ray energy absorption buildup factors and exposure build factors were computed for OSL materials using the five-parameter Geometric Progression (G-P) fitting method in the energy range 0.015-15 MeV for penetration depths up to 40 mean free path. The computed energy absorption buildup factor and exposure buildup factor values were studied as a function of penetration depth and incident photon energy. Effective atomic numbers and Kerma relative to air of the selected OSL materials and tissue equivalence were computed and compared with that of water, PMMA and ICRU standard tissues. The buildup factors and kerma relative to air were found dependent upon effective atomic numbers. Buildup factors determined in the present work should be useful in radiation dosimetry, medical diagnostics and therapy, space dosimetry, accident dosimetry and personnel monitoring.

  14. Thermoluminescent dosimetry of new phosphors of Zn O exposed to beta radiation; Dosimetria termoluminiscente de nuevos fosforos de ZnO expuestos a radiacion beta

    Energy Technology Data Exchange (ETDEWEB)

    Cruz V, C.; Burruel I, S.E.; Grijalva M, H. [UNISON, A.P. 130, Hermosillo, Sonora (Mexico); Barboza F, M.; Bernal, R. [CIF, UNISON, A.P. 5-088, Hermosillo, Sonora (Mexico)

    2004-07-01

    In this work, we report the thermoluminescence dosimetry of a new Zn O phosphor obtained by annealing of Zn S powder precipitated when Zn S films were grown by employing a CBD method. The collected Zn S powder was pressed in a die to form pellets which were subjected to different thermal treatments under air atmosphere. X-ray diffraction (XRD) patterns and energy-dispersive X-ray Spectrometry (EDS) analyses confirmed the transformation of Zn S to Zn O. The phosphors thus obtained were exposed to high doses of beta radiation and their thermoluminescent dosimetry show that these new phosphors are materials suitable to be used in high dose thermoluminescence dosimetry. (Author)

  15. Historical review of personnel dosimetry development and its use in radiation protection programs at Hanford 1944 to the 1980s

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, R.H.

    1987-02-01

    This document is an account of the personnel dosimetry programs as they were developed and practiced at Hanford from their inception in 1943 to 1944 to the 1980s. This history is divided into sections covering the general categories of external and internal measurement methods, in vivo counting, radiation exposure recordkeeping, and calibration of personnel dosimeters. The reasons and circumstances surrounding the inception of these programs at Hanford are discussed. Information about these programs was obtained from documents, letters, and memos that are available in our historical records; the personnel files of many people who participated in these programs; and from the recollections of many long-time, current, and past Hanford employees. For the most part, the history of these programs is presented chronologically to relate their development and use in routine Hanford operations. 131 refs., 38 figs., 23 tabs.

  16. EPR dosimetry in tooth enamel by x radiation; Dosimetria EPR en esmalte dental irradiado con rayos X

    Energy Technology Data Exchange (ETDEWEB)

    Dubner, Diana; Perez, Maria del Rosario; Gisone, P. [Autoridad Regulatoria Nuclear, Buenos Aires (Argentina)] E-mail: ddubner@cae.arn.gov.ar; Fainstein, C.; Winkler, E. [Comision Nacional de Energia Atomica (CNEA), San Carlos de Bariloche (Argentina). Centro Atomico Bariloche]|[Universidad Nacional de Cuyo, Mendoza (Argentina). Inst. Balseiro; Saravi, Margarita [Comision Nacional de Energia Atomica (CNEA) (Argentina). Centro Atomico Ezeiza; Davila, Francisco [Ateneo Argentino de Odontologia, Buenos Aires (Argentina)

    2001-07-01

    Tooth enamel, extracted from molars, was irradiated with 66 keV X-rays, with doses up to 1 Gy. The preparation of the powder samples is described, as well as the protocol for the acquisition and processing of the spectra. The radiation induced paramagnetism is measured, at room temperature, by ESR spectroscopy. The ESR spectra is well described considering two paramagnetic species, with magnetic moments (in units of Bohr magnetrons) g=2,0041, and g1=2,0018, g2=1,9972. The ESR data (peak-to-peak amplitude per mg, hpp/mg, vs dose D), for doses 0 Gydosimetry. (author)

  17. Fiber optic probes based on silver-only coated hollow glass waveguides for ionizing beam radiation dosimetry

    Science.gov (United States)

    Darafsheh, Arash; Liu, Haoyang; Melzer, Jeffrey E.; Taleei, Reza; Harrington, James A.; Kassaee, Alireza; Zhu, Timothy C.; Finlay, Jarod C.

    2016-03-01

    Čerenkov contamination is a significant issue in radiation detection by fiber-coupled scintillators. To enhance the scintillation signal transmission while minimizing Čerenkov contamination, we designed a fiber probe using a silver-only coated hollow waveguide (HWG). The HWG tip with inserted scintillator, embedded in tissue mimicking phantoms, was irradiated with clinical electron and photon beams. Optical spectra of irradiated tips were taken using a fiber spectrometer, and the signal was deconvolved with a linear fitting algorithm. The resultant decomposed spectra of the scintillator with and without Čerenkov correction were in good agreement with measurements performed by an electron diode and ion chamber for electron and photon beam dosimetry, respectively, indicating the minimal effect of Čerenkov contamination. Compared with a silver/dielectric coated HWG fiber dosimeter design we observed higher signal transmission in our design based on the use of silver-only HWG.

  18. A review of the use and potential of the GATE Monte Carlo simulation code for radiation therapy and dosimetry applications.

    Science.gov (United States)

    Sarrut, David; Bardiès, Manuel; Boussion, Nicolas; Freud, Nicolas; Jan, Sébastien; Létang, Jean-Michel; Loudos, George; Maigne, Lydia; Marcatili, Sara; Mauxion, Thibault; Papadimitroulas, Panagiotis; Perrot, Yann; Pietrzyk, Uwe; Robert, Charlotte; Schaart, Dennis R; Visvikis, Dimitris; Buvat, Irène

    2014-06-01

    In this paper, the authors' review the applicability of the open-source GATE Monte Carlo simulation platform based on the GEANT4 toolkit for radiation therapy and dosimetry applications. The many applications of GATE for state-of-the-art radiotherapy simulations are described including external beam radiotherapy, brachytherapy, intraoperative radiotherapy, hadrontherapy, molecular radiotherapy, and in vivo dose monitoring. Investigations that have been performed using GEANT4 only are also mentioned to illustrate the potential of GATE. The very practical feature of GATE making it easy to model both a treatment and an imaging acquisition within the same framework is emphasized. The computational times associated with several applications are provided to illustrate the practical feasibility of the simulations using current computing facilities.

  19. A review of the use and potential of the GATE Monte Carlo simulation code for radiation therapy and dosimetry applications

    Energy Technology Data Exchange (ETDEWEB)

    Sarrut, David, E-mail: david.sarrut@creatis.insa-lyon.fr [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon (France); Université Lyon 1 (France); Centre Léon Bérard (France); Bardiès, Manuel; Marcatili, Sara; Mauxion, Thibault [Inserm, UMR1037 CRCT, F-31000 Toulouse, France and Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse (France); Boussion, Nicolas [INSERM, UMR 1101, LaTIM, CHU Morvan, 29609 Brest (France); Freud, Nicolas; Létang, Jean-Michel [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1, Centre Léon Bérard, 69008 Lyon (France); Jan, Sébastien [CEA/DSV/I2BM/SHFJ, Orsay 91401 (France); Loudos, George [Department of Medical Instruments Technology, Technological Educational Institute of Athens, Athens 12210 (Greece); Maigne, Lydia; Perrot, Yann [UMR 6533 CNRS/IN2P3, Université Blaise Pascal, 63171 Aubière (France); Papadimitroulas, Panagiotis [Department of Biomedical Engineering, Technological Educational Institute of Athens, 12210, Athens (Greece); Pietrzyk, Uwe [Institut für Neurowissenschaften und Medizin, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany and Fachbereich für Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, 42097 Wuppertal (Germany); Robert, Charlotte [IMNC, UMR 8165 CNRS, Universités Paris 7 et Paris 11, Orsay 91406 (France); and others

    2014-06-15

    In this paper, the authors' review the applicability of the open-source GATE Monte Carlo simulation platform based on the GEANT4 toolkit for radiation therapy and dosimetry applications. The many applications of GATE for state-of-the-art radiotherapy simulations are described including external beam radiotherapy, brachytherapy, intraoperative radiotherapy, hadrontherapy, molecular radiotherapy, and in vivo dose monitoring. Investigations that have been performed using GEANT4 only are also mentioned to illustrate the potential of GATE. The very practical feature of GATE making it easy to model both a treatment and an imaging acquisition within the same frameworkis emphasized. The computational times associated with several applications are provided to illustrate the practical feasibility of the simulations using current computing facilities.

  20. Radiation dosimetry and biodistribution of the beta-amyloid plaque imaging tracer {sup 11}C-BTA-1 in humans

    Energy Technology Data Exchange (ETDEWEB)

    Thees, S. [Ulm Univ. (Germany). Klinik fuer Nuklearmedizin; Leipzig Univ. (Germany). Klinik und Poliklinik fuer Diagnostische und Interventionelle Radiologie; Neumaier, B.; Glatting, G.; Deisenhofer, S.; Reske, S.N.; Mottaghy, F.M. [Ulm Univ. (Germany). Klinik fuer Nuklearmedizin; Arnim, C.A.F. von [Ulm Univ. (Germany). Abt. fuer Neurologie

    2007-07-01

    Aim: [N-methyl-{sup 11}C]2-(4'-(methylaminophenyl)-benzothiazole({sup 11}C-BTA-1)) is a thioflavin-T derivative that has been one of the promising PET tracers for imaging of amyloid plaque distribution in the Alzheimer patients brain in vivo. The biodistribution and dosimetry of this tracer in humans is presented and compared to the results of a previous dosimetry and biodistribution study of another thioflavin-T derivative [N-methyl-{sup 11}C]2-hydroxy-(4'-(methylaminophenyl)-benzothiazole ({sup 11}C-OH-BTA-1)) in baboons. Methods: Five subjects underwent 2D dynamic PET imaging. Source organs were segmented using a semiautomatic algorithm based on clustering. Residence times for each source organ were determined by analytical integration of an exponential fit of the time activity curves. Finally organ doses were estimated using the software OLINDA/EXM. Results: The administration of 286 {+-} 93 MBq {sup 11}C-BTA-1 was well tolerated by all subjects. Effective radiation dose was 4.3 {mu}Sv/MBq, range 3.6-5.0 {mu}Sv/MBq. In four ofthe five subjects the liver, in one of the subjects the gallbladder was the critical organ. Conclusion: The radiation burden of a single dose of 300 MBq {sup 11}C-BTA-1 is within the accepted limits for research purpose. In contrast to the previous non-human primate study revealing the gallbladder as the critical organ for {sup 11}C-6-OH-BTA-1, we found the liver as the critical organ in humans using {sup 11}C-BTA-1. Possible explanations may be (1) a reduced bile concentration of {sup 11}C-BTA-1 due to the absent OH-group or (2) a different hepatic metabolism of thioflavin derivatives in human and baboon. (orig.)

  1. Italian Bombs & Fuzes

    Science.gov (United States)

    1948-06-01

    withdrawal of the safety pin . The bomb 20.1., on account of its special method of suspension, has a recess cut in the tail, about half way along...Indication of arming :- safety pin and caps missing. To defuze these bombs. Lay the bombs carefully on their sides. Unscrew...bomb can be regarded as ALLWAYS action. (a) If the safety pin hole in the fuze spindle is visible 2 cm above the head of the fuze, the

  2. Laboratory of research for environmental radiation and its dosimetry in the ININ; Laboratorio de investigacion de radiacion ambiental y su dosimetria en el ININ

    Energy Technology Data Exchange (ETDEWEB)

    Chavez S, B.M

    2003-07-01

    The objectives of this work are to learn on the methodology that should be continued for the investigation of such a specialized topic as it is a radiation laboratory and to develop the executive project of a building that contains laboratories focused to the investigation of the radiation levels in the environment and their dosimetry. The National Institute of Nuclear Research (ININ), is the place where are carried out many of the investigations related to the field of the physics and chemistry in Mexico besides being the center of nuclear research more important of Latin America and it is for that reason that here is proposed the Laboratory of Low Radiation and its Dosimetry, since the Institute accounts with the whole infrastructure and necessary safety for this type of laboratories. (Author)

  3. Biological dosimetry by the triage dicentric chromosome assay: potential implications for treatment of acute radiation syndrome in radiological mass casualties.

    Science.gov (United States)

    Romm, Horst; Wilkins, Ruth C; Coleman, C Norman; Lillis-Hearne, Patricia K; Pellmar, Terry C; Livingston, Gordon K; Awa, Akio A; Jenkins, Mark S; Yoshida, Mitsuaki A; Oestreicher, Ursula; Prasanna, Pataje G S

    2011-03-01

    Biological dosimetry is an essential tool for estimating radiation dose. The dicentric chromosome assay (DCA) is currently the tool of choice. Because the assay is labor-intensive and time-consuming, strategies are needed to increase throughput for use in radiation mass casualty incidents. One such strategy is to truncate metaphase spread analysis for triage dose estimates by scoring 50 or fewer metaphases, compared to a routine analysis of 500 to 1000 metaphases, and to increase throughput using a large group of scorers in a biodosimetry network. Previously, the National Institutes for Allergies and Infectious Diseases (NIAID) and the Armed Forces Radiobiology Research Institute (AFRRI) sponsored a double-blinded interlaboratory comparison among five established international cytogenetic biodosimetry laboratories to determine the variability in calibration curves and in dose measurements in unknown, irradiated samples. In the present study, we further analyzed the published data from this previous study to investigate how the number of metaphase spreads influences dose prediction accuracy and how this information could be of value in the triage and management of people at risk for the acute radiation syndrome (ARS). Although, as expected, accuracy decreased with lower numbers of metaphase spreads analyzed, predicted doses by the laboratories were in good agreement and were judged to be adequate to guide diagnosis and treatment of ARS. These results demonstrate that for rapid triage, a network of cytogenetic biodosimetry laboratories can accurately assess doses even with a lower number of scored metaphases.

  4. Automated DICOM metadata and volumetric anatomical information extraction for radiation dosimetry

    Science.gov (United States)

    Papamichail, D.; Ploussi, A.; Kordolaimi, S.; Karavasilis, E.; Papadimitroulas, P.; Syrgiamiotis, V.; Efstathopoulos, E.

    2015-09-01

    Patient-specific dosimetry calculations based on simulation techniques have as a prerequisite the modeling of the modality system and the creation of voxelized phantoms. This procedure requires the knowledge of scanning parameters and patients’ information included in a DICOM file as well as image segmentation. However, the extraction of this information is complicated and time-consuming. The objective of this study was to develop a simple graphical user interface (GUI) to (i) automatically extract metadata from every slice image of a DICOM file in a single query and (ii) interactively specify the regions of interest (ROI) without explicit access to the radiology information system. The user-friendly application developed in Matlab environment. The user can select a series of DICOM files and manage their text and graphical data. The metadata are automatically formatted and presented to the user as a Microsoft Excel file. The volumetric maps are formed by interactively specifying the ROIs and by assigning a specific value in every ROI. The result is stored in DICOM format, for data and trend analysis. The developed GUI is easy, fast and and constitutes a very useful tool for individualized dosimetry. One of the future goals is to incorporate a remote access to a PACS server functionality.

  5. Invited commentary: missing doses in the life span study of Japanese atomic bomb survivors.

    Science.gov (United States)

    Ozasa, K; Grant, E J; Cullings, H M; Shore, R E

    2013-03-15

    The Life Span Study is a long-term epidemiologic cohort study of survivors of the atomic bombs dropped on Hiroshima and Nagasaki, Japan. In this issue of the Journal, Richardson et al. (Am J Epidemiol. 2013;177(6):562-568) suggest that those who died in the earliest years of follow-up were more likely to have a missing dose of radiation exposure assigned, leading to a bias in the radiation risk estimates. We show that nearly all members of the cohort had shielding information recorded before the beginning of follow-up and that much of the alleged bias that Richardson et al. describe simply reflects the geographic distribution of shielding conditions for which reliable dosimetry was impossible.

  6. Image-based dosimetry for selective internal radiation therapy (SIRT) using yttrium-90 microspheres

    Science.gov (United States)

    Selwyn, Reed G.

    90Y-loaded microspheres are currently used as a palliative treatment for patients with primary and metastatic solid liver tumors. These microspheres contain radioactive 90Y, which decays via beta-minus transition to 90Zr. While the normal liver receives about 75% of its blood supply from the portal vein, hepatic tumors receive their blood supply almost exclusively from the hepatic artery. Taking advantage of this unique blood flow, radioactive microspheres are injected into the hepatic artery resulting in a preferential distribution to tumor sites within the liver. Studies show that the single best prognostic indicator for patient response is the tumor-to-normal tissue (T:N) activity uptake ratio. However, 90Y emits very few photons its broad bremsstrahlung spectrum leads to diffuse, low resolution images, which are insufficient for accurate T:N quantification. Thus, the first objective was to develop a PET-labeled microsphere as a surrogate for the therapeutic microsphere to provide accurate biodistribution information. Furthermore, patient outcome is also suspected to be linked to the mean tumor dose and tumor dose volume histogram. Therefore, a second objective was to develop and validate a method to calculate the dose distribution within the tumor and normal liver tissue. Computer software that generates three-dimensional (3D) dose distributions was validated by comparing results to experimental measurements. The novel development of a 3D gel dosimeter will be discussed as well as a new protocol for 2D film dosimetry. Both dosimetry methods were validated but only film provided the desired accuracy. The overall accuracy of the dose distribution depends on the uncertainty of the 90Y assay, which can extend to 15% at 1sigma. Therefore, the third objective was to develop an accurate non-destructive assay of 90Y. To this end, a new 90Y positron branching ratio was measured and a clinically relevant transfer standard was developed. In summation, this thesis will

  7. Scenario of a dirty bomb in an urban environment and acute management of radiation poisoning and injuries

    National Research Council Canada - National Science Library

    Chin, F K C

    2007-01-01

    .... This article examines two scenarios of radiation contamination and injury, one accidental in nature leading to environmental contamination, and another of deliberate intent resulting in injury and death...

  8. Radiation damage studies of a recycling integrator VLSI chip for dosimetry and control of therapeutical beams

    Science.gov (United States)

    Cirio, R.; Bourhaleb, F.; Degiorgis, P. G.; Donetti, M.; Marchetto, F.; Marletti, M.; Mazza, G.; Peroni, C.; Rizzi, E.; SanzFreire, C.

    2002-04-01

    A VLSI chip based on a recycling integrator has been designed and built to be used as front-end readout of detectors for dosimetry and beam monitoring. The chip is suitable for measurements with both conventional radiotherapy accelerators (photon or electron beams) and with hadron accelerators (proton or light ion beams). As the chips might be located at few centimeters from the irradiation area and they are meant to be used in routine hospital practice, it is mandatory to assert their damage to both electromagnetic and neutron irradiation. We have tested a few chips on a X-ray beam and on thermal and fast neutron beams. Results of the tests are reported and an estimate of the expected lifetime of the chip for routine use is given.

  9. Radiation dosimetry for NCT facilities at the Brookhaven Medical Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Holden, N.E.; Hu, J.P.; Greenberg, D.D.; Reciniello, R.N.

    1998-12-31

    Brookhaven Medical Research Reactor (BMRR) is a 3 mega-watt (MW) heterogeneous, tank-type, light water cooled and moderated, graphite reflected reactor, which was designed for medical and biological studies and became operational in 1959. Over time, the BMRR was modified to provide thermal and epithermal neutron beams suitable for research studies. NCT studies have been performed at both the epithermal neutron irradiation facility (ENIF) on the east side of the BMRR reactor core and the thermal neutron irradiation facility (TNIF) on the west side of the core. Neutron and gamma-ray dosimetry performed from 1994 to the present in both facilities are described and the results are presented and discussed.

  10. Resilience among Japanese atomic bomb survivors.

    Science.gov (United States)

    Knowles, A

    2011-03-01

    The purpose of the study was to explore the experience of atomic bomb survivors from Hiroshima and Nagasaki. Never has the world experienced such extreme devastation as with the atomic bombings of Hiroshima and Nagasaki, Japan, in August 1945. Although significant quantitative research has been completed about the medical effects following radiation, the literature lacks qualitative exploration from a holistic health perspective. This was a qualitative descriptive study, using methods of narrative analysis, oral history and ethnography. The sample for this research included eight individuals who were exposed to the atomic bombings in Japan and currently reside in the United States. Findings provide insight to the resilience that the survivors exhibited immediately following the bomb, as well as throughout the 65 years following the event. From ethnographic data and interviews with survivors, a thematic structure was developed that depicts the essential elements of the atomic bomb experience. Two ways of being in the world followed the bombing: surviving and thriving, with resilience serving as a lever, allowing for fluid movement over time across the continuum. Individuals experiencing surviving exhibited anxiety about their personal and family members' health, expressed mistrust, and felt a stigma associated with being a survivor. For those who were thriving, peace activism, overcoming and forgiveness were typically displayed. Findings from this study add to the disaster nursing literature and highlight the role resilience plays in the atomic bomb survivors' life perspective. © 2011 The Author. International Nursing Review © 2011 International Council of Nurses.

  11. Gamma radiation processing dosimetry with commercial silicon diodes; Dosimetria de processos de irradiacao gama com diodos comerciais de silicio

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Danilo Cardenuto

    2009-07-01

    This work envisages the development of dosimeters based on Si diodes for gamma radiation dosimetry from 1 Gy up to 100 Gy. This dose range is frequently utilized in radiation processing of crystal modifications, polymers crosslinking and biological studies carried out in the Radiation Technology Center at IPEN-CNEN/SP. The dosimeter was constructed by a commercial SFH00206 (Siemens) Si diode, operating in a photovoltaic mode, whose electrical characteristics are suitable for this application. The current generated in the device by the Cobalt-60 gamma radiation from the Irradiators types I and II was registered with a digital electrometer and stored during the exposure time. In all measurements, the current signals of the diode registered as a function of the exposure time were very stable. Furthermore, the device photocurrent was linearly dependent on the dose rate within a range of 6.1x10{sup -2} Gy/min up to 1.9x10{sup 2} Gy/min. The calibration curves of the dosimeters, e.g., the average charge registered as a function of the absorbed dose were obtained by the integration of the current signals as a function of the exposure time. The results showed a linear response of the dosimeter with a correlation coefficient better than 0.998 for total absorbed dose up to 120 Gy. Finally, due to the small experimental errors 5 % it was also possible to measure the transit dose due to the movement of the Cobalto- 60 radioactive sources in irradiation facilities used in this work. (author)

  12. Impact of dose rate on accuracy of intensity modulated radiation therapy plan delivery using the pretreatment portal dosimetry quality assurance and setting up the workflow at hospital levels

    OpenAIRE

    Karunakaran Kaviarasu; N Arunai Nambi Raj; K Krishna Murthy; A Ananda Giri Babu; Bhaskar Laxman Durga Prasad

    2015-01-01

    The aim of this study was to examine the impact of dose rate on accuracy of intensity modulated radiation therapy (IMRT) plan delivery by comparing the gamma agreement between the calculated and measured portal doses by pretreatment quality assurance (QA) using electronic portal imaging device dosimetry and creating a workflow for the pretreatment IMRT QA at hospital levels. As the improvement in gamma agreement leads to increase in the quality of IMRT treatment delivery, gamma evaluation was...

  13. Biodistribution and radiation dosimetry of the {alpha}{sub 7} nicotinic acetylcholine receptor ligand [{sup 11}C]CHIBA-1001 in humans

    Energy Technology Data Exchange (ETDEWEB)

    Sakata, Muneyuki [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, 1-1 Naka-cho, Itabashi-ku, Tokyo 173-0022 (Japan); Wu, Jin; Toyohara, Jun [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, 1-1 Naka-cho, Itabashi-ku, Tokyo 173-0022 (Japan); Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670 (Japan); Oda, Keiichi [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, 1-1 Naka-cho, Itabashi-ku, Tokyo 173-0022 (Japan); Ishikawa, Masatomo [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, 1-1 Naka-cho, Itabashi-ku, Tokyo 173-0022 (Japan); Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670 (Japan); Ishii, Kenji [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, 1-1 Naka-cho, Itabashi-ku, Tokyo 173-0022 (Japan); Hashimoto, Kenji [Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670 (Japan); Ishiwata, Kiichi, E-mail: ishiwata@pet.tmig.or.j [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, 1-1 Naka-cho, Itabashi-ku, Tokyo 173-0022 (Japan)

    2011-04-15

    Introduction: 4-[{sup 11}C]Methylphenyl 2,4-diazabicyclo[3.2.2]nonane-2-carboxylate ([{sup 11}C]CHIBA-1001) is a newly developed positron emission tomography (PET) ligand for mapping {alpha}{sub 7} nicotinic acetylcholine receptors. We investigated whole-body biodistribution and radiation dosimetry of [{sup 11}C]CHIBA-1001 in humans and compared the results with those obtained in mice. Methods: Dynamic whole-body PET was carried out for three human subjects after administering a bolus injection of [{sup 11}C]CHIBA-1001. Emission scans were collected in two-dimensional mode over five bed positions. Regions of interest were placed over 12 organs. Radiation dosimetry was estimated from the residence times of these source organs using the OLINDA program. Biodistribution data from mice were also used for the prediction of radiation dosimetry in humans, and results with and those without accommodation of different proportions of organ-to-total-body mass were compared with the results from the human PET study. Results: In humans, the highest accumulation was observed in the liver, whereas in mice, the highest accumulation was observed in the urinary bladder. The estimated effective dose from the human PET study was 6.9 {mu}Sv/MBq, and that from mice was much underestimated. Conclusion: Effective dose estimates for [{sup 11}C]CHIBA-1001 were compatible with those associated with other common nuclear medicine tests. Absorption doses among several organs were considerably different between the human and mouse studies. Human dosimetry studies for the investigation of radiation safety are desirable as one of the first clinical trials of new PET probes before their application in subsequent clinical investigations.

  14. Quantitative imaging for clinical dosimetry

    Science.gov (United States)

    Bardiès, Manuel; Flux, Glenn; Lassmann, Michael; Monsieurs, Myriam; Savolainen, Sauli; Strand, Sven-Erik

    2006-12-01

    Patient-specific dosimetry in nuclear medicine is now a legal requirement in many countries throughout the EU for targeted radionuclide therapy (TRT) applications. In order to achieve that goal, an increased level of accuracy in dosimetry procedures is needed. Current research in nuclear medicine dosimetry should not only aim at developing new methods to assess the delivered radiation absorbed dose at the patient level, but also to ensure that the proposed methods can be put into practice in a sufficient number of institutions. A unified dosimetry methodology is required for making clinical outcome comparisons possible.

  15. A study on the real-time radiation dosimetry measurement system based on optically stimulated luminescence

    Institute of Scientific and Technical Information of China (English)

    LIU Yan-Ping; CHEN Zhao-Yang; BA Wei-Zhen; FAN Yan-Wei; DU Yan-Zhao; PAN Shi-Lie; GUO Qi

    2008-01-01

    The optically stimulated luminescent (OSL) radiation dosimeter technically surveys a wide dynamic measurement range and a high sensitivity.Optical fiber dosimeters provide capability for remote monitoring of the radiation in the locations which are difficult-to-acoess and hazardous.In addition.optical fiber dosimeters are immune to electrical and radio-frequency interference.In this paper,a novel remote optical fiber radiation dosimeter is described.The optical fiber dosimeter takes advantage of the charge trapping materials CaS:Ce, Sm that exhibit OSL.The measuring range of the dosimeter is from 0.1 to 100 Gy.The equipment is relatively simple and small in size,and has low power consumption.This device is suitable for measuring the space radiation dose and also can be used in high radiation dose condition and other dangerous radiation occasions.

  16. Compounds of 6Li and natural Li for EPR dosimetry in photon/neutron mixed radiation fields.

    Science.gov (United States)

    Lund, E; Gustafsson, H; Danilczuk, M; Sastry, M D; Lund, A

    2004-05-01

    Formates and dithionates of 6Li, enriched and 7Li in natural composition of Li offer a possibility to measure the absorbed dose from photons and thermal neutrons in a mixed radiation field for instance at a boron neutron capture therapy (BNCT) facility. Tests with formates and dithionates of enriched 6Li and lithium compounds with natural composition have been performed at the BNCT facility at Studsvik, Sweden. Irradiations have been performed at 3 cm depth in a Perspex phantom in a fluence rate of thermal neutrons 1.8 x 10(9) n cm(-2) s(-1). The compounds were also irradiated in a pure X-ray field from a 4MV linear accelerator at 5 cm depth in a phantom with accurately determined absorbed doses. The signal intensity and shape was investigated within 3 h after the irradiation. A single line spectrum attributed to the CO2- radical was observed after irradiation of lithium formate. An increase in line width occurring after neutron irradiation in comparison with photon irradiation of the 6Li sample was attributed to dipolar broadening between CO2- radicals trapped in the tracks of the alpha particles. A spectrum due to the SO3- radical anion was observed after irradiation of lithium dithionate. The signal amplitude increased using the 6Li in place of the Li with natural composition of isotopes, in studies with low energy X-ray irradiation. Due to the decreased line width, caused by the difference in g(N) and I between the isotopes, the sensitivity with 6Li dithionate may be enhanced by an order of magnitude compared to alanine dosimetry. After comprehensive examination of the different combinations of compounds with different amounts of 6Li and 7Li regarding dosimetry, radiation chemistry and EPR properties these dosimeter material might be used for dose determinations at BNCT treatments and for biomedical experiments. Interesting properties of the radical formation might be visible due to the large difference in ionization density of neutrons compared to photons.

  17. Hematological dosimetry. Dosimetrie hematologique

    Energy Technology Data Exchange (ETDEWEB)

    Fluery-Herard, A. (CEA Centre d' Etudes de Fontenay-aux-Roses, 92 (FR). Direction des Sciences du Vivant)

    1991-01-01

    The principles of hematological dosimetry after acute or protracted whole-body irradiation are reviewed. In both cases, over-exposure is never homogeneous and the clinical consequences, viz medullary aplasia, are directly associated with the mean absorbed dose and the seriousness and location of the overexposure. The main hematological data required to assess the seriousness of exposure are the following: repeated blood analysis, blood precursor cultures, as indicators of whole-body exposure; bone marrow puncture, medullary precursor cultures and medullary scintigraphy as indicators of the importance of a local over-exposure and capacity for spontaneous repair. These paraclinical investigations, which are essential for diagnosis and dosimetry, are also used for surveillance and for the main therapeutic issues.

  18. Yale and the Atomic Bomb Casualty Commission.

    Science.gov (United States)

    Bowers, J. Z.

    1983-01-01

    This is a description, based largely on personal discussions, of the contributions of men from the Yale University School of Medicine to the saga of the immediate and long-term studies on the medical effects of the atomic bombs at Hiroshima and Nagasaki. They played key roles in the immediate studies of bomb effects, in the creation of long-term studies of delayed effects, and in elevating the Atomic Bomb Casualty Commission after 1955 to a position of excellence in its studies and relations with the Japanese. The accumulation of the information presented in this paper derives from research for the preparation of the history of the Atomic Bomb Casualty Commission. In 1975, the commission was passed to Japanese leadership as the Radiation Effects Research Foundation. PMID:6349145

  19. UV spectra, bombs, and the solar atmosphere

    CERN Document Server

    Judge, Philip G

    2015-01-01

    A recent analysis of UV data from the Interface Region Imaging Spectrograph {\\em IRIS} reports plasma "bombs" with temperatures near \\hot{} within the solar photosphere. This is a curious result, firstly because most bomb plasma pressures $p$ (the largest reported case exceeds $10^3$ dyn~cm$^{-2}$) fall well below photospheric pressures ($> 7\\times10^3$), and secondly, UV radiation cannot easily escape from the photosphere. In the present paper the {\\em IRIS} data is independently analyzed. I find that the bombs arise from plasma originally at pressures between $\\lta80$ and 800 dyne~cm$^{-2}$ before explosion, i.e. between $\\lta850$ and 550 km above $\\tau_{500}=1$. This places the phenomenon's origin in the low-mid chromosphere or above. I suggest that bomb spectra are more compatible with Alfv\\'enic turbulence than with bi-directional reconnection jets.

  20. Design and Fabrication of Kidney Phantoms for Internal Radiation Dosimetry Using 3D Printing Technology.

    Science.gov (United States)

    Tran-Gia, Johannes; Schlögl, Susanne; Lassmann, Michael

    2016-12-01

    Currently, the validation of multimodal quantitative imaging and absorbed dose measurements is impeded by the lack of suitable, commercially available anthropomorphic phantoms of variable sizes and shapes. To demonstrate the potential of 3-dimensional (3D) printing techniques for quantitative SPECT/CT imaging, a set of kidney dosimetry phantoms and their spherical counterparts was designed and manufactured with a fused-deposition-modeling 3D printer. Nuclide-dependent SPECT/CT calibration factors were determined to assess the accuracy of quantitative imaging for internal renal dosimetry. A set of 4 single-compartment kidney phantoms with filling volumes between 8 and 123 mL was designed on the basis of the outer kidney dimensions provided by MIRD pamphlet 19. After the phantoms had been printed, SPECT/CT acquisitions of 3 radionuclides ((99m)Tc, (177)Lu, and (131)I) were obtained and calibration constants determined for each radionuclide-volume combination. A set of additionally manufactured spheres matching the kidney volumes was also examined to assess the influence of phantom shape and size on the calibration constants. A set of refillable, waterproof, and chemically stable kidneys and spheres was successfully manufactured. Average calibration factors for (99m)Tc, (177)Lu, and (131)I were obtained in a large source measured in air. For the largest phantom (122.9 mL), the volumes of interest had to be enlarged by 1.2 mm for (99m)Tc, 2.5 mm for (177)Lu, and 4.9 mm for (131)I in all directions to obtain calibration factors comparable to the reference. Although partial-volume effects were observed for decreasing phantom volumes (percentage difference of up to 9.8% for the smallest volume [8.6 mL]), the difference between corresponding sphere-kidney pairs was small (3D printing is a promising prototyping technique for geometry-specific calibration of SPECT/CT systems. Although the underlying radionuclide and the related collimator have a major influence on the

  1. Dosimetry Service

    CERN Multimedia

    2006-01-01

    Cern Staff and Users can now consult their dose records for an individual or an organizational unit with HRT. Please see more information on our web page: http://cern.ch/rp-dosimetry Dosimetry Service is open every morning from 8.30 - 12.00. Closed in the afternoons. We would like to remind you that dosimeters cannot be sent to customers by internal mail. Short-term dosimeters (VCT's) must always be returned to the Service after the use and must not be left on the racks in the experimental areas or in the secretariats. Dosimetry Service Tel. 7 2155 Dosimetry.service@cern.ch http://cern.ch/rp-dosimetry

  2. Field calibration of PADC track etch detectors for local neutron dosimetry in man using different radiation qualities

    Energy Technology Data Exchange (ETDEWEB)

    Haelg, Roger A., E-mail: rhaelg@phys.ethz.ch [Institute for Radiotherapy, Radiotherapie Hirslanden AG, Hirslanden Medical Center, Rain 34, CH-5000 Aarau (Switzerland); Besserer, Juergen [Institute for Radiotherapy, Radiotherapie Hirslanden AG, Hirslanden Medical Center, Rain 34, CH-5000 Aarau (Switzerland); Boschung, Markus; Mayer, Sabine [Division for Radiation Safety and Security, Paul Scherrer Institut, CH-5232 Villigen (Switzerland); Clasie, Benjamin [Department of Radiation Oncology, Massachusetts General Hospital, 30 Fruit Street, Boston, MA 02114 (United States); Kry, Stephen F. [Department of Radiation Physics, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030 (United States); Schneider, Uwe [Institute for Radiotherapy, Radiotherapie Hirslanden AG, Hirslanden Medical Center, Rain 34, CH-5000 Aarau (Switzerland); Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 204, CH-8057 Zurich (Switzerland)

    2012-12-01

    In order to quantify the dose from neutrons to a patient for contemporary radiation treatment techniques, measurements inside phantoms, representing the patient, are necessary. Published reports on neutron dose measurements cover measurements performed free in air or on the surface of phantoms and the doses are expressed in terms of personal dose equivalent or ambient dose equivalent. This study focuses on measurements of local neutron doses inside a radiotherapy phantom and presents a field calibration procedure for PADC track etch detectors. An initial absolute calibration factor in terms of H{sub p}(10) for personal dosimetry is converted into neutron dose equivalent and additional calibration factors are derived to account for the spectral changes in the neutron fluence for different radiation therapy beam qualities and depths in the phantom. The neutron spectra used for the calculation of the calibration factors are determined in different depths by Monte Carlo simulations for the investigated radiation qualities. These spectra are used together with the energy dependent response function of the PADC detectors to account for the spectral changes in the neutron fluence. The resulting total calibration factors are 0.76 for a photon beam (in- and out-of-field), 1.00 (in-field) and 0.84 (out-of-field) for an active proton beam and 1.05 (in-field) and 0.91 (out-of-field) for a passive proton beam, respectively. The uncertainty for neutron dose measurements using this field calibration method is less than 40%. The extended calibration procedure presented in this work showed that it is possible to use PADC track etch detectors for measurements of local neutron dose equivalent inside anthropomorphic phantoms by accounting for spectral changes in the neutron fluence.

  3. Radiation chemical dosimetry by means of nitrate-nitrite; Dosimetria quimica de la radiacion aplicacion del sistema nitrato-nitrito

    Energy Technology Data Exchange (ETDEWEB)

    Tormo Ferrero, M. J.

    1977-07-01

    The different chemical systems used in dosimetry and the selection criteria for them are described. The general topics in dosimetry with alkali nitrates as well as the phenomena occurring in their radiolysis are also treated. The possibility of application in dosimetric areas useful in radiosterilization and industrial processes is studied too. (Author) 22 refs.

  4. Evaluation of DNA dosimetry to assess ozone-mediated variability of biologically harmful radiation in Antarctica

    NARCIS (Netherlands)

    George, AL; Peat, HJ; Buma, AGJ

    2002-01-01

    In this study we investigated the use of a DNA dosimeter to accurately measure changes in ultraviolet B radiation (UVBR; 280-315 nm) under Antarctic ozone hole conditions. Naked DNA solution in quartz tubes was exposed to ambient solar radiation at Rothera Research Station, Antarctica, between Octob

  5. Dosimetry experiences and lessons learned for radiation dose assessment in Korean nuclear power plants.

    Science.gov (United States)

    Choi, Jong Rak; Kim, Hee Geun; Kong, Tae Young; Son, Jung Kwon

    2013-07-01

    Since the first Korean nuclear power plant (NPP), Kori 1, commenced operation in 1978, a total of 21 NPPs had been put into operation in Korea by the end of 2011. Radiation doses of NPP workers have been periodically evaluated and controlled within the prescribed dose limit. Radiation dose assessment is carried out monthly by reading personal dosemeters for external radiation exposure, which have traceability in compliance with strict technical guidelines. In the case of the internal radiation exposure, workers who have access to the possible area of polluted air are also evaluated for their internal dose after maintenance task. In this article, the overall situation and experience for the assessment and distribution of radiation doses in Korean NPPs is described.

  6. Radiation protection in medicine (542) comparison of different dosimetry systems for dose measurements in diagnostic radiology

    Energy Technology Data Exchange (ETDEWEB)

    Milkovic, D. [Srebrnjak, Specialized Hospital for Respiratory System Diseases in Children and Youth, Zagreb (Croatia); Ranogajec-Komor, M.; Miljanic, S.; Knezevic, Z.; Krpan, K. [Ruder Boskovic Institute, Zagreb (Croatia)

    2006-07-01

    The dose measurement on patients in X-ray diagnostic is not simple, because low doses with low and various energies have to be measured. The aim of this preliminary study was to compare high sensitivity thermoluminescent dosimeter (T.L.D.) (LiF:Mg,Cu,P) and radio-photoluminescent (R.P.L.) glass dosimeters for dose measurements in routine X-ray diagnostic of chest of children. The energy dependence of the dosimeters was investigated in Secondary Standard Dosimetry Laboratory (SSDL). The energy range was 33- 65 keV mean energy, the dosimeters were placed free in air and on the water phantom. The results were compared to calculated values of Hp(10). The next step was the irradiation in a routine X-ray diagnostic unit. Irradiations were performed by the Shimadzu X-ray unit. The selected irradiation conditions were the same as that most commonly used for baby examinations. Doses were measured with dosimeters placed free-in-air and also with the dosimeters placed on the water phantom and baby phantom. The results show that the R.P.L. glass dosimeters and LiF:Mg,Cu,P based T.L.D. are suitable for low dose measurements in X-ray diagnostic. The uncertainty of dose determination is mainly caused by the energy dependence of dosimeters. (authors)

  7. MISTI Shielding and Dosimetry Experiment Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Reliable on-orbit dosimetry is necessary for understanding effects of space radiation environments on spacecraft microelectronics performance and comparison of...

  8. Dosimetry of cosmic radiation in the troposphere based on the measurements at the summit of Mt. Fuji

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, H.; Yajima, K.; Yoshida, S. [National Insitute of Radiological Sciences, Chiba (Japan). Research Center for Radiation Protection

    2011-07-01

    Dose rate of cosmic-ray origin neutrons (abbreviated to ''cosmic neutrons'') at aviation altitude was estimated based on the measurements at Mt. Fuji. Cosmic neutrons were measured in a facility of the Mt. Fuji Weather Station located at the summit of Mt. Fuji, the highest mountain in Japan (3776m in altitude), in the summer of 2008 and 2009. The average of 1 cm ambient dose equivalent H*(10) for two measurements was verified by numerical model simulation and then used to empirically estimate the solar force field potential (FFP). The H*(10) rates at aviation altitude estimated from the measurements at Mt. Fuji were compared to those obtained in in-flight measurements onboard a civilian aircraft flying near Mt. Fuji at the time between the two measurements at the mountain. According to the results obtained, we expect that the empirical estimation based on the measurements at Mt. Fuji will work effectively for dosimetry of cosmic radiation in troposphere. (orig.)

  9. Extremity dosimetry problems during the handling of radionuclides syringes in nuclear medicine: A Monte Carlo radiation transport simplified approach

    Energy Technology Data Exchange (ETDEWEB)

    Mariotti, F., E-mail: francesca.mariotti@bologna.enea.i [ENEA-BAS-ION IRP Radiation Protection Institute, Via dei Colli 16, 40136, Bologna (Italy); Gualdrini, G. [ENEA-BAS-ION IRP Radiation Protection Institute, Via dei Colli 16, 40136, Bologna (Italy)

    2011-04-15

    The ORAMED (Optimization of RAdiation protection for MEDical staff) Working Tasks (WP4) is addressed at evaluating extremity doses (and dose distributions across the hands) of medical staff working in nuclear medicine departments, to study the influence of protective devices such as syringe and vial shields, to improve such devices when possible and to propose 'levels of reference doses' for each standard nuclear medicine procedure. In particular task 4 is concerned with the study of the extremity dosimetry for the hand of operators devoted to the preparation and administration stages of the usage, for example, of {sup 99m}Tc, {sup 18}F and {sup 90}Y (Zevalin) radionuclides. The aim of this report consists in the study of photon-electron equilibrium conditions at 0.07 mm in the skin to justify a simplified 'kerma approximation' approach in the planned complex Monte Carlo voxel hand modeling. Furthermore a detailed investigation on primary electron and secondary bremsstrahlung photon transport from {sup 90}Y to speed up the calculations was performed. The results obtained in the simplified investigated conditions could be of help for the production calculations, introducing, if necessary, suited correction factors applicable to the complex condition results.

  10. 3D printer generated thorax phantom with mobile tumor for radiation dosimetry

    Science.gov (United States)

    Mayer, Rulon; Liacouras, Peter; Thomas, Andrew; Kang, Minglei; Lin, Liyong; Simone, Charles B.

    2015-07-01

    This article describes the design, construction, and properties of an anthropomorphic thorax phantom with a moving surrogate tumor. This novel phantom permits detection of dose both inside and outside a moving tumor and within the substitute lung tissue material. A 3D printer generated the thorax shell composed of a chest wall, spinal column, and posterior regions of the phantom. Images of a computed tomography scan of the thorax from a patient with lung cancer provided the template for the 3D printing. The plastic phantom is segmented into two materials representing the muscle and bones, and its geometry closely matches a patient. A surrogate spherical plastic tumor controlled by a 3D linear stage simulates a lung tumor's trajectory during normal breathing. Sawdust emulates the lung tissue in terms of average and distribution in Hounsfield numbers. The sawdust also provides a forgiving medium that permits tumor motion and sandwiching of radiochromic film inside the mobile surrogate plastic tumor for dosimetry. A custom cork casing shields the film and tumor and eliminates film bending during extended scans. The phantom, lung tissue surrogate, and radiochromic film are exposed to a seven field plan based on an ECLIPSE plan for 6 MV photons from a Trilogy machine delivering 230 cGy to the isocenter. The dose collected in a sagittal plane is compared to the calculated plan. Gamma analysis finds 8.8% and 5.5% gamma failure rates for measurements of large amplitude trajectory and static measurements relative to the large amplitude plan, respectively. These particular gamma analysis results were achieved using parameters of 3% dose and 3 mm, for regions receiving doses >150 cGy. The plan assumes a stationary detection grid unlike the moving radiochromic film and tissues. This difference was experimentally observed and motivated calculated dose distributions that incorporated the phase of the tumor periodic motion. These calculations modestly improve agreement between

  11. 3D printer generated thorax phantom with mobile tumor for radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Rulon [Henry Jackson Foundation, Bethesda, Maryland 20817 (United States); Liacouras, Peter [Walter Reed National Military Medical Center, Bethesda, Maryland 20899 (United States); Thomas, Andrew [ATC Healthcare, Washington, District of Columbia 20006 (United States); Kang, Minglei; Lin, Liyong; Simone, Charles B. [Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States)

    2015-07-15

    This article describes the design, construction, and properties of an anthropomorphic thorax phantom with a moving surrogate tumor. This novel phantom permits detection of dose both inside and outside a moving tumor and within the substitute lung tissue material. A 3D printer generated the thorax shell composed of a chest wall, spinal column, and posterior regions of the phantom. Images of a computed tomography scan of the thorax from a patient with lung cancer provided the template for the 3D printing. The plastic phantom is segmented into two materials representing the muscle and bones, and its geometry closely matches a patient. A surrogate spherical plastic tumor controlled by a 3D linear stage simulates a lung tumor’s trajectory during normal breathing. Sawdust emulates the lung tissue in terms of average and distribution in Hounsfield numbers. The sawdust also provides a forgiving medium that permits tumor motion and sandwiching of radiochromic film inside the mobile surrogate plastic tumor for dosimetry. A custom cork casing shields the film and tumor and eliminates film bending during extended scans. The phantom, lung tissue surrogate, and radiochromic film are exposed to a seven field plan based on an ECLIPSE plan for 6 MV photons from a Trilogy machine delivering 230 cGy to the isocenter. The dose collected in a sagittal plane is compared to the calculated plan. Gamma analysis finds 8.8% and 5.5% gamma failure rates for measurements of large amplitude trajectory and static measurements relative to the large amplitude plan, respectively. These particular gamma analysis results were achieved using parameters of 3% dose and 3 mm, for regions receiving doses >150 cGy. The plan assumes a stationary detection grid unlike the moving radiochromic film and tissues. This difference was experimentally observed and motivated calculated dose distributions that incorporated the phase of the tumor periodic motion. These calculations modestly improve agreement between

  12. 3D printer generated thorax phantom with mobile tumor for radiation dosimetry.

    Science.gov (United States)

    Mayer, Rulon; Liacouras, Peter; Thomas, Andrew; Kang, Minglei; Lin, Liyong; Simone, Charles B

    2015-07-01

    This article describes the design, construction, and properties of an anthropomorphic thorax phantom with a moving surrogate tumor. This novel phantom permits detection of dose both inside and outside a moving tumor and within the substitute lung tissue material. A 3D printer generated the thorax shell composed of a chest wall, spinal column, and posterior regions of the phantom. Images of a computed tomography scan of the thorax from a patient with lung cancer provided the template for the 3D printing. The plastic phantom is segmented into two materials representing the muscle and bones, and its geometry closely matches a patient. A surrogate spherical plastic tumor controlled by a 3D linear stage simulates a lung tumor's trajectory during normal breathing. Sawdust emulates the lung tissue in terms of average and distribution in Hounsfield numbers. The sawdust also provides a forgiving medium that permits tumor motion and sandwiching of radiochromic film inside the mobile surrogate plastic tumor for dosimetry. A custom cork casing shields the film and tumor and eliminates film bending during extended scans. The phantom, lung tissue surrogate, and radiochromic film are exposed to a seven field plan based on an ECLIPSE plan for 6 MV photons from a Trilogy machine delivering 230 cGy to the isocenter. The dose collected in a sagittal plane is compared to the calculated plan. Gamma analysis finds 8.8% and 5.5% gamma failure rates for measurements of large amplitude trajectory and static measurements relative to the large amplitude plan, respectively. These particular gamma analysis results were achieved using parameters of 3% dose and 3 mm, for regions receiving doses >150 cGy. The plan assumes a stationary detection grid unlike the moving radiochromic film and tissues. This difference was experimentally observed and motivated calculated dose distributions that incorporated the phase of the tumor periodic motion. These calculations modestly improve agreement between

  13. Focusing optics of a parallel beam CCD optical tomography apparatus for 3D radiation gel dosimetry.

    Science.gov (United States)

    Krstajić, Nikola; Doran, Simon J

    2006-04-21

    Optical tomography of gel dosimeters is a promising and cost-effective avenue for quality control of radiotherapy treatments such as intensity-modulated radiotherapy (IMRT). Systems based on a laser coupled to a photodiode have so far shown the best results within the context of optical scanning of radiosensitive gels, but are very slow ( approximately 9 min per slice) and poorly suited to measurements that require many slices. Here, we describe a fast, three-dimensional (3D) optical computed tomography (optical-CT) apparatus, based on a broad, collimated beam, obtained from a high power LED and detected by a charged coupled detector (CCD). The main advantages of such a system are (i) an acquisition speed approximately two orders of magnitude higher than a laser-based system when 3D data are required, and (ii) a greater simplicity of design. This paper advances our previous work by introducing a new design of focusing optics, which take information from a suitably positioned focal plane and project an image onto the CCD. An analysis of the ray optics is presented, which explains the roles of telecentricity, focusing, acceptance angle and depth-of-field (DOF) in the formation of projections. A discussion of the approximation involved in measuring the line integrals required for filtered backprojection reconstruction is given. Experimental results demonstrate (i) the effect on projections of changing the position of the focal plane of the apparatus, (ii) how to measure the acceptance angle of the optics, and (iii) the ability of the new scanner to image both absorbing and scattering gel phantoms. The quality of reconstructed images is very promising and suggests that the new apparatus may be useful in a clinical setting for fast and accurate 3D dosimetry.

  14. Measurement of stray radiation within a scanning proton therapy facility: EURADOS WG9 intercomparison exercise of active dosimetry systems

    Energy Technology Data Exchange (ETDEWEB)

    Farah, J., E-mail: jad.farah@irsn.fr; Trompier, F. [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Pôle Radioprotection de l’Homme, BP17, Fontenay-aux-Roses 92260 (France); Mares, V.; Schinner, K.; Wielunski, M. [Helmholtz Zentrum München, Institute of Radiation Protection, Ingolstädter Landstraße 1, Neuherberg 85764 (Germany); Romero-Expósito, M.; Domingo, C. [Departament de Física, Universitat Autònoma de Barcelona, Bellaterra E-08193 (Spain); Trinkl, S. [Helmholtz Zentrum München, Institute of Radiation Protection, Ingolstädter Landstraße 1, Neuherberg 85764, Germany and Physik-Department, Technische Universität München, Garching 85748 (Germany); Dufek, V. [Czech Technical University in Prague, FNSPE, Břehová 7, Prague 115 19, Czech Republic and National Radiation Protection Institute, Bartoškova 28, Prague 140 00 (Czech Republic); Klodowska, M.; Liszka, M.; Stolarczyk, L.; Olko, P. [Institute of Nuclear Physics PAN, Radzikowskiego 152, Krakow 31-342 (Poland); Kubancak, J. [Czech Technical University in Prague, FNSPE, Břehová 7, Prague 115 19, Czech Republic and Department of Radiation Dosimetry, Nuclear Physics Institute, Řež CZ-250 68 (Czech Republic); and others

    2015-05-15

    Purpose: To characterize stray radiation around the target volume in scanning proton therapy and study the performance of active neutron monitors. Methods: Working Group 9 of the European Radiation Dosimetry Group (EURADOS WG9—Radiation protection in medicine) carried out a large measurement campaign at the Trento Centro di Protonterapia (Trento, Italy) in order to determine the neutron spectra near the patient using two extended-range Bonner sphere spectrometry (BSS) systems. In addition, the work focused on acknowledging the performance of different commercial active dosimetry systems when measuring neutron ambient dose equivalents, H{sup ∗}(10), at several positions inside (8 positions) and outside (3 positions) the treatment room. Detectors included three TEPCs—tissue equivalent proportional counters (Hawk type from Far West Technology, Inc.) and six rem-counters (WENDI-II, LB 6411, RadEye™ NL, a regular and an extended-range NM2B). Meanwhile, the photon component of stray radiation was deduced from the low-lineal energy transfer part of TEPC spectra or measured using a Thermo Scientific™ FH-40G survey meter. Experiments involved a water tank phantom (60 × 30 × 30 cm{sup 3}) representing the patient that was uniformly irradiated using a 3 mm spot diameter proton pencil beam with 10 cm modulation width, 19.95 cm distal beam range, and 10 × 10 cm{sup 2} field size. Results: Neutron spectrometry around the target volume showed two main components at the thermal and fast energy ranges. The study also revealed the large dependence of the energy distribution of neutrons, and consequently of out-of-field doses, on the primary beam direction (directional emission of intranuclear cascade neutrons) and energy (spectral composition of secondary neutrons). In addition, neutron mapping within the facility was conducted and showed the highest H{sup ∗}(10) value of ∼51 μSv Gy{sup −1}; this was measured at 1.15 m along the beam axis. H{sup ∗}(10) values

  15. Glaucoma in atomic bomb survivors.

    Science.gov (United States)

    Kiuchi, Yoshiaki; Yokoyama, Tomoko; Takamatsu, Michiya; Tsuiki, Eiko; Uematsu, Masafumi; Kinoshita, Hirofumi; Kumagami, Takeshi; Kitaoka, Takashi; Minamoto, Atsushi; Neriishi, Kazuo; Nakashima, Eiji; Khattree, Ravindra; Hida, Ayumi; Fujiwara, Saeko; Akahoshi, Masazumi

    2013-10-01

    Radiation has been associated with increases in noncancerous diseases. An effect of low-dose radiation on the prevalence of clinically detected glaucoma has not been previously reported. We therefore investigated the prevalence of glaucoma in A-bomb survivors and its possible association with radiation dose. A total of 1,589 people who participated in the clinical examination program for A-bomb survivors at the Radiation Effects Research Foundation (RERF) between October 2006 and September 2008 and who had reconstructed radiation doses, were recruited into this cross-sectional screening study. The prevalence of glaucoma and its dose-response relationship to A-bomb radiation were measured. Each subject underwent an initial screening consisting of an interview and ophthalmological examination. Questionable cases with any indication of ocular disease, including glaucoma, were referred to local hospitals for more comprehensive evaluation. A diagnosis of glaucoma was made based on specific optic disc appearance, perimetric results and other ocular findings. Of 1,589 eligible people, we detected 284 (17.9%) cases of glaucoma overall, including 36 (2.3%) cases of primary open-angle glaucoma with intraocular pressure levels greater than 21 mmHg, 226 (14.2%) cases of normal-tension glaucoma and 25 (1.6%) cases of primary angle-closure glaucoma. Seven glaucoma risk factors were examined as potential confounders but only two needed to be included in the final model. Binary regression using a generalized estimating equation method, with adjustment for gender, age, city, cataract surgery or diabetes mellitus, revealed an odds ratio at 1 Gy of 1.31 (95% confidence interval 1.11-1.53, P = 0.001) in the case of normal-tension glaucoma, but no association for other types of glaucoma. The prevalence of normal-tension glaucoma may increase with A-bomb radiation dose, but uncertainties associated with nonparticipation (59% participation) suggest caution in the interpretation of these

  16. TU-G-213-03: IEC Subcommittee 62C (Equipment for Radiotherapy, Nuclear Medicine and Radiation Dosimetry): Recent and Active Projects

    Energy Technology Data Exchange (ETDEWEB)

    Culberson, W. [University of Wisconsin - Madison (United States)

    2015-06-15

    The International Electrotechnical Commission (IEC) writes standards that manufacturers of electrical equipment must comply with. Medical electrical equipment, such as medical imaging, radiation therapy, and radiation dosimetry devices, fall under Technical Committee 62. Of particular interest to medical physicists are the standards developed within Subcommittees (SC) 62B, which addresses diagnostic radiological imaging equipment, and 62C, which addresses equipment for radiation therapy, nuclear medicine and dosimetry. For example, a Working Group of SC 62B is responsible for safety and quality assurance standards for CT scanners and a Working Group of SC 62C is responsible for standards that set requirements for dosimetric safety and accuracy of linacs and proton accelerators. IEC standards thus have an impact on every aspect of a medical physicist’s job, including equipment testing, shielding design, room layout, and workflow. Consequently, it is imperative that US medical physicists know about existing standards, as well as have input on those under development or undergoing revision. The structure of the IEC and current standards development work will be described in detail. The presentation will explain how US medical physicists can learn about IEC standards and contribute to their development. Learning Objectives: Learn about the structure of the IEC and the influence that IEC standards have on the design of equipment for radiology and radiation therapy. Learn about the mechanisms by which the US participates in the development and revision of standards. Understand the specific requirements of several standards having direct relevance to diagnostic and radiation therapy physicists.

  17. Taurine-EVA copolymer-paraffin rods dosimeters for EPR high-dose radiation dosimetry

    Directory of Open Access Journals (Sweden)

    Maghraby Ahmed M.

    2014-03-01

    Full Text Available Taurine/EPR rods (3 × 10 mm have been prepared by a simple technique in the laboratory where taurine powder was mixed with a molten mixture of paraffin wax and an ethylene vinyl acetate (EVA copolymer. The binding mixture EVA/Paraffin does not present interference or noise in the EPR signal before or after irradiation. The rods show good mechanical properties for safe and multi-use handling. An EPR investigation of radiation induced radicals in taurine rods revealed that there are two types of radicals produced after exposure to gamma radiation (60Co. EPR spectra were recorded and analyzed - also the microwave power saturation and modulation amplitude were studied and optimized. Response of taurine to different radiation doses (1.5-100 kGy was studied and found to follow a linear relationship up to 100 kGy. Radiation induced radicals in taurine persists and showed a noticeable stability over 94 days following irradiation. Uncertainities associated with the evaluation of radiation doses using taurine dosimeters were discussed and tabulated. It was found that taurine possesses good dosimetric properties using EPR spectroscopy in high doses in addition to its simple spectrum.

  18. Study on application of PTFE, FEP and PFA fluoropolymers on radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Galante, A.M.S., E-mail: sgalante@ipen.b [Radiation Metrology Centre, Institute of Energetic and Nuclear Research, IPEN-CNEN/SP, Av. Prof. Lineu Prestes, 2242, Cidade Universitaria, 05508-000 Sao Paulo (Brazil); Galante, O.L. [Borrachas Vipal S/A-Divisao Plasticos, Av. Torres de Oliveira, 329, Bairro Jaguare, 05347-020 Sao Paulo (Brazil); Campos, L.L. [Radiation Metrology Centre, Institute of Energetic and Nuclear Research, IPEN-CNEN/SP, Av. Prof. Lineu Prestes, 2242, Cidade Universitaria, 05508-000 Sao Paulo (Brazil)

    2010-07-21

    Changes induced by radiation in the UV-vis and Infrared absorbance spectra of fluoropolymer films were investigated. Samples (3x1 cm{sup 2}) of commercially available fluoropolymers, tetrafluoropolymer homopolymer (PTFE-Tecnofluor/DuPont) and its copolymers with hexafluoropropylene (FEP 1000 C-DuPont) and perfluoroalkoxy (PFA 500 CLP-Dupont) were irradiated with {sup 60}Co gamma radiation in free air at electronic equilibrium conditions with absorbed doses between 1 and 150 kGy. Studies of environmental condition effects, such as temperature and light, pre- and post-irradiation stability and dose range useful response were carried out. Fluoropolymers are very stable when exposed to different ambient conditions; the dosimetric wavelength is characteristic for each type of fluoropolymer and a linear correlation was found between gamma radiation dose and optical response.

  19. Silicon-based three-dimensional microstructures for radiation dosimetry in hadrontherapy

    Energy Technology Data Exchange (ETDEWEB)

    Guardiola, C., E-mail: GuardioC@uphs.upenn.edu; Solberg, T.; Carabe, A. [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Quirion, D.; Pellegrini, G.; Fleta, C.; Esteban, S.; Lozano, M. [Centro Nacional de Microelectrónica (IMB-CNM, CSIC), Bellaterra 08193 (Spain); Cortés-Giraldo, M. A. [Departamento de Física Atómica, Molecular y Nuclear, University of Sevilla, 41080 Sevilla (Spain); Gómez, F. [Departamento de Física de Partículas, Universidad de Santiago de Compostela, Santiago de Compostela 15782 (Spain); Grupo de Imagen Molecular, Instituto de Investigaciones Sanitarias, Santiago de Compostela 15706 (Spain)

    2015-07-13

    In this work, we propose a solid-state-detector for use in radiation microdosimetry. This device improves the performance of existing dosimeters using customized 3D-cylindrical microstructures etched inside silicon. The microdosimeter consists of an array of micro-sensors that have 3D-cylindrical electrodes of 15 μm diameter and a depth of 5 μm within a silicon membrane, resulting in a well-defined micrometric radiation sensitive volume. These microdetectors have been characterized using an {sup 241}Am source to assess their performance as radiation detectors in a high-LET environment. This letter demonstrates the capability of this microdetector to be used to measure dose and LET in hadrontherapy centers for treatment plan verification as part of their patient-specific quality control program.

  20. Silicon-based three-dimensional microstructures for radiation dosimetry in hadrontherapy

    Science.gov (United States)

    Guardiola, C.; Quirion, D.; Pellegrini, G.; Fleta, C.; Esteban, S.; Cortés-Giraldo, M. A.; Gómez, F.; Solberg, T.; Carabe, A.; Lozano, M.

    2015-07-01

    In this work, we propose a solid-state-detector for use in radiation microdosimetry. This device improves the performance of existing dosimeters using customized 3D-cylindrical microstructures etched inside silicon. The microdosimeter consists of an array of micro-sensors that have 3D-cylindrical electrodes of 15 μm diameter and a depth of 5 μm within a silicon membrane, resulting in a well-defined micrometric radiation sensitive volume. These microdetectors have been characterized using an 241Am source to assess their performance as radiation detectors in a high-LET environment. This letter demonstrates the capability of this microdetector to be used to measure dose and LET in hadrontherapy centers for treatment plan verification as part of their patient-specific quality control program.

  1. Cell specific radiation dosimetry in skeleton from life-span carcinogenesis studies. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Webster, S.S.J.

    1993-04-05

    The osteogenic sarcoma is the dominant life-threatening pathology in lifespan studies of beagles exposed to alpha-emitting bone-seeking radionuclides. It was deduced from these studies that certain skeletal sites are more prone to develop tumors. This project sought to determine the bone cells at risk and their cell-specific radiation dose. The cell-specific radiation dose values are related to loss and high Ra-226 and Pu-239 induced osteogenic sarcoma sites, to test different dose response hypothesis and predict the extent of effects in humans.

  2. An optically stimulated luminescence study of porcelain related to radiation dosimetry

    DEFF Research Database (Denmark)

    Poolton, N.R.J.; Bøtter-Jensen, L.; Jungner, H.

    1995-01-01

    This article describes the essential features regarding the photo-stimulated luminescence of porcelain: both the main ceramic and glazing materials are studied. In each case, radiation dose dependent signals are observed, superimposed on dose independent luminescence transitions that are both...... Stokes and anti-Stokes shifted in energy. Glazing is shown in some cases to be considerably more sensitive as a radiation dosemeter than the main porcelain ceramic. By comparison with the properties of artifical phosphors, the principal luminescent matrix is identified as being Al2O3...

  3. Cell specific radiation dosimetry in skeleton from life-span carcinogenesis studies

    Energy Technology Data Exchange (ETDEWEB)

    Webster, S.S.J.

    1993-04-05

    The osteogenic sarcoma is the dominant life-threatening pathology in lifespan studies of beagles exposed to alpha-emitting bone-seeking radionuclides. It was deduced from these studies that certain skeletal sites are more prone to develop tumors. This project sought to determine the bone cells at risk and their cell-specific radiation dose. The cell-specific radiation dose values are related to loss and high Ra-226 and Pu-239 induced osteogenic sarcoma sites, to test different dose response hypothesis and predict the extent of effects in humans.

  4. Space-radiation dosimetry using CR-39 and TLD integrating dosimeters

    CERN Document Server

    Tawara, H; Nagamatsu, A

    2002-01-01

    Since the dose levels in space are significantly higher than those on the ground, accurate dosimetric measurements have strongly been required for the radiation protection of astronauts and cosmonauts engaged in long-term space flights. Passive dosimeters such as TLDs and nuclear track detectors have frequently been employed from the beginning of the history of the manned space flights. CR-39 plastic is currently the most common passive detector for measuring LET distributions of heavy-charged particles in space radiation fields. Although CR-39 and TLDs are integrating types, they are still promising as space radiation dosimeters. The combination of data from both detectors allows us to estimate total radiation doses over an extremely wide LET range of the order from 10 sup - sup 1 to 10 sup 4 keV/mu m. We compare the dosimetric results from CR-39/TLD aboard STS-84 and STS-91 to those from RRRD-III to discuss the accuracy of the dose measurements. We emphasize that the measurement of short-range high-LET part...

  5. Evaluation of a fast method of EPID-based dosimetry for intensity modulated radiation therapy

    OpenAIRE

    Nelms, Benjamin E.; Rasmussen, Karl H.; Tomé, Wolfgang A.

    2010-01-01

    Electronic portal imaging devices (EPIDs) could potentially be useful for Intensity Modulated Radiation Therapy (IMRT) QA. The data density, high resolution, large active area, and efficiency of the MV EPID make it an attractive option. However, EPIDs were designed to be effective imaging devices, but not dosimeters, and as a result they do not measure dose in tissue-equivalent materials.

  6. High frequency electromagnetic dosimetry

    CERN Document Server

    Sánchez-Hernández, David A

    2009-01-01

    Along with the growth of RF and microwave technology applications, there is a mounting concern about the possible adverse effects over human health from electromagnetic radiation. Addressing this issue and putting it into perspective, this groundbreaking resource provides critical details on the latest advances in high frequency electromagnetic dosimetry.

  7. Use of I-131- CRTX for targeting malignant adenocarcinoma in mice: biodistribution and radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Raquel Gouvea dos; Soares, Marcella Araugio; Andrade, Henrique Martins de, E-mail: santosr@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Santos, Marcos Antonio da Cunha [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Estatistica

    2008-07-01

    Snake venoms molecules have been shown to play a role not only in the survival and proliferation of tumour cells but also in the processes of tumour cell adhesion, migration and angiogenesis. We have shown that {sup 125}I-Crtx, a radiolabeled version of a protein derived from Crotalus durissus terrificus snake venom (Cdt), specifically binds to tumor and triggers apoptotic death. This study reports the biokinetic profile of {sup 99m}Tc-Cdt and {sup 125/131}I-Crtx in Swiss mice bearing Ehrlich solid tumor and MIRD formulation was applied to calculate the absorbed radiation doses for various organs and tumor site. Biokinetic evaluations were performed up to 24 h after intravenous (i.v) or intratumor (i.tu.) injection of {sup 99m}Tc-Cdt or {sup 125/131}I-Crtx. Time-activity curves were generated for the main organs by fitting the organ specific mass mean counts. The radiation dose from {sup 131}I-Crtx was calculated based on non penetrating radiation in the mouse model. Biokinetics data from {sup 99m}Tc-Cdt after i.v. injection in mice tumor model showed rapid blood clearance (T{sub 1/2}= 36.1 ± 2.4 min.), slow tumor clearance (T{sub 1/2}: 108.3 ± 19.5 min.) and indicated the kidneys as the main excretion pathway. Interaction studies in vitro demonstrated that {sup 125}I-Crtx recognize specific sites on Erlich tumor cell membrane. Upon intravenous and intratumor administration of {sup 131}I-Crtx in mice bearing Erlich tumor, it was observed high uptake in tumor site in vivo (Ã =72kBq x h/g) resulting in a high absorbed dose radiation to tumor site. Distributions of {sup 125/131}I-Crtx i.v. were only significant in tumor, stomach, liver and kidneys, reflecting non-specific uptake of Crtx in normal excretion tissues in vivo. Intratumoral administration reduced significantly the radiation dose to the kidneys (42-fold lower) and increased the uptake by the tumor site (128- fold higher). {sup 131}I control was run in a parallel experiment and showed no significant tumor

  8. Characterisation of the thermoluminescence (TL) properties of tailor-made Ge-doped silica glass fibre for applications in medical radiation therapy dosimetry

    Science.gov (United States)

    Zahaimi, N. A.; Zin, H.; Mahdiraji, G. A.; Rahman, A. L. Abdul; Bradley, D. A.; Rahman, A. T. Abdul

    2014-11-01

    We have investigated the characterisation of new fabricated material Ge doped silica glass thermoluminescence TL dosimeter (Photonic Research Centre, University of Malaya) for medical radiation dosimetry at therapy energy. Previously, the dosimeter has been studied to provide ideal dosimetry system, suitable to ensure an accurate delivery of radiation doses to tumour tissue while minimising the amount of radiation administrated to healthy tissue. Both energies of photon and electron were used in this experiment for a dose range of 1 to 5 Gy. The various sizes of core diameter Ge doped silica glass (120, 241, 362, 483 and 604 μm) were exposed by using linear accelerator at Pantai Medical Centre. For both energies, the optical fibres were found to produce a flat response to a fixed photon and electron doses to within 4% (S.D) of the mean of the TL distribution. In terms of dose response, the fibres provide linear response over the range investigated, from a fraction of 1-5 Gy. The finding shows 120 μm fibres have 1.82 greater dose response than 604 pm fibres irradiated at 6 MV photon with a fixed dose of 3 Gy. While for electron energy 12 MeV, the response shows 120 μm fibres have 1.58 greater dose response compared to 604 μm fibres. The good responses are suitable to make these tailor-made doped silica fibres a promising TL material for use as a dosimetric system in medical radiation therapy.

  9. Improved Radiation Dosimetry/Risk Estimates to Facilitate Environmental Management of Plutonium-Contaminated Sites

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Bobby R.; Tokarskaya, Zoya B.; Zhuntova, Galina V.; Osovets, Sergey V.; Syrchikov, Victor A., Belyaeva, Zinaida D.

    2007-12-14

    This report summarizes 4 years of research achievements in this Office of Science (BER), U.S. Department of Energy (DOE) project. The research described was conducted by scientists and supporting staff at Lovelace Respiratory Research Institute (LRRI)/Lovelace Biomedical and Environmental Research Institute (LBERI) and the Southern Urals Biophysics Institute (SUBI). All project objectives and goals were achieved. A major focus was on obtaining improved cancer risk estimates for exposure via inhalation to plutonium (Pu) isotopes in the workplace (DOE radiation workers) and environment (public exposures to Pu-contaminated soil). A major finding was that low doses and dose rates of gamma rays can significantly suppress cancer induction by alpha radiation from inhaled Pu isotopes. The suppression relates to stimulation of the body's natural defenses, including immunity against cancer cells and selective apoptosis which removes precancerous and other aberrant cells.

  10. A Study of Occupational Radiation Dosimetry During Fluoroscopically Guided Simulated Urological Surgery in the Lithotomy Position.

    Science.gov (United States)

    Horsburgh, Ben A; Higgins, Mike

    2016-12-01

    To quantify through environmental audit the radiation dose that urologists receive during surgery in the lithotomy position, and to quantify the dose reduction achieved by altering exposure techniques and personal protective equipment use. Simulated surgery in the lithotomy position using an anthropomorphic phantom as a patient and a SimMan(®) mannequin as the surgeon. Pulsed fluoroscopy, focus-to-skin distance (FSD), collimation, and addition of a lead shield at the table end were individually and collectively introduced after a control study. Scattered X-ray dose rates to the simulated surgeon's eye, thyroid, trunk, external genitalia, and leg were measured with each of the technique adjustments. The absorbed dose in air at the phantom skin was measured throughout. Results were compared to discover surgeon dose rates with technique alteration. Increasing FSD leads to a rise in surgeon eye dose, and table end lead protection increases the patient skin dose. Use of all the dose-reduction techniques together reduces the dose to the patient, and a surgeon's trunk dose is decreased by 95%, external genitalia dose by 99%, and leg dose by 97%. Sitting to perform fluoroscopically guided surgery in the lithotomy position increases surgeon dose by a median value of 17%, with the external genitalia dose increased by 78% compared with the standing position. This study describes effective methods of dose reduction that are easy to instigate. The resulting reduction in radiation dose during urology procedures meets the requirements of international guidelines and legislation. This change in practice improves patient care and reduces risk to urologists from occupational exposure to radiation. By combining all of the dose-reduction techniques, urologists should never reach the threshold for deterministic radiation effects to their eyes during their career, and they will have a significantly lower chance of stochastic risks such as cancer.

  11. A study on the radiation and environment safety -Development of technology for biological dosimetry-

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Suk; Kim, Kook Chan; Kim, In Kyoo; Kim, Jin Kyoo; Chun Kee Jung; Park, Hyo Kook; Kim, Sang Bok; Park Sun Yung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    Adult rats were treated a single, whole body exposure to a dose of 0.1, 0.5, 1.0, 2.0, 3.0 Gy. The animals were sacrificed 6, 24, 48, 72, 96 hours following exposure. The amount of serum acute phase proteins(haptoglobin, ceruloplasmin, C-reactive protein, alpha-1 antitrypsin, alpha-1 acid glycoprotein, transferrin) were measured by competitive ELISA. In the 0.1 Gy irradiated rats, serum haptoglobin, C-reactive protein and alpha-1 antitrypsin were 400% higher and serum transferrin was 50% lower as compared to controls, 96 hours after irradiation. Ceruloplasmin increased by 400%, 24 hours after irradiation, but 96 hours after irradiation, the concentration of this protein in rat returned to normal level. On the other hand, no changes were observed in the case of alpha-1 acid glycoprotein. In the group of the 3.0 Gy irradiated rats, transferrin increased by 200%, 96 hours after irradiation. These biochemical responses to radiation did not show dose-dependent relation, but the sensitivity of the indicators was high enough to detect absorbed dose of 0.1 Gy. The above results can be applied to the measurements of acute phase reactants in human serum for the assessment of exposure doses in radiation workers and patients under radiation therapy. 39 figs, 72 refs. (Author).

  12. Radiation therapy: dosimetry study of the effect of the composition of Pb alloys by PENELOPE

    Directory of Open Access Journals (Sweden)

    Jose McDonnell

    2011-02-01

    Full Text Available Radiotherapy is a widely used treatment for cancer. Currently applying the technique of Intensity Modulated Radiation Therapy, in which an important aspect is the modulation of the radiation beam to generate a non-uniform dose distribution in the tumor. One way to achieve the above non-uniform dose distribution is using solid compensators. In the market there are a number of materials used to manufacture compensators. Pb alloys on the market are: Cerromatrix, Rose, Wood, Newton, Darcet, whose compositions vary with respect to the composition of the lipowitz metal. This paper quantifies the dosimetric effects of the composition of commercial alloys, routinely used in radiotherapy. This quantification is important because of its impact on the total uncertainty of treatment accepted in the dosimetric calculations. To investigate the dosimetric effect of the composition of commercial alloys in the market we used the PENELOPE code, code that allows the simulation of radiation transport in different media by Monte Carlo method.The results show that there is a difference dosimetric respect lipowitz material, ranging from 7 % to 9 % for the materials investigated. These values indicate the importance of knowing exactly the dosimetric characteristics of the material used as compensator for their implications in the dose calculation.

  13. Aircrew dosimetry using the Predictive Code for Aircrew Radiation Exposure (PCAIRE).

    Science.gov (United States)

    Lewis, B J; Bennett, L G I; Green, A R; Butler, A; Desormeaux, M; Kitching, F; McCall, M J; Ellaschuk, B; Pierre, M

    2005-01-01

    During 2003, a portable instrument suite was used to conduct cosmic radiation measurements on 49 jet-altitude flights, which brings the total number of in-flight measurements by this research group to over 160 flights since 1999. From previous measurements, correlations have been developed to allow for the interpolation of the dose-equivalent rate for any global position, altitude and date. The result was a Predictive Code for Aircrew Radiation Exposure (PCAIRE), which has since been improved. This version of the PCAIRE has been validated against the integral route dose measurements made at commercial aircraft altitudes during the 49 flights. On most flights, the code gave predictions that agreed to the measured data (within +/- 25%), providing confidence in the use of PCAIRE to predict aircrew exposure to galactic cosmic radiation. An empirical correlation, based on ground-level neutron monitoring data, has also been developed for the estimation of aircrew exposure from solar energetic particle (SEP) events. This model has been used to determine the significance of SEP exposure on a theoretical jet altitude flight during GLE 42.

  14. Taurine-EVA copolymer-paraffin rods dosimeters for EPR high-dose radiation dosimetry

    OpenAIRE

    Maghraby Ahmed M.; Mansour A; Abdel-Fattah A. A.

    2014-01-01

    Taurine/EPR rods (3 × 10 mm) have been prepared by a simple technique in the laboratory where taurine powder was mixed with a molten mixture of paraffin wax and an ethylene vinyl acetate (EVA) copolymer. The binding mixture EVA/Paraffin does not present interference or noise in the EPR signal before or after irradiation. The rods show good mechanical properties for safe and multi-use handling. An EPR investigation of radiation induced radicals in taurine rods revealed that there are two types...

  15. Duality of solar UV-B radiation and relevant dosimetry: vitamin D synthesis versus skin erythema

    Science.gov (United States)

    Terenetskaya, Irina P.

    2003-06-01

    Solar ultraviolet radiation (UVR) gives rise to beneficial or adverse health effects depending on the dose. Excessive UV exposures are associated with acute and chronic health effect but in appropriate doses UV sunlight is advisable. Important biological function of UVR is initiation of endogenous synthesis of vitamin D in human skin. A useful method based on an in vitro model of vitamin D synthesis ('D-dosimeter') has been specially developed to measure the vitamin D synthetic capacity of sunlight in situ. For the first time laboratory and field tests have been performed to link commonly used erythemal units (MEDs) and previtamin D accumulation.

  16. US plant and radiation dosimetry experiments flown on the soviet satellite COSMOS 1129. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Heinrich, M.R.; Souza, K.A.

    1981-05-01

    Experiments included: 30 young male Wistar SPF rats used for wide range physiological studies Kosmos Satellites experiments with plants, fungi, insects, and mammalian tissue cultures; radiation physics experiments; a heat convection study; a rat embryology experiment in which an attempt was made to breed 2 male and 5 female rats during the flight; and fertile quail eggs used to determine the effects of spaceflight on avian embryogenesis. Specimens for US experiments were initially prepared at the recovery site or in Moscow and transferred to US laboratories for complete analyses. An overview of the mission focusing on preflight, on orbit, and postflight activities pertinent to the fourteen US experiments aboard Cosmos 1129 is presented.

  17. US plant and radiation dosimetry experiments flown on the Soviet satellite Cosmos 1129

    Science.gov (United States)

    Heinrich, M. R. (Editor); Souza, K. A. (Editor)

    1981-01-01

    Experiments included: 30 young male Wistar SPF rats used for wide range physiological studies; experiments with plants, fungi, insects, and mammalian tissue cultures; radiation physics experiments; a heat convection study; a rat embryology experiment in which an attempt was made to breed 2 male and 5 female rats during the flight; and fertile quail eggs used to determine the effects of spaceflight on avian embryogenesis. Specimens for US experiments were initially prepared at the recovery site or in Moscow and transferred to US laboratories for complete analyses. An overview of the mission focusing on preflight, on orbit, and postflight activities pertinent to the fourteen US experiments aboard Cosmos 1129 is presented.

  18. Spallation radiation damage and dosimetry for accelerator transmutation of waste applications

    Energy Technology Data Exchange (ETDEWEB)

    Wechsler, M.S.; Lin, C. [North Carolina State Univ., Raleigh, NC (United States). Dept. of Nuclear Engineering; Ferguson, P.D. [Missouri Univ., Rolla, MO (United States). Dept. of Nuclear Engineering; Sommer, W.F. [Los Alamos National Lab., NM (United States)

    1993-10-01

    Proposals are currently being made for systems to treat radioactive waste based on the use of accelerator-driven neutron sources. A linear proton accelerator with energies as high as 1600 MeV and currents up to 250 ma are anticipated for the driver. The neutron fluxes may reach up to 10{sup 20} neutrons/m{sup 2}s as generated by the spallation reactions that occur when the protons strike target materials. Calculations are described to determine radiation fluxes and flux spectra inherent in such systems and to estimate likely radiation effects on system components. The calculations use LAHET, a Monte Carlo high-energy transport code, and MCNP, a generalized-geometry, coupled neutron-photon Monte Carlo transport code. Cross sections for displacement and helium production are presented for spallation neutrons of energies from 21 MeV to 1600 MeV for Inconel 718 (Ni plus 18.5, 18.5, 5.1, and 3 wt % of Cr, Fe, Nb, and Mo, respectively), an alloy that is used for the proton beam entry window in several accelerators. In addition, results for this alloy are presented for the primary knocked-on atom (PKA) spectrum and the transmutation yield for 1600 MeV incident neutrons.

  19. Dosimetry for a study of low-dose radiation cataracts among Chernobyl clean-up workers.

    Science.gov (United States)

    Chumak, V V; Worgul, B V; Kundiyev, Y I; Sergiyenko, N M; Vitte, P M; Medvedovsky, C; Bakhanova, E V; Junk, A K; Kyrychenko, O Y; Musijachenko, N V; Sholom, S V; Shylo, S A; Vitte, O P; Xu, S; Xue, X; Shore, R E

    2007-05-01

    A cohort of 8,607 Ukrainian Chernobyl clean-up workers during 1986-1987 was formed to study cataract formation after ionizing radiation exposure. Study eligibility required the availability of sufficient exposure information to permit the reconstruction of doses to the lens of the eye. Eligible groups included civilian workers, such as those who built the "sarcophagus" over the reactor, Chernobyl Nuclear Power Plant Workers, and military reservists who were conscripted for clean-up work. Many of the official doses for workers were estimates, because only a minority wore radiation badges. For 106 military workers, electron paramagnetic resonance (EPR) measurements of extracted teeth were compared with the recorded doses as the basis to adjust the recorded gamma-ray doses and provide estimates of uncertainties. Beta-particle doses to the lens were estimated with an algorithm devised to take into account the nature and location of Chernobyl work, time since the accident, and protective measures taken. A Monte Carlo routine generated 500 random estimates for each individual from the uncertainty distributions of the gamma-ray dose and of the ratio of beta-particle to gamma-ray doses. The geometric mean of the 500 combined beta-particle and gamma-ray dose estimates for each individual was used in the data analyses. The median estimated lens dose for the cohort was 123 mGy, while 4.4% received >500 mGy.

  20. SU-E-T-62: A Preliminary Experience of Using EPID Transit Dosimetry for Monitoring Daily Dose Variations in Radiation Treatment Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Yao, R; Chisela, W [Columbus Regional Healthcare, Columbus, GA (United States)

    2015-06-15

    Purpose: To investigate the use of EPID transit dosimetry for monitoring daily dose variations in radiation treatment delivery. Methods: A patient with head and neck cancer treated using nine field IMRT beams was used in this study. The prescription was 45 Gy in 25 fractions. A KV CBCT was acquired before each treatment on a Varian NTX linear accelerator. Integrated images using MV EPID were acquired for each treatment beam. Planning CT images, treatment plan, and daily integrated images were imported into a commercial QA software Dosimetry Check (v4r4 Math Resolutions, LLC, Columbia, MD) to calculate 3D dose of the day assuming 25 fractions treatment. Planning CT images were deformed and registered to each daily CBCT using Varian SmartAdapt (v11.MR2). ROIs were then propagated from planning CT to daily CBCT. The correlation between maximum, average dose of ROIs and ROI volume, center of mass shift, Dice Similarity Coefficient (DSC) were investigated. Results: Not all parameters investigated showed strong correlations. For PTV and CTV, the average dose has inverse correlation with their volume change (correlation coefficient −0.52, −0.50, respectively) and DSC (−0.59, −0.59, respectively). The average dose of right parotid has correlation with its volume change (0.56). The maximum dose of spinal cord has correlation with the center of mass superior-inferior shift (0.52) and inverse correlation with the center of mass anterior-posterior shift (−0.73). Conclusion: Transit dosimetry using EPID images collected during treatment delivery offers great potential to monitor daily dose variations due to patient anatomy change, motion, and setup errors in radiation treatment delivery. It can provide a patient-specific QA tool valuable for adaptive radiation therapy. Further work is needed to validate the technique.

  1. Korean atomic bomb victims.

    Science.gov (United States)

    Sasamoto, Yukuo

    2009-01-01

    After colonizing Korea, Japan invaded China, and subsequently initiated the Pacific War against the United States, Britain, and their allies. Towards the end of the war, U.S. warplanes dropped atomic bombs on Hiroshima and Nagasaki, which resulted in a large number of Koreans who lived in Hiroshima and Nagasaki suffering from the effects of the bombs. The objective of this paper is to examine the history of Korea atomic bomb victims who were caught in between the U.S., Japan, the Republic of Korea (South Korea) and the Democratic People's Republic of Korea (North Korea).

  2. Pediatric radiation dosimetry for positron-emitting radionuclides using anthropomorphic phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Tianwu [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva 4 (Switzerland); Bolch, Wesley E. [Departments of Biomedical Engineering, University of Florida, Gainesville, Florida 32611 (United States); Lee, Choonsik [Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institute of Health, Rockville, Maryland 20850 (United States); Zaidi, Habib [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva 4 (Switzerland); Geneva Neuroscience Center, Geneva University, CH-1205 Geneva (Switzerland); Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, 9700 RB Groningen (Netherlands)

    2013-10-15

    Purpose: Positron emission tomography (PET) plays an important role in the diagnosis, staging, treatment, and surveillance of clinically localized diseases. Combined PET/CT imaging exhibits significantly higher sensitivity, specificity, and accuracy than conventional imaging when it comes to detecting malignant tumors in children. However, the radiation dose from positron-emitting radionuclide to the pediatric population is a matter of concern since children are at a particularly high risk when exposed to ionizing radiation.Methods: The authors evaluate the absorbed fractions and specific absorbed fractions (SAFs) of monoenergy photons/electrons as well as S-values of 9 positron-emitting radionuclides (C-11, N-13, O-15, F-18, Cu-64, Ga-68, Rb-82, Y-86, and I-124) in 48 source regions for 10 anthropomorphic pediatric hybrid models, including the reference newborn, 1-, 5-, 10-, and 15-yr-old male and female models, using the Monte Carlo N-Particle eXtended general purpose Monte Carlo transport code.Results: The self-absorbed SAFs and S-values for most organs were inversely related to the age and body weight, whereas the cross-dose terms presented less correlation with body weight. For most source/target organ pairs, Rb-82 and Y-86 produce the highest self-absorbed and cross-absorbed S-values, respectively, while Cu-64 produces the lowest S-values because of the low-energy and high-frequency of electron emissions. Most of the total self-absorbed S-values are contributed from nonpenetrating particles (electrons and positrons), which have a linear relationship with body weight. The dependence of self-absorbed S-values of the two annihilation photons varies to the reciprocal of 0.76 power of the mass, whereas the self-absorbed S-values of positrons vary according to the reciprocal mass.Conclusions: The produced S-values for common positron-emitting radionuclides can be exploited for the assessment of radiation dose delivered to the pediatric population from various PET

  3. SU-C-BRE-04: Microbeam-Radiation-Therapy (MRT): Characterizing a Novel MRT Device Using High Resolution 3D Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Li, Q [Duke University, Durham, NC (United States); Juang, T; Bache, S [Durham, NC (United States); Chang, S [UNC School of Medicine, Chapel Hill, NC (United States); Oldham, M [Duke University Medical Center, Durham, NC (United States)

    2014-06-15

    Purpose: The feasibility of MRT has recently been demonstrated utilizing a new technology of Carbon-Nano-Tube(CNT) field emission x-ray sources.This approach can deliver very high dose(10's of Gy) in narrow stripes(sub-mm) of radiation which enables the study of novel radiation treatment approaches. Here we investigate the application of highresolution (50um isotropic) PRESAGE/Optical-CT 3D dosimetry techniques to characterize the radiation delivered in this extremely dosimetrically challenging scenario. Methods: The CNT field emission x-ray source irradiator comprises of a linear cathode array and a novel collimator alignment system. This allows a precise delivery of high-energy small beams up to 160 kVp. A cylindrical dosimeter (∼2.2cm in height ∼2.5cm in diameter) was irradiated by CNT MRT delivering 3 strips of radiation with a nominal entrance dose of 32 Gy.A second dosimeter was irradiated with similar entrance dose, with a regular x-ray irradiator collimated to microscopical strip-beams. 50um (isotropic) 3D dosimetry was performed using an in-house optical-CT system designed and optimized for high resolution imaging (including a stray light deconvolution correction).The percentage depth dose (PDD), peak-to-valley ratio (PVR) and beam width (FWHM) data were obtained and analyzed in both cases. Results: High resolution 3D images were successfully achieved with the prototype system, enabling extraction of PDD and dose profiles. The PDDs for the CNT irradiation showed pronounced attenuation, but less build-up effect than that from the multibeam irradiation. The beam spacing between the three strips has an average value of 0.9mm while that for the 13 strips is 1.5 mm at a depth of 16.5 mm. The stray light corrected image shows line profiles with reduced noise and consistent PVR values. Conclusion: MRT dosimetry is extremely challenging due to the ultra small fields involved.This preliminary application of a novel, ultra-high resolution, optical-CT 3D

  4. Comparative study of Si diodes for gamma radiation dosimetry; Estudo comparativo das respostas de diodos de Si para dosimetria de radiacao gama

    Energy Technology Data Exchange (ETDEWEB)

    Pascoalino, Kelly Cristina da Silva

    2010-07-01

    In this work it is presented the comparative study of Si diodes response for gamma radiation dosimetry. The diodes investigated, grown by float zone (Fz) and magnetic Czochralski (MCz) techniques, were processed at the Physics Institute of Helsinki University in the framework of the research and development of rad-hard silicon devices. To study the dosimetric response of these diodes they were connected in the photovoltaic mode to the input of a digital electrometer to measure the photocurrent signal due to the incidence of gamma-rays from a {sup 60}Co source (Gammacell 220). The dosimetric parameter utilized to study the response of these devices was the charge, obtained trough the integration of the current signals, as a function of the absorbed dose. Studies of the influence of the pre-irradiation procedures on both sensitivity and stability of these diodes showed that the sensitivity decreased with the total absorbed dose but after a preirradiation of about 873 kGy they became more stable. Radiation damage effects eventually produced in the devices were monitored trough dynamic current and capacitance measurements after each irradiation step. Both samples also exhibited good response reproducibility, 2,21% (Fz) and 2,94% (MCz), obtained with 13 consecutive measurements of 15 kGy compared with the equivalent 195 kGy absorbed dose in one step of irradiation. It is important to note that these results are better than those obtained with routine polymethylmethacrylate (PMMA) dosimeters used in radiation processing dosimetry. (author)

  5. Cherenkov radiation dosimetry in water tanks - video rate imaging, tomography and IMRT & VMAT plan verification

    Science.gov (United States)

    Pogue, Brian W.; Glaser, Adam K.; Zhang, Rongxiao; Gladstone, David J.

    2015-01-01

    This paper presents a survey of three types of imaging of radiation beams in water tanks for comparison to dose maps. The first was simple depth and lateral profile verification, showing excellent agreement between Cherenkov and planned dose, as predicted by the treatment planning system for a square 5cm beam. The second approach was 3D tomography of such beams, using a rotating water tank with camera attached, and using filtered backprojection for the recovery of the 3D volume. The final presentation was real time 2D imaging of IMRT or VMAT treatments in a water tank. In all cases the match to the treatment planning system was within what would be considered acceptable for clinical medical physics acceptance.

  6. Using polycarbonate dyed with dansyl chloride for dosimetry in radiation processing

    Energy Technology Data Exchange (ETDEWEB)

    Feizi, Shazad; Ziaie, Farhood [Nuclear Science and Technology Research Institute, Radiation Application Research School, Tehran (Iran, Islamic Republic of); Ghandi, Mehdi [Univ. Tehran (Iran, Islamic Republic of). School of Chemistry

    2015-07-01

    Preparation and characteristics evaluation of the polycarbonate films 20 μm in thickness containing Dansyl chloride as a routine dosimeter in radiation processing facilities were studied. The sensitivity of these films and the linearity of dose-response curves were investigated under {sup 60}Co γ-rays in a dose range of 0-100 kGy, and the obtained results were compared with the commercial CTA and FWT film dosimeters. The results show that the maximum absorbance appeared at 370 nm in all the investigated dose range. The dyed films were found to be stable enough in mediums with high degrees of humidity and temperature, to be reliably used in radio-applications. The effects of pre-irradiation (shelf-life) and post-irradiation storage in dark and in indirect sunlight were also discussed. The films which were made displayed stable characteristics when stored in dark, within 1% at 25 C, 3 months after irradiation.

  7. Biodistribution and radiation dosimetry of {sup 11}C-labelled docetaxel in cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Veldt, Astrid A.M. van der; Mooijer, Martien P.J.; Rijnders, Anneloes Y.; Windhorst, Albert D.; Lammertsma, Adriaan A.; Lubberink, Mark [VU University Medical Center, Department of Nuclear Medicine and PET Research, P.O. Box 7057, Amsterdam (Netherlands); Hendrikse, N.H. [VU University Medical Center, Department of Nuclear Medicine and PET Research, P.O. Box 7057, Amsterdam (Netherlands); VU University Medical Center, Department of Clinical Pharmacology and Pharmacy, Amsterdam (Netherlands); Smit, Egbert F. [VU University Medical Center, Department of Pulmonology, Amsterdam (Netherlands); Gerritsen, Winald R. [VU University Medical Center, Department of Medical Oncology, Amsterdam (Netherlands); Hoeven, Jacobus J.M. van der [Medical Center Alkmaar, Department of Internal Medicine, Alkmaar (Netherlands)

    2010-10-15

    Docetaxel is an important chemotherapeutic agent used for the treatment of several cancer types. As radiolabelled anticancer agents provide a potential means for personalized treatment planning, docetaxel was labelled with the positron emitter {sup 11}C. Non-invasive measurements of [{sup 11}C]docetaxel uptake in organs and tumours may provide additional information on pharmacokinetics and pharmacodynamics of the drug docetaxel. The purpose of the present study was to determine the biodistribution and radiation absorbed dose of [{sup 11}C]docetaxel in humans. Biodistribution of [{sup 11}C]docetaxel was measured in seven patients (five men and two women) with solid tumours using PET/CT. Venous blood samples were collected to measure activity in blood and plasma. Regions of interest (ROI) for various source organs were defined on PET (high [{sup 11}C]docetaxel uptake) or CT (low [{sup 11}C]docetaxel uptake). ROI data were used to generate time-activity curves and to calculate percentage injected dose and residence times. Radiation absorbed doses were calculated according to the MIRD method using OLINDA/EXM 1.0 software. Gall bladder and liver demonstrated high [{sup 11}C]docetaxel uptake, whilst uptake in brain and normal lung was low. The percentage injected dose at 1 h in the liver was 47 {+-} 9%. [{sup 11}C]docetaxel was rapidly cleared from plasma and no radiolabelled metabolites were detected. [{sup 11}C]docetaxel uptake in tumours was moderate and highly variable between tumours. The effective dose of [{sup 11}C]docetaxel was 4.7 {mu}Sv/MBq. As uptake in normal lung is low, [{sup 11}C]docetaxel may be a promising tracer for tumours in the thoracic region. (orig.)

  8. Human radiation dosimetry of 6-[{sup 18}F]FDG predicted from preclinical studies

    Energy Technology Data Exchange (ETDEWEB)

    Muzic, Raymond F., E-mail: raymond.muzic@case.edu [Department of Radiology, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio 44106 (United States); Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106 (United States); Case Center for Imaging Research, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio 44106 (United States); Chandramouli, Visvanathan; Hatami, Ahmad [Department of Radiology, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio 44106 (United States); Huang, Hsuan-Ming; Wu, Chunying [Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106 and Case Center for Imaging Research, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio 44106 (United States); Ismail-Beigi, Faramarz [Department of Medicine, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio 44106 (United States)

    2014-03-15

    Purpose: The authors are developing 6-[{sup 18}F]fluoro-6-deoxy-D-glucose (6-[{sup 18}F]FDG) as an in vivo tracer of glucose transport. While 6-[{sup 18}F]FDG has the same radionuclide half-life as 2-[{sup 18}F]fluoro-2-deoxy-D-glucose (2-[{sup 18}F]FDG) which is ubiquitously used for PET imaging, 6-[{sup 18}F]FDG has special biologic properties and different biodistributions that make it preferable to 2-[{sup 18}F]FDG for assessing glucose transport. In preparation for 6-[{sup 18}F]FDG use in human PET scanning, the authors would like to determine the amount of 6-[{sup 18}F]FDG to inject while maintaining radiation doses in a safe range. Methods: Rats were injected with 6-[{sup 18}F]FDG, euthanized at specified times, and tissues were collected and assayed for activity content. For each tissue sample, the percent of injected dose per gram was calculated and extrapolated to that for humans in order to construct predicted time-courses. Residence times were calculated as areas under the curves and were used as inputs to OLINDA/EXM in order to calculate the radiation doses. Results: Unlike with 2-[{sup 18}F]FDG for which the urinary bladder wall receives the highest absorbed dose due to urinary excretion, with 6-[{sup 18}F]FDG there is little urinary excretion and osteogenic cells and the liver are predicted to receive the highest absorbed doses: 0.027 mGy/MBq (0.100 rad/mCi) and 0.018 mGy/MBq (0.066 rad/mCi), respectively. Also, the effective dose from 6-[{sup 18}F]FDG, i.e., 0.013 mSv/MBq (0.046 rem/mCi), is predicted to be approximately 30% lower than that from 2-[{sup 18}F]FDG. Conclusions: 6-[{sup 18}F]FDG will be safe for use in the PET scanning of humans.

  9. Effect of Cerebellum Radiation Dosimetry on Cognitive Outcomes in Children With Infratentorial Ependymoma

    Energy Technology Data Exchange (ETDEWEB)

    Merchant, Thomas E., E-mail: thomas.merchant@stjude.org [Division of Radiation Oncology, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Sharma, Shelly [Division of Radiation Oncology, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Xiong, Xiaoping; Wu, Shengjie [Department of Biostatistics, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Conklin, Heather [Department of Psychology, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States)

    2014-11-01

    Purpose: Cognitive decline is a recognized effect of radiation therapy (RT) in children treated for brain tumors. The importance of the cerebellum and its contribution to cognition have been recognized; however, the effect of RT on cerebellum-linked neurocognitive deficits has yet to be explored. Methods and Materials: Seventy-six children (39 males) at a median 3.3 years of age (range, 1-17 years old) were irradiated for infratentorial ependymoma from 1997 to 2008. The total prescribed dose was 54 to 59.4 Gy administered to the postoperative tumor bed with 5- or 10-mm clinical target volume margin. Age-appropriate cognitive and academic testing was performed prior to the start of RT and was then repeated at 6 months and annually throughout 5 years. The anterior and posterior cerebellum and other normal brain volumes were contoured on postcontrast, T1-weighted postoperative magnetic resonance images registered to treatment planning computed tomography images. Mean doses were calculated and used with time after RT and other clinical covariates to model their effect on neurocognitive test scores. Results: Considering only the statistically significant rates in longitudinal changes for test scores and models that included mean dose, there was a correlation between mean infratentorial dose and intelligence quotient (IQ; −0.190 patients/Gy/year; P=.001), math (−0.164 patients/Gy/year; P=.010), reading (−0.137 patients/Gy/year; P=.011), and spelling scores (−0.147 patients/Gy/year; P=.012), where Gy was measured as the difference between the mean dose received by an individual patient and the mean dose received by the patient group. There was a correlation between mean anterior cerebellum dose and IQ scores (−0.116 patients/Gy/year; P=.042) and mean posterior cerebellum dose and IQ (−0.150 patients/Gy/year; P=.002), math (−0.120 patients/Gy/year; P=.023), reading (−0.111 patients/Gy/year; P=.012), and spelling (−0.117 patients/Gy/year; P=.015

  10. TTC-Pluronic 3D radiochromic gel dosimetry of ionizing radiation

    Science.gov (United States)

    Kozicki, Marek; Kwiatos, Klaudia; Kadlubowski, Slawomir; Dudek, Mariusz

    2017-07-01

    This work reports the first results obtained using a new 3D radiochromic gel dosimeter. The dosimeter is an aqueous physical gel matrix made of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (Pluronic F-127, PEO-PPO-PEO) doped with a representative of tetrazolium salts, 2, 3, 5-triphenyltetrazolium chloride (TTC). There were several reasons for the choice of Pluronic as a gel forming substrate: (i) the high degree of transparency and colourlessness; (ii) the possibility of gel dosimeter preparation at both high and low temperatures due to the phase behaviour of Pluronic; (iii) the broad temperature range over which the TTC-Pluronic dosimeter is stable; and (iv) the non-toxicity of Pluronic. A reason for the choice of TTC was its ionising radiation-induced transformation to water-insoluble formazan, which was assumed to impact beneficially on the spatial stability of the dose distribution. If irradiated, the TTC-Pluronic gels become red but transparent in the irradiated part, while the non-irradiated part remains crystal clear. The best obtained composition is characterised by  dose threshold, a dose sensitivity of 0.002 31 (Gy  ×  cm)-1, a large linear dose range of  >500 Gy and a dynamic dose response much greater than 500 Gy (7.5% TTC, 25% Pluronic F-127, 50 mmol dm-3 tetrakis). Temporal and spatial stability studies revealed that the TTC-Pluronic gels (7.5% TTC, 25% Pluronic F-127) were stable for more than one week. The addition of compounds boosting the gels’ dose performance caused deterioration of the gels’ temporal stability but did not impact the stability of the 3D dose distribution. The proposed method of preparation allows for the repeatable manufacture of the gels. There were no differences observed between gels irradiated fractionally and non-fractionally. The TTC-Pluronic dose response might be affected by the radiation source dose rate—this, however, requires further examination.

  11. A reference radiation facility for dosimetry at flight altitude and in space

    CERN Document Server

    Ferrari, A; Silari, Marco

    2001-01-01

    A reference facility for the intercomparison of active and passive detectors in high-energy neutron fields is available at CERN since 1993. A positive charged hadron beam (a mixture of protons and pions) with momentum of 120 GeV/c hits a copper target, 50 cm thick and 7 cm in diameter. The secondary particles produced in the interaction are filtered by a shielding of either 80 cm of concrete or 40 cm of iron. Behind the iron shielding, the resulting neutron spectrum has a maximum at about 1 MeV, with an additional high-energy component. Behind the concrete shielding, the neutron spectrum has a pronounced maximum at about 70 MeV and resembles the high-energy component of the radiation field created by cosmic rays at commercial flight altitudes. The facility is used for a variety of investigations with active and passive neutron dosimeters. Its use for measurements related to the space programme is discussed. (21 refs).

  12. The CERN-EU radiation facility for dosimetry at flight altitude and in space

    CERN Document Server

    Ferrari, A; Silari, Marco

    2001-01-01

    A reference facility for the inter-comparison of active and passive detectors in complex high-energy neutron fields is available at CERN since 1993. A positively charged hadron beam (a mixture of protons and pions) with momentum of 120 GeV/c hits a copper target, 50 cm thick and 7 cm in diameter. The secondary particles produced in the interaction traverse a shield made of either 80 cm of concrete or 40 cm of iron. Behind the iron shield, the resulting neutron spectrum has a maximum at about 1 MeV, with an additional high-energy component. Behind the concrete shield, the neutron spectrum has a second pronounced maximum at about 70 MeV and resembles the high- energy component of the radiation field at commercial flight altitudes created by cosmic rays. Recent Monte Carlo calculations are presented, performed for different beam conditions and shielding configurations in view of a possible upgrade of the facility for measurements related to the space program. (20 refs).

  13. Monte Carlo dosimetry for forthcoming clinical trials in x-ray microbeam radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    MartInez-Rovira, I; Bravin, A; Prezado, Y [ID17 Biomedical Beamline, European Synchrotron Radiation Facility (ESRF), B.P. 220, 6 Jules Horowitz, F-38043 Grenoble Cedex (France); Sempau, J [Institut de Tecniques Energetiques, Universitat Politecnica de Catalunya, Diagonal 647, E-08028 Barcelona (Spain); Fernandez-Varea, J M, E-mail: yolanda.prezado@esrf.f [Facultat de Fisica (ECM and ICC), Universitat de Barcelona, Diagonal 647, E-08028 Barcelona (Spain)

    2010-08-07

    The purpose of this work is to define safe irradiation protocols in microbeam radiation therapy. The intense synchrotron-generated x-ray beam used for the treatment is collimated and delivered in an array of 50 {mu}m-sized rectangular fields with a centre-to-centre distance between microplanes of 400 {mu}m. The absorbed doses received by the tumour and the healthy tissues in a human head phantom have been assessed by means of Monte Carlo simulations. The identification of safe dose limits is carried out by evaluating the maximum peak and valley doses achievable in the tumour while keeping the valley doses in the healthy tissues under tolerances. As the skull receives a significant fraction of the dose, the dose limits are referred to this tissue. Dose distributions with high spatial resolution are presented for various tumour positions, skull thicknesses and interbeam separations. Considering a unidirectional irradiation (field size of 2x2 cm{sup 2}) and a centrally located tumour, the largest peak and valley doses achievable in the tumour are 55 Gy and 2.6 Gy, respectively. The corresponding maximum valley doses received by the skin, bone and healthy brain are 4 Gy, 14 Gy and 7 Gy (doses in one fraction), respectively, i.e. within tolerances (5% probability of complication within 5 years).

  14. Dosimetry characterization of nitro-blue tetrazolium polyvinyl butyral films for radiation processing

    Science.gov (United States)

    Basfar, Ahmed A.; Rabaeh, Khalid A.; Moussa, Akram A.; Msalam, Rashed I.

    2011-06-01

    Nitro-blue tetrazolium polyvinyl butyral film dosimeters (NBT-PVB) were prepared and investigated based on radiation-induced reduction of NBT 2+. NBT-PVB film dosimeters containing different concentrations of NBT dye from 1 to 5 mM were prepared in a solution of ethanol. The dosimeters were irradiated with γ-ray from 60Co source at doses from 5 up to 55 kGy. UV/vis spectrophotometry was used to investigate the optical density of unirradiated and irradiated films in terms of absorbance at 529 nm. The absorbance increases with absorbed dose up to 55 kGy for NBT-PVB film dosimeters. The dose sensitivity of NBT-PVB film increases strongly with an increase in concentrations of NBT dye. The effects of irradiation temperature, humidity, dose rate and the stability of the response of the films after irradiation were investigated. The influence of irradiation temperature and humidity on the performance of the film was reduced significantly due to the use of PVB as a binder containing NBT dye.

  15. Dosimetry characterization of nitro-blue tetrazolium polyvinyl butyral films for radiation processing

    Energy Technology Data Exchange (ETDEWEB)

    Basfar, Ahmed A., E-mail: abasfar@kacst.edu.s [Radiation Technology Center, Atomic Energy Research Institute, King Abdulaziz City for Science and Technology, Riyadh (Saudi Arabia); Rabaeh, Khalid A. [Radiation Technology Center, Atomic Energy Research Institute, King Abdulaziz City for Science and Technology, Riyadh (Saudi Arabia); Radiography Department, Faculty of Allied Health Sciences, Hashemite University, Zarqa (Jordan); Moussa, Akram A. [Biomedical Physics Department, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh (Saudi Arabia); Msalam, Rashed I. [Radiation Technology Center, Atomic Energy Research Institute, King Abdulaziz City for Science and Technology, Riyadh (Saudi Arabia)

    2011-06-15

    Nitro-blue tetrazolium polyvinyl butyral film dosimeters (NBT-PVB) were prepared and investigated based on radiation-induced reduction of NBT{sup 2+}. NBT-PVB film dosimeters containing different concentrations of NBT dye from 1 to 5 mM were prepared in a solution of ethanol. The dosimeters were irradiated with {gamma}-ray from {sup 60}Co source at doses from 5 up to 55 kGy. UV/vis spectrophotometry was used to investigate the optical density of unirradiated and irradiated films in terms of absorbance at 529 nm. The absorbance increases with absorbed dose up to 55 kGy for NBT-PVB film dosimeters. The dose sensitivity of NBT-PVB film increases strongly with an increase in concentrations of NBT dye. The effects of irradiation temperature, humidity, dose rate and the stability of the response of the films after irradiation were investigated. The influence of irradiation temperature and humidity on the performance of the film was reduced significantly due to the use of PVB as a binder containing NBT dye.

  16. Radiation-induced defects in strontium carbonate rod for EPR dosimetry applications

    Science.gov (United States)

    Rushdi, M. A. H.; Abdel-Fattah, A. A.; Soliman, Y. S.

    2017-02-01

    The radiation-induced defects in strontium carbonate (SrCO3) rod dosimeter in the dose range of 2.5 Gy-25 kGy was investigated using electron paramagnetic resonance (EPR) technique. The EPR spectra of γ-irradiated strontium carbonate (SC) rods exhibit a strong EPR signal with the spectroscopic splitting g-factor 2.008 and a weak signal at g-factor 2.003. This signal increases with increasing irradiation dose. The dose-response function has a good linearity in the low dose range of 2.5-500 Gy and slight sub-linearity in the high dose range of 0.5-25 kGy. The dosimeter is nearly humidity independent in the level of 33-77% relative humidity during irradiation. The temperature coefficient of the dose-response function is 0.22% per °C in the temperature range of 20-40 °C. The rod dosimeter exhibits a maximum deviation from water equivalency by 7% in the energy range of 0.3-5 MeV. The overall uncertainty of dose determination using SC dosimeter is 5.2% and 4.54% (2σ) for low and high dose range, respectively.

  17. Radiation dosimetry measurements with real time radiation monitoring device (RRMD)-II in Space Shuttle STS-79.

    Science.gov (United States)

    Sakaguchi, T; Doke, T; Hayashi, T; Kikuchi, J; Hasebe, N; Kashiwagi, T; Takashima, T; Takahashi, K; Nakano, T; Nagaoka, S; Takahashi, S; Yamanaka, H; Yamaguchi, K; Badhwar, G D

    1997-12-01

    The real-time measurement of radiation environment was made with an improved real-time radiation monitoring device (RRMD)-II onboard Space Shuttle STS-79 (S/MM#4: 4th Shuttle MIR Mission, at an inclination angle of 51.6 degrees and an altitude of 250-400km) for 199 h during 17-25 September, 1996. The observation of the detector covered the linear energy transfer (LET) range of 3.5-6000 keV/micrometer. The Shuttle orbital profile in this mission was equivalent to that of the currently planned Space Station, and provided an opportunity to investigate variations in count rate and dose equivalent rate depending on altitude, longitude, and latitude in detail. Particle count rate and dose equivalent rate were mapped geographically during the mission. Based on the map of count rate, an analysis was made by dividing whole region into three regions: South Atlantic Anomaly (SAA) region, high latitude region and other regions. The averaged absorbed dose rate during the mission was 39.3 microGy/day for a LET range of 3.5-6000 keV/micrometer. The corresponding average dose equivalent rates during the mission are estimated to be 293 microSv/day with quality factors from International Commission on Radiological Protection (ICRP)-Pub. 60 and 270 microSv/day with quality factors from ICRP-Pub. 26. The effective quality factors for ICRP-Pub. 60 and 26 are 7.45 and 6.88, respectively. From the present data for particles of LET > 3.5keV/micrometer, we conclude that the average dose equivalent rate is dominated by the contribution of galactic cosmic ray (GCR) particles. The dose-detector depth dependence was also investigated.

  18. Internal dosimetry technical basis manual

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-20

    The internal dosimetry program at the Savannah River Site (SRS) consists of radiation protection programs and activities used to detect and evaluate intakes of radioactive material by radiation workers. Examples of such programs are: air monitoring; surface contamination monitoring; personal contamination surveys; radiobioassay; and dose assessment. The objectives of the internal dosimetry program are to demonstrate that the workplace is under control and that workers are not being exposed to radioactive material, and to detect and assess inadvertent intakes in the workplace. The Savannah River Site Internal Dosimetry Technical Basis Manual (TBM) is intended to provide a technical and philosophical discussion of the radiobioassay and dose assessment aspects of the internal dosimetry program. Detailed information on air, surface, and personal contamination surveillance programs is not given in this manual except for how these programs interface with routine and special bioassay programs.

  19. Cluster bomb ocular injuries

    Directory of Open Access Journals (Sweden)

    Ahmad M Mansour

    2012-01-01

    Full Text Available Purpose: To present the visual outcomes and ocular sequelae of victims of cluster bombs. Materials and Methods: This retrospective, multicenter case series of ocular injury due to cluster bombs was conducted for 3 years after the war in South Lebanon (July 2006. Data were gathered from the reports to the Information Management System for Mine Action. Results: There were 308 victims of clusters bombs; 36 individuals were killed, of which 2 received ocular lacerations and; 272 individuals were injured with 18 receiving ocular injury. These 18 surviving individuals were assessed by the authors. Ocular injury occurred in 6.5% (20/308 of cluster bomb victims. Trauma to multiple organs occurred in 12 of 18 cases (67% with ocular injury. Ocular findings included corneal or scleral lacerations (16 eyes, corneal foreign bodies (9 eyes, corneal decompensation (2 eyes, ruptured cataract (6 eyes, and intravitreal foreign bodies (10 eyes. The corneas of one patient had extreme attenuation of the endothelium. Conclusions: Ocular injury occurred in 6.5% of cluster bomb victims and 67% of the patients with ocular injury sustained trauma to multiple organs. Visual morbidity in civilians is an additional reason for a global ban on the use of cluster bombs.

  20. Cardiovascular disease among atomic bomb survivors.

    Science.gov (United States)

    Ozasa, Kotaro; Takahashi, Ikuno; Grant, Eric J; Kodama, Kazunori

    2017-02-24

    The profile of cardiovascular disease in Japan has been different from that in Western countries. Hypertension was the major cause not only for hemorrhagic stroke but also for ischemic stroke and heart disease in the past, and the influence of hypertension has decreased with calendar years because of reduced salt intake and westernization of lifestyle, and also improved medical care. The health status of atomic bomb survivors has reflected this profile as well as radiation effects. It is also likely that this cohort has been affected by the difficult conditions experienced in the aftermath of the war and atomic bombings. In this article, we tried to make a consistent interpretation of epidemiological findings of atomic bomb radiation effects on cardiovascular disease. Among the atomic bomb survivors, radiation exposure was associated with some cardiovascular diseases that are often associated with hypertension, and dose response appeared to be primarily non-linear among those who were exposed at younger ages. These effects are thought to reflect the nature of whole body irradiation. But, some findings remain inconsistent, possibly because of possible misclassification in death certificate diagnoses in the Life Span Study as well as selected information from the Adult Health Study which was limited to participants, focused on specific outcomes, and gathered in selected periods of follow-up. Therefore, a comprehensive and balanced interpretation of the results from both groups is necessary.

  1. 3D dosimetry in patients with early breast cancer undergoing Intraoperative Avidination for Radionuclide Therapy (IART {sup registered}) combined with external beam radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, Mahila E.; Cremonesi, Marta; Di Dia, Amalia; Botta, Francesca; Pedroli, Guido [European Institute of Oncology, Division of Medical Physics, Milan (Italy); De Cicco, Concetta; Calabrese, Michele; Paganelli, Giovanni [European Institute of Oncology, Division of Nuclear Medicine, Milan (Italy); Sarnelli, Anna [IRCCS Istituto Romagnolo per lo Studio e la Cura dei Tumori, Medical Physics Unit, Meldola, FC (Italy); Pedicini, Piernicola [Centro Regionale Oncologico Basilicata (IRCCS-CROB), Department of Radiation Oncology, Rionero in Vulture, PZ (Italy); Orecchia, Roberto [European Institute of Oncology, Division of Radiotherapy, Milan (Italy)

    2012-11-15

    Intraoperative Avidination for Radionuclide Therapy (IART {sup registered}) is a novel targeted radionuclide therapy recently used in patients with early breast cancer. It is a radionuclide approach with {sup 90}Y-biotin combined with external beam radiotherapy (EBRT) to release a boost of radiation in the tumour bed. Two previous clinical trials using dosimetry based on the calculation of mean absorbed dose values with the hypothesis of uniform activity distribution (MIRD 16 method) assessed the feasibility and safety of IART {sup registered}. In the present retrospective study, a voxel dosimetry analysis was performed to investigate heterogeneity in distribution of the absorbed dose. The aim of this work was to compare dosimetric and radiobiological evaluations derived from average absorbed dose vs. voxel absorbed dose approaches. We evaluated 14 patients who were injected with avidin into the tumour bed after conservative surgery and 1 day later received an intravenous injection of 3.7 GBq of {sup 90}Y-biotin (together with 185 MBq {sup 111}In-biotin for imaging). Sequential images were used to estimate the absorbed dose in the target region according to the standard dosimetry method (SDM) and the voxel dosimetry method (VDM). The biologically effective dose (BED) distribution was also evaluated. Dose/volume and BED volume histograms were generated to derive equivalent uniform BED (EUBED) and equivalent uniform dose (EUD) values. No ''cold spots'' were highlighted by voxel dosimetry. The median absorbed-dose in the target region was 20 Gy (range 15-27 Gy) by SDM, and the median EUD was 20.4 Gy (range 16.5-29.4 Gy) by the VDM; SDM and VDM estimates differed by about 6 %. The EUD/mean voxel absorbed dose ratio was >0.9 in all patients, indicative of acceptable uniformity in the target. The median BED and EUBED values were 21.8 Gy (range 15.9-29.3 Gy) and 22.8 Gy (range 17.3-31.8 Gy), respectively. VDM highlighted the absence of significant

  2. Are IRIS Bombs Connected to Ellerman Bombs?

    Science.gov (United States)

    Tian, Hui; Xu, Zhi; He, Jiansen; Madsen, Chad

    2016-06-01

    Recent observations by the Interface Region Imaging Spectrograph (IRIS) have revealed pockets of hot gas (˜2-8 × 104 K) potentially resulting from magnetic reconnection in the partially ionized lower solar atmosphere (IRIS bombs; IBs). Using joint observations between IRIS and the Chinese New Vacuum Solar Telescope, we have identified 10 IBs. We find that 3 are unambiguously and 3 others are possibly connected to Ellerman bombs (EBs), which show intense brightening of the extended {{{H}}}α wings without leaving an obvious signature in the {{{H}}}α core. These bombs generally reveal the following distinct properties: (1) the O iv 1401.156 Å and 1399.774 Å lines are absent or very weak; (2) the Mn i 2795.640 Å line manifests as an absorption feature superimposed on the greatly enhanced Mg ii k line wing; (3) the Mg ii k and h lines show intense brightening in the wings and no dramatic enhancement in the cores; (4) chromospheric absorption lines such as Ni ii 1393.330 Å and 1335.203 Å are very strong; and (5) the 1700 Å images obtained with the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory reveal intense and compact brightenings. These properties support the formation of these bombs in the photosphere, demonstrating that EBs can be heated much more efficiently than previously thought. We also demonstrate that the Mg ii k and h lines can be used to investigate EBs similarly to {{{H}}}α , which opens a promising new window for EB studies. The remaining four IBs obviously have no connection to EBs and they do not have the properties mentioned above, suggesting a higher formation layer, possibly in the chromosphere.

  3. Are IRIS bombs connected to Ellerman bombs?

    CERN Document Server

    Tian, Hui; He, Jiansen; Madsen, Chad

    2016-01-01

    Recent observations by the Interface Region Imaging Spectrograph (IRIS) have revealed pockets of hot gas ($\\sim$2--8$\\times$10$^{4}$ K) potentially resulting from magnetic reconnection in the partially ionized lower solar atmosphere (IRIS bombs; IBs). Using joint observations between IRIS and the Chinese New Vacuum Solar Telescope, we have identified ten IBs. We find that three are unambiguously and three others are possibly connected to Ellerman bombs (EBs), which show intense brightening of the extended H$_{\\alpha}$ wings without leaving an obvious signature in the H$_{\\alpha}$ core. These bombs generally reveal the following distinct properties: (1) The O~{\\sc{iv}}~1401.156\\AA{} and 1399.774\\AA{} lines are absent or very weak; (2) The Mn~{\\sc{i}}~2795.640\\AA{} line manifests as an absorption feature superimposed on the greatly enhanced Mg~{\\sc{ii}}~k line wing; (3) The Mg~{\\sc{ii}}~k and h lines show intense brightening in the wings and no dramatic enhancement in the cores; (4) Chromospheric absorption lin...

  4. F-18 labelled PSMA-1007: biodistribution, radiation dosimetry and histopathological validation of tumor lesions in prostate cancer patients.

    Science.gov (United States)

    Giesel, Frederik L; Hadaschik, B; Cardinale, J; Radtke, J; Vinsensia, M; Lehnert, W; Kesch, C; Tolstov, Y; Singer, S; Grabe, N; Duensing, S; Schäfer, M; Neels, O C; Mier, W; Haberkorn, U; Kopka, K; Kratochwil, C

    2017-04-01

    The prostate-specific membrane antigen (PSMA) targeted positron-emitting-tomography (PET) tracer (68)Ga-PSMA-11 shows great promise in the detection of prostate cancer. However, (68)Ga has several shortcomings as a radiolabel including short half-life and non-ideal energies, and this has motivated consideration of (18)F-labelled analogs. (18)F-PSMA-1007 was selected among several (18)F-PSMA-ligand candidate compounds because it demonstrated high labelling yields, outstanding tumor uptake and fast, non-urinary background clearance. Here, we describe the properties of (18)F-PSMA-1007 in human volunteers and patients. Radiation dosimetry of (18)F-PSMA-1007 was determined in three healthy volunteers who underwent whole-body PET-scans and concomitant blood and urine sampling. Following this, ten patients with high-risk prostate cancer underwent (18)F-PSMA-1007 PET/CT (1 h and 3 h p.i.) and normal organ biodistribution and tumor uptakes were examined. Eight patients underwent prostatectomy with extended pelvic lymphadenectomy. Uptake in intra-prostatic lesions and lymph node metastases were correlated with final histopathology, including PSMA immunostaining. With an effective dose of approximately 4.4-5.5 mSv per 200-250 MBq examination, (18)F-PSMA-1007 behaves similar to other PSMA-PET agents as well as to other (18)F-labelled PET-tracers. In comparison to other PSMA-targeting PET-tracers, (18)F-PSMA-1007 has reduced urinary clearance enabling excellent assessment of the prostate. Similar to (18)F-DCFPyL and with slightly slower clearance kinetics than PSMA-11, favorable tumor-to-background ratios are observed 2-3 h after injection. In eight patients, diagnostic findings were successfully validated by histopathology. (18)F-PSMA-1007 PET/CT detected 18 of 19 lymph node metastases in the pelvis, including nodes as small as 1 mm in diameter. (18)F-PSMA-1007 performs at least comparably to (68)Ga-PSMA-11, but its longer half-life combined with its superior energy

  5. F-18 labelled PSMA-1007: biodistribution, radiation dosimetry and histopathological validation of tumor lesions in prostate cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Giesel, Frederik L.; Vinsensia, M.; Mier, W.; Haberkorn, U.; Kratochwil, C. [University Hospital Heidelberg, Department of Nuclear Medicine, Heidelberg (Germany); Hadaschik, B.; Radtke, J.; Kesch, C. [University Hospital Heidelberg, Department of Urology, Heidelberg (Germany); Cardinale, J.; Schaefer, M.; Neels, O.C.; Kopka, K. [German Cancer Research Center (dkfz), Division of Radiopharmaceutical Chemistry, Heidelberg (Germany); Lehnert, W. [ABX-CRO, Dresden (Germany); Tolstov, Y.; Singer, S. [University Hospital Heidelberg, Section of Molecular Urooncology, Department of Urology, Medical Faculty Heidelberg, Heidelberg (Germany); Grabe, N. [University Hospital Heidelberg, Institute of Pathology, Heidelberg (Germany); University Hospital Heidelberg, Department of Medical Oncology, National Center for Tumor Diseases (NCT), Heidelberg (Germany); University of Heidelberg, Hamamatsu Tissue Imaging and Analysis Center, Heidelberg (Germany); Duensing, S. [University Hospital Heidelberg, Department of Urology, Heidelberg (Germany); University Hospital Heidelberg, Section of Molecular Urooncology, Department of Urology, Medical Faculty Heidelberg, Heidelberg (Germany)

    2017-04-15

    The prostate-specific membrane antigen (PSMA) targeted positron-emitting-tomography (PET) tracer {sup 68}Ga-PSMA-11 shows great promise in the detection of prostate cancer. However, {sup 68}Ga has several shortcomings as a radiolabel including short half-life and non-ideal energies, and this has motivated consideration of {sup 18}F-labelled analogs. {sup 18}F-PSMA-1007 was selected among several {sup 18}F-PSMA-ligand candidate compounds because it demonstrated high labelling yields, outstanding tumor uptake and fast, non-urinary background clearance. Here, we describe the properties of {sup 18}F-PSMA-1007 in human volunteers and patients. Radiation dosimetry of {sup 18}F-PSMA-1007 was determined in three healthy volunteers who underwent whole-body PET-scans and concomitant blood and urine sampling. Following this, ten patients with high-risk prostate cancer underwent {sup 18}F-PSMA-1007 PET/CT (1 h and 3 h p.i.) and normal organ biodistribution and tumor uptakes were examined. Eight patients underwent prostatectomy with extended pelvic lymphadenectomy. Uptake in intra-prostatic lesions and lymph node metastases were correlated with final histopathology, including PSMA immunostaining. With an effective dose of approximately 4.4-5.5 mSv per 200-250 MBq examination, {sup 18}F-PSMA-1007 behaves similar to other PSMA-PET agents as well as to other {sup 18}F-labelled PET-tracers. In comparison to other PSMA-targeting PET-tracers, {sup 18}F-PSMA-1007 has reduced urinary clearance enabling excellent assessment of the prostate. Similar to {sup 18}F-DCFPyL and with slightly slower clearance kinetics than PSMA-11, favorable tumor-to-background ratios are observed 2-3 h after injection. In eight patients, diagnostic findings were successfully validated by histopathology. {sup 18}F-PSMA-1007 PET/CT detected 18 of 19 lymph node metastases in the pelvis, including nodes as small as 1 mm in diameter. {sup 18}F-PSMA-1007 performs at least comparably to {sup 68}Ga-PSMA-11, but its

  6. Intercomparison of dispersed radiation readings among film dosimetry, electronic and OSL with X-rays for low dose; Intercomparacion de lecturas de radiacion dispersa entre dosimetria film, electronica y OSL con rayos X para dosis bajas

    Energy Technology Data Exchange (ETDEWEB)

    Andisco, D. [Universidad de Buenos Aires, Facultad de Medicina, Paraguay 2155, C1121AAA Buenos Aires (Argentina); Blanco, S. [CONICET, Saavedra 15, C1083ACA Buenos Aires (Argentina); Bourel, V.; Schmidt, L. [Universidad Favaloro, Facultad de Ciencias e Ingenieria, Solis 453, C1078AAI, Buenos Aires (Argentina); Di Risio, C., E-mail: dandisco@fmed.uba.ar [Universidad de Belgrano, Facultad de Ingenieria, Zabala 1837, C1426DQG, Buenos Aires (Argentina)

    2014-08-15

    One of the personal dosimetry methods more used for several decades is the dosimetry type film, characterized to possess readings with certain margin of trust. Today other methods exist that many times are presupposed more reliable due to the nature of the detection like the electronic dosimeters or the OSL (Optically Stimulated Luminescence) dosimetry. With the purpose of comparing different methods and to can determining the existent differences among each method has been carried out an intercomparison assay. The different dosimeters have been exposed to dispersed radiation generated by a Hemodynamics equipment of the type -arch in C- and a dispersing system of the primary beam. Film dosimeters have been used; OSL (In Light), OSL (Nano Dots) and Electronic with the purpose of knowing and to valorize the existent differences among its readings. Always, the intercomparison exercises have demonstrated to be an useful tool when establishing the measurement capacity and the quality of the results emitted by the laboratories of personal dosimetry services. Also, this type of assays allows obtaining quality indicators of the laboratory performance and they are habitual part of the procedures for accreditation of the same ones. The Optically Stimulated Luminescence is a technology that has grown in Argentina so much in the area of personal dosimetry as in dosimetry in vivo (radiotherapy area). In this intercomparison study, the answers corresponding to each technology were looked for oneself irradiation of the disperse type, that is to say, of very low energy. (Author)

  7. Implication of microdosimetric approach for the radiation protection dosimetry; Implications de l'approche microdosimetrique pour la dosimetrie de radioprotection

    Energy Technology Data Exchange (ETDEWEB)

    Pihet, P.; Aubineau-Laniece, I.; Bottollier-Depois, J.F.; Rannou, A. [CEA/Fontenay-aux-Roses, Inst. de Protection et de Surete Nucleaire (IPSN), 92 (France); Bardies, M. [Institut National de la Sante et de la Recherche Medicale (INSERM), 44 - Nantes (France)

    1999-07-01

    The use of concept such dose equivalent puts difficulties in the case of non uniform exposure to ionizing radiations. These situations are not exceptional. They concern the external exposures to radiations such neutrons, ions, for which the energy is absorbed in cells. The dose distribution delivered to cells is generally non uniform in case of exposure to radioisotopes incorporated and kept in tissues that are alpha, or beta or Auger electrons emitters. The notion of average dose to the tissue or organ and the approach to weight the radiation quality can become difficult to apply. The applicability of the actual dosimetric system can be matter of discussion, on the validity of a simple relationship between the dose equivalent and the average absorbed dose, on the value fixed for the weighting factor or on the method to adopt for a quantitative evaluation of an internal non uniform exposure. (N.C.)

  8. Dosimetry: an ARDENT topic

    CERN Multimedia

    CERN Bulletin

    2012-01-01

    The first annual ARDENT workshop took place in Vienna from 20 to 23 November. The workshop gathered together the Early-Stage Researchers (ESR) and their supervisors, plus other people involved from all the participating institutions.   “The meeting, which was organised with the local support of the Austrian Institute of Technology, was a nice opportunity for the ESRs to get together, meet each other, and present their research plans and some preliminary results of their work,” says Marco Silari, a member of CERN Radiation Protection Group and the scientist in charge of the programme. Two full days were devoted to a training course on radiation dosimetry, delivered by renowned experts. The workshop closed with a half-day visit to the MedAustron facility in Wiener Neustadt. ARDENT (Advanced Radiation Dosimetry European Network Training) is a Marie Curie ITN project funded under EU FP7 with €4 million. The project focuses on radiation dosimetry exploiting se...

  9. Contribution of the SLDC to the metrology of the ionizing radiations dosimetry in Mexico; Contribucion del LSCD a la metrologia de la dosimetria de radiaciones ionizantes en Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez R, J. T., E-mail: trinidad.alvarez@inin.gob.m [ININ, Departamento de Metrologia de Radiaciones Ionizantes, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2010-07-01

    The Secondary Laboratory of Dosimetric Calibration (SLDC), assigned to the Metrology Department of Ionizing Radiations of the ININ had its beginnings in the eighties, with the purpose of having a specialized area to develop and to establish measure patterns of the dosimetric magnitudes and units. In the year 2000 the National Center of Metrology of the country, delegated its functions to the SLDC, as regards to develop and to maintain the national patterns in the area of ionizing radiations. In this chapter a brief review is presented on the magnitudes and units used in dosimetry and and absorbed dose, as well as some of the activities of dosimetric calibration that have been made by part of the SLDC to the radiotherapy centers in Mexico and some applications to the nuclear power plant of Laguna Verde. (Author)

  10. Biodistribution, toxicity and radiation dosimetry studies of the serotonin transporter radioligand 4-[{sup 18}F]-ADAM in rats and monkeys

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ya-Yao [Tri-Service General Hospital, PET Center, Department of Nuclear Medicine, Taipei (China); National Tsing Hua University, Department of Biomedical Engineering and Environmental Sciences, Hsinchu (China); Ma, Kuo-Hsing [National Defense Medical Center, Department of Biology and Anatomy, Taipei (China); Tseng, Ta-Wei; Chou, Ta-Kai; Huang, Wen-Sheng [Tri-Service General Hospital, PET Center, Department of Nuclear Medicine, Taipei (China); Ng, Hanna; Mirsalis, Jon C. [SRI International, Menlo Park, CA (United States); Fu, Ying-Kai [Institute of Nuclear Energy Research, Taoyuan (China); Chung Yuan Christian University, Department of Chemistry, Chung-Li (China); Chu, Tieh-Chi [National Tsing Hua University, Department of Biomedical Engineering and Environmental Sciences, Hsinchu (China); Yuanpei University, Department of Radiological Technology, Hsinchu (China); Shiue, Chyng-Yann [Tri-Service General Hospital, PET Center, Department of Nuclear Medicine, Taipei (China); University of Pennsylvania, Department of Radiology, Philadelphia, PA (United States)

    2010-03-15

    4-[{sup 18}F]-ADAM is a potent serotonin transport imaging agent. We studied its toxicity in rats and radiation dosimetry in monkeys before human studies are undertaken. Single and multiple-dosage toxicity studies were conducted in Sprague-Dawley rats. Male and female rats were injected intravenously with 4-F-ADAM as a single dose of 1,023.7 {mu}g/kg (1,000 times the human dose) or as five consecutive daily doses of 102.37 {mu}g/kg (100 times the human dose). PET/CT scans were performed in seven Formosa Rock monkeys (four males and three females) using a Siemens Biograph scanner. After injection of 4-[{sup 18}F]-ADAM (182{+-}8 MBq), a low dose CT scan and a series of eight whole-body PET scans were performed. Whole-body images were acquired in 3-D mode. Time-activity data of source organs were used to calculate the residence times and estimate the absorbed radiation dose using OLINDA/EXM software. In the rats neither the single dose nor the five daily doses of 4-F-ADAM produced overt adverse effects clinically. In the monkeys the radiation doses received by most organs ranged between 7.1 and 35.7 {mu}Gy/MBq, and the urinary bladder was considered to be the critical organ. The effective doses extrapolated to male and female adult humans were 17.4 and 21.8 {mu}Sv/MBq, respectively. Toxicity studies in Sprague-Dawley rats and radiation dosimetry studies in Formosa Rock monkeys suggested that 4-[{sup 18}F]-ADAM is safe for use in human PET imaging studies. (orig.)

  11. TH-C-17A-03: Dynamic Visualization and Dosimetry of IMRT and VMAT Treatment Plans by Video-Rate Imaging of Cherenkov Radiation in Pure Water

    Energy Technology Data Exchange (ETDEWEB)

    Glaser, A; Andreozzi, J; Davis, S [Thayer School of Engineering, Dartmouth College, NH (United States); Zhang, R [Department of Physics and Astronomy, Dartmouth College, Hanover, NH (United States); Fox, C; Gladstone, D [Dartmouth Hitchcock Medical Center, Lebanon, NH (Lebanon); Pogue, B [Thayer School of Engineering, Dartmouth College, NH (United States); Department of Physics and Astronomy, Dartmouth College, Hanover, NH (United States)

    2014-06-15

    Purpose: A novel optical dosimetry technique for the QA and verification of intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) radiotherapy plans was investigated for the first time by capturing images of the induced Cherenkov radiation in water. Methods: An intensified CCD camera (ICCD) was used to acquire a two-dimensional (2D) projection image of the Cherenkov radiation induced by IMRT and VMAT plans, based on the Task Group 119 C-Shape geometry. Plans were generated using the Varian Eclipse treatment planning system (TPS) and delivered using 6 MV x-rays from a Varian TrueBeam Linear Accelerator (Linac) incident on a water tank. The ICCD acquisition was gated to the Linac, operated for single pulse imaging, and binned to a resolution of 512×512 pixels. The resulting videos were analyzed temporally for regions of interest (ROI) covering the planning target volume (PTV) and organ at risk (OAR) and summed to obtain an overall light distribution, which was compared to the expected dose distribution from the TPS using a gammaindex analysis. Results: The chosen camera settings resulted in data at 23.5 frames per second. Temporal intensity plots of the PTV and OAR ROIs confirmed the preferential delivery of dose to the PTV versus the OAR, and the gamma analysis yielded 95.2% and 95.6% agreement between the light distribution and expected TPS dose distribution based upon a 3% / 3 mm dose difference and distance-to-agreement criterion for the IMRT and VMAT plans respectively. Conclusion: The results from this initial study demonstrate the first documented use of Cherenkov radiation for optical dosimetry of dynamic IMRT and VMAT treatment plans. The proposed modality has several potential advantages over alternative methods including the real-time nature of the acquisition, and upon future refinement may prove to be a robust and novel dosimetry method with both research and clinical applications. NIH R01CA109558 and R21EB017559.

  12. Changes in Functional Lung Regions During the Course of Radiation Therapy and Their Potential Impact on Lung Dosimetry for Non-Small Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Xue [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Department of Radiation Oncology, Shandong Cancer Hospital, Shandong University, Jinan (China); Frey, Kirk [Division of Nuclear Medicine, Department of Radiology, University of Michigan, Ann Arbor, Michigan (United States); Matuszak, Martha; Paul, Stanton; Ten Haken, Randall [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Yu, Jinming [Department of Radiation Oncology, Shandong Cancer Hospital, Shandong University, Jinan (China); Kong, Feng-Ming, E-mail: fkong@gru.edu [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Department of Radiation Oncology, Georgia Regents University, Augusta, Georgia (United States)

    2014-05-01

    Purpose: To study changes in functional activity on ventilation (V)/perfusion (Q) single-photon emission computed tomography (SPECT) during radiation therapy (RT) and explore the impact of such changes on lung dosimetry in patients with non-small cell lung cancer (NSCLC). Methods and Materials: Fifteen NSCLC patients with centrally located tumors were enrolled. All patients were treated with definitive RT dose of ≥60 Gy. V/Q SPECT-CT scans were performed prior to and after delivery of 45 Gy of fractionated RT. SPECT images were used to define temporarily dysfunctional regions of lung caused by tumor or other potentially reversible conditions as B3. The functional lung (FL) was defined on SPECT by 2 separate approaches: FL1, a threshold of 30% of the maximum uptake of the patient's lung; and FL2, FL1 plus B3 region. The impact of changes in FL between initiation of RT and delivery of 45 Gy on lung dosimetry were analyzed. Results: Fourteen patients (93%) had larger FL2 volumes than FL1 pre-RT (P<.001). Dysfunctional lung became functional in 11 patients (73%) on V SPECT and in 10 patients (67%) on Q SPECT. The dosimetric parameters generated from CT-based anatomical lung had significantly lower values in FL1 than FL2, with a median reduction in the volume of lung receiving a dose of at least 20 Gy (V{sub 20}) of 3%, 5.6%, and mean lung dose of 0.95 and 1.55 on V and Q SPECT respectively. Conclusions: Regional ventilation and perfusion function improve significantly during RT in centrally located NSCLC. Lung dosimetry values vary notably between different definitions of functional lung.

  13. Current status of kilovoltage (kV) radiotherapy in the UK: installed equipment, clinical workload, physics quality control and radiation dosimetry.

    Science.gov (United States)

    Palmer, Antony L; Pearson, Michael; Whittard, Paul; McHugh, Katie E; Eaton, David J

    2016-12-01

    To assess the status and practice of kilovoltage (kV) radiotherapy in the UK. 96% of the radiotherapy centres in the UK responded to a comprehensive survey. An analysis of the installed equipment base, patient numbers, clinical treatment sites, quality control (QC) testing and radiation dosimetry processes were undertaken. 73% of UK centres have at least one kV treatment unit, with 58 units installed across the UK. Although 35% of units are over 10 years old, 39% units have been installed in the last 5 years. Approximately 6000 patients are treated with kV units in the UK each year, the most common site (44%) being basal cell carcinoma. A benchmark of QC practice in the UK is presented, against which individual centres can compare their procedures, frequency of testing and acceptable tolerance values. We propose the use of internal "notification" and "suspension" levels for analysis. All surveyed centres were using recommended Codes of Practice for kV dosimetry in the UK; approximately the same number using in-air and in-water methodologies for medium energy, with two-thirds of all centres citing "clinical relevance" as the reason for choice of code. 64% of centres had hosted an external dosimetry audit within the last 3 years, with only one centre never being independently audited. The majority of centres use locally measured applicator factors and published backscatter factors for treatments. Monitor unit calculations are performed using software in only 36% of centres. A comprehensive review of current kV practice in the UK is presented. Advances in knowledge: Data and discussion on contemporary kV radiotherapy in the UK, with a particular focus on physics aspects.

  14. Dosimetry characterization of the commercial CaF{sub 2} for beta radiation of {sup 90}Sr + {sup 90}Y; Caracterizacao dosimetrica de CaF{sub 2} comercial para radiacao beta de {sup 90}Sr + {sup 90}Y

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Mercia L.; Caldas, Linda V.E. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], e-mail: mlolivei@ipen.br, e-mail: lcaldas@ipen.br

    2003-07-01

    This work studies the dosimetric characteristics of the CaF{sub 2} commercial dosimetry for detection of {sup 90}Sr + {sup 90}Y beta radiation for using in the calibration of flat and concave appliers. Were determined the repetitiousness and linearity of answers of the samples, and their calibration curves.

  15. Online fibre optic OSL in vivo dosimetry for quality assurance of external beam radiation therapy treatments: The ANR-TECSAN Codofer Project; Dosimetrie in vivo par OSL, en ligne par fibre optique, pour l'assurance qualite des traitements par radiotherapie externe: le projet ANR-TECSAN Codofer

    Energy Technology Data Exchange (ETDEWEB)

    Magne, S.; Ferdinand, P. [CEA Saclay, Laboratoire de mesures optiques, CEA LIST, 91191 Gif-sur-Yvette (France); De Carlan, L. [CEA Saclay, Laboratoire national Henri-Becquerel, CEA LIST, 91191 Gif-sur-Yvette (France); Bridier, A.; Isambert, A. [Service de physique, institut Gustave-Roussy, 39, rue Camille-Desmoulins, 94805 Villejuif (France); Hugon, R. [CEA Saclay, Departement capteur, signal et informations, CEA LIST, 91191 Gif-sur-Yvette (France); Guillon, J. [Societe Fimel, 18, rue Marie-et-Pierre-Curie, 92260 Fontenay-aux-Roses (France)

    2010-05-15

    The Codofer Project (2007-2009), led under the ANR-TECSAN Call, was coordinated by CEA LIST, in partnership with IGR and the Fimel company. The aim of the project was to design and test both metrologically and in clinical conditions OSL optical fiber sensors dedicated to in vivo dosimetry during external beam radiation therapy treatment with high-energy electrons. This study, combined with the results of clinical tests obtained within the European Project Maestro, has demonstrated the advantages of OSL/FO dosimetry for providing quality assurance of treatments. However, the French market for dosimetry has greatly changed as a result of the rules decreed by the French government in 2007. The OSL/FO product is now targeted for other treatment modalities lacking suitable dosimeters (ANR-INTRADOSE Project [2009-2011]). (authors)

  16. Dosimetry for radiation processing

    DEFF Research Database (Denmark)

    Miller, Arne

    1986-01-01

    by international organizations (IAEA) and national laboratories have helped to improve the reliability of dose measurements. Several dosimeter systems like calorimetry, perspex, and radiochromic dye films are being improved and new systems have emerged, e.g. spectrophotometry of dichromate solution for reference...

  17. Long-term follow-up of atomic bomb survivors.

    Science.gov (United States)

    Sakata, Ritsu; Grant, Eric J; Ozasa, Kotaro

    2012-06-01

    The Life Span Study (LSS) is a follow-up study of atomic bomb (A-bomb) survivors to investigate the radiation effects on human health and has collected data for over 60 years. The LSS cohort consists of 93,741 A-bomb survivors and another 26,580 age and sex-matched subjects who were not in either city at the time of the bombing. Radiation doses have been computed based on individual location and shielding status at the time of the bombings. Age at death and cause of death are gathered through the Japanese national family registry system and cancer incidence data have been collected through the Hiroshima and Nagasaki cancer registries. Noncancer disease incidence and health information are collected through biannual medical examinations among a subset of the LSS. Radiation significantly increases the risks of death (22% at 1 Gy), cancer incidence (47% at 1 Gy), death due to leukemia (310% at 1 Gy), as well as the incidence of several noncancer diseases (e.g. thyroid nodules, chronic liver disease and cirrhosis, uterine myoma, and hypertension). Significant effects on maturity (e.g. growth reduction and early menopause) were also observed. Long-term follow-up studies of the A-bomb survivors have provided reliable information on health risks for the survivors and form the basis for radiation protection standards for workers and the public. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. Principles for the design and calibration of radiation protection dosemeters for operational and protection quantities for eye lens dosimetry.

    Science.gov (United States)

    Bordy, J M; Gualdrini, G; Daures, J; Mariotti, F

    2011-03-01

    The work package two of the ORAMED project--Collaborative Project (2008-2011) supported by the European Commission within its seventh Framework Programme--is devoted to the study of the eye lens dosimetry. A first approach is to implement the use of H(p)(3) by providing new sets of conversion coefficients and well suited calibration and type test procedures. This approach is presented in other papers in the proceedings of this conference. Taking into account that the eye lens is an organ close to the surface of the body, another approach would be to directly estimate the absorbed dose to the eye lens, D(lens,est) through a special calibration procedure although this quantity is not directly measurable. This paper is a methodological paper that tries to identify the critical aspects of a dosimetry in terms of D(lens).

  19. Survivors and scientists: Hiroshima, Fukushima, and the Radiation Effects Research Foundation, 1975-2014.

    Science.gov (United States)

    Lindee, Susan

    2016-04-01

    In this article, I reflect on the Radiation Effects Research Foundation and its ongoing studies of long-term radiation risk. Originally called the Atomic Bomb Casualty Commission (1947-1975), the Radiation Effects Research Foundation has carried out epidemiological research tracking the biomedical effects of radiation at Hiroshima and Nagasaki for almost 70 years. Radiation Effects Research Foundation scientists also played a key role in the assessment of populations exposed at Chernobyl and are now embarking on studies of workers at the Fukushima Daiichi Nuclear Power Plant. I examine the role of estimating dosimetry in post-disaster epidemiology, highlight how national identity and citizenship have mattered in radiation risk networks, and track how participants interpreted the relationships between nuclear weapons and nuclear energy. Industrial interests in Japan and the United States sought to draw a sharp line between the risks of nuclear war and the risks of nuclear power, but the work of the Radiation Effects Research Foundation (which became the basis of worker protection standards for the industry) and the activism of atomic bomb survivors have drawn these two nuclear domains together. This is so particularly in the wake of the Fukushima disaster, Japan's 'third atomic bombing'. The Radiation Effects Research Foundation is therefore a critical node in a complex global network of scientific institutions that adjudicate radiation risk and proclaim when it is present and when absent. Its history, I suggest, can illuminate some properties of modern disasters and the many sciences that engage with them.

  20. Dosimetry for SIRT; Dosimetrie bei der SIRT

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, S.P. [Universitatesklinikum Essen (Germany). Klinik fuer Nuklearmedizin

    2011-09-15

    Dosimetry is only one aspect of treatment planning for 'Selective internal radiotherapy' (SIRT) or 'transarterial radioembolization' (TARE) with Yttrium-90 Microspheres is an emerging palliative therapy for malignant hepatoma. Dosimetric considerations, together with interventional, oncological and hepatological aspects need to be considered for optimal treatment stratification. The product-specific dosimetric calculations for 2 commercially available microsphere products are compared and set in relation to the average doses to liver and tumor. Ostensible discrepancies between the dose-response of Y-90-microspheres and external beam radiation therapy are discussed in the context of radiobiological concepts. (orig.)

  1. Dosimetry requirements derived from the sterilization standards

    DEFF Research Database (Denmark)

    Miller, A.

    1998-01-01

    The main standards for radiation sterilization, ISO 11137 and EN 552, rest the documentation for the properly executed sterilization process on dosimetry. Both standards describe general requirements to the dosimetry system: The dose measurements must be traceable to national standards, the uncer...

  2. Characterization of chemical compounds for dosimetry of the radiation in industrial processes; Caracterizacao de compostos quimicos para dosimetria das radiacaoes em processos industriais

    Energy Technology Data Exchange (ETDEWEB)

    Galante, Ana Maria Sisti

    1999-07-01

    Different chemical compounds have been studied to optimize dosimetric systems in irradiation processes. In this study 2,3,5 Triphenyl -2H- Tetrazolium Chloride, Brilliant Cresyl Blue, Bromocresol Green and Potassium Nitrate were investigated for their merits or faults, for {sup 60} Co gamma field, in order to verify if can be considered as dosimeters. Fricke solution was used as reference dosimeter to determine absorption dose rates at the gamma facilities.Only Bromocresol Green and Potassium Nitrate are recommended for dosimetry purposes since the main characteristics were achieved. The other two compounds could be used in dosimetry with changes in their formulation. Bromocresol Green and potassium Nitrate are reproducible and radiation sensitive for absorbed doses from 300 Gy to 150 kGy Bromocresol Green was used in liquid form and Potassium Nitrate was prepared in solid pellets form. Spectrophotometry in the visible region was used as the main detection technique, which allows relating optical absorption, before and after irradiation, with the absorbed dose. The maximum absorption wavelength for each compound was observed at 450-460nm for bromocresol Green and 546nm for Potassium Nitrate. Dose calibration curves are linear for both compounds in all dose intervals. When irradiated with accelerated electrons, with energies between o,9 MeV and 1,5MeV, optical absorption intensification, of about 2,6 times, was observed when comparing results for Potassium Nitrate, with those for gamma rays. All the evaluations are presented in this work. (author)

  3. Implementation and validation of a commercial portal dosimetry software for intensity-modulated radiation therapy pre-treatment verification

    Directory of Open Access Journals (Sweden)

    Varatharaj C

    2010-01-01

    Full Text Available Electronic portal imaging devices (EPIDs are extensively used for obtaining dosimetric information of pre-treatment field verification and in-vivo dosimetry for intensity-modulated radiotherapy (IMRT. In the present study, we have implemented the newly developed portal dosimetry software using independent dose prediction algorithm EPIDose TM and evaluated this new tool for the pre-treatment IMRT plan quality assurance of Whole Pelvis with Simultaneous Integrated Boost (WP-SIB-IMRT of prostate cases by comparing with routine two-dimensional (2D array detector system (MapCHECK TM . We have investigated 104 split fields using g-distributions in terms of predefined g frequency parameters. The mean γ values are found to be 0.42 (SD: 0.06 and 0.44 (SD: 0.06 for the EPIDose and MapCHECK TM , respectively. The average g∆ for EPIDose and MapCHECK TM are found as 0.51 (SD: 0.06 and 0.53 (SD: 0.07, respectively. Furthermore, the percentage of points with g < 1, γ < 1.5, and γ > 2 are 97.4%, 99.3%, and 0.56%, respectively for EPIDose and 96.4%, 99.0% and 0.62% for MapCHECK TM . Based on our results obtained with EPIDose and strong agreement with MapCHECK TM , we may conclude that the EPIDose portal dosimetry system has been successfully implemented and validated with our routine 2D array detector

  4. Development and characterization of remote radiation dosimetry systems using optically stimulated luminescence of alumina:carbon and potassium bromide:europium

    Science.gov (United States)

    Klein, David Matthew

    Scope and Method of Study. To develop and test the performance of two different dosimetry systems; one for in situ, high-sensitivity, inexpensive environmental monitoring, and another for near-real-time medical dosimetry. The systems are based on remote interrogation of the optically stimulated luminescence (OSL) from Al2O3:C and KBr:Eu single crystal dosimeters (exposed to environmental and medical radiation fields, respectively) via fiber optic cables. The environmental system was tested in lab conditions using various radioactive sources including 60Co, 90 Sr, 137Cs, and 226Ra, as well as with 232Th-enriched soil stimulant. The medical system was tested under various diagnostic x-ray systems, including fluoroscopy and computed tomography (CT) machines, as well as with high dose rate 192Ir brachytherapy sources and 232 MeV proton therapy beams under simulated treatment conditions. Findings and Conclusions. The environmental system was shown to achieve sensitivity high enough for measuring an OSL signal resulting from a dose of ˜1 muGy, which is equivalent to ˜12 hours of natural background radiation. This sensitivity allows for monitoring of the radiation characteristics of a natural environment more rapidly and/or less expensively than existing methods, such as soil sampling and in situ gamma spectroscopy. The KBr:Eu-based medical system results show that the near-real-time data acquisition during irradiation allows for rapid quality assurance (QA) measurements that benefits from high spatial resolution. These features are not present in most current standard dosimeters such as thermoluminescent detectors and pencil ionization chambers. The dosimeter does exhibit energy dependence, and a sensitization during high dose rate procedures. As a result, a model has been proposed that provides a description of the possible mechanisms that govern the transfer of electrons and holes within KBr:Eu during OSL measurement at room temperature. Correction factors for these

  5. Technical Basis Document for PFP Area Monitoring Dosimetry Program

    CERN Document Server

    Cooper, J R

    2000-01-01

    This document describes the phantom dosimetry used for the PFP Area Monitoring program and establishes the basis for the Plutonium Finishing Plant's (PFP) area monitoring dosimetry program in accordance with the following requirements: Title 10, Code of Federal Regulations (CFR), part 835, ''Occupational Radiation Protection'' Part 835.403; Hanford Site Radiological Control Manual (HSRCM-1), Part 514; HNF-PRO-382, Area Dosimetry Program; and PNL-MA-842, Hanford External Dosimetry Technical Basis Manual.

  6. Trash can bomb can fall into the hands of terrorists

    CERN Multimedia

    2001-01-01

    Leading scientists from CERN described how if terrorists were able to get their hands on plutonium or uranium, they would be able to manufacture a 'trash can' nuclear bomb simply by inserting the radioactive material into a normal bomb. Once detonated a large area could be contaminated leading to the immediate deaths of many with many more future casualties due to cancers caused by the radiation.

  7. Biological dosimetry of ionizing radiation by chromosomal aberration analysis; Dosimetria biologica de las radiaciones ionizantes mediante el analisis de aberraciones cromosomicas

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Castano, S.; Silva, A.; Navlet, J.

    1990-07-01

    Biological dosimetry consists of estimating absorbed doses for people exposed to radiation by mean biological methods. Several indicators used are based in haematological, biochemical, and cytogenetic data, although nowadays without doubt, the cytogenetic method is considered to be the most reliable. In this case, the study ol chromosomal aberrations, normally dicentric chromosomes, in peripheral lymphocytes can be related to absorbed dose through an experimental calibration curve. An experimental dose-response curve, using dicentric chromosomes analysis, X-rays at 300 kVp, 114 rad/min and temperature 37 degree celsius has been produced. Experimental data is fitted to model Y ={alpha} + {beta}{sub 1}D + {beta}{sub 2}D 2 , where Y is the number of dicentrics per cell and D the dose. The curve is compared with those produced elsewhere. (Author) 14 refs.

  8. The carcinogenic risks of low-LET and high-LET ionizing radiations

    Energy Technology Data Exchange (ETDEWEB)

    Fabrikant, J.I. (Lawrence Berkeley Lab., CA (USA))

    1989-08-01

    New information is available concerning the carcinogenic effects of radiation and the implications for risk assessment and risk management. This information comes from further follow-up of the epidemiological studies of the Japanese atomic bomb survivors, patients irradiated medically for cancer and allied conditions, and workers exposed in various occupations. In the Japanese atomic bomb survivors the carcinogenic risks are estimated to be somewhat higher than previously, due to the reassessment of the atomic-bomb dosimetry, further follow-up with increase in the number of excess cancer deaths, particularly in survivors irradiated early in life, and changes in the methods of analysis to compute the age-specific risks of cancer. Because of the characteristics of the atomic bomb survivor series as regards sample size, age and sex distribution, duration for follow-up, person-years at risk, and type of dosimetry, the mortality experience of the atomic bomb survivors was selected by the UNSCEAR Committee and the BEIR V Committee as the more appropriate basis for projecting risk estimates for the general population. In the atomic bomb survivors, the dose-effect relationship for overall cancer mortality other than leukemia is consistent with linearity below 3 Gy, while the dose-effect relationship for leukemia, excluding chronic lymphatic leukemia, conforms best to a linear-quadratic function. The shape of the dose-incidence curve at low doses still remains uncertain, and the data do not rule out the possible existence of a threshold for an neoplasm. The excess relative risk of mortality from all cancers combined is estimated to be 1.39 per Gy (shielded kerma), which corresponds to an absolute risk of 10.0 excess cancer deaths per 10,000 PYGy; the relative risks is 1.41 at 1 Gy (organ-absorbed dose), and an absolute risk of 13.07 excess cancer deaths per 10,000 PYGy. 19 refs.

  9. Thermoluminescence and radioluminescence properties of tissue equivalent Cu-doped Li{sub 2}B{sub 4}O{sub 7} for radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Cruz Z, E.; Furetta, C. [UNAM, Instituto de Ciencias Nucleares, Apdo. Postal 70543, 04510 Mexico D. F. (Mexico); Marcazzo, J.; Santiago, M. [Instituto de Fisica Arroyo Seco / UNICEN, Gral. Pinto 399, 7000 Tandil, Buenos Aires (Argentina); Guarneros, C. [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Altamira Km 14.5, 896000 Altamira, Tamaulipas (Mexico); Pacio, M. [Benemerita Universidad Autonoma de Puebla, Instituto de Ciencias, Centro de Investigacion en Dispositivos Semiconductores, Av. 14 Sur, 72570 Puebla, Pue. (Mexico); Palomino, R., E-mail: ecruz@nucleares.unam.mx [Benemerita Universidad Autonoma de Puebla, Facultad de Ciencias Fisico-Matematicas, Av. San Claudio y 18 Sur, 72570 Puebla Pue. (Mexico)

    2015-10-15

    Thermoluminescence (Tl) and radioluminescence (Rl) properties of lithium tetraborate (Li{sub 2}B{sub 4}O{sub 7}) doped with different concentration of copper (0.25, 0.5, 1 wt %) under gamma and beta irradiation has been investigated. The feasibility of using this borate in radiation dosimetry at low doses has been evaluated. Tissue equivalent Li{sub 2}B{sub 4}O{sub 7} was prepared by solid state reaction using mixing stoichiometric compositions of lithium carbonate (Li{sub 2}CO{sub 3}) and boric acid (H{sub 3}BO{sub 3}) and a solution of CuCl{sub 2} as dopant. The glow curve, of the most efficient copper doped borate (Li{sub 2}B{sub 4}O{sub 7}:Cu 0.5 wt %), shows a main stable peak centered at 225 degrees C and a second low temperature peak centered at 80 degrees C. The low temperature peak disappears completely after 24 hours of storage in darkness and at room temperature or after an annealing at 120 degrees C for 10 seconds. The main peak of the Li{sub 2}B{sub 4}O{sub 7}:Cu remains constant. The Tl response of Li{sub 2}B{sub 4}O{sub 7}:Cu shows good linearity in the analyzed dose range. The stability and repeatability of Rl signals of the borate have been studied and the Li{sub 2}B{sub 4}O{sub 7}:Cu (0.5 wt %) shown the higher Rl emission and a stable and repetitive response. Results show that Li{sub 2}B{sub 4}O{sub 7}:Cu has prospects to be used in gamma and beta radiation dosimetry. (Author)

  10. [{sup 131}I]Iodoazomycin arabinoside for low-dose-rate isotope radiotherapy: radiolabeling, stability, long-term whole-body clearance and radiation dosimetry estimates in mice

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Piyush [Department of Oncologic Imaging, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 2N8 (Canada); McQuarrie, Steven A. [Department of Oncologic Imaging, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 2N8 (Canada); Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, T6G 2N8 (Canada); Zhou, Aihya [Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, T6G 2N8 (Canada); McEwan, Alexander J.B. [Department of Oncologic Imaging, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 2N8 (Canada); Wiebe, Leonard I. [Department of Oncologic Imaging, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 2N8 (Canada) and Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, T6G 2N8 (Canada)]. E-mail: leonard.wiebe@ualberta.ca

    2005-08-01

    Background: The preliminary characterization of [{sup 131}I]iodoazomycin arabinoside ([{sup 131}I]IAZA) as a potential radiotherapeutic radiopharmaceutical is described. Methods: High-specific-activity [{sup 131}I]IAZA was prepared in therapeutic doses (up to 3 GBq per batch) by isotope exchange in pivalic acid melt and was purified on Sep-Pak cartridges. Stability in 15% ethanol in saline at 4 deg C was determined by high-performance liquid chromatography. IAZA cytotoxicity (IC{sub 50}, {approx}0.1 mM) against both murine (EMT-6) and human (143B, 143B-LTK) tumor cells determined by MTT test was in the range previously reported for EMT-6 cells using a clonogenic assay. Tissue radioactivity levels were measured in a murine tumor model for the 24- to 168-h postinjection period. Radiation dose estimates obtained from the tissue activity levels for this period were calculated from pharmacokinetic (WinNonlin) and dosimetry (MIRD and RAdiation Dose Assessment Resource) parameters. Results: The radioiodination efficiency was >90%, but with systematic losses during Sep-Pak purification, the recovered yields of [{sup 131}I]IAZA were {approx}75%. The product (specific activity, 4.6-6.4 GBq/{mu}mol) was stable for at least 2 weeks, with only {approx}6% degradation over this storage period. Extended biodistribution studies in Balb/c mice bearing implanted EMT-6 tumors showed that the highest tumor/blood radioactivity ratio (T/B; 4.8) occurred 24 h after dosing; the T/B ratio was {approx}1.5 at the end of the 7-day study. The 24- to 168-h tissue radioactivity data fit a one-compartment model except for liver data, which best fit a two-compartment model. Dosimetry estimates showed a tumor self-dose of 7.4 mGy/MBq, which is several-fold higher than for the liver or the kidney. Conclusions: [{sup 131}I]IAZA can be efficiently radiolabeled at high specific activity, purified by a simple Sep-Pak technique and stored with little radiolysis or chemical decomposition at these specific

  11. Development of a New Positron Emission Tomography Tracer for Targeting Tumor Angiogenesis: Synthesis, Small Animal Imaging, and Radiation Dosimetry

    Directory of Open Access Journals (Sweden)

    David S. Lalush

    2013-05-01

    Full Text Available Angiogenesis plays a key role in cancer progression and correlates with disease aggressiveness and poor clinical outcomes. Affinity ligands discovered by screening phage display random peptide libraries can be engineered to molecularly target tumor blood vessels for noninvasive imaging and early detection of tumor aggressiveness. In this study, we tested the ability of a phage-display-selected peptide sequence recognizing specifically bone marrow- derived pro-angiogenic tumor-homing cells, the QFP-peptide, radiolabeled with 64Cu radioisotope to selectively image tumor vasculature in vivo by positron emission tomography (PET. To prepare the targeted PET tracer we modified QFP-phage with the DOTA chelator and radiolabeled the purified QFP-phage-DOTA intermediate with 64Cu to obtain QFP-targeted radioconjugate with high radiopharmaceutical yield and specific activity. We evaluated the new PET tracer in vivo in a subcutaneous (s.c. Lewis lung carcinoma (LLC mouse model and conducted tissue distribution, small animal PET/CT imaging study, autoradiography, histology, fluorescence imaging, and dosimetry assessments. The results from this study show that, in the context of the s.c. LLC immunocompetent mouse model, the QFP-tracer can target tumor blood vessels selectively. However, further optimization of the biodistribution and dosimetry profile of the tracer is necessary to ensure efficient radiopharmaceutical applications enabled by the biological specificity of the QFP-peptide.

  12. Radiation dose response estimation with emphasis on low dose range using restricted cubic splines: application to all solid cancer mortality data, 1950-2003, in atomic bomb survivors.

    Science.gov (United States)

    Nakashima, Eiji

    2015-07-01

    Using the all solid cancer mortality data set of the Life Span Study (LSS) cohort from 1950 to 2003 (LSS Report 14) data among atomic bomb survivors, excess relative risk (ERR) statistical analyses were performed using the second degree polynomial and the threshold and restricted cubic spline (RCS) dose response models. For the RCS models with 3 to 7 knots of equally spaced percentiles with margins in the dose range greater than 50 mGy, the dose response was assumed to be linear at less than 70 to 90 mGy. Due to the skewed dose distribution of atomic bomb survivors, the current knot system for the RCS analysis results in a detailed depiction of the dose response as less than approximately 0.5 Gy. The 6 knot RCS models for the all-solid cancer mortality dose response of the whole dose or less than 2 Gy were selected with the AIC model selection criterion and fit significantly better (p < 0.05) than the linear (L) model. The usual RCS includes the L-global model but not the quadratic (Q) nor linear-quadratic (LQ) global models. The authors extended the RCS to include L or LQ global models by putting L or LQ constraints on the cubic spline in the lower and upper tails, and the best RCS model selected with AIC criterion was the usual RCS with L-constraints in both the lower and upper tails. The selected RCS had a linear dose-response model in the lower dose range (i.e., < 0.2-0.3 Gy) and was compatible with the linear no-threshold (LNT) model in this dose range. The proposed method is also useful in describing the dose response of a specific cancer or non-cancer disease incidence/mortality.

  13. THE HISTORY OF ESTABLISHMENT OF THE NATURAL SOURCES DOSIMETRY LABORATORY IN THE INSTITUTE OF RADIATION HYGIENE AFTER PROFESSOR P.V. RAMZAEV, 1987–2005

    Directory of Open Access Journals (Sweden)

    I. P. Stamat

    2016-01-01

    Full Text Available The first 5–7 years of the period under review in the history of the Natural Sources Dosimetry Laboratory happened to be in very hard period, which had a time the entire country. A severe funding reduction of the Institute in the 90-s created a threat of loss of the most active and highly professional middle-aged specialists. In these conditions, the only and the most efficient way to maintain Institute as a scientific establishment was to organize the Federal Radiological Center under the guidance of Dr. A.N. Barkovskiy. The Federal Radiological Center consisted of the all physical laboratories, including the Natural Sources Dosimetry Laboratory, without government funding. Nevertheless, as it is shown below, this period was the most fruitful for theoretical and experimental researches, and for development of legal documents and instructional guidance documents. Over these years, more than 10 sanitary regulations and hygienic standards, and more than 20 guidance documents were developed and implemented. Doses of the population due to the natural exposure data-collecting system on the base of federal statistical observation №4-DOZ form were designed. At this period, the first Federal Target Program «Radon» and the System of radiation and hygienic passportization of organizations and territories were developed and authorized. Dr. E.M. Krisiuk was fully engaged in these activities. In these years a great number of non-nuclear companies were examined. Large-scale studies of levels of exposure of the population on specific territories were conducted. The paper examines a summary of the main results, which were obtained in the most important areas of research and practical studies in the period under review.

  14. Dosimetry Service

    CERN Multimedia

    Dosimetry Service

    2005-01-01

    Please remember to read your dosimeter every month at least once and preferably during the first week. A regular read-out is indispensable in order to ensure a periodic monitoring of the personal dose. You should read your dosimeter even if you have not visited the controlled areas. If you still have the old dosimeter (film badge), please send it immediately for evaluation to us (Bdg 24 E-011). After January 2005 there will be no developing process for the old film system. Information for Contractors: Please remember also to bring the form ‘Confirm Reception of a CERN Dosimeter' signed with ‘Feuille d'enregistrement du CERN'. Without these forms the dosimeter cannot be assigned. Thank you for your cooperation. Dosimetry Service Tel 767 2155 http://cern.ch/rp-dosimetry

  15. Development of a Fast and Highly Efficient Gas Ionization Chamber For Patient Imaging and Dosimetry in Radiation Therapy

    CERN Document Server

    Hinderler, R; Keller, H; Mackie, T R

    2003-01-01

    In radiation therapy of cancer, more accurate delivery techniques spur the need for improved patient imaging during treatment. To this purpose, the megavoltage radiation protocol that is used for treatment is also used for imaging.

  16. Development of Fast and Highly Efficient Gas Ionization Chamber For Patient Imaging and Dosimetry in Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    R. Hinderler; H. Keller; T.R. Mackie; M.L. Corradini

    2003-09-08

    In radiation therapy of cancer, more accurate delivery techniques spur the need for improved patient imaging during treatment. To this purpose, the megavoltage radiation protocol that is used for treatment is also used for imaging.

  17. Suicide bombing: a psychodynamic view.

    Science.gov (United States)

    Khalid, Uday; Olsson, Peter

    2006-01-01

    The horror and macabre images of suicide bombings appear regularly on television news programs around the world. A focused literature review of psychiatric interview and demographic data about suicide bombers is presented. Of particular clinical interest are the findings from the study of potential suicide bombers who were apprehended before they could act on their suicide bombing plans. The authors offer psychodynamic and social self-psychological theories explaining the phenomenon of suicide bombing behavior.

  18. Development and application of a set of mesh-based and age-dependent Chinese family phantoms for radiation protection dosimetry: Preliminary Data for external photon beams

    Science.gov (United States)

    Pi, Yifei; Zhang, Lian; Huo, Wanli; Feng, Mang; Chen, Zhi; Xu, X. George

    2017-09-01

    A group of mesh-based and age-dependent family phantoms for Chinese populations were developed in this study. We implemented a method for deforming original RPI-AM and RPI-AF models into phantoms of different ages: 5, 10 ,15 and adult. More than 120 organs for each model were processed to match with the values of the Chinese reference parameters within 0.5%. All of these phantoms were then converted to voxel format for Monte Carlo simulations. Dose coefficients for adult models were counted to compare with those of RPI-AM and RPI-AF. The results show that there are significant differences between absorbed doses of RPI phantoms and these of our adult phantoms at low energies. Comparisons for the dose coefficients among different ages and genders were also made. it was found that teenagers receive more radiation doses than adults under the same irradiation condition. This set of phantoms can be utilized to estimate dosimetry for Chinese population for radiation protection, medical imaging, and radiotherapy.

  19. A new water-equivalent 2D plastic scintillation detectors array for the dosimetry of megavoltage energy photon beams in radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Guillot, Mathieu; Beaulieu, Luc; Archambault, Louis; Beddar, Sam; Gingras, Luc [Departement de Physique, de Genie Physique et d' Optique, Universite Laval, Quebec, Quebec G1K 7P4 (Canada) and Departement de Radio-Oncologie, Hotel-Dieu de Quebec, Centre Hospitalier Universitaire de Quebec, Quebec, Quebec G1R 2J6 (Canada); Department of Radiation Physics, Unit 94, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 (United States); Departement de Physique, de Genie Physique et d' Optique, Universite Laval, Quebec, Quebec G1K 7P4 (Canada) and Departement de Radio-Oncologie, Hotel-Dieu de Quebec, Centre Hospitalier Universitaire de Quebec, Quebec, Quebec G1R 2J6 (Canada)

    2011-12-15

    Purpose: The objective of this work is to present a new 2D plastic scintillation detectors array (2D-PSDA) designed for the dosimetry of megavoltage (MV) energy photon beams in radiation therapy and to characterize its basic performance. Methods: We developed a 2D detector array consisting of 781 plastic scintillation detectors (PSDs) inserted into a plane of a water-equivalent phantom. The PSDs were distributed on a 26 x 26 cm{sup 2} grid, with an interdetector spacing of 10 mm, except for two perpendicular lines centered on the detection plane, where the spacing was 5 mm. Each PSD was made of a 1 mm diameter by 3 mm long cylindrical polystyrene scintillating fiber coupled to a clear nonscintillating plastic optical fiber. All of the light signals emitted by the PSDs were read simultaneously with an optical system at a rate of one measurement per second. We characterized the performance of the optical system, the angular dependency of the device, and the perturbation of dose distributions caused by the hundreds of PSDs inserted into the phantom. We also evaluated the capacity of the system to monitor complex multileaf collimator (MLC) sequences such as those encountered in step-and-shoot intensity modulated radiation therapy (IMRT) plans. We compared our results with calculations performed by a treatment planning system and with measurements taken with a 2D ionization chamber array and with a radiochromic film. Results: The detector array that we developed allowed us to measure doses with an average precision of better than 1% for cumulated doses equal to or greater than 6.3 cGy. Our results showed that the dose distributions produced by the 6-MV photon beam are not perturbed (within {+-}1.1%) by the presence of the hundreds of PSDs located into the phantom. The results also showed that the variations in the beam incidences have little effect on the dose response of the device. For all incidences tested, the passing rates of the gamma tests between the 2D-PSDA and

  20. The association between chronic kidney disease and cardiovascular disease risk factors in atomic bomb survivors.

    Science.gov (United States)

    Sera, Nobuko; Hida, Ayumi; Imaizumi, Misa; Nakashima, Eiji; Akahoshi, Masazumi

    2013-01-01

    Atomic bomb (A-bomb) radiation is associated with cardiovascular disease (CVD) and metabolic CVD risk factors. Chronic kidney disease (CKD) is also known to be a risk factor for CVD and little is known whether CKD is associated with A-bomb radiation. To examine whether CKD is associated with CVD risk factors or with A-bomb radiation in A-bomb survivors, we classified renal dysfunction in 1,040 A-bomb survivors who were examined in 2004-2007 as normal [n = 121; estimated glomerular filtration rate (eGFR) ≥ 90 ml/min/1.73 m(2)]; mild (n = 686; eGFR 60-89 ml/min/1.73 m(2)); moderate (n = 217; eGFR 30-59 ml/min/1.73 m(2)); or severe (n = 16; eGFR bomb radiation. Hypertension [odds ratio (OR), 1.57; 95% confidence interval (CI), 1.12-2.20, P = 0.009]; DM (OR, 1.79; 95% CI, 1.23-2.61, P = 0.002); hyperlipidemia (OR, 1.55; 95% CI, 1.12-2.14, P = 0.008); and MetS (OR, 1.86; 95% CI, 1.32-2.63, P bomb survivors.

  1. Thermoluminescence in medical dosimetry; Termoluminiscencia en dosimetria medica

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, T., E-mail: trivera@ipn.mx [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria 694, Col. Irrigacion, 11500 Mexico D. F. (Mexico)

    2011-10-15

    The dosimetry by thermoluminescence (Tl) is applied in the entire world for the dosimetry of ionizing radiations specially to personal and medical dosimetry. This dosimetry method has been very interesting for measures in vivo because the Tl dosimeters have the advantage of being very sensitive in a very small volume and they are also equivalent to tissue and they do not need additional accessories (for example, cable, electrometer, etc.) The main characteristics of the diverse Tl materials to be used in the radiation measures and practical applications are: the Tl curve, the share homogeneity, the signal stability after the irradiation, precision and exactitude, the response in function with the dose and the energy influence. In this work a brief summary of the advances of the radiations dosimetry is presented by means of the thermally stimulated luminescence and its application to the dosimetry in radiotherapy. (Author)

  2. EPR Dosimetry - Present and Future

    Energy Technology Data Exchange (ETDEWEB)

    Regulla, D.F. [GSF - National Research Centre for Environment and Health, Institute of Radiation Protection, 85764 Neuherberg (Germany)

    1999-07-01

    In the past, IAEA has played a central role in stipulating research and development in EPR high-dose standardisation as well as in coordinating and organising international dose intercomparison programs, within the Member States of the United Nations from the mid-seventies till today. The future tasks of EPR dosimetry seem to tend towards different subjects such as bio markers, biological radiation effects, post-accident dose reconstruction in the environment, and retrospective human dosimetry. The latter may be considered a promising tool for epidemiology on the way to re-define radiation risk of man for chronicle radiation exposures, based on e.g. South Ural civil population and radiation workers. There are on-going international activities in the field of standardising high-level dosimetry by the American Standards on Testing and Materials (Astm), and by the International Organisation of Standards (ISO). The International Commission on Radiation Units and Measurements (ICRU) is considering the establishment of relevant recommendations concerning industrial radiation processing, but also human dose reconstruction. (Author)

  3. Communication issues during bomb threats.

    Science.gov (United States)

    Kuebler, S A

    How should healthcare security professionals handle a bomb threat? How can a large complex best be searched? The author discusses why he believes the judicial use of radios and cellular phones during emergencies can enhance security's ability to handle bomb threat situations, and offers guidelines to follow.

  4. Ellerman bombs: fallacies, fads, usage

    CERN Document Server

    Rutten, Robert J; van der Voort, Luc H M Rouppe; Sütterlin, Peter; Vitas, Nikola

    2013-01-01

    Ellerman bombs are short-lived brightenings of the outer wings of Halpha that occur in active regions with much flux emergence. We point out fads and fallacies in the extensive Ellerman bomb literature, discuss their appearance in various spectral diagnostics, and advocate their use as indicators of field reconfiguration in active-region topography using AIA 1700 A images.

  5. DEVELOPMENT HISTORY OF NATURAL SOURCES DOSIMETRY LABORATORY AT THE RESEARCH INSTITUTE OF RADIATION HYGIENE AFTER PROFESSOR P.V. RAMZAEV: 1970–1986

    Directory of Open Access Journals (Sweden)

    E. P. Lisachenko

    2016-01-01

    Full Text Available At the initial development stage of the Leningrad Research Institute of Radiation Hygiene natural sources dosimetry laboratory the experts focused at establishment of equipment and methodology. The following period of the lab activity was rather related to theoretical and experimental research which finally led to creation of a new in radiation hygiene field of work on standard protection of population irradiation caused by natural sources of ionizing radiation. The article describes the main results of the laboratory research of construction materials natural radioactivity and the subsequent substantiation of specifications on natural radionuclides content in them. There was parallel research of natural radionuclides transfer in the system “fertilizers→soil→plants” and further along the nutrition chain into the human body. In these works there were first obtained the quantitative data on coefficients of natural radionuclides transfer from fertilizers into agricultural plants, data on the natural radionuclides content in phosphate fertilizers of the main manufacturers, and the reference data on the natural radioactivity of arable soils. This research provided substantiation of a standard of natural radionuclides content in phosphate fertilizers. Important results were also received in a large-scale research of natural environment radioactivity and of technological processes of production, processing and use of mineral raw materials. During this research for the first time there were obtained the tool data on irradiation levels and structure of doses of non-uranium industries enterprises’ employees and on natural radionuclides balance parameters in different technologies.For the last two years of the considered period the laboratory was practically not engaged in its primary activity – the efforts of all laboratory and the Institute experts were focused at analysis of Chernobyl NPP accident consequences, research of man

  6. Development of an algorithm for TLD badge system for dosimetry in the field of X and gamma radiation in terms of Hp(10).

    Science.gov (United States)

    Bakshi, A K; Srivastava, K; Varadharajan, G; Pradhan, A S; Kher, R K

    2007-01-01

    In view of the introduction of International Commission on Radiation Units and Measurements operational quantities Hp(10) and Hp(0.07), defined for individual monitoring, it became necessary to develop an algorithm that gives direct response of the dosemeter in terms of the operational quantities. Hence, for this purpose and also to improve the accuracy in dose estimation especially in the mixed fields of X ray and gamma, an algorithm was developed based on higher-order polynomial fit of the data points generated from the dose-response of discs under different filter regions of the present TL dosemeter system for known delivered doses. Study on the response of the BARC TL dosemeter system based on CaSO(4):Dy Teflon thermoluminescence dosemeter discs in the mixed fields of X and gamma radiation was carried out to ensure that the accuracies are within the prescribed limits recommended by the international organisations. The prevalent algorithm, based on the ratios of the disc response under various filters regions of the dosemeter to pure photons, was tested for different proportion of two radiations in case of mixed field dosimetry. It was found that the accuracy for few fields is beyond the acceptable limit in case of prevalent algorithm. The new proposed algorithm was also tested in mixed fields of photon fields and to pure photon fields of varied angles. It was found that the response of the dosemeter in mixed fields of photons and its angular response are satisfactory. The new algorithm can be used to record and report the personal dose in terms of Hp(10) as per the international recommendation for the present TL dosemeter.

  7. Cytogenetic evaluation of hospital workers occupationally exposed to low levels of ionizing radiation. Assessment of two cytogenetic procedures: accumulated dosimetry versus radiosensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Sagredo, J. M.; Villalon, C.; Lopez-Abente, G.; Arranz, L.; Ferro, M. T.; Ferrando, P.; Pollan, M.; Aragones, N.; Ferrer, N.; Sastre, J. M.

    2004-07-01

    We try to establish a cumulative ionising radiation (IR) biologicla dosimetry in occupationally exposed workers as a routine health tes, analysing chromosome translocations. 100 hospital workers occupationally exposed to low levels of X-ray, g-ray and radioactive isotopes are included in this study. Blood samples were cultured for cytogenetic analysis. Chromosome translocatiosn were scored using whole chromosome paint probes cocktail (Vysis) for chromosomes 1, 2, 3, 4, 5 and 6. Furthermore, a personal detailed interview about confounding factors, as tobacco smoking X-ray examination, occupational exposure to chemotherapeutics agents and solvents, electromagnetic fields exposure, and others was done. Our results showed that there is no statistical association between cumulative doses of IRE, type of LET and chromosome translocation rate. For the contraty, we have found a translocation risk increase related with IR equivalent dose rate, independently of the time of exposure and age. Those workers receiving 1mSv/year or more vs<1mSv/year show a relative risk of 2.56 (95% confidence interval 1.10-5.95). A comparison of translocationrate and different confounding factors suggest a relative risk increase in intensive users of mobile phones. Other exposures as tobacco smoking solvents, UV radiation anaesthetic gases and any other confounding factors have not shown assocaition with translocation rate. At the same time, we try to analyse radiosensitivity through the CBMN-test (cytokinesis block micronucelus test). Results on CBMN are in progress. Finally we try to asses the two cytogentic procedures as the most suitable routine health test in radiation occupational protection. (Author)

  8. Determination of the components of uncertainty for a dosimetry system in radiation protection; Determinacion de las componentes de incertidumbre para un sistema de dosimetria en radio proteccion

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, F., E-mail: flopez@unan.edu.ni [Universidad Nacional Autonoma de Nicaragua, Managua (Nicaragua); Cabral, T.S.; Peixoto, J.G. [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    This work is about the theoretical calculation of uncertainties associated to the dosimetry of photons of a {sup 137}Cs source that will be used in a Dosimetry Laboratory. In this case recognition of the influence quantities that provide most uncertainty and the right choice of resolution of auxiliary equipment to obtain the smallest uncertainties according to the laboratory. (author)

  9. Optical CT scanner for in-air readout of gels for external radiation beam 3D dosimetry.

    Science.gov (United States)

    Ramm, Daniel; Rutten, Thomas P; Shepherd, Justin; Bezak, Eva

    2012-06-21

    Optical CT scanners for a 3D readout of externally irradiated radiosensitive hydrogels currently require the use of a refractive index (RI) matching liquid bath to obtain suitable optical ray paths through the gel sample to the detector. The requirement for a RI matching liquid bath has been negated by the design of a plastic cylindrical gel container that provides parallel beam geometry through the gel sample for the majority of the projection. The design method can be used for various hydrogels. Preliminary test results for the prototype laser beam scanner with ferrous xylenol-orange gel show geometric distortion of 0.2 mm maximum, spatial resolution limited to beam spot size of about 0.4 mm and 0.8% noise (1 SD) for a uniform irradiation. Reconstruction of a star pattern irradiated through the cylinder walls demonstrates the suitability for external beam applications. The extremely simple and cost-effective construction of this optical CT scanner, together with the simplicity of scanning gel samples without RI matching fluid increases the feasibility of using 3D gel dosimetry for clinical external beam dose verifications.

  10. Patient dosimetry workshop - Scanner in clinical practice: how to optimize one's protocols (acquisition, interpretation, dosimetry)? - Radiation protection in medical environment; Atelier dosimetrie patient - Scanner en pratique clinique: comment optimiser ses protocoles (acquisition, interpretation, dosimetrie)? - Radioprotection en milieu medical

    Energy Technology Data Exchange (ETDEWEB)

    Valero, M. [Autorite de Surete Nucleaire, 75 Paris (France); Pilleul, F.; Favre, F. [Centre Hospitalier Universitaire, 69 - Lyon (France); Tack, D. [Braine-L' Alleud (Belgium); Etard, C.; Aubert, B.; Roch, P. [Institut de Protection et de Surete Nucleaire 92 - Fontenay aux Roses (France); Sinno-Tellier, S. [Institut de veille sanitaire, 94 - Saint Maurice (France); Gevenois, P.A. [Bruxelles (Belgium); Marelle, P. [77 Bourron Marlotte (France); Noel, A. [54 Vandoeuvre-Les-Nancy (France); Coquel, P. [74 Cran Gevrier (France); Museux, E. [44 Saint Nazaire (France); Lair, F. [75 Paris (France); Francois, A. [69 Sainte Colombe (France); Lemaire, P. [62 Lens (France); Delgoffe, C. [54 Maxeville (France); Puech, J.L. [31 Toulouse (France); Haller Montejo, M. [57 Strasbourg (France); Rousselle, I. [69 Lyon (France); Noel, A. [54 Vandoeuvre-Les-Nancy (France); Pierrat, N.; Lasalle, S.; Brisse, H. [Institut Pierre et Marie Curie, 75 - Paris (France); Guerson, T. [78 - Buc (France); Mertz, L.; Mertz, M.; Wasylczenko, T.; Bietry, J.; Notter, S. [57 Strasbourg (France); Jahnen, A.; Back, C.; Kohler, S.; Harpes, N.

    2010-10-15

    A selection of eleven brief communications given at the 2010 French days of radiology are compiled here and deal with: 1 - patient's dosimetry in classical radiology (Valero, M.); 2 - Oncology: how to optimize monitoring (dosimetry, new response criteria)? (Pilleul, F.; Favre, F.); 3 - Thorax: how to optimize lecture (MPR - Multi-Planar Reformat, MIP - Maximum Intensity Projection, MinIP - minimum intensity projection) and dosimetry? (Braine-L'Alleud); 4 - Medical exposure of the French population to diagnostic techniques in 2007 (Etard, C.; Aubert, B.; Sinno-Tellier, S.); 5 - Doses delivered to patients in radio-diagnostics: status of a national inquiry in the public sector (Etard, C.; Sinno-Tellier, S.; Aubert, B.); 6 - External help for the dose per section optimization in tomodensitometry (Tack, D.; Jahnen, A.; Back, C.; Kohler, S.; Harpes, N.; Gevenois, P.A.); 7 - Diagnostic reference levels (DRL) in radiology and scanography: status and evolution (Roch, P.; Aubert, B.); 8 - What conclusions can be drawn from the analysis of the DRLs in conventional radiology addressed to the CEPPIM (College for the evaluation of professional practices in medical imaging) (Marelle, P.; Coquel, P.; Museux, E.; Lair, F.; Francois, A.; Lemaire, P.; Delgoffe, C.; Puech, J.L.; Haller Montejo, M.); 9 - DRL analysis in scanography, an optimization tool? (Rousselle, I.; Noel, A.); 10 - Iterative reconstruction in scanography: potential dosimetric benefit and impact on image quality (Pierrat, N.; Lasalle, S.; Guerson, T.; Brisse, H.); 11 - Development of a patient's dose optimisation aided system in medical imaging (Mertz, L.; Mertz, M.; Wasylczenko, T.; Bietry, J.; Notter, S.)

  11. Application of the Electron paramagnetic resonance to the ionizing radiation dosimetry; Aplicacion de la Resonancia paramagnetica electronica a la dosimetria de las radiaciones ionizantes

    Energy Technology Data Exchange (ETDEWEB)

    Urena N, F. [Instituto Nacional de Investigaciones Nucleares, Km. 36.5 Carretera Mexico-Toluca, 52045 Salazar, Estado de Mexico (Mexico)

    2000-07-01

    The Electron Paramagnetic Resonance (EPR) is defined as the resonant absorption of electromagnetic energy in paramagnetic substances by the spin transition of a non-pairing electron between different energy levels in presence of a magnetic field. (Slighter, 1989). One of the more important characteristic of EPR is that the electron spin levels are subdivided by the electron interaction with the magnetic dipoles of the nearby nucleus giving occasion for a spectral structure called hyperfine structure. In this kind of interactions two limit cases are distinguished: 1. when the non-pairing electron is located in a central ion surrounded of atoms belonging to coordinate molecules. 2. When a non-pairing electron interactioning in the same form with a number of equivalent nucleus, which is common in organic radicals, these will give as result spectra. Some EPR spectrometer can be used to dosimetric purposes by free radicals via. In this work, it is presented the application of EPR to dosimetry of ionizing radiations by free radicals via which allows to determinations of high doses. (Author)

  12. Methods to Estimate Solar Radiation Dosimetry in Coral Reefs Using Remote Sensed, Modeled, and in Situ Data.

    Science.gov (United States)

    Solar irradiance has been increasingly recognized as an important determinant of bleaching in coral reefs, but measurements of solar radiation exposure within coral reefs have been relatively limited. Solar irradiance and diffuse down welling attenuation coefficients (Kd, m-1) we...

  13. MO-F-CAMPUS-I-05: Radiation Dosimetry of 99mTc-IDA-D-[c(RGDfK)]2, a SPECT Agent for Angiogenesis Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2015-06-15

    Purpose: Tc-99m labeled IDA-D-[c(RGDfK){sub 2} ( {sup 99m}Tc-RGD) is a recently developed radiotracer for gamma camera or single photon emission computed tomography (SPECT) imaging and promising agent for the visualization of angiogenesis. In this study, we investigated the internal radiation dosimetry of {sup 99m}Tc-RGD in humans. Methods: Six normal controls (F:M=4:2; 68.3±3.2 years; 56.5±10.7 kg) were participated in this study. Simultaneous anterior and posterior scans of whole-body were performed using dual head gamma camera system. Before the emission scan, transmission scan was performed just before injection of {sup 99m}Tc-RGD using Co-57 flood source. After an intravenous injection of 388.7±29.3 MBq of {sup 99m}Tc-RGD, six serial emission scans were performed at 0, 1, 2, 4, 8 and 24 hours post-injection. The anterior and posterior images were geometrically averaged and attenuation correction was applied using transmission scan image. Regions of interest (ROIs) were drawn on liver, gallbladder, kidneys, urinary bladder, spleen, brain, and large intestine. Time activity curves were obtained from serial emission scan and ROIs. The number of disintegrations per unit activity administered (residence time) were calculated from the area under the curve of time activity curves and injected dose of each patient. Finally, the radiation dose for each organ and effective doses were obtained using OLINDA/EXM 1.1 software and residence time. Results: High radiation doses were reported on renal and biliary excretion tracks such as urinary bladder wall, upper large intestine, kidneys, liver and gallbladder wall and their doses were 19.15±6.84, 19.28±4.78, 15.67±0.90, 9.13±1.71 and 9.09±2.03 µGy/MBq, respectively. The effective dose and effective dose equivalent were 5.08±0.53 and 7.11±0.58 µSv/MBq, respectively. Conclusion: We evaluated the radiation dose of 99mTc-RGD, which has an acceptable effective radiation dose compare to the other Tc-99m labeled radio-tracers.

  14. ESR dosimetry: achievements and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Baffa, O., E-mail: baffa@usp.br [Universidade de Sao Paulo, Departamento de Fisica, Av. Bandeirantes 3900, 14040-901 Ribeirao Preto, Sao Paulo (Brazil)

    2015-10-15

    Full text: Electron Spin Resonance (ESR), also known as Electron Paramagnetic Resonance (EPR) and more recently as Electron Magnetic Resonance (Emr), is a spectroscopy technique able to detect unpaired electrons such as those created by the interaction ionizing radiation with matter. When the unpaired electrons created by ionizing radiation are stable over some reasonable time, ESR can be used to measure the radiation dose deposited in the material under study. In principle, any insulating material that satisfies this requisite can be used as a dosimeter. ESR has been used in retrospective dosimetry in case of radiological accidents using natural constituents of human body such as teeth, bones and nails as well as fortuitous materials as sugar, sweeteners and plastics. When using teeth the typical detected dose is 0.5 Gy for, for X-Band spectrometers (9 GHz) and even lower doses if higher frequency spectrometers are used. Clinical dosimetry is another area of potential use of this dosimetric modality. In this application the amino acid alanine has been proposed and being used. Alanine dosimeters are very easy to prepare and require no complicated treatments for use. Alanine/ESR dosimetry satisfies many of the required properties for clinical applications such as water equivalent composition, independence of response for the energy range used in therapy and high precision. Other organic materials such as ammonium tartrate are being investigated to increase the sensitivity of ESR for clinical applications. Finally, industrial applications can also benefit from this dosimetry. The challenges to expand applications, the number of users and research groups of ESR dosimetry will be discussed. (Author)

  15. Protocol for emergency EPR dosimetry in fingernails

    OpenAIRE

    Trompier, F; Kornak, L.; Calas, C.; Romanyukha, A.; LeBlanc, B.; Mitchell, C. A.; Swartz, H M; Clairand, I.

    2007-01-01

    There is an increased need for after-the-fact dosimetry because of the high risk of radiation exposures due to terrorism or accidents. In case of such an event, a method is needed to make measurements of dose in a large number of individuals rapidly and with sufficient accuracy to facilitate effective medical triage. Dosimetry based on EPR measurements of fingernails potentially could be an effective tool for this purpose. This paper presents the first operational protocols for EPR fingernail...

  16. History of radiation research. On radiation, radioactivity and radiation protection. Pt. 2. The sword of Damocles. Decade of the atomic bomb 1940-1950; Geschichte der Strahlenforschung. Ueber Strahlung, Radioaktivitaet und Strahlenschutz. T. 2. Das Damoklesschwert. Jahrzehnt der Atombombe: 1940-1950

    Energy Technology Data Exchange (ETDEWEB)

    Lindell, B.

    2006-07-01

    The book includes contributions with the following titles: Szilards bomb; the excess neutrons; Napoleon's successor; Einstein's letter; the interim year 1940; administration and research; the sailor from India; the production facilities; ''I am the death, destroyer of the world''; Heisenberg's bomb; from other horizons; Potsdam and the atomic bomb decision; Hiroshima and Nagasaki; the beginning of nuclear power; renewed contacts; epilogue.

  17. Whole-body distribution and radiation dosimetry of the dopamine transporter radioligand [{sup 11}C]PE2I in healthy volunteers

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Maria-Joao [Service Hospitalier Frederic Joliot, Institut d' Imagerie Biomedicale, Direction des Sciences du Vivant, Commissariat a l' Energie Atomique, F-91406 Orsay (France)]. E-mail: maria-joao.ribeiro@cea.fr; Ricard, Marcel [Service de Physique, Institut Gustave Roussy, 39 rue Camille Desmoulins, 94805 Villejuif (France); Lievre, Marie-Angele [Service Hospitalier Frederic Joliot, Institut d' Imagerie Biomedicale, Direction des Sciences du Vivant, Commissariat a l' Energie Atomique, F-91406 Orsay (France); Bourgeois, Sandrine [Service Hospitalier Frederic Joliot, Institut d' Imagerie Biomedicale, Direction des Sciences du Vivant, Commissariat a l' Energie Atomique, F-91406 Orsay (France); Emond, Patrick [INSERM U316, Laboratoire de Biophysique medicale et pharmaceutique, UFR des Sciences Pharmaceutiques, 37200 Tours (France); Gervais, Philippe [Service Hospitalier Frederic Joliot, Institut d' Imagerie Biomedicale, Direction des Sciences du Vivant, Commissariat a l' Energie Atomique, F-91406 Orsay (France); Dolle, Frederic [Service Hospitalier Frederic Joliot, Institut d' Imagerie Biomedicale, Direction des Sciences du Vivant, Commissariat a l' Energie Atomique, F-91406 Orsay (France); Syrota, Andre [Service Hospitalier Frederic Joliot, Institut d' Imagerie Biomedicale, Direction des Sciences du Vivant, Commissariat a l' Energie Atomique, F-91406 Orsay (France)

    2007-05-15

    Introduction: This study reports on the biodistribution and radiation dosimetry of a cocaine analog, the (E)-N-(3-iodoprop-2-enyl)-2{beta}-carbomethoxy-3{beta}-(4'-tolyl)nortropane (PE2I), labeled with carbon 11 ([{sup 11}C]PE2I). [{sup 11}C]PE2I is used in positron emission tomography (PET) for examination of the dopamine neuronal transporter (DAT). DAT radioligands are often used to evaluate the progression of Parkinson's disease or the efficiency of neuroprotective therapeutics, and, typically, these studies required several successive PET scans. Methods: In three healthy male volunteers, whole-body scans were performed up to 2 h following intravenous injection of 321{+-}6 MBq of [{sup 11}C]PE2I. For each subject, regions of interest were defined over all visible organs to generate time-activity curves and calculate the percentage of injected activity. Time-activity data were fitted to a monoexponential model, as an uptake phase followed by a mono-exponential washout, or bi-exponential model to obtain residence times. With the use of the MIRD method, several source organs were considered in estimating residence time and mean effective radiation absorbed doses. Results: Blood pressure and ECG findings remained unchanged after radioligand injection. The primary route of clearance was renal. Ten minutes after injection, high activities were observed in the kidneys, urinary-bladder, stomach, liver, salivary glands and brain. The urine bladder wall, stomach and liver received the highest absorbed doses. The average effective dose of [{sup 11}C]PE2I was estimated to be 6.4{+-}0.6 {mu}Sv/MBq. Conclusion: The amount of [{sup 11}C]PE2I required for adequate DAT PET imaging results in an acceptable effective dose equivalent permitting two or three repeated cerebral PET studies, with the injection of 222 MBq for each study.

  18. Biodistribution and radiation dosimetry of the 18 kDa translocator protein (TSPO) radioligand [{sup 18}F]FEDAA1106: a human whole-body PET study

    Energy Technology Data Exchange (ETDEWEB)

    Takano, Akihiro; Gulyas, Balazs; Varrone, Andrea; Karlsson, Per; Sjoholm, Nils; Halldin, Christer [Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section, Stockholm (Sweden); Larsson, Stig; Jonsson, Cathrine; Odh, Richard [Karolinska Institutet, Department of Nuclear Medicine, Stockholm (Sweden); Sparks, Richard [CDE Dosimetry Services, Inc., Knoxville, TN (United States); Tawil, Nabil Al [Karolinska University Hospital, Karolinska Trial Alliance, Stockholm (Sweden); Hoffmann, Anja; Zimmermann, Torsten; Thiele, Andrea [Bayer Schering Pharma AG, Berlin (Germany)

    2011-11-15

    [{sup 18}F]FEDAA1106 is a recently developed positron emission tomography (PET) radioligand for in vivo quantification of the 18 kDa translocator protein [TSPO or, as earlier called, the peripheral benzodiazepine receptor (PBR)]. TSPO imaging is expected to be useful for the clinical evaluation of neuroinflammatory diseases. The aim of this study was to provide dosimetry estimates for [{sup 18}F]FEDAA1106 based on human whole-body PET measurements. PET scans were performed for a total of 6.6 h after the injection of 183.8 {+-} 9.1 MBq of [{sup 18}F]FEDAA1106 in six healthy subjects. Regions of interest were drawn on coronal images. Estimates of the absorbed doses of radiation were calculated using the OLINDA software. Peak uptake was largest in lungs, followed by liver, small intestine, kidney, spleen and other organs. Peak values of the percent injected dose (%ID) at a time after radioligand injection were calculated for the lungs (27.1%ID at 0.2 h), liver (21.1%ID at 0.6 h), small intestine (10.4%ID at 6.3 h), kidney (4.9%ID at 1.8 h) and spleen (4.6%ID at 0.6 h). The largest absorbed dose was found in the spleen (0.12 mSv/MBq), followed by kidneys (0.094 mSv/MBq). The calculated mean effective dose was 0.036 mSv/MBq. Based on the distribution and dose estimates, the estimated radiation burden of [{sup 18}F]FEDAA1106 is moderately higher than that of [{sup 18}F]fluorodeoxyglucose (FDG). In clinical studies, the administered activity of this radioligand ought to be adjusted in line with regional regulations. This result would be helpful for further clinical TSPO imaging studies. (orig.)

  19. A novel RET rearrangement (ACBD5/RET) by pericentric inversion, inv(10)(p12.1;q11.2), in papillary thyroid cancer from an atomic bomb survivor exposed to high-dose radiation.

    Science.gov (United States)

    Hamatani, Kiyohiro; Eguchi, Hidetaka; Koyama, Kazuaki; Mukai, Mayumi; Nakachi, Kei; Kusunoki, Yoichiro

    2014-11-01

    During analysis of RET/PTC rearrangements in papillary thyroid cancer (PTC) among atomic bomb survivors, a cDNA fragment of a novel type of RET rearrangement was identified in a PTC patient exposed to a high radiation dose using the improved 5' RACE method. This gene resulted from the fusion of the 3' portion of RET containing tyrosine kinase domain to the 5' portion of the acyl-coenzyme A binding domain containing 5 (ACBD5) gene, by pericentric inversion inv(10)(p12.1;q11.2); expression of the fusion gene was confirmed by RT-PCR. ACBD5 gene is ubiquitously expressed in various human normal tissues including thyroid. Full-length cDNA of the ACBD5-RET gene was constructed and then examined for tumorigenicity. Enhanced phosphorylation of ERK proteins in the MAPK pathway was observed in NIH3T3 cells transfected with expression vector encoding the full-length ACBD5/RET cDNA, while this was not observed in the cells transfected with empty expression vector. Stable NIH3T3 transfectants with ACBD5-RET cDNA induced tumor formation after their injection into nude mice. These findings suggest that the ACBD5-RET rearrangement is causatively involved in the development of PTC.

  20. Hybrid nanostructured thin-films by PLD for enhanced field emission performance for radiation micro-nano dosimetry applications

    Energy Technology Data Exchange (ETDEWEB)

    Manikandan, E., E-mail: maniphysics@gmail.com [UNESCO-UNISA AFNET in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), Materials Research Department, iThemba LABS–National Research Foundation (NRF), 1 Old Faure Road, Somerset West, PO Box 722, Western Cape (South Africa); Materials Science Group (MSG), Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam 603102 (India); Corrosion Science and Technology Group, Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam 603102 (India); Sree Balaji Medical College & Hospital (SBMCH), Bharath University, Chrompet, Chennai 600044 (India); Kennedy, J. [UNESCO-UNISA AFNET in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), Materials Research Department, iThemba LABS–National Research Foundation (NRF), 1 Old Faure Road, Somerset West, PO Box 722, Western Cape (South Africa); The MacDiarmid Institute for Advanced Materials and Nanotechnology (New Zealand); Kavitha, G. [UNESCO-UNISA AFNET in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), Materials Research Department, iThemba LABS–National Research Foundation (NRF), 1 Old Faure Road, Somerset West, PO Box 722, Western Cape (South Africa); PG& Research Dept of Physics, AM Jain College Affiliated to University of Madras, Chennai 600114 (India); and others

    2015-10-25

    We report the observation of hybrid nanostructured thin-films such as diamond-like carbon (DLC) signature on the ZnO epitaxial thin-films grown onto the device silicon/quartz substrate by reactive pulsed laser deposition (r-PLD) under the argon–oxygen (Ar|O{sub 2}) ambient at 573 K. Undoped and Carbon (C) doped epitaxial ZnO thin-film layer formation is revealed by the accelerator based ion-beam analysis (IBA) technique of resonant Rutherford backscattering spectrometry (RRBS), glancing-incidence X-ray diffraction (GIXRD) pattern, micro-Raman spectroscopy (μ-RS) and field-emission (F-E) studies. The RRBS and GIXRD results show the deposition of epitaxial thin-films containing C into ZnO. The μ-RS technique is a standard nondestructive tool (NDT) for the characterization of crystalline, nano-crystalline, and amorphous carbons (a-C). As grown ZnO and C-doped ZnO thin-films μ-RS result reveal the doping effect of C-impurities that appear in the form of DLC evident from Raman peaks at 1357 and 1575 cm{sup −1} along with a wurtzite structure peak at 438 cm{sup −1} with E{sub 2}(h) phonon of ZnO. The electron transport F-E result shows the hybrid thin-films has high conductivity than the un-doped film. Fabricated hybrid nanostructured thin-films materials could be very useful for the emerging applications of micro-nano dosimetry. - Highlights: • Observation of hybrid nanostructured diamond-like carbon (DLC) on ZnO epitaxial thin-films at 573 K. • Carbon doped epitaxial ZnO thin-film layer formation is revealed by RRBS, Micro-Raman. • Field-emission (F-E) study. • DLC formation evident from Raman peaks at 1357 and 1575 cm{sup −1} along with a wurtzite structure peak of ZnO. • The electron transport F-E result shows the hybrid thin-film has high conductivity than the undoped thin-film.

  1. Dosimetry implant for treating restenosis and hyperplasia

    Science.gov (United States)

    Srivastava, Suresh; Gonzales, Gilbert R; Howell, Roger W; Bolch, Wesley E; Adzic, Radoslav

    2014-09-16

    The present invention discloses a method of selectively providing radiation dosimetry to a subject in need of such treatment. The radiation is applied by an implant comprising a body member and .sup.117mSn electroplated at selected locations of the body member, emitting conversion electrons absorbed immediately adjacent selected locations while not affecting surrounding tissue outside of the immediately adjacent area.

  2. Dosimetry implant for treating restenosis and hyperplasia

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Suresh; Gonzales, Gilbert R; Howell, Roger W; Bolch, Wesley E; Adzic, Radoslav

    2014-09-16

    The present invention discloses a method of selectively providing radiation dosimetry to a subject in need of such treatment. The radiation is applied by an implant comprising a body member and .sup.117mSn electroplated at selected locations of the body member, emitting conversion electrons absorbed immediately adjacent selected locations while not affecting surrounding tissue outside of the immediately adjacent area.

  3. Fifth personnel dosimetry intercomparison study

    Energy Technology Data Exchange (ETDEWEB)

    Sims, C.S.

    1980-02-01

    The fifth Personnel Dosimetry Intercomparison Study (PDIS) was conducted at the Oak Ridge National Laboratory's (ORNL) Dosimetry Applications Research (DOSAR) facility on March 20-22, 1979. This study is the latest PDIS in the continuing series started at the DOSAR facility in 1974. The PDIS is a three day study, typically in March, where personnel dosimeters are mailed to the DOSAR facility, exposed to a range of low-level neutron radiation doses (1 to 15 mSv or equivalently, 100 to 1500 mrem) and neutron-to-gamma ratios (1:1-10:1) using the Health Physics Research Reactor (HPRR) as the radiation source, and returned to the participants for evaluation. This report is a summary and analysis of the results reported by the various participants. The participants are able to intercompare their results with those of others who made dose measurements under identical experimental conditions.

  4. Dirty Bomb Risk and Impact

    Energy Technology Data Exchange (ETDEWEB)

    Connell, Leonard W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-08-01

    We examined the relative risk and impact of a dirty bomb employing Co-60 and Cs-137, the two most common high activity source materials. We found that the risk of an area denial dirty bomb attack is greater for Cs-137 due to the form and chemistry of CsCl, the soft, powdery salt form currently in use for high activity Cs-137 sources, found in blood and research irradiators.

  5. Biodistribution and radiation dosimetry in healthy volunteers of a novel tumour-specific probe for PET/CT imaging: BAY 85-8050

    Energy Technology Data Exchange (ETDEWEB)

    Smolarz, Kamilla; Graner, Frank Philipp; Wagner, Franziska Martina; Wester, Hans-Juergen; Sell, Tina; Schwaiger, Markus [Technische Universitaet Muenchen, Department of Nuclear Medicine, Munich (Germany); Krause, Bernd Joachim [University Hospital Rostock, Department of Nuclear Medicine, Rostock (Germany); Bacher-Stier, Claudia; Fels, Lueder [Bayer HealthCare, Berlin (Germany); Dinkelborg, Ludger [Piramal Imaging GmbH, Berlin (Germany)

    2013-12-15

    Novel tracers for the diagnosis of malignant disease with PET and PET/CT are being developed as the most commonly used {sup 18}F deoxyglucose (FDG) tracer shows certain limitations. Employing radioactively labelled glutamate derivatives for specific imaging of the truncated citrate cycle potentially allows more specific tumour imaging. Radiation dosimetry of the novel tracer BAY 85-8050, a glutamate derivative, was calculated and the effective dose (ED) was compared with that of FDG. Five healthy volunteers were included in the study. Attenuation-corrected whole-body PET/CT scans were performed from 0 to 90 min, at 120 and at 240 min after injection of 305.0 {+-} 17.6 MBq of BAY 85-8050. Organs with moderate to high uptake at any of the imaging time points were used as source organs. Total activity in each organ at each time point was measured. Time-activity curves (TAC) were determined for the whole body and all source organs. The resulting TACs were fitted to exponential equations and accumulated activities were determined. OLINDA/EXM software was used to calculate individual organ doses and the whole-body ED from the acquired data. Uptake of the tracer was highest in the kidneys due to renal excretion of the tracer, followed by the pancreas, heart wall and osteogenic cells. The mean organ doses were: kidneys 38.4 {+-} 11.2 {mu}Sv/MBq, pancreas 23.2 {+-} 3.8 {mu}Sv/MBq, heart wall 17.4 {+-} 4.1 {mu}Sv/MBq, and osteogenic cells 13.6 {+-} 3.5 {mu}Sv/MBq. The calculated ED was 8.9 {+-} 1.5 {mu}Sv/MBq. Based on the distribution and dose estimates, the calculated radiation dose of BAY 85-8050 is 2.67 {+-} 0.45 mSv at a patient dose of 300 MBq, which compares favourably with the radiation dose of FDG (5.7 mSv). (orig.)

  6. Radiation dosimetry of N-([{sup 11}C]methyl)benperidol as determined by whole-body PET imaging of primates

    Energy Technology Data Exchange (ETDEWEB)

    Antenor-Dorsey, Jo A.V. [Washington University School of Medicine, Department of Anatomy and Neurobiology, St. Louis, MO (United States); Laforest, Richard; Moerlein, Stephen M. [Washington University School of Medicine, Department of Radiology, St. Louis, MO (United States); Videen, Tom O. [Washington University School of Medicine, Department of Radiology, St. Louis, MO (United States); Washington University School of Medicine, Department of Neurology, St. Louis, MO (United States); Perlmutter, Joel S. [Washington University School of Medicine, Department of Anatomy and Neurobiology, St. Louis, MO (United States); Washington University School of Medicine, Department of Radiology, St. Louis, MO (United States); Washington University School of Medicine, Department of Neurology, St. Louis, MO (United States); Washington University School of Medicine, Program in Physical Therapy, St. Louis, MO (United States)

    2008-04-15

    N-([{sup 11}C]methyl)benperidol ([{sup 11}C]NMB) can be used for positron emission tomography (PET) measurements of D{sub 2}-like dopamine receptor binding in vivo. We report the absorbed radiation dosimetry of i.v.-administered {sup 11}C-NMB, a critical step before applying this radioligand to imaging studies in humans. Whole-body PET imaging with a CTI/Siemens ECAT 953B scanner was done in a male and a female baboon. After i.v. injection of 444-1221 MBq of {sup 11}C-NMB, sequential images taken from the head to the pelvis were collected for 3 h. Volumes of interest (VOIs) were identified that entirely encompassed small organs (whole brain, striatum, eyes, and myocardium). Large organs (liver, lungs, kidneys, lower large intestine, and urinary bladder) were sampled by drawing representative regions within the organ volume. Time-activity curves for each VOI were extracted from the PET, and organ residence times were calculated by analytical integration of a multi-exponential fit of the time-activity curves. Human radiation doses were estimated using OLINDA/EXM 1.0 and the standard human model. Highest retention was observed in the blood and liver, each with total residence times of 1.5 min. The highest absorbed radiation doses were to the heart (10.5 mGy/kBq) and kidney (9.19 mGy/kBq), making these the critical organs for [{sup 11}C]NMB. A heart absorption of 50 mGy would result from an injected dose of 4,762 MBq [{sup 11}C]NMB. Thus, this study suggests that up to 4,762 MBq of [{sup 11}C]NMB can be safely administered to human subjects for PET studies. Total body dose and effective dose for [{sup 11}C]NMB are 2.82 mGy/kBq and 3.7 mSv/kBq, respectively. (orig.)

  7. TU-F-201-00: Radiochromic Film Dosimetry Update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    Since the introduction of radiochromic films (RCF) for radiation dosimetry, the scope of RCF dosimetry has expanded steadily to include many medical applications, such as radiation therapy and diagnostic radiology. The AAPM Task Group (TG) 55 published a report on the recommendations for RCF dosimetry in 1998. As the technology is advancing rapidly, and its routine clinical use is expanding, TG 235 has been formed to provide an update to TG-55 on radiochromic film dosimetry. RCF dosimetry applications in clinical radiotherapy have become even more widespread, expanding from primarily brachytherapy and radiosurgery applications, and gravitating towards (but not limited to) external beam therapy (photon, electron and protons), such as quality assurance for IMRT, VMAT, Tomotherapy, SRS/SRT, and SBRT. In addition, RCF applications now extend to measurements of radiation dose in particle beams and patients undergoing medical exams, especially fluoroscopically guided interventional procedures and CT. The densitometers/scanners used for RCF dosimetry have also evolved from the He-Ne laser scanner to CCD-based scanners, including roller-based scanner, light box-based digital camera, and flatbed color scanner. More recently, multichannel RCF dosimetry introduced a new paradigm for external beam dose QA for its high accuracy and efficiency. This course covers in detail the recent advancements in RCF dosimetry. Learning Objectives: Introduce the paradigm shift on multichannel film dosimetry Outline the procedures to achieve accurate dosimetry with a RCF dosimetry system Provide comprehensive guidelines on RCF dosimetry for various clinical applications One of the speakers has a research agreement from Ashland Inc., the manufacturer of Gafchromic film.

  8. Sunburn related to UV radiation exposure, age, sex, occupation, and sun bed use based on time-stamped personal dosimetry and sun behavior diaries.

    Science.gov (United States)

    Thieden, Elisabeth; Philipsen, Peter A; Sandby-Møller, Jane; Wulf, Hans Christian

    2005-04-01

    To assess when sunburn occurs and who experiences sunburn by personal UV dosimetry and diaries. Open prospective observational study. University hospital. A convenience sample of 340 Danish volunteers: children, adolescents, indoor workers, sun worshippers, golfers, and gardeners (age range, 4-68 years). Subjects recorded sunburn and sun-exposure behavior in diaries and carried personal, electronic, wristwatch UV radiation (UVR) dosimeters that measured time-stamped UVR doses continuously for a median of 119 days covering 346 sun-years (1 sun-year equals 1 subject participating during 1 summer half-year). A typical sunburn day was a day off work (91%; odds ratio, 4.1) with risk behavior (sunbathing/exposing shoulders) (79%; odds ratio, 15.9) in May, June, or July (90%) for 6.4 exposure hours (interquartile range, 5-7.7 hours), of which 2.8 hours fell between noon and 3 pm. Subjects had a median of 1 sunburn per sun-year; adolescents, sun worshippers, and indoor workers had more than children, golfers, and gardeners (Ppersons had more risk-behavior days and lower skin type (Ppersons. The median UVR doses received were significantly higher on sunburn days than on nonsunburn days with risk behavior (P<.01). There was a significant correlation between sunburn size and severity; sunburn and sunscreen use; and sunburn and sun-bed use (P<.01 for all 3 comparisons). Sunburn was highly correlated with risk behavior. Reduction of risk-behavior days and/or exposure hours around noon can reduce sunburn. Sunburn was not found during breaks on normal full-time indoor work or school days.

  9. Fallout from atmospheric bomb tests and releases from nuclear installations

    Science.gov (United States)

    Völkle, H.; Murith, C.; Surbeck, H.

    This work presents the radioactivity monitoring programme in Switzerland. Environmental radioactivity measurements for atomic bomb test fallout are discussed together with the radiation doses to the public caused by fallout. In the second part the monitoring programme around nuclear power stations is presented. The radioactivity releases to the environment, the results of the monitoring programme and the radiation doses to the public in the vicinity of the plants are discussed.

  10. The Atomic Bomb Casualty Commission in retrospect

    Science.gov (United States)

    Putnam, Frank W.

    1998-01-01

    For 50 years, the Atomic Bomb Casualty Commission (ABCC) and its successor, the Radiation Effects Research Foundation (RERF), have conducted epidemiological and genetic studies of the survivors of the atomic bombs and of their children. This research program has provided the primary basis for radiation health standards. Both ABCC (1947–1975) and RERF (1975 to date) have been a joint enterprise of the United States (through the National Academy of Sciences) and of Japan. ABCC began in devastated, occupied Japan. Its mission had to be defined and refined. Early research revealed the urgent need for long term study. In 1946, a Directive of President Truman enjoined the National Research Council of the National Academy of Sciences to develop the program. By 1950, ABCC staff exceeded 1,000, and clinical and genetic studies were underway. Budgetary difficulties and other problems almost forced closure in 1953. In 1955, the Francis Report led to a unified epidemiological study. Much progress was made in the next decade, but changing times required founding of a binational nonprofit organization (RERF) with equal participation by Japan and the United States. New programs have been developed and existing ones have been extended in what is the longest continuing health survey ever undertaken. PMID:9576898

  11. Historical Evaluation of Film Badge Dosimetry Y-12 Plant: Part 2–Neutron Radiation ORAUT-OTIB-0045

    Energy Technology Data Exchange (ETDEWEB)

    Kerr GD, Frome EL, Watkins JP, Tankersley WG

    2009-12-14

    A summary of the major neutron sources involved in radiation exposures to Y-12 workers is presented in this TIB. Graphical methods are used to evaluate available neutron dose data from quarterly exposures to Y-12 workers and to determine how the data could be used to derive neutron-to-gamma dose ratios for dose reconstruction purposes. This TIB provides estimates of neutron-to-gamma dose ratios for specific departments and a default value for the neutron-to-gamma dose ratio based on the pooled neutron dose data for all Y-12 departments.

  12. Instrumentation for the individual dosimetry of workers

    CERN Document Server

    Thévenin, J C

    2003-01-01

    The control of the radiation dose exposure of workers and personnel exposed to ionizing radiations (nuclear industry, nuclear medicine, army, university laboratories etc..) is ensured by individual dosemeters. This dosimetry is mandatory for all workers susceptible to be exposed to more than 30% of the regulatory dose limit. dosemeters are worn on the chest and in some particular cases, on the finger (dosemeter rings) or on the wrist. Passive dosemeters allow to measure the dose a posteriori, while electronic dosemeters allow a direct reading and recording of the dose. This article presents successively: 1 - the general principles of individual dosimetry: situations of exposure, radiation detection, operational data, standardization, calibration and quality assurance, measurement uncertainties; 2 - goals and regulatory framework of individual dosimetry: regulation and recommendations, optimization, respect of dose limits, accidental situations; 3 - passive dosemeters: film, thermoluminescent, radio-photolumin...

  13. Dosimetry intercomparisons in European medical device sterilization plants

    DEFF Research Database (Denmark)

    Miller, A.; Sharpe, P.H.G.

    2000-01-01

    Dosimetry intercomparisons have been carried out involving two-thirds of all European radiation sterilization facilities. Dosimeters for the intercomparisons were supplied by two accredited calibration laboratories. The results show good agreement, and indicate overall dosimetry accuracy of the o...... of the order of +/-5% (1 sigma) for both Co-60 and electron beam plants. (C) 2000 Elsevier Science Ltd. All rights reserved....

  14. Effective atomic numbers, electron densities, and tissue equivalence of some gases and mixtures for dosimetry of radiation detectors

    Directory of Open Access Journals (Sweden)

    Singh Vishwanath P.

    2012-01-01

    Full Text Available Total mass attenuation coefficients, µm, effective atomic number, Zeff, and effective electron density, Neff, of different gases - carbon dioxide, methane, acetylene, propane, butane, and pentane used in radiation detectors, have been calculated for the photon energy of 1 keV to 100 GeV. Each gas has constant Zeff values between 0.10 to 10 MeV photon energies; however, these values are way far away from ICRU tissue. Carbon dioxide gas shows the closest tissue equivalence in the entire photon energy spectrum. Relative tissue equivalences of the mixtures of gases with respect to ICRU tissue are in the range of 0.998-1.041 for air, argon (4.5% + methane (95.5%, argon (0.5% + carbon dioxide (99.5%, and nitrogen (5% + methane (7% + carbon dioxide (88%. The gas composition of xenon (0.5% + carbon dioxide (99.5% shows 1.605 times higher tissue equivalence compared to the ICRU tissue. The investigated photon interaction parameters are useful for exposure and energy absorption buildup factors calculation and design, and fabrication of gaseous detectors for ambient radiation measurement by the Geiger-Muller detector, ionization chambers and proportional counters.

  15. Bomb pulse biology

    Energy Technology Data Exchange (ETDEWEB)

    Falso, Miranda J. Sarachine [Center for Accelerator Mass Spectrometry, Mail Stop L-397, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551 (United States); Buchholz, Bruce A., E-mail: buchholz2@llnl.gov [Center for Accelerator Mass Spectrometry, Mail Stop L-397, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551 (United States)

    2013-01-15

    The past decade has seen an explosion in use of the {sup 14}C bomb pulse to do fundamental cell biology. Studies in the 1960s used decay counting to measure tissue turnover when the atmospheric {sup 14}C/C concentration was changing rapidly. Today bulk tissue measurements are of marginal interest since most of the carbon in the tissue resides in proteins, lipids and carbohydrates that turn over rapidly. Specific cell types with specialized functions are the focus of cell turnover investigations. Tissue samples need to be fresh or frozen. Fixed or preserved samples contain petroleum-derived carbon that has not been successfully removed. Cell or nuclear surface markers are used to sort specific cell types, typically by fluorescence-activated cell sorting (FACS). Specific biomolecules need to be isolated with high purity and accelerator mass spectrometry (AMS) measurements must accommodate samples that generally contain less than 40 {mu}g of carbon. Furthermore, all separations must not add carbon to the sample. Independent means such as UV absorbance must be used to confirm molecule purity. Approaches for separating specific proteins and DNA and combating contamination of undesired molecules are described.

  16. Dosimetry of iodoantipyrine.

    Science.gov (United States)

    Chu, R Y; Ekeh, S; Basmadjian, G

    1989-01-01

    Dosimetry of iodoantipyrine labeled with radioactive iodine was determined by measuring the biodistribution of 131I-iodoantipyrine in 41 female rabbits. Following administration of the radiopharmaceutical, subjects were killed at 0.5, 6, 12, 17, 24, 36, and 48 h. Organs and samples of tissues and body fluids were assayed. Results were corrected for physical decay. Exponential functions were employed to describe the time-concentration curves; representative value would be the biological half life of 9.96 +/- 0.55 h for blood. Cumulated activity estimates for 123I, 125I and 131I were then computed. Extrapolation to absorbed dose in humans followed the formulation of the Medical International Radiation Dose (MIRD) Committee of the Society of Nuclear Medicine. The whole body absorbed doses are 7 mu Gray, 5 mu Gray and 29 mu Gray per MBq of 123I, 125I, and 131I administered respectively.

  17. Medical dosimetry in Hungary

    Science.gov (United States)

    Turák, O.; Osvay, M.; Ballay, L.

    2012-09-01

    Radiation exposure of medical staff during cardiological and radiological procedures was investigated. The exposure of medical staff is directly connected to patient exposure. The aim of this study was to determine the distribution of doses on uncovered part of body of medical staff using LiF thermoluminescent (TL) dosimeters in seven locations. Individual Kodak film dosimeters (as authorized dosimetry system) were used for the assessment of medical staff's effective dose. Results achieved on dose distribution measurements confirm that wearing only one film badge under the lead apron does not provide enough information on the personal dose. The value of estimated annual doses on eye lens and extremities (fingers) were in good correlation with international publications.

  18. Analysis behaviour of free radicals produced by ionizing radiations in human blood by EPR for biological dosimetry in patients; Analisis del comportamiento de los radicales libre en la radiolisis de la sangre por EPR para dosimetria biologia en pacientes

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza, O. O.; Almanza, A.; Plazas, M. M. C.

    2006-07-01

    In this work is analyzed the biological dosimetry of the free radicals produced by ionizing radiations in human blood obtained by EPR and the biological behaviour of samples In-Vitro, with Rh: O+, in tubes with EDTA (Acid Etilen Diamino Tetracetic) the samples was extracted of the main investigator, these samples were radiated with gammas of ''60Co of a Theratron 780 between plates of PMMA to a depth of Z{sub m}ax of 0.5 cm and between doses 1 to 25 Gy. In these results the behaviors of signal the free radicals presented a increasing a their intensity depending on applied dose, of equal way are results of the biologic dosimetry displayed in sanguineous populations like. White Globules, Red. Platelets etc, to being compared with Resonance Paramagnetic Electronic (EPR). The results show changes in sanguineous populations in high doses (D>10 Gy) in the case of lymphocytes, granulocitos, macusanita, plaquetas, hemoglobina, haematocrit with change similarly in medium and low doses (D>10Gy) in linfocites, platelets, granulocytes, monocytes and the haematocrit. A sanguineous sample without radiating analyzes by EPR giving the presence of signals with values of g=2.13 2,41 in blood. For the first certain value of g authors have associated it to free radicals like: globin (Fe(IV)=0) or Cu''+ incorporated to the ceruloplasmin molecule. (Author)

  19. Biodistribution and radiation dosimetry of {sup 68}Ga-PSMA HBED CC - a PSMA specific probe for PET imaging of prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Pfob, Christian H.; Ziegler, Sibylle; Graner, Frank Philipp; Koehner, Markus; Schachoff, Sylvia; Blechert, Birgit; Scheidhauer, Klemens; Schwaiger, Markus; Eiber, Matthias [Technische Universitaet Muenchen, Department of Nuclear Medicine, Munich (Germany); Wester, Hans-Juergen [Technische Universitaet Muenchen, Chair of Pharmaceutical Radiochemistry, Department Chemie, Garching (Germany); Maurer, Tobias [Technische Universitaet Muenchen, Department of Urology, Munich (Germany)

    2016-10-15

    Positron emission tomography (PET) agents targeting the prostate-specific membrane antigen (PSMA) are currently under broad clinical and scientific investigation. {sup 68}Ga-PSMA HBED-CC constitutes the first {sup 68}Ga-labelled PSMA-inhibitor and has evolved as a promising agent for imaging PSMA expression in vivo. The aim of this study was to evaluate the whole-body distribution and radiation dosimetry of this new probe. Five patients with a history or high suspicion of prostate cancer were injected intravenously with a mean of 139.8 ± 13.7 MBq of {sup 68}Ga-PSMA HBED-CC (range 120-158 MBq). Four static skull to mid-thigh scans using a whole-body fully integrated PET/MR-system were performed 10 min, 60 min, 130 min, and 175 min after the tracer injection. Time-dependent changes of the injected activity per organ were determined. Mean organ-absorbed doses and effective doses (ED) were calculated using OLINDA/EXM. Injection of a standard activity of 150 MBq {sup 68}Ga-PSMA HBED-CC resulted in a median effective dose of 2.37 mSv (Range 1.08E-02 - 2.46E-02 mSv/MBq). The urinary bladder wall (median absorbed dose 1.64E-01 mGv/MBq; range 8.76E-02 - 2.91E-01 mGv/MBq) was the critical organ, followed by the kidneys (median absorbed dose 1.21E-01 mGv/MBq; range 7.16E-02 - 1.75E-01), spleen (median absorbed dose 4.13E-02 mGv/MBq; range 1.57E-02 - 7.32E-02 mGv/MBq) and liver (median absorbed dose 2.07E-02 mGv/MBq; range 1.80E-02 - 2.57E-02 mGv/MBq). No drug-related pharmacological effects occurred. The use of {sup 68}Ga-PSMA HBED-CC results in a relatively low radiation exposure, delivering organ doses that are comparable to those of other {sup 68}Ga-labelled PSMA-inhibitors used for PET-imaging. Total effective dose is lower than for other PET-agents used for prostate cancer imaging (e.g. {sup 11}C- and {sup 18}F-Choline). (orig.)

  20. Properties of thin film radiation detectors and their application to dosimetry and quality assurance in x-ray imaging

    Science.gov (United States)

    Elshahat, Bassem

    The characteristics of two different types of thin-film radiation detectors are experimentally investigated: organic photovoltaic cells (OPV) and a new self-powered detector that operates based on high-energy secondary electrons (HEC). Although their working principles are substantially different, they both can be used for radiation detection and image formation in medical applications. OPVs with different active layer material thicknesses and aluminum electrode areas were fabricated. The OPV cell consisted of P3HT: PCBM photoactive materials, composed of donor and acceptor semiconducting organic materials, sandwiched between an aluminum electrode as anode and an indium tin oxide (ITO) electrode as a cathode. The detectors were exposed to 60150 kVp x rays, which generated photocurrent in the active layer. The electric charge production in the OPV cells was measured. The net current as function of beam energy (kVp) was proportional to ~1/kVp0.45 when adjusted for x-ray beam output. The best combination of parameters for these cells was 270-nm active layer thicknesses for 0.7cm-2 electrode area. The measured current ranged from about 0.7 to 2.4 nA/cm2 for 60-150 kVp, corresponding to about 0.09 -- 0.06 nA/cm2/mGy, respectively, when adjusted for the output x-ray source flux. The HEC detection concept was recently proposed and experimentally demonstrated by a UML/HMS research group. HEC detection employs direct conversion of high-energy electron current to detector signal without external power and amplification. The potential of using HEC detectors for diagnostic imaging application was investigated by using a heterogeneous phantom consisting of a water cylinder with Al and wax rod inserts.

  1. Human biodistribution and radiation dosimetry of {sup 11}C-(R)-PK11195, the prototypic PET ligand to image inflammation

    Energy Technology Data Exchange (ETDEWEB)

    Hirvonen, Jussi; Roivainen, Anne; Virta, Jere; Helin, Semi; Naagren, Kjell; Rinne, Juha O. [University of Turku and Turku University Hospital, Turku PET Centre, P.O. Box 52, Turku (Finland)

    2010-03-15

    The positron emission tomography (PET) radiotracer {sup 11}C-(R)-PK11195 allows the in vivo imaging in humans of the translocator protein 18 kDa (TSPO), previously called peripheral benzodiazepine receptor (PBR), a marker of inflammation. Despite its widespread use, the radiation burden associated with {sup 11}C-(R)-PK11195 in humans is not known. To examine this, we performed dynamic whole-body imaging with PET and {sup 11}C-(R)-PK11195 in healthy humans. Five healthy male volunteers were scanned with PET and {sup 11}C-(R)-PK11195, using a dynamic whole-body imaging protocol. An organ-specific method was used to measure accumulated radioactivity in source organs, and residence times were calculated as areas under the curve of time-activity curves expressed as percentage of injected radioactivity. Residence times were used as input for OLINDA/EXM 1.0 software to model the equivalent organ doses and the effective dose for the 70-kg man. After intravenous injection of {sup 11}C-(R)-PK11195, radioactivity accumulated in organs rich in TSPO as well as routes of excretion: the hepatobiliary system and the urine. The mean effective dose was 4.8 {mu}Sv/MBq according to International Commission on Radiological Protection (ICRP) Publication 60 and 5.1 {mu}Sv/MBq according to ICRP Publication 103, and the highest equivalent organ doses were observed in the kidneys (14.0 {mu}Sv/MBq), spleen (12.5 {mu}Sv/MBq) and small intestine (12.2 {mu}Sv/MBq). Imaging of TSPO with PET using {sup 11}C-(R)-PK11195 is associated with modest radiation exposure, similar in magnitude to most other {sup 11}C-labelled PET tracers, suggesting feasibility of {sup 11}C-(R)-PK11195 imaging in clinical human studies involving multiple scans in the same subjects per year. (orig.)

  2. Radiation dosimetry and first therapy results with a {sup 124}I/{sup 131}I-labeled small molecule (MIP-1095) targeting PSMA for prostate cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Zechmann, Christian M.; Afshar-Oromieh, Ali; Mier, Walter [University Hospital Heidelberg, Department of Nuclear Medicine, Heidelberg (Germany); Armor, Tom; Joyal, John [Molecular Insight Pharmaceuticals, Boston, MA (United States); Stubbs, James B. [Radiation Dosimetry Systems RDS, Inc., Apharetta, GA (United States); Hadaschik, Boris [University Hospital Heidelberg, Department of Urology, Heidelberg (Germany); Kopka, Klaus [Division Radiopharmaceutical Chemistry, DKFZ, Heidelberg (Germany); Debus, Juergen [University Hospital Heidelberg, Department of Radiation Oncology, Heidelberg (Germany); Babich, John W. [Molecular Insight Pharmaceuticals, Boston, MA (United States); Cornell University, Division of Radiopharmacy, Department of Radiology, New York, NY (United States); Haberkorn, Uwe [University Hospital Heidelberg, Department of Nuclear Medicine, Heidelberg (Germany); Clinical Cooperation Unit Nuclear Medicine, DKFZ, Heidelberg (Germany)

    2014-07-15

    Since the prostate-specific membrane antigen (PSMA) is frequently over-expressed in prostate cancer (PCa) several PSMA-targeting molecules are under development to detect and treat metastatic castration resistant prostate cancer (mCRPC). We investigated the tissue kinetics of a small molecule inhibitor of PSMA ((S)-2-(3-((S)-1-carboxy-5-(3-(4-[{sup 124}I]iodophenyl)ureido)pentyl)ureido) pentan edioicacid; MIP-1095) using PET/CT to estimate radiation dosimetry for the potential therapeutic use of {sup 131}I-MIP-1095 in men with mCRPC. We also report preliminary safety and efficacy of the first 28 consecutive patients treated under a compassionate-use protocol with a single cycle of {sup 131}I-MIP-1095. Sixteen patients with known prostate cancer underwent PET/CT imaging after i.v. administration of {sup 124}I-MIP-1095 (mean activity: 67.4 MBq). Each patient was scanned using PET/CT up to five times at 1, 4, 24, 48 and 72 h post injection. Volumes of interest were defined for tumor lesions and normal organs at each time point followed by dose calculations using the OLINDA/EXM software. Twenty-eight men with mCRPC were treated with a single cycle of {sup 131}I-MIP-1095 (mean activity: 4.8 GBq, range 2 to 7.2 GBq) and followed for safety and efficacy. Baseline and follow up examinations included a complete blood count, liver and kidney function tests, and measurement of serum PSA. I-124-MIP-1095 PET/CT images showed excellent tumor uptake and moderate uptake in liver, proximal intestine and within a few hours post-injection also in the kidneys. High uptake values were observed only in salivary and lacrimal glands. Dosimetry estimates for I-131-MIP-1095 revealed that the highest absorbed doses were delivered to the salivary glands (3.8 mSv/MBq), liver (1.7 mSv/MBq) and kidneys (1.4 mSv/MBq). The absorbed dose calculated for the red marrow was 0.37 mSv/MBq. PSA values decreased by >50 % in 60.7 % of the men treated. Of men with bone pain, 84.6 % showed complete or

  3. Deformable adult human phantoms for radiation protection dosimetry: anthropometric data representing size distributions of adult worker populations and software algorithms

    Science.gov (United States)

    Hum Na, Yong; Zhang, Binquan; Zhang, Juying; Caracappa, Peter F.; Xu, X. George

    2010-07-01

    Computational phanto