WorldWideScience

Sample records for boltzmann equation approach

  1. New Monte Carlo approach to the adjoint Boltzmann equation

    International Nuclear Information System (INIS)

    De Matteis, A.; Simonini, R.

    1978-01-01

    A class of stochastic models for the Monte Carlo integration of the adjoint neutron transport equation is described. Some current general methods are brought within this class, thus preparing the ground for subsequent comparisons. Monte Carlo integration of the adjoint Boltzmann equation can be seen as a simulation of the transport of mathematical particles with reaction kernels not normalized to unity. This last feature is a source of difficulty: It can influence the variance of the result negatively and also often leads to preparation of special ''libraries'' consisting of tables of normalization factors as functions of energy, presently used by several methods. These are the two main points that are discussed and that are taken into account to devise a nonmultigroup method of solution for a certain class of problems. Reactions considered in detail are radiative capture, elastic scattering, discrete levels and continuum inelastic scattering, for which the need for tables has been almost completely eliminated. The basic policy pursued to avoid a source of statistical fluctuations is to try to make the statistical weight of the traveling particle dependent only on its starting and current energies, at least in simple cases. The effectiveness of the sampling schemes proposed is supported by numerical comparison with other more general adjoint Monte Carlo methods. Computation of neutron flux at a point by means of an adjoint formulation is the problem taken as a test for numerical experiments. Very good results have been obtained in the difficult case of resonant cross sections

  2. Particle methods for Boltzmann equation

    International Nuclear Information System (INIS)

    Hermeline, F.

    1985-05-01

    This work is aimed at showing how to discretize an equation such as Boltzmann equation in its most general form, by particle methods. Then method is applied to some equations of plasma physics which appear as peculiar cases of Boltzmann equation, such as Vlasov equation, Bhatnager-Gross-Krook equation, Fokker-Planck equation and neutron transport equation [fr

  3. Global existence proof for relativistic Boltzmann equation

    International Nuclear Information System (INIS)

    Dudynski, M.; Ekiel-Jezewska, M.L.

    1992-01-01

    The existence and causality of solutions to the relativistic Boltzmann equation in L 1 and in L loc 1 are proved. The solutions are shown to satisfy physically natural a priori bounds, time-independent in L 1 . The results rely upon new techniques developed for the nonrelativistic Boltzmann equation by DiPerna and Lions

  4. Hot electrons in superlattices: quantum transport versus Boltzmann equation

    DEFF Research Database (Denmark)

    Wacker, Andreas; Jauho, Antti-Pekka; Rott, S.

    1999-01-01

    A self-consistent solution of the transport equation is presented for semiconductor superlattices within different approaches: (i) a full quantum transport model based on nonequilibrium Green functions, (ii) the semiclassical Boltzmann equation for electrons in a miniband, and (iii) Boltzmann...... equation for electrons in Wannier-Stark states. We find good quantitative agreement of the approximations (ii) and (iii) with (i) in their respective ranges of validity. (C) 1999 Elsevier Science B.V. All rights reserved....

  5. The Acoustic Limit for the Boltzmann Equation

    Science.gov (United States)

    Bardos, Claude; Golse, François; Levermore, C. David

    The acoustic equations are the linearization of the compressible Euler equations about a spatially homogeneous fluid state. We first derive them directly from the Boltzmann equation as the formal limit of moment equations for an appropriately scaled family of Boltzmann solutions. We then establish this limit for the Boltzmann equation considered over a periodic spatial domain for bounded collision kernels. Appropriately scaled families of DiPerna-Lions renormalized solutions are shown to have fluctuations that converge entropically (and hence strongly in L1) to a unique limit governed by a solution of the acoustic equations for all time, provided that its initial fluctuations converge entropically to an appropriate limit associated to any given L2 initial data of the acoustic equations. The associated local conservation laws are recovered in the limit.

  6. Kinetic Boltzmann, Vlasov and Related Equations

    CERN Document Server

    Sinitsyn, Alexander; Vedenyapin, Victor

    2011-01-01

    Boltzmann and Vlasov equations played a great role in the past and still play an important role in modern natural sciences, technique and even philosophy of science. Classical Boltzmann equation derived in 1872 became a cornerstone for the molecular-kinetic theory, the second law of thermodynamics (increasing entropy) and derivation of the basic hydrodynamic equations. After modifications, the fields and numbers of its applications have increased to include diluted gas, radiation, neutral particles transportation, atmosphere optics and nuclear reactor modelling. Vlasov equation was obtained in

  7. An introduction to the theory of the Boltzmann equation

    CERN Document Server

    Harris, Stewart

    2011-01-01

    Boltzmann's equation (or Boltzmann-like equations) appears extensively in such disparate fields as laser scattering, solid-state physics, nuclear transport, and beyond the conventional boundaries of physics and engineering, in the fields of cellular proliferation and automobile traffic flow. This introductory graduate-level course for students of physics and engineering offers detailed presentations of the basic modern theory of Boltzmann's equation, including representative applications using both Boltzmann's equation and the model Boltzmann equations developed within the text. It emphasizes

  8. Lattice Boltzmann approach for complex nonequilibrium flows.

    Science.gov (United States)

    Montessori, A; Prestininzi, P; La Rocca, M; Succi, S

    2015-10-01

    We present a lattice Boltzmann realization of Grad's extended hydrodynamic approach to nonequilibrium flows. This is achieved by using higher-order isotropic lattices coupled with a higher-order regularization procedure. The method is assessed for flow across parallel plates and three-dimensional flows in porous media, showing excellent agreement of the mass flow with analytical and numerical solutions of the Boltzmann equation across the full range of Knudsen numbers, from the hydrodynamic regime to ballistic motion.

  9. Singularities in the nonisotropic Boltzmann equation

    International Nuclear Information System (INIS)

    Garibotti, C.R.; Martiarena, M.L.; Zanette, D.

    1987-09-01

    We consider solutions of the nonlinear Boltzmann equation (NLBE) with anisotropic singular initial conditions, which give a simplified model for the penetration of a monochromatic beam on a rarified target. The NLBE is transformed into an integral equation which is solved iteratively and the evolution of the initial singularities is discussed. (author). 5 refs

  10. The Boltzmann equation in the difference formulation

    Energy Technology Data Exchange (ETDEWEB)

    Szoke, Abraham [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brooks III, Eugene D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-05-06

    First we recall the assumptions that are needed for the validity of the Boltzmann equation and for the validity of the compressible Euler equations. We then present the difference formulation of these equations and make a connection with the time-honored Chapman - Enskog expansion. We discuss the hydrodynamic limit and calculate the thermal conductivity of a monatomic gas, using a simplified approximation for the collision term. Our formulation is more consistent and simpler than the traditional derivation.

  11. Metamaterial characterization using Boltzmann's kinetic equation for electrons

    DEFF Research Database (Denmark)

    Novitsky, Andrey; Zhukovsky, Sergei; Novitsky, D.

    2013-01-01

    Statistical properties of electrons in metals are taken into consideration to describe the microscopic motion of electrons. Assuming degenerate electron gas in metal, we introduce the Boltzmann kinetic equation to supplement Maxwell's equations. The solution of these equations clearly shows...

  12. Boltzmann equation and hydrodynamics beyond Navier-Stokes.

    Science.gov (United States)

    Bobylev, A V

    2018-04-28

    We consider in this paper the problem of derivation and regularization of higher (in Knudsen number) equations of hydrodynamics. The author's approach based on successive changes of hydrodynamic variables is presented in more detail for the Burnett level. The complete theory is briefly discussed for the linearized Boltzmann equation. It is shown that the best results in this case can be obtained by using the 'diagonal' equations of hydrodynamics. Rigorous estimates of accuracy of the Navier-Stokes and Burnett approximations are also presented.This article is part of the theme issue 'Hilbert's sixth problem'. © 2018 The Author(s).

  13. Soluble Boltzmann equations for internal state and Maxwell models

    NARCIS (Netherlands)

    Futcher, E.; Hoare, M.R.; Hendriks, E.M.; Ernst, M.H.

    We consider a class of scalar nonlinear Boltzmann equations describing the evolution of a microcanonical ensemble in which sub-systems exchange internal energy ‘randomly’ in binary interactions. In the continuous variable version these models can equally be interpreted as Boltzmann equations for

  14. Non-linear effects in the Boltzmann equation

    International Nuclear Information System (INIS)

    Barrachina, R.O.

    1985-01-01

    The Boltzmann equation is studied by defining an integral transformation of the energy distribution function for an isotropic and homogeneous gas. This transformation may be interpreted as a linear superposition of equilibrium states with variable temperatures. It is shown that the temporal evolution features of the distribution function are determined by the singularities of said transformation. This method is applied to Maxwell and Very Hard Particle interaction models. For the latter, the solution of the Boltzmann equation with the solution of its linearized version is compared, finding out many basic discrepancies and non-linear effects. This gives a hint to propose a new rational approximation method with a clear physical meaning. Applying this technique, the relaxation features of the BKW (Bobylev, Krook anf Wu) mode is analyzed, finding a conclusive counter-example for the Krook and Wu conjecture. The anisotropic Boltzmann equation for Maxwell models is solved as an expansion in terms of the eigenfunctions of the corresponding linearized collision operator, finding interesting transient overpopulation and underpopulation effects at thermal energies as well as a new preferential spreading effect. By analyzing the initial collision, a criterion is established to deduce the general features of the final approach to equilibrium. Finally, it is shown how to improve the convergence of the eigenfunction expansion for high energy underpopulated distribution functions. As an application of this theory, the linear cascade model for sputtering is analyzed, thus finding out that many differences experimentally observed are due to non-linear effects. (M.E.L.) [es

  15. Finite Element Based Formulation of Lattice Boltzmann Equation

    International Nuclear Information System (INIS)

    Jo, Jong Chull; Roh, Kyung Wan; Kwon, Young W.; Kwon, Young W.

    2008-01-01

    The Lattice Boltzmann Method (LBM) has been developed for application to thermal-fluid problems. Recently, the technique was also applied to fluid-structure interaction problems. Most of those studies considered a regular shape of lattice or mesh like square and cubic grids. In order to apply the LBM to more practical cases, it is necessary to be able to solve complex or irregular shapes of problem domains. There have been different kinds of approaches to address the problems. The most common technique was using the finite volume formulation of the lattice Boltzmann equation. Another approach was a point-wise interpolation technique for irregular grids. Other techniques were based on the finite element method. Generally, the finite element method is very powerful for solving two or three-dimensional complex or irregular shapes of domains using the isoparametric element formulation which is based on a mathematical mapping from a regular shape of element in an imaginary domain to a more general and irregular shape of element in the physical domain. In addition, there are variety of choices of finite elements such as triangular or quadrilateral shapes in 2-D, or tetrahedral, triangular prism, or general six-sided solids in 3-D. As a result, the present study presents a new finite element formulation for the lattice Boltzmann equation using the general weighted residual technique. Among the weighted residual formulations, the collocation method, Galerkin method or method of moments are used to develop the finite element based LBM

  16. An introduction to the Boltzmann equation and transport processes in gases

    CERN Document Server

    Kremer, Gilberto M; Colton, David

    2010-01-01

    This book covers classical kinetic theory of gases, presenting basic principles in a self-contained framework and from a more rigorous approach based on the Boltzmann equation. Uses methods in kinetic theory for determining the transport coefficients of gases.

  17. Exact results for the Boltzmann equation and Smoluchowski's coagulation equation

    International Nuclear Information System (INIS)

    Hendriks, E.M.

    1983-01-01

    Almost no analytical solutions have been found for realistic intermolecular forces, largely due to the complicated structure of the collision term which calls for the construction of simplified models, in which as many physical properties are maintained as possible. In the first three chapters of this thesis such model Boltzmann equations are studied. Only spatially homogeneous gases with isotropic distribution functions are considered. Chapter I considers transition kernels, chapter II persistent scattering models and chapter III very hard particles. The second part of this dissertation deals with Smoluchowski's coagulation equation for the size distribution function in a coagulating system, with chapters devoted to the following topics: kinetics of gelation and universality, coagulation equations with gelation and exactly soluble models of nucleation. (Auth./C.F.)

  18. Boltzmann equations for a binary one-dimensional ideal gas.

    Science.gov (United States)

    Boozer, A D

    2011-09-01

    We consider a time-reversal invariant dynamical model of a binary ideal gas of N molecules in one spatial dimension. By making time-asymmetric assumptions about the behavior of the gas, we derive Boltzmann and anti-Boltzmann equations that describe the evolution of the single-molecule velocity distribution functions for an ensemble of such systems. We show that for a special class of initial states of the ensemble one can obtain an exact expression for the N-molecule velocity distribution function, and we use this expression to rigorously prove that the time-asymmetric assumptions needed to derive the Boltzmann and anti-Boltzmann equations hold in the limit of large N. Our results clarify some subtle issues regarding the origin of the time asymmetry of Boltzmann's H theorem.

  19. Supersymmetric electroweak baryogenesis, nonequilibrium field theory and quantum Boltzmann equations

    CERN Document Server

    Riotto, Antonio

    1998-01-01

    The closed time-path (CPT) formalism is a powerful Green's function formulation to describe nonequilibrium phenomena in field theory and it leads to a complete nonequilibrium quantum kinetic theory. In this paper we make use of the CPT formalism to write down a set of quantum Boltzmann equations describing the local number density asymmetries of the particles involved in supersymmetric electroweak baryogenesis. These diffusion equations automatically and self-consistently incorporate the CP-violating sources which fuel baryogenesis when transport properties allow the CP-violating charges to diffuse in front of the bubble wall separating the broken from the unbroken phase at the electroweak phase transition. This is a significant improvement with respect to recent approaches where the CP-violating sources are inserted by hand into the diffusion equations. Furthermore, the CP-violating sources and the particle number changing interactions manifest ``memory'' effects which are typical of the quantum transp ort t...

  20. A modified Poisson-Boltzmann equation applied to protein adsorption.

    Science.gov (United States)

    Gama, Marlon de Souza; Santos, Mirella Simões; Lima, Eduardo Rocha de Almeida; Tavares, Frederico Wanderley; Barreto, Amaro Gomes Barreto

    2018-01-05

    Ion-exchange chromatography has been widely used as a standard process in purification and analysis of protein, based on the electrostatic interaction between the protein and the stationary phase. Through the years, several approaches are used to improve the thermodynamic description of colloidal particle-surface interaction systems, however there are still a lot of gaps specifically when describing the behavior of protein adsorption. Here, we present an improved methodology for predicting the adsorption equilibrium constant by solving the modified Poisson-Boltzmann (PB) equation in bispherical coordinates. By including dispersion interactions between ions and protein, and between ions and surface, the modified PB equation used can describe the Hofmeister effects. We solve the modified Poisson-Boltzmann equation to calculate the protein-surface potential of mean force, treated as spherical colloid-plate system, as a function of process variables. From the potential of mean force, the Henry constants of adsorption, for different proteins and surfaces, are calculated as a function of pH, salt concentration, salt type, and temperature. The obtained Henry constants are compared with experimental data for several isotherms showing excellent agreement. We have also performed a sensitivity analysis to verify the behavior of different kind of salts and the Hofmeister effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Analysis of spectral methods for the homogeneous Boltzmann equation

    KAUST Repository

    Filbet, Francis

    2011-04-01

    The development of accurate and fast algorithms for the Boltzmann collision integral and their analysis represent a challenging problem in scientific computing and numerical analysis. Recently, several works were devoted to the derivation of spectrally accurate schemes for the Boltzmann equation, but very few of them were concerned with the stability analysis of the method. In particular there was no result of stability except when the method was modified in order to enforce the positivity preservation, which destroys the spectral accuracy. In this paper we propose a new method to study the stability of homogeneous Boltzmann equations perturbed by smoothed balanced operators which do not preserve positivity of the distribution. This method takes advantage of the "spreading" property of the collision, together with estimates on regularity and entropy production. As an application we prove stability and convergence of spectral methods for the Boltzmann equation, when the discretization parameter is large enough (with explicit bound). © 2010 American Mathematical Society.

  2. Celebrating Cercignani's conjecture for the Boltzmann equation

    KAUST Repository

    Villani, Cédric

    2011-01-01

    Cercignani\\'s conjecture assumes a linear inequality between the entropy and entropy production functionals for Boltzmann\\'s nonlinear integral operator in rarefied gas dynamics. Related to the field of logarithmic Sobolev inequalities and spectral gap inequalities, this issue has been at the core of the renewal of the mathematical theory of convergence to thermodynamical equilibrium for rarefied gases over the past decade. In this review paper, we survey the various positive and negative results which were obtained since the conjecture was proposed in the 1980s. © American Institute of Mathematical Sciences.

  3. From Boltzmann equations to steady wall velocities

    International Nuclear Information System (INIS)

    Konstandin, Thomas; Rues, Ingo; Nardini, Germano; California Univ., Santa Barbara, CA

    2014-07-01

    By means of a relativistic microscopic approach we calculate the expansion velocity of bubbles generated during a first-order electroweak phase transition. In particular, we use the gradient expansion of the Kadanoff-Baym equations to set up the fluid system. This turns out to be equivalent to the one found in the semi-classical approach in the non-relativistic limit. Finally, by including hydrodynamic deflagration effects and solving the Higgs equations of motion in the fluid, we determine velocity and thickness of the bubble walls. Our findings are compared with phenomenological models of wall velocities. As illustrative examples, we apply these results to three theories providing first-order phase transitions with a particle content in the thermal plasma that resembles the Standard Model.

  4. Computational Aeroacoustics Using the Generalized Lattice Boltzmann Equation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall objective of the proposed project is to develop a generalized lattice Boltzmann (GLB) approach as a potential computational aeroacoustics (CAA) tool for...

  5. Multimesh anisotropic adaptivity for the Boltzmann transport equation

    International Nuclear Information System (INIS)

    Baker, C.M.J.; Buchan, A.G.; Pain, C.C.; Farrell, P.E.; Eaton, M.D.; Warner, P.

    2013-01-01

    Highlights: ► We solve the Boltzmann transport equation using anisotropically adaptive finite element meshes. ► The finite element mesh is resolved with minimal user input. ► Anisotropic adaptivity uses less elements than adaptive mesh refinement for the same finite element error. ► This paper also demonstrates the use of separate meshes for each energy group within the multigroup discretisation. ► The methods are applied to a range of fixed source and eigenvalue problems. - Abstract: This article presents a new adaptive finite element based method for the solution of the spatial dimensions of the Boltzmann transport equation. The method applies a curvature based error metric to locate the under and over resolved regions of a solution and this, in turn, is used to guide the refinement and coarsening of the spatial mesh. The error metrics and re-meshing procedures are designed such that they enable anisotropic resolution to form in the mesh should it be appropriate to do so. The adaptive mesh enables the appropriate resolution to be applied throughout the whole domain of a problem and so increase the efficiency of the solution procedure. Another new approach is also described that allows independent adaptive meshes to form for each of the energy group fluxes. The use of independent meshes can significantly improve computational efficiency when solving problems where the different group fluxes require high resolution over different regions. The mesh to mesh interpolation is made possible through the use of a ‘supermeshing’ procedure that ensures the conservation of particles when calculating the group to group scattering sources. Finally it is shown how these methods can be incorporated within a solver to resolve both fixed source and eigenvalue problems. A selection of both fixed source and eigenvalue problems are solved in order to demonstrate the capabilities of these methods

  6. A fast iterative scheme for the linearized Boltzmann equation

    Science.gov (United States)

    Wu, Lei; Zhang, Jun; Liu, Haihu; Zhang, Yonghao; Reese, Jason M.

    2017-06-01

    Iterative schemes to find steady-state solutions to the Boltzmann equation are efficient for highly rarefied gas flows, but can be very slow to converge in the near-continuum flow regime. In this paper, a synthetic iterative scheme is developed to speed up the solution of the linearized Boltzmann equation by penalizing the collision operator L into the form L = (L + Nδh) - Nδh, where δ is the gas rarefaction parameter, h is the velocity distribution function, and N is a tuning parameter controlling the convergence rate. The velocity distribution function is first solved by the conventional iterative scheme, then it is corrected such that the macroscopic flow velocity is governed by a diffusion-type equation that is asymptotic-preserving into the Navier-Stokes limit. The efficiency of this new scheme is assessed by calculating the eigenvalue of the iteration, as well as solving for Poiseuille and thermal transpiration flows. We find that the fastest convergence of our synthetic scheme for the linearized Boltzmann equation is achieved when Nδ is close to the average collision frequency. The synthetic iterative scheme is significantly faster than the conventional iterative scheme in both the transition and the near-continuum gas flow regimes. Moreover, due to its asymptotic-preserving properties, the synthetic iterative scheme does not need high spatial resolution in the near-continuum flow regime, which makes it even faster than the conventional iterative scheme. Using this synthetic scheme, with the fast spectral approximation of the linearized Boltzmann collision operator, Poiseuille and thermal transpiration flows between two parallel plates, through channels of circular/rectangular cross sections and various porous media are calculated over the whole range of gas rarefaction. Finally, the flow of a Ne-Ar gas mixture is solved based on the linearized Boltzmann equation with the Lennard-Jones intermolecular potential for the first time, and the difference

  7. Comment on ''Boltzmann equation and the conservation of particle number''

    International Nuclear Information System (INIS)

    Zanette, D.

    1990-09-01

    In a recent paper (Z. Banggu, Phys. Rev. A 42, 761 (1990)) it is argued that some solutions of the Boltzmann equation do not satisfy particle conservation as a consequence of the independence of velocity on position. In this comment, the arguments and conclusions of that paper are discussed. In particular, it is stressed that the temporal series used for solving the kinetic equation are generally divergent. A discussion about the particle conservation in its solutions is also provided. (author). 4 refs

  8. Coupling Boltzmann and Navier-Stokes Equations by Friction

    OpenAIRE

    Bourgat, Jean-François; Le Tallec, Patrick; Tidriri, Moulay D.

    1995-01-01

    Projet MENUSIN; The aim of this paper is to introduce and validate a coupled Navier-Stokes Boltzmann approach for the calculation of hypersonic rarefied flows around manoeuvering vehicles. The proposed strategy uses locally a kinetic model in the boundary layer coupled through wall friction forces to a global Navier-Stokes solver. Different numerical experiments illustrate the potentialities of the method.

  9. Multilevel Methods for the Poisson-Boltzmann Equation

    Science.gov (United States)

    Holst, Michael Jay

    We consider the numerical solution of the Poisson -Boltzmann equation (PBE), a three-dimensional second order nonlinear elliptic partial differential equation arising in biophysics. This problem has several interesting features impacting numerical algorithms, including discontinuous coefficients representing material interfaces, rapid nonlinearities, and three spatial dimensions. Similar equations occur in various applications, including nuclear physics, semiconductor physics, population genetics, astrophysics, and combustion. In this thesis, we study the PBE, discretizations, and develop multilevel-based methods for approximating the solutions of these types of equations. We first outline the physical model and derive the PBE, which describes the electrostatic potential of a large complex biomolecule lying in a solvent. We next study the theoretical properties of the linearized and nonlinear PBE using standard function space methods; since this equation has not been previously studied theoretically, we provide existence and uniqueness proofs in both the linearized and nonlinear cases. We also analyze box-method discretizations of the PBE, establishing several properties of the discrete equations which are produced. In particular, we show that the discrete nonlinear problem is well-posed. We study and develop linear multilevel methods for interface problems, based on algebraic enforcement of Galerkin or variational conditions, and on coefficient averaging procedures. Using a stencil calculus, we show that in certain simplified cases the two approaches are equivalent, with different averaging procedures corresponding to different prolongation operators. We also develop methods for nonlinear problems based on a nonlinear multilevel method, and on linear multilevel methods combined with a globally convergent damped-inexact-Newton method. We derive a necessary and sufficient descent condition for the inexact-Newton direction, enabling the development of extremely

  10. Lattice Boltzmann method for the fractional advection-diffusion equation

    Science.gov (United States)

    Zhou, J. G.; Haygarth, P. M.; Withers, P. J. A.; Macleod, C. J. A.; Falloon, P. D.; Beven, K. J.; Ockenden, M. C.; Forber, K. J.; Hollaway, M. J.; Evans, R.; Collins, A. L.; Hiscock, K. M.; Wearing, C.; Kahana, R.; Villamizar Velez, M. L.

    2016-04-01

    Mass transport, such as movement of phosphorus in soils and solutes in rivers, is a natural phenomenon and its study plays an important role in science and engineering. It is found that there are numerous practical diffusion phenomena that do not obey the classical advection-diffusion equation (ADE). Such diffusion is called abnormal or superdiffusion, and it is well described using a fractional advection-diffusion equation (FADE). The FADE finds a wide range of applications in various areas with great potential for studying complex mass transport in real hydrological systems. However, solution to the FADE is difficult, and the existing numerical methods are complicated and inefficient. In this study, a fresh lattice Boltzmann method is developed for solving the fractional advection-diffusion equation (LabFADE). The FADE is transformed into an equation similar to an advection-diffusion equation and solved using the lattice Boltzmann method. The LabFADE has all the advantages of the conventional lattice Boltzmann method and avoids a complex solution procedure, unlike other existing numerical methods. The method has been validated through simulations of several benchmark tests: a point-source diffusion, a boundary-value problem of steady diffusion, and an initial-boundary-value problem of unsteady diffusion with the coexistence of source and sink terms. In addition, by including the effects of the skewness β , the fractional order α , and the single relaxation time τ , the accuracy and convergence of the method have been assessed. The numerical predictions are compared with the analytical solutions, and they indicate that the method is second-order accurate. The method presented will allow the FADE to be more widely applied to complex mass transport problems in science and engineering.

  11. An overview of the Boltzmann transport equation solution for neutrons, photons and electrons in cartesian geometry

    International Nuclear Information System (INIS)

    Rodriguez, Barbara D. do Amaral; Vilhena, Marco Tullio

    2009-01-01

    Questions regarding accuracy and efficiency of deterministic transport methods are still on our mind today, even with modern supercomputers. The most versatile and widely used deterministic methods are the P N approximation, the S N method (discrete ordinates method) and their variants. In the discrete ordinates (S N ) formulations of the transport equation, it is assumed that the linearized Boltzmann equation only holds for a set of distinct numerical values of the direction-of-motion variables. In this work, looking forward to confirm the capabilities of deterministic methods in obtaining accurate results, we present a general overview of deterministic methods to solve the Boltzmann transport equation for neutral and charged particles. First, we describe a review in the Laplace transform technique applied to S N two dimensional transport equation in a rectangular domain considering Compton scattering. Next, we solved the Fokker-Planck (FP) equation, an alternative approach for the Boltzmann transport equation, assuming a monoenergetic electron beam in a rectangular domain. The main idea relies on applying the P N approximation, a recent advance in the class of deterministic methods, in the angular variable, to the two dimensional Fokker-Planck equation and then applying the Laplace Transform in the spatial x-variable. Numerical results are given to illustrate the accuracy of deterministic methods presented. (author)

  12. Velocity-Field Theory, Boltzmann's Transport Equation and Geometry

    Science.gov (United States)

    Ichinose, Shoichi

    Boltzmann equation describes the time development of the velocity distribution in the continuum fluid matter. We formulate the equation using the field theory where the velocity-field plays the central role. The matter (constituent particles) fields appear as the density and the viscosity. Fluctuation is examined, and is clearly discriminated from the quantum effect. The time variable is emergently introduced through the computational process step. The collision term, for the (velocity)**4 potential (4-body interaction), is explicitly obtained and the (statistical) fluctuation is closely explained. The present field theory model does not conserve energy and is an open-system model. (One dimensional) Navier-Stokes equation or Burger's equation, appears. In the latter part, we present a way to directly define the distribution function by use of the geometry, appearing in the mechanical dynamics, and Feynman's path-integral.

  13. The Fluid Dynamical Limits of the Linearized Boltzmann Equation.

    Science.gov (United States)

    Campini, Marco

    The old question concerning the mathematical formulation of the fluid dynamic limits of kinetic theory is examined by studying the solution of the Cauchy problem for two differently scaled linearized Boltzmann equations on periodic domain as the mean free path of the particles becomes small. Under minimal assumptions on the initial data, by using an a priori estimate, it is possible, in a Hilbert space functional frame, to prove the weak convergence of solutions toward a function that has the form of an infinitesimal maxwellian in the velocity variable. The velocity moments of this function are then proved to satisfy either the linearized Euler or the Stokes system of equations (depending on the chosen scaling), by passing to the limit in the conservation relations derived from the Boltzmann equation. A theorem injecting continuously the intersection of certain weak spaces into a normed one is proved. Together with properties of the Euler semigroup, this allows to show strong convergence of the first three moments of the distribution function toward the macroscopic quantities density, bulk velocity and temperature, solutions of the linearized Euler system. The Stokes case is treated somewhat differently, through the introduction of a result, proved by using the adjoint formulation for linear kinetic equations, that extends the averaging theory of Golse-Lions-Perthame-Sentis. The desired convergence for the divergence-free component of the second moment toward the macroscopic velocity is then shown.

  14. Exact solutions to the Boltzmann equation by mapping the scattering integral into a differential operator

    Energy Technology Data Exchange (ETDEWEB)

    Zabadal, Jorge; Borges, Volnei; Van der Laan, Flavio T., E-mail: jorge.zabadal@ufrgs.br, E-mail: borges@ufrgs.br, E-mail: ftvdl@ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Departamento de Engenharia Mecanica. Grupo de Pesquisas Radiologicas; Ribeiro, Vinicius G., E-mail: vinicius_ribeiro@uniritter.edu.br [Centro Universitario Ritter dos Reis (UNIRITTER), Porto Alegre, RS (Brazil); Santos, Marcio G., E-mail: phd.marcio@gmail.com [Universidade Federal do Rio Grande do Sul (UFRGS), Tramandai, RS (Brazil). Departamento Interdisciplinar do Campus Litoral Norte

    2015-07-01

    This work presents a new analytical method for solving the Boltzmann equation. In this formulation, a linear differential operator is applied over the Boltzmann model, in order to produce a partial differential equation in which the scattering term is absent. This auxiliary equation is solved via reduction of order. The exact solution obtained is employed to define a precursor for the buildup factor. (author)

  15. Viscous flow computations with the lattice-Boltzmann equation method

    Science.gov (United States)

    Yu, Dazhi

    2002-09-01

    The lattice Boltzmann equation (LBE) method is a kinetics-based approach for fluid flow computations, and it is amenable to parallel computing. Compared to the well-established Navier-Stokes (NS) approaches, critical issues remain with the LBE method, noticeably flexible spatial resolution, boundary treatments, and dispersion and relaxation time mode. Those issues are addressed in this dissertation with improved practice presented. At the formulation level, both the single-relaxation-time (SRT) and multiple-relaxation-time (MRT) models are analyzed. The SRT model involves no artificial parameters, with a constant relaxation time regulating the physical value of fluid viscosity. The MRT model allows different relaxation time scales for different variables. Computational assessment shows that the MRT model has advantages over the SRT model in maintaining stability, reducing the oscillation, and improving the convergence rate in the computation. A multi-block method is developed for both the SRT and MRT model to facilitate flexible spatial resolutions according to the flow structures. The formulae for information exchange at the interface between coarse and fine grids are derived to ensure the mass and momentum conservation while maintaining the second-order accuracy. A customized time matching between coarse and fine grids is also presented to ensure smooth exchange information. Results show that the multi-block method can greatly increase the computational efficiency of the LBE method without losing the accuracy. Two methods of force evaluation in LBE are examined: one based on stress integration on the solid boundary and the other momentum exchange between fluid and solid. The momentum exchange method is found to be simpler to implement while the integration of stress requires evaluation of the detailed surface geometry and extrapolation of stress-related variables to the same surface. The momentum exchange method performs better overall. Improved treatments for

  16. Lorentz force correction to the Boltzmann radiation transport equation and its implications for Monte Carlo algorithms.

    Science.gov (United States)

    Bouchard, Hugo; Bielajew, Alex

    2015-07-07

    To establish a theoretical framework for generalizing Monte Carlo transport algorithms by adding external electromagnetic fields to the Boltzmann radiation transport equation in a rigorous and consistent fashion. Using first principles, the Boltzmann radiation transport equation is modified by adding a term describing the variation of the particle distribution due to the Lorentz force. The implications of this new equation are evaluated by investigating the validity of Fano's theorem. Additionally, Lewis' approach to multiple scattering theory in infinite homogeneous media is redefined to account for the presence of external electromagnetic fields. The equation is modified and yields a description consistent with the deterministic laws of motion as well as probabilistic methods of solution. The time-independent Boltzmann radiation transport equation is generalized to account for the electromagnetic forces in an additional operator similar to the interaction term. Fano's and Lewis' approaches are stated in this new equation. Fano's theorem is found not to apply in the presence of electromagnetic fields. Lewis' theory for electron multiple scattering and moments, accounting for the coupling between the Lorentz force and multiple elastic scattering, is found. However, further investigation is required to develop useful algorithms for Monte Carlo and deterministic transport methods. To test the accuracy of Monte Carlo transport algorithms in the presence of electromagnetic fields, the Fano cavity test, as currently defined, cannot be applied. Therefore, new tests must be designed for this specific application. A multiple scattering theory that accurately couples the Lorentz force with elastic scattering could improve Monte Carlo efficiency. The present study proposes a new theoretical framework to develop such algorithms.

  17. An efficient numerical method for solving the Boltzmann equation in multidimensions

    Science.gov (United States)

    Dimarco, Giacomo; Loubère, Raphaël; Narski, Jacek; Rey, Thomas

    2018-01-01

    In this paper we deal with the extension of the Fast Kinetic Scheme (FKS) (Dimarco and Loubère, 2013 [26]) originally constructed for solving the BGK equation, to the more challenging case of the Boltzmann equation. The scheme combines a robust and fast method for treating the transport part based on an innovative Lagrangian technique supplemented with conservative fast spectral schemes to treat the collisional operator by means of an operator splitting approach. This approach along with several implementation features related to the parallelization of the algorithm permits to construct an efficient simulation tool which is numerically tested against exact and reference solutions on classical problems arising in rarefied gas dynamic. We present results up to the 3 D × 3 D case for unsteady flows for the Variable Hard Sphere model which may serve as benchmark for future comparisons between different numerical methods for solving the multidimensional Boltzmann equation. For this reason, we also provide for each problem studied details on the computational cost and memory consumption as well as comparisons with the BGK model or the limit model of compressible Euler equations.

  18. On kinetic Boltzmann equations and related hydrodynamic flows with dry viscosity

    Directory of Open Access Journals (Sweden)

    Nikolai N. Bogoliubov (Jr.

    2007-01-01

    Full Text Available A two-component particle model of Boltzmann-Vlasov type kinetic equations in the form of special nonlinear integro-differential hydrodynamic systems on an infinite-dimensional functional manifold is discussed. We show that such systems are naturally connected with the nonlinear kinetic Boltzmann-Vlasov equations for some one-dimensional particle flows with pointwise interaction potential between particles. A new type of hydrodynamic two-component Benney equations is constructed and their Hamiltonian structure is analyzed.

  19. On the fluid-dynamical approximation to the Boltzmann equation at the level of the Navier-Stokes equation

    International Nuclear Information System (INIS)

    Kawashima, S.; Matsumara, A.; Nishida, T.

    1979-01-01

    The compressible and heat-conductive Navier-Stokes equation obtained as the second approximation of the formal Chapman-Enskog expansion is investigated on its relations to the original nonlinear Boltzmann equation and also to the incompressible Navier-Stokes equation. The solutions of the Boltzmann equation and the incompressible Navier-Stokes equation for small initial data are proved to be asymptotically equivalent (mod decay rate tsup(-5/4)) as t → + infinitely to that of the compressible Navier-Stokes equation for the corresponding initial data. (orig.) 891 HJ/orig. 892 MKO

  20. Boltzmann, Gibbs and Darwin-Fowler approaches in parastatistics

    International Nuclear Information System (INIS)

    Ponczek, R.L.; Yan, C.C.

    1976-01-01

    Derivations of the equilibrium values of occupation numbers are made using three approaches, namely, the Boltzmann 'elementary' one, the ensemble method of Gibbs, and that of Darwin and Fowler as well [pt

  1. An improved FMM Algorithm of the 3d-linearized Poisson-Boltzmann Equation

    Directory of Open Access Journals (Sweden)

    Mehrez issa

    2015-06-01

    Full Text Available This paper presents a new FMM algorithm for the linearized Poisson-Boltzmann equation in three dimensions. The performance of the proposed algorithm is assessed on a example in three dimensions and compared with the direct method. The numerical results show the power of the new method, that allow to achieve the best schemes to reduce the time of the particle interactions, which are based on diagonal form of translation operators for linearized Poisson-Boltzmann equation.

  2. A conservative spectral method for the Boltzmann equation with anisotropic scattering and the grazing collisions limit

    International Nuclear Information System (INIS)

    Gamba, Irene M.; Haack, Jeffrey R.

    2014-01-01

    We present the formulation of a conservative spectral method for the Boltzmann collision operator with anisotropic scattering cross-sections. The method is an extension of the conservative spectral method of Gamba and Tharkabhushanam [17,18], which uses the weak form of the collision operator to represent the collisional term as a weighted convolution in Fourier space. The method is tested by computing the collision operator with a suitably cut-off angular cross section and comparing the results with the solution of the Landau equation. We analytically study the convergence rate of the Fourier transformed Boltzmann collision operator in the grazing collisions limit to the Fourier transformed Landau collision operator under the assumption of some regularity and decay conditions of the solution to the Boltzmann equation. Our results show that the angular singularity which corresponds to the Rutherford scattering cross section is the critical singularity for which a grazing collision limit exists for the Boltzmann operator. Additionally, we numerically study the differences between homogeneous solutions of the Boltzmann equation with the Rutherford scattering cross section and an artificial cross section, which give convergence to solutions of the Landau equation at different asymptotic rates. We numerically show the rate of the approximation as well as the consequences for the rate of entropy decay for homogeneous solutions of the Boltzmann equation and Landau equation

  3. Quadratic inner element subgrid scale discretisation of the Boltzmann transport equation

    International Nuclear Information System (INIS)

    Baker, C.M.J.; Buchan, A.G.; Pain, C.C.; Tollit, B.; Eaton, M.D.; Warner, P.

    2012-01-01

    This paper explores the application of the inner element subgrid scale method to the Boltzmann transport equation using quadratic basis functions. Previously, only linear basis functions for both the coarse scale and the fine scale were considered. This paper, therefore, analyses the advantages of using different coarse and subgrid basis functions for increasing the accuracy of the subgrid scale method. The transport of neutral particle radiation may be described by the Boltzmann transport equation (BTE) which, due to its 7 dimensional phase space, is computationally expensive to resolve. Multi-scale methods offer an approach to efficiently resolve the spatial dimensions of the BTE by separating the solution into its coarse and fine scales and formulating a solution whereby only the computationally efficient coarse scales need to be solved. In previous work an inner element subgrid scale method was developed that applied a linear continuous and discontinuous finite element method to represent the solution’s coarse and fine scale components. This approach was shown to generate efficient and stable solutions, and so this article continues its development by formulating higher order quadratic finite element expansions over the continuous and discontinuous scales. Here it is shown that a solution’s convergence can be improved significantly using higher order basis functions. Furthermore, by using linear finite elements to represent coarse scales in combination with quadratic fine scales, convergence can also be improved with only a modest increase in computational expense.

  4. Nanoscale roughness effect on Maxwell-like boundary conditions for the Boltzmann equation

    Energy Technology Data Exchange (ETDEWEB)

    Brull, S., E-mail: Stephane.Brull@math.u-bordeaux.fr; Charrier, P., E-mail: Pierre.Charrier@math.u-bordeaux.fr; Mieussens, L., E-mail: Luc.Mieussens@math.u-bordeaux.fr [University of Bordeaux, CNRS, Bordeaux INP, IMB, UMR 5251, F-33400 Talence (France)

    2016-08-15

    It is well known that the roughness of the wall has an effect on microscale gas flows. This effect can be shown for large Knudsen numbers by using a numerical solution of the Boltzmann equation. However, when the wall is rough at a nanometric scale, it is necessary to use a very small mesh size which is much too expansive. An alternative approach is to incorporate the roughness effect in the scattering kernel of the boundary condition, such as the Maxwell-like kernel introduced by the authors in a previous paper. Here, we explain how this boundary condition can be implemented in a discrete velocity approximation of the Boltzmann equation. Moreover, the influence of the roughness is shown by computing the structure scattering pattern of mono-energetic beams of the incident gas molecules. The effect of the angle of incidence of these molecules, of their mass, and of the morphology of the wall is investigated and discussed in a simplified two-dimensional configuration. The effect of the azimuthal angle of the incident beams is shown for a three-dimensional configuration. Finally, the case of non-elastic scattering is considered. All these results suggest that our approach is a promising way to incorporate enough physics of gas-surface interaction, at a reasonable computing cost, to improve kinetic simulations of micro- and nano-flows.

  5. Fractional Boltzmann equation for multiple scattering of resonance radiation in low-temperature plasma

    Energy Technology Data Exchange (ETDEWEB)

    Uchaikin, V V; Sibatov, R T, E-mail: vuchaikin@gmail.com, E-mail: ren_sib@bk.ru [Ulyanovsk State University, 432000, 42 Leo Tolstoy str., Ulyanovsk (Russian Federation)

    2011-04-08

    The fractional Boltzmann equation for resonance radiation transport in plasma is proposed. We start with the standard Boltzmann equation; averaging over photon frequencies leads to the appearance of a fractional derivative. This fact is in accordance with the conception of latent variables leading to hereditary and non-local dynamics (in particular, fractional dynamics). The presence of a fractional material derivative in the equation is concordant with heavy tailed distribution of photon path lengths and with spatiotemporal coupling peculiar to the process. We discuss some methods of solving the obtained equation and demonstrate numerical results in some simple cases.

  6. Fractional Boltzmann equation for multiple scattering of resonance radiation in low-temperature plasma

    International Nuclear Information System (INIS)

    Uchaikin, V V; Sibatov, R T

    2011-01-01

    The fractional Boltzmann equation for resonance radiation transport in plasma is proposed. We start with the standard Boltzmann equation; averaging over photon frequencies leads to the appearance of a fractional derivative. This fact is in accordance with the conception of latent variables leading to hereditary and non-local dynamics (in particular, fractional dynamics). The presence of a fractional material derivative in the equation is concordant with heavy tailed distribution of photon path lengths and with spatiotemporal coupling peculiar to the process. We discuss some methods of solving the obtained equation and demonstrate numerical results in some simple cases.

  7. Lattice Boltzmann Approach to Resistive MHD

    Czech Academy of Sciences Publication Activity Database

    Macnab, A.; Vahala, G.; Vahala, L.; Pavlo, Pavol; Soe, M.

    2002-01-01

    Roč. 47, č. 9 (2002), s. 51 ISSN 0003-0503. [Annual Meeting of the Division of Plasma Physics of the American Physical Society/44th./. Orlando , Florida, 11.11.2001-15.11.2001] R&D Projects: GA ČR GA202/00/1216 Institutional research plan: CEZ:AV0Z2043910 Keywords : Lattice Boltzmann, magnetic fields Subject RIV: BL - Plasma and Gas Discharge Physics

  8. Self-consistent relativistic Boltzmann-Uehling-Uhlenbeck equation for the Δ distribution function

    International Nuclear Information System (INIS)

    Mao, G.; Li, Z.; Zhuo, Y.

    1996-01-01

    We derive the self-consistent relativistic Boltzmann-Uehling-Uhlenbeck (RBUU) equation for the delta distribution function within the framework which we have done for nucleon close-quote s. In our approach, the Δ isobars are treated in essentially the same way as nucleons. Both mean field and collision terms of Δ close-quote s RBUU equation are derived from the same effective Lagrangian and presented analytically. We calculate the in-medium NΔ elastic and inelastic scattering cross sections up to twice nuclear matter density and the results show that the in-medium cross sections deviate substantially from Cugnon close-quote s parametrization that is commonly used in the transport model. copyright 1996 The American Physical Society

  9. Properties of the collision operators of the electron Boltzmann equation for a weakly ionized plasma. 1

    International Nuclear Information System (INIS)

    Bartolomaeus, G.; Wilhelm, J.

    1982-01-01

    In the kinetic theory a great variety of physical systems is investigated by means of Boltzmann-like equations. This approach is used for neutral gases, neutron as well as radiation transport, plasmas etc. For many problems the knowledge of the properties of the collision operators is of great importance, especially if eigenvalue problems occur. The paper presents an investigation of the properties of the collision operators of the Boltzmann equation covering elastic, exciting and deexciting processes in a weakly ionized plasma. First, a short survey of the importance of eigenfunctions and eigenvalues in the kinetic theory of various systems is given. Then, properties of the outscattering operator as dependent on the course of the differential cross section are considered. Finally, for the inscattering operator such properties as selfadjointness and rotational invariance are investigated in detail. These considerations provide the basis for the proof of compactness and for first conclusions on the spectral properties of the collision operators in the second part of this paper. (author)

  10. Nonlinear moments method for the isotropic Boltzmann equation and the invariance of collision integral

    International Nuclear Information System (INIS)

    Ehnder, A.Ya.; Ehnder, I.A.

    1999-01-01

    A new approach to develop nonlinear moment method to solve the Boltzmann equation is presented. This approach is based on the invariance of collision integral as to the selection of the base functions. The Sonin polynomials with the Maxwell weighting function are selected to serve as the base functions. It is shown that for the arbitrary cross sections of the interaction the matrix elements corresponding to the moments from the nonlinear integral of collisions are bound by simple recurrent bonds enabling to express all nonlinear matrix elements in terms of the linear ones. As a result, high-efficiency numerical pattern to calculate nonlinear matrix elements is obtained. The presented approach offers possibilities both to calculate relaxation processes within high speed range and to some more complex kinetic problems [ru

  11. A maximum principle for the first-order Boltzmann equation, incorporating a potential treatment of voids

    International Nuclear Information System (INIS)

    Schofield, S.L.

    1988-01-01

    Ackroyd's generalized least-squares method for solving the first-order Boltzmann equation is adapted to incorporate a potential treatment of voids. The adaptation comprises a direct least-squares minimization allied with a suitably-defined bilinear functional. The resulting formulation gives rise to a maximum principle whose functional does not contain terms of the type that have previously led to difficulties in treating void regions. The maximum principle is derived without requiring continuity of the flux at interfaces. The functional of the maximum principle is concluded to have an Euler-Lagrange equation given directly by the first-order Boltzmann equation. (author)

  12. On the Boltzmann Equation with Stochastic Kinetic Transport: Global Existence of Renormalized Martingale Solutions

    Science.gov (United States)

    Punshon-Smith, Samuel; Smith, Scott

    2018-02-01

    This article studies the Cauchy problem for the Boltzmann equation with stochastic kinetic transport. Under a cut-off assumption on the collision kernel and a coloring hypothesis for the noise coefficients, we prove the global existence of renormalized (in the sense of DiPerna/Lions) martingale solutions to the Boltzmann equation for large initial data with finite mass, energy, and entropy. Our analysis includes a detailed study of weak martingale solutions to a class of linear stochastic kinetic equations. This study includes a criterion for renormalization, the weak closedness of the solution set, and tightness of velocity averages in {{L}1}.

  13. Solution of the Boltzmann-Fokker-Planck transport equation using exponential nodal schemes

    International Nuclear Information System (INIS)

    Ortega J, R.; Valle G, E. del

    2003-01-01

    There are carried out charge and energy calculations deposited due to the interaction of electrons with a plate of a certain material, solving numerically the electron transport equation for the Boltzmann-Fokker-Planck approach of first order in plate geometry with a computer program denominated TEOD-NodExp (Transport of Electrons in Discreet Ordinates, Nodal Exponentials), using the proposed method by the Dr. J. E. Morel to carry out the discretization of the variable energy and several spatial discretization schemes, denominated exponentials nodal. It is used the Fokker-Planck equation since it represents an approach of the Boltzmann transport equation that is been worth whenever it is predominant the dispersion of small angles, that is to say, resulting dispersion in small dispersion angles and small losses of energy in the transport of charged particles. Such electrons could be those that they face with a braking plate in a device of thermonuclear fusion. In the present work its are considered electrons of 1 MeV that impact isotropically on an aluminum plate. They were considered three different thickness of plate that its were designated as problems 1, 2 and 3. In the calculations it was used the discrete ordinate method S 4 with expansions of the dispersion cross sections until P 3 order. They were considered 25 energy groups of uniform size between the minimum energy of 0.1 MeV and the maximum of 1.0 MeV; the one spatial intervals number it was considered variable and it was assigned the values of 10, 20 and 30. (Author)

  14. A Combined MPI-CUDA Parallel Solution of Linear and Nonlinear Poisson-Boltzmann Equation

    Directory of Open Access Journals (Sweden)

    José Colmenares

    2014-01-01

    Full Text Available The Poisson-Boltzmann equation models the electrostatic potential generated by fixed charges on a polarizable solute immersed in an ionic solution. This approach is often used in computational structural biology to estimate the electrostatic energetic component of the assembly of molecular biological systems. In the last decades, the amount of data concerning proteins and other biological macromolecules has remarkably increased. To fruitfully exploit these data, a huge computational power is needed as well as software tools capable of exploiting it. It is therefore necessary to move towards high performance computing and to develop proper parallel implementations of already existing and of novel algorithms. Nowadays, workstations can provide an amazing computational power: up to 10 TFLOPS on a single machine equipped with multiple CPUs and accelerators such as Intel Xeon Phi or GPU devices. The actual obstacle to the full exploitation of modern heterogeneous resources is efficient parallel coding and porting of software on such architectures. In this paper, we propose the implementation of a full Poisson-Boltzmann solver based on a finite-difference scheme using different and combined parallel schemes and in particular a mixed MPI-CUDA implementation. Results show great speedups when using the two schemes, achieving an 18.9x speedup using three GPUs.

  15. An integrated Boltzmann+hydrodynamics approach to heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Hannah

    2009-04-22

    In this thesis the first fully integrated Boltzmann+hydrodynamics approach to relativistic heavy ion reactions has been developed. After a short introduction that motivates the study of heavy ion reactions as the tool to get insights about the QCD phase diagram, the most important theoretical approaches to describe the system are reviewed. The hadron-string transport approach that this work is based on is the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) approach. Predictions for the charged particle multiplicities at LHC energies are made. The next step is the development of a new framework to calculate the baryon number density in a transport approach. Time evolutions of the net baryon number and the quark density have been calculated at AGS, SPS and RHIC energies. Studies of phase diagram trajectories using hydrodynamics are performed. The hybrid approach that has been developed as the main part of this thesis is based on the UrQMD transport approach with an intermediate hydrodynamical evolution for the hot and dense stage of the collision. The full (3+1) dimensional ideal relativistic one fluid dynamics evolution is solved using the SHASTA algorithm. Three different equations of state have been used, namely a hadron gas equation of state without a QGP phase transition, a chiral EoS and a bag model EoS including a strong first order phase transition. For the freeze-out transition from hydrodynamics to the cascade calculation two different set-ups are employed. The parameter dependences of the model are investigated and the time evolution of different quantities is explored. The hybrid model calculation is able to reproduce the experimentally measured integrated as well as transverse momentum dependent v{sub 2} values for charged particles. The multiplicity and mean transverse mass excitation function is calculated for pions, protons and kaons in the energy range from E{sub lab}=2-160 A GeV. The HBT correlation of the negatively charged pion source

  16. The exact solution to the one-dimensional Poisson–Boltzmann equation with asymmetric boundary conditions

    DEFF Research Database (Denmark)

    Johannessen, Kim

    2014-01-01

    The exact solution to the one-dimensional Poisson–Boltzmann equation with asymmetric boundary conditions can be expressed in terms of the Jacobi elliptic functions. The boundary conditions determine the modulus of the Jacobi elliptic functions. The boundary conditions can not be solved analytically...

  17. Inelastic Quantum Transport in Superlattices: Success and Failure of the Boltzmann Equation

    DEFF Research Database (Denmark)

    Wacker, Andreas; Jauho, Antti-Pekka; Rott, Stephan

    1999-01-01

    the whole held range from linear response to negative differential conductivity. The quantum results are compared with the respective results obtained from a Monte Carlo solution of the Boltzmann equation. Our analysis thus sets the limits of validity for the semiclassical theory in a nonlinear transport...

  18. Application of Boltzmann equation to electron transmission and seconary electron emission

    International Nuclear Information System (INIS)

    Lanteri, H.; Bindi, R.; Rostaing, P.

    1979-01-01

    A method is presented for numerical treatment of integro-differential equation, based upon finite difference techniques. This method allows to formulate in a satisfactory manner the Boltzmann's equation applied to backscattering, transmission and secondary emission of metallic targets, avoiding must of the restrictive hypothesis, used until now in these models. For aluminium, the calculated energy spectra, angular distribution, transmission and backscattering coefficients, and secondary emission yield, are found to be in good agreement with experiment [fr

  19. Stable lattice Boltzmann model for Maxwell equations in media

    Science.gov (United States)

    Hauser, A.; Verhey, J. L.

    2017-12-01

    The present work shows a method for stable simulations via the lattice Boltzmann (LB) model for electromagnetic waves (EM) transiting homogeneous media. LB models for such media were already presented in the literature, but they suffer from numerical instability when the media transitions are sharp. We use one of these models in the limit of pure vacuum derived from Liu and Yan [Appl. Math. Model. 38, 1710 (2014), 10.1016/j.apm.2013.09.009] and apply an extension that treats the effects of polarization and magnetization separately. We show simulations of simple examples in which EM waves travel into media to quantify error scaling, stability, accuracy, and time scaling. For conductive media, we use the Strang splitting and check the simulations accuracy at the example of the skin effect. Like pure EM propagation, the error for the static limits, which are constructed with a current density added in a first-order scheme, can be less than 1 % . The presented method is an easily implemented alternative for the stabilization of simulation for EM waves propagating in spatially complex structured media properties and arbitrary transitions.

  20. Parallel computing solution of Boltzmann neutron transport equation

    International Nuclear Information System (INIS)

    Ansah-Narh, T.

    2010-01-01

    The focus of the research was on developing parallel computing algorithm for solving Eigen-values of the Boltzmam Neutron Transport Equation (BNTE) in a slab geometry using multi-grid approach. In response to the problem of slow execution of serial computing when solving large problems, such as BNTE, the study was focused on the design of parallel computing systems which was an evolution of serial computing that used multiple processing elements simultaneously to solve complex physical and mathematical problems. Finite element method (FEM) was used for the spatial discretization scheme, while angular discretization was accomplished by expanding the angular dependence in terms of Legendre polynomials. The eigenvalues representing the multiplication factors in the BNTE were determined by the power method. MATLAB Compiler Version 4.1 (R2009a) was used to compile the MATLAB codes of BNTE. The implemented parallel algorithms were enabled with matlabpool, a Parallel Computing Toolbox function. The option UseParallel was set to 'always' and the default value of the option was 'never'. When those conditions held, the solvers computed estimated gradients in parallel. The parallel computing system was used to handle all the bottlenecks in the matrix generated from the finite element scheme and each domain of the power method generated. The parallel algorithm was implemented on a Symmetric Multi Processor (SMP) cluster machine, which had Intel 32 bit quad-core x 86 processors. Convergence rates and timings for the algorithm on the SMP cluster machine were obtained. Numerical experiments indicated the designed parallel algorithm could reach perfect speedup and had good stability and scalability. (au)

  1. Solution of the Boltzmann-Fokker-Planck transport equation using exponential nodal schemes; Solucion de la ecuacion de transporte de Boltzmann-Fokker-Planck usando esquemas nodales exponenciales

    Energy Technology Data Exchange (ETDEWEB)

    Ortega J, R.; Valle G, E. del [IPN-ESFM, 07738 Mexico D.F. (Mexico)]. e-mail: roj@correo.azc.uam.mx

    2003-07-01

    There are carried out charge and energy calculations deposited due to the interaction of electrons with a plate of a certain material, solving numerically the electron transport equation for the Boltzmann-Fokker-Planck approach of first order in plate geometry with a computer program denominated TEOD-NodExp (Transport of Electrons in Discreet Ordinates, Nodal Exponentials), using the proposed method by the Dr. J. E. Morel to carry out the discretization of the variable energy and several spatial discretization schemes, denominated exponentials nodal. It is used the Fokker-Planck equation since it represents an approach of the Boltzmann transport equation that is been worth whenever it is predominant the dispersion of small angles, that is to say, resulting dispersion in small dispersion angles and small losses of energy in the transport of charged particles. Such electrons could be those that they face with a braking plate in a device of thermonuclear fusion. In the present work its are considered electrons of 1 MeV that impact isotropically on an aluminum plate. They were considered three different thickness of plate that its were designated as problems 1, 2 and 3. In the calculations it was used the discrete ordinate method S{sub 4} with expansions of the dispersion cross sections until P{sub 3} order. They were considered 25 energy groups of uniform size between the minimum energy of 0.1 MeV and the maximum of 1.0 MeV; the one spatial intervals number it was considered variable and it was assigned the values of 10, 20 and 30. (Author)

  2. Numerical Treatment of the Boltzmann Equation for Self-Propelled Particle Systems

    Directory of Open Access Journals (Sweden)

    Florian Thüroff

    2014-11-01

    Full Text Available Kinetic theories constitute one of the most promising tools to decipher the characteristic spatiotemporal dynamics in systems of actively propelled particles. In this context, the Boltzmann equation plays a pivotal role, since it provides a natural translation between a particle-level description of the system’s dynamics and the corresponding hydrodynamic fields. Yet, the intricate mathematical structure of the Boltzmann equation substantially limits the progress toward a full understanding of this equation by solely analytical means. Here, we propose a general framework to numerically solve the Boltzmann equation for self-propelled particle systems in two spatial dimensions and with arbitrary boundary conditions. We discuss potential applications of this numerical framework to active matter systems and use the algorithm to give a detailed analysis to a model system of self-propelled particles with polar interactions. In accordance with previous studies, we find that spatially homogeneous isotropic and broken-symmetry states populate two distinct regions in parameter space, which are separated by a narrow region of spatially inhomogeneous, density-segregated moving patterns. We find clear evidence that these three regions in parameter space are connected by first-order phase transitions and that the transition between the spatially homogeneous isotropic and polar ordered phases bears striking similarities to liquid-gas phase transitions in equilibrium systems. Within the density-segregated parameter regime, we find a novel stable limit-cycle solution of the Boltzmann equation, which consists of parallel lanes of polar clusters moving in opposite directions, so as to render the overall symmetry of the system’s ordered state nematic, despite purely polar interactions on the level of single particles.

  3. Multi-term approximation to the Boltzmann transport equation for electron energy distribution functions in nitrogen

    Science.gov (United States)

    Feng, Yue

    Plasma is currently a hot topic and it has many significant applications due to its composition of both positively and negatively charged particles. The energy distribution function is important in plasma science since it characterizes the ability of the plasma to affect chemical reactions, affect physical outcomes, and drive various applications. The Boltzmann Transport Equation is an important kinetic equation that provides an accurate basis for characterizing the distribution function---both in energy and space. This dissertation research proposes a multi-term approximation to solve the Boltzmann Transport Equation by treating the relaxation process using an expansion of the electron distribution function in Legendre polynomials. The elastic and 29 inelastic cross sections for electron collisions with nitrogen molecules (N2) and singly ionized nitrogen molecules ( N+2 ) have been used in this application of the Boltzmann Transport Equation. Different numerical methods have been considered to compare the results. The numerical methods discussed in this thesis are the implicit time-independent method, the time-dependent Euler method, the time-dependent Runge-Kutta method, and finally the implicit time-dependent relaxation method by generating the 4-way grid with a matrix solver. The results show that the implicit time-dependent relaxation method is the most accurate and stable method for obtaining reliable results. The results were observed to match with the published experimental data rather well.

  4. ADAPTIVE FINITE ELEMENT MODELING TECHNIQUES FOR THE POISSON-BOLTZMANN EQUATION

    Science.gov (United States)

    HOLST, MICHAEL; MCCAMMON, JAMES ANDREW; YU, ZEYUN; ZHOU, YOUNGCHENG; ZHU, YUNRONG

    2011-01-01

    We consider the design of an effective and reliable adaptive finite element method (AFEM) for the nonlinear Poisson-Boltzmann equation (PBE). We first examine the two-term regularization technique for the continuous problem recently proposed by Chen, Holst, and Xu based on the removal of the singular electrostatic potential inside biomolecules; this technique made possible the development of the first complete solution and approximation theory for the Poisson-Boltzmann equation, the first provably convergent discretization, and also allowed for the development of a provably convergent AFEM. However, in practical implementation, this two-term regularization exhibits numerical instability. Therefore, we examine a variation of this regularization technique which can be shown to be less susceptible to such instability. We establish a priori estimates and other basic results for the continuous regularized problem, as well as for Galerkin finite element approximations. We show that the new approach produces regularized continuous and discrete problems with the same mathematical advantages of the original regularization. We then design an AFEM scheme for the new regularized problem, and show that the resulting AFEM scheme is accurate and reliable, by proving a contraction result for the error. This result, which is one of the first results of this type for nonlinear elliptic problems, is based on using continuous and discrete a priori L∞ estimates to establish quasi-orthogonality. To provide a high-quality geometric model as input to the AFEM algorithm, we also describe a class of feature-preserving adaptive mesh generation algorithms designed specifically for constructing meshes of biomolecular structures, based on the intrinsic local structure tensor of the molecular surface. All of the algorithms described in the article are implemented in the Finite Element Toolkit (FETK), developed and maintained at UCSD. The stability advantages of the new regularization scheme

  5. From Conformal Invariance towards Dynamical Symmetries of the Collisionless Boltzmann Equation

    Directory of Open Access Journals (Sweden)

    Stoimen Stoimenov

    2015-09-01

    Full Text Available Dynamical symmetries of the collisionless Boltzmann transport equation, or Vlasov equation, but under the influence of an external driving force, are derived from non-standard representations of the 2D conformal algebra. In the case without external forces, the symmetry of the conformally-invariant transport equation is first generalized by considering the particle momentum as an independent variable. This new conformal representation can be further extended to include an external force. The construction and possible physical applications are outlined.

  6. Application of Littlewood-Paley decomposition to the regularity of Boltzmann type kinetic equations; Application de la decomposition de Littlewood-Paley a la regularite pour des equations cinetiques de type Boltzmann

    Energy Technology Data Exchange (ETDEWEB)

    EL Safadi, M

    2007-03-15

    We study the regularity of kinetic equations of Boltzmann type.We use essentially Littlewood-Paley method from harmonic analysis, consisting mainly in working with dyadics annulus. We shall mainly concern with the homogeneous case, where the solution f(t,x,v) depends only on the time t and on the velocities v, while working with realistic and singular cross-sections (non cutoff). In the first part, we study the particular case of Maxwellian molecules. Under this hypothesis, the structure of the Boltzmann operator and his Fourier transform write in a simple form. We show a global C{sup {infinity}} regularity. Then, we deal with the case of general cross-sections with 'hard potential'. We are interested in the Landau equation which is limit equation to the Boltzmann equation, taking in account grazing collisions. We prove that any weak solution belongs to Schwartz space S. We demonstrate also a similar regularity for the case of Boltzmann equation. Let us note that our method applies directly for all dimensions, and proofs are often simpler compared to other previous ones. Finally, we finish with Boltzmann-Dirac equation. In particular, we adapt the result of regularity obtained in Alexandre, Desvillettes, Wennberg and Villani work, using the dissipation rate connected with Boltzmann-Dirac equation. (author)

  7. A new lattice Boltzmann equation to simulate density-driven convection of carbon dioxide

    KAUST Repository

    Allen, Rebecca

    2013-01-01

    The storage of CO2 in fluid-filled geological formations has been carried out for more than a decade in locations around the world. After CO2 has been injected into the aquifer and has moved laterally under the aquifer\\'s cap-rock, density-driven convection becomes an important transport process to model. However, the challenge lies in simulating this transport process accurately with high spatial resolution and low CPU cost. This issue can be addressed by using the lattice Boltzmann equation (LBE) to formulate a model for a similar scenario when a solute diffuses into a fluid and density differences lead to convective mixing. The LBE is a promising alternative to the traditional methods of computational fluid dynamics. Rather than discretizing the system of partial differential equations of classical continuum mechanics directly, the LBE is derived from a velocity-space truncation of the Boltzmann equation of classical kinetic theory. We propose an extension to the LBE, which can accurately predict the transport of dissolved CO2 in water, as a step towards fluid-filled porous media simulations. This is achieved by coupling two LBEs, one for the fluid flow and one for the convection and diffusion of CO2. Unlike existing lattice Boltzmann equations for porous media flow, our model is derived from a system of moment equations and a Crank-Nicolson discretization of the velocity-truncated Boltzmann equation. The forcing terms are updated locally without the need for additional central difference approximation. Therefore our model preserves all the computational advantages of the single-phase lattice Boltzmann equation and is formally second-order accurate in both space and time. Our new model also features a novel implementation of boundary conditions, which is simple to implement and does not suffer from the grid-dependent error that is present in the standard "bounce-back" condition. The significance of using the LBE in this work lies in the ability to efficiently

  8. Lattice Boltzmann equation calculation of internal, pressure-driven turbulent flow

    International Nuclear Information System (INIS)

    Hammond, L A; Halliday, I; Care, C M; Stevens, A

    2002-01-01

    We describe a mixing-length extension of the lattice Boltzmann approach to the simulation of an incompressible liquid in turbulent flow. The method uses a simple, adaptable, closure algorithm to bound the lattice Boltzmann fluid incorporating a law-of-the-wall. The test application, of an internal, pressure-driven and smooth duct flow, recovers correct velocity profiles for Reynolds number to 1.25 x 10 5 . In addition, the Reynolds number dependence of the friction factor in the smooth-wall branch of the Moody chart is correctly recovered. The method promises a straightforward extension to other curves of the Moody chart and to cylindrical pipe flow

  9. The Approach to Equilibrium: Detailed Balance and the Master Equation

    Science.gov (United States)

    Alexander, Millard H.; Hall, Gregory E.; Dagdigian, Paul J.

    2011-01-01

    The approach to the equilibrium (Boltzmann) distribution of populations of internal states of a molecule is governed by inelastic collisions in the gas phase and with surfaces. The set of differential equations governing the time evolution of the internal state populations is commonly called the master equation. An analytic solution to the master…

  10. Coupling Boltzmann and Navier-Stokes equations by friction

    Energy Technology Data Exchange (ETDEWEB)

    Bourgat, J.F. [INRIA, Le Chesnay (France); Le Tallec, P. [Universite Paris, Dauphine (France)]|[INRIA, Le Chesnay (France); Tidriri, M.D. [ICASE, Hampton, VA (United States)

    1996-09-01

    The aim of this paper is to introduce and validate a coupled Navier-Stokes Boltzman approach for the calculation of hypersonic rarefied flows around maneuvering vehicles. The proposed strategy uses locally a kinetic model in the boundary layer coupled through wall friction forces to a global Navier-Stokes solver. Different numerical experiments illustrate the potentialities of the method. 29 refs., 24 figs.

  11. pK(A) in proteins solving the Poisson-Boltzmann equation with finite elements.

    Science.gov (United States)

    Sakalli, Ilkay; Knapp, Ernst-Walter

    2015-11-05

    Knowledge on pK(A) values is an eminent factor to understand the function of proteins in living systems. We present a novel approach demonstrating that the finite element (FE) method of solving the linearized Poisson-Boltzmann equation (lPBE) can successfully be used to compute pK(A) values in proteins with high accuracy as a possible replacement to finite difference (FD) method. For this purpose, we implemented the software molecular Finite Element Solver (mFES) in the framework of the Karlsberg+ program to compute pK(A) values. This work focuses on a comparison between pK(A) computations obtained with the well-established FD method and with the new developed FE method mFES, solving the lPBE using protein crystal structures without conformational changes. Accurate and coarse model systems are set up with mFES using a similar number of unknowns compared with the FD method. Our FE method delivers results for computations of pK(A) values and interaction energies of titratable groups, which are comparable in accuracy. We introduce different thermodynamic cycles to evaluate pK(A) values and we show for the FE method how different parameters influence the accuracy of computed pK(A) values. © 2015 Wiley Periodicals, Inc.

  12. From Newton's Law to the Linear Boltzmann Equation Without Cut-Off

    Science.gov (United States)

    Ayi, Nathalie

    2017-03-01

    We provide a rigorous derivation of the linear Boltzmann equation without cut-off starting from a system of particles interacting via a potential with infinite range as the number of particles N goes to infinity under the Boltzmann-Grad scaling. More particularly, we will describe the motion of a tagged particle in a gas close to global equilibrium. The main difficulty in our context is that, due to the infinite range of the potential, a non-integrable singularity appears in the angular collision kernel, making no longer valid the single-use of Lanford's strategy. Our proof relies then on a combination of Lanford's strategy, of tools developed recently by Bodineau, Gallagher and Saint-Raymond to study the collision process, and of new duality arguments to study the additional terms associated with the long-range interaction, leading to some explicit weak estimates.

  13. A multi scale approximation solution for the time dependent Boltzmann-transport equation

    International Nuclear Information System (INIS)

    Merk, B.

    2004-03-01

    The basis of all transient simulations for nuclear reactor cores is the reliable calculation of the power production. The local power distribution is generally calculated by solving the space, time, energy and angle dependent neutron transport equation known as Boltzmann equation. The computation of exact solutions of the Boltzmann equation is very time consuming. For practical numerical simulations approximated solutions are usually unavoidable. The objective of this work is development of an effective multi scale approximation solution for the Boltzmann equation. Most of the existing methods are based on separation of space and time. The new suggested method is performed without space-time separation. This effective approximation solution is developed on the basis of an expansion for the time derivative of different approximations to the Boltzmann equation. The method of multiple scale expansion is used for the expansion of the time derivative, because the problem of the stiff time behaviour can't be expressed by standard expansion methods. This multiple scale expansion is used in this work to develop approximation solutions for different approximations of the Boltzmann equation, starting from the expansion of the point kinetics equations. The resulting analytic functions are used for testing the applicability and accuracy of the multiple scale expansion method for an approximation solution with 2 delayed neutron groups. The results are tested versus the exact analytical results for the point kinetics equations. Very good agreement between both solutions is obtained. The validity of the solution with 2 delayed neutron groups to approximate the behaviour of the system with 6 delayed neutron groups is demonstrated in an additional analysis. A strategy for a solution with 4 delayed neutron groups is described. A multiple scale expansion is performed for the space-time dependent diffusion equation for one homogenized cell with 2 delayed neutron groups. The result is

  14. Simulation of 2D rarefied gas flows based on the numerical solution of the Boltzmann equation

    Science.gov (United States)

    Poleshkin, Sergey O.; Malkov, Ewgenij A.; Kudryavtsev, Alexey N.; Shershnev, Anton A.; Bondar, Yevgeniy A.; Kohanchik, A. A.

    2017-10-01

    There are various methods for calculating rarefied gas flows, in particular, statistical methods and deterministic methods based on the finite-difference solutions of the Boltzmann nonlinear kinetic equation and on the solutions of model kinetic equations. There is no universal method; each has its disadvantages in terms of efficiency or accuracy. The choice of the method depends on the problem to be solved and on parameters of calculated flows. Qualitative theoretical arguments help to determine the range of parameters of effectively solved problems for each method; however, it is advisable to perform comparative tests of calculations of the classical problems performed by different methods and with different parameters to have quantitative confirmation of this reasoning. The paper provides the results of the calculations performed by the authors with the help of the Direct Simulation Monte Carlo method and finite-difference methods of solving the Boltzmann equation and model kinetic equations. Based on this comparison, conclusions are made on selecting a particular method for flow simulations in various ranges of flow parameters.

  15. Bianchi type-I magnetized cosmological models for the Einstein-Boltzmann equation with the cosmological constant

    Energy Technology Data Exchange (ETDEWEB)

    Ayissi, Raoul Domingo, E-mail: raoulayissi@yahoo.fr; Noutchegueme, Norbert, E-mail: nnoutch@yahoo.fr [Department of Mathematics, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde (Cameroon)

    2015-01-15

    Global solutions regular for the Einstein-Boltzmann equation on a magnetized Bianchi type-I cosmological model with the cosmological constant are investigated. We suppose that the metric is locally rotationally symmetric. The Einstein-Boltzmann equation has been already considered by some authors. But, in general Bancel and Choquet-Bruhat [Ann. Henri Poincaré XVIII(3), 263 (1973); Commun. Math. Phys. 33, 83 (1973)], they proved only the local existence, and in the case of the nonrelativistic Boltzmann equation. Mucha [Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case. Evolution equation, existence, regularity and singularities (Banach Center Publications, Institute of Mathematics, Polish Academy of Science, 2000), Vol. 52] obtained a global existence result, for the relativistic Boltzmann equation coupled with the Einstein equations and using the Yosida operator, but confusing unfortunately with the nonrelativistic case. Noutchegueme and Dongho [Classical Quantum Gravity 23, 2979 (2006)] and Noutchegueme, Dongho, and Takou [Gen. Relativ. Gravitation 37, 2047 (2005)], have obtained a global solution in time, but still using the Yosida operator and considering only the uncharged case. Noutchegueme and Ayissi [Adv. Stud. Theor. Phys. 4, 855 (2010)] also proved a global existence of solutions to the Maxwell-Boltzmann system using the characteristic method. In this paper, we obtain using a method totally different from those used in the works of Noutchegueme and Dongho [Classical Quantum Gravity 23, 2979 (2006)], Noutchegueme, Dongho, and Takou [Gen. Relativ. Gravitation 37, 2047 (2005)], Noutchegueme and Ayissi [Adv. Stud. Theor. Phys. 4, 855 (2010)], and Mucha [Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case. Evolution equation, existence, regularity and singularities (Banach Center Publications, Institute of Mathematics, Polish Academy of Science, 2000), Vol. 52] the

  16. Fermion propagator in an out of equilibrium quantum-field system and the Boltzmann equation

    International Nuclear Information System (INIS)

    Niegawa, A.

    2002-01-01

    We aim to construct from first principles a perturbative framework for studying nonequilibrium quantum-field systems that include massless Dirac fermions. The system of our concern is a quasiuniform system near equilibrium or a nonequilibrium quasistationary system. We employ the closed-time-path formalism and use the so-called gradient approximation. Essentially no further approximation is introduced. We construct a fermion propagator, with which a well-defined perturbative framework is formulated. In the course of the construction of the framework, we obtain the generalized Boltzmann equation that describes the evolution of the number-density functions of (anti)fermionic quasiparticles

  17. The linearized Boltzmann equation: a concise and accurate solution of the temperature-jump problem

    CERN Document Server

    Siewert, C E

    2003-01-01

    Polynomial expansion procedures, along with an analytical discrete-ordinates method, are used to solve the temperature-jump problem based on a rigorous version of the linearized Boltzmann equation for rigid-sphere interactions. In particular, the temperature and density perturbations and the temperature-jump coefficient are obtained (essentially) analytically in terms of a modern version of the discrete-ordinates method. The developed algorithms are implemented for general values of the accommodation coefficient to yield numerical results that can be considered a new standard of reference.

  18. Unified implicit kinetic scheme for steady multiscale heat transfer based on the phonon Boltzmann transport equation

    Science.gov (United States)

    Zhang, Chuang; Guo, Zhaoli; Chen, Songze

    2017-12-01

    An implicit kinetic scheme is proposed to solve the stationary phonon Boltzmann transport equation (BTE) for multiscale heat transfer problem. Compared to the conventional discrete ordinate method, the present method employs a macroscopic equation to accelerate the convergence in the diffusive regime. The macroscopic equation can be taken as a moment equation for phonon BTE. The heat flux in the macroscopic equation is evaluated from the nonequilibrium distribution function in the BTE, while the equilibrium state in BTE is determined by the macroscopic equation. These two processes exchange information from different scales, such that the method is applicable to the problems with a wide range of Knudsen numbers. Implicit discretization is implemented to solve both the macroscopic equation and the BTE. In addition, a memory reduction technique, which is originally developed for the stationary kinetic equation, is also extended to phonon BTE. Numerical comparisons show that the present scheme can predict reasonable results both in ballistic and diffusive regimes with high efficiency, while the memory requirement is on the same order as solving the Fourier law of heat conduction. The excellent agreement with benchmark and the rapid converging history prove that the proposed macro-micro coupling is a feasible solution to multiscale heat transfer problems.

  19. Boltzmann equation for a mixture of gases with non-conservative processes

    International Nuclear Information System (INIS)

    Martiarena, M.L.

    1989-01-01

    The nonlinear and non-isotropic Boltzmann equation (NLBE) including several molecular species, non-conservative channels and external forces. The general solution of that equation is obtained for a spatially homogeneous mixture of L gases, consisting of Maxwell particles, as a Generalized Laguerre expansion, within a Hilbert space. Removal and self-generation effects are included in presence of a time-dependent external force. An exact particular solution is studied generalizing the well-known BKW-mode for a mixture of L gases with inelastic processes. An homogeneous gas of test particles, in d dimension, is considered which interacts with a background host medium in the presence of an external space and time dependent force. Scattering, removal and self-generation collisions are included. The inhomogeneous Boltzmann equation for this system to an homogeneous one is reduced without background or external forces, using a generalized Nilkoskii transform. It is shown that a background of field particles can confine the test gas, even in absence of external forces. Furthermore, the solution of NLBE with non-isotropic singular initial conditions, is analyzed. The NLBE is transformed into an integral equation which is solved iteratively. The evolution of delta and step singularities in the distribution function is discussed during the initial layer and compared with the isotropic case. As an application of the methods abovementioned, the collision of a beam of ions or neutral atoms with a carbon-foil is considered. The electron experimental spectra from a transport equation is described. It is supposed that convoy electron may be produced inside the solid by single ion-atom collisions as ELC or ECC. The produced electrons lost energy by collision with the atoms of the material, which are considered at rest. The electron distribution function is numerically calculated. The ratio between the intrinsic convoy electron peak height to the background electron intensity

  20. Lid-driven cavity flow using a discrete velocity method for solving the Boltzmann equation

    Science.gov (United States)

    Sekaran, Aarthi; Varghese, Philip; Estes, Samuel; Goldstein, David

    2016-11-01

    We extend the discrete velocity method for solving the Boltzmann equation previously used for one-dimensional problems to two spatial dimensions. The collision integral is computed using collisions between velocity classes selected randomly using a Monte Carlo method. Arbitrary post-collision velocities are mapped back onto the grid using a projection scheme which conserves mass, momentum, and energy. In addition, a variance reduction scheme is implemented to decrease noise and further reduce computational effort. The convection part of the equation is computed using first order upwind finite differences. We apply this discrete velocity scheme to the 2D lid-driven square cavity flow problem with Ar as the fluid medium and explore the effect of the additional flexibility available in this quasi-particle based stochastic method on the accuracy and noise level in the solutions obtained.

  1. Cole-Hopf Transformation Based Lattice Boltzmann Model for One-dimensional Burgers’ Equation

    Science.gov (United States)

    Qi, Xiao-Tong; Shi, Bao-Chang; Chai, Zhen-Hua

    2018-03-01

    In this paper, we present a Cole-Hopf transformation based lattice Boltzmann (LB) model for solving one-dimensional Burgers’ equation, and compared to available LB models, the effect of nonlinear convection term can be eliminated. Through Chapman-Enskog analysis, it can be found that the converted diffusion equation based on the Cole-Hopf transformation can be recovered correctly from present LB model. Some numerical tests are also performed to validate the present LB model, and the numerical results show that, similar to previous LB models, the present model also has a second-order convergence rate in space, but it is more accurate than the previous ones. Supported by the National Natural Science Foundation of China under Grant No. 51576079

  2. Spherical harmonics and energy polynomial solution of the Boltzmann equation for neutrons, 1

    International Nuclear Information System (INIS)

    Toledo, P.S. de

    1974-01-01

    The approximate solution of the source-free energy-dependent Boltzmann transport equation for neutrons in plane geometry and isotropic scattering case was given by Leonard and Ferziger using a truncated development in a series of energy-polynomials for the energy dependent neutron flux and solving exactly for the angular dependence. The presence in the general solution of eigenfunctions belonging to a continuous spectrum gives rise to difficult analytical problems in the application of their method even to simple problems. To avoid such difficulties, the angular dependence is treated by a spherical harmonics method and a general solution of the energy-dependent transport equation in plane geometry and isotropic scattering is obtained, in spite of the appearance of matrices as argument of the angular polynomials [pt

  3. Lattice Boltzmann model for high-order nonlinear partial differential equations

    Science.gov (United States)

    Chai, Zhenhua; He, Nanzhong; Guo, Zhaoli; Shi, Baochang

    2018-01-01

    In this paper, a general lattice Boltzmann (LB) model is proposed for the high-order nonlinear partial differential equation with the form ∂tϕ +∑k=1mαk∂xkΠk(ϕ ) =0 (1 ≤k ≤m ≤6 ), αk are constant coefficients, Πk(ϕ ) are some known differential functions of ϕ . As some special cases of the high-order nonlinear partial differential equation, the classical (m)KdV equation, KdV-Burgers equation, K (n ,n ) -Burgers equation, Kuramoto-Sivashinsky equation, and Kawahara equation can be solved by the present LB model. Compared to the available LB models, the most distinct characteristic of the present model is to introduce some suitable auxiliary moments such that the correct moments of equilibrium distribution function can be achieved. In addition, we also conducted a detailed Chapman-Enskog analysis, and found that the high-order nonlinear partial differential equation can be correctly recovered from the proposed LB model. Finally, a large number of simulations are performed, and it is found that the numerical results agree with the analytical solutions, and usually the present model is also more accurate than the existing LB models [H. Lai and C. Ma, Sci. China Ser. G 52, 1053 (2009), 10.1007/s11433-009-0149-3; H. Lai and C. Ma, Phys. A (Amsterdam) 388, 1405 (2009), 10.1016/j.physa.2009.01.005] for high-order nonlinear partial differential equations.

  4. Boltzmann equation and Monte Carlo studies of electron transport in resistive plate chambers

    International Nuclear Information System (INIS)

    Bošnjaković, D; Petrović, Z Lj; Dujko, S; White, R D

    2014-01-01

    A multi term theory for solving the Boltzmann equation and Monte Carlo simulation technique are used to investigate electron transport in Resistive Plate Chambers (RPCs) that are used for timing and triggering purposes in many high energy physics experiments at CERN and elsewhere. Using cross sections for electron scattering in C 2 H 2 F 4 , iso-C 4 H 10 and SF 6 as an input in our Boltzmann and Monte Carlo codes, we have calculated data for electron transport as a function of reduced electric field E/N in various C 2 H 2 F 4 /iso-C 4 H 10 /SF 6 gas mixtures used in RPCs in the ALICE, CMS and ATLAS experiments. Emphasis is placed upon the explicit and implicit effects of non-conservative collisions (e.g. electron attachment and/or ionization) on the drift and diffusion. Among many interesting and atypical phenomena induced by the explicit effects of non-conservative collisions, we note the existence of negative differential conductivity (NDC) in the bulk drift velocity component with no indication of any NDC for the flux component in the ALICE timing RPC system. We systematically study the origin and mechanisms for such phenomena as well as the possible physical implications which arise from their explicit inclusion into models of RPCs. Spatially-resolved electron transport properties are calculated using a Monte Carlo simulation technique in order to understand these phenomena. (paper)

  5. Computational and analytical comparison of flux discretizations for the semiconductor device equations beyond Boltzmann statistics

    Science.gov (United States)

    Farrell, Patricio; Koprucki, Thomas; Fuhrmann, Jürgen

    2017-10-01

    We compare three thermodynamically consistent numerical fluxes known in the literature, appearing in a Voronoï finite volume discretization of the van Roosbroeck system with general charge carrier statistics. Our discussion includes an extension of the Scharfetter-Gummel scheme to non-Boltzmann (e.g. Fermi-Dirac) statistics. It is based on the analytical solution of a two-point boundary value problem obtained by projecting the continuous differential equation onto the interval between neighboring collocation points. Hence, it serves as a reference flux. The exact solution of the boundary value problem can be approximated by computationally cheaper fluxes which modify certain physical quantities. One alternative scheme averages the nonlinear diffusion (caused by the non-Boltzmann nature of the problem), another one modifies the effective density of states. To study the differences between these three schemes, we analyze the Taylor expansions, derive an error estimate, visualize the flux error and show how the schemes perform for a carefully designed p-i-n benchmark simulation. We present strong evidence that the flux discretization based on averaging the nonlinear diffusion has an edge over the scheme based on modifying the effective density of states.

  6. Applications of MMPBSA to Membrane Proteins I: Efficient Numerical Solutions of Periodic Poisson-Boltzmann Equation.

    Science.gov (United States)

    Botello-Smith, Wesley M; Luo, Ray

    2015-10-26

    Continuum solvent models have been widely used in biomolecular modeling applications. Recently much attention has been given to inclusion of implicit membranes into existing continuum Poisson-Boltzmann solvent models to extend their applications to membrane systems. Inclusion of an implicit membrane complicates numerical solutions of the underlining Poisson-Boltzmann equation due to the dielectric inhomogeneity on the boundary surfaces of a computation grid. This can be alleviated by the use of the periodic boundary condition, a common practice in electrostatic computations in particle simulations. The conjugate gradient and successive over-relaxation methods are relatively straightforward to be adapted to periodic calculations, but their convergence rates are quite low, limiting their applications to free energy simulations that require a large number of conformations to be processed. To accelerate convergence, the Incomplete Cholesky preconditioning and the geometric multigrid methods have been extended to incorporate periodicity for biomolecular applications. Impressive convergence behaviors were found as in the previous applications of these numerical methods to tested biomolecules and MMPBSA calculations.

  7. A numerical solution of the linear Boltzmann equation using cubic B-splines.

    Science.gov (United States)

    Khurana, Saheba; Thachuk, Mark

    2012-03-07

    A numerical method using cubic B-splines is presented for solving the linear Boltzmann equation. The collision kernel for the system is chosen as the Wigner-Wilkins kernel. A total of three different representations for the distribution function are presented. Eigenvalues and eigenfunctions of the collision matrix are obtained for various mass ratios and compared with known values. Distribution functions, along with first and second moments, are evaluated for different mass and temperature ratios. Overall it is shown that the method is accurate and well behaved. In particular, moments can be predicted with very few points if the representation is chosen well. This method produces sparse matrices, can be easily generalized to higher dimensions, and can be cast into efficient parallel algorithms. © 2012 American Institute of Physics

  8. Azimuthal anisotropy in heavy-ion collisions using non-extensive statistics in Boltzmann transport equation

    International Nuclear Information System (INIS)

    Tripathy, S.; Tiwari, S.K.; Younus, M.; Sahoo, R.

    2017-01-01

    One of the major goals in heavy-ion physics is to understand the properties of Quark Gluon Plasma (QGP), a deconfined hot and dense state of quarks and gluons existed shortly after the Big Bang. In the present scenario, the high-energy particle accelerators are able to reach energies where this extremely dense nuclear matter can be probed for a short time. Here, we follow our earlier works which use non-extensive statistics in Boltzmann Transport Equation (BTE). We represent the initial distribution of particles with the help of Tsallis power law distribution parameterized by the nonextensive parameter q and the Tsallis temperature T, remembering the fact that their origin is due to hard scatterings. We use the initial distribution (f in ) with Relaxation Time Approximation (RTA) of the BTE and calculate the final distribution (f fin ). Then we calculate ν 2 of the system using the final distribution in the definition of ν2

  9. Perturbative out of equilibrium quantum field theory beyond the gradient approximation and generalized boltzmann equation

    International Nuclear Information System (INIS)

    Ozaki, Hideaki

    2004-01-01

    Using the closed-time-path formalism, we construct perturbative frameworks, in terms of quasiparticle picture, for studying quasiuniform relativistic quantum field systems near equilibrium and non-equilibrium quasistationary systems. We employ the derivative expansion and take in up to the second-order term, i.e., one-order higher than the gradient approximation. After constructing self-energy resumed propagator, we formulated two kinds of mutually equivalent perturbative frameworks: The first one is formulated on the basis of the 'bare' number density function, and the second one is formulated on the basis of 'physical' number density function. In the course of construction of the second framework, the generalized Boltzmann equations directly come out, which describe the evolution of the system. (author)

  10. Cumulant solution of the elastic Boltzmann transport equation in an infinite uniform medium

    International Nuclear Information System (INIS)

    Cai, W.; Lax, M.; Alfano, R. R.

    2000-01-01

    We consider an analytical solution of the time-dependent elastic Boltzmann transport equation in an infinite uniform isotropic medium with an arbitrary phase function. We obtain (1) the exact distribution in angle, (2) the exact first and second spatial cumulants at any angle, and (3) an approximate combined distribution in position and angle and a spatial distribution whose central position and half-width of spread are always exact. The resulting Gaussian distribution has a center that advances in time, and an ellipsoidal contour that grows and changes shape providing a clear picture of the time evolution of the particle migration from near ballistic, through snakelike and into the final diffusive regime. (c) 2000 The American Physical Society

  11. Understanding complex coacervation in serum albumin and pectin mixtures using a combination of the Boltzmann equation and Monte Carlo simulation.

    Science.gov (United States)

    Li, Yunqi; Zhao, Qin; Huang, Qingrong

    2014-01-30

    A combination of turbidimetric titration, a sigmoidal Boltzmann equation approach and Monte Carlo simulation has been used to study the complex coacervation in serum albumin and pectin mixtures. The effects of the mass ratio of protein to polysaccharide on the critical pH values, the probability of complex coacervation and the electrostatic interaction from charge patches in serum albumin were investigated. Turbidimetric titration results showed an optimum pH for complex coacervation (pHm), which corresponded to the maximum turbidity in the protein/polysaccharide mixture. The pHm monotonically decreased as the ratio decreased, and could be fitted using the sigmoidal Boltzmann equation. It suggests that pHm could be a good ordering parameter to characterize the phase behavior associated with protein/polysaccharide complex coacervation. Qualitative understanding of pHm by taking into account the minimization of electrostatic interaction, as well as quantitative matching of pHm according to the concept of charge neutralization were both achieved. Our results suggest that the serum albumin/pectin complexes were ultimately neutralized by the partial charges originated from the titratable residues in protein and polysaccharide chains at pHm. The Monte Carlo simulation provided consistent phase boundaries for complex coacervation in the same system, and the intermolecular association strength was determined to be several kBT below the given ionic strength. The strongest binding site in the protein is convergent to the largest positive charge patch if pure electrostatic interaction was considered. Further inclusion of contribution from excluded volume resulted in the binding site distribution over five different positive charge patches at different protein/polysaccharide ratios and pH values. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Grid refinement for aeroacoustics in the lattice Boltzmann method: A directional splitting approach

    Science.gov (United States)

    Gendre, Félix; Ricot, Denis; Fritz, Guillaume; Sagaut, Pierre

    2017-08-01

    This study focuses on grid refinement techniques for the direct simulation of aeroacoustics, when using weakly compressible lattice Boltzmann models, such as the D3Q19 athermal velocity set. When it comes to direct noise computation, very small errors on the density or pressure field may have great negative consequences. Even strong acoustic density fluctuations have indeed a clearly lower amplitude than the hydrodynamic ones. This work deals with such very weak spurious fluctuations that emerge when a vortical structure crosses a refinement interface, which may contaminate the resulting aeroacoustic field. We show through an extensive literature review that, within the framework described above, this issue has never been addressed before. To tackle this problem, we develop an alternative algorithm and compare its behavior to a classical one, which fits our in-house vertex-centered data structure. Our main idea relies on a directional splitting of the continuous discrete velocity Boltzmann equation, followed by an integration over specific characteristics. This method can be seen as a specific coupling between finite difference and lattice Boltzmann, locally on the interface between the two grids. The method is assessed considering two cases: an acoustic pulse and a convected vortex. We show how very small errors on the density field arise and propagate throughout the domain when a vortical flow crosses the refinement interface. We also show that an increased free stream Mach number (but still within the weakly compressible regime) strongly deteriorates the situation, although the magnitude of the errors may remain negligible for purely aerodynamic studies. A drastically reduced level of error for the near-field spurious noise is obtained with our approach, especially for under-resolved simulations, a situation that is crucial for industrial applications. Thus, the vortex case is proved useful for aeroacoustic validations of any grid refinement algorithm.

  13. Thermal transport in isotopically disordered carbon nanotubes: a comparison between Green's functions and Boltzmann approaches

    International Nuclear Information System (INIS)

    Stoltz, G; Lazzeri, M; Mauri, F

    2009-01-01

    We present a study of the phononic thermal conductivity of isotopically disordered carbon nanotubes. In particular, the behaviour of the thermal conductivity as a function of the system length is investigated, using Green's function techniques to compute the transmission across the system. The method is implemented using linear scaling algorithms, which allow us to reach systems of lengths up to L = 2.5 μm (with up to 200 000 atoms). As for 1D systems, it is observed that the conductivity diverges with the system size L. We also observe a dramatic decrease of the thermal conductance for systems of experimental sizes (roughly 80% at room temperature for L = 2.5 μm), when a large fraction of isotopic disorder is introduced. The results obtained with Green's function techniques are compared to results obtained with a Boltzmann description of thermal transport. There is a good agreement between both approaches for systems of experimental sizes, even in the presence of Anderson localization. This is particularly interesting since the computation of the transmission using Boltzmann's equation is much less computationally expensive, so that larger systems may be studied with this method.

  14. Continuous surface force based lattice Boltzmann equation method for simulating thermocapillary flow

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Lin, E-mail: lz@njust.edu.cn [School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Zheng, Song [School of Mathematics and Statistics, Zhejiang University of Finance and Economics, Hangzhou 310018 (China); Zhai, Qinglan [School of Economics Management and Law, Chaohu University, Chaohu 238000 (China)

    2016-02-05

    In this paper, we extend a lattice Boltzmann equation (LBE) with continuous surface force (CSF) to simulate thermocapillary flows. The model is designed on our previous CSF LBE for athermal two phase flow, in which the interfacial tension forces and the Marangoni stresses as the results of the interface interactions between different phases are described by a conception of CSF. In this model, the sharp interfaces between different phases are separated by a narrow transition layers, and the kinetics and morphology evolution of phase separation would be characterized by an order parameter via Cahn–Hilliard equation which is solved in the frame work of LBE. The scalar convection–diffusion equation for temperature field is resolved by thermal LBE. The models are validated by thermal two layered Poiseuille flow, and two superimposed planar fluids at negligibly small Reynolds and Marangoni numbers for the thermocapillary driven convection, which have analytical solutions for the velocity and temperature. Then thermocapillary migration of two/three dimensional deformable droplet are simulated. Numerical results show that the predictions of present LBE agreed with the analytical solution/other numerical results. - Highlights: • A CSF LBE to thermocapillary flows. • Thermal layered Poiseuille flows. • Thermocapillary migration.

  15. Continuous surface force based lattice Boltzmann equation method for simulating thermocapillary flow

    International Nuclear Information System (INIS)

    Zheng, Lin; Zheng, Song; Zhai, Qinglan

    2016-01-01

    In this paper, we extend a lattice Boltzmann equation (LBE) with continuous surface force (CSF) to simulate thermocapillary flows. The model is designed on our previous CSF LBE for athermal two phase flow, in which the interfacial tension forces and the Marangoni stresses as the results of the interface interactions between different phases are described by a conception of CSF. In this model, the sharp interfaces between different phases are separated by a narrow transition layers, and the kinetics and morphology evolution of phase separation would be characterized by an order parameter via Cahn–Hilliard equation which is solved in the frame work of LBE. The scalar convection–diffusion equation for temperature field is resolved by thermal LBE. The models are validated by thermal two layered Poiseuille flow, and two superimposed planar fluids at negligibly small Reynolds and Marangoni numbers for the thermocapillary driven convection, which have analytical solutions for the velocity and temperature. Then thermocapillary migration of two/three dimensional deformable droplet are simulated. Numerical results show that the predictions of present LBE agreed with the analytical solution/other numerical results. - Highlights: • A CSF LBE to thermocapillary flows. • Thermal layered Poiseuille flows. • Thermocapillary migration.

  16. Involving the Navier-Stokes equations in the derivation of boundary conditions for the lattice Boltzmann method.

    Science.gov (United States)

    Verschaeve, Joris C G

    2011-06-13

    By means of the continuity equation of the incompressible Navier-Stokes equations, additional physical arguments for the derivation of a formulation of the no-slip boundary condition for the lattice Boltzmann method for straight walls at rest are obtained. This leads to a boundary condition that is second-order accurate with respect to the grid spacing and conserves mass. In addition, the boundary condition is stable for relaxation frequencies close to two.

  17. Nonlinear Boltzmann equation for the homogeneous isotropic case: Minimal deterministic Matlab program

    Science.gov (United States)

    Asinari, Pietro

    2010-10-01

    The homogeneous isotropic Boltzmann equation (HIBE) is a fundamental dynamic model for many applications in thermodynamics, econophysics and sociodynamics. Despite recent hardware improvements, the solution of the Boltzmann equation remains extremely challenging from the computational point of view, in particular by deterministic methods (free of stochastic noise). This work aims to improve a deterministic direct method recently proposed [V.V. Aristov, Kluwer Academic Publishers, 2001] for solving the HIBE with a generic collisional kernel and, in particular, for taking care of the late dynamics of the relaxation towards the equilibrium. Essentially (a) the original problem is reformulated in terms of particle kinetic energy (exact particle number and energy conservation during microscopic collisions) and (b) the computation of the relaxation rates is improved by the DVM-like correction, where DVM stands for Discrete Velocity Model (ensuring that the macroscopic conservation laws are exactly satisfied). Both these corrections make possible to derive very accurate reference solutions for this test case. Moreover this work aims to distribute an open-source program (called HOMISBOLTZ), which can be redistributed and/or modified for dealing with different applications, under the terms of the GNU General Public License. The program has been purposely designed in order to be minimal, not only with regards to the reduced number of lines (less than 1000), but also with regards to the coding style (as simple as possible). Program summaryProgram title: HOMISBOLTZ Catalogue identifier: AEGN_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGN_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License No. of lines in distributed program, including test data, etc.: 23 340 No. of bytes in distributed program, including test data, etc.: 7 635 236 Distribution format: tar

  18. Boltzmann-equation simulations of radio-frequency-driven, low-temperature plasmas

    International Nuclear Information System (INIS)

    Drallos, P.J.; Riley, M.E.

    1995-01-01

    We present a method for the numerical solution of the Boltzmann equation (BE) describing plasma electrons. We apply the method to a capacitively-coupled, radio-frequency-driven He discharge in parallel-plate (quasi-1D) geometry which contains time scales for physical processes spanning six orders of magnitude. Our BE solution procedure uses the method of characteristics for the Vlasov operator with interpolation in phase space at early time, allowing storage of the distribution function on a fixed phase-space grid. By alternating this BE method with a fluid description of the electrons, or with a novel time-cycle-average equation method, we compute the periodic steady state of a He plasma by time evolution from startup conditions. We find that the results compare favorably with measured current-voltage, plasma density, and ''cited state densities in the ''GEC'' Reference Cell. Our atomic He model includes five levels (some are summed composites), 15 electronic transitions, radiation trapping, and metastable-metastable collisions

  19. Consistent Algorithms Marching Along Characteristics for the Numerical Solution of the Boltzmann Equation

    Directory of Open Access Journals (Sweden)

    Nilson C. Roberty

    2011-01-01

    Full Text Available We introduce algorithms marching over a polygonal mesh with elements consistent with the propagation directions of the particle (radiation flux. The decision for adopting this kind of mesh to solve the one-speed Boltzmann transport equation is due to characteristics of the domain of the transport operator which controls derivatives only in the direction of propagation of the particles (radiation flux in the absorbing and scattering media. This a priori adaptivity has the advantages that it formulates a consistent scheme which makes appropriate the application of the Lax equivalence theorem framework to the problem. In this work, we present the main functional spaces involved in the formalism and a description of the algorithms for the mesh generation and the transport equation solution. Some numerical examples related to the solution of a transmission problem in a high-contrast model with absorption and scattering are presented. Also, a comparison with benchmarks problems for source and reactor criticality simulations shows the compatibility between calculations with the algorithms proposed here and theoretical results.

  20. Computations of ion diffusion coefficients from the Boltzmann-Fokker-Planck equation

    Science.gov (United States)

    Roussel-Dupre, R.

    1981-01-01

    The Boltzmann-Fokker-Planck equation is solved with the Chapman-Enskog method of analysis for the velocity distribution functions of helium, carbon, nitrogen, and oxygen. The analysis is a perturbation scheme based on the assumption of a collision-dominated gas, and the calculations are carried out to first order. The elements considered are treated as trace constituents in an electron-proton gas. From the resulting distribution functions, diffusion coefficients are computed which are found to be 20-30% less than those obtained by Chapman and Burgers. In addition, it is shown that the return current of cold electrons needed to maintain quasi-neutrality in a plasma with a temperature gradient contributes a term in the thermal diffusion coefficient omitted erroneously in previous works. This added term resolves the longstanding controversy over the discrepancy between the coefficients of Chapman and Burgers, which are seen to be completely equivalent in the light of this analysis. The viscosity coefficient for an electron-proton gas is also computed and found to be 7% less than that obtained by Braginskii.

  1. Numerical solutions of the semiclassical Boltzmann ellipsoidal-statistical kinetic model equation

    Science.gov (United States)

    Yang, Jaw-Yen; Yan, Chin-Yuan; Huang, Juan-Chen; Li, Zhihui

    2014-01-01

    Computations of rarefied gas dynamical flows governed by the semiclassical Boltzmann ellipsoidal-statistical (ES) kinetic model equation using an accurate numerical method are presented. The semiclassical ES model was derived through the maximum entropy principle and conserves not only the mass, momentum and energy, but also contains additional higher order moments that differ from the standard quantum distributions. A different decoding procedure to obtain the necessary parameters for determining the ES distribution is also devised. The numerical method in phase space combines the discrete-ordinate method in momentum space and the high-resolution shock capturing method in physical space. Numerical solutions of two-dimensional Riemann problems for two configurations covering various degrees of rarefaction are presented and various contours of the quantities unique to this new model are illustrated. When the relaxation time becomes very small, the main flow features a display similar to that of ideal quantum gas dynamics, and the present solutions are found to be consistent with existing calculations for classical gas. The effect of a parameter that permits an adjustable Prandtl number in the flow is also studied. PMID:25104904

  2. Boltzmann equation analysis of electron-molecule collision cross sections in water vapor and ammonia

    International Nuclear Information System (INIS)

    Yousfi, M.; Benabdessadok, M.D.

    1996-01-01

    Sets of electron-molecule collision cross sections for H 2 O and NH 3 have been determined from a classical technique of electron swarm parameter unfolding. This deconvolution method is based on a simplex algorithm using a powerful multiterm Boltzmann equation analysis established in the framework of the classical hydrodynamic approximation. It is well adapted for the simulation of the different classes of swarm experiments (i.e., time resolved, time of flight, and steady state experiments). The sets of collision cross sections that exist in the literature are reviewed and analyzed. Fitted sets of cross sections are determined for H 2 O and NH 3 which exhibit features characteristic of polar molecules such as high rotational excitation collision cross sections. The hydrodynamic swarm parameters (i.e., drift velocity, longitudinal and transverse diffusion coefficients, ionization and attachment coefficients) calculated from the fitted sets are in excellent agreement with the measured ones. These sets are finally used to calculate the transport and reaction coefficients needed for discharge modeling in two cases of typical gas mixtures for which experimental swarm data are very sparse or nonexistent (i.e., flue gas mixtures and gas mixtures for rf plasma surface treatment). copyright 1996 American Institute of Physics

  3. Gas-kinetic unified algorithm for hypersonic flows covering various flow regimes solving Boltzmann model equation in nonequilibrium effect

    International Nuclear Information System (INIS)

    Li, Zhihui; Ma, Qiang; Wu, Junlin; Jiang, Xinyu; Zhang, Hanxin

    2014-01-01

    Based on the Gas-Kinetic Unified Algorithm (GKUA) directly solving the Boltzmann model equation, the effect of rotational non-equilibrium is investigated recurring to the kinetic Rykov model with relaxation property of rotational degrees of freedom. The spin movement of diatomic molecule is described by moment of inertia, and the conservation of total angle momentum is taken as a new Boltzmann collision invariant. The molecular velocity distribution function is integrated by the weight factor on the internal energy, and the closed system of two kinetic controlling equations is obtained with inelastic and elastic collisions. The optimization selection technique of discrete velocity ordinate points and numerical quadrature rules for macroscopic flow variables with dynamic updating evolvement are developed to simulate hypersonic flows, and the gas-kinetic numerical scheme is constructed to capture the time evolution of the discretized velocity distribution functions. The gas-kinetic boundary conditions in thermodynamic non-equilibrium and numerical procedures are studied and implemented by directly acting on the velocity distribution function, and then the unified algorithm of Boltzmann model equation involving non-equilibrium effect is presented for the whole range of flow regimes. The hypersonic flows involving non-equilibrium effect are numerically simulated including the inner flows of shock wave structures in nitrogen with different Mach numbers of 1.5-Ma-25, the planar ramp flow with the whole range of Knudsen numbers of 0.0009-Kn-10 and the three-dimensional re-entering flows around tine double-cone body

  4. Heat transport in two-dimensional materials by directly solving the phonon Boltzmann equation under Callaway's dual relaxation model

    Science.gov (United States)

    Guo, Yangyu; Wang, Moran

    2017-10-01

    The single mode relaxation time approximation has been demonstrated to greatly underestimate the lattice thermal conductivity of two-dimensional materials due to the collective effect of phonon normal scattering. Callaway's dual relaxation model represents a good approximation to the otherwise ab initio solution of the phonon Boltzmann equation. In this work we develop a discrete-ordinate-method (DOM) scheme for the numerical solution of the phonon Boltzmann equation under Callaway's model. Heat transport in a graphene ribbon with different geometries is modeled by our scheme, which produces results quite consistent with the available molecular dynamics, Monte Carlo simulations, and experimental measurements. Callaway's lattice thermal conductivity model with empirical boundary scattering rates is examined and shown to overestimate or underestimate the direct DOM solution. The length convergence of the lattice thermal conductivity of a rectangular graphene ribbon is explored and found to depend appreciably on the ribbon width, with a semiquantitative correlation provided between the convergence length and the width. Finally, we predict the existence of a phonon Knudsen minimum in a graphene ribbon only at a low system temperature and isotope concentration so that the average normal scattering rate is two orders of magnitude stronger than the intrinsic resistive one. The present work will promote not only the methodology for the solution of the phonon Boltzmann equation but also the theoretical modeling and experimental detection of hydrodynamic phonon transport in two-dimensional materials.

  5. Two experiments to approach the Boltzmann factor: chemical reaction and viscous flow

    International Nuclear Information System (INIS)

    Fazio, Claudio; Battaglia, Onofrio R; Guastella, Ivan

    2012-01-01

    In this paper we discuss a pedagogical approach aimed at pointing out the role played by the Boltzmann factor in describing phenomena usually perceived as regulated by different mechanisms of functioning. Experimental results regarding some aspects of a chemical reaction and of the viscous flow of some liquids are analysed and described in terms of macroscopic variables whose temperature dependence is proportional to the Boltzmann factor. A description of a workshop implementing the approach in the framework of an undergraduate course for engineering education and some preliminary results about its pedagogical relevance are then reported. (paper)

  6. On the transparent conducting oxide Al doped ZnO: First Principles and Boltzmann equations study

    Energy Technology Data Exchange (ETDEWEB)

    Slassi, A. [Institute of Nanomaterials and Nanotechnology, MAScIR, Rabat (Morocco); LMPHE (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Rabat (Morocco); Naji, S. [LMPHE (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Rabat (Morocco); Department of Physics, Faculty of Science, Ibb University, Ibb (Yemen); Benyoussef, A. [Institute of Nanomaterials and Nanotechnology, MAScIR, Rabat (Morocco); LMPHE (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Rabat (Morocco); Hamedoun, M., E-mail: hamedoun@hotmail.com [Institute of Nanomaterials and Nanotechnology, MAScIR, Rabat (Morocco); El Kenz, A. [LMPHE (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Rabat (Morocco)

    2014-08-25

    Highlights: • The incorporation of Al in ZnO increases the optical band edge absorption. • Incorporated Al creates shallow donor states of Al-3s around Fermi level. • Transmittance decreases in the visible and IR regions, while it increases in the UV region. • Electrical conductivity increases and reaches almost the saturation for high concentration of Al. - Abstract: We report, in this work, a theoretical study on the electronic, optical and electrical properties of pure and Al doped ZnO with different concentrations. In fact, we investigate these properties using both First Principles calculations within TB-mBJ approximation and Boltzmann equations under the constant relaxation time approximation for charge carriers. It is found out that, the calculated lattice parameters and the optical band gap of pure ZnO are close to the experimental values and in a good agreement with the other theoretical studies. It is also observed that, the incorporations of Al in ZnO increase the optical band edge absorption which leads to a blue shift and no deep impurities levels are induced in the band gap as well. More precisely, these incorporations create shallow donor states around Fermi level in the conduction band minimum from mainly Al-3s orbital. Beside this, it is found that, the transmittance is decreased in the visible and IR regions, while it is significantly improved in UV region. Finally, our calculations show that the electrical conductivity is enhanced as a result of Al doping and it reaches almost the saturation for high concentration of Al. These features make Al doped ZnO a transparent conducting electrode for optoelectronic device applications.

  7. SMPBS: Web server for computing biomolecular electrostatics using finite element solvers of size modified Poisson-Boltzmann equation.

    Science.gov (United States)

    Xie, Yang; Ying, Jinyong; Xie, Dexuan

    2017-03-30

    SMPBS (Size Modified Poisson-Boltzmann Solvers) is a web server for computing biomolecular electrostatics using finite element solvers of the size modified Poisson-Boltzmann equation (SMPBE). SMPBE not only reflects ionic size effects but also includes the classic Poisson-Boltzmann equation (PBE) as a special case. Thus, its web server is expected to have a broader range of applications than a PBE web server. SMPBS is designed with a dynamic, mobile-friendly user interface, and features easily accessible help text, asynchronous data submission, and an interactive, hardware-accelerated molecular visualization viewer based on the 3Dmol.js library. In particular, the viewer allows computed electrostatics to be directly mapped onto an irregular triangular mesh of a molecular surface. Due to this functionality and the fast SMPBE finite element solvers, the web server is very efficient in the calculation and visualization of electrostatics. In addition, SMPBE is reconstructed using a new objective electrostatic free energy, clearly showing that the electrostatics and ionic concentrations predicted by SMPBE are optimal in the sense of minimizing the objective electrostatic free energy. SMPBS is available at the URL: smpbs.math.uwm.edu © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Two Experiments to Approach the Boltzmann Factor: Chemical Reaction and Viscous Flow

    Science.gov (United States)

    Fazio, Claudio; Battaglia, Onofrio R.; Guastella, Ivan

    2012-01-01

    In this paper we discuss a pedagogical approach aimed at pointing out the role played by the Boltzmann factor in describing phenomena usually perceived as regulated by different mechanisms of functioning. Experimental results regarding some aspects of a chemical reaction and of the viscous flow of some liquids are analysed and described in terms…

  9. A high-order Petrov-Galerkin method for the Boltzmann transport equation

    International Nuclear Information System (INIS)

    Pain, C.C.; Candy, A.S.; Piggott, M.D.; Buchan, A.; Eaton, M.D.; Goddard, A.J.H.; Oliveira, C.R.E. de

    2005-01-01

    We describe a new Petrov-Galerkin method using high-order terms to introduce dissipation in a residual-free formulation. The method is developed following both a Taylor series analysis and a variational principle, and the result has much in common with traditional Petrov-Galerkin, Self Adjoint Angular Flux (SAAF) and Even Parity forms of the Boltzmann transport equation. In addition, we consider the subtleties in constructing appropriate boundary conditions. In sub-grid scale (SGS) modelling of fluids the advantages of high-order dissipation are well known. Fourth-order terms, for example, are commonly used as a turbulence model with uniform dissipation. They have been shown to have superior properties to SGS models based upon second-order dissipation or viscosity. Even higher-order forms of dissipation (e.g. 16.-order) can offer further advantages, but are only easily realised by spectral methods because of the solution continuity requirements that these higher-order operators demand. Higher-order operators are more effective, bringing a higher degree of representation to the solution locally. Second-order operators, for example, tend to relax the solution to a linear variation locally, whereas a high-order operator will tend to relax the solution to a second-order polynomial locally. The form of the dissipation is also important. For example, the dissipation may only be applied (as it is in this work) in the streamline direction. While for many problems, for example Large Eddy Simulation (LES), simply adding a second or fourth-order dissipation term is a perfectly satisfactory SGS model, it is well known that a consistent residual-free formulation is required for radiation transport problems. This motivated the consideration of a new Petrov-Galerkin method that is residual-free, but also benefits from the advantageous features that SGS modelling introduces. We close with a demonstration of the advantages of this new discretization method over standard Petrov

  10. Unified solution of the Boltzmann equation for electron and ion velocity distribution functions and transport coefficients in weakly ionized plasmas

    Science.gov (United States)

    Konovalov, Dmitry A.; Cocks, Daniel G.; White, Ronald D.

    2017-10-01

    The velocity distribution function and transport coefficients for charged particles in weakly ionized plasmas are calculated via a multi-term solution of Boltzmann's equation and benchmarked using a Monte-Carlo simulation. A unified framework for the solution of the original full Boltzmann's equation is presented which is valid for ions and electrons, avoiding any recourse to approximate forms of the collision operator in various limiting mass ratio cases. This direct method using Lebedev quadratures over the velocity and scattering angles avoids the need to represent the ion mass dependence in the collision operator through an expansion in terms of the charged particle to neutral mass ratio. For the two-temperature Burnett function method considered in this study, this amounts to avoiding the need for the complex Talmi-transformation methods and associated mass-ratio expansions. More generally, we highlight the deficiencies in the two-temperature Burnett function method for heavy ions at high electric fields to calculate the ion velocity distribution function, even though the transport coefficients have converged. Contribution to the Topical Issue "Physics of Ionized Gases (SPIG 2016)", edited by Goran Poparic, Bratislav Obradovic, Dragana Maric and Aleksandar Milosavljevic.

  11. almaBTE : A solver of the space-time dependent Boltzmann transport equation for phonons in structured materials

    Science.gov (United States)

    Carrete, Jesús; Vermeersch, Bjorn; Katre, Ankita; van Roekeghem, Ambroise; Wang, Tao; Madsen, Georg K. H.; Mingo, Natalio

    2017-11-01

    almaBTE is a software package that solves the space- and time-dependent Boltzmann transport equation for phonons, using only ab-initio calculated quantities as inputs. The program can predictively tackle phonon transport in bulk crystals and alloys, thin films, superlattices, and multiscale structures with size features in the nm- μm range. Among many other quantities, the program can output thermal conductances and effective thermal conductivities, space-resolved average temperature profiles, and heat-current distributions resolved in frequency and space. Its first-principles character makes almaBTE especially well suited to investigate novel materials and structures. This article gives an overview of the program structure and presents illustrative examples for some of its uses. PROGRAM SUMMARY Program Title:almaBTE Program Files doi:http://dx.doi.org/10.17632/8tfzwgtp73.1 Licensing provisions: Apache License, version 2.0 Programming language: C++ External routines/libraries: BOOST, MPI, Eigen, HDF5, spglib Nature of problem: Calculation of temperature profiles, thermal flux distributions and effective thermal conductivities in structured systems where heat is carried by phonons Solution method: Solution of linearized phonon Boltzmann transport equation, Variance-reduced Monte Carlo

  12. Generalized boundary conditions in an existence and uniqueness proof for the solution of the non-stationary electron Boltzmann equation by means of operator-semigroups

    International Nuclear Information System (INIS)

    Bartolomaeus, G.; Wilhelm, J.

    1983-01-01

    Recently, based on the semigroup approach a new proof was presented of the existence of a unique solution of the non-stationary Boltzmann equation for the electron component of a collision dominated plasma. The proof underlies some restriction which should be overcome to extend the validity range to other problems of physical interest. One of the restrictions is the boundary condition applied. The choice of the boundary condition is essential for the proof because it determines the range of definition of the infinitesimal generator and thus the operator semigroup itself. The paper proves the existence of a unique solution for generalized boundary conditions, this solution takes non-negative values, which is necessary for a distribution function from the physical point of view. (author)

  13. Incorporating forcing terms in cascaded lattice Boltzmann approach by method of central moments.

    Science.gov (United States)

    Premnath, Kannan N; Banerjee, Sanjoy

    2009-09-01

    Cascaded lattice Boltzmann method (cascaded-LBM) employs a class of collision operators aiming to stabilize computations and remove certain modeling artifacts for simulation of fluid flow on lattice grids with sizes arbitrarily larger than the smallest physical dissipation length scale [Geier, Phys. Rev. E 63, 066705 (2006)]. It achieves this and distinguishes from other collision operators, such as in the standard single or multiple relaxation-time approaches, by performing relaxation process due to collisions in terms of moments shifted by the local hydrodynamic fluid velocity, i.e., central moments, in an ascending order by order at different relaxation rates. In this paper, we propose and derive source terms in the cascaded-LBM to represent the effect of external or internal forces on the dynamics of fluid motion. This is essentially achieved by matching the continuous form of the central moments of the source or forcing terms with its discrete version. Different forms of continuous central moments of sources, including one that is obtained from a local Maxwellian, are considered in this regard. As a result, the forcing terms obtained in this formulation are Galilean invariant by construction. To alleviate lattice artifacts due to forcing terms in the emergent macroscopic fluid equations, they are proposed as temporally semi-implicit and second order, and the implicitness is subsequently effectively removed by means of a transformation to facilitate computation. It is shown that the impressed force field influences the cascaded collision process in the evolution of the transformed distribution function. The method of central moments along with the associated orthogonal properties of the moment basis completely determines the analytical expressions for the source terms as a function of the force and macroscopic velocity fields. In contrast to the existing forcing schemes, it is found that they involve higher-order terms in velocity space. It is shown that the

  14. A new algorithm for the simulation of the Boltzmann equation using the direct simulation monte-carlo method

    International Nuclear Information System (INIS)

    Ganjaei, A. A.; Nourazar, S. S.

    2009-01-01

    A new algorithm, the modified direct simulation Monte-Carlo (MDSMC) method, for the simulation of Couette- Taylor gas flow problem is developed. The Taylor series expansion is used to obtain the modified equation of the first order time discretization of the collision equation and the new algorithm, MDSMC, is implemented to simulate the collision equation in the Boltzmann equation. In the new algorithm (MDSMC) there exists a new extra term which takes in to account the effect of the second order collision. This new extra term has the effect of enhancing the appearance of the first Taylor instabilities of vortices streamlines. In the new algorithm (MDSMC) there also exists a second order term in time step in the probabilistic coefficients which has the effect of simulation with higher accuracy than the previous DSMC algorithm. The appearance of the first Taylor instabilities of vortices streamlines using the MDSMC algorithm at different ratios of ω/ν (experimental data of Taylor) occurred at less time-step than using the DSMC algorithm. The results of the torque developed on the stationary cylinder using the MDSMC algorithm show better agreement in comparison with the experimental data of Kuhlthau than the results of the torque developed on the stationary cylinder using the DSMC algorithm

  15. Derivation of the Boltzmann Equation for Financial Brownian Motion: Direct Observation of the Collective Motion of High-Frequency Traders

    Science.gov (United States)

    Kanazawa, Kiyoshi; Sueshige, Takumi; Takayasu, Hideki; Takayasu, Misako

    2018-03-01

    A microscopic model is established for financial Brownian motion from the direct observation of the dynamics of high-frequency traders (HFTs) in a foreign exchange market. Furthermore, a theoretical framework parallel to molecular kinetic theory is developed for the systematic description of the financial market from microscopic dynamics of HFTs. We report first on a microscopic empirical law of traders' trend-following behavior by tracking the trajectories of all individuals, which quantifies the collective motion of HFTs but has not been captured in conventional order-book models. We next introduce the corresponding microscopic model of HFTs and present its theoretical solution paralleling molecular kinetic theory: Boltzmann-like and Langevin-like equations are derived from the microscopic dynamics via the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy. Our model is the first microscopic model that has been directly validated through data analysis of the microscopic dynamics, exhibiting quantitative agreements with mesoscopic and macroscopic empirical results.

  16. Effects of density and force discretizations on spurious velocities in lattice Boltzmann equation for two-phase flows

    KAUST Repository

    Xiong, Yuan

    2014-04-28

    Spurious current emerging in the vicinity of phase interfaces is a well-known disadvantage of the lattice Boltzmann equation (LBE) for two-phase flows. Previous analysis shows that this unphysical phenomenon comes from the force imbalance at discrete level inherited in LBE (Guo et al 2011 Phys. Rev. E 83 036707). Based on the analysis of the LBE free of checkerboard effects, in this work we further show that the force imbalance is caused by the different discretization stencils: the implicit one from the streaming process and the explicit one from the discretization of the force term. Particularly, the total contribution includes two parts, one from the difference between the intrinsically discretized density (or ideal gas pressure) gradient and the explicit ones in the force term, and the other from the explicit discretized chemical potential gradients in the intrinsically discretized force term. The former contribution is a special feature of LBE which was not realized previously.

  17. Self-energy-part resummed quark and gluon propagators in a spin-polarized quark matter and generalized Boltzmann equations

    International Nuclear Information System (INIS)

    Niegawa, A.

    2003-01-01

    We construct perturbative frameworks for studying nonequilibrium spin-polarized quark matter. We employ the closed-time-path formalism and use the gradient approximation in derivative expansion. After constructing self-energy-part resummed quark and gluon propagators, we formulate two kinds of mutually equivalent perturbative frameworks: The first one is formulated on the basis of the initial-particle distribution function, and the second one is formulated on the basis of a 'physical' particle distribution function. In the course of the construction of the second framework, the generalized Boltzmann equations and their relatives directly come out, which describe the evolution of the system. The frameworks are relevant to the study of a magnetic character of quark matter, e.g., possible quark stars

  18. Discontinuous finite element space-angle treatment of the first order linear Boltzmann transport equation with magnetic fields: Application to MRI-guided radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    St Aubin, J., E-mail: joel.st.aubin@albertahealthservices.ca [Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada and Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Keyvanloo, A. [Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Fallone, B. G. [Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Department of Physics, University of Alberta, Edmonton, Alberta T6G 2M9 (Canada)

    2016-01-15

    Purpose: The advent of magnetic resonance imaging (MRI) guided radiotherapy systems demands the incorporation of the magnetic field into dose calculation algorithms of treatment planning systems. This is due to the fact that the Lorentz force of the magnetic field perturbs the path of the relativistic electrons, hence altering the dose deposited by them. Building on the previous work, the authors have developed a discontinuous finite element space-angle treatment of the linear Boltzmann transport equation to accurately account for the effects of magnetic fields on radiotherapy doses. Methods: The authors present a detailed description of their new formalism and compare its accuracy to GEANT4 Monte Carlo calculations for magnetic fields parallel and perpendicular to the radiation beam at field strengths of 0.5 and 3 T for an inhomogeneous 3D slab geometry phantom comprising water, bone, and air or lung. The accuracy of the authors’ new formalism was determined using a gamma analysis with a 2%/2 mm criterion. Results: Greater than 98.9% of all points analyzed passed the 2%/2 mm gamma criterion for the field strengths and orientations tested. The authors have benchmarked their new formalism against Monte Carlo in a challenging radiation transport problem with a high density material (bone) directly adjacent to a very low density material (dry air at STP) where the effects of the magnetic field dominate collisions. Conclusions: A discontinuous finite element space-angle approach has been proven to be an accurate method for solving the linear Boltzmann transport equation with magnetic fields for cases relevant to MRI guided radiotherapy. The authors have validated the accuracy of this novel technique against GEANT4, even in cases of strong magnetic field strengths and low density air.

  19. Kinetic Boltzmann approach adapted for modeling highly ionized matter created by x-ray irradiation of a solid

    Czech Academy of Sciences Publication Activity Database

    Ziaja, B.; Saxena, V.; Son, S.-K.; Medvedev, N.; Barbrel, B.; Woloncewicz, B.; Stránský, Michal

    2016-01-01

    Roč. 93, č. 5 (2016), 1-6, č. článku 053210. ISSN 2470-0045 R&D Projects: GA MŠk(CZ) LG13029 Institutional support: RVO:68378271 Keywords : X-ray * Boltzmann equation Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.366, year: 2016

  20. A pore-scale approach to colloid-surface interaction in liquid using lattice Boltzmann models.

    Science.gov (United States)

    Larsen, J. D.; Schaap, M. G.

    2016-12-01

    Knowledge of colloid transport and collection efficiency is important for understanding the transport of some contaminants of emerging concern (CEC) and for developing environmental remediation systems such as geologic filters. The interaction forces between colloids and soil materials are central to colloid transport and retention or immobilization. In this study a physical modeling approach to represent colloidal transport through porous media has been developed, using the lattice Boltzmann methodology. Lattice Boltzmann models have the uncanny ability to represent pore scale fluid flow through complex structures such as geological material. A cellular approach to computing colloid forces is applied for computational efficiency, and colloids are tracked continuously through the model. Grid refinement effects are quantified to balance computational efficiency with discretization effects. Representation of physical forces including DLVO create a natural fluid solid boundary condition for colloid transport. Collector efficiencies of geologic materials and colloid distribution curves can be produced. The present work focuses on simple porous media with a single wetting fluid phase, but the approach can be extended to heterogeneous geologic materials and multiphase systems.

  1. A deterministic solution of the first order linear Boltzmann transport equation in the presence of external magnetic fields.

    Science.gov (United States)

    St Aubin, J; Keyvanloo, A; Vassiliev, O; Fallone, B G

    2015-02-01

    Accurate radiotherapy dose calculation algorithms are essential to any successful radiotherapy program, considering the high level of dose conformity and modulation in many of today's treatment plans. As technology continues to progress, such as is the case with novel MRI-guided radiotherapy systems, the necessity for dose calculation algorithms to accurately predict delivered dose in increasingly challenging scenarios is vital. To this end, a novel deterministic solution has been developed to the first order linear Boltzmann transport equation which accurately calculates x-ray based radiotherapy doses in the presence of magnetic fields. The deterministic formalism discussed here with the inclusion of magnetic fields is outlined mathematically using a discrete ordinates angular discretization in an attempt to leverage existing deterministic codes. It is compared against the EGSnrc Monte Carlo code, utilizing the emf_macros addition which calculates the effects of electromagnetic fields. This comparison is performed in an inhomogeneous phantom that was designed to present a challenging calculation for deterministic calculations in 0, 0.6, and 3 T magnetic fields oriented parallel and perpendicular to the radiation beam. The accuracy of the formalism discussed here against Monte Carlo was evaluated with a gamma comparison using a standard 2%/2 mm and a more stringent 1%/1 mm criterion for a standard reference 10 × 10 cm(2) field as well as a smaller 2 × 2 cm(2) field. Greater than 99.8% (94.8%) of all points analyzed passed a 2%/2 mm (1%/1 mm) gamma criterion for all magnetic field strengths and orientations investigated. All dosimetric changes resulting from the inclusion of magnetic fields were accurately calculated using the deterministic formalism. However, despite the algorithm's high degree of accuracy, it is noticed that this formalism was not unconditionally stable using a discrete ordinate angular discretization. The feasibility of including magnetic field

  2. Decoupled scheme based on the Hermite expansion to construct lattice Boltzmann models for the compressible Navier-Stokes equations with arbitrary specific heat ratio.

    Science.gov (United States)

    Hu, Kainan; Zhang, Hongwu; Geng, Shaojuan

    2016-10-01

    A decoupled scheme based on the Hermite expansion to construct lattice Boltzmann models for the compressible Navier-Stokes equations with arbitrary specific heat ratio is proposed. The local equilibrium distribution function including the rotational velocity of particle is decoupled into two parts, i.e., the local equilibrium distribution function of the translational velocity of particle and that of the rotational velocity of particle. From these two local equilibrium functions, two lattice Boltzmann models are derived via the Hermite expansion, namely one is in relation to the translational velocity and the other is connected with the rotational velocity. Accordingly, the distribution function is also decoupled. After this, the evolution equation is decoupled into the evolution equation of the translational velocity and that of the rotational velocity. The two evolution equations evolve separately. The lattice Boltzmann models used in the scheme proposed by this work are constructed via the Hermite expansion, so it is easy to construct new schemes of higher-order accuracy. To validate the proposed scheme, a one-dimensional shock tube simulation is performed. The numerical results agree with the analytical solutions very well.

  3. Self-contained solution to the spatially inhomogeneous electron Boltzmann equation in a cylindrical plasma positive column

    Energy Technology Data Exchange (ETDEWEB)

    Alves, L.L.; Gousset, G.; Ferreira, C.M. [Centro de Electrodinamica, Instituto Superior Tecnico, 1096 Lisboa Codex (Portugal)]|[Laboratoire de Physique des Gaz et des Plasmas, Universite de Paris-Sud, 91405 Orsay Cedex (France)

    1997-01-01

    In this paper we develop a {ital self-contained formulation} to solve the steady-state spatially inhomogeneous electron Boltzmann equation (EBE) in a plasma positive column, taking into account the spatial gradient and the space-charge field terms. The problem is solved in cylindrical geometry using the classical two-term approximation, with appropriate boundary conditions for the electron velocity distribution function, especially at the tube wall. A condition for the microscopic radial flux of electrons at the wall is deduced, and a detailed analysis of some limiting situations is carried out. The present formulation is {ital self-contained} in the sense that the electron particle balance equation is exactly satisfied, that is, the ionization rate exactly compensates for the electron loss rate to the wall. This condition yields a relationship between the applied maintaining field and the gas pressure, termed the {ital discharge characteristic}, which is obtained as an {ital eigenvalue solution} to the problem. By solving the EBE we directly obtain the isotropic and the anisotropic components of the electron distribution function (EDF), from which we deduce the radial distributions of all relevant macroscopic quantities: electron density, electron transport parameters and rate coefficients for excitation and ionization, and electron power transfer. The results show that the values of these quantities across the discharge are lower than those calculated for a homogeneous situation, due to the loss of electrons to the wall. The solutions for the EDF reveal that, for sufficiently low maintaining fields, the radial anisotropy at some radial positions can be negative, that is, directed toward the discharge axis, for energies above a {ital collisional barrier} around the inelastic thresholds. However, at the wall, the radial anisotropy always points to the wall, due to the strong electron drain occuring in this region. (Abstract Truncated)

  4. Nano-particle drag prediction at low Reynolds number using a direct Boltzmann-BGK solution approach

    Science.gov (United States)

    Evans, B.

    2018-01-01

    This paper outlines a novel approach for solution of the Boltzmann-BGK equation describing molecular gas dynamics applied to the challenging problem of drag prediction of a 2D circular nano-particle at transitional Knudsen number (0.0214) and low Reynolds number (0.25-2.0). The numerical scheme utilises a discontinuous-Galerkin finite element discretisation for the physical space representing the problem particle geometry and a high order discretisation for molecular velocity space describing the molecular distribution function. The paper shows that this method produces drag predictions that are aligned well with the range of drag predictions for this problem generated from the alternative numerical approaches of molecular dynamics codes and a modified continuum scheme. It also demonstrates the sensitivity of flow-field solutions and therefore drag predictions to the wall absorption parameter used to construct the solid wall boundary condition used in the solver algorithm. The results from this work has applications in fields ranging from diagnostics and therapeutics in medicine to the fields of semiconductors and xerographics.

  5. Mass and heat transfer between evaporation and condensation surfaces: Atomistic simulation and solution of Boltzmann kinetic equation.

    Science.gov (United States)

    Zhakhovsky, Vasily V; Kryukov, Alexei P; Levashov, Vladimir Yu; Shishkova, Irina N; Anisimov, Sergey I

    2018-04-16

    Boundary conditions required for numerical solution of the Boltzmann kinetic equation (BKE) for mass/heat transfer between evaporation and condensation surfaces are analyzed by comparison of BKE results with molecular dynamics (MD) simulations. Lennard-Jones potential with parameters corresponding to solid argon is used to simulate evaporation from the hot side, nonequilibrium vapor flow with a Knudsen number of about 0.02, and condensation on the cold side of the condensed phase. The equilibrium density of vapor obtained in MD simulation of phase coexistence is used in BKE calculations for consistency of BKE results with MD data. The collision cross-section is also adjusted to provide a thermal flux in vapor identical to that in MD. Our MD simulations of evaporation toward a nonreflective absorbing boundary show that the velocity distribution function (VDF) of evaporated atoms has the nearly semi-Maxwellian shape because the binding energy of atoms evaporated from the interphase layer between bulk phase and vapor is much smaller than the cohesive energy in the condensed phase. Indeed, the calculated temperature and density profiles within the interphase layer indicate that the averaged kinetic energy of atoms remains near-constant with decreasing density almost until the interphase edge. Using consistent BKE and MD methods, the profiles of gas density, mass velocity, and temperatures together with VDFs in a gap of many mean free paths between the evaporation and condensation surfaces are obtained and compared. We demonstrate that the best fit of BKE results with MD simulations can be achieved with the evaporation and condensation coefficients both close to unity.

  6. The global existence and large time behavior of smooth compressible fluid in an infinitely expanding ball, III: The 3-D Boltzmann equation

    Science.gov (United States)

    Yin, Huicheng; Zhao, Wenbin

    2018-01-01

    This paper is a continuation of the works in [35] and [37], where the authors have established the global existence of smooth compressible flows in infinitely expanding balls for inviscid gases and viscid gases, respectively. In this paper, we are concerned with the global existence and large time behavior of compressible Boltzmann gases in an infinitely expanding ball. Such a problem is one of the interesting models in studying the theory of global smooth solutions to multidimensional compressible gases with time dependent boundaries and vacuum states at infinite time. Due to the conservation of mass, the fluid in the expanding ball becomes rarefied and eventually tends to a vacuum state meanwhile there are no appearances of vacuum domains in any part of the expansive ball, which is easily observed in finite time. In the present paper, we will confirm this physical phenomenon for the Boltzmann equation by obtaining the exact lower and upper bound on the macroscopic density function.

  7. Maxwell iteration for the lattice Boltzmann method with diffusive scaling

    Science.gov (United States)

    Zhao, Weifeng; Yong, Wen-An

    2017-03-01

    In this work, we present an alternative derivation of the Navier-Stokes equations from Bhatnagar-Gross-Krook models of the lattice Boltzmann method with diffusive scaling. This derivation is based on the Maxwell iteration and can expose certain important features of the lattice Boltzmann solutions. Moreover, it will be seen to be much more straightforward and logically clearer than the existing approaches including the Chapman-Enskog expansion.

  8. Analysis of the gravitational coupled collisionless Boltzmann-poisson equations and numerical simulations of the formation of self-gravitating systems

    International Nuclear Information System (INIS)

    Roy, Fabrice

    2004-01-01

    We study the formation of self-gravitating systems and their properties by means of N-body simulations of gravitational collapse. First, we summarize the major analytical results concerning the collisionless Boltzmann equation and the Poisson's equation which describe the dynamics of collisionless gravitational systems. We present a study of some analytical solutions of this coupled system of equations. We then present the software used to perform the simulations. Some of this has been parallelized and implemented with the aid of MPI. For this reason we give a brief overview of it. Finally, we present the results of the numerical simulations. Analysis of these results allows us to explain some features of self-gravitating systems and the initial conditions needed to trigger the Antonov instability and the radial orbit instability. (author) [fr

  9. Compressible fluids with Maxwell-type equations, the minimal coupling with electromagnetic field and the Stefan–Boltzmann law

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Albert C.R., E-mail: albert@fisica.ufjf.br [Departamento de Física, Universidade Federal de Juiz de Fora, 36036-330, Juiz de Fora - MG (Brazil); Takakura, Flavio I., E-mail: takakura@fisica.ufjf.br [Departamento de Física, Universidade Federal de Juiz de Fora, 36036-330, Juiz de Fora - MG (Brazil); Abreu, Everton M.C., E-mail: evertonabreu@ufrrj.br [Grupo de Física Teórica e Matemática Física, Departamento de Física, Universidade Federal Rural do Rio de Janeiro, 23890-971, Seropédica - RJ (Brazil); Departamento de Física, Universidade Federal de Juiz de Fora, 36036-330, Juiz de Fora - MG (Brazil); Neto, Jorge Ananias, E-mail: jorge@fisica.ufjf.br [Departamento de Física, Universidade Federal de Juiz de Fora, 36036-330, Juiz de Fora - MG (Brazil)

    2017-05-15

    In this work we have obtained a higher-derivative Lagrangian for a charged fluid coupled with the electromagnetic fluid and the Dirac’s constraints analysis was discussed. A set of first-class constraints fixed by noncovariant gauge condition were obtained. The path integral formalism was used to obtain the partition function for the corresponding higher-derivative Hamiltonian and the Faddeev–Popov ansatz was used to construct an effective Lagrangian. Through the partition function, a Stefan–Boltzmann type law was obtained. - Highlights: • Higher-derivative Lagrangian for a charged fluid. • Electromagnetic coupling and Dirac’s constraint analysis. • Partition function through path integral formalism. • Stefan–Boltzmann-kind law through the partition function.

  10. Accuracy assessment of the linear Poisson-Boltzmann equation and reparametrization of the OBC generalized Born model for nucleic acids and nucleic acid-protein complexes.

    Science.gov (United States)

    Fogolari, Federico; Corazza, Alessandra; Esposito, Gennaro

    2015-04-05

    The generalized Born model in the Onufriev, Bashford, and Case (Onufriev et al., Proteins: Struct Funct Genet 2004, 55, 383) implementation has emerged as one of the best compromises between accuracy and speed of computation. For simulations of nucleic acids, however, a number of issues should be addressed: (1) the generalized Born model is based on a linear model and the linearization of the reference Poisson-Boltmann equation may be questioned for highly charged systems as nucleic acids; (2) although much attention has been given to potentials, solvation forces could be much less sensitive to linearization than the potentials; and (3) the accuracy of the Onufriev-Bashford-Case (OBC) model for nucleic acids depends on fine tuning of parameters. Here, we show that the linearization of the Poisson Boltzmann equation has mild effects on computed forces, and that with optimal choice of the OBC model parameters, solvation forces, essential for molecular dynamics simulations, agree well with those computed using the reference Poisson-Boltzmann model. © 2015 Wiley Periodicals, Inc.

  11. Lattice Boltzmann simulation of antiplane shear loading of a stationary crack

    Science.gov (United States)

    Schlüter, Alexander; Kuhn, Charlotte; Müller, Ralf

    2018-01-01

    In this work, the lattice Boltzmann method is applied to study the dynamic behaviour of linear elastic solids under antiplane shear deformation. In this case, the governing set of partial differential equations reduces to a scalar wave equation for the out of plane displacement in a two dimensional domain. The lattice Boltzmann approach developed by Guangwu (J Comput Phys 161(1):61-69, 2000) in 2006 is used to solve the problem numerically. Some aspects of the scheme are highlighted, including the treatment of the boundary conditions. Subsequently, the performance of the lattice Boltzmann scheme is tested for a stationary crack problem for which an analytic solution exists. The treatment of cracks is new compared to the examples that are discussed in Guangwu's work. Furthermore, the lattice Boltzmann simulations are compared to finite element computations. Finally, the influence of the lattice Boltzmann relaxation parameter on the stability of the scheme is illustrated.

  12. Elliptic flow in Pb+Pb collisions at √{s_{NN}} = 2.76 TeV at the LHC using Boltzmann transport equation with non-extensive statistics

    Science.gov (United States)

    Tripathy, Sushanta; Kumar Tiwari, Swatantra; Younus, Mohammed; Sahoo, Raghunath

    2018-03-01

    Elliptic flow in heavy-ion collisions is an important signature of a possible de-confinement transition from hadronic phase to partonic phase. In the present work, we use non-extensive statistics, which has been used for transverse momentum (pT) distribution in proton+proton ( p+p) collisions, as the initial particle distribution function in Boltzmann Transport Equation (BTE). A Boltzmann-Gibbs Blast Wave (BGBW) function is taken as an equilibrium function to get the final distribution to describe the particle production in heavy-ion collisions. In this formalism, we try to estimate the elliptic flow in Pb+Pb collisions at √{s_{NN}} = 2.76 TeV at the LHC for different centralities. The elliptic flow ( v2) of identified particles seems to be described quite well in the available pT range. An approach which combines the non-extensive nature of particle production in p+p collisions through an evolution in kinetic theory using BTE, with BGBW as an equilibrium distribution is successful in describing the spectra and elliptic flow in heavy-ion collisions.

  13. A Lattice Boltzmann Approach to Multi-Phase Surface Reactions with Heat Effects

    NARCIS (Netherlands)

    Kamali, M.R.

    2013-01-01

    The aim of the present research was to explore the promises and shift the limits of the numerical framework of lattice Boltzmann (LB) for studying the physics behind multi-component two-phase heterogeneous non-isothermal reactive flows under industrial conditions. An example of such an industrially

  14. On a two-relaxation-time D2Q9 lattice Boltzmann model for the Navier-Stokes equations

    Science.gov (United States)

    Zhao, Weifeng; Wang, Liang; Yong, Wen-An

    2018-02-01

    In this paper, we are concerned with the stability of some lattice kinetic schemes. First, we show that a recently proposed lattice kinetic scheme is a two-relaxation-time model different from those in the literature. Second, we analyze the stability of the model by verifying the Onsager-like relation. In addition, a necessary stability criterion for hyperbolic relaxation systems is adapted to the lattice Boltzmann method. As an application of this criterion, we find some necessary stability conditions for a previously proposed lattice kinetic scheme. Numerical experiments are conducted to validate the necessary stability conditions.

  15. Nonequilibrium phenomena in QCD and BEC. Boltzmann and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Stockamp, T.

    2006-12-22

    In chapter 2 we chose the real time formalism to discuss some basic principles in quantum field theory at finite temperature. This enables us to derive the quantum Boltzmann equation from the Schwinger-Dyson series. We then shortly introduce the basic concepts of QCD which are needed to understand the physics of QGP formation. After a detailed account on the bottom-up scenario we show the consistency of this approach by a diagramatical analysis of the relevant Boltzmann collision integrals. Chapter 3 deals with BEC dynamics out of equilibrium. After an introduction to the fundamental theoretical tool - namely the Gross-Pitaevskii equation - we focus on a generalization to finite temperature developed by Zaremba, Nikuni and Griffin (ZNG). These authors use a Boltzmann equation to describe the interactions between condensed and excited atoms and manage in this way to describe condensate growth. We then turn to a discussion on the 2PI effective action and derive equations of motion for a relativistic scalar field theory. In the nonrelativistic limit these equations are shown to coincide with the ZNG theory when a quasiparticle approximation is applied. Finally, we perform a numerical analysis of the full 2PI equations. These remain valid even at strong coupling and far from equilibrium, and thus go far beyond Boltzmann's approach. For simplicity, we limit ourselves to a homogeneous system and present the first 3+1 dimensional study of condensate melting. (orig.)

  16. Polarised photon and flavoured lepton quantum Boltzmann equations in the early universe; Polarisierte Photon- und geflavourte Lepton-Quantenboltzmanngleichungen im fruehen Universum

    Energy Technology Data Exchange (ETDEWEB)

    Fidler, Christian

    2011-12-16

    Polarisation and Nongaussianity are expected to play a central role in future studies of the cosmic microwave background radiation. Polarisation can be split into a divergence-like E-mode and a curl-like B-mode, of which the later can only be induced by primordial gravitational waves (tensor fluctuations of the metric) at leading order. Nongaussianity is not generated at first order and is directly proportional to the primordial Nongaussianity of inflation. Thus B-mode polarisation and Nongaussianity constrain inflation models directly. While E-mode polarisation has already been detected and is being observed with increasing precision, B-mode polarisation and Nongaussianity remains elusive. The absence of B-mode polarisation when the primordial fluctuations are purely scalar holds, however, only in linear perturbation theory. B-mode polarisation is also generated from scalar sources in second order, which may constitute an important background to the search for primordial gravitational waves. While such an effect would naturally be expected to be relevant at tensor-to-scalar ratios of order 10{sup -5}, which is the size of perturbations in the microwave background, only a full second order calculation can tell whether there are no enhancements. For Nongaussianity the situation is analogous: At second order intrinsic Nongaussianities are induced to the spectrum, which may be an important background to the primordial Nongaussianity. After the full second-order Boltzmann equations for the cosmological evolution of the polarised radiation distribution have become available, I focused on the novel sources to B-mode polarisation that appear in the second-order collision term, which have not been calculated before. In my PHD thesis I developed a numerical code, which solves the second order Boltzmann hierarchy and calculates the C{sub l}{sup BB}-spectrum.

  17. Lattices for the lattice Boltzmann method.

    Science.gov (United States)

    Chikatamarla, Shyam S; Karlin, Iliya V

    2009-04-01

    A recently introduced theory of higher-order lattice Boltzmann models [Chikatamarla and Karlin, Phys. Rev. Lett. 97, 190601 (2006)] is elaborated in detail. A general theory of the construction of lattice Boltzmann models as an approximation to the Boltzmann equation is presented. New lattices are found in all three dimensions and are classified according to their accuracy (degree of approximation of the Boltzmann equation). The numerical stability of these lattices is argued based on the entropy principle. The efficiency and accuracy of many new lattices are demonstrated via simulations in all three dimensions.

  18. Lattice Boltzmann scheme for mixture modeling: analysis of the continuum diffusion regimes recovering Maxwell-Stefan model and incompressible Navier-Stokes equations.

    Science.gov (United States)

    Asinari, Pietro

    2009-11-01

    A finite difference lattice Boltzmann scheme for homogeneous mixture modeling, which recovers Maxwell-Stefan diffusion model in the continuum limit, without the restriction of the mixture-averaged diffusion approximation, was recently proposed [P. Asinari, Phys. Rev. E 77, 056706 (2008)]. The theoretical basis is the Bhatnagar-Gross-Krook-type kinetic model for gas mixtures [P. Andries, K. Aoki, and B. Perthame, J. Stat. Phys. 106, 993 (2002)]. In the present paper, the recovered macroscopic equations in the continuum limit are systematically investigated by varying the ratio between the characteristic diffusion speed and the characteristic barycentric speed. It comes out that the diffusion speed must be at least one order of magnitude (in terms of Knudsen number) smaller than the barycentric speed, in order to recover the Navier-Stokes equations for mixtures in the incompressible limit. Some further numerical tests are also reported. In particular, (1) the solvent and dilute test cases are considered, because they are limiting cases in which the Maxwell-Stefan model reduces automatically to Fickian cases. Moreover, (2) some tests based on the Stefan diffusion tube are reported for proving the complete capabilities of the proposed scheme in solving Maxwell-Stefan diffusion problems. The proposed scheme agrees well with the expected theoretical results.

  19. Flux Limiter Lattice Boltzmann Scheme Approach to Compressible Flows with Flexible Specific-Heat Ratio and Prandtl Number

    International Nuclear Information System (INIS)

    Gan Yanbiao; Li Yingjun; Xu Aiguo; Zhang Guangcai

    2011-01-01

    We further develop the lattice Boltzmann (LB) model [Physica A 382 (2007) 502] for compressible flows from two aspects. Firstly, we modify the Bhatnagar-Gross-Krook (BGK) collision term in the LB equation, which makes the model suitable for simulating flows with different Prandtl numbers. Secondly, the flux limiter finite difference (FLFD) scheme is employed to calculate the convection term of the LB equation, which makes the unphysical oscillations at discontinuities be effectively suppressed and the numerical dissipations be significantly diminished. The proposed model is validated by recovering results of some well-known benchmarks, including (i) The thermal Couette flow; (ii) One- and two-dimensional Riemann problems. Good agreements are obtained between LB results and the exact ones or previously reported solutions. The flexibility, together with the high accuracy of the new model, endows the proposed model considerable potential for tracking some long-standing problems and for investigating nonlinear nonequilibrium complex systems. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  20. On the Boltzmann-Grad Limit for Smooth Hard-Sphere Systems

    Science.gov (United States)

    Tessarotto, Massimo; Cremaschini, Claudio; Mond, Michael; Asci, Claudio; Soranzo, Alessandro; Tironi, Gino

    2018-03-01

    The problem is posed of the prescription of the so-called Boltzmann-Grad limit operator (L_{BG}) for the N-body system of smooth hard-spheres which undergo unary, binary as well as multiple elastic instantaneous collisions. It is proved, that, despite the non-commutative property of the operator L_{BG}, the Boltzmann equation can nevertheless be uniquely determined. In particular, consistent with the claim of Uffink and Valente (Found Phys 45:404, 2015) that there is "no time-asymmetric ingredient" in its derivation, the Boltzmann equation is shown to be time-reversal symmetric. The proof is couched on the "ab initio" axiomatic approach to the classical statistical mechanics recently developed (Tessarotto et al. in Eur Phys J Plus 128:32, 2013). Implications relevant for the physical interpretation of the Boltzmann H-theorem and the phenomenon of decay to kinetic equilibrium are pointed out.

  1. A lattice Boltzmann coupled to finite volumes method for solving phase change problems

    Directory of Open Access Journals (Sweden)

    El Ganaoui Mohammed

    2009-01-01

    Full Text Available A numerical scheme coupling lattice Boltzmann and finite volumes approaches has been developed and qualified for test cases of phase change problems. In this work, the coupled partial differential equations of momentum conservation equations are solved with a non uniform lattice Boltzmann method. The energy equation is discretized by using a finite volume method. Simulations show the ability of this developed hybrid method to model the effects of convection, and to predict transfers. Benchmarking is operated both for conductive and convective situation dominating solid/liquid transition. Comparisons are achieved with respect to available analytical solutions and experimental results.

  2. Electron attachment coefficient in low E/N regions and a discussion of discharge-instability in KrF laser. ; Analysis by logarithm transformed Boltzmann equation. Tei E/N ryoiki no denshi fuchaku keisu to KrF laser reiki hoden no fuanteisei ni kansuru ichi kosatsu. ; Tai su henkan Boltzmann hoteishiki ni yoru kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, H.; Urabe, J.; Yukimura, K. (Doshisha Univ., Kyoto (Japan))

    1991-03-20

    In a discharge excitation rare gas halide excima laser, uniform generation and stable maintenance of the excited discharge determines the laser characteristics. In this report, an approximate solution was obtained on the Boltzmann equation (frequently used for the theoretical analysis of this laser) to examine the nature of the solution. By optimizing the conversion of the variables, calculation of an electron swarm parameter in the hitherto uncertain range of the low conversion electric field was made possible, giving a generation mechanism of the uncertainty of the excited dischareg. The results are summarized as below. (1) The Boltzmann equation gives a linear solution for a logarithmic value of an electron energy in the range of low conversion electric field. (2) Time-wise responce ability between the measured voltage, current characteristics of the excitation discharge was clarified and the attachment and ionization coefficients calculated by Boltzmann equation. (3) Dependency of the attachment coefficient on the partial pressure of fluorine and kripton was examined, and the attachment coefficient was found to increase with the increase of the partial pressure for the both cases. 20 refs., 9 figs., 2 tabs.

  3. Transport coefficients and cross sections for electrons in water vapour: Comparison of cross section sets using an improved Boltzmann equation solution

    Science.gov (United States)

    Ness, K. F.; Robson, R. E.; Brunger, M. J.; White, R. D.

    2012-01-01

    This paper revisits the issues surrounding computation of electron transport properties in water vapour as a function of E/n0 (the ratio of the applied electric field to the water vapour number density) up to 1200 Td. We solve the Boltzmann equation using an improved version of the code of Ness and Robson [Phys. Rev. A 38, 1446 (1988)], facilitating the calculation of transport coefficients to a considerably higher degree of accuracy. This allows a correspondingly more discriminating test of the various electron-water vapour cross section sets proposed by a number of authors, which has become an important issue as such sets are now being applied to study electron driven processes in atmospheric phenomena [P. Thorn, L. Campbell, and M. Brunger, PMC Physics B 2, 1 (2009)] and in modeling charged particle tracks in matter [A. Munoz, F. Blanco, G. Garcia, P. A. Thorn, M. J. Brunger, J. P. Sullivan, and S. J. Buckman, Int. J. Mass Spectrom. 277, 175 (2008)].

  4. Comparison of the lattice Boltzmann equation and discrete unified gas-kinetic scheme methods for direct numerical simulation of decaying turbulent flows.

    Science.gov (United States)

    Wang, Peng; Wang, Lian-Ping; Guo, Zhaoli

    2016-10-01

    The main objective of this work is to perform a detailed comparison of the lattice Boltzmann equation (LBE) and the recently developed discrete unified gas-kinetic scheme (DUGKS) methods for direct numerical simulation (DNS) of the decaying homogeneous isotropic turbulence and the Kida vortex flow in a periodic box. The flow fields and key statistical quantities computed by both methods are compared with those from the pseudospectral method at both low and moderate Reynolds numbers. The results show that the LBE is more accurate and efficient than the DUGKS, but the latter has a superior numerical stability, particularly for high Reynolds number flows. In addition, we conclude that the DUGKS can adequately resolve the flow when the minimum spatial resolution parameter k_{max}η>3, where k_{max} is the maximum resolved wave number and η is the flow Kolmogorov length. This resolution requirement can be contrasted with the requirements of k_{max}η>1 for the pseudospectral method and k_{max}η>2 for the LBE. It should be emphasized that although more validations should be conducted before the DUGKS can be called a viable tool for DNS of turbulent flows, the present work contributes to the overall assessment of the DUGKS, and it provides a basis for further applications of DUGKS in studying the physics of turbulent flows.

  5. Multiple-Relaxation-Time Lattice Boltzmann Approach to Richtmyer-Meshkov Instability

    International Nuclear Information System (INIS)

    Chen Feng; Li Yingjun; Xu Aiguo; Zhang Guangcai

    2011-01-01

    The aims of the present paper are twofold. At first, we further study the Multiple-Relaxation-Time (MRT) Lattice Boltzmann (LB) model proposed in [Europhys. Lett. 90 (2010) 54003]. We discuss the reason why the Gram-Schmidt orthogonalization procedure is not needed in the construction of transformation matrix M; point out a reason why the Kataoka-Tsutahara model [Phys. Rev. E 69 (2004) 035701 (R)] is only valid in subsonic flows. The von Neumann stability analysis is performed. Secondly, we carry out a preliminary quantitative study on the Richtmyer-Meshkov instability using the proposed MRT LB model. When a shock wave travels from a light medium to a heavy one, the simulated growth rate is in qualitative agreement with the perturbation model by Zhang-Sohn. It is about half of the predicted value by the impulsive model and is closer to the experimental result. When the shock wave travels from a heavy medium to a light one, our simulation results are also consistent with physical analysis. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  6. Numerical Modeling of Non-Newtonian and Viscoelastic Flows using Central Moment Lattice Boltzmann Approach

    Science.gov (United States)

    Adam, Saad; Premnath, Kannan

    2017-11-01

    Non-Newtonian fluid flows with nonlinear rheological behavior occur in a number of applications such as in chemical, biological and materials processing contexts. In addition, viscoelastic fluids exhibit peculiar normal stress and memory effects. Lattice Boltzmann (LB) methods involving the use of central moments provide improved numerical stability and better physical coherence. Here, first, we present a LB model based on central moments with extended moment equilibria involving strain rates and an adjustable parameter to represent non-Newtonian power-law fluids in three-dimensions, and its numerical validation for flows encompassing both shear thinning and shear thickening fluids. Next, we discuss a LB scheme using central moments and a source term to represent the evolution of the viscoelastic stresses modeled using the upper convected Oldroyd-B model, which transform objectively - a key physical requirement. The viscoelastic stresses are then coupled to the LB flow solver as additional contributions to the latter's second order moment equilibria in the collision step. The resulting scheme is validated for various viscoelastic benchmark flows for which prior analytical and/or numerical solutions available at different Weissenberg numbers and viscosity ratios.

  7. Lattice Boltzmann model for numerical relativity.

    Science.gov (United States)

    Ilseven, E; Mendoza, M

    2016-02-01

    In the Z4 formulation, Einstein equations are written as a set of flux conservative first-order hyperbolic equations that resemble fluid dynamics equations. Based on this formulation, we construct a lattice Boltzmann model for numerical relativity and validate it with well-established tests, also known as "apples with apples." Furthermore, we find that by increasing the relaxation time, we gain stability at the cost of losing accuracy, and by decreasing the lattice spacings while keeping a constant numerical diffusivity, the accuracy and stability of our simulations improve. Finally, in order to show the potential of our approach, a linear scaling law for parallelization with respect to number of CPU cores is demonstrated. Our model represents the first step in using lattice kinetic theory to solve gravitational problems.

  8. A self-consistent phase-field approach to implicit solvation of charged molecules with Poisson-Boltzmann electrostatics.

    Science.gov (United States)

    Sun, Hui; Wen, Jiayi; Zhao, Yanxiang; Li, Bo; McCammon, J Andrew

    2015-12-28

    Dielectric boundary based implicit-solvent models provide efficient descriptions of coarse-grained effects, particularly the electrostatic effect, of aqueous solvent. Recent years have seen the initial success of a new such model, variational implicit-solvent model (VISM) [Dzubiella, Swanson, and McCammon Phys. Rev. Lett. 96, 087802 (2006) and J. Chem. Phys. 124, 084905 (2006)], in capturing multiple dry and wet hydration states, describing the subtle electrostatic effect in hydrophobic interactions, and providing qualitatively good estimates of solvation free energies. Here, we develop a phase-field VISM to the solvation of charged molecules in aqueous solvent to include more flexibility. In this approach, a stable equilibrium molecular system is described by a phase field that takes one constant value in the solute region and a different constant value in the solvent region, and smoothly changes its value on a thin transition layer representing a smeared solute-solvent interface or dielectric boundary. Such a phase field minimizes an effective solvation free-energy functional that consists of the solute-solvent interfacial energy, solute-solvent van der Waals interaction energy, and electrostatic free energy described by the Poisson-Boltzmann theory. We apply our model and methods to the solvation of single ions, two parallel plates, and protein complexes BphC and p53/MDM2 to demonstrate the capability and efficiency of our approach at different levels. With a diffuse dielectric boundary, our new approach can describe the dielectric asymmetry in the solute-solvent interfacial region. Our theory is developed based on rigorous mathematical studies and is also connected to the Lum-Chandler-Weeks theory (1999). We discuss these connections and possible extensions of our theory and methods.

  9. A self-consistent phase-field approach to implicit solvation of charged molecules with Poisson–Boltzmann electrostatics

    Science.gov (United States)

    Sun, Hui; Wen, Jiayi; Zhao, Yanxiang; Li, Bo; McCammon, J. Andrew

    2015-01-01

    Dielectric boundary based implicit-solvent models provide efficient descriptions of coarse-grained effects, particularly the electrostatic effect, of aqueous solvent. Recent years have seen the initial success of a new such model, variational implicit-solvent model (VISM) [Dzubiella, Swanson, and McCammon Phys. Rev. Lett. 96, 087802 (2006) and J. Chem. Phys. 124, 084905 (2006)], in capturing multiple dry and wet hydration states, describing the subtle electrostatic effect in hydrophobic interactions, and providing qualitatively good estimates of solvation free energies. Here, we develop a phase-field VISM to the solvation of charged molecules in aqueous solvent to include more flexibility. In this approach, a stable equilibrium molecular system is described by a phase field that takes one constant value in the solute region and a different constant value in the solvent region, and smoothly changes its value on a thin transition layer representing a smeared solute-solvent interface or dielectric boundary. Such a phase field minimizes an effective solvation free-energy functional that consists of the solute-solvent interfacial energy, solute-solvent van der Waals interaction energy, and electrostatic free energy described by the Poisson–Boltzmann theory. We apply our model and methods to the solvation of single ions, two parallel plates, and protein complexes BphC and p53/MDM2 to demonstrate the capability and efficiency of our approach at different levels. With a diffuse dielectric boundary, our new approach can describe the dielectric asymmetry in the solute-solvent interfacial region. Our theory is developed based on rigorous mathematical studies and is also connected to the Lum–Chandler–Weeks theory (1999). We discuss these connections and possible extensions of our theory and methods. PMID:26723595

  10. Efficiently computing pathway free energies: New approaches based on chain-of-replica and Non-Boltzmann Bennett reweighting schemes.

    Science.gov (United States)

    Hudson, Phillip S; White, Justin K; Kearns, Fiona L; Hodoscek, Milan; Boresch, Stefan; Lee Woodcock, H

    2015-05-01

    Accurately modeling condensed phase processes is one of computation's most difficult challenges. Include the possibility that conformational dynamics may be coupled to chemical reactions, where multiscale (i.e., QM/MM) methods are needed, and this task becomes even more daunting. Free energy simulations (i.e., molecular dynamics), multiscale modeling, and reweighting schemes. Herein, we present two new approaches for mitigating the aforementioned challenges. The first is a new chain-of-replica method (off-path simulations, OPS) for computing potentials of mean force (PMFs) along an easily defined reaction coordinate. This development is coupled with a new distributed, highly-parallel replica framework (REPDstr) within the CHARMM package. Validation of these new schemes is carried out on two processes that undergo conformational changes. First is the simple torsional rotation of butane, while a much more challenging glycosidic rotation (in vacuo and solvated) is the second. Additionally, a new approach that greatly improves (i.e., possibly an order of magnitude) the efficiency of computing QM/MM PMFs is introduced and compared to standard schemes. Our efforts are grounded in the recently developed method for efficiently computing QM-based free energies (i.e., QM-Non-Boltzmann Bennett, QM-NBB). Again, we validate this new technique by computing the QM/MM PMF of butane's torsional rotation. The OPS-REPDstr method is a promising new approach that overcomes many limitations of standard pathway simulations in CHARMM. The combination of QM-NBB with pathway techniques is very promising as it offers significant advantages over current procedures. Efficiently computing potentials of mean force is a major, unresolved, area of interest. This article is part of a Special Issue entitled Recent developments of molecular dynamics. Copyright © 2014. Published by Elsevier B.V.

  11. A Practical Approach to Quadratic Equations.

    Science.gov (United States)

    Light, Peter

    1983-01-01

    The usual methods for solving quadratic equations are noted to require either the use of numerical formula or curve plotting on graph paper. The method described here enables pupils to solve equations using only a 45 degree setsquare, graph paper, and a pencil for those which have both real roots and real coefficients. (Author/MP)

  12. Distributed Approximating Functional Approach to Burgers' Equation ...

    African Journals Online (AJOL)

    This equation is similar to, but simpler than, the Navier-Stokes equation in fluid dynamics. To verify this advantage through some comparison studies, an exact series solution are also obtained. In addition, the presented scheme has numerically stable behavior. After demonstrating the convergence and accuracy of the ...

  13. Boltzmann equation analysis of electrons swarm parameters and properties of excited particle number densities in Xe/Ne plasmas. Laser absorption effect; Xe/Ne plasma chudenshi yuso keisu narabi ni reiki ryushisu mitsudo tokusei no Boltzmann hoteishiki kaiseki. Laser ko kyushu koka

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, S.; Sugawara, H.; Ventzek, P.; Sakai, Y. [Hokkaido University, Sapporo (Japan)

    1998-06-01

    Xe/Ne plasmas are important for plasma display panels and VUV light sources. However, reactions between electrons and excited particles in the mixtures are so complicated that influence of the reactions on the plasma properties is not understood well. In this work, taking account of reactions through which electrons are produced, such as cumulative and Penning ionization, and of transition between excited levels, the electron and excited particle properties in Xe/Ne plasmas are calculated using the Boltzmann equation. The ionization coefficient and electron drift velocity agreed with experimental data. The influence of laser absorption in Xe/Ne plasmas on the plasma properties is also discussed. 25 refs., 15 figs.

  14. An axiomatic approach to Maxwell’s equations

    International Nuclear Information System (INIS)

    Heras, José A

    2016-01-01

    This paper suggests an axiomatic approach to Maxwell’s equations. The basis of this approach is a theorem formulated for two sets of functions localized in space and time. If each set satisfies a continuity equation then the theorem provides an integral representation for each function. A corollary of this theorem yields Maxwell’s equations with magnetic monopoles. It is pointed out that the causality principle and the conservation of electric and magnetic charges are the most fundamental physical axioms underlying these equations. Another application of the corollary yields Maxwell’s equations in material media. The theorem is also formulated in the Minkowski space-time and applied to obtain the covariant form of Maxwell’s equations with magnetic monopoles and the covariant form of Maxwell’s equations in material media. The approach makes use of the infinite-space Green function of the wave equation and is therefore suitable for an advanced course in electrodynamics. (paper)

  15. Deep Appearance Models: A Deep Boltzmann Machine Approach for Face Modeling

    OpenAIRE

    Duong, Chi Nhan; Luu, Khoa; Quach, Kha Gia; Bui, Tien D.

    2016-01-01

    The "interpretation through synthesis" approach to analyze face images, particularly Active Appearance Models (AAMs) method, has become one of the most successful face modeling approaches over the last two decades. AAM models have ability to represent face images through synthesis using a controllable parameterized Principal Component Analysis (PCA) model. However, the accuracy and robustness of the synthesized faces of AAM are highly depended on the training sets and inherently on the genera...

  16. Effective Hamiltonian Approach to the Master Equation

    OpenAIRE

    Yi, X. X.; Yu, S. X.

    2000-01-01

    A method of exactly solving the master equation is presented in this letter. The explicit form of the solution is determined by the time evolution of a composite system including an auxiliary system and the open system in question. The effective Hamiltonian governing the time evolution of the composed system are derived from the master equation. Two examples, the dissipative two-level system and the damped harmonic oscillator, are presented to illustrate the solving procedure. PACS number(s):...

  17. A lattice Boltzmann model for solute transport in open channel flow

    Science.gov (United States)

    Wang, Hongda; Cater, John; Liu, Haifei; Ding, Xiangyi; Huang, Wei

    2018-01-01

    A lattice Boltzmann model of advection-dispersion problems in one-dimensional (1D) open channel flows is developed for simulation of solute transport and pollutant concentration. The hydrodynamics are calculated based on a previous lattice Boltzmann approach to solving the 1D Saint-Venant equations (LABSVE). The advection-dispersion model is coupled with the LABSVE using the lattice Boltzmann method. Our research recovers the advection-dispersion equations through the Chapman-Enskog expansion of the lattice Boltzmann equation. The model differs from the existing schemes in two points: (1) the lattice Boltzmann numerical method is adopted to solve the advection-dispersion problem by meso-scopic particle distribution; (2) and the model describes the relation between discharge, cross section area and solute concentration, which increases the applicability of the water quality model in practical engineering. The model is verified using three benchmark tests: (1) instantaneous solute transport within a short distance; (2) 1D point source pollution with constant velocity; (3) 1D point source pollution in a dam break flow. The model is then applied to a 50-year flood point source pollution accident on the Yongding River, which showed good agreement with a MIKE 11 solution and gauging data.

  18. Equating TIMSS Mathematics Subtests with Nonlinear Equating Methods Using NEAT Design: Circle-Arc Equating Approaches

    Science.gov (United States)

    Ozdemir, Burhanettin

    2017-01-01

    The purpose of this study is to equate Trends in International Mathematics and Science Study (TIMSS) mathematics subtest scores obtained from TIMSS 2011 to scores obtained from TIMSS 2007 form with different nonlinear observed score equating methods under Non-Equivalent Anchor Test (NEAT) design where common items are used to link two or more test…

  19. Relativistic Boltzmann theory for a plasma

    International Nuclear Information System (INIS)

    Erkelens, H. van.

    1984-01-01

    This thesis gives a self-contained treatment of the relativistic Boltzmann theory for a plasma. Here plasma means any mixture containing electrically charged particles. The relativistic Boltzmann equation is linearized for the case of a plasma. The Chapman-Enskog method is elaborated further for transport phenomena. Linear laws for viscous phenomena are derived. Then the collision term in the Boltzmann theory is dealt with. Using the transport equation, a kinetic theory of wave phenomena is developed and the dissipation of hydromagnetic waves in a relativistic plasma is investigated. In the final chapter, it is demonstrated how the relativistic Boltzmann theory can be applied in cosmology. In doing so, expressions are derived for the electric conductivity of the cosmological plasma in the lepton era, the plasma era and the annihilation era. (Auth.)

  20. Saltwater Intrusion Simulation in Heterogeneous Aquifer Using Lattice Boltzmann Method

    Science.gov (United States)

    Servan-Camas, B.; Tsai, F. T.

    2006-12-01

    This study develops a saltwater intrusion simulation model using a lattice Boltzmann method (LBM) in a two- dimensional coastal confined aquifer. The saltwater intrusion phenomenon is described by density-varied groundwater flow and mass transport equations, where a freshwater-saltwater mixing zone is considered. Although primarily developed using the mesoscopic approach to solve macroscopic fluid dynamic problems (e.g. Navier-Stoke equation), LBM is able to be adopted to solve physical-based diffusion-type governing equations as for the groundwater flow and mass transport equations. The challenge of using LBM in saltwater intrusion modeling is to recover hydraulic conductivity heterogeneity. In this study, the Darcy equation and the advection-dispersion equation (ADE) are recovered in the lattice Boltzmann modeling. Specifically, the hydraulic conductivity heterogeneity is represented by the speed of sound in LBM. Under the consideration on the steady-state groundwater flow due to low storativity, in each time step the flow problem is modified to be a Poisson equation and solved by LBM. Nevertheless, the groundwater flow is still a time-marching problem with spatial-temporal variation in salinity concentration as well as density. The Henry problem is used to compare the LBM results against the Henry analytic solution and SUTRA result. Also, we show that LBM is capable of handling the Dirichlet, Neumann, and Cauchy concentration boundary conditions at the sea side. Finally, we compare the saltwater intrusion results using LBM in the Henry problem when heterogeneous hydraulic conductivity is considered.

  1. Multispeed models in off-lattice Boltzmann simulations

    NARCIS (Netherlands)

    Bardow, A.; Karlin, I.V.; Gusev, A.A.

    2008-01-01

    The lattice Boltzmann method is a highly promising approach to the simulation of complex flows. Here, we realize recently proposed multispeed lattice Boltzmann models [S. Chikatamarla et al., Phys. Rev. Lett. 97 190601 (2006)] by exploiting the flexibility offered by off-lattice Boltzmann methods.

  2. Contribution to the solution of the multigroup Boltzmann equation by the determinist methods and the Monte Carlo method; Contribution a la resolution de l`equation de Bolztmann en multigroupe par les methodes deterministes et Monte-Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Li, M

    1998-08-01

    In this thesis, two methods for solving the multigroup Boltzmann equation have been studied: the interface-current method and the Monte Carlo method. A new version of interface-current (IC) method has been develop in the TDT code at SERMA, where the currents of interface are represented by piecewise constant functions in the solid angle space. The convergence of this method to the collision probability (CP) method has been tested. Since the tracking technique is used for both the IC and CP methods, it is necessary to normalize he collision probabilities obtained by this technique. Several methods for this object have been studied and implemented in our code, we have compared their performances and chosen the best one as the standard choice. The transfer matrix treatment has been a long-standing difficulty for the multigroup Monte Carlo method: when the cross-sections are converted into multigroup form, important negative parts will appear in the angular transfer laws represented by low-order Legendre polynomials. Several methods based on the preservation of the first moments, such as the discrete angles methods and the equally-probable step function method, have been studied and implemented in the TRIMARAN-II code. Since none of these codes has been satisfactory, a new method, the non equally-probably step function method, has been proposed and realized in our code. The comparisons for these methods have been done in several aspects: the preservation of the moments required, the calculation of a criticality problem and the calculation of a neutron-transfer in water problem. The results have showed that the new method is the best one in all these comparisons, and we have proposed that it should be a standard choice for the multigroup transfer matrix. (author) 76 refs.

  3. Rational Chebyshev pseudospectral approach for solving Thomas-Fermi equation

    Energy Technology Data Exchange (ETDEWEB)

    Parand, K. [Department of Computer Sciences, Shahid Beheshti University, Tehran (Iran, Islamic Republic of)], E-mail: k_parand@sbu.ac.ir; Shahini, M. [Department of Computer Sciences, Shahid Beheshti University, Tehran (Iran, Islamic Republic of)], E-mail: m.shahini@mail.sbu.ac.ir

    2009-01-05

    In this Letter we propose a pseudospectral method for solving Thomas-Fermi equation which is a nonlinear ordinary differential equation on semi-infinite interval. This approach is based on rational Chebyshev pseudospectral method. This method reduces the solution of this problem to the solution of a system of algebraic equations. Comparison with some numerical solutions shows that the present solution is highly accurate.

  4. Boltzmann, Einstein, Natural Law and Evolution

    International Nuclear Information System (INIS)

    Broda, E.

    1980-01-01

    Like Boltzmann, Einstein was a protagonist of atomistics. As a physicist, he has been called Boltzmann's true successor. Also in epistemology, after overcoming the positivist influence of Mach, Einstein approached Boltzmann. Any difference between Boltzmann's realism, or even materialism, and Einstein's pantheism may be merely a matter of emphasis. Yet a real difference exists in another respect. Boltzmann explained man's power of thinking and feeling, his morality and his esthetic sense, on an evolutionary, Darwinian, basis. In contrast, evolution had no role in Einstein's thought, though Darwin was accepted by him. This lack of appreciation of the importance of evolution is now attributed to socio-political factors. (author)

  5. Epidemics in networks: a master equation approach

    Science.gov (United States)

    Cotacallapa, M.; Hase, M. O.

    2016-02-01

    A problem closely related to epidemiology, where a subgraph of ‘infected’ links is defined inside a larger network, is investigated. This subgraph is generated from the underlying network by a random variable, which decides whether a link is able to propagate a disease/information. The relaxation timescale of this random variable is examined in both annealed and quenched limits, and the effectiveness of propagation of disease/information is analyzed. The dynamics of the model is governed by a master equation and two types of underlying network are considered: one is scale-free and the other has exponential degree distribution. We have shown that the relaxation timescale of the contagion variable has a major influence on the topology of the subgraph of infected links, which determines the efficiency of spreading of disease/information over the network.

  6. A Variational Approach to Perturbed Discrete Anisotropic Equations

    Directory of Open Access Journals (Sweden)

    Amjad Salari

    2016-01-01

    Full Text Available We continue the study of discrete anisotropic equations and we will provide new multiplicity results of the solutions for a discrete anisotropic equation. We investigate the existence of infinitely many solutions for a perturbed discrete anisotropic boundary value problem. The approach is based on variational methods and critical point theory.

  7. Virtuous organization: A structural equation modeling approach

    Directory of Open Access Journals (Sweden)

    Majid Zamahani

    2013-02-01

    Full Text Available For years, the idea of virtue was unfavorable among researchers and virtues were traditionally considered as culture-specific, relativistic and they were supposed to be associated with social conservatism, religious or moral dogmatism, and scientific irrelevance. Virtue and virtuousness have been recently considered seriously among organizational researchers. The proposed study of this paper examines the relationships between leadership, organizational culture, human resource, structure and processes, care for community and virtuous organization. Structural equation modeling is employed to investigate the effects of each variable on other components. The data used in this study consists of questionnaire responses from employees in Payam e Noor University in Yazd province. A total of 250 questionnaires were sent out and a total of 211 valid responses were received. Our results have revealed that all the five variables have positive and significant impacts on virtuous organization. Among the five variables, organizational culture has the most direct impact (0.80 and human resource has the most total impact (0.844 on virtuous organization.

  8. Meta-analysis a structural equation modeling approach

    CERN Document Server

    Cheung, Mike W-L

    2015-01-01

    Presents a novel approach to conducting meta-analysis using structural equation modeling. Structural equation modeling (SEM) and meta-analysis are two powerful statistical methods in the educational, social, behavioral, and medical sciences. They are often treated as two unrelated topics in the literature. This book presents a unified framework on analyzing meta-analytic data within the SEM framework, and illustrates how to conduct meta-analysis using the metaSEM package in the R statistical environment. Meta-Analysis: A Structural Equation Modeling Approach begins by introducing the impo

  9. Transverse-momentum spectra and nuclear modification factor using Boltzmann Transport Equation with flow in Pb+Pb collisions at √(s{sub NN}) = 2.76 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Tripathy, Sushanta; Khuntia, Arvind; Tiwari, Swatantra Kumar; Sahoo, Raghunath [Indian Institute of Technology Indore, Discipline of Physics, School of Basic Sciences, Indore (India)

    2017-05-15

    In the continuation of our previous work, the transverse-momentum (p{sub T}) spectra and nuclear modification factor (R{sub AA}) are derived using the relaxation time approximation of Boltzmann Transport Equation (BTE). The initial p{sub T}-distribution used to describe p + p collisions has been studied with the perturbative-Quantum Chromodynamics (pQCD) inspired power-law distribution, Hagedorn's empirical formula and with the Tsallis non-extensive statistical distribution. The non-extensive Tsallis distribution is observed to describe the complete range of the transverse-momentum spectra. The Boltzmann-Gibbs Blast Wave (BGBW) distribution is used as the equilibrium distribution in the present formalism, to describe the p{sub T}-distribution and nuclear modification factor in nucleus-nucleus collisions. The experimental data for Pb+Pb collisions at √(s{sub NN}) = 2.76 TeV at the Large Hadron Collider at CERN have been analyzed for pions, kaons, protons, K{sup *0} and φ. It is observed that the present formalism while explaining the transverse-momentum spectra up to 5 GeV/c, explains the nuclear modification factor very well up to 8 GeV/c in p{sub T} for all these particles except for protons. R{sub AA} is found to be independent of the degree of non-extensivity, q{sub pp} after p{sub T} ∝ 8 GeV/c. (orig.)

  10. Infrared and dc conductivity in metals with strong scattering: Nonclassical behavior from a generalized Boltzmann equation containing band-mixing effects

    International Nuclear Information System (INIS)

    Allen, P.B.; Chakraborty, B.

    1981-01-01

    Metals with high resistivity (approx.100 μΩ cm) seem to show weaker variation of resistivity (as a function of temperature and perhaps also static disorder) than predicted by semiclassical (Bloch-Boltzmann) theory (SBT). We argue that the effect is not closely related to Anderson localization, and therefore does not necessarily signify a failure of the independent collision approximation. Instead we propose a failure of the semiclassical acceleration and conduction approximations. A generalization of Boltzmann theory is made which includes quantum (interband) acceleration and conduction, as well as a complete treatment of interband-collision effects (within the independent-collision approximation). The interband terms enhance short-time response to E fields (because the theory satisfies the exact f-sum rule instead of the semiclassical approximation to it). This suggests that the additional conductivity, as expressed phenomenologically by the shunt resistor model, is explained by interband effects. The scattering operator is complex, its imaginary parts being related to energy-band renormalization caused by the disorder. Charge conservation is respected and thermal equilibrium is restored by the collision operator. The theory is formally solved for the leading corrections to SBT, which have the form of a shunt resistor model. At infrared frequencies, the conductivity mostly obeys the Drude law sigma(ω)approx.sigma(0)(1-iωtau) -1 , except for one term which goes as (1-iωtau) -2

  11. Chaotic Boltzmann machines

    Science.gov (United States)

    Suzuki, Hideyuki; Imura, Jun-ichi; Horio, Yoshihiko; Aihara, Kazuyuki

    2013-01-01

    The chaotic Boltzmann machine proposed in this paper is a chaotic pseudo-billiard system that works as a Boltzmann machine. Chaotic Boltzmann machines are shown numerically to have computing abilities comparable to conventional (stochastic) Boltzmann machines. Since no randomness is required, efficient hardware implementation is expected. Moreover, the ferromagnetic phase transition of the Ising model is shown to be characterised by the largest Lyapunov exponent of the proposed system. In general, a method to relate probabilistic models to nonlinear dynamics by derandomising Gibbs sampling is presented. PMID:23558425

  12. A volume-preserving sharpening approach for the propagation of sharp phase boundaries in multiphase lattice Boltzmann simulations

    KAUST Repository

    Reis, T.

    2011-07-01

    Lattice Boltzmann models that recover a macroscopic description of multiphase flow of immiscible liquids typically represent the boundaries between phases using a scalar function, the phase field, that varies smoothly over several grid points. Attempts to tune the model parameters to minimise the widths of these interfaces typically lead to the interfaces becoming fixed to the underlying grid instead of advecting with the fluid velocity. This phenomenon, known as lattice pinning, is strikingly similar to that associated with the numerical simulation of conservation laws coupled to stiff algebraic source terms. We present a lattice Boltzmann formulation of the model problem proposed by LeVeque and Yee (1990) [3] to study the latter phenomenon in the context of computational combustion, and offer a volume-conserving extension in multiple space dimensions. Inspired by the random projection method of Bao and Jin (2000) [1] we further generalise this formulation by introducing a uniformly distributed quasi-random variable into the term responsible for the sharpening of phase boundaries. This method is mass conserving, gives correct average propagation speeds over many timesteps, and is shown to significantly delay the onset of pinning as the interface width is reduced. © 2010 Elsevier Ltd.

  13. Immiscible multicomponent lattice Boltzmann model for fluids with ...

    Indian Academy of Sciences (India)

    Abstract. An immiscible multicomponent lattice Boltzmann model is developed for fluids with high relaxation time ratios, which is based on the model proposed by Shan and Chen (SC). In the SC model, an interaction potential between particles is incorporated into the discrete lattice. Boltzmann equation through the ...

  14. Two-scale approach to oscillatory singularly perturbed transport equations

    CERN Document Server

    Frénod, Emmanuel

    2017-01-01

    This book presents the classical results of the two-scale convergence theory and explains – using several figures – why it works. It then shows how to use this theory to homogenize ordinary differential equations with oscillating coefficients as well as oscillatory singularly perturbed ordinary differential equations. In addition, it explores the homogenization of hyperbolic partial differential equations with oscillating coefficients and linear oscillatory singularly perturbed hyperbolic partial differential equations. Further, it introduces readers to the two-scale numerical methods that can be built from the previous approaches to solve oscillatory singularly perturbed transport equations (ODE and hyperbolic PDE) and demonstrates how they can be used efficiently. This book appeals to master’s and PhD students interested in homogenization and numerics, as well as to the Iter community.

  15. An approach to numerically solving the Poisson equation

    Science.gov (United States)

    Feng, Zhichen; Sheng, Zheng-Mao

    2015-06-01

    We introduce an approach for numerically solving the Poisson equation by using a physical model, which is a way to solve a partial differential equation without the finite difference method. This method is especially useful for obtaining the solutions in very many free-charge neutral systems with open boundary conditions. It can be used for arbitrary geometry and mesh style and is more efficient comparing with the widely-used iterative algorithm with multigrid methods. It is especially suitable for parallel computing. This method can also be applied to numerically solving other partial differential equations whose Green functions exist in analytic expression.

  16. A neuro approach to solve fuzzy Riccati differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Shahrir, Mohammad Shazri, E-mail: mshazri@gmail.com [InstitutSainsMatematik, Universiti Malaya 50603 Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur (Malaysia); Telekom Malaysia, R& D TM Innovation Centre, LingkaranTeknokrat Timur, 63000 Cyberjaya, Selangor (Malaysia); Kumaresan, N., E-mail: drnk2008@gmail.com; Kamali, M. Z. M.; Ratnavelu, Kurunathan [InstitutSainsMatematik, Universiti Malaya 50603 Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur (Malaysia)

    2015-10-22

    There are many applications of optimal control theory especially in the area of control systems in engineering. In this paper, fuzzy quadratic Riccati differential equation is estimated using neural networks (NN). Previous works have shown reliable results using Runge-Kutta 4th order (RK4). The solution can be achieved by solving the 1st Order Non-linear Differential Equation (ODE) that is found commonly in Riccati differential equation. Research has shown improved results relatively to the RK4 method. It can be said that NN approach shows promising results with the advantage of continuous estimation and improved accuracy that can be produced over RK4.

  17. Symmetries of stochastic differential equations: A geometric approach

    Energy Technology Data Exchange (ETDEWEB)

    De Vecchi, Francesco C., E-mail: francesco.devecchi@unimi.it; Ugolini, Stefania, E-mail: stefania.ugolini@unimi.it [Dipartimento di Matematica, Università degli Studi di Milano, via Saldini 50, Milano (Italy); Morando, Paola, E-mail: paola.morando@unimi.it [DISAA, Università degli Studi di Milano, via Celoria 2, Milano (Italy)

    2016-06-15

    A new notion of stochastic transformation is proposed and applied to the study of both weak and strong symmetries of stochastic differential equations (SDEs). The correspondence between an algebra of weak symmetries for a given SDE and an algebra of strong symmetries for a modified SDE is proved under suitable regularity assumptions. This general approach is applied to a stochastic version of a two dimensional symmetric ordinary differential equation and to the case of two dimensional Brownian motion.

  18. Analytical approach for the Floquet theory of delay differential equations.

    Science.gov (United States)

    Simmendinger, C; Wunderlin, A; Pelster, A

    1999-05-01

    We present an analytical approach to deal with nonlinear delay differential equations close to instabilities of time periodic reference states. To this end we start with approximately determining such reference states by extending the Poincaré-Lindstedt and the Shohat expansions, which were originally developed for ordinary differential equations. Then we systematically elaborate a linear stability analysis around a time periodic reference state. This allows us to approximately calculate the Floquet eigenvalues and their corresponding eigensolutions by using matrix valued continued fractions.

  19. Extended lattice Boltzmann scheme for droplet combustion.

    Science.gov (United States)

    Ashna, Mostafa; Rahimian, Mohammad Hassan; Fakhari, Abbas

    2017-05-01

    The available lattice Boltzmann (LB) models for combustion or phase change are focused on either single-phase flow combustion or two-phase flow with evaporation assuming a constant density for both liquid and gas phases. To pave the way towards simulation of spray combustion, we propose a two-phase LB method for modeling combustion of liquid fuel droplets. We develop an LB scheme to model phase change and combustion by taking into account the density variation in the gas phase and accounting for the chemical reaction based on the Cahn-Hilliard free-energy approach. Evaporation of liquid fuel is modeled by adding a source term, which is due to the divergence of the velocity field being nontrivial, in the continuity equation. The low-Mach-number approximation in the governing Navier-Stokes and energy equations is used to incorporate source terms due to heat release from chemical reactions, density variation, and nonluminous radiative heat loss. Additionally, the conservation equation for chemical species is formulated by including a source term due to chemical reaction. To validate the model, we consider the combustion of n-heptane and n-butanol droplets in stagnant air using overall single-step reactions. The diameter history and flame standoff ratio obtained from the proposed LB method are found to be in good agreement with available numerical and experimental data. The present LB scheme is believed to be a promising approach for modeling spray combustion.

  20. Modified error in constitutive equations (MECE) approach for ultrasound elastography.

    Science.gov (United States)

    Ghosh, Susanta; Zou, Zilong; Babaniyi, Olalekan; Aquino, Wilkins; Diaz, Manuel I; Bayat, Mahdi; Fatemi, Mostafa

    2017-10-01

    A partial differential equation-constrained optimization approach is presented for reconstructing mechanical properties (e.g., elastic moduli). The proposed method is based on the minimization of an error in constitutive equations functional augmented with a least squares data misfit term referred to as MECE for "modified error in constitutive equations." The main theme of this paper is to demonstrate several key strengths of the proposed method on experimental data. In addition, some illustrative examples are provided where the proposed method is compared with a common shear wave elastography (SWE) approach. To this end, both synthetic data, generated with transient finite element simulations, as well as ultrasonically tracked displacement data from an acoustic radiation force (ARF) experiment are used in a standard elasticity phantom. The results indicate that the MECE approach can produce accurate shear modulus reconstructions with significantly less bias than SWE.

  1. Error characterization for asynchronous computations: Proxy equation approach

    Science.gov (United States)

    Sallai, Gabriella; Mittal, Ankita; Girimaji, Sharath

    2017-11-01

    Numerical techniques for asynchronous fluid flow simulations are currently under development to enable efficient utilization of massively parallel computers. These numerical approaches attempt to accurately solve time evolution of transport equations using spatial information at different time levels. The truncation error of asynchronous methods can be divided into two parts: delay dependent (EA) or asynchronous error and delay independent (ES) or synchronous error. The focus of this study is a specific asynchronous error mitigation technique called proxy-equation approach. The aim of this study is to examine these errors as a function of the characteristic wavelength of the solution. Mitigation of asynchronous effects requires that the asynchronous error be smaller than synchronous truncation error. For a simple convection-diffusion equation, proxy-equation error analysis identifies critical initial wave-number, λc. At smaller wave numbers, synchronous error are larger than asynchronous errors. We examine various approaches to increase the value of λc in order to improve the range of applicability of proxy-equation approach.

  2. General and exact pressure evolution equation

    Science.gov (United States)

    Toutant, Adrien

    2017-11-01

    A crucial issue in fluid dynamics is related to the knowledge of the fluid pressure. A new general pressure equation is derived from compressible Navier-Stokes equation. This new pressure equation is valid for all real dense fluids for which the pressure tensor is isotropic. It is argued that this new pressure equation allows unifying compressible, low-Mach and incompressible approaches. Moreover, this equation should be able to replace the Poisson equation in isothermal incompressible fluids. For computational fluid dynamics, it can be seen as an alternative to Lattice Boltzmann methods and as the physical justification of artificial compressibility.

  3. A new fictitious domain approach for Stokes equation

    Science.gov (United States)

    Yang, Min

    2017-10-01

    The purpose of this paper is to present a new fictitious domain approach based on the Nietzsche’s method combining with a penalty method for the Stokes equation. This method allows for an easy and flexible handling of the geometrical aspects. Stability and a priori error estimate are proved. Finally, a numerical experiment is provided to verify the theoretical findings.

  4. Limitations of Boltzmann's principle

    International Nuclear Information System (INIS)

    Lavenda, B.H.

    1995-01-01

    The usual form of Boltzmann's principle assures that maximum entropy, or entropy reduction, occurs with maximum probability, implying a unimodal distribution. Boltzmann's principle cannot be applied to nonunimodal distributions, like the arcsine law, because the entropy may be concave only over a limited portion of the interval. The method of subordination shows that the arcsine distribution corresponds to a process with a single degree of freedom, thereby confirming the invalidation of Boltzmann's principle. The fractalization of time leads to a new distribution in which arcsine and Cauchy distributions can coexist simultaneously for nonintegral degrees of freedom between √2 and 2

  5. Cauchy problem for Laplace equation: An observer based approach

    KAUST Repository

    Majeed, Muhammad Usman

    2013-10-01

    A method to solve Cauchy Problem for Laplace equation using state observers is proposed. It is known that this problem is ill-posed. The domain under consideration is simple lipschitz in 2 with a hole. The idea is to recover the solution over whole domain from the observations on outer boundary. Proposed approach adapts one of the space variables as a time variable. The observer developed to solve Cauchy problem for the Laplace\\'s equation is compuationally robust and accurate. © 2013 IEEE.

  6. An integrated approach to determine phenomenological equations in metallic systems

    Science.gov (United States)

    Ghamarian, Iman

    It is highly desirable to be able to make predictions of properties in metallic materials based upon the composition of the material and the microstructure. Unfortunately, the complexity of real, multi-component, multi-phase engineering alloys makes the provision of constituent-based (i.e., composition or microstructure) phenomenological equations extremely difficult. Due to these difficulties, qualitative predictions are frequently used to study the influence of microstructure or composition on the properties. Neural networks were used as a tool to get a quantitative model from a database. However, the developed model is not a phenomenological model. In this study, a new method based upon the integration of three separate modeling approaches, specifically artificial neural networks, genetic algorithms, and monte carlo was proposed. These three methods, when coupled in the manner described in this study, allows for the extraction of phenomenological equations with a concurrent analysis of uncertainty. This approach has been applied to a multi-component, multi-phase microstructure exhibiting phases with varying spatial and morphological distributions. Specifically, this approach has been applied to derive a phenomenological equation for the prediction of yield strength in alpha+beta processed Ti-6-4. The equation is consistent with not only the current dataset but also, where available, the limited information regarding certain parameters such as intrinsic yield strength of pure hexagonal close-packed alpha titanium.

  7. Babenko’s Approach to Abel’s Integral Equations

    Directory of Open Access Journals (Sweden)

    Chenkuan Li

    2018-03-01

    Full Text Available The goal of this paper is to investigate the following Abel’s integral equation of the second kind: y ( t + λ Γ ( α ∫ 0 t ( t − τ α − 1 y ( τ d τ = f ( t , ( t > 0 and its variants by fractional calculus. Applying Babenko’s approach and fractional integrals, we provide a general method for solving Abel’s integral equation and others with a demonstration of different types of examples by showing convergence of series. In particular, we extend this equation to a distributional space for any arbitrary α ∈ R by fractional operations of generalized functions for the first time and obtain several new and interesting results that cannot be realized in the classical sense or by the Laplace transform.

  8. Boltzmann-Electron Model in Aleph.

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Thomas Patrick; Hooper, Russell

    2014-11-01

    We apply the Boltzmann-electron model in the electrostatic, particle-in-cell, finite- element code Aleph to a plasma sheath. By assuming a Boltzmann energy distribution for the electrons, the model eliminates the need to resolve the electron plasma fre- quency, and avoids the numerical "grid instability" that can cause unphysical heating of electrons. This allows much larger timesteps to be used than with kinetic electrons. Ions are treated with the standard PIC algorithm. The Boltzmann-electron model re- quires solution of a nonlinear Poisson equation, for which we use an iterative Newton solver (NOX) from the Trilinos Project. Results for the spatial variation of density and voltage in the plasma sheath agree well with an analytic model

  9. Simulating density-dependent flows using the lattice Boltzmann method

    Science.gov (United States)

    Bardsley, K. J.; Sukop, M. C.

    2008-12-01

    Seawater intrusion is a classic density-dependent problem in hydrogeology. It must be fully understood in order to be able to predict and prevent groundwater deterioration in coastal areas. All of the current programs used to study this issue are either finite difference or finite element methods. Density-dependent flow problems are exceptionally challenging for conventional numerical methods due to inherent non-linearity; definitive solutions are often elusive and a completely different modeling approach may be advantageous. The lattice Boltzmann method (LBM) represents such a numerical tool because it is not based on discretization of a series of differential equations. Instead, its foundation lies in the kinetic theory of gasses as proposed by Boltzmann. A key advantage of lattice Boltzmann method is that it has the ability to solve the Navier-Stokes equations in larger conduits and pores. Recent advances in lattice Boltzmann modeling permit simulation of large-scale density-dependent ground water flow and heat/solute transport. These simulations can be accomplished while retaining the advantages of 'regular' lattice Boltzmann methods, such as solute/heat transport at high Reynolds numbers. Hence it allows for eddy diffusion brought on by inertial components of flow at higher Reynolds numbers, which may occur in some coastal aquifers. This may prove to be an advantage for freshwater/seawater interface simulations especially given the highly macroporous nature of the aquifers underlying south Florida. Simulation of these phenomena is not possible with traditional Darcy's law-based groundwater models. Some geologists and engineers have been able to successfully apply LBM to fluid flow and contaminant transport problems. There are only a handful of scientists attempting to apply LBM to density-dependent flows in general; even fewer have considered seawater intrusion. We show how this method can be applied to density-dependent flows. We present two sets of results

  10. A systematic iterative approach to the equations of low type

    International Nuclear Information System (INIS)

    Znojil, M.

    1987-01-01

    Nonlinear singular integral equations of the Low type appear in the description of π-N scattering amplitude at relativistic energies. The standard iteration solution differs and does not give sufficiently exact results even using the Pade approximation. A new approach is proposed. Its essence lies in a repeated formal simplification of the equation accompanied by a representation of the simplified amplitude in a generalized continued-fractional form. A simple example demonstrate that the new method improves the convergence of previous approach and essentially expands the region of its convergence. From the other side, its nonequivalence to a more complicate Newton-Kantorovich method is shown. In the future more realistic applications of the method one can expect increasing of result reliability

  11. Navier-Stokes Dynamics by a Discrete Boltzmann Model

    Science.gov (United States)

    Rubinstein, Robet

    2010-01-01

    This work investigates the possibility of particle-based algorithms for the Navier-Stokes equations and higher order continuum approximations of the Boltzmann equation; such algorithms would generalize the well-known Pullin scheme for the Euler equations. One such method is proposed in the context of a discrete velocity model of the Boltzmann equation. Preliminary results on shock structure are consistent with the expectation that the shock should be much broader than the near discontinuity predicted by the Pullin scheme, yet narrower than the prediction of the Boltzmann equation. We discuss the extension of this essentially deterministic method to a stochastic particle method that, like DSMC, samples the distribution function rather than resolving it completely.

  12. Gli atomi di Boltzmann

    CERN Document Server

    Lindley, David

    2002-01-01

    Ludwig Boltzmann (1844-1906) è il fisico e matematico austriaco che negli ultimi decenni dell'Ottocento e ancora ai primi del Novecento lottò contro l'opinione dominante tra gli scienziati dell'epoca per affermare la teoria atomica della materia. È noto come con Albert Einstein e fino a oggi la fisica si sia sviluppata e abbia celebrato i propri trionfi lungo le linee anticipate da Boltzmann. La controversia con Mach non riguardava soltanto l'esistenza degli atomi, ma l'intero modo di fare fisica che Boltzmann non riteneva di dover limitare allo studio di quantità misurabili, introducendo invece spiegazioni più elaborate basate su ipotesi più ampie.

  13. Tensor function approach to constitutive equations of inelasticity

    International Nuclear Information System (INIS)

    Murakami, S.

    1979-01-01

    Though various theories for elaborated engineering constitutive models have been proposed so far to improve the description of inelastic response of engineering materials, most of them have been formulated within the framework of the classical theories of plasticity and creep. In these cases, the expressions of flow potentials and hardening rules are usually modified a priori by adding some additional terms, and the related material constants are determined by experiments. The difficulties of such approaches consist in the lack of generality and pertinence, besides that they are considerably laborious. In the field of non-linear continuum mechanics, on the other hand, there has been a continuos development of more powerful approaches which are applicable to these problems. It is the aim of the present paper to show the utility of the tensor function approach to the development of the non-classical constitutive equations of inelasticity and to elucidate the practical procedures and some new results of it. (orig.)

  14. Perturbative approach to non-Markovian stochastic Schroedinger equations

    International Nuclear Information System (INIS)

    Gambetta, Jay; Wiseman, H.M.

    2002-01-01

    In this paper we present a perturbative procedure that allows one to numerically solve diffusive non-Markovian stochastic Schroedinger equations, for a wide range of memory functions. To illustrate this procedure numerical results are presented for a classically driven two-level atom immersed in an environment with a simple memory function. It is observed that as the order of the perturbation is increased the numerical results for the ensemble average state ρ red (t) approach the exact reduced state found via Imamog-barlu ' s enlarged system method [Phys. Rev. A 50, 3650 (1994)

  15. Thermodynamic aspect in using modified Boltzmann model as an acoustic probe for URu2Si2

    Science.gov (United States)

    Kwang-Hua, Chu Rainer

    2018-05-01

    The approximate system of equations describing ultrasonic attenuation propagating in many electrons of the heavy-fermion materials URu2Si2 under high magnetic fields were firstly derived and then calculated based on the modified Boltzmann model considering the microscopic contributions due to electronic fluids. A system of nonlinear partial differential coupled with integral equations were linearized firstly and approximately solved considering the perturbed thermodynamic equilibrium states. Our numerical data were compared with previous measurements using non-dimensional or normalized physical values. The rather good fit of our numerical calculations with experimental measurements confirms our present approach.

  16. Implicitly charge-conserving solver for Boltzmann electrons

    International Nuclear Information System (INIS)

    Carlsson, Johan; Manente, Marco; Pavarin, Daniele

    2009-01-01

    An implicitly charge-conserving algorithm has been developed for solving the nonlinear Poisson equation that results from the use of Boltzmann electrons. The new algorithm solves for the Boltzmann density parameter and, in the case of a Neumann boundary condition, the surface-charge density, simultaneously as it solves for the discretized electrostatic potential. Numerical stability is demonstrated for time steps exceeding the electron plasma period and spatial resolutions much coarser than the Debye length.

  17. Training Restricted Boltzmann Machines

    DEFF Research Database (Denmark)

    Fischer, Asja

    Restricted Boltzmann machines (RBMs) are probabilistic graphical models that can also be interpreted as stochastic neural networks. Training RBMs is known to be challenging. Computing the likelihood of the model parameters or its gradient is in general computationally intensive. Thus, training...

  18. Entropy a la Boltzmann

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 9. Entropy à la Boltzmann. Jayanta K Bhattacharjee. General Article Volume 6 Issue 9 September 2001 pp 19-34. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/006/09/0019-0034. Author Affiliations.

  19. Entropy à la Boltzmann

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 9. Entropy à la Boltzmann. Jayanta K Bhattacharjee. General Article Volume 6 Issue 9 September 2001 pp 19-34. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/006/09/0019-0034 ...

  20. Stable Numerical Approach for Fractional Delay Differential Equations

    Science.gov (United States)

    Singh, Harendra; Pandey, Rajesh K.; Baleanu, D.

    2017-12-01

    In this paper, we present a new stable numerical approach based on the operational matrix of integration of Jacobi polynomials for solving fractional delay differential equations (FDDEs). The operational matrix approach converts the FDDE into a system of linear equations, and hence the numerical solution is obtained by solving the linear system. The error analysis of the proposed method is also established. Further, a comparative study of the approximate solutions is provided for the test examples of the FDDE by varying the values of the parameters in the Jacobi polynomials. As in special case, the Jacobi polynomials reduce to the well-known polynomials such as (1) Legendre polynomial, (2) Chebyshev polynomial of second kind, (3) Chebyshev polynomial of third and (4) Chebyshev polynomial of fourth kind respectively. Maximum absolute error and root mean square error are calculated for the illustrated examples and presented in form of tables for the comparison purpose. Numerical stability of the presented method with respect to all four kind of polynomials are discussed. Further, the obtained numerical results are compared with some known methods from the literature and it is observed that obtained results from the proposed method is better than these methods.

  1. Dissipation equation of motion approach to open quantum systems

    Science.gov (United States)

    Yan, YiJing; Jin, Jinshuang; Xu, Rui-Xue; Zheng, Xiao

    2016-08-01

    This paper presents a comprehensive account of the dissipaton-equation-of-motion (DEOM) theory for open quantum systems. This newly developed theory treats not only the quantum dissipative systems of primary interest, but also the hybrid environment dynamics that are also experimentally measurable. Despite the fact that DEOM recovers the celebrated hierarchical-equations-of-motion (HEOM) formalism, these two approaches have some fundamental differences. To show these differences, we also scrutinize the HEOM construction via its root at the influence functional path integral formalism. We conclude that many unique features of DEOM are beyond the reach of the HEOM framework. The new DEOM approach renders a statistical quasi-particle picture to account for the environment, which can be either bosonic or fermionic. The review covers the DEOM construction, the physical meanings of dynamical variables, the underlying theorems and dissipaton algebra, and recent numerical advancements for efficient DEOM evaluations of various problems. We also address the issue of high-order many-dissipaton truncations with respect to the invariance principle of quantum mechanics of Schrödinger versus Heisenberg prescriptions. DEOM serves as a universal tool for characterizing of stationary and dynamic properties of system-and-bath interferences, as highlighted with its real-time evaluation of both linear and nonlinear current noise spectra of nonequilibrium electronic transport.

  2. Stable Numerical Approach for Fractional Delay Differential Equations

    International Nuclear Information System (INIS)

    Singh, Harendra; Pandey, Rajesh K.; Baleanu, D.

    2017-01-01

    In this paper, we present a new stable numerical approach based on the operational matrix of integration of Jacobi polynomials for solving fractional delay differential equations (FDDEs). The operational matrix approach converts the FDDE into a system of linear equations, and hence the numerical solution is obtained by solving the linear system. The error analysis of the proposed method is also established. Further, a comparative study of the approximate solutions is provided for the test examples of the FDDE by varying the values of the parameters in the Jacobi polynomials. As in special case, the Jacobi polynomials reduce to the well-known polynomials such as (1) Legendre polynomial, (2) Chebyshev polynomial of second kind, (3) Chebyshev polynomial of third and (4) Chebyshev polynomial of fourth kind respectively. Maximum absolute error and root mean square error are calculated for the illustrated examples and presented in form of tables for the comparison purpose. Numerical stability of the presented method with respect to all four kind of polynomials are discussed. Further, the obtained numerical results are compared with some known methods from the literature and it is observed that obtained results from the proposed method is better than these methods. (author)

  3. Equilibrium statistical mechanics for self-gravitating systems: local ergodicity and extended Boltzmann-Gibbs/White-Narayan statistics

    Science.gov (United States)

    He, Ping

    2012-01-01

    The long-standing puzzle surrounding the statistical mechanics of self-gravitating systems has not yet been solved successfully. We formulate a systematic theoretical framework of entropy-based statistical mechanics for spherically symmetric collisionless self-gravitating systems. We use an approach that is very different from that of the conventional statistical mechanics of short-range interaction systems. We demonstrate that the equilibrium states of self-gravitating systems consist of both mechanical and statistical equilibria, with the former characterized by a series of velocity-moment equations and the latter by statistical equilibrium equations, which should be derived from the entropy principle. The velocity-moment equations of all orders are derived from the steady-state collisionless Boltzmann equation. We point out that the ergodicity is invalid for the whole self-gravitating system, but it can be re-established locally. Based on the local ergodicity, using Fermi-Dirac-like statistics, with the non-degenerate condition and the spatial independence of the local microstates, we rederive the Boltzmann-Gibbs entropy. This is consistent with the validity of the collisionless Boltzmann equation, and should be the correct entropy form for collisionless self-gravitating systems. Apart from the usual constraints of mass and energy conservation, we demonstrate that the series of moment or virialization equations must be included as additional constraints on the entropy functional when performing the variational calculus; this is an extension to the original prescription by White & Narayan. Any possible velocity distribution can be produced by the statistical-mechanical approach that we have developed with the extended Boltzmann-Gibbs/White-Narayan statistics. Finally, we discuss the questions of negative specific heat and ensemble inequivalence for self-gravitating systems.

  4. A Unified Theory of Non-Ideal Gas Lattice Boltzmann Models

    Science.gov (United States)

    Luo, Li-Shi

    1998-01-01

    A non-ideal gas lattice Boltzmann model is directly derived, in an a priori fashion, from the Enskog equation for dense gases. The model is rigorously obtained by a systematic procedure to discretize the Enskog equation (in the presence of an external force) in both phase space and time. The lattice Boltzmann model derived here is thermodynamically consistent and is free of the defects which exist in previous lattice Boltzmann models for non-ideal gases. The existing lattice Boltzmann models for non-ideal gases are analyzed and compared with the model derived here.

  5. Non-equilibrium effects of diatomic and polyatomic gases on the shock-vortex interaction based on the second-order constitutive model of the Boltzmann-Curtiss equation

    Science.gov (United States)

    Singh, S.; Karchani, A.; Myong, R. S.

    2018-01-01

    The rotational mode of molecules plays a critical role in the behavior of diatomic and polyatomic gases away from equilibrium. In order to investigate the essence of the non-equilibrium effects, the shock-vortex interaction problem was investigated by employing an explicit modal discontinuous Galerkin method. In particular, the first- and second-order constitutive models for diatomic and polyatomic gases derived rigorously from the Boltzmann-Curtiss kinetic equation were solved in conjunction with the physical conservation laws. As compared with a monatomic gas, the non-equilibrium effects result in a substantial change in flow fields in both macroscale and microscale shock-vortex interactions. Specifically, the computational results showed three major effects of diatomic and polyatomic gases on the shock-vortex interaction: (i) the generation of the third sound waves and additional reflected shock waves with strong and enlarged expansion, (ii) the dominance of viscous vorticity generation, and (iii) an increase in enstrophy with increasing bulk viscosity, related to the rotational mode of gas molecules. Moreover, it was shown that there is a significant discrepancy in flow fields between the microscale and macroscale shock-vortex interactions in diatomic and polyatomic gases. The quadrupolar acoustic wave source structures, which are typically observed in macroscale shock-vortex interactions, were not found in any microscale shock-vortex interactions. The physics of the shock-vortex interaction was also investigated in detail to examine vortex deformation and evolution dynamics over an incident shock wave. A comparative study of first- and second-order constitutive models was also conducted for the enstrophy and dissipation rate. Finally, the study was extended to the shock-vortex pair interaction case to examine the effects of pair interaction on vortex deformation and evolution dynamics.

  6. L2-stability of the Vlasov-Maxwell-Boltzmann system near global Maxwellians

    International Nuclear Information System (INIS)

    Ha, Seung-Yeal; Xiao, Qinghua; Xiong, Linjie; Zhao, Huijiang

    2013-01-01

    We present a L 2 -stability theory of the Vlasov-Maxwell-Boltzmann system for the two-species collisional plasma. We show that in a perturbative regime of a global Maxwellian, the L 2 -distance between two strong solutions can be controlled by that between initial data in a Lipschitz manner. Our stability result extends earlier results [Ha, S.-Y. and Xiao, Q.-H., “A revisiting to the L 2 -stability theory of the Boltzmann equation near global Maxwellians,” (submitted) and Ha, S.-Y., Yang, X.-F., and Yun, S.-B., “L 2 stability theory of the Boltzmann equation near a global Maxwellian,” Arch. Ration. Mech. Anal. 197, 657–688 (2010)] on the L 2 -stability of the Boltzmann equation to the Boltzmann equation coupled with self-consistent external forces. As a direct application of our stability result, we show that classical solutions in Duan et al. [“Optimal large-time behavior of the Vlasov-Maxwell-Boltzmann system in the whole space,” Commun. Pure Appl. Math. 24, 1497–1546 (2011)] and Guo [“The Vlasov-Maxwell-Boltzmann system near Maxwellians,” Invent. Math. 153(3), 593–630 (2003)] satisfy a uniform L 2 -stability estimate. This is the first result on the L 2 -stability of the Boltzmann equation coupled with self-consistent field equations in three dimensions

  7. The radiative transport equation in flatland with separation of variables

    Energy Technology Data Exchange (ETDEWEB)

    Machida, Manabu, E-mail: mmachida@ms.u-tokyo.ac.jp [Department of Mathematical Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8914 (Japan)

    2016-07-15

    The linear Boltzmann equation can be solved with separation of variables in one dimension, i.e., in three-dimensional space with planar symmetry. In this method, solutions are given by superpositions of eigenmodes which are sometimes called singular eigenfunctions. In this paper, we explore the singular-eigenfunction approach in flatland or two-dimensional space.

  8. The radiative transport equation in flatland with separation of variables

    Science.gov (United States)

    Machida, Manabu

    2016-07-01

    The linear Boltzmann equation can be solved with separation of variables in one dimension, i.e., in three-dimensional space with planar symmetry. In this method, solutions are given by superpositions of eigenmodes which are sometimes called singular eigenfunctions. In this paper, we explore the singular-eigenfunction approach in flatland or two-dimensional space.

  9. Pseudo-point transport technique: a new method for solving the Boltzmann transport equation in media with highly fluctuating cross sections

    International Nuclear Information System (INIS)

    Nakhai, B.

    1979-01-01

    A new method for solving radiation transport problems is presented. The heart of the technique is a new cross section processing procedure for the calculation of group-to-point and point-to-group cross sections sets. The method is ideally suited for problems which involve media with highly fluctuating cross sections, where the results of the traditional multigroup calculations are beclouded by the group averaging procedures employed. Extensive computational efforts, which would be required to evaluate double integrals in the multigroup treatment numerically, prohibit iteration to optimize the energy boundaries. On the other hand, use of point-to-point techniques (as in the stochastic technique) is often prohibitively expensive due to the large computer storage requirement. The pseudo-point code is a hybrid of the two aforementioned methods (group-to-group and point-to-point) - hence the name pseudo-point - that reduces the computational efforts of the former and the large core requirements of the latter. The pseudo-point code generates the group-to-point or the point-to-group transfer matrices, and can be coupled with the existing transport codes to calculate pointwise energy-dependent fluxes. This approach yields much more detail than is available from the conventional energy-group treatments. Due to the speed of this code, several iterations could be performed (in affordable computing efforts) to optimize the energy boundaries and the weighting functions. The pseudo-point technique is demonstrated by solving six problems, each depicting a certain aspect of the technique. The results are presented as flux vs energy at various spatial intervals. The sensitivity of the technique to the energy grid and the savings in computational effort are clearly demonstrated

  10. Lattice Boltzmann formulation for conjugate heat transfer in heterogeneous media.

    Science.gov (United States)

    Karani, Hamid; Huber, Christian

    2015-02-01

    In this paper, we propose an approach for studying conjugate heat transfer using the lattice Boltzmann method (LBM). The approach is based on reformulating the lattice Boltzmann equation for solving the conservative form of the energy equation. This leads to the appearance of a source term, which introduces the jump conditions at the interface between two phases or components with different thermal properties. The proposed source term formulation conserves conductive and advective heat flux simultaneously, which makes it suitable for modeling conjugate heat transfer in general multiphase or multicomponent systems. The simple implementation of the source term approach avoids any correction of distribution functions neighboring the interface and provides an algorithm that is independent from the topology of the interface. Moreover, our approach is independent of the choice of lattice discretization and can be easily applied to different advection-diffusion LBM solvers. The model is tested against several benchmark problems including steady-state convection-diffusion within two fluid layers with parallel and normal interfaces with respect to the flow direction, unsteady conduction in a three-layer stratified domain, and steady conduction in a two-layer annulus. The LBM results are in excellent agreement with analytical solution. Error analysis shows that our model is first-order accurate in space, but an extension to a second-order scheme is straightforward. We apply our LBM model to heat transfer in a two-component heterogeneous medium with a random microstructure. This example highlights that the method we propose is independent of the topology of interfaces between the different phases and, as such, is ideally suited for complex natural heterogeneous media. We further validate the present LBM formulation with a study of natural convection in a porous enclosure. The results confirm the reliability of the model in simulating complex coupled fluid and thermal dynamics

  11. Scattering theory of the linear Boltzmann operator

    International Nuclear Information System (INIS)

    Hejtmanek, J.

    1975-01-01

    In time dependent scattering theory we know three important examples: the wave equation around an obstacle, the Schroedinger and the Dirac equation with a scattering potential. In this paper another example from time dependent linear transport theory is added and considered in full detail. First the linear Boltzmann operator in certain Banach spaces is rigorously defined, and then the existence of the Moeller operators is proved by use of the theorem of Cook-Jauch-Kuroda, that is generalized to the case of a Banach space. (orig.) [de

  12. The Boltzmann project

    Science.gov (United States)

    Fischer, J.; Fellmuth, B.; Gaiser, C.; Zandt, T.; Pitre, L.; Sparasci, F.; Plimmer, M. D.; de Podesta, M.; Underwood, R.; Sutton, G.; Machin, G.; Gavioso, R. M.; Madonna Ripa, D.; Steur, P. P. M.; Qu, J.; Feng, X. J.; Zhang, J.; Moldover, M. R.; Benz, S. P.; White, D. R.; Gianfrani, L.; Castrillo, A.; Moretti, L.; Darquié, B.; Moufarej, E.; Daussy, C.; Briaudeau, S.; Kozlova, O.; Risegari, L.; Segovia, J. J.; Martín, M. C.; del Campo, D.

    2018-04-01

    The International Committee for Weights and Measures (CIPM), at its meeting in October 2017, followed the recommendation of the Consultative Committee for Units (CCU) on the redefinition of the kilogram, ampere, kelvin and mole. For the redefinition of the kelvin, the Boltzmann constant will be fixed with the numerical value 1.380 649  ×  10-23 J K-1. The relative standard uncertainty to be transferred to the thermodynamic temperature value of the triple point of water will be 3.7  ×  10-7, corresponding to an uncertainty in temperature of 0.10 mK, sufficiently low for all practical purposes. With the redefinition of the kelvin, the broad research activities of the temperature community on the determination of the Boltzmann constant have been very successfully completed. In the following, a review of the determinations of the Boltzmann constant k, important for the new definition of the kelvin and performed in the last decade, is given.

  13. Additive nonlinear biomass equations: A likelihood-based approach

    Science.gov (United States)

    David L. R. Affleck; Ulises Dieguez-Aranda

    2016-01-01

    Since Parresol’s (Can. J. For. Res. 31:865-878, 2001) seminal article on the topic, it has become standard to develop nonlinear tree biomass equations to ensure compatibility among total and component predictions and to fit these equations using multistep generalized least-squares methods. In particular, many studies have specified equations for total tree...

  14. The fundamental and universal nature of Boltzmann`s constant

    Energy Technology Data Exchange (ETDEWEB)

    Biedenharn, L.C. [Univ. of Texas, Austin, TX (United States); Solem, J.C. [Los Alamos National Lab., NM (United States). Theoretical Div.

    1996-07-01

    The nature of Boltzmann`s constant is very unclear in the physics literature. In the first part of this paper, on general considerations, the authors examine this situation in detail and demonstrate the conclusion that Boltzmann`s constant is indeed both fundamental and universal. As a consequence of their development they find there is an important implication of this work for the problem of the entropy of information. In the second part they discuss, Szilard`s famous construction showing in detail how his result is incompatible with the demonstrations in both parts 1 and 2.

  15. The Navier-Stokes equations an elementary functional analytic approach

    CERN Document Server

    Sohr, Hermann

    2001-01-01

    The primary objective of this monograph is to develop an elementary and self­ contained approach to the mathematical theory of a viscous incompressible fluid in a domain 0 of the Euclidean space ]Rn, described by the equations of Navier­ Stokes. The book is mainly directed to students familiar with basic functional analytic tools in Hilbert and Banach spaces. However, for readers' convenience, in the first two chapters we collect without proof some fundamental properties of Sobolev spaces, distributions, operators, etc. Another important objective is to formulate the theory for a completely general domain O. In particular, the theory applies to arbitrary unbounded, non-smooth domains. For this reason, in the nonlinear case, we have to restrict ourselves to space dimensions n = 2,3 that are also most significant from the physical point of view. For mathematical generality, we will develop the lin­ earized theory for all n 2 2. Although the functional-analytic approach developed here is, in principle, known ...

  16. Mathematical model of Boltzmann's sigmoidal equation applicable ...

    Indian Academy of Sciences (India)

    Ingeniería-Química, COARA—Universidad Autónoma de San Luis Potosí, Matehuala, San Luis Potosí, Mexico; Instituto Politécnico Nacional, CICATA Legaria, Calzada Legaria No. 694, Colonia Irrigación, 11500 Ciudad de México, Mexico; Departamento de Ingeniería Agrícola, DICIVA, Universidad de Guanajuato, Campus ...

  17. Mathematical model of Boltzmann's sigmoidal equation applicable ...

    Indian Academy of Sciences (India)

    2017-08-18

    Aug 18, 2017 ... 1Ingeniería-Química, COARA—Universidad Autónoma de San Luis Potosí, Matehuala, San Luis Potosí, Mexico. 2Instituto Politécnico Nacional, CICATA Legaria, Calzada Legaria No. 694, Colonia Irrigación, 11500 Ciudad de México,. Mexico. 3Departamento de Ingeniería Agrícola, DICIVA, Universidad de ...

  18. Mathematical model of Boltzmann's sigmoidal equation applicable ...

    Indian Academy of Sciences (India)

    2017-08-18

    Aug 18, 2017 ... deposits of BST on substrates of nichrome under the same experimental conditions, showing differences in the ratio Ba/Sr of the BST due to ... process conditions to be expected to control crosslinking so as to make the best ... value of the independent variable, the function is continuous; on the other hand, ...

  19. Mathematical model of Boltzmann's sigmoidal equation applicable ...

    Indian Academy of Sciences (India)

    boms/040/05/1043- ... J RESÉNDIZ-MUÑOZ1 M A CORONA-RIVERA1 J L FERNÁNDEZ-MUÑOZ2 M ZAPATA-TORRES2 A MÁRQUEZ-HERRERA3 V M OVANDO-MEDINA1. Ingeniería-Química, COARA—Universidad Autónoma de San Luis ...

  20. Alternate Solution to Generalized Bernoulli Equations via an Integrating Factor: An Exact Differential Equation Approach

    Science.gov (United States)

    Tisdell, C. C.

    2017-01-01

    Solution methods to exact differential equations via integrating factors have a rich history dating back to Euler (1740) and the ideas enjoy applications to thermodynamics and electromagnetism. Recently, Azevedo and Valentino presented an analysis of the generalized Bernoulli equation, constructing a general solution by linearizing the problem…

  1. Soliton solutions for ABS lattice equations: I. Cauchy matrix approach

    Science.gov (United States)

    Nijhoff, Frank; Atkinson, James; Hietarinta, Jarmo

    2009-10-01

    In recent years there have been new insights into the integrability of quadrilateral lattice equations, i.e. partial difference equations which are the natural discrete analogues of integrable partial differential equations in 1+1 dimensions. In the scalar (i.e. single-field) case, there now exist classification results by Adler, Bobenko and Suris (ABS) leading to some new examples in addition to the lattice equations 'of KdV type' that were known since the late 1970s and early 1980s. In this paper, we review the construction of soliton solutions for the KdV-type lattice equations and use those results to construct N-soliton solutions for all lattice equations in the ABS list except for the elliptic case of Q4, which is left to a separate treatment.

  2. Poisson-Boltzmann versus Size-Modified Poisson-Boltzmann Electrostatics Applied to Lipid Bilayers.

    Science.gov (United States)

    Wang, Nuo; Zhou, Shenggao; Kekenes-Huskey, Peter M; Li, Bo; McCammon, J Andrew

    2014-12-26

    Mean-field methods, such as the Poisson-Boltzmann equation (PBE), are often used to calculate the electrostatic properties of molecular systems. In the past two decades, an enhancement of the PBE, the size-modified Poisson-Boltzmann equation (SMPBE), has been reported. Here, the PBE and the SMPBE are reevaluated for realistic molecular systems, namely, lipid bilayers, under eight different sets of input parameters. The SMPBE appears to reproduce the molecular dynamics simulation results better than the PBE only under specific parameter sets, but in general, it performs no better than the Stern layer correction of the PBE. These results emphasize the need for careful discussions of the accuracy of mean-field calculations on realistic systems with respect to the choice of parameters and call for reconsideration of the cost-efficiency and the significance of the current SMPBE formulation.

  3. Solving the power flow equations: a monotone operator approach

    Energy Technology Data Exchange (ETDEWEB)

    Dvijotham, Krishnamurthy [California Inst. of Technology (CalTech), Pasadena, CA (United States); Low, Steven [California Inst. of Technology (CalTech), Pasadena, CA (United States); Chertkov, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-07-21

    The AC power flow equations underlie all operational aspects of power systems. They are solved routinely in operational practice using the Newton-Raphson method and its variants. These methods work well given a good initial “guess” for the solution, which is always available in normal system operations. However, with the increase in levels of intermittent generation, the assumption of a good initial guess always being available is no longer valid. In this paper, we solve this problem using the theory of monotone operators. We show that it is possible to compute (using an offline optimization) a “monotonicity domain” in the space of voltage phasors. Given this domain, there is a simple efficient algorithm that will either find a solution in the domain, or provably certify that no solutions exist in it. We validate the approach on several IEEE test cases and demonstrate that the offline optimization can be performed tractably and the computed “monotonicity domain” includes all practically relevant power flow solutions.

  4. A new approach for studying fuzzy functional equations

    Directory of Open Access Journals (Sweden)

    Elias Deeba

    2001-01-01

    Full Text Available We define the concept of a “largest” and a “smallest” solution to an underlying equation and then show that a fuzzy solution of the corresponding fuzzy equation is bounded above and below by these solutions, respectively.

  5. A Unified Approach to Teaching Quadratic and Cubic Equations.

    Science.gov (United States)

    Ward, A. J. B.

    2003-01-01

    Presents a simple method for teaching the algebraic solution of cubic equations via completion of the cube. Shows that this method is readily accepted by students already familiar with completion of the square as a method for quadratic equations. (Author/KHR)

  6. Equilibrium approach in the derivation of differential equations for ...

    African Journals Online (AJOL)

    In this paper, the differential equations of Mindlin plates are derived from basic principles by simultaneous satisfaction of the differential equations of equilibrium, the stress-strain laws and the strain-displacement relations for isotropic, homogenous linear elastic materials. Equilibrium method was adopted in the derivation.

  7. Approach in Theory of Nonlinear Evolution Equations: The Vakhnenko-Parkes Equation

    Directory of Open Access Journals (Sweden)

    V. O. Vakhnenko

    2016-01-01

    Full Text Available A variety of methods for examining the properties and solutions of nonlinear evolution equations are explored by using the Vakhnenko equation (VE as an example. The VE, which arises in modelling the propagation of high-frequency waves in a relaxing medium, has periodic and solitary traveling wave solutions some of which are loop-like in nature. The VE can be written in an alternative form, known as the Vakhnenko-Parkes equation (VPE, by a change of independent variables. The VPE has an N-soliton solution which is discussed in detail. Individual solitons are hump-like in nature whereas the corresponding solution to the VE comprises N-loop-like solitons. Aspects of the inverse scattering transform (IST method, as applied originally to the KdV equation, are used to find one- and two-soliton solutions to the VPE even though the VPE’s spectral equation is third-order and not second-order. A Bäcklund transformation for the VPE is used to construct conservation laws. The standard IST method for third-order spectral problems is used to investigate solutions corresponding to bound states of the spectrum and to a continuous spectrum. This leads to N-soliton solutions and M-mode periodic solutions, respectively. Interactions between these types of solutions are investigated.

  8. Habitat fragmentation and reproductive success: a structural equation modelling approach.

    Science.gov (United States)

    Le Tortorec, Eric; Helle, Samuli; Käyhkö, Niina; Suorsa, Petri; Huhta, Esa; Hakkarainen, Harri

    2013-09-01

    1. There is great interest on the effects of habitat fragmentation, whereby habitat is lost and the spatial configuration of remaining habitat patches is altered, on individual breeding performance. However, we still lack consensus of how this important process affects reproductive success, and whether its effects are mainly due to reduced fecundity or nestling survival. 2. The main reason for this may be the way that habitat fragmentation has been previously modelled. Studies have treated habitat loss and altered spatial configuration as two independent processes instead of as one hierarchical and interdependent process, and therefore have not been able to consider the relative direct and indirect effects of habitat loss and altered spatial configuration. 3. We investigated how habitat (i.e. old forest) fragmentation, caused by intense forest harvesting at the territory and landscape scales, is associated with the number of fledged offspring of an area-sensitive passerine, the Eurasian treecreeper (Certhia familiaris). We used structural equation modelling (SEM) to examine the complex hierarchical associations between habitat loss and altered spatial configuration on the number of fledged offspring, by controlling for individual condition and weather conditions during incubation. 4. Against generally held expectations, treecreeper reproductive success did not show a significant association with habitat fragmentation measured at the territory scale. Instead, our analyses suggested that an increasing amount of habitat at the landscape scale caused a significant increase in nest predation rates, leading to reduced reproductive success. This effect operated directly on nest predation rates, instead of acting indirectly through altered spatial configuration. 5. Because habitat amount and configuration are inherently strongly collinear, particularly when multiple scales are considered, our study demonstrates the usefulness of a SEM approach for hierarchical partitioning

  9. A semigroup approach to equations with infinite delay and application to a problem of viscoelasticity

    Science.gov (United States)

    Renardy, M.

    1981-10-01

    A semigroup approach to differential-delay equations is developed which seems more suitable for certain partial integro-differential equations than the standard theory. On a formal level, it is demonstrated that the stretching of filaments of viscoelastic liquids can be described by an equation of this form.

  10. Geometric Approaches to Quadratic Equations from Other Times and Places.

    Science.gov (United States)

    Allaire, Patricia R.; Bradley, Robert E.

    2001-01-01

    Focuses on geometric solutions of quadratic problems. Presents a collection of geometric techniques from ancient Babylonia, classical Greece, medieval Arabia, and early modern Europe to enhance the quadratic equation portion of an algebra course. (KHR)

  11. A novel approach for solving fractional Fisher equation using ...

    Indian Academy of Sciences (India)

    2u. ∂x2 + u(1 ... same equation occurs in logistic population growth models, flame propagation, neuro- physiology, autocatalytic ... transform is an iterative procedure for obtaining analytic Taylor series solution of ordinary or partial differential ...

  12. Essentially Entropic Lattice Boltzmann Model

    Science.gov (United States)

    Atif, Mohammad; Kolluru, Praveen Kumar; Thantanapally, Chakradhar; Ansumali, Santosh

    2017-12-01

    The entropic lattice Boltzmann model (ELBM), a discrete space-time kinetic theory for hydrodynamics, ensures nonlinear stability via the discrete time version of the second law of thermodynamics (the H theorem). Compliance with the H theorem is numerically enforced in this methodology and involves a search for the maximal discrete path length corresponding to the zero dissipation state by iteratively solving a nonlinear equation. We demonstrate that an exact solution for the path length can be obtained by assuming a natural criterion of negative entropy change, thereby reducing the problem to solving an inequality. This inequality is solved by creating a new framework for construction of Padé approximants via quadrature on appropriate convex function. This exact solution also resolves the issue of indeterminacy in case of nonexistence of the entropic involution step. Since our formulation is devoid of complex mathematical library functions, the computational cost is drastically reduced. To illustrate this, we have simulated a model setup of flow over the NACA-0012 airfoil at a Reynolds number of 2.88 ×106.

  13. ECONOMETRIC APPROACH TO DIFFERENCE EQUATIONS MODELING OF EXCHANGE RATES CHANGES

    Directory of Open Access Journals (Sweden)

    Josip Arnerić

    2010-12-01

    Full Text Available Time series models that are commonly used in econometric modeling are autoregressive stochastic linear models (AR and models of moving averages (MA. Mentioned models by their structure are actually stochastic difference equations. Therefore, the objective of this paper is to estimate difference equations containing stochastic (random component. Estimated models of time series will be used to forecast observed data in the future. Namely, solutions of difference equations are closely related to conditions of stationary time series models. Based on the fact that volatility is time varying in high frequency data and that periods of high volatility tend to cluster, the most successful and popular models in modeling time varying volatility are GARCH type models and their variants. However, GARCH models will not be analyzed because the purpose of this research is to predict the value of the exchange rate in the levels within conditional mean equation and to determine whether the observed variable has a stable or explosive time path. Based on the estimated difference equation it will be examined whether Croatia is implementing a stable policy of exchange rates.

  14. A systematic approach to sketch Bethe-Salpeter equation

    Directory of Open Access Journals (Sweden)

    Qin Si-xue

    2016-01-01

    Full Text Available To study meson properties, one needs to solve the gap equation for the quark propagator and the Bethe-Salpeter (BS equation for the meson wavefunction, self-consistently. The gluon propagator, the quark-gluon vertex, and the quark–anti-quark scattering kernel are key pieces to solve those equations. Predicted by lattice-QCD and Dyson-Schwinger analyses of QCD’s gauge sector, gluons are non-perturbatively massive. In the matter sector, the modeled gluon propagator which can produce a veracious description of meson properties needs to possess a mass scale, accordingly. Solving the well-known longitudinal Ward-Green-Takahashi identities (WGTIs and the less-known transverse counterparts together, one obtains a nontrivial solution which can shed light on the structure of the quark-gluon vertex. It is highlighted that the phenomenologically proposed anomalous chromomagnetic moment (ACM vertex originates from the QCD Lagrangian symmetries and its strength is proportional to the magnitude of dynamical chiral symmetry breaking (DCSB. The color-singlet vector and axial-vector WGTIs can relate the BS kernel and the dressed quark-gluon vertex to each other. Using the relation, one can truncate the gap equation and the BS equation, systematically, without violating crucial symmetries, e.g., gauge symmetry and chiral symmetry.

  15. Massively parallel simulations of multiphase flows using Lattice Boltzmann methods

    Science.gov (United States)

    Ahrenholz, Benjamin

    2010-03-01

    In the last two decades the lattice Boltzmann method (LBM) has matured as an alternative and efficient numerical scheme for the simulation of fluid flows and transport problems. Unlike conventional numerical schemes based on discretizations of macroscopic continuum equations, the LBM is based on microscopic models and mesoscopic kinetic equations. The fundamental idea of the LBM is to construct simplified kinetic models that incorporate the essential physics of microscopic or mesoscopic processes so that the macroscopic averaged properties obey the desired macroscopic equations. Especially applications involving interfacial dynamics, complex and/or changing boundaries and complicated constitutive relationships which can be derived from a microscopic picture are suitable for the LBM. In this talk a modified and optimized version of a Gunstensen color model is presented to describe the dynamics of the fluid/fluid interface where the flow field is based on a multi-relaxation-time model. Based on that modeling approach validation studies of contact line motion are shown. Due to the fact that the LB method generally needs only nearest neighbor information, the algorithm is an ideal candidate for parallelization. Hence, it is possible to perform efficient simulations in complex geometries at a large scale by massively parallel computations. Here, the results of drainage and imbibition (Degree of Freedom > 2E11) in natural porous media gained from microtomography methods are presented. Those fully resolved pore scale simulations are essential for a better understanding of the physical processes in porous media and therefore important for the determination of constitutive relationships.

  16. Combinatorial approach to Mathieu and Lamé equations

    Energy Technology Data Exchange (ETDEWEB)

    He, Wei, E-mail: weihephys@gmail.com [Center of Mathematical Sciences, Zhejiang University, Hangzhou 310027, China and Instituto de Física Teórica, Universidade Estadual Paulista, Barra Funda 01140-070, São Paulo, SP (Brazil)

    2015-07-15

    Based on some recent progress on a relation between four dimensional super Yang-Mills gauge theory and quantum integrable system, we study the asymptotic spectrum of the quantum mechanical problems described by the Mathieu equation and the Lamé equation. The large momentum asymptotic expansion of the eigenvalue is related to the instanton partition function of supersymmetric gauge theories which can be evaluated by a combinatorial method. The electro-magnetic duality of gauge theory indicates that in the parameter space, there are three asymptotic expansions for the eigenvalue, and we confirm this fact by performing the Wentzel–Kramers–Brillouin (WKB) analysis in each asymptotic expansion region. The results presented here give some new perspective on the Floquet theory about periodic differential equation.

  17. Combinatorial approach to Mathieu and Lamé equations

    Science.gov (United States)

    He, Wei

    2015-07-01

    Based on some recent progress on a relation between four dimensional super Yang-Mills gauge theory and quantum integrable system, we study the asymptotic spectrum of the quantum mechanical problems described by the Mathieu equation and the Lamé equation. The large momentum asymptotic expansion of the eigenvalue is related to the instanton partition function of supersymmetric gauge theories which can be evaluated by a combinatorial method. The electro-magnetic duality of gauge theory indicates that in the parameter space, there are three asymptotic expansions for the eigenvalue, and we confirm this fact by performing the Wentzel-Kramers-Brillouin (WKB) analysis in each asymptotic expansion region. The results presented here give some new perspective on the Floquet theory about periodic differential equation.

  18. Parameter Space: The Final Frontier. Certified Reduced Basis Methods for Real-Time Reliable Solution of Parametrized Partial Differential Equations

    National Research Council Canada - National Science Library

    Patera, Anthony T

    2007-01-01

    .... Typical equations and applications of interest include Density Functional Theory for solid state property calculations, the Boltzmann equation for microscale gas flows, the Navier-Stokes equations...

  19. An equations of motion approach for open shell systems

    International Nuclear Information System (INIS)

    Yeager, D.L.; McKoy, V.

    1975-01-01

    A straightforward scheme is developed for extending the equations of motion formalism to systems with simple open shell ground states. Equations for open shell random phase approximation (RPA) are given for the cases of one electron outside of a closed shell in a nondegenerate molecular orbital and for the triplet ground state with two electrons outside of a closed shell in degenerate molecular orbitals. Applications to other open shells and extension of the open shell EOM to higher orders are both straightforward. Results for the open shell RPA for lithium atom and oxygen molecule are given

  20. Advanced Time Approach of FW-H Equations for Predicting Noise

    DEFF Research Database (Denmark)

    Haiqing, Si; Yan, Shi; Shen, Wen Zhong

    2013-01-01

    An advanced time approach of Ffowcs Williams-Hawkings (FW-H) acoustic analogy is developed, and the integral equations and integral solution of FW-H acoustic analogy are derived. Compared with the retarded time approach, the transcendental equation need not to be solved in the advanced time...

  1. Resonance tongues in Hill's equations : A geometric approach

    NARCIS (Netherlands)

    Broer, H; Simo, C

    2000-01-01

    The geometry of resonance tongues is considered in, mainly reversible, versions of Hill's equation, close to the classical Mathieu case. Hill's map assigns to each value of the multiparameter the corresponding Poincare matrix. Dy an averaging method, the geometry of Hill's map locally can be

  2. A novel approach for solving fractional Fisher equation using ...

    Indian Academy of Sciences (India)

    In the present paper, an analytic solution of nonlinear fractional Fisher equation is deduced with the help of the powerful differential transform method (DTM). ... Department of Engineering Sciences, Faculty of Technology and Engineering, East of Guilan, University of Guilan, P.C. 44891-63157, Rudsar-Vajargah, Iran ...

  3. Mental Capacity and Role Taking: A Structural Equations Approach.

    Science.gov (United States)

    Lapsley, Daniel K.; Quintana, Stephen M.

    1989-01-01

    Used a data analytic strategy that was novel to the M-space literature to examine the mental capacity prerequisites of social-cognitive development of 99 students in grades one, three, and five. Used a structural equations analysis to determine whether M-power was a significant predictor of role-taking development. (RH)

  4. Numerical Aspects of Solving Differential Equations: Laboratory Approach for Students.

    Science.gov (United States)

    Witt, Ana

    1997-01-01

    Describes three labs designed to help students in a first course on ordinary differential equations with three of the most common numerical difficulties they might encounter when solving initial value problems with a numerical software package. The goal of these labs is to help students advance to independent work on common numerical anomalies.…

  5. A novel approach for solving fractional Fisher equation using ...

    Indian Academy of Sciences (India)

    same equation occurs in logistic population growth models, flame propagation, neuro- physiology, autocatalytic chemical reactions and branching Brownian motion processes. The differential transform method was first introduced by Zhou [8] who solved linear and nonlinear initial value problems in electric circuit analysis.

  6. Evaluating Training Approaches for the Revised NIOSH Lifting Equation

    Science.gov (United States)

    Bowles, William, Jr.

    2012-01-01

    The goal of this study was to determine whether the Revised NIOSH Lifting Equation (RNLE) CD-ROM training program, when used without an instructor, could adequately train RNLE users to properly understand and correctly apply the RNLE. If so, then it can be used to fill a current gap in delivering training to both health and safety professionals,…

  7. Crypto-hermitian approach to the klein–gordon equation

    Czech Academy of Sciences Publication Activity Database

    Semorádová, Iveta

    2017-01-01

    Roč. 57, č. 6 (2017), s. 462-466 ISSN 1210-2709 Institutional support: RVO:61389005 Keywords : Klein-Gordon equation * probability interpretation * metric operator * crypto-Hermitian operator * quasi-Hermitian operator Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)

  8. Large Time Behavior of the Vlasov-Poisson-Boltzmann System

    Directory of Open Access Journals (Sweden)

    Li Li

    2013-01-01

    Full Text Available The motion of dilute charged particles can be modeled by Vlasov-Poisson-Boltzmann system. We study the large time stability of the VPB system. To be precise, we prove that when time goes to infinity, the solution of VPB system tends to global Maxwellian state in a rate Ot−∞, by using a method developed for Boltzmann equation without force in the work of Desvillettes and Villani (2005. The improvement of the present paper is the removal of condition on parameter λ as in the work of Li (2008.

  9. Lattice Boltzmann method with the cell-population equilibrium

    International Nuclear Information System (INIS)

    Zhou Xiaoyang; Cheng Bing; Shi Baochang

    2008-01-01

    The central problem of the lattice Boltzmann method (LBM) is to construct a discrete equilibrium. In this paper, a multi-speed 1D cell-model of Boltzmann equation is proposed, in which the cell-population equilibrium, a direct non-negative approximation to the continuous Maxwellian distribution, plays an important part. By applying the explicit one-order Chapman–Enskog distribution, the model reduces the transportation and collision, two basic evolution steps in LBM, to the transportation of the non-equilibrium distribution. Furthermore, 1D dam-break problem is performed and the numerical results agree well with the analytic solutions

  10. Aplicação da equação de Poisson-Boltzmann ao cálculo de propriedades dependentes do pH em proteínas Aplications of the Poisson-Boltzmann equation to the calculation of pH-dependent properties in proteins

    Directory of Open Access Journals (Sweden)

    Thereza A. Soares

    2004-08-01

    Full Text Available The ability of biomolecules to catalyze chemical reactions is due chiefly to their sensitivity to variations of the pH in the surrounding environment. The reason for this is that they are made up of chemical groups whose ionization states are modulated by pH changes that are of the order of 0.4 units. The determination of the protonation states of such chemical groups as a function of conformation of the biomolecule and the pH of the environment can be useful in the elucidation of important biological processes from enzymatic catalysis to protein folding and molecular recognition. In the past 15 years, the theory of Poisson-Boltzmann has been successfully used to estimate the pKa of ionizable sites in proteins yielding results, which may differ by 0.1 unit from the experimental values. In this study, we review the theory of Poisson-Boltzmann under the perspective of its application to the calculation of pKa in proteins.

  11. Integral equations of hadronic correlation functions a functional- bootstrap approach

    CERN Document Server

    Manesis, E K

    1974-01-01

    A reasonable 'microscopic' foundation of the Feynman hadron-liquid analogy is offered, based on a class of models for hadron production. In an external field formalism, the equivalence (complementarity) of the exclusive and inclusive descriptions of hadronic reactions is specifically expressed in a functional-bootstrap form, and integral equations between inclusive and exclusive correlation functions are derived. Using the latest CERN-ISR data on the two-pion inclusive correlation function, and assuming rapidity translational invariance for the exclusive one, the simplest integral equation is solved in the 'central region' and an exclusive correlation length in rapidity predicted. An explanation is also offered for the unexpected similarity observed between pi /sup +/ pi /sup -/ and pi /sup -/ pi /sup -/ inclusive correlations. (31 refs).

  12. Ludwig Boltzmann, mechanics and vitalism

    International Nuclear Information System (INIS)

    Broda, E.

    1990-01-01

    During most of his life Boltzmann considered classical mechanics, based on the ideas of material points and central forces, as the fundament of physics. On this basis he became one of the founders of Statistical Mechanics, through which thermodynamics was interpreted on an atomistic basis. In this work, Boltzmann was opposed by his colleague, Ernst Mach. Boltzmann also devoted much work to attempts to interpret Maxwell's theory of the electromagnetic field, of which he was a main protagonist in Central Europe, through mechanics. However, as a supporter of mechanics Boltzmann was by no means dogmatic. While he was adamant in his rejection of Wilhelm Ostwald's energism, he was openminded in respect to the relationship of mechanics, electromagnetism and atomistics. Personally, Boltzmann wanted to conserve and transmit the enormous achievements of mechanics, especially in connection with the mechanical theory of heat, so that these results should not be lost to future generations, but he encouraged attempts to proceed in new directions. While within the framework of statistical mechanics the atoms were treated like the material points of classical mechanics, Boltzmann resisted the initial, unwarranted, ideas about the structure and the properties of the atoms. When later valid ideas were evolved, Boltzmann warmly welcomed this progress, without however personally taking part in the new developments. In his later years, Boltzmann took an intense interest in biology. He supported Darwin's theories, and he contributed to them. He may be called an 'absolute Darwinist'. In his search for a natural explanation of the phenomena of life, he used the term 'mechanical', without meaning to limit them to the realm of classical mechanics. This terminological laxity is considered as unfortunate. Extending his application of Darwinian principles to advanced species, including man, Boltzmann put forward 'mechanical' explanations of thought

  13. Corruption and the shadow economy: a structural equation model approach

    OpenAIRE

    Buehn, Andreas; Schneider, Friedrich G.

    2009-01-01

    The relationship between corruption and the shadow economy is not clear. Theoretically, they either substitute or complement each other – exhibiting either a negative or positive relationship. This paper – using a structural equation model with two latent variables – extracts information on various dimensions of corruption and the shadow economy to contribute to the debate on their relationship. It presents empirical evidence of a positive relationship between the shadow economy and corruptio...

  14. Elliptic Diophantine equations a concrete approach via the elliptic logarithm

    CERN Document Server

    Tzanakis, Nikos

    2013-01-01

    This book presents in a unified way the beautiful and deep mathematics, both theoretical and computational, on which the explicit solution of an elliptic Diophantine equation is based. It collects numerous results and methods that are scattered in literature. Some results are even hidden behind a number of routines in software packages, like Magma. This book is suitable for students in mathematics, as well as professional mathematicians.

  15. A Regularized Approach for Solving Magnetic Differential Equations and a Revised Iterative Equilibrium Algorithm

    International Nuclear Information System (INIS)

    Hudson, S.R.

    2010-01-01

    A method for approximately solving magnetic differential equations is described. The approach is to include a small diffusion term to the equation, which regularizes the linear operator to be inverted. The extra term allows a 'source-correction' term to be defined, which is generally required in order to satisfy the solvability conditions. The approach is described in the context of computing the pressure and parallel currents in the iterative approach for computing magnetohydrodynamic equilibria.

  16. The Interaction of Boltzmann with Mach, Ostwald and Planck, and his influence on Nernst and Einstein

    International Nuclear Information System (INIS)

    Broda, E.

    1981-01-01

    Boltzmann esteemed both Mach and Ostwald personally and as experimentalists, but consistently fought them in epistemology. He represented atomism and realism against energism and positivism. In the early period Boltzmann also had to struggle against Planck as a phenomenologist, but he welcomed his quantum hypothesis. As a scientist Nernst was also under Boltzmann's influence. Einstein learned atomism from (Maxwell and) Boltzmann. After Einstein had overcome Mach's positivist influence, he unknowingly approached Boltzmann's philosophical views. Some sociopolitlcal aspects of the lives of the great physicists will be discussed. It will be shown how they all, and many of Boltzmann's most eminent students, in one way or other conflicted with evil tendencies and developments in existing society. (author)

  17. Dimerization of Carboxylic Acids: An Equation of State Approach

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Kontogeorgis, Georgios; Panayiotou, Costas

    2017-01-01

    The association term of the nonrandom hydrogen bonding theory, which is an equation of state model, is extended to describe the dimerization of carboxylic acids in binary mixtures with inert solvents and in systems of two different acids. Subsequently, the model is applied to describe the excess....... Consequently, the observed endothermic dissolution process is mainly attributed to the hindering of polar interactions. Furthermore, upon mixing of two carboxylic acids, the rearrangement of hydrogen bonds due to the formation of cross associating species results in an insignificant contribution to the heats...

  18. Modeling the Informal Economy in Mexico. A Structural Equation Approach

    OpenAIRE

    Brambila Macias, Jose

    2008-01-01

    This paper uses annual data for the period 1970-2006 in order to estimate and investigate the evolution of the Mexican informal economy. In order to do so, we model the informal economy as a latent variable and try to explain it through relationships between possible cause and indicator variables using structural equation modeling (SEM). Our results indicate that the Mexican informal sector at the beginning of the 1970’s initially accounted for 40 percent of GDP while slightly decreasing to s...

  19. Diffusive Wave Approximation to the Shallow Water Equations: Computational Approach

    KAUST Repository

    Collier, Nathan

    2011-05-14

    We discuss the use of time adaptivity applied to the one dimensional diffusive wave approximation to the shallow water equations. A simple and computationally economical error estimator is discussed which enables time-step size adaptivity. This robust adaptive time discretization corrects the initial time step size to achieve a user specified bound on the discretization error and allows time step size variations of several orders of magnitude. In particular, in the one dimensional results presented in this work feature a change of four orders of magnitudes for the time step over the entire simulation.

  20. Stochastic partial differential equations a modeling, white noise functional approach

    CERN Document Server

    Holden, Helge; Ubøe, Jan; Zhang, Tusheng

    1996-01-01

    This book is based on research that, to a large extent, started around 1990, when a research project on fluid flow in stochastic reservoirs was initiated by a group including some of us with the support of VISTA, a research coopera­ tion between the Norwegian Academy of Science and Letters and Den norske stats oljeselskap A.S. (Statoil). The purpose of the project was to use stochastic partial differential equations (SPDEs) to describe the flow of fluid in a medium where some of the parameters, e.g., the permeability, were stochastic or "noisy". We soon realized that the theory of SPDEs at the time was insufficient to handle such equations. Therefore it became our aim to develop a new mathematically rigorous theory that satisfied the following conditions. 1) The theory should be physically meaningful and realistic, and the corre­ sponding solutions should make sense physically and should be useful in applications. 2) The theory should be general enough to handle many of the interesting SPDEs that occur in r...

  1. A variational approach to nonlinear evolution equations in optics

    Indian Academy of Sciences (India)

    practical application of the approach is demonstrated by some illustrative examples in connection with the nonlinear ... and creative use of the variational approach to solve more or less complicated problems. No attempt towards a ...... Dispersion-management is an attractive way to increase the capacity of optical communi-.

  2. Entropic lattice Boltzmann representations required to recover Navier-Stokes flows.

    Science.gov (United States)

    Keating, Brian; Vahala, George; Yepez, Jeffrey; Soe, Min; Vahala, Linda

    2007-03-01

    There are two disparate formulations of the entropic lattice Boltzmann scheme: one of these theories revolves around the analog of the discrete Boltzmann H function of standard extensive statistical mechanics, while the other revolves around the nonextensive Tsallis entropy. It is shown here that it is the nonenforcement of the pressure tensor moment constraints that lead to extremizations of entropy resulting in Tsallis-like forms. However, with the imposition of the pressure tensor moment constraint, as is fundamentally necessary for the recovery of the Navier-Stokes equations, it is proved that the entropy function must be of the discrete Boltzmann form. Three-dimensional simulations are performed which illustrate some of the differences between standard lattice Boltzmann and entropic lattice Boltzmann schemes, as well as the role played by the number of phase-space velocities used in the discretization.

  3. Master equation approach to DNA breathing in heteropolymer DNA

    DEFF Research Database (Denmark)

    Ambjörnsson, Tobias; Banik, Suman K; Lomholt, Michael A

    2007-01-01

    After crossing an initial barrier to break the first base-pair (bp) in double-stranded DNA, the disruption of further bps is characterized by free energies up to a few k(B)T. Thermal motion within the DNA double strand therefore causes the opening of intermittent single-stranded denaturation zones......, the DNA bubbles. The unzipping and zipping dynamics of bps at the two zipper forks of a bubble, where the single strand of the denatured zone joins the still intact double strand, can be monitored by single molecule fluorescence or NMR methods. We here establish a dynamic description of this DNA breathing...... in a heteropolymer DNA with given sequence in terms of a master equation that governs the time evolution of the joint probability distribution for the bubble size and position along the sequence. The transfer coefficients are based on the Poland-Scheraga free energy model. We derive the autocorrelation function...

  4. A phenomenological approach to the equation of state of a unitary ...

    Indian Academy of Sciences (India)

    Abstract. We propose a phenomenological approach for the equation of state of a unitary Fermi gas. The universal equation of state is parametrized in terms of Fermi–Dirac integrals. This repro- duces the experimental data over the accessible range of fugacity and normalized temperature, but cannot describe the superfluid ...

  5. Revisiting the equation of state of hybrid stars in the Dyson-Schwinger equation approach to QCD

    Science.gov (United States)

    Bai, Zhan; Chen, Huan; Liu, Yu-xin

    2018-01-01

    We investigate the equation of state (EoS) and the effect of the hadron-quark phase transition of strong interaction matter in compact stars. The hadron matter is described with the relativistic mean field theory, and the quark matter is described with the Dyson-Schwinger equation approach of QCD. The complete EoS of the hybrid star matter is constructed with not only the Gibbs construction but also the 3-window interpolation. The mass-radius relation of hybrid stars is also investigated. We find that, although the EoS of both the hadron matter with hyperon and Δ -baryon and the quark matter are generally softer than that of the nucleon matter, the 3-window interpolation construction may provide an EoS stiff enough for a hybrid star with mass exceeding 2 M⊙ and, in turn, solve the so-called "hyperon puzzle."

  6. On exact solutions of the regularized long-wave equation: A direct approach to partially integrable equations. II. Periodic solutions

    Science.gov (United States)

    Parker, A.

    1995-07-01

    In this second of two articles (designated I and II), the bilinear transformation method is used to obtain stationary periodic solutions of the partially integrable regularized long-wave (RLW) equation. These solutions are expressed in terms of Riemann theta functions, and this approach leads to a new and compact expression for the important dispersion relation. The periodic solution (or cnoidal wave) can be represented as an infinite sum of sech2 ``solitary waves'': this remarkable property may be interpreted in the context of a nonlinear superposition principle. The RLW cnoidal wave approximates to a sinusoidal wave and a solitary wave in the limits of small and large amplitudes, respectively. Analytic approximations and error estimates are given which shed light on the character of the cnoidal wave in the different parameter regimes. Similar results are presented in brief for the related RLW Boussinesq (RLWB) equation.

  7. Comparing Entrepreneurship Intention: A Multigroup Structural Equation Modeling Approach

    Directory of Open Access Journals (Sweden)

    Sabrina O. Sihombing

    2012-04-01

    Full Text Available Unemployment is one of the main social and economic problems that many countries face nowadays. One strategic way to overcome this problem is by fostering entrepreneurship spirit especially for unem-ployment graduates. Entrepreneurship is becoming an alternative Job for students after they graduate. This is because entrepreneurship of fers major benefits, such as setting up one’s own business and the pos sibility of having significant financial rewards than working for others. Entrepreneurship is then offered by many universities. This research applies the theory of planned behavior (TPB by incorporating attitude toward success as an antecedent variable of the attitude to examine students’ intention to become an entrepreneur. The objective of this research is to compare entrepreneurship intention between business students and non-business students. A self-administered questionnaire was used to collect data for this study. Questionnaires were distributed to respondents by applying the drop-off/pick-up method. A number of 294 by questionnaires were used in the analysis. Data were analyzed by using structural equation modeling. Two out of four hypotheses were confirmed. These hypotheses are the relationship between the attitude toward becoming an entrepreneur and the intention to try becoming an entrepreneur, and the relationship perceived behavioral control and intention to try becoming an entrepreneur. This paper also provides a discussion and offers directions for future research.

  8. Comparing Entrepreneurship Intention: A Multigroup Structural Equation Modeling Approach

    Directory of Open Access Journals (Sweden)

    Sabrina O. Sihombing

    2012-04-01

    Full Text Available Unemployment is one of the main social and economic problems that many countries face nowadays. One strategic way to overcome this problem is by fostering entrepreneurship spirit especially for unem ployment graduates. Entrepreneurship is becoming an alternative Job for students after they graduate. This is because entrepreneurship of-fers major benefits, such as setting up one’s own business and the pos-sibility of having significant financial rewards than working for others. Entrepreneurship is then offered by many universities. This research applies the theory of planned behavior (TPB by incorporating attitude toward success as an antecedent variable of the attitude to examine students’ intention to become an entrepreneur. The objective of this research is to compare entrepreneurship intention between business students and non-business students. A self-administered questionnaire was used to collect data for this study. Questionnaires were distributed to respondents by applying the drop-off/pick-up method. A number of 294 by questionnaires were used in the analysis. Data were analyzed by using structural equation modeling. Two out of four hypotheses were confirmed. These hypotheses are the relationship between the attitude toward becoming an entrepreneur and the intention to try becoming an entrepreneur, and the relationship perceived behavioral control and intention to try becoming an entrepreneur. This paper also provides a discussion and offers directions for future research.

  9. Occupants' satisfaction toward building environmental quality: structural equation modeling approach.

    Science.gov (United States)

    Kamaruzzaman, Syahrul Nizam; Egbu, C O; Zawawi, Emma Marinie Ahmad; Karim, Saipol Bari Abd; Woon, Chen Jia

    2015-05-01

    It is accepted that occupants who are more satisfied with their workplace's building internal environment are more productive. The main objective of the study was to measure the occupants' level of satisfaction and the perceived importance of the design or refurbishment on office conditions. The study also attempted to determine the factors affecting the occupants' satisfaction with their building or office conditions. Post-occupancy evaluations were conducted using a structured questionnaire developed by the Built Environment Research Group at the University of Manchester, UK. Our questionnaires incorporate 22 factors relating to the internal environment and rate these in terms of "user satisfaction" and "degree of importance." The questions were modified to reflect the specific setting of the study and take into consideration the local conditions and climate in Malaysia. The overall mean satisfaction of the occupants toward their office environment was 5.35. The results were measured by a single item of overall liking of office conditions in general. Occupants were more satisfied with their state of health in the workplace, but they were extremely dissatisfied with the distance away from a window. The factor analysis divided the variables into three groups, namely intrusion, air quality, and office appearance. Structural equation modeling (SEM) was then used to determine which factor had the most significant influence on occupants' satisfaction: appearance. The findings from the study suggest that continuous improvement in aspects of the building's appearance needs to be supported with effective and comprehensive maintenance to sustain the occupants' satisfaction.

  10. Collage-based approaches for elliptic partial differential equations inverse problems

    Science.gov (United States)

    Yodzis, Michael; Kunze, Herb

    2017-01-01

    The collage method for inverse problems has become well-established in the literature in recent years. Initial work developed a collage theorem, based upon Banach's fixed point theorem, for treating inverse problems for ordinary differential equations (ODEs). Amongst the subsequent work was a generalized collage theorem, based upon the Lax-Milgram representation theorem, useful for treating inverse problems for elliptic partial differential equations (PDEs). Each of these two different approaches can be applied to elliptic PDEs in one space dimension. In this paper, we explore and compare how the two different approaches perform for the estimation of the diffusivity for a steady-state heat equation.

  11. Variational Approaches for the Existence of Multiple Periodic Solutions of Differential Delay Equations

    Directory of Open Access Journals (Sweden)

    Rong Cheng

    2010-01-01

    Full Text Available The existence of multiple periodic solutions of the following differential delay equation (=−((− is established by applying variational approaches directly, where ∈ℝ, ∈(ℝ,ℝ and >0 is a given constant. This means that we do not need to use Kaplan and Yorke's reduction technique to reduce the existence problem of the above equation to an existence problem for a related coupled system. Such a reduction method introduced first by Kaplan and Yorke in (1974 is often employed in previous papers to study the existence of periodic solutions for the above equation and its similar ones by variational approaches.

  12. Extended Lattice Boltzmann Method with Application to Predict Aerodynamic Loads of Long Span Bridge

    Science.gov (United States)

    Liu, Tiancheng; Liu, Gao; Li, Yi; Ge, Yaojun

    2010-05-01

    The lattice Boltzmann (LB) method, a new conceptual approach to solve the fluid dynamics problem, is presented at first. The turbulence model is incorporated into the normal LB equation to simulate turbulence flow in the form of turbulence relaxation time determined by the nonequilibrium particle distribution function and Smagorinsky model. The total relaxation time is defined as the contribution of molecule viscosity and turbulence eddy viscosity. The aerodynamic forces on bridge girders are predicted by present LB method and the analysis of flow state is performed. The validity of LB method is verified through comparing the present results with the available experimental data and those obtained from the solutions of Navier-Stockes equation like Reynolds averaged Navier-Stokes (RANS) and discrete vortex method (DVM).

  13. Adaptive Non-Boltzmann Monte Carlo

    International Nuclear Information System (INIS)

    Fitzgerald, M.; Picard, R.R.; Silver, R.N.

    1998-01-01

    This manuscript generalizes the use of transition probabilities (TPs) between states, which are efficient relative to histogram procedures in deriving system properties. The empirical TPs of the simulation depend on the importance weights and are temperature-specific, so they are not conducive to accumulating statistics as weights change or to extrapolating in temperature. To address these issues, the authors provide a method for inferring Boltzmann-weighted TPs for one temperature from simulations run at other temperatures and/or at different adaptively varying importance weights. They refer to these as canonical transition probabilities (CTPs). System properties are estimated from CTPs. Statistics on CTPs are gathered by inserting a low-cost easily-implemented bookkeeping step into the Metropolis algorithm for non-Boltzmann sampling. The CTP method is inherently adaptive, can take advantage of partitioning of the state space into small regions using either serial or (embarrassingly) parallel architectures, and reduces variance by avoiding histogramming. They also demonstrate how system properties may be extrapolated in temperature from CTPs without the extra memory required by using energy as a microstate label. Nor does it require the solution of non-linear equations used in histogram methods

  14. A unified approach to an augmented Burgers equation for the propagation of sonic booms.

    Science.gov (United States)

    Yamamoto, Masafumi; Hashimoto, Atsushi; Aoyama, Takashi; Sakai, Takeharu

    2015-04-01

    Nonlinear propagation through a relaxing atmosphere of pressure disturbances extracted from a computational fluid dynamics (CFD) solution of the flow around a supersonic aircraft is simulated using an augmented Burgers equation. The effects of nonlinearity, geometrical spreading, atmospheric inhomogeneity, thermoviscous attenuation, and molecular vibration relaxation are taken into account. The augmented Burgers equation used for sonic boom propagation calculations is often solved by the operator splitting method, but numerical difficulties arise with this approach when dissipation is not effective. By re-examining the solution algorithms for the augmented Burgers equation, a stable method for handling the relaxation effect has been developed. This approach can handle the Burgers equation in a unified manner without operator splitting and, therefore, the resulting scheme is twice as fast as the original one. The approach is validated by comparing it with an analytical solution and a detailed CFD of dispersed plane wave propagation. In addition, a rise time prediction of low-boom supersonic aircraft is demonstrated.

  15. Effects of deformability of RBCs on their dynamics and blood flow passing through a stenosed microvessel: an immersed boundary-lattice Boltzmann approach

    Science.gov (United States)

    Alizadeh, As'ad; Dadvand, Abdolrahman

    2018-02-01

    In this paper, the motion of high deformable (healthy) and low deformable (sick) red blood cells in a microvessel with and without stenosis is simulated using a combined lattice Boltzmann-immersed boundary method. The RBC is considered as neo-Hookean elastic membrane with bending resistance. The motion and deformation of the RBC under different values of the Reynolds number are evaluated. In addition, the variations of blood flow resistance and time-averaged pressure due to the motion and deformation of the RBC are assessed. It was found that a healthy RBC moves faster than a sick one. The apparent viscosity and blood flow resistance are greater for the case involving the sick RBC. Blood pressure at the presence of stenosis and low deformable RBC increases, which is thought of as the reason of many serious diseases including cardiovascular diseases. As the Re number increases, the RBC deforms further and moves easier and faster through the stenosis. The results of this study were compared to the available experimental and numerical results, and good agreements were observed.

  16. Cross-Permeability of the Semisolid Region in Directional Solidification: A Combined Phase-Field and Lattice-Boltzmann Simulation Approach

    Science.gov (United States)

    Böttger, B.; Haberstroh, C.; Giesselmann, N.

    2016-01-01

    Based on the results of microstructure simulations, fluid flow through the semisolid region during directional solidification of the technical Ni-base alloy 718 has been studied. Three-dimensional microstructures at different positions in the semisolid region were obtained by using a multicomponent multiphase-field model that was online coupled to a commercial thermodynamic database. For the range of five different primary dendrite distances λ 1 between 50 µm and 250 µm, the flow velocity and the permeability perpendicular to the dendrite growth direction was evaluated by using a proprietary Lattice-Boltzmann model. The commercial CFD software ANSYS FLUENT was alternatively applied for reference. Consistent values of the average flow velocity along the dendrites were obtained for both methods. From the results of the fluid flow simulations, the cross-permeability was evaluated as a function of temperature and fraction liquid for each of the five different primary dendrite distances λ 1. The obtained permeability values can be approximated by a single analytical function of the fraction liquid and λ 1 and are discussed and compared with known relations from the literature.

  17. Lattice Boltzmann model for thermal binary-mixture gas flows.

    Science.gov (United States)

    Kang, Jinfen; Prasianakis, Nikolaos I; Mantzaras, John

    2013-05-01

    A lattice Boltzmann model for thermal gas mixtures is derived. The kinetic model is designed in a way that combines properties of two previous literature models, namely, (a) a single-component thermal model and (b) a multicomponent isothermal model. A comprehensive platform for the study of various practical systems involving multicomponent mixture flows with large temperature differences is constructed. The governing thermohydrodynamic equations include the mass, momentum, energy conservation equations, and the multicomponent diffusion equation. The present model is able to simulate mixtures with adjustable Prandtl and Schmidt numbers. Validation in several flow configurations with temperature and species concentration ratios up to nine is presented.

  18. Polar Coordinate Lattice Boltzmann Kinetic Modeling of Detonation Phenomena

    International Nuclear Information System (INIS)

    Lin Chuan-Dong; Li Ying-Jun; Xu Ai-Guo; Zhang Guang-Cai

    2014-01-01

    A novel polar coordinate lattice Boltzmann kinetic model for detonation phenomena is presented and applied to investigate typical implosion and explosion processes. In this model, the change of discrete distribution function due to local chemical reaction is dynamically coupled into the modified lattice Boltzmann equation which could recover the Navier—Stokes equations, including contribution of chemical reaction, via the Chapman—Enskog expansion. For the numerical investigations, the main focuses are the nonequilibrium behaviors in these processes. The system at the disc center is always in its thermodynamic equilibrium in the highly symmetric case. The internal kinetic energies in different degrees of freedom around the detonation front do not coincide. The dependence of the reaction rate on the pressure, influences of the shock strength and reaction rate on the departure amplitude of the system from its local thermodynamic equilibrium are probed. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  19. Lattice Boltzmann model for three-phase viscoelastic fluid flow

    Science.gov (United States)

    Xie, Chiyu; Lei, Wenhai; Wang, Moran

    2018-02-01

    A lattice Boltzmann (LB) framework is developed for simulation of three-phase viscoelastic fluid flows in complex geometries. This model is based on a Rothman-Keller type model for immiscible multiphase flows which ensures mass conservation of each component in porous media even for a high density ratio. To account for the viscoelastic effects, the Maxwell constitutive relation is correctly introduced into the momentum equation, which leads to a modified lattice Boltzmann evolution equation for Maxwell fluids by removing the normal but excess viscous term. Our simulation tests indicate that this excess viscous term may induce significant errors. After three benchmark cases, the displacement processes of oil by dispersed polymer are studied as a typical example of three-phase viscoelastic fluid flow. The results show that increasing either the polymer intrinsic viscosity or the elastic modulus will enhance the oil recovery.

  20. Parameter Estimation of Structural Equation Modeling Using Bayesian Approach

    Directory of Open Access Journals (Sweden)

    Dewi Kurnia Sari

    2016-05-01

    Full Text Available Leadership is a process of influencing, directing or giving an example of employees in order to achieve the objectives of the organization and is a key element in the effectiveness of the organization. In addition to the style of leadership, the success of an organization or company in achieving its objectives can also be influenced by the commitment of the organization. Where organizational commitment is a commitment created by each individual for the betterment of the organization. The purpose of this research is to obtain a model of leadership style and organizational commitment to job satisfaction and employee performance, and determine the factors that influence job satisfaction and employee performance using SEM with Bayesian approach. This research was conducted at Statistics FNI employees in Malang, with 15 people. The result of this study showed that the measurement model, all significant indicators measure each latent variable. Meanwhile in the structural model, it was concluded there are a significant difference between the variables of Leadership Style and Organizational Commitment toward Job Satisfaction directly as well as a significant difference between Job Satisfaction on Employee Performance. As for the influence of Leadership Style and variable Organizational Commitment on Employee Performance directly declared insignificant.

  1. Tomography and generative training with quantum Boltzmann machines

    Science.gov (United States)

    Kieferová, Mária; Wiebe, Nathan

    2017-12-01

    The promise of quantum neural nets, which utilize quantum effects to model complex data sets, has made their development an aspirational goal for quantum machine learning and quantum computing in general. Here we provide methods of training quantum Boltzmann machines. Our work generalizes existing methods and provides additional approaches for training quantum neural networks that compare favorably to existing methods. We further demonstrate that quantum Boltzmann machines enable a form of partial quantum state tomography that further provides a generative model for the input quantum state. Classical Boltzmann machines are incapable of this. This verifies the long-conjectured connection between tomography and quantum machine learning. Finally, we prove that classical computers cannot simulate our training process in general unless BQP=BPP , provide lower bounds on the complexity of the training procedures and numerically investigate training for small nonstoquastic Hamiltonians.

  2. Dynamics of single-bubble sonoluminescence. An alternative approach to the Rayleigh–Plesset equation

    Science.gov (United States)

    de Barros, Ana L. F.; Nogueira, Álvaro L. M. A.; Paschoal, Ricardo C.; Portes, Dirceu, Jr.; Rodrigues, Hilario

    2018-03-01

    Sonoluminescence is the phenomenon in which acoustic energy is (partially) transformed into light as a bubble of gas collapses inside a liquid medium. One particular model used to explain the motion of the bubble’s wall forced by acoustic pressure is expressed by the Rayleigh–Plesset equation, which can be obtained from the Navier–Stokes equation. In this article, we describe an alternative approach to derive the Rayleigh–Plesset equation based on Lagrangian mechanics. This work is addressed mainly to undergraduate students and teachers. It requires knowledge of calculus and of many concepts from various fields of physics at the intermediate level.

  3. Quantum qubit measurement by a quantum point contact with a quantum Langevin equation approach

    International Nuclear Information System (INIS)

    Dong, Bing; Lei, X.L.; Horing, N.J.M.; Cui, H.L.

    2007-01-01

    We employ a microscopic quantum Heisenberg-Langevin equation approach to establish a set of quantum Bloch equations for a two-level system (coupled quantum dots) capacitively coupled to a quantum point contact (QPC). The resulting Bloch equations facilitate our analysis of qubit relaxation and decoherence in coupled quantum dots induced by measurement processes at arbitrary bias-voltage and temperature. We also examine the noise spectrum of the meter output current for a symmetric qubit. These results help resolve a recent debate about a quantum oscillation peak in the noise spectrum. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Advanced Time Approach of FW-H Equations for Predicting Noise

    DEFF Research Database (Denmark)

    Haiqing, Si; Yan, Shi; Shen, Wen Zhong

    2013-01-01

    approach, on the other hand, computational cost can be saved using the approach due to no demand of pre-storing lots of aerodynamic data. To further validate the efficiency of the advanced time approach for predicting noise, unsteady flow fields are firstly simulated for air around square cylinder and NACA......0012 airfoil, then unsteady calculations are used as input for FW-H equations, and numerical predictions are made for noise induced by vortex shedding of square cylinder and NACA0012 airfoil using the advanced time approach. Finally, the retarded time approach and the advanced time approach...

  5. Beyond the Navier-Stokes equations: Burnett hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Colin, L.S. [Department of Physics, Universidad Autonoma Metropolitana - Iztapalapa, Mexico D. F. 09340 (Mexico); El Colegio Nacional, Centro Historico, Mexico, 06020 (Mexico)], E-mail: lgcs@xanum.uam.mx; Velasco, R.M. [Department of Physics, Universidad Autonoma Metropolitana - Iztapalapa, Mexico D. F. 09340 (Mexico)], E-mail: rmvb@xanum.uam.mx; Uribe, F.J. [Department of Physics, Universidad Autonoma Metropolitana - Iztapalapa, Mexico D. F. 09340 (Mexico)], E-mail: paco@xanum.uam.mx

    2008-08-15

    This work is mainly concerned with the extension of hydrodynamics beyond the Navier-Stokes equations, a regime known as Burnett hydrodynamics. The derivation of the Burnett equations is considered from several theoretical approaches. In particular we discuss the Chapman-Enskog, Grad's method, and Truesdell's approach for solving the Boltzmann equation. Also, their derivation using the macroscopic approach given by extended thermodynamics is mentioned. The problems and successes of these equations are discussed and some alternatives proposed to improve them are mentioned. Comparisons of the predictions coming from the Burnett equations with experiments and/or simulations are given in order to have the necessary elements to give a critical assessment of their validity and usefulness.

  6. An Inverse Source Problem for a One-dimensional Wave Equation: An Observer-Based Approach

    KAUST Repository

    Asiri, Sharefa M.

    2013-05-25

    Observers are well known in the theory of dynamical systems. They are used to estimate the states of a system from some measurements. However, recently observers have also been developed to estimate some unknowns for systems governed by Partial differential equations. Our aim is to design an observer to solve inverse source problem for a one dimensional wave equation. Firstly, the problem is discretized in both space and time and then an adaptive observer based on partial field measurements (i.e measurements taken form the solution of the wave equation) is applied to estimate both the states and the source. We see the effectiveness of this observer in both noise-free and noisy cases. In each case, numerical simulations are provided to illustrate the effectiveness of this approach. Finally, we compare the performance of the observer approach with Tikhonov regularization approach.

  7. New generalized phase shift approach to solve the Helmholtz acoustic wave equation

    Science.gov (United States)

    Abeykoon, Sameera K. (Nee Rajapakshe)

    2008-10-01

    We have developed and given some proof of concept applications of a new method of solving the Helmholtz wave equation in order to facilitate the exploration of oil and gas. The approach is based on a new way to generalize the "one-way" wave equation, and to impose correct boundary conditions. The full two-way nature of the Helmholtz equation is considered, but converted into a pseudo "one-way" form with a generalized phase shift structure for propagation in the depth z. Two coupled first order partial differential equations in the depth variable z are obtained from the Helmholtz wave equation. Our approach makes use of very simple, standard ideas from differential equations and early ideas on the non-iterative solution of the Lippmann-Schwinger equation in quantum scattering. In addition, a judicious choice of operator splitting is introduced to ensure that only explicit solution techniques are required. This avoids the need for numerical matrix inversions. The initial conditions are more challenging due to the need to ensure that the solution satisfies proper boundary conditions associated with the waves traveling in two directions. This difficulty is resolved by solving the Lippmann-Schwinger integral equation in an explicit, non-iterative fashion. It is solved by essentially "factoring out" the physical boundary conditions, thereby converting the inhomogeneous Lippmann-Schwinger integral equation of the second kind into a Volterra integral equation of the second kind. Due to the special structure of the kernel, which is a consequence of the causal nature of the Green's function in the Lippmann-Schwinger equation, this turns out to be extremely efficient. The coupled first order differential equations will be solved using the "modified Cayley method" developed in Kouri's group some years ago. The Feshbach projection operator technique is used for constructing a solution that is stable with respect to "evanescent" or "non-propagating" waves. This method is

  8. Integral equation approach to time-dependent kinematic dynamos in finite domains

    International Nuclear Information System (INIS)

    Xu Mingtian; Stefani, Frank; Gerbeth, Gunter

    2004-01-01

    The homogeneous dynamo effect is at the root of cosmic magnetic field generation. With only a very few exceptions, the numerical treatment of homogeneous dynamos is carried out in the framework of the differential equation approach. The present paper tries to facilitate the use of integral equations in dynamo research. Apart from the pedagogical value to illustrate dynamo action within the well-known picture of the Biot-Savart law, the integral equation approach has a number of practical advantages. The first advantage is its proven numerical robustness and stability. The second and perhaps most important advantage is its applicability to dynamos in arbitrary geometries. The third advantage is its intimate connection to inverse problems relevant not only for dynamos but also for technical applications of magnetohydrodynamics. The paper provides the first general formulation and application of the integral equation approach to time-dependent kinematic dynamos, with stationary dynamo sources, in finite domains. The time dependence is restricted to the magnetic field, whereas the velocity or corresponding mean-field sources of dynamo action are supposed to be stationary. For the spherically symmetric α 2 dynamo model it is shown how the general formulation is reduced to a coupled system of two radial integral equations for the defining scalars of the poloidal and toroidal field components. The integral equation formulation for spherical dynamos with general stationary velocity fields is also derived. Two numerical examples - the α 2 dynamo model with radially varying α and the Bullard-Gellman model - illustrate the equivalence of the approach with the usual differential equation method. The main advantage of the method is exemplified by the treatment of an α 2 dynamo in rectangular domains

  9. A stochastic root finding approach: the homotopy analysis method applied to Dyson-Schwinger equations

    Science.gov (United States)

    Pfeffer, Tobias; Pollet, Lode

    2017-04-01

    We present the construction and stochastic summation of rooted-tree diagrams, based on the expansion of a root finding algorithm applied to the Dyson-Schwinger equations. The mathematical formulation shows superior convergence properties compared to the bold diagrammatic Monte Carlo approach and the developed algorithm allows one to tackle generic high-dimensional integral equations, to avoid the curse of dealing explicitly with high-dimensional objects and to access non-perturbative regimes. The sign problem remains the limiting factor, but it is not found to be worse than in other approaches. We illustrate the method for {φ }4 theory but note that it applies in principle to any model.

  10. A topological approach to the existence of solutions for nonlinear differential equations with piecewise constant argument

    International Nuclear Information System (INIS)

    Huang Zhenkun; Wang Xinghua; Xia Yonghui

    2009-01-01

    In this paper, we investigate qualitative behavior of nonlinear differential equations with piecewise constant argument (PCA). A topological approach of Wazewski-type which gives sufficient conditions to guarantee that the graph of at least one solution stays in a given domain is formulated. Moreover, our results are also suitable for a class of general system of discrete equations. By using a regular polyfacial set, we apply our developed topological approach to cellular neural networks (CNNs) with PCA. Some new results are attained to reveal dynamic behavior of CNNs with PCA and discrete-time CNNs. Finally, an illustrative example of CNNs with PCA shows usefulness and effectiveness of our results.

  11. A multi-component lattice Boltzmann scheme: towards the mesoscale simulation of blood flow.

    Science.gov (United States)

    Dupin, M M; Halliday, I; Care, C M

    2006-01-01

    While blood at the macroscopic scale is frequently treated as a continuum by techniques such as computational fluid dynamics, its mesoscale behaviour is not so well investigated or understood. At this scale, the deformability of each cell within the plasma is important and cannot be ignored. However there is currently a lack of efficient computational techniques able to simulate a large number of deformable particles such as blood cells. This paper addresses this problem and demonstrates the applicability of the authors' recent multi-component lattice Boltzmann method for the simulation of a large number of mutually immiscible liquid species [Dupin MM, Halliday I, Care CM. Multi-component lattice boltzmann equation for mesoscale blood flow. J Phys A: Math Gen 2003;36:8517-34]. In here, biological cells are treated as immiscible, deformable, and relatively viscous drops (compared to the surrounding fluid). The validation of the model is based on the work of Goldsmith on the flow of solid particles, deformable particles and red blood cells [Goldsmith HL, Marlow JC. Flow behavior of erythrocytes. II. Particle motions in concentrated suspensions of ghost cells. J Colloid Interf Sci 1979;71:383-407]. We demonstrate, in particular, that the model recovers Goldsmith's observations on the flow properties of red blood cells and also the experimental observations of Frank on the flow of solid beads [Frank M, Anderson D, Weeks ER, Morris JF. Particle migration in pressure-driven flow of a brownian suspension. J Fluid Mech 2003;493:363-78]. The current article is the first validation of our new lattice Boltzmann model for a large number of deformable particles in this context and demonstrates that the method provides a new, and effective, approach for the modeling of mesoscale blood flow.

  12. Lattice Boltzmann Methods to Address Fundamental Boiling and Two-Phase Problems

    Energy Technology Data Exchange (ETDEWEB)

    Uddin, Rizwan

    2012-01-01

    This report presents the progress made during the fourth (no cost extension) year of this three-year grant aimed at the development of a consistent Lattice Boltzmann formulation for boiling and two-phase flows. During the first year, a consistent LBM formulation for the simulation of a two-phase water-steam system was developed. Results of initial model validation in a range of thermo-dynamic conditions typical for Boiling Water Reactors (BWRs) were shown. Progress was made on several fronts during the second year. Most important of these included the simulation of the coalescence of two bubbles including the surface tension effects. Work during the third year focused on the development of a new lattice Boltzmann model, called the artificial interface lattice Boltzmann model (AILB model) for the 3 simulation of two-phase dynamics. The model is based on the principle of free energy minimization and invokes the Gibbs-Duhem equation in the formulation of non-ideal forcing function. This was reported in detail in the last progress report. Part of the efforts during the last (no-cost extension) year were focused on developing a parallel capability for the 2D as well as for the 3D codes developed in this project. This will be reported in the final report. Here we report the work carried out on testing the AILB model for conditions including the thermal effects. A simplified thermal LB model, based on the thermal energy distribution approach, was developed. The simplifications are made after neglecting the viscous heat dissipation and the work done by pressure in the original thermal energy distribution model. Details of the model are presented here, followed by a discussion of the boundary conditions, and then results for some two-phase thermal problems.

  13. Equilibrium excited state and emission spectra of molecular aggregates from the hierarchical equations of motion approach.

    Science.gov (United States)

    Jing, Yuanyuan; Chen, Liping; Bai, Shuming; Shi, Qiang

    2013-01-28

    The hierarchical equations of motion (HEOM) method was applied to calculate the emission spectra of molecular aggregates using the Frenkel exciton model. HEOM equations for the one-exciton excited state were first propagated until equilibration. The reduced density operator and auxiliary density operators (ADOs) were used to characterize the coupled system-bath equilibrium. The dipole-dipole correlation functions were then calculated to obtain the emission spectra of model dimers, and the B850 band of light-harvesting complex II (LH2) in purple bacteria. The effect of static disorder on equilibrium excited state and the emission spectra of LH2 was also explicitly considered. Several approximation schemes, including the high temperature approximation (HTA) of the HEOM, a modified version of the HTA, the stochastic Liouville equation approach, the perturbative time-local and time-nonlocal generalized quantum master equations, were assessed in the calculation of the equilibrium excited state and emission spectra.

  14. New approach for exact solutions of time fractional Cahn-Allen equation and time fractional Phi-4 equation

    Science.gov (United States)

    Tariq, Hira; Akram, Ghazala

    2017-05-01

    In this article, new exact analytical solutions of some nonlinear evolution equations (NLEEs) arising in science, engineering and mathematical physics, namely time fractional Cahn-Allen equation and time fractional Phi-4 equation are developed using tanh method by means of fractional complex transform. The obtained results are demonstrated by graphs for the new solutions.

  15. Simulating Electric Double Layer Capacitance by Using Lattice Boltzmann Method

    Science.gov (United States)

    Sun, Ning; Gersappe, Dilip

    2015-03-01

    By using the Lattice Boltzmann Method (LBM) we studied diffuse-charge dynamics in electrochemical systems. We use the LBM to solve Poisson-Nernst-Planck equations (PNP) and Modified Poisson-Nernst-Planck equations (MPNP). The isotropic permittivity of electrolyte is modeled using the Booth model. The results show that both steric effect (MPNP) and isotropic permittivity (Booth model) can have large influence on diffuse-charge dynamics, especially when electrolyte concentration or applied potential is high. This model can be applied to simulate electric double layer capacitance of super capacitors with complex geometry and also incorporate other effects such as heat convection in a modular manner.

  16. General particle transport equation. Final report

    International Nuclear Information System (INIS)

    Lafi, A.Y.; Reyes, J.N. Jr.

    1994-12-01

    The general objectives of this research are as follows: (1) To develop fundamental models for fluid particle coalescence and breakage rates for incorporation into statistically based (Population Balance Approach or Monte Carlo Approach) two-phase thermal hydraulics codes. (2) To develop fundamental models for flow structure transitions based on stability theory and fluid particle interaction rates. This report details the derivation of the mass, momentum and energy conservation equations for a distribution of spherical, chemically non-reacting fluid particles of variable size and velocity. To study the effects of fluid particle interactions on interfacial transfer and flow structure requires detailed particulate flow conservation equations. The equations are derived using a particle continuity equation analogous to Boltzmann's transport equation. When coupled with the appropriate closure equations, the conservation equations can be used to model nonequilibrium, two-phase, dispersed, fluid flow behavior. Unlike the Eulerian volume and time averaged conservation equations, the statistically averaged conservation equations contain additional terms that take into account the change due to fluid particle interfacial acceleration and fluid particle dynamics. Two types of particle dynamics are considered; coalescence and breakage. Therefore, the rate of change due to particle dynamics will consider the gain and loss involved in these processes and implement phenomenological models for fluid particle breakage and coalescence

  17. A Simple "Boxed Molecular Kinetics" Approach To Accelerate Rare Events in the Stochastic Kinetic Master Equation.

    Science.gov (United States)

    Shannon, Robin; Glowacki, David R

    2018-02-15

    The chemical master equation is a powerful theoretical tool for analyzing the kinetics of complex multiwell potential energy surfaces in a wide range of different domains of chemical kinetics spanning combustion, atmospheric chemistry, gas-surface chemistry, solution phase chemistry, and biochemistry. There are two well-established methodologies for solving the chemical master equation: a stochastic "kinetic Monte Carlo" approach and a matrix-based approach. In principle, the results yielded by both approaches are identical; the decision of which approach is better suited to a particular study depends on the details of the specific system under investigation. In this Article, we present a rigorous method for accelerating stochastic approaches by several orders of magnitude, along with a method for unbiasing the accelerated results to recover the "true" value. The approach we take in this paper is inspired by the so-called "boxed molecular dynamics" (BXD) method, which has previously only been applied to accelerate rare events in molecular dynamics simulations. Here we extend BXD to design a simple algorithmic strategy for accelerating rare events in stochastic kinetic simulations. Tests on a number of systems show that the results obtained using the BXD rare event strategy are in good agreement with unbiased results. To carry out these tests, we have implemented a kinetic Monte Carlo approach in MESMER, which is a cross-platform, open-source, and freely available master equation solver.

  18. Boltzmann-Fokker-Planck calculations using standard discrete-ordinates codes

    International Nuclear Information System (INIS)

    Morel, J.E.

    1987-01-01

    The Boltzmann-Fokker-Planck (BFP) equation can be used to describe both neutral and charged-particle transport. Over the past several years, the author and several collaborators have developed methods for representing Fokker-Planck operators with standard multigroup-Legendre cross-section data. When these data are input to a standard S/sub n/ code such as ONETRAN, the code actually solves the Boltzmann-Fokker-Planck equation rather than the Boltzmann equation. This is achieved wihout any modification to the S/sub n/ codes. Because BFP calculations can be more demanding from a numerical viewpoint than standard neutronics calculations, we have found it useful to implement new quadrature methods ad convergence acceleration methods in the standard discrete-ordinates code, ONETRAN. We discuss our BFP cross-section representation techniques, our improved quadrature and acceleration techniques, and present results from BFP coupled electron-photon transport calculations performed with ONETRAN. 19 refs., 7 figs

  19. Modeling of thermal processes proceeding in a thin gold film using the lattice Boltzmann method with interval source function

    Science.gov (United States)

    Piasecka-Belkhayat, Alicja; Korczak, Anna

    2018-01-01

    The interval coupled lattice Boltzmann equations for electrons and phonons are used to analyse the heating process of thin metal films. The interval lattice Boltzmann method (ILBM) with the uncertainly defined external source function associated with the laser irradiation is used to simulate the heat transfer. The solution of the interval Boltzmann transport equations has been obtained taking into account the rules of directed interval arithmetic. A similar analysis has been done using the sensitivity model where the Boltzmann transport equations and boundary-initial conditions have been differentiated with respect to the no-interval laser parameter. The knowledge of the sensitivity function distribution and the application of the Taylor formula allow one to find the border solutions of the problem analysed which correspond to the solution obtained assuming the uncertainly defined source function. In the final part of the paper the results of numerical computations obtained using both methods are presented.

  20. Methodology for obtaining a solution for the three-dimensional Boltzmann transport equation and an expression for the calculation of the total doses considering Compton scattering simulated by Klein-Nishina

    International Nuclear Information System (INIS)

    Rodriguez, Barbara A.; Borges, Volnei; Vilhena, Marco Tullio

    2005-01-01

    In this work we would like to obtain a formulation of an analytic method for the solution of the three dimensional transport equation considering Compton scattering and an expression for total doses due to gamma radiation, where the deposited energy by the free electron will be considered. For that, we will work with two equations: the first one for the photon transport, considering the Klein-Nishina kernel and energy multigroup model, and the second one considering the free electron with the screened Rutherford scattering. (author)

  1. A novel approach to solve nonlinear Fredholm integral equations of the second kind.

    Science.gov (United States)

    Li, Hu; Huang, Jin

    2016-01-01

    In this paper, we present a novel approach to solve nonlinear Fredholm integral equations of the second kind. This algorithm is constructed by the integral mean value theorem and Newton iteration. Convergence and error analysis of the numerical solutions are given. Moreover, Numerical examples show the algorithm is very effective and simple.

  2. New approach to solve fully fuzzy system of linear equations using ...

    Indian Academy of Sciences (India)

    Otadi & Mosleh (2012) have applied a linear programming approach to find the non-negative solution of a fully fuzzy matrix equation whose elements of the coefficient matrix are considered as arbitrary triangular fuzzy numbers. There are no restrictions about the elements of the coefficient matrix of the corresponding system ...

  3. Cognitive Load in Percentage Change Problems: Unitary, Pictorial, and Equation Approaches to Instruction

    Science.gov (United States)

    Ngu, Bing Hiong; Yeung, Alexander Seeshing; Tobias, Stephen

    2014-01-01

    Eighth grade students in Australia (N = 60) participated in an experiment on learning how to solve percentage change problems in a regular classroom in three conditions: unitary, pictorial, and equation approaches. The procedure involved a pre-test, an acquisition phase, and a post-test. The main goal was to test the relative merits of the three…

  4. Quantum statistics of stimulated Raman and hyper-Raman scattering by master equation approach

    International Nuclear Information System (INIS)

    Gupta, P.S.; Dash, J.

    1991-01-01

    A quantum theoretical density matrix formalism of stimulated Raman and hyper-Raman scattering using master equation approach is presented. The atomic system is described by two energy levels. The effects of upper level population and the cavity loss are incorporated. The photon statistics, coherence characteristics and the building up of the Stokes field are investigated. (author). 8 figs., 5 refs

  5. A fixed point approach towards stability of delay differential equations with applications to neural networks

    NARCIS (Netherlands)

    Chen, Guiling

    2013-01-01

    This thesis studies asymptotic behavior and stability of determinsitic and stochastic delay differential equations. The approach used in this thesis is based on fixed point theory, which does not resort to any Liapunov function or Liapunov functional. The main contribution of this thesis is to study

  6. A Structural Equation Modelling Approach for Massive Blended Synchronous Teacher Training

    Science.gov (United States)

    Kannan, Kalpana; Narayanan, Krishnan

    2015-01-01

    This paper presents a structural equation modelling (SEM) approach for blended synchronous teacher training workshop. It examines the relationship among various factors that influence the Satisfaction (SAT) of participating teachers. Data were collected with the help of a questionnaire from about 500 engineering college teachers. These teachers…

  7. Estimating, Testing, and Comparing Specific Effects in Structural Equation Models: The Phantom Model Approach

    Science.gov (United States)

    Macho, Siegfried; Ledermann, Thomas

    2011-01-01

    The phantom model approach for estimating, testing, and comparing specific effects within structural equation models (SEMs) is presented. The rationale underlying this novel method consists in representing the specific effect to be assessed as a total effect within a separate latent variable model, the phantom model that is added to the main…

  8. Investigating Separate and Concurrent Approaches for Item Parameter Drift in 3PL Item Response Theory Equating

    Science.gov (United States)

    Arce-Ferrer, Alvaro J.; Bulut, Okan

    2017-01-01

    This study examines separate and concurrent approaches to combine the detection of item parameter drift (IPD) and the estimation of scale transformation coefficients in the context of the common item nonequivalent groups design with the three-parameter item response theory equating. The study uses real and synthetic data sets to compare the two…

  9. An efficient immersed boundary-lattice Boltzmann method for the hydrodynamic interaction of elastic filaments

    Science.gov (United States)

    Tian, Fang-Bao; Luo, Haoxiang; Zhu, Luoding; Liao, James C.; Lu, Xi-Yun

    2012-01-01

    We have introduced a modified penalty approach into the flow-structure interaction solver that combines an immersed boundary method (IBM) and a multi-block lattice Boltzmann method (LBM) to model an incompressible flow and elastic boundaries with finite mass. The effect of the solid structure is handled by the IBM in which the stress exerted by the structure on the fluid is spread onto the collocated grid points near the boundary. The fluid motion is obtained by solving the discrete lattice Boltzmann equation. The inertial force of the thin solid structure is incorporated by connecting this structure through virtual springs to a ghost structure with the equivalent mass. This treatment ameliorates the numerical instability issue encountered in this type of problems. Thanks to the superior efficiency of the IBM and LBM, the overall method is extremely fast for a class of flow-structure interaction problems where details of flow patterns need to be resolved. Numerical examples, including those involving multiple solid bodies, are presented to verify the method and illustrate its efficiency. As an application of the present method, an elastic filament flapping in the Kármán gait and the entrainment regions near a cylinder is studied to model fish swimming in these regions. Significant drag reduction is found for the filament, and the result is consistent with the metabolic cost measured experimentally for the live fish. PMID:23564971

  10. Markovian master equations for quantum thermal machines: local versus global approach

    Science.gov (United States)

    Hofer, Patrick P.; Perarnau-Llobet, Martí; Miranda, L. David M.; Haack, Géraldine; Silva, Ralph; Bohr Brask, Jonatan; Brunner, Nicolas

    2017-12-01

    The study of quantum thermal machines, and more generally of open quantum systems, often relies on master equations. Two approaches are mainly followed. On the one hand, there is the widely used, but often criticized, local approach, where machine sub-systems locally couple to thermal baths. On the other hand, in the more established global approach, thermal baths couple to global degrees of freedom of the machine. There has been debate as to which of these two conceptually different approaches should be used in situations out of thermal equilibrium. Here we compare the local and global approaches against an exact solution for a particular class of thermal machines. We consider thermodynamically relevant observables, such as heat currents, as well as the quantum state of the machine. Our results show that the use of a local master equation is generally well justified. In particular, for weak inter-system coupling, the local approach agrees with the exact solution, whereas the global approach fails for non-equilibrium situations. For intermediate coupling, the local and the global approach both agree with the exact solution and for strong coupling, the global approach is preferable. These results are backed by detailed derivations of the regimes of validity for the respective approaches.

  11. Approaching Pomeranchuk instabilities from ordered phase: A crossing-symmetric equation method

    International Nuclear Information System (INIS)

    Reidy, Kelly; Quader, Khandker; Bedell, Kevin

    2014-01-01

    We explore features of a 3D Fermi liquid near generalized Pomeranchuk instabilities using a tractable crossing-symmetric equation method. We approach the instabilities from the ordered ferromagnetic phase. We find “quantum multi-criticality” as approach to the ferromagnetic instability drives instability in other channel(s). It is found that a charge nematic instability precedes and is driven by Pomeranchuk instabilities in both the ℓ=0 spin and density channels

  12. A Dynamic BI–Orthogonal Field Equation Approach to Efficient Bayesian Inversion

    Directory of Open Access Journals (Sweden)

    Tagade Piyush M.

    2017-06-01

    Full Text Available This paper proposes a novel computationally efficient stochastic spectral projection based approach to Bayesian inversion of a computer simulator with high dimensional parametric and model structure uncertainty. The proposed method is based on the decomposition of the solution into its mean and a random field using a generic Karhunen-Loève expansion. The random field is represented as a convolution of separable Hilbert spaces in stochastic and spatial dimensions that are spectrally represented using respective orthogonal bases. In particular, the present paper investigates generalized polynomial chaos bases for the stochastic dimension and eigenfunction bases for the spatial dimension. Dynamic orthogonality is used to derive closed-form equations for the time evolution of mean, spatial and the stochastic fields. The resultant system of equations consists of a partial differential equation (PDE that defines the dynamic evolution of the mean, a set of PDEs to define the time evolution of eigenfunction bases, while a set of ordinary differential equations (ODEs define dynamics of the stochastic field. This system of dynamic evolution equations efficiently propagates the prior parametric uncertainty to the system response. The resulting bi-orthogonal expansion of the system response is used to reformulate the Bayesian inference for efficient exploration of the posterior distribution. The efficacy of the proposed method is investigated for calibration of a 2D transient diffusion simulator with an uncertain source location and diffusivity. The computational efficiency of the method is demonstrated against a Monte Carlo method and a generalized polynomial chaos approach.

  13. Fluid-Structure Interaction based on Lattice Boltzmann and p-FEM

    Science.gov (United States)

    Ahrenholz, Benjamin; Geller, Sebastian; Krafczyk, Manfred

    2010-03-01

    Over the last decade the Lattice Boltzmann Method (LBM) has matured as an efficient method for solving the Navier-Stokes equations. The p-version of the Finite Element Method (p-FEM) has proved to be highly efficient for a variety of problems in the field of structural mechanics. The focus of this contribution is to investigate the validity and efficiency of the coupling of two completely different numerical methods to simulate transient bidirectional Fluid-Structure Interaction (FSI) problems with very large structural deflections. In this contribution the treatment of moving boundaries in the fluid solver is presented, the computation of tractions and displacements on the boundary as well as the explicit coupling algorithm itself. In addition, efficiency aspects of the two approaches for two- and three-dimensional laminar flow examples at intermediate Reynolds numbers are discussed. Finally we give an outlook on modeling turbulent FSI problems.

  14. Boltzmann babies in the proper time measure

    Energy Technology Data Exchange (ETDEWEB)

    Bousso, Raphael; Bousso, Raphael; Freivogel, Ben; Yang, I-Sheng

    2007-12-20

    After commenting briefly on the role of the typicality assumption in science, we advocate a phenomenological approach to the cosmological measure problem. Like any other theory, a measure should be simple, general, well defined, and consistent with observation. This allows us to proceed by elimination. As an example, we consider the proper time cutoff on a geodesic congruence. It predicts that typical observers are quantum fluctuations in the early universe, or Boltzmann babies. We sharpen this well-known youngness problem by taking into account the expansion and open spatial geometry of pocket universes. Moreover, we relate the youngness problem directly to the probability distribution for observables, such as the temperature of the cosmic background radiation. We consider a number of modifications of the proper time measure, but find none that would make it compatible with observation.

  15. Progress in lattice Boltzmann methods for magnetohydrodynamic flows relevant to fusion applications

    International Nuclear Information System (INIS)

    Pattison, M.J.; Premnath, K.N.; Morley, N.B.; Abdou, M.A.

    2008-01-01

    In this paper, an approach to simulating magnetohydrodynamic (MHD) flows based on the lattice Boltzmann method (LBM) is presented. The dynamics of the flow are simulated using a so-called multiple relaxation time (MRT) lattice Boltzmann equation (LBE), in which a source term is included for the Lorentz force. The evolution of the magnetic induction is represented by introducing a vector distribution function and then solving an appropriate lattice kinetic equation for this function. The solution of both distribution functions are obtained through a simple, explicit, and computationally efficient stream-and-collide procedure. The use of the MRT collision term enhances the numerical stability over that of a single relaxation time approach. To apply the methodology to solving practical problems, a new extrapolation-based method for imposing magnetic boundary conditions is introduced and a technique for simulating steady-state flows with low magnetic Prandtl number is developed. In order to resolve thin layers near the walls arising in the presence of high magnetic fields, a non-uniform gridding strategy is introduced through an interpolated-streaming step applied to both distribution functions. These advances are particularly important for applications in fusion engineering where liquid metal flows with low magnetic Prandtl numbers and high Hartmann numbers are introduced. A number of MHD benchmark problems, under various physical and geometrical conditions are presented, including 3-D MHD lid driven cavity flow, high Hartmann number flows and turbulent MHD flows, with good agreement with prior data. Due to the local nature of the method, the LBM also demonstrated excellent performance on parallel machines, with almost linear scaling up to 128 processors for a MHD flow problem

  16. An Electric Field Volume Integral Equation Approach to Simulate Surface Plasmon Polaritons

    Directory of Open Access Journals (Sweden)

    R. Remis

    2013-02-01

    Full Text Available In this paper we present an electric field volume integral equation approach to simulate surface plasmon propagation along metal/dielectric interfaces. Metallic objects embedded in homogeneous dielectric media are considered. Starting point is a so-called weak-form of the electric field integral equation. This form is discretized on a uniform tensor-product grid resulting in a system matrix whose action on a vector can be computed via the fast Fourier transform. The GMRES iterative solver is used to solve the discretized set of equations and numerical examples, illustrating surface plasmon propagation, are presented. The convergence rate of GMRES is discussed in terms of the spectrum of the system matrix and through numerical experiments we show how the eigenvalues of the discretized volume scattering operator are related to plasmon propagation and the medium parameters of a metallic object.

  17. An approach for deriving growth equations for quantities exhibiting cumulative growth based on stochastic interpretation

    Science.gov (United States)

    Moriguchi, Kai

    2018-01-01

    Existing growth equations have been derived by hypothesizing the growth rate as self-referencing. Although that hypothesis is appropriate for quantities with growth directly restricted to themselves, it requires the solution of differential equations that are difficult to be derived. However, for quantities of growth that are indirectly related to themselves, and for quantities that exhibit cumulative growth, such as growth of diameter or volume of trees with lignification, ordinary growth models with assumptions that include self-referencing or implied catabolism terms might not be appropriate. For such quantities, the author proposes an approach for derivation of growth models based on stochastic and microscopic interpretation. Results show that ordinary growth models can be interpreted from the perspective. The approach enables one to derive growth functions without solving differential equations. Based on that approach, growth functions are derived by integrating cumulative distribution functions. Three growth functions are generated using reasonable probability distributions. The fitness of the generated growth functions for real diameter growth data was compared with that of generalized ordinary growth models. Results show that the presented approach has high ability to generate growth models that fit data much better than ordinary growth models for a given number of parameters.

  18. Boltzmann factor and Hawking radiation

    International Nuclear Information System (INIS)

    Ryskin, Gregory

    2014-01-01

    Hawking radiation has thermal spectrum corresponding to the temperature T H =(8πM) −1 , where M is the mass (energy) of the black hole. Corrections to the Hawking radiation spectrum were discovered by Kraus and Wilczek (1995) and Parikh and Wilczek (2000). Here I show that these corrections follow directly from the basic principles of thermodynamics and statistical mechanics. In essence, it is the Boltzmann factor that ought to be corrected; corrections to the Hawking (or any other) radiation spectrum then follow necessarily

  19. Return of the Boltzmann brains

    Science.gov (United States)

    Page, Don N.

    2008-09-01

    Linde in J. Cosmol. Astropart. Phys.1475-7516 01 (2007) 02210.1088/1475-7516/2007/01/022 shows that some (though not all) versions of the global (volume-weighted) description avoid the “Boltzmann brain” problem raised by Page [Phys. Rev. D 78, 063535 (2008)] if the universe does not have a decay time less than 20 Gyr. Here I give an apparently natural version of the volume-weighted description in which the problem persists, highlighting the ambiguity of taking the ratios of infinite volumes that appear to arise from eternal inflation.

  20. Development and Application of a Coarse-Grained Model for PNIPAM by Iterative Boltzmann Inversion and Its Combination with Lattice Boltzmann Hydrodynamics.

    Science.gov (United States)

    Boţan, Vitalie; Ustach, Vincent D; Leonhard, Kai; Faller, Roland

    2017-11-16

    The polymer poly(N-isopropylacrylamide) (PNIPAM) is studied using a novel combination of multiscale modeling methodologies. We develop an iterative Boltzmann inversion potential of concentrated PNIPAM solutions and combine it with lattice Boltzmann as a Navier-Stokes equation solver for the solvent. We study in detail the influence of the methodology on statics and dynamics of the system. The combination is successful and significantly simpler and faster than other mapping techniques for polymer solution while keeping the correct hydrodynamics. The model can semiquantitatively describe the correct phase behavior and polymer dynamics.

  1. Modeling of delays in PKPD: classical approaches and a tutorial for delay differential equations.

    Science.gov (United States)

    Koch, Gilbert; Krzyzanski, Wojciech; Pérez-Ruixo, Juan Jose; Schropp, Johannes

    2014-08-01

    In pharmacokinetics/pharmacodynamics (PKPD) the measured response is often delayed relative to drug administration, individuals in a population have a certain lifespan until they maturate or the change of biomarkers does not immediately affects the primary endpoint. The classical approach in PKPD is to apply transit compartment models (TCM) based on ordinary differential equations to handle such delays. However, an alternative approach to deal with delays are delay differential equations (DDE). DDEs feature additional flexibility and properties, realize more complex dynamics and can complementary be used together with TCMs. We introduce several delay based PKPD models and investigate mathematical properties of general DDE based models, which serve as subunits in order to build larger PKPD models. Finally, we review current PKPD software with respect to the implementation of DDEs for PKPD analysis.

  2. Recursive approach for non-Markovian time-convolutionless master equations

    Science.gov (United States)

    Gasbarri, G.; Ferialdi, L.

    2018-02-01

    We consider a general open system dynamics and we provide a recursive method to derive the associated non-Markovian master equation in a perturbative series. The approach relies on a momenta expansion of the open system evolution. Unlike previous perturbative approaches of this kind, the method presented in this paper provides a recursive definition of each perturbative term. Furthermore, we give an intuitive diagrammatic description of each term of the series, which provides a useful analytical tool to build them and to derive their structure in terms of commutators and anticommutators. We eventually apply our formalism to the evolution of the observables of the reduced system, by showing how the method can be applied to the adjoint master equation, and by developing a diagrammatic description of the associated series.

  3. Lattice Boltzmann scheme for relativistic fluids

    OpenAIRE

    Mendoza, M.; Boghosian, B.; Herrmann, H. J.; Succi, S.

    2009-01-01

    A Lattice Boltzmann formulation for relativistic fluids is presented and numerically verified through quantitative comparison with recent hydrodynamic simulations of relativistic shock-wave propagation in viscous quark-gluon plasmas. This formulation opens up the possibility of exporting the main advantages of Lattice Boltzmann methods to the relativistic context, which seems particularly useful for the simulation of relativistic fluids in complicated geometries.

  4. Pruning Boltzmann networks and hidden Markov models

    DEFF Research Database (Denmark)

    Pedersen, Morten With; Stork, D.

    1996-01-01

    Boltzmann chains and hidden Markov models (HMMs), we argue that our method can be applied to HMMs as well. We illustrate pruning on Boltzmann zippers, which are equivalent to two HMMs with cross-connection links. We verify that our second-order approximation preserves the rank ordering of weight saliencies...

  5. An Equation-Type Approach for the Numerical Solution of the Partial Differential Equations Governing Transport Phenomena in Porous Media

    KAUST Repository

    Sun, Shuyu

    2012-06-02

    A new technique for the numerical solution of the partial differential equations governing transport phenomena in porous media is introduced. In this technique, the governing equations as depicted from the physics of the problem are used without extra manipulations. In other words, there is no need to reduce the number of governing equations by some sort of mathematical manipulations. This technique enables the separation of the physics part of the problem and the solver part, which makes coding more robust and could be used in several other applications with little or no modifications (e.g., multi-phase flow in porous media). In this method, one abandons the need to construct the coefficient matrix for the pressure equation. Alternatively, the coefficients are automatically generated within the solver routine. We show examples of using this technique to solving several flow problems in porous media.

  6. A semi-analytical approach for solving of nonlinear systems of functional differential equations with delay

    Science.gov (United States)

    Rebenda, Josef; Šmarda, Zdeněk

    2017-07-01

    In the paper, we propose a correct and efficient semi-analytical approach to solve initial value problem for systems of functional differential equations with delay. The idea is to combine the method of steps and differential transformation method (DTM). In the latter, formulas for proportional arguments and nonlinear terms are used. An example of using this technique for a system with constant and proportional delays is presented.

  7. A new approach to model CW CO2 laser using rate equations

    Indian Academy of Sciences (India)

    2016-11-11

    Nov 11, 2016 ... (2016) 87: 97 c Indian Academy of Sciences. DOI 10.1007/s12043-016-1303-x. A new approach to model CW CO2 laser using rate equations. UTPAL NUNDY1,∗, SUNIL DAGA2 and MANOJ KUMAR3. 1BH-2-76, Kendriya Vihar, Kharghar, Sector-11, Navi Mumbai 410 210, India. 2Laser and Plasma ...

  8. Comparison of numerical approaches to solve a Poincare-covariant Faddeev equation

    International Nuclear Information System (INIS)

    Alkofer, R.; Eichmann, G.; Krassnigg, A.; Schwinzerl, M.

    2006-01-01

    Full text: The quark core of Baryons can be described with the help of the numerical solution of the Poincare-Faddeev equation. Hereby the used elements, as e.g. the quark propagator are taken from non-perturbative studies of Landau gauge QCD. Different numerical approaches to solve in this way the relativistic three quark problem are compared and benchmarked results for the efficiency of different algorithms are presented. (author)

  9. Validation of an employee satisfaction model: A structural equation model approach

    OpenAIRE

    Ophillia Ledimo; Nico Martins

    2015-01-01

    The purpose of this study was to validate an employee satisfaction model and to determine the relationships between the different dimensions of the concept, using the structural equation modelling approach (SEM). A cross-sectional quantitative survey design was used to collect data from a random sample of (n=759) permanent employees of a parastatal organisation. Data was collected using the Employee Satisfaction Survey (ESS) to measure employee satisfaction dimensions. Following the steps of ...

  10. Evaluation of a Particle Method for the Ellipsoidal Statistical Bhatnagar-Gross-Krook Equation (PREPRINT)

    National Research Council Canada - National Science Library

    Burt, Jonathan M; Boyd, Iain D

    2006-01-01

    ...) model of the Boltzmann equation. The method includes consideration of rotational nonequilibrium, and enforces exact momentum and energy conservation for a mixture involving monatomic and diatomic species...

  11. Evaluation of a Particle Method for the Ellipsoidal Statistical Bhatnagar-Gross-Krook Equation (POSTPRINT)

    National Research Council Canada - National Science Library

    Burt, Jonathan M; Boyd, Iain D

    2006-01-01

    ...) model of the Boltzmann equation. The method includes consideration of rotational nonequilibrium, and enforces exact momentum and energy conservation for a mixture involving monatomic and diatomic species...

  12. Exploring the impact of teacher emotions on their approaches to teaching: A structural equation modelling approach.

    Science.gov (United States)

    Chen, Junjun

    2018-03-30

    Research into teacher emotion has attracted increasing attention in the last two decades. The relevance of teacher emotion in education has been highlighted. However, evidence of how teacher emotions impact their teaching approaches is rather limited. This study investigated the relationship between two self-report instruments - the Teacher Emotion Inventory and the Approach to Teaching. There were 1,830 teachers were approached from 43 primary schools in China and 12 primary schools in Hong Kong. Exploratory factor analysis, confirmatory factor analysis, and structural equation modelling were utilized in the analysis procedure. As a result, a five-factor TEI model was identified with two positive factors (Joy and Love) and three negative factors (Sadness, Anger, and Fear). A ATI model involved was confirmed with three factors (Knowledge Transmission, Student-Teacher Interaction, and Student Focus). Structural equation modelling demonstrated that more student-centred approaches are the consequence of positive teacher emotions while a teacher-centred approach is the consequence of negative teacher emotions although there are two surprising links. Identifying this pattern of relationships will contribute to understanding the reasons why new teaching strategies are often not adopted despite well-designed professional programs and educational reform and will provide implications for teaching improvement through teacher emotion. © 2018 The British Psychological Society.

  13. A cubic B-spline Galerkin approach for the numerical simulation of the GEW equation

    Directory of Open Access Journals (Sweden)

    S. Battal Gazi Karakoç

    2016-02-01

    Full Text Available The generalized equal width (GEW wave equation is solved numerically by using lumped Galerkin approach with cubic B-spline functions. The proposed numerical scheme is tested by applying two test problems including single solitary wave and interaction of two solitary waves. In order to determine the performance of the algorithm, the error norms L2 and L∞ and the invariants I1, I2 and I3 are calculated. For the linear stability analysis of the numerical algorithm, von Neumann approach is used. As a result, the obtained findings show that the presented numerical scheme is preferable to some recent numerical methods.  

  14. Analysis of factors affecting satisfaction level on problem based learning approach using structural equation modeling

    Science.gov (United States)

    Hussain, Nur Farahin Mee; Zahid, Zalina

    2014-12-01

    Nowadays, in the job market demand, graduates are expected not only to have higher performance in academic but they must also be excellent in soft skill. Problem-Based Learning (PBL) has a number of distinct advantages as a learning method as it can deliver graduates that will be highly prized by industry. This study attempts to determine the satisfaction level of engineering students on the PBL Approach and to evaluate their determinant factors. The Structural Equation Modeling (SEM) was used to investigate how the factors of Good Teaching Scale, Clear Goals, Student Assessment and Levels of Workload affected the student satisfaction towards PBL approach.

  15. Equilibrium properties of polymers from the Langevin equation: Gaussian self-consistent approach

    International Nuclear Information System (INIS)

    Timoshenko, E.G.; Dawson, K.A.

    1995-01-01

    We investigate here the dynamics of polymers at equilibrium by means of a self-consistent approximation that can be applied to arbitrary Hamiltonians. In particular we show that for the case of two-and three-body excluded volume effects, and the Oseen hydrodynamic interaction, the Gaussian self-consistent approach can recapture what we believe to be the essential features across the collapse transition. This method is based on the approximation of the complete Langevin equation by a Gaussian stochastic ensemble obeying a linear equation of motion with some unknown effective potential ΔV q (t) and friction. Self-consistency equations for this potential are derived and studied in a variety of regimes across the collapse transition. Here we have calculated the friction ζ q scaling behavior. The results of a simple power counting analysis of the equations, applicable for sufficiently large polymers, confirm the expected law ζ q ∝N ν q 1-ν , and give exponent values ν=3/5 for the Flory coil, ν=1/2 for so-called θ point, and ν=1/3 for the collapsed globule phase. Further applications of the method for various experimental observables of interest, e.g., the dynamic structure factor of light scattering, are presented, and again simple applications are discussed

  16. A large eddy lattice Boltzmann simulation of magnetohydrodynamic turbulence

    Science.gov (United States)

    Flint, Christopher; Vahala, George

    2018-02-01

    Large eddy simulations (LES) of a lattice Boltzmann magnetohydrodynamic (LB-MHD) model are performed for the unstable magnetized Kelvin-Helmholtz jet instability. This algorithm is an extension of Ansumali et al. [1] to MHD in which one performs first an expansion in the filter width on the kinetic equations followed by the usual low Knudsen number expansion. These two perturbation operations do not commute. Closure is achieved by invoking the physical constraint that subgrid effects occur at transport time scales. The simulations are in very good agreement with direct numerical simulations.

  17. Comparing Boltzmann and Gibbs definitions of entropy in small systems

    Science.gov (United States)

    Ferrari, Loris

    2017-11-01

    The long-standing contrast between Boltzmann's and Gibbs' approach to statistical thermodynamics has been recently rekindled by Dunkel and Hilbert, who criticize the notion of negative absolute temperature (NAT) as a misleading consequence of Boltzmann's definition of entropy. A different definition, due to Gibbs, has been proposed, which forbids NAT and makes the energy equipartition rigorous in arbitrarily sized systems. The two approaches, however, are shown to converge to the same results in the thermodynamical limit. A vigorous debate followed Dunkel and Hilbert's work, with arguments against and in favor of Gibbs' entropy. In an attempt to leave the speculative level and give the discussion some deal of concreteness, we analyze the practical consequences of Gibbs' definition in two finite-size systems: a non-interacting gas of N atoms with two-level internal spectrum, and an Ising model of N interacting spins. It is shown that, for certain measurable quantities, the difference resulting from Boltzmann's and Gibbs' approach vanishes as N -1/2 , much less rapidly than the 1/ N slope expected. As shown by numerical estimates, this makes the experimental solution of the controversy a feasible task.

  18. Reduced integral order 3D scalar wave integral equation Derivation and BEM approach

    Science.gov (United States)

    Lee, HyunSuk

    The Boundary Element Method (BEM) is a numerical method to solve partial differential equations (PDEs), which is derived from the integral equation (IE) that can be developed from certain PDEs. Among IEs, the 3D transient wave integral equation has a very special property which makes it distinguished from other integral equations; Dirac-delta and its derivative delta‧ appear in the fundamental-solution (or kernel-function). These delta and delta‧ generalized functions have continuity C-2 and C-3, respectively, and become a major hurdle for BEM implementation, because many numerical methods including BEM are based on the idea of continuity. More specifically, the integrands (kernel - shape function products) in the 3D transient wave IE become discontinuous (C-2 and C-3) and make numerical integration difficult. There are several existing approaches to overcome the delta difficulty, but none use the character of the Dirac-delta to cancel the integral. In this dissertation, a new method called the "Reduced order wave integral equation (Reduced IE)" is developed to deal with the difficulty in the 3D transient wave problem. In this approach, the sifting properties of delta and delta‧ are used to cancel an integration. As a result, smooth integrands are derived and the integral orders are reduced by one. Smooth integrands result in the more efficient and accurate numerical integration. In addition, there is no more coupling between the space-element size and time-step size. Non-zero initial condition (IC) can be considered also. Furthermore, space integrals need to be performed once, not per time-step. All of this reduces dramatically the computational requirement. As a result, the computation order for both time and space are reduced by 1 and one obtains an O(M N2) method, where M is the number of time steps and N is the number of spatial nodes on the boundary of the problem domain. A numerical approach to deal with the reduced IE is also suggested, and a simple

  19. A functional integral approach to shock wave solutions of Euler equations with spherical symmetry

    Science.gov (United States)

    Yang, Tong

    1995-08-01

    For n×n systems of conservation laws in one dimension without source terms, the existence of global weak solutions was proved by Glimm [1]. Glimm constructed approximate solutions using a difference scheme by solving a class of Riemann problems. In this paper, we consider the Cauchy problem for the Euler equations in the spherically symmetric case when the initial data are small perturbations of the trivial solution, i.e., u≡0 and ρ≡ constant, where u is velocity and ρ is density. We show that this Cauchy problem can be reduced to an ideal nonlinear problem approximately. If we assume all the waves move at constant speeds in the ideal problem, by using Glimm's scheme and an integral approach to sum the contributions of the reflected waves that correspond to each path through the solution, we get uniform bounds on the L ∞ norm and total variational norm of the solutions for all time. The geometric effects of spherical symmetry leads to a non-integrable source term in the Euler equations. Correspondingly, we consider an infinite reflection problem and solve it by considering the cancellations between reflections of different orders in our ideal problem. Thus we view this as an analysis of the interaction effects at the quadratic level in a nonlinear model problem for the Euler equations. Although it is far more difficult to obtain estimates in the exact solutions of the Euler equations due to the problem of controlling the time at which the cancellations occur, we believe that this analysis of the wave behaviour will be the first step in solving the problem of existence of global weak solutions for the spherically symmetric Euler equations outside of fixed ball.

  20. An equation oriented approach to steady state flowsheeting of methanol synthesis loop

    International Nuclear Information System (INIS)

    Fathikalajahi, J.; Baniadam, M.; Rahimpour, M.R.

    2008-01-01

    An equation-oriented approach was developed for steady state flowsheeting of a commercial methanol plant. The loop consists of fixed bed reactor, flash separator, preheater, coolers, and compressor. For steady sate flowsheeting of the plant mathematical model of reactor and other units are needed. Reactor used in loop is a Lurgi type and its configuration is rather complex. Previously reactor and flash separator are modeled as two important units of plant. The model is based on mass and energy balances in each equipment and utilizing some auxiliary equations such as rate of reaction and thermodynamics model for activity coefficients of liquid. In order to validate the mathematical model for the synthesis loop, some simulation data were performed using operating conditions and characteristics of the commercial plant. The good agreement between the steady state simulation results and the plant data shows the validity of the model

  1. An Efficient Numerical Approach for Solving Nonlinear Coupled Hyperbolic Partial Differential Equations with Nonlocal Conditions

    Directory of Open Access Journals (Sweden)

    A. H. Bhrawy

    2014-01-01

    Full Text Available One of the most important advantages of collocation method is the possibility of dealing with nonlinear partial differential equations (PDEs as well as PDEs with variable coefficients. A numerical solution based on a Jacobi collocation method is extended to solve nonlinear coupled hyperbolic PDEs with variable coefficients subject to initial-boundary nonlocal conservation conditions. This approach, based on Jacobi polynomials and Gauss-Lobatto quadrature integration, reduces solving the nonlinear coupled hyperbolic PDEs with variable coefficients to a system of nonlinear ordinary differential equation which is far easier to solve. In fact, we deal with initial-boundary coupled hyperbolic PDEs with variable coefficients as well as initial-nonlocal conditions. Using triangular, soliton, and exponential-triangular solutions as exact solutions, the obtained results show that the proposed numerical algorithm is efficient and very accurate.

  2. A HAM-based wavelet approach for nonlinear ordinary differential equations

    Science.gov (United States)

    Yang, Zhaochen; Liao, Shijun

    2017-07-01

    Based on the homotopy analysis method (HAM) and the generalized Coiflet-type orthogonal wavelet, a new analytic approximation approach for solving nonlinear boundary value problems (governed by nonlinear ordinary differential equations), namely the wavelet homotopy analysis method (wHAM), is proposed. The basic ideas of the wHAM are described using the one-dimensional Bratu's equation as an example. This method not only keeps the main advantages of the normal HAM, but also possesses some new properties and advantages. First of all, the wHAM possesses high computational efficiency. Besides, based on multi-resolution analysis, it provides us a convenient way to balance the accuracy and efficiency by simply adjusting the resolution level. Furthermore, different from the normal HAM, the wHAM provides us much larger freedom to choose the auxiliary linear operator. In addition, just like the normal HAM, iteration can greatly accelerate the computational efficiency of the wHAM without loss of accuracy.

  3. Free-energy functionals of the electrostatic potential for Poisson-Boltzmann theory.

    Science.gov (United States)

    Jadhao, Vikram; Solis, Francisco J; de la Cruz, Monica Olvera

    2013-08-01

    In simulating charged systems, it is often useful to treat some ionic components of the system at the mean-field level and solve the Poisson-Boltzmann (PB) equation to get their respective density profiles. The numerically intensive task of solving the PB equation at each step of the simulation can be bypassed using variational methods that treat the electrostatic potential as a dynamic variable. But such approaches require the access to a true free-energy functional: a functional that not only provides the correct solution of the PB equation upon extremization, but also evaluates to the true free energy of the system at its minimum. Moreover, the numerical efficiency of such procedures is further enhanced if the free-energy functional is local and is expressed in terms of the electrostatic potential. Existing PB functionals of the electrostatic potential, while possessing the local structure, are not free-energy functionals. We present a variational formulation with a local free-energy functional of the potential. In addition, we also construct a nonlocal free-energy functional of the electrostatic potential. These functionals are suited for employment in simulation schemes based on the ideas of dynamical optimization.

  4. An improved immersed boundary-lattice Boltzmann method for simulating three-dimensional incompressible flows

    Science.gov (United States)

    Wu, J.; Shu, C.

    2010-07-01

    The recently proposed boundary condition-enforced immersed boundary-lattice Boltzmann method (IB-LBM) [14] is improved in this work to simulate three-dimensional incompressible viscous flows. In the conventional IB-LBM, the restoring force is pre-calculated, and the non-slip boundary condition is not enforced as compared to body-fitted solvers. As a result, there is a flow penetration to the solid boundary. This drawback was removed by the new version of IB-LBM [14], in which the restoring force is considered as unknown and is determined in such a way that the non-slip boundary condition is enforced. Since Eulerian points are also defined inside the solid boundary, the computational domain is usually regular and the Cartesian mesh is used. On the other hand, to well capture the boundary layer and in the meantime, to save the computational effort, we often use non-uniform mesh in IB-LBM applications. In our previous two-dimensional simulations [14], the Taylor series expansion and least squares-based lattice Boltzmann method (TLLBM) was used on the non-uniform Cartesian mesh to get the flow field. The final expression of TLLBM is an algebraic formulation with some weighting coefficients. These coefficients could be computed in advance and stored for the following computations. However, this way may become impractical for 3D cases as the memory requirement often exceeds the machine capacity. The other way is to calculate the coefficients at every time step. As a result, extra time is consumed significantly. To overcome this drawback, in this study, we propose a more efficient approach to solve lattice Boltzmann equation on the non-uniform Cartesian mesh. As compared to TLLBM, the proposed approach needs much less computational time and virtual storage. Its good accuracy and efficiency are well demonstrated by its application to simulate the 3D lid-driven cubic cavity flow. To valid the combination of proposed approach with the new version of IBM [14] for 3D flows

  5. Ludwig Boltzmann - The Man and His Work

    International Nuclear Information System (INIS)

    Broda, E.

    1982-01-01

    It is argued that Ludwig Boltzmann was, along with Newton and Maxwell, one of the three greatest theoretical physicists of classical times. It is less generally known that he was also a powerful realist-materialist philosopher and a keen opponent of Ernst Mach's positivism and of the philosophical idealism of Berkeley, Hegel and Schopenhauer. Boltzmann was also opposed to Kant. Moreover, he had a lively interest in biology and especially in Darwinian evolution, and he should be taken as one of the founders of biophysics. Boltzmann discussed the origin of life and of the mind. Finally, he also was a most vigorous, colourful and attractive person. (author)

  6. Solution of the neutron point kinetics equations with temperature feedback effects applying the polynomial approach method

    Energy Technology Data Exchange (ETDEWEB)

    Tumelero, Fernanda, E-mail: fernanda.tumelero@yahoo.com.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica; Petersen, Claudio Z.; Goncalves, Glenio A.; Lazzari, Luana, E-mail: claudiopeteren@yahoo.com.br, E-mail: gleniogoncalves@yahoo.com.br, E-mail: luana-lazzari@hotmail.com [Universidade Federal de Pelotas (DME/UFPEL), Capao do Leao, RS (Brazil). Instituto de Fisica e Matematica

    2015-07-01

    In this work, we present a solution of the Neutron Point Kinetics Equations with temperature feedback effects applying the Polynomial Approach Method. For the solution, we consider one and six groups of delayed neutrons precursors with temperature feedback effects and constant reactivity. The main idea is to expand the neutron density, delayed neutron precursors and temperature as a power series considering the reactivity as an arbitrary function of the time in a relatively short time interval around an ordinary point. In the first interval one applies the initial conditions of the problem and the analytical continuation is used to determine the solutions of the next intervals. With the application of the Polynomial Approximation Method it is possible to overcome the stiffness problem of the equations. In such a way, one varies the time step size of the Polynomial Approach Method and performs an analysis about the precision and computational time. Moreover, we compare the method with different types of approaches (linear, quadratic and cubic) of the power series. The answer of neutron density and temperature obtained by numerical simulations with linear approximation are compared with results in the literature. (author)

  7. The Explicit Green's Approach with stability enhancement for solving the bioheat transfer equation

    OpenAIRE

    Loureiro, FS; Mansur, WJ; Wrobel, LC; Silva, JEA

    2014-01-01

    The aim of this paper is to propose a strategy for performing a stability enhancement into the Explicit Green’s Approach (ExGA) method applied to the bioheat transfer equation. The ExGA method is a time-stepping technique that uses numerical Green’s functions in the time domain; these functions are here computed by the FEM. Basically, a new two nonequal time substeps procedure is proposed to compute Green’s functions at the first time step. This is accomplished by adopting the standard explic...

  8. Recovering a coefficient in a parabolic equation using an iterative approach

    Science.gov (United States)

    Azhibekova, Aliya S.

    2016-06-01

    In this paper we are concerned with the problem of determining a coefficient in a parabolic equation using an iterative approach. We investigate an inverse coefficient problem in the difference form. To recover the coefficient, we minimize a residual functional between the observed and calculated values. This is done in a constructive way by fitting a finite-difference approximation to the inverse problem. We obtain some theoretical estimates for a direct and adjoint problem. Using these estimates we prove monotonicity of the objective functional and the convergence of iteration sequences.

  9. A Modified Equation Approach to Selecting a Nonstandard Finite Difference Scheme Applied to the Regularized Long Wave Equation

    Directory of Open Access Journals (Sweden)

    E. Momoniat

    2014-01-01

    Full Text Available Two nonstandard finite difference schemes are derived to solve the regularized long wave equation. The criteria for choosing the “best” nonstandard approximation to the nonlinear term in the regularized long wave equation come from considering the modified equation. The two “best” nonstandard numerical schemes are shown to preserve conserved quantities when compared to an implicit scheme in which the nonlinear term is approximated in the usual way. Comparisons to the single solitary wave solution show significantly better results, measured in the L2 and L∞ norms, when compared to results obtained using a Petrov-Galerkin finite element method and a splitted quadratic B-spline collocation method. The growth in the error when simulating the single solitary wave solution using the two “best” nonstandard numerical schemes is shown to be linear implying the nonstandard finite difference schemes are conservative. The formation of an undular bore for both steep and shallow initial profiles is captured without the formation of numerical instabilities.

  10. A unified momentum equation approach for computing thermal residual stresses during melting and solidification

    Science.gov (United States)

    Yeo, Haram; Ki, Hyungson

    2018-03-01

    In this article, we present a novel numerical method for computing thermal residual stresses from a viewpoint of fluid-structure interaction (FSI). In a thermal processing of a material, residual stresses are developed as the material undergoes melting and solidification, and liquid, solid, and a mixture of liquid and solid (or mushy state) coexist and interact with each other during the process. In order to accurately account for the stress development during phase changes, we derived a unified momentum equation from the momentum equations of incompressible fluids and elastoplastic solids. In this approach, the whole fluid-structure system is treated as a single continuum, and the interaction between fluid and solid phases across the mushy zone is naturally taken into account in a monolithic way. For thermal analysis, an enthalpy-based method was employed. As a numerical example, a two-dimensional laser heating problem was considered, where a carbon steel sheet was heated by a Gaussian laser beam. Momentum and energy equations were discretized on a uniform Cartesian grid in a finite volume framework, and temperature-dependent material properties were used. The austenite-martensite phase transformation of carbon steel was also considered. In this study, the effects of solid strains, fluid flow, mushy zone size, and laser heating time on residual stress formation were investigated.

  11. Rethinking Pedagogy for Second-Order Differential Equations: A Simplified Approach to Understanding Well-Posed Problems

    Science.gov (United States)

    Tisdell, Christopher C.

    2017-01-01

    Knowing an equation has a unique solution is important from both a modelling and theoretical point of view. For over 70 years, the approach to learning and teaching "well posedness" of initial value problems (IVPs) for second- and higher-order ordinary differential equations has involved transforming the problem and its analysis to a…

  12. Linear differential equations to solve nonlinear mechanical problems: A novel approach

    OpenAIRE

    Nair, C. Radhakrishnan

    2004-01-01

    Often a non-linear mechanical problem is formulated as a non-linear differential equation. A new method is introduced to find out new solutions of non-linear differential equations if one of the solutions of a given non-linear differential equation is known. Using the known solution of the non-linear differential equation, linear differential equations are set up. The solutions of these linear differential equations are found using standard techniques. Then the solutions of the linear differe...

  13. Mechanistic slumber vs. statistical insomnia: the early history of Boltzmann's H-theorem (1868-1877)

    Science.gov (United States)

    Badino, M.

    2011-11-01

    An intricate, long, and occasionally heated debate surrounds Boltzmann's H-theorem (1872) and his combinatorial interpretation of the second law (1877). After almost a century of devoted and knowledgeable scholarship, there is still no agreement as to whether Boltzmann changed his view of the second law after Loschmidt's 1876 reversibility argument or whether he had already been holding a probabilistic conception for some years at that point. In this paper, I argue that there was no abrupt statistical turn. In the first part, I discuss the development of Boltzmann's research from 1868 to the formulation of the H-theorem. This reconstruction shows that Boltzmann adopted a pluralistic strategy based on the interplay between a kinetic and a combinatorial approach. Moreover, it shows that the extensive use of asymptotic conditions allowed Boltzmann to bracket the problem of exceptions. In the second part I suggest that both Loschmidt's challenge and Boltzmann's response to it did not concern the H-theorem. The close relation between the theorem and the reversibility argument is a consequence of later investigations on the subject.

  14. Polynomial approach method to solve the neutron point kinetics equations with use of the analytic continuation

    International Nuclear Information System (INIS)

    Tumelero, Fernanda; Petersen, Claudio Zen; Goncalves, Glenio Aguiar; Schramm, Marcelo

    2016-01-01

    In this work, we report a solution to solve the Neutron Point Kinetics Equations applying the Polynomial Approach Method. The main idea is to expand the neutron density and delayed neutron precursors as a power series considering the reactivity as an arbitrary function of the time in a relatively short time interval around an ordinary point. In the first interval one applies the initial conditions and the analytical continuation is used to determine the solutions of the next intervals. A genuine error control is developed based on an analogy with the Rest Theorem. For illustration, we also report simulations for different approaches types (linear, quadratic and cubic). The results obtained by numerical simulations for linear approximation are compared with results in the literature.

  15. Kinetics of subdiffusion-assisted reactions: non-Markovian stochastic Liouville equation approach

    International Nuclear Information System (INIS)

    Shushin, A I

    2005-01-01

    Anomalous specific features of the kinetics of subdiffusion-assisted bimolecular reactions (time-dependence, dependence on parameters of systems, etc) are analysed in detail with the use of the non-Markovian stochastic Liouville equation (SLE), which has been recently derived within the continuous-time random-walk (CTRW) approach. In the CTRW approach, subdiffusive motion of particles is modelled by jumps whose onset probability distribution function is of a long-tailed form. The non-Markovian SLE allows for rigorous describing of some peculiarities of these reactions; for example, very slow long-time behaviour of the kinetics, non-analytical dependence of the reaction rate on the reactivity of particles, strong manifestation of fluctuation kinetics showing itself in very slowly decreasing behaviour of the kinetics at very long times, etc

  16. Polynomial approach method to solve the neutron point kinetics equations with use of the analytic continuation

    Energy Technology Data Exchange (ETDEWEB)

    Tumelero, Fernanda; Petersen, Claudio Zen; Goncalves, Glenio Aguiar [Universidade Federal de Pelotas, Capao do Leao, RS (Brazil). Programa de Pos Graduacao em Modelagem Matematica; Schramm, Marcelo [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica

    2016-12-15

    In this work, we report a solution to solve the Neutron Point Kinetics Equations applying the Polynomial Approach Method. The main idea is to expand the neutron density and delayed neutron precursors as a power series considering the reactivity as an arbitrary function of the time in a relatively short time interval around an ordinary point. In the first interval one applies the initial conditions and the analytical continuation is used to determine the solutions of the next intervals. A genuine error control is developed based on an analogy with the Rest Theorem. For illustration, we also report simulations for different approaches types (linear, quadratic and cubic). The results obtained by numerical simulations for linear approximation are compared with results in the literature.

  17. Ionization equilibrium and equation of state of partially ionized hydrogen plasmas: Pseudopotential approach in chemical picture

    International Nuclear Information System (INIS)

    Arkhipov, Yu.V.; Baimbetov, F.B.; Davletov, A.E.

    2005-01-01

    Starting from the Bogolyubov hierarchy for the equilibrium distribution functions, a novel approach to the chemical model of partially ionized plasmas is proposed. Unlike the ordinary chemical picture it allows one to determine, in a self-consistent manner, both the ionization equilibrium and correlation functions as well. It is shown that the charged and neutral components of the plasma are closely interrelated and, as a consequence, the short-range order formation turns possible. The equation of state of partially ionized hydrogen plasmas is studied and detailed comparison with an exact quantum-mechanical expansion is made. The approach developed is quite analogous to the Debye-Hueckel theory of weakly coupled fully ionized plasmas and includes it as a limiting case

  18. Kinetics of subdiffusion-assisted reactions: non-Markovian stochastic Liouville equation approach

    Energy Technology Data Exchange (ETDEWEB)

    Shushin, A I [Institute of Chemical Physics, Russian Academy of Sciences, 117977, GSP-1, Kosygin str. 4, Moscow (Russian Federation)

    2005-01-01

    Anomalous specific features of the kinetics of subdiffusion-assisted bimolecular reactions (time-dependence, dependence on parameters of systems, etc) are analysed in detail with the use of the non-Markovian stochastic Liouville equation (SLE), which has been recently derived within the continuous-time random-walk (CTRW) approach. In the CTRW approach, subdiffusive motion of particles is modelled by jumps whose onset probability distribution function is of a long-tailed form. The non-Markovian SLE allows for rigorous describing of some peculiarities of these reactions; for example, very slow long-time behaviour of the kinetics, non-analytical dependence of the reaction rate on the reactivity of particles, strong manifestation of fluctuation kinetics showing itself in very slowly decreasing behaviour of the kinetics at very long times, etc.

  19. A Generalized Estimating Equations Approach to Model Heterogeneity and Time Dependence in Capture-Recapture Studies

    Directory of Open Access Journals (Sweden)

    Akanda Md. Abdus Salam

    2017-03-01

    Full Text Available Individual heterogeneity in capture probabilities and time dependence are fundamentally important for estimating the closed animal population parameters in capture-recapture studies. A generalized estimating equations (GEE approach accounts for linear correlation among capture-recapture occasions, and individual heterogeneity in capture probabilities in a closed population capture-recapture individual heterogeneity and time variation model. The estimated capture probabilities are used to estimate animal population parameters. Two real data sets are used for illustrative purposes. A simulation study is carried out to assess the performance of the GEE estimator. A Quasi-Likelihood Information Criterion (QIC is applied for the selection of the best fitting model. This approach performs well when the estimated population parameters depend on the individual heterogeneity and the nature of linear correlation among capture-recapture occasions.

  20. PB-AM: An open-source, fully analytical linear poisson-boltzmann solver

    Energy Technology Data Exchange (ETDEWEB)

    Felberg, Lisa E. [Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley California 94720; Brookes, David H. [Department of Chemistry, University of California Berkeley, Berkeley California 94720; Yap, Eng-Hui [Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx New York 10461; Jurrus, Elizabeth [Division of Computational and Statistical Analytics, Pacific Northwest National Laboratory, Richland Washington 99352; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City Utah 84112; Baker, Nathan A. [Advanced Computing, Mathematics, and Data Division, Pacific Northwest National Laboratory, Richland Washington 99352; Division of Applied Mathematics, Brown University, Providence Rhode Island 02912; Head-Gordon, Teresa [Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley California 94720; Department of Chemistry, University of California Berkeley, Berkeley California 94720; Department of Bioengineering, University of California Berkeley, Berkeley California 94720; Chemical Sciences Division, Lawrence Berkeley National Labs, Berkeley California 94720

    2016-11-02

    We present the open source distributed software package Poisson-Boltzmann Analytical Method (PB-AM), a fully analytical solution to the linearized Poisson Boltzmann equation. The PB-AM software package includes the generation of outputs files appropriate for visualization using VMD, a Brownian dynamics scheme that uses periodic boundary conditions to simulate dynamics, the ability to specify docking criteria, and offers two different kinetics schemes to evaluate biomolecular association rate constants. Given that PB-AM defines mutual polarization completely and accurately, it can be refactored as a many-body expansion to explore 2- and 3-body polarization. Additionally, the software has been integrated into the Adaptive Poisson-Boltzmann Solver (APBS) software package to make it more accessible to a larger group of scientists, educators and students that are more familiar with the APBS framework.

  1. A numerical spectral approach to solve the dislocation density transport equation

    International Nuclear Information System (INIS)

    Djaka, K S; Taupin, V; Berbenni, S; Fressengeas, C

    2015-01-01

    A numerical spectral approach is developed to solve in a fast, stable and accurate fashion, the quasi-linear hyperbolic transport equation governing the spatio-temporal evolution of the dislocation density tensor in the mechanics of dislocation fields. The approach relies on using the Fast Fourier Transform algorithm. Low-pass spectral filters are employed to control both the high frequency Gibbs oscillations inherent to the Fourier method and the fast-growing numerical instabilities resulting from the hyperbolic nature of the transport equation. The numerical scheme is validated by comparison with an exact solution in the 1D case corresponding to dislocation dipole annihilation. The expansion and annihilation of dislocation loops in 2D and 3D settings are also produced and compared with finite element approximations. The spectral solutions are shown to be stable, more accurate for low Courant numbers and much less computation time-consuming than the finite element technique based on an explicit Galerkin-least squares scheme. (paper)

  2. A pertinent approach to solve nonlinear fuzzy integro-differential equations.

    Science.gov (United States)

    Narayanamoorthy, S; Sathiyapriya, S P

    2016-01-01

    Fuzzy integro-differential equations is one of the important parts of fuzzy analysis theory that holds theoretical as well as applicable values in analytical dynamics and so an appropriate computational algorithm to solve them is in essence. In this article, we use parametric forms of fuzzy numbers and suggest an applicable approach for solving nonlinear fuzzy integro-differential equations using homotopy perturbation method. A clear and detailed description of the proposed method is provided. Our main objective is to illustrate that the construction of appropriate convex homotopy in a proper way leads to highly accurate solutions with less computational work. The efficiency of the approximation technique is expressed via stability and convergence analysis so as to guarantee the efficiency and performance of the methodology. Numerical examples are demonstrated to verify the convergence and it reveals the validity of the presented numerical technique. Numerical results are tabulated and examined by comparing the obtained approximate solutions with the known exact solutions. Graphical representations of the exact and acquired approximate fuzzy solutions clarify the accuracy of the approach.

  3. Partial differential equation-based approach for empirical mode decomposition: application on image analysis.

    Science.gov (United States)

    Niang, Oumar; Thioune, Abdoulaye; El Gueirea, Mouhamed Cheikh; Deléchelle, Eric; Lemoine, Jacques

    2012-09-01

    The major problem with the empirical mode decomposition (EMD) algorithm is its lack of a theoretical framework. So, it is difficult to characterize and evaluate this approach. In this paper, we propose, in the 2-D case, the use of an alternative implementation to the algorithmic definition of the so-called "sifting process" used in the original Huang's EMD method. This approach, especially based on partial differential equations (PDEs), was presented by Niang in previous works, in 2005 and 2007, and relies on a nonlinear diffusion-based filtering process to solve the mean envelope estimation problem. In the 1-D case, the efficiency of the PDE-based method, compared to the original EMD algorithmic version, was also illustrated in a recent paper. Recently, several 2-D extensions of the EMD method have been proposed. Despite some effort, 2-D versions for EMD appear poorly performing and are very time consuming. So in this paper, an extension to the 2-D space of the PDE-based approach is extensively described. This approach has been applied in cases of both signal and image decomposition. The obtained results confirm the usefulness of the new PDE-based sifting process for the decomposition of various kinds of data. Some results have been provided in the case of image decomposition. The effectiveness of the approach encourages its use in a number of signal and image applications such as denoising, detrending, or texture analysis.

  4. Normal and adjoint integral and integrodifferential neutron transport equations. Pt. 2

    International Nuclear Information System (INIS)

    Velarde, G.

    1976-01-01

    Using the simplifying hypotheses of the integrodifferential Boltzmann equations of neutron transport, given in JEN 334 report, several integral equations, and theirs adjoint ones, are obtained. Relations between the different normal and adjoint eigenfunctions are established and, in particular, proceeding from the integrodifferential Boltzmann equation it's found out the relation between the solutions of the adjoint equation of its integral one, and the solutions of the integral equation of its adjoint one (author)

  5. Simulating condensation on microstructured surfaces using Lattice Boltzmann Method

    Science.gov (United States)

    Alexeev, Alexander; Vasyliv, Yaroslav

    2017-11-01

    We simulate a single component fluid condensing on 2D structured surfaces with different wettability. To simulate the two phase fluid, we use the athermal Lattice Boltzmann Method (LBM) driven by a pseudopotential force. The pseudopotential force results in a non-ideal equation of state (EOS) which permits liquid-vapor phase change. To account for thermal effects, the athermal LBM is coupled to a finite volume discretization of the temperature evolution equation obtained using a thermal energy rate balance for the specific internal energy. We use the developed model to probe the effect of surface structure and surface wettability on the condensation rate in order to identify microstructure topographies promoting condensation. Financial support is acknowledged from Kimberly-Clark.

  6. Hybrid lattice Boltzmann finite difference simulation of mixed convection flows in a lid-driven square cavity

    Energy Technology Data Exchange (ETDEWEB)

    Bettaibi, Soufiene, E-mail: Bettaibisoufiene@gmail.com [UR: Rayonnement Thermique, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Tunis (Tunisia); Kuznik, Frédéric [INSA-Lyon, CETHIL, F-69621 Villeurbanne (France); Université de Lyon, CNRS, UMR5008, F-69622 Villeurbanne (France); Sediki, Ezeddine [UR: Rayonnement Thermique, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Tunis (Tunisia)

    2014-06-27

    Highlights: • Mixed convection heat transfer in 2D lid-driven cavity is studied numerically. • Hybrid scheme with multiple relaxation time lattice Boltzmann method is used to obtain the velocity field. • Finite difference method is used to compute the temperature. • Effect of both Richardson and Reynolds numbers for mixed convection is studied. - Abstract: Mixed convection heat transfer in two-dimensional lid-driven rectangular cavity filled with air (Pr=0.71) is studied numerically. A hybrid scheme with multiple relaxation time lattice Boltzmann method (MRT-LBM) is used to obtain the velocity field while the temperature field is deduced from energy balance equation by using the finite difference method (FDM). The main objective of this work is to investigate the model effectiveness for mixed convection flow simulation. Results are presented in terms of streamlines, isotherms and Nusselt numbers. Excellent agreement is obtained between our results and previous works. The different comparisons demonstrate the robustness and the accuracy of our proposed approach.

  7. A New Approach to Comparing Several Equating Methods in the Context of the NEAT Design

    Science.gov (United States)

    Sinharay, Sandip; Holland, Paul W.

    2010-01-01

    The nonequivalent groups with anchor test (NEAT) design involves missing data that are missing by design. Three equating methods that can be used with a NEAT design are the frequency estimation equipercentile equating method, the chain equipercentile equating method, and the item-response-theory observed-score-equating method. We suggest an…

  8. Income distribution: Boltzmann analysis and its extension

    Science.gov (United States)

    Yuqing, He

    2007-04-01

    The paper aims at describing income distribution in moderate income regions. Starting with dividing income behaviors into the two parts: random and deterministic, and by introducing “instantaneous model” for theoretical derivations and “cumulative model” for positive tests, this paper applies the equilibrium approach of statistical mechanics in the study of nonconserved individual income course. The random income follows a stationary distribution similar to the Maxwell-Boltzmann distribution in the instantaneous model. Combining this result with marginal analysis, the probability distribution of individual income process that is composed of the random and deterministic income courses approximately obeys a distribution law mixing exponential function with a logarithmic prefactor. Using the census or income survey data of USA, UK, Japan, and New Zealand, the distribution law has been tested. The results show that it agrees very well with most of the empirical data. The discussion suggests that there might be essentially different income processes to happen in moderate and high income regions.

  9. Proton-pumping mechanism of cytochrome c oxidase: A kinetic master-equation approach

    Science.gov (United States)

    Kim, Young C.; Hummer, Gerhard

    2011-01-01

    Cytochrome c oxidase (CcO) is an efficient energy transducer that reduces oxygen to water and converts the released chemical energy into an electrochemical membrane potential. As a true proton pump, CcO translocates protons across the membrane against this potential. Based on a wealth of experiments and calculations, an increasingly detailed picture of the reaction intermediates in the redox cycle has emerged. However, the fundamental mechanism of proton pumping coupled to redox chemistry remains largely unresolved. Here we examine and extend a kinetic master-equation approach to gain insight into redox-coupled proton pumping in CcO. Basic principles of the CcO proton pump emerge from an analysis of the simplest kinetic models that retain essential elements of the experimentally determined structure, energetics, and kinetics, and that satisfy fundamental physical principles. The master-equation models allow us to address the question of how pumping can be achieved in a system in which all reaction steps are reversible. Whereas proton pumping does not require the direct modulation of microscopic reaction barriers, such kinetic gating greatly increases the pumping efficiency. Further efficiency gains can be achieved by partially decoupling the proton uptake pathway from the ative-site region. Such a mechanism is consistent with the proposed Glu valve, in which the side chain of a key glutamic acid shuttles between the D channel and the active-site region. We also show that the models predict only small proton leaks even in the absence of turnover. The design principles identified here for CcO provide a blueprint for novel biology-inspired fuel cells, and the master-equation formulation should prove useful also for other molecular machines. PMID:21946020

  10. Slip velocity and Knudsen layer in the lattice Boltzmann method for microscale flows.

    Science.gov (United States)

    Kim, Seung Hyun; Pitsch, Heinz; Boyd, Iain D

    2008-02-01

    We present mesoscopic fluid-wall interaction models for lattice Boltzmann (LB) model simulations of microscale flows. The exact solution of the slip velocity for the LB equation with the Bhatnagar-Gross-Krook collision operator is obtained for Poiseuille flow at finite Knudsen numbers. With a consistent definition of the Knudsen number, the slip coefficients of the LB equation with the standard D2Q9 scheme are found to be slightly larger than those of the Boltzmann equation with the same boundary condition, which makes the standard LB method remain quantitatively accurate only for small Knudsen numbers. By modifying the nonequilibrium energy flux or introducing the effective relaxation time, the LB method is analytically shown to reproduce the slip phenomena up to second order in the Knudsen number. For the standard LB method, the Knudsen layer is captured only with modification of the relaxation dynamics such as in the effective relaxation time model.

  11. A Novel Highly Efficient Scheme for the Boltzmann Equation

    Data.gov (United States)

    National Aeronautics and Space Administration — In fluid dynamics, the limits of continuum mechanics are surpassed when the mean free path of molecules becomes equivalent to the characteristic length scale. This...

  12. Computational Aeroacoustics Using the Generalized Lattice Boltzmann Equation, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The research proposed targets airframe noise (AFN) prediction and reduction. AFN originates from complex interactions of turbulent flow with airframe components that...

  13. A structural equation modeling approach to understanding pathways that connect socioeconomic status and smoking.

    Science.gov (United States)

    Martinez, Sydney A; Beebe, Laura A; Thompson, David M; Wagener, Theodore L; Terrell, Deirdra R; Campbell, Janis E

    2018-01-01

    The inverse association between socioeconomic status and smoking is well established, yet the mechanisms that drive this relationship are unclear. We developed and tested four theoretical models of the pathways that link socioeconomic status to current smoking prevalence using a structural equation modeling (SEM) approach. Using data from the 2013 National Health Interview Survey, we selected four indicator variables (poverty ratio, personal earnings, educational attainment, and employment status) that we hypothesize underlie a latent variable, socioeconomic status. We measured direct, indirect, and total effects of socioeconomic status on smoking on four pathways through four latent variables representing social cohesion, financial strain, sleep disturbance, and psychological distress. Results of the model indicated that the probability of being a smoker decreased by 26% of a standard deviation for every one standard deviation increase in socioeconomic status. The direct effects of socioeconomic status on smoking accounted for the majority of the total effects, but the overall model also included significant indirect effects. Of the four mediators, sleep disturbance and psychological distress had the largest total effects on current smoking. We explored the use of structural equation modeling in epidemiology to quantify effects of socioeconomic status on smoking through four social and psychological factors to identify potential targets for interventions. A better understanding of the complex relationship between socioeconomic status and smoking is critical as we continue to reduce the burden of tobacco and eliminate health disparities related to smoking.

  14. Hierarchical imputation of systematically and sporadically missing data: An approximate Bayesian approach using chained equations.

    Science.gov (United States)

    Jolani, Shahab

    2018-03-01

    In health and medical sciences, multiple imputation (MI) is now becoming popular to obtain valid inferences in the presence of missing data. However, MI of clustered data such as multicenter studies and individual participant data meta-analysis requires advanced imputation routines that preserve the hierarchical structure of data. In clustered data, a specific challenge is the presence of systematically missing data, when a variable is completely missing in some clusters, and sporadically missing data, when it is partly missing in some clusters. Unfortunately, little is known about how to perform MI when both types of missing data occur simultaneously. We develop a new class of hierarchical imputation approach based on chained equations methodology that simultaneously imputes systematically and sporadically missing data while allowing for arbitrary patterns of missingness among them. Here, we use a random effect imputation model and adopt a simplification over fully Bayesian techniques such as Gibbs sampler to directly obtain draws of parameters within each step of the chained equations. We justify through theoretical arguments and extensive simulation studies that the proposed imputation methodology has good statistical properties in terms of bias and coverage rates of parameter estimates. An illustration is given in a case study with eight individual participant datasets. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Generalized Langevin equation: An efficient approach to nonequilibrium molecular dynamics of open systems

    Science.gov (United States)

    Stella, L.; Lorenz, C. D.; Kantorovich, L.

    2014-04-01

    The generalized Langevin equation (GLE) has been recently suggested to simulate the time evolution of classical solid and molecular systems when considering general nonequilibrium processes. In this approach, a part of the whole system (an open system), which interacts and exchanges energy with its dissipative environment, is studied. Because the GLE is derived by projecting out exactly the harmonic environment, the coupling to it is realistic, while the equations of motion are non-Markovian. Although the GLE formalism has already found promising applications, e.g., in nanotribology and as a powerful thermostat for equilibration in classical molecular dynamics simulations, efficient algorithms to solve the GLE for realistic memory kernels are highly nontrivial, especially if the memory kernels decay nonexponentially. This is due to the fact that one has to generate a colored noise and take account of the memory effects in a consistent manner. In this paper, we present a simple, yet efficient, algorithm for solving the GLE for practical memory kernels and we demonstrate its capability for the exactly solvable case of a harmonic oscillator coupled to a Debye bath.

  16. A structural equation modeling approach to understanding pathways that connect socioeconomic status and smoking.

    Directory of Open Access Journals (Sweden)

    Sydney A Martinez

    Full Text Available The inverse association between socioeconomic status and smoking is well established, yet the mechanisms that drive this relationship are unclear. We developed and tested four theoretical models of the pathways that link socioeconomic status to current smoking prevalence using a structural equation modeling (SEM approach. Using data from the 2013 National Health Interview Survey, we selected four indicator variables (poverty ratio, personal earnings, educational attainment, and employment status that we hypothesize underlie a latent variable, socioeconomic status. We measured direct, indirect, and total effects of socioeconomic status on smoking on four pathways through four latent variables representing social cohesion, financial strain, sleep disturbance, and psychological distress. Results of the model indicated that the probability of being a smoker decreased by 26% of a standard deviation for every one standard deviation increase in socioeconomic status. The direct effects of socioeconomic status on smoking accounted for the majority of the total effects, but the overall model also included significant indirect effects. Of the four mediators, sleep disturbance and psychological distress had the largest total effects on current smoking. We explored the use of structural equation modeling in epidemiology to quantify effects of socioeconomic status on smoking through four social and psychological factors to identify potential targets for interventions. A better understanding of the complex relationship between socioeconomic status and smoking is critical as we continue to reduce the burden of tobacco and eliminate health disparities related to smoking.

  17. Solution of the nonrelativistic wave equation using the tridiagonal representation approach

    Science.gov (United States)

    Alhaidari, A. D.

    2017-07-01

    We choose a complete set of square integrable functions as a basis for the expansion of the wavefunction in configuration space such that the matrix representation of the nonrelativistic time-independent linear wave operator is tridiagonal and symmetric. Consequently, the matrix wave equation becomes a symmetric three-term recursion relation for the expansion coefficients of the wavefunction. The recursion relation is then solved exactly in terms of orthogonal polynomials in the energy. Some of these polynomials are not found in the mathematics literature. The asymptotics of these polynomials give the phase shift for the continuous energy scattering states and the spectrum for the discrete energy bound states. Depending on the space and boundary conditions, the basis functions are written in terms of either the Laguerre or Jacobi polynomials. The tridiagonal requirement limits the number of potential functions that yield exact solutions of the wave equation. Nonetheless, the class of exactly solvable problems in this approach is larger than the conventional class (see, for example, Table XII in the text). We also give very accurate results for cases where the wave operator matrix is not tridiagonal but its elements could be evaluated either exactly or numerically with high precision.

  18. Electronic and thermoelectric properties of InN studied using ab initio density functional theory and Boltzmann transport calculations

    Energy Technology Data Exchange (ETDEWEB)

    Borges, P. D., E-mail: pdborges@gmail.com, E-mail: lscolfaro@txstate.edu; Scolfaro, L., E-mail: pdborges@gmail.com, E-mail: lscolfaro@txstate.edu [Department of Physics, Texas State University, San Marcos, Texas 78666 (United States)

    2014-12-14

    The thermoelectric properties of indium nitride in the most stable wurtzite phase (w-InN) as a function of electron and hole concentrations and temperature were studied by solving the semiclassical Boltzmann transport equations in conjunction with ab initio electronic structure calculations, within Density Functional Theory. Based on maximally localized Wannier function basis set and the ab initio band energies, results for the Seebeck coefficient are presented and compared with available experimental data for n-type as well as p-type systems. Also, theoretical results for electric conductivity and power factor are presented. Most cases showed good agreement between the calculated properties and experimental data for w-InN unintentionally and p-type doped with magnesium. Our predictions for temperature and concentration dependences of electrical conductivity and power factor revealed a promising use of InN for intermediate and high temperature thermoelectric applications. The rigid band approach and constant scattering time approximation were utilized in the calculations.

  19. Finite-difference approach to solving operator equations of motion in quantum theory

    International Nuclear Information System (INIS)

    Moncrief, V.

    1983-01-01

    We study the application of the ''leapfrog'' method of finite differencing to the approximate solution of operator equations of motion in quantum theory. We show that, for a wide class of linear and nonlinear systems, the leapfrog differencing scheme is exactly unitary. The method is sufficiently general to apply to many-particle systems with arbitrary potential forces and to lattice-regulated nonlinear sigma models and non-Abelian gauge theories. In contrast to the recent proposal of Bender and Sharp (which is based on the finite-elements method) our approach is explicit rather than implicit and, in the case of lattice-regulated field theories, has a lattice analog of microcausality. For systems with finitely many degrees of freedom and self-adjoint Hamiltonians, we show that our approximate solutions converge to the exact solutions in the limit in which the time step tends to zero

  20. Social Learning Theory, Gender, and Intimate Partner Violent Victimization: A Structural Equations Approach.

    Science.gov (United States)

    Powers, Ráchael A; Cochran, John K; Maskaly, Jon; Sellers, Christine S

    2017-05-01

    The purpose of this study is to examine the applicability of Akers's Social Learning Theory (SLT) to explain intimate partner violence (IPV) victimization. In doing so, we draw on the Intergenerational Transmission of Violence Theory (IGT) to extend the scope of SLT to the explanation of victimization and for a consideration of uniquely gendered pathways in its causal structure. Using a structural equation modeling approach with self-report data from a sample of college students, the present study tests the extent to which SLT can effectively explain and predict IPV victimization and the degree, if any, to which the social learning model is gender invariant. Although our findings are largely supportive of SLT and, thus, affirm its extension to victimization as well as perpetration, the findings are also somewhat mixed. More significantly, in line with IGT literature, we find that the social learning process is not gender invariant. The implications of the latter are discussed.

  1. A numerical investigation of the GRLW equation using lumped Galerkin approach with cubic B-spline.

    Science.gov (United States)

    Zeybek, Halil; Karakoç, S Battal Gazi

    2016-01-01

    In this work, we construct the lumped Galerkin approach based on cubic B-splines to obtain the numerical solution of the generalized regularized long wave equation. Applying the von Neumann approximation, it is shown that the linearized algorithm is unconditionally stable. The presented method is implemented to three test problems including single solitary wave, interaction of two solitary waves and development of an undular bore. To prove the performance of the numerical scheme, the error norms [Formula: see text] and [Formula: see text] and the conservative quantities [Formula: see text], [Formula: see text] and [Formula: see text] are computed and the computational data are compared with the earlier works. In addition, the motion of solitary waves is described at different time levels.

  2. Time evolution of many-body localized systems with the flow equation approach

    Science.gov (United States)

    Thomson, S. J.; Schiró, M.

    2018-02-01

    The interplay between interactions and quenched disorder can result in rich dynamical quantum phenomena far from equilibrium, particularly when many-body localization prevents the system from full thermalization. With the aim of tackling this interesting regime, here we develop a semianalytical flow equation approach to study the time evolution of strongly disordered interacting quantum systems. We apply this technique to a prototype model of interacting spinless fermions in a random on-site potential in both one and two dimensions. Key results include (i) an explicit construction of the local integrals of motion that characterize the many-body localized phase in one dimension, ultimately connecting the microscopic model to phenomenological descriptions, (ii) calculation of these quantities in two dimensions, and (iii) an investigation of the real-time dynamics in the localized phase which reveals the crucial role of l -bit interactions for enhancing dephasing and relaxation.

  3. Exciton dissociation in the presence of phonons: A reduced hierarchy equations of motion approach

    International Nuclear Information System (INIS)

    Yao, Yao; Yang, Wenchao; Zhao, Yang

    2014-01-01

    Combining the reduced hierarchy equations of motion (HEOM) approach with the Wigner-function formalism, we investigate nonperturbatively exciton dissociation under the influence of a phonon bath in an organic heterojunction. The exciton is modeled by an electron-hole pair with the electron moving in the presence of both an external electric field and the Coulomb attraction potential from the hole. In the absence of a phonon bath, calculated HEOM results reproduce those from the Onsager-Braun theory in weak electric fields. In the presence of a phonon bath, substantial deviations from the Onsager-Braun theory are found, signaling phonon-induced quantum effects. Furthermore, time evolution of the spatial current distribution is examined, and an initial spike followed by a polarity change of the transient photocurrent have been recovered

  4. Superfluid kinetic equation approach to the dynamics of the 3He A-B phase boundary

    International Nuclear Information System (INIS)

    Palmeri, J.

    1990-01-01

    The dynamics of the A-B phase boundary is studied using a nonequilibrium theory inspired by the microscopic approach to flux flow in type-II superconductors, namely a generalized two-fluid model consisting of coupled dynamical equations for the superfluid order parameter and the quasiparticle fluid. The interface mobility is obtained to lowest order in the front velocity in three different dynamical regimes: the gapless, hydrodynamic, and ballistic. Experiments have so far only been performed in the ballistic regime, and in this regime we find that, if only Andreev scattering processes are accounted for in the interface mobility, then the theoretical predictions for the terminal velocity of the planar interface are too big by a factor ∼2. From this we conclude that there may be other important contributions to the interface mobility in the ballistic regime, and we discuss a few possibilities

  5. Quantum dot as a spin-current diode: A master-equation approach

    DEFF Research Database (Denmark)

    Souza, F.M.; Egues, J.C.; Jauho, Antti-Pekka

    2007-01-01

    We report a study of spin-dependent transport in a system composed of a quantum dot coupled to a normal metal lead and a ferromagnetic lead NM-QD-FM. We use the master equation approach to calculate the spin-resolved currents in the presence of an external bias and an intradot Coulomb interaction....... We find that for a range of positive external biases current flow from the normal metal to the ferromagnet the current polarization =I↑−I↓ / I↑+I↓ is suppressed to zero, while for the corresponding negative biases current flow from the ferromagnet to the normal metal attains a relative maximum value....... The system thus operates as a rectifier for spin-current polarization. This effect follows from an interplay between Coulomb interaction and nonequilibrium spin accumulation in the dot. In the parameter range considered, we also show that the above results can be obtained via nonequilibrium Green functions...

  6. On the non-intrusive evaluation of fluid forces with the momentum equation approach

    International Nuclear Information System (INIS)

    David, L; Jardin, T; Farcy, A

    2009-01-01

    The aim of this paper is to discuss the advantages and difficulties linked with the experimental application of the momentum equation approach as a non-intrusive way to predict the unsteady loads experienced by an airfoil in motion. First, in order to evaluate the influence of the varying parameters relative to the calculation of the corresponding drag and lift coefficients, numerical flow fields obtained by means of DNS are used. The comprehension of the impact of the spatial and temporal resolutions, velocity accuracy or third velocity component on the estimation of forces allows us to quantify the accuracy of the approach and helps in specifying the parameters setting which could lead to a consistent experimental application. In a second step, the approach is applied to experimental flow fields measured through the use of time resolved particle image velocimetry (TR-PIV). A low Reynolds number flow around an impulsively started airfoil is considered. The loads and vorticity flow fields are correlated and compared with those obtained by DNS

  7. A Truly Second-Order and Unconditionally Stable Thermal Lattice Boltzmann Method

    Directory of Open Access Journals (Sweden)

    Zhen Chen

    2017-03-01

    Full Text Available An unconditionally stable thermal lattice Boltzmann method (USTLBM is proposed in this paper for simulating incompressible thermal flows. In USTLBM, solutions to the macroscopic governing equations that are recovered from lattice Boltzmann equation (LBE through Chapman–Enskog (C-E expansion analysis are resolved in a predictor–corrector scheme and reconstructed within lattice Boltzmann framework. The development of USTLBM is inspired by the recently proposed simplified thermal lattice Boltzmann method (STLBM. Comparing with STLBM which can only achieve the first-order of accuracy in time, the present USTLBM ensures the second-order of accuracy both in space and in time. Meanwhile, all merits of STLBM are maintained by USTLBM. Specifically, USTLBM directly updates macroscopic variables rather than distribution functions, which greatly saves virtual memories and facilitates implementation of physical boundary conditions. Through von Neumann stability analysis, it can be theoretically proven that USTLBM is unconditionally stable. It is also shown in numerical tests that, comparing to STLBM, lower numerical error can be expected in USTLBM at the same mesh resolution. Four typical numerical examples are presented to demonstrate the robustness of USTLBM and its flexibility on non-uniform and body-fitted meshes.

  8. New approach to the decision of Wilier - de Witt equation in the application to the point sources

    International Nuclear Information System (INIS)

    Fil'chenkov, M.L.

    2000-01-01

    A new approach to solution of the Wilier-de Witt equation based on quantization by free parameters of metrics satisfying the Einstein equations is suggested. The approach is applied to two point sources described by the Tangherlini metrics (in n-dimensional space) and the Reissner-Nordstrom metrics (in the presence of a charge). The results obtained clarify the essence of the Wilier hypothesis on high statistical weights of small dimensions and provide a new approach to the problem of fundamental constants variation [ru

  9. Development of a Prototype Lattice Boltzmann Code for CFD of Fusion Systems.

    Energy Technology Data Exchange (ETDEWEB)

    Pattison, Martin J; Premnath, Kannan N; Banerjee, Sanjoy; Dwivedi, Vinay

    2007-02-26

    Designs of proposed fusion reactors, such as the ITER project, typically involve the use of liquid metals as coolants in components such as heat exchangers, which are generally subjected to strong magnetic fields. These fields induce electric currents in the fluids, resulting in magnetohydrodynamic (MHD) forces which have important effects on the flow. The objective of this SBIR project was to develop computational techniques based on recently developed lattice Boltzmann techniques for the simulation of these MHD flows and implement them in a computational fluid dynamics (CFD) code for the study of fluid flow systems encountered in fusion engineering. The code developed during this project, solves the lattice Boltzmann equation, which is a kinetic equation whose behaviour represents fluid motion. This is in contrast to most CFD codes which are based on finite difference/finite volume based solvers. The lattice Boltzmann method (LBM) is a relatively new approach which has a number of advantages compared with more conventional methods such as the SIMPLE or projection method algorithms that involve direct solution of the Navier-Stokes equations. These are that the LBM is very well suited to parallel processing, with almost linear scaling even for very large numbers of processors. Unlike other methods, the LBM does not require solution of a Poisson pressure equation leading to a relatively fast execution time. A particularly attractive property of the LBM is that it can handle flows in complex geometries very easily. It can use simple rectangular grids throughout the computational domain -- generation of a body-fitted grid is not required. A recent advance in the LBM is the introduction of the multiple relaxation time (MRT) model; the implementation of this model greatly enhanced the numerical stability when used in lieu of the single relaxation time model, with only a small increase in computer time. Parallel processing was implemented using MPI and demonstrated the

  10. Bell Polynomials Approach Applied to (2 + 1-Dimensional Variable-Coefficient Caudrey-Dodd-Gibbon-Kotera-Sawada Equation

    Directory of Open Access Journals (Sweden)

    Wen-guang Cheng

    2014-01-01

    Full Text Available The bilinear form, bilinear Bäcklund transformation, and Lax pair of a (2 + 1-dimensional variable-coefficient Caudrey-Dodd-Gibbon-Kotera-Sawada equation are derived through Bell polynomials. The integrable constraint conditions on variable coefficients can be naturally obtained in the procedure of applying the Bell polynomials approach. Moreover, the N-soliton solutions of the equation are constructed with the help of the Hirota bilinear method. Finally, the infinite conservation laws of this equation are obtained by decoupling binary Bell polynomials. All conserved densities and fluxes are illustrated with explicit recursion formulae.

  11. Two Approaches for Using Multiple Anchors in NEAT Equating: A Description and Demonstration

    Science.gov (United States)

    Moses, Tim; Deng, Weiling; Zhang, Yu-Li

    2011-01-01

    Nonequivalent groups with anchor test (NEAT) equating functions that use a single anchor can have accuracy problems when the groups are extremely different and/or when the anchor weakly correlates with the tests being equated. Proposals have been made to address these issues by incorporating more than one anchor into NEAT equating functions. These…

  12. Lattice Boltzmann model capable of mesoscopic vorticity computation.

    Science.gov (United States)

    Peng, Cheng; Guo, Zhaoli; Wang, Lian-Ping

    2017-11-01

    It is well known that standard lattice Boltzmann (LB) models allow the strain-rate components to be computed mesoscopically (i.e., through the local particle distributions) and as such possess a second-order accuracy in strain rate. This is one of the appealing features of the lattice Boltzmann method (LBM) which is of only second-order accuracy in hydrodynamic velocity itself. However, no known LB model can provide the same quality for vorticity and pressure gradients. In this paper, we design a multiple-relaxation time LB model on a three-dimensional 27-discrete-velocity (D3Q27) lattice. A detailed Chapman-Enskog analysis is presented to illustrate all the necessary constraints in reproducing the isothermal Navier-Stokes equations. The remaining degrees of freedom are carefully analyzed to derive a model that accommodates mesoscopic computation of all the velocity and pressure gradients from the nonequilibrium moments. This way of vorticity calculation naturally ensures a second-order accuracy, which is also proven through an asymptotic analysis. We thus show, with enough degrees of freedom and appropriate modifications, the mesoscopic vorticity computation can be achieved in LBM. The resulting model is then validated in simulations of a three-dimensional decaying Taylor-Green flow, a lid-driven cavity flow, and a uniform flow passing a fixed sphere. Furthermore, it is shown that the mesoscopic vorticity computation can be realized even with single relaxation parameter.

  13. High order spectral difference lattice Boltzmann method for incompressible hydrodynamics

    Science.gov (United States)

    Li, Weidong

    2017-09-01

    This work presents a lattice Boltzmann equation (LBE) based high order spectral difference method for incompressible flows. In the present method, the spectral difference (SD) method is adopted to discretize the convection and collision term of the LBE to obtain high order (≥3) accuracy. Because the SD scheme represents the solution as cell local polynomials and the solution polynomials have good tensor-product property, the present spectral difference lattice Boltzmann method (SD-LBM) can be implemented on arbitrary unstructured quadrilateral meshes for effective and efficient treatment of complex geometries. Thanks to only first oder PDEs involved in the LBE, no special techniques, such as hybridizable discontinuous Galerkin method (HDG), local discontinuous Galerkin method (LDG) and so on, are needed to discrete diffusion term, and thus, it simplifies the algorithm and implementation of the high order spectral difference method for simulating viscous flows. The proposed SD-LBM is validated with four incompressible flow benchmarks in two-dimensions: (a) the Poiseuille flow driven by a constant body force; (b) the lid-driven cavity flow without singularity at the two top corners-Burggraf flow; and (c) the unsteady Taylor-Green vortex flow; (d) the Blasius boundary-layer flow past a flat plate. Computational results are compared with analytical solutions of these cases and convergence studies of these cases are also given. The designed accuracy of the proposed SD-LBM is clearly verified.

  14. Polyelectrolyte Microcapsules: Ion Distributions from a Poisson-Boltzmann Model

    Science.gov (United States)

    Tang, Qiyun; Denton, Alan R.; Rozairo, Damith; Croll, Andrew B.

    2014-03-01

    Recent experiments have shown that polystyrene-polyacrylic-acid-polystyrene (PS-PAA-PS) triblock copolymers in a solvent mixture of water and toluene can self-assemble into spherical microcapsules. Suspended in water, the microcapsules have a toluene core surrounded by an elastomer triblock shell. The longer, hydrophilic PAA blocks remain near the outer surface of the shell, becoming charged through dissociation of OH functional groups in water, while the shorter, hydrophobic PS blocks form a networked (glass or gel) structure. Within a mean-field Poisson-Boltzmann theory, we model these polyelectrolyte microcapsules as spherical charged shells, assuming different dielectric constants inside and outside the capsule. By numerically solving the nonlinear Poisson-Boltzmann equation, we calculate the radial distribution of anions and cations and the osmotic pressure within the shell as a function of salt concentration. Our predictions, which can be tested by comparison with experiments, may guide the design of microcapsules for practical applications, such as drug delivery. This work was supported by the National Science Foundation under Grant No. DMR-1106331.

  15. A Boltzmann Transport Simulation Using Open Source Physics

    Science.gov (United States)

    Hasbun, Javier

    2004-03-01

    The speed of a charged particle, under an applied electric field, in a conducting media, is, usually, simply modelled by writing Newton's 2nd law in the form mfrac ddtv=qE-mfrac vτ ; (1), where v is the speed, E is the applied electric field, q is the charge, m is the mass, and τ is the scattering time between collisions. Here, we simulate a numerical solution of the Boltzmann transport equation,frac partial partial tf+ vot nabla _rf+Fot nabla _pf=frac partial partial tf|_coll (2), where in general the Boltzmann distribution function f=f(r,p,t) depends on position, momentum, and time. Our numerical solution is made possible by neglecting the 2nd term on the LHS, and by modelling the RHS collision term as fracpartial partial tf|_coll=-frac 1τ . With these approximations, in addition to considering only one dimension, we find, our numerical solution of (2). The average velocity numerically obtained through the resulting distribution is compared to that obtained by the analytic solution of (1). An efficient method of carrying out the numerical solution of (2) due to P. Drallos and M. Wadehra [Journal of Applied Physics 63, 5601(1988)] is incorporated here. A final version of an applet that performs the full Java simulation will be located at http://www.westga.edu/ jhasbun/osp/osp.htm.

  16. Element Free Lattice Boltzmann Method for Fluid-Flow Problems

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Jong Chull; Roh, Kyung Wan; Yune, Young Gill; Kim, Hho Jhung [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Kwon, Young Kwon [US Naval Postgraduate School, New York (United States)

    2007-10-15

    The Lattice Boltzmann Method (LBM) has been developed for application to thermal-fluid problems. Most of the those studies considered a regular shape of lattice or mesh like square and cubic grids. In order to apply the LBM to more practical cases, it is necessary to be able to solve complex or irregular shapes of problem domains. Some techniques were based on the finite element method. Generally, the finite element method is very powerful for solving two or three-dimensional complex or irregular shapes of domains using the iso-parametric element formulation which is based on a mathematical mapping from a regular shape of element in an imaginary domain to a more general and irregular shape of element in the physical domain. In addition, the element free technique is also quite useful to analyze a complex shape of domain because there is no need to divide a domain by a compatible finite element mesh. This paper presents a new finite element and element free formulations for the lattice Boltzmann equation using the general weighted residual technique. Then, a series of validation examples are presented.

  17. Lattice Boltzmann model capable of mesoscopic vorticity computation

    Science.gov (United States)

    Peng, Cheng; Guo, Zhaoli; Wang, Lian-Ping

    2017-11-01

    It is well known that standard lattice Boltzmann (LB) models allow the strain-rate components to be computed mesoscopically (i.e., through the local particle distributions) and as such possess a second-order accuracy in strain rate. This is one of the appealing features of the lattice Boltzmann method (LBM) which is of only second-order accuracy in hydrodynamic velocity itself. However, no known LB model can provide the same quality for vorticity and pressure gradients. In this paper, we design a multiple-relaxation time LB model on a three-dimensional 27-discrete-velocity (D3Q27) lattice. A detailed Chapman-Enskog analysis is presented to illustrate all the necessary constraints in reproducing the isothermal Navier-Stokes equations. The remaining degrees of freedom are carefully analyzed to derive a model that accommodates mesoscopic computation of all the velocity and pressure gradients from the nonequilibrium moments. This way of vorticity calculation naturally ensures a second-order accuracy, which is also proven through an asymptotic analysis. We thus show, with enough degrees of freedom and appropriate modifications, the mesoscopic vorticity computation can be achieved in LBM. The resulting model is then validated in simulations of a three-dimensional decaying Taylor-Green flow, a lid-driven cavity flow, and a uniform flow passing a fixed sphere. Furthermore, it is shown that the mesoscopic vorticity computation can be realized even with single relaxation parameter.

  18. A generalized estimating equations approach to quantitative trait locus detection of non-normal traits

    Directory of Open Access Journals (Sweden)

    Thomson Peter C

    2003-05-01

    Full Text Available Abstract To date, most statistical developments in QTL detection methodology have been directed at continuous traits with an underlying normal distribution. This paper presents a method for QTL analysis of non-normal traits using a generalized linear mixed model approach. Development of this method has been motivated by a backcross experiment involving two inbred lines of mice that was conducted in order to locate a QTL for litter size. A Poisson regression form is used to model litter size, with allowances made for under- as well as over-dispersion, as suggested by the experimental data. In addition to fixed parity effects, random animal effects have also been included in the model. However, the method is not fully parametric as the model is specified only in terms of means, variances and covariances, and not as a full probability model. Consequently, a generalized estimating equations (GEE approach is used to fit the model. For statistical inferences, permutation tests and bootstrap procedures are used. This method is illustrated with simulated as well as experimental mouse data. Overall, the method is found to be quite reliable, and with modification, can be used for QTL detection for a range of other non-normally distributed traits.

  19. Non-perturbative Approach to Equation of State and Collective Modes of the QGP

    Science.gov (United States)

    Liu, Y. F. Shuai; Rappxs, Ralf

    2018-01-01

    We discuss a non-perturbative T-matrix approach to investigate the microscopic structure of the quark-gluon plasma (QGP). Utilizing an effective Hamiltonian which includes both light- and heavy-parton degrees of freedoms. The basic two-body interaction includes color-Coulomb and confining contributions in all available color channels, and is constrained by lattice-QCD data for the heavy-quark free energy. The in-medium T-matrices and parton spectral functions are computed selfconsistently with full account of off-shell properties encoded in large scattering widths. We apply the T-matrices to calculate the equation of state (EoS) for the QGP, including a ladder resummation of the Luttinger-Ward functional using a matrix-log technique to account for the dynamical formation of bound states. It turns out that the latter become the dominant degrees of freedom in the EoS at low QGP temperatures indicating a transition from parton to hadron degrees of freedom. The calculated spectral properties of one- and two-body states confirm this picture, where large parton scattering rates dissolve the parton quasiparticle structures while broad resonances start to form as the pseudocritical temperature is approached from above. Further calculations of transport coefficients reveal a small viscosity and heavy-quark diffusion coefficient.

  20. Non-perturbative Approach to Equation of State and Collective Modes of the QGP

    Directory of Open Access Journals (Sweden)

    Y.F. Liu Shuai

    2018-01-01

    Full Text Available We discuss a non-perturbative T-matrix approach to investigate the microscopic structure of the quark-gluon plasma (QGP. Utilizing an effective Hamiltonian which includes both light- and heavy-parton degrees of freedoms. The basic two-body interaction includes color-Coulomb and confining contributions in all available color channels, and is constrained by lattice-QCD data for the heavy-quark free energy. The in-medium T-matrices and parton spectral functions are computed selfconsistently with full account of off-shell properties encoded in large scattering widths. We apply the T-matrices to calculate the equation of state (EoS for the QGP, including a ladder resummation of the Luttinger-Ward functional using a matrix-log technique to account for the dynamical formation of bound states. It turns out that the latter become the dominant degrees of freedom in the EoS at low QGP temperatures indicating a transition from parton to hadron degrees of freedom. The calculated spectral properties of one- and two-body states confirm this picture, where large parton scattering rates dissolve the parton quasiparticle structures while broad resonances start to form as the pseudocritical temperature is approached from above. Further calculations of transport coefficients reveal a small viscosity and heavy-quark diffusion coefficient.

  1. The relationship between occupational culture dimensions and reward preferences: A structural equation modelling approach

    Directory of Open Access Journals (Sweden)

    Mark Bussin

    2016-02-01

    Full Text Available Orientation: Reward has links to employee attraction and retention and as such has a role to play in managing talent. However, despite a range of research, there is still lack of clarity on employee preferences relating to reward.Research purpose: The purpose of the research was to recommend and appraise a theoretical model of the relationship between occupational culture dimensions and reward preferences of specific occupational groups in the South African context.Motivation for the study: The motivation for this study was to address the gap that exists with reward preferences and occupational culture with a view to identifying and gaining insight into individual preferences.Research design, approach and method: A structural equation modelling approach was adopted in exploring the proposed relationships. A South African Information, Communication, and Technology (ICT organisation served as the population, and a web-based survey assisted in gathering study data (n = 1362.Main findings: The findings provided support for the relationship between occupational culture dimensions and certain reward preferences. In particular, statistically significant results were obtained with the inclusion of the Environment, Team, and Time occupational culture dimensions as independent variables.Practical implications and value-add: The study provides workable input to organisations and reward professionals in the design of their reward strategies and programmes.Keywords: compensation; employee preferences; occupational culture; remuneration; reward preferences

  2. Modelling of electric characteristics of 150-watt peak solar panel using Boltzmann sigmoid function under various temperature and irradiance

    Science.gov (United States)

    Sapteka, A. A. N. G.; Narottama, A. A. N. M.; Winarta, A.; Amerta Yasa, K.; Priambodo, P. S.; Putra, N.

    2018-01-01

    Solar energy utilized with solar panel is a renewable energy that needs to be studied further. The site nearest to the equator, it is not surprising, receives the highest solar energy. In this paper, a modelling of electrical characteristics of 150-Watt peak solar panels using Boltzmann sigmoid function under various temperature and irradiance is reported. Current, voltage, temperature and irradiance data in Denpasar, a city located at just south of equator, was collected. Solar power meter is used to measure irradiance level, meanwhile digital thermometer is used to measure temperature of front and back panels. Short circuit current and open circuit voltage data was also collected at different temperature and irradiance level. Statistically, the electrical characteristics of 150-Watt peak solar panel can be modelled using Boltzmann sigmoid function with good fit. Therefore, it can be concluded that Boltzmann sigmoid function might be used to determine current and voltage characteristics of 150-Watt peak solar panel under various temperature and irradiance.

  3. Fast lattice Boltzmann solver for relativistic hydrodynamics.

    Science.gov (United States)

    Mendoza, M; Boghosian, B M; Herrmann, H J; Succi, S

    2010-07-02

    A lattice Boltzmann formulation for relativistic fluids is presented and numerically validated through quantitative comparison with recent hydrodynamic simulations of relativistic fluids. In order to illustrate its capability to handle complex geometries, the scheme is also applied to the case of a three-dimensional relativistic shock wave, generated by a supernova explosion, impacting on a massive interstellar cloud. This formulation opens up the possibility of exporting the proven advantages of lattice Boltzmann methods, namely, computational efficiency and easy handling of complex geometries, to the context of (mildly) relativistic fluid dynamics at large, from quark-gluon plasmas up to supernovae with relativistic outflows.

  4. Three-dimensional Cascaded Lattice Boltzmann Model for Thermal Convective Flows

    Science.gov (United States)

    Hajabdollahi, Farzaneh; Premnath, Kannan

    2017-11-01

    Fluid motion driven by thermal effects, such as due to buoyancy in differentially heated enclosures arise in several natural and industrial settings, whose understanding can be achieved via numerical simulations. Lattice Boltzmann (LB) methods are efficient kinetic computational approaches for coupled flow physics problems. In this study, we develop three-dimensional (3D) LB models based on central moments and multiple relaxation times for D3Q7 and D3Q15 lattices to solve the energy transport equations in a double distribution function approach. Their collision operators lead to a cascaded structure involving higher order terms resulting in improved stability. This is coupled to a central moment based LB flow solver with source terms. The new 3D cascaded LB models for the convective flows are first validated for natural convection of air driven thermally on two vertically opposite faces in a cubic cavity at different Rayleigh numbers against prior numerical and experimental data, which show good quantitative agreement. Then, the detailed structure of the 3D flow and thermal fields and the heat transfer rates at different Rayleigh numbers are analyzed and interpreted.

  5. A Stochastic Sharpening Method for the Propagation of Phase Boundaries in Multiphase Lattice Boltzmann Simulations

    KAUST Repository

    Reis, T.

    2010-09-06

    Existing lattice Boltzmann models that have been designed to recover a macroscopic description of immiscible liquids are only able to make predictions that are quantitatively correct when the interface that exists between the fluids is smeared over several nodal points. Attempts to minimise the thickness of this interface generally leads to a phenomenon known as lattice pinning, the precise cause of which is not well understood. This spurious behaviour is remarkably similar to that associated with the numerical simulation of hyperbolic partial differential equations coupled with a stiff source term. Inspired by the seminal work in this field, we derive a lattice Boltzmann implementation of a model equation used to investigate such peculiarities. This implementation is extended to different spacial discretisations in one and two dimensions. We shown that the inclusion of a quasi-random threshold dramatically delays the onset of pinning and facetting.

  6. Numerical study of convection in phase change material based on Lattice-Boltzmann method

    Science.gov (United States)

    Zhang, Tianyu; Feng, Ying; Zhao, Zhening

    2017-06-01

    In this paper, the lattice Boltzmann method was studied for the phase change process with convective heat transfer in phase change energy storage materials. Firstly, the macroscopic heat transfer equations for the phase change process with convective heat transfer was given, by which we built the lattice Boltzmann equations for solving the problems. In the model, the speed model of D2Q9 was selected, and the boundary conditions including of non-equilibrium extrapolation and bounce back scheme were selected. Then, the effects of different Rayleigh number on the temperature field and velocity field were analyzed. Further research in a square cavity heat transfer processes with high temperature object and low temperature object were studied, in order to observe the effects of different temperature objects in the phase change process using the changes of phase field.

  7. An Algorithm for the Numerical Solution of the Pseudo Compressible Navier-stokes Equations Based on the Experimenting Fields Approach

    KAUST Repository

    Salama, Amgad

    2015-06-01

    In this work, the experimenting fields approach is applied to the numerical solution of the Navier-Stokes equation for incompressible viscous flow. In this work, the solution is sought for both the pressure and velocity fields in the same time. Apparently, the correct velocity and pressure fields satisfy the governing equations and the boundary conditions. In this technique a set of predefined fields are introduced to the governing equations and the residues are calculated. The flow according to these fields will not satisfy the governing equations and the boundary conditions. However, the residues are used to construct the matrix of coefficients. Although, in this setup it seems trivial constructing the global matrix of coefficients, in other setups it can be quite involved. This technique separates the solver routine from the physics routines and therefore makes easy the coding and debugging procedures. We compare with few examples that demonstrate the capability of this technique.

  8. A 'User-Friendly' Approach to the Dynamical Equations of Non-Holonomic Systems

    Directory of Open Access Journals (Sweden)

    Sergio Benenti

    2007-03-01

    Full Text Available Two effective methods for writing the dynamical equations for non-holonomic systems are illustrated. They are based on the two types of representation of the constraints: by parametric equations or by implicit equations. They can be applied to linear as well as to non-linear constraints. Only the basic notions of vector calculus on Euclidean 3-space and on tangent bundles are needed. Elementary examples are illustrated.

  9. Method of Moments of Coupled-Cluster Equations: Externally Corrected Approaches Employing Configuration Interaction Wave Functions

    Directory of Open Access Journals (Sweden)

    Ian S.O. Pimienta

    2002-05-01

    Full Text Available Abstract: A new approach to the many-electron correlation problem, termed the method of moments of coupled-cluster equations (MMCC, is further developed and tested. The main idea of the MMCC theory is that of the noniterative energy corrections which, when added to the energies obtained in the standard coupled-cluster calculations, recover the exact (full configuration interaction energy. The MMCC approximations require that a guess is provided for the electronic wave function of interest. The idea of using simple estimates of the wave function, provided by the inexpensive configuration interaction (CI methods employing small sets of active orbitals to define higher–than–double excitations, is tested in this work. The CI-corrected MMCC methods are used to study the single bond breaking in HF and the simultaneous breaking of both O–H bonds in H2O.

  10. Testing the Circular Structure of Human Values: A Meta-Analytical Structural Equation Modelling Approach

    Directory of Open Access Journals (Sweden)

    Holger Steinmetz

    2012-04-01

    Full Text Available Schwartz' theory of human values has found widespread interest in the social sciences. A central part of the theory is that the 10 proposed basic values (i.e., achievement, power, self-direction, hedonism, stimulation, benevolence, universalism, conformity, security, and tradition are arranged in a circular structure. The present study applies a meta-analytical structural equation modelling approach to test the circular structure. The model tested was the quasi-circumplex model, which is considered the most appropriate representation of the circular structure. Moreover, the study explores how far the circular structure varies with the used samples and methodological characteristics of the studies. The meta-analysis comprised 318 matrices with the correlations among the 10 values gathered from 88 studies and the European Social Survey (overall n = 251,239. To reduce heterogeneity across the matrices, cluster analysis was used to sort the matrices into eight clusters with a similar correlation profile and tested the circular structure in each cluster. The results showed that three clusters demonstrated a good fit with the data and an adequate match to the theoretically proposed structure. The clusters' cultural and methodological profiles indicate potential moderators of the circular structure which should be considered in future research.

  11. Delay Mitigation in the Malaysian Housing Industry: A Structural Equation Modelling Approach

    Directory of Open Access Journals (Sweden)

    Chang Saar Chai

    2015-01-01

    Full Text Available The housing industry is one of the major contributors to the economy in Malaysia due to the constantly high housing demand. The housing demand has increased due to the rapid growth in population and urbanisation in the country. One of the major challenges in the housing industry is the late delivery of housing supply, which in some instances leads to sick and abandoned housing projects. Despite being extensively investigated, th in a negative impact, there is a strong need to review the housing delay mitigation measures practised in Malaysia. This paper aims to evaluate the current delay mitigation measures and its main objective is to explore the relationship between the mitigation measures and delay in housing via a Structural Equation Modelling (SEM approach. A questionnaire survey through an online survey tool was conducted across 13 states and three Federal Territories in Malaysia. The target respondents are the local authorities, developers, consultants (principal submitting persons and contractors. The findings show that 17 predictive, preventive, organisational or corrective. This paper demonstrates that preventive measures are the most influential mitigation measures for housing delivery delay.

  12. The 1D Richards' equation in two layered soils: a Filippov approach to treat discontinuities

    Science.gov (United States)

    Berardi, Marco; Difonzo, Fabio; Vurro, Michele; Lopez, Luciano

    2018-05-01

    The infiltration process into the soil is generally modeled by the Richards' partial differential equation (PDE). In this paper a new approach for modeling the infiltration process through the interface of two different soils is proposed, where the interface is seen as a discontinuity surface defined by suitable state variables. Thus, the original 1D Richards' PDE, enriched by a particular choice of the boundary conditions, is first approximated by means of a time semidiscretization, that is by means of the transversal method of lines (TMOL). In such a way a sequence of discontinuous initial value problems, described by a sequence of second order differential systems in the space variable, is derived. Then, Filippov theory on discontinuous dynamical systems may be applied in order to study the relevant dynamics of the problem. The numerical integration of the semidiscretized differential system will be performed by using a one-step method, which employs an event driven procedure to locate the discontinuity surface and to adequately change the vector field.

  13. Validation of an employee satisfaction model: A structural equation model approach

    Directory of Open Access Journals (Sweden)

    Ophillia Ledimo

    2015-01-01

    Full Text Available The purpose of this study was to validate an employee satisfaction model and to determine the relationships between the different dimensions of the concept, using the structural equation modelling approach (SEM. A cross-sectional quantitative survey design was used to collect data from a random sample of (n=759 permanent employees of a parastatal organisation. Data was collected using the Employee Satisfaction Survey (ESS to measure employee satisfaction dimensions. Following the steps of SEM analysis, the three domains and latent variables of employee satisfaction were specified as organisational strategy, policies and procedures, and outcomes. Confirmatory factor analysis of the latent variables was conducted, and the path coefficients of the latent variables of the employee satisfaction model indicated a satisfactory fit for all these variables. The goodness-of-fit measure of the model indicated both absolute and incremental goodness-of-fit; confirming the relationships between the latent and manifest variables. It also indicated that the latent variables, organisational strategy, policies and procedures, and outcomes, are the main indicators of employee satisfaction. This study adds to the knowledge base on employee satisfaction and makes recommendations for future research.

  14. Quantum Heat Engine and Negative Boltzmann Temperature

    Science.gov (United States)

    Xi, Jing-Yi; Quan, Hai-Tao

    2017-09-01

    To clarify the ambiguity on negative Boltzmann temperature in literature, we study the Carnot and the Otto cycle with one of the heat reservoirs at the negative Boltzmann temperature based on a canonical ensemble description. The work extraction, entropy production and the efficiency of these cycles are explored. Conditions for constructing and properties of these thermodynamic cycles are elucidated. We find that the apparent “violation” of the second law of thermodynamics in these cycles are due to the fact that the traditional definition of thermodynamic efficiency is inappropriate in this situation. When properly understanding the efficiency and the adiabatic processes, in which the system crosses over “absolute ZERO” in a limit sense, the Carnot cycle with one of the heat reservoirs at a negative Boltzmann temperature can be understood straightforwardly, and it contradicts neither the second nor the third law of thermodynamics. Hence, negative Boltzmann temperature is a consistent concept in thermodynamics. We use a two-level system and an Ising spin system to illustrate our central results. Support from the National Science Foundation of China under Grants Nos. 11375012, 11534002, and The Recruitment Program of Global Youth Experts of China

  15. Quantum Heat Engine and Negative Boltzmann Temperature

    International Nuclear Information System (INIS)

    Xi Jing-Yi; Quan Hai-Tao

    2017-01-01

    To clarify the ambiguity on negative Boltzmann temperature in literature, we study the Carnot and the Otto cycle with one of the heat reservoirs at the negative Boltzmann temperature based on a canonical ensemble description. The work extraction, entropy production and the efficiency of these cycles are explored. Conditions for constructing and properties of these thermodynamic cycles are elucidated. We find that the apparent “violation” of the second law of thermodynamics in these cycles are due to the fact that the traditional definition of thermodynamic efficiency is inappropriate in this situation. When properly understanding the efficiency and the adiabatic processes, in which the system crosses over “absolute ZERO” in a limit sense, the Carnot cycle with one of the heat reservoirs at a negative Boltzmann temperature can be understood straightforwardly, and it contradicts neither the second nor the third law of thermodynamics. Hence, negative Boltzmann temperature is a consistent concept in thermodynamics. We use a two-level system and an Ising spin system to illustrate our central results. (paper)

  16. Exploring a Multiresolution Modeling Approach within the Shallow-Water Equations

    Energy Technology Data Exchange (ETDEWEB)

    Ringler, Todd D.; Jacobsen, Doug; Gunzburger, Max; Ju, Lili; Duda, Michael; Skamarock, William

    2011-11-01

    The ability to solve the global shallow-water equations with a conforming, variable-resolution mesh is evaluated using standard shallow-water test cases. While the long-term motivation for this study is the creation of a global climate modeling framework capable of resolving different spatial and temporal scales in different regions, the process begins with an analysis of the shallow-water system in order to better understand the strengths and weaknesses of the approach developed herein. The multiresolution meshes are spherical centroidal Voronoi tessellations where a single, user-supplied density function determines the region(s) of fine- and coarsemesh resolution. The shallow-water system is explored with a suite of meshes ranging from quasi-uniform resolution meshes, where the grid spacing is globally uniform, to highly variable resolution meshes, where the grid spacing varies by a factor of 16 between the fine and coarse regions. The potential vorticity is found to be conserved to within machine precision and the total available energy is conserved to within a time-truncation error. This result holds for the full suite of meshes, ranging from quasi-uniform resolution and highly variable resolution meshes. Based on shallow-water test cases 2 and 5, the primary conclusion of this study is that solution error is controlled primarily by the grid resolution in the coarsest part of the model domain. This conclusion is consistent with results obtained by others.When these variable-resolution meshes are used for the simulation of an unstable zonal jet, the core features of the growing instability are found to be largely unchanged as the variation in the mesh resolution increases. The main differences between the simulations occur outside the region of mesh refinement and these differences are attributed to the additional truncation error that accompanies increases in grid spacing. Overall, the results demonstrate support for this approach as a path toward

  17. A Nonlinear Evolution Equation in an Ordered Space, Arising from Kinetic Theory

    CERN Document Server

    Grünfeld, C P

    2005-01-01

    We investigate the Cauchy problem for a nonlinear evolution equation, formulated in an abstract Lebesgue space, as a generalization of various Boltzmann kinetic models. Our main result provides sufficient conditions for the existence, uniqueness, and positivity of global in time solutions. The proof is based on ideas behind a well-known monotonicity method, originally developed within the existence theory of the classical Boltzmann equation in $L^1$. Our application examples concern Smoluchowski's coagulation equation, a Povzner-like equation with dissipative collisions, and a Boltzmann model with chemical reactions.

  18. Dynamically adaptive Lattice Boltzmann simulation of shallow water flows with the Peano framework

    KAUST Repository

    Neumann, Philipp

    2015-09-01

    © 2014 Elsevier Inc. All rights reserved. We present a dynamically adaptive Lattice Boltzmann (LB) implementation for solving the shallow water equations (SWEs). Our implementation extends an existing LB component of the Peano framework. We revise the modular design with respect to the incorporation of new simulation aspects and LB models. The basic SWE-LB implementation is validated in different breaking dam scenarios. We further provide a numerical study on stability of the MRT collision operator used in our simulations.

  19. A new approach to model CW CO2 laser using rate equations

    Indian Academy of Sciences (India)

    2016-11-11

    Nov 11, 2016 ... Theoretical modelling; diffusion-cooled CW CO2 laser; rate equation model; simultaneous linear equations; matrix solution. PACS Nos 42.55. ... In this paper, we extend the application of this model to a CW CO2 laser. However, we should ... mines the output power. Our results agree with the experimentally ...

  20. The fractional coupled KdV equations: Exact solutions and white noise functional approach

    International Nuclear Information System (INIS)

    Ghany, Hossam A.; El Bab, A. S. Okb; Zabel, A. M.; Hyder, Abd-Allah

    2013-01-01

    Variable coefficients and Wick-type stochastic fractional coupled KdV equations are investigated. By using the modified fractional sub-equation method, Hermite transform, and white noise theory the exact travelling wave solutions and white noise functional solutions are obtained, including the generalized exponential, hyperbolic, and trigonometric types. (general)

  1. Dynamics of open quantum spin systems : An assessment of the quantum master equation approach

    NARCIS (Netherlands)

    Zhao, P.; De Raedt, H.; Miyashita, S.; Jin, F.; Michielsen, K.

    2016-01-01

    Data of the numerical solution of the time-dependent Schrodinger equation of a system containing one spin-1/2 particle interacting with a bath of up to 32 spin-1/2 particles is used to construct a Markovian quantum master equation describing the dynamics of the system spin. The procedure of

  2. A Fixed Point Approach to the Stability of Quadratic Functional Equation with Involution

    Directory of Open Access Journals (Sweden)

    Lee Zoon-Hee

    2008-01-01

    Full Text Available Abstract Cădariu and Radu applied the fixed point method to the investigation of Cauchy and Jensen functional equations. In this paper, we will adopt the idea of Cădariu and Radu to prove the Hyers-Ulam-Rassias stability of the quadratic functional equation with involution.

  3. A Fixed Point Approach to the Stability of Quadratic Functional Equation with Involution

    Directory of Open Access Journals (Sweden)

    Zoon-Hee Lee

    2008-06-01

    Full Text Available Cădariu and Radu applied the fixed point method to the investigation of Cauchy and Jensen functional equations. In this paper, we will adopt the idea of Cădariu and Radu to prove the Hyers-Ulam-Rassias stability of the quadratic functional equation with involution.

  4. New approach to solve fully fuzzy system of linear equations using ...

    Indian Academy of Sciences (India)

    This paper proposes two new methods to solve fully fuzzy system of linear equations. The fuzzy system has been converted to a crisp system of linear equations by using single and double parametric form of fuzzy numbers to obtain the non-negative solution. Double parametric form of fuzzy numbers is defined and applied ...

  5. An efficient approach based on radial basis functions for solving stochastic fractional differential equations

    Directory of Open Access Journals (Sweden)

    N. Ahmadi

    2017-02-01

    Full Text Available Abstract In this paper, we present a collocation method based on Gaussian Radial Basis Functions (RBFs for approximating the solution of stochastic fractional differential equations (SFDEs. In this equation the fractional derivative is considered in the Caputo sense. Also we prove the existence and uniqueness of the presented method. Numerical examples confirm the proficiency of the method.

  6. New approach to solve fully fuzzy system of linear equations using ...

    Indian Academy of Sciences (India)

    Abstract. This paper proposes two new methods to solve fully fuzzy system of linear equations. The fuzzy system has been converted to a crisp system of linear equations by using single and double parametric form of fuzzy numbers to obtain the non-negative solution. Double parametric form of fuzzy numbers is defined and.

  7. Detection of Hypertension Retinopathy Using Deep Learning and Boltzmann Machines

    Science.gov (United States)

    Triwijoyo, B. K.; Pradipto, Y. D.

    2017-01-01

    hypertensive retinopathy (HR) in the retina of the eye is disturbance caused by high blood pressure disease, where there is a systemic change of arterial in the blood vessels of the retina. Most heart attacks occur in patients caused by high blood pressure symptoms of undiagnosed. Hypertensive retinopathy Symptoms such as arteriolar narrowing, retinal haemorrhage and cotton wool spots. Based on this reasons, the early diagnosis of the symptoms of hypertensive retinopathy is very urgent to aim the prevention and treatment more accurate. This research aims to develop a system for early detection of hypertension retinopathy stage. The proposed method is to determine the combined features artery and vein diameter ratio (AVR) as well as changes position with Optic Disk (OD) in retinal images to review the classification of hypertensive retinopathy using Deep Neural Networks (DNN) and Boltzmann Machines approach. We choose this approach of because based on previous research DNN models were more accurate in the image pattern recognition, whereas Boltzmann machines selected because It requires speedy iteration in the process of learning neural network. The expected results from this research are designed a prototype system early detection of hypertensive retinopathy stage and analysed the effectiveness and accuracy of the proposed methods.

  8. A generalized Poisson and Poisson-Boltzmann solver for electrostatic environments

    Energy Technology Data Exchange (ETDEWEB)

    Fisicaro, G., E-mail: giuseppe.fisicaro@unibas.ch; Goedecker, S. [Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel (Switzerland); Genovese, L. [University of Grenoble Alpes, CEA, INAC-SP2M, L-Sim, F-38000 Grenoble (France); Andreussi, O. [Institute of Computational Science, Università della Svizzera Italiana, Via Giuseppe Buffi 13, CH-6904 Lugano (Switzerland); Theory and Simulations of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, Station 12, CH-1015 Lausanne (Switzerland); Marzari, N. [Theory and Simulations of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, Station 12, CH-1015 Lausanne (Switzerland)

    2016-01-07

    The computational study of chemical reactions in complex, wet environments is critical for applications in many fields. It is often essential to study chemical reactions in the presence of applied electrochemical potentials, taking into account the non-trivial electrostatic screening coming from the solvent and the electrolytes. As a consequence, the electrostatic potential has to be found by solving the generalized Poisson and the Poisson-Boltzmann equations for neutral and ionic solutions, respectively. In the present work, solvers for both problems have been developed. A preconditioned conjugate gradient method has been implemented for the solution of the generalized Poisson equation and the linear regime of the Poisson-Boltzmann, allowing to solve iteratively the minimization problem with some ten iterations of the ordinary Poisson equation solver. In addition, a self-consistent procedure enables us to solve the non-linear Poisson-Boltzmann problem. Both solvers exhibit very high accuracy and parallel efficiency and allow for the treatment of periodic, free, and slab boundary conditions. The solver has been integrated into the BigDFT and Quantum-ESPRESSO electronic-structure packages and will be released as an independent program, suitable for integration in other codes.

  9. A generalized Poisson and Poisson-Boltzmann solver for electrostatic environments

    International Nuclear Information System (INIS)

    Fisicaro, G.; Goedecker, S.; Genovese, L.; Andreussi, O.; Marzari, N.

    2016-01-01

    The computational study of chemical reactions in complex, wet environments is critical for applications in many fields. It is often essential to study chemical reactions in the presence of applied electrochemical potentials, taking into account the non-trivial electrostatic screening coming from the solvent and the electrolytes. As a consequence, the electrostatic potential has to be found by solving the generalized Poisson and the Poisson-Boltzmann equations for neutral and ionic solutions, respectively. In the present work, solvers for both problems have been developed. A preconditioned conjugate gradient method has been implemented for the solution of the generalized Poisson equation and the linear regime of the Poisson-Boltzmann, allowing to solve iteratively the minimization problem with some ten iterations of the ordinary Poisson equation solver. In addition, a self-consistent procedure enables us to solve the non-linear Poisson-Boltzmann problem. Both solvers exhibit very high accuracy and parallel efficiency and allow for the treatment of periodic, free, and slab boundary conditions. The solver has been integrated into the BigDFT and Quantum-ESPRESSO electronic-structure packages and will be released as an independent program, suitable for integration in other codes

  10. Block-pulse functions approach to numerical solution of Abel’s integral equation

    Directory of Open Access Journals (Sweden)

    Monireh Nosrati Sahlan

    2015-12-01

    Full Text Available This study aims to present a computational method for solving Abel’s integral equation of the second kind. The introduced method is based on the use of Block-pulse functions (BPFs via collocation method. Abel’s integral equations as singular Volterra integral equations are hard and heavy in computation, but because of the properties of BPFs, as is reported in examples, this method is more efficient and more accurate than some other methods for solving this class of integral equations. On the other hand, the benefit of this method is low cost of computing operations. The applied method transforms the singular integral equation into triangular linear algebraic system that can be solved easily. An error analysis is worked out and applications are demonstrated through illustrative examples.

  11. Lattice Boltzmann based multicomponent reactive transport model coupled with geochemical solver for scale simulations

    NARCIS (Netherlands)

    Patel, R.A.; Perko, J.; Jaques, D.; De Schutter, G.; Ye, G.; Van Breugel, K.

    2013-01-01

    A Lattice Boltzmann (LB) based reactive transport model intended to capture reactions and solid phase changes occurring at the pore scale is presented. The proposed approach uses LB method to compute multi component mass transport. The LB multi-component transport model is then coupled with the

  12. Models, Their Application, and Scientific Anticipation: Ludwig Boltzmann's Work as Tacit Knowing

    Science.gov (United States)

    Schmitt, Richard Henry

    2011-01-01

    Ludwig Boltzmann's work in theoretical physics exhibits an approach to the construction of theory that he transmitted to the succeeding generation by example. It involved the construction of clear models, allowed more than one, and was not based solely on the existing facts, with the intent of examining and criticizing the assumptions that made…

  13. A diagrammatic description of the equations of motion, current and noise within the second-order von Neumann approach

    DEFF Research Database (Denmark)

    Karlstrom, O.; Emary, C.; Zedler, P.

    2013-01-01

    We investigate the second-order von Neumann approach from a diagrammatic point of view and demonstrate its equivalence with the resonant tunneling approximation. The investigation of higher order diagrams shows that the method correctly reproduces the equation of motion for the single...

  14. Neutron transport equation - indications on homogenization and neutron diffusion

    International Nuclear Information System (INIS)

    Argaud, J.P.

    1992-06-01

    In PWR nuclear reactor, the practical study of the neutrons in the core uses diffusion equation to describe the problem. On the other hand, the most correct method to describe these neutrons is to use the Boltzmann equation, or neutron transport equation. In this paper, we give some theoretical indications to obtain a diffusion equation from the general transport equation, with some simplifying hypothesis. The work is organised as follows: (a) the most general formulations of the transport equation are presented: integro-differential equation and integral equation; (b) the theoretical approximation of this Boltzmann equation by a diffusion equation is introduced, by the way of asymptotic developments; (c) practical homogenization methods of transport equation is then presented. In particular, the relationships with some general and useful methods in neutronic are shown, and some homogenization methods in energy and space are indicated. A lot of other points of view or complements are detailed in the text or the remarks

  15. Soliton solutions of the resonant nonlinear Schrödinger's equation in optical fibers with time-dependent coefficients by simplest equation approach

    Science.gov (United States)

    Eslami, M.; Mirzazadeh, M.; Biswas, Anjan

    2013-11-01

    In this paper, the resonant nonlinear Schrödinger's equation is studied with four forms of nonlinearity. This equation is also considered with time-dependent coefficients. The simplest equation method is applied to solve the governing equations and then exact 1-soliton solutions are obtained. It is shown that this method provides us with a powerful mathematical tool for solving nonlinear evolution equations with time-dependent coefficients in mathematical physics.

  16. Neurocognition, insight and medication nonadherence in schizophrenia: a structural equation modeling approach.

    Directory of Open Access Journals (Sweden)

    Laurent Boyer

    Full Text Available OBJECTIVE: The aim of this study was to examine the complex relationships among neurocognition, insight and nonadherence in patients with schizophrenia. METHODS: DESIGN: Cross-sectional study. INCLUSION CRITERIA: Diagnosis of schizophrenia according to the DSM-IV-TR criteria. DATA COLLECTION: Neurocognition was assessed using a global approach that addressed memory, attention, and executive functions; insight was analyzed using the multidimensional 'Scale to assess Unawareness of Mental Disorder;' and nonadherence was measured using the multidimensional 'Medication Adherence Rating Scale.' ANALYSIS: Structural equation modeling (SEM was applied to examine the non-straightforward relationships among the following latent variables: neurocognition, 'awareness of positive symptoms' and 'negative symptoms', 'awareness of mental disorder' and nonadherence. RESULTS: One hundred and sixty-nine patients were enrolled. The final testing model showed good fit, with normed χ(2 = 1.67, RMSEA = 0.063, CFI = 0.94, and SRMR = 0.092. The SEM revealed significant associations between (1 neurocognition and 'awareness of symptoms,' (2 'awareness of symptoms' and 'awareness of mental disorder' and (3 'awareness of mental disorder' and nonadherence, mainly in the 'attitude toward taking medication' dimension. In contrast, there were no significant links between neurocognition and nonadherence, neurocognition and 'awareness of mental disorder,' and 'awareness of symptoms' and nonadherence. CONCLUSIONS: Our findings support the hypothesis that neurocognition influences 'awareness of symptoms,' which must be integrated into a higher level of insight (i.e., the 'awareness of mental disorder' to have an impact on nonadherence. These findings have important implications for the development of effective strategies to enhance medication adherence.

  17. Corner-transport-upwind lattice Boltzmann model for bubble cavitation

    Science.gov (United States)

    Sofonea, V.; Biciuşcǎ, T.; Busuioc, S.; Ambruş, Victor E.; Gonnella, G.; Lamura, A.

    2018-02-01

    Aiming to study the bubble cavitation problem in quiescent and sheared liquids, a third-order isothermal lattice Boltzmann model that describes a two-dimensional (2D) fluid obeying the van der Waals equation of state, is introduced. The evolution equations for the distribution functions in this off-lattice model with 16 velocities are solved using the corner-transport-upwind (CTU) numerical scheme on large square lattices (up to 6144 ×6144 nodes). The numerical viscosity and the regularization of the model are discussed for first- and second-order CTU schemes finding that the latter choice allows to obtain a very accurate phase diagram of a nonideal fluid. In a quiescent liquid, the present model allows us to recover the solution of the 2D Rayleigh-Plesset equation for a growing vapor bubble. In a sheared liquid, we investigated the evolution of the total bubble area, the bubble deformation, and the bubble tilt angle, for various values of the shear rate. A linear relation between the dimensionless deformation coefficient D and the capillary number Ca is found at small Ca but with a different factor than in equilibrium liquids. A nonlinear regime is observed for Ca≳0.2 .

  18. An immersed boundary-lattice Boltzmann model for biofilm growth in porous media

    Science.gov (United States)

    Benioug, M.; Golfier, F.; Oltéan, C.; Buès, M. A.; Bahar, T.; Cuny, J.

    2017-09-01

    In this paper, we present a two-dimensional pore-scale numerical model to investigate the main mechanisms governing biofilm growth in porous media. The fluid flow and solute transport equations are coupled with a biofilm evolution model. Fluid flow is simulated with an immersed boundary-lattice Boltzmann model while solute transport is described with a volume-of-fluid-type approach. A cellular automaton algorithm combined with immersed boundary methods was developed to describe the spreading and distribution of biomass. Bacterial attachment and detachment mechanisms are also taken into account. The capability of this model to describe correctly the couplings involved between fluid circulation, nutrient transport and bacterial growth is tested under different hydrostatic and hydrodynamic conditions (i) on a flat medium and (ii) for a complex porous medium. For the second case, different regimes of biofilm growth are identified and are found to be related to the dimensionless parameters of the model, Damköhler and Péclet numbers and dimensionless shear stress. Finally, the impact of biofilm growth on the macroscopic properties of the porous medium is investigated and we discuss the unicity of the relationships between hydraulic conductivity and biofilm volume fraction.

  19. Simulation of Thermal Flow Problems via a Hybrid Immersed Boundary-Lattice Boltzmann Method

    Directory of Open Access Journals (Sweden)

    J. Wu

    2012-01-01

    Full Text Available A hybrid immersed boundary-lattice Boltzmann method (IB-LBM is presented in this work to simulate the thermal flow problems. In current approach, the flow field is resolved by using our recently developed boundary condition-enforced IB-LBM (Wu and Shu, (2009. The nonslip boundary condition on the solid boundary is enforced in simulation. At the same time, to capture the temperature development, the conventional energy equation is resolved. To model the effect of immersed boundary on temperature field, the heat source term is introduced. Different from previous studies, the heat source term is set as unknown rather than predetermined. Inspired by the idea in (Wu and Shu, (2009, the unknown is calculated in such a way that the temperature at the boundary interpolated from the corrected temperature field accurately satisfies the thermal boundary condition. In addition, based on the resolved temperature correction, an efficient way to compute the local and average Nusselt numbers is also proposed in this work. As compared with traditional implementation, no approximation for temperature gradients is required. To validate the present method, the numerical simulations of forced convection are carried out. The obtained results show good agreement with data in the literature.

  20. A lattice Boltzmann model for substrates with regularly structured surface roughness

    Science.gov (United States)

    Yagub, A.; Farhat, H.; Kondaraju, S.; Singh, T.

    2015-11-01

    Superhydrophobic surface characteristics are important in many industrial applications, ranging from the textile to the military. It was observed that surfaces fabricated with nano/micro roughness can manipulate the droplet contact angle, thus providing an opportunity to control the droplet wetting characteristics. The Shan and Chen (SC) lattice Boltzmann model (LBM) is a good numerical tool, which holds strong potentials to qualify for simulating droplets wettability. This is due to its realistic nature of droplet contact angle (CA) prediction on flat smooth surfaces. But SC-LBM was not able to replicate the CA on rough surfaces because it lacks a real representation of the physics at work under these conditions. By using a correction factor to influence the interfacial tension within the asperities, the physical forces acting on the droplet at its contact lines were mimicked. This approach allowed the model to replicate some experimentally confirmed Wenzel and Cassie wetting cases. Regular roughness structures with different spacing were used to validate the study using the classical Wenzel and Cassie equations. The present work highlights the strength and weakness of the SC model and attempts to qualitatively conform it to the fundamental physics, which causes a change in the droplet apparent contact angle, when placed on nano/micro structured surfaces.

  1. Evolution equation for the shape function in the parton model approach to inclusive B decays

    International Nuclear Information System (INIS)

    Baek, Seungwon; Lee, Kangyoung

    2005-01-01

    We derive an evolution equation for the shape function of the b quark in an analogous way to the Altarelli-Parisi equation by incorporating the perturbative QCD correction to the inclusive semileptonic decays of the B meson. Since the parton picture works well for inclusive B decays due to the heavy mass of the b quark, the scaling feature manifests and the decay rate may be expressed by a single structure function describing the light-cone distribution of the b quark apart from the kinematic factor. The evolution equation introduces a q 2 dependence of the shape function and violates the scaling properties. We solve the evolution equation and discuss the phenomenological implication.

  2. S-matrix approach to the equation of state of dilute nuclear matter

    Indian Academy of Sciences (India)

    2014-04-01

    matrix framework, a method is presented to calculate the equation of state of dilute warm nuclear matter. The result is a model-independent virial series for the pressure and density that systematically includes contributions from ...

  3. Lie symmetry based-analytical and numerical approach for modified Burgers-KdV equation

    Science.gov (United States)

    Kumar, Vikas; Kaur, Lakhveer; Kumar, Ajay; Koksal, Mehmet Emir

    2018-03-01

    In this work, the variable-coefficient modified Burgers-KdV equation, which arises in modeling various physical phenomena, is studied for exact and numerical solution based on Lie symmetry. The infinitesimals of the group of transformations which leaves this equation invariant are furnished along with the admissible forms of the variable coefficients. The optimal systems of one-dimensional subalgebras of the Lie symmetry algebras are determined with the adjoint action of the symmetry group. These are then used to establish new power series solution and exact solutions of variable-coefficient modified Burgers-KdV equation. Further, RK4 (e.g. Fourth Order Runge Kutta) method is applied to the reduced ODE for constructing numerical solutions of the modified Burger-KdV equation.

  4. On Direct Transformation Approach to Asymptotical Analytical Solutions of Perturbed Partial Differential Equation

    International Nuclear Information System (INIS)

    Liu Hongzhun; Pan Zuliang; Li Peng

    2006-01-01

    In this article, we will derive an equality, where the Taylor series expansion around ε = 0 for any asymptotical analytical solution of the perturbed partial differential equation (PDE) with perturbing parameter ε must be admitted. By making use of the equality, we may obtain a transformation, which directly map the analytical solutions of a given unperturbed PDE to the asymptotical analytical solutions of the corresponding perturbed one. The notion of Lie-Baecklund symmetries is introduced in order to obtain more transformations. Hence, we can directly create more transformations in virtue of known Lie-Baecklund symmetries and recursion operators of corresponding unperturbed equation. The perturbed Burgers equation and the perturbed Korteweg-de Vries (KdV) equation are used as examples.

  5. A Large Deviation, Hamilton-Jacobi Equation Approach to a Statistical Theory for Turbulence

    Science.gov (United States)

    2012-09-03

    and its associated compressible Euler equations, Comptes Rendus Mathematique , (09 2011): 973. doi: 10.1016/j.crma.2011.08.013 2012/09/03 14:17:15 6...Hamilton-Jacobi PDE is shown to be well-posed. (joint work with T Nguyen, Journal de Mathematique Pures et Appliquees). Future works focusing on large time behavior for such equations is currently under its way. Technology Transfer

  6. Sensitivity of rough differential equations: An approach through the Omega lemma

    Science.gov (United States)

    Coutin, Laure; Lejay, Antoine

    2018-03-01

    The Itô map gives the solution of a Rough Differential Equation, a generalization of an Ordinary Differential Equation driven by an irregular path, when existence and uniqueness hold. By studying how a path is transformed through the vector field which is integrated, we prove that the Itô map is Hölder or Lipschitz continuous with respect to all its parameters. This result unifies and weakens the hypotheses of the regularity results already established in the literature.

  7. Semigroup Approach to Semilinear Partial Functional Differential Equations with Infinite Delay

    Directory of Open Access Journals (Sweden)

    Hassane Bouzahir

    2007-02-01

    Full Text Available We describe a semigroup of abstract semilinear functional differential equations with infinite delay by the use of the Crandall Liggett theorem. We suppose that the linear part is not necessarily densely defined but satisfies the resolvent estimates of the Hille-Yosida theorem. We clarify the properties of the phase space ensuring equivalence between the equation under investigation and the nonlinear semigroup.

  8. Stability of Nonlinear Wave Patterns to the Bipolar Vlasov-Poisson-Boltzmann System

    Science.gov (United States)

    Li, Hailiang; Wang, Yi; Yang, Tong; Zhong, Mingying

    2018-04-01

    The main purpose of the present paper is to investigate the nonlinear stability of viscous shock waves and rarefaction waves for the bipolar Vlasov-Poisson-Boltzmann (VPB) system. To this end, motivated by the micro-macro decomposition to the Boltzmann equation in Liu and Yu (Commun Math Phys 246:133-179, 2004) and Liu et al. (Physica D 188:178-192, 2004), we first set up a new micro-macro decomposition around the local Maxwellian related to the bipolar VPB system and give a unified framework to study the nonlinear stability of the basic wave patterns to the system. Then, as applications of this new decomposition, the time-asymptotic stability of the two typical nonlinear wave patterns, viscous shock waves and rarefaction waves are proved for the 1D bipolar VPB system. More precisely, it is first proved that the linear superposition of two Boltzmann shock profiles in the first and third characteristic fields is nonlinearly stable to the 1D bipolar VPB system up to some suitable shifts without the zero macroscopic mass conditions on the initial perturbations. Then the time-asymptotic stability of the rarefaction wave fan to compressible Euler equations is proved for the 1D bipolar VPB system. These two results are concerned with the nonlinear stability of wave patterns for Boltzmann equation coupled with additional (electric) forces, which together with spectral analysis made in Li et al. (Indiana Univ Math J 65(2):665-725, 2016) sheds light on understanding the complicated dynamic behaviors around the wave patterns in the transportation of charged particles under the binary collisions, mutual interactions, and the effect of the electrostatic potential forces.

  9. Exact non-Markovian master equations for multiple qubit systems: Quantum-trajectory approach

    Science.gov (United States)

    Chen, Yusui; You, J. Q.; Yu, Ting

    2014-11-01

    A wide class of exact master equations for a multiple qubit system can be explicitly constructed by using the corresponding exact non-Markovian quantum-state diffusion equations. These exact master equations arise naturally from the quantum decoherence dynamics of qubit system as a quantum memory coupled to a collective colored noisy source. The exact master equations are also important in optimal quantum control, quantum dissipation, and quantum thermodynamics. In this paper, we show that the exact non-Markovian master equation for a dissipative N -qubit system can be derived explicitly from the statistical average of the corresponding non-Markovian quantum trajectories. We illustrated our general formulation by an explicit construction of a three-qubit system coupled to a non-Markovian bosonic environment. This multiple qubit master equation offers an accurate time evolution of quantum systems in various domains, and paves the way to investigate the memory effect of an open system in a non-Markovian regime without any approximation.

  10. New approach to the solution of large, full matrix equations. [Neumann problem for inviscid incompressble flow past airfoils

    Science.gov (United States)

    Clark, R. W.; James, R. M.

    1981-01-01

    A new approach to the solution of matrix equations resulting from integral equations is presented and applied to the solution of two-dimensional Neumann problems describing the inviscid, incompressible flow past an airfoil. The problem is reformulated in terms of a preselected set of mode functions giving an equivalent matrix equation to be solved for the mode-function expansion coefficients. Because of the inherent smoothness of the original problem, the coefficient problem can be solved approximately without significantly affecting the accuracy of the final solution. Very promising two-dimensional results are obtained and the extension of the method to three-dimensional problems is investigated. On the basis of these results it is shown that the computing time for the matrix solution for a large three-dimensional panel method calculation could be reduced by an order of magnitude compared with that required for a direct solution.

  11. Lattice-Boltzmann simulations of droplet evaporation

    KAUST Repository

    Ledesma-Aguilar, Rodrigo

    2014-09-04

    © the Partner Organisations 2014. We study the utility and validity of lattice-Boltzmann (LB) simulations to explore droplet evaporation driven by a concentration gradient. Using a binary-fluid lattice-Boltzmann algorithm based on Cahn-Hilliard dynamics, we study the evaporation of planar films and 3D sessile droplets from smooth solid surfaces. Our results show that LB simulations accurately reproduce the classical regime of quasi-static dynamics. Beyond this limit, we show that the algorithm can be used to explore regimes where the evaporative and diffusive timescales are not widely separated, and to include the effect of boundaries of prescribed driving concentration. We illustrate the method by considering the evaporation of a droplet from a solid surface that is chemically patterned with hydrophilic and hydrophobic stripes. This journal is

  12. Nonequilibrium thermodynamics of restricted Boltzmann machines

    Science.gov (United States)

    Salazar, Domingos S. P.

    2017-08-01

    In this work, we analyze the nonequilibrium thermodynamics of a class of neural networks known as restricted Boltzmann machines (RBMs) in the context of unsupervised learning. We show how the network is described as a discrete Markov process and how the detailed balance condition and the Maxwell-Boltzmann equilibrium distribution are sufficient conditions for a complete thermodynamics description, including nonequilibrium fluctuation theorems. Numerical simulations in a fully trained RBM are performed and the heat exchange fluctuation theorem is verified with excellent agreement to the theory. We observe how the contrastive divergence functional, mostly used in unsupervised learning of RBMs, is closely related to nonequilibrium thermodynamic quantities. We also use the framework to interpret the estimation of the partition function of RBMs with the annealed importance sampling method from a thermodynamics standpoint. Finally, we argue that unsupervised learning of RBMs is equivalent to a work protocol in a system driven by the laws of thermodynamics in the absence of labeled data.

  13. Hilbert's sixth problem and the failure of the Boltzmann to Euler limit.

    Science.gov (United States)

    Slemrod, Marshall

    2018-04-28

    This paper addresses the main issue of Hilbert's sixth problem, namely the rigorous passage of solutions to the mesoscopic Boltzmann equation to macroscopic solutions of the Euler equations of compressible gas dynamics. The results of the paper are that (i) in general Hilbert's program will fail because of the appearance of van der Waals-Korteweg capillarity terms in a macroscopic description of motion of a gas, and (ii) the van der Waals-Korteweg theory itself might satisfy Hilbert's quest for a map from the 'atomistic view' to the laws of motion of continua.This article is part of the theme issue 'Hilbert's sixth problem'. © 2018 The Author(s).

  14. Energy Dependent Streaming in Lattice Boltzmann Simulations

    Czech Academy of Sciences Publication Activity Database

    Pavlo, Pavol; Vahala, G.; Vahala, L.

    2001-01-01

    Roč. 46, č. 8 (2001), s. 241 ISSN 0003-0503. [Annual Meeting of the Division of Plasma Physics of the American Physical Society/43rd./. Long Beach, CA, 29.10.2001-02.11.2001] R&D Projects: GA ČR GA202/00/1216 Institutional research plan: CEZ:AV0Z2043910 Keywords : Lattice Boltzmann Simulations Subject RIV: BL - Plasma and Gas Discharge Physics

  15. Contact Angle Measurement in Lattice Boltzmann Method

    OpenAIRE

    Wen, Binghai; Huang, Bingfang; Qin, Zhangrong; Wang, Chunlei; Zhang, Chaoying

    2017-01-01

    Contact angle is an essential characteristic in wetting, capillarity and moving contact line; however, although contact angle phenomena are effectively simulated, an accurate and real-time measurement for contact angle has not been well studied in computational fluid dynamics, especially in dynamic environments. Here, we design a geometry-based mesoscopic scheme to onthesport measure the contact angle in the lattice Boltzmann method. The computational results without gravity effect are in exc...

  16. Monthly gravity field recovery from GRACE orbits and K-band measurements using variational equations approach

    Directory of Open Access Journals (Sweden)

    Changqing Wang

    2015-07-01

    Full Text Available The Gravity Recovery and Climate Experiment (GRACE mission can significantly improve our knowledge of the temporal variability of the Earth's gravity field. We obtained monthly gravity field solutions based on variational equations approach from GPS-derived positions of GRACE satellites and K-band range-rate measurements. The impact of different fixed data weighting ratios in temporal gravity field recovery while combining the two types of data was investigated for the purpose of deriving the best combined solution. The monthly gravity field solution obtained through above procedures was named as the Institute of Geodesy and Geophysics (IGG temporal gravity field models. IGG temporal gravity field models were compared with GRACE Release05 (RL05 products in following aspects: (i the trend of the mass anomaly in China and its nearby regions within 2005–2010; (ii the root mean squares of the global mass anomaly during 2005–2010; (iii time-series changes in the mean water storage in the region of the Amazon Basin and the Sahara Desert between 2005 and 2010. The results showed that IGG solutions were almost consistent with GRACE RL05 products in above aspects (i–(iii. Changes in the annual amplitude of mean water storage in the Amazon Basin were 14.7 ± 1.2 cm for IGG, 17.1 ± 1.3 cm for the Centre for Space Research (CSR, 16.4 ± 0.9 cm for the GeoForschungsZentrum (GFZ and 16.9 ± 1.2 cm for the Jet Propulsion Laboratory (JPL in terms of equivalent water height (EWH, respectively. The root mean squares of the mean mass anomaly in Sahara were 1.2 cm, 0.9 cm, 0.9 cm and 1.2 cm for temporal gravity field models of IGG, CSR, GFZ and JPL, respectively. Comparison suggested that IGG temporal gravity field solutions were at the same accuracy level with the latest temporal gravity field solutions published by CSR, GFZ and JPL.

  17. A regression approach for Zircaloy-2 in-reactor creep constitutive equations

    International Nuclear Information System (INIS)

    Yung Liu, Y.; Bement, A.L.

    1977-01-01

    In this paper the methodology of multiple regressions as applied to Zircaloy-2 in-reactor creep data analysis and construction of constitutive equation are illustrated. While the resulting constitutive equation can be used in creep analysis of in-reactor Zircaloy structural components, the methodology itself is entirely general and can be applied to any creep data analysis. The promising aspects of multiple regression creep data analysis are briefly outlined as follows: (1) When there are more than one variable involved, there is no need to make the assumption that each variable affects the response independently. No separate normalizations are required either and the estimation of parameters is obtained by solving many simultaneous equations. The number of simultaneous equations is equal to the number of data sets. (2) Regression statistics such as R 2 - and F-statistics provide measures of the significance of regression creep equation in correlating the overall data. The relative weights of each variable on the response can also be obtained. (3) Special regression techniques such as step-wise, ridge, and robust regressions and residual plots, etc., provide diagnostic tools for model selections. Multiple regression analysis performed on a set of carefully selected Zircaloy-2 in-reactor creep data leads to a model which provides excellent correlations for the data. (Auth.)

  18. Nuclear and hadron matter equation of state within the induced surface tension approach

    Science.gov (United States)

    Sagun, V. V.; Bugaev, K. A.; Ivanytskyi, A. I.; Oliinychenko, D. R.; Mishustin, I. N.

    2017-12-01

    We present a novel equation of state which is based on the virial expansion for the multicomponent mixtures with hard core repulsion. The suggested equation of state explicitly contains the surface tension which is induced by particle interaction. At high densities such a surface tension vanishes and in this way it switches the excluded volume treatment of hard core repulsion to its eigen volume treatment. The great advantage of the developed model is that the number of equations to be solved is two and it does not depend on the number of independent hard-core radii. Using the suggested equation of state we obtained a high quality fit of the hadron multiplicities measured at AGS, SPS, RHIC and ALICE energies and studied the properties of the nuclear matter phase diagram. It is shown the developed equation of state is softer than the gas of hard spheres and remains causal up to the several normal nuclear densities. Therefore, it could be applied to the neutron star interior modeling.

  19. Fractional Bhatnagar-Gross-Krook kinetic equation

    Science.gov (United States)

    Goychuk, Igor

    2017-11-01

    The linear Boltzmann equation (LBE) approach is generalized to describe fractional superdiffusive transport of the Lévy walk type in external force fields. The time distribution between scattering events is assumed to have a finite mean value and infinite variance. It is completely characterized by the two scattering rates, one fractional and a normal one, which defines also the mean scattering rate. We formulate a general fractional LBE approach and exemplify it with a particularly simple case of the Bohm and Gross scattering integral leading to a fractional generalization of the Bhatnagar, Gross and Krook (BGK) kinetic equation. Here, at each scattering event the particle velocity is completely randomized and takes a value from equilibrium Maxwell distribution at a given fixed temperature. We show that the retardation effects are indispensable even in the limit of infinite mean scattering rate and argue that this novel fractional kinetic equation provides a viable alternative to the fractional Kramers-Fokker-Planck (KFP) equation by Barkai and Silbey and its generalization by Friedrich et al. based on the picture of divergent mean time between scattering events. The case of divergent mean time is also discussed at length and compared with the earlier results obtained within the fractional KFP. Also a phenomenological fractional BGK equation without retardation effects is proposed in the limit of infinite scattering rates. It cannot be, however, rigorously derived from a scattering model, being rather clever postulated. It this respect, this retardationless equation is similar to the fractional KFP by Barkai and Silbey. However, it corresponds to the opposite, much more physical limit and, therefore, also presents a viable alternative.

  20. Least Square Approach for Estimating of Land Surface Temperature from LANDSAT-8 Satellite Data Using Radiative Transfer Equation

    Science.gov (United States)

    Jouybari-Moghaddam, Y.; Saradjian, M. R.; Forati, A. M.

    2017-09-01

    Land Surface Temperature (LST) is one of the significant variables measured by remotely sensed data, and it is applied in many environmental and Geoscience studies. The main aim of this study is to develop an algorithm to retrieve the LST from Landsat-8 satellite data using Radiative Transfer Equation (RTE). However, LST can be retrieved from RTE, but, since the RTE has two unknown parameters including LST and surface emissivity, estimating LST from RTE is an under the determined problem. In this study, in order to solve this problem, an approach is proposed an equation set includes two RTE based on Landsat-8 thermal bands (i.e.: band 10 and 11) and two additional equations based on the relation between the Normalized Difference Vegetation Index (NDVI) and emissivity of Landsat-8 thermal bands by using simulated data for Landsat-8 bands. The iterative least square approach was used for solving the equation set. The LST derived from proposed algorithm is evaluated by the simulated dataset, built up by MODTRAN. The result shows the Root Mean Squared Error (RMSE) is less than 1.18°K. Therefore; the proposed algorithm can be a suitable and robust method to retrieve the LST from Landsat-8 satellite data.

  1. Immersed Boundary-Lattice Boltzmann Method Using Two Relaxation Times

    Directory of Open Access Journals (Sweden)

    Kosuke Hayashi

    2012-06-01

    Full Text Available An immersed boundary-lattice Boltzmann method (IB-LBM using a two-relaxation time model (TRT is proposed. The collision operator in the lattice Boltzmann equation is modeled using two relaxation times. One of them is used to set the fluid viscosity and the other is for numerical stability and accuracy. A direct-forcing method is utilized for treatment of immersed boundary. A multi-direct forcing method is also implemented to precisely satisfy the boundary conditions at the immersed boundary. Circular Couette flows between a stationary cylinder and a rotating cylinder are simulated for validation of the proposed method. The method is also validated through simulations of circular and spherical falling particles. Effects of the functional forms of the direct-forcing term and the smoothed-delta function, which interpolates the fluid velocity to the immersed boundary and distributes the forcing term to fixed Eulerian grid points, are also examined. As a result, the following conclusions are obtained: (1 the proposed method does not cause non-physical velocity distribution in circular Couette flows even at high relaxation times, whereas the single-relaxation time (SRT model causes a large non-physical velocity distortion at a high relaxation time, (2 the multi-direct forcing reduces the errors in the velocity profile of a circular Couette flow at a high relaxation time, (3 the two-point delta function is better than the four-point delta function at low relaxation times, but worse at high relaxation times, (4 the functional form of the direct-forcing term does not affect predictions, and (5 circular and spherical particles falling in liquids are well predicted by using the proposed method both for two-dimensional and three-dimensional cases.

  2. Functional differential equation approach to the large N expansion and mean field perturbation theory

    International Nuclear Information System (INIS)

    Bender, C.M.; Cooper, F.

    1985-01-01

    An apparent difference between formulating mean field perturbation theory for lambdaphi 4 field theory via path integrals or via functional differential equations when there are external sources present is shown not to exist when mean field theory is considered as the N = 1 limit of the 0(N)lambdaphi 4 field theory. A simply method is given for determining the 1/N expansion for the Green's functions in the presence of external sources by directly solving the functional differential equations order by order in 1/N. The 1/N expansion for the effective action GAMMA(phi,chi) is obtained by directly integrating the functional differential equations for the fields phi and chi (equivalent1/2lambda/Nphi/sub α/phi/sup α/-μ 2 ) in the presence of two external sources j = -deltaGAMMA/deltaphi, S = -deltaGAMMA/deltachi

  3. An integral equation approach to the semi-infinite strip problem.

    Science.gov (United States)

    Gupta, G. D.

    1973-01-01

    A semi-infinite strip held rigidly on its short end is considered. Loads in the strip at infinity (far away from the fixed end) are prescribed. The integral transform technique is used to provide an exact formulation of the problem in terms of a singular integral equation. The stress singularity at the strip corner is obtained from the singular integral equation, which is then solved numerically. Stresses along the rigid end are determined, and the effect of the material properties on the stress-intensity factor is presented. The method can also be applied to the problem of a laminate composite with a flat inclusion normal to the interfaces.

  4. A new approach to the I/N-expansion for the Dirac equation

    International Nuclear Information System (INIS)

    Stepanov, S.S.; Tutik, R.S.

    1991-01-01

    The difficulties associated with application of the I/N-expansion to the Dirac equation have been resolved by applying the method of (h/2π)-expansion. This technique does not involve converting the initial equation into the Schroedinger-like or Klein-Gordon-like form. Obtained recurrence formulae have a simple form and allow one to find the I/N-corrections of an arbitrary order in any of the I/N-expansion scheme. The method restores the exact results for the Coulomb potential. 17 refs. (author)

  5. Pseudodynamic systems approach based on a quadratic approximation of update equations for diffuse optical tomography.

    Science.gov (United States)

    Biswas, Samir Kumar; Kanhirodan, Rajan; Vasu, Ram Mohan; Roy, Debasish

    2011-08-01

    We explore a pseudodynamic form of the quadratic parameter update equation for diffuse optical tomographic reconstruction from noisy data. A few explicit and implicit strategies for obtaining the parameter updates via a semianalytical integration of the pseudodynamic equations are proposed. Despite the ill-posedness of the inverse problem associated with diffuse optical tomography, adoption of the quadratic update scheme combined with the pseudotime integration appears not only to yield higher convergence, but also a muted sensitivity to the regularization parameters, which include the pseudotime step size for integration. These observations are validated through reconstructions with both numerically generated and experimentally acquired data.

  6. Path space measures for Dirac and Schroedinger equations: Nonstandard analytical approach

    International Nuclear Information System (INIS)

    Nakamura, T.

    1997-01-01

    A nonstandard path space *-measure is constructed to justify the path integral formula for the Dirac equation in two-dimensional space endash time. A standard measure as well as a standard path integral is obtained from it. We also show that, even for the Schroedinger equation, for which there is no standard measure appropriate for a path integral, there exists a nonstandard measure to define a *-path integral whose standard part agrees with the ordinary path integral as defined by a limit from time-slice approximant. copyright 1997 American Institute of Physics

  7. A HAM-based wavelet approach for nonlinear partial differential equations: Two dimensional Bratu problem as an application

    Science.gov (United States)

    Yang, Zhaochen; Liao, Shijun

    2017-12-01

    In this paper, a new analytic approach, namely the wavelet homotopy analysis method (wHAM), is developed for boundary value problems (BVPs) governed by nonlinear partial differential equations (PDEs), which successfully combines the homotopy analysis method (HAM) and the generalized Coiflet-type wavelet. To improve the computational efficiency and accuracy, a section-based wavelet approximation for partial derivatives is proposed. The two-dimensional Bratu equation is used as an example to illustrate its basic ideas of the wHAM. Numerical results verify the validity as well as great advantages of the wHAM. Compared with the normal HAM, the wHAM possesses not only larger freedom to choose the auxiliary linear operator, but also better convergence property and higher computational efficiency. In addition, the iteration approach can greatly accelerate convergence.

  8. STEADY STATE AND PSEUDO-TRANSIENT ELECTRIC POTENTIAL USING THE POISSONBOLTZMANN EQUATION

    Directory of Open Access Journals (Sweden)

    L. C. dos Santos

    2015-03-01

    Full Text Available A method for analysis of the electric potential profile in saline solutions was developed for systems with one or two infinite flat plates. A modified Poisson-Boltzmann equation, taking into account nonelectrostatic interactions between ions and surfaces, was used. To solve the stated problem in the steady-state approach the finite-difference method was used. For the formulated pseudo-transient problem, we solved the set of ordinary differential equations generated from the algebraic equations of the stationary case. A case study was also carried out in relation to temperature, solution concentration, surface charge and salt-type. The results were validated by the stationary problem solution, which had also been used to verify the ionic specificity for different salts. The pseudo-transient approach allowed a better understanding of the dynamic behavior of the ion-concentration profile and other properties due to the surface charge variation.

  9. Approaches for modeling within subject variability in pharmacometric count data analysis: dynamic inter-occasion variability and stochastic differential equations.

    Science.gov (United States)

    Deng, Chenhui; Plan, Elodie L; Karlsson, Mats O

    2016-06-01

    Parameter variation in pharmacometric analysis studies can be characterized as within subject parameter variability (WSV) in pharmacometric models. WSV has previously been successfully modeled using inter-occasion variability (IOV), but also stochastic differential equations (SDEs). In this study, two approaches, dynamic inter-occasion variability (dIOV) and adapted stochastic differential equations, were proposed to investigate WSV in pharmacometric count data analysis. These approaches were applied to published count models for seizure counts and Likert pain scores. Both approaches improved the model fits significantly. In addition, stochastic simulation and estimation were used to explore further the capability of the two approaches to diagnose and improve models where existing WSV is not recognized. The results of simulations confirmed the gain in introducing WSV as dIOV and SDEs when parameters vary randomly over time. Further, the approaches were also informative as diagnostics of model misspecification, when parameters changed systematically over time but this was not recognized in the structural model. The proposed approaches in this study offer strategies to characterize WSV and are not restricted to count data.

  10. Simulating anomalous transport and multiphase segregation in porous media with the Lattice Boltzmann Method

    Science.gov (United States)

    Matin, Rastin; Hernandez, Anier; Misztal, Marek; Mathiesen, Joachim

    2015-04-01

    Many hydrodynamic phenomena ranging from flows at micron scale in porous media, large Reynolds numbers flows, non-Newtonian and multiphase flows have been simulated on computers using the lattice Boltzmann (LB) method. By solving the Lattice Boltzmann Equation on unstructured meshes in three dimensions, we have developed methods to efficiently model the fluid flow in real rock samples. We use this model to study the spatio-temporal statistics of the velocity field inside three-dimensional real geometries and investigate its relation to the, in general, anomalous transport of passive tracers for a wide range of Peclet and Reynolds numbers. We extend this model by free-energy based method, which allows us to simulate binary systems with large-density ratios in a thermodynamically consistent way and track the interface explicitly. In this presentation we will present our recent results on both anomalous transport and multiphase segregation.

  11. Simulating Anomalous Dispersion and Multiphase Segregation in Porous Media with the Lattice Boltzmann Method

    Science.gov (United States)

    Matin, Rastin; Misztal, Marek K.; Hernandez-Garcia, Anier; Mathiesen, Joachim

    2015-11-01

    Many hydrodynamic phenomena such as flows at micron scale in porous media, large Reynolds numbers flows, non-Newtonian and multiphase flows have been simulated numerically using the lattice Boltzmann method. By solving the Lattice Boltzmann Equation on three-dimensional unstructured meshes, we efficiently model single-phase fluid flow in real rock samples. We use the flow field to estimate the permeability and further investigate the anomalous dispersion of passive tracers in porous media. By extending our single-phase model with a free-energy based method, we are able to simulate binary systems with moderate density ratios in a thermodynamically consistent way. In this presentation we will present our recent results on both anomalous transport and multiphase segregation.

  12. Moment-based boundary conditions for lattice Boltzmann simulations of natural convection in cavities

    KAUST Repository

    Allen, Rebecca

    2016-06-29

    We study a multiple relaxation time lattice Boltzmann model for natural convection with moment-based boundary conditions. The unknown primary variables of the algorithm at a boundary are found by imposing conditions directly upon hydrodynamic moments, which are then translated into conditions for the discrete velocity distribution functions. The method is formulated so that it is consistent with the second order implementation of the discrete velocity Boltzmann equations for fluid flow and temperature. Natural convection in square cavities is studied for Rayleigh numbers ranging from 103 to 108. An excellent agreement with benchmark data is observed and the flow fields are shown to converge with second order accuracy. Copyright © 2016 Inderscience Enterprises Ltd.

  13. Conditional Similarity Reductions of the (2+1)-dimensional KdV Equation via the Extended Lie Group Approach

    Science.gov (United States)

    Tang, Xiao-yan; Qian, Xian-min; Lin, Ji; Lou, S. Y.

    2004-06-01

    The classical and nonclassical Lie group approaches are extended and applied to construct new conditional similarity reductions for nonlinear systems. The application of the method to a simple (2+1)-dimensional KdV equation results in not only the known conditional similarity reductions obtained by the modified Clarkson and Kruskal’s direct method but also a great diversity of classical and nonclassical conditional similarity reductions.

  14. Examining the Relationships among Antecedents of Guests’ Behavioural Intentions in Ghana’s Hospitality Industry: A Structural Equation Modelling Approach

    OpenAIRE

    Simon Gyasi Nimako; Anthony Freeman Mensah

    2013-01-01

    This study empirically examines the critical antecedents of behavioural intentions and the structural interrelationships that exist among the antecedents in the hotel industry in Ghana. The study was a cross-sectional survey of 700 respondents using structured questionnaire personally administered. A usable 359 questionnaire were obtained, representing 51.3% response rate and analysed using Structural Equation Modelling approach. The findings indicate that the proposed model has high goodness...

  15. Understanding the Impact of Trauma Exposure on Posttraumatic Stress Symptomatology: A Structural Equation Modeling Approach

    Science.gov (United States)

    Chen, Wei; Wang, Long; Zhang, Xing-Li; Shi, Jian-Nong

    2012-01-01

    The objective of this study was to investigate the impact of trauma exposure on the posttraumatic stress symptomatology (PTSS) of children who resided near the epicenter of the 2008 Wenchuan earthquake. The mechanisms of this impact were explored via structural equation models with self-esteem and coping strategies included as mediators. The…

  16. Spectral Approach to Derive the Representation Formulae for Solutions of the Wave Equation

    Directory of Open Access Journals (Sweden)

    Gusein Sh. Guseinov

    2012-01-01

    Full Text Available Using spectral properties of the Laplace operator and some structural formula for rapidly decreasing functions of the Laplace operator, we offer a novel method to derive explicit formulae for solutions to the Cauchy problem for classical wave equation in arbitrary dimensions. Among them are the well-known d'Alembert, Poisson, and Kirchhoff representation formulae in low space dimensions.

  17. New approach to solve fully fuzzy system of linear equations using ...

    Indian Academy of Sciences (India)

    ... double parametric form of fuzzy numbers converts the n×n fully fuzzy system of linear equations to a crisp system of same order. Triangular and trapezoidal convex normalized fuzzy sets are used for the present analysis. Known example problems are solved to illustrate the efficacy and reliability of the proposed methods.

  18. Alternative Method of Solution of the Regulator Equation: L2 -Space Approach

    Czech Academy of Sciences Publication Activity Database

    Rehák, Branislav

    2012-01-01

    Roč. 14, č. 4 (2012), s. 1150-1154 ISSN 1561-8625 R&D Projects: GA MŠk(CZ) LG12008 Institutional support: RVO:67985556 Keywords : Output regulation problem * partial differential equations Subject RIV: BC - Control Systems Theory Impact factor: 1.411, year: 2012 http://library.utia.cas.cz/separaty/2012/TR/rehak-0381625.pdf

  19. Communication: Multireference equation of motion coupled cluster: A transform and diagonalize approach to electronic structure

    Czech Academy of Sciences Publication Activity Database

    Nooijen, M.; Demel, Ondřej; Datta, D.; Kong, L.; Shamasundar, K. R.; Lotrich, V.; Huntington, L. M.; Neese, F.

    2014-01-01

    Roč. 140, č. 8 (2014), 081102 ISSN 0021-9606 R&D Projects: GA ČR GPP208/10/P041; GA ČR GAP208/11/2222 Institutional support: RVO:61388955 Keywords : Electronic states * Electronic structure * Equations of motion Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.952, year: 2014

  20. A new approach to model CW CO2 laser using rate equations

    Indian Academy of Sciences (India)

    Two popular methods to analyse the operation of CW CO 2 lasers use the temperature model and the rate equation model. Among the two, the latter model directly calculates the population densities in the various vibrational levels connected with the lasing action, and provides a clearer illustration of the processes involved ...

  1. Determinants of rural industrial entrepreneurship of farmers in West Bengal: A structural equations approach

    NARCIS (Netherlands)

    Folmer, H.; Dutta, S.; Oud, J.H.L.

    2010-01-01

    This article presents a structural equations model of rural industrial entrepreneurship (RIE) among farmers in the Bardhaman district, West Bengal, India. It identifies the determinants of RIE but also analyzes impacts of RIE on its endogenous determinants. Age, education, marital status, number of

  2. Determinants of Rural Industrial Entrepreneurship of Farmers in West Bengal : A Structural Equations Approach

    NARCIS (Netherlands)

    Folmer, Henk; Dutta, Subrata; Oud, Han

    2010-01-01

    This article presents a structural equations model of rural industrial entrepreneurship (RIE) among farmers in the Bardhaman district, West Bengal, India. It identifies the determinants of RIE but also analyzes impacts of RIE on its endogenous determinants. Age, education, marital status, number of

  3. Generalized Hyers-Ulam Stability of Quadratic Functional Equations: A Fixed Point Approach

    Directory of Open Access Journals (Sweden)

    Choonkil Park

    2008-03-01

    Full Text Available Using the fixed point method, we prove the generalized Hyers-Ulam stability of the quadratic functional equation f(2x+y=4f(x+f(y+f(x+y−f(x−y in Banach spaces.

  4. Flexible Approaches to Computing Mediated Effects in Generalized Linear Models: Generalized Estimating Equations and Bootstrapping

    Science.gov (United States)

    Schluchter, Mark D.

    2008-01-01

    In behavioral research, interest is often in examining the degree to which the effect of an independent variable X on an outcome Y is mediated by an intermediary or mediator variable M. This article illustrates how generalized estimating equations (GEE) modeling can be used to estimate the indirect or mediated effect, defined as the amount by…

  5. Parametric inference for stochastic differential equations: a smooth and match approach

    NARCIS (Netherlands)

    Gugushvili, S.; Spreij, P.

    2012-01-01

    We study the problem of parameter estimation for a univariate discretely observed ergodic diffusion process given as a solution to a stochastic differential equation. The estimation procedure we propose consists of two steps. In the first step, which is referred to as a smoothing step, we smooth the

  6. Algebra Word Problem Solving Approaches in a Chemistry Context: Equation Worked Examples versus Text Editing

    Science.gov (United States)

    Ngu, Bing Hiong; Yeung, Alexander Seeshing

    2013-01-01

    Text editing directs students' attention to the problem structure as they classify whether the texts of word problems contain sufficient, missing or irrelevant information for working out a solution. Equation worked examples emphasize the formation of a coherent problem structure to generate a solution. Its focus is on the construction of three…

  7. S-matrix approach to the equation of state of dilute nuclear matter

    Indian Academy of Sciences (India)

    2014-04-01

    Apr 1, 2014 ... Abstract. Based on the general analysis of the grand canonical partition function in the S-matrix framework, a method is presented to calculate the equation of state of dilute warm nuclear mat- ter. The result is a model-independent virial series for the pressure and density that systematically includes ...

  8. A unified approach to determining forms for the 2D Navier-Stokes equations -- the general interpolants case

    International Nuclear Information System (INIS)

    Foias, C; Jolly, M S; Kravchenko, R; Titi, E S

    2014-01-01

    It is shown that the long-time dynamics (the global attractor) of the 2D Navier-Stokes system is embedded in the long-time dynamics of an ordinary differential equation, called a determining form, in a space of trajectories which is isomorphic to C b 1 (R;R N ) for sufficiently large N depending on the physical parameters of the Navier-Stokes equations. A unified approach is presented, based on interpolant operators constructed from various determining parameters for the Navier-Stokes equations, namely, determining nodal values, Fourier modes, finite volume elements, finite elements, and so on. There are two immediate and interesting consequences of this unified approach. The first is that the constructed determining form has a Lyapunov function, and thus its solutions converge to the set of steady states of the determining form as the time goes to infinity. The second is that these steady states of the determining form can be uniquely identified with the trajectories in the global attractor of the Navier-Stokes system. It should be added that this unified approach is general enough that it applies, in an almost straightforward manner, to a whole class of dissipative dynamical systems. Bibliography: 23 titles

  9. Generalized Metropolis dynamics with a generalized master equation: an approach for time-independent and time-dependent Monte Carlo simulations of generalized spin systems.

    Science.gov (United States)

    da Silva, Roberto; Drugowich de Felício, José Roberto; Martinez, Alexandre Souto

    2012-06-01

    The extension of Boltzmann-Gibbs thermostatistics, proposed by Tsallis, introduces an additional parameter q to the inverse temperature β. Here, we show that a previously introduced generalized Metropolis dynamics to evolve spin models is not local and does not obey the detailed energy balance. In this dynamics, locality is only retrieved for q=1, which corresponds to the standard Metropolis algorithm. Nonlocality implies very time-consuming computer calculations, since the energy of the whole system must be reevaluated when a single spin is flipped. To circumvent this costly calculation, we propose a generalized master equation, which gives rise to a local generalized Metropolis dynamics that obeys the detailed energy balance. To compare the different critical values obtained with other generalized dynamics, we perform Monte Carlo simulations in equilibrium for the Ising model. By using short-time nonequilibrium numerical simulations, we also calculate for this model the critical temperature and the static and dynamical critical exponents as functions of q. Even for q≠1, we show that suitable time-evolving power laws can be found for each initial condition. Our numerical experiments corroborate the literature results when we use nonlocal dynamics, showing that short-time parameter determination works also in this case. However, the dynamics governed by the new master equation leads to different results for critical temperatures and also the critical exponents affecting universality classes. We further propose a simple algorithm to optimize modeling the time evolution with a power law, considering in a log-log plot two successive refinements.

  10. Exploring a charge-central strategy in the solution of Poisson's equation for biomolecular applications.

    Science.gov (United States)

    Liu, Xingping; Wang, Changhao; Wang, Jun; Li, Zhilin; Zhao, Hongkai; Luo, Ray

    2013-01-07

    Continuum solvent treatments based on the Poisson-Boltzmann equation have been widely accepted for energetic analysis of biomolecular systems. In these approaches, the molecular solute is treated as a low dielectric region and the solvent is treated as a high dielectric continuum. The existence of a sharp dielectric jump at the solute-solvent interface poses a challenge to model the solvation energetics accurately with such a simple mathematical model. In this study, we explored and evaluated a strategy based on the "induced surface charge" to eliminate the dielectric jump within the finite-difference discretization scheme. In addition to the use of the induced surface charges in solving the equation, the second-order accurate immersed interface method is also incorporated to discretize the equation. The resultant linear system is solved with the GMRES algorithm to explicitly impose the flux conservation condition across the solvent-solute interface. The new strategy was evaluated on both analytical and realistic biomolecular systems. The numerical tests demonstrate the feasibility of utilizing induced surface charge in the finite-difference solution of the Poisson-Boltzmann equation. The analysis data further show that the strategy is consistent with theory and the classical finite-difference method on the tested systems. Limitations of the current implementations and further improvements are also analyzed and discussed to fully bring out its potential of achieving higher numerical accuracy.

  11. Multiphase Simulated Annealing Based on Boltzmann and Bose-Einstein Distribution Applied to Protein Folding Problem.

    Science.gov (United States)

    Frausto-Solis, Juan; Liñán-García, Ernesto; Sánchez-Hernández, Juan Paulo; González-Barbosa, J Javier; González-Flores, Carlos; Castilla-Valdez, Guadalupe

    2016-01-01

    A new hybrid Multiphase Simulated Annealing Algorithm using Boltzmann and Bose-Einstein distributions (MPSABBE) is proposed. MPSABBE was designed for solving the Protein Folding Problem (PFP) instances. This new approach has four phases: (i) Multiquenching Phase (MQP), (ii) Boltzmann Annealing Phase (BAP), (iii) Bose-Einstein Annealing Phase (BEAP), and (iv) Dynamical Equilibrium Phase (DEP). BAP and BEAP are simulated annealing searching procedures based on Boltzmann and Bose-Einstein distributions, respectively. DEP is also a simulated annealing search procedure, which is applied at the final temperature of the fourth phase, which can be seen as a second Bose-Einstein phase. MQP is a search process that ranges from extremely high to high temperatures, applying a very fast cooling process, and is not very restrictive to accept new solutions. However, BAP and BEAP range from high to low and from low to very low temperatures, respectively. They are more restrictive for accepting new solutions. DEP uses a particular heuristic to detect the stochastic equilibrium by applying a least squares method during its execution. MPSABBE parameters are tuned with an analytical method, which considers the maximal and minimal deterioration of problem instances. MPSABBE was tested with several instances of PFP, showing that the use of both distributions is better than using only the Boltzmann distribution on the classical SA.

  12. Multiphase Simulated Annealing Based on Boltzmann and Bose-Einstein Distribution Applied to Protein Folding Problem

    Directory of Open Access Journals (Sweden)

    Juan Frausto-Solis

    2016-01-01

    Full Text Available A new hybrid Multiphase Simulated Annealing Algorithm using Boltzmann and Bose-Einstein distributions (MPSABBE is proposed. MPSABBE was designed for solving the Protein Folding Problem (PFP instances. This new approach has four phases: (i Multiquenching Phase (MQP, (ii Boltzmann Annealing Phase (BAP, (iii Bose-Einstein Annealing Phase (BEAP, and (iv Dynamical Equilibrium Phase (DEP. BAP and BEAP are simulated annealing searching procedures based on Boltzmann and Bose-Einstein distributions, respectively. DEP is also a simulated annealing search procedure, which is applied at the final temperature of the fourth phase, which can be seen as a second Bose-Einstein phase. MQP is a search process that ranges from extremely high to high temperatures, applying a very fast cooling process, and is not very restrictive to accept new solutions. However, BAP and BEAP range from high to low and from low to very low temperatures, respectively. They are more restrictive for accepting new solutions. DEP uses a particular heuristic to detect the stochastic equilibrium by applying a least squares method during its execution. MPSABBE parameters are tuned with an analytical method, which considers the maximal and minimal deterioration of problem instances. MPSABBE was tested with several instances of PFP, showing that the use of both distributions is better than using only the Boltzmann distribution on the classical SA.

  13. Learning Algorithm of Boltzmann Machine Based on Spatial Monte Carlo Integration Method

    Directory of Open Access Journals (Sweden)

    Muneki Yasuda

    2018-04-01

    Full Text Available The machine learning techniques for Markov random fields are fundamental in various fields involving pattern recognition, image processing, sparse modeling, and earth science, and a Boltzmann machine is one of the most important models in Markov random fields. However, the inference and learning problems in the Boltzmann machine are NP-hard. The investigation of an effective learning algorithm for the Boltzmann machine is one of the most important challenges in the field of statistical machine learning. In this paper, we study Boltzmann machine learning based on the (first-order spatial Monte Carlo integration method, referred to as the 1-SMCI learning method, which was proposed in the author’s previous paper. In the first part of this paper, we compare the method with the maximum pseudo-likelihood estimation (MPLE method using a theoretical and a numerical approaches, and show the 1-SMCI learning method is more effective than the MPLE. In the latter part, we compare the 1-SMCI learning method with other effective methods, ratio matching and minimum probability flow, using a numerical experiment, and show the 1-SMCI learning method outperforms them.

  14. Fractional Partial Differential Equation: Fractional Total Variation and Fractional Steepest Descent Approach-Based Multiscale Denoising Model for Texture Image

    Directory of Open Access Journals (Sweden)

    Yi-Fei Pu

    2013-01-01

    Full Text Available The traditional integer-order partial differential equation-based image denoising approaches often blur the edge and complex texture detail; thus, their denoising effects for texture image are not very good. To solve the problem, a fractional partial differential equation-based denoising model for texture image is proposed, which applies a novel mathematical method—fractional calculus to image processing from the view of system evolution. We know from previous studies that fractional-order calculus has some unique properties comparing to integer-order differential calculus that it can nonlinearly enhance complex texture detail during the digital image processing. The goal of the proposed model is to overcome the problems mentioned above by using the properties of fractional differential calculus. It extended traditional integer-order equation to a fractional order and proposed the fractional Green’s formula and the fractional Euler-Lagrange formula for two-dimensional image processing, and then a fractional partial differential equation based denoising model was proposed. The experimental results prove that the abilities of the proposed denoising model to preserve the high-frequency edge and complex texture information are obviously superior to those of traditional integral based algorithms, especially for texture detail rich images.

  15. Constructing a Measurement in Service Quality for Indian Banks: Structural Equation Modeling Approach

    OpenAIRE

    Anil Kumar; Manoj Kumar Dash

    2013-01-01

    The aim of this paper is to construct a measure in service quality for Indian banks and establishes a causal relationship of service attributes performance with customer satisfaction. The SERVQUAL model is used. The quantification of service quality led to the attempt to construct an index. The index is constructed using Structural Equation Modeling (SEM) and American Customer Satisfaction Index (ACSI) as the underlying frameworks. The analysis is based on data of 200 bank customers from the ...

  16. Functional Integral Approach to the Solution of a System of Stochastic Differential Equations

    Directory of Open Access Journals (Sweden)

    Ayryan Edik

    2018-01-01

    Full Text Available A new method for the evaluation of the characteristics of the solution of a system of stochastic differential equations is presented. This method is based on the representation of a probability density function p through a functional integral. The functional integral representation is obtained by means of the Onsager-Machlup functional technique for a special case when the diffusion matrix for the SDE system defines a Riemannian space with zero curvature.

  17. Linearized Navier-Stokes equations in R3: an approach in weighted Sobolev spaces

    Czech Academy of Sciences Publication Activity Database

    Amrouche, Ch.; Meslameni, M.; Nečasová, Šárka

    2014-01-01

    Roč. 7, č. 5 (2014), s. 901-916 ISSN 1937-1632 R&D Projects: GA ČR(CZ) GAP201/11/1304 Institutional support: RVO:67985840 Keywords : generalized Oseen equations * weighted Sobolev spaces * generalized solutions Subject RIV: BA - General Mathematics Impact factor: 0.567, year: 2014 http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=9871

  18. Supersymmetric approach for Killingbeck radial potential plus noncentral potential in Schrodinger equation

    International Nuclear Information System (INIS)

    Cari, C.; Suparmi, A.; Yunianto, M.; Pratiwi, B. N.

    2016-01-01

    Killingbeck radial potential, which consists of harmonic oscillator, linier and Coulomb potentials, is combined with non-central potential. The solution of three dimensional Schrodinger equation for Killingbeck potential is combined with Poschl-Teller potential and Symmetrical Top non-central potentials are investigated using supersymmetry (SUSY) operator. The non-relativistic energy is obtained which is infuenced by potentials and the wave functions are produced by using SUSY operator. (paper)

  19. Dimensionality-reduction approach to the thermal radiative transfer equation inverse problem

    Science.gov (United States)

    Masiello, G.; Serio, C.

    2004-06-01

    An original algorithm is illustrated for the inversion of geophysical parameters from spectral observations in the thermal band. The algorithm exploits the Hotelling transform and projects the linearized version of the radiative transfer equation in a space of reduced dimensionality. The inversion is performed in this latter space, which speeds up the computations and makes the method attractive for real-time retrieval from high spectral resolution infrared observations.

  20. Variational Approach to the Orbital Stability of Standing Waves of the Gross-Pitaevskii Equation

    KAUST Repository

    Hadj Selem, Fouad

    2014-08-26

    This paper is concerned with the mathematical analysis of a masssubcritical nonlinear Schrödinger equation arising from fiber optic applications. We show the existence and symmetry of minimizers of the associated constrained variational problem. We also prove the orbital stability of such solutions referred to as standing waves and characterize the associated orbit. In the last section, we illustrate our results with few numerical simulations. © 2014 Springer Basel.