WorldWideScience

Sample records for boltzmann equation approach

  1. Description of the approach to equilibrium in the Boltzmann equation

    Energy Technology Data Exchange (ETDEWEB)

    Barrachina, R.O.; Fujii, D.H.; Garibotti, C.R.

    1985-06-01

    An integral transform of the Boltzmann equation with a clear physical interpretation is introduced. It is applied to different interaction models and initial conditions, relevant information about the way the equilibrium is reached. This method leads quite naturally to the introduction of an N-pole approximant of the distribution function which seems to be a rather useful technique not only in view of its simplicity but also because of its capability to keep track of the temporal evolution features of the chosen interaction model. 6 references.

  2. New Monte Carlo approach to the adjoint Boltzmann equation

    International Nuclear Information System (INIS)

    De Matteis, A.; Simonini, R.

    1978-01-01

    A class of stochastic models for the Monte Carlo integration of the adjoint neutron transport equation is described. Some current general methods are brought within this class, thus preparing the ground for subsequent comparisons. Monte Carlo integration of the adjoint Boltzmann equation can be seen as a simulation of the transport of mathematical particles with reaction kernels not normalized to unity. This last feature is a source of difficulty: It can influence the variance of the result negatively and also often leads to preparation of special ''libraries'' consisting of tables of normalization factors as functions of energy, presently used by several methods. These are the two main points that are discussed and that are taken into account to devise a nonmultigroup method of solution for a certain class of problems. Reactions considered in detail are radiative capture, elastic scattering, discrete levels and continuum inelastic scattering, for which the need for tables has been almost completely eliminated. The basic policy pursued to avoid a source of statistical fluctuations is to try to make the statistical weight of the traveling particle dependent only on its starting and current energies, at least in simple cases. The effectiveness of the sampling schemes proposed is supported by numerical comparison with other more general adjoint Monte Carlo methods. Computation of neutron flux at a point by means of an adjoint formulation is the problem taken as a test for numerical experiments. Very good results have been obtained in the difficult case of resonant cross sections

  3. Quantum linear Boltzmann equation

    International Nuclear Information System (INIS)

    Vacchini, Bassano; Hornberger, Klaus

    2009-01-01

    We review the quantum version of the linear Boltzmann equation, which describes in a non-perturbative fashion, by means of scattering theory, how the quantum motion of a single test particle is affected by collisions with an ideal background gas. A heuristic derivation of this Lindblad master equation is presented, based on the requirement of translation-covariance and on the relation to the classical linear Boltzmann equation. After analyzing its general symmetry properties and the associated relaxation dynamics, we discuss a quantum Monte Carlo method for its numerical solution. We then review important limiting forms of the quantum linear Boltzmann equation, such as the case of quantum Brownian motion and pure collisional decoherence, as well as the application to matter wave optics. Finally, we point to the incorporation of quantum degeneracies and self-interactions in the gas by relating the equation to the dynamic structure factor of the ambient medium, and we provide an extension of the equation to include internal degrees of freedom.

  4. Flavored quantum Boltzmann equations

    International Nuclear Information System (INIS)

    Cirigliano, Vincenzo; Lee, Christopher; Ramsey-Musolf, Michael J.; Tulin, Sean

    2010-01-01

    We derive from first principles, using nonequilibrium field theory, the quantum Boltzmann equations that describe the dynamics of flavor oscillations, collisions, and a time-dependent mass matrix in the early universe. Working to leading nontrivial order in ratios of relevant time scales, we study in detail a toy model for weak-scale baryogenesis: two scalar species that mix through a slowly varying time-dependent and CP-violating mass matrix, and interact with a thermal bath. This model clearly illustrates how the CP asymmetry arises through coherent flavor oscillations in a nontrivial background. We solve the Boltzmann equations numerically for the density matrices, investigating the impact of collisions in various regimes.

  5. A Boltzmann equation approach to the damping of giant resonances in nuclei

    International Nuclear Information System (INIS)

    Schuck, P.; Winter, J.

    1983-01-01

    The Vlasov equation plus collision term (Boltzmann equation) represents an appropriate frame for the treatment of giant resonances (zero sound modes) in nuclei. With no adjustable parameters we obtain correct positions and widths for the giant quadrupole resonances. (author)

  6. Numerical solution of Boltzmann's equation

    International Nuclear Information System (INIS)

    Sod, G.A.

    1976-04-01

    The numerical solution of Boltzmann's equation is considered for a gas model consisting of rigid spheres by means of Hilbert's expansion. If only the first two terms of the expansion are retained, Boltzmann's equation reduces to the Boltzmann-Hilbert integral equation. Successive terms in the Hilbert expansion are obtained by solving the same integral equation with a different source term. The Boltzmann-Hilbert integral equation is solved by a new very fast numerical method. The success of the method rests upon the simultaneous use of four judiciously chosen expansions; Hilbert's expansion for the distribution function, another expansion of the distribution function in terms of Hermite polynomials, the expansion of the kernel in terms of the eigenvalues and eigenfunctions of the Hilbert operator, and an expansion involved in solving a system of linear equations through a singular value decomposition. The numerical method is applied to the study of the shock structure in one space dimension. Numerical results are presented for Mach numbers of 1.1 and 1.6. 94 refs, 7 tables, 1 fig

  7. Painleve test and discrete Boltzmann equations

    International Nuclear Information System (INIS)

    Euler, N.; Steeb, W.H.

    1989-01-01

    The Painleve test for various discrete Boltzmann equations is performed. The connection with integrability is discussed. Furthermore the Lie symmetry vector fields are derived and group-theoretical reduction of the discrete Boltzmann equations to ordinary differentiable equations is performed. Lie Backlund transformations are gained by performing the Painleve analysis for the ordinary differential equations. 16 refs

  8. Hot electrons in superlattices: quantum transport versus Boltzmann equation

    DEFF Research Database (Denmark)

    Wacker, Andreas; Jauho, Antti-Pekka; Rott, S.

    1999-01-01

    A self-consistent solution of the transport equation is presented for semiconductor superlattices within different approaches: (i) a full quantum transport model based on nonequilibrium Green functions, (ii) the semiclassical Boltzmann equation for electrons in a miniband, and (iii) Boltzmann...

  9. A spatially adaptive grid-refinement approach for the finite element solution of the even-parity Boltzmann transport equation

    International Nuclear Information System (INIS)

    Mirza, Anwar M.; Iqbal, Shaukat; Rahman, Faizur

    2007-01-01

    A spatially adaptive grid-refinement approach has been investigated to solve the even-parity Boltzmann transport equation. A residual based a posteriori error estimation scheme has been utilized for checking the approximate solutions for various finite element grids. The local particle balance has been considered as an error assessment criterion. To implement the adaptive approach, a computer program ADAFENT (adaptive finite elements for neutron transport) has been developed to solve the second order even-parity Boltzmann transport equation using K + variational principle for slab geometry. The program has a core K + module which employs Lagrange polynomials as spatial basis functions for the finite element formulation and Legendre polynomials for the directional dependence of the solution. The core module is called in by the adaptive grid generator to determine local gradients and residuals to explore the possibility of grid refinements in appropriate regions of the problem. The a posteriori error estimation scheme has been implemented in the outer grid refining iteration module. Numerical experiments indicate that local errors are large in regions where the flux gradients are large. A comparison of the spatially adaptive grid-refinement approach with that of uniform meshing approach for various benchmark cases confirms its superiority in greatly enhancing the accuracy of the solution without increasing the number of unknown coefficients. A reduction in the local errors of the order of 10 2 has been achieved using the new approach in some cases

  10. A spatially adaptive grid-refinement approach for the finite element solution of the even-parity Boltzmann transport equation

    Energy Technology Data Exchange (ETDEWEB)

    Mirza, Anwar M. [Department of Computer Science, National University of Computer and Emerging Sciences, NUCES-FAST, A.K. Brohi Road, H-11, Islamabad (Pakistan)], E-mail: anwar.m.mirza@gmail.com; Iqbal, Shaukat [Faculty of Computer Science and Engineering, Ghulam Ishaq Khan (GIK) Institute of Engineering Science and Technology, Topi-23460, Swabi (Pakistan)], E-mail: shaukat@giki.edu.pk; Rahman, Faizur [Department of Physics, Allama Iqbal Open University, H-8 Islamabad (Pakistan)

    2007-07-15

    A spatially adaptive grid-refinement approach has been investigated to solve the even-parity Boltzmann transport equation. A residual based a posteriori error estimation scheme has been utilized for checking the approximate solutions for various finite element grids. The local particle balance has been considered as an error assessment criterion. To implement the adaptive approach, a computer program ADAFENT (adaptive finite elements for neutron transport) has been developed to solve the second order even-parity Boltzmann transport equation using K{sup +} variational principle for slab geometry. The program has a core K{sup +} module which employs Lagrange polynomials as spatial basis functions for the finite element formulation and Legendre polynomials for the directional dependence of the solution. The core module is called in by the adaptive grid generator to determine local gradients and residuals to explore the possibility of grid refinements in appropriate regions of the problem. The a posteriori error estimation scheme has been implemented in the outer grid refining iteration module. Numerical experiments indicate that local errors are large in regions where the flux gradients are large. A comparison of the spatially adaptive grid-refinement approach with that of uniform meshing approach for various benchmark cases confirms its superiority in greatly enhancing the accuracy of the solution without increasing the number of unknown coefficients. A reduction in the local errors of the order of 10{sup 2} has been achieved using the new approach in some cases.

  11. Collisionless Boltzmann equation approach for the study of stellar discs within barred galaxies

    Science.gov (United States)

    Bienaymé, Olivier

    2018-04-01

    We have studied the kinematics of stellar disc populations within the solar neighbourhood in order to find the imprints of the Galactic bar. We carried out the analysis by developing a numerical resolution of the 2D2V (two-dimensional in the physical space, 2D, and two-dimensional in the velocity motion, 2V) collisionless Boltzmann equation and modelling the stellar motions within the plane of the Galaxy within the solar neighbourhood. We recover similar results to those obtained by other authors using N-body simulations, but we are also able to numerically identify faint structures thanks to the cancelling of the Poisson noise. We find that the ratio of the bar pattern speed to the local circular frequency is in the range ΩB/Ω = 1.77 to 1.91. If the Galactic bar angle orientation is within the range from 24 to 45 degrees, the bar pattern speed is between 46 and 49 km s-1 kpc-1.

  12. Global existence proof for relativistic Boltzmann equation

    International Nuclear Information System (INIS)

    Dudynski, M.; Ekiel-Jezewska, M.L.

    1992-01-01

    The existence and causality of solutions to the relativistic Boltzmann equation in L 1 and in L loc 1 are proved. The solutions are shown to satisfy physically natural a priori bounds, time-independent in L 1 . The results rely upon new techniques developed for the nonrelativistic Boltzmann equation by DiPerna and Lions

  13. Lattice Boltzmann approach for complex nonequilibrium flows.

    Science.gov (United States)

    Montessori, A; Prestininzi, P; La Rocca, M; Succi, S

    2015-10-01

    We present a lattice Boltzmann realization of Grad's extended hydrodynamic approach to nonequilibrium flows. This is achieved by using higher-order isotropic lattices coupled with a higher-order regularization procedure. The method is assessed for flow across parallel plates and three-dimensional flows in porous media, showing excellent agreement of the mass flow with analytical and numerical solutions of the Boltzmann equation across the full range of Knudsen numbers, from the hydrodynamic regime to ballistic motion.

  14. Kinetic Boltzmann, Vlasov and Related Equations

    CERN Document Server

    Sinitsyn, Alexander; Vedenyapin, Victor

    2011-01-01

    Boltzmann and Vlasov equations played a great role in the past and still play an important role in modern natural sciences, technique and even philosophy of science. Classical Boltzmann equation derived in 1872 became a cornerstone for the molecular-kinetic theory, the second law of thermodynamics (increasing entropy) and derivation of the basic hydrodynamic equations. After modifications, the fields and numbers of its applications have increased to include diluted gas, radiation, neutral particles transportation, atmosphere optics and nuclear reactor modelling. Vlasov equation was obtained in

  15. An introduction to the theory of the Boltzmann equation

    CERN Document Server

    Harris, Stewart

    2011-01-01

    Boltzmann's equation (or Boltzmann-like equations) appears extensively in such disparate fields as laser scattering, solid-state physics, nuclear transport, and beyond the conventional boundaries of physics and engineering, in the fields of cellular proliferation and automobile traffic flow. This introductory graduate-level course for students of physics and engineering offers detailed presentations of the basic modern theory of Boltzmann's equation, including representative applications using both Boltzmann's equation and the model Boltzmann equations developed within the text. It emphasizes

  16. Singularities in the nonisotropic Boltzmann equation

    International Nuclear Information System (INIS)

    Garibotti, C.R.; Martiarena, M.L.; Zanette, D.

    1987-09-01

    We consider solutions of the nonlinear Boltzmann equation (NLBE) with anisotropic singular initial conditions, which give a simplified model for the penetration of a monochromatic beam on a rarified target. The NLBE is transformed into an integral equation which is solved iteratively and the evolution of the initial singularities is discussed. (author). 5 refs

  17. The Boltzmann equation in the difference formulation

    Energy Technology Data Exchange (ETDEWEB)

    Szoke, Abraham [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brooks III, Eugene D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-05-06

    First we recall the assumptions that are needed for the validity of the Boltzmann equation and for the validity of the compressible Euler equations. We then present the difference formulation of these equations and make a connection with the time-honored Chapman - Enskog expansion. We discuss the hydrodynamic limit and calculate the thermal conductivity of a monatomic gas, using a simplified approximation for the collision term. Our formulation is more consistent and simpler than the traditional derivation.

  18. Non-markovian boltzmann equation

    International Nuclear Information System (INIS)

    Kremp, D.; Bonitz, M.; Kraeft, W.D.; Schlanges, M.

    1997-01-01

    A quantum kinetic equation for strongly interacting particles (generalized binary collision approximation, ladder or T-matrix approximation) is derived in the framework of the density operator technique. In contrast to conventional kinetic theory, which is valid on large time scales as compared to the collision (correlation) time only, our approach retains the full time dependencies, especially also on short time scales. This means retardation and memory effects resulting from the dynamics of binary correlations and initial correlations are included. Furthermore, the resulting kinetic equation conserves total energy (the sum of kinetic and potential energy). The second aspect of generalization is the inclusion of many-body effects, such as self-energy, i.e., renormalization of single-particle energies and damping. To this end we introduce an improved closure relation to the Bogolyubov endash Born endash Green endash Kirkwood endash Yvon hierarchy. Furthermore, in order to express the collision integrals in terms of familiar scattering quantities (Mo/ller operator, T-matrix), we generalize the methods of quantum scattering theory by the inclusion of medium effects. To illustrate the effects of memory and damping, the results of numerical simulations are presented. copyright 1997 Academic Press, Inc

  19. CMB spectral distortions as solutions to the Boltzmann equations

    Energy Technology Data Exchange (ETDEWEB)

    Ota, Atsuhisa, E-mail: a.ota@th.phys.titech.ac.jp [Department of Physics, Tokyo Institute of Technology, Tokyo 152-8551 (Japan)

    2017-01-01

    We propose to re-interpret the cosmic microwave background spectral distortions as solutions to the Boltzmann equation. This approach makes it possible to solve the second order Boltzmann equation explicitly, with the spectral y distortion and the momentum independent second order temperature perturbation, while generation of μ distortion cannot be explained even at second order in this framework. We also extend our method to higher order Boltzmann equations systematically and find new type spectral distortions, assuming that the collision term is linear in the photon distribution functions, namely, in the Thomson scattering limit. As an example, we concretely construct solutions to the cubic order Boltzmann equation and show that the equations are closed with additional three parameters composed of a cubic order temperature perturbation and two cubic order spectral distortions. The linear Sunyaev-Zel'dovich effect whose momentum dependence is different from the usual y distortion is also discussed in the presence of the next leading order Kompaneets terms, and we show that higher order spectral distortions are also generated as a result of the diffusion process in a framework of higher order Boltzmann equations. The method may be applicable to a wider class of problems and has potential to give a general prescription to non-equilibrium physics.

  20. The polaron problem and the Boltzmann equation

    International Nuclear Information System (INIS)

    Devreese, J.

    1979-01-01

    A mobility theory for the Feynman polaron is developed. It is shown that the Boltzmann equation for polarons is valid for weak coupling and not too high electric fields. The analytical results indicate that for E → 0 the relaxation time approximation is valid. A comparison is made of three methods to calculate the mobility in a linear electron transport theory. An approximation to the Kubo formula, a mobility calculation using path integrals by Feynman and a calculation based on the displaced Maxwell distribution function are considered. The three methods lead to equivalent results in the weak scattering and small electric field limit

  1. Boltzmann equation and hydrodynamics beyond Navier-Stokes.

    Science.gov (United States)

    Bobylev, A V

    2018-04-28

    We consider in this paper the problem of derivation and regularization of higher (in Knudsen number) equations of hydrodynamics. The author's approach based on successive changes of hydrodynamic variables is presented in more detail for the Burnett level. The complete theory is briefly discussed for the linearized Boltzmann equation. It is shown that the best results in this case can be obtained by using the 'diagonal' equations of hydrodynamics. Rigorous estimates of accuracy of the Navier-Stokes and Burnett approximations are also presented.This article is part of the theme issue 'Hilbert's sixth problem'. © 2018 The Author(s).

  2. Metamaterial characterization using Boltzmann's kinetic equation for electrons

    DEFF Research Database (Denmark)

    Novitsky, Andrey; Zhukovsky, Sergei; Novitsky, D.

    2013-01-01

    Statistical properties of electrons in metals are taken into consideration to describe the microscopic motion of electrons. Assuming degenerate electron gas in metal, we introduce the Boltzmann kinetic equation to supplement Maxwell's equations. The solution of these equations clearly shows...

  3. New Poisson–Boltzmann type equations: one-dimensional solutions

    International Nuclear Information System (INIS)

    Lee, Chiun-Chang; Lee, Hijin; Hyon, YunKyong; Lin, Tai-Chia; Liu, Chun

    2011-01-01

    The Poisson–Boltzmann (PB) equation is conventionally used to model the equilibrium of bulk ionic species in different media and solvents. In this paper we study a new Poisson–Boltzmann type (PB n ) equation with a small dielectric parameter ε 2 and non-local nonlinearity which takes into consideration the preservation of the total amount of each individual ion. This equation can be derived from the original Poisson–Nernst–Planck system. Under Robin-type boundary conditions with various coefficient scales, we demonstrate the asymptotic behaviours of one-dimensional solutions of PB n equations as the parameter ε approaches zero. In particular, we show that in case of electroneutrality, i.e. α = β, solutions of 1D PB n equations have a similar asymptotic behaviour as those of 1D PB equations. However, as α ≠ β (non-electroneutrality), solutions of 1D PB n equations may have blow-up behaviour which cannot be found in 1D PB equations. Such a difference between 1D PB and PB n equations can also be verified by numerical simulations

  4. Non-linear effects in the Boltzmann equation

    International Nuclear Information System (INIS)

    Barrachina, R.O.

    1985-01-01

    The Boltzmann equation is studied by defining an integral transformation of the energy distribution function for an isotropic and homogeneous gas. This transformation may be interpreted as a linear superposition of equilibrium states with variable temperatures. It is shown that the temporal evolution features of the distribution function are determined by the singularities of said transformation. This method is applied to Maxwell and Very Hard Particle interaction models. For the latter, the solution of the Boltzmann equation with the solution of its linearized version is compared, finding out many basic discrepancies and non-linear effects. This gives a hint to propose a new rational approximation method with a clear physical meaning. Applying this technique, the relaxation features of the BKW (Bobylev, Krook anf Wu) mode is analyzed, finding a conclusive counter-example for the Krook and Wu conjecture. The anisotropic Boltzmann equation for Maxwell models is solved as an expansion in terms of the eigenfunctions of the corresponding linearized collision operator, finding interesting transient overpopulation and underpopulation effects at thermal energies as well as a new preferential spreading effect. By analyzing the initial collision, a criterion is established to deduce the general features of the final approach to equilibrium. Finally, it is shown how to improve the convergence of the eigenfunction expansion for high energy underpopulated distribution functions. As an application of this theory, the linear cascade model for sputtering is analyzed, thus finding out that many differences experimentally observed are due to non-linear effects. (M.E.L.) [es

  5. Monte Carlo variance reduction approaches for non-Boltzmann tallies

    International Nuclear Information System (INIS)

    Booth, T.E.

    1992-12-01

    Quantities that depend on the collective effects of groups of particles cannot be obtained from the standard Boltzmann transport equation. Monte Carlo estimates of these quantities are called non-Boltzmann tallies and have become increasingly important recently. Standard Monte Carlo variance reduction techniques were designed for tallies based on individual particles rather than groups of particles. Experience with non-Boltzmann tallies and analog Monte Carlo has demonstrated the severe limitations of analog Monte Carlo for many non-Boltzmann tallies. In fact, many calculations absolutely require variance reduction methods to achieve practical computation times. Three different approaches to variance reduction for non-Boltzmann tallies are described and shown to be unbiased. The advantages and disadvantages of each of the approaches are discussed

  6. An introduction to the Boltzmann equation and transport processes in gases

    CERN Document Server

    Kremer, Gilberto M; Colton, David

    2010-01-01

    This book covers classical kinetic theory of gases, presenting basic principles in a self-contained framework and from a more rigorous approach based on the Boltzmann equation. Uses methods in kinetic theory for determining the transport coefficients of gases.

  7. Exact results for the Boltzmann equation and Smoluchowski's coagulation equation

    International Nuclear Information System (INIS)

    Hendriks, E.M.

    1983-01-01

    Almost no analytical solutions have been found for realistic intermolecular forces, largely due to the complicated structure of the collision term which calls for the construction of simplified models, in which as many physical properties are maintained as possible. In the first three chapters of this thesis such model Boltzmann equations are studied. Only spatially homogeneous gases with isotropic distribution functions are considered. Chapter I considers transition kernels, chapter II persistent scattering models and chapter III very hard particles. The second part of this dissertation deals with Smoluchowski's coagulation equation for the size distribution function in a coagulating system, with chapters devoted to the following topics: kinetics of gelation and universality, coagulation equations with gelation and exactly soluble models of nucleation. (Auth./C.F.)

  8. Axisymmetric multiphase lattice Boltzmann method for generic equations of state

    NARCIS (Netherlands)

    Reijers, S.A.; Gelderblom, H.; Toschi, F.

    2016-01-01

    We present an axisymmetric lattice Boltzmann model based on the Kupershtokh et al. multiphase model that is capable of solving liquid–gas density ratios up to 103. Appropriate source terms are added to the lattice Boltzmann evolution equation to fully recover the axisymmetric multiphase conservation

  9. General relativistic Boltzmann equation, II: Manifestly covariant treatment

    NARCIS (Netherlands)

    Debbasch, F.; van Leeuwen, W.A.

    2009-01-01

    In a preceding article we presented a general relativistic treatment of the derivation of the Boltzmann equation. The four-momenta occurring in this formalism were all on-shell four-momenta, verifying the mass-shell restriction p(2) = m(2)c(2). Due to this restriction, the resulting Boltzmann

  10. Thermal equation of state for lattice Boltzmann gases

    International Nuclear Information System (INIS)

    Zheng, Ran

    2009-01-01

    The Galilean invariance and the induced thermo-hydrodynamics of the lattice Boltzmann Bhatnagar–Gross–Krook model are proposed together with their rigorous theoretical background. From the viewpoint of group invariance, recovering the Galilean invariance for the isothermal lattice Boltzmann Bhatnagar–Gross–Krook equation (LBGKE) induces a new natural thermal-dynamical system, which is compatible with the elementary statistical thermodynamics

  11. Boltzmann equations for a binary one-dimensional ideal gas.

    Science.gov (United States)

    Boozer, A D

    2011-09-01

    We consider a time-reversal invariant dynamical model of a binary ideal gas of N molecules in one spatial dimension. By making time-asymmetric assumptions about the behavior of the gas, we derive Boltzmann and anti-Boltzmann equations that describe the evolution of the single-molecule velocity distribution functions for an ensemble of such systems. We show that for a special class of initial states of the ensemble one can obtain an exact expression for the N-molecule velocity distribution function, and we use this expression to rigorously prove that the time-asymmetric assumptions needed to derive the Boltzmann and anti-Boltzmann equations hold in the limit of large N. Our results clarify some subtle issues regarding the origin of the time asymmetry of Boltzmann's H theorem.

  12. Normal solutions of the Boltzmann equation with small Knudsen number

    International Nuclear Information System (INIS)

    Ding, E.J.; Huang, Z.Q.

    1986-01-01

    A singular perturbation method is used to find the normal solutions of the Boltzmann equation with small Knudsen number. It is proved that the secular terms may be removed by improving the Hilbert expansion and the Enskog expansion

  13. Exact solutions for some discrete models of the Boltzmann equation

    International Nuclear Information System (INIS)

    Cabannes, H.; Hong Tiem, D.

    1987-01-01

    For the simplest of the discrete models of the Boltzmann equation: the Broadwell model, exact solutions have been obtained by Cornille in the form of bisolitons. In the present Note, we build exact solutions for more complex models [fr

  14. Supersymmetric electroweak baryogenesis, nonequilibrium field theory and quantum Boltzmann equations

    CERN Document Server

    Riotto, Antonio

    1998-01-01

    The closed time-path (CPT) formalism is a powerful Green's function formulation to describe nonequilibrium phenomena in field theory and it leads to a complete nonequilibrium quantum kinetic theory. In this paper we make use of the CPT formalism to write down a set of quantum Boltzmann equations describing the local number density asymmetries of the particles involved in supersymmetric electroweak baryogenesis. These diffusion equations automatically and self-consistently incorporate the CP-violating sources which fuel baryogenesis when transport properties allow the CP-violating charges to diffuse in front of the bubble wall separating the broken from the unbroken phase at the electroweak phase transition. This is a significant improvement with respect to recent approaches where the CP-violating sources are inserted by hand into the diffusion equations. Furthermore, the CP-violating sources and the particle number changing interactions manifest ``memory'' effects which are typical of the quantum transp ort t...

  15. A modified Poisson-Boltzmann equation applied to protein adsorption.

    Science.gov (United States)

    Gama, Marlon de Souza; Santos, Mirella Simões; Lima, Eduardo Rocha de Almeida; Tavares, Frederico Wanderley; Barreto, Amaro Gomes Barreto

    2018-01-05

    Ion-exchange chromatography has been widely used as a standard process in purification and analysis of protein, based on the electrostatic interaction between the protein and the stationary phase. Through the years, several approaches are used to improve the thermodynamic description of colloidal particle-surface interaction systems, however there are still a lot of gaps specifically when describing the behavior of protein adsorption. Here, we present an improved methodology for predicting the adsorption equilibrium constant by solving the modified Poisson-Boltzmann (PB) equation in bispherical coordinates. By including dispersion interactions between ions and protein, and between ions and surface, the modified PB equation used can describe the Hofmeister effects. We solve the modified Poisson-Boltzmann equation to calculate the protein-surface potential of mean force, treated as spherical colloid-plate system, as a function of process variables. From the potential of mean force, the Henry constants of adsorption, for different proteins and surfaces, are calculated as a function of pH, salt concentration, salt type, and temperature. The obtained Henry constants are compared with experimental data for several isotherms showing excellent agreement. We have also performed a sensitivity analysis to verify the behavior of different kind of salts and the Hofmeister effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Analysis of spectral methods for the homogeneous Boltzmann equation

    KAUST Repository

    Filbet, Francis

    2011-04-01

    The development of accurate and fast algorithms for the Boltzmann collision integral and their analysis represent a challenging problem in scientific computing and numerical analysis. Recently, several works were devoted to the derivation of spectrally accurate schemes for the Boltzmann equation, but very few of them were concerned with the stability analysis of the method. In particular there was no result of stability except when the method was modified in order to enforce the positivity preservation, which destroys the spectral accuracy. In this paper we propose a new method to study the stability of homogeneous Boltzmann equations perturbed by smoothed balanced operators which do not preserve positivity of the distribution. This method takes advantage of the "spreading" property of the collision, together with estimates on regularity and entropy production. As an application we prove stability and convergence of spectral methods for the Boltzmann equation, when the discretization parameter is large enough (with explicit bound). © 2010 American Mathematical Society.

  17. Analysis of spectral methods for the homogeneous Boltzmann equation

    KAUST Repository

    Filbet, Francis; Mouhot, Clé ment

    2011-01-01

    The development of accurate and fast algorithms for the Boltzmann collision integral and their analysis represent a challenging problem in scientific computing and numerical analysis. Recently, several works were devoted to the derivation of spectrally accurate schemes for the Boltzmann equation, but very few of them were concerned with the stability analysis of the method. In particular there was no result of stability except when the method was modified in order to enforce the positivity preservation, which destroys the spectral accuracy. In this paper we propose a new method to study the stability of homogeneous Boltzmann equations perturbed by smoothed balanced operators which do not preserve positivity of the distribution. This method takes advantage of the "spreading" property of the collision, together with estimates on regularity and entropy production. As an application we prove stability and convergence of spectral methods for the Boltzmann equation, when the discretization parameter is large enough (with explicit bound). © 2010 American Mathematical Society.

  18. Celebrating Cercignani's conjecture for the Boltzmann equation

    KAUST Repository

    Villani, Cédric

    2011-01-01

    Cercignani\\'s conjecture assumes a linear inequality between the entropy and entropy production functionals for Boltzmann\\'s nonlinear integral operator in rarefied gas dynamics. Related to the field of logarithmic Sobolev inequalities and spectral gap inequalities, this issue has been at the core of the renewal of the mathematical theory of convergence to thermodynamical equilibrium for rarefied gases over the past decade. In this review paper, we survey the various positive and negative results which were obtained since the conjecture was proposed in the 1980s. © American Institute of Mathematical Sciences.

  19. Simplified simulation of Boltzmann-Langevin equation

    International Nuclear Information System (INIS)

    Ayik, S.; Randrup, J.

    1994-01-01

    We briefly recall the Boltzmann-Langevin model of nuclear dynamics. We then summarize recent progress in deriving approximate analytical expressions for the associated transport coefficients and describe a numerical method for simulating the stochastic evolution of the phase-space density. (orig.)

  20. From Boltzmann equations to steady wall velocities

    International Nuclear Information System (INIS)

    Konstandin, Thomas; Rues, Ingo; Nardini, Germano; California Univ., Santa Barbara, CA

    2014-07-01

    By means of a relativistic microscopic approach we calculate the expansion velocity of bubbles generated during a first-order electroweak phase transition. In particular, we use the gradient expansion of the Kadanoff-Baym equations to set up the fluid system. This turns out to be equivalent to the one found in the semi-classical approach in the non-relativistic limit. Finally, by including hydrodynamic deflagration effects and solving the Higgs equations of motion in the fluid, we determine velocity and thickness of the bubble walls. Our findings are compared with phenomenological models of wall velocities. As illustrative examples, we apply these results to three theories providing first-order phase transitions with a particle content in the thermal plasma that resembles the Standard Model.

  1. Computational Aeroacoustics Using the Generalized Lattice Boltzmann Equation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall objective of the proposed project is to develop a generalized lattice Boltzmann (GLB) approach as a potential computational aeroacoustics (CAA) tool for...

  2. Information Geometry Formalism for the Spatially Homogeneous Boltzmann Equation

    Directory of Open Access Journals (Sweden)

    Bertrand Lods

    2015-06-01

    Full Text Available Information Geometry generalizes to infinite dimension by modeling the tangent space of the relevant manifold of probability densities with exponential Orlicz spaces. We review here several properties of the exponential manifold on a suitable set Ɛ of mutually absolutely continuous densities. We study in particular the fine properties of the Kullback-Liebler divergence in this context. We also show that this setting is well-suited for the study of the spatially homogeneous Boltzmann equation if Ɛ is a set of positive densities with finite relative entropy with respect to the Maxwell density. More precisely, we analyze the Boltzmann operator in the geometric setting from the point of its Maxwell’s weak form as a composition of elementary operations in the exponential manifold, namely tensor product, conditioning, marginalization and we prove in a geometric way the basic facts, i.e., the H-theorem. We also illustrate the robustness of our method by discussing, besides the Kullback-Leibler divergence, also the property of Hyvärinen divergence. This requires us to generalize our approach to Orlicz–Sobolev spaces to include derivatives.

  3. Celebrating Cercignani's conjecture for the Boltzmann equation

    KAUST Repository

    Villani, Cé dric; Mouhot, Clé ment; Desvillettes, Laurent

    2011-01-01

    Cercignani's conjecture assumes a linear inequality between the entropy and entropy production functionals for Boltzmann's nonlinear integral operator in rarefied gas dynamics. Related to the field of logarithmic Sobolev inequalities and spectral gap inequalities, this issue has been at the core of the renewal of the mathematical theory of convergence to thermodynamical equilibrium for rarefied gases over the past decade. In this review paper, we survey the various positive and negative results which were obtained since the conjecture was proposed in the 1980s. © American Institute of Mathematical Sciences.

  4. Structural interactions in ionic liquids linked to higher-order Poisson-Boltzmann equations

    Science.gov (United States)

    Blossey, R.; Maggs, A. C.; Podgornik, R.

    2017-06-01

    We present a derivation of generalized Poisson-Boltzmann equations starting from classical theories of binary fluid mixtures, employing an approach based on the Legendre transform as recently applied to the case of local descriptions of the fluid free energy. Under specific symmetry assumptions, and in the linearized regime, the Poisson-Boltzmann equation reduces to a phenomenological equation introduced by Bazant et al. [Phys. Rev. Lett. 106, 046102 (2011)], 10.1103/PhysRevLett.106.046102, whereby the structuring near the surface is determined by bulk coefficients.

  5. Applications of Boltzmann Langevin equation to nuclear collisions

    International Nuclear Information System (INIS)

    Suraud, E.; Belkacem, M.; Stryjewski, J.; Ayik, S.

    1991-01-01

    An approximate method for obtaining numerical solutions of the Boltzmann-Langevin equation is proposed. The method is applied to calculate the time evolution of the mean value and dispersion of the quadrupole and octupole moments of the momentum distribution in nucleus-nucleus collisions, and some consequences are discussed

  6. Boltzmann-Langevin equation, dynamical instability and multifragmentation

    International Nuclear Information System (INIS)

    Feng-Shou Zhang

    1993-02-01

    By using simulations of the Boltzmann-Langevin equation which incorporates dynamical fluctuations beyond usual transport theories and by coupling it with a coalescence model, we obtain information on multifragmentation in heavy-ion collisions. From a calculation of the 40 Ca + 40 Ca system, we recover some trends of recent multifragmentation data

  7. A fast iterative scheme for the linearized Boltzmann equation

    Science.gov (United States)

    Wu, Lei; Zhang, Jun; Liu, Haihu; Zhang, Yonghao; Reese, Jason M.

    2017-06-01

    Iterative schemes to find steady-state solutions to the Boltzmann equation are efficient for highly rarefied gas flows, but can be very slow to converge in the near-continuum flow regime. In this paper, a synthetic iterative scheme is developed to speed up the solution of the linearized Boltzmann equation by penalizing the collision operator L into the form L = (L + Nδh) - Nδh, where δ is the gas rarefaction parameter, h is the velocity distribution function, and N is a tuning parameter controlling the convergence rate. The velocity distribution function is first solved by the conventional iterative scheme, then it is corrected such that the macroscopic flow velocity is governed by a diffusion-type equation that is asymptotic-preserving into the Navier-Stokes limit. The efficiency of this new scheme is assessed by calculating the eigenvalue of the iteration, as well as solving for Poiseuille and thermal transpiration flows. We find that the fastest convergence of our synthetic scheme for the linearized Boltzmann equation is achieved when Nδ is close to the average collision frequency. The synthetic iterative scheme is significantly faster than the conventional iterative scheme in both the transition and the near-continuum gas flow regimes. Moreover, due to its asymptotic-preserving properties, the synthetic iterative scheme does not need high spatial resolution in the near-continuum flow regime, which makes it even faster than the conventional iterative scheme. Using this synthetic scheme, with the fast spectral approximation of the linearized Boltzmann collision operator, Poiseuille and thermal transpiration flows between two parallel plates, through channels of circular/rectangular cross sections and various porous media are calculated over the whole range of gas rarefaction. Finally, the flow of a Ne-Ar gas mixture is solved based on the linearized Boltzmann equation with the Lennard-Jones intermolecular potential for the first time, and the difference

  8. Weighted particle method for solving the Boltzmann equation

    International Nuclear Information System (INIS)

    Tohyama, M.; Suraud, E.

    1990-01-01

    We propose a new, deterministic, method of solution of the nuclear Boltzmann equation. In this Weighted Particle Method two-body collisions are treated by a Master equation for an occupation probability of each numerical particle. We apply the method to the quadrupole motion of 12 C. A comparison with usual stochastic methods is made. Advantages and disadvantages of the Weighted Particle Method are discussed

  9. Comment on ''Boltzmann equation and the conservation of particle number''

    International Nuclear Information System (INIS)

    Zanette, D.

    1990-09-01

    In a recent paper (Z. Banggu, Phys. Rev. A 42, 761 (1990)) it is argued that some solutions of the Boltzmann equation do not satisfy particle conservation as a consequence of the independence of velocity on position. In this comment, the arguments and conclusions of that paper are discussed. In particular, it is stressed that the temporal series used for solving the kinetic equation are generally divergent. A discussion about the particle conservation in its solutions is also provided. (author). 4 refs

  10. Monte Carlo method implementation on IPSC 860 for the resolution of the Boltzmann equation

    International Nuclear Information System (INIS)

    AloUGES, Francois

    1993-01-01

    This note deals with the implementation on a massively parallel machine (IPSC-860) of a Monte-Carlo method aiming at resolving the Boltzmann equation. The parallelism of the machine incites to consider a multi-domain approach and poses the problem of the automatic generation of local meshes from a non-structured 3-D global mesh [fr

  11. Temperature waves and the Boltzmann kinetic equation for phonons

    International Nuclear Information System (INIS)

    Urushev, D.; Borisov, M.; Vavrek, A.

    1988-01-01

    The ordinary parabolic equation for thermal conduction based on the Fourier empiric law as well as the generalized thermal conduction equation based on the Maxwell law have been derived from the Boltzmann equation for the phonons within the relaxation time approximation. The temperature waves of the so-called second sound in crystals at low temperatures are transformed into Fourier waves at low frequencies with respect to the characteristic frequency of the U-processes. These waves are transformed into temperature waves similar to the second sound waves in He II at frequences higher than the U-processes characteristic. 1 fig., 19 refs

  12. A lattice based solution of the collisional Boltzmann equation with applications to microchannel flows

    International Nuclear Information System (INIS)

    Green, B I; Vedula, Prakash

    2013-01-01

    An alternative approach for solution of the collisional Boltzmann equation for a lattice architecture is presented. In the proposed method, termed the collisional lattice Boltzmann method (cLBM), the effects of spatial transport are accounted for via a streaming operator, using a lattice framework, and the effects of detailed collisional interactions are accounted for using the full collision operator of the Boltzmann equation. The latter feature is in contrast to the conventional lattice Boltzmann methods (LBMs) where collisional interactions are modeled via simple equilibrium based relaxation models (e.g. BGK). The underlying distribution function is represented using weights and fixed velocity abscissas according to the lattice structure. These weights are evolved based on constraints on the evolution of generalized moments of velocity according to the collisional Boltzmann equation. It can be shown that the collision integral can be reduced to a summation of elementary integrals, which can be analytically evaluated. The proposed method is validated using studies of canonical microchannel Couette and Poiseuille flows (both body force and pressure driven) and the results are found to be in good agreement with those obtained from conventional LBMs and experiments where available. Unlike conventional LBMs, the proposed method does not involve any equilibrium based approximations and hence can be useful for simulation of highly nonequilibrium flows (for a range of Knudsen numbers) using a lattice framework. (paper)

  13. Hydrodynamic Limit with Geometric Correction of Stationary Boltzmann Equation

    OpenAIRE

    Wu, Lei

    2014-01-01

    We consider the hydrodynamic limit of a stationary Boltzmann equation in a unit plate with in-flow boundary. We prove the solution can be approximated in $L^{\\infty}$ by the sum of interior solution which satisfies steady incompressible Navier-Stokes-Fourier system, and boundary layer with geometric correction. Also, we construct a counterexample to the classical theory which states the behavior of solution near boundary can be described by the Knudsen layer derived from the Milne problem.

  14. Hypersonic Shock Wave Computations Using the Generalized Boltzmann Equation

    Science.gov (United States)

    Agarwal, Ramesh; Chen, Rui; Cheremisin, Felix G.

    2006-11-01

    Hypersonic shock structure in diatomic gases is computed by solving the Generalized Boltzmann Equation (GBE), where the internal and translational degrees of freedom are considered in the framework of quantum and classical mechanics respectively [1]. The computational framework available for the standard Boltzmann equation [2] is extended by including both the rotational and vibrational degrees of freedom in the GBE. There are two main difficulties encountered in computation of high Mach number flows of diatomic gases with internal degrees of freedom: (1) a large velocity domain is needed for accurate numerical description of the distribution function resulting in enormous computational effort in calculation of the collision integral, and (2) about 50 energy levels are needed for accurate representation of the rotational spectrum of the gas. Our methodology addresses these problems, and as a result the efficiency of calculations has increased by several orders of magnitude. The code has been validated by computing the shock structure in Nitrogen for Mach numbers up to 25 including the translational and rotational degrees of freedom. [1] Beylich, A., ``An Interlaced System for Nitrogen Gas,'' Proc. of CECAM Workshop, ENS de Lyon, France, 2000. [2] Cheremisin, F., ``Solution of the Boltzmann Kinetic Equation for High Speed Flows of a Rarefied Gas,'' Proc. of the 24th Int. Symp. on Rarefied Gas Dynamics, Bari, Italy, 2004.

  15. Transition flow ion transport via integral Boltzmann equation

    International Nuclear Information System (INIS)

    Darcie, T.E.

    1983-10-01

    A new approach is developed to solve the Integral Boltzmann Equation for the evolving velocity distribution of a source of ions, undergoing electrostatic acceleration through a neutral gas target. The theory is applicable to arbitrarily strong electric fields, any ion/neutral mass ratio greater than unity, and is not limited to spatially isotropic gas targets. A hard sphere collision model is used, with a provision for inelasticity. Both axial and radial velocity distributions are calculated for applications where precollision radial velocities are negligible, as is the case for ion beam extractions from high pressure sources. Theoretical predictions are tested through an experiment in which an atmospheric pressure ion source is coupled to a high vacuum energy analyser. Excellent agreement results for configurations in which the radial velocity remains small. Velocity distributions are applied to predicting the efficiency of coupling an atmospheric pressure ion source to a quadrupole mass spectrometer and results clearly indicate the most desirable extracting configuration. A method is devised to calculate ion-molecule hard sphere collision cross sections for easily fragmented organic ions

  16. High energy ion range and deposited energy calculation using the Boltzmann-Fokker-Planck splitting of the Boltzmann transport equation

    International Nuclear Information System (INIS)

    Mozolevski, I.E.

    2001-01-01

    We consider the splitting of the straight-ahead Boltzmann transport equation in the Boltzmann-Fokker-Planck equation, decomposing the differential cross-section into a singular part, corresponding to small energy transfer events, and in a regular one, which corresponds to large energy transfer. The convergence of implantation profile, nuclear and electronic energy depositions, calculated from the Boltzmann-Fokker-Planck equation, to the respective exact distributions, calculated from Monte-Carlo method, was exanimate in a large-energy interval for various values of splitting parameter and for different ion-target mass relations. It is shown that for the universal potential there exists an optimal value of splitting parameter, for which range and deposited energy distributions, calculated from the Boltzmann-Fokker-Planck equation, accurately approximate the exact distributions and which minimizes the computational expenses

  17. A lattice Boltzmann model for the Burgers-Fisher equation.

    Science.gov (United States)

    Zhang, Jianying; Yan, Guangwu

    2010-06-01

    A lattice Boltzmann model is developed for the one- and two-dimensional Burgers-Fisher equation based on the method of the higher-order moment of equilibrium distribution functions and a series of partial differential equations in different time scales. In order to obtain the two-dimensional Burgers-Fisher equation, vector sigma(j) has been used. And in order to overcome the drawbacks of "error rebound," a new assumption of additional distribution is presented, where two additional terms, in first order and second order separately, are used. Comparisons with the results obtained by other methods reveal that the numerical solutions obtained by the proposed method converge to exact solutions. The model under new assumption gives better results than that with second order assumption. (c) 2010 American Institute of Physics.

  18. Exact solutions to the Boltzmann equation by mapping the scattering integral into a differential operator

    International Nuclear Information System (INIS)

    Zabadal, Jorge; Borges, Volnei; Van der Laan, Flavio T.; Santos, Marcio G.

    2015-01-01

    This work presents a new analytical method for solving the Boltzmann equation. In this formulation, a linear differential operator is applied over the Boltzmann model, in order to produce a partial differential equation in which the scattering term is absent. This auxiliary equation is solved via reduction of order. The exact solution obtained is employed to define a precursor for the buildup factor. (author)

  19. Exact solutions to the Boltzmann equation by mapping the scattering integral into a differential operator

    Energy Technology Data Exchange (ETDEWEB)

    Zabadal, Jorge; Borges, Volnei; Van der Laan, Flavio T., E-mail: jorge.zabadal@ufrgs.br, E-mail: borges@ufrgs.br, E-mail: ftvdl@ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Departamento de Engenharia Mecanica. Grupo de Pesquisas Radiologicas; Ribeiro, Vinicius G., E-mail: vinicius_ribeiro@uniritter.edu.br [Centro Universitario Ritter dos Reis (UNIRITTER), Porto Alegre, RS (Brazil); Santos, Marcio G., E-mail: phd.marcio@gmail.com [Universidade Federal do Rio Grande do Sul (UFRGS), Tramandai, RS (Brazil). Departamento Interdisciplinar do Campus Litoral Norte

    2015-07-01

    This work presents a new analytical method for solving the Boltzmann equation. In this formulation, a linear differential operator is applied over the Boltzmann model, in order to produce a partial differential equation in which the scattering term is absent. This auxiliary equation is solved via reduction of order. The exact solution obtained is employed to define a precursor for the buildup factor. (author)

  20. Recent applications of the Boltzmann master equation to heavy ion precompound decay phenomena

    International Nuclear Information System (INIS)

    Blann, M.; Remington, B.A.

    1988-06-01

    The Boltzmann master equation (BME) is described and used as a tool to interpret preequilibrium neutron emission from heavy ion collisions gated on evaporation residue or fission fragments. The same approach is used to interpret neutron spectra gated on deep inelastic and quasi-elastic heavy ion collisions. Less successful applications of BME to proton inclusive data with 40 MeV/u incident 12 C ions are presented, and improvements required in the exciton injection term are discussed

  1. Nonaligned shocks for discrete velocity models of the Boltzmann equation

    Directory of Open Access Journals (Sweden)

    J. M. Greenberg

    1991-05-01

    Full Text Available At the conclusion of I. Bonzani's presentation on the existence of structured shock solutions to the six-velocity, planar, discrete Boltzmann equation (with binary and triple collisions, Greenberg asked whether such solutions were possible in directions e(α=(cosα ,sinα when α was not one of the particle flow directions. This question generated a spirited discussion but the question was still open at the conclusion of the conference. In this note the author will provide a partial resolution to the question raised above. Using formal perturbation arguments he will produce approximate solutions to the equation considered by Bonzani which represent traveling waves propagating in any direction e(α=(cosα ,sinα.

  2. Global Well-Posedness of the Boltzmann Equation with Large Amplitude Initial Data

    Science.gov (United States)

    Duan, Renjun; Huang, Feimin; Wang, Yong; Yang, Tong

    2017-07-01

    The global well-posedness of the Boltzmann equation with initial data of large amplitude has remained a long-standing open problem. In this paper, by developing a new {L^∞_xL^1v\\cap L^∞_{x,v}} approach, we prove the global existence and uniqueness of mild solutions to the Boltzmann equation in the whole space or torus for a class of initial data with bounded velocity-weighted {L^∞} norm under some smallness condition on the {L^1_xL^∞_v} norm as well as defect mass, energy and entropy so that the initial data allow large amplitude oscillations. Both the hard and soft potentials with angular cut-off are considered, and the large time behavior of solutions in the {L^∞_{x,v}} norm with explicit rates of convergence are also studied.

  3. Electron kinetics with attachment and ionization from higher order solutions of Boltzmann's equation

    International Nuclear Information System (INIS)

    Winkler, R.; Wilhelm, J.; Braglia, G.L.

    1989-01-01

    An appropriate approach is presented for solving the Boltzmann equation for electron swarms and nonstationary weakly ionized plasmas in the hydrodynamic stage, including ionization and attachment processes. Using a Legendre-polynomial expansion of the electron velocity distribution function the resulting eigenvalue problem has been solved at any even truncation-order. The technique has been used to study velocity distribution, mean collision frequencies, energy transfer rates, nonstationary behaviour and power balance in hydrodynamic stage, of electrons in a model plasma and a plasma of pure SF 6 . The calculations have been performed for increasing approximation-orders, up to the converged solution of the problem. In particular, the transition from dominant attachment to prevailing ionization when increasing the field strength has been studied. Finally the establishment of the hydrodynamic stage for a selected case in the model plasma has been investigated by solving the nonstationary, spatially homogeneous Boltzmann equation in twoterm approximation. (author)

  4. Heat conduction in multifunctional nanotrusses studied using Boltzmann transport equation

    International Nuclear Information System (INIS)

    Dou, Nicholas G.; Minnich, Austin J.

    2016-01-01

    Materials that possess low density, low thermal conductivity, and high stiffness are desirable for engineering applications, but most materials cannot realize these properties simultaneously due to the coupling between them. Nanotrusses, which consist of hollow nanoscale beams architected into a periodic truss structure, can potentially break these couplings due to their lattice architecture and nanoscale features. In this work, we study heat conduction in the exact nanotruss geometry by solving the frequency-dependent Boltzmann transport equation using a variance-reduced Monte Carlo algorithm. We show that their thermal conductivity can be described with only two parameters, solid fraction and wall thickness. Our simulations predict that nanotrusses can realize unique combinations of mechanical and thermal properties that are challenging to achieve in typical materials

  5. Matrix-valued Boltzmann equation for the nonintegrable Hubbard chain.

    Science.gov (United States)

    Fürst, Martin L R; Mendl, Christian B; Spohn, Herbert

    2013-07-01

    The standard Fermi-Hubbard chain becomes nonintegrable by adding to the nearest neighbor hopping additional longer range hopping amplitudes. We assume that the quartic interaction is weak and investigate numerically the dynamics of the chain on the level of the Boltzmann type kinetic equation. Only the spatially homogeneous case is considered. We observe that the huge degeneracy of stationary states in the case of nearest neighbor hopping is lost and the convergence to the thermal Fermi-Dirac distribution is restored. The convergence to equilibrium is exponentially fast. However for small next-nearest neighbor hopping amplitudes one has a rapid relaxation towards the manifold of quasistationary states and slow relaxation to the final equilibrium state.

  6. A discontinuous Galerkin finite-element method for a 1D prototype of the Boltzmann equation

    NARCIS (Netherlands)

    Hoitinga, W.; Brummelen, van E.H.

    2011-01-01

    To develop and analyze new computational techniques for the Boltzmann equation based on model or approximation adaptivity, it is imperative to have disposal of a compliant model problem that displays the essential characteristics of the Boltzmann equation and that admits the extraction of highly

  7. Boltzmann

    International Nuclear Information System (INIS)

    Lin, X.

    1991-01-01

    This paper reports the development of an object-oriented programming methodology for particle simulations. It is established on the [m reductionist] view that many physical phenomena cana be reduced to many-body problems. By doing the reduction, many seemly unrelated physical phenomena can be simulated in a systematic way and a high-level programming system can be constructed to facilitate the programming and the solution of the simulations. In the object-oriented particle simulation methodology, a hierarchy of abstract particles is defined to represent a variety of characteristics in physical system simulations. A simulation program is constructed from particles derived from the abstract particles. The object- oriented particle simulation methodology provides a unifying modeling and simulation framework for a variety of simulation applications with the use of particle methods. It allows easy composition of simulation programs from predefined software modules and facilitates software reusability. It greatly increase the productivity of simulation program constructions. Boltzmann (after Ludwig Boltzmann, 1844-1906) is a prototype programming system in the object-oriented particle simulation methodology. Boltzmann is implemented in C++ and the X Window System. It contains a library of data types and functions that support simulations in particle methods. Moreover, it provides a visualization window to support friendly user-computer interaction. Examples of the application of the Boltzmann programming system are presented. The effectiveness of the object-oriented particle simulation methodology is demonstrated. A user's manual is included in the appendix

  8. An efficient numerical method for solving the Boltzmann equation in multidimensions

    Science.gov (United States)

    Dimarco, Giacomo; Loubère, Raphaël; Narski, Jacek; Rey, Thomas

    2018-01-01

    In this paper we deal with the extension of the Fast Kinetic Scheme (FKS) (Dimarco and Loubère, 2013 [26]) originally constructed for solving the BGK equation, to the more challenging case of the Boltzmann equation. The scheme combines a robust and fast method for treating the transport part based on an innovative Lagrangian technique supplemented with conservative fast spectral schemes to treat the collisional operator by means of an operator splitting approach. This approach along with several implementation features related to the parallelization of the algorithm permits to construct an efficient simulation tool which is numerically tested against exact and reference solutions on classical problems arising in rarefied gas dynamic. We present results up to the 3 D × 3 D case for unsteady flows for the Variable Hard Sphere model which may serve as benchmark for future comparisons between different numerical methods for solving the multidimensional Boltzmann equation. For this reason, we also provide for each problem studied details on the computational cost and memory consumption as well as comparisons with the BGK model or the limit model of compressible Euler equations.

  9. On kinetic Boltzmann equations and related hydrodynamic flows with dry viscosity

    Directory of Open Access Journals (Sweden)

    Nikolai N. Bogoliubov (Jr.

    2007-01-01

    Full Text Available A two-component particle model of Boltzmann-Vlasov type kinetic equations in the form of special nonlinear integro-differential hydrodynamic systems on an infinite-dimensional functional manifold is discussed. We show that such systems are naturally connected with the nonlinear kinetic Boltzmann-Vlasov equations for some one-dimensional particle flows with pointwise interaction potential between particles. A new type of hydrodynamic two-component Benney equations is constructed and their Hamiltonian structure is analyzed.

  10. Boltzmann, Gibbs and Darwin-Fowler approaches in parastatistics

    International Nuclear Information System (INIS)

    Ponczek, R.L.; Yan, C.C.

    1976-01-01

    Derivations of the equilibrium values of occupation numbers are made using three approaches, namely, the Boltzmann 'elementary' one, the ensemble method of Gibbs, and that of Darwin and Fowler as well [pt

  11. The Boltzmann-Langevin Equation derived from the real-time path formalism

    International Nuclear Information System (INIS)

    Suraud, E.; Reinhard, P.G.

    1991-01-01

    We derive the Boltzmann-Langevin equation using Green's functions techniques in the real-time path formalism. We start from the Martin-Schwinger hierarchy and close it approximately at the two-body level. A careful discussion of the initial conditions for the free two-body Green's function provides the flexibility to recover the discarded correlations as fluctuations leading to the Langevin force. The derivation is generalized to the T-matrix approach which allows to prove that one can use the same effective interaction in the mean-field as well as in the collision term and Langevin force

  12. On the fluid-dynamical approximation to the Boltzmann equation at the level of the Navier-Stokes equation

    International Nuclear Information System (INIS)

    Kawashima, S.; Matsumara, A.; Nishida, T.

    1979-01-01

    The compressible and heat-conductive Navier-Stokes equation obtained as the second approximation of the formal Chapman-Enskog expansion is investigated on its relations to the original nonlinear Boltzmann equation and also to the incompressible Navier-Stokes equation. The solutions of the Boltzmann equation and the incompressible Navier-Stokes equation for small initial data are proved to be asymptotically equivalent (mod decay rate tsup(-5/4)) as t → + infinitely to that of the compressible Navier-Stokes equation for the corresponding initial data. (orig.) 891 HJ/orig. 892 MKO

  13. Application of Littlewood-Paley decomposition to the regularity of Boltzmann type kinetic equations

    International Nuclear Information System (INIS)

    EL Safadi, M.

    2007-03-01

    We study the regularity of kinetic equations of Boltzmann type.We use essentially Littlewood-Paley method from harmonic analysis, consisting mainly in working with dyadics annulus. We shall mainly concern with the homogeneous case, where the solution f(t,x,v) depends only on the time t and on the velocities v, while working with realistic and singular cross-sections (non cutoff). In the first part, we study the particular case of Maxwellian molecules. Under this hypothesis, the structure of the Boltzmann operator and his Fourier transform write in a simple form. We show a global C ∞ regularity. Then, we deal with the case of general cross-sections with 'hard potential'. We are interested in the Landau equation which is limit equation to the Boltzmann equation, taking in account grazing collisions. We prove that any weak solution belongs to Schwartz space S. We demonstrate also a similar regularity for the case of Boltzmann equation. Let us note that our method applies directly for all dimensions, and proofs are often simpler compared to other previous ones. Finally, we finish with Boltzmann-Dirac equation. In particular, we adapt the result of regularity obtained in Alexandre, Desvillettes, Wennberg and Villani work, using the dissipation rate connected with Boltzmann-Dirac equation. (author)

  14. A new lattice Boltzmann equation to simulate density-driven convection of carbon dioxide

    KAUST Repository

    Allen, Rebecca; Reis, Tim; Sun, Shuyu

    2013-01-01

    -driven convection becomes an important transport process to model. However, the challenge lies in simulating this transport process accurately with high spatial resolution and low CPU cost. This issue can be addressed by using the lattice Boltzmann equation (LBE

  15. A conservative spectral method for the Boltzmann equation with anisotropic scattering and the grazing collisions limit

    International Nuclear Information System (INIS)

    Gamba, Irene M.; Haack, Jeffrey R.

    2014-01-01

    We present the formulation of a conservative spectral method for the Boltzmann collision operator with anisotropic scattering cross-sections. The method is an extension of the conservative spectral method of Gamba and Tharkabhushanam [17,18], which uses the weak form of the collision operator to represent the collisional term as a weighted convolution in Fourier space. The method is tested by computing the collision operator with a suitably cut-off angular cross section and comparing the results with the solution of the Landau equation. We analytically study the convergence rate of the Fourier transformed Boltzmann collision operator in the grazing collisions limit to the Fourier transformed Landau collision operator under the assumption of some regularity and decay conditions of the solution to the Boltzmann equation. Our results show that the angular singularity which corresponds to the Rutherford scattering cross section is the critical singularity for which a grazing collision limit exists for the Boltzmann operator. Additionally, we numerically study the differences between homogeneous solutions of the Boltzmann equation with the Rutherford scattering cross section and an artificial cross section, which give convergence to solutions of the Landau equation at different asymptotic rates. We numerically show the rate of the approximation as well as the consequences for the rate of entropy decay for homogeneous solutions of the Boltzmann equation and Landau equation

  16. Quadratic inner element subgrid scale discretisation of the Boltzmann transport equation

    International Nuclear Information System (INIS)

    Baker, C.M.J.; Buchan, A.G.; Pain, C.C.; Tollit, B.; Eaton, M.D.; Warner, P.

    2012-01-01

    This paper explores the application of the inner element subgrid scale method to the Boltzmann transport equation using quadratic basis functions. Previously, only linear basis functions for both the coarse scale and the fine scale were considered. This paper, therefore, analyses the advantages of using different coarse and subgrid basis functions for increasing the accuracy of the subgrid scale method. The transport of neutral particle radiation may be described by the Boltzmann transport equation (BTE) which, due to its 7 dimensional phase space, is computationally expensive to resolve. Multi-scale methods offer an approach to efficiently resolve the spatial dimensions of the BTE by separating the solution into its coarse and fine scales and formulating a solution whereby only the computationally efficient coarse scales need to be solved. In previous work an inner element subgrid scale method was developed that applied a linear continuous and discontinuous finite element method to represent the solution’s coarse and fine scale components. This approach was shown to generate efficient and stable solutions, and so this article continues its development by formulating higher order quadratic finite element expansions over the continuous and discontinuous scales. Here it is shown that a solution’s convergence can be improved significantly using higher order basis functions. Furthermore, by using linear finite elements to represent coarse scales in combination with quadratic fine scales, convergence can also be improved with only a modest increase in computational expense.

  17. Nanoscale roughness effect on Maxwell-like boundary conditions for the Boltzmann equation

    Energy Technology Data Exchange (ETDEWEB)

    Brull, S., E-mail: Stephane.Brull@math.u-bordeaux.fr; Charrier, P., E-mail: Pierre.Charrier@math.u-bordeaux.fr; Mieussens, L., E-mail: Luc.Mieussens@math.u-bordeaux.fr [University of Bordeaux, CNRS, Bordeaux INP, IMB, UMR 5251, F-33400 Talence (France)

    2016-08-15

    It is well known that the roughness of the wall has an effect on microscale gas flows. This effect can be shown for large Knudsen numbers by using a numerical solution of the Boltzmann equation. However, when the wall is rough at a nanometric scale, it is necessary to use a very small mesh size which is much too expansive. An alternative approach is to incorporate the roughness effect in the scattering kernel of the boundary condition, such as the Maxwell-like kernel introduced by the authors in a previous paper. Here, we explain how this boundary condition can be implemented in a discrete velocity approximation of the Boltzmann equation. Moreover, the influence of the roughness is shown by computing the structure scattering pattern of mono-energetic beams of the incident gas molecules. The effect of the angle of incidence of these molecules, of their mass, and of the morphology of the wall is investigated and discussed in a simplified two-dimensional configuration. The effect of the azimuthal angle of the incident beams is shown for a three-dimensional configuration. Finally, the case of non-elastic scattering is considered. All these results suggest that our approach is a promising way to incorporate enough physics of gas-surface interaction, at a reasonable computing cost, to improve kinetic simulations of micro- and nano-flows.

  18. The lattice Boltzmann model for the second-order Benjamin–Ono equations

    International Nuclear Information System (INIS)

    Lai, Huilin; Ma, Changfeng

    2010-01-01

    In this paper, in order to extend the lattice Boltzmann method to deal with more complicated nonlinear equations, we propose a 1D lattice Boltzmann scheme with an amending function for the second-order (1 + 1)-dimensional Benjamin–Ono equation. With the Taylor expansion and the Chapman–Enskog expansion, the governing evolution equation is recovered correctly from the continuous Boltzmann equation. The equilibrium distribution function and the amending function are obtained. Numerical simulations are carried out for the 'good' Boussinesq equation and the 'bad' one to validate the proposed model. It is found that the numerical results agree well with the analytical solutions. The present model can be used to solve more kinds of nonlinear partial differential equations

  19. Lattice Boltzmann Approach to Resistive MHD

    Czech Academy of Sciences Publication Activity Database

    Macnab, A.; Vahala, G.; Vahala, L.; Pavlo, Pavol; Soe, M.

    2002-01-01

    Roč. 47, č. 9 (2002), s. 51 ISSN 0003-0503. [Annual Meeting of the Division of Plasma Physics of the American Physical Society/44th./. Orlando , Florida, 11.11.2001-15.11.2001] R&D Projects: GA ČR GA202/00/1216 Institutional research plan: CEZ:AV0Z2043910 Keywords : Lattice Boltzmann, magnetic fields Subject RIV: BL - Plasma and Gas Discharge Physics

  20. On the Boltzmann Equation of Thermal Transport for Interacting Phonons and Electrons

    Directory of Open Access Journals (Sweden)

    Amelia Carolina Sparavigna

    2016-05-01

    Full Text Available The thermal transport in a solid can be determined by means of the Boltzmann equations regarding its distributions of phonons and electrons, when the solid is subjected to a thermal gradient. After solving the coupled equations, the related thermal conductivities can be obtained. Here we show how to determine the coupled equations for phonons and electrons.

  1. Fractional Boltzmann equation for multiple scattering of resonance radiation in low-temperature plasma

    Energy Technology Data Exchange (ETDEWEB)

    Uchaikin, V V; Sibatov, R T, E-mail: vuchaikin@gmail.com, E-mail: ren_sib@bk.ru [Ulyanovsk State University, 432000, 42 Leo Tolstoy str., Ulyanovsk (Russian Federation)

    2011-04-08

    The fractional Boltzmann equation for resonance radiation transport in plasma is proposed. We start with the standard Boltzmann equation; averaging over photon frequencies leads to the appearance of a fractional derivative. This fact is in accordance with the conception of latent variables leading to hereditary and non-local dynamics (in particular, fractional dynamics). The presence of a fractional material derivative in the equation is concordant with heavy tailed distribution of photon path lengths and with spatiotemporal coupling peculiar to the process. We discuss some methods of solving the obtained equation and demonstrate numerical results in some simple cases.

  2. Fractional Boltzmann equation for multiple scattering of resonance radiation in low-temperature plasma

    International Nuclear Information System (INIS)

    Uchaikin, V V; Sibatov, R T

    2011-01-01

    The fractional Boltzmann equation for resonance radiation transport in plasma is proposed. We start with the standard Boltzmann equation; averaging over photon frequencies leads to the appearance of a fractional derivative. This fact is in accordance with the conception of latent variables leading to hereditary and non-local dynamics (in particular, fractional dynamics). The presence of a fractional material derivative in the equation is concordant with heavy tailed distribution of photon path lengths and with spatiotemporal coupling peculiar to the process. We discuss some methods of solving the obtained equation and demonstrate numerical results in some simple cases.

  3. Self-consistent relativistic Boltzmann-Uehling-Uhlenbeck equation for the Δ distribution function

    International Nuclear Information System (INIS)

    Mao, G.; Li, Z.; Zhuo, Y.

    1996-01-01

    We derive the self-consistent relativistic Boltzmann-Uehling-Uhlenbeck (RBUU) equation for the delta distribution function within the framework which we have done for nucleon close-quote s. In our approach, the Δ isobars are treated in essentially the same way as nucleons. Both mean field and collision terms of Δ close-quote s RBUU equation are derived from the same effective Lagrangian and presented analytically. We calculate the in-medium NΔ elastic and inelastic scattering cross sections up to twice nuclear matter density and the results show that the in-medium cross sections deviate substantially from Cugnon close-quote s parametrization that is commonly used in the transport model. copyright 1996 The American Physical Society

  4. Distributional Monte Carlo Methods for the Boltzmann Equation

    Science.gov (United States)

    2013-03-01

    postulated by Ludwig Boltzmann [23] at a time when the atomic makeup of matter was not an accepted concept. Modern physics realizes Boltzmann’s vision...über Gastheorie 1898. Translated by S.G. Brush ., 1964. [24] Boyles, K.A., G.J. LeBeau, and M.A. Gallis. “DSMC Simulations in Support of the Columbia

  5. Nonlinear moments method for the isotropic Boltzmann equation and the invariance of collision integral

    International Nuclear Information System (INIS)

    Ehnder, A.Ya.; Ehnder, I.A.

    1999-01-01

    A new approach to develop nonlinear moment method to solve the Boltzmann equation is presented. This approach is based on the invariance of collision integral as to the selection of the base functions. The Sonin polynomials with the Maxwell weighting function are selected to serve as the base functions. It is shown that for the arbitrary cross sections of the interaction the matrix elements corresponding to the moments from the nonlinear integral of collisions are bound by simple recurrent bonds enabling to express all nonlinear matrix elements in terms of the linear ones. As a result, high-efficiency numerical pattern to calculate nonlinear matrix elements is obtained. The presented approach offers possibilities both to calculate relaxation processes within high speed range and to some more complex kinetic problems [ru

  6. A maximum principle for the first-order Boltzmann equation, incorporating a potential treatment of voids

    International Nuclear Information System (INIS)

    Schofield, S.L.

    1988-01-01

    Ackroyd's generalized least-squares method for solving the first-order Boltzmann equation is adapted to incorporate a potential treatment of voids. The adaptation comprises a direct least-squares minimization allied with a suitably-defined bilinear functional. The resulting formulation gives rise to a maximum principle whose functional does not contain terms of the type that have previously led to difficulties in treating void regions. The maximum principle is derived without requiring continuity of the flux at interfaces. The functional of the maximum principle is concluded to have an Euler-Lagrange equation given directly by the first-order Boltzmann equation. (author)

  7. A lattice Boltzmann model with an amending function for simulating nonlinear partial differential equations

    International Nuclear Information System (INIS)

    Lin-Jie, Chen; Chang-Feng, Ma

    2010-01-01

    This paper proposes a lattice Boltzmann model with an amending function for one-dimensional nonlinear partial differential equations (NPDEs) in the form u t + αuu x + βu n u x + γu xx + δu xxx + ζu xxxx = 0. This model is different from existing models because it lets the time step be equivalent to the square of the space step and derives higher accuracy and nonlinear terms in NPDEs. With the Chapman–Enskog expansion, the governing evolution equation is recovered correctly from the continuous Boltzmann equation. The numerical results agree well with the analytical solutions. (general)

  8. Lattice Boltzmann method for solving the bioheat equation

    International Nuclear Information System (INIS)

    Zhang Haifeng

    2008-01-01

    In this work, we develop the lattice Boltzmann method (LBM) as a potential solver for the bioheat problems. The accuracy of the present LBM algorithm is validated through comparison with the analytical solution and the finite element simulation. The results show that the LBM can give a precise prediction of the temperature distribution, and it is efficient to deal with the space- and time-dependent heat source, which are often encountered in the treatment planning of tumor hyperthermia. (note)

  9. Solution of the Boltzmann-Fokker-Planck transport equation using exponential nodal schemes

    International Nuclear Information System (INIS)

    Ortega J, R.; Valle G, E. del

    2003-01-01

    There are carried out charge and energy calculations deposited due to the interaction of electrons with a plate of a certain material, solving numerically the electron transport equation for the Boltzmann-Fokker-Planck approach of first order in plate geometry with a computer program denominated TEOD-NodExp (Transport of Electrons in Discreet Ordinates, Nodal Exponentials), using the proposed method by the Dr. J. E. Morel to carry out the discretization of the variable energy and several spatial discretization schemes, denominated exponentials nodal. It is used the Fokker-Planck equation since it represents an approach of the Boltzmann transport equation that is been worth whenever it is predominant the dispersion of small angles, that is to say, resulting dispersion in small dispersion angles and small losses of energy in the transport of charged particles. Such electrons could be those that they face with a braking plate in a device of thermonuclear fusion. In the present work its are considered electrons of 1 MeV that impact isotropically on an aluminum plate. They were considered three different thickness of plate that its were designated as problems 1, 2 and 3. In the calculations it was used the discrete ordinate method S 4 with expansions of the dispersion cross sections until P 3 order. They were considered 25 energy groups of uniform size between the minimum energy of 0.1 MeV and the maximum of 1.0 MeV; the one spatial intervals number it was considered variable and it was assigned the values of 10, 20 and 30. (Author)

  10. A unified gas-kinetic scheme for continuum and rarefied flows IV: Full Boltzmann and model equations

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chang, E-mail: cliuaa@ust.hk [Department of Mathematics and Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Xu, Kun, E-mail: makxu@ust.hk [Department of Mathematics and Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Sun, Quanhua, E-mail: qsun@imech.ac.cn [State Key Laboratory of High-temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, No. 15 Beisihuan Xi Rd, Beijing 100190 (China); Cai, Qingdong, E-mail: caiqd@mech.pku.edu.cn [Department of Mechanics and Aerospace Engineering, College of Engineering, Peking University, Beijing 100871 (China)

    2016-06-01

    Fluid dynamic equations are valid in their respective modeling scales, such as the particle mean free path scale of the Boltzmann equation and the hydrodynamic scale of the Navier–Stokes (NS) equations. With a variation of the modeling scales, theoretically there should have a continuous spectrum of fluid dynamic equations. Even though the Boltzmann equation is claimed to be valid in all scales, many Boltzmann solvers, including direct simulation Monte Carlo method, require the cell resolution to the order of particle mean free path scale. Therefore, they are still single scale methods. In order to study multiscale flow evolution efficiently, the dynamics in the computational fluid has to be changed with the scales. A direct modeling of flow physics with a changeable scale may become an appropriate approach. The unified gas-kinetic scheme (UGKS) is a direct modeling method in the mesh size scale, and its underlying flow physics depends on the resolution of the cell size relative to the particle mean free path. The cell size of UGKS is not limited by the particle mean free path. With the variation of the ratio between the numerical cell size and local particle mean free path, the UGKS recovers the flow dynamics from the particle transport and collision in the kinetic scale to the wave propagation in the hydrodynamic scale. The previous UGKS is mostly constructed from the evolution solution of kinetic model equations. Even though the UGKS is very accurate and effective in the low transition and continuum flow regimes with the time step being much larger than the particle mean free time, it still has space to develop more accurate flow solver in the region, where the time step is comparable with the local particle mean free time. In such a scale, there is dynamic difference from the full Boltzmann collision term and the model equations. This work is about the further development of the UGKS with the implementation of the full Boltzmann collision term in the region

  11. Application of group analysis to the spatially homogeneous and isotropic Boltzmann equation with source using its Fourier image

    International Nuclear Information System (INIS)

    Grigoriev, Yurii N; Meleshko, Sergey V; Suriyawichitseranee, Amornrat

    2015-01-01

    Group analysis of the spatially homogeneous and molecular energy dependent Boltzmann equations with source term is carried out. The Fourier transform of the Boltzmann equation with respect to the molecular velocity variable is considered. The correspondent determining equation of the admitted Lie group is reduced to a partial differential equation for the admitted source. The latter equation is analyzed by an algebraic method. A complete group classification of the Fourier transform of the Boltzmann equation with respect to a source function is given. The representation of invariant solutions and corresponding reduced equations for all obtained source functions are also presented. (paper)

  12. AQUASOL: An efficient solver for the dipolar Poisson-Boltzmann-Langevin equation.

    Science.gov (United States)

    Koehl, Patrice; Delarue, Marc

    2010-02-14

    The Poisson-Boltzmann (PB) formalism is among the most popular approaches to modeling the solvation of molecules. It assumes a continuum model for water, leading to a dielectric permittivity that only depends on position in space. In contrast, the dipolar Poisson-Boltzmann-Langevin (DPBL) formalism represents the solvent as a collection of orientable dipoles with nonuniform concentration; this leads to a nonlinear permittivity function that depends both on the position and on the local electric field at that position. The differences in the assumptions underlying these two models lead to significant differences in the equations they generate. The PB equation is a second order, elliptic, nonlinear partial differential equation (PDE). Its response coefficients correspond to the dielectric permittivity and are therefore constant within each subdomain of the system considered (i.e., inside and outside of the molecules considered). While the DPBL equation is also a second order, elliptic, nonlinear PDE, its response coefficients are nonlinear functions of the electrostatic potential. Many solvers have been developed for the PB equation; to our knowledge, none of these can be directly applied to the DPBL equation. The methods they use may adapt to the difference; their implementations however are PBE specific. We adapted the PBE solver originally developed by Holst and Saied [J. Comput. Chem. 16, 337 (1995)] to the problem of solving the DPBL equation. This solver uses a truncated Newton method with a multigrid preconditioner. Numerical evidences suggest that it converges for the DPBL equation and that the convergence is superlinear. It is found however to be slow and greedy in memory requirement for problems commonly encountered in computational biology and computational chemistry. To circumvent these problems, we propose two variants, a quasi-Newton solver based on a simplified, inexact Jacobian and an iterative self-consistent solver that is based directly on the PBE

  13. A Combined MPI-CUDA Parallel Solution of Linear and Nonlinear Poisson-Boltzmann Equation

    Directory of Open Access Journals (Sweden)

    José Colmenares

    2014-01-01

    Full Text Available The Poisson-Boltzmann equation models the electrostatic potential generated by fixed charges on a polarizable solute immersed in an ionic solution. This approach is often used in computational structural biology to estimate the electrostatic energetic component of the assembly of molecular biological systems. In the last decades, the amount of data concerning proteins and other biological macromolecules has remarkably increased. To fruitfully exploit these data, a huge computational power is needed as well as software tools capable of exploiting it. It is therefore necessary to move towards high performance computing and to develop proper parallel implementations of already existing and of novel algorithms. Nowadays, workstations can provide an amazing computational power: up to 10 TFLOPS on a single machine equipped with multiple CPUs and accelerators such as Intel Xeon Phi or GPU devices. The actual obstacle to the full exploitation of modern heterogeneous resources is efficient parallel coding and porting of software on such architectures. In this paper, we propose the implementation of a full Poisson-Boltzmann solver based on a finite-difference scheme using different and combined parallel schemes and in particular a mixed MPI-CUDA implementation. Results show great speedups when using the two schemes, achieving an 18.9x speedup using three GPUs.

  14. Entropy inequality and hydrodynamic limits for the Boltzmann equation.

    Science.gov (United States)

    Saint-Raymond, Laure

    2013-12-28

    Boltzmann brought a fundamental contribution to the understanding of the notion of entropy, by giving a microscopic formulation of the second principle of thermodynamics. His ingenious idea, motivated by the works of his contemporaries on the atomic nature of matter, consists of describing gases as huge systems of identical and indistinguishable elementary particles. The state of a gas can therefore be described in a statistical way. The evolution, which introduces couplings, loses part of the information, which is expressed by the decay of the so-called mathematical entropy (the opposite of physical entropy!).

  15. Direct simulation Monte Carlo method for the Uehling-Uhlenbeck-Boltzmann equation.

    Science.gov (United States)

    Garcia, Alejandro L; Wagner, Wolfgang

    2003-11-01

    In this paper we describe a direct simulation Monte Carlo algorithm for the Uehling-Uhlenbeck-Boltzmann equation in terms of Markov processes. This provides a unifying framework for both the classical Boltzmann case as well as the Fermi-Dirac and Bose-Einstein cases. We establish the foundation of the algorithm by demonstrating its link to the kinetic equation. By numerical experiments we study its sensitivity to the number of simulation particles and to the discretization of the velocity space, when approximating the steady-state distribution.

  16. Transport methods: general. 7. Formulation of a Fourier-Boltzmann Transformation to Solve the Three-Dimensional Transport Equation

    International Nuclear Information System (INIS)

    Stancic, V.

    2001-01-01

    This paper presents some elements of a new approach to solve analytically the linearized three-dimensional (3-D) transport equation of neutral particles. Since this task is of such special importance, we present some results of a paper that is still in progress. The most important is that using this transformation, an integro-differential equation with an analytical solution is obtained. For this purpose, a simplest 3-D equation is being considered which describes the transport process in an infinite medium. Until now, this equation has been analytically considered either using the Laplace transform with respect to time parameter t or applying the Fourier transform over the space coordinate. Both of them reduce the number of differential terms in the equation; however, evaluation of the inverse transformation is complicated. In this paper, we introduce for the first time a Fourier transform induced by the Boltzmann operator. For this, we use a complete set of 3-D eigenfunctions of the Boltzmann transport operator defined in a similar way as those that have been already used in 3-D transport theory as a basic set to transform the transport equation. This set consists of a continuous part and a discrete one with spectral measure. The density distribution equation shows the known form asymptotic behavior. Several applications are to be performed using this equation and compared to the benchmark one. Such an analysis certainly would be out of the available space

  17. An integrated Boltzmann+hydrodynamics approach to heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Hannah

    2009-04-22

    In this thesis the first fully integrated Boltzmann+hydrodynamics approach to relativistic heavy ion reactions has been developed. After a short introduction that motivates the study of heavy ion reactions as the tool to get insights about the QCD phase diagram, the most important theoretical approaches to describe the system are reviewed. The hadron-string transport approach that this work is based on is the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) approach. Predictions for the charged particle multiplicities at LHC energies are made. The next step is the development of a new framework to calculate the baryon number density in a transport approach. Time evolutions of the net baryon number and the quark density have been calculated at AGS, SPS and RHIC energies. Studies of phase diagram trajectories using hydrodynamics are performed. The hybrid approach that has been developed as the main part of this thesis is based on the UrQMD transport approach with an intermediate hydrodynamical evolution for the hot and dense stage of the collision. The full (3+1) dimensional ideal relativistic one fluid dynamics evolution is solved using the SHASTA algorithm. Three different equations of state have been used, namely a hadron gas equation of state without a QGP phase transition, a chiral EoS and a bag model EoS including a strong first order phase transition. For the freeze-out transition from hydrodynamics to the cascade calculation two different set-ups are employed. The parameter dependences of the model are investigated and the time evolution of different quantities is explored. The hybrid model calculation is able to reproduce the experimentally measured integrated as well as transverse momentum dependent v{sub 2} values for charged particles. The multiplicity and mean transverse mass excitation function is calculated for pions, protons and kaons in the energy range from E{sub lab}=2-160 A GeV. The HBT correlation of the negatively charged pion source

  18. An integrated Boltzmann+hydrodynamics approach to heavy ion collisions

    International Nuclear Information System (INIS)

    Petersen, Hannah

    2009-01-01

    In this thesis the first fully integrated Boltzmann+hydrodynamics approach to relativistic heavy ion reactions has been developed. After a short introduction that motivates the study of heavy ion reactions as the tool to get insights about the QCD phase diagram, the most important theoretical approaches to describe the system are reviewed. The hadron-string transport approach that this work is based on is the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) approach. Predictions for the charged particle multiplicities at LHC energies are made. The next step is the development of a new framework to calculate the baryon number density in a transport approach. Time evolutions of the net baryon number and the quark density have been calculated at AGS, SPS and RHIC energies. Studies of phase diagram trajectories using hydrodynamics are performed. The hybrid approach that has been developed as the main part of this thesis is based on the UrQMD transport approach with an intermediate hydrodynamical evolution for the hot and dense stage of the collision. The full (3+1) dimensional ideal relativistic one fluid dynamics evolution is solved using the SHASTA algorithm. Three different equations of state have been used, namely a hadron gas equation of state without a QGP phase transition, a chiral EoS and a bag model EoS including a strong first order phase transition. For the freeze-out transition from hydrodynamics to the cascade calculation two different set-ups are employed. The parameter dependences of the model are investigated and the time evolution of different quantities is explored. The hybrid model calculation is able to reproduce the experimentally measured integrated as well as transverse momentum dependent v 2 values for charged particles. The multiplicity and mean transverse mass excitation function is calculated for pions, protons and kaons in the energy range from E lab =2-160 A GeV. The HBT correlation of the negatively charged pion source created in

  19. Generalized Boltzmann equations for on-shell particle production in a hot plasma

    International Nuclear Information System (INIS)

    Jakovac, A.

    2002-01-01

    A novel refinement of the conventional treatment of Kadanoff-Baym equations is suggested. In addition to the Boltzmann equation, another differential equation is used for calculating the evolution of the nonequilibrium two-point function. Although it was usually interpreted as a constraint on the solution of the Boltzmann equation, we argue that its dynamics is relevant to the determination and resummation of the particle production cut contributions. The differential equation for this new contribution is illustrated in the example of the cubic scalar model. The analogue of the relaxation time approximation is suggested. It results in the shift of the threshold location and in a smearing out of the nonanalytic threshold behavior of the spectral function. The possible consequences for the dilepton production are discussed

  20. Solutions of Boltzmann`s Equation for Mono-energetic Neutrons in an Infinite Homogeneous Medium

    Science.gov (United States)

    Wigner, E. P.

    1943-11-30

    Boltzman's equation is solved for the case of monoenergetic neutrons created by a plane or point source in an infinite medium which has spherically symmetric scattering. The customary solution of the diffusion equation appears to be multiplied by a constant factor which is smaller than 1. In addition to this term the total neutron density contains another term which is important in the neighborhood of the source. It varies as 1/r{sup 2} in the neighborhood of a point source. (auth)

  1. A simple Boltzmann transport equation for ballistic to diffusive transient heat transport

    International Nuclear Information System (INIS)

    Maassen, Jesse; Lundstrom, Mark

    2015-01-01

    Developing simplified, but accurate, theoretical approaches to treat heat transport on all length and time scales is needed to further enable scientific insight and technology innovation. Using a simplified form of the Boltzmann transport equation (BTE), originally developed for electron transport, we demonstrate how ballistic phonon effects and finite-velocity propagation are easily and naturally captured. We show how this approach compares well to the phonon BTE, and readily handles a full phonon dispersion and energy-dependent mean-free-path. This study of transient heat transport shows (i) how fundamental temperature jumps at the contacts depend simply on the ballistic thermal resistance, (ii) that phonon transport at early times approach the ballistic limit in samples of any length, and (iii) perceived reductions in heat conduction, when ballistic effects are present, originate from reductions in temperature gradient. Importantly, this framework can be recast exactly as the Cattaneo and hyperbolic heat equations, and we discuss how the key to capturing ballistic heat effects is to use the correct physical boundary conditions

  2. Inelastic Quantum Transport in Superlattices: Success and Failure of the Boltzmann Equation

    DEFF Research Database (Denmark)

    Wacker, Andreas; Jauho, Antti-Pekka; Rott, Stephan

    1999-01-01

    the whole held range from linear response to negative differential conductivity. The quantum results are compared with the respective results obtained from a Monte Carlo solution of the Boltzmann equation. Our analysis thus sets the limits of validity for the semiclassical theory in a nonlinear transport...

  3. The exact solution to the one-dimensional Poisson–Boltzmann equation with asymmetric boundary conditions

    DEFF Research Database (Denmark)

    Johannessen, Kim

    2014-01-01

    The exact solution to the one-dimensional Poisson–Boltzmann equation with asymmetric boundary conditions can be expressed in terms of the Jacobi elliptic functions. The boundary conditions determine the modulus of the Jacobi elliptic functions. The boundary conditions can not be solved analytically...

  4. An Eulerian description of the streaming process in the lattice Boltzmann equation

    CERN Document Server

    Lee Tae Hun

    2003-01-01

    This paper presents a novel strategy for solving discrete Boltzmann equation (DBE) for simulation of fluid flows. This strategy splits the solution procedure into streaming and collision steps as in the lattice Boltzmann equation (LBE) method. The streaming step can then be carried out by solving pure linear advection equations in an Eulerian framework. This offers two significant advantages over previous methods. First, the relationship between the relaxation parameter and the discretization of the collision term developed from the LBE method is directly applicable to the DBE method. The resulting DBE collision step remains local and poses no constraint on time step. Second, decoupling of the advection step from the collision step facilitates implicit discretization of the advection equation on arbitrary meshes. An implicit unstructured DBE method is constructed based on this strategy and is evaluated using several test cases of flow over a backward-facing step, lid-driven cavity flow, and flow past a circul...

  5. The C{sub n} method for approximation of the Boltzmann equation; La methode C{sub n} d'approximation de l'equation de Boltzmann

    Energy Technology Data Exchange (ETDEWEB)

    Benoist, P; Kavenoky, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-01-15

    In a new method of approximation of the Boltzmann equation, one starts from a particular form of the equation which involves only the angular flux at the boundary of the considered medium and where the space variable does not appear explicitly. Expanding in orthogonal polynomials the angular flux of neutrons leaking from the medium and making no assumption about the angular flux within the medium, very good approximations to several classical plane geometry problems, i.e. the albedo of slabs and the transmission by slabs, the extrapolation length of the Milne problem, the spectrum of neutrons reflected by a semi-infinite slowing down medium. The method can be extended to other geometries. (authors) [French] On etablit une nouvelle methode d'approximation pour l'equation de Boltzmann en partant d'une forme particuliere de cette equation qui n'implique que le flux angulaire a la frontiere du milieu et ou les variables d'espace n'apparaissent pas explicitement. Par un developpement en polynomes orthogonaux du flux angulaire sortant du milieu et sans faire d'hypothese sur le flux angulaire a l'interieur du milieu, on obtient de tres bonnes approximations pour plusieurs problemes classiques en geometrie plane: l'albedo et le facteur de transmission des plaques, la longueur d'extrapolation du probleme de Milne, le spectre des neutrons reflechis par un milieu semi-infini ralentisseur. La methode se generalise a d'autres geometries. (auteurs)

  6. Stable lattice Boltzmann model for Maxwell equations in media

    Science.gov (United States)

    Hauser, A.; Verhey, J. L.

    2017-12-01

    The present work shows a method for stable simulations via the lattice Boltzmann (LB) model for electromagnetic waves (EM) transiting homogeneous media. LB models for such media were already presented in the literature, but they suffer from numerical instability when the media transitions are sharp. We use one of these models in the limit of pure vacuum derived from Liu and Yan [Appl. Math. Model. 38, 1710 (2014), 10.1016/j.apm.2013.09.009] and apply an extension that treats the effects of polarization and magnetization separately. We show simulations of simple examples in which EM waves travel into media to quantify error scaling, stability, accuracy, and time scaling. For conductive media, we use the Strang splitting and check the simulations accuracy at the example of the skin effect. Like pure EM propagation, the error for the static limits, which are constructed with a current density added in a first-order scheme, can be less than 1 % . The presented method is an easily implemented alternative for the stabilization of simulation for EM waves propagating in spatially complex structured media properties and arbitrary transitions.

  7. Application of Boltzmann equation to electron transmission and seconary electron emission

    International Nuclear Information System (INIS)

    Lanteri, H.; Bindi, R.; Rostaing, P.

    1979-01-01

    A method is presented for numerical treatment of integro-differential equation, based upon finite difference techniques. This method allows to formulate in a satisfactory manner the Boltzmann's equation applied to backscattering, transmission and secondary emission of metallic targets, avoiding must of the restrictive hypothesis, used until now in these models. For aluminium, the calculated energy spectra, angular distribution, transmission and backscattering coefficients, and secondary emission yield, are found to be in good agreement with experiment [fr

  8. Intensity-interferometric test of nuclear collision geometries obtained from the Boltzmann-Uehling-Uhlenbeck equation

    International Nuclear Information System (INIS)

    Gong, W.G.; Bauer, W.; Gelbke, C.K.; Carlin, N.; de Souza, R.T.; Kim, Y.D.; Lynch, W.G.; Murakami, T.; Poggi, G.; Sanderson, D.P.; Tsang, M.B.; Xu, H.M.; Pratt, S.; Fields, D.E.; Kwiatkowski, K.; Planeta, R.; Viola, V.E. Jr.; Yennello, S.J.

    1990-01-01

    Two-proton correlation functions measured for the 14 N+ 27 Al reaction at E/A=75 MeV are compared to correlation functions predicted for collision geometries obtained from numerical solutions of the Boltzmann-Uehling-Uhlenbeck (BUU) equation. The calculations are in rather good agreement with the experimental correlation function, indicating that the BUU equation gives a reasonable description of the space-time evolution of the reaction

  9. Parallel computing solution of Boltzmann neutron transport equation

    International Nuclear Information System (INIS)

    Ansah-Narh, T.

    2010-01-01

    The focus of the research was on developing parallel computing algorithm for solving Eigen-values of the Boltzmam Neutron Transport Equation (BNTE) in a slab geometry using multi-grid approach. In response to the problem of slow execution of serial computing when solving large problems, such as BNTE, the study was focused on the design of parallel computing systems which was an evolution of serial computing that used multiple processing elements simultaneously to solve complex physical and mathematical problems. Finite element method (FEM) was used for the spatial discretization scheme, while angular discretization was accomplished by expanding the angular dependence in terms of Legendre polynomials. The eigenvalues representing the multiplication factors in the BNTE were determined by the power method. MATLAB Compiler Version 4.1 (R2009a) was used to compile the MATLAB codes of BNTE. The implemented parallel algorithms were enabled with matlabpool, a Parallel Computing Toolbox function. The option UseParallel was set to 'always' and the default value of the option was 'never'. When those conditions held, the solvers computed estimated gradients in parallel. The parallel computing system was used to handle all the bottlenecks in the matrix generated from the finite element scheme and each domain of the power method generated. The parallel algorithm was implemented on a Symmetric Multi Processor (SMP) cluster machine, which had Intel 32 bit quad-core x 86 processors. Convergence rates and timings for the algorithm on the SMP cluster machine were obtained. Numerical experiments indicated the designed parallel algorithm could reach perfect speedup and had good stability and scalability. (au)

  10. Solution of the Boltzmann-Fokker-Planck transport equation using exponential nodal schemes; Solucion de la ecuacion de transporte de Boltzmann-Fokker-Planck usando esquemas nodales exponenciales

    Energy Technology Data Exchange (ETDEWEB)

    Ortega J, R.; Valle G, E. del [IPN-ESFM, 07738 Mexico D.F. (Mexico)]. e-mail: roj@correo.azc.uam.mx

    2003-07-01

    There are carried out charge and energy calculations deposited due to the interaction of electrons with a plate of a certain material, solving numerically the electron transport equation for the Boltzmann-Fokker-Planck approach of first order in plate geometry with a computer program denominated TEOD-NodExp (Transport of Electrons in Discreet Ordinates, Nodal Exponentials), using the proposed method by the Dr. J. E. Morel to carry out the discretization of the variable energy and several spatial discretization schemes, denominated exponentials nodal. It is used the Fokker-Planck equation since it represents an approach of the Boltzmann transport equation that is been worth whenever it is predominant the dispersion of small angles, that is to say, resulting dispersion in small dispersion angles and small losses of energy in the transport of charged particles. Such electrons could be those that they face with a braking plate in a device of thermonuclear fusion. In the present work its are considered electrons of 1 MeV that impact isotropically on an aluminum plate. They were considered three different thickness of plate that its were designated as problems 1, 2 and 3. In the calculations it was used the discrete ordinate method S{sub 4} with expansions of the dispersion cross sections until P{sub 3} order. They were considered 25 energy groups of uniform size between the minimum energy of 0.1 MeV and the maximum of 1.0 MeV; the one spatial intervals number it was considered variable and it was assigned the values of 10, 20 and 30. (Author)

  11. Wigner distribution functions for complex dynamical systems: the emergence of the Wigner-Boltzmann equation.

    Science.gov (United States)

    Sels, Dries; Brosens, Fons

    2013-10-01

    The equation of motion for the reduced Wigner function of a system coupled to an external quantum system is presented for the specific case when the external quantum system can be modeled as a set of harmonic oscillators. The result is derived from the Wigner function formulation of the Feynman-Vernon influence functional theory. It is shown how the true self-energy for the equation of motion is connected with the influence functional for the path integral. Explicit expressions are derived in terms of the bare Wigner propagator. Finally, we show under which approximations the resulting equation of motion reduces to the Wigner-Boltzmann equation.

  12. Solution of spatially homogeneous model Boltzmann equations by means of Lie groups of transformations

    International Nuclear Information System (INIS)

    Foroutan, A.

    1992-05-01

    The essential mathematical challenge in transport theory is based on the nonlinearity of the integro-differential equations governing classical thermodynamic systems on molecular kinetic level. It is the aim of this thesis to gain exact analytical solutions to the model Boltzmann equation suggested by Tjon and Wu. Such solutions afford a deeper insight into the dynamics of rarefied gases. Tjon and Wu have provided a stochastic model of a Boltzmann equation. Its transition probability depends only on the relative speed of the colliding particles. This assumption leads in the case of two translational degrees of freedom to an integro-differential equation of convolution type. According to this convolution structure the integro-differential equation is Laplace transformed. The result is a nonlinear partial differential equation. The investigation of the symmetries of this differential equation by means of Lie groups of transformation enables us to transform the originally nonlinear partial differential equation into ordinary differential equation into ordinary differential equations of Bernoulli type. (author)

  13. Development of kinetics equations from the Boltzmann equation; Etablissement des equations de la cinetique a partir de l'equation de Boltzmann

    Energy Technology Data Exchange (ETDEWEB)

    Plas, R.

    1962-07-01

    The author reports a study on kinetics equations for a reactor. He uses the conventional form of these equations but by using a dynamic multiplication factor. Thus, constants related to delayed neutrons are not modified by efficiency factors. The author first describes the theoretic kinetic operation of a reactor and develops the associated equations. He reports the development of equations for multiplication factors.

  14. Solution of the non-stationary electron Boltzmann equation for a weakly ionized collision dominated plasma

    International Nuclear Information System (INIS)

    Winkler, R.; Wilhelm, J.

    A detailed description is presented of calculating the nonstationary electron distribution function in a weakly ionized collision-dominated plasma from the Boltzmann kinetic equation respecting the effects of the time-dependent electric field, collision processes and the electron formation and loss. The finite difference approximation was used for numerical solution. Using the Crank-Nicolson method and parabolic interpolation between the grid points the Boltzmann equation was transformed to a system of linear equations which was then solved by iterations at a preset accuracy. Using the calculated distribution function values, the macroscopic plasma parameters were determined and the balance of electron density and energy checked in each time step. The mathematical procedure is illustrated using a neon plasma perturbed by a rectangular electric pulse. The time development shown of the distribution function at moments when the pulse was switched on and off demonstrates the great stability of the numerical solution. (J.U.)

  15. Coupled double-distribution-function lattice Boltzmann method for the compressible Navier-Stokes equations.

    Science.gov (United States)

    Li, Q; He, Y L; Wang, Y; Tao, W Q

    2007-11-01

    A coupled double-distribution-function lattice Boltzmann method is developed for the compressible Navier-Stokes equations. Different from existing thermal lattice Boltzmann methods, this method can recover the compressible Navier-Stokes equations with a flexible specific-heat ratio and Prandtl number. In the method, a density distribution function based on a multispeed lattice is used to recover the compressible continuity and momentum equations, while the compressible energy equation is recovered by an energy distribution function. The energy distribution function is then coupled to the density distribution function via the thermal equation of state. In order to obtain an adjustable specific-heat ratio, a constant related to the specific-heat ratio is introduced into the equilibrium energy distribution function. Two different coupled double-distribution-function lattice Boltzmann models are also proposed in the paper. Numerical simulations are performed for the Riemann problem, the double-Mach-reflection problem, and the Couette flow with a range of specific-heat ratios and Prandtl numbers. The numerical results are found to be in excellent agreement with analytical and/or other solutions.

  16. Use of the Boltzmann equation for calculating the scattering law in gas mixtures

    International Nuclear Information System (INIS)

    Eder, O.J.; Lackner, T.

    1989-01-01

    A new approach is presented for the calculation of the dynamical incoherent structure factor S s (q, ω) for a dilute binary gas mixture. The starting point is the linearized one-dimensional Boltzmann equation for a mixture of particles interacting via a quasi-Maxwell potential (V(r) ≅ 1/r ν , ν=4). It is shown how - in the Fourier-Laplace space (q, ω) - the solution of the Boltzman equation can be expressed as an infinite continued fraction. The well known hydrodynamic limit (q→0) and the free gas limit (q→∞) are correctly reproduced as the appropriate limits of the continued fraction. A brief comparison between S s (q, ω) for two interaction potentials (quasi-Maxwell potential, ν=4, and hard core potential, ν=∞) is presented, and it is found that, after scaling the variables to the respective diffusion coefficients, only little dependence on the potential remains. Furthermore, for a one-component system in three dimensions results are summarized for the dynamical incoherent and coherent structure factor. (orig.) [de

  17. Variational method enabling simplified solutions to the linearized Boltzmann equation for oscillatory gas flows

    Science.gov (United States)

    Ladiges, Daniel R.; Sader, John E.

    2018-05-01

    Nanomechanical resonators and sensors, operated in ambient conditions, often generate low-Mach-number oscillating rarefied gas flows. Cercignani [C. Cercignani, J. Stat. Phys. 1, 297 (1969), 10.1007/BF01007482] proposed a variational principle for the linearized Boltzmann equation, which can be used to derive approximate analytical solutions of steady (time-independent) flows. Here we extend and generalize this principle to unsteady oscillatory rarefied flows and thus accommodate resonating nanomechanical devices. This includes a mathematical approach that facilitates its general use and allows for systematic improvements in accuracy. This formulation is demonstrated for two canonical flow problems: oscillatory Couette flow and Stokes' second problem. Approximate analytical formulas giving the bulk velocity and shear stress, valid for arbitrary oscillation frequency, are obtained for Couette flow. For Stokes' second problem, a simple system of ordinary differential equations is derived which may be solved to obtain the desired flow fields. Using this framework, a simple and accurate formula is provided for the shear stress at the oscillating boundary, again for arbitrary frequency, which may prove useful in application. These solutions are easily implemented on any symbolic or numerical package, such as Mathematica or matlab, facilitating the characterization of flows produced by nanomechanical devices and providing insight into the underlying flow physics.

  18. Thermodynamics of Highly Concentrated Aqueous Electrolytes: Based on Boltzmann's eponymous equation

    Energy Technology Data Exchange (ETDEWEB)

    Ally, Moonis Raza [ORNL

    2018-05-01

    This sharply focused book invites the reader to explore the chemical thermodynamics of highly concentrated aqueous electrolytes from a different vantage point than traditional methods. The book's foundation is deeply rooted in Ludwig Boltzmann's eponymous equation. The pathway from micro to macro thermodynamics is explained heuristically, in a step-by-step approach. Concepts and mathematical formalism are explained in detail to captivate and maintain interest as the algebra twists and turns. Every significant result is derived in a lucid and piecemeal fashion. Application of the theory is exemplified with examples. It is amazing to realize that Boltamann's simple equation contains sufficient information from which such an elaborate theory can emerge. This book is suitable for undergraduate and graduate level classes in chemical engineering, chemistry, geochemistry, environmental sciences, and those studying aerosol particles in the troposphere. Students interested in understanding how thermodynamic theories may be developed would be inspired by the methodology. The author wishes that readers get as much excitement reading this book as he did writing it.

  19. Numerical approximation of the Boltzmann equation : moment closure

    NARCIS (Netherlands)

    Abdel Malik, M.R.A.; Brummelen, van E.H.

    2012-01-01

    This work applies the moment method onto a generic form of kinetic equations to simplify kinetic models of particle systems. This leads to the moment closure problem which is addressed using entropy-based moment closure techniques utilizing entropy minimization. The resulting moment closure system

  20. Numerical Treatment of the Boltzmann Equation for Self-Propelled Particle Systems

    Directory of Open Access Journals (Sweden)

    Florian Thüroff

    2014-11-01

    Full Text Available Kinetic theories constitute one of the most promising tools to decipher the characteristic spatiotemporal dynamics in systems of actively propelled particles. In this context, the Boltzmann equation plays a pivotal role, since it provides a natural translation between a particle-level description of the system’s dynamics and the corresponding hydrodynamic fields. Yet, the intricate mathematical structure of the Boltzmann equation substantially limits the progress toward a full understanding of this equation by solely analytical means. Here, we propose a general framework to numerically solve the Boltzmann equation for self-propelled particle systems in two spatial dimensions and with arbitrary boundary conditions. We discuss potential applications of this numerical framework to active matter systems and use the algorithm to give a detailed analysis to a model system of self-propelled particles with polar interactions. In accordance with previous studies, we find that spatially homogeneous isotropic and broken-symmetry states populate two distinct regions in parameter space, which are separated by a narrow region of spatially inhomogeneous, density-segregated moving patterns. We find clear evidence that these three regions in parameter space are connected by first-order phase transitions and that the transition between the spatially homogeneous isotropic and polar ordered phases bears striking similarities to liquid-gas phase transitions in equilibrium systems. Within the density-segregated parameter regime, we find a novel stable limit-cycle solution of the Boltzmann equation, which consists of parallel lanes of polar clusters moving in opposite directions, so as to render the overall symmetry of the system’s ordered state nematic, despite purely polar interactions on the level of single particles.

  1. Application of Littlewood-Paley decomposition to the regularity of Boltzmann type kinetic equations; Application de la decomposition de Littlewood-Paley a la regularite pour des equations cinetiques de type Boltzmann

    Energy Technology Data Exchange (ETDEWEB)

    EL Safadi, M

    2007-03-15

    We study the regularity of kinetic equations of Boltzmann type.We use essentially Littlewood-Paley method from harmonic analysis, consisting mainly in working with dyadics annulus. We shall mainly concern with the homogeneous case, where the solution f(t,x,v) depends only on the time t and on the velocities v, while working with realistic and singular cross-sections (non cutoff). In the first part, we study the particular case of Maxwellian molecules. Under this hypothesis, the structure of the Boltzmann operator and his Fourier transform write in a simple form. We show a global C{sup {infinity}} regularity. Then, we deal with the case of general cross-sections with 'hard potential'. We are interested in the Landau equation which is limit equation to the Boltzmann equation, taking in account grazing collisions. We prove that any weak solution belongs to Schwartz space S. We demonstrate also a similar regularity for the case of Boltzmann equation. Let us note that our method applies directly for all dimensions, and proofs are often simpler compared to other previous ones. Finally, we finish with Boltzmann-Dirac equation. In particular, we adapt the result of regularity obtained in Alexandre, Desvillettes, Wennberg and Villani work, using the dissipation rate connected with Boltzmann-Dirac equation. (author)

  2. A new lattice Boltzmann equation to simulate density-driven convection of carbon dioxide

    KAUST Repository

    Allen, Rebecca

    2013-01-01

    The storage of CO2 in fluid-filled geological formations has been carried out for more than a decade in locations around the world. After CO2 has been injected into the aquifer and has moved laterally under the aquifer\\'s cap-rock, density-driven convection becomes an important transport process to model. However, the challenge lies in simulating this transport process accurately with high spatial resolution and low CPU cost. This issue can be addressed by using the lattice Boltzmann equation (LBE) to formulate a model for a similar scenario when a solute diffuses into a fluid and density differences lead to convective mixing. The LBE is a promising alternative to the traditional methods of computational fluid dynamics. Rather than discretizing the system of partial differential equations of classical continuum mechanics directly, the LBE is derived from a velocity-space truncation of the Boltzmann equation of classical kinetic theory. We propose an extension to the LBE, which can accurately predict the transport of dissolved CO2 in water, as a step towards fluid-filled porous media simulations. This is achieved by coupling two LBEs, one for the fluid flow and one for the convection and diffusion of CO2. Unlike existing lattice Boltzmann equations for porous media flow, our model is derived from a system of moment equations and a Crank-Nicolson discretization of the velocity-truncated Boltzmann equation. The forcing terms are updated locally without the need for additional central difference approximation. Therefore our model preserves all the computational advantages of the single-phase lattice Boltzmann equation and is formally second-order accurate in both space and time. Our new model also features a novel implementation of boundary conditions, which is simple to implement and does not suffer from the grid-dependent error that is present in the standard "bounce-back" condition. The significance of using the LBE in this work lies in the ability to efficiently

  3. Lattice Boltzmann equation calculation of internal, pressure-driven turbulent flow

    International Nuclear Information System (INIS)

    Hammond, L A; Halliday, I; Care, C M; Stevens, A

    2002-01-01

    We describe a mixing-length extension of the lattice Boltzmann approach to the simulation of an incompressible liquid in turbulent flow. The method uses a simple, adaptable, closure algorithm to bound the lattice Boltzmann fluid incorporating a law-of-the-wall. The test application, of an internal, pressure-driven and smooth duct flow, recovers correct velocity profiles for Reynolds number to 1.25 x 10 5 . In addition, the Reynolds number dependence of the friction factor in the smooth-wall branch of the Moody chart is correctly recovered. The method promises a straightforward extension to other curves of the Moody chart and to cylindrical pipe flow

  4. A discontinuous Poisson-Boltzmann equation with interfacial jump: homogenisation and residual error estimate.

    Science.gov (United States)

    Fellner, Klemens; Kovtunenko, Victor A

    2016-01-01

    A nonlinear Poisson-Boltzmann equation with inhomogeneous Robin type boundary conditions at the interface between two materials is investigated. The model describes the electrostatic potential generated by a vector of ion concentrations in a periodic multiphase medium with dilute solid particles. The key issue stems from interfacial jumps, which necessitate discontinuous solutions to the problem. Based on variational techniques, we derive the homogenisation of the discontinuous problem and establish a rigorous residual error estimate up to the first-order correction.

  5. An Implicit Scheme of Lattice Boltzmann Method for Sine-Gordon Equation

    International Nuclear Information System (INIS)

    Hui-Lin, Lai; Chang-Feng, Ma

    2008-01-01

    We establish an implicit scheme of lattice Boltzmann method for simulating the sine-Gordon equation, which can be transformed into the explicit one, so the computation of the scheme is simple. Moreover, the parameter θ of the implicit scheme is independent of the relaxation time, which makes the model more flexible. The numerical results show that this method is very effective. (fundamental areas of phenomenology (including applications))

  6. The Approach to Equilibrium: Detailed Balance and the Master Equation

    Science.gov (United States)

    Alexander, Millard H.; Hall, Gregory E.; Dagdigian, Paul J.

    2011-01-01

    The approach to the equilibrium (Boltzmann) distribution of populations of internal states of a molecule is governed by inelastic collisions in the gas phase and with surfaces. The set of differential equations governing the time evolution of the internal state populations is commonly called the master equation. An analytic solution to the master…

  7. Numerical simulations of a family of the coupled viscous Burgers, equation using the lattice Boltzmann method

    International Nuclear Information System (INIS)

    He, Y B; Tang, X H

    2016-01-01

    In this paper, in order to extend the lattice Boltzmann method (LBM) to deal with more nonlinear systems, a one-dimensional and five-velocity lattice Boltzmann scheme with an amending function for a family of the coupled viscous Burgers’ equation (CVBE) is proposed. With the Taylor and Chapman–Enskog expansion, a family of the CVBE is recovered correctly from the lattice Boltzmann equation through selecting the equilibrium distribution functions and amending functions properly. The method is applied to some test examples with an analytical solution. The results are compared with those obtained by the finite difference method (FDM); it is shown that the numerical solutions agree well with the analytical solutions and the errors obtained by the present method are smaller than the FDM. Furthermore, some problems without analytical solutions are numerically studied by the present method and the FDM. The results show that the numerical solutions of the LBM are in good agreement with those obtained by the FDM, which can validate the effectiveness and stability of the LBM. (paper: classical statistical mechanics, equilibrium and non-equilibrium)

  8. From Newton's Law to the Linear Boltzmann Equation Without Cut-Off

    Science.gov (United States)

    Ayi, Nathalie

    2017-03-01

    We provide a rigorous derivation of the linear Boltzmann equation without cut-off starting from a system of particles interacting via a potential with infinite range as the number of particles N goes to infinity under the Boltzmann-Grad scaling. More particularly, we will describe the motion of a tagged particle in a gas close to global equilibrium. The main difficulty in our context is that, due to the infinite range of the potential, a non-integrable singularity appears in the angular collision kernel, making no longer valid the single-use of Lanford's strategy. Our proof relies then on a combination of Lanford's strategy, of tools developed recently by Bodineau, Gallagher and Saint-Raymond to study the collision process, and of new duality arguments to study the additional terms associated with the long-range interaction, leading to some explicit weak estimates.

  9. A multi scale approximation solution for the time dependent Boltzmann-transport equation

    International Nuclear Information System (INIS)

    Merk, B.

    2004-03-01

    The basis of all transient simulations for nuclear reactor cores is the reliable calculation of the power production. The local power distribution is generally calculated by solving the space, time, energy and angle dependent neutron transport equation known as Boltzmann equation. The computation of exact solutions of the Boltzmann equation is very time consuming. For practical numerical simulations approximated solutions are usually unavoidable. The objective of this work is development of an effective multi scale approximation solution for the Boltzmann equation. Most of the existing methods are based on separation of space and time. The new suggested method is performed without space-time separation. This effective approximation solution is developed on the basis of an expansion for the time derivative of different approximations to the Boltzmann equation. The method of multiple scale expansion is used for the expansion of the time derivative, because the problem of the stiff time behaviour can't be expressed by standard expansion methods. This multiple scale expansion is used in this work to develop approximation solutions for different approximations of the Boltzmann equation, starting from the expansion of the point kinetics equations. The resulting analytic functions are used for testing the applicability and accuracy of the multiple scale expansion method for an approximation solution with 2 delayed neutron groups. The results are tested versus the exact analytical results for the point kinetics equations. Very good agreement between both solutions is obtained. The validity of the solution with 2 delayed neutron groups to approximate the behaviour of the system with 6 delayed neutron groups is demonstrated in an additional analysis. A strategy for a solution with 4 delayed neutron groups is described. A multiple scale expansion is performed for the space-time dependent diffusion equation for one homogenized cell with 2 delayed neutron groups. The result is

  10. Simulation of 2D rarefied gas flows based on the numerical solution of the Boltzmann equation

    Science.gov (United States)

    Poleshkin, Sergey O.; Malkov, Ewgenij A.; Kudryavtsev, Alexey N.; Shershnev, Anton A.; Bondar, Yevgeniy A.; Kohanchik, A. A.

    2017-10-01

    There are various methods for calculating rarefied gas flows, in particular, statistical methods and deterministic methods based on the finite-difference solutions of the Boltzmann nonlinear kinetic equation and on the solutions of model kinetic equations. There is no universal method; each has its disadvantages in terms of efficiency or accuracy. The choice of the method depends on the problem to be solved and on parameters of calculated flows. Qualitative theoretical arguments help to determine the range of parameters of effectively solved problems for each method; however, it is advisable to perform comparative tests of calculations of the classical problems performed by different methods and with different parameters to have quantitative confirmation of this reasoning. The paper provides the results of the calculations performed by the authors with the help of the Direct Simulation Monte Carlo method and finite-difference methods of solving the Boltzmann equation and model kinetic equations. Based on this comparison, conclusions are made on selecting a particular method for flow simulations in various ranges of flow parameters.

  11. Bianchi type-I magnetized cosmological models for the Einstein-Boltzmann equation with the cosmological constant

    International Nuclear Information System (INIS)

    Ayissi, Raoul Domingo; Noutchegueme, Norbert

    2015-01-01

    Global solutions regular for the Einstein-Boltzmann equation on a magnetized Bianchi type-I cosmological model with the cosmological constant are investigated. We suppose that the metric is locally rotationally symmetric. The Einstein-Boltzmann equation has been already considered by some authors. But, in general Bancel and Choquet-Bruhat [Ann. Henri Poincaré XVIII(3), 263 (1973); Commun. Math. Phys. 33, 83 (1973)], they proved only the local existence, and in the case of the nonrelativistic Boltzmann equation. Mucha [Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case. Evolution equation, existence, regularity and singularities (Banach Center Publications, Institute of Mathematics, Polish Academy of Science, 2000), Vol. 52] obtained a global existence result, for the relativistic Boltzmann equation coupled with the Einstein equations and using the Yosida operator, but confusing unfortunately with the nonrelativistic case. Noutchegueme and Dongho [Classical Quantum Gravity 23, 2979 (2006)] and Noutchegueme, Dongho, and Takou [Gen. Relativ. Gravitation 37, 2047 (2005)], have obtained a global solution in time, but still using the Yosida operator and considering only the uncharged case. Noutchegueme and Ayissi [Adv. Stud. Theor. Phys. 4, 855 (2010)] also proved a global existence of solutions to the Maxwell-Boltzmann system using the characteristic method. In this paper, we obtain using a method totally different from those used in the works of Noutchegueme and Dongho [Classical Quantum Gravity 23, 2979 (2006)], Noutchegueme, Dongho, and Takou [Gen. Relativ. Gravitation 37, 2047 (2005)], Noutchegueme and Ayissi [Adv. Stud. Theor. Phys. 4, 855 (2010)], and Mucha [Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case. Evolution equation, existence, regularity and singularities (Banach Center Publications, Institute of Mathematics, Polish Academy of Science, 2000), Vol. 52] the

  12. A new scheme for solving inhomogeneous Boltzmann equation for electrons in weakly ionised gases

    International Nuclear Information System (INIS)

    Mahmoud, M.O.M.; Yousfi, M.

    1995-01-01

    In the case of weakly ionized gases, the numerical treatment of non-hydrodynamic regime involving spatial variation of distribution function due to boundaries (walls, electrodes, electron source, etc hor-ellipsis) by using direct Boltzmann equation always constitute a challenge if the main collisional processes occurring in non thermal plasmas are to be considered (elastic, inelastic and super-elastic collisions, Penning ionisation, Coulomb interactions, etc hor-ellipsis). In the non-thermal discharge modelling, the inhomogeneous electron Boltzmann equation is needed in order to be coupled for example to a fluid model to take into account the electron non-hydrodynamic effects. This is for example the case of filamentary discharge, in which the space charge electric field due to streamer propagation has a very sharp spatial profile thus leading to important space non-hydrodynamic effects. It is also the case of the cathodic zone of glow discharge where electric field has a rapid spatial decrease until the negative glow. In the present work, a new numerical scheme is proposed to solve the inhomogeneous Boltzmann equation for electrons in the framework of two-term approximation (TTA) taking into account elastic and inelastic processes. Such a method has the usual drawbacks associated with the TTA i.e. not an accurate enough at high E/N values or in presence of high inelastic processes. But the accuracy of this method is considered sufficient because in a next step it is destinated to be coupled to fluid model for charged particles and a chemical kinetic model where the accuracy is of the same order of magnitude or worse. However there are numerous advantages of this method concerning time computing, treatment of non-linear collision processes (Coulomb, Penning, etc hor-ellipsis)

  13. On the effects of the reactive terms in the Boltzmann equation

    Directory of Open Access Journals (Sweden)

    C. J. Zamlutti

    Full Text Available The effects of the production and loss mechanisms that affect the Boltzmann equations are considered by the inclusion of a reactive term. The necessary elements to develop a proper form for this term are revised and the current trends analyzed. Although no accurate theoretical treatment of the problem is possible due to the many body nature of it, important relations can be derived which, besides being representative of the quantitative aspects of the matter, are illustrative of the qualitative features of the phenomenon. The overall procedure is detailed in this revision.

  14. Isospin dependent Boltzmann-langevin equation and the production cross section of 19Na

    International Nuclear Information System (INIS)

    Ming Zhaoyu; Zhang Fengshou; Chen Liewen; Zhu Zhiyuan; Zhang Wenlong; Guo Zhongyan; Xiao Guoqing

    2000-01-01

    A new transport model (isospin dependent Boltzmann-Langevin equation) is developed and it is shown that this model can regenerate the experimental data for reaction of 12 C + 12 C at 28.7 MeV/u. The production cross section of 19 Na is systematically studied for reactions of 17-20,22 Ne + 12 C at 28.7 MeV/u. It is found that a neutron deficient projectile has larger 19 Na cross section than a stable projectile

  15. Unified implicit kinetic scheme for steady multiscale heat transfer based on the phonon Boltzmann transport equation

    Science.gov (United States)

    Zhang, Chuang; Guo, Zhaoli; Chen, Songze

    2017-12-01

    An implicit kinetic scheme is proposed to solve the stationary phonon Boltzmann transport equation (BTE) for multiscale heat transfer problem. Compared to the conventional discrete ordinate method, the present method employs a macroscopic equation to accelerate the convergence in the diffusive regime. The macroscopic equation can be taken as a moment equation for phonon BTE. The heat flux in the macroscopic equation is evaluated from the nonequilibrium distribution function in the BTE, while the equilibrium state in BTE is determined by the macroscopic equation. These two processes exchange information from different scales, such that the method is applicable to the problems with a wide range of Knudsen numbers. Implicit discretization is implemented to solve both the macroscopic equation and the BTE. In addition, a memory reduction technique, which is originally developed for the stationary kinetic equation, is also extended to phonon BTE. Numerical comparisons show that the present scheme can predict reasonable results both in ballistic and diffusive regimes with high efficiency, while the memory requirement is on the same order as solving the Fourier law of heat conduction. The excellent agreement with benchmark and the rapid converging history prove that the proposed macro-micro coupling is a feasible solution to multiscale heat transfer problems.

  16. Advanced diffusion model in compacted bentonite based on modified Poisson-Boltzmann equations

    International Nuclear Information System (INIS)

    Yotsuji, K.; Tachi, Y.; Nishimaki, Y.

    2012-01-01

    Document available in extended abstract form only. Diffusion and sorption of radionuclides in compacted bentonite are the key processes in the safe geological disposal of radioactive waste. JAEA has developed the integrated sorption and diffusion (ISD) model for compacted bentonite by coupling the pore water chemistry, sorption and diffusion processes in consistent way. The diffusion model accounts consistently for cation excess and anion exclusion in narrow pores in compacted bentonite by the electric double layer (EDL) theory. The firstly developed ISD model could predict the diffusivity of the monovalent cation/anion in compacted bentonite as a function of dry density. This ISD model was modified by considering the visco-electric effect, and applied for diffusion data for various radionuclides measured under wide range of conditions (salinity, density, etc.). This modified ISD model can give better quantitative agreement with diffusion data for monovalent cation/anion, however, the model predictions still disagree with experimental data for multivalent cation and complex species. In this study we extract the additional key factors influencing diffusion model in narrow charged pores, and the effects of these factors were investigated to reach a better understanding of diffusion processes in compacted bentonite. We investigated here the dielectric saturation effect and the excluded volume effect into the present ISD model and numerically solved these modified Poisson-Boltzmann equations. In the vicinity of the negatively charged clay surfaces, it is necessary to evaluate concentration distribution of electrolytes considering the dielectric saturation effects. The Poisson-Boltzmann (P-B) equation coupled with the dielectric saturation effects was solved numerically by using Runge-Kutta and Shooting methods. Figure 1(a) shows the concentration distributions of Na + as numerical solutions of the modified and original P-B equations for 0.01 M pore water, 800 kg m -3

  17. Boltzmann equation for a mixture of gases with non-conservative processes

    International Nuclear Information System (INIS)

    Martiarena, M.L.

    1989-01-01

    The nonlinear and non-isotropic Boltzmann equation (NLBE) including several molecular species, non-conservative channels and external forces. The general solution of that equation is obtained for a spatially homogeneous mixture of L gases, consisting of Maxwell particles, as a Generalized Laguerre expansion, within a Hilbert space. Removal and self-generation effects are included in presence of a time-dependent external force. An exact particular solution is studied generalizing the well-known BKW-mode for a mixture of L gases with inelastic processes. An homogeneous gas of test particles, in d dimension, is considered which interacts with a background host medium in the presence of an external space and time dependent force. Scattering, removal and self-generation collisions are included. The inhomogeneous Boltzmann equation for this system to an homogeneous one is reduced without background or external forces, using a generalized Nilkoskii transform. It is shown that a background of field particles can confine the test gas, even in absence of external forces. Furthermore, the solution of NLBE with non-isotropic singular initial conditions, is analyzed. The NLBE is transformed into an integral equation which is solved iteratively. The evolution of delta and step singularities in the distribution function is discussed during the initial layer and compared with the isotropic case. As an application of the methods abovementioned, the collision of a beam of ions or neutral atoms with a carbon-foil is considered. The electron experimental spectra from a transport equation is described. It is supposed that convoy electron may be produced inside the solid by single ion-atom collisions as ELC or ECC. The produced electrons lost energy by collision with the atoms of the material, which are considered at rest. The electron distribution function is numerically calculated. The ratio between the intrinsic convoy electron peak height to the background electron intensity

  18. Revisiting Wiedemann-Franz law through Boltzmann transport equations and ab-initio density functional theory

    Science.gov (United States)

    Nag, Abhinav; Kumari, Anuja; Kumar, Jagdish

    2018-05-01

    We have investigated structural, electronic and transport properties of the alkali metals using ab-initio density functional theory. The electron energy dispersions are found parabolic free electron like which is expected for alkali metals. The lattice constants for all the studied metals are also in good agreement within 98% with experiments. We have further computed their transport properties using semi-classical Boltzmann transport equations with special focus on electrical and thermal conductivity. Our objective was to obtain Wiedemann-Franz law and hence Lorenz number. The motivation to do these calculations is to see that how the incorporation of different interactions such as electron-lattice, electron-electron interaction affect the Wiedeman-Franz law. By solving Boltzmann transport equations, we have obtained electrical conductivity (σ/τ) and thermal conductivity (κ0 /τ) at different temperatures and then calculated Lorenz number using L = κ0 /(σT). The obtained value of Lorenz number has been found to match with value derived for free electron Fermi gas 2.44× 10-8 WΩK-2. Our results prove that the Wiedemann-Franz law as derived for free electron gas does not change much for alkali metals, even when one incorporates interaction of electrons with atomic nuclei and other electrons. However, at lower temperatures, the Lorenz number, was found to be deviating from its theoretical value.

  19. Spherical harmonics and energy polynomial solution of the Boltzmann equation for neutrons, 1

    International Nuclear Information System (INIS)

    Toledo, P.S. de

    1974-01-01

    The approximate solution of the source-free energy-dependent Boltzmann transport equation for neutrons in plane geometry and isotropic scattering case was given by Leonard and Ferziger using a truncated development in a series of energy-polynomials for the energy dependent neutron flux and solving exactly for the angular dependence. The presence in the general solution of eigenfunctions belonging to a continuous spectrum gives rise to difficult analytical problems in the application of their method even to simple problems. To avoid such difficulties, the angular dependence is treated by a spherical harmonics method and a general solution of the energy-dependent transport equation in plane geometry and isotropic scattering is obtained, in spite of the appearance of matrices as argument of the angular polynomials [pt

  20. On Stable Wall Boundary Conditions for the Hermite Discretization of the Linearised Boltzmann Equation

    Science.gov (United States)

    Sarna, Neeraj; Torrilhon, Manuel

    2018-01-01

    We define certain criteria, using the characteristic decomposition of the boundary conditions and energy estimates, which a set of stable boundary conditions for a linear initial boundary value problem, involving a symmetric hyperbolic system, must satisfy. We first use these stability criteria to show the instability of the Maxwell boundary conditions proposed by Grad (Commun Pure Appl Math 2(4):331-407, 1949). We then recognise a special block structure of the moment equations which arises due to the recursion relations and the orthogonality of the Hermite polynomials; the block structure will help us in formulating stable boundary conditions for an arbitrary order Hermite discretization of the Boltzmann equation. The formulation of stable boundary conditions relies upon an Onsager matrix which will be constructed such that the newly proposed boundary conditions stay close to the Maxwell boundary conditions at least in the lower order moments.

  1. Lattice Boltzmann model for high-order nonlinear partial differential equations

    Science.gov (United States)

    Chai, Zhenhua; He, Nanzhong; Guo, Zhaoli; Shi, Baochang

    2018-01-01

    In this paper, a general lattice Boltzmann (LB) model is proposed for the high-order nonlinear partial differential equation with the form ∂tϕ +∑k=1mαk∂xkΠk(ϕ ) =0 (1 ≤k ≤m ≤6 ), αk are constant coefficients, Πk(ϕ ) are some known differential functions of ϕ . As some special cases of the high-order nonlinear partial differential equation, the classical (m)KdV equation, KdV-Burgers equation, K (n ,n ) -Burgers equation, Kuramoto-Sivashinsky equation, and Kawahara equation can be solved by the present LB model. Compared to the available LB models, the most distinct characteristic of the present model is to introduce some suitable auxiliary moments such that the correct moments of equilibrium distribution function can be achieved. In addition, we also conducted a detailed Chapman-Enskog analysis, and found that the high-order nonlinear partial differential equation can be correctly recovered from the proposed LB model. Finally, a large number of simulations are performed, and it is found that the numerical results agree with the analytical solutions, and usually the present model is also more accurate than the existing LB models [H. Lai and C. Ma, Sci. China Ser. G 52, 1053 (2009), 10.1007/s11433-009-0149-3; H. Lai and C. Ma, Phys. A (Amsterdam) 388, 1405 (2009), 10.1016/j.physa.2009.01.005] for high-order nonlinear partial differential equations.

  2. Lattice Boltzmann model for high-order nonlinear partial differential equations.

    Science.gov (United States)

    Chai, Zhenhua; He, Nanzhong; Guo, Zhaoli; Shi, Baochang

    2018-01-01

    In this paper, a general lattice Boltzmann (LB) model is proposed for the high-order nonlinear partial differential equation with the form ∂_{t}ϕ+∑_{k=1}^{m}α_{k}∂_{x}^{k}Π_{k}(ϕ)=0 (1≤k≤m≤6), α_{k} are constant coefficients, Π_{k}(ϕ) are some known differential functions of ϕ. As some special cases of the high-order nonlinear partial differential equation, the classical (m)KdV equation, KdV-Burgers equation, K(n,n)-Burgers equation, Kuramoto-Sivashinsky equation, and Kawahara equation can be solved by the present LB model. Compared to the available LB models, the most distinct characteristic of the present model is to introduce some suitable auxiliary moments such that the correct moments of equilibrium distribution function can be achieved. In addition, we also conducted a detailed Chapman-Enskog analysis, and found that the high-order nonlinear partial differential equation can be correctly recovered from the proposed LB model. Finally, a large number of simulations are performed, and it is found that the numerical results agree with the analytical solutions, and usually the present model is also more accurate than the existing LB models [H. Lai and C. Ma, Sci. China Ser. G 52, 1053 (2009)1672-179910.1007/s11433-009-0149-3; H. Lai and C. Ma, Phys. A (Amsterdam) 388, 1405 (2009)PHYADX0378-437110.1016/j.physa.2009.01.005] for high-order nonlinear partial differential equations.

  3. Modelling and nonlinear shock waves for binary gas mixtures by the discrete Boltzmann equation with multiple collisions

    International Nuclear Information System (INIS)

    Bianchi, M.P.

    1991-01-01

    The discrete Boltzmann equation is a mathematical model in the kinetic theory of gases which defines the time and space evolution of a system of gas particles with a finite number of selected velocities. Discrete kinetic theory is an interesting field of research in mathematical physics and applied mathematics for several reasons. One of the relevant fields of application of the discrete Boltzmann equation is the analysis of nonlinear shock wave phenomena. Here, a new multiple collision regular plane model for binary gas mixtures is proposed within the discrete theory of gases and applied to the analysis of the classical problems of shock wave propagation

  4. Computational and analytical comparison of flux discretizations for the semiconductor device equations beyond Boltzmann statistics

    International Nuclear Information System (INIS)

    Farrell, Patricio; Koprucki, Thomas; Fuhrmann, Jürgen

    2017-01-01

    We compare three thermodynamically consistent numerical fluxes known in the literature, appearing in a Voronoï finite volume discretization of the van Roosbroeck system with general charge carrier statistics. Our discussion includes an extension of the Scharfetter–Gummel scheme to non-Boltzmann (e.g. Fermi–Dirac) statistics. It is based on the analytical solution of a two-point boundary value problem obtained by projecting the continuous differential equation onto the interval between neighboring collocation points. Hence, it serves as a reference flux. The exact solution of the boundary value problem can be approximated by computationally cheaper fluxes which modify certain physical quantities. One alternative scheme averages the nonlinear diffusion (caused by the non-Boltzmann nature of the problem), another one modifies the effective density of states. To study the differences between these three schemes, we analyze the Taylor expansions, derive an error estimate, visualize the flux error and show how the schemes perform for a carefully designed p-i-n benchmark simulation. We present strong evidence that the flux discretization based on averaging the nonlinear diffusion has an edge over the scheme based on modifying the effective density of states.

  5. Computational and analytical comparison of flux discretizations for the semiconductor device equations beyond Boltzmann statistics

    Science.gov (United States)

    Farrell, Patricio; Koprucki, Thomas; Fuhrmann, Jürgen

    2017-10-01

    We compare three thermodynamically consistent numerical fluxes known in the literature, appearing in a Voronoï finite volume discretization of the van Roosbroeck system with general charge carrier statistics. Our discussion includes an extension of the Scharfetter-Gummel scheme to non-Boltzmann (e.g. Fermi-Dirac) statistics. It is based on the analytical solution of a two-point boundary value problem obtained by projecting the continuous differential equation onto the interval between neighboring collocation points. Hence, it serves as a reference flux. The exact solution of the boundary value problem can be approximated by computationally cheaper fluxes which modify certain physical quantities. One alternative scheme averages the nonlinear diffusion (caused by the non-Boltzmann nature of the problem), another one modifies the effective density of states. To study the differences between these three schemes, we analyze the Taylor expansions, derive an error estimate, visualize the flux error and show how the schemes perform for a carefully designed p-i-n benchmark simulation. We present strong evidence that the flux discretization based on averaging the nonlinear diffusion has an edge over the scheme based on modifying the effective density of states.

  6. Grid refinement for aeroacoustics in the lattice Boltzmann method: A directional splitting approach

    Science.gov (United States)

    Gendre, Félix; Ricot, Denis; Fritz, Guillaume; Sagaut, Pierre

    2017-08-01

    This study focuses on grid refinement techniques for the direct simulation of aeroacoustics, when using weakly compressible lattice Boltzmann models, such as the D3Q19 athermal velocity set. When it comes to direct noise computation, very small errors on the density or pressure field may have great negative consequences. Even strong acoustic density fluctuations have indeed a clearly lower amplitude than the hydrodynamic ones. This work deals with such very weak spurious fluctuations that emerge when a vortical structure crosses a refinement interface, which may contaminate the resulting aeroacoustic field. We show through an extensive literature review that, within the framework described above, this issue has never been addressed before. To tackle this problem, we develop an alternative algorithm and compare its behavior to a classical one, which fits our in-house vertex-centered data structure. Our main idea relies on a directional splitting of the continuous discrete velocity Boltzmann equation, followed by an integration over specific characteristics. This method can be seen as a specific coupling between finite difference and lattice Boltzmann, locally on the interface between the two grids. The method is assessed considering two cases: an acoustic pulse and a convected vortex. We show how very small errors on the density field arise and propagate throughout the domain when a vortical flow crosses the refinement interface. We also show that an increased free stream Mach number (but still within the weakly compressible regime) strongly deteriorates the situation, although the magnitude of the errors may remain negligible for purely aerodynamic studies. A drastically reduced level of error for the near-field spurious noise is obtained with our approach, especially for under-resolved simulations, a situation that is crucial for industrial applications. Thus, the vortex case is proved useful for aeroacoustic validations of any grid refinement algorithm.

  7. Azimuthal anisotropy in heavy-ion collisions using non-extensive statistics in Boltzmann transport equation

    International Nuclear Information System (INIS)

    Tripathy, S.; Tiwari, S.K.; Younus, M.; Sahoo, R.

    2017-01-01

    One of the major goals in heavy-ion physics is to understand the properties of Quark Gluon Plasma (QGP), a deconfined hot and dense state of quarks and gluons existed shortly after the Big Bang. In the present scenario, the high-energy particle accelerators are able to reach energies where this extremely dense nuclear matter can be probed for a short time. Here, we follow our earlier works which use non-extensive statistics in Boltzmann Transport Equation (BTE). We represent the initial distribution of particles with the help of Tsallis power law distribution parameterized by the nonextensive parameter q and the Tsallis temperature T, remembering the fact that their origin is due to hard scatterings. We use the initial distribution (f in ) with Relaxation Time Approximation (RTA) of the BTE and calculate the final distribution (f fin ). Then we calculate ν 2 of the system using the final distribution in the definition of ν2

  8. Thermal transport in isotopically disordered carbon nanotubes: a comparison between Green's functions and Boltzmann approaches

    International Nuclear Information System (INIS)

    Stoltz, G; Lazzeri, M; Mauri, F

    2009-01-01

    We present a study of the phononic thermal conductivity of isotopically disordered carbon nanotubes. In particular, the behaviour of the thermal conductivity as a function of the system length is investigated, using Green's function techniques to compute the transmission across the system. The method is implemented using linear scaling algorithms, which allow us to reach systems of lengths up to L = 2.5 μm (with up to 200 000 atoms). As for 1D systems, it is observed that the conductivity diverges with the system size L. We also observe a dramatic decrease of the thermal conductance for systems of experimental sizes (roughly 80% at room temperature for L = 2.5 μm), when a large fraction of isotopic disorder is introduced. The results obtained with Green's function techniques are compared to results obtained with a Boltzmann description of thermal transport. There is a good agreement between both approaches for systems of experimental sizes, even in the presence of Anderson localization. This is particularly interesting since the computation of the transmission using Boltzmann's equation is much less computationally expensive, so that larger systems may be studied with this method.

  9. Unbiased minimum variance estimator of a matrix exponential function. Application to Boltzmann/Bateman coupled equations solving

    International Nuclear Information System (INIS)

    Dumonteil, E.; Diop, C. M.

    2009-01-01

    This paper derives an unbiased minimum variance estimator (UMVE) of a matrix exponential function of a normal wean. The result is then used to propose a reference scheme to solve Boltzmann/Bateman coupled equations, thanks to Monte Carlo transport codes. The last section will present numerical results on a simple example. (authors)

  10. Continuous surface force based lattice Boltzmann equation method for simulating thermocapillary flow

    International Nuclear Information System (INIS)

    Zheng, Lin; Zheng, Song; Zhai, Qinglan

    2016-01-01

    In this paper, we extend a lattice Boltzmann equation (LBE) with continuous surface force (CSF) to simulate thermocapillary flows. The model is designed on our previous CSF LBE for athermal two phase flow, in which the interfacial tension forces and the Marangoni stresses as the results of the interface interactions between different phases are described by a conception of CSF. In this model, the sharp interfaces between different phases are separated by a narrow transition layers, and the kinetics and morphology evolution of phase separation would be characterized by an order parameter via Cahn–Hilliard equation which is solved in the frame work of LBE. The scalar convection–diffusion equation for temperature field is resolved by thermal LBE. The models are validated by thermal two layered Poiseuille flow, and two superimposed planar fluids at negligibly small Reynolds and Marangoni numbers for the thermocapillary driven convection, which have analytical solutions for the velocity and temperature. Then thermocapillary migration of two/three dimensional deformable droplet are simulated. Numerical results show that the predictions of present LBE agreed with the analytical solution/other numerical results. - Highlights: • A CSF LBE to thermocapillary flows. • Thermal layered Poiseuille flows. • Thermocapillary migration.

  11. Continuous surface force based lattice Boltzmann equation method for simulating thermocapillary flow

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Lin, E-mail: lz@njust.edu.cn [School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Zheng, Song [School of Mathematics and Statistics, Zhejiang University of Finance and Economics, Hangzhou 310018 (China); Zhai, Qinglan [School of Economics Management and Law, Chaohu University, Chaohu 238000 (China)

    2016-02-05

    In this paper, we extend a lattice Boltzmann equation (LBE) with continuous surface force (CSF) to simulate thermocapillary flows. The model is designed on our previous CSF LBE for athermal two phase flow, in which the interfacial tension forces and the Marangoni stresses as the results of the interface interactions between different phases are described by a conception of CSF. In this model, the sharp interfaces between different phases are separated by a narrow transition layers, and the kinetics and morphology evolution of phase separation would be characterized by an order parameter via Cahn–Hilliard equation which is solved in the frame work of LBE. The scalar convection–diffusion equation for temperature field is resolved by thermal LBE. The models are validated by thermal two layered Poiseuille flow, and two superimposed planar fluids at negligibly small Reynolds and Marangoni numbers for the thermocapillary driven convection, which have analytical solutions for the velocity and temperature. Then thermocapillary migration of two/three dimensional deformable droplet are simulated. Numerical results show that the predictions of present LBE agreed with the analytical solution/other numerical results. - Highlights: • A CSF LBE to thermocapillary flows. • Thermal layered Poiseuille flows. • Thermocapillary migration.

  12. Involving the Navier-Stokes equations in the derivation of boundary conditions for the lattice Boltzmann method.

    Science.gov (United States)

    Verschaeve, Joris C G

    2011-06-13

    By means of the continuity equation of the incompressible Navier-Stokes equations, additional physical arguments for the derivation of a formulation of the no-slip boundary condition for the lattice Boltzmann method for straight walls at rest are obtained. This leads to a boundary condition that is second-order accurate with respect to the grid spacing and conserves mass. In addition, the boundary condition is stable for relaxation frequencies close to two.

  13. Solution of the Boltzmann equation for primary light ions and the transport of their fragments

    Directory of Open Access Journals (Sweden)

    J. Kempe

    2010-10-01

    Full Text Available The Boltzmann equation for the transport of pencil beams of light ions in semi-infinite uniform media has been calculated. The equation is solved for the practically important generalized 3D case of Gaussian incident primary light ion beams of arbitrary mean square radius, mean square angular spread, and covariance. The transport of the associated fragments in three dimensions is derived based on the known transport of the primary particles, taking the mean square angular spread of their production processes, as well as their energy loss and multiple scattering, into account. The analytical pencil and broad beam depth fluence and absorbed dose distributions are accurately expressed using recently derived analytical energy and range formulas. The contributions from low and high linear energy transfer (LET dose components were separately identified using analytical expressions. The analytical results are compared with SHIELD-HIT Monte Carlo (MC calculations and found to be in very good agreement. The pencil beam fluence and absorbed dose distributions of the primary particles are mainly influenced by an exponential loss of the primary ions combined with an increasing lateral spread due to multiple scattering and energy loss with increasing penetration depth. The associated fluence of heavy fragments is concentrated at small radii and so is the LET and absorbed dose distribution. Their transport is also characterized by the buildup of a slowing down spectrum which is quite similar to that of the primaries but with a wider energy and angular spread at increasing penetration depths. The range of the fragments is shorter or longer depending on their nuclear mass to charge ratio relative to that of the primary ions. The absorbed dose of the heavier fragments is fairly similar to that of the primary ions and also influenced by a rapidly increasing energy loss towards the end of their ranges. The present analytical solution of the Boltzmann equation

  14. Nonlinear Boltzmann equation for the homogeneous isotropic case: Minimal deterministic Matlab program

    Science.gov (United States)

    Asinari, Pietro

    2010-10-01

    The homogeneous isotropic Boltzmann equation (HIBE) is a fundamental dynamic model for many applications in thermodynamics, econophysics and sociodynamics. Despite recent hardware improvements, the solution of the Boltzmann equation remains extremely challenging from the computational point of view, in particular by deterministic methods (free of stochastic noise). This work aims to improve a deterministic direct method recently proposed [V.V. Aristov, Kluwer Academic Publishers, 2001] for solving the HIBE with a generic collisional kernel and, in particular, for taking care of the late dynamics of the relaxation towards the equilibrium. Essentially (a) the original problem is reformulated in terms of particle kinetic energy (exact particle number and energy conservation during microscopic collisions) and (b) the computation of the relaxation rates is improved by the DVM-like correction, where DVM stands for Discrete Velocity Model (ensuring that the macroscopic conservation laws are exactly satisfied). Both these corrections make possible to derive very accurate reference solutions for this test case. Moreover this work aims to distribute an open-source program (called HOMISBOLTZ), which can be redistributed and/or modified for dealing with different applications, under the terms of the GNU General Public License. The program has been purposely designed in order to be minimal, not only with regards to the reduced number of lines (less than 1000), but also with regards to the coding style (as simple as possible). Program summaryProgram title: HOMISBOLTZ Catalogue identifier: AEGN_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGN_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License No. of lines in distributed program, including test data, etc.: 23 340 No. of bytes in distributed program, including test data, etc.: 7 635 236 Distribution format: tar

  15. Boltzmann-equation simulations of radio-frequency-driven, low-temperature plasmas

    International Nuclear Information System (INIS)

    Drallos, P.J.; Riley, M.E.

    1995-01-01

    We present a method for the numerical solution of the Boltzmann equation (BE) describing plasma electrons. We apply the method to a capacitively-coupled, radio-frequency-driven He discharge in parallel-plate (quasi-1D) geometry which contains time scales for physical processes spanning six orders of magnitude. Our BE solution procedure uses the method of characteristics for the Vlasov operator with interpolation in phase space at early time, allowing storage of the distribution function on a fixed phase-space grid. By alternating this BE method with a fluid description of the electrons, or with a novel time-cycle-average equation method, we compute the periodic steady state of a He plasma by time evolution from startup conditions. We find that the results compare favorably with measured current-voltage, plasma density, and ''cited state densities in the ''GEC'' Reference Cell. Our atomic He model includes five levels (some are summed composites), 15 electronic transitions, radiation trapping, and metastable-metastable collisions

  16. Boltzmann-equation simulations of radio-frequency-driven, low-temperature plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Drallos, P.J.; Riley, M.E.

    1995-01-01

    We present a method for the numerical solution of the Boltzmann equation (BE) describing plasma electrons. We apply the method to a capacitively-coupled, radio-frequency-driven He discharge in parallel-plate (quasi-1D) geometry which contains time scales for physical processes spanning six orders of magnitude. Our BE solution procedure uses the method of characteristics for the Vlasov operator with interpolation in phase space at early time, allowing storage of the distribution function on a fixed phase-space grid. By alternating this BE method with a fluid description of the electrons, or with a novel time-cycle-average equation method, we compute the periodic steady state of a He plasma by time evolution from startup conditions. We find that the results compare favorably with measured current-voltage, plasma density, and ``cited state densities in the ``GEC`` Reference Cell. Our atomic He model includes five levels (some are summed composites), 15 electronic transitions, radiation trapping, and metastable-metastable collisions.

  17. A Hartree-Fock-Slater-Boltzmann-Saha method for detailed atomic structure and equation of state of plasmas

    International Nuclear Information System (INIS)

    Jiang Minhao; Meng Xujun

    2005-01-01

    The effect of the free electron background in plasmas is introduced in Hartree-Fock-Slater self-consistent field atomic model to correct the single electron energies for each electron configuration, and to provide accurate atomic data for Boltzmann-Saha equation. In the iteration process chemical potential is adjusted to change the free electron background to satisfy simultaneously the conservation of the free electrons in Saha equation as well as in Hartree-Fock-Slater self-consistent field atomic model. As examples the equations of state of the carbon and aluminum plasmas are calculated to show the applicability of this method. (authors)

  18. Numerical simulation of diffuse double layer around microporous electrodes based on the Poisson–Boltzmann equation

    International Nuclear Information System (INIS)

    Kitazumi, Yuki; Shirai, Osamu; Yamamoto, Masahiro; Kano, Kenji

    2013-01-01

    Graphical abstract: - Highlights: • Diffuse double layers overlap with each other in the micropore. • The overlapping of the diffuse double layer affects the double layer capacitance. • The electric field becomes weak in the micropore. • The electroneutrality is unsatisfactory in the micropore. - Abstract: The structure of the diffuse double layer around a nm-sized micropore on porous electrodes has been studied by numerical simulation using the Poisson–Boltzmann equation. The double layer capacitance of the microporous electrode strongly depends on the electrode potential, the electrolyte concentration, and the size of the micropore. The potential and the electrolyte concentration dependence of the capacitance is different from that of the planner electrode based on the Gouy's theory. The overlapping of the diffuse double layer becomes conspicuous in the micropore. The overlapped diffuse double layer provides the mild electric field. The intensified electric field exists at the rim of the orifice of the micropore because of the expansion of the diffuse double layers. The characteristic features of microporous electrodes are caused by the heterogeneity of the electric field around the micropores

  19. Boltzmann equation analysis of electron-molecule collision cross sections in water vapor and ammonia

    International Nuclear Information System (INIS)

    Yousfi, M.; Benabdessadok, M.D.

    1996-01-01

    Sets of electron-molecule collision cross sections for H 2 O and NH 3 have been determined from a classical technique of electron swarm parameter unfolding. This deconvolution method is based on a simplex algorithm using a powerful multiterm Boltzmann equation analysis established in the framework of the classical hydrodynamic approximation. It is well adapted for the simulation of the different classes of swarm experiments (i.e., time resolved, time of flight, and steady state experiments). The sets of collision cross sections that exist in the literature are reviewed and analyzed. Fitted sets of cross sections are determined for H 2 O and NH 3 which exhibit features characteristic of polar molecules such as high rotational excitation collision cross sections. The hydrodynamic swarm parameters (i.e., drift velocity, longitudinal and transverse diffusion coefficients, ionization and attachment coefficients) calculated from the fitted sets are in excellent agreement with the measured ones. These sets are finally used to calculate the transport and reaction coefficients needed for discharge modeling in two cases of typical gas mixtures for which experimental swarm data are very sparse or nonexistent (i.e., flue gas mixtures and gas mixtures for rf plasma surface treatment). copyright 1996 American Institute of Physics

  20. Quantitative Pointwise Estimate of the Solution of the Linearized Boltzmann Equation

    Science.gov (United States)

    Lin, Yu-Chu; Wang, Haitao; Wu, Kung-Chien

    2018-04-01

    We study the quantitative pointwise behavior of the solutions of the linearized Boltzmann equation for hard potentials, Maxwellian molecules and soft potentials, with Grad's angular cutoff assumption. More precisely, for solutions inside the finite Mach number region (time like region), we obtain the pointwise fluid structure for hard potentials and Maxwellian molecules, and optimal time decay in the fluid part and sub-exponential time decay in the non-fluid part for soft potentials. For solutions outside the finite Mach number region (space like region), we obtain sub-exponential decay in the space variable. The singular wave estimate, regularization estimate and refined weighted energy estimate play important roles in this paper. Our results extend the classical results of Liu and Yu (Commun Pure Appl Math 57:1543-1608, 2004), (Bull Inst Math Acad Sin 1:1-78, 2006), (Bull Inst Math Acad Sin 6:151-243, 2011) and Lee et al. (Commun Math Phys 269:17-37, 2007) to hard and soft potentials by imposing suitable exponential velocity weight on the initial condition.

  1. Quantitative Pointwise Estimate of the Solution of the Linearized Boltzmann Equation

    Science.gov (United States)

    Lin, Yu-Chu; Wang, Haitao; Wu, Kung-Chien

    2018-06-01

    We study the quantitative pointwise behavior of the solutions of the linearized Boltzmann equation for hard potentials, Maxwellian molecules and soft potentials, with Grad's angular cutoff assumption. More precisely, for solutions inside the finite Mach number region (time like region), we obtain the pointwise fluid structure for hard potentials and Maxwellian molecules, and optimal time decay in the fluid part and sub-exponential time decay in the non-fluid part for soft potentials. For solutions outside the finite Mach number region (space like region), we obtain sub-exponential decay in the space variable. The singular wave estimate, regularization estimate and refined weighted energy estimate play important roles in this paper. Our results extend the classical results of Liu and Yu (Commun Pure Appl Math 57:1543-1608, 2004), (Bull Inst Math Acad Sin 1:1-78, 2006), (Bull Inst Math Acad Sin 6:151-243, 2011) and Lee et al. (Commun Math Phys 269:17-37, 2007) to hard and soft potentials by imposing suitable exponential velocity weight on the initial condition.

  2. Numerical solutions of the semiclassical Boltzmann ellipsoidal-statistical kinetic model equation

    Science.gov (United States)

    Yang, Jaw-Yen; Yan, Chin-Yuan; Huang, Juan-Chen; Li, Zhihui

    2014-01-01

    Computations of rarefied gas dynamical flows governed by the semiclassical Boltzmann ellipsoidal-statistical (ES) kinetic model equation using an accurate numerical method are presented. The semiclassical ES model was derived through the maximum entropy principle and conserves not only the mass, momentum and energy, but also contains additional higher order moments that differ from the standard quantum distributions. A different decoding procedure to obtain the necessary parameters for determining the ES distribution is also devised. The numerical method in phase space combines the discrete-ordinate method in momentum space and the high-resolution shock capturing method in physical space. Numerical solutions of two-dimensional Riemann problems for two configurations covering various degrees of rarefaction are presented and various contours of the quantities unique to this new model are illustrated. When the relaxation time becomes very small, the main flow features a display similar to that of ideal quantum gas dynamics, and the present solutions are found to be consistent with existing calculations for classical gas. The effect of a parameter that permits an adjustable Prandtl number in the flow is also studied. PMID:25104904

  3. Gas-kinetic unified algorithm for hypersonic flows covering various flow regimes solving Boltzmann model equation in nonequilibrium effect

    International Nuclear Information System (INIS)

    Li, Zhihui; Ma, Qiang; Wu, Junlin; Jiang, Xinyu; Zhang, Hanxin

    2014-01-01

    Based on the Gas-Kinetic Unified Algorithm (GKUA) directly solving the Boltzmann model equation, the effect of rotational non-equilibrium is investigated recurring to the kinetic Rykov model with relaxation property of rotational degrees of freedom. The spin movement of diatomic molecule is described by moment of inertia, and the conservation of total angle momentum is taken as a new Boltzmann collision invariant. The molecular velocity distribution function is integrated by the weight factor on the internal energy, and the closed system of two kinetic controlling equations is obtained with inelastic and elastic collisions. The optimization selection technique of discrete velocity ordinate points and numerical quadrature rules for macroscopic flow variables with dynamic updating evolvement are developed to simulate hypersonic flows, and the gas-kinetic numerical scheme is constructed to capture the time evolution of the discretized velocity distribution functions. The gas-kinetic boundary conditions in thermodynamic non-equilibrium and numerical procedures are studied and implemented by directly acting on the velocity distribution function, and then the unified algorithm of Boltzmann model equation involving non-equilibrium effect is presented for the whole range of flow regimes. The hypersonic flows involving non-equilibrium effect are numerically simulated including the inner flows of shock wave structures in nitrogen with different Mach numbers of 1.5-Ma-25, the planar ramp flow with the whole range of Knudsen numbers of 0.0009-Kn-10 and the three-dimensional re-entering flows around tine double-cone body

  4. Heat transport in two-dimensional materials by directly solving the phonon Boltzmann equation under Callaway's dual relaxation model

    Science.gov (United States)

    Guo, Yangyu; Wang, Moran

    2017-10-01

    The single mode relaxation time approximation has been demonstrated to greatly underestimate the lattice thermal conductivity of two-dimensional materials due to the collective effect of phonon normal scattering. Callaway's dual relaxation model represents a good approximation to the otherwise ab initio solution of the phonon Boltzmann equation. In this work we develop a discrete-ordinate-method (DOM) scheme for the numerical solution of the phonon Boltzmann equation under Callaway's model. Heat transport in a graphene ribbon with different geometries is modeled by our scheme, which produces results quite consistent with the available molecular dynamics, Monte Carlo simulations, and experimental measurements. Callaway's lattice thermal conductivity model with empirical boundary scattering rates is examined and shown to overestimate or underestimate the direct DOM solution. The length convergence of the lattice thermal conductivity of a rectangular graphene ribbon is explored and found to depend appreciably on the ribbon width, with a semiquantitative correlation provided between the convergence length and the width. Finally, we predict the existence of a phonon Knudsen minimum in a graphene ribbon only at a low system temperature and isotope concentration so that the average normal scattering rate is two orders of magnitude stronger than the intrinsic resistive one. The present work will promote not only the methodology for the solution of the phonon Boltzmann equation but also the theoretical modeling and experimental detection of hydrodynamic phonon transport in two-dimensional materials.

  5. On the transparent conducting oxide Al doped ZnO: First Principles and Boltzmann equations study

    Energy Technology Data Exchange (ETDEWEB)

    Slassi, A. [Institute of Nanomaterials and Nanotechnology, MAScIR, Rabat (Morocco); LMPHE (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Rabat (Morocco); Naji, S. [LMPHE (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Rabat (Morocco); Department of Physics, Faculty of Science, Ibb University, Ibb (Yemen); Benyoussef, A. [Institute of Nanomaterials and Nanotechnology, MAScIR, Rabat (Morocco); LMPHE (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Rabat (Morocco); Hamedoun, M., E-mail: hamedoun@hotmail.com [Institute of Nanomaterials and Nanotechnology, MAScIR, Rabat (Morocco); El Kenz, A. [LMPHE (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Rabat (Morocco)

    2014-08-25

    Highlights: • The incorporation of Al in ZnO increases the optical band edge absorption. • Incorporated Al creates shallow donor states of Al-3s around Fermi level. • Transmittance decreases in the visible and IR regions, while it increases in the UV region. • Electrical conductivity increases and reaches almost the saturation for high concentration of Al. - Abstract: We report, in this work, a theoretical study on the electronic, optical and electrical properties of pure and Al doped ZnO with different concentrations. In fact, we investigate these properties using both First Principles calculations within TB-mBJ approximation and Boltzmann equations under the constant relaxation time approximation for charge carriers. It is found out that, the calculated lattice parameters and the optical band gap of pure ZnO are close to the experimental values and in a good agreement with the other theoretical studies. It is also observed that, the incorporations of Al in ZnO increase the optical band edge absorption which leads to a blue shift and no deep impurities levels are induced in the band gap as well. More precisely, these incorporations create shallow donor states around Fermi level in the conduction band minimum from mainly Al-3s orbital. Beside this, it is found that, the transmittance is decreased in the visible and IR regions, while it is significantly improved in UV region. Finally, our calculations show that the electrical conductivity is enhanced as a result of Al doping and it reaches almost the saturation for high concentration of Al. These features make Al doped ZnO a transparent conducting electrode for optoelectronic device applications.

  6. SMPBS: Web server for computing biomolecular electrostatics using finite element solvers of size modified Poisson-Boltzmann equation.

    Science.gov (United States)

    Xie, Yang; Ying, Jinyong; Xie, Dexuan

    2017-03-30

    SMPBS (Size Modified Poisson-Boltzmann Solvers) is a web server for computing biomolecular electrostatics using finite element solvers of the size modified Poisson-Boltzmann equation (SMPBE). SMPBE not only reflects ionic size effects but also includes the classic Poisson-Boltzmann equation (PBE) as a special case. Thus, its web server is expected to have a broader range of applications than a PBE web server. SMPBS is designed with a dynamic, mobile-friendly user interface, and features easily accessible help text, asynchronous data submission, and an interactive, hardware-accelerated molecular visualization viewer based on the 3Dmol.js library. In particular, the viewer allows computed electrostatics to be directly mapped onto an irregular triangular mesh of a molecular surface. Due to this functionality and the fast SMPBE finite element solvers, the web server is very efficient in the calculation and visualization of electrostatics. In addition, SMPBE is reconstructed using a new objective electrostatic free energy, clearly showing that the electrostatics and ionic concentrations predicted by SMPBE are optimal in the sense of minimizing the objective electrostatic free energy. SMPBS is available at the URL: smpbs.math.uwm.edu © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. Evaluation of an analytic linear Boltzmann transport equation solver for high-density inhomogeneities

    Energy Technology Data Exchange (ETDEWEB)

    Lloyd, S. A. M.; Ansbacher, W. [Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8W 3P6 (Canada); Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8W 3P6 (Canada) and Department of Medical Physics, British Columbia Cancer Agency-Vancouver Island Centre, Victoria, British Columbia V8R 6V5 (Canada)

    2013-01-15

    Purpose: Acuros external beam (Acuros XB) is a novel dose calculation algorithm implemented through the ECLIPSE treatment planning system. The algorithm finds a deterministic solution to the linear Boltzmann transport equation, the same equation commonly solved stochastically by Monte Carlo methods. This work is an evaluation of Acuros XB, by comparison with Monte Carlo, for dose calculation applications involving high-density materials. Existing non-Monte Carlo clinical dose calculation algorithms, such as the analytic anisotropic algorithm (AAA), do not accurately model dose perturbations due to increased electron scatter within high-density volumes. Methods: Acuros XB, AAA, and EGSnrc based Monte Carlo are used to calculate dose distributions from 18 MV and 6 MV photon beams delivered to a cubic water phantom containing a rectangular high density (4.0-8.0 g/cm{sup 3}) volume at its center. The algorithms are also used to recalculate a clinical prostate treatment plan involving a unilateral hip prosthesis, originally evaluated using AAA. These results are compared graphically and numerically using gamma-index analysis. Radio-chromic film measurements are presented to augment Monte Carlo and Acuros XB dose perturbation data. Results: Using a 2% and 1 mm gamma-analysis, between 91.3% and 96.8% of Acuros XB dose voxels containing greater than 50% the normalized dose were in agreement with Monte Carlo data for virtual phantoms involving 18 MV and 6 MV photons, stainless steel and titanium alloy implants and for on-axis and oblique field delivery. A similar gamma-analysis of AAA against Monte Carlo data showed between 80.8% and 87.3% agreement. Comparing Acuros XB and AAA evaluations of a clinical prostate patient plan involving a unilateral hip prosthesis, Acuros XB showed good overall agreement with Monte Carlo while AAA underestimated dose on the upstream medial surface of the prosthesis due to electron scatter from the high-density material. Film measurements

  8. Two Experiments to Approach the Boltzmann Factor: Chemical Reaction and Viscous Flow

    Science.gov (United States)

    Fazio, Claudio; Battaglia, Onofrio R.; Guastella, Ivan

    2012-01-01

    In this paper we discuss a pedagogical approach aimed at pointing out the role played by the Boltzmann factor in describing phenomena usually perceived as regulated by different mechanisms of functioning. Experimental results regarding some aspects of a chemical reaction and of the viscous flow of some liquids are analysed and described in terms…

  9. A high-order Petrov-Galerkin method for the Boltzmann transport equation

    International Nuclear Information System (INIS)

    Pain, C.C.; Candy, A.S.; Piggott, M.D.; Buchan, A.; Eaton, M.D.; Goddard, A.J.H.; Oliveira, C.R.E. de

    2005-01-01

    We describe a new Petrov-Galerkin method using high-order terms to introduce dissipation in a residual-free formulation. The method is developed following both a Taylor series analysis and a variational principle, and the result has much in common with traditional Petrov-Galerkin, Self Adjoint Angular Flux (SAAF) and Even Parity forms of the Boltzmann transport equation. In addition, we consider the subtleties in constructing appropriate boundary conditions. In sub-grid scale (SGS) modelling of fluids the advantages of high-order dissipation are well known. Fourth-order terms, for example, are commonly used as a turbulence model with uniform dissipation. They have been shown to have superior properties to SGS models based upon second-order dissipation or viscosity. Even higher-order forms of dissipation (e.g. 16.-order) can offer further advantages, but are only easily realised by spectral methods because of the solution continuity requirements that these higher-order operators demand. Higher-order operators are more effective, bringing a higher degree of representation to the solution locally. Second-order operators, for example, tend to relax the solution to a linear variation locally, whereas a high-order operator will tend to relax the solution to a second-order polynomial locally. The form of the dissipation is also important. For example, the dissipation may only be applied (as it is in this work) in the streamline direction. While for many problems, for example Large Eddy Simulation (LES), simply adding a second or fourth-order dissipation term is a perfectly satisfactory SGS model, it is well known that a consistent residual-free formulation is required for radiation transport problems. This motivated the consideration of a new Petrov-Galerkin method that is residual-free, but also benefits from the advantageous features that SGS modelling introduces. We close with a demonstration of the advantages of this new discretization method over standard Petrov

  10. Construction and analysis of lattice Boltzmann methods applied to a 1D convection-diffusion equation

    International Nuclear Information System (INIS)

    Dellacherie, Stephane

    2014-01-01

    To solve the 1D (linear) convection-diffusion equation, we construct and we analyze two LBM schemes built on the D1Q2 lattice. We obtain these LBM schemes by showing that the 1D convection-diffusion equation is the fluid limit of a discrete velocity kinetic system. Then, we show in the periodic case that these LBM schemes are equivalent to a finite difference type scheme named LFCCDF scheme. This allows us, firstly, to prove the convergence in L∞ of these schemes, and to obtain discrete maximum principles for any time step in the case of the 1D diffusion equation with different boundary conditions. Secondly, this allows us to obtain most of these results for the Du Fort-Frankel scheme for a particular choice of the first iterate. We also underline that these LBM schemes can be applied to the (linear) advection equation and we obtain a stability result in L∞ under a classical CFL condition. Moreover, by proposing a probabilistic interpretation of these LBM schemes, we also obtain Monte-Carlo algorithms which approach the 1D (linear) diffusion equation. At last, we present numerical applications justifying these results. (authors)

  11. Rarefied gas flow simulations using high-order gas-kinetic unified algorithms for Boltzmann model equations

    Science.gov (United States)

    Li, Zhi-Hui; Peng, Ao-Ping; Zhang, Han-Xin; Yang, Jaw-Yen

    2015-04-01

    This article reviews rarefied gas flow computations based on nonlinear model Boltzmann equations using deterministic high-order gas-kinetic unified algorithms (GKUA) in phase space. The nonlinear Boltzmann model equations considered include the BGK model, the Shakhov model, the Ellipsoidal Statistical model and the Morse model. Several high-order gas-kinetic unified algorithms, which combine the discrete velocity ordinate method in velocity space and the compact high-order finite-difference schemes in physical space, are developed. The parallel strategies implemented with the accompanying algorithms are of equal importance. Accurate computations of rarefied gas flow problems using various kinetic models over wide ranges of Mach numbers 1.2-20 and Knudsen numbers 0.0001-5 are reported. The effects of different high resolution schemes on the flow resolution under the same discrete velocity ordinate method are studied. A conservative discrete velocity ordinate method to ensure the kinetic compatibility condition is also implemented. The present algorithms are tested for the one-dimensional unsteady shock-tube problems with various Knudsen numbers, the steady normal shock wave structures for different Mach numbers, the two-dimensional flows past a circular cylinder and a NACA 0012 airfoil to verify the present methodology and to simulate gas transport phenomena covering various flow regimes. Illustrations of large scale parallel computations of three-dimensional hypersonic rarefied flows over the reusable sphere-cone satellite and the re-entry spacecraft using almost the largest computer systems available in China are also reported. The present computed results are compared with the theoretical prediction from gas dynamics, related DSMC results, slip N-S solutions and experimental data, and good agreement can be found. The numerical experience indicates that although the direct model Boltzmann equation solver in phase space can be computationally expensive

  12. Central moments of ion implantation distributions derived by the backward Boltzmann transport equation compared with Monte Carlo simulations

    International Nuclear Information System (INIS)

    Bowyer, M.D.J.; Ashworth, D.G.; Oven, R.

    1992-01-01

    In this paper we study solutions to the backward Boltzmann transport equation (BBTE) specialized to equations governing moments of the distribution of ions implanted into amorphous targets. A central moment integral equation set has been derived starting from the classical plane source BBTE for non-central moments. A full generator equation is provided to allow construction of equation sets of an arbitrary size, thus allowing computation of moments of arbitrary order. A BBTE solver program has been written that uses the residual correction technique proposed by Winterbon. A simple means is presented to allow direct incorporation of Biersack's two-parameter ''magic formula'' into a BBTE solver program. Results for non-central and central moment integral equation sets are compared with Monte Carlo simulations, using three different formulae for the mean free flight path between collisions. Comparisons are performed for the ions B and As, implanted into the target a-Si, over the energy range 1 keV-1 MeV. The central moment integral equation set is found to have superior convergence properties to the non-central moment equation set. For As ions implanted into a-Si, at energies below ∼ 30 keV, significant differences are observed, for third- and fourth-order moments, when using alternative versions for the mean free flight path. Third- and fourth-order moments derived using one- and two-parameter scattering mechanisms also show significant differences over the same energy range. (Author)

  13. Parallel performance and accuracy of lattice Boltzmann and traditional finite difference methods for solving the unsteady two-dimensional Burger's equation

    Science.gov (United States)

    Velivelli, A. C.; Bryden, K. M.

    2006-03-01

    Lattice Boltzmann methods are gaining recognition in the field of computational fluid dynamics due to their computational efficiency. In order to quantify the computational efficiency and accuracy of the lattice Boltzmann method, it is compared with efficient traditional finite difference methods such as the alternating direction implicit scheme. The lattice Boltzmann algorithm implemented in previous studies does not approach peak performance for simulations where the data involved in computation per time step is more than the cache size. Due to this, data is obtained from the main memory and this access is much slower than access to cache memory. Using a cache-optimized lattice Boltzmann algorithm, this paper takes into account the full computational strength of the lattice Boltzmann method. The com parison is performed on both a single processor and multiple processors.

  14. Unified solution of the Boltzmann equation for electron and ion velocity distribution functions and transport coefficients in weakly ionized plasmas

    Science.gov (United States)

    Konovalov, Dmitry A.; Cocks, Daniel G.; White, Ronald D.

    2017-10-01

    The velocity distribution function and transport coefficients for charged particles in weakly ionized plasmas are calculated via a multi-term solution of Boltzmann's equation and benchmarked using a Monte-Carlo simulation. A unified framework for the solution of the original full Boltzmann's equation is presented which is valid for ions and electrons, avoiding any recourse to approximate forms of the collision operator in various limiting mass ratio cases. This direct method using Lebedev quadratures over the velocity and scattering angles avoids the need to represent the ion mass dependence in the collision operator through an expansion in terms of the charged particle to neutral mass ratio. For the two-temperature Burnett function method considered in this study, this amounts to avoiding the need for the complex Talmi-transformation methods and associated mass-ratio expansions. More generally, we highlight the deficiencies in the two-temperature Burnett function method for heavy ions at high electric fields to calculate the ion velocity distribution function, even though the transport coefficients have converged. Contribution to the Topical Issue "Physics of Ionized Gases (SPIG 2016)", edited by Goran Poparic, Bratislav Obradovic, Dragana Maric and Aleksandar Milosavljevic.

  15. almaBTE : A solver of the space-time dependent Boltzmann transport equation for phonons in structured materials

    Science.gov (United States)

    Carrete, Jesús; Vermeersch, Bjorn; Katre, Ankita; van Roekeghem, Ambroise; Wang, Tao; Madsen, Georg K. H.; Mingo, Natalio

    2017-11-01

    almaBTE is a software package that solves the space- and time-dependent Boltzmann transport equation for phonons, using only ab-initio calculated quantities as inputs. The program can predictively tackle phonon transport in bulk crystals and alloys, thin films, superlattices, and multiscale structures with size features in the nm- μm range. Among many other quantities, the program can output thermal conductances and effective thermal conductivities, space-resolved average temperature profiles, and heat-current distributions resolved in frequency and space. Its first-principles character makes almaBTE especially well suited to investigate novel materials and structures. This article gives an overview of the program structure and presents illustrative examples for some of its uses. PROGRAM SUMMARY Program Title:almaBTE Program Files doi:http://dx.doi.org/10.17632/8tfzwgtp73.1 Licensing provisions: Apache License, version 2.0 Programming language: C++ External routines/libraries: BOOST, MPI, Eigen, HDF5, spglib Nature of problem: Calculation of temperature profiles, thermal flux distributions and effective thermal conductivities in structured systems where heat is carried by phonons Solution method: Solution of linearized phonon Boltzmann transport equation, Variance-reduced Monte Carlo

  16. Ludwig Boltzmann - pioneer of atomistics and evolution

    International Nuclear Information System (INIS)

    Stiller, W.

    1986-01-01

    At first a short introduction to Ludwig Boltzmann's life (1844 - 1906) and work is given. Some theoretical results of his work (H-theorem, classical Boltzmann statistics, Boltzmann's kinetic equation) are treated in detail. His experimental work is briefly discussed. In addition Boltzmann's philosophical work is characterized. Finally, the influence of Boltzmann's ideas on our time is investigated. (author)

  17. Generalized boundary conditions in an existence and uniqueness proof for the solution of the non-stationary electron Boltzmann equation by means of operator-semigroups

    International Nuclear Information System (INIS)

    Bartolomaeus, G.; Wilhelm, J.

    1983-01-01

    Recently, based on the semigroup approach a new proof was presented of the existence of a unique solution of the non-stationary Boltzmann equation for the electron component of a collision dominated plasma. The proof underlies some restriction which should be overcome to extend the validity range to other problems of physical interest. One of the restrictions is the boundary condition applied. The choice of the boundary condition is essential for the proof because it determines the range of definition of the infinitesimal generator and thus the operator semigroup itself. The paper proves the existence of a unique solution for generalized boundary conditions, this solution takes non-negative values, which is necessary for a distribution function from the physical point of view. (author)

  18. A pedagogical approach to the Boltzmann factor through experiments and simulations

    International Nuclear Information System (INIS)

    Battaglia, O R; Bonura, A; Sperandeo-Mineo, R M

    2009-01-01

    The Boltzmann factor is the basis of a huge amount of thermodynamic and statistical physics, both classical and quantum. It governs the behaviour of all systems in nature that are exchanging energy with their environment. To understand why the expression has this specific form involves a deep mathematical analysis, whose flow of logic is hard to see and is not at the level of high school or college students' preparation. We here present some experiments and simulations aimed at directly deriving its mathematical expression and illustrating the fundamental concepts on which it is grounded. Experiments use easily available apparatuses, and simulations are developed in the Net-Logo environment that, besides having a user-friendly interface, allows an easy interaction with the algorithm. The approach supplies pedagogical support for the introduction of the Boltzmann factor at the undergraduate level to students without a background in statistical mechanics.

  19. A pedagogical approach to the Boltzmann factor through experiments and simulations

    Energy Technology Data Exchange (ETDEWEB)

    Battaglia, O R; Bonura, A; Sperandeo-Mineo, R M [University of Palermo Physics Education Research Group, Dipartimento di Fisica e Tecnologie Relative, Universita di Palermo (Italy)], E-mail: sperandeo@difter.unipa.it

    2009-09-15

    The Boltzmann factor is the basis of a huge amount of thermodynamic and statistical physics, both classical and quantum. It governs the behaviour of all systems in nature that are exchanging energy with their environment. To understand why the expression has this specific form involves a deep mathematical analysis, whose flow of logic is hard to see and is not at the level of high school or college students' preparation. We here present some experiments and simulations aimed at directly deriving its mathematical expression and illustrating the fundamental concepts on which it is grounded. Experiments use easily available apparatuses, and simulations are developed in the Net-Logo environment that, besides having a user-friendly interface, allows an easy interaction with the algorithm. The approach supplies pedagogical support for the introduction of the Boltzmann factor at the undergraduate level to students without a background in statistical mechanics.

  20. A new algorithm for the simulation of the Boltzmann equation using the direct simulation monte-carlo method

    International Nuclear Information System (INIS)

    Ganjaei, A. A.; Nourazar, S. S.

    2009-01-01

    A new algorithm, the modified direct simulation Monte-Carlo (MDSMC) method, for the simulation of Couette- Taylor gas flow problem is developed. The Taylor series expansion is used to obtain the modified equation of the first order time discretization of the collision equation and the new algorithm, MDSMC, is implemented to simulate the collision equation in the Boltzmann equation. In the new algorithm (MDSMC) there exists a new extra term which takes in to account the effect of the second order collision. This new extra term has the effect of enhancing the appearance of the first Taylor instabilities of vortices streamlines. In the new algorithm (MDSMC) there also exists a second order term in time step in the probabilistic coefficients which has the effect of simulation with higher accuracy than the previous DSMC algorithm. The appearance of the first Taylor instabilities of vortices streamlines using the MDSMC algorithm at different ratios of ω/ν (experimental data of Taylor) occurred at less time-step than using the DSMC algorithm. The results of the torque developed on the stationary cylinder using the MDSMC algorithm show better agreement in comparison with the experimental data of Kuhlthau than the results of the torque developed on the stationary cylinder using the DSMC algorithm

  1. Derivation of the Boltzmann Equation for Financial Brownian Motion: Direct Observation of the Collective Motion of High-Frequency Traders

    Science.gov (United States)

    Kanazawa, Kiyoshi; Sueshige, Takumi; Takayasu, Hideki; Takayasu, Misako

    2018-03-01

    A microscopic model is established for financial Brownian motion from the direct observation of the dynamics of high-frequency traders (HFTs) in a foreign exchange market. Furthermore, a theoretical framework parallel to molecular kinetic theory is developed for the systematic description of the financial market from microscopic dynamics of HFTs. We report first on a microscopic empirical law of traders' trend-following behavior by tracking the trajectories of all individuals, which quantifies the collective motion of HFTs but has not been captured in conventional order-book models. We next introduce the corresponding microscopic model of HFTs and present its theoretical solution paralleling molecular kinetic theory: Boltzmann-like and Langevin-like equations are derived from the microscopic dynamics via the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy. Our model is the first microscopic model that has been directly validated through data analysis of the microscopic dynamics, exhibiting quantitative agreements with mesoscopic and macroscopic empirical results.

  2. Effects of density and force discretizations on spurious velocities in lattice Boltzmann equation for two-phase flows

    KAUST Repository

    Xiong, Yuan

    2014-04-28

    Spurious current emerging in the vicinity of phase interfaces is a well-known disadvantage of the lattice Boltzmann equation (LBE) for two-phase flows. Previous analysis shows that this unphysical phenomenon comes from the force imbalance at discrete level inherited in LBE (Guo et al 2011 Phys. Rev. E 83 036707). Based on the analysis of the LBE free of checkerboard effects, in this work we further show that the force imbalance is caused by the different discretization stencils: the implicit one from the streaming process and the explicit one from the discretization of the force term. Particularly, the total contribution includes two parts, one from the difference between the intrinsically discretized density (or ideal gas pressure) gradient and the explicit ones in the force term, and the other from the explicit discretized chemical potential gradients in the intrinsically discretized force term. The former contribution is a special feature of LBE which was not realized previously.

  3. SU-E-T-22: A Deterministic Solver of the Boltzmann-Fokker-Planck Equation for Dose Calculation

    Energy Technology Data Exchange (ETDEWEB)

    Hong, X; Gao, H [Shanghai Jiao Tong University, Shanghai, Shanghai (China); Paganetti, H [Massachusetts General Hospital, Boston, MA (United States)

    2015-06-15

    Purpose: The Boltzmann-Fokker-Planck equation (BFPE) accurately models the migration of photons/charged particles in tissues. While the Monte Carlo (MC) method is popular for solving BFPE in a statistical manner, we aim to develop a deterministic BFPE solver based on various state-of-art numerical acceleration techniques for rapid and accurate dose calculation. Methods: Our BFPE solver is based on the structured grid that is maximally parallelizable, with the discretization in energy, angle and space, and its cross section coefficients are derived or directly imported from the Geant4 database. The physical processes that are taken into account are Compton scattering, photoelectric effect, pair production for photons, and elastic scattering, ionization and bremsstrahlung for charged particles.While the spatial discretization is based on the diamond scheme, the angular discretization synergizes finite element method (FEM) and spherical harmonics (SH). Thus, SH is used to globally expand the scattering kernel and FFM is used to locally discretize the angular sphere. As a Result, this hybrid method (FEM-SH) is both accurate in dealing with forward-peaking scattering via FEM, and efficient for multi-energy-group computation via SH. In addition, FEM-SH enables the analytical integration in energy variable of delta scattering kernel for elastic scattering with reduced truncation error from the numerical integration based on the classic SH-based multi-energy-group method. Results: The accuracy of the proposed BFPE solver was benchmarked against Geant4 for photon dose calculation. In particular, FEM-SH had improved accuracy compared to FEM, while both were within 2% of the results obtained with Geant4. Conclusion: A deterministic solver of the Boltzmann-Fokker-Planck equation is developed for dose calculation, and benchmarked against Geant4. Xiang Hong and Hao Gao were partially supported by the NSFC (#11405105), the 973 Program (#2015CB856000) and the Shanghai Pujiang

  4. Imitation Monte Carlo methods for problems of the Boltzmann equation with small Knudsen numbers, parallelizing algorithms with splitting

    International Nuclear Information System (INIS)

    Khisamutdinov, A I; Velker, N N

    2014-01-01

    The talk examines a system of pairwise interaction particles, which models a rarefied gas in accordance with the nonlinear Boltzmann equation, the master equations of Markov evolution of this system and corresponding numerical Monte Carlo methods. Selection of some optimal method for simulation of rarefied gas dynamics depends on the spatial size of the gas flow domain. For problems with the Knudsen number K n of order unity 'imitation', or 'continuous time', Monte Carlo methods ([2]) are quite adequate and competitive. However if K n ≤ 0.1 (the large sizes), excessive punctuality, namely, the need to see all the pairs of particles in the latter, leads to a significant increase in computational cost(complexity). We are interested in to construct the optimal methods for Boltzmann equation problems with large enough spatial sizes of the flow. Speaking of the optimal, we mean that we are talking about algorithms for parallel computation to be implemented on high-performance multi-processor computers. The characteristic property of large systems is the weak dependence of sub-parts of each other at a sufficiently small time intervals. This property is taken into account in the approximate methods using various splittings of operator of corresponding master equations. In the paper, we develop the approximate method based on the splitting of the operator of master equations system 'over groups of particles' ([7]). The essence of the method is that the system of particles is divided into spatial subparts which are modeled independently for small intervals of time, using the precise 'imitation' method. The type of splitting used is different from other well-known type 'over collisions and displacements', which is an attribute of the known Direct simulation Monte Carlo methods. The second attribute of the last ones is the grid of the 'interaction cells', which is completely absent in the imitation methods. The

  5. The solution of the Poisson-Boltzmann's equation for self-consistent potential of infinite, random, nonlinear and non-uniform system

    International Nuclear Information System (INIS)

    Rasulova, M.Yu

    1998-01-01

    A study has been made of a system of charged particles and inhomogeneities randomly distributed in accordance with the same law in the neighborhoods of corresponding sites of a planar crystal lattice. The existence and uniqueness of the solution of the generalized Poisson-Boltzmann's equation for the average self-consistent potential and average density of surface charges are proved. (author)

  6. Kinetic Boltzmann approach adapted for modeling highly ionized matter created by x-ray irradiation of a solid

    Czech Academy of Sciences Publication Activity Database

    Ziaja, B.; Saxena, V.; Son, S.-K.; Medvedev, N.; Barbrel, B.; Woloncewicz, B.; Stránský, Michal

    2016-01-01

    Roč. 93, č. 5 (2016), 1-6, č. článku 053210. ISSN 2470-0045 R&D Projects: GA MŠk(CZ) LG13029 Institutional support: RVO:68378271 Keywords : X-ray * Boltzmann equation Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.366, year: 2016

  7. Integrodifferential equation approach. Pt. 1

    International Nuclear Information System (INIS)

    Oehm, W.; Sofianos, S.A.; Fiedeldey, H.; South Africa Univ., Pretoria. Dept. of Physics); Fabre de la Ripelle, M.; South Africa Univ., Pretoria. Dept. of Physics)

    1990-02-01

    A single integrodifferential equation in two variables, valid for A nucleons interacting by pure Wigner forces, which has previously only been solved in the extreme and uncoupled adiabatic approximations is now solved exactly for three- and four-nucleon systems. The results are in good agreement with the values obtained for the binding energies by means of an empirical interpolation formula. This validates all our previous conclusions, in particular that the omission of higher (than two) order correlations in our four-body equation only produces a rather small underbinding. The integrodifferential equation approach (IDEA) is here also extended to spin-dependent forces of the Malfliet-Tjon type, resulting in two coupled integrodifferential equations in two variables. The exact solution and the interpolated adiabatic approximation are again in good agreement. The inclusion of the hypercentral part of the two-body interaction in the definition of the Faddeev-type components again leads to substantial improvement for fully local potentials, acting in all partial waves. (orig.)

  8. Decoupled scheme based on the Hermite expansion to construct lattice Boltzmann models for the compressible Navier-Stokes equations with arbitrary specific heat ratio.

    Science.gov (United States)

    Hu, Kainan; Zhang, Hongwu; Geng, Shaojuan

    2016-10-01

    A decoupled scheme based on the Hermite expansion to construct lattice Boltzmann models for the compressible Navier-Stokes equations with arbitrary specific heat ratio is proposed. The local equilibrium distribution function including the rotational velocity of particle is decoupled into two parts, i.e., the local equilibrium distribution function of the translational velocity of particle and that of the rotational velocity of particle. From these two local equilibrium functions, two lattice Boltzmann models are derived via the Hermite expansion, namely one is in relation to the translational velocity and the other is connected with the rotational velocity. Accordingly, the distribution function is also decoupled. After this, the evolution equation is decoupled into the evolution equation of the translational velocity and that of the rotational velocity. The two evolution equations evolve separately. The lattice Boltzmann models used in the scheme proposed by this work are constructed via the Hermite expansion, so it is easy to construct new schemes of higher-order accuracy. To validate the proposed scheme, a one-dimensional shock tube simulation is performed. The numerical results agree with the analytical solutions very well.

  9. Nano-particle drag prediction at low Reynolds number using a direct Boltzmann-BGK solution approach

    Science.gov (United States)

    Evans, B.

    2018-01-01

    This paper outlines a novel approach for solution of the Boltzmann-BGK equation describing molecular gas dynamics applied to the challenging problem of drag prediction of a 2D circular nano-particle at transitional Knudsen number (0.0214) and low Reynolds number (0.25-2.0). The numerical scheme utilises a discontinuous-Galerkin finite element discretisation for the physical space representing the problem particle geometry and a high order discretisation for molecular velocity space describing the molecular distribution function. The paper shows that this method produces drag predictions that are aligned well with the range of drag predictions for this problem generated from the alternative numerical approaches of molecular dynamics codes and a modified continuum scheme. It also demonstrates the sensitivity of flow-field solutions and therefore drag predictions to the wall absorption parameter used to construct the solid wall boundary condition used in the solver algorithm. The results from this work has applications in fields ranging from diagnostics and therapeutics in medicine to the fields of semiconductors and xerographics.

  10. Critical Opalescence around the QCD Critical Point and Second-order Relativistic Hydrodynamic Equations Compatible with Boltzmann Equation

    International Nuclear Information System (INIS)

    Kunihiro, Teiji; Minami, Yuki; Tsumura, Kyosuke

    2009-01-01

    The dynamical density fluctuations around the QCD critical point (CP) are analyzed using relativistic dissipative fluid dynamics, and we show that the sound mode around the QCD CP is strongly attenuated whereas the thermal fluctuation stands out there. We speculate that if possible suppression or disappearance of a Mach cone, which seems to be created by the partonic jets at RHIC, is observed as the incident energy of the heavy-ion collisions is decreased, it can be a signal of the existence of the QCD CP. We have presented the Israel-Stewart type fluid dynamic equations that are derived rigorously on the basis of the (dynamical) renormalization group method in the second part of the talk, which we omit here because of a lack of space.

  11. Critical Opalescence around the QCD Critical Point and Second-order Relativistic Hydrodynamic Equations Compatible with Boltzmann Equation

    Science.gov (United States)

    Kunihiro, Teiji; Minami, Yuki; Tsumura, Kyosuke

    2009-11-01

    The dynamical density fluctuations around the QCD critical point (CP) are analyzed using relativistic dissipative fluid dynamics, and we show that the sound mode around the QCD CP is strongly attenuated whereas the thermal fluctuation stands out there. We speculate that if possible suppression or disappearance of a Mach cone, which seems to be created by the partonic jets at RHIC, is observed as the incident energy of the heavy-ion collisions is decreased, it can be a signal of the existence of the QCD CP. We have presented the Israel-Stewart type fluid dynamic equations that are derived rigorously on the basis of the (dynamical) renormalization group method in the second part of the talk, which we omit here because of a lack of space.

  12. Finite difference numerical method for the superlattice Boltzmann transport equation and case comparison of CPU(C) and GPU(CUDA) implementations

    International Nuclear Information System (INIS)

    Priimak, Dmitri

    2014-01-01

    We present a finite difference numerical algorithm for solving two dimensional spatially homogeneous Boltzmann transport equation which describes electron transport in a semiconductor superlattice subject to crossed time dependent electric and constant magnetic fields. The algorithm is implemented both in C language targeted to CPU and in CUDA C language targeted to commodity NVidia GPU. We compare performances and merits of one implementation versus another and discuss various software optimisation techniques

  13. Finite difference numerical method for the superlattice Boltzmann transport equation and case comparison of CPU(C) and GPU(CUDA) implementations

    Energy Technology Data Exchange (ETDEWEB)

    Priimak, Dmitri

    2014-12-01

    We present a finite difference numerical algorithm for solving two dimensional spatially homogeneous Boltzmann transport equation which describes electron transport in a semiconductor superlattice subject to crossed time dependent electric and constant magnetic fields. The algorithm is implemented both in C language targeted to CPU and in CUDA C language targeted to commodity NVidia GPU. We compare performances and merits of one implementation versus another and discuss various software optimisation techniques.

  14. A low noise discrete velocity method for the Boltzmann equation with quantized rotational and vibrational energy

    Science.gov (United States)

    Clarke, Peter; Varghese, Philip; Goldstein, David

    2018-01-01

    A discrete velocity method is developed for gas mixtures of diatomic molecules with both rotational and vibrational energy states. A full quantized model is described, and rotation-translation and vibration-translation energy exchanges are simulated using a Larsen-Borgnakke exchange model. Elastic and inelastic molecular interactions are modeled during every simulated collision to help produce smooth internal energy distributions. The method is verified by comparing simulations of homogeneous relaxation by our discrete velocity method to numerical solutions of the Jeans and Landau-Teller equations, and to direct simulation Monte Carlo. We compute the structure of a 1D shock using this method, and determine how the rotational energy distribution varies with spatial location in the shock and with position in velocity space.

  15. Determination of a basic set of Eigen-functions and of the corresponding norm in the case of the one-velocity integral differential Boltzmann equation in spherical geometry

    International Nuclear Information System (INIS)

    Lafore, P.

    1965-01-01

    The object of the present work is to draw up a basic set of orthogonal eigenfunctions; resolution of the one-velocity integral-differential Boltzmann equation; this in the case of a spherical geometry system. (author) [fr

  16. Biases and statistical errors in Monte Carlo burnup calculations: an unbiased stochastic scheme to solve Boltzmann/Bateman coupled equations

    International Nuclear Information System (INIS)

    Dumonteil, E.; Diop, C.M.

    2011-01-01

    External linking scripts between Monte Carlo transport codes and burnup codes, and complete integration of burnup capability into Monte Carlo transport codes, have been or are currently being developed. Monte Carlo linked burnup methodologies may serve as an excellent benchmark for new deterministic burnup codes used for advanced systems; however, there are some instances where deterministic methodologies break down (i.e., heavily angularly biased systems containing exotic materials without proper group structure) and Monte Carlo burn up may serve as an actual design tool. Therefore, researchers are also developing these capabilities in order to examine complex, three-dimensional exotic material systems that do not contain benchmark data. Providing a reference scheme implies being able to associate statistical errors to any neutronic value of interest like k(eff), reaction rates, fluxes, etc. Usually in Monte Carlo, standard deviations are associated with a particular value by performing different independent and identical simulations (also referred to as 'cycles', 'batches', or 'replicas'), but this is only valid if the calculation itself is not biased. And, as will be shown in this paper, there is a bias in the methodology that consists of coupling transport and depletion codes because Bateman equations are not linear functions of the fluxes or of the reaction rates (those quantities being always measured with an uncertainty). Therefore, we have to quantify and correct this bias. This will be achieved by deriving an unbiased minimum variance estimator of a matrix exponential function of a normal mean. The result is then used to propose a reference scheme to solve Boltzmann/Bateman coupled equations, thanks to Monte Carlo transport codes. Numerical tests will be performed with an ad hoc Monte Carlo code on a very simple depletion case and will be compared to the theoretical results obtained with the reference scheme. Finally, the statistical error propagation

  17. Mass and heat transfer between evaporation and condensation surfaces: Atomistic simulation and solution of Boltzmann kinetic equation.

    Science.gov (United States)

    Zhakhovsky, Vasily V; Kryukov, Alexei P; Levashov, Vladimir Yu; Shishkova, Irina N; Anisimov, Sergey I

    2018-04-16

    Boundary conditions required for numerical solution of the Boltzmann kinetic equation (BKE) for mass/heat transfer between evaporation and condensation surfaces are analyzed by comparison of BKE results with molecular dynamics (MD) simulations. Lennard-Jones potential with parameters corresponding to solid argon is used to simulate evaporation from the hot side, nonequilibrium vapor flow with a Knudsen number of about 0.02, and condensation on the cold side of the condensed phase. The equilibrium density of vapor obtained in MD simulation of phase coexistence is used in BKE calculations for consistency of BKE results with MD data. The collision cross-section is also adjusted to provide a thermal flux in vapor identical to that in MD. Our MD simulations of evaporation toward a nonreflective absorbing boundary show that the velocity distribution function (VDF) of evaporated atoms has the nearly semi-Maxwellian shape because the binding energy of atoms evaporated from the interphase layer between bulk phase and vapor is much smaller than the cohesive energy in the condensed phase. Indeed, the calculated temperature and density profiles within the interphase layer indicate that the averaged kinetic energy of atoms remains near-constant with decreasing density almost until the interphase edge. Using consistent BKE and MD methods, the profiles of gas density, mass velocity, and temperatures together with VDFs in a gap of many mean free paths between the evaporation and condensation surfaces are obtained and compared. We demonstrate that the best fit of BKE results with MD simulations can be achieved with the evaporation and condensation coefficients both close to unity.

  18. Coupled electron and atomic kinetics through the solution of the Boltzmann equation for generating time-dependent X-ray spectra

    International Nuclear Information System (INIS)

    Sherrill, M.E.; Abdallah, J. Jr.; Csanak, G.; Kilcrease, D.P.; Dodd, E.S.; Fukuda, Y.; Akahane, Y.; Aoyama, M.; Inoue, N.; Ueda, H.; Yamakawa, K.; Faenov, A.Ya.; Magunov, A.I.; Pikuz, T.A.; Skobelev, I.Yu.

    2006-01-01

    In this work, we present a model that solves self-consistently the electron and atomic kinetics to characterize highly non-equilibrium plasmas, in particular for those systems where both the electron distribution function is far from Maxwellian and the evolution of the ion level populations are dominated by time-dependent atomic kinetics. In this model, level populations are obtained from a detailed collisional-radiative model where collision rates are computed from a time varying electron distribution function obtained from the solution of the zero-dimensional Boltzmann equation. The Boltzmann collision term includes the effects of electron-electron collisions, electron collisional ionization, excitation and de-excitation. An application for He α spectra from a short pulse laser irradiated argon cluster target will be shown to illustrate the results of our model

  19. Coupled electron and atomic kinetics through the solution of the Boltzmann equation for generating time-dependent X-ray spectra

    Energy Technology Data Exchange (ETDEWEB)

    Sherrill, M.E. [Los Alamos National Laboratory, T-4, Los Alamos, NM 87545 (United States)]. E-mail: manolo@t4.lanl.gov; Abdallah, J. Jr. [Los Alamos National Laboratory, T-4, Los Alamos, NM 87545 (United States); Csanak, G. [Los Alamos National Laboratory, T-4, Los Alamos, NM 87545 (United States); Kilcrease, D.P. [Los Alamos National Laboratory, T-4, Los Alamos, NM 87545 (United States); Dodd, E.S. [Los Alamos National Laboratory, X-1, Los Alamos, NM 87545 (United States); Fukuda, Y. [Advanced Photon Research Center, JAERI, Kyoto 619-0215 (Japan); Akahane, Y. [Advanced Photon Research Center, JAERI, Kyoto 619-0215 (Japan); Aoyama, M. [Advanced Photon Research Center, JAERI, Kyoto 619-0215 (Japan); Inoue, N. [Advanced Photon Research Center, JAERI, Kyoto 619-0215 (Japan); Ueda, H. [Advanced Photon Research Center, JAERI, Kyoto 619-0215 (Japan); Yamakawa, K. [Advanced Photon Research Center, JAERI, Kyoto 619-0215 (Japan); Faenov, A.Ya. [Multicharged Ions Spectra Data Center of VNIIFTRI, Mendeleevo, Moscow Region 141570 (Russian Federation); Magunov, A.I. [Multicharged Ions Spectra Data Center of VNIIFTRI, Mendeleevo, Moscow Region 141570 (Russian Federation); Pikuz, T.A. [Multicharged Ions Spectra Data Center of VNIIFTRI, Mendeleevo, Moscow Region 141570 (Russian Federation); Skobelev, I.Yu. [Multicharged Ions Spectra Data Center of VNIIFTRI, Mendeleevo, Moscow Region 141570 (Russian Federation)

    2006-05-15

    In this work, we present a model that solves self-consistently the electron and atomic kinetics to characterize highly non-equilibrium plasmas, in particular for those systems where both the electron distribution function is far from Maxwellian and the evolution of the ion level populations are dominated by time-dependent atomic kinetics. In this model, level populations are obtained from a detailed collisional-radiative model where collision rates are computed from a time varying electron distribution function obtained from the solution of the zero-dimensional Boltzmann equation. The Boltzmann collision term includes the effects of electron-electron collisions, electron collisional ionization, excitation and de-excitation. An application for He{sub {alpha}} spectra from a short pulse laser irradiated argon cluster target will be shown to illustrate the results of our model.

  20. Differential equations a dynamical systems approach ordinary differential equations

    CERN Document Server

    Hubbard, John H

    1991-01-01

    This is a corrected third printing of the first part of the text Differential Equations: A Dynamical Systems Approach written by John Hubbard and Beverly West. The authors' main emphasis in this book is on ordinary differential equations. The book is most appropriate for upper level undergraduate and graduate students in the fields of mathematics, engineering, and applied mathematics, as well as the life sciences, physics and economics. Traditional courses on differential equations focus on techniques leading to solutions. Yet most differential equations do not admit solutions which can be written in elementary terms. The authors have taken the view that a differential equations defines functions; the object of the theory is to understand the behavior of these functions. The tools the authors use include qualitative and numerical methods besides the traditional analytic methods. The companion software, MacMath, is designed to bring these notions to life.

  1. Accurate Solution of Multi-Region Continuum Biomolecule Electrostatic Problems Using the Linearized Poisson-Boltzmann Equation with Curved Boundary Elements

    Science.gov (United States)

    Altman, Michael D.; Bardhan, Jaydeep P.; White, Jacob K.; Tidor, Bruce

    2009-01-01

    We present a boundary-element method (BEM) implementation for accurately solving problems in biomolecular electrostatics using the linearized Poisson–Boltzmann equation. Motivating this implementation is the desire to create a solver capable of precisely describing the geometries and topologies prevalent in continuum models of biological molecules. This implementation is enabled by the synthesis of four technologies developed or implemented specifically for this work. First, molecular and accessible surfaces used to describe dielectric and ion-exclusion boundaries were discretized with curved boundary elements that faithfully reproduce molecular geometries. Second, we avoided explicitly forming the dense BEM matrices and instead solved the linear systems with a preconditioned iterative method (GMRES), using a matrix compression algorithm (FFTSVD) to accelerate matrix-vector multiplication. Third, robust numerical integration methods were employed to accurately evaluate singular and near-singular integrals over the curved boundary elements. Finally, we present a general boundary-integral approach capable of modeling an arbitrary number of embedded homogeneous dielectric regions with differing dielectric constants, possible salt treatment, and point charges. A comparison of the presented BEM implementation and standard finite-difference techniques demonstrates that for certain classes of electrostatic calculations, such as determining absolute electrostatic solvation and rigid-binding free energies, the improved convergence properties of the BEM approach can have a significant impact on computed energetics. We also demonstrate that the improved accuracy offered by the curved-element BEM is important when more sophisticated techniques, such as non-rigid-binding models, are used to compute the relative electrostatic effects of molecular modifications. In addition, we show that electrostatic calculations requiring multiple solves using the same molecular geometry

  2. Maxwell iteration for the lattice Boltzmann method with diffusive scaling

    Science.gov (United States)

    Zhao, Weifeng; Yong, Wen-An

    2017-03-01

    In this work, we present an alternative derivation of the Navier-Stokes equations from Bhatnagar-Gross-Krook models of the lattice Boltzmann method with diffusive scaling. This derivation is based on the Maxwell iteration and can expose certain important features of the lattice Boltzmann solutions. Moreover, it will be seen to be much more straightforward and logically clearer than the existing approaches including the Chapman-Enskog expansion.

  3. Geometric approach to soliton equations

    International Nuclear Information System (INIS)

    Sasaki, R.

    1979-09-01

    A class of nonlinear equations that can be solved in terms of nxn scattering problem is investigated. A systematic geometric method of exploiting conservation laws and related equations, the so-called prolongation structure, is worked out. The nxn problem is reduced to nsub(n-1)x(n-1) problems and finally to 2x2 problems, which have been comprehensively investigated recently by the author. A general method of deriving the infinite numbers of polynomial conservation laws for an nxn problem is presented. The cases of 3x3 and 2x2 problems are discussed explicitly. (Auth.)

  4. Analysis of the gravitational coupled collisionless Boltzmann-poisson equations and numerical simulations of the formation of self-gravitating systems

    International Nuclear Information System (INIS)

    Roy, Fabrice

    2004-01-01

    We study the formation of self-gravitating systems and their properties by means of N-body simulations of gravitational collapse. First, we summarize the major analytical results concerning the collisionless Boltzmann equation and the Poisson's equation which describe the dynamics of collisionless gravitational systems. We present a study of some analytical solutions of this coupled system of equations. We then present the software used to perform the simulations. Some of this has been parallelized and implemented with the aid of MPI. For this reason we give a brief overview of it. Finally, we present the results of the numerical simulations. Analysis of these results allows us to explain some features of self-gravitating systems and the initial conditions needed to trigger the Antonov instability and the radial orbit instability. (author) [fr

  5. Compressible fluids with Maxwell-type equations, the minimal coupling with electromagnetic field and the Stefan–Boltzmann law

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Albert C.R., E-mail: albert@fisica.ufjf.br [Departamento de Física, Universidade Federal de Juiz de Fora, 36036-330, Juiz de Fora - MG (Brazil); Takakura, Flavio I., E-mail: takakura@fisica.ufjf.br [Departamento de Física, Universidade Federal de Juiz de Fora, 36036-330, Juiz de Fora - MG (Brazil); Abreu, Everton M.C., E-mail: evertonabreu@ufrrj.br [Grupo de Física Teórica e Matemática Física, Departamento de Física, Universidade Federal Rural do Rio de Janeiro, 23890-971, Seropédica - RJ (Brazil); Departamento de Física, Universidade Federal de Juiz de Fora, 36036-330, Juiz de Fora - MG (Brazil); Neto, Jorge Ananias, E-mail: jorge@fisica.ufjf.br [Departamento de Física, Universidade Federal de Juiz de Fora, 36036-330, Juiz de Fora - MG (Brazil)

    2017-05-15

    In this work we have obtained a higher-derivative Lagrangian for a charged fluid coupled with the electromagnetic fluid and the Dirac’s constraints analysis was discussed. A set of first-class constraints fixed by noncovariant gauge condition were obtained. The path integral formalism was used to obtain the partition function for the corresponding higher-derivative Hamiltonian and the Faddeev–Popov ansatz was used to construct an effective Lagrangian. Through the partition function, a Stefan–Boltzmann type law was obtained. - Highlights: • Higher-derivative Lagrangian for a charged fluid. • Electromagnetic coupling and Dirac’s constraint analysis. • Partition function through path integral formalism. • Stefan–Boltzmann-kind law through the partition function.

  6. Boltzmann hierarchy for interacting neutrinos I: formalism

    International Nuclear Information System (INIS)

    Oldengott, Isabel M.; Rampf, Cornelius; Wong, Yvonne Y.Y.

    2015-01-01

    Starting from the collisional Boltzmann equation, we derive for the first time and from first principles the Boltzmann hierarchy for neutrinos including interactions with a scalar particle. Such interactions appear, for example, in majoron-like models of neutrino mass generation. We study two limits of the scalar mass: (i) An extremely massive scalar whose only role is to mediate an effective 4-fermion neutrino-neutrino interaction, and (ii) a massless scalar that can be produced in abundance and thus demands its own Boltzmann hierarchy. In contrast to, e.g., the first-order Boltzmann hierarchy for Thomson-scattering photons, our interacting neutrino/scalar Boltzmann hierarchies contain additional momentum-dependent collision terms arising from a non-negligible energy transfer in the neutrino-neutrino and neutrino-scalar interactions. This necessitates that we track each momentum mode of the phase space distributions individually, even if the particles were massless. Comparing our hierarchy with the commonly used (c eff 2 ,c vis 2 )-parameterisation, we find no formal correspondence between the two approaches, which raises the question of whether the latter parameterisation even has an interpretation in terms of particle scattering. Lastly, although we have invoked majoron-like models as a motivation for our study, our treatment is in fact generally applicable to all scenarios in which the neutrino and/or other ultrarelativistic fermions interact with scalar particles

  7. Accuracy assessment of the linear Poisson-Boltzmann equation and reparametrization of the OBC generalized Born model for nucleic acids and nucleic acid-protein complexes.

    Science.gov (United States)

    Fogolari, Federico; Corazza, Alessandra; Esposito, Gennaro

    2015-04-05

    The generalized Born model in the Onufriev, Bashford, and Case (Onufriev et al., Proteins: Struct Funct Genet 2004, 55, 383) implementation has emerged as one of the best compromises between accuracy and speed of computation. For simulations of nucleic acids, however, a number of issues should be addressed: (1) the generalized Born model is based on a linear model and the linearization of the reference Poisson-Boltmann equation may be questioned for highly charged systems as nucleic acids; (2) although much attention has been given to potentials, solvation forces could be much less sensitive to linearization than the potentials; and (3) the accuracy of the Onufriev-Bashford-Case (OBC) model for nucleic acids depends on fine tuning of parameters. Here, we show that the linearization of the Poisson Boltzmann equation has mild effects on computed forces, and that with optimal choice of the OBC model parameters, solvation forces, essential for molecular dynamics simulations, agree well with those computed using the reference Poisson-Boltzmann model. © 2015 Wiley Periodicals, Inc.

  8. Ludwig Boltzmann: Atomic genius

    Energy Technology Data Exchange (ETDEWEB)

    Cercignani, C. [Department of Mathematics, Politecnico di Milano (Italy)]. E-mail: carcer@mate.polimi.it

    2006-09-15

    On the centenary of the death of Ludwig Boltzmann, Carlo Cercignani examines the immense contributions of the man who pioneered our understanding of the atomic nature of matter. The man who first gave a convincing explanation of the irreversibility of the macroscopic world and the symmetry of the laws of physics was the Austrian physicist Ludwig Boltzmann, who tragically committed suicide 100 years ago this month. One of the key figures in the development of the atomic theory of matter, Boltzmann's fame will be forever linked to two fundamental contributions to science. The first was his interpretation of 'entropy' as a mathematically well-defined measure of the disorder of atoms. The second was his derivation of what is now known as the Boltzmann equation, which describes the statistical properties of a gas as made up of molecules. The equation, which described for the first time how a probability can evolve with time, allowed Boltzmann to explain why macroscopic phenomena are irreversible. The key point is that while microscopic objects like atoms can behave reversibly, we never see broken coffee cups reforming because it would involve a long series of highly improbable interactions - and not because it is forbidden by the laws of physics. (U.K.)

  9. Coupled numerical approach combining finite volume and lattice Boltzmann methods for multi-scale multi-physicochemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Li; He, Ya-Ling [Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Kang, Qinjun [Computational Earth Science Group (EES-16), Los Alamos National Laboratory, Los Alamos, NM (United States); Tao, Wen-Quan, E-mail: wqtao@mail.xjtu.edu.cn [Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China)

    2013-12-15

    A coupled (hybrid) simulation strategy spatially combining the finite volume method (FVM) and the lattice Boltzmann method (LBM), called CFVLBM, is developed to simulate coupled multi-scale multi-physicochemical processes. In the CFVLBM, computational domain of multi-scale problems is divided into two sub-domains, i.e., an open, free fluid region and a region filled with porous materials. The FVM and LBM are used for these two regions, respectively, with information exchanged at the interface between the two sub-domains. A general reconstruction operator (RO) is proposed to derive the distribution functions in the LBM from the corresponding macro scalar, the governing equation of which obeys the convection–diffusion equation. The CFVLBM and the RO are validated in several typical physicochemical problems and then are applied to simulate complex multi-scale coupled fluid flow, heat transfer, mass transport, and chemical reaction in a wall-coated micro reactor. The maximum ratio of the grid size between the FVM and LBM regions is explored and discussed. -- Highlights: •A coupled simulation strategy for simulating multi-scale phenomena is developed. •Finite volume method and lattice Boltzmann method are coupled. •A reconstruction operator is derived to transfer information at the sub-domains interface. •Coupled multi-scale multiple physicochemical processes in micro reactor are simulated. •Techniques to save computational resources and improve the efficiency are discussed.

  10. A Lattice Boltzmann Approach to Multi-Phase Surface Reactions with Heat Effects

    NARCIS (Netherlands)

    Kamali, M.R.

    2013-01-01

    The aim of the present research was to explore the promises and shift the limits of the numerical framework of lattice Boltzmann (LB) for studying the physics behind multi-component two-phase heterogeneous non-isothermal reactive flows under industrial conditions. An example of such an industrially

  11. Lattice Boltzmann simulation of antiplane shear loading of a stationary crack

    Science.gov (United States)

    Schlüter, Alexander; Kuhn, Charlotte; Müller, Ralf

    2018-01-01

    In this work, the lattice Boltzmann method is applied to study the dynamic behaviour of linear elastic solids under antiplane shear deformation. In this case, the governing set of partial differential equations reduces to a scalar wave equation for the out of plane displacement in a two dimensional domain. The lattice Boltzmann approach developed by Guangwu (J Comput Phys 161(1):61-69, 2000) in 2006 is used to solve the problem numerically. Some aspects of the scheme are highlighted, including the treatment of the boundary conditions. Subsequently, the performance of the lattice Boltzmann scheme is tested for a stationary crack problem for which an analytic solution exists. The treatment of cracks is new compared to the examples that are discussed in Guangwu's work. Furthermore, the lattice Boltzmann simulations are compared to finite element computations. Finally, the influence of the lattice Boltzmann relaxation parameter on the stability of the scheme is illustrated.

  12. On a two-relaxation-time D2Q9 lattice Boltzmann model for the Navier-Stokes equations

    Science.gov (United States)

    Zhao, Weifeng; Wang, Liang; Yong, Wen-An

    2018-02-01

    In this paper, we are concerned with the stability of some lattice kinetic schemes. First, we show that a recently proposed lattice kinetic scheme is a two-relaxation-time model different from those in the literature. Second, we analyze the stability of the model by verifying the Onsager-like relation. In addition, a necessary stability criterion for hyperbolic relaxation systems is adapted to the lattice Boltzmann method. As an application of this criterion, we find some necessary stability conditions for a previously proposed lattice kinetic scheme. Numerical experiments are conducted to validate the necessary stability conditions.

  13. Semiempirical equations for modeling solid-state kinetics based on a Maxwell-Boltzmann distribution of activation energies: applications to a polymorphic transformation under crystallization slurry conditions and to the thermal decomposition of AgMnO4 crystals.

    Science.gov (United States)

    Skrdla, Peter J; Robertson, Rebecca T

    2005-06-02

    Many solid-state reactions and phase transformations performed under isothermal conditions give rise to asymmetric, sigmoidally shaped conversion-time (x-t) profiles. The mathematical treatment of such curves, as well as their physical interpretation, is often challenging. In this work, the functional form of a Maxwell-Boltzmann (M-B) distribution is used to describe the distribution of activation energies for the reagent solids, which, when coupled with an integrated first-order rate expression, yields a novel semiempirical equation that may offer better success in the modeling of solid-state kinetics. In this approach, the Arrhenius equation is used to relate the distribution of activation energies to a corresponding distribution of rate constants for the individual molecules in the reagent solids. This distribution of molecular rate constants is then correlated to the (observable) reaction time in the derivation of the model equation. In addition to providing a versatile treatment for asymmetric, sigmoidal reaction curves, another key advantage of our equation over other models is that the start time of conversion is uniquely defined at t = 0. We demonstrate the ability of our simple, two-parameter equation to successfully model the experimental x-t data for the polymorphic transformation of a pharmaceutical compound under crystallization slurry (i.e., heterogeneous) conditions. Additionally, we use a modification of this equation to model the kinetics of a historically significant, homogeneous solid-state reaction: the thermal decomposition of AgMnO4 crystals. The potential broad applicability of our statistical (i.e., dispersive) kinetic approach makes it a potentially attractive alternative to existing models/approaches.

  14. A new Green's function Monte Carlo algorithm for the solution of the two-dimensional nonlinear Poisson–Boltzmann equation: Application to the modeling of the communication breakdown problem in space vehicles during re-entry

    International Nuclear Information System (INIS)

    Chatterjee, Kausik; Roadcap, John R.; Singh, Surendra

    2014-01-01

    The objective of this paper is the exposition of a recently-developed, novel Green's function Monte Carlo (GFMC) algorithm for the solution of nonlinear partial differential equations and its application to the modeling of the plasma sheath region around a cylindrical conducting object, carrying a potential and moving at low speeds through an otherwise neutral medium. The plasma sheath is modeled in equilibrium through the GFMC solution of the nonlinear Poisson–Boltzmann (NPB) equation. The traditional Monte Carlo based approaches for the solution of nonlinear equations are iterative in nature, involving branching stochastic processes which are used to calculate linear functionals of the solution of nonlinear integral equations. Over the last several years, one of the authors of this paper, K. Chatterjee has been developing a philosophically-different approach, where the linearization of the equation of interest is not required and hence there is no need for iteration and the simulation of branching processes. Instead, an approximate expression for the Green's function is obtained using perturbation theory, which is used to formulate the random walk equations within the problem sub-domains where the random walker makes its walks. However, as a trade-off, the dimensions of these sub-domains have to be restricted by the limitations imposed by perturbation theory. The greatest advantage of this approach is the ease and simplicity of parallelization stemming from the lack of the need for iteration, as a result of which the parallelization procedure is identical to the parallelization procedure for the GFMC solution of a linear problem. The application area of interest is in the modeling of the communication breakdown problem during a space vehicle's re-entry into the atmosphere. However, additional application areas are being explored in the modeling of electromagnetic propagation through the atmosphere/ionosphere in UHF/GPS applications

  15. A new Green's function Monte Carlo algorithm for the solution of the two-dimensional nonlinear Poisson–Boltzmann equation: Application to the modeling of the communication breakdown problem in space vehicles during re-entry

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Kausik, E-mail: kausik.chatterjee@aggiemail.usu.edu [Strategic and Military Space Division, Space Dynamics Laboratory, North Logan, UT 84341 (United States); Center for Atmospheric and Space Sciences, Utah State University, Logan, UT 84322 (United States); Roadcap, John R., E-mail: john.roadcap@us.af.mil [Air Force Research Laboratory, Kirtland AFB, NM 87117 (United States); Singh, Surendra, E-mail: surendra-singh@utulsa.edu [Department of Electrical Engineering, The University of Tulsa, Tulsa, OK 74104 (United States)

    2014-11-01

    The objective of this paper is the exposition of a recently-developed, novel Green's function Monte Carlo (GFMC) algorithm for the solution of nonlinear partial differential equations and its application to the modeling of the plasma sheath region around a cylindrical conducting object, carrying a potential and moving at low speeds through an otherwise neutral medium. The plasma sheath is modeled in equilibrium through the GFMC solution of the nonlinear Poisson–Boltzmann (NPB) equation. The traditional Monte Carlo based approaches for the solution of nonlinear equations are iterative in nature, involving branching stochastic processes which are used to calculate linear functionals of the solution of nonlinear integral equations. Over the last several years, one of the authors of this paper, K. Chatterjee has been developing a philosophically-different approach, where the linearization of the equation of interest is not required and hence there is no need for iteration and the simulation of branching processes. Instead, an approximate expression for the Green's function is obtained using perturbation theory, which is used to formulate the random walk equations within the problem sub-domains where the random walker makes its walks. However, as a trade-off, the dimensions of these sub-domains have to be restricted by the limitations imposed by perturbation theory. The greatest advantage of this approach is the ease and simplicity of parallelization stemming from the lack of the need for iteration, as a result of which the parallelization procedure is identical to the parallelization procedure for the GFMC solution of a linear problem. The application area of interest is in the modeling of the communication breakdown problem during a space vehicle's re-entry into the atmosphere. However, additional application areas are being explored in the modeling of electromagnetic propagation through the atmosphere/ionosphere in UHF/GPS applications.

  16. Nonequilibrium phenomena in QCD and BEC. Boltzmann and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Stockamp, T.

    2006-12-22

    In chapter 2 we chose the real time formalism to discuss some basic principles in quantum field theory at finite temperature. This enables us to derive the quantum Boltzmann equation from the Schwinger-Dyson series. We then shortly introduce the basic concepts of QCD which are needed to understand the physics of QGP formation. After a detailed account on the bottom-up scenario we show the consistency of this approach by a diagramatical analysis of the relevant Boltzmann collision integrals. Chapter 3 deals with BEC dynamics out of equilibrium. After an introduction to the fundamental theoretical tool - namely the Gross-Pitaevskii equation - we focus on a generalization to finite temperature developed by Zaremba, Nikuni and Griffin (ZNG). These authors use a Boltzmann equation to describe the interactions between condensed and excited atoms and manage in this way to describe condensate growth. We then turn to a discussion on the 2PI effective action and derive equations of motion for a relativistic scalar field theory. In the nonrelativistic limit these equations are shown to coincide with the ZNG theory when a quasiparticle approximation is applied. Finally, we perform a numerical analysis of the full 2PI equations. These remain valid even at strong coupling and far from equilibrium, and thus go far beyond Boltzmann's approach. For simplicity, we limit ourselves to a homogeneous system and present the first 3+1 dimensional study of condensate melting. (orig.)

  17. A new determination of cross sections in methane and silane by using an exact method of solution ot the Boltzmann equation

    International Nuclear Information System (INIS)

    Segur, P.; Balaguer, J.P.

    1984-01-01

    We use a modified form of the SN method to solve the Boltzmann equation. We are then able to take into account the strong anisotropy of the distribution function which is known to occur in methane and silane. For a given set of cross-sections, the swarm parameters calculated with this method are very different from these published by previous authors (obtained with the standard two term Legendre expansion of the distribution function). The cross sections which we deduce by comparing experimental and calculated values for drift velocity and transversal diffusion coefficient are very different from these of Pollock or Duncan and Walker. With these two new sets of cross sections we make some calculations in mixtures of methane and silane, methane and argon, silane and argon. We note that our results for swarm parameters (at low E/N) are in good agreement with experimental values when they are available

  18. An algebraic approach to the scattering equations

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Rijun; Rao, Junjie [Zhejiang Institute of Modern Physics, Zhejiang University,Hangzhou, 310027 (China); Feng, Bo [Zhejiang Institute of Modern Physics, Zhejiang University,Hangzhou, 310027 (China); Center of Mathematical Science, Zhejiang University,Hangzhou, 310027 (China); He, Yang-Hui [School of Physics, NanKai University,Tianjin, 300071 (China); Department of Mathematics, City University,London, EC1V 0HB (United Kingdom); Merton College, University of Oxford,Oxford, OX14JD (United Kingdom)

    2015-12-10

    We employ the so-called companion matrix method from computational algebraic geometry, tailored for zero-dimensional ideals, to study the scattering equations. The method renders the CHY-integrand of scattering amplitudes computable using simple linear algebra and is amenable to an algorithmic approach. Certain identities in the amplitudes as well as rationality of the final integrand become immediate in this formalism.

  19. An algebraic approach to the scattering equations

    International Nuclear Information System (INIS)

    Huang, Rijun; Rao, Junjie; Feng, Bo; He, Yang-Hui

    2015-01-01

    We employ the so-called companion matrix method from computational algebraic geometry, tailored for zero-dimensional ideals, to study the scattering equations. The method renders the CHY-integrand of scattering amplitudes computable using simple linear algebra and is amenable to an algorithmic approach. Certain identities in the amplitudes as well as rationality of the final integrand become immediate in this formalism.

  20. Deferred correction approach on generic transport equation

    International Nuclear Information System (INIS)

    Shah, I.A.; Ali, M.

    2004-01-01

    In this study, a two dimensional Steady Convection-Diffusion was solved, using Deferred correction approach, and results were compared with standard spatial discretization schemes. Numerical investigations were carried out based on the velocity and flow direction, for various diffusivity coefficients covering a range from diffusive to convective flows. The results show that the Deferred Ted Correction Approach gives more accurate and stable results in relation to UDS and CDs discretization of convective terms. Deferred Correction Approach caters for the wiggles for convective flows in case of central difference discretization of the equation and also caters for the dissipative error generated by the first order upwind discretization of convective fluxes. (author)

  1. Non-Newtonian particulate flow simulation: A direct-forcing immersed boundary-lattice Boltzmann approach

    Science.gov (United States)

    Amiri Delouei, A.; Nazari, M.; Kayhani, M. H.; Kang, S. K.; Succi, S.

    2016-04-01

    In the current study, a direct-forcing immersed boundary-non-Newtonian lattice Boltzmann method (IB-NLBM) is developed to investigate the sedimentation and interaction of particles in shear-thinning and shear-thickening fluids. In the proposed IB-NLBM, the non-linear mechanics of non-Newtonian particulate flows is detected by combination of the most desirable features of immersed boundary and lattice Boltzmann methods. The noticeable roles of non-Newtonian behavior on particle motion, settling velocity and generalized Reynolds number are investigated by simulating benchmark problem of one-particle sedimentation under the same generalized Archimedes number. The effects of extra force due to added accelerated mass are analyzed on the particle motion which have a significant impact on shear-thinning fluids. For the first time, the phenomena of interaction among the particles, such as Drafting, Kissing, and Tumbling in non-Newtonian fluids are investigated by simulation of two-particle sedimentation and twelve-particle sedimentation. The results show that increasing the shear-thickening behavior of fluid leads to a significant increase in the kissing time. Moreover, the transverse position of particles for shear-thinning fluids during the tumbling interval is different from Newtonian and the shear-thickening fluids. The present non-Newtonian particulate study can be applied in several industrial and scientific applications, like the non-Newtonian sedimentation behavior of particles in food industrial and biological fluids.

  2. Polarised photon and flavoured lepton quantum Boltzmann equations in the early universe; Polarisierte Photon- und geflavourte Lepton-Quantenboltzmanngleichungen im fruehen Universum

    Energy Technology Data Exchange (ETDEWEB)

    Fidler, Christian

    2011-12-16

    Polarisation and Nongaussianity are expected to play a central role in future studies of the cosmic microwave background radiation. Polarisation can be split into a divergence-like E-mode and a curl-like B-mode, of which the later can only be induced by primordial gravitational waves (tensor fluctuations of the metric) at leading order. Nongaussianity is not generated at first order and is directly proportional to the primordial Nongaussianity of inflation. Thus B-mode polarisation and Nongaussianity constrain inflation models directly. While E-mode polarisation has already been detected and is being observed with increasing precision, B-mode polarisation and Nongaussianity remains elusive. The absence of B-mode polarisation when the primordial fluctuations are purely scalar holds, however, only in linear perturbation theory. B-mode polarisation is also generated from scalar sources in second order, which may constitute an important background to the search for primordial gravitational waves. While such an effect would naturally be expected to be relevant at tensor-to-scalar ratios of order 10{sup -5}, which is the size of perturbations in the microwave background, only a full second order calculation can tell whether there are no enhancements. For Nongaussianity the situation is analogous: At second order intrinsic Nongaussianities are induced to the spectrum, which may be an important background to the primordial Nongaussianity. After the full second-order Boltzmann equations for the cosmological evolution of the polarised radiation distribution have become available, I focused on the novel sources to B-mode polarisation that appear in the second-order collision term, which have not been calculated before. In my PHD thesis I developed a numerical code, which solves the second order Boltzmann hierarchy and calculates the C{sub l}{sup BB}-spectrum.

  3. Lattice Boltzmann scheme for mixture modeling: analysis of the continuum diffusion regimes recovering Maxwell-Stefan model and incompressible Navier-Stokes equations.

    Science.gov (United States)

    Asinari, Pietro

    2009-11-01

    A finite difference lattice Boltzmann scheme for homogeneous mixture modeling, which recovers Maxwell-Stefan diffusion model in the continuum limit, without the restriction of the mixture-averaged diffusion approximation, was recently proposed [P. Asinari, Phys. Rev. E 77, 056706 (2008)]. The theoretical basis is the Bhatnagar-Gross-Krook-type kinetic model for gas mixtures [P. Andries, K. Aoki, and B. Perthame, J. Stat. Phys. 106, 993 (2002)]. In the present paper, the recovered macroscopic equations in the continuum limit are systematically investigated by varying the ratio between the characteristic diffusion speed and the characteristic barycentric speed. It comes out that the diffusion speed must be at least one order of magnitude (in terms of Knudsen number) smaller than the barycentric speed, in order to recover the Navier-Stokes equations for mixtures in the incompressible limit. Some further numerical tests are also reported. In particular, (1) the solvent and dilute test cases are considered, because they are limiting cases in which the Maxwell-Stefan model reduces automatically to Fickian cases. Moreover, (2) some tests based on the Stefan diffusion tube are reported for proving the complete capabilities of the proposed scheme in solving Maxwell-Stefan diffusion problems. The proposed scheme agrees well with the expected theoretical results.

  4. Flux Limiter Lattice Boltzmann Scheme Approach to Compressible Flows with Flexible Specific-Heat Ratio and Prandtl Number

    International Nuclear Information System (INIS)

    Gan Yanbiao; Li Yingjun; Xu Aiguo; Zhang Guangcai

    2011-01-01

    We further develop the lattice Boltzmann (LB) model [Physica A 382 (2007) 502] for compressible flows from two aspects. Firstly, we modify the Bhatnagar-Gross-Krook (BGK) collision term in the LB equation, which makes the model suitable for simulating flows with different Prandtl numbers. Secondly, the flux limiter finite difference (FLFD) scheme is employed to calculate the convection term of the LB equation, which makes the unphysical oscillations at discontinuities be effectively suppressed and the numerical dissipations be significantly diminished. The proposed model is validated by recovering results of some well-known benchmarks, including (i) The thermal Couette flow; (ii) One- and two-dimensional Riemann problems. Good agreements are obtained between LB results and the exact ones or previously reported solutions. The flexibility, together with the high accuracy of the new model, endows the proposed model considerable potential for tracking some long-standing problems and for investigating nonlinear nonequilibrium complex systems. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  5. On the Boltzmann-Grad Limit for Smooth Hard-Sphere Systems

    Science.gov (United States)

    Tessarotto, Massimo; Cremaschini, Claudio; Mond, Michael; Asci, Claudio; Soranzo, Alessandro; Tironi, Gino

    2018-03-01

    The problem is posed of the prescription of the so-called Boltzmann-Grad limit operator (L_{BG}) for the N-body system of smooth hard-spheres which undergo unary, binary as well as multiple elastic instantaneous collisions. It is proved, that, despite the non-commutative property of the operator L_{BG}, the Boltzmann equation can nevertheless be uniquely determined. In particular, consistent with the claim of Uffink and Valente (Found Phys 45:404, 2015) that there is "no time-asymmetric ingredient" in its derivation, the Boltzmann equation is shown to be time-reversal symmetric. The proof is couched on the "ab initio" axiomatic approach to the classical statistical mechanics recently developed (Tessarotto et al. in Eur Phys J Plus 128:32, 2013). Implications relevant for the physical interpretation of the Boltzmann H-theorem and the phenomenon of decay to kinetic equilibrium are pointed out.

  6. Boltzmann, Einstein, Natural Law and Evolution

    International Nuclear Information System (INIS)

    Broda, E.

    1980-01-01

    Like Boltzmann, Einstein was a protagonist of atomistics. As a physicist, he has been called Boltzmann's true successor. Also in epistemology, after overcoming the positivist influence of Mach, Einstein approached Boltzmann. Any difference between Boltzmann's realism, or even materialism, and Einstein's pantheism may be merely a matter of emphasis. Yet a real difference exists in another respect. Boltzmann explained man's power of thinking and feeling, his morality and his esthetic sense, on an evolutionary, Darwinian, basis. In contrast, evolution had no role in Einstein's thought, though Darwin was accepted by him. This lack of appreciation of the importance of evolution is now attributed to socio-political factors. (author)

  7. Multiple-Relaxation-Time Lattice Boltzmann Approach to Richtmyer-Meshkov Instability

    International Nuclear Information System (INIS)

    Chen Feng; Li Yingjun; Xu Aiguo; Zhang Guangcai

    2011-01-01

    The aims of the present paper are twofold. At first, we further study the Multiple-Relaxation-Time (MRT) Lattice Boltzmann (LB) model proposed in [Europhys. Lett. 90 (2010) 54003]. We discuss the reason why the Gram-Schmidt orthogonalization procedure is not needed in the construction of transformation matrix M; point out a reason why the Kataoka-Tsutahara model [Phys. Rev. E 69 (2004) 035701 (R)] is only valid in subsonic flows. The von Neumann stability analysis is performed. Secondly, we carry out a preliminary quantitative study on the Richtmyer-Meshkov instability using the proposed MRT LB model. When a shock wave travels from a light medium to a heavy one, the simulated growth rate is in qualitative agreement with the perturbation model by Zhang-Sohn. It is about half of the predicted value by the impulsive model and is closer to the experimental result. When the shock wave travels from a heavy medium to a light one, our simulation results are also consistent with physical analysis. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  8. Electron attachment coefficient in low E/N regions and a discussion of discharge-instability in KrF laser. ; Analysis by logarithm transformed Boltzmann equation. Tei E/N ryoiki no denshi fuchaku keisu to KrF laser reiki hoden no fuanteisei ni kansuru ichi kosatsu. ; Tai su henkan Boltzmann hoteishiki ni yoru kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, H.; Urabe, J.; Yukimura, K. (Doshisha Univ., Kyoto (Japan))

    1991-03-20

    In a discharge excitation rare gas halide excima laser, uniform generation and stable maintenance of the excited discharge determines the laser characteristics. In this report, an approximate solution was obtained on the Boltzmann equation (frequently used for the theoretical analysis of this laser) to examine the nature of the solution. By optimizing the conversion of the variables, calculation of an electron swarm parameter in the hitherto uncertain range of the low conversion electric field was made possible, giving a generation mechanism of the uncertainty of the excited dischareg. The results are summarized as below. (1) The Boltzmann equation gives a linear solution for a logarithmic value of an electron energy in the range of low conversion electric field. (2) Time-wise responce ability between the measured voltage, current characteristics of the excitation discharge was clarified and the attachment and ionization coefficients calculated by Boltzmann equation. (3) Dependency of the attachment coefficient on the partial pressure of fluorine and kripton was examined, and the attachment coefficient was found to increase with the increase of the partial pressure for the both cases. 20 refs., 9 figs., 2 tabs.

  9. Transport coefficients and cross sections for electrons in water vapour: Comparison of cross section sets using an improved Boltzmann equation solution

    Science.gov (United States)

    Ness, K. F.; Robson, R. E.; Brunger, M. J.; White, R. D.

    2012-01-01

    This paper revisits the issues surrounding computation of electron transport properties in water vapour as a function of E/n0 (the ratio of the applied electric field to the water vapour number density) up to 1200 Td. We solve the Boltzmann equation using an improved version of the code of Ness and Robson [Phys. Rev. A 38, 1446 (1988)], facilitating the calculation of transport coefficients to a considerably higher degree of accuracy. This allows a correspondingly more discriminating test of the various electron-water vapour cross section sets proposed by a number of authors, which has become an important issue as such sets are now being applied to study electron driven processes in atmospheric phenomena [P. Thorn, L. Campbell, and M. Brunger, PMC Physics B 2, 1 (2009)] and in modeling charged particle tracks in matter [A. Munoz, F. Blanco, G. Garcia, P. A. Thorn, M. J. Brunger, J. P. Sullivan, and S. J. Buckman, Int. J. Mass Spectrom. 277, 175 (2008)].

  10. A lattice Boltzmann coupled to finite volumes method for solving phase change problems

    Directory of Open Access Journals (Sweden)

    El Ganaoui Mohammed

    2009-01-01

    Full Text Available A numerical scheme coupling lattice Boltzmann and finite volumes approaches has been developed and qualified for test cases of phase change problems. In this work, the coupled partial differential equations of momentum conservation equations are solved with a non uniform lattice Boltzmann method. The energy equation is discretized by using a finite volume method. Simulations show the ability of this developed hybrid method to model the effects of convection, and to predict transfers. Benchmarking is operated both for conductive and convective situation dominating solid/liquid transition. Comparisons are achieved with respect to available analytical solutions and experimental results.

  11. Spatially adaptive hp refinement approach for PN neutron transport equation using spectral element method

    International Nuclear Information System (INIS)

    Nahavandi, N.; Minuchehr, A.; Zolfaghari, A.; Abbasi, M.

    2015-01-01

    Highlights: • Powerful hp-SEM refinement approach for P N neutron transport equation has been presented. • The method provides great geometrical flexibility and lower computational cost. • There is a capability of using arbitrary high order and non uniform meshes. • Both posteriori and priori local error estimation approaches have been employed. • High accurate results are compared against other common adaptive and uniform grids. - Abstract: In this work we presented the adaptive hp-SEM approach which is obtained from the incorporation of Spectral Element Method (SEM) and adaptive hp refinement. The SEM nodal discretization and hp adaptive grid-refinement for even-parity Boltzmann neutron transport equation creates powerful grid refinement approach with high accuracy solutions. In this regard a computer code has been developed to solve multi-group neutron transport equation in one-dimensional geometry using even-parity transport theory. The spatial dependence of flux has been developed via SEM method with Lobatto orthogonal polynomial. Two commonly error estimation approaches, the posteriori and the priori has been implemented. The incorporation of SEM nodal discretization method and adaptive hp grid refinement leads to high accurate solutions. Coarser meshes efficiency and significant reduction of computer program runtime in comparison with other common refining methods and uniform meshing approaches is tested along several well-known transport benchmarks

  12. Efficient method for the solution of the energy dependent integral Boltzmann transport equation in the resolved resonance energy region

    International Nuclear Information System (INIS)

    Schwenk, G.A. Jr.

    1980-01-01

    The calculation of neutron-nuclei reaction rates in the lower resolved resonance region (167 eV - 1.855 eV) is considered in this dissertation. Particular emphasis is placed on the calculation of these reaction rates for tight lattices where their accuracy is most important. The results of the continuous energy Monte Carlo code, VIM, are chosen as reference values for this study. The primary objective of this work is to develop a method for calculating resonance reaction rates which agree well with the reference solution, yet is efficient enough to be used by nuclear reactor fuel cycle designers on a production basis. A very efficient multigroup solution of the two spatial region energy dependent integral transport equation is developed. This solution, denoted the Broad Group Integral Method (BGIM), uses escape probabilities to obtain the spatial coupling between regions and uses an analytical flux shape within a multigroup to obtain weighted cross sections which account for the rapidly varying resonance cross sections. The multigroup lethargy widths chosen for the numerical integration of the two region energy-dependent neutron continuity equations can be chosen much wider (a factor of 30 larger) than in the direct numerical integration methods since the analytical flux shape is used to account for fine structure effects. The BGIM solution is made highly efficient through the use of these broad groups. It is estimated that for a 10 step unit cell fuel cycle depletion calculation, the computer running time for a production code such as EPRI-LEOPARD would be increased by only 6% through the use of the more accurate and intricate BGIM method in the lower resonance energy region

  13. Reduced kinetic equations: An influence functional approach

    International Nuclear Information System (INIS)

    Wio, H.S.

    1985-01-01

    The author discusses a scheme for obtaining reduced descriptions of multivariate kinetic equations based on the 'influence functional' method of Feynmann. It is applied to the case of Fokker-Planck equations showing the form that results for the reduced equation. The possibility of Markovian or non-Markovian reduced description is discussed. As a particular example, the reduction of the Kramers equation to the Smoluchwski equation in the limit of high friction is also discussed

  14. Drift-Diffusion Equation

    Directory of Open Access Journals (Sweden)

    K. Banoo

    1998-01-01

    equation in the discrete momentum space. This is shown to be similar to the conventional drift-diffusion equation except that it is a more rigorous solution to the Boltzmann equation because the current and carrier densities are resolved into M×1 vectors, where M is the number of modes in the discrete momentum space. The mobility and diffusion coefficient become M×M matrices which connect the M momentum space modes. This approach is demonstrated by simulating electron transport in bulk silicon.

  15. APPROACHED DECISION OF THE DIFFERENTIAL EQUATIONS

    Directory of Open Access Journals (Sweden)

    Oleksii B. Krasnozhon

    2011-02-01

    Full Text Available The urgency of the material stated in the article is caused by necessity of development, updating and improvements of methodical operating time on subject matters of issue "Calculus mathematics" which teaching is carried out in conditions of use of information-communication technologies. In the article the program realizations in Mathcad environment of Adams and Runge-Kutt methods of the approached decision of the differential equations are offered; examples on application of the specified methods are brought; the expediency of application of Mathcad environment during mathematical preparation of experts is proved. Perspective directions of the further scientific researches are methodical, mathematical and algorithmic aspects of creation of effective program realizations of numerical methods in Mathcad environment.

  16. Multigroup discrete ordinates solution of Boltzmann-Fokker-Planck equations and cross section library development of ion transport

    International Nuclear Information System (INIS)

    Prinja, A.K.

    1995-08-01

    We have developed and successfully implemented a two-dimensional bilinear discontinuous in space and time, used in conjunction with the S N angular approximation, to numerically solve the time dependent, one-dimensional, one-speed, slab geometry, (ion) transport equation. Numerical results and comparison with analytical solutions have shown that the bilinear-discontinuous (BLD) scheme is third-order accurate in the space ad time dimensions independently. Comparison of the BLD results with diamond-difference methods indicate that the BLD method is both quantitavely and qualitatively superior to the DD scheme. We note that the form of the transport operator is such that these conclusions carry over to energy dependent problems that include the constant-slowing-down-approximation term, and to multiple space dimensions or combinations thereof. An optimized marching or inversion scheme or a parallel algorithm should be investigated to determine if the increased accuracy can compensate for the extra overhead required for a BLD solution, and then could be compared to other discretization methods such as nodal or characteristic schemes

  17. Teaching Modeling with Partial Differential Equations: Several Successful Approaches

    Science.gov (United States)

    Myers, Joseph; Trubatch, David; Winkel, Brian

    2008-01-01

    We discuss the introduction and teaching of partial differential equations (heat and wave equations) via modeling physical phenomena, using a new approach that encompasses constructing difference equations and implementing these in a spreadsheet, numerically solving the partial differential equations using the numerical differential equation…

  18. SU-G-TeP1-15: Toward a Novel GPU Accelerated Deterministic Solution to the Linear Boltzmann Transport Equation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, R [University of Alberta, Edmonton, AB (Canada); Fallone, B [University of Alberta, Edmonton, AB (Canada); Cross Cancer Institute, Edmonton, AB (Canada); MagnetTx Oncology Solutions, Edmonton, AB (Canada); St Aubin, J [University of Alberta, Edmonton, AB (Canada); Cross Cancer Institute, Edmonton, AB (Canada)

    2016-06-15

    Purpose: To develop a Graphic Processor Unit (GPU) accelerated deterministic solution to the Linear Boltzmann Transport Equation (LBTE) for accurate dose calculations in radiotherapy (RT). A deterministic solution yields the potential for major speed improvements due to the sparse matrix-vector and vector-vector multiplications and would thus be of benefit to RT. Methods: In order to leverage the massively parallel architecture of GPUs, the first order LBTE was reformulated as a second order self-adjoint equation using the Least Squares Finite Element Method (LSFEM). This produces a symmetric positive-definite matrix which is efficiently solved using a parallelized conjugate gradient (CG) solver. The LSFEM formalism is applied in space, discrete ordinates is applied in angle, and the Multigroup method is applied in energy. The final linear system of equations produced is tightly coupled in space and angle. Our code written in CUDA-C was benchmarked on an Nvidia GeForce TITAN-X GPU against an Intel i7-6700K CPU. A spatial mesh of 30,950 tetrahedral elements was used with an S4 angular approximation. Results: To avoid repeating a full computationally intensive finite element matrix assembly at each Multigroup energy, a novel mapping algorithm was developed which minimized the operations required at each energy. Additionally, a parallelized memory mapping for the kronecker product between the sparse spatial and angular matrices, including Dirichlet boundary conditions, was created. Atomicity is preserved by graph-coloring overlapping nodes into separate kernel launches. The one-time mapping calculations for matrix assembly, kronecker product, and boundary condition application took 452±1ms on GPU. Matrix assembly for 16 energy groups took 556±3s on CPU, and 358±2ms on GPU using the mappings developed. The CG solver took 93±1s on CPU, and 468±2ms on GPU. Conclusion: Three computationally intensive subroutines in deterministically solving the LBTE have been

  19. Spatio-temporal analysis of the electron power absorption in electropositive capacitive RF plasmas based on moments of the Boltzmann equation

    Science.gov (United States)

    Schulze, J.; Donkó, Z.; Lafleur, T.; Wilczek, S.; Brinkmann, R. P.

    2018-05-01

    Power absorption by electrons from the space- and time-dependent electric field represents the basic sustaining mechanism of all radio-frequency driven plasmas. This complex phenomenon has attracted significant attention. However, most theories and models are, so far, only able to account for part of the relevant mechanisms. The aim of this work is to present an in-depth analysis of the power absorption by electrons, via the use of a moment analysis of the Boltzmann equation without any ad-hoc assumptions. This analysis, for which the input quantities are taken from kinetic, particle based simulations, allows the identification of all physical mechanisms involved and an accurate quantification of their contributions. The perfect agreement between the sum of these contributions and the simulation results verifies the completeness of the model. We study the relative importance of these mechanisms as a function of pressure, with high spatial and temporal resolution, in an electropositive argon discharge. In contrast to some widely accepted previous models we find that high space- and time-dependent ambipolar electric fields outside the sheaths play a key role for electron power absorption. This ambipolar field is time-dependent within the RF period and temporally asymmetric, i.e., the sheath expansion is not a ‘mirror image’ of the sheath collapse. We demonstrate that this time-dependence is mainly caused by a time modulation of the electron temperature resulting from the energy transfer to electrons by the ambipolar field itself during sheath expansion. We provide a theoretical proof that this ambipolar electron power absorption would vanish completely, if the electron temperature was constant in time. This mechanism of electron power absorption is based on a time modulated electron temperature, markedly different from the Hard Wall Model, of key importance for energy transfer to electrons on time average and, thus, essential for the generation of capacitively

  20. Boltzmann Oracle for Combinatorial Systems

    OpenAIRE

    Pivoteau , Carine; Salvy , Bruno; Soria , Michèle

    2008-01-01

    International audience; Boltzmann random generation applies to well-defined systems of recursive combinatorial equations. It relies on oracles giving values of the enumeration generating series inside their disk of convergence. We show that the combinatorial systems translate into numerical iteration schemes that provide such oracles. In particular, we give a fast oracle based on Newton iteration.

  1. Lattice Boltzmann model for numerical relativity.

    Science.gov (United States)

    Ilseven, E; Mendoza, M

    2016-02-01

    In the Z4 formulation, Einstein equations are written as a set of flux conservative first-order hyperbolic equations that resemble fluid dynamics equations. Based on this formulation, we construct a lattice Boltzmann model for numerical relativity and validate it with well-established tests, also known as "apples with apples." Furthermore, we find that by increasing the relaxation time, we gain stability at the cost of losing accuracy, and by decreasing the lattice spacings while keeping a constant numerical diffusivity, the accuracy and stability of our simulations improve. Finally, in order to show the potential of our approach, a linear scaling law for parallelization with respect to number of CPU cores is demonstrated. Our model represents the first step in using lattice kinetic theory to solve gravitational problems.

  2. Airframe Noise Prediction of a Full Aircraft in Model and Full Scale Using a Lattice Boltzmann Approach

    Science.gov (United States)

    Fares, Ehab; Duda, Benjamin; Khorrami, Mehdi R.

    2016-01-01

    Unsteady flow computations are presented for a Gulfstream aircraft model in landing configuration, i.e., flap deflected 39deg and main landing gear deployed. The simulations employ the lattice Boltzmann solver PowerFLOW(Trademark) to simultaneously capture the flow physics and acoustics in the near field. Sound propagation to the far field is obtained using a Ffowcs Williams and Hawkings acoustic analogy approach. Two geometry representations of the same aircraft are analyzed: an 18% scale, high-fidelity, semi-span model at wind tunnel Reynolds number and a full-scale, full-span model at half-flight Reynolds number. Previously published and newly generated model-scale results are presented; all full-scale data are disclosed here for the first time. Reynolds number and geometrical fidelity effects are carefully examined to discern aerodynamic and aeroacoustic trends with a special focus on the scaling of surface pressure fluctuations and farfield noise. An additional study of the effects of geometrical detail on farfield noise is also documented. The present investigation reveals that, overall, the model-scale and full-scale aeroacoustic results compare rather well. Nevertheless, the study also highlights that finer geometrical details that are typically not captured at model scales can have a non-negligible contribution to the farfield noise signature.

  3. A self-consistent phase-field approach to implicit solvation of charged molecules with Poisson–Boltzmann electrostatics

    Science.gov (United States)

    Sun, Hui; Wen, Jiayi; Zhao, Yanxiang; Li, Bo; McCammon, J. Andrew

    2015-01-01

    Dielectric boundary based implicit-solvent models provide efficient descriptions of coarse-grained effects, particularly the electrostatic effect, of aqueous solvent. Recent years have seen the initial success of a new such model, variational implicit-solvent model (VISM) [Dzubiella, Swanson, and McCammon Phys. Rev. Lett. 96, 087802 (2006) and J. Chem. Phys. 124, 084905 (2006)], in capturing multiple dry and wet hydration states, describing the subtle electrostatic effect in hydrophobic interactions, and providing qualitatively good estimates of solvation free energies. Here, we develop a phase-field VISM to the solvation of charged molecules in aqueous solvent to include more flexibility. In this approach, a stable equilibrium molecular system is described by a phase field that takes one constant value in the solute region and a different constant value in the solvent region, and smoothly changes its value on a thin transition layer representing a smeared solute-solvent interface or dielectric boundary. Such a phase field minimizes an effective solvation free-energy functional that consists of the solute-solvent interfacial energy, solute-solvent van der Waals interaction energy, and electrostatic free energy described by the Poisson–Boltzmann theory. We apply our model and methods to the solvation of single ions, two parallel plates, and protein complexes BphC and p53/MDM2 to demonstrate the capability and efficiency of our approach at different levels. With a diffuse dielectric boundary, our new approach can describe the dielectric asymmetry in the solute-solvent interfacial region. Our theory is developed based on rigorous mathematical studies and is also connected to the Lum–Chandler–Weeks theory (1999). We discuss these connections and possible extensions of our theory and methods. PMID:26723595

  4. A self-consistent phase-field approach to implicit solvation of charged molecules with Poisson-Boltzmann electrostatics.

    Science.gov (United States)

    Sun, Hui; Wen, Jiayi; Zhao, Yanxiang; Li, Bo; McCammon, J Andrew

    2015-12-28

    Dielectric boundary based implicit-solvent models provide efficient descriptions of coarse-grained effects, particularly the electrostatic effect, of aqueous solvent. Recent years have seen the initial success of a new such model, variational implicit-solvent model (VISM) [Dzubiella, Swanson, and McCammon Phys. Rev. Lett. 96, 087802 (2006) and J. Chem. Phys. 124, 084905 (2006)], in capturing multiple dry and wet hydration states, describing the subtle electrostatic effect in hydrophobic interactions, and providing qualitatively good estimates of solvation free energies. Here, we develop a phase-field VISM to the solvation of charged molecules in aqueous solvent to include more flexibility. In this approach, a stable equilibrium molecular system is described by a phase field that takes one constant value in the solute region and a different constant value in the solvent region, and smoothly changes its value on a thin transition layer representing a smeared solute-solvent interface or dielectric boundary. Such a phase field minimizes an effective solvation free-energy functional that consists of the solute-solvent interfacial energy, solute-solvent van der Waals interaction energy, and electrostatic free energy described by the Poisson-Boltzmann theory. We apply our model and methods to the solvation of single ions, two parallel plates, and protein complexes BphC and p53/MDM2 to demonstrate the capability and efficiency of our approach at different levels. With a diffuse dielectric boundary, our new approach can describe the dielectric asymmetry in the solute-solvent interfacial region. Our theory is developed based on rigorous mathematical studies and is also connected to the Lum-Chandler-Weeks theory (1999). We discuss these connections and possible extensions of our theory and methods.

  5. Distributed Approximating Functional Approach to Burgers' Equation ...

    African Journals Online (AJOL)

    This equation is similar to, but simpler than, the Navier-Stokes equation in fluid dynamics. To verify this advantage through some comparison studies, an exact series solution are also obtained. In addition, the presented scheme has numerically stable behavior. After demonstrating the convergence and accuracy of the ...

  6. Deep Appearance Models: A Deep Boltzmann Machine Approach for Face Modeling

    OpenAIRE

    Duong, Chi Nhan; Luu, Khoa; Quach, Kha Gia; Bui, Tien D.

    2016-01-01

    The "interpretation through synthesis" approach to analyze face images, particularly Active Appearance Models (AAMs) method, has become one of the most successful face modeling approaches over the last two decades. AAM models have ability to represent face images through synthesis using a controllable parameterized Principal Component Analysis (PCA) model. However, the accuracy and robustness of the synthesized faces of AAM are highly depended on the training sets and inherently on the genera...

  7. Multigroup Boltzmann-Fokker-Planck approach for ion transport in amorphous media

    Energy Technology Data Exchange (ETDEWEB)

    Keen, N.D.; Prinja, A.K.; Dunham, G.D. [New Mexico Univ., Albuquerque, NM (United States). Chemical and Nuclear Engineering Dept.

    2001-07-01

    We present a MGMC approach for the transport of arbitrary mass ions having energies up to a few MeV. Specifically, we consider interactions with target atoms through Coulomb mediated elastic nuclear and inelastic electronic collisions and restrict considerations to ion implantation and energy deposition of primary ions in amorphous media. (orig.)

  8. Boltzmann equation analysis of electrons swarm parameters and properties of excited particle number densities in Xe/Ne plasmas. Laser absorption effect; Xe/Ne plasma chudenshi yuso keisu narabi ni reiki ryushisu mitsudo tokusei no Boltzmann hoteishiki kaiseki. Laser ko kyushu koka

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, S.; Sugawara, H.; Ventzek, P.; Sakai, Y. [Hokkaido University, Sapporo (Japan)

    1998-06-01

    Xe/Ne plasmas are important for plasma display panels and VUV light sources. However, reactions between electrons and excited particles in the mixtures are so complicated that influence of the reactions on the plasma properties is not understood well. In this work, taking account of reactions through which electrons are produced, such as cumulative and Penning ionization, and of transition between excited levels, the electron and excited particle properties in Xe/Ne plasmas are calculated using the Boltzmann equation. The ionization coefficient and electron drift velocity agreed with experimental data. The influence of laser absorption in Xe/Ne plasmas on the plasma properties is also discussed. 25 refs., 15 figs.

  9. equilibrium approach in thederivation of differential equations

    African Journals Online (AJOL)

    user

    DEPT OF CIVIL ENGINEERING, ENUGU STATE UNIVERSITY OF SCIENCE & TECHNOLOGY ... In this paper, the differential equations of Mindlin plates are derived from basic principles by ..... Journal of Applied Mechanics, pages 31-38.

  10. Effect of charged line defects on conductivity in graphene: Numerical Kubo and analytical Boltzmann approaches

    DEFF Research Database (Denmark)

    Radchenko, T. M.; Shylau, A. A.; Zozoulenko, I. V.

    2013-01-01

    . A numerical study of electronic transport is performed by means of a time-dependent real-space Kubo approach in honeycomb lattices containing millions of carbon atoms, capturing the linear response of realistic size systems in the highly disordered regime. Our numerical calculations are complemented...... with the Kubo calculations. In the strong scattering regime, the conductivity is found to be a sublinear function of electronic density and weakly dependent on the Thomas-Fermi screening wavelength. We attribute this atypical behavior to the extended nature of one-dimensional charged defects. Our results...

  11. AN ENERGY FUNCTION APPROACH FOR FINDING ROOTS OF CHARACTERISTIC EQUATION

    OpenAIRE

    Deepak Mishra; Prem K. Kalra

    2011-01-01

    In this paper, an energy function approach for finding roots of a characteristic equation has been proposed. Finding the roots of a characteristics equation is considered as an optimization problem. We demonstrated that this problem can be solved with the application of feedback type neural network. The proposed approach is fast and robust against variation of parameter.

  12. Equating TIMSS Mathematics Subtests with Nonlinear Equating Methods Using NEAT Design: Circle-Arc Equating Approaches

    Science.gov (United States)

    Ozdemir, Burhanettin

    2017-01-01

    The purpose of this study is to equate Trends in International Mathematics and Science Study (TIMSS) mathematics subtest scores obtained from TIMSS 2011 to scores obtained from TIMSS 2007 form with different nonlinear observed score equating methods under Non-Equivalent Anchor Test (NEAT) design where common items are used to link two or more test…

  13. A lattice Boltzmann model for solute transport in open channel flow

    Science.gov (United States)

    Wang, Hongda; Cater, John; Liu, Haifei; Ding, Xiangyi; Huang, Wei

    2018-01-01

    A lattice Boltzmann model of advection-dispersion problems in one-dimensional (1D) open channel flows is developed for simulation of solute transport and pollutant concentration. The hydrodynamics are calculated based on a previous lattice Boltzmann approach to solving the 1D Saint-Venant equations (LABSVE). The advection-dispersion model is coupled with the LABSVE using the lattice Boltzmann method. Our research recovers the advection-dispersion equations through the Chapman-Enskog expansion of the lattice Boltzmann equation. The model differs from the existing schemes in two points: (1) the lattice Boltzmann numerical method is adopted to solve the advection-dispersion problem by meso-scopic particle distribution; (2) and the model describes the relation between discharge, cross section area and solute concentration, which increases the applicability of the water quality model in practical engineering. The model is verified using three benchmark tests: (1) instantaneous solute transport within a short distance; (2) 1D point source pollution with constant velocity; (3) 1D point source pollution in a dam break flow. The model is then applied to a 50-year flood point source pollution accident on the Yongding River, which showed good agreement with a MIKE 11 solution and gauging data.

  14. Moment equation approach to neoclassical transport theory

    International Nuclear Information System (INIS)

    Hirshman, S.P.

    1978-01-01

    The neoclassical cross-field fluxes for a toroidally confined, axisymmetric plasma are calculated in terms of the thermodynamic forces from the fluid continuity and momentum balance equations. This macroscopic formulation of neoclassical transport theory unifies the numerous complex expressions for the transport coefficients, previously obtained by solving the Fokker--Planck equation, and elucidates their physical basis. In the large aspect ratio limit, the continuous transition in the scaling of the diffusion coefficient throughout various collisionality regimes is shown to depend on the ratio of parallel viscosity coefficients of the plasma species. Comparison of the present results with the kinetic theory expressions for the neoclassical fluxes determines the parallel viscosity coefficients for a multispecies plasma in the long-mean-free-path regime

  15. Relativistic Boltzmann theory for a plasma

    International Nuclear Information System (INIS)

    Erkelens, H. van.

    1984-01-01

    This thesis gives a self-contained treatment of the relativistic Boltzmann theory for a plasma. Here plasma means any mixture containing electrically charged particles. The relativistic Boltzmann equation is linearized for the case of a plasma. The Chapman-Enskog method is elaborated further for transport phenomena. Linear laws for viscous phenomena are derived. Then the collision term in the Boltzmann theory is dealt with. Using the transport equation, a kinetic theory of wave phenomena is developed and the dissipation of hydromagnetic waves in a relativistic plasma is investigated. In the final chapter, it is demonstrated how the relativistic Boltzmann theory can be applied in cosmology. In doing so, expressions are derived for the electric conductivity of the cosmological plasma in the lepton era, the plasma era and the annihilation era. (Auth.)

  16. The flow equation approach to many-particle systems

    CERN Document Server

    Kehrein, Stefan; Fujimori, A; Varma, C; Steiner, F

    2006-01-01

    This self-contained monograph addresses the flow equation approach to many-particle systems. The flow equation approach consists of a sequence of infinitesimal unitary transformations and is conceptually similar to renormalization and scaling methods. Flow equations provide a framework for analyzing Hamiltonian systems where these conventional many-body techniques fail. The text first discusses the general ideas and concepts of the flow equation method. In a second part these concepts are illustrated with various applications in condensed matter theory including strong-coupling problems and non-equilibrium systems. The monograph is accessible to readers familiar with graduate- level solid-state theory.

  17. Contribution to the solution of the multigroup Boltzmann equation by the determinist methods and the Monte Carlo method; Contribution a la resolution de l`equation de Bolztmann en multigroupe par les methodes deterministes et Monte-Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Li, M

    1998-08-01

    In this thesis, two methods for solving the multigroup Boltzmann equation have been studied: the interface-current method and the Monte Carlo method. A new version of interface-current (IC) method has been develop in the TDT code at SERMA, where the currents of interface are represented by piecewise constant functions in the solid angle space. The convergence of this method to the collision probability (CP) method has been tested. Since the tracking technique is used for both the IC and CP methods, it is necessary to normalize he collision probabilities obtained by this technique. Several methods for this object have been studied and implemented in our code, we have compared their performances and chosen the best one as the standard choice. The transfer matrix treatment has been a long-standing difficulty for the multigroup Monte Carlo method: when the cross-sections are converted into multigroup form, important negative parts will appear in the angular transfer laws represented by low-order Legendre polynomials. Several methods based on the preservation of the first moments, such as the discrete angles methods and the equally-probable step function method, have been studied and implemented in the TRIMARAN-II code. Since none of these codes has been satisfactory, a new method, the non equally-probably step function method, has been proposed and realized in our code. The comparisons for these methods have been done in several aspects: the preservation of the moments required, the calculation of a criticality problem and the calculation of a neutron-transfer in water problem. The results have showed that the new method is the best one in all these comparisons, and we have proposed that it should be a standard choice for the multigroup transfer matrix. (author) 76 refs.

  18. Multispeed models in off-lattice Boltzmann simulations

    NARCIS (Netherlands)

    Bardow, A.; Karlin, I.V.; Gusev, A.A.

    2008-01-01

    The lattice Boltzmann method is a highly promising approach to the simulation of complex flows. Here, we realize recently proposed multispeed lattice Boltzmann models [S. Chikatamarla et al., Phys. Rev. Lett. 97 190601 (2006)] by exploiting the flexibility offered by off-lattice Boltzmann methods.

  19. New variable separation approach: application to nonlinear diffusion equations

    International Nuclear Information System (INIS)

    Zhang Shunli; Lou, S Y; Qu Changzheng

    2003-01-01

    The concept of the derivative-dependent functional separable solution (DDFSS), as a generalization to the functional separable solution, is proposed. As an application, it is used to discuss the generalized nonlinear diffusion equations based on the generalized conditional symmetry approach. As a consequence, a complete list of canonical forms for such equations which admit the DDFSS is obtained and some exact solutions to the resulting equations are described

  20. Epidemics in networks: a master equation approach

    International Nuclear Information System (INIS)

    Cotacallapa, M; Hase, M O

    2016-01-01

    A problem closely related to epidemiology, where a subgraph of ‘infected’ links is defined inside a larger network, is investigated. This subgraph is generated from the underlying network by a random variable, which decides whether a link is able to propagate a disease/information. The relaxation timescale of this random variable is examined in both annealed and quenched limits, and the effectiveness of propagation of disease/information is analyzed. The dynamics of the model is governed by a master equation and two types of underlying network are considered: one is scale-free and the other has exponential degree distribution. We have shown that the relaxation timescale of the contagion variable has a major influence on the topology of the subgraph of infected links, which determines the efficiency of spreading of disease/information over the network. (paper)

  1. Epidemics in networks: a master equation approach

    Science.gov (United States)

    Cotacallapa, M.; Hase, M. O.

    2016-02-01

    A problem closely related to epidemiology, where a subgraph of ‘infected’ links is defined inside a larger network, is investigated. This subgraph is generated from the underlying network by a random variable, which decides whether a link is able to propagate a disease/information. The relaxation timescale of this random variable is examined in both annealed and quenched limits, and the effectiveness of propagation of disease/information is analyzed. The dynamics of the model is governed by a master equation and two types of underlying network are considered: one is scale-free and the other has exponential degree distribution. We have shown that the relaxation timescale of the contagion variable has a major influence on the topology of the subgraph of infected links, which determines the efficiency of spreading of disease/information over the network.

  2. A Variational Approach to Perturbed Discrete Anisotropic Equations

    Directory of Open Access Journals (Sweden)

    Amjad Salari

    2016-01-01

    Full Text Available We continue the study of discrete anisotropic equations and we will provide new multiplicity results of the solutions for a discrete anisotropic equation. We investigate the existence of infinitely many solutions for a perturbed discrete anisotropic boundary value problem. The approach is based on variational methods and critical point theory.

  3. Cauchy problem for Laplace equation: An observer based approach

    KAUST Repository

    Majeed, Muhammad Usman; Zayane-Aissa, Chadia; Laleg-Kirati, Taous Meriem

    2013-01-01

    domain from the observations on outer boundary. Proposed approach adapts one of the space variables as a time variable. The observer developed to solve Cauchy problem for the Laplace's equation is compuationally robust and accurate. © 2013 IEEE.

  4. Virtuous organization: A structural equation modeling approach

    Directory of Open Access Journals (Sweden)

    Majid Zamahani

    2013-02-01

    Full Text Available For years, the idea of virtue was unfavorable among researchers and virtues were traditionally considered as culture-specific, relativistic and they were supposed to be associated with social conservatism, religious or moral dogmatism, and scientific irrelevance. Virtue and virtuousness have been recently considered seriously among organizational researchers. The proposed study of this paper examines the relationships between leadership, organizational culture, human resource, structure and processes, care for community and virtuous organization. Structural equation modeling is employed to investigate the effects of each variable on other components. The data used in this study consists of questionnaire responses from employees in Payam e Noor University in Yazd province. A total of 250 questionnaires were sent out and a total of 211 valid responses were received. Our results have revealed that all the five variables have positive and significant impacts on virtuous organization. Among the five variables, organizational culture has the most direct impact (0.80 and human resource has the most total impact (0.844 on virtuous organization.

  5. Meta-analysis a structural equation modeling approach

    CERN Document Server

    Cheung, Mike W-L

    2015-01-01

    Presents a novel approach to conducting meta-analysis using structural equation modeling. Structural equation modeling (SEM) and meta-analysis are two powerful statistical methods in the educational, social, behavioral, and medical sciences. They are often treated as two unrelated topics in the literature. This book presents a unified framework on analyzing meta-analytic data within the SEM framework, and illustrates how to conduct meta-analysis using the metaSEM package in the R statistical environment. Meta-Analysis: A Structural Equation Modeling Approach begins by introducing the impo

  6. Infrared and dc conductivity in metals with strong scattering: Nonclassical behavior from a generalized Boltzmann equation containing band-mixing effects

    International Nuclear Information System (INIS)

    Allen, P.B.; Chakraborty, B.

    1981-01-01

    Metals with high resistivity (approx.100 μΩ cm) seem to show weaker variation of resistivity (as a function of temperature and perhaps also static disorder) than predicted by semiclassical (Bloch-Boltzmann) theory (SBT). We argue that the effect is not closely related to Anderson localization, and therefore does not necessarily signify a failure of the independent collision approximation. Instead we propose a failure of the semiclassical acceleration and conduction approximations. A generalization of Boltzmann theory is made which includes quantum (interband) acceleration and conduction, as well as a complete treatment of interband-collision effects (within the independent-collision approximation). The interband terms enhance short-time response to E fields (because the theory satisfies the exact f-sum rule instead of the semiclassical approximation to it). This suggests that the additional conductivity, as expressed phenomenologically by the shunt resistor model, is explained by interband effects. The scattering operator is complex, its imaginary parts being related to energy-band renormalization caused by the disorder. Charge conservation is respected and thermal equilibrium is restored by the collision operator. The theory is formally solved for the leading corrections to SBT, which have the form of a shunt resistor model. At infrared frequencies, the conductivity mostly obeys the Drude law sigma(ω)approx.sigma(0)(1-iωtau) -1 , except for one term which goes as (1-iωtau) -2

  7. Transverse-momentum spectra and nuclear modification factor using Boltzmann Transport Equation with flow in Pb+Pb collisions at √(s{sub NN}) = 2.76 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Tripathy, Sushanta; Khuntia, Arvind; Tiwari, Swatantra Kumar; Sahoo, Raghunath [Indian Institute of Technology Indore, Discipline of Physics, School of Basic Sciences, Indore (India)

    2017-05-15

    In the continuation of our previous work, the transverse-momentum (p{sub T}) spectra and nuclear modification factor (R{sub AA}) are derived using the relaxation time approximation of Boltzmann Transport Equation (BTE). The initial p{sub T}-distribution used to describe p + p collisions has been studied with the perturbative-Quantum Chromodynamics (pQCD) inspired power-law distribution, Hagedorn's empirical formula and with the Tsallis non-extensive statistical distribution. The non-extensive Tsallis distribution is observed to describe the complete range of the transverse-momentum spectra. The Boltzmann-Gibbs Blast Wave (BGBW) distribution is used as the equilibrium distribution in the present formalism, to describe the p{sub T}-distribution and nuclear modification factor in nucleus-nucleus collisions. The experimental data for Pb+Pb collisions at √(s{sub NN}) = 2.76 TeV at the Large Hadron Collider at CERN have been analyzed for pions, kaons, protons, K{sup *0} and φ. It is observed that the present formalism while explaining the transverse-momentum spectra up to 5 GeV/c, explains the nuclear modification factor very well up to 8 GeV/c in p{sub T} for all these particles except for protons. R{sub AA} is found to be independent of the degree of non-extensivity, q{sub pp} after p{sub T} ∝ 8 GeV/c. (orig.)

  8. A volume-preserving sharpening approach for the propagation of sharp phase boundaries in multiphase lattice Boltzmann simulations

    KAUST Repository

    Reis, T.; Dellar, P.J.

    2011-01-01

    Lattice Boltzmann models that recover a macroscopic description of multiphase flow of immiscible liquids typically represent the boundaries between phases using a scalar function, the phase field, that varies smoothly over several grid points. Attempts to tune the model parameters to minimise the widths of these interfaces typically lead to the interfaces becoming fixed to the underlying grid instead of advecting with the fluid velocity. This phenomenon, known as lattice pinning, is strikingly similar to that associated with the numerical simulation of conservation laws coupled to stiff algebraic source terms. We present a lattice Boltzmann formulation of the model problem proposed by LeVeque and Yee (1990) [3] to study the latter phenomenon in the context of computational combustion, and offer a volume-conserving extension in multiple space dimensions. Inspired by the random projection method of Bao and Jin (2000) [1] we further generalise this formulation by introducing a uniformly distributed quasi-random variable into the term responsible for the sharpening of phase boundaries. This method is mass conserving, gives correct average propagation speeds over many timesteps, and is shown to significantly delay the onset of pinning as the interface width is reduced. © 2010 Elsevier Ltd.

  9. A volume-preserving sharpening approach for the propagation of sharp phase boundaries in multiphase lattice Boltzmann simulations

    KAUST Repository

    Reis, T.

    2011-07-01

    Lattice Boltzmann models that recover a macroscopic description of multiphase flow of immiscible liquids typically represent the boundaries between phases using a scalar function, the phase field, that varies smoothly over several grid points. Attempts to tune the model parameters to minimise the widths of these interfaces typically lead to the interfaces becoming fixed to the underlying grid instead of advecting with the fluid velocity. This phenomenon, known as lattice pinning, is strikingly similar to that associated with the numerical simulation of conservation laws coupled to stiff algebraic source terms. We present a lattice Boltzmann formulation of the model problem proposed by LeVeque and Yee (1990) [3] to study the latter phenomenon in the context of computational combustion, and offer a volume-conserving extension in multiple space dimensions. Inspired by the random projection method of Bao and Jin (2000) [1] we further generalise this formulation by introducing a uniformly distributed quasi-random variable into the term responsible for the sharpening of phase boundaries. This method is mass conserving, gives correct average propagation speeds over many timesteps, and is shown to significantly delay the onset of pinning as the interface width is reduced. © 2010 Elsevier Ltd.

  10. Chaotic Boltzmann machines

    Science.gov (United States)

    Suzuki, Hideyuki; Imura, Jun-ichi; Horio, Yoshihiko; Aihara, Kazuyuki

    2013-01-01

    The chaotic Boltzmann machine proposed in this paper is a chaotic pseudo-billiard system that works as a Boltzmann machine. Chaotic Boltzmann machines are shown numerically to have computing abilities comparable to conventional (stochastic) Boltzmann machines. Since no randomness is required, efficient hardware implementation is expected. Moreover, the ferromagnetic phase transition of the Ising model is shown to be characterised by the largest Lyapunov exponent of the proposed system. In general, a method to relate probabilistic models to nonlinear dynamics by derandomising Gibbs sampling is presented. PMID:23558425

  11. Two-scale approach to oscillatory singularly perturbed transport equations

    CERN Document Server

    Frénod, Emmanuel

    2017-01-01

    This book presents the classical results of the two-scale convergence theory and explains – using several figures – why it works. It then shows how to use this theory to homogenize ordinary differential equations with oscillating coefficients as well as oscillatory singularly perturbed ordinary differential equations. In addition, it explores the homogenization of hyperbolic partial differential equations with oscillating coefficients and linear oscillatory singularly perturbed hyperbolic partial differential equations. Further, it introduces readers to the two-scale numerical methods that can be built from the previous approaches to solve oscillatory singularly perturbed transport equations (ODE and hyperbolic PDE) and demonstrates how they can be used efficiently. This book appeals to master’s and PhD students interested in homogenization and numerics, as well as to the Iter community.

  12. Dissipative Boltzmann-Robertson-Walker cosmologies

    International Nuclear Information System (INIS)

    Hiscock, W.A.; Salmonson, J.

    1991-01-01

    The equations governing a flat Robertson-Walker cosmological model containing a dissipative Boltzmann gas are integrated numerically. The bulk viscous stress is modeled using the Eckart and Israel-Stewart theories of dissipative relativistic fluids; the resulting cosmologies are compared and contrasted. The Eckart models are shown to always differ in a significant quantitative way from the Israel-Stewart models. It thus appears inappropriate to use the pathological (nonhyperbolic) Eckart theory for cosmological applications. For large bulk viscosities, both cosmological models approach asymptotic nonequilibrium states; in the Eckart model the total pressure is negative, while in the Israel-Stewart model the total pressure is asymptotically zero. The Eckart model also expands more rapidly than the Israel-Stewart models. These results suggest that ''bulk-viscous'' inflation may be an artifact of using a pathological fluid theory such as the Eckart theory

  13. Symmetries of stochastic differential equations: A geometric approach

    Energy Technology Data Exchange (ETDEWEB)

    De Vecchi, Francesco C., E-mail: francesco.devecchi@unimi.it; Ugolini, Stefania, E-mail: stefania.ugolini@unimi.it [Dipartimento di Matematica, Università degli Studi di Milano, via Saldini 50, Milano (Italy); Morando, Paola, E-mail: paola.morando@unimi.it [DISAA, Università degli Studi di Milano, via Celoria 2, Milano (Italy)

    2016-06-15

    A new notion of stochastic transformation is proposed and applied to the study of both weak and strong symmetries of stochastic differential equations (SDEs). The correspondence between an algebra of weak symmetries for a given SDE and an algebra of strong symmetries for a modified SDE is proved under suitable regularity assumptions. This general approach is applied to a stochastic version of a two dimensional symmetric ordinary differential equation and to the case of two dimensional Brownian motion.

  14. Analytical approach for the Floquet theory of delay differential equations.

    Science.gov (United States)

    Simmendinger, C; Wunderlin, A; Pelster, A

    1999-05-01

    We present an analytical approach to deal with nonlinear delay differential equations close to instabilities of time periodic reference states. To this end we start with approximately determining such reference states by extending the Poincaré-Lindstedt and the Shohat expansions, which were originally developed for ordinary differential equations. Then we systematically elaborate a linear stability analysis around a time periodic reference state. This allows us to approximately calculate the Floquet eigenvalues and their corresponding eigensolutions by using matrix valued continued fractions.

  15. Bilinear approach to Kuperschmidt super-KdV type equations

    Science.gov (United States)

    Babalic, Corina N.; Carstea, A. S.

    2018-06-01

    Hirota bilinear form and soliton solutions for the super-KdV (Korteweg–de Vries) equation of Kuperschmidt (Kuper–KdV) are given. It is shown that even though the collision of supersolitons is more complicated than in the case of the supersymmetric KdV equation of Manin–Radul, the asymptotic effect of the interaction is simpler. As a physical application it is shown that the well-known FPU problem, having a phonon-mediated interaction of some internal degrees of freedom expressed through Grassmann fields, transforms to the Kuper–KdV equation in a multiple-scale approach.

  16. A neuro approach to solve fuzzy Riccati differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Shahrir, Mohammad Shazri, E-mail: mshazri@gmail.com [InstitutSainsMatematik, Universiti Malaya 50603 Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur (Malaysia); Telekom Malaysia, R& D TM Innovation Centre, LingkaranTeknokrat Timur, 63000 Cyberjaya, Selangor (Malaysia); Kumaresan, N., E-mail: drnk2008@gmail.com; Kamali, M. Z. M.; Ratnavelu, Kurunathan [InstitutSainsMatematik, Universiti Malaya 50603 Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur (Malaysia)

    2015-10-22

    There are many applications of optimal control theory especially in the area of control systems in engineering. In this paper, fuzzy quadratic Riccati differential equation is estimated using neural networks (NN). Previous works have shown reliable results using Runge-Kutta 4th order (RK4). The solution can be achieved by solving the 1st Order Non-linear Differential Equation (ODE) that is found commonly in Riccati differential equation. Research has shown improved results relatively to the RK4 method. It can be said that NN approach shows promising results with the advantage of continuous estimation and improved accuracy that can be produced over RK4.

  17. Theoretical prediction of the electronic transport properties of the Al-Cu alloys based on the first-principle calculation and Boltzmann transport equation

    Science.gov (United States)

    Choi, Garam; Lee, Won Bo

    Metal alloys, especially Al-based, are commonly-used materials for various industrial applications. In this paper, the Al-Cu alloys with varying the Al-Cu ratio were investigated based on the first-principle calculation using density functional theory. And the electronic transport properties of the Al-Cu alloys were carried out using Boltzmann transport theory. From the results, the transport properties decrease with Cu-containing ratio at the temperature from moderate to high, but with non-linearity. It is inferred by various scattering effects from the calculation results with relaxation time approximation. For the Al-Cu alloy system, where it is hard to find the reliable experimental data for various alloys, it supports understanding and expectation for the thermal electrical properties from the theoretical prediction. Theoretical and computational soft matters laboratory.

  18. Boltzmann's "H"-Theorem and the Assumption of Molecular Chaos

    Science.gov (United States)

    Boozer, A. D.

    2011-01-01

    We describe a simple dynamical model of a one-dimensional ideal gas and use computer simulations of the model to illustrate two fundamental results of kinetic theory: the Boltzmann transport equation and the Boltzmann "H"-theorem. Although the model is time-reversal invariant, both results predict that the behaviour of the gas is time-asymmetric.…

  19. Error characterization for asynchronous computations: Proxy equation approach

    Science.gov (United States)

    Sallai, Gabriella; Mittal, Ankita; Girimaji, Sharath

    2017-11-01

    Numerical techniques for asynchronous fluid flow simulations are currently under development to enable efficient utilization of massively parallel computers. These numerical approaches attempt to accurately solve time evolution of transport equations using spatial information at different time levels. The truncation error of asynchronous methods can be divided into two parts: delay dependent (EA) or asynchronous error and delay independent (ES) or synchronous error. The focus of this study is a specific asynchronous error mitigation technique called proxy-equation approach. The aim of this study is to examine these errors as a function of the characteristic wavelength of the solution. Mitigation of asynchronous effects requires that the asynchronous error be smaller than synchronous truncation error. For a simple convection-diffusion equation, proxy-equation error analysis identifies critical initial wave-number, λc. At smaller wave numbers, synchronous error are larger than asynchronous errors. We examine various approaches to increase the value of λc in order to improve the range of applicability of proxy-equation approach.

  20. Extended lattice Boltzmann scheme for droplet combustion.

    Science.gov (United States)

    Ashna, Mostafa; Rahimian, Mohammad Hassan; Fakhari, Abbas

    2017-05-01

    The available lattice Boltzmann (LB) models for combustion or phase change are focused on either single-phase flow combustion or two-phase flow with evaporation assuming a constant density for both liquid and gas phases. To pave the way towards simulation of spray combustion, we propose a two-phase LB method for modeling combustion of liquid fuel droplets. We develop an LB scheme to model phase change and combustion by taking into account the density variation in the gas phase and accounting for the chemical reaction based on the Cahn-Hilliard free-energy approach. Evaporation of liquid fuel is modeled by adding a source term, which is due to the divergence of the velocity field being nontrivial, in the continuity equation. The low-Mach-number approximation in the governing Navier-Stokes and energy equations is used to incorporate source terms due to heat release from chemical reactions, density variation, and nonluminous radiative heat loss. Additionally, the conservation equation for chemical species is formulated by including a source term due to chemical reaction. To validate the model, we consider the combustion of n-heptane and n-butanol droplets in stagnant air using overall single-step reactions. The diameter history and flame standoff ratio obtained from the proposed LB method are found to be in good agreement with available numerical and experimental data. The present LB scheme is believed to be a promising approach for modeling spray combustion.

  1. Topology optimization and lattice Boltzmann methods

    DEFF Research Database (Denmark)

    Nørgaard, Sebastian Arlund

    This thesis demonstrates the application of the lattice Boltzmann method for topology optimization problems. Specifically, the focus is on problems in which time-dependent flow dynamics have significant impact on the performance of the devices to be optimized. The thesis introduces new topology...... a discrete adjoint approach. To handle the complexity of the discrete adjoint approach more easily, a method for computing it based on automatic differentiation is introduced, which can be adapted to any lattice Boltzmann type method. For example, while it is derived in the context of an isothermal lattice...... Boltzmann model, it is shown that the method can be easily extended to a thermal model as well. Finally, the predicted behavior of an optimized design is compared to the equiva-lent prediction from a commercial finite element solver. It is found that the weakly compressible nature of the lattice Boltzmann...

  2. Finite Boltzmann schemes

    NARCIS (Netherlands)

    Sman, van der R.G.M.

    2006-01-01

    In the special case of relaxation parameter = 1 lattice Boltzmann schemes for (convection) diffusion and fluid flow are equivalent to finite difference/volume (FD) schemes, and are thus coined finite Boltzmann (FB) schemes. We show that the equivalence is inherent to the homology of the

  3. New variational principles for locating periodic orbits of differential equations.

    Science.gov (United States)

    Boghosian, Bruce M; Fazendeiro, Luis M; Lätt, Jonas; Tang, Hui; Coveney, Peter V

    2011-06-13

    We present new methods for the determination of periodic orbits of general dynamical systems. Iterative algorithms for finding solutions by these methods, for both the exact continuum case, and for approximate discrete representations suitable for numerical implementation, are discussed. Finally, we describe our approach to the computation of unstable periodic orbits of the driven Navier-Stokes equations, simulated using the lattice Boltzmann equation.

  4. Galilean-Invariant Lattice-Boltzmann Models with H Theorem

    National Research Council Canada - National Science Library

    Boghosian, Bruce

    2003-01-01

    The authors demonstrate that the requirement of Galilean invariance determines the choice of H function for a wide class of entropic lattice-Boltzmann models for the incompressible Navier-Stokes equations...

  5. Limitations of Boltzmann's principle

    International Nuclear Information System (INIS)

    Lavenda, B.H.

    1995-01-01

    The usual form of Boltzmann's principle assures that maximum entropy, or entropy reduction, occurs with maximum probability, implying a unimodal distribution. Boltzmann's principle cannot be applied to nonunimodal distributions, like the arcsine law, because the entropy may be concave only over a limited portion of the interval. The method of subordination shows that the arcsine distribution corresponds to a process with a single degree of freedom, thereby confirming the invalidation of Boltzmann's principle. The fractalization of time leads to a new distribution in which arcsine and Cauchy distributions can coexist simultaneously for nonintegral degrees of freedom between √2 and 2

  6. Cauchy problem for Laplace equation: An observer based approach

    KAUST Repository

    Majeed, Muhammad Usman

    2013-10-01

    A method to solve Cauchy Problem for Laplace equation using state observers is proposed. It is known that this problem is ill-posed. The domain under consideration is simple lipschitz in 2 with a hole. The idea is to recover the solution over whole domain from the observations on outer boundary. Proposed approach adapts one of the space variables as a time variable. The observer developed to solve Cauchy problem for the Laplace\\'s equation is compuationally robust and accurate. © 2013 IEEE.

  7. Equivalence of two alternative approaches to Schroedinger equations

    International Nuclear Information System (INIS)

    Goenuel, B; Koeksal, K

    2006-01-01

    A recently developed simple approach for the exact/approximate solution of Schroedinger equations with constant/position-dependent mass, in which the potential is considered as in the perturbation theory, is shown to be equivalent to the one leading to the construction of exactly solvable potentials via the solution of second-order differential equations in terms of known special functions. The formalism in the former solves difficulties encountered in the latter in revealing the corrections explicitly to the unperturbed piece of the solutions whereas the other obviates cumbersome procedures used in the calculations of the former

  8. An integrated approach to determine phenomenological equations in metallic systems

    Science.gov (United States)

    Ghamarian, Iman

    It is highly desirable to be able to make predictions of properties in metallic materials based upon the composition of the material and the microstructure. Unfortunately, the complexity of real, multi-component, multi-phase engineering alloys makes the provision of constituent-based (i.e., composition or microstructure) phenomenological equations extremely difficult. Due to these difficulties, qualitative predictions are frequently used to study the influence of microstructure or composition on the properties. Neural networks were used as a tool to get a quantitative model from a database. However, the developed model is not a phenomenological model. In this study, a new method based upon the integration of three separate modeling approaches, specifically artificial neural networks, genetic algorithms, and monte carlo was proposed. These three methods, when coupled in the manner described in this study, allows for the extraction of phenomenological equations with a concurrent analysis of uncertainty. This approach has been applied to a multi-component, multi-phase microstructure exhibiting phases with varying spatial and morphological distributions. Specifically, this approach has been applied to derive a phenomenological equation for the prediction of yield strength in alpha+beta processed Ti-6-4. The equation is consistent with not only the current dataset but also, where available, the limited information regarding certain parameters such as intrinsic yield strength of pure hexagonal close-packed alpha titanium.

  9. Babenko’s Approach to Abel’s Integral Equations

    Directory of Open Access Journals (Sweden)

    Chenkuan Li

    2018-03-01

    Full Text Available The goal of this paper is to investigate the following Abel’s integral equation of the second kind: y ( t + λ Γ ( α ∫ 0 t ( t − τ α − 1 y ( τ d τ = f ( t , ( t > 0 and its variants by fractional calculus. Applying Babenko’s approach and fractional integrals, we provide a general method for solving Abel’s integral equation and others with a demonstration of different types of examples by showing convergence of series. In particular, we extend this equation to a distributional space for any arbitrary α ∈ R by fractional operations of generalized functions for the first time and obtain several new and interesting results that cannot be realized in the classical sense or by the Laplace transform.

  10. Integro-differential equation approach extended to larger nuclei

    International Nuclear Information System (INIS)

    Adam, R.M.; Sofianos, S.A.; Fiedeldey, H.; Fabre de la Ripelle, M.

    1992-01-01

    We extend the integro-differential equation approach (IDEA) from few-nucleon to closed-shell and closed-subshell nuclei and outline the analytical methods required for the calculation of the density functions, which enter into the integro-differential equations. These contain all the physics for a system of fermions associated with the Pauli principle. In order to test the accuracy of the IDEA comparisons are made of the binding energies of 4 He, 12 C and 16 O obtained with effective potentials using the hypercentral approximation (HCA) providing a variational solution without correlations, the IDEA which fully includes the two-body correlations, the S-states integro-differential equation (SIDE) valid for potentials operating only on pairs in the S-state and those calculated by several variational or perturbative methods in the literature. (author)

  11. Reconsidering harmonic and anharmonic coherent states: Partial differential equations approach

    Energy Technology Data Exchange (ETDEWEB)

    Toutounji, Mohamad, E-mail: Mtoutounji@uaeu.ac.ae

    2015-02-15

    This article presents a new approach to dealing with time dependent quantities such as autocorrelation function of harmonic and anharmonic systems using coherent states and partial differential equations. The approach that is normally used to evaluate dynamical quantities involves formidable operator algebra. That operator algebra becomes insurmountable when employing Morse oscillator coherent states. This problem becomes even more complicated in case of Morse oscillator as it tends to exhibit divergent dynamics. This approach employs linear partial differential equations, some of which may be solved exactly and analytically, thereby avoiding the cumbersome noncommutative algebra required to manipulate coherent states of Morse oscillator. Additionally, the arising integrals while using the herein presented method feature stability and high numerical efficiency. The correctness, applicability, and utility of the above approach are tested by reproducing the partition and optical autocorrelation function of the harmonic oscillator. A closed-form expression for the equilibrium canonical partition function of the Morse oscillator is derived using its coherent states and partial differential equations. Also, a nonequilibrium autocorrelation function expression for weak electron–phonon coupling in condensed systems is derived for displaced Morse oscillator in electronic state. Finally, the utility of the method is demonstrated through further simplifying the Morse oscillator partition function or autocorrelation function expressions reported by other researchers in unevaluated form of second-order derivative exponential. Comparison with exact dynamics shows identical results.

  12. Stochastic Computational Approach for Complex Nonlinear Ordinary Differential Equations

    International Nuclear Information System (INIS)

    Khan, Junaid Ali; Raja, Muhammad Asif Zahoor; Qureshi, Ijaz Mansoor

    2011-01-01

    We present an evolutionary computational approach for the solution of nonlinear ordinary differential equations (NLODEs). The mathematical modeling is performed by a feed-forward artificial neural network that defines an unsupervised error. The training of these networks is achieved by a hybrid intelligent algorithm, a combination of global search with genetic algorithm and local search by pattern search technique. The applicability of this approach ranges from single order NLODEs, to systems of coupled differential equations. We illustrate the method by solving a variety of model problems and present comparisons with solutions obtained by exact methods and classical numerical methods. The solution is provided on a continuous finite time interval unlike the other numerical techniques with comparable accuracy. With the advent of neuroprocessors and digital signal processors the method becomes particularly interesting due to the expected essential gains in the execution speed. (general)

  13. A systematic iterative approach to the equations of low type

    International Nuclear Information System (INIS)

    Znojil, M.

    1987-01-01

    Nonlinear singular integral equations of the Low type appear in the description of π-N scattering amplitude at relativistic energies. The standard iteration solution differs and does not give sufficiently exact results even using the Pade approximation. A new approach is proposed. Its essence lies in a repeated formal simplification of the equation accompanied by a representation of the simplified amplitude in a generalized continued-fractional form. A simple example demonstrate that the new method improves the convergence of previous approach and essentially expands the region of its convergence. From the other side, its nonequivalence to a more complicate Newton-Kantorovich method is shown. In the future more realistic applications of the method one can expect increasing of result reliability

  14. Lattice Boltzmann methods for global linear instability analysis

    Science.gov (United States)

    Pérez, José Miguel; Aguilar, Alfonso; Theofilis, Vassilis

    2017-12-01

    Modal global linear instability analysis is performed using, for the first time ever, the lattice Boltzmann method (LBM) to analyze incompressible flows with two and three inhomogeneous spatial directions. Four linearization models have been implemented in order to recover the linearized Navier-Stokes equations in the incompressible limit. Two of those models employ the single relaxation time and have been proposed previously in the literature as linearization of the collision operator of the lattice Boltzmann equation. Two additional models are derived herein for the first time by linearizing the local equilibrium probability distribution function. Instability analysis results are obtained in three benchmark problems, two in closed geometries and one in open flow, namely the square and cubic lid-driven cavity flow and flow in the wake of the circular cylinder. Comparisons with results delivered by classic spectral element methods verify the accuracy of the proposed new methodologies and point potential limitations particular to the LBM approach. The known issue of appearance of numerical instabilities when the SRT model is used in direct numerical simulations employing the LBM is shown to be reflected in a spurious global eigenmode when the SRT model is used in the instability analysis. Although this mode is absent in the multiple relaxation times model, other spurious instabilities can also arise and are documented herein. Areas of potential improvements in order to make the proposed methodology competitive with established approaches for global instability analysis are discussed.

  15. Anomalous Hall effect in 2D Dirac band: link between Kubo-Streda formula and semiclassical Boltzmann equation approach

    Czech Academy of Sciences Publication Activity Database

    Sinitsyn, N. A.; MacDonald, A. H.; Jungwirth, Tomáš; Dugaev, V.K.; Sinova, J.

    2007-01-01

    Roč. 75, č. 4 (2007), 045315/1-045315/13 ISSN 1098-0121 Grant - others:NSF(XE) DMR-0547875; POCI(PT) POCI/FIS/58746/2004; Polish State Commitee for Scientific Research(PL) 2 P03B 05, 25; STCU(UA) 3098; DOE(GB) DE-FG03- 2ER45958 Institutional research plan: CEZ:AV0Z10100521 Keywords : anomalous Hall effect, * quantum and semiclassical transport theory Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.172, year: 2007

  16. Lattice Boltzmann method for bosons and fermions and the fourth-order Hermite polynomial expansion.

    Science.gov (United States)

    Coelho, Rodrigo C V; Ilha, Anderson; Doria, Mauro M; Pereira, R M; Aibe, Valter Yoshihiko

    2014-04-01

    The Boltzmann equation with the Bhatnagar-Gross-Krook collision operator is considered for the Bose-Einstein and Fermi-Dirac equilibrium distribution functions. We show that the expansion of the microscopic velocity in terms of Hermite polynomials must be carried to the fourth order to correctly describe the energy equation. The viscosity and thermal coefficients, previously obtained by Yang et al. [Shi and Yang, J. Comput. Phys. 227, 9389 (2008); Yang and Hung, Phys. Rev. E 79, 056708 (2009)] through the Uehling-Uhlenbeck approach, are also derived here. Thus the construction of a lattice Boltzmann method for the quantum fluid is possible provided that the Bose-Einstein and Fermi-Dirac equilibrium distribution functions are expanded to fourth order in the Hermite polynomials.

  17. The cascade-probabilistic method of particles-through-materials propagation modelling. Connection with the Markov’s chains, Boltzmann equations

    International Nuclear Information System (INIS)

    Kupchishin, A.I.

    2015-01-01

    The work was performed within in the context of cascade-probabilistic method, the essence of which is to obtain and further application of cascade-probability functions (CPF) for different particles. CPF make sense probability of that a particle generated at some depth h' reaches a certain depth h after the n-th number of collisions. We consider the interaction of particle with solids and relationship between radiation defect formation processes and Markov processes and Markov chains. It shows how to get the recurrence relations for the simplest CPF from the Chapman-Kolmogorov equations. (authors)

  18. Gli atomi di Boltzmann

    CERN Document Server

    Lindley, David

    2002-01-01

    Ludwig Boltzmann (1844-1906) è il fisico e matematico austriaco che negli ultimi decenni dell'Ottocento e ancora ai primi del Novecento lottò contro l'opinione dominante tra gli scienziati dell'epoca per affermare la teoria atomica della materia. È noto come con Albert Einstein e fino a oggi la fisica si sia sviluppata e abbia celebrato i propri trionfi lungo le linee anticipate da Boltzmann. La controversia con Mach non riguardava soltanto l'esistenza degli atomi, ma l'intero modo di fare fisica che Boltzmann non riteneva di dover limitare allo studio di quantità misurabili, introducendo invece spiegazioni più elaborate basate su ipotesi più ampie.

  19. Navier-Stokes Dynamics by a Discrete Boltzmann Model

    Science.gov (United States)

    Rubinstein, Robet

    2010-01-01

    This work investigates the possibility of particle-based algorithms for the Navier-Stokes equations and higher order continuum approximations of the Boltzmann equation; such algorithms would generalize the well-known Pullin scheme for the Euler equations. One such method is proposed in the context of a discrete velocity model of the Boltzmann equation. Preliminary results on shock structure are consistent with the expectation that the shock should be much broader than the near discontinuity predicted by the Pullin scheme, yet narrower than the prediction of the Boltzmann equation. We discuss the extension of this essentially deterministic method to a stochastic particle method that, like DSMC, samples the distribution function rather than resolving it completely.

  20. Convex hull approach for determining rock representative elementary volume for multiple petrophysical parameters using pore-scale imaging and Lattice-Boltzmann modelling

    Science.gov (United States)

    Shah, S. M.; Crawshaw, J. P.; Gray, F.; Yang, J.; Boek, E. S.

    2017-06-01

    In the last decade, the study of fluid flow in porous media has developed considerably due to the combination of X-ray Micro Computed Tomography (micro-CT) and advances in computational methods for solving complex fluid flow equations directly or indirectly on reconstructed three-dimensional pore space images. In this study, we calculate porosity and single phase permeability using micro-CT imaging and Lattice Boltzmann (LB) simulations for 8 different porous media: beadpacks (with bead sizes 50 μm and 350 μm), sandpacks (LV60 and HST95), sandstones (Berea, Clashach and Doddington) and a carbonate (Ketton). Combining the observed porosity and calculated single phase permeability, we shed new light on the existence and size of the Representative Element of Volume (REV) capturing the different scales of heterogeneity from the pore-scale imaging. Our study applies the concept of the 'Convex Hull' to calculate the REV by considering the two main macroscopic petrophysical parameters, porosity and single phase permeability, simultaneously. The shape of the hull can be used to identify strong correlation between the parameters or greatly differing convergence rates. To further enhance computational efficiency we note that the area of the convex hull (for well-chosen parameters such as the log of the permeability and the porosity) decays exponentially with sub-sample size so that only a few small simulations are needed to determine the system size needed to calculate the parameters to high accuracy (small convex hull area). Finally we propose using a characteristic length such as the pore size to choose an efficient absolute voxel size for the numerical rock.

  1. Perturbative approach to non-Markovian stochastic Schroedinger equations

    International Nuclear Information System (INIS)

    Gambetta, Jay; Wiseman, H.M.

    2002-01-01

    In this paper we present a perturbative procedure that allows one to numerically solve diffusive non-Markovian stochastic Schroedinger equations, for a wide range of memory functions. To illustrate this procedure numerical results are presented for a classically driven two-level atom immersed in an environment with a simple memory function. It is observed that as the order of the perturbation is increased the numerical results for the ensemble average state ρ red (t) approach the exact reduced state found via Imamog-barlu ' s enlarged system method [Phys. Rev. A 50, 3650 (1994)

  2. Statistical approach to LHCD modeling using the wave kinetic equation

    International Nuclear Information System (INIS)

    Kupfer, K.; Moreau, D.; Litaudon, X.

    1993-04-01

    Recent work has shown that for parameter regimes typical of many present day current drive experiments, the orbits of the launched LH rays are chaotic (in the Hamiltonian sense), so that wave energy diffuses through the stochastic layer and fills the spectral gap. We have analyzed this problem using a statistical approach, by solving the wave kinetic equation for the coarse-grained spectral energy density. An interesting result is that the LH absorption profile is essentially independent of both the total injected power and the level of wave stochastic diffusion

  3. Simulation of bubble motion under gravity by lattice Boltzmann method

    International Nuclear Information System (INIS)

    Takada, Naoki; Misawa, Masaki; Tomiyama, Akio; Hosokawa, Shigeo

    2001-01-01

    We describe the numerical simulation results of bubble motion under gravity by the lattice Boltzmann method (LBM), which assumes that a fluid consists of mesoscopic fluid particles repeating collision and translation and a multiphase interface is reproduced in a self-organizing way by repulsive interaction between different kinds of particles. The purposes in this study are to examine the applicability of LBM to the numerical analysis of bubble motions, and to develop a three-dimensional version of the binary fluid model that introduces a free energy function. We included the buoyancy terms due to the density difference in the lattice Boltzmann equations, and simulated single-and two-bubble motions, setting flow conditions according to the Eoetvoes and Morton numbers. The two-dimensional results by LBM agree with those by the Volume of Fluid method based on the Navier-Stokes equations. The three-dimensional model possesses the surface tension satisfying the Laplace's law, and reproduces the motion of single bubble and the two-bubble interaction of their approach and coalescence in circular tube. There results prove that the buoyancy terms and the 3D model proposed here are suitable, and that LBM is useful for the numerical analysis of bubble motion under gravity. (author)

  4. The Navier-Stokes equations an elementary functional analytic approach

    CERN Document Server

    Sohr, Hermann

    2001-01-01

    The primary objective of this monograph is to develop an elementary and self-contained approach to the mathematical theory of a viscous, incompressible fluid in a domain of the Euclidean space, described by the equations of Navier-Stokes. Moreover, the theory is presented for completely general domains, in particular, for arbitrary unbounded, nonsmooth domains. Therefore, restriction was necessary to space dimensions two and three, which are also the most significant from a physical point of view. For mathematical generality, however, the linearized theory is expounded for general dimensions higher than one. Although the functional analytic approach developed here is, in principle, known to specialists, the present book fills a gap in the literature providing a systematic treatment of a subject that has been documented until now only in fragments. The book is mainly directed to students familiar with basic tools in Hilbert and Banach spaces. However, for the readers’ convenience, some fundamental properties...

  5. A variational approach to parameter estimation in ordinary differential equations

    Directory of Open Access Journals (Sweden)

    Kaschek Daniel

    2012-08-01

    Full Text Available Abstract Background Ordinary differential equations are widely-used in the field of systems biology and chemical engineering to model chemical reaction networks. Numerous techniques have been developed to estimate parameters like rate constants, initial conditions or steady state concentrations from time-resolved data. In contrast to this countable set of parameters, the estimation of entire courses of network components corresponds to an innumerable set of parameters. Results The approach presented in this work is able to deal with course estimation for extrinsic system inputs or intrinsic reactants, both not being constrained by the reaction network itself. Our method is based on variational calculus which is carried out analytically to derive an augmented system of differential equations including the unconstrained components as ordinary state variables. Finally, conventional parameter estimation is applied to the augmented system resulting in a combined estimation of courses and parameters. Conclusions The combined estimation approach takes the uncertainty in input courses correctly into account. This leads to precise parameter estimates and correct confidence intervals. In particular this implies that small motifs of large reaction networks can be analysed independently of the rest. By the use of variational methods, elements from control theory and statistics are combined allowing for future transfer of methods between the two fields.

  6. Stable Numerical Approach for Fractional Delay Differential Equations

    Science.gov (United States)

    Singh, Harendra; Pandey, Rajesh K.; Baleanu, D.

    2017-12-01

    In this paper, we present a new stable numerical approach based on the operational matrix of integration of Jacobi polynomials for solving fractional delay differential equations (FDDEs). The operational matrix approach converts the FDDE into a system of linear equations, and hence the numerical solution is obtained by solving the linear system. The error analysis of the proposed method is also established. Further, a comparative study of the approximate solutions is provided for the test examples of the FDDE by varying the values of the parameters in the Jacobi polynomials. As in special case, the Jacobi polynomials reduce to the well-known polynomials such as (1) Legendre polynomial, (2) Chebyshev polynomial of second kind, (3) Chebyshev polynomial of third and (4) Chebyshev polynomial of fourth kind respectively. Maximum absolute error and root mean square error are calculated for the illustrated examples and presented in form of tables for the comparison purpose. Numerical stability of the presented method with respect to all four kind of polynomials are discussed. Further, the obtained numerical results are compared with some known methods from the literature and it is observed that obtained results from the proposed method is better than these methods.

  7. A variational approach to parameter estimation in ordinary differential equations.

    Science.gov (United States)

    Kaschek, Daniel; Timmer, Jens

    2012-08-14

    Ordinary differential equations are widely-used in the field of systems biology and chemical engineering to model chemical reaction networks. Numerous techniques have been developed to estimate parameters like rate constants, initial conditions or steady state concentrations from time-resolved data. In contrast to this countable set of parameters, the estimation of entire courses of network components corresponds to an innumerable set of parameters. The approach presented in this work is able to deal with course estimation for extrinsic system inputs or intrinsic reactants, both not being constrained by the reaction network itself. Our method is based on variational calculus which is carried out analytically to derive an augmented system of differential equations including the unconstrained components as ordinary state variables. Finally, conventional parameter estimation is applied to the augmented system resulting in a combined estimation of courses and parameters. The combined estimation approach takes the uncertainty in input courses correctly into account. This leads to precise parameter estimates and correct confidence intervals. In particular this implies that small motifs of large reaction networks can be analysed independently of the rest. By the use of variational methods, elements from control theory and statistics are combined allowing for future transfer of methods between the two fields.

  8. Thermodynamic aspect in using modified Boltzmann model as an acoustic probe for URu2Si2

    Science.gov (United States)

    Kwang-Hua, Chu Rainer

    2018-05-01

    The approximate system of equations describing ultrasonic attenuation propagating in many electrons of the heavy-fermion materials URu2Si2 under high magnetic fields were firstly derived and then calculated based on the modified Boltzmann model considering the microscopic contributions due to electronic fluids. A system of nonlinear partial differential coupled with integral equations were linearized firstly and approximately solved considering the perturbed thermodynamic equilibrium states. Our numerical data were compared with previous measurements using non-dimensional or normalized physical values. The rather good fit of our numerical calculations with experimental measurements confirms our present approach.

  9. Entropy à la Boltzmann

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 9. Entropy à la Boltzmann. Jayanta K Bhattacharjee. General Article Volume 6 Issue 9 September 2001 pp 19-34. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/006/09/0019-0034 ...

  10. On geometric approach to Lie symmetries of differential-difference equations

    International Nuclear Information System (INIS)

    Li Hongjing; Wang Dengshan; Wang Shikun; Wu Ke; Zhao Weizhong

    2008-01-01

    Based upon Cartan's geometric formulation of differential equations, Harrison and Estabrook proposed a geometric approach for the symmetries of differential equations. In this Letter, we extend Harrison and Estabrook's approach to analyze the symmetries of differential-difference equations. The discrete exterior differential technique is applied in our approach. The Lie symmetry of (2+1)-dimensional Toda equation is investigated by means of our approach

  11. Nonlocal Boltzmann theory of plasma channels

    International Nuclear Information System (INIS)

    Yu, S.S.; Melendez, R.E.

    1983-01-01

    The mathematical framework for the LLNL code NUTS is developed. This code is designed to study the evolution of an electron-beam-generated plasma channel at all pressures. The Boltzmann treatment of the secondary electrons presented include all inertial, nonlocal, electric and magnetic effects, as well as effects of atomic collisions. Field equations are advanced simultaneously and self-consistently with the evolving plasma currents

  12. Equilibrium statistical mechanics for self-gravitating systems: local ergodicity and extended Boltzmann-Gibbs/White-Narayan statistics

    Science.gov (United States)

    He, Ping

    2012-01-01

    The long-standing puzzle surrounding the statistical mechanics of self-gravitating systems has not yet been solved successfully. We formulate a systematic theoretical framework of entropy-based statistical mechanics for spherically symmetric collisionless self-gravitating systems. We use an approach that is very different from that of the conventional statistical mechanics of short-range interaction systems. We demonstrate that the equilibrium states of self-gravitating systems consist of both mechanical and statistical equilibria, with the former characterized by a series of velocity-moment equations and the latter by statistical equilibrium equations, which should be derived from the entropy principle. The velocity-moment equations of all orders are derived from the steady-state collisionless Boltzmann equation. We point out that the ergodicity is invalid for the whole self-gravitating system, but it can be re-established locally. Based on the local ergodicity, using Fermi-Dirac-like statistics, with the non-degenerate condition and the spatial independence of the local microstates, we rederive the Boltzmann-Gibbs entropy. This is consistent with the validity of the collisionless Boltzmann equation, and should be the correct entropy form for collisionless self-gravitating systems. Apart from the usual constraints of mass and energy conservation, we demonstrate that the series of moment or virialization equations must be included as additional constraints on the entropy functional when performing the variational calculus; this is an extension to the original prescription by White & Narayan. Any possible velocity distribution can be produced by the statistical-mechanical approach that we have developed with the extended Boltzmann-Gibbs/White-Narayan statistics. Finally, we discuss the questions of negative specific heat and ensemble inequivalence for self-gravitating systems.

  13. A Unified Theory of Non-Ideal Gas Lattice Boltzmann Models

    Science.gov (United States)

    Luo, Li-Shi

    1998-01-01

    A non-ideal gas lattice Boltzmann model is directly derived, in an a priori fashion, from the Enskog equation for dense gases. The model is rigorously obtained by a systematic procedure to discretize the Enskog equation (in the presence of an external force) in both phase space and time. The lattice Boltzmann model derived here is thermodynamically consistent and is free of the defects which exist in previous lattice Boltzmann models for non-ideal gases. The existing lattice Boltzmann models for non-ideal gases are analyzed and compared with the model derived here.

  14. Boltzmann machines for travelling salesman problems

    NARCIS (Netherlands)

    Aarts, E.H.L.; Korst, J.H.M.

    1989-01-01

    Boltzmann machines are proposed as a massively parallel alternative to the (sequential) simulated annealing algorithm. Our approach is tailored to the travelling salesman problem, but it can also be applied to a more general class of combinatorial optimization problems. For two distinct 0–1

  15. Piecewise-linear and bilinear approaches to nonlinear differential equations approximation problem of computational structural mechanics

    OpenAIRE

    Leibov Roman

    2017-01-01

    This paper presents a bilinear approach to nonlinear differential equations system approximation problem. Sometimes the nonlinear differential equations right-hand sides linearization is extremely difficult or even impossible. Then piecewise-linear approximation of nonlinear differential equations can be used. The bilinear differential equations allow to improve piecewise-linear differential equations behavior and reduce errors on the border of different linear differential equations systems ...

  16. Investigation the evaporation-condensation problem by means of the joint numerical solution of the Boltzmann kinetic equation and interface modelling

    Science.gov (United States)

    Shiskova, I. N.; Kryukov, A. P.; Levashov, V. Yu

    2017-11-01

    The paper is devoted to research of the heat and mass transfer processes in liquid and vapor phase on the basis of the uniform approach assuming the through description of liquid, interface and vapor. Multiparticles interactions in liquid will be taken into account. The problem is studied when temperature in the depth of liquid differs from temperature in the vapor region. In this case there are both mass flux and heat flux. The study of influence of the correlations resulting from interactions of molecules set in thin near-surface liquid layers and an interface on intensity of evaporation is made. As a result of calculations the equilibrium line of the liquid-vapor saturation is obtained, which corresponds good enough with experimental data. Distributions of density, temperature, pressure, heat and mass fluxes, both in a liquid and in vapor are also presented.

  17. L2-stability of the Vlasov-Maxwell-Boltzmann system near global Maxwellians

    International Nuclear Information System (INIS)

    Ha, Seung-Yeal; Xiao, Qinghua; Xiong, Linjie; Zhao, Huijiang

    2013-01-01

    We present a L 2 -stability theory of the Vlasov-Maxwell-Boltzmann system for the two-species collisional plasma. We show that in a perturbative regime of a global Maxwellian, the L 2 -distance between two strong solutions can be controlled by that between initial data in a Lipschitz manner. Our stability result extends earlier results [Ha, S.-Y. and Xiao, Q.-H., “A revisiting to the L 2 -stability theory of the Boltzmann equation near global Maxwellians,” (submitted) and Ha, S.-Y., Yang, X.-F., and Yun, S.-B., “L 2 stability theory of the Boltzmann equation near a global Maxwellian,” Arch. Ration. Mech. Anal. 197, 657–688 (2010)] on the L 2 -stability of the Boltzmann equation to the Boltzmann equation coupled with self-consistent external forces. As a direct application of our stability result, we show that classical solutions in Duan et al. [“Optimal large-time behavior of the Vlasov-Maxwell-Boltzmann system in the whole space,” Commun. Pure Appl. Math. 24, 1497–1546 (2011)] and Guo [“The Vlasov-Maxwell-Boltzmann system near Maxwellians,” Invent. Math. 153(3), 593–630 (2003)] satisfy a uniform L 2 -stability estimate. This is the first result on the L 2 -stability of the Boltzmann equation coupled with self-consistent field equations in three dimensions

  18. A novel approach for solving fractional Fisher equation using

    Indian Academy of Sciences (India)

    Differential transform method; fractional Fisher equation. ... confirmed by applying this method on different forms of functional equations. Author Affiliations. MIRZAZADEH M1. Department of Engineering Sciences, Faculty of Technology and ...

  19. The Navier-Stokes equations an elementary functional analytic approach

    CERN Document Server

    Sohr, Hermann

    2001-01-01

    The primary objective of this monograph is to develop an elementary and self­ contained approach to the mathematical theory of a viscous incompressible fluid in a domain 0 of the Euclidean space ]Rn, described by the equations of Navier­ Stokes. The book is mainly directed to students familiar with basic functional analytic tools in Hilbert and Banach spaces. However, for readers' convenience, in the first two chapters we collect without proof some fundamental properties of Sobolev spaces, distributions, operators, etc. Another important objective is to formulate the theory for a completely general domain O. In particular, the theory applies to arbitrary unbounded, non-smooth domains. For this reason, in the nonlinear case, we have to restrict ourselves to space dimensions n = 2,3 that are also most significant from the physical point of view. For mathematical generality, we will develop the lin­ earized theory for all n 2 2. Although the functional-analytic approach developed here is, in principle, known ...

  20. The Boltzmann project

    Science.gov (United States)

    Fischer, J.; Fellmuth, B.; Gaiser, C.; Zandt, T.; Pitre, L.; Sparasci, F.; Plimmer, M. D.; de Podesta, M.; Underwood, R.; Sutton, G.; Machin, G.; Gavioso, R. M.; Madonna Ripa, D.; Steur, P. P. M.; Qu, J.; Feng, X. J.; Zhang, J.; Moldover, M. R.; Benz, S. P.; White, D. R.; Gianfrani, L.; Castrillo, A.; Moretti, L.; Darquié, B.; Moufarej, E.; Daussy, C.; Briaudeau, S.; Kozlova, O.; Risegari, L.; Segovia, J. J.; Martín, M. C.; del Campo, D.

    2018-04-01

    The International Committee for Weights and Measures (CIPM), at its meeting in October 2017, followed the recommendation of the Consultative Committee for Units (CCU) on the redefinition of the kilogram, ampere, kelvin and mole. For the redefinition of the kelvin, the Boltzmann constant will be fixed with the numerical value 1.380 649  ×  10-23 J K-1. The relative standard uncertainty to be transferred to the thermodynamic temperature value of the triple point of water will be 3.7  ×  10-7, corresponding to an uncertainty in temperature of 0.10 mK, sufficiently low for all practical purposes. With the redefinition of the kelvin, the broad research activities of the temperature community on the determination of the Boltzmann constant have been very successfully completed. In the following, a review of the determinations of the Boltzmann constant k, important for the new definition of the kelvin and performed in the last decade, is given.

  1. Scattering theory of the linear Boltzmann operator

    International Nuclear Information System (INIS)

    Hejtmanek, J.

    1975-01-01

    In time dependent scattering theory we know three important examples: the wave equation around an obstacle, the Schroedinger and the Dirac equation with a scattering potential. In this paper another example from time dependent linear transport theory is added and considered in full detail. First the linear Boltzmann operator in certain Banach spaces is rigorously defined, and then the existence of the Moeller operators is proved by use of the theorem of Cook-Jauch-Kuroda, that is generalized to the case of a Banach space. (orig.) [de

  2. Lattice Boltzmann simulations of liquid crystalline fluids: active gels and blue phases

    OpenAIRE

    Cates, M. E.; Henrich, O.; Marenduzzo, D.; Stratford, K.

    2010-01-01

    Lattice Boltzmann simulations have become a method of choice to solve the hydrodynamic equations of motion of a number of complex fluids. Here we review some recent applications of lattice Boltzmann to study the hydrodynamics of liquid crystalline materials. In particular, we focus on the study of (a) the exotic blue phases of cholesteric liquid crystals, and (b) active gels - a model system for actin plus myosin solutions or bacterial suspensions. In both cases lattice Boltzmann studies have...

  3. Mathematical model of Boltzmann's sigmoidal equation applicable ...

    Indian Academy of Sciences (India)

    Ingeniería-Química, COARA—Universidad Autónoma de San Luis Potosí, Matehuala, San Luis Potosí, Mexico; Instituto Politécnico Nacional, CICATA Legaria, Calzada Legaria No. 694, Colonia Irrigación, 11500 Ciudad de México, Mexico; Departamento de Ingeniería Agrícola, DICIVA, Universidad de Guanajuato, Campus ...

  4. Mathematical model of Boltzmann's sigmoidal equation applicable ...

    Indian Academy of Sciences (India)

    2017-08-18

    Aug 18, 2017 ... In this work, we present the stoichiometric behaviour of Ba2+ and Sr2+ when they are deposited to make a solid solution of ... environmental stimulus [6]. Also ... transition changes from continuous to discontinuous at the.

  5. Alternate Solution to Generalized Bernoulli Equations via an Integrating Factor: An Exact Differential Equation Approach

    Science.gov (United States)

    Tisdell, C. C.

    2017-01-01

    Solution methods to exact differential equations via integrating factors have a rich history dating back to Euler (1740) and the ideas enjoy applications to thermodynamics and electromagnetism. Recently, Azevedo and Valentino presented an analysis of the generalized Bernoulli equation, constructing a general solution by linearizing the problem…

  6. An approach to rogue waves through the cnoidal equation

    Science.gov (United States)

    Lechuga, Antonio

    2014-05-01

    Lately it has been realized the importance of rogue waves in some events happening in open seas. Extreme waves and extreme weather could explain some accidents, but not all of them. Every now and then inflicted damages on ships only can be reported to be caused by anomalous and elusive waves, such as rogue waves. That's one of the reason why they continue attracting considerable interest among researchers. In the frame of the Nonlinear Schrödinger equation(NLS), Witham(1974) and Dingemans and Otta (2001)gave asymptotic solutions in moving coordinates that transformed the NLS equation in a ordinary differential equation that is the Duffing or cnoidal wave equation. Applying the Zakharov equation, Stiassnie and Shemer(2004) and Shemer(2010)got also a similar equation. It's well known that this ordinary equation can be solved in elliptic functions. The main aim of this presentation is to sort out the domains of the solutions of this equation, that, of course, are linked to the corresponding solutions of the partial differential equations(PDEs). That being, Lechuga(2007),a simple way to look for anomalous waves as it's the case with some "chaotic" solutions of the Duffing equation.

  7. Boltzmann map for quantum oscillators

    International Nuclear Information System (INIS)

    Streater, R.F.

    1987-01-01

    The authors define a map tau on the space of quasifree states of the CCR or CAR of more than one harmonic oscillator which increases entropy except at fixed points of tau. The map tau is the composition of a double stochastic map T*, and the quasifree reduction Q. Under mixing conditions on T, iterates of tau take any initial state to the Gibbs states, provided that the oscillator frequencies are mutually rational. They give an example of a system with three degrees of freedom with energies omega 1 , omega 2 , and omega 3 mutually irrational, but obeying a relation n 1 omega 1 + n 2 omega 2 = n 3 omega 3 , n/sub i/epsilon Z. The iterated Boltzmann map converges from an initial state rho to independent Gibbs states of the three oscillators at betas (inverse temperatures) β 1 , β 2 , β 3 obeying the equation n 1 omega 1 β 1 + n 2 omega 3 β 1 number. The equilibrium state can be rewritten as a grand canonical state. They show that for two, three, or four fermions we can get the usual rate equations as a special case

  8. Soliton solutions for ABS lattice equations: I. Cauchy matrix approach

    Science.gov (United States)

    Nijhoff, Frank; Atkinson, James; Hietarinta, Jarmo

    2009-10-01

    In recent years there have been new insights into the integrability of quadrilateral lattice equations, i.e. partial difference equations which are the natural discrete analogues of integrable partial differential equations in 1+1 dimensions. In the scalar (i.e. single-field) case, there now exist classification results by Adler, Bobenko and Suris (ABS) leading to some new examples in addition to the lattice equations 'of KdV type' that were known since the late 1970s and early 1980s. In this paper, we review the construction of soliton solutions for the KdV-type lattice equations and use those results to construct N-soliton solutions for all lattice equations in the ABS list except for the elliptic case of Q4, which is left to a separate treatment.

  9. A new approach to Catalan numbers using differential equations

    Science.gov (United States)

    Kim, D. S.; Kim, T.

    2017-10-01

    In this paper, we introduce two differential equations arising from the generating function of the Catalan numbers which are `inverses' to each other in a certain sense. From these differential equations, we obtain some new and explicit identities for Catalan and higher-order Catalan numbers. In addition, by other means than differential equations, we also derive some interesting identities involving Catalan numbers which are of arithmetic and combinatorial nature.

  10. Exact Travelling Solutions of Discrete sine-Gordon Equation via Extended Tanh-Function Approach

    International Nuclear Information System (INIS)

    Dai Chaoqing; Zhang Jiefang

    2006-01-01

    In this paper, we generalize the extended tanh-function approach, which was used to find new exact travelling wave solutions of nonlinear partial differential equations or coupled nonlinear partial differential equations, to nonlinear differential-difference equations. As illustration, two series of exact travelling wave solutions of the discrete sine-Gordon equation are obtained by means of the extended tanh-function approach.

  11. Flow Equation Approach to the Statistics of Nonlinear Dynamical Systems

    Science.gov (United States)

    Marston, J. B.; Hastings, M. B.

    2005-03-01

    The probability distribution function of non-linear dynamical systems is governed by a linear framework that resembles quantum many-body theory, in which stochastic forcing and/or averaging over initial conditions play the role of non-zero . Besides the well-known Fokker-Planck approach, there is a related Hopf functional methodootnotetextUriel Frisch, Turbulence: The Legacy of A. N. Kolmogorov (Cambridge University Press, 1995) chapter 9.5.; in both formalisms, zero modes of linear operators describe the stationary non-equilibrium statistics. To access the statistics, we investigate the method of continuous unitary transformationsootnotetextS. D. Glazek and K. G. Wilson, Phys. Rev. D 48, 5863 (1993); Phys. Rev. D 49, 4214 (1994). (also known as the flow equation approachootnotetextF. Wegner, Ann. Phys. 3, 77 (1994).), suitably generalized to the diagonalization of non-Hermitian matrices. Comparison to the more traditional cumulant expansion method is illustrated with low-dimensional attractors. The treatment of high-dimensional dynamical systems is also discussed.

  12. Quantum Mechanical Balance Equation Approach to Semiconductor Device Simulation

    National Research Council Canada - National Science Library

    Cui, Long

    1997-01-01

    This research project was focused on the development of a quantum mechanical balance equation based device simulator that can model advanced, compound, submicron devices, under all transport conditions...

  13. Equilibrium approach in the derivation of differential equations for ...

    African Journals Online (AJOL)

    In this paper, the differential equations of Mindlin plates are derived from basic principles by simultaneous satisfaction of the differential equations of equilibrium, the stress-strain laws and the strain-displacement relations for isotropic, homogenous linear elastic materials. Equilibrium method was adopted in the derivation.

  14. A Unified Approach to Teaching Quadratic and Cubic Equations.

    Science.gov (United States)

    Ward, A. J. B.

    2003-01-01

    Presents a simple method for teaching the algebraic solution of cubic equations via completion of the cube. Shows that this method is readily accepted by students already familiar with completion of the square as a method for quadratic equations. (Author/KHR)

  15. Poisson-Boltzmann versus Size-Modified Poisson-Boltzmann Electrostatics Applied to Lipid Bilayers.

    Science.gov (United States)

    Wang, Nuo; Zhou, Shenggao; Kekenes-Huskey, Peter M; Li, Bo; McCammon, J Andrew

    2014-12-26

    Mean-field methods, such as the Poisson-Boltzmann equation (PBE), are often used to calculate the electrostatic properties of molecular systems. In the past two decades, an enhancement of the PBE, the size-modified Poisson-Boltzmann equation (SMPBE), has been reported. Here, the PBE and the SMPBE are reevaluated for realistic molecular systems, namely, lipid bilayers, under eight different sets of input parameters. The SMPBE appears to reproduce the molecular dynamics simulation results better than the PBE only under specific parameter sets, but in general, it performs no better than the Stern layer correction of the PBE. These results emphasize the need for careful discussions of the accuracy of mean-field calculations on realistic systems with respect to the choice of parameters and call for reconsideration of the cost-efficiency and the significance of the current SMPBE formulation.

  16. A modular spherical harmonics approach to the neutron transport equation

    International Nuclear Information System (INIS)

    Inanc, F.; Rohach, A.F.

    1989-01-01

    A modular nodal method was developed for solving the neutron transport equation in 2-D xy coordinates. The spherical harmonic expansion was used for approximating the second-order even-parity form of the neutron transport equation. The boundary conditions of the spherical harmonics approximation were derived in a form to have forms analogous to the partial currents in the neutron diffusion equation. Relations were developed for generating both the second-order spherical harmonic equations and the boundary conditions in an automated computational algorithm. Nodes using different orders of the spherical harmonics approximation to the transport equation were interfaced through mixed-type boundary conditions. The determination of spherical harmonic orders implemented in the nodes were determined by the scheme in an automated manner. Results of the method compared favorably to benchmark problems. (author)

  17. Approach in Theory of Nonlinear Evolution Equations: The Vakhnenko-Parkes Equation

    Directory of Open Access Journals (Sweden)

    V. O. Vakhnenko

    2016-01-01

    Full Text Available A variety of methods for examining the properties and solutions of nonlinear evolution equations are explored by using the Vakhnenko equation (VE as an example. The VE, which arises in modelling the propagation of high-frequency waves in a relaxing medium, has periodic and solitary traveling wave solutions some of which are loop-like in nature. The VE can be written in an alternative form, known as the Vakhnenko-Parkes equation (VPE, by a change of independent variables. The VPE has an N-soliton solution which is discussed in detail. Individual solitons are hump-like in nature whereas the corresponding solution to the VE comprises N-loop-like solitons. Aspects of the inverse scattering transform (IST method, as applied originally to the KdV equation, are used to find one- and two-soliton solutions to the VPE even though the VPE’s spectral equation is third-order and not second-order. A Bäcklund transformation for the VPE is used to construct conservation laws. The standard IST method for third-order spectral problems is used to investigate solutions corresponding to bound states of the spectrum and to a continuous spectrum. This leads to N-soliton solutions and M-mode periodic solutions, respectively. Interactions between these types of solutions are investigated.

  18. A novel approach for solving fractional Fisher equation using ...

    Indian Academy of Sciences (India)

    Department of Engineering Sciences, Faculty of Technology and Engineering, East of ... The reliability, simplicity and cost-effectiveness of the method are confirmed by applying this ... Differential transform method; fractional Fisher equation.

  19. Diffusive Wave Approximation to the Shallow Water Equations: Computational Approach

    KAUST Repository

    Collier, Nathan; Radwan, Hany; Dalcin, Lisandro; Calo, Victor M.

    2011-01-01

    We discuss the use of time adaptivity applied to the one dimensional diffusive wave approximation to the shallow water equations. A simple and computationally economical error estimator is discussed which enables time-step size adaptivity

  20. Geometric Approaches to Quadratic Equations from Other Times and Places.

    Science.gov (United States)

    Allaire, Patricia R.; Bradley, Robert E.

    2001-01-01

    Focuses on geometric solutions of quadratic problems. Presents a collection of geometric techniques from ancient Babylonia, classical Greece, medieval Arabia, and early modern Europe to enhance the quadratic equation portion of an algebra course. (KHR)

  1. Analytical Approach to Space- and Time-Fractional Burgers Equations

    International Nuclear Information System (INIS)

    Yıldırım, Ahmet; Mohyud-Din, Syed Tauseef

    2010-01-01

    A scheme is developed to study numerical solution of the space- and time-fractional Burgers equations under initial conditions by the homotopy analysis method. The fractional derivatives are considered in the Caputo sense. The solutions are given in the form of series with easily computable terms. Numerical solutions are calculated for the fractional Burgers equation to show the nature of solution as the fractional derivative parameter is changed

  2. A semigroup approach to equations with infinite delay and application to a problem of viscoelasticity

    Science.gov (United States)

    Renardy, M.

    1981-10-01

    A semigroup approach to differential-delay equations is developed which seems more suitable for certain partial integro-differential equations than the standard theory. On a formal level, it is demonstrated that the stretching of filaments of viscoelastic liquids can be described by an equation of this form.

  3. On symmetries and exact solutions of the Einstein–Maxwell field equations via the symmetry approach

    International Nuclear Information System (INIS)

    Kaur, Lakhveer; Gupta, R K

    2013-01-01

    Using the Lie symmetry approach, we have examined herein the system of partial differential equations corresponding to the Einstein–Maxwell equations for a static axially symmetric spacetime. The method used reduces the system of partial differential equations to a system of ordinary differential equations according to the Lie symmetry admitted. In particular, we found the relevant system of ordinary differential equations is all optimal subgroups. The system of ordinary differential equations is further solved in general to obtain exact solutions. Several new physically important families of exact solutions are derived. (paper)

  4. A new approach to the self-dual Yang-Mills equations

    International Nuclear Information System (INIS)

    Takasaki, K.

    1984-01-01

    Inspired by Sato's new theory for soliton equations, we find a new approach to the self-dual Yang-Mills equations. We first establish a correspondence of solutions between the self-dual Yang-Mills equations and a new system of equations with infinitely many unknown functions. It then turns out that the latter equations can be easily solved by a simple explicit procedure. This leads to an explicit description of a very broad class of solutions to the self-dual Yang-Mills equations, and also to a construction of transformations acting on these solutions. (orig.)

  5. Essentially Entropic Lattice Boltzmann Model

    Science.gov (United States)

    Atif, Mohammad; Kolluru, Praveen Kumar; Thantanapally, Chakradhar; Ansumali, Santosh

    2017-12-01

    The entropic lattice Boltzmann model (ELBM), a discrete space-time kinetic theory for hydrodynamics, ensures nonlinear stability via the discrete time version of the second law of thermodynamics (the H theorem). Compliance with the H theorem is numerically enforced in this methodology and involves a search for the maximal discrete path length corresponding to the zero dissipation state by iteratively solving a nonlinear equation. We demonstrate that an exact solution for the path length can be obtained by assuming a natural criterion of negative entropy change, thereby reducing the problem to solving an inequality. This inequality is solved by creating a new framework for construction of Padé approximants via quadrature on appropriate convex function. This exact solution also resolves the issue of indeterminacy in case of nonexistence of the entropic involution step. Since our formulation is devoid of complex mathematical library functions, the computational cost is drastically reduced. To illustrate this, we have simulated a model setup of flow over the NACA-0012 airfoil at a Reynolds number of 2.88 ×106.

  6. A systematic approach to sketch Bethe-Salpeter equation

    Directory of Open Access Journals (Sweden)

    Qin Si-xue

    2016-01-01

    Full Text Available To study meson properties, one needs to solve the gap equation for the quark propagator and the Bethe-Salpeter (BS equation for the meson wavefunction, self-consistently. The gluon propagator, the quark-gluon vertex, and the quark–anti-quark scattering kernel are key pieces to solve those equations. Predicted by lattice-QCD and Dyson-Schwinger analyses of QCD’s gauge sector, gluons are non-perturbatively massive. In the matter sector, the modeled gluon propagator which can produce a veracious description of meson properties needs to possess a mass scale, accordingly. Solving the well-known longitudinal Ward-Green-Takahashi identities (WGTIs and the less-known transverse counterparts together, one obtains a nontrivial solution which can shed light on the structure of the quark-gluon vertex. It is highlighted that the phenomenologically proposed anomalous chromomagnetic moment (ACM vertex originates from the QCD Lagrangian symmetries and its strength is proportional to the magnitude of dynamical chiral symmetry breaking (DCSB. The color-singlet vector and axial-vector WGTIs can relate the BS kernel and the dressed quark-gluon vertex to each other. Using the relation, one can truncate the gap equation and the BS equation, systematically, without violating crucial symmetries, e.g., gauge symmetry and chiral symmetry.

  7. ECONOMETRIC APPROACH TO DIFFERENCE EQUATIONS MODELING OF EXCHANGE RATES CHANGES

    Directory of Open Access Journals (Sweden)

    Josip Arnerić

    2010-12-01

    Full Text Available Time series models that are commonly used in econometric modeling are autoregressive stochastic linear models (AR and models of moving averages (MA. Mentioned models by their structure are actually stochastic difference equations. Therefore, the objective of this paper is to estimate difference equations containing stochastic (random component. Estimated models of time series will be used to forecast observed data in the future. Namely, solutions of difference equations are closely related to conditions of stationary time series models. Based on the fact that volatility is time varying in high frequency data and that periods of high volatility tend to cluster, the most successful and popular models in modeling time varying volatility are GARCH type models and their variants. However, GARCH models will not be analyzed because the purpose of this research is to predict the value of the exchange rate in the levels within conditional mean equation and to determine whether the observed variable has a stable or explosive time path. Based on the estimated difference equation it will be examined whether Croatia is implementing a stable policy of exchange rates.

  8. Large eddy simulation of rotating turbulent flows and heat transfer by the lattice Boltzmann method

    Science.gov (United States)

    Liou, Tong-Miin; Wang, Chun-Sheng

    2018-01-01

    Due to its advantage in parallel efficiency and wall treatment over conventional Navier-Stokes equation-based methods, the lattice Boltzmann method (LBM) has emerged as an efficient tool in simulating turbulent heat and fluid flows. To properly simulate the rotating turbulent flow and heat transfer, which plays a pivotal role in tremendous engineering devices such as gas turbines, wind turbines, centrifugal compressors, and rotary machines, the lattice Boltzmann equations must be reformulated in a rotating coordinate. In this study, a single-rotating reference frame (SRF) formulation of the Boltzmann equations is newly proposed combined with a subgrid scale model for the large eddy simulation of rotating turbulent flows and heat transfer. The subgrid scale closure is modeled by a shear-improved Smagorinsky model. Since the strain rates are also locally determined by the non-equilibrium part of the distribution function, the calculation process is entirely local. The pressure-driven turbulent channel flow with spanwise rotation and heat transfer is used for validating the approach. The Reynolds number characterized by the friction velocity and channel half height is fixed at 194, whereas the rotation number in terms of the friction velocity and channel height ranges from 0 to 3.0. A working fluid of air is chosen, which corresponds to a Prandtl number of 0.71. Calculated results are demonstrated in terms of mean velocity, Reynolds stress, root mean square (RMS) velocity fluctuations, mean temperature, RMS temperature fluctuations, and turbulent heat flux. Good agreement is found between the present LBM predictions and previous direct numerical simulation data obtained by solving the conventional Navier-Stokes equations, which confirms the capability of the proposed SRF LBM and subgrid scale relaxation time formulation for the computation of rotating turbulent flows and heat transfer.

  9. An equations of motion approach for open shell systems

    International Nuclear Information System (INIS)

    Yeager, D.L.; McKoy, V.

    1975-01-01

    A straightforward scheme is developed for extending the equations of motion formalism to systems with simple open shell ground states. Equations for open shell random phase approximation (RPA) are given for the cases of one electron outside of a closed shell in a nondegenerate molecular orbital and for the triplet ground state with two electrons outside of a closed shell in degenerate molecular orbitals. Applications to other open shells and extension of the open shell EOM to higher orders are both straightforward. Results for the open shell RPA for lithium atom and oxygen molecule are given

  10. On the balance equations for a dilute binary mixture in special relativity

    International Nuclear Information System (INIS)

    Moratto, Valdemar; Garcia-Perciante, A. L.; Garcia-Colin, L. S.

    2010-01-01

    In this work we study the properties of a relativistic mixture of two non-reacting species in thermal local equilibrium. We use the full Boltzmann equation (BE) to find the general balance equations. Following conventional ideas in kinetic theory, we use the concept of chaotic velocity. This is a novel approach to the problem. The resulting equations will be the starting point of the calculation exhibiting the correct thermodynamic forces and the corresponding fluxes; these results will be published elsewhere.

  11. Training Restricted Boltzmann Machines

    DEFF Research Database (Denmark)

    Fischer, Asja

    relies on sampling based approximations of the log-likelihood gradient. I will present an empirical and theoretical analysis of the bias of these approximations and show that the approximation error can lead to a distortion of the learning process. The bias decreases with increasing mixing rate......Restricted Boltzmann machines (RBMs) are probabilistic graphical models that can also be interpreted as stochastic neural networks. Training RBMs is known to be challenging. Computing the likelihood of the model parameters or its gradient is in general computationally intensive. Thus, training...... of the applied sampling procedure and I will introduce a transition operator that leads to faster mixing. Finally, a different parametrisation of RBMs will be discussed that leads to better learning results and more robustness against changes in the data representation....

  12. Advanced Time Approach of FW-H Equations for Predicting Noise

    DEFF Research Database (Denmark)

    Haiqing, Si; Yan, Shi; Shen, Wen Zhong

    2013-01-01

    An advanced time approach of Ffowcs Williams-Hawkings (FW-H) acoustic analogy is developed, and the integral equations and integral solution of FW-H acoustic analogy are derived. Compared with the retarded time approach, the transcendental equation need not to be solved in the advanced time...

  13. Multiphase lattice Boltzmann on the Cell Broadband Engine

    International Nuclear Information System (INIS)

    Belletti, F.; Mantovani, F.; Tripiccione, R.; Biferale, L.; Schifano, S.F.; Toschi, F.

    2009-01-01

    Computational experiments are one of the most used and flexible investigation tools in fluid dynamics. The Lattice Boltzmann Equation is a well established computational method particularly promising for multi-phase flows at micro and macro scales. Here we present preliminary results on performances of the Lbe method on the Cell Broadband Engine platform.

  14. A Structural Equation Approach to Models with Spatial Dependence

    NARCIS (Netherlands)

    Oud, Johan H. L.; Folmer, Henk

    We introduce the class of structural equation models (SEMs) and corresponding estimation procedures into a spatial dependence framework. SEM allows both latent and observed variables within one and the same (causal) model. Compared with models with observed variables only, this feature makes it

  15. A structural equation approach to models with spatial dependence

    NARCIS (Netherlands)

    Oud, J.H.L.; Folmer, H.

    2008-01-01

    We introduce the class of structural equation models (SEMs) and corresponding estimation procedures into a spatial dependence framework. SEM allows both latent and observed variables within one and the same (causal) model. Compared with models with observed variables only, this feature makes it

  16. A Structural Equation Approach to Models with Spatial Dependence

    NARCIS (Netherlands)

    Oud, J.H.L.; Folmer, H.

    2008-01-01

    We introduce the class of structural equation models (SEMs) and corresponding estimation procedures into a spatial dependence framework. SEM allows both latent and observed variables within one and the same (causal) model. Compared with models with observed variables only, this feature makes it

  17. Dimerization of Carboxylic Acids: An Equation of State Approach

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Kontogeorgis, Georgios; Panayiotou, Costas

    2017-01-01

    The association term of the nonrandom hydrogen bonding theory, which is an equation of state model, is extended to describe the dimerization of carboxylic acids in binary mixtures with inert solvents and in systems of two different acids. Subsequently, the model is applied to describe the excess...

  18. Moment-based boundary conditions for lattice Boltzmann simulations of natural convection in cavities

    KAUST Repository

    Allen, Rebecca; Reis, Tim

    2016-01-01

    moments, which are then translated into conditions for the discrete velocity distribution functions. The method is formulated so that it is consistent with the second order implementation of the discrete velocity Boltzmann equations for fluid flow

  19. Integral equations of hadronic correlation functions a functional- bootstrap approach

    CERN Document Server

    Manesis, E K

    1974-01-01

    A reasonable 'microscopic' foundation of the Feynman hadron-liquid analogy is offered, based on a class of models for hadron production. In an external field formalism, the equivalence (complementarity) of the exclusive and inclusive descriptions of hadronic reactions is specifically expressed in a functional-bootstrap form, and integral equations between inclusive and exclusive correlation functions are derived. Using the latest CERN-ISR data on the two-pion inclusive correlation function, and assuming rapidity translational invariance for the exclusive one, the simplest integral equation is solved in the 'central region' and an exclusive correlation length in rapidity predicted. An explanation is also offered for the unexpected similarity observed between pi /sup +/ pi /sup -/ and pi /sup -/ pi /sup -/ inclusive correlations. (31 refs).

  20. Sn approach applied to the solution of transport equation

    International Nuclear Information System (INIS)

    Lopes, J.P.

    1973-09-01

    In this work the origin of the Transport Theory is considered and the Transport Equation for the movement of the neutron in a system is established in its more general form, using the laws of nuclear physics. This equation is used as the starting point for development, under adequate assumptions, of simpler models that render the problem suitable for numerical solution. Representation of this model in different geometries is presented. The different processes of nuclear physics are introduced briefly and discussed. In addition, the boundary conditions for the different cases and a general procedure for the application of the Conservation Law are stated. The last chapter deals specifically with the S n method, its development, definitions and generalities. Computational schemes for obtaining the S n solution in spherical and cylindrical geometry, and convergence acceleration methods are also developed. (author)

  1. Spectral approach to homogenization of hyperbolic equations with periodic coefficients

    Science.gov (United States)

    Dorodnyi, M. A.; Suslina, T. A.

    2018-06-01

    In L2 (Rd ;Cn), we consider selfadjoint strongly elliptic second order differential operators Aε with periodic coefficients depending on x / ε, ε > 0. We study the behavior of the operators cos ⁡ (Aε1/2 τ) and Aε-1/2 sin ⁡ (Aε1/2 τ), τ ∈ R, for small ε. Approximations for these operators in the (Hs →L2)-operator norm with a suitable s are obtained. The results are used to study the behavior of the solution vε of the Cauchy problem for the hyperbolic equation ∂τ2 vε = -Aεvε + F. General results are applied to the acoustics equation and the system of elasticity theory.

  2. Elliptic Diophantine equations a concrete approach via the elliptic logarithm

    CERN Document Server

    Tzanakis, Nikos

    2013-01-01

    This book presents in a unified way the beautiful and deep mathematics, both theoretical and computational, on which the explicit solution of an elliptic Diophantine equation is based. It collects numerous results and methods that are scattered in literature. Some results are even hidden behind a number of routines in software packages, like Magma. This book is suitable for students in mathematics, as well as professional mathematicians.

  3. Lattice gas cellular automata and lattice Boltzmann models an introduction

    CERN Document Server

    Wolf-Gladrow, Dieter A

    2000-01-01

    Lattice-gas cellular automata (LGCA) and lattice Boltzmann models (LBM) are relatively new and promising methods for the numerical solution of nonlinear partial differential equations. The book provides an introduction for graduate students and researchers. Working knowledge of calculus is required and experience in PDEs and fluid dynamics is recommended. Some peculiarities of cellular automata are outlined in Chapter 2. The properties of various LGCA and special coding techniques are discussed in Chapter 3. Concepts from statistical mechanics (Chapter 4) provide the necessary theoretical background for LGCA and LBM. The properties of lattice Boltzmann models and a method for their construction are presented in Chapter 5.

  4. Lattice Boltzmann method for weakly ionized isothermal plasmas

    International Nuclear Information System (INIS)

    Li Huayu; Ki, Hyungson

    2007-01-01

    In this paper, a lattice Boltzmann method (LBM) for weakly ionized isothermal plasmas is presented by introducing a rescaling scheme for the Boltzmann transport equation. Without using this rescaling, we found that the nondimensional relaxation time used in the LBM is too large and the LBM does not produce physically realistic results. The developed model was applied to the electrostatic wave problem and the diffusion process of singly ionized helium plasmas with a 1-3% degree of ionization under an electric field. The obtained results agree well with theoretical values

  5. Lattice Boltzmann method with the cell-population equilibrium

    International Nuclear Information System (INIS)

    Zhou Xiaoyang; Cheng Bing; Shi Baochang

    2008-01-01

    The central problem of the lattice Boltzmann method (LBM) is to construct a discrete equilibrium. In this paper, a multi-speed 1D cell-model of Boltzmann equation is proposed, in which the cell-population equilibrium, a direct non-negative approximation to the continuous Maxwellian distribution, plays an important part. By applying the explicit one-order Chapman–Enskog distribution, the model reduces the transportation and collision, two basic evolution steps in LBM, to the transportation of the non-equilibrium distribution. Furthermore, 1D dam-break problem is performed and the numerical results agree well with the analytic solutions

  6. Large Time Behavior of the Vlasov-Poisson-Boltzmann System

    Directory of Open Access Journals (Sweden)

    Li Li

    2013-01-01

    Full Text Available The motion of dilute charged particles can be modeled by Vlasov-Poisson-Boltzmann system. We study the large time stability of the VPB system. To be precise, we prove that when time goes to infinity, the solution of VPB system tends to global Maxwellian state in a rate Ot−∞, by using a method developed for Boltzmann equation without force in the work of Desvillettes and Villani (2005. The improvement of the present paper is the removal of condition on parameter λ as in the work of Li (2008.

  7. Aplicação da equação de Poisson-Boltzmann ao cálculo de propriedades dependentes do pH em proteínas Aplications of the Poisson-Boltzmann equation to the calculation of pH-dependent properties in proteins

    Directory of Open Access Journals (Sweden)

    Thereza A. Soares

    2004-08-01

    Full Text Available The ability of biomolecules to catalyze chemical reactions is due chiefly to their sensitivity to variations of the pH in the surrounding environment. The reason for this is that they are made up of chemical groups whose ionization states are modulated by pH changes that are of the order of 0.4 units. The determination of the protonation states of such chemical groups as a function of conformation of the biomolecule and the pH of the environment can be useful in the elucidation of important biological processes from enzymatic catalysis to protein folding and molecular recognition. In the past 15 years, the theory of Poisson-Boltzmann has been successfully used to estimate the pKa of ionizable sites in proteins yielding results, which may differ by 0.1 unit from the experimental values. In this study, we review the theory of Poisson-Boltzmann under the perspective of its application to the calculation of pKa in proteins.

  8. Ludwig Boltzmann, mechanics and vitalism

    International Nuclear Information System (INIS)

    Broda, E.

    1990-01-01

    During most of his life Boltzmann considered classical mechanics, based on the ideas of material points and central forces, as the fundament of physics. On this basis he became one of the founders of Statistical Mechanics, through which thermodynamics was interpreted on an atomistic basis. In this work, Boltzmann was opposed by his colleague, Ernst Mach. Boltzmann also devoted much work to attempts to interpret Maxwell's theory of the electromagnetic field, of which he was a main protagonist in Central Europe, through mechanics. However, as a supporter of mechanics Boltzmann was by no means dogmatic. While he was adamant in his rejection of Wilhelm Ostwald's energism, he was openminded in respect to the relationship of mechanics, electromagnetism and atomistics. Personally, Boltzmann wanted to conserve and transmit the enormous achievements of mechanics, especially in connection with the mechanical theory of heat, so that these results should not be lost to future generations, but he encouraged attempts to proceed in new directions. While within the framework of statistical mechanics the atoms were treated like the material points of classical mechanics, Boltzmann resisted the initial, unwarranted, ideas about the structure and the properties of the atoms. When later valid ideas were evolved, Boltzmann warmly welcomed this progress, without however personally taking part in the new developments. In his later years, Boltzmann took an intense interest in biology. He supported Darwin's theories, and he contributed to them. He may be called an 'absolute Darwinist'. In his search for a natural explanation of the phenomena of life, he used the term 'mechanical', without meaning to limit them to the realm of classical mechanics. This terminological laxity is considered as unfortunate. Extending his application of Darwinian principles to advanced species, including man, Boltzmann put forward 'mechanical' explanations of thought, of morality, of the sense of beauty, and of

  9. Soft-Deep Boltzmann Machines

    OpenAIRE

    Kiwaki, Taichi

    2015-01-01

    We present a layered Boltzmann machine (BM) that can better exploit the advantages of a distributed representation. It is widely believed that deep BMs (DBMs) have far greater representational power than its shallow counterpart, restricted Boltzmann machines (RBMs). However, this expectation on the supremacy of DBMs over RBMs has not ever been validated in a theoretical fashion. In this paper, we provide both theoretical and empirical evidences that the representational power of DBMs can be a...

  10. A Regularized Approach for Solving Magnetic Differential Equations and a Revised Iterative Equilibrium Algorithm

    International Nuclear Information System (INIS)

    Hudson, S.R.

    2010-01-01

    A method for approximately solving magnetic differential equations is described. The approach is to include a small diffusion term to the equation, which regularizes the linear operator to be inverted. The extra term allows a 'source-correction' term to be defined, which is generally required in order to satisfy the solvability conditions. The approach is described in the context of computing the pressure and parallel currents in the iterative approach for computing magnetohydrodynamic equilibria.

  11. Modeling the Informal Economy in Mexico. A Structural Equation Approach

    OpenAIRE

    Brambila Macias, Jose

    2008-01-01

    This paper uses annual data for the period 1970-2006 in order to estimate and investigate the evolution of the Mexican informal economy. In order to do so, we model the informal economy as a latent variable and try to explain it through relationships between possible cause and indicator variables using structural equation modeling (SEM). Our results indicate that the Mexican informal sector at the beginning of the 1970’s initially accounted for 40 percent of GDP while slightly decreasing to s...

  12. Diffusive Wave Approximation to the Shallow Water Equations: Computational Approach

    KAUST Repository

    Collier, Nathan

    2011-05-14

    We discuss the use of time adaptivity applied to the one dimensional diffusive wave approximation to the shallow water equations. A simple and computationally economical error estimator is discussed which enables time-step size adaptivity. This robust adaptive time discretization corrects the initial time step size to achieve a user specified bound on the discretization error and allows time step size variations of several orders of magnitude. In particular, in the one dimensional results presented in this work feature a change of four orders of magnitudes for the time step over the entire simulation.

  13. Collision group and renormalization of the Boltzmann collision integral

    Science.gov (United States)

    Saveliev, V. L.; Nanbu, K.

    2002-05-01

    On the basis of a recently discovered collision group [V. L. Saveliev, in Rarefied Gas Dynamics: 22nd International Symposium, edited by T. J. Bartel and M. Gallis, AIP Conf. Proc. No. 585 (AIP, Melville, NY, 2001), p. 101], the Boltzmann collision integral is exactly rewritten in two parts. The first part describes the scattering of particles with small angles. In this part the infinity due to the infinite cross sections is extracted from the Boltzmann collision integral. Moreover, the Boltzmann collision integral is represented as a divergence of the flow in velocity space. Owing to this, the role of collisions in the kinetic equation can be interpreted in terms of the nonlocal friction force that depends on the distribution function.

  14. Stochastic partial differential equations a modeling, white noise functional approach

    CERN Document Server

    Holden, Helge; Ubøe, Jan; Zhang, Tusheng

    1996-01-01

    This book is based on research that, to a large extent, started around 1990, when a research project on fluid flow in stochastic reservoirs was initiated by a group including some of us with the support of VISTA, a research coopera­ tion between the Norwegian Academy of Science and Letters and Den norske stats oljeselskap A.S. (Statoil). The purpose of the project was to use stochastic partial differential equations (SPDEs) to describe the flow of fluid in a medium where some of the parameters, e.g., the permeability, were stochastic or "noisy". We soon realized that the theory of SPDEs at the time was insufficient to handle such equations. Therefore it became our aim to develop a new mathematically rigorous theory that satisfied the following conditions. 1) The theory should be physically meaningful and realistic, and the corre­ sponding solutions should make sense physically and should be useful in applications. 2) The theory should be general enough to handle many of the interesting SPDEs that occur in r...

  15. Comparisons of Multilevel Modeling and Structural Equation Modeling Approaches to Actor-Partner Interdependence Model.

    Science.gov (United States)

    Hong, Sehee; Kim, Soyoung

    2018-01-01

    There are basically two modeling approaches applicable to analyzing an actor-partner interdependence model: the multilevel modeling (hierarchical linear model) and the structural equation modeling. This article explains how to use these two models in analyzing an actor-partner interdependence model and how these two approaches work differently. As an empirical example, marital conflict data were used to analyze an actor-partner interdependence model. The multilevel modeling and the structural equation modeling produced virtually identical estimates for a basic model. However, the structural equation modeling approach allowed more realistic assumptions on measurement errors and factor loadings, rendering better model fit indices.

  16. Toward Analytic Solution of Nonlinear Differential Difference Equations via Extended Sensitivity Approach

    International Nuclear Information System (INIS)

    Darmani, G.; Setayeshi, S.; Ramezanpour, H.

    2012-01-01

    In this paper an efficient computational method based on extending the sensitivity approach (SA) is proposed to find an analytic exact solution of nonlinear differential difference equations. In this manner we avoid solving the nonlinear problem directly. By extension of sensitivity approach for differential difference equations (DDEs), the nonlinear original problem is transformed into infinite linear differential difference equations, which should be solved in a recursive manner. Then the exact solution is determined in the form of infinite terms series and by intercepting series an approximate solution is obtained. Numerical examples are employed to show the effectiveness of the proposed approach. (general)

  17. The Interaction of Boltzmann with Mach, Ostwald and Planck, and his influence on Nernst and Einstein

    International Nuclear Information System (INIS)

    Broda, E.

    1981-01-01

    Boltzmann esteemed both Mach and Ostwald personally and as experimentalists, but consistently fought them in epistemology. He represented atomism and realism against energism and positivism. In the early period Boltzmann also had to struggle against Planck as a phenomenologist, but he welcomed his quantum hypothesis. As a scientist Nernst was also under Boltzmann's influence. Einstein learned atomism from (Maxwell and) Boltzmann. After Einstein had overcome Mach's positivist influence, he unknowingly approached Boltzmann's philosophical views. Some sociopolitlcal aspects of the lives of the great physicists will be discussed. It will be shown how they all, and many of Boltzmann's most eminent students, in one way or other conflicted with evil tendencies and developments in existing society. (author)

  18. Master equation approach to DNA breathing in heteropolymer DNA

    DEFF Research Database (Denmark)

    Ambjörnsson, Tobias; Banik, Suman K; Lomholt, Michael A

    2007-01-01

    After crossing an initial barrier to break the first base-pair (bp) in double-stranded DNA, the disruption of further bps is characterized by free energies up to a few k(B)T. Thermal motion within the DNA double strand therefore causes the opening of intermittent single-stranded denaturation zones......, the DNA bubbles. The unzipping and zipping dynamics of bps at the two zipper forks of a bubble, where the single strand of the denatured zone joins the still intact double strand, can be monitored by single molecule fluorescence or NMR methods. We here establish a dynamic description of this DNA breathing...... in a heteropolymer DNA with given sequence in terms of a master equation that governs the time evolution of the joint probability distribution for the bubble size and position along the sequence. The transfer coefficients are based on the Poland-Scheraga free energy model. We derive the autocorrelation function...

  19. On the Dynamic Programming Approach for the 3D Navier-Stokes Equations

    International Nuclear Information System (INIS)

    Manca, Luigi

    2008-01-01

    The dynamic programming approach for the control of a 3D flow governed by the stochastic Navier-Stokes equations for incompressible fluid in a bounded domain is studied. By a compactness argument, existence of solutions for the associated Hamilton-Jacobi-Bellman equation is proved. Finally, existence of an optimal control through the feedback formula and of an optimal state is discussed

  20. Straight velocity boundaries in the lattice Boltzmann method

    Science.gov (United States)

    Latt, Jonas; Chopard, Bastien; Malaspinas, Orestis; Deville, Michel; Michler, Andreas

    2008-05-01

    Various ways of implementing boundary conditions for the numerical solution of the Navier-Stokes equations by a lattice Boltzmann method are discussed. Five commonly adopted approaches are reviewed, analyzed, and compared, including local and nonlocal methods. The discussion is restricted to velocity Dirichlet boundary conditions, and to straight on-lattice boundaries which are aligned with the horizontal and vertical lattice directions. The boundary conditions are first inspected analytically by applying systematically the results of a multiscale analysis to boundary nodes. This procedure makes it possible to compare boundary conditions on an equal footing, although they were originally derived from very different principles. It is concluded that all five boundary conditions exhibit second-order accuracy, consistent with the accuracy of the lattice Boltzmann method. The five methods are then compared numerically for accuracy and stability through benchmarks of two-dimensional and three-dimensional flows. None of the methods is found to be throughout superior to the others. Instead, the choice of a best boundary condition depends on the flow geometry, and on the desired trade-off between accuracy and stability. From the findings of the benchmarks, the boundary conditions can be classified into two major groups. The first group comprehends boundary conditions that preserve the information streaming from the bulk into boundary nodes and complete the missing information through closure relations. Boundary conditions in this group are found to be exceptionally accurate at low Reynolds number. Boundary conditions of the second group replace all variables on boundary nodes by new values. They exhibit generally much better numerical stability and are therefore dedicated for use in high Reynolds number flows.

  1. Graphical Approach to Fresnel's Equations for Reflection and Refraction of Light.

    Science.gov (United States)

    Doyle, William T.

    1980-01-01

    Develops a coordinate-free approach to Fresnel's equations for the reflection and refraction of light at a plane interface. Describes a graphical construction for finding the vector amplitudes of the reflected and transmitted waves. (Author/CS)

  2. Relativistic many-body theory of atomic transitions: the relativistic equation-of-motion approach

    International Nuclear Information System (INIS)

    Huang, K.N.

    1981-01-01

    An equation-of-motion approach is used to develop the relativistic many-body theory of atomic transitions. The relativistic equations of motion for transition matrices are formulated using techniques of quantum field theory. To reduce the equation of motion to a tractable form which is appropriate for numerical calculations, a graphical method is employed to resolve the complication arising from the antisymmetrization and angular momentum coupling. The relativistic equation-of-motion method allows an ab initio treatment of correlation and relativistic effects in both closed- and open-shell many-body systems. A special case of the present formulation reduces to the relativistic random-phase approximation

  3. Entropic lattice Boltzmann representations required to recover Navier-Stokes flows.

    Science.gov (United States)

    Keating, Brian; Vahala, George; Yepez, Jeffrey; Soe, Min; Vahala, Linda

    2007-03-01

    There are two disparate formulations of the entropic lattice Boltzmann scheme: one of these theories revolves around the analog of the discrete Boltzmann H function of standard extensive statistical mechanics, while the other revolves around the nonextensive Tsallis entropy. It is shown here that it is the nonenforcement of the pressure tensor moment constraints that lead to extremizations of entropy resulting in Tsallis-like forms. However, with the imposition of the pressure tensor moment constraint, as is fundamentally necessary for the recovery of the Navier-Stokes equations, it is proved that the entropy function must be of the discrete Boltzmann form. Three-dimensional simulations are performed which illustrate some of the differences between standard lattice Boltzmann and entropic lattice Boltzmann schemes, as well as the role played by the number of phase-space velocities used in the discretization.

  4. From Equation to Inequality Using a Function-Based Approach

    Science.gov (United States)

    Verikios, Petros; Farmaki, Vassiliki

    2010-01-01

    This article presents features of a qualitative research study concerning the teaching and learning of school algebra using a function-based approach in a grade 8 class, of 23 students, in 26 lessons, in a state school of Athens, in the school year 2003-2004. In this article, we are interested in the inequality concept and our aim is to…

  5. Comparing Entrepreneurship Intention: A Multigroup Structural Equation Modeling Approach

    Directory of Open Access Journals (Sweden)

    Sabrina O. Sihombing

    2012-04-01

    Full Text Available Unemployment is one of the main social and economic problems that many countries face nowadays. One strategic way to overcome this problem is by fostering entrepreneurship spirit especially for unem ployment graduates. Entrepreneurship is becoming an alternative Job for students after they graduate. This is because entrepreneurship of-fers major benefits, such as setting up one’s own business and the pos-sibility of having significant financial rewards than working for others. Entrepreneurship is then offered by many universities. This research applies the theory of planned behavior (TPB by incorporating attitude toward success as an antecedent variable of the attitude to examine students’ intention to become an entrepreneur. The objective of this research is to compare entrepreneurship intention between business students and non-business students. A self-administered questionnaire was used to collect data for this study. Questionnaires were distributed to respondents by applying the drop-off/pick-up method. A number of 294 by questionnaires were used in the analysis. Data were analyzed by using structural equation modeling. Two out of four hypotheses were confirmed. These hypotheses are the relationship between the attitude toward becoming an entrepreneur and the intention to try becoming an entrepreneur, and the relationship perceived behavioral control and intention to try becoming an entrepreneur. This paper also provides a discussion and offers directions for future research.

  6. Suicidal ideation in adolescents: A structural equation modeling approach.

    Science.gov (United States)

    Choi, Jung-Hyun; Yu, Mi; Kim, Kyoung-Eun

    2014-06-19

    The purpose of this study is to test a model linking adolescents' experience of violence and peer support to their happiness and suicidal ideation. The participants were high school students in Seoul, and in Kyungi, and Chungnam Provinces in Korea. The Conflict Tactics Scale, School Violence Scale, Oxford Happiness Inventory, and Suicidal Ideation Questionnaire were administered to just over 1000 adolescents. The model was tested using a path analysis technique within structural equation modeling. The model fit indices suggest that the revised model is a better fit for the data than the original hypothesized model. The experience of violence had a significant negative direct effect and peer support had a significant positive direct effect on their happiness. Happiness had a significant negative effect and the experience of violence had a significant positive effect on suicidal ideation. These findings demonstrate the fundamental importance of reducing exposure of violence to adolescents, and that increasing peer support and their happiness may be the key to adolescent suicidal ideation prevention. © 2014 Wiley Publishing Asia Pty Ltd.

  7. Excess Entropy Production in Quantum System: Quantum Master Equation Approach

    Science.gov (United States)

    Nakajima, Satoshi; Tokura, Yasuhiro

    2017-12-01

    For open systems described by the quantum master equation (QME), we investigate the excess entropy production under quasistatic operations between nonequilibrium steady states. The average entropy production is composed of the time integral of the instantaneous steady entropy production rate and the excess entropy production. We propose to define average entropy production rate using the average energy and particle currents, which are calculated by using the full counting statistics with QME. The excess entropy production is given by a line integral in the control parameter space and its integrand is called the Berry-Sinitsyn-Nemenman (BSN) vector. In the weakly nonequilibrium regime, we show that BSN vector is described by ln \\breve{ρ }_0 and ρ _0 where ρ _0 is the instantaneous steady state of the QME and \\breve{ρ }_0 is that of the QME which is given by reversing the sign of the Lamb shift term. If the system Hamiltonian is non-degenerate or the Lamb shift term is negligible, the excess entropy production approximately reduces to the difference between the von Neumann entropies of the system. Additionally, we point out that the expression of the entropy production obtained in the classical Markov jump process is different from our result and show that these are approximately equivalent only in the weakly nonequilibrium regime.

  8. Comparing Entrepreneurship Intention: A Multigroup Structural Equation Modeling Approach

    Directory of Open Access Journals (Sweden)

    Sabrina O. Sihombing

    2012-04-01

    Full Text Available Unemployment is one of the main social and economic problems that many countries face nowadays. One strategic way to overcome this problem is by fostering entrepreneurship spirit especially for unem-ployment graduates. Entrepreneurship is becoming an alternative Job for students after they graduate. This is because entrepreneurship of fers major benefits, such as setting up one’s own business and the pos sibility of having significant financial rewards than working for others. Entrepreneurship is then offered by many universities. This research applies the theory of planned behavior (TPB by incorporating attitude toward success as an antecedent variable of the attitude to examine students’ intention to become an entrepreneur. The objective of this research is to compare entrepreneurship intention between business students and non-business students. A self-administered questionnaire was used to collect data for this study. Questionnaires were distributed to respondents by applying the drop-off/pick-up method. A number of 294 by questionnaires were used in the analysis. Data were analyzed by using structural equation modeling. Two out of four hypotheses were confirmed. These hypotheses are the relationship between the attitude toward becoming an entrepreneur and the intention to try becoming an entrepreneur, and the relationship perceived behavioral control and intention to try becoming an entrepreneur. This paper also provides a discussion and offers directions for future research.

  9. New Approaches for Solving Fokker Planck Equation on Cantor Sets within Local Fractional Operators

    Directory of Open Access Journals (Sweden)

    Hassan Kamil Jassim

    2015-01-01

    Full Text Available We discuss new approaches to handling Fokker Planck equation on Cantor sets within local fractional operators by using the local fractional Laplace decomposition and Laplace variational iteration methods based on the local fractional calculus. The new approaches maintain the efficiency and accuracy of the analytical methods for solving local fractional differential equations. Illustrative examples are given to show the accuracy and reliable results.

  10. Poisson-Boltzmann-Nernst-Planck model

    International Nuclear Information System (INIS)

    Zheng Qiong; Wei Guowei

    2011-01-01

    The Poisson-Nernst-Planck (PNP) model is based on a mean-field approximation of ion interactions and continuum descriptions of concentration and electrostatic potential. It provides qualitative explanation and increasingly quantitative predictions of experimental measurements for the ion transport problems in many areas such as semiconductor devices, nanofluidic systems, and biological systems, despite many limitations. While the PNP model gives a good prediction of the ion transport phenomenon for chemical, physical, and biological systems, the number of equations to be solved and the number of diffusion coefficient profiles to be determined for the calculation directly depend on the number of ion species in the system, since each ion species corresponds to one Nernst-Planck equation and one position-dependent diffusion coefficient profile. In a complex system with multiple ion species, the PNP can be computationally expensive and parameter demanding, as experimental measurements of diffusion coefficient profiles are generally quite limited for most confined regions such as ion channels, nanostructures and nanopores. We propose an alternative model to reduce number of Nernst-Planck equations to be solved in complex chemical and biological systems with multiple ion species by substituting Nernst-Planck equations with Boltzmann distributions of ion concentrations. As such, we solve the coupled Poisson-Boltzmann and Nernst-Planck (PBNP) equations, instead of the PNP equations. The proposed PBNP equations are derived from a total energy functional by using the variational principle. We design a number of computational techniques, including the Dirichlet to Neumann mapping, the matched interface and boundary, and relaxation based iterative procedure, to ensure efficient solution of the proposed PBNP equations. Two protein molecules, cytochrome c551 and Gramicidin A, are employed to validate the proposed model under a wide range of bulk ion concentrations and external

  11. Poisson-Boltzmann-Nernst-Planck model.

    Science.gov (United States)

    Zheng, Qiong; Wei, Guo-Wei

    2011-05-21

    The Poisson-Nernst-Planck (PNP) model is based on a mean-field approximation of ion interactions and continuum descriptions of concentration and electrostatic potential. It provides qualitative explanation and increasingly quantitative predictions of experimental measurements for the ion transport problems in many areas such as semiconductor devices, nanofluidic systems, and biological systems, despite many limitations. While the PNP model gives a good prediction of the ion transport phenomenon for chemical, physical, and biological systems, the number of equations to be solved and the number of diffusion coefficient profiles to be determined for the calculation directly depend on the number of ion species in the system, since each ion species corresponds to one Nernst-Planck equation and one position-dependent diffusion coefficient profile. In a complex system with multiple ion species, the PNP can be computationally expensive and parameter demanding, as experimental measurements of diffusion coefficient profiles are generally quite limited for most confined regions such as ion channels, nanostructures and nanopores. We propose an alternative model to reduce number of Nernst-Planck equations to be solved in complex chemical and biological systems with multiple ion species by substituting Nernst-Planck equations with Boltzmann distributions of ion concentrations. As such, we solve the coupled Poisson-Boltzmann and Nernst-Planck (PBNP) equations, instead of the PNP equations. The proposed PBNP equations are derived from a total energy functional by using the variational principle. We design a number of computational techniques, including the Dirichlet to Neumann mapping, the matched interface and boundary, and relaxation based iterative procedure, to ensure efficient solution of the proposed PBNP equations. Two protein molecules, cytochrome c551 and Gramicidin A, are employed to validate the proposed model under a wide range of bulk ion concentrations and external

  12. A new approach to obtaining the roots of the dispersion equation for slab geometry multiplying media

    International Nuclear Information System (INIS)

    Silva, Davi J.M.; Barros, Ricardo C.; Alves Filho, Hermes

    2013-01-01

    In this work we describe an alternative approach for obtaining the roots of the dispersion equation. For the mathematical model, we used the slab-geometry neutron transport equation in the discrete ordinates (S N ), formulation, considering isotropic scattering and monoenergetic model. The basic idea is to find a basis for the kernel of the S N differential operator, whose elements are exponential eigenfunctions corresponding to distinct eigenvalues which are the roots of the dispersion equation. That strategy yields a gain in programming computational codes, including the strategy used to obtain the purely imaginary eigenvalues and their associated complex eigenfunctions, that appear in the spectral analysis of the S N equations in multiplying media. These eigenvalues and corresponding eigenfunctions are used to obtain the parameters of the auxiliary equations of the spectral nodal methods, e.g., the spectral diamond (SD) auxiliary equation. (author)

  13. Collage-based approaches for elliptic partial differential equations inverse problems

    Science.gov (United States)

    Yodzis, Michael; Kunze, Herb

    2017-01-01

    The collage method for inverse problems has become well-established in the literature in recent years. Initial work developed a collage theorem, based upon Banach's fixed point theorem, for treating inverse problems for ordinary differential equations (ODEs). Amongst the subsequent work was a generalized collage theorem, based upon the Lax-Milgram representation theorem, useful for treating inverse problems for elliptic partial differential equations (PDEs). Each of these two different approaches can be applied to elliptic PDEs in one space dimension. In this paper, we explore and compare how the two different approaches perform for the estimation of the diffusivity for a steady-state heat equation.

  14. Variational Approaches for the Existence of Multiple Periodic Solutions of Differential Delay Equations

    Directory of Open Access Journals (Sweden)

    Rong Cheng

    2010-01-01

    Full Text Available The existence of multiple periodic solutions of the following differential delay equation (=−((− is established by applying variational approaches directly, where ∈ℝ, ∈(ℝ,ℝ and >0 is a given constant. This means that we do not need to use Kaplan and Yorke's reduction technique to reduce the existence problem of the above equation to an existence problem for a related coupled system. Such a reduction method introduced first by Kaplan and Yorke in (1974 is often employed in previous papers to study the existence of periodic solutions for the above equation and its similar ones by variational approaches.

  15. Improved harmonic balance approach to periodic solutions of non-linear jerk equations

    International Nuclear Information System (INIS)

    Wu, B.S.; Lim, C.W.; Sun, W.P.

    2006-01-01

    An analytical approximate approach for determining periodic solutions of non-linear jerk equations involving third-order time-derivative is presented. This approach incorporates salient features of both Newton's method and the method of harmonic balance. By appropriately imposing the method of harmonic balance to the linearized equation, the approach requires only one or two iterations to predict very accurate analytical approximate solutions for a large range of initial velocity amplitude. One typical example is used to verify and illustrate the usefulness and effectiveness of the proposed approach

  16. Simple Navier’s slip boundary condition for the non-Newtonian Lattice Boltzmann fluid dynamics solver

    DEFF Research Database (Denmark)

    Svec, Oldrich; Skoček, Jan

    2013-01-01

    The ability of the Lattice Boltzmann method, as the fluid dynamics solver, to properly simulate macroscopic Navier’s slip boundary condition is investigated. An approximate equation relating the Lattice Boltzmann variable slip boundary condition with the macroscopic Navier’s slip boundary condition...

  17. Equations of state of heavy metals: ab initio approaches; Equations d'etat des metaux lourds: approches ab initio

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, S.; Jollet, F.; Jomard, G.; Siberchicot, B.; Torrent, M.; Zerah, G.; Amadon, B.; Bouchet, J.; Richard, N.; Robert, G. [CEA Bruyeres-le-Chatel, 91 (France)

    2005-07-01

    The determination of equations of states of heavy metals through ab initio calculation, i.e. without any adjustable parameter, allows to access to pressure and temperature thermodynamic conditions sometimes inaccessible to experiment. To perform such calculations, density functional theory (DFT) is a good starting point: when electronic densities are homogeneous enough, the local density approximation (LDA) remarkably accounts for thermodynamic properties of heavy metals, such as tantalum, or the light actinides, as well for static properties - equilibrium volume, elastic constants - as for dynamical quantities like phonon spectra. For heavier elements, like neptunium or plutonium, relativistic effects and strong electronic interactions must be taken into account, which requires more sophisticated theoretical approaches. (authors)

  18. A note on Boltzmann brains

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, Yasunori, E-mail: ynomura@berkeley.edu

    2015-10-07

    Understanding the observed arrow of time is equivalent, under general assumptions, to explaining why Boltzmann brains do not overwhelm ordinary observers. It is usually thought that this provides a condition on the decay rate of every cosmologically accessible de Sitter vacuum, and that this condition is determined by the production rate of Boltzmann brains calculated using semiclassical theory built on each such vacuum. We argue, based on a recently developed picture of microscopic quantum gravitational degrees of freedom, that this thinking needs to be modified. In particular, depending on the structure of the fundamental theory, the decay rate of a de Sitter vacuum may not have to satisfy any condition except for the one imposed by the Poincaré recurrence. The framework discussed here also addresses the question of whether a Minkowski vacuum may produce Boltzmann brains.

  19. Cross-Permeability of the Semisolid Region in Directional Solidification: A Combined Phase-Field and Lattice-Boltzmann Simulation Approach

    Science.gov (United States)

    Böttger, B.; Haberstroh, C.; Giesselmann, N.

    2016-01-01

    Based on the results of microstructure simulations, fluid flow through the semisolid region during directional solidification of the technical Ni-base alloy 718 has been studied. Three-dimensional microstructures at different positions in the semisolid region were obtained by using a multicomponent multiphase-field model that was online coupled to a commercial thermodynamic database. For the range of five different primary dendrite distances λ 1 between 50 µm and 250 µm, the flow velocity and the permeability perpendicular to the dendrite growth direction was evaluated by using a proprietary Lattice-Boltzmann model. The commercial CFD software ANSYS FLUENT was alternatively applied for reference. Consistent values of the average flow velocity along the dendrites were obtained for both methods. From the results of the fluid flow simulations, the cross-permeability was evaluated as a function of temperature and fraction liquid for each of the five different primary dendrite distances λ 1. The obtained permeability values can be approximated by a single analytical function of the fraction liquid and λ 1 and are discussed and compared with known relations from the literature.

  20. Adaptive Non-Boltzmann Monte Carlo

    International Nuclear Information System (INIS)

    Fitzgerald, M.; Picard, R.R.; Silver, R.N.

    1998-01-01

    This manuscript generalizes the use of transition probabilities (TPs) between states, which are efficient relative to histogram procedures in deriving system properties. The empirical TPs of the simulation depend on the importance weights and are temperature-specific, so they are not conducive to accumulating statistics as weights change or to extrapolating in temperature. To address these issues, the authors provide a method for inferring Boltzmann-weighted TPs for one temperature from simulations run at other temperatures and/or at different adaptively varying importance weights. They refer to these as canonical transition probabilities (CTPs). System properties are estimated from CTPs. Statistics on CTPs are gathered by inserting a low-cost easily-implemented bookkeeping step into the Metropolis algorithm for non-Boltzmann sampling. The CTP method is inherently adaptive, can take advantage of partitioning of the state space into small regions using either serial or (embarrassingly) parallel architectures, and reduces variance by avoiding histogramming. They also demonstrate how system properties may be extrapolated in temperature from CTPs without the extra memory required by using energy as a microstate label. Nor does it require the solution of non-linear equations used in histogram methods

  1. Adaptive Non-Boltzmann Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Fitzgerald, M.; Picard, R.R.; Silver, R.N.

    1998-06-01

    This manuscript generalizes the use of transition probabilities (TPs) between states, which are efficient relative to histogram procedures in deriving system properties. The empirical TPs of the simulation depend on the importance weights and are temperature-specific, so they are not conducive to accumulating statistics as weights change or to extrapolating in temperature. To address these issues, the authors provide a method for inferring Boltzmann-weighted TPs for one temperature from simulations run at other temperatures and/or at different adaptively varying importance weights. They refer to these as canonical transition probabilities (CTPs). System properties are estimated from CTPs. Statistics on CTPs are gathered by inserting a low-cost easily-implemented bookkeeping step into the Metropolis algorithm for non-Boltzmann sampling. The CTP method is inherently adaptive, can take advantage of partitioning of the state space into small regions using either serial or (embarrassingly) parallel architectures, and reduces variance by avoiding histogramming. They also demonstrate how system properties may be extrapolated in temperature from CTPs without the extra memory required by using energy as a microstate label. Nor does it require the solution of non-linear equations used in histogram methods.

  2. The Boltzmann constant from a snifter

    International Nuclear Information System (INIS)

    Tyukodi, B; Sárközi, Zs; Néda, Z; Tunyagi, A; Györke, E

    2012-01-01

    Evaporation of a small glass of ethylic alcohol is studied both experimentally and through an elementary thermal physics approach. For a cylindrical beaker and no air flow in the room, a simple quadratic relation is found between the evaporation time and the mass of evaporated liquid. This problem and the obtained results offer excellent possibilities for simple student experiments and for testing basic principles of thermal physics. As an example, we use the obtained results for estimating the value of the Boltzmann constant from evaporation experiments. (paper)

  3. Joint Training of Deep Boltzmann Machines

    OpenAIRE

    Goodfellow, Ian; Courville, Aaron; Bengio, Yoshua

    2012-01-01

    We introduce a new method for training deep Boltzmann machines jointly. Prior methods require an initial learning pass that trains the deep Boltzmann machine greedily, one layer at a time, or do not perform well on classifi- cation tasks.

  4. Lattice-Boltzmann Method with Dynamic Grid Refinement for Simulating Particle Deposition on a Single Fibre

    Directory of Open Access Journals (Sweden)

    Helmut Schomburg

    2013-03-01

    Full Text Available In this work a numerical approach to predict the deposition behaviour of nano-scale particles on the surface of a single fibre by resolving the resulting dendrite-like particle structures in detail is presented. The gas flow simulation is carried out by a two-dimensional Lattice-Boltzmann method, which is coupled with a Lagrangian approach for the particle motion. To decrease calculation time and system requirements the Lattice-Boltzmann model is extended to allow for local grid refinement. Because of the a priori unknown location of deposition, the simulation procedure starts on a coarse mesh which is then locally refined in a fully adaptive way in regions of accumulated particles. After each deposition the fluid flow is recalculated in order to resolve the coupling of the flow with the growing particle structures correctly. For the purpose of avoiding unphysical blocking of flow by growing particle dendrites the Lattice-Boltzmann method is extended to permeable cells in these regions using the Brinkmann equation. This extended deposition model is compared to simpler approaches, where the deposit has no retroaction on the flow or is treated as a solid structure. It is clear that the permeable model is most realistic and allows considering the particle deposition on a fibre as two-dimensional problem. Comprehensive simulations were conducted for analysing the importance of different parameters, i.e. free-stream velocity and particle diameter on the deposit structure. The results of this sensitivity analysis agree qualitatively well with former published numerical and experimental results. Finally the structure of the particle deposit was quantitatively characterised by using a modified fractal dimension.

  5. Parameter Estimation of Structural Equation Modeling Using Bayesian Approach

    Directory of Open Access Journals (Sweden)

    Dewi Kurnia Sari

    2016-05-01

    Full Text Available Leadership is a process of influencing, directing or giving an example of employees in order to achieve the objectives of the organization and is a key element in the effectiveness of the organization. In addition to the style of leadership, the success of an organization or company in achieving its objectives can also be influenced by the commitment of the organization. Where organizational commitment is a commitment created by each individual for the betterment of the organization. The purpose of this research is to obtain a model of leadership style and organizational commitment to job satisfaction and employee performance, and determine the factors that influence job satisfaction and employee performance using SEM with Bayesian approach. This research was conducted at Statistics FNI employees in Malang, with 15 people. The result of this study showed that the measurement model, all significant indicators measure each latent variable. Meanwhile in the structural model, it was concluded there are a significant difference between the variables of Leadership Style and Organizational Commitment toward Job Satisfaction directly as well as a significant difference between Job Satisfaction on Employee Performance. As for the influence of Leadership Style and variable Organizational Commitment on Employee Performance directly declared insignificant.

  6. Experimental investigation of the Boltzmann relation for a bi-Maxwellian distribution in inductively coupled plasmas

    International Nuclear Information System (INIS)

    Bang, Jin Young; Chung, Chin Wook

    2009-01-01

    In plasma, the Boltzmann relation is often used to connect the electron density to the plasma potential because it is not easy to calculate electric potentials on the basis of the Poisson equation due to the quasineutrality. From the Boltzmann relation, the electric potential can be simply obtained from the electron density or vice versa. However, the Boltzmann relation assumes that electrons are in thermal equilibrium and have a Maxwellian distribution, so it cannot be applied to non-Maxwellian distributions. In this paper, the Boltzmann relation for bi-Maxwellian distributions was newly derived from fluid equations and the comparison with the experimental results was given by measuring electron energy probability functions in an inductively coupled plasma. It was found that the spatial distribution of the electron density in bulk plasma is governed by the effective electron temperature, while that of the cold and hot electrons are governed by each electron temperature.

  7. Polar Coordinate Lattice Boltzmann Kinetic Modeling of Detonation Phenomena

    International Nuclear Information System (INIS)

    Lin Chuan-Dong; Li Ying-Jun; Xu Ai-Guo; Zhang Guang-Cai

    2014-01-01

    A novel polar coordinate lattice Boltzmann kinetic model for detonation phenomena is presented and applied to investigate typical implosion and explosion processes. In this model, the change of discrete distribution function due to local chemical reaction is dynamically coupled into the modified lattice Boltzmann equation which could recover the Navier—Stokes equations, including contribution of chemical reaction, via the Chapman—Enskog expansion. For the numerical investigations, the main focuses are the nonequilibrium behaviors in these processes. The system at the disc center is always in its thermodynamic equilibrium in the highly symmetric case. The internal kinetic energies in different degrees of freedom around the detonation front do not coincide. The dependence of the reaction rate on the pressure, influences of the shock strength and reaction rate on the departure amplitude of the system from its local thermodynamic equilibrium are probed. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  8. Lattice Boltzmann model for three-phase viscoelastic fluid flow

    Science.gov (United States)

    Xie, Chiyu; Lei, Wenhai; Wang, Moran

    2018-02-01

    A lattice Boltzmann (LB) framework is developed for simulation of three-phase viscoelastic fluid flows in complex geometries. This model is based on a Rothman-Keller type model for immiscible multiphase flows which ensures mass conservation of each component in porous media even for a high density ratio. To account for the viscoelastic effects, the Maxwell constitutive relation is correctly introduced into the momentum equation, which leads to a modified lattice Boltzmann evolution equation for Maxwell fluids by removing the normal but excess viscous term. Our simulation tests indicate that this excess viscous term may induce significant errors. After three benchmark cases, the displacement processes of oil by dispersed polymer are studied as a typical example of three-phase viscoelastic fluid flow. The results show that increasing either the polymer intrinsic viscosity or the elastic modulus will enhance the oil recovery.

  9. Power Laws are Disguised Boltzmann Laws

    Science.gov (United States)

    Richmond, Peter; Solomon, Sorin

    Using a previously introduced model on generalized Lotka-Volterra dynamics together with some recent results for the solution of generalized Langevin equations, we derive analytically the equilibrium mean field solution for the probability distribution of wealth and show that it has two characteristic regimes. For large values of wealth, it takes the form of a Pareto style power law. For small values of wealth, wGeneralized Lotka-Volterra type of stochastic dynamics. The power law that arises in the distribution function is identified with new additional logarithmic terms in the familiar Boltzmann distribution function for the system. These are a direct consequence of the multiplicative stochastic dynamics and are absent for the usual additive stochastic processes.

  10. The multidensity integral equation approach in the theory of complex liquids

    International Nuclear Information System (INIS)

    Holovko, M.F.

    2001-01-01

    Recent development of the multi-density integral equation approach and its application to the statistical mechanical modelling of a different type of association and clusterization in liquids and solutions are reviewed. The effects of dimerization, polymerization and network formation are discussed. The numerical and analytical solutions of the integral equations in the multi-density formalism for pair correlation functions are used for the description of structural and thermodynamical properties of ionic solutions, polymers and network forming fluids

  11. A general analytical approach to the one-group, one-dimensional transport equation

    International Nuclear Information System (INIS)

    Barichello, L.B.; Vilhena, M.T.

    1993-01-01

    The main feature of the presented approach to solve the neutron transport equation consists in the application of the Laplace transform to the discrete ordinates equations, which yields a linear system of order N to be solved (LTS N method). In this paper this system is solved analytically and the inversion is performed using the Heaviside expansion technique. The general formulation achieved by this procedure is then applied to homogeneous and heterogeneous one-group slab-geometry problems. (orig.) [de

  12. Nonperturbative time-convolutionless quantum master equation from the path integral approach

    International Nuclear Information System (INIS)

    Nan Guangjun; Shi Qiang; Shuai Zhigang

    2009-01-01

    The time-convolutionless quantum master equation is widely used to simulate reduced dynamics of a quantum system coupled to a bath. However, except for several special cases, applications of this equation are based on perturbative calculation of the dissipative tensor, and are limited to the weak system-bath coupling regime. In this paper, we derive an exact time-convolutionless quantum master equation from the path integral approach, which provides a new way to calculate the dissipative tensor nonperturbatively. Application of the new method is demonstrated in the case of an asymmetrical two-level system linearly coupled to a harmonic bath.

  13. Dynamics of single-bubble sonoluminescence. An alternative approach to the Rayleigh-Plesset equation

    Science.gov (United States)

    de Barros, Ana L. F.; Nogueira, Álvaro L. M. A.; Paschoal, Ricardo C.; Portes, Dirceu, Jr.; Rodrigues, Hilario

    2018-03-01

    Sonoluminescence is the phenomenon in which acoustic energy is (partially) transformed into light as a bubble of gas collapses inside a liquid medium. One particular model used to explain the motion of the bubble’s wall forced by acoustic pressure is expressed by the Rayleigh-Plesset equation, which can be obtained from the Navier-Stokes equation. In this article, we describe an alternative approach to derive the Rayleigh-Plesset equation based on Lagrangian mechanics. This work is addressed mainly to undergraduate students and teachers. It requires knowledge of calculus and of many concepts from various fields of physics at the intermediate level.

  14. Quantum qubit measurement by a quantum point contact with a quantum Langevin equation approach

    International Nuclear Information System (INIS)

    Dong, Bing; Lei, X.L.; Horing, N.J.M.; Cui, H.L.

    2007-01-01

    We employ a microscopic quantum Heisenberg-Langevin equation approach to establish a set of quantum Bloch equations for a two-level system (coupled quantum dots) capacitively coupled to a quantum point contact (QPC). The resulting Bloch equations facilitate our analysis of qubit relaxation and decoherence in coupled quantum dots induced by measurement processes at arbitrary bias-voltage and temperature. We also examine the noise spectrum of the meter output current for a symmetric qubit. These results help resolve a recent debate about a quantum oscillation peak in the noise spectrum. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Revisiting Boltzmann learning: parameter estimation in Markov random fields

    DEFF Research Database (Denmark)

    Hansen, Lars Kai; Andersen, Lars Nonboe; Kjems, Ulrik

    1996-01-01

    This article presents a generalization of the Boltzmann machine that allows us to use the learning rule for a much wider class of maximum likelihood and maximum a posteriori problems, including both supervised and unsupervised learning. Furthermore, the approach allows us to discuss regularization...... and generalization in the context of Boltzmann machines. We provide an illustrative example concerning parameter estimation in an inhomogeneous Markov field. The regularized adaptation produces a parameter set that closely resembles the “teacher” parameters, hence, will produce segmentations that closely reproduce...

  16. Tomography and generative training with quantum Boltzmann machines

    Science.gov (United States)

    Kieferová, Mária; Wiebe, Nathan

    2017-12-01

    The promise of quantum neural nets, which utilize quantum effects to model complex data sets, has made their development an aspirational goal for quantum machine learning and quantum computing in general. Here we provide methods of training quantum Boltzmann machines. Our work generalizes existing methods and provides additional approaches for training quantum neural networks that compare favorably to existing methods. We further demonstrate that quantum Boltzmann machines enable a form of partial quantum state tomography that further provides a generative model for the input quantum state. Classical Boltzmann machines are incapable of this. This verifies the long-conjectured connection between tomography and quantum machine learning. Finally, we prove that classical computers cannot simulate our training process in general unless BQP=BPP , provide lower bounds on the complexity of the training procedures and numerically investigate training for small nonstoquastic Hamiltonians.

  17. An Inverse Source Problem for a One-dimensional Wave Equation: An Observer-Based Approach

    KAUST Repository

    Asiri, Sharefa M.

    2013-05-25

    Observers are well known in the theory of dynamical systems. They are used to estimate the states of a system from some measurements. However, recently observers have also been developed to estimate some unknowns for systems governed by Partial differential equations. Our aim is to design an observer to solve inverse source problem for a one dimensional wave equation. Firstly, the problem is discretized in both space and time and then an adaptive observer based on partial field measurements (i.e measurements taken form the solution of the wave equation) is applied to estimate both the states and the source. We see the effectiveness of this observer in both noise-free and noisy cases. In each case, numerical simulations are provided to illustrate the effectiveness of this approach. Finally, we compare the performance of the observer approach with Tikhonov regularization approach.

  18. Photons in a partonic transport approach

    Energy Technology Data Exchange (ETDEWEB)

    Greif, Moritz; Senzel, Florian; Greiner, Carsten [Goethe Universitaet Frankfurt, Max-von-Laue-Str. 1 60438 Frankfurt am Main (Germany)

    2015-07-01

    Partonic transport approaches have proved to be valuable tools in describing the quark-gluon plasma, created in heavy-ion collisions. In this work, first steps towards a dynamical understanding of photonproduction in expanding heavy-ion collisions are presented. Several photon production processes are included in the partonic cascade BAMPS (Boltzmann Approach to Multi-Parton Scatterings). BAMPS provides a microscopic tool to study expanding fireballs, employing a stochastic method to solve the relativistic 3+1d Boltzmann equation. Subsequently, photon spectra can be investigated, and in particular, the influence of the quark-gluon plasma phase for the elliptic flow of photons is studied.

  19. Integral equation approach to time-dependent kinematic dynamos in finite domains

    International Nuclear Information System (INIS)

    Xu Mingtian; Stefani, Frank; Gerbeth, Gunter

    2004-01-01

    The homogeneous dynamo effect is at the root of cosmic magnetic field generation. With only a very few exceptions, the numerical treatment of homogeneous dynamos is carried out in the framework of the differential equation approach. The present paper tries to facilitate the use of integral equations in dynamo research. Apart from the pedagogical value to illustrate dynamo action within the well-known picture of the Biot-Savart law, the integral equation approach has a number of practical advantages. The first advantage is its proven numerical robustness and stability. The second and perhaps most important advantage is its applicability to dynamos in arbitrary geometries. The third advantage is its intimate connection to inverse problems relevant not only for dynamos but also for technical applications of magnetohydrodynamics. The paper provides the first general formulation and application of the integral equation approach to time-dependent kinematic dynamos, with stationary dynamo sources, in finite domains. The time dependence is restricted to the magnetic field, whereas the velocity or corresponding mean-field sources of dynamo action are supposed to be stationary. For the spherically symmetric α 2 dynamo model it is shown how the general formulation is reduced to a coupled system of two radial integral equations for the defining scalars of the poloidal and toroidal field components. The integral equation formulation for spherical dynamos with general stationary velocity fields is also derived. Two numerical examples - the α 2 dynamo model with radially varying α and the Bullard-Gellman model - illustrate the equivalence of the approach with the usual differential equation method. The main advantage of the method is exemplified by the treatment of an α 2 dynamo in rectangular domains

  20. A topological approach to the existence of solutions for nonlinear differential equations with piecewise constant argument

    International Nuclear Information System (INIS)

    Huang Zhenkun; Wang Xinghua; Xia Yonghui

    2009-01-01

    In this paper, we investigate qualitative behavior of nonlinear differential equations with piecewise constant argument (PCA). A topological approach of Wazewski-type which gives sufficient conditions to guarantee that the graph of at least one solution stays in a given domain is formulated. Moreover, our results are also suitable for a class of general system of discrete equations. By using a regular polyfacial set, we apply our developed topological approach to cellular neural networks (CNNs) with PCA. Some new results are attained to reveal dynamic behavior of CNNs with PCA and discrete-time CNNs. Finally, an illustrative example of CNNs with PCA shows usefulness and effectiveness of our results.

  1. A note on the Lattice Boltzmann Method Beyond the Chapman Enskog Limits

    NARCIS (Netherlands)

    Sbragaglia, M.; Succi, S.

    2006-01-01

    A non-perturbative analysis of the Bhatnagar-Gross-Krook (BGK) model kinetic equation for finite values of the Knudsen number is presented. This analysis indicates why discrete kinetic versions of the BGK equation, and notably the lattice Boltzmann method, can provide semi-quantitative results also

  2. Relativistic many-body theory of atomic transitions. The relativistic equation-of-motion approach

    International Nuclear Information System (INIS)

    Huang, K.

    1982-01-01

    An equation-of-motion approach is used to develop the relativistic many-body theory of atomic transitions. The relativistic equations of motion for transition matrices are formulated with the use of techniques of quantum-field theory. To reduce the equations of motion to a tractable form which is appropriate for numerical calculations, a graphical method to resolve the complication arising from the antisymmetrization and angular-momentum coupling is employed. The relativistic equation-of-motion method allows an ab initio treatment of correlation and relativistic effects in both closed- and open-shell many-body systems. A special case of the present formulation reduces to the relativistic random-phase approximation

  3. Forcing scheme in pseudopotential lattice Boltzmann model for multiphase flows.

    Science.gov (United States)

    Li, Q; Luo, K H; Li, X J

    2012-07-01

    The pseudopotential lattice Boltzmann (LB) model is a widely used multiphase model in the LB community. In this model, an interaction force, which is usually implemented via a forcing scheme, is employed to mimic the molecular interactions that cause phase segregation. The forcing scheme is therefore expected to play an important role in the pseudoepotential LB model. In this paper, we aim to address some key issues about forcing schemes in the pseudopotential LB model. First, theoretical and numerical analyses will be made for Shan-Chen's forcing scheme [Shan and Chen, Phys. Rev. E 47, 1815 (1993)] and the exact-difference-method forcing scheme [Kupershtokh et al., Comput. Math. Appl. 58, 965 (2009)]. The nature of these two schemes and their recovered macroscopic equations will be shown. Second, through a theoretical analysis, we will reveal the physics behind the phenomenon that different forcing schemes exhibit different performances in the pseudopotential LB model. Moreover, based on the analysis, we will present an improved forcing scheme and numerically demonstrate that the improved scheme can be treated as an alternative approach to achieving thermodynamic consistency in the pseudopotential LB model.

  4. Lattice Boltzmann Methods to Address Fundamental Boiling and Two-Phase Problems

    Energy Technology Data Exchange (ETDEWEB)

    Uddin, Rizwan

    2012-01-01

    This report presents the progress made during the fourth (no cost extension) year of this three-year grant aimed at the development of a consistent Lattice Boltzmann formulation for boiling and two-phase flows. During the first year, a consistent LBM formulation for the simulation of a two-phase water-steam system was developed. Results of initial model validation in a range of thermo-dynamic conditions typical for Boiling Water Reactors (BWRs) were shown. Progress was made on several fronts during the second year. Most important of these included the simulation of the coalescence of two bubbles including the surface tension effects. Work during the third year focused on the development of a new lattice Boltzmann model, called the artificial interface lattice Boltzmann model (AILB model) for the 3 simulation of two-phase dynamics. The model is based on the principle of free energy minimization and invokes the Gibbs-Duhem equation in the formulation of non-ideal forcing function. This was reported in detail in the last progress report. Part of the efforts during the last (no-cost extension) year were focused on developing a parallel capability for the 2D as well as for the 3D codes developed in this project. This will be reported in the final report. Here we report the work carried out on testing the AILB model for conditions including the thermal effects. A simplified thermal LB model, based on the thermal energy distribution approach, was developed. The simplifications are made after neglecting the viscous heat dissipation and the work done by pressure in the original thermal energy distribution model. Details of the model are presented here, followed by a discussion of the boundary conditions, and then results for some two-phase thermal problems.

  5. A Robust Bayesian Approach for Structural Equation Models with Missing Data

    Science.gov (United States)

    Lee, Sik-Yum; Xia, Ye-Mao

    2008-01-01

    In this paper, normal/independent distributions, including but not limited to the multivariate t distribution, the multivariate contaminated distribution, and the multivariate slash distribution, are used to develop a robust Bayesian approach for analyzing structural equation models with complete or missing data. In the context of a nonlinear…

  6. Quantum statistics of stimulated Raman and hyper-Raman scattering by master equation approach

    International Nuclear Information System (INIS)

    Gupta, P.S.; Dash, J.

    1991-01-01

    A quantum theoretical density matrix formalism of stimulated Raman and hyper-Raman scattering using master equation approach is presented. The atomic system is described by two energy levels. The effects of upper level population and the cavity loss are incorporated. The photon statistics, coherence characteristics and the building up of the Stokes field are investigated. (author). 8 figs., 5 refs

  7. A surface-integral-equation approach to the propagation of waves in EBG-based devices

    NARCIS (Netherlands)

    Lancellotti, V.; Tijhuis, A.G.

    2012-01-01

    We combine surface integral equations with domain decomposition to formulate and (numerically) solve the problem of electromagnetic (EM) wave propagation inside finite-sized structures. The approach is of interest for (but not limited to) the analysis of devices based on the phenomenon of

  8. Investigating Separate and Concurrent Approaches for Item Parameter Drift in 3PL Item Response Theory Equating

    Science.gov (United States)

    Arce-Ferrer, Alvaro J.; Bulut, Okan

    2017-01-01

    This study examines separate and concurrent approaches to combine the detection of item parameter drift (IPD) and the estimation of scale transformation coefficients in the context of the common item nonequivalent groups design with the three-parameter item response theory equating. The study uses real and synthetic data sets to compare the two…

  9. A fixed point approach towards stability of delay differential equations with applications to neural networks

    NARCIS (Netherlands)

    Chen, Guiling

    2013-01-01

    This thesis studies asymptotic behavior and stability of determinsitic and stochastic delay differential equations. The approach used in this thesis is based on fixed point theory, which does not resort to any Liapunov function or Liapunov functional. The main contribution of this thesis is to study

  10. A Structural Equation Modelling Approach for Massive Blended Synchronous Teacher Training

    Science.gov (United States)

    Kannan, Kalpana; Narayanan, Krishnan

    2015-01-01

    This paper presents a structural equation modelling (SEM) approach for blended synchronous teacher training workshop. It examines the relationship among various factors that influence the Satisfaction (SAT) of participating teachers. Data were collected with the help of a questionnaire from about 500 engineering college teachers. These teachers…

  11. Approaching Pomeranchuk instabilities from ordered phase: A crossing-symmetric equation method

    International Nuclear Information System (INIS)

    Reidy, Kelly; Quader, Khandker; Bedell, Kevin

    2014-01-01

    We explore features of a 3D Fermi liquid near generalized Pomeranchuk instabilities using a tractable crossing-symmetric equation method. We approach the instabilities from the ordered ferromagnetic phase. We find “quantum multi-criticality” as approach to the ferromagnetic instability drives instability in other channel(s). It is found that a charge nematic instability precedes and is driven by Pomeranchuk instabilities in both the ℓ=0 spin and density channels

  12. The exact equation of motion of a simple pendulum of arbitrary amplitude: a hypergeometric approach

    International Nuclear Information System (INIS)

    Qureshi, M I; Rafat, M; Azad, S Ismail

    2010-01-01

    The motion of a simple pendulum of arbitrary amplitude is usually treated by approximate methods. By using generalized hypergeometric functions, it is however possible to solve the problem exactly. In this paper, we provide the exact equation of motion of a simple pendulum of arbitrary amplitude. A new and exact expression for the time of swinging of a simple pendulum from the vertical position to an arbitrary angular position θ is given by equation (3.10). The time period of such a pendulum is also exactly expressible in terms of hypergeometric functions. The exact expressions thus obtained are used to plot the graphs that compare the exact time period T(θ 0 ) with the time period T(0) (based on simple harmonic approximation). We also compare the relative difference between T(0) and T(θ 0 ) found from the exact equation of motion with the usual perturbation theory estimate. The treatment is intended for graduate students, who have acquired some familiarity with the hypergeometric functions. This approach may also be profitably used by specialists who encounter during their investigations nonlinear differential equations similar in form to the pendulum equation. Such nonlinear differential equations could arise in diverse fields, such as acoustic vibrations, oscillations in small molecules, turbulence and electronic filters, among others.

  13. A Dynamic BI–Orthogonal Field Equation Approach to Efficient Bayesian Inversion

    Directory of Open Access Journals (Sweden)

    Tagade Piyush M.

    2017-06-01

    Full Text Available This paper proposes a novel computationally efficient stochastic spectral projection based approach to Bayesian inversion of a computer simulator with high dimensional parametric and model structure uncertainty. The proposed method is based on the decomposition of the solution into its mean and a random field using a generic Karhunen-Loève expansion. The random field is represented as a convolution of separable Hilbert spaces in stochastic and spatial dimensions that are spectrally represented using respective orthogonal bases. In particular, the present paper investigates generalized polynomial chaos bases for the stochastic dimension and eigenfunction bases for the spatial dimension. Dynamic orthogonality is used to derive closed-form equations for the time evolution of mean, spatial and the stochastic fields. The resultant system of equations consists of a partial differential equation (PDE that defines the dynamic evolution of the mean, a set of PDEs to define the time evolution of eigenfunction bases, while a set of ordinary differential equations (ODEs define dynamics of the stochastic field. This system of dynamic evolution equations efficiently propagates the prior parametric uncertainty to the system response. The resulting bi-orthogonal expansion of the system response is used to reformulate the Bayesian inference for efficient exploration of the posterior distribution. The efficacy of the proposed method is investigated for calibration of a 2D transient diffusion simulator with an uncertain source location and diffusivity. The computational efficiency of the method is demonstrated against a Monte Carlo method and a generalized polynomial chaos approach.

  14. Methodology for obtaining a solution for the three-dimensional Boltzmann transport equation and an expression for the calculation of the total doses considering Compton scattering simulated by Klein-Nishina

    International Nuclear Information System (INIS)

    Rodriguez, Barbara A.; Borges, Volnei; Vilhena, Marco Tullio

    2005-01-01

    In this work we would like to obtain a formulation of an analytic method for the solution of the three dimensional transport equation considering Compton scattering and an expression for total doses due to gamma radiation, where the deposited energy by the free electron will be considered. For that, we will work with two equations: the first one for the photon transport, considering the Klein-Nishina kernel and energy multigroup model, and the second one considering the free electron with the screened Rutherford scattering. (author)

  15. General particle transport equation. Final report

    International Nuclear Information System (INIS)

    Lafi, A.Y.; Reyes, J.N. Jr.

    1994-12-01

    The general objectives of this research are as follows: (1) To develop fundamental models for fluid particle coalescence and breakage rates for incorporation into statistically based (Population Balance Approach or Monte Carlo Approach) two-phase thermal hydraulics codes. (2) To develop fundamental models for flow structure transitions based on stability theory and fluid particle interaction rates. This report details the derivation of the mass, momentum and energy conservation equations for a distribution of spherical, chemically non-reacting fluid particles of variable size and velocity. To study the effects of fluid particle interactions on interfacial transfer and flow structure requires detailed particulate flow conservation equations. The equations are derived using a particle continuity equation analogous to Boltzmann's transport equation. When coupled with the appropriate closure equations, the conservation equations can be used to model nonequilibrium, two-phase, dispersed, fluid flow behavior. Unlike the Eulerian volume and time averaged conservation equations, the statistically averaged conservation equations contain additional terms that take into account the change due to fluid particle interfacial acceleration and fluid particle dynamics. Two types of particle dynamics are considered; coalescence and breakage. Therefore, the rate of change due to particle dynamics will consider the gain and loss involved in these processes and implement phenomenological models for fluid particle breakage and coalescence

  16. Boltzmann-Fokker-Planck calculations using standard discrete-ordinates codes

    International Nuclear Information System (INIS)

    Morel, J.E.

    1987-01-01

    The Boltzmann-Fokker-Planck (BFP) equation can be used to describe both neutral and charged-particle transport. Over the past several years, the author and several collaborators have developed methods for representing Fokker-Planck operators with standard multigroup-Legendre cross-section data. When these data are input to a standard S/sub n/ code such as ONETRAN, the code actually solves the Boltzmann-Fokker-Planck equation rather than the Boltzmann equation. This is achieved wihout any modification to the S/sub n/ codes. Because BFP calculations can be more demanding from a numerical viewpoint than standard neutronics calculations, we have found it useful to implement new quadrature methods ad convergence acceleration methods in the standard discrete-ordinates code, ONETRAN. We discuss our BFP cross-section representation techniques, our improved quadrature and acceleration techniques, and present results from BFP coupled electron-photon transport calculations performed with ONETRAN. 19 refs., 7 figs

  17. Systems of evolution equations and the singular perturbation method

    International Nuclear Information System (INIS)

    Mika, J.

    Several fundamental theorems are presented important for the solution of linear evolution equations in the Banach space. The algorithm is deduced extending the solution of the system of singularly perturbed evolution equations into an asymptotic series with respect to a small positive parameter. The asymptotic convergence is shown of an approximate solution to the accurate solution. Singularly perturbed evolution equations of the resonance type were analysed. The special role is considered of the asymptotic equivalence of P1 equations obtained as the first order approximation if the spherical harmonics method is applied to the linear Boltzmann equation, and the diffusion equations of the linear transport theory where the small parameter approaches zero. (J.B.)

  18. An efficient immersed boundary-lattice Boltzmann method for the hydrodynamic interaction of elastic filaments

    Science.gov (United States)

    Tian, Fang-Bao; Luo, Haoxiang; Zhu, Luoding; Liao, James C.; Lu, Xi-Yun

    2012-01-01

    We have introduced a modified penalty approach into the flow-structure interaction solver that combines an immersed boundary method (IBM) and a multi-block lattice Boltzmann method (LBM) to model an incompressible flow and elastic boundaries with finite mass. The effect of the solid structure is handled by the IBM in which the stress exerted by the structure on the fluid is spread onto the collocated grid points near the boundary. The fluid motion is obtained by solving the discrete lattice Boltzmann equation. The inertial force of the thin solid structure is incorporated by connecting this structure through virtual springs to a ghost structure with the equivalent mass. This treatment ameliorates the numerical instability issue encountered in this type of problems. Thanks to the superior efficiency of the IBM and LBM, the overall method is extremely fast for a class of flow-structure interaction problems where details of flow patterns need to be resolved. Numerical examples, including those involving multiple solid bodies, are presented to verify the method and illustrate its efficiency. As an application of the present method, an elastic filament flapping in the Kármán gait and the entrainment regions near a cylinder is studied to model fish swimming in these regions. Significant drag reduction is found for the filament, and the result is consistent with the metabolic cost measured experimentally for the live fish. PMID:23564971

  19. An efficient immersed boundary-lattice Boltzmann method for the hydrodynamic interaction of elastic filaments

    Science.gov (United States)

    Tian, Fang-Bao; Luo, Haoxiang; Zhu, Luoding; Liao, James C.; Lu, Xi-Yun

    2011-08-01

    We have introduced a modified penalty approach into the flow-structure interaction solver that combines an immersed boundary method (IBM) and a multi-block lattice Boltzmann method (LBM) to model an incompressible flow and elastic boundaries with finite mass. The effect of the solid structure is handled by the IBM in which the stress exerted by the structure on the fluid is spread onto the collocated grid points near the boundary. The fluid motion is obtained by solving the discrete lattice Boltzmann equation. The inertial force of the thin solid structure is incorporated by connecting this structure through virtual springs to a ghost structure with the equivalent mass. This treatment ameliorates the numerical instability issue encountered in this type of problems. Thanks to the superior efficiency of the IBM and LBM, the overall method is extremely fast for a class of flow-structure interaction problems where details of flow patterns need to be resolved. Numerical examples, including those involving multiple solid bodies, are presented to verify the method and illustrate its efficiency. As an application of the present method, an elastic filament flapping in the Kármán gait and the entrainment regions near a cylinder is studied to model fish swimming in these regions. Significant drag reduction is found for the filament, and the result is consistent with the metabolic cost measured experimentally for the live fish.

  20. On a class of quantum Langevin equations and the question of approach to equilibrium

    International Nuclear Information System (INIS)

    Maassen, J.D.M.

    1982-01-01

    This thesis is concerned with a very simple 'open' quantum system, i.e. being in contact with the outer world. It is asked whether the motion of this system shows frictional behaviour in that it tends to thermal equilibrium. A partial positive answer is given to this question, more precisely, to the question if the solution of the quantum mechanical Langevin equation that describes the Lamb-model (a harmonic oscillator damped by coupling with a string), approaches an equilibrium state. In two sections, the classical and quantum Langevin equations are treated analogously. (Auth.)

  1. A boundary value approach for solving three-dimensional elliptic and hyperbolic partial differential equations.

    Science.gov (United States)

    Biala, T A; Jator, S N

    2015-01-01

    In this article, the boundary value method is applied to solve three dimensional elliptic and hyperbolic partial differential equations. The partial derivatives with respect to two of the spatial variables (y, z) are discretized using finite difference approximations to obtain a large system of ordinary differential equations (ODEs) in the third spatial variable (x). Using interpolation and collocation techniques, a continuous scheme is developed and used to obtain discrete methods which are applied via the Block unification approach to obtain approximations to the resulting large system of ODEs. Several test problems are investigated to elucidate the solution process.

  2. Deviations from the Boltzmann distribution in vibrationally excited gas flows

    International Nuclear Information System (INIS)

    Offenhaeuser, F.; Frohn, A.

    1986-01-01

    A new model for the exchange of vibrational energy in one-dimensional flows of CO 2 -H 2 O-N 2 -O 2 -He gas mixtures is presented. In contrast to previous models, the assumption of local Boltzmann distributions for the vibrational degrees of freedom is not required. This generalization was achieved by the assumption that the molecules are harmonic oscillators with one or more degrees of freedom represented by finite numbers of energy levels. The population densities of these energy levels are coupled by a set of rate equations. It is shown that in some cases of molecular gas flow the Boltzmann distribution for the vibrational degrees of freedom may be disturbed. 12 references

  3. The Lattice Boltzmann Method applied to neutron transport

    International Nuclear Information System (INIS)

    Erasmus, B.; Van Heerden, F. A.

    2013-01-01

    In this paper the applicability of the Lattice Boltzmann Method to neutron transport is investigated. One of the main features of the Lattice Boltzmann method is the simultaneous discretization of the phase space of the problem, whereby particles are restricted to move on a lattice. An iterative solution of the operator form of the neutron transport equation is presented here, with the first collision source as the starting point of the iteration scheme. A full description of the discretization scheme is given, along with the quadrature set used for the angular discretization. An angular refinement scheme is introduced to increase the angular coverage of the problem phase space and to mitigate lattice ray effects. The method is applied to a model problem to investigate its applicability to neutron transport and the results are compared to a reference solution calculated, using MCNP. (authors)

  4. Bound state solution of Dirac equation for 3D harmonics oscillator plus trigonometric scarf noncentral potential using SUSY QM approach

    Energy Technology Data Exchange (ETDEWEB)

    Cari, C., E-mail: carinln@yahoo.com; Suparmi, A., E-mail: carinln@yahoo.com [Physics Department, Sebelas Maret University, Jl. Ir. Sutami no 36A Kentingan Surakarta 57126 (Indonesia)

    2014-09-30

    Dirac equation of 3D harmonics oscillator plus trigonometric Scarf non-central potential for spin symmetric case is solved using supersymmetric quantum mechanics approach. The Dirac equation for exact spin symmetry reduces to Schrodinger like equation. The relativistic energy and wave function for spin symmetric case are simply obtained using SUSY quantum mechanics method and idea of shape invariance.

  5. Logical inference approach to relativistic quantum mechanics: Derivation of the Klein–Gordon equation

    International Nuclear Information System (INIS)

    Donker, H.C.; Katsnelson, M.I.; De Raedt, H.; Michielsen, K.

    2016-01-01

    The logical inference approach to quantum theory, proposed earlier De Raedt et al. (2014), is considered in a relativistic setting. It is shown that the Klein–Gordon equation for a massive, charged, and spinless particle derives from the combination of the requirements that the space–time data collected by probing the particle is obtained from the most robust experiment and that on average, the classical relativistic equation of motion of a particle holds. - Highlights: • Logical inference applied to relativistic, massive, charged, and spinless particle experiments leads to the Klein–Gordon equation. • The relativistic Hamilton–Jacobi is scrutinized by employing a field description for the four-velocity. • Logical inference allows analysis of experiments with uncertainty in detection events and experimental conditions.

  6. Boltzmann babies in the proper time measure

    Energy Technology Data Exchange (ETDEWEB)

    Bousso, Raphael; Bousso, Raphael; Freivogel, Ben; Yang, I-Sheng

    2007-12-20

    After commenting briefly on the role of the typicality assumption in science, we advocate a phenomenological approach to the cosmological measure problem. Like any other theory, a measure should be simple, general, well defined, and consistent with observation. This allows us to proceed by elimination. As an example, we consider the proper time cutoff on a geodesic congruence. It predicts that typical observers are quantum fluctuations in the early universe, or Boltzmann babies. We sharpen this well-known youngness problem by taking into account the expansion and open spatial geometry of pocket universes. Moreover, we relate the youngness problem directly to the probability distribution for observables, such as the temperature of the cosmic background radiation. We consider a number of modifications of the proper time measure, but find none that would make it compatible with observation.

  7. Progress in lattice Boltzmann methods for magnetohydrodynamic flows relevant to fusion applications

    International Nuclear Information System (INIS)

    Pattison, M.J.; Premnath, K.N.; Morley, N.B.; Abdou, M.A.

    2008-01-01

    In this paper, an approach to simulating magnetohydrodynamic (MHD) flows based on the lattice Boltzmann method (LBM) is presented. The dynamics of the flow are simulated using a so-called multiple relaxation time (MRT) lattice Boltzmann equation (LBE), in which a source term is included for the Lorentz force. The evolution of the magnetic induction is represented by introducing a vector distribution function and then solving an appropriate lattice kinetic equation for this function. The solution of both distribution functions are obtained through a simple, explicit, and computationally efficient stream-and-collide procedure. The use of the MRT collision term enhances the numerical stability over that of a single relaxation time approach. To apply the methodology to solving practical problems, a new extrapolation-based method for imposing magnetic boundary conditions is introduced and a technique for simulating steady-state flows with low magnetic Prandtl number is developed. In order to resolve thin layers near the walls arising in the presence of high magnetic fields, a non-uniform gridding strategy is introduced through an interpolated-streaming step applied to both distribution functions. These advances are particularly important for applications in fusion engineering where liquid metal flows with low magnetic Prandtl numbers and high Hartmann numbers are introduced. A number of MHD benchmark problems, under various physical and geometrical conditions are presented, including 3-D MHD lid driven cavity flow, high Hartmann number flows and turbulent MHD flows, with good agreement with prior data. Due to the local nature of the method, the LBM also demonstrated excellent performance on parallel machines, with almost linear scaling up to 128 processors for a MHD flow problem

  8. MRT-lattice Boltzmann computations of natural convection and volumetric radiation in a tilted square enclosure

    Energy Technology Data Exchange (ETDEWEB)

    Moufekkir, F.; Moussaoui, M.A.; Mezrhab, A. [Laboratoire de Mecanique and Energetique, Faculte des sciences, Departement de physique 60000 Oujda (Morocco); Lemonnier, D. [Institut Pprime, CNRS-ENSMA-Univ. Poitiers, ENSMA, BP 40109, 86961 Futuroscope Chasseneuil cedex (France); Naji, H. [Universite Lille Nord de France, F-59000 Lille (France); Laboratoire Genie Civil and geo-Environnement - LGCgE- EA 4515, UArtois/FSA Bethune, F-62400 Bethune (France)

    2012-04-15

    A numerical analysis is carried out for natural convection while in an asymmetrically heated square cavity containing an absorbing emitting medium. The numerical approach adopted uses a hybrid thermal lattice Boltzmann method (HTLBM) in which the mass and momentum conservation equations are solved by using multiple relaxation time (MRT) model and the energy equation is solved separately by using the finite difference method (FDM). In addition, the radiative transfer equation (RTE) is treated by the discrete ordinates method (DOM) using the S8 quadrature to evaluate the source term of the energy equation. The effects of parameters such as the Rayleigh number Ra, the optical thickness {tau} and the inclination angle {phi}, are studied numerically to assess their impact on the flow and temperature distribution. The results presented in terms of isotherms, streamlines and averaged Nusselt number, show that in the absence of the radiation, the temperature and the flow fields are centro-symmetric and the cavity core is thermally stratified. However, radiation causes an overall increase in temperature and velocity gradients along both thermally active walls

  9. How the 2SLS/IV estimator can handle equality constraints in structural equation models: a system-of-equations approach.

    Science.gov (United States)

    Nestler, Steffen

    2014-05-01

    Parameters in structural equation models are typically estimated using the maximum likelihood (ML) approach. Bollen (1996) proposed an alternative non-iterative, equation-by-equation estimator that uses instrumental variables. Although this two-stage least squares/instrumental variables (2SLS/IV) estimator has good statistical properties, one problem with its application is that parameter equality constraints cannot be imposed. This paper presents a mathematical solution to this problem that is based on an extension of the 2SLS/IV approach to a system of equations. We present an example in which our approach was used to examine strong longitudinal measurement invariance. We also investigated the new approach in a simulation study that compared it with ML in the examination of the equality of two latent regression coefficients and strong measurement invariance. Overall, the results show that the suggested approach is a useful extension of the original 2SLS/IV estimator and allows for the effective handling of equality constraints in structural equation models. © 2013 The British Psychological Society.

  10. Boltzmann factor and Hawking radiation

    International Nuclear Information System (INIS)

    Ryskin, Gregory

    2014-01-01

    Hawking radiation has thermal spectrum corresponding to the temperature T H =(8πM) −1 , where M is the mass (energy) of the black hole. Corrections to the Hawking radiation spectrum were discovered by Kraus and Wilczek (1995) and Parikh and Wilczek (2000). Here I show that these corrections follow directly from the basic principles of thermodynamics and statistical mechanics. In essence, it is the Boltzmann factor that ought to be corrected; corrections to the Hawking (or any other) radiation spectrum then follow necessarily

  11. Generalized Stefan-Boltzmann Law

    Science.gov (United States)

    Montambaux, Gilles

    2018-03-01

    We reconsider the thermodynamic derivation by L. Boltzmann of the Stefan law and we generalize it for various different physical systems whose chemical potential vanishes. Being only based on classical arguments, therefore independent of the quantum statistics, this derivation applies as well to the saturated Bose gas in various geometries as to "compensated" Fermi gas near a neutrality point, such as a gas of Weyl Fermions. It unifies in the same framework the thermodynamics of many different bosonic or fermionic non-interacting gases which were until now described in completely different contexts.

  12. Numerical solution of the full potential equation using a chimera grid approach

    Science.gov (United States)

    Holst, Terry L.

    1995-01-01

    A numerical scheme utilizing a chimera zonal grid approach for solving the full potential equation in two spatial dimensions is described. Within each grid zone a fully-implicit approximate factorization scheme is used to advance the solution one interaction. This is followed by the explicit advance of all common zonal grid boundaries using a bilinear interpolation of the velocity potential. The presentation is highlighted with numerical results simulating the flow about a two-dimensional, nonlifting, circular cylinder. For this problem, the flow domain is divided into two parts: an inner portion covered by a polar grid and an outer portion covered by a Cartesian grid. Both incompressible and compressible (transonic) flow solutions are included. Comparisons made with an analytic solution as well as single grid results indicate that the chimera zonal grid approach is a viable technique for solving the full potential equation.

  13. Generalized structured component analysis a component-based approach to structural equation modeling

    CERN Document Server

    Hwang, Heungsun

    2014-01-01

    Winner of the 2015 Sugiyama Meiko Award (Publication Award) of the Behaviormetric Society of Japan Developed by the authors, generalized structured component analysis is an alternative to two longstanding approaches to structural equation modeling: covariance structure analysis and partial least squares path modeling. Generalized structured component analysis allows researchers to evaluate the adequacy of a model as a whole, compare a model to alternative specifications, and conduct complex analyses in a straightforward manner. Generalized Structured Component Analysis: A Component-Based Approach to Structural Equation Modeling provides a detailed account of this novel statistical methodology and its various extensions. The authors present the theoretical underpinnings of generalized structured component analysis and demonstrate how it can be applied to various empirical examples. The book enables quantitative methodologists, applied researchers, and practitioners to grasp the basic concepts behind this new a...

  14. Modeling of delays in PKPD: classical approaches and a tutorial for delay differential equations.

    Science.gov (United States)

    Koch, Gilbert; Krzyzanski, Wojciech; Pérez-Ruixo, Juan Jose; Schropp, Johannes

    2014-08-01

    In pharmacokinetics/pharmacodynamics (PKPD) the measured response is often delayed relative to drug administration, individuals in a population have a certain lifespan until they maturate or the change of biomarkers does not immediately affects the primary endpoint. The classical approach in PKPD is to apply transit compartment models (TCM) based on ordinary differential equations to handle such delays. However, an alternative approach to deal with delays are delay differential equations (DDE). DDEs feature additional flexibility and properties, realize more complex dynamics and can complementary be used together with TCMs. We introduce several delay based PKPD models and investigate mathematical properties of general DDE based models, which serve as subunits in order to build larger PKPD models. Finally, we review current PKPD software with respect to the implementation of DDEs for PKPD analysis.

  15. Recursive approach for non-Markovian time-convolutionless master equations

    Science.gov (United States)

    Gasbarri, G.; Ferialdi, L.

    2018-02-01

    We consider a general open system dynamics and we provide a recursive method to derive the associated non-Markovian master equation in a perturbative series. The approach relies on a momenta expansion of the open system evolution. Unlike previous perturbative approaches of this kind, the method presented in this paper provides a recursive definition of each perturbative term. Furthermore, we give an intuitive diagrammatic description of each term of the series, which provides a useful analytical tool to build them and to derive their structure in terms of commutators and anticommutators. We eventually apply our formalism to the evolution of the observables of the reduced system, by showing how the method can be applied to the adjoint master equation, and by developing a diagrammatic description of the associated series.

  16. Domestic and outbound tourism demand in Australia: a System-of-Equations Approach

    OpenAIRE

    George Athanasopoulos; Minfeng Deng; Gang Li; Haiyan Song

    2013-01-01

    This study uses a system-of-equations approach to model the substitution relationship between Australian domestic and outbound tourism demand. A new price variable based on relative ratios of purchasing power parity index is developed for the substitution analysis. Short-run demand elasticities are calculated based on the estimated dynamic almost ideal demand system. The empirical results reveal significant substitution relationships between Australian domestic tourism and outbound travel to ...

  17. A semi-analytical approach for solving of nonlinear systems of functional differential equations with delay

    Science.gov (United States)

    Rebenda, Josef; Šmarda, Zdeněk

    2017-07-01

    In the paper, we propose a correct and efficient semi-analytical approach to solve initial value problem for systems of functional differential equations with delay. The idea is to combine the method of steps and differential transformation method (DTM). In the latter, formulas for proportional arguments and nonlinear terms are used. An example of using this technique for a system with constant and proportional delays is presented.

  18. Comparison of numerical approaches to solve a Poincare-covariant Faddeev equation

    International Nuclear Information System (INIS)

    Alkofer, R.; Eichmann, G.; Krassnigg, A.; Schwinzerl, M.

    2006-01-01

    Full text: The quark core of Baryons can be described with the help of the numerical solution of the Poincare-Faddeev equation. Hereby the used elements, as e.g. the quark propagator are taken from non-perturbative studies of Landau gauge QCD. Different numerical approaches to solve in this way the relativistic three quark problem are compared and benchmarked results for the efficiency of different algorithms are presented. (author)

  19. Validation of an employee satisfaction model: A structural equation model approach

    OpenAIRE

    Ophillia Ledimo; Nico Martins

    2015-01-01

    The purpose of this study was to validate an employee satisfaction model and to determine the relationships between the different dimensions of the concept, using the structural equation modelling approach (SEM). A cross-sectional quantitative survey design was used to collect data from a random sample of (n=759) permanent employees of a parastatal organisation. Data was collected using the Employee Satisfaction Survey (ESS) to measure employee satisfaction dimensions. Following the steps of ...

  20. Fractional Diffusion Limit for Collisional Kinetic Equations

    KAUST Repository

    Mellet, Antoine; Mischler, Sté phane; Mouhot, Clé ment

    2010-01-01

    This paper is devoted to diffusion limits of linear Boltzmann equations. When the equilibrium distribution function is a Maxwellian distribution, it is well known that for an appropriate time scale, the small mean free path limit gives rise to a

  1. An Equation-Type Approach for the Numerical Solution of the Partial Differential Equations Governing Transport Phenomena in Porous Media

    KAUST Repository

    Sun, Shuyu; Salama, Amgad; El-Amin, Mohamed

    2012-01-01

    A new technique for the numerical solution of the partial differential equations governing transport phenomena in porous media is introduced. In this technique, the governing equations as depicted from the physics of the problem are used without extra manipulations. In other words, there is no need to reduce the number of governing equations by some sort of mathematical manipulations. This technique enables the separation of the physics part of the problem and the solver part, which makes coding more robust and could be used in several other applications with little or no modifications (e.g., multi-phase flow in porous media). In this method, one abandons the need to construct the coefficient matrix for the pressure equation. Alternatively, the coefficients are automatically generated within the solver routine. We show examples of using this technique to solving several flow problems in porous media.

  2. An Equation-Type Approach for the Numerical Solution of the Partial Differential Equations Governing Transport Phenomena in Porous Media

    KAUST Repository

    Sun, Shuyu

    2012-06-02

    A new technique for the numerical solution of the partial differential equations governing transport phenomena in porous media is introduced. In this technique, the governing equations as depicted from the physics of the problem are used without extra manipulations. In other words, there is no need to reduce the number of governing equations by some sort of mathematical manipulations. This technique enables the separation of the physics part of the problem and the solver part, which makes coding more robust and could be used in several other applications with little or no modifications (e.g., multi-phase flow in porous media). In this method, one abandons the need to construct the coefficient matrix for the pressure equation. Alternatively, the coefficients are automatically generated within the solver routine. We show examples of using this technique to solving several flow problems in porous media.

  3. Time-Dependent Heat Conduction Problems Solved by an Integral-Equation Approach

    International Nuclear Information System (INIS)

    Oberaigner, E.R.; Leindl, M.; Antretter, T.

    2010-01-01

    Full text: A classical task of mathematical physics is the formulation and solution of a time dependent thermoelastic problem. In this work we develop an algorithm for solving the time-dependent heat conduction equation c p ρ∂ t T-kT, ii =0 in an analytical, exact fashion for a two-component domain. By the Green's function approach the formal solution of the problem is obtained. As an intermediate result an integral-equation for the temperature history at the domain interface is formulated which can be solved analytically. This method is applied to a classical engineering problem, i.e. to a special case of a Stefan-Problem. The Green's function approach in conjunction with the integral-equation method is very useful in cases were strong discontinuities or jumps occur. The initial conditions and the system parameters of the investigated problem give rise to two jumps in the temperature field. Purely numerical solutions are obtained by using the FEM (finite element method) and the FDM (finite difference method) and compared with the analytical approach. At the domain boundary the analytical solution and the FEM-solution are in good agreement, but the FDM results show a signicant smearing effect. (author)

  4. Comparison of Numerical Approaches to a Steady-State Landscape Equation

    Science.gov (United States)

    Bachman, S.; Peckham, S.

    2008-12-01

    A mathematical model of an idealized fluvial landscape has been developed, in which a land surface will evolve to preserve dendritic channel networks as the surface is lowered. The physical basis for this model stems from the equations for conservation of mass for water and sediment. These equations relate the divergence of the 2D vector fields showing the unit-width discharge of water and sediment to the excess rainrate and tectonic uplift on the land surface. The 2D flow direction is taken to be opposite to the water- surface gradient vector. These notions are combined with a generalized Manning-type flow resistance formula and a generalized sediment transport law to give a closed mathematical system that can, in principle, be solved for all variables of interest: discharge of water and sediment, land surface height, vertically- averaged flow velocity, water depth, and shear stress. The hydraulic geometry equations (Leopold et. al, 1964, 1995) are used to incorporate width, depth, velocity, and slope of river channels as powers of the mean-annual river discharge. Combined, they give the unit- width discharge of the stream as a power, γ, of the water surface slope. The simplified steady-state model takes into account three components among those listed above: conservation of mass for water, flow opposite the gradient, and a slope-discharge exponent γ = -1 to reflect mature drainage networks. The mathematical representation of this model appears as a second-order hyperbolic partial differential equation (PDE) where the diffusivity is inversely proportional to the square of the local surface slope. The highly nonlinear nature of this PDE has made it very difficult to solve both analytically and numerically. We present simplistic analytic solutions to this equation which are used to test the validity of the numerical algorithms. We also present three such numerical approaches which have been used in solving the differential equation. The first is based on a

  5. Parallel Boltzmann machines : a mathematical model

    NARCIS (Netherlands)

    Zwietering, P.J.; Aarts, E.H.L.

    1991-01-01

    A mathematical model is presented for the description of parallel Boltzmann machines. The framework is based on the theory of Markov chains and combines a number of previously known results into one generic model. It is argued that parallel Boltzmann machines maximize a function consisting of a

  6. The convergence of parallel Boltzmann machines

    NARCIS (Netherlands)

    Zwietering, P.J.; Aarts, E.H.L.; Eckmiller, R.; Hartmann, G.; Hauske, G.

    1990-01-01

    We discuss the main results obtained in a study of a mathematical model of synchronously parallel Boltzmann machines. We present supporting evidence for the conjecture that a synchronously parallel Boltzmann machine maximizes a consensus function that consists of a weighted sum of the regular

  7. Combinatorial optimization on a Boltzmann machine

    NARCIS (Netherlands)

    Korst, J.H.M.; Aarts, E.H.L.

    1989-01-01

    We discuss the problem of solving (approximately) combinatorial optimization problems on a Boltzmann machine. It is shown for a number of combinatorial optimization problems how they can be mapped directly onto a Boltzmann machine by choosing appropriate connection patterns and connection strengths.

  8. A cubic B-spline Galerkin approach for the numerical simulation of the GEW equation

    Directory of Open Access Journals (Sweden)

    S. Battal Gazi Karakoç

    2016-02-01

    Full Text Available The generalized equal width (GEW wave equation is solved numerically by using lumped Galerkin approach with cubic B-spline functions. The proposed numerical scheme is tested by applying two test problems including single solitary wave and interaction of two solitary waves. In order to determine the performance of the algorithm, the error norms L2 and L∞ and the invariants I1, I2 and I3 are calculated. For the linear stability analysis of the numerical algorithm, von Neumann approach is used. As a result, the obtained findings show that the presented numerical scheme is preferable to some recent numerical methods.  

  9. Analysis of factors affecting satisfaction level on problem based learning approach using structural equation modeling

    Science.gov (United States)

    Hussain, Nur Farahin Mee; Zahid, Zalina

    2014-12-01

    Nowadays, in the job market demand, graduates are expected not only to have higher performance in academic but they must also be excellent in soft skill. Problem-Based Learning (PBL) has a number of distinct advantages as a learning method as it can deliver graduates that will be highly prized by industry. This study attempts to determine the satisfaction level of engineering students on the PBL Approach and to evaluate their determinant factors. The Structural Equation Modeling (SEM) was used to investigate how the factors of Good Teaching Scale, Clear Goals, Student Assessment and Levels of Workload affected the student satisfaction towards PBL approach.

  10. Self-energy-modified Poisson-Nernst-Planck equations: WKB approximation and finite-difference approaches.

    Science.gov (United States)

    Xu, Zhenli; Ma, Manman; Liu, Pei

    2014-07-01

    We propose a modified Poisson-Nernst-Planck (PNP) model to investigate charge transport in electrolytes of inhomogeneous dielectric environment. The model includes the ionic polarization due to the dielectric inhomogeneity and the ion-ion correlation. This is achieved by the self energy of test ions through solving a generalized Debye-Hückel (DH) equation. We develop numerical methods for the system composed of the PNP and DH equations. Particularly, toward the numerical challenge of solving the high-dimensional DH equation, we developed an analytical WKB approximation and a numerical approach based on the selective inversion of sparse matrices. The model and numerical methods are validated by simulating the charge diffusion in electrolytes between two electrodes, for which effects of dielectrics and correlation are investigated by comparing the results with the prediction by the classical PNP theory. We find that, at the length scale of the interface separation comparable to the Bjerrum length, the results of the modified equations are significantly different from the classical PNP predictions mostly due to the dielectric effect. It is also shown that when the ion self energy is in weak or mediate strength, the WKB approximation presents a high accuracy, compared to precise finite-difference results.

  11. Three-dimensional lattice Boltzmann model for compressible flows.

    Science.gov (United States)

    Sun, Chenghai; Hsu, Andrew T

    2003-07-01

    A three-dimensional compressible lattice Boltzmann model is formulated on a cubic lattice. A very large particle-velocity set is incorporated in order to enable a greater variation in the mean velocity. Meanwhile, the support set of the equilibrium distribution has only six directions. Therefore, this model can efficiently handle flows over a wide range of Mach numbers and capture shock waves. Due to the simple form of the equilibrium distribution, the fourth-order velocity tensors are not involved in the formulation. Unlike the standard lattice Boltzmann model, no special treatment is required for the homogeneity of fourth-order velocity tensors on square lattices. The Navier-Stokes equations were recovered, using the Chapman-Enskog method from the Bhatnagar-Gross-Krook (BGK) lattice Boltzmann equation. The second-order discretization error of the fluctuation velocity in the macroscopic conservation equation was eliminated by means of a modified collision invariant. The model is suitable for both viscous and inviscid compressible flows with or without shocks. Since the present scheme deals only with the equilibrium distribution that depends only on fluid density, velocity, and internal energy, boundary conditions on curved wall are easily implemented by an extrapolation of macroscopic variables. To verify the scheme for inviscid flows, we have successfully simulated a three-dimensional shock-wave propagation in a box and a normal shock of Mach number 10 over a wedge. As an application to viscous flows, we have simulated a flat plate boundary layer flow, flow over a cylinder, and a transonic flow over a NACA0012 airfoil cascade.

  12. Equations-of-motion approach to a quantum theory of large-amplitude collective motion

    International Nuclear Information System (INIS)

    Klein, A.

    1984-01-01

    The equations-of-motion approach to large-amplitude collective motion is implemented both for systems of coupled bosons, also studied in a previous paper, and for systems of coupled fermions. For the fermion case, the underlying formulation is that provided by the generalized Hartree-Fock approximation (or generalized density matrix method). To obtain results valid in the semi-classical limit, as in most previous work, we compute the Wigner transform of quantum matrices in the representation in which collective coordinates are diagonal and keep only the leading contributions. Higher-order contributions can be retained, however, and, in any case, there is no ambiguity of requantization. The semi-classical limit is seen to comprise the dynamics of time-dependent Hartree-Fock theory (TDHF) and a classical canonicity condition. By utilizing a well-known parametrization of the manifold of Slater determinants in terms of classical canonical variables, we are able to derive and understand the equations of the adiabatic limit in full parallelism with the boson case. As in the previous paper, we can thus show: (i) to zero and first order in the adiabatic limit the physics is contained in Villar's equations; (ii) to second order there is consistency and no new conditions. The structure of the solution space (discussed thoroughly in the previous paper) is summarized. A discussion of associated variational principles is given. A form of the theory equivalent to self-consistent cranking is described. A method of solution is illustrated by working out several elementary examples. The relationship to previsous work, especially that of Zelevinsky and Marumori and coworkers is discussed briefly. Three appendices deal respectively with the equations-of-motion method, with useful properties of Slater determinants, and with some technical details associated with the fermion equations of motion. (orig.)

  13. An Efficient Numerical Approach for Solving Nonlinear Coupled Hyperbolic Partial Differential Equations with Nonlocal Conditions

    Directory of Open Access Journals (Sweden)

    A. H. Bhrawy

    2014-01-01

    Full Text Available One of the most important advantages of collocation method is the possibility of dealing with nonlinear partial differential equations (PDEs as well as PDEs with variable coefficients. A numerical solution based on a Jacobi collocation method is extended to solve nonlinear coupled hyperbolic PDEs with variable coefficients subject to initial-boundary nonlocal conservation conditions. This approach, based on Jacobi polynomials and Gauss-Lobatto quadrature integration, reduces solving the nonlinear coupled hyperbolic PDEs with variable coefficients to a system of nonlinear ordinary differential equation which is far easier to solve. In fact, we deal with initial-boundary coupled hyperbolic PDEs with variable coefficients as well as initial-nonlocal conditions. Using triangular, soliton, and exponential-triangular solutions as exact solutions, the obtained results show that the proposed numerical algorithm is efficient and very accurate.

  14. An equation oriented approach to steady state flowsheeting of methanol synthesis loop

    International Nuclear Information System (INIS)

    Fathikalajahi, J.; Baniadam, M.; Rahimpour, M.R.

    2008-01-01

    An equation-oriented approach was developed for steady state flowsheeting of a commercial methanol plant. The loop consists of fixed bed reactor, flash separator, preheater, coolers, and compressor. For steady sate flowsheeting of the plant mathematical model of reactor and other units are needed. Reactor used in loop is a Lurgi type and its configuration is rather complex. Previously reactor and flash separator are modeled as two important units of plant. The model is based on mass and energy balances in each equipment and utilizing some auxiliary equations such as rate of reaction and thermodynamics model for activity coefficients of liquid. In order to validate the mathematical model for the synthesis loop, some simulation data were performed using operating conditions and characteristics of the commercial plant. The good agreement between the steady state simulation results and the plant data shows the validity of the model

  15. Directional approach to spatial structure of solutions to the Navier–Stokes equations in the plane

    International Nuclear Information System (INIS)

    Konieczny, P; Mucha, P B

    2011-01-01

    We investigate a steady flow of incompressible fluid in the plane. The motion is governed by the Navier–Stokes equations with prescribed velocity u ∞ at infinity. The main result shows the existence of unique solutions for arbitrary force, provided sufficient largeness of u ∞ . Furthermore a spatial structure of the solution is obtained in comparison with the Oseen flow. A key element of our new approach is based on a setting which treats the direction of the flow as the time direction. The analysis is done in the framework of the Fourier transform taken in one (perpendicular) direction and a special choice of function spaces which take into account the inhomogeneous character of the symbol of the Oseen system. From that point of view our technique can be used as an effective tool in examining spatial asymptotics of solutions to other systems modelled by elliptic equations

  16. Lattice Boltzmann model for simulating immiscible two-phase flows

    International Nuclear Information System (INIS)

    Reis, T; Phillips, T N

    2007-01-01

    The lattice Boltzmann equation is often promoted as a numerical simulation tool that is particularly suitable for predicting the flow of complex fluids. This paper develops a two-dimensional 9-velocity (D2Q9) lattice Boltzmann model for immiscible binary fluids with variable viscosities and density ratio using a single relaxation time for each fluid. In the macroscopic limit, this model is shown to recover the Navier-Stokes equations for two-phase flows. This is achieved by constructing a two-phase component of the collision operator that induces the appropriate surface tension term in the macroscopic equations. A theoretical expression for surface tension is determined. The validity of this analysis is confirmed by comparing numerical and theoretical predictions of surface tension as a function of density. The model is also shown to predict Laplace's law for surface tension and Poiseuille flow of layered immiscible binary fluids. The spinodal decomposition of two fluids of equal density but different viscosity is then studied. At equilibrium, the system comprises one large low viscosity bubble enclosed by the more viscous fluid in agreement with theoretical arguments of Renardy and Joseph (1993 Fundamentals of Two-Fluid Dynamics (New York: Springer)). Two other simulations, namely the non-equilibrium rod rest and the coalescence of two bubbles, are performed to show that this model can be used to simulate two fluids with a large density ratio

  17. Moving charged particles in lattice Boltzmann-based electrokinetics

    Science.gov (United States)

    Kuron, Michael; Rempfer, Georg; Schornbaum, Florian; Bauer, Martin; Godenschwager, Christian; Holm, Christian; de Graaf, Joost

    2016-12-01

    The motion of ionic solutes and charged particles under the influence of an electric field and the ensuing hydrodynamic flow of the underlying solvent is ubiquitous in aqueous colloidal suspensions. The physics of such systems is described by a coupled set of differential equations, along with boundary conditions, collectively referred to as the electrokinetic equations. Capuani et al. [J. Chem. Phys. 121, 973 (2004)] introduced a lattice-based method for solving this system of equations, which builds upon the lattice Boltzmann algorithm for the simulation of hydrodynamic flow and exploits computational locality. However, thus far, a description of how to incorporate moving boundary conditions into the Capuani scheme has been lacking. Moving boundary conditions are needed to simulate multiple arbitrarily moving colloids. In this paper, we detail how to introduce such a particle coupling scheme, based on an analogue to the moving boundary method for the pure lattice Boltzmann solver. The key ingredients in our method are mass and charge conservation for the solute species and a partial-volume smoothing of the solute fluxes to minimize discretization artifacts. We demonstrate our algorithm's effectiveness by simulating the electrophoresis of charged spheres in an external field; for a single sphere we compare to the equivalent electro-osmotic (co-moving) problem. Our method's efficiency and ease of implementation should prove beneficial to future simulations of the dynamics in a wide range of complex nanoscopic and colloidal systems that were previously inaccessible to lattice-based continuum algorithms.

  18. Theoretical analysis of integral neutron transport equation using collision probability method with quadratic flux approach

    International Nuclear Information System (INIS)

    Shafii, Mohammad Ali; Meidianti, Rahma; Wildian,; Fitriyani, Dian; Tongkukut, Seni H. J.; Arkundato, Artoto

    2014-01-01

    Theoretical analysis of integral neutron transport equation using collision probability (CP) method with quadratic flux approach has been carried out. In general, the solution of the neutron transport using the CP method is performed with the flat flux approach. In this research, the CP method is implemented in the cylindrical nuclear fuel cell with the spatial of mesh being conducted into non flat flux approach. It means that the neutron flux at any point in the nuclear fuel cell are considered different each other followed the distribution pattern of quadratic flux. The result is presented here in the form of quadratic flux that is better understanding of the real condition in the cell calculation and as a starting point to be applied in computational calculation

  19. Theoretical analysis of integral neutron transport equation using collision probability method with quadratic flux approach

    Energy Technology Data Exchange (ETDEWEB)

    Shafii, Mohammad Ali, E-mail: mashafii@fmipa.unand.ac.id; Meidianti, Rahma, E-mail: mashafii@fmipa.unand.ac.id; Wildian,, E-mail: mashafii@fmipa.unand.ac.id; Fitriyani, Dian, E-mail: mashafii@fmipa.unand.ac.id [Department of Physics, Andalas University Padang West Sumatera Indonesia (Indonesia); Tongkukut, Seni H. J. [Department of Physics, Sam Ratulangi University Manado North Sulawesi Indonesia (Indonesia); Arkundato, Artoto [Department of Physics, Jember University Jember East Java Indonesia (Indonesia)

    2014-09-30

    Theoretical analysis of integral neutron transport equation using collision probability (CP) method with quadratic flux approach has been carried out. In general, the solution of the neutron transport using the CP method is performed with the flat flux approach. In this research, the CP method is implemented in the cylindrical nuclear fuel cell with the spatial of mesh being conducted into non flat flux approach. It means that the neutron flux at any point in the nuclear fuel cell are considered different each other followed the distribution pattern of quadratic flux. The result is presented here in the form of quadratic flux that is better understanding of the real condition in the cell calculation and as a starting point to be applied in computational calculation.

  20. A particle method with adjustable transport properties - the generalized consistent Boltzmann algorithm

    International Nuclear Information System (INIS)

    Garcia, A.L.; Alexander, F.J.; Alder, B.J.

    1997-01-01

    The consistent Boltzmann algorithm (CBA) for dense, hard-sphere gases is generalized to obtain the van der Waals equation of state and the corresponding exact viscosity at all densities except at the highest temperatures. A general scheme for adjusting any transport coefficients to higher values is presented

  1. Solution of the neutron point kinetics equations with temperature feedback effects applying the polynomial approach method

    Energy Technology Data Exchange (ETDEWEB)

    Tumelero, Fernanda, E-mail: fernanda.tumelero@yahoo.com.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica; Petersen, Claudio Z.; Goncalves, Glenio A.; Lazzari, Luana, E-mail: claudiopeteren@yahoo.com.br, E-mail: gleniogoncalves@yahoo.com.br, E-mail: luana-lazzari@hotmail.com [Universidade Federal de Pelotas (DME/UFPEL), Capao do Leao, RS (Brazil). Instituto de Fisica e Matematica

    2015-07-01

    In this work, we present a solution of the Neutron Point Kinetics Equations with temperature feedback effects applying the Polynomial Approach Method. For the solution, we consider one and six groups of delayed neutrons precursors with temperature feedback effects and constant reactivity. The main idea is to expand the neutron density, delayed neutron precursors and temperature as a power series considering the reactivity as an arbitrary function of the time in a relatively short time interval around an ordinary point. In the first interval one applies the initial conditions of the problem and the analytical continuation is used to determine the solutions of the next intervals. With the application of the Polynomial Approximation Method it is possible to overcome the stiffness problem of the equations. In such a way, one varies the time step size of the Polynomial Approach Method and performs an analysis about the precision and computational time. Moreover, we compare the method with different types of approaches (linear, quadratic and cubic) of the power series. The answer of neutron density and temperature obtained by numerical simulations with linear approximation are compared with results in the literature. (author)

  2. Solution of the neutron point kinetics equations with temperature feedback effects applying the polynomial approach method

    International Nuclear Information System (INIS)

    Tumelero, Fernanda; Petersen, Claudio Z.; Goncalves, Glenio A.; Lazzari, Luana

    2015-01-01

    In this work, we present a solution of the Neutron Point Kinetics Equations with temperature feedback effects applying the Polynomial Approach Method. For the solution, we consider one and six groups of delayed neutrons precursors with temperature feedback effects and constant reactivity. The main idea is to expand the neutron density, delayed neutron precursors and temperature as a power series considering the reactivity as an arbitrary function of the time in a relatively short time interval around an ordinary point. In the first interval one applies the initial conditions of the problem and the analytical continuation is used to determine the solutions of the next intervals. With the application of the Polynomial Approximation Method it is possible to overcome the stiffness problem of the equations. In such a way, one varies the time step size of the Polynomial Approach Method and performs an analysis about the precision and computational time. Moreover, we compare the method with different types of approaches (linear, quadratic and cubic) of the power series. The answer of neutron density and temperature obtained by numerical simulations with linear approximation are compared with results in the literature. (author)

  3. Pairing and seniority in an equations-of-motion approach to nuclear structure theory

    International Nuclear Information System (INIS)

    Covello, A.; Andreozzi, F.; Gargano, A.; Porrino, A.

    1990-01-01

    In this paper, some achievements of an equations-of-motion approach to nuclear structure theory are discussed. As an introduction to the main subject, a brief survey of some early work is given. We then describe a formalism for treating the pairing-force problem and show, by numerical appllications, that at the lowest order of approximation it provides an advantageous alternative to the BCS method. Finally, we discuss how to treat a general shell-model Hamiltonian within the framework of the seniority scheme. This makes it possible to further reduce seniority-truncated shell-model spaces, as is illustrated by examples. (orig.)

  4. Recovering a coefficient in a parabolic equation using an iterative approach

    Science.gov (United States)

    Azhibekova, Aliya S.

    2016-06-01

    In this paper we are concerned with the problem of determining a coefficient in a parabolic equation using an iterative approach. We investigate an inverse coefficient problem in the difference form. To recover the coefficient, we minimize a residual functional between the observed and calculated values. This is done in a constructive way by fitting a finite-difference approximation to the inverse problem. We obtain some theoretical estimates for a direct and adjoint problem. Using these estimates we prove monotonicity of the objective functional and the convergence of iteration sequences.

  5. Pruning Boltzmann networks and hidden Markov models

    DEFF Research Database (Denmark)

    Pedersen, Morten With; Stork, D.

    1996-01-01

    We present sensitivity-based pruning algorithms for general Boltzmann networks. Central to our methods is the efficient calculation of a second-order approximation to the true weight saliencies in a cross-entropy error. Building upon previous work which shows a formal correspondence between linear...... Boltzmann chains and hidden Markov models (HMMs), we argue that our method can be applied to HMMs as well. We illustrate pruning on Boltzmann zippers, which are equivalent to two HMMs with cross-connection links. We verify that our second-order approximation preserves the rank ordering of weight saliencies...

  6. Ludwig Boltzmann - The Man and His Work

    International Nuclear Information System (INIS)

    Broda, E.

    1982-01-01

    It is argued that Ludwig Boltzmann was, along with Newton and Maxwell, one of the three greatest theoretical physicists of classical times. It is less generally known that he was also a powerful realist-materialist philosopher and a keen opponent of Ernst Mach's positivism and of the philosophical idealism of Berkeley, Hegel and Schopenhauer. Boltzmann was also opposed to Kant. Moreover, he had a lively interest in biology and especially in Darwinian evolution, and he should be taken as one of the founders of biophysics. Boltzmann discussed the origin of life and of the mind. Finally, he also was a most vigorous, colourful and attractive person. (author)

  7. Analytical approach to (2+1)-dimensional Boussinesq equation and (3+1)-dimensional Kadomtsev-Petviashvili equation

    Energy Technology Data Exchange (ETDEWEB)

    Sariaydin, Selin; Yildirim, Ahmet [Ege Univ., Dept. of Mathematics, Bornova-Izmir (Turkey)

    2010-05-15

    In this paper, we studied the solitary wave solutions of the (2+1)-dimensional Boussinesq equation u{sub tt} - u{sub xx} - u{sub yy} - (u{sup 2}){sub xx} - u{sub xxxx} = 0 and the (3+1)-dimensional Kadomtsev-Petviashvili (KP) equation u{sub xt} - 6u{sub x}{sup 2} + 6uu{sub xx} - u{sub xxxx} - u{sub yy} - u{sub zz} = 0. By using this method, an explicit numerical solution is calculated in the form of a convergent power series with easily computable components. To illustrate the application of this method numerical results are derived by using the calculated components of the homotopy perturbation series. The numerical solutions are compared with the known analytical solutions. Results derived from our method are shown graphically. (orig.)

  8. Vanishing Viscosity Approach to the Compressible Euler Equations for Transonic Nozzle and Spherically Symmetric Flows

    Science.gov (United States)

    Chen, Gui-Qiang G.; Schrecker, Matthew R. I.

    2018-04-01

    We are concerned with globally defined entropy solutions to the Euler equations for compressible fluid flows in transonic nozzles with general cross-sectional areas. Such nozzles include the de Laval nozzles and other more general nozzles whose cross-sectional area functions are allowed at the nozzle ends to be either zero (closed ends) or infinity (unbounded ends). To achieve this, in this paper, we develop a vanishing viscosity method to construct globally defined approximate solutions and then establish essential uniform estimates in weighted L p norms for the whole range of physical adiabatic exponents γ\\in (1, ∞) , so that the viscosity approximate solutions satisfy the general L p compensated compactness framework. The viscosity method is designed to incorporate artificial viscosity terms with the natural Dirichlet boundary conditions to ensure the uniform estimates. Then such estimates lead to both the convergence of the approximate solutions and the existence theory of globally defined finite-energy entropy solutions to the Euler equations for transonic flows that may have different end-states in the class of nozzles with general cross-sectional areas for all γ\\in (1, ∞) . The approach and techniques developed here apply to other problems with similar difficulties. In particular, we successfully apply them to construct globally defined spherically symmetric entropy solutions to the Euler equations for all γ\\in (1, ∞).

  9. A unified momentum equation approach for computing thermal residual stresses during melting and solidification

    Science.gov (United States)

    Yeo, Haram; Ki, Hyungson

    2018-03-01

    In this article, we present a novel numerical method for computing thermal residual stresses from a viewpoint of fluid-structure interaction (FSI). In a thermal processing of a material, residual stresses are developed as the material undergoes melting and solidification, and liquid, solid, and a mixture of liquid and solid (or mushy state) coexist and interact with each other during the process. In order to accurately account for the stress development during phase changes, we derived a unified momentum equation from the momentum equations of incompressible fluids and elastoplastic solids. In this approach, the whole fluid-structure system is treated as a single continuum, and the interaction between fluid and solid phases across the mushy zone is naturally taken into account in a monolithic way. For thermal analysis, an enthalpy-based method was employed. As a numerical example, a two-dimensional laser heating problem was considered, where a carbon steel sheet was heated by a Gaussian laser beam. Momentum and energy equations were discretized on a uniform Cartesian grid in a finite volume framework, and temperature-dependent material properties were used. The austenite-martensite phase transformation of carbon steel was also considered. In this study, the effects of solid strains, fluid flow, mushy zone size, and laser heating time on residual stress formation were investigated.

  10. Rethinking Pedagogy for Second-Order Differential Equations: A Simplified Approach to Understanding Well-Posed Problems

    Science.gov (United States)

    Tisdell, Christopher C.

    2017-01-01

    Knowing an equation has a unique solution is important from both a modelling and theoretical point of view. For over 70 years, the approach to learning and teaching "well posedness" of initial value problems (IVPs) for second- and higher-order ordinary differential equations has involved transforming the problem and its analysis to a…

  11. Clarkson-Kruskal Direct Similarity Approach for Differential-Difference Equations

    Institute of Scientific and Technical Information of China (English)

    SHEN Shou-Feng

    2005-01-01

    In this letter, the Clarkson-Kruskal direct method is extended to similarity reduce some differentialdifference equations. As examples, the differential-difference KZ equation and KP equation are considered.

  12. Fast Laplace solver approach to pore-scale permeability

    Science.gov (United States)

    Arns, C. H.; Adler, P. M.

    2018-02-01

    We introduce a powerful and easily implemented method to calculate the permeability of porous media at the pore scale using an approximation based on the Poiseulle equation to calculate permeability to fluid flow with a Laplace solver. The method consists of calculating the Euclidean distance map of the fluid phase to assign local conductivities and lends itself naturally to the treatment of multiscale problems. We compare with analytical solutions as well as experimental measurements and lattice Boltzmann calculations of permeability for Fontainebleau sandstone. The solver is significantly more stable than the lattice Boltzmann approach, uses less memory, and is significantly faster. Permeabilities are in excellent agreement over a wide range of porosities.

  13. Linear differential equations to solve nonlinear mechanical problems: A novel approach

    OpenAIRE

    Nair, C. Radhakrishnan

    2004-01-01

    Often a non-linear mechanical problem is formulated as a non-linear differential equation. A new method is introduced to find out new solutions of non-linear differential equations if one of the solutions of a given non-linear differential equation is known. Using the known solution of the non-linear differential equation, linear differential equations are set up. The solutions of these linear differential equations are found using standard techniques. Then the solutions of the linear differe...

  14. Polynomial approach method to solve the neutron point kinetics equations with use of the analytic continuation

    Energy Technology Data Exchange (ETDEWEB)

    Tumelero, Fernanda; Petersen, Claudio Zen; Goncalves, Glenio Aguiar [Universidade Federal de Pelotas, Capao do Leao, RS (Brazil). Programa de Pos Graduacao em Modelagem Matematica; Schramm, Marcelo [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica

    2016-12-15

    In this work, we report a solution to solve the Neutron Point Kinetics Equations applying the Polynomial Approach Method. The main idea is to expand the neutron density and delayed neutron precursors as a power series considering the reactivity as an arbitrary function of the time in a relatively short time interval around an ordinary point. In the first interval one applies the initial conditions and the analytical continuation is used to determine the solutions of the next intervals. A genuine error control is developed based on an analogy with the Rest Theorem. For illustration, we also report simulations for different approaches types (linear, quadratic and cubic). The results obtained by numerical simulations for linear approximation are compared with results in the literature.

  15. A Generalized Estimating Equations Approach to Model Heterogeneity and Time Dependence in Capture-Recapture Studies

    Directory of Open Access Journals (Sweden)

    Akanda Md. Abdus Salam

    2017-03-01

    Full Text Available Individual heterogeneity in capture probabilities and time dependence are fundamentally important for estimating the closed animal population parameters in capture-recapture studies. A generalized estimating equations (GEE approach accounts for linear correlation among capture-recapture occasions, and individual heterogeneity in capture probabilities in a closed population capture-recapture individual heterogeneity and time variation model. The estimated capture probabilities are used to estimate animal population parameters. Two real data sets are used for illustrative purposes. A simulation study is carried out to assess the performance of the GEE estimator. A Quasi-Likelihood Information Criterion (QIC is applied for the selection of the best fitting model. This approach performs well when the estimated population parameters depend on the individual heterogeneity and the nature of linear correlation among capture-recapture occasions.

  16. Kinetics of subdiffusion-assisted reactions: non-Markovian stochastic Liouville equation approach

    International Nuclear Information System (INIS)

    Shushin, A I

    2005-01-01

    Anomalous specific features of the kinetics of subdiffusion-assisted bimolecular reactions (time-dependence, dependence on parameters of systems, etc) are analysed in detail with the use of the non-Markovian stochastic Liouville equation (SLE), which has been recently derived within the continuous-time random-walk (CTRW) approach. In the CTRW approach, subdiffusive motion of particles is modelled by jumps whose onset probability distribution function is of a long-tailed form. The non-Markovian SLE allows for rigorous describing of some peculiarities of these reactions; for example, very slow long-time behaviour of the kinetics, non-analytical dependence of the reaction rate on the reactivity of particles, strong manifestation of fluctuation kinetics showing itself in very slowly decreasing behaviour of the kinetics at very long times, etc

  17. A hybrid approach to parameter identification of linear delay differential equations involving multiple delays

    Science.gov (United States)

    Marzban, Hamid Reza

    2018-05-01

    In this paper, we are concerned with the parameter identification of linear time-invariant systems containing multiple delays. The approach is based upon a hybrid of block-pulse functions and Legendre's polynomials. The convergence of the proposed procedure is established and an upper error bound with respect to the L2-norm associated with the hybrid functions is derived. The problem under consideration is first transformed into a system of algebraic equations. The least squares technique is then employed for identification of the desired parameters. Several multi-delay systems of varying complexity are investigated to evaluate the performance and capability of the proposed approximation method. It is shown that the proposed approach is also applicable to a class of nonlinear multi-delay systems. It is demonstrated that the suggested procedure provides accurate results for the desired parameters.

  18. A numerical spectral approach to solve the dislocation density transport equation

    International Nuclear Information System (INIS)

    Djaka, K S; Taupin, V; Berbenni, S; Fressengeas, C

    2015-01-01

    A numerical spectral approach is developed to solve in a fast, stable and accurate fashion, the quasi-linear hyperbolic transport equation governing the spatio-temporal evolution of the dislocation density tensor in the mechanics of dislocation fields. The approach relies on using the Fast Fourier Transform algorithm. Low-pass spectral filters are employed to control both the high frequency Gibbs oscillations inherent to the Fourier method and the fast-growing numerical instabilities resulting from the hyperbolic nature of the transport equation. The numerical scheme is validated by comparison with an exact solution in the 1D case corresponding to dislocation dipole annihilation. The expansion and annihilation of dislocation loops in 2D and 3D settings are also produced and compared with finite element approximations. The spectral solutions are shown to be stable, more accurate for low Courant numbers and much less computation time-consuming than the finite element technique based on an explicit Galerkin-least squares scheme. (paper)

  19. A pertinent approach to solve nonlinear fuzzy integro-differential equations.

    Science.gov (United States)

    Narayanamoorthy, S; Sathiyapriya, S P

    2016-01-01

    Fuzzy integro-differential equations is one of the important parts of fuzzy analysis theory that holds theoretical as well as applicable values in analytical dynamics and so an appropriate computational algorithm to solve them is in essence. In this article, we use parametric forms of fuzzy numbers and suggest an applicable approach for solving nonlinear fuzzy integro-differential equations using homotopy perturbation method. A clear and detailed description of the proposed method is provided. Our main objective is to illustrate that the construction of appropriate convex homotopy in a proper way leads to highly accurate solutions with less computational work. The efficiency of the approximation technique is expressed via stability and convergence analysis so as to guarantee the efficiency and performance of the methodology. Numerical examples are demonstrated to verify the convergence and it reveals the validity of the presented numerical technique. Numerical results are tabulated and examined by comparing the obtained approximate solutions with the known exact solutions. Graphical representations of the exact and acquired approximate fuzzy solutions clarify the accuracy of the approach.

  20. Partial differential equation-based approach for empirical mode decomposition: application on image analysis.

    Science.gov (United States)

    Niang, Oumar; Thioune, Abdoulaye; El Gueirea, Mouhamed Cheikh; Deléchelle, Eric; Lemoine, Jacques

    2012-09-01

    The major problem with the empirical mode decomposition (EMD) algorithm is its lack of a theoretical framework. So, it is difficult to characterize and evaluate this approach. In this paper, we propose, in the 2-D case, the use of an alternative implementation to the algorithmic definition of the so-called "sifting process" used in the original Huang's EMD method. This approach, especially based on partial differential equations (PDEs), was presented by Niang in previous works, in 2005 and 2007, and relies on a nonlinear diffusion-based filtering process to solve the mean envelope estimation problem. In the 1-D case, the efficiency of the PDE-based method, compared to the original EMD algorithmic version, was also illustrated in a recent paper. Recently, several 2-D extensions of the EMD method have been proposed. Despite some effort, 2-D versions for EMD appear poorly performing and are very time consuming. So in this paper, an extension to the 2-D space of the PDE-based approach is extensively described. This approach has been applied in cases of both signal and image decomposition. The obtained results confirm the usefulness of the new PDE-based sifting process for the decomposition of various kinds of data. Some results have been provided in the case of image decomposition. The effectiveness of the approach encourages its use in a number of signal and image applications such as denoising, detrending, or texture analysis.