Nucleate boiling heat transfer
Energy Technology Data Exchange (ETDEWEB)
Saiz Jabardo, J.M. [Universidade da Coruna (Spain). Escola Politecnica Superior], e-mail: mjabardo@cdf.udc.es
2009-07-01
Nucleate boiling heat transfer has been intensely studied during the last 70 years. However boiling remains a science to be understood and equated. In other words, using the definition given by Boulding, it is an 'insecure science'. It would be pretentious of the part of the author to explore all the nuances that the title of the paper suggests in a single conference paper. Instead the paper will focus on one interesting aspect such as the effect of the surface microstructure on nucleate boiling heat transfer. A summary of a chronological literature survey is done followed by an analysis of the results of an experimental investigation of boiling on tubes of different materials and surface roughness. The effect of the surface roughness is performed through data from the boiling of refrigerants R-134a and R-123, medium and low pressure refrigerants, respectively. In order to investigate the extent to which the surface roughness affects boiling heat transfer, very rough surfaces (4.6 {mu}m and 10.5 {mu}m ) have been tested. Though most of the data confirm previous literature trends, the very rough surfaces present a peculiar behaviour with respect to that of the smoother surfaces (Ra<3.0 {mu}m). (author)
Transition boiling heat transfer during reflooding transients
International Nuclear Information System (INIS)
Transition boiling heat transfer is characterized by a heat flux which declines as the heater wall temperature increases. Steady state transition boiling is also characterized by alternate periods of high and low heat transfer caused by intermittent wetting of the heated surface. In flow boiling, the reason for intermittent wetting depends on the volume fraction of vapor present. At high vapor volume fractions, annular flow exists during what is generally called the nucleate boiling region, and a thin liquid film is present on the surface. The remainder of the passage is filled with vapor carrying entrained droplets. Above the nucleate boiling region there is no liquid film, and heat is transferred to droplet-laden vapor. In the narrow transition boiling region between nucleate boiling and heat transfer to steam, the liquid film is present only part of the time. The intermittent wetting produces significant wall temperature oscillations. Recent phenomenologically based modeling of steady state transition boiling heat transfer at high vapor fractions has been successful in predicting the magnitude of both temperature oscillations and heat transfer rates. After a brief review of the steady state model, this note shows how the results of the steady state analysis for vertical surfaces may be used to obtain heat transfer rates during reflooding transients
Heat transfer coefficient for boiling carbon dioxide
DEFF Research Database (Denmark)
Knudsen, Hans Jørgen Høgaard; Jensen, Per Henrik
1998-01-01
Heat transfer coefficient and pressure drop for boiling carbon dioxide (R744) flowing in a horizontal pipe has been measured. The calculated heat transfer coeeficient has been compared with the Chart correlation of Shah. The Chart Correlation predits too low heat transfer coefficient but the ratio...
Heat transfer coeffcient for boiling carbon dioxide
DEFF Research Database (Denmark)
Knudsen, Hans Jørgen Høgaard; Jensen, Per Henrik
1997-01-01
Heat transfer coefficient and pressure drop for boiling carbon dioxide (R744) flowing in a horizontal pipe has been measured. The pipe is heated by condensing R22 outside the pipe. The heat input is supplied by an electrical heater wich evaporates the R22. With the heat flux assumed constant over...
Thermodynamics of Flow Boiling Heat Transfer
Collado, F. J.
2003-05-01
Convective boiling in sub-cooled water flowing through a heated channel is essential in many engineering applications where high heat flux needs to be accommodated. It has been customary to represent the heat transfer by the boiling curve, which shows the heat flux versus the wall-minus-saturation temperature difference. However it is a rather complicated problem, and recent revisions of two-phase flow and heat transfer note that calculated values of boiling heat transfer coefficients present many uncertainties. Quite recently, the author has shown that the average thermal gap in the heated channel (the wall temperature minus the average temperature of the coolant) was tightly connected with the thermodynamic efficiency of a theoretical reversible engine placed in this thermal gap. In this work, whereas this correlation is checked again with data taken by General Electric (task III) for water at high pressure, a possible connection between this wall efficiency and the reversible-work theorem is explored.
Boiling Heat Transfer in Circulating Fluidized Beds
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
A model is proposed to predict boiling heat transfer coefficient in a three-phase circulating fluidized bed (CFB), which is a new type of evaporation boiling means for enhancing heat transfer and preventing fouling. To verify the model, experiments are conducted in a stainless steel column with 39mm ID and 2.0m height, in which the heat transfer coefficient is measured for different superficial velocities, steam pressures, particle concentrations and materials of particle. As the steam pressure and particle concentrations increase, the heat transfer coefficient in the bed increases. The heat transfer coefficient increases with the liquid velocity but it exhibits a local minimum. The heat transfer coefficient is correlated with cluster renewed model and two-mechanism method. The prediction of the model is in good agreement with experimental data.
Boiling Heat Transfer in Circulating Fluidized Beds
Institute of Scientific and Technical Information of China (English)
张利斌; 李修伦
2001-01-01
A model is proposed to predict boiling heat transfer coefficient in a three-phase circulating fluidized bed (CFB), which is a new type of evaporation boiling means for enhancing heat transfer and preventing fouling. To verify the model, experiments are conducted in a stainless steel column with 39 mm ID and 2.0 m height, in which the heat transfer coefficient is measured for different superficial velocities, steam pressures, particle concentrations and materials of particle. As the steam pressure and particle concentrations increase, the heat transfer coefficient in the bed increases. The heat transfer coefficient increases with the liquid velocity but it exhibits a local minimum.The heat transfer coefficient is correlated with cluster renewed model and two-mechanism method. The prediction of the model is in good agreement with experimental data.
Film boiling heat transfer during reflood process
International Nuclear Information System (INIS)
From Westinghouse's Full Length Emergency Cooling Heat Transfer (FLECHT) test data and the previous studies on the film boiling, local subcooling is found to be a dominant factor in the film boiling heat transfer, existing in the reflood process. By experiment, the correlation was obtained between saturated film boiling heat transfer coefficient h sub(c), sat and subcooled h sub(c), sub. The h sub(c), sat is similar to Bromley's expression, but the value differs from his. The ratio of h sub(c') sub to h sub(c') sat is expressed with the local coolant subcooling T sub(sub) (0C) as h sub(c') sub/h sub(c') sat = 1 + 0.025 ΔT sub(sub). The results in experiment are predicted by this formula with error +- 20%. (auth.)
Boiling heat transfer modern developments and advances
Lahey, Jr, RT
2013-01-01
This volume covers the modern developments in boiling heat transfer and two-phase flow, and is intended to provide industrial, government and academic researchers with state-of-the-art research findings in the area of multiphase flow and heat transfer technology. Special attention is given to technology transfer, indicating how recent significant results may be used for practical applications. The chapters give detailed technical material that will be useful to engineers and scientists who work in the field of multiphase flow and heat transfer. The authors of all chapters are members of the
Flow boiling heat transfer in volumetrically heated packed bed
International Nuclear Information System (INIS)
Highlights: • The onset of nucleate boiling in the volumetrically heated packed bed is researched. • A correlation for predicting qONB is developed. • The effects on boiling heat transfer coefficient are investigated. - Abstract: The volumetrically heated packed bed has been widely utilized in modern industry. However, due to the variability and randomness of packed bed channels, flow boiling heat transfer characteristics becomes complex, and there are no published research regarding this topic. To study flow boiling heat transfer characteristics of volumetrically heated packed beds, electromagnetic induction heating method is used to heat oxidized carbon steel balls adopted to stack the packed bed, with water as coolant in the experiment. The experimental results indicate that heat flux at onset of nucleate boiling (ONB) increases as mass flux and inlet subcooling are increased. A new correlation is developed to predict the ONB heat flux qONB in volumetrically heated packed bed, the predictions by which agree well with the experimental data, and the deviation remains less than 15%. Subcooled flow boiling heat transfer coefficient (hsub) increases with increasing mass flux, and equilibrium quality is slightly affected by heat flux. The saturated flow boiling heat transfer coefficient (hsat) increases with mass flux and equilibrium quality when equilibrium quality is lower than about 0.05, while the nucleate boiling is suppressed when the equilibrium quality exceeds a certain value
International Nuclear Information System (INIS)
Graphical abstract: - Highlights: • Application of enhanced surfaces in boiling heat transfer. • Flow and pool boiling heat transfer on the heating surfaces with mini-recesses. • Minichannel (horizontal) with the enhanced heating wall. • Determination of heat transfer coefficients and boiling curves. • Comparative experimental data analysis for flow and pool boiling heat transfer. - Abstract: The paper focuses on the analysis of the enhanced surfaces in such applications as boiling heat transfer. The surfaces have similar geometric parameters for the surface development. Two testing measurement modules with enhanced heating surfaces are used independently, one for flow boiling and the other – for pool boiling research. The heating surfaces with mini-recesses which contact boiling liquid are made by spark erosion. Flow boiling is studied when FC-72 flows through a horizontally positioned minichannel and its bottom wall is heated. These experiments were carried out during under a pressure slightly higher than the atmospheric one. Pool boiling experiments were conducted with FC-72 at atmospheric pressure in the vessel using enhanced sample as the bottom heating surface. Comparison of results for flow and pool boiling indicates that obtained heat transfer coefficients are a few times higher for pool boiling in the boiling incipience conditions. There are basic differences in the local heat transfer coefficients during the development of flow boiling in a minichannel, depending on the location along the flow in the channel. In the subcooled boiling area, heat transfer coefficients are low. In developed boiling, they are high, but they decrease when the amount of vapour in the liquid–vapour mixture rises
Experimental study on transient boiling heat transfer
International Nuclear Information System (INIS)
well. A flexible power supply that can generate a free-shape signal, allows to get to a wall-temperature increase rate up to 2500 K/s but also to obtain lower rates, which permits to study weaker transients and steady state conditions. The thermal measurements are realised by means of an infra-red camera and a high-speed camera is employed in order to see the boiling phenomena at the same time. From the voltage and current measurements the heat flux that is passed to the fluid is known. It is possible to underline some of the main results of this work. We found that, even when the boiling onset occurs soon because of the high power, transient conduction is always coupled with transient convection. The boiling onset occurs when the wall superheat is between 10 K et 30 K. This value corresponds to the activation of the smallest nucleation sites at the wall. The literature correlations well fit the nucleate boiling data in steady-state conditions. When the wall-temperature increase rate leads to transient boiling, the heat flux is higher than in steady state. This is consistent with what was found in previous studies. The nucleate boiling phase may last only a few milliseconds when the power is really high and the wall temperature increases really rapidly (500-2000 K/s). The experiments in transient boiling also point out that the heat flux is larger than in steady state conditions for the other regimes: Critical heat flux and also film boiling. The experimental set-up allows to investigate a large range of parameters (wall-temperature increase rate, flow rate, fluid temperature) by means of accurate temperature measurements and visualisations. Some modeling of the heat transfer are also proposed. (author)
Unsteady heat transfer during subcooled film boiling
Yagov, V. V.; Zabirov, A. R.; Lexin, M. A.
2015-11-01
Cooling of high-temperature bodies in subcooled liquid is of importance for quenching technologies and also for understanding the processes initiating vapor explosion. An analysis of the available experimental information shows that the mechanisms governing heat transfer in these processes are interpreted ambiguously; a more clear-cut definition of the Leidenfrost temperature notion is required. The results of experimental observations (Hewitt, Kenning, and previous investigations performed by the authors of this article) allow us to draw a conclusion that there exists a special mode of intense heat transfer during film boil- ing of highly subcooled liquid. For revealing regularities and mechanisms governing intense transfer of energy in this process, specialists of Moscow Power Engineering Institute's (MPEI) Department of Engineering Thermal Physics conduct systematic works aimed at investigating the cooling of high-temperature balls made of different metals in water with a temperature ranging from 20 to 100°C. It has been determined that the field of temperatures that takes place in balls with a diameter of more than 30 mm in intense cooling modes loses its spherical symmetry. An approximate procedure for solving the inverse thermal conductivity problem for calculating the heat flux density on the ball surface is developed. During film boiling, in which the ball surface temperature is well above the critical level for water, and in which liquid cannot come in direct contact with the wall, the calculated heat fluxes reach 3-7 MW/m2.
Low-Flow Film Boiling Heat Transfer on Vertical Surfaces
DEFF Research Database (Denmark)
Munthe Andersen, J. G.; Dix, G. E.; Leonard, J. E.; Sun, K. H.
1976-01-01
The phenomenon of film boiling heat transfer for high wall temperatures has been investigated. Based on the assumption of laminar flow for the film, the continuity, momentum, and energy equations for the vapor film are solved and a Bromley-type analytical expression for the heat transfer...... length, an average film boiling heat transfer coefficient is obtained....
Boiling Heat Transfer on Porous Surfaces with Vapor Channels
Institute of Scientific and Technical Information of China (English)
吴伟; 杜建华; 王补宣
2002-01-01
Boiling heat transfer on porous coated surfaces with vapor channels was investigated experimentally to determine the effects of the size and density of the vapor channels on the boiling heat transfer. Observations showed that bubbles escaping from the channels enhanced the heat transfer. Three regimes were identified: liquid flooding, bubbles in the channel and the bottom drying out region. The maximum heat transfer occurred for an optimum vapor channel density and the boiling heat transfer performance was increased if the channels were open to the bottom of the porous coating.
Investigation of Enhanced Boiling Heat Transfer from Porous Surfaces
Institute of Scientific and Technical Information of China (English)
LinZhiping; MaTongze; 等
1994-01-01
Experimental investigations of boiling heat transfer from porous surfaces at atmospheric pressure were performne.The porous surfaces are plain tubes coverd with metal screens.V-shaped groove tubes covered with screens,plain tubes sintered with screens.and V-shaped groove tubes sintered with screens,The experimental results show that sintering metal screens around spiral V-shaped groove tubes can greatly improve the boiling heat transfer,The boiling hystesis was observed in the experiment.This paper discusses the mechanism of the boiling heat transfer from those kinds of porous surfaces stated above.
Burnout in boiling heat transfer. part I: pool boiling systems
International Nuclear Information System (INIS)
Recent experimental and analytical developments in pool-boiling burnout are reviewed, and results are summarized that clarify the dependence of critical heat flux on heater geometry and fluid properties. New analytical interpretations of burnout are discussed, and the effects of surface condition, aging, acceleration, and transient heating (or cooling) are described. The relation of sound to burnout and new techniques for stabilizing electric heaters at burnout are also considered
Flow boiling heat transfer at low liquid Reynolds number
International Nuclear Information System (INIS)
Full text of publication follows: In view of the significance of a heat transfer correlation of flow boiling at conditions of low liquid Reynolds number or liquid laminar flow, and very few existing correlations in principle suitable for such flow conditions, this study is aiming at developing a heat transfer correlation of flow boiling at low liquid Reynolds number conditions. The obtained results are as follows: 1. A new heat transfer correlation has been developed for saturated flow boiling at low liquid Reynolds number conditions based on superimposition of two boiling mechanisms, namely convective boiling and nucleate boiling. In the new correlation, two terms corresponding to the mechanisms of nucleate boiling and convective boiling are obtained from the pool boiling correlation by Forster and Zuber and the analytical annular flow model by Hewitt and Hall-Taylor, respectively. 2. An extensive database was collected for saturated flow boiling heat transfer at low liquid Reynolds number conditions, including data for different channels geometries (circular and rectangular), flow orientations (vertical and horizontal), and working fluids (water, R11, R12, R113). 3. An extensive comparison of the new correlation with the collected database shows that the new correlation works satisfactorily with the mean deviation of 16.6% for saturated flow boiling at low liquid Reynolds number conditions. 4. The detailed discussion reveals the similarity of the newly developed correlation for flow boiling at low liquid Reynolds number to the Chen correlation for flow boiling at high liquid Reynolds number. The Reynolds number factor F can be analytically deduced in this study. (authors)
Prediction of transition boiling heat transfer by artificial neural network
International Nuclear Information System (INIS)
Based on the capability of nonlinear mapping of artificial neural network, a neural network is presented to predict the transition boiling heat transfer in vertical annulus and vertical tube. The predicting results show good accordance with the experimental results
Numerical model of post-DNB film boiling heat transfer
International Nuclear Information System (INIS)
It is proposed in this paper a physical model for the film boiling heat transfer. The corresponding mathematical descriptions are given in details and the heat transfer characteristic of post-DNB film boiling is analyzed. The numerical model of post-DNB film boiling heat transfer is obtained as the empirical value of the coefficient is determined by the experimental data. The numerical model is compared with the experimental data of different parameters and other numerical models, and the statistical deviations are calculated. The calculating results of the numerical model in this paper show good agreement with the experimental data, and the numerical model in this paper has comprehensive applicability compared with other numerical models. The effects of thermal-hydraulic parameters on the post-DNB film boiling heat transfer have been numerically researched using the numerical model in this paper. The calculating results are as same as the experimental results. (authors)
Boiling heat transfer in porous media composed of particles
International Nuclear Information System (INIS)
The boiling heat transfer in the porous media composed of spherical fuel elements exerts significant influences on the reactor's efficiency and safety. In the present study an experimental setup was designed and the boiling heat transfer in the porous media composed of spheres of regular distribution was investigated. Four spheres with diameters of 5mm, 6mm, 7mm and 8mm were used in the test sections. The greater particle diameter led to lower heat transfer coefficient, and resulted in higher wall superheat of original nucleation boiling. The variation of heat transfer coefficient was divided into three groups according to two-phase flow patterns and void fraction. A correlation of heat transfer coefficient was proposed with a mean relative deviation of ± 16%. (author)
Mechanistic Multidimensional Modeling of Forced Convection Boiling Heat Transfer
Directory of Open Access Journals (Sweden)
Michael Z. Podowski
2009-01-01
Full Text Available Due to the importance of boiling heat transfer in general, and boiling crisis in particular, for the analysis of operation and safety of both nuclear reactors and conventional thermal power systems, extensive efforts have been made in the past to develop a variety of methods and tools to evaluate the boiling heat transfer coefficient and to assess the onset of temperature excursion and critical heat flux (CHF at various operating conditions of boiling channels. The objective of this paper is to present mathematical modeling concepts behind the development of mechanistic multidimensional models of low-quality forced convection boiling, including the mechanisms leading to temperature excursion and the onset of CHF.
Battery thermal management by boiling heat-transfer
International Nuclear Information System (INIS)
Highlights: • A thermal management scheme based on boiling heat-transfer is investigated. • Cooling capacity of the working fluid compared to that of air is investigated. • Battery gets fluid to boil, thus boiling heat-transfer occurs from battery to fluid. • Boiling process thermally homogenises the battery. • Boiling process can be influenced by pressure variation. - Abstract: In this study, the ability of a boiling process to thermally condition (homogenisation and cooling) batteries is investigated. Thereto, a series of experiments are performed and discussed. Subjects that are treated are the dielectric property of the proposed cooling fluid, its cooling capability compared to that of air, the ability of the boiling fluid to thermally homogenise a battery and the influence of pressure variation on the boiling process. It turns out that the proposed cooling fluid conducts no electricity, has good cooling characteristics compared to those of air and, when boiling, is able to thermally homogenise the battery. Furthermore, pressure variation seems to offer a good method to regulate the boiling process
Heat transfer phenomena related to the boiling crisis
International Nuclear Information System (INIS)
This report contains a state-of-the-art review of critical heat flux (CHF) and post-CHF heat transfer. Part I reviews the mechanisms controlling the boiling crisis. The observed parametric trends of the CHF in a heat flux controlled system are discussed in detail, paying special attention to parameters pertaining to nuclear fuel. The various methods of predicting the critical power are described. Part II reviews the published information on transition boiling and film boiling heat transfer under forced convective conditions. Transition boiling data were found to be available only within limited ranges of conditions. The data did not permit the derivation of a correlation; however, the parametric trends were isolated from these data. (author)
Experiments on microgravity boiling heat transfer by using transparent heaters
Energy Technology Data Exchange (ETDEWEB)
Ohta, H. [Kyushu Univ., Fukuoka (Japan). Dept. of Energy and Mech. Eng.
1997-11-01
To clarify the relation between the liquid-vapor behavior and the heat transfer characteristics in the boiling phenomena, the structures of transparent heaters were developed for both flow boiling experiments and were applied to the microgravity environment realized by the parabolic flight of aircraft. In the flow boiling experiment, a transparent heated tube makes the heating, the observation of liquid-vapor behavior and the measurement of heat transfer data simultaneously possible. The heat transfer coefficient in the annular flow regime at moderate quality has distinct dependence on gravity provided that the mass velocity is not so high, while no noticeable gravity effect is seen at high quality and in the bubbly flow regime. The measured gravity effect was directly related to the behavior of annular liquid film observed through the transparent tube wall. In the pool boiling experiment, a structure of transparent heating surface realizes both the observation of the macrolayer or microlayer behavior from underneath and the measurements of local surface temperatures and the layer thickness. It was clarified in the microgravity experiments that no vapor stem exists but tiny bubbles are observed in the macrolayer underneath a large coalesced bubble at high heat flux. The heat flux evaluated by the heat conduction across the layer assumes less than 30% of the total to be transferred. The evaporation of the microlayers underneath primary bubbles just after the generation dominates the heat transfer in the microgravity, not only in the isolated bubble region but also in the coalesced bubble region. (orig.) 14 refs.
Study on film boiling heat transfer and minimum heat flux condition for subcooled boiling, 1
International Nuclear Information System (INIS)
In the present paper, film boiling heat transfer and minimum heat flux condition were experimentally studied for subcooled pool boiling of water at atmospheric pressure from a platinum sphere (D = 10 mm). Transient tests of subcooled boiling were conducted from an initial temperature of the sphere about 1500 K. Experimental parameters were liquid subcooling (0 ∼ 75 K) and the depth of immersion of the sphere (0.75 D ∼ 3.0 D). The obtained boiling curves indicated that the ideal depth was 1.8 D. Even for large subcooling conditions, the measured temperature at the minimum heat flux point for such a depth did not remarkably exceed the maximum superheat of water. Further, accounting for the density-viscosity ratio, the analytical equation for subcooled film boiling derived by Hamill and Baumeister was modified. This modified equation was in good agreement with experimental data of water and freon-11 under various conditions of surface geometry, size and system pressure. (author)
Heat transfer correlation for saturated flow boiling of water
International Nuclear Information System (INIS)
The saturated flow boiling heat transfer of water (H2O, R718) is encountered in many applications such as compact heat exchangers and electronic cooling, for which an accurate correlation of evaporative heat transfer coefficients is necessary. A number of correlations for two-phase flow boiling heat transfer coefficients were proposed. However, their prediction accuracies for H2O are not satisfactory. This work compiles an H2O database of 1055 experimental data points from micro/mini-channels from nine independent studies, evaluates 41 existing correlations to provide a clue for developing a better correlation of saturated flow boiling heat transfer coefficients for H2O, and then proposes a new one. The new correlation incorporates a newly proposed dimensionless number and makes great progress in prediction accuracy. It has a mean absolute deviation of 10.1%, predicting 81.9% of the entire database within ±15% and 91.2% within ±20%, far better than the best existing one. Besides, it also works well for several other working fluids, such as R22, R134a, R410A and NH3 (ammonia, R717), being the best for R22, R410A and NH3 so far. - Highlights: • Compiles a database of 1055 data points of H2O flow boiling heat transfer. • Evaluates 41 correlations of flow boiling heat transfer coefficient. • Generalize approach for developing experiment-based correlation. • Propose a correlation of H2O flow boiling heat transfer in small channels. • The new correlation has a mean absolute deviation of 10.1% for the database
Gravity and Heater Size Effects on Pool Boiling Heat Transfer
Kim, Jungho; Raj, Rishi
2014-01-01
The current work is based on observations of boiling heat transfer over a continuous range of gravity levels between 0g to 1.8g and varying heater sizes with a fluorinert as the test liquid (FC-72/n-perfluorohexane). Variable gravity pool boiling heat transfer measurements over a wide range of gravity levels were made during parabolic flight campaigns as well as onboard the International Space Station. For large heaters and-or higher gravity conditions, buoyancy dominated boiling and heat transfer results were heater size independent. The power law coefficient for gravity in the heat transfer equation was found to be a function of wall temperature under these conditions. Under low gravity conditions and-or for smaller heaters, surface tension forces dominated and heat transfer results were heater size dependent. A pool boiling regime map differentiating buoyancy and surface tension dominated regimes was developed along with a unified framework that allowed for scaling of pool boiling over a wide range of gravity levels and heater sizes. The scaling laws developed in this study are expected to allow performance quantification of phase change based technologies under variable gravity environments eventually leading to their implementation in space based applications.
Boiling Experiment Facility for Heat Transfer Studies in Microgravity
Delombard, Richard; McQuillen, John; Chao, David
2008-01-01
Pool boiling in microgravity is an area of both scientific and practical interest. By conducting tests in microgravity, it is possible to assess the effect of buoyancy on the overall boiling process and assess the relative magnitude of effects with regards to other "forces" and phenomena such as Marangoni forces, liquid momentum forces, and microlayer evaporation. The Boiling eXperiment Facility is now being built for the Microgravity Science Glovebox that will use normal perfluorohexane as a test fluid to extend the range of test conditions to include longer test durations and less liquid subcooling. Two experiments, the Microheater Array Boiling Experiment and the Nucleate Pool Boiling eXperiment will use the Boiling eXperiment Facility. The objectives of these studies are to determine the differences in local boiling heat transfer mechanisms in microgravity and normal gravity from nucleate boiling, through critical heat flux and into the transition boiling regime and to examine the bubble nucleation, growth, departure and coalescence processes. Custom-designed heaters will be utilized to achieve these objectives.
Enhanced boiling heat transfer in horizontal test bundles
Energy Technology Data Exchange (ETDEWEB)
Trewin, R.R.; Jensen, M.K.; Bergles, A.E.
1994-08-01
Two-phase flow boiling from bundles of horizontal tubes with smooth and enhanced surfaces has been investigated. Experiments were conducted in pure refrigerant R-113, pure R-11, and mixtures of R-11 and R-113 of approximately 25, 50, and 75% of R-113 by mass. Tests were conducted in two staggered tube bundles consisting of fifteen rows and five columns laid out in equilateral triangular arrays with pitch-to-diameter ratios of 1.17 and 1.5. The enhanced surfaces tested included a knurled surface (Wolverine`s Turbo-B) and a porous surface (Linde`s High Flux). Pool boiling tests were conducted for each surface so that reference values of the heat transfer coefficient could be obtained. Boiling heat transfer experiments in the tube bundles were conducted at pressures of 2 and 6 bar, heat flux values from 5 to 80 kW/m{sup 2}s, and qualities from 0% to 80%, Values of the heat transfer coefficients for the enhanced surfaces were significantly larger than for the smooth tubes and were comparable to the values obtained in pool boiling. It was found that the performance of the enhanced tubes could be predicted using the pool boiling results. The degradation in the smooth tube heat transfer coefficients obtained in fluid mixtures was found to depend on the difference between the molar concentration in the liquid and vapor.
Comparative analysis of heat transfer correlations for forced convection boiling
International Nuclear Information System (INIS)
A critical survey was conducted of the most relevant correlations of boiling heat transfer in forced convection flow. Most of the investigations carried out on partial nucleate boiling and fully developed nucleate boiling have led to the formulation of correlations that are not able to cover a wide range of operating conditions, due to the empirical approach of the problem. A comparative analysis is therefore required in order to delineate the relative accuracy of the proposed correlations, on the basis of the experimental data presently available. The survey performed allows the evaluation of the accuracy of the different calculating procedure; the results obtained, moreover, indicate the most reliable heat transfer correlations for the different operating conditions investigated. This survey was developed for five pressure range (up to 180bar) and for both saturation and subcooled boiling condition
Numerical model of post-DNB transition boiling heat transfer
International Nuclear Information System (INIS)
In this paper a physical model for the transition boiling heat transfer is proposed. The corresponding mathematical descriptions are given in detail and the heat transfer characteristics of post-DNB transition boiling is analyzed. The numerical model of post-DNB transition boiling heat transfer is obtained as the empirical value of the coefficient is determined by the experimental data. The numerical model is compared with the experimental data of different parameters and other numerical models, and the statistical deviations are calculated. The calculating results of the numerical model in this paper show good agreement with the experimental data and the numerical model in this paper is with good applicability compared with other numerical models. (authors)
Numerical modeling of boiling heat transfer in porous media
International Nuclear Information System (INIS)
Theoretical models were developed and validated to investigate boiling heat transfer in porous layers with and without the presence of chimneys. The critical heat flux and distributions of temperature, liquid saturation, liquid and vapor pressures, and liquid and vapor velocities were predicted numerically under typical PWR conditions. The results indicate that a porous layer produces a higher heat transfer coefficient in the nucleate boiling regime, as is well-known, and could potentially yield a much higher critical heat flux than a plain surface does. Moreover, a chimney-type porous layer can have a better thermal performance, i.e., heat transfer coefficient and critical heat flux than a homogeneous one, primarily due to the presence of chimneys providing pathways for vapor to escape from the porous layer with less resistance
Li, Q; Francois, M M; He, Y L; Luo, K H
2015-01-01
A hybrid thermal lattice Boltzmann (LB) model is presented to simulate thermal multiphase flows with phase change based on an improved pseudopotential LB approach [Q. Li, K. H. Luo, and X. J. Li, Phys. Rev. E 87, 053301 (2013)]. The present model does not suffer from the spurious term caused by the forcing-term effect, which was encountered in some previous thermal LB models for liquid-vapor phase change. Using the model, the liquid-vapor boiling process is simulated. The boiling curve together with the three boiling stages (nucleate boiling, transition boiling, and film boiling) is numerically reproduced in the LB community for the first time. The numerical results show that the basic features and the fundamental characteristics of boiling heat transfer are well captured, such as the severe fluctuation of transient heat flux in the transition boiling and the feature that the maximum heat transfer coefficient lies at a lower wall superheat than that of the maximum heat flux. Furthermore, the effects of the he...
Nucleate pool-boiling heat transfer - I. Review of parametric effects of boiling surface
International Nuclear Information System (INIS)
The objective of this paper is to assess the state-of-the-art of heat transfer in nucleate pool-boiling. Therefore, the paper consists of two parts: part I reviews and examines the effects of major boiling surface parameters affecting nucleate-boiling heat transfer, and part II reviews and examines the existing prediction methods to calculate the nucleate pool-boiling heat transfer coefficient (HTC). A literature review of the parametric trends points out that the major parameters affecting the HTC under nucleate pool-boiling conditions are heat flux, saturation pressure, and thermophysical properties of a working fluid. Therefore, these effects on the HTC under nucleate pool-boiling conditions have been the most investigated and are quite well established. On the other hand, the effects of surface characteristics such as thermophysical properties of the material, dimensions, thickness, surface finish, microstructure, etc., still cannot be quantified, and further investigations are needed. Particular attention has to be paid to the characteristics of boiling surfaces. (author)
Micro-channel convective boiling heat transfer with flow instabilities
International Nuclear Information System (INIS)
Flow boiling heat transfer in micro-channels has attracted much interest in the past decade, and is currently a strong candidate for high performance compact heat sinks, such as those required in electronics systems, automobile air conditioning units, micro-reactors, fuel cells, etc. Currently the literature presents numerous experimental studies on two-phase heat transfer in micro-channels, providing an extensive database that covers many different fluids and operating conditions. Among the noteworthy elements that have been reported in previous studies, is the sensitivity of micro-channel evaporators to oscillatory two-phase instabilities. These periodic fluctuations in flow and pressure drop either result from the presence of upstream compressibility, or are simply due to the interaction among parallel channels in multi-port systems. An oscillating flow presents singular characteristics that are expected to produce an effect on the local heat transfer mechanisms, and thus on the estimation of the two-phase heat transfer coefficients. The present investigation illustrates results for flow boiling of refrigerants R-134a, R-236fa, and R-245fa in a 510 μm circular micro-channel, exposed to various degrees of oscillatory compressible volume instabilities. The data describe the main features of the fluctuations in the temperatures of the heated wall and fluid, and draw attention to the differences in the measured unstable time-averaged heat transfer coefficients with respect to those for stable flow boiling. (author)
International Nuclear Information System (INIS)
The large nuclear power plant like APR1400 have a emergency core cooling system (ECCS) for large break loss of coolant accident (LBLOCA). To evaluate the cooling capacity of ECCS, it is important to analysis the heat transfer at dispersed film boiling region and to evaluate the amount of reflood. During the reflood, boiling occurs at the downcomer of vessel and the boiling play a role of blockage and hence the amount of inflow is reduced. Therefore, the phenomena also will be evaluated. This study is composed of three key subjects. One is the study about the heat transfer at dispersed film boiling. In this subject, the final goal is to develop a boiling model. For this, we will analysis the experimental results and other correlation. and the mechanisms will be also compared with each other. The new model will be developed including recent experimental results. Second one is to do a experimental works about the amount of inflow under the downcomer boiling simulation. In this experiment, the air-water is working fluid. the bubble dynamics, pressure drop of two phase flow, blockage effect and etc. will be observed. and some of these will be quantified. Third subjects is to control the boiling heat transfer coefficient. Here, the method will be various surface treatment.
Dimensional analysis of boiling heat transfer burnout conditions
International Nuclear Information System (INIS)
The first criteria in boiling water systems design, such as boiling water reactors, is that no burnout in the core is allowed to exist under any conditions of the reactor operation either during steady state operation or during any of the several postulated accidental transients, such as sudden interruption of coolant flow in the reactor core (due to pump failure or blockage of fuel channel). The aim of the present work is to obtain a correlation for the critical heat flux based on a theoretical study where the mechanism of burn out and the related hydrodynamic and heat transfer equations are considered. 8 refs
Boiling heat transfer on fins – experimental and numerical procedure
Directory of Open Access Journals (Sweden)
Orzechowski T.
2014-03-01
Full Text Available The paper presents the research methodology, the test facility and the results of investigations into non-isothermal surfaces in water boiling at atmospheric pressure, together with a discussion of errors. The investigations were conducted for two aluminium samples with technically smooth surfaces and thickness of 4 mm and 10 mm, respectively. For the sample of lower thickness, on the basis of the surface temperature distribution measured with an infrared camera, the local heat flux and the heat transfer coefficient were determined and shown in the form of a boiling curve. For the thicker sample, for which 1-D model cannot be used, numerical calculations were conducted. They resulted in obtaining the values of the local heat flux on the surface the invisible to the infrared, camera i.e. on the side on which the boiling of the medium proceeds.
Flow boiling heat transfer in mini-channels
International Nuclear Information System (INIS)
In view of practical significance of a correlation of heat transfer coefficient in the aspect of such applications as engineering design and prediction, some efforts towards correlating flow boiling heat transfer coefficients for mini-channels have been made in this study. Based on analyses of existing experimental investigations of flow boiling, it was found that liquid-laminar and gas-turbulent flow is a common feature in many applications of mini-channels. Traditional heat transfer correlations for saturated flow boiling were developed for liquid-turbulent and gas-turbulent flow conditions and thus may not be suitable in principle to be used to predict heat transfer coefficients in mini-channels when flow conditions are liquid-laminar and gas-turbulent. By considering flow conditions (laminar or turbulent) in the Reynolds number factor F and single-phase heat transfer coefficient hsp, the Chen correlation has been modified to be used for four flow conditions such as liquid-laminar and gas-turbulent one often occurring in mini-channels. A comparison of the newly developed correlation with various existing data for mini-channels shows a satisfactory agreement. In addition, an extensive comparison of existing general correlations with databases for mini-channels has also been made. (author)
Electrical control and enhancement of boiling heat transfer during quenching
Shahriari, Arjang; Hermes, Mark; Bahadur, Vaibhav
2016-02-01
Heat transfer associated with boiling degrades at elevated temperatures due to the formation of an insulating vapor layer at the solid-liquid interface (Leidenfrost effect). Interfacial electrowetting (EW) fields can disrupt this vapor layer to promote liquid-surface wetting. We experimentally analyze EW-induced disruption of the vapor layer and measure the resulting enhanced cooling during the process of quenching. Imaging is employed to visualize the fluid-surface interactions and understand boiling patterns in the presence of an electrical voltage. It is seen that EW fields fundamentally change the boiling pattern, wherein a stable vapor layer is replaced by intermittent wetting of the surface. Heat conduction across the vapor gap is thus replaced with transient convection. This fundamental switch in the heat transfer mode significantly accelerates cooling during quenching. An order of magnitude increase in the cooling rate is observed, with the heat transfer seen approaching saturation at higher voltages. An analytical model is developed to extract voltage dependent heat transfer rates from the measured cooling curve. The results show that electric fields can alter and tune the traditional cooling curve. Overall, this study presents an ultralow power consumption concept to control the mechanical properties and metallurgy, by electrically tuning the cooling rate during quenching.
Heat transfer properties of organic coolants containing high boiling residues
International Nuclear Information System (INIS)
Heat transfer measurements were made in forced convection with Santowax R, mixtures of Santowax R and pyrolytic high boiling residue, mixtures of Santowax R and CMRE Radiolytic high boiling residue, and OMRE coolant, in the range of Reynolds number 104 to 105. The data was correlated with the equation Nu = 0.015 Reb0.85 Prb0.4 with an r.m.s. error of ± 8.5%. The total maximum error arising from the experimental method and inherent errors in the physical property data has been estimated to be less than ± 8.5%. From the correlation and physical property data, the decrease in heat transfer coefficient with increasing high boiling residue concentration has been determined. It has been shown that subcooled boiling in organic coolants containing high boiling residues is a complex phenomenon and the advantages to be gained by operating a reactor in this region may be marginal. Gas bearing pumps used initially in these experiments were found to be unsuitable; a re-designed ball bearing system lubricated with a terphenyl mixture was found to operate successfully. (author)
Evaluation of Correlations of Flow Boiling Heat Transfer of R22 in Horizontal Channels
Zhanru Zhou; Xiande Fang; Dingkun Li
2013-01-01
The calculation of two-phase flow boiling heat transfer of R22 in channels is required in a variety of applications, such as chemical process cooling systems, refrigeration, and air conditioning. A number of correlations for flow boiling heat transfer in channels have been proposed. This work evaluates the existing correlations for flow boiling heat transfer coefficient with 1669 experimental data points of flow boiling heat transfer of R22 collected from 18 published papers. The top two corr...
Boiling Heat Transfer Experiments by using Transparent Heated Microtube
Huang, Shih-Che; Kawanami, Osamu; Kawakami, Kazunari; Honda, Itsuro; Kawashima, Yousuke; Ohta, Haruhiko
For detailed study of the relationship between boiling bubble behavior and inner wall temperature during flow boiling in microtubes, a transparent heated microtube, whose inner wall was coated with a thin gold film, was employed. Boiling behavior could be observed clearly, and the inner wall temperature of the tube was measured simultaneously with direct heating of the film. Ionized water was used as a test fluid. The experimental conditions were as follows: tube diameter, 1 mm; inlet liquid subcooling, 10 K; mass velocity, 100 kg/m2s and heat flux, up to 469 kW/m2 in the open system. As a result, the frequencies of fluctuation of the inner wall temperature and flow rate were divided into four regions. In addition, the fluctuation range of flow rate increased with increasing heat flux however, this fluctuation decreased drastically for heat flux over 212 kW/m2. The fluctuation of void fraction coincided with that of inner wall temperature.
Vertical clog flow heat transfer with nucleate boiling
International Nuclear Information System (INIS)
This paper presents a model for slug flow heat transfer which is modified by incorporating the effect of nucleate boiling. This modification has made the slug flow model more useful for practical situations where presence of nucleate boiling is generally a norm rather than an exception. The model is further improved by taking into account the previously ignored effect of vapor bubbles present in the liquid slug. These modifications not only make the slug flow model more realistic but also improve its predictive capabilities. This improvement is demonstrated by comparing the predictions of the current model and the previous model with the published slug flow data. The mean deviation between the prediction and the measured slug flow data for water in the range of 20 to 100 kW/m2 heat flux is 5.87% for a total 171 data points
Boiling Heat Transfer on Superhydrophilic, Superhydrophobic, and Superbiphilic Surfaces
Betz, Amy Rachel; Kim, Chang-Jin 'CJ'; Attinger, Daniel
2012-01-01
With recent advances in micro- and nanofabrication, superhydrophilic and superhydrophobic surfaces have been developed. The statics and dynamics of fluids on these surfaces have been well characterized. However, few investigations have been made into the potential of these surfaces to control and enhance other transport phenomena. In this article, we characterize pool boiling on surfaces with wettabilities varied from superhydrophobic to superhydrophilic, and provide nucleation measurements. The most interesting result of our measurements is that the largest heat transfer coefficients are reached not on surfaces with spatially uniform wettability, but on biphilic surfaces, which juxtapose hydrophilic and hydrophobic regions. We develop an analytical model that describes how biphilic surfaces effectively manage the vapor and liquid transport, delaying critical heat flux and maximizing the heat transfer coefficient. Finally, we manufacture and test the first superbiphilic surfaces (juxtaposing superhydrophobic ...
Numerical modelling of boiling heat transfer in microchannels
International Nuclear Information System (INIS)
In this paper we report the results of our modelling studies on two-phase forced convection in microchannels using water as the fluid medium. The study incorporates the effects of fluid flow rate, power input and channel geometry on the flow resistance and heat transfer from these microchannels. Two separate numerical models have been developed assuming homogeneous and annular flow boiling. Traditional assumptions like negligible single-phase pressure drop or fixed inlet pressure have been relaxed in the models making analysis more complex. The governing equations have been solved from the grass-root level to predict the boiling front, pressure drop and thermal resistance as functions of exit pressure and heat input. The results of both the models are compared to each other and with available experimental data. It is seen that the annular flow model typically predicts higher pressure drop compared to the homogeneous model. Finally, the model has also been extended to study the effects of non-uniform heat input along the flow direction. The results show that the non-uniform power map can have a very strong effect on the overall fluid dynamics and heat transfer
International Nuclear Information System (INIS)
In general, the evaluation of the boiling performance mainly focuses on two physical parameters: boiling heat transfer (BHT) and critical heat flux (CHF). In the nuclear power plants, both BHT and CHF contribute the nuclear system efficiency and safety, respectively. In this study, BHT and CHF of the pool boiling on well-organized fabricated structured (micro scaled) surface has been evaluated. As a results, BHT change on microstructured surface shows strongly dependent on Pin-fin effect analysis. In terms of CHF, critical size of micro structure for CHF enhancement has been observed and analyzed based on the capillary wicking effect. In this study, BHT and CHF of the pool boiling on well-organized fabricated structured (micro scaled) surface has been evaluated. As a results, BHT change on microstructured surface shows strongly dependent on the roughness ratio. The extended heat transfer area contributes the boiling heat transfer increase on the structured surface, and its quantitative analysis has been performed. In terms of CHF, the critical size of micro structure for CHF enhancement has been observed and analyzed based on the capillary wicking effect. We suggested a capillary limit to CHF delay for modeling capillary induced liquid inflow through microstructured surfaces. The critical size of the capillary limit on the prepared structured surface, determined by a model, could be reasonable explanation points for the experimental results (optimal size for CHF delay). The present experimental results also showed clearly the critical size (10 - 20 μm) for CHF delay, predicted by capillary limit analysis. This study provides fundamental insight into BHT and CHF enhancement of structured surfaces, and an optimal design guide for the required CHF and boiling heat-transfer performance. Finally, this study can contribute the basic understanding of the boiling on designed microstructure surface, and it also suggest the optimal micro scaled structured surface of boiling
Institute of Scientific and Technical Information of China (English)
Tao JIN; Jian-ping HONG; Hao ZHENG; Ke TANG; Zhi-hua GAN
2009-01-01
Inverse heat conduction method (IHCM)is one of the most effective approaches to obtaining the boiling heat transfer coefficient from measured results.This paper focuses on its application in cryogenic boiling heat transfer.Experiments were conducted on the heattransfer of a stainless steel block in a liquid nitrogen bath.with the assumption of a ID conduction condition to realize fast acquisition of the temperature of the test points inside the block.With the inverse-heat conduction theory and the explicit finite difference model,a solving program was developed to calculate the heat flux and the boiling heat transfer coefficient of a stainless steel block in liquid nitrogen bath based on the temperature acquisition data.Considering the oscillating data and some unsmooth transition points in the inverse-heat-conduction calculation result of the heat-transfer coefficient,a two-step data-fitting procedure was proposed to obtain the expression for the boiling heat transfer coefficients.The coefficient was then verified for accuracy by a comparison between the simulation results using this expression and the verifying experimental results of a stainless steel block.The maximum error with a revised segment fitting iS around 6%.which verifies the feasibility of using IHCM to measure the boiling heat transfer coefficient in liquid nitrogen bath.
Experimental Investigation on Pool Boiling Heat Transfer With Ammonium Dodecyl Sulfate
Mr.P. Atcha Rao; Mr.V.V.Ramakrishna
2015-01-01
We have so many applications related to Pool Boiling. The Pool Boiling is mostly useful in arid areas to produce drinking water from impure water like sea water by distillation process. It is very difficult to distill the only water which having high surface tension. The surface tension is important factor to affect heat transfer enhancement in pool boiling. By reducing the surface tension we can increase the heat transfer rate in pool boiling. From so many years we are using surf...
A correlation to the heat transfer coefficient in nucleate boiling
International Nuclear Information System (INIS)
Nucleate boiling heat transfer is a complex phenomenon, making the development of a correlation for the heat transfer coefficient rather cumbersome due to the number of physical parameters involved in it. Some authors have followed a pragmatic approach to the problem by correlating the heat transfer coefficient in terms of reduced primitive properties. Two of the most knowledgeable authors who have followed this approach are Gorenflo and Cooper. Comparisons have been performed among results from the correlations proposed by these researchers and experimental results obtained elsewhere for refrigerants R-11, R-113 and R-114. These comparisons have shown that Cooper's correlation is best fitted for halocarbon refrigerants. The correlation proposed by Gorenflo ads the difficulty of including a numerical factor specific for each fluid. Leiner modified Gorenflo's correlation to determine the numerical factor as a function of known physical parameters of the fluid. In present study, the form of this function has been investigated for halocarbon refrigerants. The obtained correlation is written in terms of the following parameters: reduced pressure, eccentric and compressibility factors at the critical state, and a dimensionless specific heat of the vapor phase. The correlation compares well with experimental results. (author)
International Nuclear Information System (INIS)
Flow boiling in microchannel heat sinks is significantly influenced by capillary forces and by boundary constrains affecting the flow pattern and the heat transfer. In the present work, some characteristics of flow boiling heat transfer are explained using measurements of statistical parameters of gas-liquid two-phase flow in a rectangular microchannel. Such statistical characteristics of the flow as length distributions of elongated bubbles and liquid plugs, and also velocity distribution of the elongated bubbles are determined by dual laser scanning of the horizontal adiabatic nitrogen-water flow in a microchannel with the cross-section of 370×217 μm. Pressure gradients in gas-liquid flow are measured, and the results found well matching the predictions that account for capillary pressure on the gas-liquid interface. Heat transfer coefficients are measured for a horizontal copper microchannel heat sink with refrigerant R-21 as the working fluid. The heat sink contains 21 channels with cross section dimensions 930×335-μm. Distribution of local heat transfer coefficients along the length and the width of the microchannel plate is measured in the range of heat fluxes from 14 to 63 kW/m2; vapour quality was varied within 0.05-0.8, and pressure was about 1.6 bar. For flow boiling of R-21 refrigerant, contributions of nucleate boiling and forced convection are comparable. This allows us to examine the heat transfer mechanism for these complex conditions.
Pool boiling heat transfer on heterogeneous wetting surface with hydrophobic dots
International Nuclear Information System (INIS)
The boiling heat transfer mechanism of pool boiling is fundamental phenomena for understanding the phase change nature. Of many surface characteristics, the effects of wettability of heating surface is focused on as the dominant parameter for bubble dynamics and boiling heat transfer. In this study, highly controlled heating surfaces via MEMs technique were used for understanding the boiling heat transfer of heterogeneous wetting surfaces mixed by hydrophobic dots and a hydrophilic substrate. The diameter of hydrophobic dots and area ratio of phobic dots to heating area were regulated. The range of phobic dot diameter and area ratio were 50∼1000μm and 18.33∼54.3%, respectively. The performance of boiling heat transfer of each surface were evaluated by comparing with a wholly hydrophilic surface. It will contribute to understand the mechanism and criterion of enhanced heating surface condition by modified surface treatment procedure
Study on saturated flow boiling heat transfer under vibration conditions
International Nuclear Information System (INIS)
The ability to predict void formation, void fraction and critical heat flux -CHF- in flow boiling under oscillatory flow and vibration conditions is important to the safety technology of nuclear reactor during earthquake. In the present study, the onset of nucleate boiling -ONB-, the point of net vapor generation -NVG- and CHF on saturated flow boiling under vibration conditions were investigated experimentally. Steady state experiments were conducted using a copper thin-film and subcooled water at 0.1 MPa. The liquid velocity was 0.27, 1.38, 3.20 and 4.07 m/s, respectively; the liquid subcooling was 0 K. A heater was made of a printed circuit board. A test section was a rectangular flow channel of 10 mm width and 10 mm height. The test heater was heated by Joule heating of d.c. current from a low-voltage high-current stabilizer. The heating rate of the heater was determined from supplied current and voltage. The temperature of the heater was obtained by referring to the measured electric resistance. The test section was arranged for horizontal position facing upward and for vertical position, respectively. For the vibration condition, the test section was set on a vibration table. The ONB was decided as an occurrence of the first boiling bubble. The critical heat flux was determined as that immediately before the heating surface physically burned-out. The CHF on saturated flow boiling under vibration conditions were investigated experimentally. (author)
International Nuclear Information System (INIS)
The computer program SAFE has been used to size and analyze the performance of a steam generator which has two types of heat transfer regions in Korean Standard Nuclear Power Plants (KSNP) and Korean Next Generation Reactor (KNGR) design. The SAFE code calculates the analytical boiling heat transfer area using the modified form of the saturated nucleate pool boiling correlation suggested by Rohsenow. The predicted heat transfer area in the boiling region is multiplied by a constant to obtain a final analytical heat transfer area. The inclusion of the multiplier in the analytical calculation has some disadvantage of loss of complete correlation by the governing heat transfer equation. Several comparative analyses have been performed quantitatively to evaluate the possibility of removing the multiplier in the analytical calculation in the SAFE code. The evaluation shows that the boiling correlation and multiplier used in predicting the boiling region heat transfer area can be replaced with other correlations predicting nearly the same heat transfer area. The removal of multiplier included in the analytical calculation will facilitate a direct use of a set of concerned analytical sizing values that can be exactly correlated by the governing heat transfer equation. In addition this will provide more reasonable basis for the steam generator thermal sizing calculation and enhance the code usability without loss of any validity of the current sizing procedure. (author)
Study on pool-nucleate boiling heat transfer characteristics by using artificial cavities
International Nuclear Information System (INIS)
Pool boiling heat transfer experiments were performed by using the well-controlled/defined heat transfer surface for water. Uni-size and -shape artificial cavities were created on the mirror-finished silicon plate by utilizing the MEMS technology. Experimental results agreed well with what were predicted by the traditional boiling theory. The mirror finished surface showed only the tendency of natural circulation heat transfer. The artificial-cavity heat transfer surface followed the pool-nucleate boiling trend. The onset of the pool-nucleate boiling was well predicted by the traditional pool-nucleate boiling theory. These results indicated that the artificial cavities behave just like natural cavities. The results indicated the artificial cavities are quite useful and promising to examine the true features of complicated boiling that have been overshadowed by complicatedness. (authors)
Boiling heat transfer of refrigerant R-21 in upward flow in plate-fin heat exchanger
Kuznetsov, V. V.; Shamirzaev, A. S.
2015-11-01
The article presents the results of experimental investigation of boiling heat transfer of refrigerant R-21 in upward flow in a vertical plate-fin heat exchanger with transverse size of the channels that is smaller than the capillary constant. The heat transfer coefficients obtained in ranges of small mass velocities and low heat fluxes, which are typical of the industry, have been poorly studied yet. The characteristic patterns of the upward liquid-vapor flow in the heat exchanger channels and the regions of their existence are detected. The obtained data show a weak dependence of heat transfer coefficient on equilibrium vapor quality, mass flow rate, and heat flux density and do not correspond to calculations by the known heat transfer models. A possible reason for this behavior is a decisive influence of evaporation of thin liquid films on the heat transfer at low heat flux.
Enhanced convective and film boiling heat transfer by surface gas injection
Energy Technology Data Exchange (ETDEWEB)
Duignan, M.R.; Greene, G.A. (Brookhaven National Lab., Upton, NY (United States)); Irvine, T.F., Jr. (State Univ. of New York, Stony Brook, NY (United States). Dept. of Mechanical Engineering)
1992-04-01
Heat transfer measurements were made for stable film boiling of water over a horizontal, flat stainless steel plate from the minimum film boiling point temperature, T{sub SURFACE} {approximately}500K, to T{sub SURFACE} {approximately}950K. The pressure at the plate was approximately 1 atmosphere and the temperature of the water pool was maintained at saturation. The data were compared to the Berenson film-boiling model, which was developed for minimum film-boiling-point conditions. The model accurately represented the data near the minimum film-boiling point and at the highest temperatures measured, as long it was corrected for the heat transferred by radiation. On the average, the experimental data lay within {plus minus}7% of the model. Measurements of heat transfer were made without film boiling for nitrogen jetting into an overlying pool of water from nine 1-mm- diameter holes, drilled in the heat transfer plate. The heat flux was maintained constant at approximately 26.4 kW/m{sup 2}. For water-pool heights of less than 6cm the heat transfer coefficient deceased linearly with a decrease in heights. Above 6cm the heat transfer coefficient was unaffected. For the entire range of gas velocities measured (0 to 8.5 cm/s), the magnitude of the magnitude of the heat transfer coefficient only changed by approximately 20%. The heat transfer data bound the Konsetov model for turbulent pool heat transfer which was developed for vertical heat transfer surfaces. This agreement suggests that surface orientation may not be important when the gas jets do not locally affect the surface heat transfer. Finally, a database was developed for heat transfer from the plate with both film boiling and gas jetting occurring simultaneously, in a pool of water maintained at its saturation temperature. The effect of passing nitrogen through established film boiling is to increase the heat transfer from that surface. 60 refs.
Enhanced convective and film boiling heat transfer by surface gas injection
Energy Technology Data Exchange (ETDEWEB)
Duignan, M.R.; Greene, G.A. [Brookhaven National Lab., Upton, NY (United States); Irvine, T.F., Jr. [State Univ. of New York, Stony Brook, NY (United States). Dept. of Mechanical Engineering
1992-04-01
Heat transfer measurements were made for stable film boiling of water over a horizontal, flat stainless steel plate from the minimum film boiling point temperature, T{sub SURFACE} {approximately}500K, to T{sub SURFACE} {approximately}950K. The pressure at the plate was approximately 1 atmosphere and the temperature of the water pool was maintained at saturation. The data were compared to the Berenson film-boiling model, which was developed for minimum film-boiling-point conditions. The model accurately represented the data near the minimum film-boiling point and at the highest temperatures measured, as long it was corrected for the heat transferred by radiation. On the average, the experimental data lay within {plus_minus}7% of the model. Measurements of heat transfer were made without film boiling for nitrogen jetting into an overlying pool of water from nine 1-mm- diameter holes, drilled in the heat transfer plate. The heat flux was maintained constant at approximately 26.4 kW/m{sup 2}. For water-pool heights of less than 6cm the heat transfer coefficient deceased linearly with a decrease in heights. Above 6cm the heat transfer coefficient was unaffected. For the entire range of gas velocities measured [0 to 8.5 cm/s], the magnitude of the magnitude of the heat transfer coefficient only changed by approximately 20%. The heat transfer data bound the Konsetov model for turbulent pool heat transfer which was developed for vertical heat transfer surfaces. This agreement suggests that surface orientation may not be important when the gas jets do not locally affect the surface heat transfer. Finally, a database was developed for heat transfer from the plate with both film boiling and gas jetting occurring simultaneously, in a pool of water maintained at its saturation temperature. The effect of passing nitrogen through established film boiling is to increase the heat transfer from that surface. 60 refs.
Boiling heat transfer in thin liquid layers of mercury under magnetic field
International Nuclear Information System (INIS)
Experimental data are presented on the boiling heat transfer from a horizontal plane heater to liquid layers of mercury in the presence of a magnetic field of which direction is parallel to the direction of gravity. Increasing the magnetic flux density, the incipient boiling heat flux and burnout heat flux decrease in compare with those of no magnetic field. However, when the liquid layer is thin, the magnetic field affects them little. The visual study of mercury boiling experiment is also performed. (author)
A fractal study for nucleate pool boiling heat transfer of nanofluids
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
In this paper, a fractal model for nucleate pool boiling heat transfer of nanofluids is developed based on the fractal distribution of nanoparticles and nucleation sites on boiling surfaces. The model shows the dependences of the heat flux on nanoparticle size and the nanoparticle volume fraction of the suspension, the fractal dimension of the nanoparticle and nucleation site, temperature of nanofluids and properties of fluids. The fractal model predictions show that the natural convection stage continues relatively longer in the case of nanofluids. The addition of nanoparticles causes a decrease of the pool nucleate boiling heat transfer. The nucleate pool boiling heat transfer coefficient is decreased by increasing particle concentration. An excellent agreement between the proposed model predictions and experimental data is found. The validity of the fractal model for nucleate pool boiling heat transfer is thus verified.
Nucleate boiling heat transfer in nanofluids with carbon nanotubes up to critical heat fluxes
International Nuclear Information System (INIS)
In this study, pool boiling heat transfer coefficients (HTCs) and critical heat fluxes (CHF) are measured on a smooth square flat copper heater in a pool of pure water with and without carbon nanotubes (CNTs) dispersed at 60 .deg. C. Tested aqueous nanofluids are prepared using multi-walled CNTs whose volume concentrations are 0.0001, 0.001, 0.01, and 0.05%. For the dispersion of CNTs, DISPERBYK 184 is used in distilled water. Pool boiling HTCs are taken from 10 kW/m2 to critical heat flux for all tested fluids. Test results show that the pool boiling HTCs of the nanofluids are lower than those of pure water in entire nucleate boiling regime. On the other hand, critical heat flux is enhanced greatly showing up to 150% increase at the CNT concentration of 0.001% as compared to that of pure water. This is related to the change in surface characteristics by the deposition of CNTs. This deposition makes a thin CNT layer on the surface and the active nucleation sites of the surface are decreased due to this layer. The thin CNT layer acts as the thermal resistance and also decreases the bubble generation rate resulting in a decrease in pool boiling HTCs. The same layer, however, decreases the contact angle on the test surface and extends the nucleate boiling regime to very high heat flux range and reduces the formation of large vapor canopy at near CHF. Thus, a significant increase in CHF results
Energy Technology Data Exchange (ETDEWEB)
Hsieh, Huai-En; Chen, Mei-Shiue; Chen, Jyun-Wei; Lin, Wei-Keng; Pei, Bau-Shei [National Tsing Hua Univ., Taiwan (China). Inst. of Nuclear Engineering and Science
2015-05-15
Boiling heat transfer has a high heat removal capability in convective cooling. However, the heat removal capability of downward-facing boiling is significantly worse than that of upward-facing cases because of the confined buoyancy effect. This study was inspired by the conception of external reactor vessel cooling (ERVC) condition relevant to the in-vessel retention (IVR) design of Westinghouse AP1000 plant. In the present study, a small-scale test facility had been established to investigate the local phenomena of boiling heat transfer under a downward-facing horizontal heated surface with impinging coolant flow. In this study, the surface temperature, heat flux information and several specific scenes of bubbles are taken down throughout the boiling processes for detailed investigation. It is observed that bubbles are confined under the downward-facing heated surface, which causes a worse heat transfer rate and a lower critical heat flux (CHF) limit than upward-facing boiling. Nevertheless, the impinging coolant flow is found to disturb the thermal boundary layer formed by the heated surface, so the CHF increases with an increase of coolant flow rate. In addition, during nucleate boiling, it is discovered that the growth, combination and dissipation of bubbles induce turbulent wakes and therefore enhance the heat transfer capability.
Directory of Open Access Journals (Sweden)
Hongling Yu
2013-02-01
Full Text Available Experimental investigations are carried out to study the effect of a non uniform electric field on the boiling heat transfer. The study has found that the heat transfer coefficient increases as the electric field strength increases. Enhanced coefficient decreases with heat flux increases and finally reaches a steady value. When the heat flux is small, high voltage has a better enhancement effect. The Onset of Nucleate Boiling (ONB undergoes a larger increase by applying a high voltage.
Exploring the Limits of Boiling and Evaporative Heat Transfer Using Micro/Nano Structures
Lu, Ming-Chang
2010-01-01
This dissertation presents a study exploring the limits of phase-change heat transfer with the aim of enhancing critical heat flux (CHF) in pool boiling and enhancing thermal conductance in heat pipes. The state-of-the-art values of the CHF in pool boiling and the thermal conductance in heat pipes are about two orders of magnitudes smaller than the limits predicted by kinetic theory. Consequently, there seems to be plenty of room for improvement. Pool boiling refers to boiling at a surface im...
MTD-MFC: unified framework for investigation of diversity of boiling heat transfer curves
International Nuclear Information System (INIS)
A keynote paper presents just the next attempt to promote a discussion of modern state of art in the field of boiling heat transfer research. It is shown how longstanding disregard of internal contradictions of applicable approaches has resulted theoretical deadlock. Alternatively, it also is shown how resolution of these contradictions opens the ways to breakthrough in boiling heat transfer theory. Basic experimental facts, physical models and correlations are reconsidered. Principal contradictions between experimental knowledge and traditional model of 'the theatre of actors' (MTA) are discussed. Crucial role of pumping effect of growing bubble (PEGB) in boiling heat transfer and hydrodynamics is shown. Basic role of control of HTC by thermodynamic conditions on nucleation sites is demonstrated and consequent model of 'the theatre of director' (MTD) is discussed. Universal MTD-based correlation of boiling HTC of all types of liquids is considered. Unified consistent research framework for developed boiling heat transfer and diverse specific boiling heat transfer regimes is outlined through supplementing MTD by so-called multifactoring concept (MFC). The latter links transition from developed boiling mode to diverse boiling curves to a phenomenon of multiplication of factors influencing HTC. The ways of further research of the boiling problem are discussed. (author)
International Nuclear Information System (INIS)
Two-phase flow heat transfer has been exhaustively studied over recent years. However, in this field several questions remain unanswered. Heat transfer coefficient prediction related to nucleate and convective boiling have been studied using different approaches, numerical, analytical and experimental. In this work, an experimental analysis, data representation and heat transfer coefficient prediction on two-phase heat transfer on nucleate and convective boiling are presented. An empirical correlation is obtained based on genetic algorithms search engine over a dimensional analysis of the two-phase flow heat transfer problem. (author)
Experimental study on the critical heat flux and heat transfer coefficient in nanofluid pool boiling
International Nuclear Information System (INIS)
Nanofluid is the liquid with dilute dispersion of nano-meter sized solid particles. It is know that the critical heat flux in pool boiling is usually enhanced and the heat transfer coefficient changes rather complicatedly in the nanofluid comparing with the pure liquid. At present, it is believed that the CHF enhancement can mainly be attributed to the nano-particle layer formed on the heated surface during nucleate boiling. Since nano-particles are often agglomerated in the base liquid, it is expected that the dispersion condition of nano-particles in the base liquid has some impact on the formation process of the nano-particle layer and consequently the value of CHF. In this experimental work, systematic investigation was carried out for the effect of the particle dispersion condition in the base liquid on the CHF and the heat transfer coefficient in nucleate pool boiling of water-based nanofluids. In the present experiments using TiO2 nanofluids as the test fluid, the CHF was not influenced significantly by the particle dispersion condition whilst noticeable deterioration of the boiling heat transfer took place only in the case of fine particle dispersion. (author)
Experimental study on augmentation of nucleate boiling heat transfer on nano porous surfaces
Energy Technology Data Exchange (ETDEWEB)
Park, Young Jae; Kim, Hyung Dae [Kyung Hee Univ., Seoul (Korea, Republic of)
2012-10-15
Nucleate boiling broadly occurs in thermal hydraulic and safety systems of nuclear power plant (NPP). Heat transfer performance of nucleate boiling is closely related to efficiency and safety of NPPs. Hence, there have been numerous researches to effectively enhance nucleate boiling heat transfer performance. A number of recent studies have reported significant enhancements in nucleate boiling heat transfer coefficient (NBHTC) and critical heat flux (CHF) by fabricating nano/microscale structures on a boiling surface. Wei et al. showed that both NBHTC and CHF can be significantly enhanced with micro pin finned structures. They explained enhancement of NBHTC and CHF that occurred by increase in effective heat transfer area due to micro pin finned structures. Ahn et al. reported 100% enhancement in CHF on a boiling surface with nano/micro hybrid structures. They analyzed CHF enhancement that was caused by improvement of surface wettability on Nano/micro hybrid structures. In this study, an ordered nano porous surface was prepared using anodized aluminum oxide (AAO) technique and nucleate boiling heat transfer performance was examined in a pool with FC 72. Furthermore, the pool boiling result on the nano porous surface was interpreted based on heterogeneous bubble nucleation theory from a cavity.
Semi-empirical modeling of pool boiling heat transfer in binary mixtures
International Nuclear Information System (INIS)
Highlights: • The boiling heat transfer coefficient of mixtures are less than those of ideal. • Evaporation of the volatile component increases the V–L interfacial temperature. • The transition q/A from free convection to boiling is about 20 kW per square meter. -- Abstract: Pool boiling heat transfer has been investigated for various binary mixtures, including acetone/isopropanol, water/acetone, water/methanol, water/ethanol, water/isopropanol, water/monoethanolamine, water/diethanolamine and water/triethyleneglycol as test solutions. Many correlations have been developed to predict the pool boiling heat transfer coefficient in mixtures in the past few decades, however the predicted values are not confirming. In addition, the application of many existing correlations requires some individual adjusting parameters that may be not available for every system. In this investigation, a new set of experimental data are presented. These data have been compared to major existing correlations. It is observed that the pool boiling heat transfer coefficients in mixtures are less than the ideal boiling heat transfer coefficient. A new semi-empirical model has been proposed based on the mass transfer resistance to predict the boiling heat transfer coefficient with satisfactory accuracy. The new model does not include any tuning parameter and is applicable to any given binary system. The performance of the proposed model is superior to most existing correlations
Comprehensive Evaluation and Prediction of Enhancement of Boiling Heat Transfer with Additives
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
A model of evaluation and prediction of enhancement of boiling heat transfer with additives has been propoeed according to fuzzy fundamentals. Correlative appraisement of boiling heat transfer augmentation was done with the model based on 39 additives which were tested by the authors and other researchers. The results show that the evaluation of 35 additives is consistent with experiments, which means that the accuracy of the model is 89.7 percent. In addition, the prediction of the ability of boiling heat transfer enhancement with sodium oleate,polyethylene glycol and Tween-40 is also in good agreement with correspondent experiments.
Heat Transfer of Single and Binary Systems inPool Boiling
Abbas J. Sultan; Balasim A. Abid
2010-01-01
The present research focuses on the study of the effect of mass transfer resistance on the rate of heat transfer in pool boiling. The nucleate pool boiling heat transfer coefficients for binary mixtures (ethanol-n-butanol, acetone-n-butanol, acetone-ethanol, hexane-benzene, hexane-heptane, and methanol-water) were measured at different concentrations of the more volatile components. The systems chosen covered a wide range of mixture behaviors.The experimental set up for the present investigat...
Boiling two-phase flow and heat transfer in concentric annular tube
International Nuclear Information System (INIS)
The boiling flow resistance and heat transfer characteristics is experimentally investigated under the outer tube wall heating condition in a concentric annular tube with 2.1 mm gap size. The results show that the flow resistance in the annular tube is greater than that in circular tube, as well as the boiling heat transfer becomes enhanced. The heat transfer coefficient has close relationship with the pressure, thermal equilibrium quality, mass flux, heat flux, gap size of the annular tube, and heat models as well. The physical explanation about the enhancement boiling heat transfer in the annular tube is proposed with both micro-film evaporation mechanics and bubble disturbance mechanics. The correlations to calculate the flow friction coefficient and heat transfer coefficient are proposed based on the experimental data. (authors)
Boiling heat transfer on fins – experimental and numerical procedure
Orzechowski T.; Tyburczyk A.
2014-01-01
The paper presents the research methodology, the test facility and the results of investigations into non-isothermal surfaces in water boiling at atmospheric pressure, together with a discussion of errors. The investigations were conducted for two aluminium samples with technically smooth surfaces and thickness of 4 mm and 10 mm, respectively. For the sample of lower thickness, on the basis of the surface temperature distribution measured with an infrared camera, the local heat flux and the h...
Heat transfer coefficient in pool boiling for an electrically heated tube at various inclinations
International Nuclear Information System (INIS)
An experimental investigation is carried out study the behaviour of heat transfer in pool boiling from a vertical and inclined heated tube at atmospheric pressure. An imperial correlation joining the different parameters affecting the heat transfer coefficient in pool boiling for an electrically heated tube at various inclinations is developed. Two test sections (zircaloy-4 and stainless steel) of 16 n n outer diameter and 120 nm length are investigated. Four levels of heat flux are used for heating the two lest sections (e.g. 381, 518, 721 and 929 k.watt/n 2). The maximum surface temperature achieved is 146.5 degree c for both materials, and the maximum bulk temperature is 95 degree C. It is found that the average heat transfer coefficient is inversely proportional with heated length l, where it reaches a constant value in the horizontal position. The heat transfer coefficient curves at various inclinations with respect to the heated tube length pass around one point which is defined as limit length
Numerical investigation of boiling heat transfer on the shell-side of spiral wound heat exchanger
Wu, Zhi-Yong; Wang, He; Cai, Wei-Hua; Jiang, Yi-Qiang
2016-07-01
The aim of this paper is to numerically study boiling heat transfer on the shell-side of spiral wound heat exchanger (SWHE). The physical model for the shell-side of SWHE is established and the volume of fluid (VOF) method is used in the calculation. For propane and ethane, there are thirty cases to be simulated . Through the comparison with experimental data, the cause which leads to the simulation distortion is found, and the satisfied results of calculation are finally achieved. The simulation results show that the VOF model can be adopted well to those calculations whose inlet quality are lower than 0.1 kg/kg, and the calculation deviations are generally within ±20 %. In falling film flow, the heat transfer performance for the shell-side of SWHE is primarily influenced by Reynolds number. The visualization of simulation results displays that the boiling bubbles have three flow directions, besides flowing down with liquid phase, one portion of bubbles flows reversely up, and another portion is blocked at axial gaps of coils where the heat transfer is reduced. The studies of boiling on the shell-side of SWHE not only reveal the characteristics of heat transfer, but also point out the improvement direction of SWHE.
Pool boiling heat transfer to dilute copper oxide aqueous nano-fluids
International Nuclear Information System (INIS)
A set of experiments have been performed to quantify the pool boiling heat transfer coefficient of dilute copper oxide water-based nano-fluids at mass concentrations of 0.1-0.4%. To stabilize the two-step nano-fluids, pH control, stirring and sonication were utilized. For investigating the influence of surfactant as a surface active agent additive on the pool boiling heat transfer coefficient of nano-fluids, SDS, SDBS and Triton X-100 were used. Influence of some operating parameters such as applied heat flux, mass concentration of nano-fluids and other parameters such as roughness of surface, boiling contact angle and deposition on the pool boiling heat transfer coefficient of nano-fluids were experimentally investigated. Results demonstrated a significant deterioration of heat transfer coefficient of nano-fluids comparing with the base fluid in the absence of surfactants, however, in the presence of surfactant, higher pool boiling heat transfer coefficient was reported. According to results, roughness of surface is strongly controlled by nano-fluid concentration due to deposition of nano-fluids on the heating section. Rectilinear changes of deposition with time in term of fouling resistance were seen at both regions with natural convection and nucleate boiling dominant heat transfer mechanisms. (authors)
Experimental investigation on partial pool boiling heat transfer in pure liquids
Directory of Open Access Journals (Sweden)
Fazel Seyed Ali Alavi
2016-01-01
Full Text Available Saturated partial pool boiling heat transfer has been experimentally investigated on a horizontal rod heater. The boiling liquids are including water and ethanol. The heating section is made by various materials including SS316, copper, aluminum and brass. Experiments have been performed at several degrees of surface roughness ranging between 30 and 360 micrometer average vertical deviation. The measurements are including boiling heat transfer coefficient, bubble departing diameter and frequency and also nucleation site density. The data have been compared to major existing correlations. It is shown that experimental data do not match with major correlations at the entire range of experiments with acceptable accuracy. In this article, the boiling heat transfer area has been divided in two complementary areas, the induced forced convection area and the boiling affected area. Based on two dimensionless groups, including Eötvös and Roshko numbers, a semi-empirical model have been proposed to predict the boiling heat transfer coefficient. It is shown that the proposed model provides improved performance in prediction of the boiling heat transfer coefficient in comparison with to existing correlations.
Experimental Investigation on Pool Boiling Heat Transfer With Ammonium Dodecyl Sulfate
Directory of Open Access Journals (Sweden)
Mr.P. Atcha Rao
2015-11-01
Full Text Available We have so many applications related to Pool Boiling. The Pool Boiling is mostly useful in arid areas to produce drinking water from impure water like sea water by distillation process. It is very difficult to distill the only water which having high surface tension. The surface tension is important factor to affect heat transfer enhancement in pool boiling. By reducing the surface tension we can increase the heat transfer rate in pool boiling. From so many years we are using surfactants domestically. It is proven previously by experiments that the addition of little amount of surfactant reduces the surface tension and increase the rate of heat transfer. There are different groups of surfactants. From those I‟m conducting experimentation with anionic surfactant Ammonium Dodecyl Sulfate (ADS, which is most human friendly and three times best soluble than Sodium Dodecyl Sulfate, to test the heat transfer enhancement.
Heat transfer coefficient determination for flow boiling in vertical and horizontal minichannels
Piasecka Magdalena; Maciejewska Beata
2014-01-01
The paper presents the results of boiling heat transfer research during FC-72 laminar flow along a minichannel of 1 mm depth, positioned vertically and horizontally, with an enhanced heating surface. One glass pane allows to determine the temperature of the heating wall by liquid crystal thermography. Calculations are aimed at the evaluation of one- and two-dimensional heat transfer approaches to determine the local heat transfer coefficient. In the one-dimensional approach only the direction...
Heat Transfer in Nucleate Pool Boiling of Binary and Ternary Refrigerant Mixtures
Institute of Scientific and Technical Information of China (English)
赵耀华; 刁彦华; 鹤田隆治; 西川日出男
2004-01-01
Heat transfer coefficients in nucleate pool boiling were measured on a horizontal copper surface for refrigerants, HFC-134a, HFC-32, and HFC-125, their binary and ternary mixtures under saturated conditions at 0.9MPa. Compared to pure components, both binary and ternary mixtures showed lower heat transfer coefficients.This deterioration was more pronounced as heat flux was increased. Experimental data were compared with some empirical and semi-empirical correlations available in literature. For binary mixture, the accuracy of the correlations varied considerably with mixtures and the heat flux. Experimental data for HFC-32/134a/125 were also compared with available correlated equation obtained by Thome. For ternary mixture, the boiling range of binary mixture composed by the pure fluids with the lowest and the medium boiling points, and their concentration difference had important effects on boiling heat transfer coefficients.
Steady State Film Boiling Heat Transfer Simulated With Trace V4.160
International Nuclear Information System (INIS)
This paper presents the results of the assessment and analysis of TRACE v4.160 heat transfer predictions in the post-CHF (critical heat flux) region and discusses the possibilities to improve the TRACE v4.160 code predictions in the film boiling heat transfer when applying different film boiling correlations. For this purpose, the TRACE v4.160-calculated film boiling heat flux and the resulting maximum inner wall temperatures during film boiling in single tubes were compared with experimental data obtained at the Royal Institute of Technology (KTH) in Stockholm, Sweden. The experimental database included measurements for pressures ranging from 30 to 200 bar and coolant mass fluxes from 500 to 3000 kg/m2s. It was found that TRACE v4.160 does not produce correct predictions of the film boiling heat flux, and consequently of the maximum inner wall temperature in the test section, under the wide range of conditions documented in the KTH experiments. In particular, it was found that the standard TRACE v4.160 under-predicts the film boiling heat transfer coefficient at low pressure-low mass flux and high pressure-high mass flux conditions. For most of the rest of the investigated range of parameters, TRACE v4.160 over-predicts the film boiling heat transfer coefficient, which can lead to non-conservative predictions in applications to nuclear power plant analyses. Since no satisfactory agreement with the experimental database was obtained with the standard TRACE v4.160 film boiling heat transfer correlations, we have added seven film boiling correlations to TRACE v4.160 in order to investigate the possibility to improve the code predictions for the conditions similar to the KTH tests. The film boiling correlations were selected among the most commonly used film boiling correlations found in the open literature, namely Groeneveld 5.7, Bishop (2 correlations), Tong, Konkov, Miropolskii and Groeneveld-Delorme correlations. The only correlation among the investigated, which
Comparative studies of pool boiling heat transfer with nano-fluids on porous surface
Niu, Gengwen; Li, Ji
2015-12-01
Characteristics and regime of pool boiling on copper porous coating and polished surface are studied experimentally for two working medium (Al2O3 and CuO nano-fluids). The highlights of this work are that the combination of nano-fluids and porous surface is used to explore the heat transfer performance and the conducted visual experiments can provide an insight in the enhancement of boiling heat transfer with this combination.
Specific features of hydrogen boiling heat transfer on the AMg-6 alloy massive heater
International Nuclear Information System (INIS)
Heat transfer and nucleate burns-out saturated with hydrogen at a plate heater (thickness-13 mm, diameter of heat-transferring surface - 30 mm) made of an aluminium alloy with the low value of a heat assimilation coefficient in the pressure range from 7.2x103 to 6x105 Pa is experimentally investigated. Value of start of boiling characteristics and heat transfer coefficients during nucleate burn-out, as well as the first critical densities of a heat flux and temperature heads are obtained. Existence of certain differrences of heat exchange during boiling is shown using a massive heater made of low-heat-conductive material in comparison with other cases of hydrogen boiling. Hypothesis concerning the existence of so-called mixed boiling on the heat transfer surface, which has been detected earlier only in helium boiling, as well as concerning possible reasons of stability of film boiling ficii in preburn-out region of heat duty is discussed
Directory of Open Access Journals (Sweden)
Piasecka Magdalena
2014-01-01
Full Text Available The paper presents the results of using known correlations for boiling heat transfer in a minichannel 1 mm deep, 40 mm wide and 360 mm long, with different spatial orientations. The heating element for FC-72 flowing laminarly in the minichannel is a single-sided microstructured foil. Liquid crystal thermography was used for measuring the temperature distribution on the plain side of the foil. The observations of the flow structures were carried out on the microstructured side of the foil contacting fluid in the minichannel. A number of correlations for boiling heat transfer have been used in calculations. It was found that the majority of correlations enabled the predicting of heat transfer coefficient within an acceptable error limit (±30% only in a specific orientation of the channel. For the horizontal channel, position 0°, the highest compliance occurred when Mikielewicz et al. correlation was applied, for the vertical channel - when Liu and Winterton correlation was used and for horizontal channel, position 180° - by the application of Cooper correlation. The own correlation, with taken account for the microstructured heating wall, was proposed in two forms: for saturated boiling and for boiling incipience and subcooled boiling. Most experimental data show congruence with theoretical correlations with the tolerance ±35%.
Critical Heat Flux of Boiling Heat Transfer in a Moderate Narrow Space
Institute of Scientific and Technical Information of China (English)
Yao－HuaZhan; TakashiMasuoka; 等
1998-01-01
Boiling heat transfer process is analyzed in a moderate narrow space consisted of two horizontal plates,The main difference between this process and the conventional unconfined pool boiling is the liquid supply mechanism which is absolutely prevented by the growth of coalescence bubble along with the heated surface in the narrow space.As a result,the macrolayer becomes thinner due to the evaporation of the individual bubbles within the macrolayer during the period of bubble coalescence,with or without dryout that depends on both the gap size of narrow space and the size of heated surface.For a specified size of the heated surface,the initial thickness of the liquid layer has a critical value which approaches a constant while the space height is larger than a critical value.The individual bubble behaviors and the heat transfer can be considered as the same as that in the unconfined pool boiling,if the space gap is large,However,the individual bubbles do not generate in the last period of the bubble coalescence and a lower maximum heat flux will be resulted if the space gap is reduced.In such a case,the macrolayer is dryout.
Boiling heat transfer phenomenon base on the event of loca and severe accident
International Nuclear Information System (INIS)
Research and development base on TMI-2 NPP accident mostly directed to vessel and core performance. The majority of research was conducted which aimed on boiling heat transfer phenomenon, begin by loss of coolant accident (LOCA) until severe accident, in which core meltdown. Study on boiling heat transfer has been done by simulation on core bottom re-flooding process and a narrow gap cooling. The results of experimental research which was conducted by BATAN concerning LOCA and severe accident are giving a clearly picture, in how boiling heat transfer phenomenon was occurs during sequent of nuclear reactors accident, especially TMI-2 accident. The mapping of heat transfer base on transient temperature data was created in boiling curve form which was shown the differences of heat flux in three boiling regimes, both in pool boiling and flow boiling. The experimental simulation of LOCA shown that the CHF value (67.31 kW/m2 ) is small than the CHF value of severe accident (262 kW/m2). (author)
Numerical Analysis of Lead-Bismuth-Water Direct Contact Boiling Heat Transfer
Yamada, Yumi; Takahashi, Minoru
Direct contact boiling heat transfer of sub-cooled water with lead-bismuth eutectic (Pb-Bi) was investigated for the evaluation of the performance of steam generation in direct contact of feed water with primary Pb-Bi coolant in upper plenum above the core in Pb-Bi-cooled direct contact boiling water fast reactor. An analytical two-fluid model was developed to estimate the heat transfer numerically. Numerical results were compared with experimental ones for verification of the model. The overall volumetric heat transfer coefficient was calculated from heat exchange rate in the chimney. It was confirmed that the calculated results agreed well with the experimental result.
Heat Transfer From Electrically Heated Nichrome Wires to Boiling Water at Different Pressures
Directory of Open Access Journals (Sweden)
Devi Dayal
1968-01-01
Full Text Available Boiling curves for nucleate and film boiling have been drawn for nichrome of three sizes in distilled and degasified water at saturation temperatures under five different sub-atmospheric vapour pressure. It has been observed that (i for the same Q/A (heat transfer, Delta Theta (excess of wire temperature over saturation point of water decreases with pressure in both nucleate and film boiling ranges, (ii Both Q/A max. and Delta Theta/SubC show a rapid decrease with pressure but these variations become more gradual at higher pressures, and (iii Q/A max. and Delta Theta/SubC increase with wire size at all pressures; increase in Delta Theta/SubC however, becomes less conspicuous at higher pressures approaching one atmosphere.
Experimental research of flow boiling heat transfer characteristics in narrow channel
International Nuclear Information System (INIS)
Based on the experimental data of boiling heat transfer in narrow rectangular channel with a cross section of 40 mm · 2 mm, the main factors that impact the position of fully developed boiling (FDB) and boiling heat transfer coefficient were analyzed, then the experimental data and the calculated values were compared. The position of FDB obtained by experiment agrees well with the value predicted by Bowring correlation and Saha-Zuber correlation, and the relative deviation is within 20%. The boiling heat transfer coefficient acquired by experiment in narrow rectangular channel was compared with Chen correlation. Gungor-Winterton correlation and Sun Licheng correlation. The results indicate that the Chen correlation applied to conventional channel is not suitable for predicting the boiling heat transfer coefficient in narrow rectangular channel. While the Sun Licheng correlation considering the effect of narrow channel size and regarding the heat flux as the main function in boiling heat transfer can predict the experimental results well, and the relative deviation of the correlation and experiment is within 30%. (authors)
Experimental Study on Convective Boiling Heat Transfer in Vertical Narrow Gap Annular Tube
Institute of Scientific and Technical Information of China (English)
Li Bin; He Anding; Wang Yueshe; Zhou Fangde
2001-01-01
Experiments are conducted to investigate the characteristics of single-phase forced-flow convection and boiling heat transfer of R113 flowing through annular tube with gap of 1, 1.5 and 2.5 mm, and also the visualization test are carried out to get two-phase flow regime. The data show that the Nusselt numbers for the narrow-gap are higher than those predicted by traditional large channel correlation and boiling heat transfer is enhanced. Based on the data obtained in this investigation, correlations for single-phase, forced convection and flow boiling in annular tube of different gap size has been developed.
Hsu, Chin-Chi
2012-06-01
This study investigates the effects of surface wettability on pool boiling heat transfer. Nano-silica particle coatings were used to vary the wettability of the copper surface from superhydrophilic to superhydrophobic by modifying surface topography and chemistry. Experimental results show that critical heat flux (CHF) values are higher in the hydrophilic region. Conversely, CHF values are lower in the hydrophobic region. The experimental CHF data of the modified surface do not fit the classical models. Therefore, this study proposes a simple model to build the nexus between the surface wettability and the growth of bubbles on the heating surface. © 2012 Elsevier Ltd. All rights reserved.
Flow boiling heat transfer of ammonia/water mixture in a plate heat exchanger
Energy Technology Data Exchange (ETDEWEB)
Taboas, Francisco [Universidad de Cordoba, Campus de Rabanales, Edificio Leonardo da Vinci, 14014 Cordoba (Spain); Valles, Manel; Bourouis, Mahmoud; Coronas, Alberto [CREVER - Universitat Rovira i Virgili, Av. Paisos Catalans No. 26, 43007 Tarragona (Spain)
2010-06-15
The objective of this work is to contribute to the development of plate heat exchangers as desorbers for ammonia/water absorption refrigeration machines driven by waste heat or solar energy. In this study, saturated flow boiling heat transfer and the associated frictional pressure drop of ammonia/water mixture flowing in a vertical plate heat exchanger is experimentally investigated. Experimental data is presented to show the effects of heat flux between 20 and 50 kW m{sup -2}, mass flux between 70 and 140 kg m{sup -2} s{sup -1}, mean vapour quality from 0.0 to 0.22 and pressure between 7 and 15 bar, for ammonia concentration between 0.42 and 0.62. The results show that for the selected operating conditions, the boiling heat transfer coefficient is highly dependent on the mass flux, whereas the influence of heat flux and pressure are negligible mainly at higher vapour qualities. The pressure drop increases with increasing mass flux and quality. However, the pressure drop is independent of the imposed heat flux. (author)
Nucleate Boiling Heat Transfer of Nanofluids with Carbon Nanotubes on Plain and Low Fin Surfaces
International Nuclear Information System (INIS)
Nuclear power generation is being discussed in many countries as an alternative method to solving the world's energy crisis. For the safe operation of nuclear power plants, ways for increasing the critical heat flux (CHF) related to a loss of coolant accident are being investigated. In the event that the local heat flux exceeds the CHF, there is an abrupt shift in the boiling curve such that the nucleate boiling ceases and transition boiling and ultimately film boiling occur, finally resulting in a physical break down of the surface. Therefore, it is essential to maximize the CHF for the protection of nuclear power plants with maximum system performance. For the past decade, as a lot of research has been carried out for an improvement of the boiling heat transfer coefficients (HTCs) and CHF, new methods employing nano particles have been proposed. The objectives of this study are to measure the pool boiling HTCs of the water without and with carbon nanotubes (CNTs) on plain and low fin surfaces up to the CHF, and to analyze the effect of CNTs on both nucleate boiling HTCs and CHF. Pool boiling HTCs on all surfaces tested in water without and with CNTs increased as the heat flux increased, which is a typical trend in the pool boiling of pure fluids. For nanofluid with CNTs on low fin surfaces, the surface geometry and nano particles produced a double effect of increasing the CHFs
Correlations of Flow Boiling Heat Transfer of R-134a in Minichannels: Comparative Study
Zhanru ZHOU; Fang, Xiande; Rongrong SHI
2011-01-01
R-134a is one of the most widely used refrigerants, and minichannel refrigeration systems with R-134a have rapidly developed in many fields, such as home, automobile and aircraft air conditioning systems, for high efficiency operations to save energy and space. A number of correlations for flow boiling hear transfer have been proposed. There is some literature to evaluate existing correlations for R-134a flow boiling heat transfer in minichannels. However, they were only based on the authors ...
Experimental and theoretical study of pool boiling heat transfer to amine solutions
Directory of Open Access Journals (Sweden)
S. M. Peyghambarzadeh
2009-03-01
Full Text Available In this investigation, a large number of experiments have been performed to measure the nucleate boiling heat transfer coefficients of water/diethanolamine (DEA and water/monoethanolamine (MEA binary solutions. Based on these experimental data, effects of physical properties such as surface tension and viscosity of mixtures on nucleate boiling heat transfer coefficients and also on bubble dynamics have been discussed. Meanwhile, some photographs have also been selected which illustrate the behaviours of bubbles near the heat transfer surface. In this article, a new correlation has been developed on the basis of the correlation of Stephan and Körner which is known as a successful correlation for the prediction of nucleate boiling heat transfer coefficients of mixtures. Comparison of the prediction of this new correlation with experimental data indicates that this modification can significantly improve the performance of the Stephan and Körner correlation.
Local Convective Boiling Heat Transfer And Pressure Drop Of Nanofluid In Narrow Rectangular Channels
Boudouh, Mounir; Gualous, Hasna Louahlia; De Labachelerie, Michel
2010-01-01
Abstract This paper reports an experimental study on convective boiling heat transfer of nanofluids and de-ionized water flowing in a multichannels. The test copper plate contains 50 parallel rectangular minichannels of hydraulic diameter 800 ?m. Experiments were performed to characterize the local heat transfer coefficients and surface temperature using copper-water nanofluids with very small nanoparticles concentration. Axial distribution of local heat transfer is estimated using...
Boiling heat transfer during rapid quenching using standard nanofluids
International Nuclear Information System (INIS)
Rapid quenching experiments were conducted using standard nanofluid (Si 0.01, 0.001 vol%) under atmospheric temperature and pressure. Standard nanofluid prepared by the PLAL technique, which has the narrow band size distribution and good dispersibility in base fluid. Two types of a platinum wire(bare and deposited with nanoparticles) as a heat source and temperature sensor were rapidly dipped in two type of fluid(base water, i.e. de-ionized water and Si nanofluid). During quench, the cooling rates were recorded and then recalculated to complete the boiling curve. Higher cooling rate was observed in the case of using a wire deposited with nanopartiles, while no significant difference between base fluid and nanofluid with a virgin wire was observed
Pool boiling heat transfer of water/ γ-alumina micro-fluids around the horizontal cylinder
Nikkhah, V.; Hormozi, F.
2016-04-01
A set of experiments was performed to quantify the pool boiling heat transfer coefficient of water/ γ-alumina micro-fluids at mass concentration ranged from 0.1 to 0.4 % of micro-particles with mean size of 1-2 μm. To stabilize the prepared micro-fluid, pH control, stirring and adding the SDS as a surfactant were carried out. Also, thermal conductivity of micro-fluids are measured using KD2 decagon pro. Results showed that micro-fluids have relatively higher thermal conductivity rather than the base fluids. According to the results, there are two distinguishable heat transfer regions namely natural convection and nucleate boiling regions. Influence of some operating parameters such as heat flux, mass concentration of micro-particles and surface fouling resistance on the pool boiling heat transfer coefficient were experimentally studied and briefly discussed. Results demonstrated a significant deterioration of heat transfer coefficient of micro-fluids in comparison with the base fluid over the extended time (1000 min of operation) in nucleate boiling region, while in natural convection region, enhancement of heat transfer coefficient is registered. According to the results, heat transfer coefficient is strongly controlled by/ γ-alumina concentration due to the deposition of micro-particles on the heating section. Rectilinear changes of scale formation with time in term of fouling resistance were clearly seen at regions, where natural convection is a dominant heat transfer mechanism and also for higher heat fluxes at nucleate boiling heat transfer region.
Study on Pool-Nucleate Boiling Heat Transfer Characteristics by Using Artificial Cavities
International Nuclear Information System (INIS)
Pool boiling heat transfer experiments were performed by using the well-controlled/defined heat transfer surface for water. Uni-size and -shape artificial cavities were created on the mirror-finished silicon plate by utilizing the MEMS technology. Experimental results agreed well with what were predicted by the traditional boiling theory. The mirror-finished surface showed only the tendency of natural circulation heat transfer. The artificial-cavity heat transfer surface followed the pool-nucleate boiling trend. The onset of the pool-nucleate boiling was well predicted by the traditional pool-nucleate boiling theory. These results indicated that the artificial cavities behave just like natural cavities. The results indicated the artificial cavities are quite useful and promising to examine the true features of complicated boiling that have been overshadowed by complicatedness. From recorded high speed video pictures, the coalescence of bubbles that were growing on the cavities were classified into four categories; the normal lift (no coalescence), the vertical coalescence, the declining coalescence and the horizontal coalescence. As the cavity interval was increased, the horizontal coalescence decreases to zero, the vertical coalescence also decreases, and on the contrary to these, vertical coalescence and normal lift increase. The cavity interval 3 mm (S/Lc ≅ 1.2) seemed to be the border whether the horizontal coalescence occurs or not. (authors)
Study of heat transfer in the heating wall during nucleate pool boiling
International Nuclear Information System (INIS)
The subject of this these is to show the role of heat transfer in the wall during saturated pool boiling. This effect, usually neglected in the modelizations of boiling, can explain some behaviours of the ebullition cycle and of the activities of nucleation sites. Il has been found that the ebullition cycle can be described by two steps: (1) during bubble growth, the wall temperature decreases due to the evaporation of the micro-layer at the base of the bubble; (2) initial superheat is re-established mainly by radial heat conduction in the wall. It is then possible to account for the variations of the wall temperature displayed by liquid crystals put a the bottom of the heating surface, and for the influence of the contact angle on the heat transfer. In the case of the infinitely thick wall the main results are that the thermal transfer during the growth of the bubble depends on the thermal properties of both wall and liquid and that the time separating the detachment of a bubble and its replacement by a new one is proportional to the cross-section of the bubble and to the thermal diffusivity of the wall
Piasecka Magdalena
2014-01-01
The paper presents the results of using known correlations for boiling heat transfer in a minichannel 1 mm deep, 40 mm wide and 360 mm long, with different spatial orientations. The heating element for FC-72 flowing laminarly in the minichannel is a single-sided microstructured foil. Liquid crystal thermography was used for measuring the temperature distribution on the plain side of the foil. The observations of the flow structures were carried out on the microstructured side of the foil cont...
Heat transfer crises in oxygen nucleate boiling under attenuated gravitation conditions
International Nuclear Information System (INIS)
In some physical models of the heat transfer crisis in oxygen nucleate boiling the concepts on boiling micromechanism and its characteristics are used. To test the correctness of these concepts, experimental data are used on critical heat flux densities, departure radii and departure nucleate frequencies during oxygen boiling in the 6x103-7x105 Pa pressure range and relative accelerations (eta=0.01-1). Based on a crisis heat model the formulae are obtained containing different dependence of critical heat flux density on acceleration at high (qsub(cr) approximately etasup(0.4)) and low (qsub(cr) is practically independent of eta) pressures, which agrees with experimental data on oxygen boiling. The data are presented on critical thermal heads; the independence of ΔTsub(cr) of acceleration in the range of the regime parameters investigated is shown
Heat transfer crises in oxygen nucleate boiling under attenuated gravitation conditions
Energy Technology Data Exchange (ETDEWEB)
Kirichenko, Yu.A.; Gladchenko, G.M.; Rusanov, K.V. (AN Ukrainskoj SSR, Kharkov. Fiziko-Tekhnicheskij Inst. Nizkikh Temperatur)
1984-11-01
In some physical models of the heat transfer crisis in oxygen nucleate boiling the concepts on boiling micromechanism and its characteristics are used. To test the correctness of these concepts, experimental data are used on critical heat flux densities, departure radii and departure nucleate frequencies during oxygen boiling in the 6x10/sup 3/-7x10/sup 5/ Pa pressure range and relative accelerations (eta=0.01-1). Based on a crisis heat model the formulae are obtained containing different dependence of critical heat flux density on acceleration at high (qsub(cr) approximately etasup(0.4)) and low (qsub(cr) is practically independent of eta) pressures, which agrees with experimental data on oxygen boiling. The data are presented on critical thermal heads; the independence of ..delta..Tsub(cr) of acceleration in the range of the regime parameters investigated is shown.
SIMULATION OF BOILING HEAT TRANSFER AROUND MICRO PIN-FIN HEAT EXCHANGER: PROGRESS AND CHALLENGES
International Nuclear Information System (INIS)
Boiling at microscales is a challenging problem for the computational models as well as the resources. During boiling, the formation and departure of vapor bubbles from the heated surface involves the physics from nano/micro level to the macro level. Therefore, a hierarchical methodology is needed to incorporate the nano/microscale physics with the macroscale system performance. Using micro-fabrication techniques, microstructures (micropin-fins) can be fabricated around the tubes in the heat exchanger of Pressurized Water Reactors (PWRs) to increase the heat-exchanging efficiency and reduce the overall size of the heat-exchanger for the given heat transfer rates. Combined with high fidelity simulations of the thermal transport in the entire system, optimal design of microstructure patterns and layouts can be worked out pragmatically. Properly patterned microstructures on the pipe in the steam generation zone should create more nuclei for bubble to form and result in a reduced average bubble size and shorter retention time, i.e. the time for the vapor phase sticking on the pipe surface. The smaller average steam bubble size and shorter bubble retention time will enhance the overall thermal efficiency. As a preliminary step, a periodic arrangement of micropin-fins containing four in-line cylindrical fins was modeled. The governing equations for the mass, momentum and energy transport were solved in the fluid in a conjugate heat transfer mode. In the future, several studies will be conducted to simulate different geometric arrangements, different fin cross-sections, and realistic operating conditions including phase-change with boiling by adding complexities in simple steps
Effect of earthquake oscillation on subcooled flow boiling heat transfer
International Nuclear Information System (INIS)
Critical heat flux -CHF- on subcooled flow boiling under vibration conditions, focusing on liquid velocity, acceleration and frequency of vibrations was investigated experimentally. Experiments were conducted using a copper thin-film and subcooled water in a range of the liquid velocity from 0.3 to 3.9 m/s at 0.10 MPa. The liquid subcooling was 20K. The acceleration was 0.4, 1.3 and 4.15 m/s2, respectively; the frequency was 2, 4 and 20 Hz, respectively. The vibration directions were horizontal and vertical to orientation of the heater. The present experimental results showed that critical heat fluxes under the vibration conditions of both vibration directions, i.e., horizontal and vertical vibrations to the heater, were higher than those for steady flow. The CHF under the vibration condition was increased with an increasing of acceleration of vibration. According to present observations, coalesced bubble on the heater was frequently released by vibration of the test heater: the characteristic length of coalesced bubble decreased. This behavior caused the CHF to become higher under the vibration condition. (author)
Kirichenko, Iu. A.; Gladchenko, G. M.; Rusanov, K. V.
1984-11-01
Heat transfer during the nucleate boiling of liquid oxygen under conditions of simulated microgravity is investigated experimentally over a wide range of pressures (600-70,000 Pa) and relative accelerations (0.01-1). The objective of the study is to verify some of the existing models for the critical region of heat transfer. Formulas are obtained yielding different acceleration dependences of the critical density of the heat flux for high and low pressures, which is consistent with experimental data on oxygen boiling.
Critical height of micro/nano structures for pool boiling heat transfer enhancement
Zou, An; Maroo, Shalabh C.
2013-11-01
Critical heat flux (CHF) enhancement by surface modifications has been an extensively researched area in pool boiling heat transfer. Here we report a fundamental mechanism of CHF enhancement where nano/micro ridges are fabricated on surfaces to fragment and evaporate the metastable non-evaporating/adsorbed film present at the base of a bubble in the contact line region. CHF increase of ˜125% is obtained with only ˜40% increase in surface area. An analytical model is extended to explain the CHF enhancement and to determine the average non-evaporating film thickness, which serves as the critical height for nano/micro structures for pool boiling heat transfer enhancement.
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
Liquid sodium is mainly used as a cooling fluid in the liquid metal fast breeder reactor (LMFBR), whose heat transfer, whether convective heat transfer or boiling heat transfer, is different from that of water. So it is important for both normal and accidental operations of LMFBR to perform experimental research on heat transfer to liquid sodium and its boiling heat transfer. This study deals with heat transfer with high temperature (300-700℃) and low Pe number (20～70) and heat transfer with low temperature (250～270℃) and high Pe number (125～860), and its incipient boiling wall superheat in an annulus. Research on heat transfer involves theoretical research and experiments on heat transfer to liquid sodium. It also focuses on the theoretical analysis and experimental research on its incipient boiling wall superheat at positive pressure in an annulus. Semiempirical correlations were obtained and they were well coincident with the experimental data.
International Nuclear Information System (INIS)
A separate effects experimental study of heat transfer and Critical Heat Flux (CHF) on a downward facing plate in subcooled water pool boiling is described. Two geometries of downwards facing surfaces are studied. The first is termed the 'confined' study in which bubble motion is restricted to the heated surface. The second is termed the 'unconfined' study where individual bubbles are free to move along the heated surface and vent in any direction. The method used in the confined study is novel and involves the placement of a lip surrounding the heated surface. The CHF as a function of angle of inclination of the surface is presented and is in good agreement with other experimental data from somewhat different test geometries. (author)
Augmentation of forced flow boiling heat transfer by introducing air flow into subcooled water flow
International Nuclear Information System (INIS)
The effect of air injection into a subcooled water flow on boiling heat transfer and a critical heat flux (CHF) was examined experimentally. Experiments were conducted in the range of subcooling of 50 K, a superficial velocity of water and air Ul = 0.17 ∼ 3.4 and Ug = 0 ∼ 15 m/s, respectively. A test heat transfer surface was a 5 mm wide, 40 mm long and 0.5 mm thick stainless steel sheet embedded on the bottom wall of a 10 mm high and 20 mm wide rectangular flow channel. Nine times enhancement of the heat transfer coefficient in the non-boiling region was attained at the most by introducing an air flow into a water single-phase flow. The heat transfer improvement was prominent when the water flow rate was low and the air introduction was large. The present results of the non-boiling heat transfer were well correlated with the Lockhart-Martinelli parameter Xtt; hTP/hL0 = 5.0(1/ Xtt)0.5. The air introduction has some effect on the augmentation of heat transfer in the boiling region, however, the two-phase flow effect was little and the boiling was dominant in the fully developed boiling region. The CHF was improved a little by the air introduction in the high water flow region. However, that was rather greatly reduced in the low flow region. Even so, the general trend by the air introduction was that qCHF increased as the air introduction was increased. The heat transfer augmentation in the non-boiling region was attained by less power increase than that in the case that only the water flow rate was increased. From the aspect of the power consumption and the heat transfer enhancement, the small air introduction in the low water flow rate region seemed more profitable, although the air introduction in the high water flow rate region and also the large air introduction were still effective in the augmentation of the heat transfer in the non-boiling region. (author)
Experimental study on forced convection boiling heat transfer on molten alloy
International Nuclear Information System (INIS)
In order to clarify the characteristics of forced convection boiling heat transfer on molten metal, basic experiments have been carried out with subcooled water flowing on molten Wood's alloy pool surface. In these experiments, water flows horizontally in a rectangular duct. A cavity filled with Wood's alloy is present in a portion of the bottom of the duct. Wood's alloy is heated by a copper conductor at the bottom of the cavity. The experiments have been carried out with various velocities and subcoolings of water, and temperature of Wood's alloy. Boiling curves on the molten alloy surface were obtained and compared with that on a solid heat transfer surface. It is observed that the boiling curve on molten alloy is in a lower superheat region than the boiling curve on a solid surface. This indicates that the heat transfer performance of forced convection boiling on molten alloy is enhanced by increase of the heat transfer area, due to oscillation of the surface and fragmentation of molten alloy
Heat transfer behavior on small heaters during saturated pool boiling of FC-72 in microgravity
Energy Technology Data Exchange (ETDEWEB)
Kim, J.; Mullen, J.D. [Maryland Univ., College Park, MD (United States). Dept. of Mechanical Engineering; Yaddanapudi, N. [MetaSensors, Rockville, MD (United States)
1999-07-01
Saturated pool boiling of FC-72 on an array of 96 heaters, each 0.27 mm x 0.27 mm in size, was studied in a microgravity environment provided by NASA's KC-135. Each of the heaters was maintained at a constant temperature by means of electronic feedback circuits, and the heat flux through each individual heater was measured at a high sampling rate. Space and time resolved heat flux maps were obtained and correlated with video pictures of boiling on the surface recorded from below. The time resolved heat flux data was then conditionally sampled according to whether or not boiling occurred on the surface and an average heat flux during boiling was obtained. Array averaged heat fluxes in microgravity were slightly larger than in Earth gravity for wall superheats up to about 30 K, but were significantly lower than in Earth gravity at higher superheats. The time-average heat flux conditionally sampled on boiling, however, was independent of the gravity level suggesting that the behavior of small bubbles is not affected by gravity. Heat transfer from the surface occurred primarily through these small bubbles-not much heat transfer was associated with the large bubble that occasionally formed on the surface as a result of coalescence of the small bubbles. (orig.)
A look-up table for fully developed film-boiling heat transfer
International Nuclear Information System (INIS)
An improved look-up table for film-boiling heat-transfer coefficients has been derived for steam-water flow inside vertical tubes. Compared to earlier versions of the look-up table, the following improvements were made: - The database has been expanded significantly. The present database contains 77,234 film-boiling data points obtained from 36 sources. - The upper limit of the thermodynamic quality range was increased from 1.2 to 2.0. The wider range was needed as non-equilibrium effects at low flows can extend well beyond the point where the thermodynamic quality equals unity. - The surface heat flux has been replaced by the surface temperature as an independent parameter. - The new look-up table is based only on fully developed film-boiling data. - The table entries at flow conditions for which no data are available is based on the best of five different film-boiling prediction methods. The new film-boiling look-up table predicts the database for fully developed film-boiling data with an overall rms error in heat-transfer coefficient of 10.56% and an average error of 1.71%. A comparison of the prediction accuracy of the look-up table with other leading film-boiling prediction methods shows that the look-up table results in a significant improvement in prediction accuracy
Heat Transfer of Single and Binary Systems inPool Boiling
Directory of Open Access Journals (Sweden)
Abbas J. Sultan
2010-01-01
Full Text Available The present research focuses on the study of the effect of mass transfer resistance on the rate of heat transfer in pool boiling. The nucleate pool boiling heat transfer coefficients for binary mixtures (ethanol-n-butanol, acetone-n-butanol, acetone-ethanol, hexane-benzene, hexane-heptane, and methanol-water were measured at different concentrations of the more volatile components. The systems chosen covered a wide range of mixture behaviors.The experimental set up for the present investigation includes electric heating element submerged in the test liquid mounted vertically. Thermocouple and a digital indictor measured the temperature of the heater surface. The actual heat transfer rate being obtained by multiplying the voltmeter and ammeter readings. A water cooled coil condenses the vapor produced by the heat input and the liquid formed returns to the cylinder for re-evaporation.The boiling results show that the nucleate pool boiling heat transfer coefficients of binary mixtures were always lower than the pure components nucleate pool boiling heat transfer coefficients. This confirmed that the mass transfer resistance to the movement of the more volatile component was responsible for decrease in heat transfer and that the maximum deterioration that was observed at a point was the absolute concentration differences between vapor and liquid phases at their maximum. All the data points were tested with the most widely known correlations namely those of Calus-Leonidopoulos, Fujita and Thome. It was found that Thome's correlation is the more representative form, for it gave the least mean and standard deviations
International Nuclear Information System (INIS)
Four types of steady-state boiling experiments were conducted to investigate the efficacy of two distinctly different heat transfer enhancement methods for external reactor vessel cooling under severe accident conditions. One method involved the use of a thin vessel coating and the other involved the use of an enhanced insulation structure. By comparing the results obtained in the four types of experiments, the separate and integral effect of vessel coating and insulation structure were determined. Correlation equations were obtained for the nucleate boiling heat transfer and the critical heat flux. It was found that both enhancement methods were quite effective. Depending on the angular location, the local critical heat flux could be enhanced by 1.4 to 2.5 times using vessel coating alone whereas it could be enhanced by 1.8 to 3.0 times using an enhanced insulation structure alone. When both vessel coating and insulation structure were used simultaneously, the integral effect on the enhancement was found much less than the product of the two separate effects, indicating possible competing mechanisms (i.e., interference) between the two enhancement methods
CNT Coating Enhances Pool Boiling Heat Transfer and Critical Heat Flux
International Nuclear Information System (INIS)
In the nuclear reactor systems, critical heat flux (CHF) and nucleate boiling heat transfer coefficient (NBHTC) are well known as the main parameters determining the safety and efficiency of the system. Generated heat flux during the normal operation of a reactor is strongly limited below CHF. Moreover NBHTC is a key parameter representing efficiency of heat transfer. Consequently, a lot of studies on CHF and NBHTC have been conducted in various fields. Pool boiling experiments were carried out with the bare and CNT coated plate surfaces to confirm the effect of the surface characteristics, especially porosity and thermal conductivity. The experimental results showed that CHF of the CNT coated surface was enhanced by 33% as compared to the bare surface. However, degraded NBHTC was observed regardless of the similar contact angles. The enhanced CHF could be due to the increased thermal conductivity and/or the increased porosity. Degraded NBHTC is the direct result of the reduced nucleation site density, which is affected by the size of the nucleation cavity. More study is needed to confirm the emerged result and different size of the CNT will be used for coating process
Measurement of Average Pool Boiling Heat Transfer Coefficient on Near-Horizontal Tube
International Nuclear Information System (INIS)
An experimental study is performed to obtain an average heat transfer coefficient around the perimeter of a near horizontal tube. For the test a stainless steel tube of 50.8 mm diameter submerged in water at atmospheric pressure is used. Both subcooled and saturated pool boiling conditions are considered and the inclination angle of the tube is changed from the horizontal position to 9 .deg. in steps of 3 .deg.. In saturated water, the local boiling heat transfer coefficient at the azimuthal angle of 90 .deg. from the tube bottom can be regarded as the average of the coefficients regardless of the tube inclination angles. However, when the water is subcooled the location for the average heat transfer coefficient depends on the inclination angle and the heat flux. It is explained that the major mechanisms changing the heat transfer are closely related with the intensity of the liquid agitation and the generation of big size bubbles through bubble coalescence
Nucleate pool-boiling heat transfer - II. Assessment of prediction methods
International Nuclear Information System (INIS)
Part I of this paper has identified all significant boiling surface parameters affecting nucleate pool-boiling heat transfer and has investigated their parametric trends, thus providing a measure of the state of the art in this area. This part of the paper examines the existing prediction methods for the heat transfer coefficient (HTC) under this boiling regime. Six heat transfer pool-boiling correlations that are well known in the literature have been selected and their prediction accuracy has been assessed against available and well-documented experimental databases. These databases provide HTCs obtained: (i) under pool-boiling conditions of fluids such as water, ethanol, R-113, and n-heptane; and (ii) on the following large-size horizontal surfaces: thick plates (made of copper, aluminum, brass, and stainless steel), and a horizontal circular disk (plated with a thin layer of polished chromium). For completeness, the microgeometry characteristics of several boiling surfaces are included here, even though they are not fully utilized in the present analysis. The surface microgeometry has been characterized by 14 roughness parameters measured with a laser profilometer. The analysis concludes that within the investigated ranges of boiling conditions, working fluids and boiling surfaces, the Rohsenow and Pioro nucleate pool-boiling correlations are the most accurate among those assessed. The Rohsenow and Pioro correlations use constants and powers for non-dimensional numbers that correspond to a specific surface-fluid combination, as opposed to the other correlations that use fixed values regardless of the surface-fluid combination. (author)
A study on the correlations development for film boiling heat transfer on spheres
Energy Technology Data Exchange (ETDEWEB)
Jeong, Yong Hoon; Baek, Won Pil; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)
1998-12-31
Film boiling is the heat transfer mechanism that can occurs when large temperature differences exist between a cold liquid and hot material. In the nuclear reactor safety analysis, film boiling has become an important issue in recent years. During severe accident, hot molten corium fall into relatively cool water, and fragment into spheres or sphere-like particles. If the steam explosion is triggered, the thermal energy of corlium is converted into the mechanical energy that can threaten the integrity of reactor vessel or reactor cavity. One of the important concerns in the heat transfer analysis during pre-mixing stage is the film boiling heat transfer between the corium and water/steam two-phase flow. Until now, considerable works on film boiling have been performed. However, there is no available correlation adequate for severe accident analysis. In this study, film boiling heat transfer correlations have been developed, and their applicable ranges have been enlarged and their prediction accuracy has been enhanced. 7 refs., 5 figs., 5 tabs. (Author)
Ahn, Ho Seon; Kim, Jin Man; Kim, Taejoo; Park, Su Cheong; Kim, Ji Min; Park, Youngjae; Yu, Dong In; Hwang, Kyoung Won; Jo, Hangjin; Park, Hyun Sun; Kim, Hyungdae; Kim, Moo Hwan
2014-09-01
Boiling heat transfer (BHT) is a particularly efficient heat transport method because of the latent heat associated with the process. However, the efficiency of BHT decreases significantly with increasing wall temperature when the critical heat flux (CHF) is reached. Graphene has received much recent research attention for applications in thermal engineering due to its large thermal conductivity. In this study, graphene films of various thicknesses were deposited on a heated surface, and enhancements of BHT and CHF were investigated via pool-boiling experiments. In contrast to the well-known surface effects, including improved wettability and liquid spreading due to micron- and nanometer-scale structures, nanometer-scale folded edges of graphene films provided a clue of BHT improvement and only the thermal conductivity of the graphene layer could explain the dependence of the CHF on the thickness. The large thermal conductivity of the graphene films inhibited the formation of hot spots, thereby increasing the CHF. Finally, the provided empirical model could be suitable for prediction of CHF.
International Nuclear Information System (INIS)
Highlights: ► The cooling performance of water and n-heptane is compared during subcooled flow boiling. ► Although n-heptane leaves the heat exchanger warmer it has a lower heat transfer coefficient. ► Flow rate, heat flux and degree of subcooling have direct effect on heat transfer coefficient. ► The predictions of some correlations are evaluated against experimental data. - Abstract: In this research, subcooled flow boiling heat transfer coefficients of pure n-heptane and distilled water at different operating conditions have been experimentally measured and compared. The heat exchanger consisted of vertical annulus which is heated from the inner cylindrical heater with variable heat flux (less than 140 kW/m2). Heat flux is varied so that two different flow regimes from single phase forced convection to nucleate boiling condition are created. Meanwhile, liquid flow rate is changed in the range of 2.5 × 10−5–5.8 × 10−5 m3/s to create laminar up to transition flow regimes. Three subcooling levels including 10, 20 and 30 °C are also considered. Experimental results demonstrated that subcooled flow boiling heat transfer coefficient increases when higher heat flux, higher liquid flow rate and greater subcooling level are applied. Furthermore, influence of the operating conditions on the bubbles generation on the heat transfer surface is also discussed. It is also shown that water is better cooling fluid in comparison with n-heptane
Heat transfer at hot spheres in the saturated and subcooled film boiling regime
International Nuclear Information System (INIS)
For the description of heat transfer at hot spheres in the saturated and subcooled film boiling regime two models from the literature are used and adequately modified. This means mainly the consideration of the effect of subcooling which is added in the models. This leads to ordinary differential equation systems which can not be integrated analytically but have to be solved numerically. The results of the calculations performed are discussed in detail and the comparison with experimental data gives some insight in the discrepancies between theory and experiment. However more experimental investigations seem to be necessary. This should be done under the special requirement to verify the considered heat transfer models. Furthermore a correlation to calculate the heat transfer in film boiling is presented. This correlation on the one side describes theoretically the heat transfer phenomena but has a second version also been fitted by experimental data. (orig.)
The effect of a gas dissolved in a coolant on boiling and burnout heat transfer
International Nuclear Information System (INIS)
Experiments were conducted to determine the effect of nitrogen dissolved in water on boiling and burnout heat transfer in a cylindrical pipe. Gas liberation from a liquid was found to enhance heat transfer. In the region of subcooled boiling a reduction of the critical heat flux up to about 20% was observed when in the region of burnout development the coolant was degassed at rather a high rate (high pressure and mass flow rates). As the subcooling becomes smaller the difference between q/sub cr/ for a degassed and a gas-saturated boiling coolant decreases. On the attainment of a thermally equilibrium two-phase flow the values of q/sub cr/ practically coincide for both cases
Heat transfer coefficient for flow boiling in an annular mini gap
Hożejowska Sylwia; Musiał Tomasz; Piasecka Magdalena
2016-01-01
The aim of this paper was to present the concept of mathematical models of heat transfer in flow boiling in an annular mini gap between the metal pipe with enhanced exterior surface and the external glass pipe. The one- and two-dimensional mathematical models were proposed to describe stationary heat transfer in the gap. A set of experimental data governed both the form of energy equations in cylindrical coordinates and the boundary conditions. The models were formulated to minimize the numbe...
Heat Transfer Enhancement Due to Marangoni Flow Around Moving Bubbles During Nucleate Boiling
Institute of Scientific and Technical Information of China (English)
David M. Christopher; WANG Hao; PENG Xiaofeng
2006-01-01
Nucleate boiling is a very efficient method for generating high heat transfer rates from solid surfaces; however, the fundamental physical mechanisms governing nucleate boiling heat transfer are not well understood. The heat transfer mechanisms around stationary and moving bubbles on very thin microwires were analyzed numerically to evaluate the effect of the bubble motion on the heat transfer from the wire surface. The numerical analysis accurately models the experimentally observed bubble movement and fluid velocities. The analytical model includes the effects of the Marangoni flow around the bubble and the evaporation and condensation within the bubble. The analysis shows that the heat transfer was significantly enhanced by the Marangoni flow around the outside of the bubble which transfers at least twice as much energy from the wire as the heat transfer directly from the wire to the bubble. The enhanced heat transfer due to the Marangoni flow was evident for both stationary and moving bubbles. The moving bubbles also created a wake that further enhanced the heat transfer from the wire. Since the Marangoni number for water is greater than for ethanol for the same conditions, the Marangoni flow and, hence, the bubble velocities are predicted to be greater in water than in ethanol.
A mechanistic model for droplet deposition heat transfer in dispersed flow film boiling
International Nuclear Information System (INIS)
A mechanistic droplet deposition model has been developed to quantify the direct contact heat transfer present in dispersed flow film boiling. Lagrangian subscale trajectory calculations utilizing realistic velocity and temperature distributions in the momentum boundary layer are used to determine the number of dispersed droplets able to achieve contact with the heated wall. Coupling the droplet deposition model with a physical direct contact heat transfer coefficient model allows the total direct contact heat transfer to be determined based upon the local vapor mass flux, wall superheat, and vapor superheat. Comparisons to the existing models highlight the more mechanistic nature of the proposed model. (author)
Energy Technology Data Exchange (ETDEWEB)
Cho, Jae Seon; Suh, Kune Yull; Chung, Chang Hyun [Seoul National University, Seoul (Korea, Republic of); Paark, Rae Joon; Kim, Sang Baik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1997-12-31
This paper presents results of experimental studies on the heat transfer and solidification of the molten metal pool with overlying coolant with boiling. The metal pool is heated from the bottom surface and coolant is injected onto the molten metal pool. Ad a result, the crust, which is a solidified layer, may form at the top of the molten metal pool. Heat transfer is accomplished by a conjugate mechanism, which consists of the natural convection of the molten metal pool, the conduction in the crust layer and the convective boiling heat transfer in the coolant. This work examines the crust formation and the heat transfer rate on the molten metal pool with boiling coolant. The simulant molten pool material is tin (Sn) with the melting temperature of 232 deg C. Demineralized water is used as the working coolant. The crust layer thickness was ostensibly varied by the heated bottom surface temperature of the test section, but not much affected by the coolant injection rate. The correlation between the Nusselt number and the Rayleigh number in the molten metal pool region of this study is compared against the crust formation experiment without coolant boiling and the literature correlations. The present experimental results are higher than those from the experiment without coolant boiling, but show general agreement with the Eckert correlation, with some deviations in the high and low ends of the Rayleigh number. This discrepancy is currently attributed to concurrent rapid boiling of the coolant on top of the metal layer. 10 refs., 4 figs., 1 tab. (Author)
Look-up table for predicting CHF and film boiling heat transfer: past, present and future
International Nuclear Information System (INIS)
Look-up tables have been used widely for the prediction of the Critical Heat Flux (CHF) and film boiling heat transfer for water-cooled tubes. Look-up tables are basically normalized data banks. They eliminate the need to choose between the many different CHF and film boiling heat transfer prediction methods available. Look-up tables have many advantages, e.g. (i) simple to use, (ii) no iteration required, (iii) wide range of application, (iv) may be applied to non-aqueous fluids using fluid-to-fluid modeling relationships and (v) based on a very large database. Concerns associated with the use of look-up tables include: (i) fluctuations in the value of the CHF or film boiling heat transfer coefficient with pressure, mass flux, quality, (ii) large variations in CHF or film boiling heat transfer coefficient between the adjacent table entries, and (iii) lack or scarcity of data at certain flow conditions. Work on the look-up tables is continuing. This will resolve the above concerns and improve the look-up table prediction capability. This work concentrates on better smoothing of the look-up table entries, increasing the database, and improvement of models at conditions where data are sparse or absent. (author)
Heat transfer and critical heat flux of subcooled water flow boiling in a short horizontal tube
International Nuclear Information System (INIS)
The steady-state turbulent heat transfer (THT) due to exponentially increasing heat inputs with various exponential periods (Q=Q0exp(t/τ), τ=6.55 to 21.81 s) were systematically measured with the flow velocities, u, of 4.15, 7.05, 10.07 and 13.50 m/s by an experimental water loop flow. Measurements were made on a 6 mm inner diameter, a 59.2 mm effective length and a 0.4 mm thickness of HORIZONTAL Platinum (Pt) circular test tube. The relation between the steady-state turbulent heat transfer and the flow velocity were clarified. The steady state nucleate boiling heat transfer (NBHT) and the steady state critical heat fluxes (CHFs) of the subcooled water flow boiling for HORIZONTAL SUS304 circular test tube were systematically measured with the flow velocities (u=3.94 to 13.86 m/s), the inlet subcoolings (ΔTsub,in=81.30 to 147.94 K), the inlet pressures (Pin=786.29 to 960.93 kPa) and the increasing heat input (Q0 exp(t/τ), τ=8.36 s). The HORIZONTAL SUS304 test tube of inner diameter (d=6 mm), heated length (L=59.4 mm), effective length (Leff=48.4 mm), L/d (=9.9), Leff/d (=8.06) and wall thickness (δ=0.5 mm) with surface roughness (Ra=3.89 μm) was used in this work. The NBHT and the steady state CHFs of the subcooled water flow boiling for the HORIZONTAL SUS304 test tube were clarified at the flow velocities u ranging from 3.94 to 13.86 m/s. The steady-state THT data, the NBHT ones and the steady state CHF ones were compared with the values calculated by authors' THT correlation, their NBHT ones and their transient CHF ones against outlet and inlet subcoolings based on the experimental data for the VERTICAL circular test tubes with the flow velocities u ranging from 4.0 to 42.4 m/s. The influences of test tube orientation on the THT, the NBHT and the subcooled flow boiling CHF are investigated into details and the widely and precisely predictable correlations of the THT, the NBHT and the transient CHFs against outlet and inlet subcoolings in a short
Heat transfer coefficient determination for flow boiling in vertical and horizontal minichannels
Directory of Open Access Journals (Sweden)
Piasecka Magdalena
2014-03-01
Full Text Available The paper presents the results of boiling heat transfer research during FC-72 laminar flow along a minichannel of 1 mm depth, positioned vertically and horizontally, with an enhanced heating surface. One glass pane allows to determine the temperature of the heating wall by liquid crystal thermography. Calculations are aimed at the evaluation of one- and two-dimensional heat transfer approaches to determine the local heat transfer coefficient. In the one-dimensional approach only the direction of the flow in the channel is considered. In the two-dimensional approach the inverse problem in the heating wall and the direct problem in the glass barrier were solved by the finite element method with Trefftz functions as shape functions (FEMT. The developed flow boiling area was studied. Heat transfer coefficient values obtained for the horizontal minichannel were higher than those obtained for the vertical one. When the heat flux supplied to heating wall grows, the share of gas-phase increases leading to the heat transfer coefficient decreases. The same courses of the experiment were observed for the two applied methods, but the results obtained in the one-dimensional approach are considerably higher than in the two-dimensional one. One-dimensional approach seems to be less sensitive to measurement errors.
Okamoto, Akio; Arima, Hirofumi; Kim, Jeong-Hun; Akiyama, Hirokuni; Ikegami, Yasuyuki; Monde, Masanori
Ocean thermal energy conversion (OTEC) and discharged thermal energy conversion (DTEC) are expected to be the next generation energy production systems. Both systems use a plate type evaporator, and ammonia or ammonia/water mixture as a working fluid. It is important to clarify heat transfer characteristic for designing efficient power generation systems. Measurements of local boiling heat transfer coefficients and visualization were performed for ammonia /water mixture (z = 0.9) on a vertical flat plate heat exchanger in a range of mass flux (7.5 - 15 kg/m2s), heat flux (15 - 23 kW/m2), and pressure (0.7 - 0.9 MPa). The result shows that in the case of ammonia /water mixture, the local heat transfer coefficients increase with an increase of vapor quality and mass flux, and decrease with an increase of heat flux, and the influence of the flow pattern on the local heat transfer coefficient is observed.
Evaluation of convective heat and mass transfer for pool boiling of sugarcane juice
International Nuclear Information System (INIS)
In this paper, an attempt has been made to estimate the convective heat and mass transfer for pool boiling of sugarcane juice during preparation of jaggery. An indoor experiment was conducted to measure (i) the mass of evaporated water, (ii) the temperature of the sugarcane juice, (iii) the relative humidity above the sugarcane juice surface and (iv) the temperatures at the bottom and side of the pot etc. at intervals of 10 min for a given heat input. A regression analysis has been performed by using the experimental data in the correlation of Rohsenow for pool boiling. The results of the heat and mass transfer analysis predict that the boiling heat transfer rate per unit surface area ranges from 526 to 3452 W/m2 at a temperature of 10 deg. C above the saturation and the heat transfer coefficient varies from 50.65 to 345.20 W/m2 deg. C for heat input ranging from 160 to 340 W
Lookup Tables for Predicting CHF and Film-Boiling Heat Transfer: Past, Present, and Future
International Nuclear Information System (INIS)
Lookup tables (LUTs) have been used widely for the prediction of critical heat flux (CHF) and film-boiling heat transfer for water-cooled tubes. LUTs are basically normalized data banks. They eliminate the need to choose between the many different CHF and film-boiling heat transfer prediction methods available.The LUTs have many advantages; e.g., (a) they are simple to use, (b) there is no iteration required, (c) they have a wide range of applications, (d) they may be applied to nonaqueous fluids using fluid-to-fluid modeling relationships, and (e) they are based on a very large database. Concerns associated with the use of LUTs include (a) there are fluctuations in the value of the CHF or film-boiling heat transfer coefficient (HTC) with pressure, mass flux, and quality, (b) there are large variations in the CHF or the film-boiling HTC between the adjacent table entries, and (c) there is a lack or scarcity of data at certain flow conditions.Work on the LUTs is continuing. This will resolve the aforementioned concerns and improve the LUT prediction capability. This work concentrates on better smoothing of the LUT entries, increasing the database, and improving models at conditions where data are sparse or absent
CORQUENCH: A model for gas sparging-enhanced, melt-water, film-boiling heat transfer
International Nuclear Information System (INIS)
In evaluation of severe-accident sequences for water-cooled nuclear reactors, molten core materials may be postulated to be released into the containment and accumulate on concrete. The heatup and decomposition of concrete is accompanied by the release of water vapor and carbon dioxide gases. Gases flowing through the melt upper surface can influence the rates of heat transfer to water overlying the melt. In particular, the gas flow through the interface can be envisioned to enhance the heat removal from the melt. A mechanistic model (CORQUENCH) has been developed to describe film-boiling heat transfer between a molten pool and an overlying coolant layer in the presence of sparging gas. The model favorably predicts the lead-Feron 11 data of Greene and Greene et al. for which the calculations indicate that area enhancement in the conduction heat transfer across the film is the predominant mechanism leading to augmentation in the heat flux as the gas velocity increases. Predictions for oxidic corium indicate a rapid increase in film-boiling heat flux as the gas velocity rises. The predominant mode of heat transfer for this case is radiation, and the increase in heat flux with gas velocity is primarily a result of interfacial area enhancement of the radiation component of the overall heat transfer coefficient. The CORQUENCH model has been incorporated into the MELTSPREAD-1 computer code6 for the analysis of transient spreading in containments
International Nuclear Information System (INIS)
In the first part, free-convection and nucleate pool boiling heat transfer (up to burn-out heat flux) between a platinum wire of 0.15 mm in diameter in neon, deuterium and hydrogen has been studied at atmospheric pressure. These measurements were continued in liquid neon up to 23 bars (Pc ≅ 26.8 b). Film boiling heat transfer coefficients have been measured in pool boiling liquid neon at atmospheric pressure with three heating wires (diameters 0.2, 0.5, 2 mm). All the results have been compared with existing correlations. The second part is devoted to measurements of the critical heat flux limiting heat transfer with small temperature differences between the wall and the liquid neon flowing inside a tube (diameters 3 x 3.5 mm) heated by joule effect on 30 cm of length. Influences of flow stability, nature of electrical current, pressure, mass flow rate and subcooling are shown. In conclusion, the similarity of the heat transfer characteristics in pool boiling as well as in forced convection of liquid neon and hydrogen is emphasized. (author)
Simulation of heat and mass transfer in boiling water with the Melodif code
International Nuclear Information System (INIS)
The Melodif code is developed at Electricite de France, Research and Development Division. It is an eulerian two dimensional code for the simulation of turbulent two phase flows (a three dimensional code derived from Melodif, ASTRID, is currently being prepared). Melodif is based on the two fluid model, solving the equations of conservation for mass, momentum and energy, for both phases. In such a two fluid model, the description of interfacial transfers between phases is a crucial issue. The model used applies to a dominant continuous phase, and a dispersed phase. A good description of interfacial momentum transfer exists in the standard MELODIF code: the drag force, the apparent mass force... are taken into account. An important factor for interfacial transfers is the interfacial area per volume unit. With the assumption of spherical gas bubbles, an equation has been written for this variable. In the present wok, a model has been tested for interfacial heat and mass transfer in the case of boiling water: it is assumed that mass transfer is controlled by heat transfer through the latent massic energy taken in the phase that vaporizes (or condenses). This heat and mass transfer model has been tested in various configurations: - a cylinder with water flowing inside, is being heated. Boiling takes place near the wall, while bubbles migrating to the core of the flow recondense. This roughly simulates a sub-cooled boiling phenomenon. - a box containing liquid water is depressurized. Boiling takes place in the whole volume of the fluid. The Melodif code can simulate this configuration due to the implicitation of the relation between interphase mass transfer and the pressure variable
Institute of Scientific and Technical Information of China (English)
GuoqingWang; YingkeTan; 等
1996-01-01
A mechanism is proposed for nucleate pool boiling heat transfer along with a general model for both pure liquids and binary mixtrues.A combined physical model of bubble growth is also proposed along with a corresponding bubble growth model for pure liquids on smooth tubes.Using the general model and the bubble growth model for pure liquids,an analyticasl model for nucleate pool boiling heat transfer of pure liquids on smooth tubes is developed.
Study of boiling heat transfer characteristics in TiO2 nanofluids
International Nuclear Information System (INIS)
The present research is an experimental study of pool boiling behavior in nanofluids at atmospheric pressures. The experiment was carried out in demineralized water containing dispersed titania nanoparticles using a 0.15mm-dia. platinum wire as a heater. The average CHF of nanofluids is 1.45MW/m2, which showed a 93% enhancement compared with the CHF of pure water. It was confirmed from measurements of contact angles that the CHF enhancement is mainly caused by increased wettability. Time-dependence of CHF enhancement was investigated by varying power steps and it was found that the CHF enhancement has correlation to the total heat added to the wire. The tests for determining a heat transfer coefficient were also performed at a constant heat flux for long duration. The contact angle, surface roughness and nucleate site density of the heated wire were investigated as well as the heat transfer coefficient. The heat transfer coefficient increased slightly after the start of boiling; however, it changed to decrease in about 5 minutes. The nucleate site density was found to have relationship with the heat transfer coefficient. The surface roughness increased with heating time, while the contact angle decreased with heating time. It is considered that these two effects resulted in such nucleate site density changes. (author)
Oxidation Effect on Pool Boiling Heat Transfer in Atmospheric Saturated Water
Energy Technology Data Exchange (ETDEWEB)
Son, Hong Hyun; Jeong, Uiju; Seo, Gwang Hyeok; Jeun, Gyoodong; Kim, Sung Joong [Hanyang Univ., Seoul (Korea, Republic of)
2014-10-15
During the hypothesized severe accidents, however, the modified nature of the oxidized outer surface of RPV may act as a significant heat transfer variable to achieve In-Vessel Retention through External Reactor Vessel Cooling (IVR-ERVC) strategy, which is the one of important mitigation strategies of severe accident to delay occurrence of critical heat flux (CHF). As well understood, the CHF is mainly affected by the two distinctive conditions classified to thermal hydraulic behavior of fluid system and surface characteristics. In this regard, a CHF test considering oxidation effect on the pool boiling heat transfer of the RPV outer surface has been proposed to evaluate realistic thermal margin of IVR-ERVC strategy. In this study, pool boiling heat transfer experiment was conducted under the condition of atmospheric saturated water. Oxidized surface characteristics were quantitatively evaluated with measurement of contact angle and roughness. In this study, oxide layer formation on the heated surface was investigated and experimentally simulated to find out its effect on the pool boiling CHF. Several SS316L substrates were oxidized in the corrosive environment under the condition of high temperature with different oxidation periods. Local pitting corrosion was observed on the heating surface in 5 days of short-term oxidation but a fully oxidized surface with somewhat uniform thickness, 1. Pool boiling heat transfer tests with the bare and oxidized heaters were conducted and major findings are summarized as follows: 1. Wettability in terms of the receding angle of the oxidized surface is enhanced regardless of the oxidation period. 2. Average roughness between the oxidized surfaces is almost the same in the range of nano-scale. 3. Effect of wettability and surface roughness on the CHF was negligible in the locally oxidized surface, which may be attributed to the presence of the disconnected porous channel. Unlike the local oxidation, fully oxidized surface shows
Effect of liquid flow rate on film boiling heat transfer during reflood in rod bundle
International Nuclear Information System (INIS)
An experiment was performed in a wide range of core flooding rate to study the effect of liquid flow rate on the film boiling heat transfer during reflood using a 6 x 6 heater rod bundle with a full-height heated length. The flooding rate was in the range of 2∼30 cm/s. The obtained data were evaluated through assessment and improvement of Murao-Sugimoto heat transfer coefficient correlation, which predicted well the heat transfer coefficient under the core flooding rate up to 10 cm/s, but underestimated the heat transfer coefficient in the range of the flooding rate higher than 10 cm/s. An empirical correction factor for the Murao-Sugimoto correlation was proposed based on the present experimental data. The proposed correction factor was confirmed to be applicable to another large scale tests. (author)
Mikielewicz Dariusz; Andrzejczyk Rafał; Jakubowska Blanka; Mikielewicz Jarosław
2014-01-01
In the paper a method developed earlier by authors is applied to calculations of pressure drop and heat transfer coefficient for flow boiling and also flow condensation for some recent data collected from literature for such fluids as R404a, R600a, R290, R32,R134a, R1234yf and other. The modification of interface shear stresses between flow boiling and flow condensation in annular flow structure are considered through incorporation of the so called blowing parameter. The shear stress between ...
Boiling heat transfer correlation on the outside of horizontal tube in a condenser
International Nuclear Information System (INIS)
We have been developing a new passive water cooling system for boiling water reactors (BWRs) to avoid part of the situation that led to the Fukushima Daiichi Nuclear Power Station accident. The new passive water cooling system consists of a condenser and a water supply system to the reactor. Steam from the reactor pressure vessel (RPV) is condensed in the condensation tubes of the condenser, and condensate flows out into the suppression pool in the primary containment vessel (PCV). Water temperature at the condensation tube outlet is lowered below the saturated temperature at the partial steam pressure of the maximum PCV design pressure to prevent the PCV failure. The condenser is located at a lower level, e.g., underground, for easier access and for supplying cooling water to a condenser pool without electricity during an event. The lower level condenser pool also has a significant advantage that it can be seismically designed. To develop a condenser for the passive water cooling system, we conducted heat transfer tests using full-scale U-shaped single tubes. The tube was used the three diameter size to assess performance of the new water cooling system, a passive containment cooling system (PCCS) and an isolation condenser (IC). The experimental conditions were also set up to allow extrapolation for the PCCS and the IC conditions. The heat transfer data were obtained at system pressures of 0.2 to 3.0 MPa (absolute) and inlet steam velocities of 5 to 56 m/s. The heat transfer data with these wide ranges of pressure and inlet velocity conditions include thermal hydraulics conditions for the new water cooling system and the PCCS and some of the data can be extrapolated to the IC conditions. In these experiments, the boiling heat transfer coefficients on the outside tube for water under atmospheric pressure were obtained using a full-scaled horizontal single tube. The boiling heat transfer correlation was considered by introducing the influence of the condensate tube
An experimental study on micro-scale flow boiling heat transfer
International Nuclear Information System (INIS)
In this paper, new experimental flow boiling heat transfer results in micro-scale tubes are presented. The experimental data were obtained in a horizontal 2.32 mm I.D. stainless steel tube with heating length of 464 mm, R134a as working fluid, mass velocities ranging from 50 to 600 kg/m2s, heat flux from 5 to 55 kW/m2, exit saturation temperatures of 22, 31 and 41 deg C, and vapor qualities from 0.05 to 0.98. Flow pattern characterization was also performed from images obtained by high speed filming. Heat transfer coefficient results from 2 to 14 kW/m2K were measured. It was found that the heat transfer coefficient is a strong function of the saturation pressure, heat flux, mass velocity and vapor quality. The experimental data were compared against the following micro-scale flow boiling predictive methods from the literature: Saitoh et al., Kandlikar, Zhang et al. and Thome et al. Comparisons against these methods based on the data segregated according to flow patterns were also performed. Though not satisfactory, Saitoh et al. worked the best and was able of capturing most of the experimental heat transfer trends. (author)
Two dimensional heat transfer problem in flow boiling in a rectangular minichannel
Directory of Open Access Journals (Sweden)
Hożejowska Sylwia
2015-01-01
Full Text Available The paper presents mathematical modelling of flow boiling heat transfer in a rectangular minichannel asymmetrically heated by a thin and one-sided enhanced foil. Both surfaces are available for observations due to the openings covered with glass sheets. Thus, changes in the colour of the plain foil surface can be registered and then processed. Plain side of the heating foil is covered with a base coat and liquid crystal paint. Observation of the opposite, enhanced surface of the minichannel allows for identification of the gas-liquid two-phase flow patterns and vapour quality. A two-dimensional mathematical model of heat transfer in three subsequent layers (sheet glass, heating foil, liquid was proposed. Heat transfer in all these layers was described with the respective equations: Laplace equation, Poisson equation and energy equation, subject to boundary conditions corresponding to the observed physical process. The solutions (temperature distributions in all three layers were obtained by Trefftz method. Additionally, the temperature of the boiling liquid was obtained by homotopy perturbation method (HPM combined with Trefftz method. The heat transfer coefficient, derived from Robin boundary condition, was estimated in both approaches. In comparison, the results by both methods show very good agreement especially when restricted to the thermal sublayer.
International Nuclear Information System (INIS)
The knowledge of flow film boiling heat transfer on a horizontal cylinder in various liquids flowing upward perpendicular to the cylinder is important as the database for the safety evaluation of the accidents such as rapid power burst and pressure reduction in the nuclear power plants. Flow film boiling heat transfer from single horizontal cylinders in water and Freon-113 flowing upward perpendicular to the cylinder under subcooled conditions was measured under wide experimental conditions. The flow velocities ranged from 0 to 1 m/s, the system pressures ranged from 100 to 500 kPa, and the surface superheats were raised up to 800 K for water and 400 K for Freon-113, respectively. Platinum horizontal cylinders with diameters ranging from 0.7 to 5 mm were used as the test heaters. The test heater was heated by direct electric current. The experimental data of film boiling heat transfer coefficients show that they increase with the increase of flow velocity, liquid subcooling, system pressure and with the decrease of cylinder diameter. Based on the experimental data, a correlation for subcooled flow film boiling heat transfer including the effects of liquid subcooling and radiation was presented, which can describe the experimental data obtained within 20% for the flow velocities below 0.7 m/s, and within -30% to +20% for the higher flow velocities. The correlation also predicted well the data by Shigechi (1983), Motte and Bromley (1957), and Sankaran and Witte (1990) obtained for the larger diameter cylinders and higher flow velocities in various liquids at the pressures of near atmospheric. The Shigechi's data were in the range from about -20% to +15%, the data of Motte and Bromley were about 30%,and the data of Sankaran and Witte were within +20 % of the curves given by the corresponding predicted values. (authors)
Shin, Sangwoo; Seok Kim, Beom; Choi, Geehong; Lee, Hwanseong; Hee Cho, Hyung
2012-12-01
Micro-nano hybrid structure (MNHS) that comprises of microcavities and nanowires is a specific class of MNHS that is considered to be ideal for two-phase boiling heat transfer applications. Realizing MNHS with electrodeposition is favorable in boiling heat transfer, but the realization has been very difficult and time-consuming to achieve. Here, we demonstrate a simple, robust, rapid, and photolithography-free route to fabricate MNHS that consists of individual microcavities and copper nanowires on a large area. We show that this MNHS can be extremely beneficial in boiling heat transfer compared to the state-of-the-art nanowire surface.
Boiling on a tube bundle: heat transfer, pressure drop and flow patterns
International Nuclear Information System (INIS)
The complexity of two-phase flow boiling on a tube bundle presents many challenges to the understanding of the physical phenomena taking place. It is important to quantify these numerous heat flow mechanisms in order to better describe the performance of tube bundles as a function of the operational conditions. In the present study, the bundle boiling facility at the Laboratory of Heat and Mass Transfer (LTCM) was modified to obtain high-speed videos to characterise the two-phase regimes and some bubble dynamics of the boiling process. It was then used to measure heat transfer on single tubes and in bundle boiling conditions. Pressure drop measurements were also made during adiabatic and diabatic bundle conditions. New enhanced boiling tubes from Wolverine Tube Inc. (Turbo-B5) and the Wieland-Werke AG (Gewa-B5) were investigated using R134a and R236fa as test fluids. The tests were carried out at saturation temperatures Tsat of 5 °C and 15 °C, mass flow rates from 4 to 35 kg/m2s and heat fluxes from 15 to 70 kW/m2, typical of actual operating conditions. The flow pattern investigation was conducted using visual observations from a borescope inserted in the middle of the bundle. Measurements of the light attenuation of a laser beam through the intertube two-phase flow and local pressure fluctuations with piezo-electric pressure transducers were also taken to further help in characterising the complex flow. Pressure drop measurements and data reduction procedures were revised and used to develop new, improved frictional pressure drop prediction methods for adiabatic and diabatic two-phase conditions. The physical phenomena governing the enhanced tube evaporation process and their effects on the performance of tube bundles were investigated and insight gained. A new method based on a theoretical analysis of thin film evaporation was used to propose a new correlating parameter. A large new database of local heat transfer coefficients were obtained and then utilised
Forced convective boiling heat transfer of water in vertical rectangular narrow channel
Energy Technology Data Exchange (ETDEWEB)
Chen, Chong, E-mail: chenchong_2012@163.com; Gao, Pu-zhen, E-mail: gaopuzhen@hrbeu.edu.cn; Tan, Si-chao; Chen, Han-ying; Chen, Xian-bing
2015-09-15
Highlights: • Chen correlation cannot well predict the coefficient of rectangular channel. • Kim and Mudawar correlation is the best one among the Chen type correlations. • Lazarek and Black correlation predicted 7.0% of data within the ±30% error band. • The new correlation can well predict the coefficient with a small MAE of 14.4%. - Abstract: In order to research the characteristics of boiling flows in a vertical rectangular narrow channel, a series of convective boiling heat transfer experiments are performed. The test section is made of stainless steel with an inner diameter of 2 × 40 mm and heated length of 1100 mm. The 3194 experimental data points are obtained for a heat flux range of 10–700 kW/m{sup 2}, a mass flux range of 200–2400 kg/m{sup 2} s, a system pressure range of 0.1–2.5 MPa, and a quality range of 0–0.8. Eighteen prediction models are used to predict the flow boiling heat transfer coefficient of the rectangular narrow channel and the predicted value is compared against the database including 3194 data points, the results show that Chen type correlations and Lazarek and Black type correlations are not suitable for the rectangular channel very much. The Kim and Mudawar correlation is the best one among the 18 models. A new correlation is developed based on the superposition concept of nucleate boiling and convective boiling. the new correlation is shown to provide a good prediction against the database, evidenced by an overall MAE of 14.4%, with 95.2% and 98.6% of the data falling within ±30% and ±35% error bands, respectively.
Forced convective boiling heat transfer of water in vertical rectangular narrow channel
International Nuclear Information System (INIS)
Highlights: • Chen correlation cannot well predict the coefficient of rectangular channel. • Kim and Mudawar correlation is the best one among the Chen type correlations. • Lazarek and Black correlation predicted 7.0% of data within the ±30% error band. • The new correlation can well predict the coefficient with a small MAE of 14.4%. - Abstract: In order to research the characteristics of boiling flows in a vertical rectangular narrow channel, a series of convective boiling heat transfer experiments are performed. The test section is made of stainless steel with an inner diameter of 2 × 40 mm and heated length of 1100 mm. The 3194 experimental data points are obtained for a heat flux range of 10–700 kW/m2, a mass flux range of 200–2400 kg/m2 s, a system pressure range of 0.1–2.5 MPa, and a quality range of 0–0.8. Eighteen prediction models are used to predict the flow boiling heat transfer coefficient of the rectangular narrow channel and the predicted value is compared against the database including 3194 data points, the results show that Chen type correlations and Lazarek and Black type correlations are not suitable for the rectangular channel very much. The Kim and Mudawar correlation is the best one among the 18 models. A new correlation is developed based on the superposition concept of nucleate boiling and convective boiling. the new correlation is shown to provide a good prediction against the database, evidenced by an overall MAE of 14.4%, with 95.2% and 98.6% of the data falling within ±30% and ±35% error bands, respectively
Burnout in boiling heat transfer. Part III. High-quality forced-convection systems
International Nuclear Information System (INIS)
This is the final part of a review of burnout during boiling heat transfer. The status of burnout in high-quality forced-convection systems is reviewed, and recent developments are summarized in detail. A general guide to the considerable literature is given. Parametric effects and correlations for water in circular and noncircular ducts are presented. Other topics discussed include transients, steam-generator applications, correlations for other fluids, fouling, and augmentation
Flow Pattern and Heat Transfer Behavior of Boiling Two—Phase flow in Inclined Pipes
Institute of Scientific and Technical Information of China (English)
LiuDezhang; OuyangNing
1992-01-01
Movable Electrical Conducting Probe (MECP),a kind of simple and reliable measuring transducer,used for predicting full-flow-path flow pattern in a boiling vapor/liquid two-phase flow is introduced in this paper when the test pipe is set at different inclination angles,several kinds of flow patterns,such as bubble,slug,churn,intermittent,and annular flows,may be observed in accordance with the locations of MECP.By means of flow pattern analysis,flow fleld numerical calculations have been carried out,and heat transfer coeffcient correlations along full-flow-path derived.The results show that heat transfer performance of boiling two-phase flow could be significanfly augmanted as expected in some flow pattern zones.The results of the investigation,measuring techniques and conclusions contained in this paper would be a useful reference in foundational research for prediction of flow pattern and heat transfer behavior in boiling two-phase flow,as well as for turbine vane liquid-cooling design.
Flow pattern and heat transfer behavior of boiling two-phase flow in inclined pipes
Liu, Dezhang; Ning, Ouyang
1992-09-01
Movable Electrical Conducting Probe (MECP), a kind of simple and reliable measuring transducer, used for predicting full-flow-path flow pattern in a boiling vapor/liquid two-phase flow is introduced in this paper. When the test pipe is set at different inclination angles, several kinds of flow patterns, such as bubble, slug, churn, intermittent, and annular flows, may be observed in accordance with the locations of MECP. By means of flow pattern analysis, flow field numerical calculations have been carried out, and heat transfer coefficient correlations along full-flow-path derived. The results show that heat transfer performance of boiling two-phase flow could be significantly augmented as expected in some flow pattern zones. The results of the investigation, measuring techniques and conclusions contained in this paper would be a useful reference in foundational research for prediction of flow pattern and heat transfer behavior in boiling two-phase flow, as well as for turbine vane liquid-cooling design.
Investigation into flow boiling heat transfer in a minichannel with enhanced heating surface
Directory of Open Access Journals (Sweden)
Piasecka Magdalena
2012-04-01
Full Text Available The paper presents results of flow boiling in a minichannel of 1.0 mm depth. The heating element for the working fluid (FC-72 that flows along the minichannel is a single-sided enhanced alloy foil made from Haynes-230. Microrecesses were formed on the selected area of the heating foil by laser technology. The observations of the flow structure were carried out through a piece of glass. Simultaneously, owing to the liquid crystal layer placed on the opposite side of the enhanced foil surface, it was possible to measure temperature distribution on the heating wall through another piece of glass. The experimental research has been focused on the transition from single phase forced convection to nucleate boiling, i.e. the zone of boiling incipience and further development of boiling. The objective of the paper is determining of the void fraction for some cross-sections of selected images for increasing heat fluxes supplied to the heating surface. The flow structure photos were processed in Corel graphics software and binarized. The analysis of phase volumes was developed in Techystem Globe software.
Investigation into flow boiling heat transfer in a minichannel with enhanced heating surface
Piasecka, Magdalena
2012-04-01
The paper presents results of flow boiling in a minichannel of 1.0 mm depth. The heating element for the working fluid (FC-72) that flows along the minichannel is a single-sided enhanced alloy foil made from Haynes-230. Microrecesses were formed on the selected area of the heating foil by laser technology. The observations of the flow structure were carried out through a piece of glass. Simultaneously, owing to the liquid crystal layer placed on the opposite side of the enhanced foil surface, it was possible to measure temperature distribution on the heating wall through another piece of glass. The experimental research has been focused on the transition from single phase forced convection to nucleate boiling, i.e. the zone of boiling incipience and further development of boiling. The objective of the paper is determining of the void fraction for some cross-sections of selected images for increasing heat fluxes supplied to the heating surface. The flow structure photos were processed in Corel graphics software and binarized. The analysis of phase volumes was developed in Techystem Globe software.
Zajaczkowski, Bartosz; Halon, Tomasz; Krolicki, Zbigniew
2016-02-01
In this paper we study the influence of sub-atmospheric pressure on nucleate boiling. Sixteen correlations for pool boiling available in literature are gathered and evaluated. Analysis is performed in the pressure range 1-10 kPa and for heat flux densities 10-45 kW/m2. Superheats are set between 6.2 and 28.7 K. The results of calculations were compared with experimental values for the same parameters. The experiments were conducted using isolated glass cylinder and water boiling above the copper plate. Results show that low pressure adjust the character of boiling curve—the curve flattened and the natural convection region of boiling is shifted towards higher wall temperature superheats due to the influence of low pressure on the bubble creation and process of its departure. In result, 8 of 16 analyzed correlations were determined as completely invalid in subatmospheric conditions and the remaining set of equations was compared to experimental results. Experimentally obtained values of heat transfer coefficients are between 1 and 2 kW/m2K. With mean absolute deviation (MAD) we have found that the most accurate approximation of heat transfer coefficient is obtained using Mostinski reduced pressure correlation (0.13-0.35 MAD) and Labuntsov correlation (0.12-0.89 MAD).
Variation of Local Pool Boiling Heat Transfer Coefficient On 3-Degree Inclined Tube Surface
International Nuclear Information System (INIS)
Experimental studies on both subcooled and saturated pool boiling of water were performed to obtain local heat transfer coefficients on a 3 .deg. inclined tube of 50.8 mm diameter at atmospheric pressure. The local values were determined at every 45 .deg. from the very bottom to the uppermost of the tube periphery. The maximum and minimum local coefficients were observed at the azimuthal angles of 0 .deg. and 180 .deg., respectively, in saturated water. The locations of the maxima and the minima were dependent on the inclination angle of the tube as well as the degree of subcooling. The major heat transfer mechanisms were considered to be liquid agitation generated by the sliding bubbles and the creation of big size bubbles through bubble coalescence. As a way of quantifying the heat transfer coefficients, an empirical correlation was suggested
International Nuclear Information System (INIS)
The nucleate boiling heat-transfer coefficient and the maximum heat flux were studied experimentally as functions of velocity, quality and heater diameter for single-phase flow, and two-phase flow of Freon-113 (trichlorotrifluorethane). Results show: (1) peak heat flux: over 300 measured peak heat flux data from two 0.875-in. and four 0.625-in.-diameter heaters indicated that: (a) for pool boiling, single-phase and two-phase forced convection boiling the only parameter (among hysteresis, rate of power increase, aging, presence and proximity of unheated rods) that has a statistically significant effect on the peak heat flux is the velocity. (b) In the velocity range (0 0 position or the point of impact of the incident fluid) and the top (1800 position) of the test element, respectively
Role of ions in pool boiling heat transfer of pure and silica nanofluids
Milanova, Denitsa; Kumar, Ranganathan
2005-12-01
Heat transfer in silica nanofluids at different acidity and base is measured for various ionic concentrations in a pool boiling experiment. Nanosilica suspension increases the critical heat flux 3 times compared to conventional fluids. The 10-nm particles possess a thicker double diffuse layer compared to 20-nm particles. The catalytic properties of nanofluids decrease in the presence of salts, allowing the particles to cluster and minimize the potential increase in heat transfer. Nanofluids in a strong electrolyte, i.e., in high ionic concentration, allow a higher critical heat flux than in buffer solutions because of the difference in surface area. The formation and surface structure of the deposition affect the thermal properties of the liquid.
Film boiling heat transfer characteristics of sodium in droplet evaporation on heated tantalum
International Nuclear Information System (INIS)
For gaining background information on possible vapor explosion in a hypothetical core disruptive accident of liquid metal cooled fast breeder reactors, the experiment on the film boiling characteristics of sodium was conducted in association with Leidenfrost phenomenon. In a steel container filled with 1.0bar argon gas, sodium droplets were put on a heated disk and the behavior of droplets was observed through pyrex glass windows by a 35mm camera and a color videotape-recorder. A tantalum disk of 70mm dia. and 30mm height was induction-heated by an oil-cooled coil and a high frequency power supply of 20kHz and 30kW rating. The wall temperature of the disk was measured by a 1.6mm O.D. Ta-sheathed W-5%Re/W-26%Re thermocouple embedded beneath the disk. The experimental conditions were the initial droplet temperature and volume : 400-5000C and about 1.0cm3, the initial tantalum disk temperature : 1390-18900C. The heat flux was estimated from the volumetric reducing rate of droplet due to vaporization, based on photographic observation. The data plots of heat flux, though widely scattering, showed a decreasing trend with the wall superheat in the temperature range of 1390-16000C, while an increasing trend in the range of 1600-18900C. The former range suggests to correspond to the transition boiling region and the latter to the film boiling region. Thus, the minimum film boiling point was roughly estimated to be around 16000C and 45W/cm2. In the film boiling region the plots came slightly above the theoretical prediction. (author)
Transient non-boiling heat transfer in a fuel rod bundle during accidental power excursions
International Nuclear Information System (INIS)
The physical problem studied is the transient non-boiling heat transfer of a cylindrical fuel rod consisting of fuel, gap, and cladding to a steady, fully developed turbulent flow. The fuel pin is assumed to be located in the interior region of a subassembly with regular triangular or square arrangements. The turbulent velocity field as well as turbulent transport properties are specified as functions of the coordinates normal to the axial flow direction. The heat generation within the fuel may be specified as an arbitrary function of the three spatial coordinates and time. A digital computer program has been developed. On the basis of finite-difference techniques, to solve the governing partial differential equations with their associated subsidiary conditions. Results have been obtained for a series of exponential power transients of interest to safety of liquid-metal and water cooled nuclear reactors. The general physical features of transient convective heat transfer as explored by previous investigators have qualitatively been substantiated by the present analysis. Emphasis has been devoted to investigate the differences of heat-transfer (coefficient) results from multi-region analysis including a realistic fuel rod model and single-region analysis for the coolant region only. A comparison with the engineering relationships for turbulent liquid-metal cooling by Stein, which are an extension of the heat transfer coefficient concept to account for transient heat fluxes, clearly demonstrates that, at the parameters studied, Stein's approach tends to largely overestimate the convective heat transfer at early times
Herman, Cila
1999-01-01
In boiling high heat fluxes are possible driven by relatively small temperature differences, which make its use increasingly attractive in aerospace applications. The objective of the research is to develop ways to overcome specific problems associated with boiling in the low gravity environment by substituting the buoyancy force with the electric force to enhance bubble removal from the heated surface. Previous studies indicate that in terrestrial applications nucleate boiling heat transfer can be increased by a factor of 50, as compared to values obtained for the same system without electric fields. The goal of our research is to experimentally explore the mechanisms responsible for EHD heat transfer enhancement in boiling in low gravity conditions, by visualizing the temperature distributions in the vicinity of the heated surface and around the bubble during boiling using real-time holographic interferometry (HI) combined with high-speed cinematography. In the first phase of the project the influence of the electric field on a single bubble is investigated. Pool boiling is simulated by injecting a single bubble through a nozzle into the subcooled liquid or into the thermal boundary layer developed along the flat heater surface. Since the exact location of bubble formation is known, the optical equipment can be aligned and focused accurately, which is an essential requirement for precision measurements of bubble shape, size and deformation, as well as the visualization of temperature fields by HI. The size of the bubble and the frequency of bubble departure can be controlled by suitable selection of nozzle diameter and mass flow rate of vapor. In this approach effects due to the presence of the electric field can be separated from effects caused by the temperature gradients in the thermal boundary layer. The influence of the thermal boundary layer can be investigated after activating the heater at a later stage of the research. For the visualization experiments a
Directory of Open Access Journals (Sweden)
Mikielewicz Dariusz
2014-09-01
Full Text Available In the paper a method developed earlier by authors is applied to calculations of pressure drop and heat transfer coefficient for flow boiling and also flow condensation for some recent data collected from literature for such fluids as R404a, R600a, R290, R32,R134a, R1234yf and other. The modification of interface shear stresses between flow boiling and flow condensation in annular flow structure are considered through incorporation of the so called blowing parameter. The shear stress between vapor phase and liquid phase is generally a function of nonisothermal effects. The mechanism of modification of shear stresses at the vapor-liquid interface has been presented in detail. In case of annular flow it contributes to thickening and thinning of the liquid film, which corresponds to condensation and boiling respectively. There is also a different influence of heat flux on the modification of shear stress in the bubbly flow structure, where it affects bubble nucleation. In that case the effect of applied heat flux is considered. As a result a modified form of the two-phase flow multiplier is obtained, in which the nonadiabatic effect is clearly pronounced.
Mikielewicz, Dariusz; Andrzejczyk, Rafał; Jakubowska, Blanka; Mikielewicz, Jarosław
2014-09-01
In the paper a method developed earlier by authors is applied to calculations of pressure drop and heat transfer coefficient for flow boiling and also flow condensation for some recent data collected from literature for such fluids as R404a, R600a, R290, R32,R134a, R1234yf and other. The modification of interface shear stresses between flow boiling and flow condensation in annular flow structure are considered through incorporation of the so called blowing parameter. The shear stress between vapor phase and liquid phase is generally a function of nonisothermal effects. The mechanism of modification of shear stresses at the vapor-liquid interface has been presented in detail. In case of annular flow it contributes to thickening and thinning of the liquid film, which corresponds to condensation and boiling respectively. There is also a different influence of heat flux on the modification of shear stress in the bubbly flow structure, where it affects bubble nucleation. In that case the effect of applied heat flux is considered. As a result a modified form of the two-phase flow multiplier is obtained, in which the nonadiabatic effect is clearly pronounced.
Heat transfer coefficient for flow boiling in an annular mini gap
Hożejowska, Sylwia; Musiał, Tomasz; Piasecka, Magdalena
2016-03-01
The aim of this paper was to present the concept of mathematical models of heat transfer in flow boiling in an annular mini gap between the metal pipe with enhanced exterior surface and the external glass pipe. The one- and two-dimensional mathematical models were proposed to describe stationary heat transfer in the gap. A set of experimental data governed both the form of energy equations in cylindrical coordinates and the boundary conditions. The models were formulated to minimize the number of experimentally determined constants. Known temperature distributions in the enhanced surface and in the fluid helped to determine, from the Robin condition, the local heat transfer coefficients at the enhanced surface - fluid contact. The Trefftz method was used to find two-dimensional temperature distributions for the thermal conductive filler layer, enhanced surface and flowing fluid. The method of temperature calculation depended on whether the area of single-phase convection ended with boiling incipience in the gap or the two-phase flow region prevailed, with either fully developed bubbly flow or bubbly-slug flow. In the two-phase flow, the fluid temperature was calculated by Trefftz method. Trefftz functions for the Laplace equation and for the energy equation were used in the calculations.
Heat transfer coefficient for flow boiling in an annular mini gap
Directory of Open Access Journals (Sweden)
Hożejowska Sylwia
2016-01-01
Full Text Available The aim of this paper was to present the concept of mathematical models of heat transfer in flow boiling in an annular mini gap between the metal pipe with enhanced exterior surface and the external glass pipe. The one- and two-dimensional mathematical models were proposed to describe stationary heat transfer in the gap. A set of experimental data governed both the form of energy equations in cylindrical coordinates and the boundary conditions. The models were formulated to minimize the number of experimentally determined constants. Known temperature distributions in the enhanced surface and in the fluid helped to determine, from the Robin condition, the local heat transfer coefficients at the enhanced surface – fluid contact. The Trefftz method was used to find two-dimensional temperature distributions for the thermal conductive filler layer, enhanced surface and flowing fluid. The method of temperature calculation depended on whether the area of single-phase convection ended with boiling incipience in the gap or the two-phase flow region prevailed, with either fully developed bubbly flow or bubbly-slug flow. In the two–phase flow, the fluid temperature was calculated by Trefftz method. Trefftz functions for the Laplace equation and for the energy equation were used in the calculations.
International Nuclear Information System (INIS)
Over the last decade, numerous investigations have been carried out using engineered colloidal fluids called nano-fluids in pool boiling for the enhancement of critical heat flux (CHF) which is otherwise limited by the use of base fluids. Though there are contradicting results in CHF enhancement, almost all the researchers identified that there is an enhancement in CHF by the addition of nanoparticles (1-100 nm size) with base fluid. The deposition of nanoparticles on the heater surface during boiling of nano-fluids is the major factor for the enhancement of CHF. In fact, the CHF enhancement results are influenced by the various parameters such as size of nanoparticles, method of preparation of nano-fluids, and its concentration. This article reviews in detail the various factors for the enhancement of CHF and provides further research direction which helps the readers to understand the pool boiling heat transfer in a better way. Also, the mechanisms of CHF enhancement by exploring various boiling heat transfer theories have been addressed. (authors)
The development of a non-equilibrium dispersed flow film boiling heat transfer modeling package
Meholic, Michael J.
The dispersed flow film boiling (DFFB) heat transfer regime is important to several applications including cryogenics, rocket engines, steam generators, and in the safety analysis of nuclear reactors. Most notably, DFFB is responsible for the heat transfer during the blowdown and reflood portions of the postulated loss-of-coolant-accident (LOCA). Such analyses require the accurate predictions of the heat transfer resulting from the non-equilibrium conditions present in DFFB. A total of six, interrelated heat transfer paths need to be modeled accurately in order to quantify DFFB heat transfer. Within the nuclear industry, transient safety analysis codes, such as COBRA-TF, are used to ensure the safety of the reactor under various transient and accident scenarios. An extensive literature review of DFFB heat transfer highlighted a number of correlative, phenomenological, and mechanistic models. The Forslund-Rohsenow model is most commonly implemented throughout the nuclear industry. However, several of the models suggested by Forslund and Rohsenow to model DFFB phenomena are either inapplicable for nuclear reactors or do not provide an accurate physical representation of the true situation. Deficiencies among other DFFB heat transfer models in their applicability to nuclear reactors or in their computational expenses motivated the development of a mechanistically based DFFB model which accounted for each heat transfer mechanism explicitly. The heat transfer resulting from dispersed droplets contacting the heated wall in DFFB was often neglected in previous models. In this work, a first-principles approach was implemented to quantify the heat transfer attributed to direct contact. Lagrangian droplet trajectory calculations incorporating realistic radial vapor velocity and temperature profiles were performed to determine if droplets could contact the heated wall based upon the local conditions. These calculations were performed over a droplet size spectrum accounting
Local Heat Transfer and CHF for Subcooled Flow Boiling - Annual Report 1993
Energy Technology Data Exchange (ETDEWEB)
Dr. Ronald D. Boyd
2000-07-01
Subcooled flow boiling in heated coolant channels is an important heat transfer enhancement technique in the development of fusion reactor components, where high heat fluxes must be accommodated. As energy fluxes increase in magnitude, additional emphasis must be devoted to enhancing techniques such as sub cooling and enhanced surfaces. In addition to subcooling, other high heat flux alternatives such as high velocity helium and liquid metal cooling have been considered as serious contenders. Each technique has its advantages and disadvantages [1], which must be weighed as to reliability and reduced cost of fusion reactor components. Previous studies [2] have set the stage for the present work, which will concentrate on fundamental thermal hydraulic issues associated with the h-international Thermonuclear Experimental Reactor (ITER) and the Engineering Design Activity (EDA). This proposed work is intended to increase our understanding of high heat flux removal alternatives as well as our present capabilities by: (1) including single-side heating effects in models for local predictions of heat transfer and critical heat flux; (2) inspection of the US, Japanese, and other possible data sources for single-side heating, with the aim of exploring possible correlations for both CHF and local heat transfer; and (3) assessing the viability of various high heat flux removal techniques. The latter task includes: (a) sub-cooled water flow boiling with enhancements such as twisted tapes, and hypervapotrons, (b) high velocity helium cooling, and (c) other potential techniques such as liquid metal cooling. This assessment will increase our understanding of: (1) hypervapotron heat transfer via fins, flow recirculation, and flow oscillation, and (2) swirl flow. This progress report contains selective examples of ongoing work. Section II contains an extended abstract, which is part of and evolving technical paper on single-side f heating. Section III describes additional details
International Nuclear Information System (INIS)
Water single-phase and nucleate boiling heat transfer were experimentally investigated in vertical annuli with narrow gaps. The experimental data about water single-phase flow and boiling two-phase flow heat transfer in narrow annular channel were accumulated by two test sections with the narrow gaps of 1.0 mm and 1.5 mm. Empirical correlations to predict the heat transfer of the single-phase flow and boiling two-phase flow in the narrow annular channel were obtained, which were arranged in the forms of the Dittus-Boelter for heat transfer coefficients in a single-phase flow and the Jens-Lottes formula for a boiling two-phase flow in normal tubes, respectively. The mechanism of the difference between the normal channel and narrow annular channel were also explored. From experimental results, it was found that the turbulent heat transfer coefficients in narrow gaps are nearly the same to the normal channel in the experimental range, and the transition Reynolds number from a laminar flow to a turbulent flow in narrow annuli was much lower than that in normal channel, whereas the boiling heat transfer in narrow annular gap was greatly enhanced compared with the normal channel. (authors)
Investigation into flow boiling heat transfer in a minichannel with enhanced heating surface
Piasecka Magdalena
2012-01-01
The paper presents results of flow boiling in a minichannel of 1.0 mm depth. The heating element for the working fluid (FC-72) that flows along the minichannel is a single-sided enhanced alloy foil made from Haynes-230. Microrecesses were formed on the selected area of the heating foil by laser technology. The observations of the flow structure were carried out through a piece of glass. Simultaneously, owing to the liquid crystal layer placed on the opposite side of the enhanced foil surface,...
Numerical simulation on boiling heat transfer of evaporation cooling in a billet reheating furnace
Institute of Scientific and Technical Information of China (English)
冯明杰; 王恩刚; 王海; 李艳东; 刘兵
2016-01-01
The boiling heat transfer of evaporation cooling in a billet reheating furnace was simulated. The results indicate that the bubbles easily aggregate inside of the elbow and upper side of the horizontal regions in theπshaped support tubes. The circulation velocity increasing helps to improve the uniformity of vapor distribution and decrease the difference of vapor volume fraction between upper and down at end of the horizontal sections. With the increase of circulation velocity, the resistance loss and the circulation ratio both increase, but the former will decrease with the increase of work pressure.
International Nuclear Information System (INIS)
A two-dimensional two-fluid analytical model is formulated to deal with the inverted annular film boiling (IAFB) heat transfer. The irregular variation of vapour annulus makes solving partial differential conservation equations difficulty. A relative coordinate system is proposed, through which a curve side mesh is mapped into rectangular one. The governing equations could then be solved a standard finite difference method. The model predicts Stewart's experiments well and reasonably confirms the influence of various components on vapour film. A comparison has been made between one-dimensional analytical system and this model. The wall temperature is a bit higher if the radial component is omitted. (orig./DG)
International Nuclear Information System (INIS)
The experimental facility is built up and investigation of heat exchange during sodium boiling in simulated fast reactor core assembly in conditions of natural and forced circulation with sodium plenum and upper end shield model are conducted. It is shown that in the presence of sodium plenum there is possibility to provide long-term cooling of fuel assembly when heat flux density on the surface of fuel element simulator up to 140 and 170 kW/m2 in conditions of natural and forced circulation, respectively. The obtained data is used for improving calculational model of sodium boiling process in fuel assembly and calculational code COREMELT verification. It is pointed out that heat transfer coefficients in the case of liquid metal boiling in fuel assemblies are slightly over the ones in the case of liquid metals boiling in pipes and pool boiling
A 2D inverse problem of predicting boiling heat transfer in a long fin
Orzechowski, Tadeusz
2015-12-01
A method for the determination of local values of the heat transfer coefficient on non-isothermal surfaces was analyzed on the example of a long smooth-surfaced fin made of aluminium. On the basis of the experimental data, two cases were taken into consideration: one-dimensional model for Bi calculated from the integral of the equation describing temperature distribution on the fin. The corresponding boiling curve was plotted on the basis of temperature gradient distribution as a function of superheat. For thicker specimens, where Bi > 0.1, the problem was modelled using a 2-D heat conduction equation, for which the boundary conditions were posed on the surface observed with a thermovision camera. The ill-conditioned inverse problem was solved using a method of heat polynomials, which required validation.
Comparison of pool boiling heat transfer for different tunnel-pore surfaces
Pastuszko, Robert
2014-03-01
Complex experimental investigations of boiling heat transfer on structured surfaces covered with perforated foil were performed. Experimental data were discussed for three kinds of enhanced surfaces: tunnel structures (TS), narrow tunnel structures (NTS) and mini-fins with the copper wire net (NTS-L). The experiments were carried out with water, ethanol, R-123 and FC-72 at atmospheric pressure. The TS and NTS surfaces were manufactured out of perforated copper foil (hole diameters: 0.3, 0.4, 0.5 mm) sintered with the mini-fins, formed on the vertical side of the 5 and 10 mm high rectangular main fins and horizontal inter-fin surface. The NTS-L surfaces were formed by mini-fins of 0.5 and 1 mm height uniformly spaced on the base surface. The wire mesh with an aperture of 0.32, 0.4 and 0.5 mm sintered with the fin tips formed a system of connected perpendicular horizontal tunnels. The tunnel width was 0.6 - 1.0 - 1.5 mm and the depth was 0.5 or 1.0 mm. The effects of the Bond number and dimensionless parameters for three kinds of enhanced structures on heat transfer ratio at nucleate pool boiling were examined.
Energy Technology Data Exchange (ETDEWEB)
Jung, Satbyoul; Kim, Hyungdae [Kyung Hee Univ., Yongin (Korea, Republic of); Ose, Yasuo [Yamato System Engineer Co., Ltd., Yamato (Japan); Kunugi, Tomoaki [Kyoto Univ., Kyoto (Japan)
2014-05-15
In the experiment, by applying both a total reflection technique which consisted of a coherent laser and an infrared thermometry to a boiling surface with high spatial and temporal resolution, the liquid-vapor phase and the heat transfer distributions underneath a growing bubble were simultaneously measured. In the simulation, nucleate boiling process of a single bubble was simulated by using the MARS (Multi-interface Advection and Reconstruction Solver) including a non-empirical boiling and condensation model. The experimental measurement and numerical simulation data of a boiling bubble on a heated wall were presented and compared in detail with focus on liquid-vapor phase and heat transfer distributions on the boiling surface. In the experiment, the technique is based on spatial and temporal synchronization of an infrared thermometry technique for the local heat transfer measurement, a total reflection technique for the liquid-vapor phase detection, and a laser interferometry technique for detection of the microlayer geometry. In the simulation, a single bubble nucleate boiling was simulated by using the MARS including a non-empirical boiling and condensation model. The major findings from the present comparison study are following: - The microlayer evaporation could affect the characteristics of heat transfer for a bubble growth cycle. At the beginning of bubble growth, the effective heat transfer from a heated wall occurs due to microlayer evaporation, which impeded the local wall superheated in the dry region. Ad-hoc experiments to obtain the velocity and temperature field before a bubble nucleation, such as using PIV (particle image velocimetry) and LIF (laser induced fluorescence) techniques, are ongoing in our laboratory.
International Nuclear Information System (INIS)
Time-averaged local heat transfer coefficients were measured during flow boiling of water at atmospheric pressure in a vertical channel of rectangular cross-section 2 mm by 1 mm for ranges of mass flux 57-211 kg/m2 s, heat flux 27-160 kW/m2, thermodynamic quality 0-0.3 and inlet subcooling 1-12 K. The heat transfer coefficients were found to increase nearly with the square root of the heat flux. There was little effect of mass flux at 107, 134 and 211 kg/m2 s; lower heat transfer coefficients at 57 kg/m2 s were probably due to transient local dryout. Local time-averaged quality and different inlet conditions of subcooling and compressibility had little effect. Conventionally, this behaviour would be interpreted as nucleate boiling and a dimensional expression h=162q0.44 correlated the data to ±20%. However, the heat transfer coefficients were considerably higher than would be expected for pool nucleate boiling and visual observation showed local time-sharing between nucleate boiling and thin-film evaporation without nucleation, with only small temporal changes in the heat transfer coefficient. Eleven correlations for conventional and narrow-channel boiling predicted the data poorly, ranging from 250% average over-prediction to 70% average under-prediction. This suggests that conventional methods of distinguishing between nucleate and convective boiling mechanisms are unreliable and that a better understanding of the mechanisms of boiling in narrow channels is necessary to guide the development of correlations
Directory of Open Access Journals (Sweden)
Li-Hua Yu
2015-09-01
Full Text Available In recent years, water (R718 as a kind of natural refrigerant—which is environmentally-friendly, safe and cheap—has been reconsidered by scholars. The systems of using water as the refrigerant, such as water vapor compression refrigeration and heat pump systems run at sub-atmospheric pressure. So, the research on water boiling heat transfer at sub-atmospheric pressure has been an important issue. There are many research papers on the evaporation of water, but there is a lack of data on the characteristics at sub-atmospheric pressures, especially lower than 3 kPa (the saturation temperature is 24 °C. In this paper, the experimental research on water boiling heat transfer on a horizontal copper rod surface at 1.8–3.3 kPa is presented. Regression equations of the boiling heat transfer coefficient are obtained based on the experimental data, which are convenient for practical application.
Energy Technology Data Exchange (ETDEWEB)
Fukuda, K. [Kobe Univ. of Mercantile Marine (Japan); Shiotsu, M.; Sakurai, A. [Kyoto Univ. (Japan)
1995-09-01
Understanding of transient boiling phenomenon caused by increasing heat inputs in subcooled water at high pressures is necessary to predict correctly a severe accident due to a power burst in a water-cooled nuclear reactor. Transient maximum heat fluxes, q{sub max}, on a 1.2 mm diameter horizontal cylinder in a pool of saturated and subcooled water for exponential heat inputs, q{sub o}e{sup t/T}, with periods, {tau}, ranging from about 2 ms to 20 s at pressures from atmospheric up to 2063 kPa for water subcoolings from 0 to about 80 K were measured to obtain the extended data base to investigate the effect of high subcoolings on steady-state and transient maximum heat fluxes, q{sub max}. Two main mechanisms of q{sub max} exist depending on the exponential periods at low subcoolings. One is due to the time lag of the hydrodynamic instability which starts at steady-state maximum heat flux on fully developed nucleate boiling (FDNB), and the other is due to the heterogenous spontaneous nucleations (HSN) in flooded cavities which coexist with vapor bubbles growing up from active cavities. The shortest period corresponding to the maximum q{sub max} for long period range belonging to the former mechanism becomes longer and the q{sub max}mechanism for long period range shifts to that due the HSN on FDNB with the increase of subcooling and pressure. The longest period corresponding to the minimum q{sub max} for the short period range belonging to the latter mechanism becomes shorter with the increase in saturated pressure. On the contrary, the longest period becomes longer with the increase in subcooling at high pressures. Correlations for steady-state and transient maximum heat fluxes were presented for a wide range of pressure and subcooling.
Energy Technology Data Exchange (ETDEWEB)
Abdurrahim, Bolukbasi; Dogan, Ciloglu [Department of Mechanical Engineering, Ataturk University, Erzurum (Turkey)
2011-06-15
This study includes an experimental investigation of the pool boiling heat transfer characteristics of a vertical cylinder quenched by SiO{sub 2}-water nano-fluids. The experiments are performed through a cylindrical rod, at saturated temperature and atmospheric pressure. As the coolant, pure water and SiO{sub 2}-water nano-fluid suspensions at four different concentrations (0.001, 0.01, 0.05 and 0.1 vol.%) are selected. The test specimen heated at high temperatures is plunged into cooling fluids at saturated conditions in a pool. The cooling curves are obtained via taking the temperature-time data of the specimen into account. The experimental results indicate that the pool film boiling heat transfer in nano-fluids is identical to that in pure water. However, during the repetition tests in nano-fluids with high concentrations, the film boiling region disappears, and the critical heat flux increases. In addition, the nucleate pool boiling heat transfer coefficient decreases compared with that of pure water, but a considerable decrease in nucleate pool boiling heat transfer is not observed with the repetition tests. A change in surface characteristics due to the deposition of nano-particles on the surface has a major effect on the quenching process. (authors)
Pool Boiling Heat Transfer Characteristics of Chromium Coatings Deposited by RF Magnetron Sputtering
Energy Technology Data Exchange (ETDEWEB)
Seo, Gwang Hyeok; Son, Hong Hyun; Jeong, Uiju; Jeun, Gyoodong; Kim, Sung Joong [Hanyang University, Seoul (Korea, Republic of)
2015-05-15
Many researches have suggested fundamental changes to satisfy the safety requirements, including development of accident tolerant fuels (ATFs). The adoption of coating techniques is one of promising approaches for ATF systems because surface modification with a highly oxidation-resistant material can prevent hydrogen generation and cladding embrittlement. Compared to the development of a new cladding for the replacement of the current zirconium-based alloy cladding and new fuel forms instead of the current ceramic oxide fuels, the surface coating technique is cost-effective and easily applicable to the current LWR system with no significant design changes. Recently, a wide variety of oxidation-resistant materials have been proposed: iron-based alloys and SiC-based materials. Among them, chromium (Cr) is suggested as a coating material for fuel claddings because it is known for has oxidation-resistant characteristic. In order to assess the feasibility of coating techniques with an oxidation-resistant material, in this study chromium (Cr) film was deposited on a metal substrate via a physical vapor deposition (PVD) process. After preparing test specimens, pool boiling heat transfer experiments were carried out to investigate the boiling performance of both cases. Moreover, during a test, visualization works were conducted for a phenomenological understanding. In this study, Cr deposition on the SS316 surface was conducted using the sputtering process. Specifically, sophisticated surface characterization was performed with the wettability measurement and surface morphology analysis. Furthermore, the pool boiling heat transfer experiments were carried out to obtain the CHF value of the test heater. The major findings observed from this study can be summarized as follows. The surface wettability increased 77% after the sputtering deposition.
Local heat transfer from the corium melt pool to the boiling water reactor pressure vessel wall
International Nuclear Information System (INIS)
The present study considers in-vessel accident progression after core melt relocation to the lower head of a Boiling Water Reactor (BWR) and formation of a melt pool containing a forest of Control Rod Guide Tubes (CRGTs) cooled by purging flows. Descending streams of melt that flow along cooled surfaces of CRGT, and impinge on the bottom surface of the vessel wall can significantly increase local heat transfer. The area of enhanced heat transfer enlarges with decreasing of the melt Prandtl (Pr) number, while the peaking value of the heat transfer coefficient is a non-monotone function of Pr number. The melt Pr number depends on the melt composition (fractions of metallic and oxidic melt components) and thus is inherently uncertain parameter of the core melting and relocation scenarios. The effect of Pr number in the range of 1.02 - 0.03 on the local and integral thermal loads on the vessel wall is examined using Computational Fluid Dynamics (CFD). Heat transfer models obtained on the base of CFD simulations are implemented in the Phase-change Effective Convectivity Model (PECM) for simulation of reactor-scale accident progression heat transfer in real 3D geometry of the BWR lower plenum. We found that the influence of the low Pr number on the thermal loads in a big melt pool becomes more significant at later time, than rapid acceleration of the creep in the vessel wall. This result suggests that global vessel failure is insensitive to the melt composition in the considered 0.7 m deep melt pool configuration. However, it is not clear yet if the low Pr number effect has an influence on vessel failure mode in the other possible melt pool configurations. (author)
International Nuclear Information System (INIS)
Highlights: ► Measured subcooled boiling pressure drop and local heat transfer coefficient in horizontal tubes. ► Infra-red thermal imaging is used for wall temperature measurement. ► Developed correlations for pressure drop and local heat transfer coefficient. -- Abstract: Horizontal flow is commonly encountered in boiler tubes, refrigerating equipments and nuclear reactor fuel channels of pressurized heavy water reactors (PHWR). Study of horizontal flow under low pressure and low flow (LPLF) conditions is important in understanding the nuclear core behavior during situations like LOCA (loss of coolant accidents). In the present work, local heat transfer coefficient and pressure drop are measured in a horizontal tube under LPLF conditions of subcooled boiling. Geometrical parameters covered in this study are diameter (5.5 mm, 7.5 mm and 9.5 mm) and length (550 mm, 750 mm and 1000 mm). The operating parameters varied are mass flux (450–935 kg/m2 s) and inlet subcooling (29 °C, 50 °C and 70 °C). Infra-red thermography is used for the measurement of local wall temperature to estimate the heat transfer coefficient in single phase and two phase flows with water as the working medium at atmospheric pressure. Correlation for single phase diabatic pressure drop ratio (diabatic to adiabatic) as a function of viscosity ratio (wall temperature to fluid temperature) is presented. Correlation for pressure drop under subcooled boiling conditions as a function of Boiling number (Bo) and Jakob number (Ja) is obtained. Correlation for single phase heat transfer coefficient in the thermal developing region is presented as a function of Reynolds number (Re), Prandtl number (Pr) and z/d (ratio of axial length of the test section to diameter). Correlation for two phase heat transfer coefficient under subcooled boiling condition is developed as a function of boiling number (Bo), Jakob number (Ja) and Prandtl number (Pr)
Piasecka, Magdalena
2012-11-01
The paper presents the results of flow boiling heat transfer in a horizontal minichannel, 1 mm deep, 40 mm wide and 360 mm long. The heating element for FC-72 which flows along the minichannel is a thin enhanced alloy. It is possible to observe both surfaces of the minichannel through an opening covered with two glass panes. The first one allows observing changes in the temperature of the foil surface due to liquid crystal thermography. The second allows the identification of the two-phase flow patterns. The experiments employed the enhanced heating foil with various depressions, distributed diversely on the surface. Two types of enhanced heating surfaces: with micro re-entrant cavities evenly distributed, and with mini re-entrant cavities unevenly distributed, were used for the purpose of the investigation. The main objective of the paper is to determine the void fraction for cross-sections of selected images for increasing heat fluxes supplied to the heating surface. The results are presented as the void fraction dependence along the minichannel length for the selected cross-sections. Exemplary boiling curves derived from data obtained from initial increasing and subsequent decreasing the heat flux supplied to the foil are also presented. The investigation has been intended to determine the correlation for the calculations of the Nusselt number as a function of variable parameters.
Numerical analysis of film boiling heat transfer on a vertical source
International Nuclear Information System (INIS)
Significant efforts have been made to study the film boiling on a vertical surface during the recent decades. Surface tension, unstable behavior of boiling process and also many other effects which occur in the interface have made this phenomenon complicated. Thus, almost all of the theoretical investigations which have been carried out, prior to the last decade, are based on analytical models with a great number of simplified assumptions. That is the main reason for the disagreement between theoretical results and the experimental data. Experimental studies have showed that the bubbles are released alternatively at the nodes of Kelvin- Helmholtz waves during film boiling on a vertical surface. The purpose of present work is to study the two - phase heat transfer through the bubble growth mechanism by a numerical simulation of the evolution of the vapor - liquid interface. The interface is captured by a level set method which is modified to include the liquid-vapor phase change effect. The phase change effect and mass transfer at the interface have been considered in the continuity equation. Also the gravity and surface tension effects have been taken into account in the momentum equation. Finally, the continuity, momentum and energy equations, which include the spatially and temporally changes, and also the interface evolution equation, have been solved by a Finite Difference numerical method, which has implemented the TDMA algorithm and the Projection method. Then, the velocity and temperature fields and also the interface location have been computed. The present numerical results are compared with the available experimental data and with the analytical predication which have showed to be in reasonable agreements
Okamoto, Akio; Arima, Hirofumi; Ikegami, Yasuyuki
2011-08-01
Power generation using small temperature difference such as ocean thermal energy conversion (OTEC) and discharged thermal energy conversion (DTEC) is expected to be the countermeasures against global warming problem. As ammonia and ammonia/water are used in evaporators for OTEC and DTEC as working fluids, the research of their local boiling heat transfer is important for improvement of the power generation efficiency. Measurements of local boiling heat transfer coefficients were performed for ammonia /water mixture ( z = 0.9-1) on a vertical flat plate heat exchanger in a range of mass flux (7.5-15 kg/m2 s), heat flux (15-23 kW/m2), and pressure (0.7-0.9 MPa). The result shows that in the case of ammonia /water mixture, the local heat transfer coefficients increase with an increase of mass flux and composition of ammonia, and decrease with an increase of heat flux.
Effect of soluble additives, boric acid (H3BO3) and salt (NaCI), in pool boiling heat transfer
International Nuclear Information System (INIS)
The effects on pool boiling heat transfer of aqueous solutions of boric acid (H3BO3) and sodium chloride (NaCl) as working fluids have been studied. Borated and NaCl water were prepared by dissolving 0.5∼5% volume concentration of boric acid and NaCl in distilled-deionized water. The pool boiling tests were conducted using 1 x 1 cm2 flat heaters at 1 atm. The critical heat flux (CHF) dramatically increased compared to boiling pure water. At the end of boiling tests it was observed that particles of boric acid and NaCl had deposited and formed a coating on the heater surface. The CHF enhancement and surface modification during boiling tests were very similar to those obtained from boiling with nanofluids. Additional experiments were carried out to investigate the reliability of the additives deposition in pure water. The boric acid and NaCl coatings disappeared after repeated boiling tests on the same surface due to the soluble nature of the coatings, thus CHF enhancement no longer existed. These results demonstrate that not only insoluble nanoparticles but also soluble salts can be deposited during boiling process and the deposited layer is solely responsible for significant CHF enhancement
TRANS-FUGUE-1, Single Channel 2 Phase Flow Heat Transfer after Boiling
International Nuclear Information System (INIS)
1 - Nature of physical problem solved: TRANS-FUGUE1 is a transient single channel, two-phase flow, and heat transfer code for analysis of postulated reactor incidents involving boiling. The code is based on a homogeneous hydrodynamic model which assumes equal phase temperatures and velocities. It assumes vapor generation to be heat transfer limited only, and calculates axial distribution of velocity, void fraction, pressure, coolant temperature, and fuel temperature. Transients simulating power excursions, loss of flow, loss of pressure and channel plugging can be studied. 2 - Method of solution: Each transient starts from some steady-state condition derived from input parameters. One of these selected by the user varies with time and the program calculates the response of the system to this driving function. The heat balance equations are solved by use of finite difference techniques and the momentum equation is derived assuming constant vapor density and saturation temperature, eliminating pressure feedback. Numerical instabilities resulted when attempts were made to remove these limitations. The code is set up to provide use of a smaller time-step for the momentum equation than that used for the heat balance and mass equations if requested. 3 - Restrictions on the complexity of the problem: Maximum of - 100 spatial nodes
Pool boiling heat transfer of downward-facing oxidized metal heaters in atmospheric saturated water
International Nuclear Information System (INIS)
Reactor Pressure Vessel (RPV) is designed for lifetime use in the Nuclear Power Plant (NPP) and it is subject to experiencing natural corrosion. As a consequence, unless special treatment is employed, the outer surface of the RPV is likely to be oxidized constantly during reactor operation. The oxidized surface may affect boiling heat transfer during the execution of In-Vessel Retention through External Reactor Vessel Cooling (IVR-ERVC) strategy when severe accident occurs. Especially, Critical Heat Flux (CHF) is a key variable assessing the thermal margin of RPV outer surface and this could be affected as the surface changes significantly from its original surface finish. Therefore, in order to evaluate the thermal margin and performance of the RPV outer surface, pool boiling heat transfer experiment was performed for downward-facing oxidized heater surface in atmospheric saturated water. Heater specimens made of stainless steel grade 316 (SS316) were prepared and oxidized at several distinctive periods. In general, it was observed that oxidized surface became more wettable and rougher than the bare surface. However, no systematic trend was observed during the oxidation period. Short-term oxidized surface showed locally pitted. On the other hand, long-term oxidized surface became fully flat with specific oxide layer thickness. CHF experiment results showed that, CHF of the short-term oxidized surface was similar to the bare surface although the good wettability was measured with the oxidized surface. On the contrast, CHF of the long-term oxidized surface was enhanced significantly, which may be attributed to the formation of the continuous porous channel. In the non-porous surface, the effect of wettability and roughness on the CHF was not appeared. As a result, it was confirmed that long-term natural corrosion of the RPV outer vessel was helpful for conducting the IVR-ERVC strategy. (author)
International Nuclear Information System (INIS)
Horizontal flow is commonly encountered in boiler tubes, refrigerating equipments and nuclear reactor fuel channels of pressurized heavy water reactors (PHWR). Study of horizontal flow under low pressure and low flow (LPLF) conditions is important in understanding the nuclear core behavior during situations like LOCA (Loss of coolant accidents). In the present work, experimental measurements of local heat transfer coefficient and pressure drop are carried out in a horizontal channel under LPLF conditions of sub-cooled boiling. Infrared thermography is used for the measurement of local wall temperature to estimate the heat transfer coefficient in single phase and two phase flows with water as the working medium at atmospheric pressure. Correlation for single phase diabatic pressure drop ratio (diabatic to adiabatic) as a function of viscosity ratio (wall temperature to fluid temperature) is presented. Correlation for pressure drop under sub-cooled boiling conditions as a function of Bo (Boiling number) and Ja (Jacob number) is obtained. Correlation for single phase heat transfer coefficient in the developing region is presented as a function of z/d (ratio of axial length of the test section to diameter). Correlation for two-phase heat transfer coefficient under sub-cooled boiling condition is presented as a function of Bo, Ja and Pr (Prandtl number). Correlation between heat transfer coefficient and friction factor is obtained by applying Reynolds analogy. (author)
Energy Technology Data Exchange (ETDEWEB)
Meholic, Michael J., E-mail: michael.meholic@unnpp.gov [Bettis Atomic Power Laboratory, West Mifflin, PA (United States); Aumiller, David L. [Bettis Atomic Power Laboratory, West Mifflin, PA (United States); Cheung, Fan-Bill [The Pennsylvania State University, Department of Mechanical and Nuclear Engineering, University Park, PA (United States)
2015-09-15
Highlights: • A comprehensive, mechanistic heat transfer modeling package has been developed. • Accounts for six interrelated heat transfer paths in Dispersed Flow Film Boiling. • Lagrangian subscale trajectory based dry contact heat transfer model. • Novel methodology to account for droplet convective enhancement. - Abstract: Accurate predictions of Dispersed Flow Film Boiling (DFFB) heat transfer are necessary during both the blowdown and reflood portions of a Loss-of-Coolant-Accident to ensure the correct initial fuel rod temperature distribution for the beginning of the reflood phase and ultimately, determining the peak cladding temperature. Numerous correlative, phenomenological, and mechanistic DFFB heat transfer models have been published; however, most of these models make simplifying assumptions that adversely impact their accuracy or are too computationally intensive to implement into current reactor safety codes. A comprehensive, mechanistic heat transfer modeling package has been developed to account for the six interrelated heat transfer paths in DFFB. Highlights of the model include a Lagrangian subscale trajectory based dry contact heat transfer model and a novel method of determining the two-phase convective heat transfer enhancement due to dispersed droplets intermittently altering the local vapor temperature distribution.
International Nuclear Information System (INIS)
Highlights: • A comprehensive, mechanistic heat transfer modeling package has been developed. • Accounts for six interrelated heat transfer paths in Dispersed Flow Film Boiling. • Lagrangian subscale trajectory based dry contact heat transfer model. • Novel methodology to account for droplet convective enhancement. - Abstract: Accurate predictions of Dispersed Flow Film Boiling (DFFB) heat transfer are necessary during both the blowdown and reflood portions of a Loss-of-Coolant-Accident to ensure the correct initial fuel rod temperature distribution for the beginning of the reflood phase and ultimately, determining the peak cladding temperature. Numerous correlative, phenomenological, and mechanistic DFFB heat transfer models have been published; however, most of these models make simplifying assumptions that adversely impact their accuracy or are too computationally intensive to implement into current reactor safety codes. A comprehensive, mechanistic heat transfer modeling package has been developed to account for the six interrelated heat transfer paths in DFFB. Highlights of the model include a Lagrangian subscale trajectory based dry contact heat transfer model and a novel method of determining the two-phase convective heat transfer enhancement due to dispersed droplets intermittently altering the local vapor temperature distribution
International Nuclear Information System (INIS)
Two fluid model combing with inter-phase heat and mass transfer model, inter-phase momentum transfer model, and RPI wall boiling model was applied to solve the local flow and heat transfer of subcooled flow boiling in the secondary side of SG tubes by using commercial CFD code ANSYS CFX 12.0. The numerical calculation results were validated by experimental data and calculation results. The results show that adopting RPI wall boiling model can predict the onset of subcooled flow boiling accurately, meanwhile the existence of orifice plate has a great effect on the flow and heat transfer characteristics of the secondary side. (authors)
Heat transfer in stable film boiling of a nano-fluid over a vertical surface
International Nuclear Information System (INIS)
The paper focuses on modeling of heat, momentum and concentration transport in stable film boiling of a nano-fluid over a vertical surface. An approximate analytical model of the transport processes in the vapor film was employed in simulations. The model takes into account effects of the Brownian and thermo-phoretic diffusion. The novelty of the model consists in pinpointing six major non-dimensional parameters, which describe effects of the nanoparticles on heat transfer and fluid flow in the vapor film. They include: (i) parameter A that accounts for the relation between the thermo-phoretic and Brownian diffusion; (ii) the nanoparticle concentration φ∞ in the vapor; (iii and iv) the normalized densities of the nanoparticles Rpy and Rpf; (v) the relative thermal conductivity of the nanoparticles K; and (vi) parameter m that characterizes the viscosity of nano-fluids. Novel analytical solutions resulting from this model characterize velocity profiles, the mass flow rate, the thickness of the vapor film and the Nusselt number as the functions of the aforementioned parameters. It was demonstrated that an increase in the nanoparticles concentration fosters the processes of momentum, mass and heat transfer. (authors)
Numerical simulation of nucleate boiling and heat transfer using MPL-MAFL
International Nuclear Information System (INIS)
A mesh-free numerical method is presented for direct calculation of bubble growth. It is a combination of particle and gridless methods where the terms, 'particle' and 'gridless', refer to Lagrangian and Eulerian schemes respectively. Thus, an arbitrary-Lagrangian-Eulerian calculation is possible, in this method, with a cloud of computing points that are equivalent to the computing cells in mesh-based methods. The moving interface is traced through the Lagrangian motion of the computing points using a particle method and, at the fixed computing points, convection is calculated using a gridless method. The particle interaction model of the moving-particle semi-implicit (MPS) method is applied to the differential operators and the meshless-advection using a flow-directional local-grid (MAFL) scheme is utilized for the gridless method. A complex moving interface problems can be effectively analyzed by MPS-MAFL since the mesh is no longer used. The present method is applied to the calculation of gas-liquid two-phase flow with and without the phase change in two dimensions. The pressure and temperature gradients are ignored for the vapor region and the phase interface is treated as a free boundary. As an isothermal flow, a gas bubble rising in viscous liquids is simulated numerically and the results are compared with the empirical correlation. The energy equation is coupled with the equation of motion for the calculation of nucleate pool boiling. The numerical results are provided for the bubble growth rate, departure radius, and the heat transfer rate, which show good agreement with the experimental observations. The heat transfer mechanism associated with nucleate pool boiling is quantitatively evaluated and discussed with previous empirical studies. (author)
Oinuma, Ryoji; Nguyen, Ngoc; Dickes, Neil; Kurwitz, Richard C.; Best, Frederick R.
2009-03-01
Under reduced gravity conditions, conventional gravity-assisted steam generators do not function properly and shear-driven or swirl type of devices must be used. Once-through boilers with special inserts such as twisted-tapes or swirl devices and rotating boilers have been previously studied. The once-through boiler requires a liquid-vapor phase separator due to the inability to vaporize all liquid completely to avoid burn-out. These devices also encounter instabilities due to the sudden formation or collapse of vapor. The rotating boiler requires a large power input to operate and has less reliability due to moving parts and dynamic seals at high temperature. A liquid-driven vortex boiling separator is categorized as a shear-driven boiler, but creates centripetal-driven buoyancy forces to form a gas-liquid vortex by injecting liquid tangentially along the inner wall of the cylinder rather than rotating the body itself. The vortex boiling separator eliminates the disadvantages of devices mentioned above, having a low pressure drop, no moving parts and generating dry vapor at its outlet. Texas A&M University carried out a reduced gravity flight experiment on the NASA C-9 aircraft to investigate the heat transfer characteristics and performance based on similar devices developed at Texas A&M.
International Nuclear Information System (INIS)
The scale-down experiments supposing IVR-AM were made on the pool boiling heat transfer from the hemispherical downward facing heating surface. The boiling phenomena were realized by flooding the preheated downward facing hemispherical vessel with sub-cooled water or saturated water under the atmospheric pressure. The hemispherical vessel supposing the scale-downed pressure vessel of the nuclear reactor was made of SUS304 stainless steel. The molten lead supposing the molten core, which was retained in the vessel and preheated up to about 500 degree centigrade, was used as the heat source and cooled down by flooding the vessel into the water to realize the boiling heart transfer during the quenching process. Experiments were carried out by changing the sub-cooling of the flooding water, the size of the vessel. The observations by using the digital video camera were performed and made clear the special characteristics taking place near the heating surface during the quenching process. The measurements for the temperature distribution, the wall superheat and surface heat flux by using the fifteen thermocouples placed inside of the vessel wall was also carried out to make clear the boiling heat transfer during the quenching process. (author)
International Nuclear Information System (INIS)
Boiling heat transfer and dryout occurring while a liquid permeates a bed of self-heated particulate material are phenomena of relevance to reactor safety since they control the rate of heat removal from beds of core debris. This report presents results from laboratory experiments in which water was the coolant and the particulate material was metal spheres, usually tin-plated iron shot, heated by passing low voltage alternating current laterally through them. The study covered bed depths up to 200 mm, and particle diameters up to 5.0 mm. Values of dryout heat flux obtained for beds of uniform particles are consistent with those obtained elsewhere using different heating methods. Stratified beds in which a layer of fine particles rests upon a bed of coarse particles can reduce the dryout heat flux to below the level appropriate to either particle size alone, and devices which aid the flow of liquid and/or vapour in a bed can greatly increase the dryout heat flux. The data exhibit a high degree of consistency, and thus will prove to be valuable in testing theoretical models. (U.K.)
Energy Technology Data Exchange (ETDEWEB)
Yu, W.; France, D. M.; Routbort, J. L. (Energy Systems)
2011-01-19
Because of its order-of-magnitude higher heat transfer rates, there is interest in using controllable two-phase nucleate boiling instead of conventional single-phase forced convection in vehicular cooling systems to remove ever increasing heat loads and to eliminate potential hot spots in engines. However, the fundamental understanding of flow boiling mechanisms of a 50/50 ethylene glycol/water mixture under engineering application conditions is still limited. In addition, it is impractical to precisely maintain the volume concentration ratio of the ethylene glycol/water mixture coolant at 50/50. Therefore, any investigation into engine coolant characteristics should include a range of volume concentration ratios around the nominal 50/50 mark. In this study, the forced convective boiling heat transfer of distilled water and ethylene glycol/water mixtures with volume concentration ratios of 40/60, 50/50, and 60/40 in a 2.98-mm-inner-diameter circular tube has been investigated in both the horizontal flow and the vertical flow. The two-phase pressure drop, the forced convective boiling heat transfer coefficient, and the critical heat flux of the test fluids were determined experimentally over a range of the mass flux, the vapor mass quality, and the inlet subcooling through a new boiling data reduction procedure that allowed the analytical calculation of the fluid boiling temperatures along the experimental test section by applying the ideal mixture assumption and the equilibrium assumption along with Raoult's law. Based on the experimental data, predictive methods for the two-phase pressure drop, the forced convective boiling heat transfer coefficient, and the critical heat flux under engine application conditions were developed. The results summarized in this final project report provide the necessary information for designing and implementing nucleate-boiling vehicular cooling systems.
INADA, Shigeaki; MIYASAKA, Yoshiki; Sakamoto, Kenji
1987-01-01
The heat flux was measured at the second burnout point of pool boiling over the range of high subcooling of 30 K to 88 K, under atmospheric pressure. The relation between the heat flux and subcooling was obtained by a mathematical model based on the mass-transfer mechanism of evaporation and condensation through a coalescent vapor bubble, and by a kinetic theory of molecules. The relationship equation gave fairly good agreement with the experimental results and showed that the second burnout ...
International Nuclear Information System (INIS)
In order to promote a better understanding of the temperature evolution of fuel rod under reactivity-initiated accident (RIA) conditions, we have investigated the effects of coolant subcooling, flow velocity, pressure, and cladding pre-irradiation on the heat transfer from fuel rod surface to coolant water during RIA boiling transient. The study was based on a computational analysis, with the RANNS code, on the transient data from RIA-simulating experiments in the nuclear safety research reactor (NSRR); boiling heat transfer coefficients were estimated by inverse-heat-conduction calculations using the histories of measured cladding temperature and estimated heat generation in pellets, and the effects of coolant condition were analyzed by a two-phase laminar boundary layer model for stable film boiling. The experimental data used in this study cover coolant conditions with subcoolings of ~10–80 K, flow velocities of 0 to ~3 m/s, pressures of 0.1 to ~16 MPa, and fuel burnups of 0–69 GWd/tU. The analysis showed that the film boiling heat transfer coefficients during RIA boiling transient increase with coolant subcooling, flow velocity, and pressure as predicted by the model for stable film boiling. The estimated boiling heat transfer coefficients were significantly larger than those predicted by semi-empirical correlations for stable film boiling: about 1.5 times larger for stagnant water condition and 2–8 times larger for forced flow condition, respectively. The analysis also suggested that the heat transfers during both transition and film boiling phases are strongly enhanced by pre-irradiation of the cladding. The irradiation effect was clearly seen at large subcooling of ~80 K and atmospheric coolant pressure, and was rather moderate at small subcooling of ~10 K and coolant pressure of ~7 MPa. These behaviors of boiling heat transfer are incorporated into the RANNS code mainly as modified empirical correlations for boiling heat transfer coefficient. (author)
Institute of Scientific and Technical Information of China (English)
WEI Jin-Jia; XUE Yan-Fang; ZHAO Jian-Fu; LI Jing
2011-01-01
Nucleate pool boiling on micro-pin-finned surface structure is proposed for efficiently cooling electronic components with high heat flux in microgravity, and was verified by experiments performed utilizing the drop tower Beijing. Micro-pin-fins with the dimensions of 50 × 60 μm2 (thickness x height) and the space of 50 μm were fabricated on the chip surface by the dry etching technique. FC-72 was used as the working fluid. Nucleate pool boiling of FC-72 on a smooth surface was also tested for comparison. Unlike much obvious deterioration of heat transfer of nucleate pool boiling on the smooth surface in microgravity, constant heater surface temperature of nucleate pool boiling for the micro-pin-Rnned surface was observed, even though a large coalesced bubble completely covered the surface under microgravity condition. The performance of high efficient heat transfer on micro-pin-Rnned surface is independent of the gravity, which stems from the sufficient supply of fresh liquid to the heater surface due to the capillary forces.
Wei, Jin-Jia; Xue, Yan-Fang; Zhao, Jian-Fu; Li, Jing
2011-01-01
Nucleate pool boiling on micro-pin-finned surface structure is proposed for efficiently cooling electronic components with high heat flux in microgravity, and was verified by experiments performed utilizing the drop tower Beijing. Micro-pin-fins with the dimensions of 50 × 60 μm2 (thickness × height) and the space of 50 μm were fabricated on the chip surface by the dry etching technique. FC-72 was used as the working fluid. Nucleate pool boiling of FC-72 on a smooth surface was also tested for comparison. Unlike much obvious deterioration of heat transfer of nucleate pool boiling on the smooth surface in microgravity, constant heater surface temperature of nucleate pool boiling for the micro-pin-finned surface was observed, even though a large coalesced bubble completely covered the surface under microgravity condition. The performance of high efficient heat transfer on micro-pin-finned surface is independent of the gravity, which stems from the sufficient supply of fresh liquid to the heater surface due to the capillary forces.
International Nuclear Information System (INIS)
Fouling of heat transfer surfaces leads to a decrease in efficiency of heat exchanger equipment. The mechanism of deposition of magnetite particles from suspension in water onto Alloy-800 heated surface can be described as five steps: initiation, transport, attachment, re-entrainment and ageing. How re-entrainment and ageing affect the overall deposition remains unclear. Nonetheless, it is believed that when the particle has been deposited, it will be either re-entrained or bonded to the surface. Experiments have been conducted in an atmospheric-pressure, recirculating water loop under isothermal, non-boiling and boiling conditions. The effect of bubbling at various heat fluxes, magnetite concentration and surface roughness on the magnetite deposition has been investigated using photographic technique. Particle trapping at the liquid-vapour interface is believed to play an important role on the magnetite deposition. The experimental results and postulated mechanisms will be presented. (author)
International Nuclear Information System (INIS)
The objectives of this paper are to make clear the thermo-hydraulic behaviors of boiling two-phase flow under transient conditions and its effects on the burnout phenomena. First, the critical heat flux in slug flow pattern, which is regarded as one kind of transient states microscopically, has been obtained. Also the critical heat flux for parallel channels has been studied considering the instability of flow. Next, the critical heat fluxes have been investigated for increasing heat input, for rapid depressurization and for loss of flow. Also the critical heat flux for increasing heat input has been made clear at elevated pressure in which the heat input has been loaded rampwise or stepwise. Through those studies the burnout behaviors and critical heat fluxes under transient conditions have been clarified fairly well. (author)
Boiling water flows. A local wall heat transfer model for use in an Eulerian 3-D computer code
International Nuclear Information System (INIS)
Electricite de France is currently developing a 3-D computer code for the Eulerian simulation of two-phase flows. This code, named ASTRID, is based on the six-equation two-fluid model. Boiling water flows are among the main applications of ASTRID, especially for nuclear power plant design. In order to provide ASTRID with appropriate closure laws and boundary conditions, Electricite de France and the Institut de Mecanique des Fluides de Toulouse (IMFT) have collaborated since 1991. The analysis of the current knowledge made possible to build a first set of closure laws and boundary conditions for boiling water flows, suitable for ASTRID. This paper is focused on the model used for heat transfer and bubble production at the wall, in a convective boiling situation. This model has been tested for a first comparison with existing experimental data. The results of this comparison are also presented here. (authors). 5 figs., 9 refs
International Nuclear Information System (INIS)
In the framework of axial offset anomaly risk assessment in Pressurized Water Reactor (PWR) cores, an experimental program involving hydraulic and thermal-hydraulic tests on identical 5x5 bundle geometry was completed. It aimed at developing a consistent set of single-phase heat transfer model and associated onset of nucleate boiling (ONB) wall superheat criterion to further predict the existence and location of boiling zones in a PWR core, using a sub-channel Thermal-Hydraulic (T/H) code. This paper is devoted to the code-based analysis of the experimental data obtained on a bundle equipped with alternating simple support grids and mixing vane grids. Dedicated heat transfer models including a grid enhancement function are developed and the use of Frost & Dzakowic ONB wall superheat criterion is recommended along with these models. (author)
Institute of Scientific and Technical Information of China (English)
WANG Wei-juan; ZHANG Chun-lu
2005-01-01
Accurate prediction of refrigerant boiling heat transfer coefficients is important for the design of evaporators. The generalized correlations have different forms, and could not provide satisfactory results for R22 and its alternative refrigerants R134a, R407C and R410A. This study proposes to use artificial neural network (ANNs) as a generalized correlation model, selects the input parameters of ANNs on the basis of the dimensionless parameter groups of existing correlations, and correlates the in-tube boiling heat transfer coefficients of the above four refrigerants. The results show that the ANNs model with the input and output based on the Liu-Winterton correlation has the best result. The root-mean-square deviations in training and test are 15.5% and 20. 2% respectively, and approximately 85 % of the deviations are within ± 20%, which is much better than that of the existing generalized correlations.
International Nuclear Information System (INIS)
This paper reports on heat transfer coefficients measured for pool and forced-convection boiling on uniformly heated porous surfaces (PCs). Tests were performed for five different porous coatings. Data was obtained for a range of heat fluxes and flow rates. The results showed the strong dependence of heat transfer characteristics on the porous coating properties. It was established that thick coatings with large pores and high porosity are effective in low heat flux area but thin coatings with small pores and low porosity are effective in high heat flux area. Tests of gas injection through the porous wall into the moving liquid were made. The hydraulic resistance through the porous matrix was observed
Boiling heat transfer in a bench-scale molten-salt thermal energy storage device. [NaNO/sub 3/
Energy Technology Data Exchange (ETDEWEB)
Canon, R.M.; Hewitt, J.D.
1977-05-01
Overall boiling heat transfer coefficients were determined experimentally for a proposed Thermal Energy Storage (TES) salt (NaNO/sub 3/) in a vertical-tube boiler for the following range of variables: (1) water flow = 840 to 2800 lb/h/ft/sup 2/; (2) Steam temp. = 295 to 475/sup 0/F; (3) steam pressure = 50 to 500 psi; and (4) heat flux = 2100 to 6700 Btu/hr/ft/sup 2/. Tube and vessel heat fluxes and energy recovery fractions were also determined.
DEFF Research Database (Denmark)
Knudsen, Hans Jørgen Høgaard
1999-01-01
Heat transfer and pressure drop for carbon dioxide, pure and mixed with oil, has the been measured for flow in pipe. The measured heat transfer coefficient for pure carbon dioxide is much higher than the value calculated with the Shah correlation. With oil even higher heat transfer coefficient has...... been measure (less then 2.6% olil) The measured pressure drop is within 25% of the value calculated with Bandel-Schlünders correlation....
Energy Technology Data Exchange (ETDEWEB)
In Cheol Bang; Soon Heung Chang [Korea Advanced Institute of Science and Technology, Daejeon (Korea)
2005-06-01
Boiling heat transfer characteristics of nano-fluids with nano-particles suspended in water are studied using different volume concentrations of alumina nano-particles. Pool boiling heat transfer coefficients and phenomena of nano-fluids are compared with those of pure water, which are acquired on a smooth horizontal flat surface (roughness of a few tens nano-meters). The experimental results show that these nano-fluids have poor heat transfer performance compared to pure water in natural convection and nucleate boiling. On the other hand, CHF has been enhanced in not only horizontal but also vertical pool boiling. This is related to a change of surface characteristics by the deposition of nano-particles. In addition, comparisons between the heat transfer data and the Rhosenow correlation show that the correlation can potentially predict the performance with an appropriate modified liquid-surface combination factor and changed physical properties of the base liquid. (Author)
International Nuclear Information System (INIS)
The paper is concerned with development of models for assessment of Control Rod Guide Tube (CRGT) cooling efficiency in Severe Accident Management (SAM) for a Boiling Water Reactor (BWR). In case of core melt relocation under a certain accident condition, there is a potential of stratified (with a metal layer atop) melt pool formation in the lower plenum. For simulations of molten metal layer heat transfer we are developing the Effective Convectivity Model (ECM) and Phase-change ECM (PECM). The models are based on the concept of effective convectivity previously developed for simulations of decay-heated melt pool heat transfer. The PECM platform takes into account mushy zone convection heat transfer and compositional convection that enables simulations of non-eutectic binary mixture solidification and melting. The ECM and PECM are validated against various heat transfer experiments for both eutectic and non-eutectic mixtures, and benchmarked against CFD-generated data including the local heat transfer characteristics. The PECM is applied to heat transfer simulation of a stratified heterogeneous debris pool in the presence of CRGT cooling. The PECM simulation results show no focusing effect in the metal layer on top of a debris pool formed in the BWR lower plenum and apparent efficacy of the CRGT cooling which can be served as an effective SAM measure to protect the vessel wall from thermal attacks and mitigate the consequences of a severe accident. (author)
International Nuclear Information System (INIS)
The heat transfer resistance of a porous deposit can be expressed as the sum of two components: one associated with conduction through the fluid-filled deposit and a second associated with surface roughness. This simple relationship appears to hold under both single-phase forced-convection and boiling heat-transfer conditions. The conductive component of the total deposit resistance is always positive, whereas the roughness component is negative. Values for κ and Rroughness measured in this investigation are as follows. Under single-phase forced-convection heat-transfer conditions, κ = 1.3 ± 0.2 W/mK and Rroughness = -4 x 10-6 m2K/W for magnetite deposits. Under flow-boiling heat-transfer conditions, κ = 0.2 to 0.9 W/mK and Rroughness = -36 x 10-6 m2K/W for magnetite deposits, whereas κ = 2.0 W/mK and Rroughness = -43 x 10-6 m2K/W for deposits composed of approximately equal proportions of copper and magnetite. (author)
混合制冷工质核态沸腾的传热研究%Heat transfer in nucleate pool boiling of binary and ternary refrigerant mixtures
Institute of Scientific and Technical Information of China (English)
赵耀华; 刁彦华; 鹤田隆治; 西川日出男
2004-01-01
Heat transfer coefficients in nucleate pool boiling were measured on a horizontal copper surface for refrigerants,HFC-134a,HFC-32,and HFC-125,their binary and ternary mixtures under saturated conditions at 0.9MPa.Compared to pure components,both binary and ternary mixtures showed lower heat transfer coefficients.This deterioration was more pronounced as heat flux was increased.Experimental data were compared with some empirical and semi-empirical correlations available in literature.For binary mixture,the accuracy of the correlations varied considerably with mixtures and the heat flux.Experimental data for HFC-32/134a/125 were also compared with available correlated equation obtained by Thome.For ternary mixture,the boiling range of binary mixture composed by the pure fluids with the lowest and the medium boiling points,and their concentration difference had important effects on boiling heat transfer coefficients.
International Nuclear Information System (INIS)
Transient pool boiling experiments were performed by quenching of stainless steel spheres in dilute aqueous nano-fluids in the presence of graphene oxide nano-sheets (GONs) at various concentrations (by weight) up to 0.1 wt.%. All the experiments were performed for saturated boiling at atmospheric pressure. Quenching and boiling curves were obtained for the nano-fluids in comparison to the baseline case of pure water. It was shown that quenching is accelerated upon increasing the concentration of GONs. The enhanced boiling heat transfer by the nano-fluids was interpreted in relation to the modified surface properties, including morphology, wettability, and roughness, on the quenched surfaces. Unlike the findings in available relevant studies that point to surface wettability change, however, the primary cause of critical heat flux (CHF) enhancement was observed to be related to the increased surface roughness serving as paths to facilitate solid-liquid contacts. The increases of both nucleation site density and liquid agitation intensity as a result of the presence of porous structures at relatively high concentrations were also found to be responsible for the enhanced CHF. (authors)
Li-Hua Yu; Shu-Xue Xu; Guo-Yuan Ma; Jun Wang,
2015-01-01
In recent years, water (R718) as a kind of natural refrigerant—which is environmentally-friendly, safe and cheap—has been reconsidered by scholars. The systems of using water as the refrigerant, such as water vapor compression refrigeration and heat pump systems run at sub-atmospheric pressure. So, the research on water boiling heat transfer at sub-atmospheric pressure has been an important issue. There are many research papers on the evaporation of water, but there is a lack of data on the c...
International Nuclear Information System (INIS)
Investigation of two-phase heat trnsfer in horizontal pipe flow have led to a new generalized correlation for the heat transfer coefficient. The proposed correlation equation is NUTP=3.04 [Pe]0.8 [Bo]0.6 This correlation was tested againts the existing and experimental data obtained on two-pahse heat transfer covering the entire possible flow regimes in a horizontal pipe flow. The correlation produces satisfactory result. (authors). 13 refs, 12 tabs, 2 figs
Mathematical heat transfer model for film boiling in a forced flow
International Nuclear Information System (INIS)
A unidimensional stationary model of film boiling in the flow of a liquid in a circular tube with an arbitrary distribution of the wall temperature along its length is considered. The following assumptions are made for computation: there is no phase shift, which is true for sufficiently high flow rates and low pressure drops along the length of the channel; the basic thermal resistance of the vapour film is concentrated in the narrow layer near the wall; the heat flux in the liquid is andependent on the vapour content and is determined exclusively by the process of turbulent heat conduction. The calculation results are presented in the form of a nomogram and an approximation formula. The nomogram is recommended for calculating heat exchange during film boiling in tubes within the following range of parameters: Resub(l)=8x10sup(4)-1.5x10sup(6); axis coordinate Z=7-100; Prsub(l)=1.9-3.3; relative pressure P/Psub(cr)=0.06-0.6
Study on boiling heat transfer of subcooled flow under oscillatory flow condition
International Nuclear Information System (INIS)
The onset of nucleate boiling -ONB-, the point of net vapor generation -NVG- and critical heat flux -CHF- on subcooled flow boiling under oscillatory flow condition, focusing on liquid velocity, amplitude and frequency of flow oscillation were investigated experimentally and analytically, for safety technology of nuclear reactors during earthquake. Experiments were conducted using a copper thin-film with 3mm width and 26mm length and subcooled water at 0.1 MPa. The liquid velocity was 0.27, 1.38, 3.20 and 4.07 m/s, respectively; the liquid subcooling was 20K. Frequency of flow oscillation was 2 and 4 Hz, respectively; amplitude of flow oscillation was 25 and 50% in a ratio of main flow rate, respectively. The oscillatory flow was superimposed on the steady flow with a mechanical diaphragm type pump at inlet of a test section. Temperatures at ONB and CHFs obtained in the experiments were decrease with an increasing of the amplitude of the flow oscillation. The decreasing of liquid velocity by the flow oscillation caused ONB and CHF to decrease. The wall heat flux at the NVG was decrease with an increasing of the amplitude of the flow oscillation. The effect of the oscillatory flow on the ONB was examined through stability theory of preexisting nuclei. The CHF in subcooled flow boiling under the oscillatory flow condition was investigated analytically by using a liquid sub-layer model and Kelvin-Helmholtz instability. The NVG was examined through Saha-Zuber model. The trends of the present experimental results were similar to those of predictions based on the models. (author)
Directory of Open Access Journals (Sweden)
Uthen Kuntha
2002-04-01
Full Text Available Boiling heat transfer coefficients and pressure drop of R-22 and its alternatives, which are R32/R125a/ R134 (23%/25%/52% and R32/R125a (50%/50%, flowing inside smooth and grooved tubes have been determined with the conditions similar to those in small refrigerators. The range of mass flow rates examined is between 0.0025 and 0.0125 kg/s. The data have been taken at the evaporator temperatures of -35 to -4 oC and at the condenser temperatures of 40 to 50 oC. The boiling heat transfer coefficients of the refrigerants in the grooved tubes are higher than those in the smooth tubes and R-22 shows the best performance for both tubes. The heat transfer correlations have also been developed. In case of the pressure drop, the twophase friction multiplier φG 2 increases with Martinelli parameter and there is no effect of the tube roughness and the types of the refrigerants.
Directory of Open Access Journals (Sweden)
Masoumeh Nedaei
2016-03-01
Full Text Available Flow boiling heat transfer was investigated in stainless steel hypodermic microtubes, whose surfaces were enhanced by gradient crosslinked polyhydroxyethylmethacrylate (pHEMA/polyperfluorodecylacrylate (pPFDA coatings thereby offering variations in wettability along the surface as well as high porosity. The initiated chemical vapor deposition (iCVD method was implemented for coating the inner walls of the microtubes with an inner diameter of 502 μm, and deionized water was used as the working fluid. Experimental results were obtained from the coated microtubes, where one end corresponded to the pHEMA (hydrophilic coated part and the other end was the most hydrophobic location with the pPFDA (hydrophobic coating so that wettability varied along the length of the microtube. The results of both the hydrophobic and hydrophilic inlet cases were compared to their plain surface counterparts at the mass flux of 9500 kg/m2s. The experimental results showed a remarkable increase in boiling heat transfer with the coatings. The highest heat transfer coefficients were attained for the pHEMA coated (hydrophobic inlet and hydrophilic outlet outlet case with a maximum heat transfer enhancement ratio of ∼64%. The reason for the enhanced heat transfer with the coated microtubes can be attributed to the increased nucleation site density and bubble release as well as enhanced convection and bubble motion near the surface due to the variation in wettability along the length. The results proved that gradient pHEMA/pPFDA coatings can be utilized as a viable surface enhancement method in microscale cooling applications.
Investigations on heat transfer enhancement in pool boiling with water-CuO nano-fluids
Hegde, Ramakrishna N.; Rao, Shrikantha S.; Reddy, R. P.
2012-04-01
The main focus of the present work is to investigate Critical Heat Flux (CHF) enhancement using CuO nanofluid relative to CHF of pure water. To estimate the effect of nanoparticles on the CHF, pool boiling CHF values were measured for various volume concentrations of CuO nanofluid and compared with pure water. CHF enhancement of 130% was recorded at 0.2 % by volume of CuO nano-fluids. Surface roughness of the heater surface exposed to three measured heating cycles indicated surface modifications at different volume concentrations of nanofluid. SEM image of the heater surface revealed porous layer build up, which is thought to be the reason for CHF enhancement.
El Nakla, Meamer A.
An experimental investigation of inverted annular film boiling heat transfer has been performed for vertical up-flow in a round tube. The working fluid was R-134a and the flow conditions covered a pressure range of 640 to 2390 kPa (water equivalent range: 4000 to 14000 kPa) and a mass flux range of 500 to 4000 kgm-2s-1 (water equivalent range: 700 to 5700 kgm-2s-1 ). The inlet qualities of the tests ranged from -0.75 to -0.03. The hot-patch technique is used to obtain the subcooled film boiling measurements. The parametric trends of the heat transfer coefficient with respect to mass flux, inlet quality, heat flux and pressure are examined and compared to reported parametric trends from the literature. The comparison shows agreement between observed effects of flow parameters with those reported by other researchers. The heat transfer vs. quality curve is divided into four different regions. It is shown that these regions are dependent on pressure, mass flux and local quality. A two-fluid one-dimensional model has been developed to predict the wall temperature of an internally-heated tube during IAFB. The model is derived using basic conservation equations of mass, momentum and energy. To simplify the derivation of the constitutive heat transfer relations, flow between two parallel plates is assumed. The model features shear stress and interfacial relations that make it accurately predicts the parametric effects and heat transfer characteristics of IAFB over a wide range of flow conditions. The model predicts wall temperatures of R-134a-cooled tubes with an average error of -1.21% and an RMS error of 6.37%. This corresponds to average and RMS errors in predicted heat transfer coefficients of 1.33% and 10.07%, respectively. Using water data, the model predicts wall temperatures with an average error of -1.76% and an RMS error of 7.78% which corresponds to average and RMS errors in predicted heat transfer coefficients of 4.16% and 15.06%, respectively.
International Nuclear Information System (INIS)
Incipient boiling superheats (IBS) in the sodium coolant have been measured to clarify oxygen impurity and velocity effect on IBS. The oxygen impurity effect on IBS has been observed at relatively lower liquid temperatures of 863K and 923K in a pool condition. In addition, the velocity effect on IBS has been measured in a forced convective condition. The IBS data shows decreasing tendency with increase of the sodium velocity. The IBS evaluation model to calculate the velocity effect has been proposed with a consideration of the boiling initiation from an un-flooded cavity on the heater surface. Reynolds number for a critical bubble diameter of the un-flooded cavity has been introduced to the IBS evaluation model to include the velocity effect on a vaporization process. It was become clear that the IBS evaluation model shows the velocity effects, successfully, for not only sodium but also water and R-113. (author)
Local Heat Transfer and CHF for Subcooled Flow Boiling - Annual Report 1997
International Nuclear Information System (INIS)
The Thermal Science Research Center (TSRC) at Prairie View A and M University is involved in an international fusion reactor technology development program aimed at demonstrating the technical feasibility of magnetic fusion energy. This report highlights: (1) Recent accomplishments and pinpoints thermal hydraulic problem areas of immediate concern to the development of plasma-facing components, and (2) Next generation thermal hydraulic problems which must be addressed to insure safety and reliability in component operation. More specifically, the near-term thermal hydraulic problem entails: (1) generating an appropriate data base to insure the development of single-side heat flux correlations, and (2) evaluating previously developed single-side/uniform heated transformations and correlations to determine which can be used to relate the vast two-phase heat transfer and critical heat flux (CHF) technical literature for uniformly heated flow channels to single-side heated channels
International Nuclear Information System (INIS)
Within a hot strip steel mill, red hot steel is hot rolled into a long continuous slab that is led onto what is called the runout table. Temperatures of the steel at the beginning of this table are around 900 oC. Above and below the runout table are banks of water jets, sprays or water curtains that rapidly cool the steel slab. The heat transfer process itself may be considered one of the most complicated in the industrial world. The cooling process that occurs on the runout table is crucial and governs the final mechanical properties and flatness of a steel strip. However, very limited data of industrial conditions has been available and that which is available is poorly understood. To study heat transfer during runout table cooling, an industrial scale pilot runout table facility was constructed at the University of British Columbia (UBC). This paper describes the experimental details, data acquisition and data handling techniques for steel plates during water jet impingement cooling by one circular water jet from industrial headers. The effect of cooling water temperature and initial steel plate temperature as well as varying water jet diameters on heat transfer was systematically investigated. A two-dimensional finite element scheme based inverse heat conduction model was developed to calculate surface heat transfer coefficients along the impinging surface. Heat flux curves at the stagnation area were obtained for selected tests. A quantitative relationship between adjustable processing parameters and heat transfer coefficients along the impinging surface during runout table operation is discussed. The results of the study were used to upgrade an extensive process model developed at UBC. The model ties in the cooling rate and hence two dimensional temperature gradients to the resulting microstructure and final mechanical properties of the steel. This process model is widely used by major steel industries in Canada and the United States. (author)
Mehdipour, R.; Baniamerian, Z.; Delauré, Y.
2016-05-01
An accurate knowledge of heat transfer and temperature distribution in vehicle engines is essential to have a good management of heat transfer performance in combustion engines. This may be achieved by numerical simulation of flow through the engine cooling passages; but the task becomes particularly challenging when boiling occurs. Neglecting two phase flow processes in the simulation would however result in significant inaccuracy in the predictions. In this study a three dimensional numerical model is proposed using Fluent 6.3 to simulate heat transfer of fluid flowing through channels of conventional size. Results of the present theoretical and numerical model are then compared with some empirical results. For high fluid flow velocities, departure between experimental and numerical results is about 9 %, while for lower velocity conditions, the model inaccuracy increases to 18 %. One of the outstanding capabilities of the present model, beside its ability to simulate two phase fluid flow and heat transfer in three dimensions, is the prediction of the location of bubble formation and condensation which can be a key issue in the evaluation of the engine performance and thermal stresses.
Mikielewicz, D; Andrzejczyk, R; Jakubowska, B; Mikielewicz, J; 4th Micro and Nano Flows Conference (MNF2014)
2014-01-01
This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, U...
Flow boiling heat transfer of a non-azeotropic mixture inside a single microchannel
Del Col, D; Azzolin, M; Bortolin, S; 4th Micro and Nano Flows Conference (MNF2014)
2014-01-01
This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, U...
International Nuclear Information System (INIS)
Separate abstracts are included for each of the papers presented concerning critical flow of two-phase mixtures; two-phase flow instrumentation; critical heat flux and effects of local disturbances; heat transfer and rewetting during reflood; hydrodynamic mechanisms in boiling heat transfer; and entrainment and droplet deposition in two-phase flow. Five papers have been previously abstracted and input to the data base
Energy Technology Data Exchange (ETDEWEB)
Bang, In Cheol; Chang, Soon Heung; Lee, Dong Won; Hong, Seung Mo [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)
2004-07-01
Boiling heat transfer characteristics of nano- fluids with nano-particles suspended in water are studied using different volume concentrations of alumina nano-particles. Pool boiling heat transfer coefficients and phenomena of nano-fluids are compared with those of pure water, which are acquired on a horizontal flat surface with highly smooth roughness of a few tens nano-meters. The experimental results show that these nano-fluids have poor heat transfer performance compared to pure water in natural convection and nucleate boiling. This is related to a change of surface characteristics by the deposition of nano-particles. Comparisons between the experimental data and the Rhosenow correlation show that the correlation has a possibility to predict the performance with an appropriate modified liquid-surface combination factor and changed physical properties of a base liquid.
Sheikholeslami, Mohsen; Sadoughi, Mohammadkazem; Shariatmadar, Hamed; Akhavan-Behabadi, Mohammad Ali
2015-11-01
An experimental investigation is performed on heat transfer evaluation of a nano-refrigerant flow during condensation and evaporation inside a horizontal round tube. Experiments are carried out for three working fluid types including: i) pure refrigerant (R600a); ii) refrigerant/lubricant (R600a/oil); and iii) nano-refrigerant: refrigerant/lubricant/nanoparticles (R600a/oil/CuO). Nanoparticles are added to the lubricant and their mixture is mixed with pure refrigerant. Therefore, nano-refrigerants (R600a/oil/CuO) are prepared by dispersing CuO nanoparticles with different fractions of 0.5%, 1% and 1.5% in the baseline mixture (R600a/oil). Effects of different factors including vapor quality, mass flux, and nanoparticles on the heat transfer coefficient are examined for both of condensation and evaporation flows, separately. The results shows that maximum heat transfer augmentation of 79% and 83% are achieved by using the refrigerant/lubricant/nanoparticles mixture, in comparison with the pure refrigerant case in condensation and evaporation, respectively which are occurred for nano-refrigerant with 1.5% mass fraction in both of them.
Hydrodynamics and heat transfer in a sodium boiling flow. Application to LMFBR safety analyses
International Nuclear Information System (INIS)
Experimental and theoretical results in the field of sodium boiling flows are presented. Application to LMFBR safety analyses are presented. The emphasis is mainly focused on thermohydraulic consequencies of sodium boiling. One shows how general knowledge of two phase flow applies to sodium boiling; what is particular to liquid metals; what is specific to subassembly geometry; what happens in steady state; what happens in transient regime. The analysis is based on experimental evidence. Simplified analysis are proposed. Code interpretation are given (NATREX, MANDRIN, BACCHUS)
Investigation of Boiling Heat Transfer of Binary Mixture from Vertical Tube Embedded in porous Media
Institute of Scientific and Technical Information of China (English)
HailongMo; TongzeMa; 等
1996-01-01
Ethanol-water binary mixtures with 7 different mole fractions of ethanol ranging from 0 to 1 were adopted as testing liquids in the experiment.The vertical heating tube was inserted in porous matrix composed of five well sorted glass beads whise diameters range from 0.5 to 4.3mm.Due to the effect of composition,the trend of combination of vapor bubbles was reduced.resulting in the increase of peak heat flux of binary mixture,With the increase of ethanol mole fraction,0.5mm diameter bead of peak heat flux of binary mixture.with the increase of ethanol mole fraction.0.5mm diameter bead had lower value of peak heat flux,while for pure liquid the critical state is difficult to appear,with given diameter of glass bead,there existed an optimum value of mole fraction of ethanol,which was decreased with the increase of bead diameter,A dimensionless heat transfer coefficient was predicted through the introduction of a dimensionless parameter of porous matrix which agreed with the experimental results satisfactorily.
International Nuclear Information System (INIS)
A method of predicting the overall heat transfer coefficient and the temperature at the lower limit of film boiling for a finite-length cylinder with flat top and bottom surfaces has been researched and proposed in a previous paper. This paper presents and compares an analysis in the case of a cylinder with a hemispherical bottom. The film boiling heat transfer around a vertical silver cylinder with a convex hemispherical bottom surface is investigated both experimentally and analytically in the present study. The obtained results are also compared and discussed with the authors' previous results for a finite-length cylinder with flat top and bottom surfaces. Quenching experiments were performed using silver cylinders in saturated water. The diameter and length of the test cylinders are 32mm and 48mm, respectively. The test cylinder was heated up to about 600degC in an electric furnace and then cooled down in saturated quiescent water at atmospheric pressure. The resultant cooling and boiling curves and photographs of the film boiling phenomena are presented and discussed. The average heat transfer performance of the hemispherically bottomed cylinder is about 20% higher than that of the flat bottomed cylinder. The degree of wall superheating at the lower limit of film boiling is about 133K. The saturated film boiling heat transfer around the vertical finite-length cylinder with a convex hemispherical bottom was analyzed by taking into account the convective heat transfers from the bottom, side and top surfaces of the cylinder. The resulting analytical data correlated closely with the experimental data in the present study. (author)
Refrigeration. Heat Transfer. Part I: Evaporators and Condensers
DEFF Research Database (Denmark)
Knudsen, Hans-Jørgen Høgaard
2002-01-01
The note gives an introduction to heat transfer with phase shift. Pool Boiling, Flow Boiling, Condensation.......The note gives an introduction to heat transfer with phase shift. Pool Boiling, Flow Boiling, Condensation....
Boiling on a tube bundle: heat transfer, pressure drop and flow patterns
International Nuclear Information System (INIS)
The complexity of the two-phase flow in a tube bundle presents important problems in the design and understanding of the physical phenomena taking place. The working conditions of an evaporator depend largely on the dynamics of the two-phase flow that in turn influence the heat exchange and the pressure drop of the system. A characterization of the flow dynamics, and possibly the identification of the flow pattern in the tube bundle, is thus expected to lead to a better understanding of the phenomena and to reveal on the mechanisms governing the tube bundle. Therefore, the present study aims at providing further insights into two-phase bundle flow through a new visualization system able to provide for the first time a view of the flow in the core of a tube bundle. In addition, the measurement of the light attenuation of a laser beam through the two-phase flow and measurement of the high frequency pressure fluctuations with a piezo-electric pressure transducer are used to characterize the flow. The design and the validation of this new instrumentation also provided a method for the detection of dry-out in tube bundles. This was achieved by a laser attenuation technique, flow visualization, and estimation of the power spectrum of the pressure fluctuation. The current investigation includes results for two different refrigerants, R134a and R236fa, three saturations temperatures Tsat = 5, 10 and 15 °C, mass velocities ranging from 4 to 40 kg/sm² in adiabatic and diabatic conditions (several heat fluxes). Measurement of the local heat transfer coefficient and two-phase frictional pressure drop were obtained and utilized to improve the current prediction methods. The heat transfer and pressure drop data were supported by extensive characterization of the two-phase flow, which was to improve the understanding of the two-phase flow occurring in tube bundles. (author)
Mechanisms of heat transfer in the uncovered region of a bundle during the boil-off transient
International Nuclear Information System (INIS)
The small break accident which occurred at the TMI-2 plant resulted in partial uncovery of the core. To study the thermal-hydraulic phenomena in the uncovered portion of the core, tests were conducted from the EPRI/SUNY Buffalo 3 x 3 rod bundle. Observations from motion pictures and test data show that liquid entrainment and liquid fallback occur in the upper rod bundle region during the early stage of the boiling dry transient. The liquid entrainment and liquid fallback are the results of flow restrictions in the upper bundle tie-plate and spacer grids. The presence of liquid droplets during the entrainment and the fallback greatly influenced the heat transfer in the uncovered portion of the bundle
International Nuclear Information System (INIS)
Research reactor is the nuclear reactor serves neutron source for many research fields such as neutron scattering, non-destructive testing, radioisotope treatment and so on. Due to that characteristic of research reactor, as many people work around the research reactor, research reactor should be designed to have much more conservative margin for normal operation. Boiling heat transfer is the one of the most efficient type in heat transfer modes, however, research reactor needs to avoid onset of nucleate boiling (ONB) in normal operation as IAEA recommend for research reactors to have enough ONB margin to maintain the normal operation state in 'IAEA-TECDOC-233' (1980) for the same reason explained above. Jordan Research and Training Reactor (JRTR) operates under downward flow in narrow rectangular channel in fuel assembly. There isn't sufficient heat transfer data under downward flow condition and only few ONB prediction correlation as well. In the present work, not only a new ONB prediction model would be developed, but also comparison between heat transfer data with several heat transfer correlations could be shown. In addition, as Sudo and Omar S. proposed differently about the Nusselt number behaviors in upward and downward convective heat transfer, the study of convective heat transfer should be conducted continuously to determine it exactly. In this paper, single-phase heat transfer data is analyzed by several heat transfer correlations before developing ONB prediction correlation. In this study, an experiment on the single-phase heat transfer was conducted. As shown in Fig. 5, comparison between experimental data and existing correlations shows quite huge difference as about 40%. Additional experiments on single-phase heat transfer at low heat flux are necessary to clarify the tendency of Nusselt number among heat flux and to develop new correlation for single-phase heat transfer
Ito, Takehiro; Nishikawa, Kaneyasu; Shigechi, Tooru
1981-01-01
Forced convection film boiling heat transfer from a horizontal cylinder to saturated liquid cross-flowing upward is analyzed based on the two-phase boundary-layer theory. Numerical solution of the conservation equations is determined by means of the integral method of boundary-layer for water, ethanol and hexane under the atmospheric pressure. The velocity profile, separation point of the boundary-layer, thickness of the boundary-layer, distribution of the heat transfer coefficients and avera...
Enhanced pool boiling heat transfer on mini- and micro- structured surfaces
Pastuszko, Robert
2016-03-01
The surfaces used for investigating nucleate pool boiling for four working fluids had mini- and micro-fins of variable configurations, cross-sections and pitches, restrained by perforated foil or mesh cloth with various pore/opening diameters. Unique enhanced structures on these surfaces formed a system of interconnected horizontal and vertical tunnels. Four structured surfaces were proposed, each being a system of subsurface tunnels connected to 10 and 5 mm fins or 1 and 0.5 mm mini-fins. Measurement results for boiling water, ethanol, Fluorinert FC-72 and R-123 from more than 60 samples constituted the database used to verify the proposed theoretical models. These models were based on the results from the visualization studies, including internal visualization allowing observation of bubble nucleation, growth and displacement inside the tunnels, and on the analysis of existing boiling models for mini- and micro-structures.
CO 2池沸腾换热关联式理论分析%Theoretical Analysis on Correlation of CO2 Pool Boiling Heat Transfer
Institute of Scientific and Technical Information of China (English)
刘圣春; 刘江彬; 宁静红
2013-01-01
The common heat transfer correlations of pool boiling is summarized,and a correlation of CO2 heat transfer is at-tained after analyzing heat transfer performance.The deviation within 16% of CO2 fitting formula value compared to prediction values of theoretical pool boiling correlation of conventional refrigerants and experimental fitting correlation of CO2 is obtained, which shows that it is of universal.The effects on pool boiling heat transfer and the variation law are pointed out by analyzing the process of CO2 pool boiling heat transfer,and the common methods,using to enhance pool boiling heat transfer,are summarized in the paper.%总结了常见的池沸腾换热关联式。通过对池沸腾换热过程分析得出CO2在小热流密度和大热流密度范围下的一种分段的换热关联式。将新的拟合公式值和预测关联式值进行比较，得出CO2的拟合公式值与理论关联式及实验拟合关联式的预测值的偏差在±16％之内，具有一定的通用性。通过对CO2池沸腾换热过程的分析，得出池沸腾换热的影响因素及其变化规律，并总结了常用的强化池沸腾换热方法。
Heat transfer with high flux density between a wall and water, with local boiling at the wall
International Nuclear Information System (INIS)
The aim of the present study was to look for the relationship between the temperature of a hot wall and that of a cooling fluid under conditions where this fluid is subject to local boiling at the wall. Attention has been directed particularly to the aspect of the phenomenon in the transition region between the classical turbulent convection and the convection with local boiling. The tests were carried out with water at an average temperature of 50 deg. C circulating in an annular space, the heat flux deriving from the inside tube. The flux region used (300000 to 1 700 000 Kcal./h.m2) corresponds to a transmission by normal turbulent convection and by convection with the appearance of local boiling. The results obtained in the field of normal convection follow the classical laws, the results in the zone where local boiling appears are in correct agreement with the formulae proposed by other authors for higher heat fluxes. (author)
International Nuclear Information System (INIS)
This paper analyses both theoretically and experimentally the problem of film boiling from a body embedded in a liquid saturated porous medium. Two body geometries are investigated thoroughly: a horizontal cylinder and a sphere. The theoretical model relies on the Brinkman-extended flow model to describe the flow field inside the thin vapor layer occupying the neighborhood near the heated surface. The theoretical model also includes an improved formulation of the effective conductivity in the vicinity of the heater as a function of the vapor layer thickness and the geometry of the porous medium material. Solutions are obtained for the vapor layer thickness and the local Nusselt number as a function of angular position. Numerical solutions are also obtained for the overall heat transfer rates from the heated surface to the fluid for a range of problem parameters. Experimental data for a 12.70 mm OD stainless steel cylindrical heater embedded in a 3-mm glass particles porous medium were obtained under steady state operation. The experimental data obtained are compared with the theoretical analysis. The comparison shows that there is a good agreement between theory and experiments. The theoretical model is also compared with the experimental data obtained by other investigators for a spherical geometry. Excellent results are obtained in such comparison
International Nuclear Information System (INIS)
Graphical abstract: - Highlights: • Fe–Al2O3–TiO2 composite coatings were coated on the copper using spray pyrolysis. • Effect of Fe doping on porosity was determined using AFM. • Effect of Fe doping on hydrophilicity was determined. • Higher enhancement in CHF was obtained for 7.2 at% Fe doped coated sample. - Abstract: In the present work, flow boiling experiments were conducted to study the effect of spray pyrolyzed Fe doped Al2O3–TiO2 composite coatings over the copper heater blocks on critical heat flux (CHF) and boiling heat transfer coefficient. Heat transfer studies were conducted in a mini-channel of overall dimension 30 mm × 20 mm × 0.4 mm using de-mineralized water as the working fluid. Each coated sample was tested for two mass fluxes to explore the heat transfer performance. The effect of Fe addition on wettability and porosity of the coated surfaces were measured using the static contact angle metre and the atomic force microscope (AFM), and their effect on flow boiling heat transfer were investigated. A significant enhancement in CHF and boiling heat transfer coefficient were observed on all coated samples compared to sand blasted copper surface. A maximum enhancement of 52.39% and 44.11% in the CHF and heat transfer coefficient were observed for 7.2% Fe doped TiO2–Al2O3 for a mass flux of 88 kg/m2 s
Energy Technology Data Exchange (ETDEWEB)
Sujith Kumar, C.S., E-mail: sujithdeepam@gmail.com [Department of Mechanical Engineering, National Institute of Technology, Tiruchirappalli 620015, Tamil Nadu (India); Suresh, S., E-mail: ssuresh@nitt.edu [Department of Mechanical Engineering, National Institute of Technology, Tiruchirappalli 620015, Tamil Nadu (India); Aneesh, C.R., E-mail: aneeshcr87@gmail.com [Department of Mechanical Engineering, National Institute of Technology, Tiruchirappalli 620015, Tamil Nadu (India); Santhosh Kumar, M.C., E-mail: santhoshmc@nitt.edu [Department of Physics, National Institute of Technology, Tiruchirappalli 620015, Tamil Nadu (India); Praveen, A.S., E-mail: praveen_as_1215@yahoo.co.in [Department of Mechanical Engineering, National Institute of Technology, Tiruchirappalli 620015, Tamil Nadu (India); Raji, K., E-mail: raji.kochandra@gmail.com [School of Nano Science and Technology, National Institute of Technology, Calicut 673601, Kerala (India)
2015-04-15
Graphical abstract: - Highlights: • Fe–Al{sub 2}O{sub 3}–TiO{sub 2} composite coatings were coated on the copper using spray pyrolysis. • Effect of Fe doping on porosity was determined using AFM. • Effect of Fe doping on hydrophilicity was determined. • Higher enhancement in CHF was obtained for 7.2 at% Fe doped coated sample. - Abstract: In the present work, flow boiling experiments were conducted to study the effect of spray pyrolyzed Fe doped Al{sub 2}O{sub 3}–TiO{sub 2} composite coatings over the copper heater blocks on critical heat flux (CHF) and boiling heat transfer coefficient. Heat transfer studies were conducted in a mini-channel of overall dimension 30 mm × 20 mm × 0.4 mm using de-mineralized water as the working fluid. Each coated sample was tested for two mass fluxes to explore the heat transfer performance. The effect of Fe addition on wettability and porosity of the coated surfaces were measured using the static contact angle metre and the atomic force microscope (AFM), and their effect on flow boiling heat transfer were investigated. A significant enhancement in CHF and boiling heat transfer coefficient were observed on all coated samples compared to sand blasted copper surface. A maximum enhancement of 52.39% and 44.11% in the CHF and heat transfer coefficient were observed for 7.2% Fe doped TiO{sub 2}–Al{sub 2}O{sub 3} for a mass flux of 88 kg/m{sup 2} s.
Energy Technology Data Exchange (ETDEWEB)
Hyun Sun Park; Dereje Shiferaw; Bal Raj Sehgal [Royal Institute of Technology, Department of Energy Technology, Division of Nuclear Power Safety, Drotning Kristinas Vag 33A, SE-10044, Stockholm (Sweden)
2005-07-01
Full text of publication follows: nano-fluids, or conventional liquids, e.g., water, with small concentration of nano-particles uniformly suspended, have attracted attention as a new heat transport medium with enhanced thermo-physical properties. Up to the present, only exploratory experiments on nano-fluids have been reported. Das et al (Int. J. Heat Mass Transfer 43, pp 3701-3707, 2003) conducted boiling experiments with water containing 38 nm Al{sub 2}O{sub 3} nano-particles. They observed deterioration in the nucleate boiling heat transfer due to the deposition of nano-particles. Boiling experiments conducted by Vassallo et al (Int. J. Heat Mass Transfer 47, pp 407-411, 2004) using silica nano-fluid using 0.4 mm diameter NiCr wire showed three times higher critical heat flux (CHF) and the wire traversed the film boiling region before it failed. Another independent experiment performed on 1 cm{sup 2} square plate with a very low concentration of nano-particles ranging from 0.01 to 0.05 g/liter and at under pressure (2.89 psia), nano-fluids resulted in drastic 2{approx}3 times enhancement of the CHF (You and Kim, Appl. Phys. Lett. 83. No 16, 2003). However in all the aforementioned studies no appropriate explanation of the CHF enhancement has been advanced. The measured 2-3 times higher critical heat flux for very dilute nano-fluids may have high significance if such nano-fluids could be employed in heat transport systems. Recently, we investigated the effect of nano-particles on film boiling, which governs heat transfer during accident conditions in a reactor plant, e.g., in coolability of a degraded core, or a particulate debris bed or a core melt, and in steam explosions. Our previous experiments performed on film boiling in nano-fluids having larger concentrations of 5, 10, and 20 g/liter than those in You's experiments showed that the nano-fluids lower the film boiling temperature, decrease the film boiling heat transfer and provide a much thicker and
Wu, Zhi-Yong; Cai, Wei-Hua; Qiu, Guo-Dong; Jiang, Yi-Qiang
2014-01-01
The objective of this present study is to propose an approach to predict mass transfer time relaxation parameter for boiling simulation on the shell-side of LNG spiral wound heat exchanger (SWHE). The numerical model for the shell-side of LNG SWHE was established. For propane and ethane, a predicted value of mass transfer time relaxation parameter was presented through the equivalent evaporation simulations and was validated by the Chisholm void fraction correlation recommended under various ...
Park, Chang Yong
Carbon dioxide (CO2) has been seriously considered as an alternate refrigerant for HCFC and HFC fluids, due to the increasing interest of environmentally safe refrigerants in air-conditioning and refrigeration systems. In this study, CO2 flow boiling heat transfer coefficients and pressure drop are measured in macro-scale (6.1 and 3.5 mm) tubes at evaporation temperatures of -15 and -30°C. The measured results show that the nucleate boiling is a main heat transfer mechanism in the 6.1 mm tube and the contribution of convective boiling becomes greater with the decrease of tube diameters and the increase of mass fluxes. The surface roughness of the 6.1 and 3.5 mm tube are presented by SEM and AFM images and surface profiles, and it is shown that the rougher surface of the 6.1 mm tube can affect the flow boiling heat transfer. The CO2 heat transfer coefficients and pressure drop are measured in a mini-scale (0.89 mm) multi-ported tube at the evaporation temperature of -30°C. Also, R410A and R22 flow boiling heat transfer coefficients and pressure drop in a macro-scale (6.1 mm) tube were measured, and they are compared with CO2. This comparison presents that the CO2 flow boiling heat transfer coefficients are higher than R410A and R22 at low vapor qualities, and CO2 pressure drop is significantly lower than R410A and R22. This advantageous characteristic for CO2 could be explained by properties such as surface tension, reduced pressure, and the density ratio of liquid to vapor. The prediction of heat transfer coefficients and pressure drop was performed by general correlations and the calculation results are compared with measured values. Two-phase flow patterns were visualized for CO2 and R410A in the 6 and 3 mm glass tubes, and they are compared with the Weisman et al. and the Wojtan et al. flow pattern maps. The flow pattern maps can determine the flow patterns relatively well, except the transition from intermittent to annular flow.
International Nuclear Information System (INIS)
Nucleate boiling is an effective mode of heat transfer; one of the most studied physical phenomena in science and engineering, and a key thermal limit in nuclear systems. However, for decades, modeling of nucleate boiling heat transfer has been relying on speculative hypotheses and a good dose of empiricism. For example, the widely popular Rosenhow's correlation for nucleate boiling is based on the assumption that single-phase convection and nucleate boiling are analogous physical processes, and can be both correlated in terms of the Reynolds and Prandtl number of the liquid phase; for nucleate boiling the characteristic velocity and length are assumed to be the downward liquid velocity and most unstable Taylor wavelength, respectively; then, an empirical constant, Csf, is determined to fit the experimental data for any fluid/surface combination. As researchers are now finally moving away from the rough empiricism of the past, and start to develop more mechanistic models of nucleate boiling heat transfer, the need for high-quality high-resolution data on the bubble nucleation and growth cycle is becoming increasingly big. Specifically, nucleation site density, bubble departure diameter and frequency data are necessary input for the source terms in interfacial area transport models and CFD 'multi-fluid' models as well as semi-empirical models for boiling heat transfer, such as the RPI's heat flux partitioning model and Kolev's bubble interaction model. Furthermore, time-resolved temperature distribution data for the boiling surface and direct visualization of the bubble cycle are needed for validation of 'first principle' models of bubble nucleation and growth, based on interface tracking methods, in which the geometry of the vapor/liquid interface is not assumed, but rather calculated from a marker function advected according to the Navier-Stokes equations. However, gathering the detailed data needed for validation of advanced simulation models is not
International Nuclear Information System (INIS)
In this experimental study, flow boiling in mini/microtubes was investigated with surface enhancements provided by polyhydroxyethylmethacrylate (pHEMA) coatings (of ∼30 nm thickness) on inner microtube walls. Flow boiling heat transfer experiments were conducted on microtubes (with inner diameters of 249, 507 and 998 µm) having inner surfaces of pHEMA coatings, which increase heat transfer surface area, enable liquid replenishment upon bubble departure, provide additional nucleation sites, and serve for extending critical heat flux (CHF) enhancing boiling heat transfer. The de-ionized water was utilized as the working fluid in this study. pHEMA nanofilms of thickness ∼30 nm on the microtube walls were coated through an initiated chemical vapor deposition technique. Experimental results obtained from the coated microtubes were compared to their plain surface counterparts at two mass flux values (10 000 and 13 000 kg m−2 s−1). In comparison to the plain surface microtubes, the coated surfaces demonstrated an increase up to 24% and 109% in CHF and heat transfer coefficients, respectively. These promising results support the use of pHEMA coated microtubes/channels as a surface enhancement technique for microscale cooling applications. (paper)
Energy Technology Data Exchange (ETDEWEB)
Kim, Kyung Chun; Lee, Young; Lee, Sung Hong [Pusan National University, Pusan (Korea)
2000-04-01
Recently, the effect of convex curvature on heat transfer should not be ignored when the radius of curvature tends to be small and/or associated with high heat transfer rate cases. Both analytical and experimental studies were performed to prove the effect of transverse convex curvature on the boiling heat transfer in concentric annuli flows. The effect of the transverse convex surface curvature on ONB are studied analytically in the case of reactor and evaporator. It is seen that the inner wall heat flux depends on R/sub i/, Rc, Re, Pr, {alpha}, and the {theta} of working fluid. An experimental study on the incipience of nucleate boiling is performed as a verification ad extension of previous analyses. Through flow visualization, the results show that the most dominant parameter to affect the heat flux at ONB is found to be the surface curvature. The heat flux data at ONB increases with the Re and the subcooling, and the effect of subcooling on ONB becomes smaller with decreasing Re. The heat flux at ONB increases rapidly as increase in {alpha} due to higher convective motion of bulk flow. Comparison between both results are accomplished with respect to the relative enhancement due to the convex curvature. The relative heat transfer enhancement ratio shows a good agreement between theory and experiment qualitatively and quantitatively. In conclusion, the obtained results suggest that the effect transverse convex curvature appears significantly in the boiling heat transfer. Therefore, it can be clearly expected that the effect should be more strong at the case of critical heat flux condition which is the most important design goal of the advanced nuclear fuel rods. 30 refs., 78 figs. (Author)
International Nuclear Information System (INIS)
Degradation of the thermal performance of steam generators(SGs) is a serious problem in nuclear power stations throughout the world (Lovett and Dow, 1991). In pressurized-heavy-water reactors (PWHRs), the reduced thermal performance of the SGs is manifested by an increase of the primary coolant reactor inlet header temperature (RIHT). In pressurized-light-water reactors(PWRs), which operate with fixed primary coolant temperature, the loss of thermal performance is manifested by a reduction of the steam pressure. Degradation mechanisms that may contribute to the loss of SG thermal performance include: fouling of the boiler tube inner surfaces (primary-side fouling); fouling of the boiler tube outer surfaces (secondary-side fouling); divider and thermal plate leakage that causes the coolant to bypass either the SG or the integral preheater and fouling of the steam separators. The relative contribution of these various degradation mechanisms to the overall loss of thermal performance is still under investigation. Soulard et al. (1990) examined the relative contributions of tube bundle fouling, divider plate leakage, and thermal plate leakage to the increase in RIHT at the Point Lepreau Generating Station, and concluded that tube fouling contributes to a significant fraction of the loss of thermal performance. Corrosion products deposit on both the inner and outer surfaces of the boiler tubes. Thus a complete understanding of the reasons fro the loss of thermal performance and the development of strategies to mitigate this loss requires a knowledge of the thermal resistance of tube deposits under primary and secondary side heat transfer conditions. We present here the results of measurements of the thermal resistance of primary-side and secondary-side boiler tube deposits performed under single-phase forced convection and flow-boiling conditions, respectively. The results are discussed in terms of the physical properties of the deposit and the mode of heat transfer
Institute of Scientific and Technical Information of China (English)
GuoqingWang; YingkeTan
1996-01-01
A combined physical model of bubbel growth is propsed along with a corresponding bubble growth model for binary mixtures on smooth tubes.Using the general model of Wang et al.[1].and the bubble growth model for binary mixtures,an analytical model for nucleate pool boiling heat transfer of binary mixtures on smooth tubes is developed.In addition,nucleate pool boiling heat transfer of pure liquids and binary mixtrues on a horizontal smooth tube was studied experimentally.The pure liquids and binary mixtures included water methanol,ehanol,and their binary mixtures.The analytical models for both pure liquids and binary mixtures are in good agreement with the experimental data.
Directory of Open Access Journals (Sweden)
А.V. Melnyk
2015-08-01
Full Text Available Experimental results of local heat transfer coefficients for the boiling of real working fluids (solutions of R600a with mineral naphthenic oil ISO VG 15 in smooth tube with small diameter (5.4 mm are presented. The tests were carried out for the inlet pressure in the range from 71.1 kPa to 77.9 kPa, heat flux was 3800 W/m2, and mass velocity of working fluid was from 14.75 to 18.36 kg/(m2s. The quantitative estimation in reduction of heat transfer coefficient of the wetted surface in evaporator at high oil concentration in the mixture is made. The influence of mass velocities of the working fluid on the values of the local heat transfer coefficients are analyzed. Based on the results obtained it was observed that increasing mass velocity leads to increase the local heat transfer coefficient of RWF both on side of wetted perimeter and vapor phase. The equation for the modeling of the local heat transfer coefficient for boiling of isobutane/compressor oil solution flow in the pipe is suggested.
Mikielewicz, D; Mikielewicz, J; Stasiek, J; 2nd Micro and Nano Flows Conference (MNF2009)
2009-01-01
This paper was presented at the 2nd Micro and Nano Flows Conference (MNF2009), which was held at Brunel University, West London, UK. The conference was organised by Brunel University and supported by the Institution of Mechanical Engineers, IPEM, the Italian Union of Thermofluid dynamics, the Process Intensification Network, HEXAG - the Heat Exchange Action Group and the Institute of Mathematics and its Applications.
Institute of Scientific and Technical Information of China (English)
王军; 苗君; 刘芸; 沈自求
2004-01-01
In this paper, boiling heat transfer in a vertical annulus with inner side heated with and without air introduction is experimentally studied. Results show that boiling heat transfer is significantly enhanced by the introduction of air. When air is introduced into the liquid with a temperature below boiling point, the enhancement of heat transfer is also detected. It is concluded from the study that the heat transfer enhanced by introduction of inert gas is due to the liquid vaporization at the gas-liquid interface near the wall, which removes a large amount of latent heat and lowers the interfacial temperature considerably. Thus the gas-liquid interface acts as a "heat sink"and the heat transfer is augmented significantly.
International Nuclear Information System (INIS)
Mechanism of heat transfer crisis under boiling in a subcooled flow differs essentially from the crisis classical concepts. The paper describes a physical model of heat transfer crisis under boiling in a highly subcooled twisted flow at the tube perimeter heterogeneous heating. Ratio for the critical heat flow at boiling in a subcooled twisted flow is obtained
Shigechi, Tooru; Ito, Takehiro; Nishikawa, Kaneyasu
1983-01-01
Forced convection film boiling heat transfer from a horizontal cylinder to a subcooled liquid cross-flowing upward is analysed based on the two-phase boundary-layer theory. Numerical solution of the conservation equations is determined for subcooled water, ethanol and hexane under the atmospheric pressure by the method similar to that of the first report for saturated liquid. The velocity profile, the separation point in the vapor film, the thickness of the boundary-layer and the average Nuss...
Boiling and burnout phenomena under transient heat input, 1
International Nuclear Information System (INIS)
In order to simulate the thermo-hydrodynamic conditions at reactor power excursions, a test piece was placed in a forced convective channel and heated with exponential power inputs. The boiling heat transfer and the burnout heat flux under the transient heat input were measured, and pressure and water temperature changes in the test section were recorded at the same time. Following experimental results were obtained; (1) Transient boiling heat transfer characteristics at high heat flux stayed on the stationary nucleate boiling curve of each flow condition, or extrapolated line of the curves. (2) Transient burnout heat flux increased remarkably with decreasing heating-time-constant, when the flow rate was lower and the subcooling was higher. (3) Transient burnout phenomena were expressed with the relation of (q sub(max) - q sub(sBO)) tau = constant at several flow conditions. This relation was derived from the stationary burnout mechanism of pool boiling. (auth.)
Modeling of Heat Exchange with Developed Nucleate Boiling on Tenons
A. V. Оvsiannik
2014-01-01
The paper proposes a thermal and physical model for heat exchange processes with developed nucleate boiling on the developed surfaces (tenons) with various contours of heat transfer surface. Dependences for calculating convective heat exchange factor have been obtained on the basis of modeling representation. Investigations have shown that an intensity of convective heat exchange does not depend on tenon profile when boiling takes place on the tenons. The intensity is determined by operating ...
Energy Technology Data Exchange (ETDEWEB)
Brown, Nicholas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wysocki, Aaron J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ali, Amir [Univ. of New Mexico, Albuquerque, NM (United States); Liu, Maolong [Univ. of New Mexico, Albuquerque, NM (United States); Blandford, Edward [Univ. of New Mexico, Albuquerque, NM (United States)
2016-06-01
The U.S. Department of Energy Office of Nuclear Energy (DOE-NE) Advanced Fuels Campaign (AFC) is working closely with the nuclear industry to develop fuel and cladding candidates with potentially enhanced accident tolerance, also known as accident tolerant fuel (ATF). Thermal-fluids characteristics are a vital element of a holistic engineering evaluation of ATF concepts. One vital characteristic related to boiling heat transfer is the critical heat flux (CHF). CHF plays a vital role in determining safety margins during normal operation and also in the progression of potential transient or accident scenarios. This deliverable is a scoping survey of thermal-fluids evaluation and confirmatory experimental validation requirements of accident tolerant cladding concepts with a focus on boiling heat transfer characteristics. The key takeaway messages of this report are: 1. CHF prediction accuracy is important and the correlations may have significant uncertainty. 2. Surface conditions are important factors for CHF, primarily the wettability that is characterized by contact angle. Smaller contact angle indicates greater wettability, which increases the CHF. Surface roughness also impacts wettability. Results in the literature for pool boiling experiments indicate changes in CHF by up to 60% for several ATF cladding candidates. 3. The measured wettability of FeCrAl (i.e., contact angle and roughness) indicates that CHF should be investigated further through pool boiling and flow boiling experiments. 4. Initial measurements of static advancing contact angle and surface roughness indicate that FeCrAl is expected to have a higher CHF than Zircaloy. The measured contact angle of different FeCrAl alloy samples depends on oxide layer thickness and composition. The static advancing contact angle tends to decrease as the oxide layer thickness increases.
Boiling and burnout phenomena under transient heat input, 1
International Nuclear Information System (INIS)
This paper reports in the experimental results concerning unsteady burnout phenomenon, based on unsteady boiling heat transfer data, burnout heat flux data and the data of changing pressure and water temperature in course of time. These data were acquired by unsteady heating of gas-liquid two phase flow. This experiment simulated the thermohydrodynamic conditions under the runaway power of a nuclear reactor. The following results have been clarified. The boiling with high heat flux showed the same heat transfer characteristics as the steady nuclear boiling curves under each flow condition. Under the conditions of low flow speed and high sub-cool degree, the unsteady burnout heat flux showed the extreme increase of the maximum heat flux owing to the shortening of the time constant. The generation of unsteady burnout phenomena is dominated by two phase flow conditions and by bubble behavior near the heat transfer surface owing to the change of heating conditions and flow conditions. (Tai, I.)
Energy Technology Data Exchange (ETDEWEB)
Payan Rodriguez, Luis Alfredo
2003-09-01
In this paper the development of a research project oriented to the analysis of the heat transfer of the water flow in nucleate boiling is presented. Here a mathematical model is described to characterize the water flow in boiling condition in vertical tubes by means of which the temperature distributions in the tube wall and in the water flow are obtained, including the calculation of the pressure drop throughout the tube. In addition, a mechanistic model focused to the prediction of the critical heat flow in vertical tubes uniformly heated was modified to be applied in non-uniform heat flow conditions. The proposed mathematical models were used in a case study derived from a real problem in a thermoelectric power plant, where it was required to simulate the process of boiling in fireplace tubes of the steam generator to determine the causes of the faults that happened in a considerable number of tubes. With the obtained results it was possible to establish that the faults in the tubes of the analyzed steam generator were originated because the heat transfer rate in the fireplace reached critical values that caused the deviation of the nucleate boiling to film boiling, causing the diminution of the heat transfer coefficient with the consequent sudden increase in the tube wall temperature. [Spanish] En este trabajo se presenta el desarrollo de un proyecto de investigacion orientado al analisis de la transferencia de calor en flujo de agua en ebullicion nucleada. Aqui se describe un modelo matematico para caracterizar el flujo de agua en ebullicion en tubos verticales mediante el cual se obtienen las distribuciones de temperatura en la pared del tubo y en el flujo de agua, incluyendo el calculo de la caida de presion a lo largo del tubo. Ademas, un modelo mecanistico enfocado a la prediccion del flujo de calor critico en tubos verticales uniformemente calentados fue modificado para aplicarlo en condiciones de flujo de calor no uniforme. Los modelos matematicos
Energy Technology Data Exchange (ETDEWEB)
Dereje Shiferaw; Hyun Sun Park; Bal Raj Sehgal [Royal Institute of Technology, Department of Energy Technology, Division of Nuclear Power Safety, Drotning Kristinas Vag 33A, SE-10044, Stockholm (Sweden)
2005-07-01
Full text of publication follows: nano-fluids, or conventional liquids, e.g., water, with small concentration of nano-particles uniformly suspended, have attracted attention as a new heat transport medium with enhanced thermo-physical properties. Up to the present, only exploratory experiments on nano-fluids have been reported. Das et al (Int. J. Heat Mass Transfer 43, pp 3701-3707, 2003) conducted boiling experiments with water containing 38 nm Al{sub 2}O{sub 3} nano-particles. They observed deterioration in the nucleate boiling heat transfer due to the deposition of nano-particles. Boiling experiments conducted by Vassallo et al (Int. J. Heat Mass Transfer 47, pp 407-411, 2004) using silica nano-fluid using 0.4 mm diameter NiCr wire showed three times higher critical heat flux (CHF) and the wire traversed the film boiling region before it failed. Another independent experiment performed on 1 cm{sup 2} square plate with a very low concentration of nano-particles ranging from 0.01 to 0.05 g/liter and at under pressure (2.89 psia), nano-fluids resulted in drastic 2{approx}3 times enhancement of the CHF (You and Kim, Appl. Phys. Lett. 83. No 16, 2003). However in all the aforementioned studies no appropriate explanation of the CHF enhancement has been advanced. The measured 2-3 times higher critical heat flux for very dilute nano-fluids may have high significance if such nano-fluids could be employed in heat transport systems. Recently, we investigated the effect of nano-particles on film boiling, which governs heat transfer during accident conditions in a reactor plant, e.g., in coolability of a degraded core, or a particulate debris bed or a core melt, and in steam explosions. Our previous experiments performed on film boiling in nano-fluids having larger concentrations of 5, 10, and 20 g/liter than those in You's experiments showed that the nano-fluids lower the film boiling temperature, decrease the film boiling heat transfer and provide a much thicker and
International Nuclear Information System (INIS)
A heat transfer system of high thermal conductance with temperature controlled, indirect Joule heating has been designed to perform steady-state measurements of the complete boiling curve of subcooled water at forced convective conditions and low pressure. The test section essentially consists of a hollow copper cylinder of 5 cm length and 3.2 cm O.D. with 10 coaxially inserted stainless steel tubes of .3 cm O.D. that serve as the heater elements. Water flows in the vertical upward direction through the inner circular bore of 1 cm diameter. The d.c. power supply to the resistance heaters is controlled by an electronic feedback system such that a weighted average of temperatures measured close the heat transfer surface is steadily adjusted to a preset reference temperature. The experimental setup has been installed into a low pressure water loop and used to acquire complete boiling curves of water at atmospheric pressure for entrance subcoolings in the range of 2.5-400C and mass flow rates in the range of 137-600 kg/m2s. The results reveal the principal effects of inlet subcooling, mass flux, distance from inlet, and surface material. It is noted that there might be strong effects of upstream history on CHF and post-CHF heat transfer. At high mass flux, occurence of an ''inverse rewetting front'' has been observed
International Nuclear Information System (INIS)
The onset of flow instability (OFI) was measured in the first of a scheduled series of subcooled boiling tests at the Savannah River Heat Transfer Laboratory (HTL). This report summarizes the benchmarking of predictions of the onset of significant voiding (OSV) using Version 16 of the FLOWTRANΩ reactor limits code against the HTL measurements. This study confirms that, for this series of HTL subcooled boiling tests, the Saha-Zuber OSV correlation was a conservative indicator of OFI for Peclet numbers between 30,000 and 80,000. The Saha-Zuber correlation was not a conservative indicator of OFI for Peclet numbers below 30,000. A conservative bound to the Saha-Zuber correlation (the Saha-Zuber constant Stanton number criterion -- 30%) was agreed to at a meeting of SRL, DOE, and the DOE EH and DP review panels. This bound was a conservative indicator of OFI for all measurements in this study
Energy Technology Data Exchange (ETDEWEB)
Thompson, B.; Macbeth, R.V. [Reactor Development Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)
1964-07-15
All available World burn-out data for vertical, uniformly heated round tubes, with liquid water inlet, have been compiled and are presented in systematic order. A total of 4,389 experimental results is recorded, covering a very extensive range of parameters. Detailed examination of these data over the years has indicated a number of inconsistencies and these are discussed. The majority of the data fall into four main pressure groups: 560, 1000, 1550 and 2000 p.s.i.a., and accurate correlations of these data are presented together with error distribution histograms and graphical aids to rapid calculation of burn-out flux. (author)
International Nuclear Information System (INIS)
Highlights: • Experiments were done in the RBHT facility to study the droplet flow in rod bundle. • The presence of a droplet field was found to greatly enhance heat transfer. • A second-stage augmentation was observed downstream of a spacer grid. • This augmentation is due to the breakup of liquid ligaments downstream of the grid. - Abstract: A two-phase dispersed droplet flow investigation of the grid-enhanced heat transfer augmentation has been done using steam cooling with droplet injection experimental data obtained from the Penn State/NRC Rod Bundle Heat Transfer (RBHT) facility. The RBHT facility is a vertical, full length, 7 × 7-rod bundle heat transfer facility having 45 electrically heated fuel rod simulators of 9.5 mm (0.374-in.) diameter on a 12.6 mm (0.496-in.) pitch which simulates a portion of a PWR fuel assembly. The facility operates at low pressure, up to 4 bars (60 psia) and has over 500 channels of instrumentation including heater rod thermocouples, spacer grid thermocouples, closely-spaced differential pressure cells along the test section, several fluid temperature measurements within the rod bundle flow area, inlet and exit flows, absolute pressure, and the bundle power. A series of carefully controlled and well instrumented steam cooling with droplet injection experiments were performed over a range of Reynolds numbers and droplet injection flow rates. The experimental results were analyzed to obtain the axial variation of the local heat transfer coefficients along the rod bundle. At the spacer grid location, the flow was found to be substantially disrupted, with the hydrodynamic and thermal boundary layers undergoing redevelopment. Owing to this flow restructuring, the heat transfer downstream of a grid spacer was found to be augmented above the fully developed flow heat transfer as a result of flow disruption induced by the grid. Furthermore, the presence of a droplet field further enhanced the heat transfer as compared to single
Effect of surfactant on flow boiling heat transfer of ethylene glycol/water mixtures in a mini-tube
Feng, Z.; Wu, Z.; Li, W; Sunden, B; 4th Micro and Nano Flows Conference (MNF2014)
2014-01-01
This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, U...
International Nuclear Information System (INIS)
A study has been performed to predict CHF in pool boiling and subcooled forced convection boiling using the dry-spot model presented by the authors and existing correlations for heat transfer coefficient, active site density and bubble departure diameter in nucleate boiling. Comparisons of the model predictions with experimental data for pool boiling of water and subcooled upward forced convection boiling of water in vertical, uniformly-heated round tubes have been performed and the parametric trends of CHF have been investigated. The results of the present study strongly support the validity of physical feature of the present model on the CHF mechanism in pool boiling and subcooled forced convection boiling. To improve the prediction capability of the present model, further works on active site density, bubble departure diameter and suppression factor in subcooled boiling are needed
Flow Boiling in straight heated tube under microgravity conditions
Narcy, Marine; COLIN, Catherine
2013-01-01
Boiling two-phase flow can transfer large heat fluxes with small driving temperature differences, which is of great interest for the design of high-performance thermal management systems applied to space platforms and on-board electronics cooling in particular. However, such systems are designed using ground-based empirical correlations, which may not be reliable under microgravity conditions. Therefore, several two-phase flow (gas-liquid flow and boiling flow) experiments have been conducted...
International Nuclear Information System (INIS)
PUCHOK BM-DF code is described which is designated for local thermal-hudraulic parameters calculations in rod clusters with large rod numbers (300 and more) using the cell method. In this code iterations are applied for the convective crossflow mixing calculation. For the turbulent heat transfer description several empirical correlations are employed the choice among which can be done by the user. On the basis of the calculated cell thermohydraulic parameters numerous experimental data on the heat transfer crisis in various test facilities have been analyzed including those with high length. A good agreement between the calculated and experimental data allows to recommend with a high degree of reliability the cell method realized in RUCHOK BM-DF code for the fuer rod performance analysis in clusters of high length
The entrance effect on subcooled boiling in heated channels
International Nuclear Information System (INIS)
One of the major problems in the analysis of diabatic two-phase flows concerns the effect of thermodynamic nonequilibrium between the phases. In particular, this effect applies to forced-convection subcooled boiling in boiling water reactors (BWRs). An approach commonly used to evaluate the void distribution along reactor coolant channels is based on one-dimensional models of combined two-phase flow and boiling heat transfer. In the subcooled boiling region, the rate of phase change is governed mainly by the lateral transport of the vapor phase toward the subcooled liquid; thus, the related processes cannot be mechanistically modeled by one-dimensional, axially dependent models. Consequently, most existing subcooled boiling models are based on experimental correlations for parameters such as the onset of nucleate boiling (ONB) and the net vapor generation rate. This paper presents the results of analysis of subcooled boiling phenomena in the developing flow region of a boiling channel, based on a mechanistic two-dimensional, two-fluid model. The effect of turbulence has been accounted for by a k-ε model. The PHOENICS code was used to solve the governing mass, momentum, and energy conservation equations in both the nonboiling and boiling regions. The parameters calculated by the model include radially and axially dependent distributions of the local void fraction, temperatures and velocities of both phases, and the axial distribution of wall temperature
Energy Technology Data Exchange (ETDEWEB)
Lucic, Anita; Emans, Maximilian; Mayinger, Franz; Zenger, Christoph
2004-04-01
An interferometric study and a numerical simulation are presented of the combined process of the bulk turbulent convection and the dynamic of a vapor bubble which is formed in the superheated boundary layer of a subcooled flowing liquid, in order to determine the heat transfer to the flowing subcooled liquid. In this investigation focus has been given on a single vapor bubble at a defined cavity site to provide reproducible conditions. In the experimental study single bubbles were generated at a single artificial cavity by means of a CO{sub 2}-laser as a spot heater at a uniformly heated wall of a vertical rectangular channel with water as the test fluid. The experiments were performed at various degrees of subcooling and mass flow rates. The bubble growth and the temporal decrease of the bubble volume were captured by means of the high-speed cinematography. The thermal boundary layer and the temperature field at the phase-interface between fluid and bubble were visualized by means of the optical measurement method holographic interferometry with a high temporal and spatial resolution, and thus the local and temporal heat transfer could be quantified. The experimental results form a significant data basis for the description of the mean as well as the local heat transfer as a function of the flow conditions. According to the experimental configuration and the obtained data the numerical simulations were performed. A numerical method has been developed to simulate the influence of single bubbles on the surrounding fluid which is based on a Lagrangian approach to describe the motion of the bubbles. The method is coupled to a large-eddy simulations by the body force term which is locally evaluated based on the density field. The obtained experimental data correspond well with the numerical predictions, both of which demonstrate the thermo- and fluiddynamic characteristics of the interaction between the vapor bubble and the subcooled liquid.
Institute of Scientific and Technical Information of China (English)
LI Xiao-Yan; YANG Yan-Hua; XU Ji-Jun
2003-01-01
Extremely rapid evaporation could occur when high-temperature particles contact withlow-temperature liquid. This kind of phenomenon is associated with the engineering safety and the problems inhigh-transient multi-phase fluid and heat transfer. The aim of our study was to design and build an observable ex-periment facility. The first series of experiments were performed by pouring one or six high-temperature particles intoa low saturated temperature liquid pool. The particle's falling-down speed was recorded by a high-speed camera, thuswe can find the special resistant feature of the moving high-temperature particles, which is induced by the high-speedevaporation surrounding the particles. The study has experimentally verified the theory of evaporation drag model.
International Nuclear Information System (INIS)
Experimental and theoretical work have been carried out to find out the effects of heat transfer augmentation on two-phase flow instabilities in a single channel system. The effect of mass flow rate, heat input and inlet subcooling on the system behavior is studied using Freon-11 as the test fluid and six different heater surfaces are tested at various experimental conditions. Experimental evaluation is done using the steady-state pressure drop versus mass flow rate curves along with the curves of additional inlet pressure drop required to stabilize the system during the oscillations, and tables generated using the experimental data. Homogeneous equilibrium flow model and finite differences are used in theoretical analysis. An empirical relationship is obtained to calculate the pressure drop across the exit restriction. Characteristic equation for the system is found by linearizing the dynamic equations of the overall system and analyzed to determine the oscillation thresholds. The results are found to be conservative but in good agreement with the experimental findings
Analysis of two-phase flow and boiling heat transfer in inclined channel of core-catcher
International Nuclear Information System (INIS)
Passive Corium Cooling System (CCS) provides a function of ex-vessel debris cooling and molten core stabilization during a severe accident. CCS features inclined cooling channels arranged axi-symmetrically below the core-catcher basin. In order to estimate the coolability of the inclined cooling channel, it is indispensable to identify the flow pattern of the two-phase flow in the cooling channel. Several former studies for the two-phase flow pattern in the inclined channel are referred. Taitel and Dukler (1976) developed a prediction method of the flow pattern transition in horizontal and near horizontal tubes. Barnea et al. (1980) showed the flow pattern map of upward flow with 10 degrees inclination. Sakaguti et al. (1996) observed the two-phase flow patterns in the horizontal pipe connected with slightly upward pipe, in which the flow pattern in the pipe with a bending part was expressed by the combination of a basic flow pattern and some auxiliary flow patterns. Then we investigated these studies In order to identify the flow patterns observed in the inclined cooling channel of CCS. Furthermore we experimentally observed the flow patterns in the inclined cooling channel with various inlet conditions. As a result of the investigation and observation, typical flow patterns in the inclined cooling channel were identified. Two typical flow patterns were observed depending on the steam flow rate, one of which is 'elongated bubble 'flow, and the other is 'churn with collapsing backward and upward slug 'flow The flow and heat transfer in the inclined channel of CCS is analyzed by using a two-phase analysis code employing two-fluid model in which the constitutive equations for the two-phase flow in inclined channels are incorporated. That is, drift flux parameter for each of the elongated bubble flow, and the churn with collapsing backward and upward slug flow are incorporated to the two-phase analysis code, which are based on the rising velocity of the long bubble in
Prediction of flow boiling heat transfer data for R134a, R600a and R290 in minichannels
Mikielewicz Dariusz; Jakubowska Blanka
2014-01-01
In the paper presented is the analysis of the results of calculations using a model to predict flow boiling of refrigerants such as R134a, R600a and R290. The latter two fluids were not used in the development of the model semiempirical correction. For that reason the model was verified with present experimental data. The experimental research was conducted for a full range of quality variation and a relatively wide range of mass velocity. The aim of the present study was also to test the sen...
Film boiling characteristics of potassium droplets on heated plate
International Nuclear Information System (INIS)
For providing background information on the possible vapor explosion in the event of a core disruptive accident of LMFBRs, an experiment was conducted on the film boiling characteristics of liquid metal potassium in association with the Leidenfrost phenomenon. In a steel container filled with Ar gas, K droplets were put on a joule-heated plate of 316-SS or Ta. The behaviors of droplet were observed by a camera and a color VTR through viewports. The experimental conditions were the Ar pressure 1 bar, the initial K temperature 350 -- 7600C, and the plate temperature 900 -- 1,2500C for 316-SS and 1,100 -- 1,6000C for Ta. Stable film boiling known as Leidenfrost phenomenon was observed for a high temperature condition of the plate, whereas an instantaneous break-up of droplet with extensive vaporization occurred for a low temperature. The heat transfer characteristics of film and transition boiling regions were obtaind by estimating the heat flux from the volumetric reducing rate of droplet due to vaporization. The results in the film boiling region showed an appreciably good agreement with the prediction based on Bromley's expression combined with the theory of Baumeister et al. The minimum film boiling temperature and heat flux were found to be about 1,3000C and 15 W/cm2, respectively, for a droplet size of 0.15 cm3. (author)
Institute of Scientific and Technical Information of China (English)
沈秀中; 宫崎庆次; 井村谕; 徐济
2001-01-01
The effect of surface tension on boiling heat transfer has been eliminated for the boiling bubbles which are constrained, squeezed and deformed when boiling happens in the narrow channel. It is accordingly important to carry out the fundamental theoretic research on this phenomenon. This paper covers a flow boiling heat transfer experiment in vertical narrow annulus with double-side heating. Experiments are performed with stilled water in the annular test section with effective heating section of 900mm and gap width of 0. 75mm under the pressure condition of 1atm or so. The flow rates range from 1.67×10-5 to 5.83× 10-5m3/s. By the experiment, the profiles of the boiling heat transfer coefficient versus mass quality and characteristics at different mass flux and different heat flux have been obtained. It has been concluded in this paper that both inner and outer boiling heat transfer coefficient in narrow double-side heating annular channel are very high (up to over 105 W · m-2 · K-1), which is contributed to by existence of a large amount of moving, coalesced and deformed bubbles in the narrow channel.%在窄缝流道内发生沸腾换热现象时，由于沸腾产生的汽泡受窄缝流道的限制，受压变形而消除了汽泡表面张力对传热的影响。因此对此现象进行基础性理论研究具有很重要的意义。本文在常压下用蒸馏水对窄缝间隙为0.75mm的垂直环形流道，进行了流动沸腾传热实验研究。实验段的有效加热长度为900mm，其加热方式为内外侧双面加热，实验的流量变化范围在1.67×10-～5.83×10-5m3/s。通过实验得到了在不同质量流速和热流密度下双面加热的窄缝流道中内外侧沸腾换热系数随干度变化的分布和特点。研究结果表明，由于在窄缝流道中存在着大量的运动聚合受压变形汽泡，因此使内外侧沸腾换热系数都很高(可达105W·m-2·K-1以上)。
Energy Technology Data Exchange (ETDEWEB)
Baglietto, E.; Pointer, W. D.
2016-08-01
In the effort to reinvigorate innovation in the way we design, build, and operate the nuclear power generating stations of today and tomorrow, nothing can be taken for granted. Not even the seemingly familiar physics of boiling water. The Consortium for the Advanced Simulation of Light Water Reactors, or CASL, is focused on the deployment of advanced modeling and simulation capabilities to enable the nuclear industry to reduce uncertainties in the prediction of multi-physics phenomena and continue to improve the performance of todays light water reactors and their fuel. An important part of the CASL mission is the development of a next generation thermal hydraulics simulation capability, integrating the history of engineering models based on based on experimental experience with the computing technology of the future. (Author)
Prediction of flow boiling heat transfer data for R134a, R600a and R290 in minichannels
Directory of Open Access Journals (Sweden)
Mikielewicz Dariusz
2014-12-01
Full Text Available In the paper presented is the analysis of the results of calculations using a model to predict flow boiling of refrigerants such as R134a, R600a and R290. The latter two fluids were not used in the development of the model semiempirical correction. For that reason the model was verified with present experimental data. The experimental research was conducted for a full range of quality variation and a relatively wide range of mass velocity. The aim of the present study was also to test the sensitivity of developed model to a selection of the model of two-phase flow multiplier and the nonadiabatic effects. For that purpose two models have been analysed namely the one due to Muller-Steinhagen and Heck, and Friedel. In addition, the work shows the importance of taking surface tension into account in the calculation of the flow structure.
Prediction of flow boiling heat transfer data for R134a, R600a and R290 in minichannels
Mikielewicz, Dariusz; Jakubowska, Blanka
2014-12-01
In the paper presented is the analysis of the results of calculations using a model to predict flow boiling of refrigerants such as R134a, R600a and R290. The latter two fluids were not used in the development of the model semiempirical correction. For that reason the model was verified with present experimental data. The experimental research was conducted for a full range of quality variation and a relatively wide range of mass velocity. The aim of the present study was also to test the sensitivity of developed model to a selection of the model of two-phase flow multiplier and the nonadiabatic effects. For that purpose two models have been analysed namely the one due to Muller-Steinhagen and Heck, and Friedel. In addition, the work shows the importance of taking surface tension into account in the calculation of the flow structure.
Applicability of Correlations of Flow Boiling Heat Transfer to R410A%管内流动沸腾传热关系式对 R410A 的适应性研究
Institute of Scientific and Technical Information of China (English)
李定坤; 方贤德
2015-01-01
As an alternative refrigerant,R410A has been widely used in industries.The determination of R410A flow boiling heat transfer in channels is needed in the design and development of a refrigeration system using R410A as the refrigerant.There are a lot of correlations for predicting the coefficient of flow boiling heat transfer.However,their applicability to R410A needs to be assessed.This paper has compiled a database of R410A flow boiling heat transfer containing 1268 experimental data points from 10 open papers,based on which 27 correlations of flow boiling heat transfer are evaluated.The work provides a guide for choosing a proper correlation for calculating R410A flow boiling heat transfer and for developing more accurate correlations of R410A flow boiling heat transfer.%R410A 作为一种替代制冷剂，已经大量用在工业生产中。R410A 制冷系统的设计和研发需要进行 R410A 管内流动沸腾换热计算。目前有很多公式预测两相流流动沸腾换热系数，它们对 R410A 的适应性需要判断。本文从10篇论文中收集了1268组 R410A 流动沸腾传热实验数据，用这些数据对27个两相流流动沸腾换热关系式进行了评价，选出了较为精确的 R410A 管内流动沸腾换热关系式，为 R410A 管内流动沸腾换热计算的公式选择提供了依据，为提出精确度更高的 R410A 管内流动沸腾公式提供了参考。
International Nuclear Information System (INIS)
boiling from given boiling conditions with the pool CHF data measured by Dhir and Liaw and Paul and Abdel-Khalik and the subcooled flow CHF data measured by Del Valle M. and Kenning and with the heat flux data in transition boiling measured by Dhir and Liaw. The predictions show good agreement with the existing data. To use the present phenomenological model as a prediction tool, a study has been performed to predict CHF in pool and subcooled forced convection boiling using existing correlations for active site density, maximum bubble diameter, and heat transfer coefficients in nucleate boiling. Comparison of the model predictions with experimental data for pool boiling of water and upward flow boiling of water in vertical, uniformly-heated round tubes is performed. The data set (2438 data points) for CHF in subcooled forced convection boiling covers wide ranges of operating conditions (0.1≤P≤14.0 MPa, 0.00033≤D≤0.0375 m: 0.002≤L≤2 m: 660 ≤G≤90000 kg/m2s: 70≤Δh,≤1456 kJ/kg). Without any tuning factor, 1492 data points out of 2438 (61.2%) are calculated with a r.m.s. error of 41.3% and about 80% of the calculated data points are predicted within ±50%. It is also shown that by a modification of suppression factor in subcooled boiling, the predictive capability of the present model can be improved, i.e., 2421 data points (99.3%) are calculated with a r.m.s. error of 20.5% and 82.3% of the calculated data points are predicted within ±25%. In addition, the parametric trends of CHF in subcooled forced convection boiling have been investigated under local conditions hypothesis
Holman, J P
2010-01-01
As one of the most popular heat transfer texts, Jack Holman's "Heat Transfer" is noted for its clarity, accessible approach, and inclusion of many examples and problem sets. The new tenth edition retains the straight-forward, to-the-point writing style while covering both analytical and empirical approaches to the subject. Throughout the book, emphasis is placed on physical understanding while, at the same time, relying on meaningful experimental data in those situations that do not permit a simple analytical solution. New examples and templates provide students with updated resources for computer-numerical solutions.
Advances in heat transfer enhancement
Saha, Sujoy Kumar; Sundén, Bengt; Wu, Zan
2016-01-01
This Brief addresses the phenomena of heat transfer enhancement. A companion edition in the SpringerBrief Subseries on Thermal Engineering and Applied Science to three other monographs including “Critical Heat Flux in Flow Boiling in Microchannels,” this volume is idea for professionals, researchers, and graduate students concerned with electronic cooling.
Interactions between bubble formation and heating surface in nucleate boiling
Energy Technology Data Exchange (ETDEWEB)
Luke, Andrea [Leibniz University, Hannover (Denmark). Inst. of Thermodynamics], e-mail: ift@ift.uni-hannover.de
2009-07-01
The heat transfer and bubble formation is investigated in pool boiling of propane. Size distributions of active nucleation sites on single horizontal copper and steel tubes with different diameter and surface finishes have been calculated from heat transfer measurements over wide ranges of heat flux and selected pressure. The model assumptions of Luke and Gorenflo for the heat transfer near growing and departing bubbles, which were applied in the calculations, have been slightly modified and the calculated results have been compared to experimental investigations by high speed video techniques. The calculated number of active sites shows a good coincidence for the tube with smaller diameter, while the results for the tube with larger diameter describe the same relative increase of the active sites. The comparison of the cumulative size distribution of the active and potential nucleation sites demonstrates the same slope of the curve and that the critical radius of a stable bubble nuclei is smaller than the average cavity size. (author)
Heat transfer - Milwaukee 1981 (National Heat Transfer Conference, 20th), 1981
International Nuclear Information System (INIS)
This conference proceedings contains 83 papers of which 36 appear as abstracts only. Twenty-eight papers are indexed separately. Topics covered include: direct contact heat transfer; transport phenomena in fusion reactors; enhanced nucleate boiling; flow boiling; heat transfer in non-Newtonian systems; two-phase systems; heat transfer in fossil fuel conversion systems; process heat transfer; thermal and hydraulic behavior in rod and the bundles; two phase systems in rod and tube bundles; solar energy heat transfer; heat transfer in fluidized beds; and, fire and combustion fundamentals
Heat transfer - Milwaukee 1981 (National Heat transfer conference, 20th), 1981
International Nuclear Information System (INIS)
This conference proceedings contains 83 papers of which 36 appear as abstracts only. Forty-five papers are indexed separately. Topics covered include: direct contact heat transfer; transport phenomena in fusion reactors; enhanced nucleate boiling; flow boiling; heat transfer in non-Newtonian systems; two-phase systems; heat transfer in fossil fuel conversion systems; process heat transfer; thermal and hydraulic behavior in rod and tube bundles; two phase systems in rod and tube bundles; solar energy heat transfer; heat transfer in fluidized beds; and, fire and combustion fundamentals
Nikkhah, V.; M. M. Sarafraz; F hormozi
2015-01-01
Convective boiling heat transfer coefficient of spherical CuO (II) nanoparticles dispersed in water is experimentally quantified inside the vertical heat exchanger. Influence of different operating parameters including applied heat and mass fluxes, sub-cooling temperature and concentration of nano-fluid on forced convection and nucleate boiling heat transfer mechanisms is experimentally investigated and briefly discussed. Results show that by increasing heat and mass fluxes, the heat trans...
Jorge, Kubie; Thomas, Grassie
2012-01-01
A core task of engineers is to analyse energy related problems. The analytical treatment is usually based on principles of thermodynamics, fluid mechanics and heat transfer, but is increasingly being handled computationally.This unique resource presents a practical textbook, written for both undergraduates and professionals, with a series of over 60 computer workbooks on an accompanying CD.The book emphasizes how complex problems can be deconstructed into a series of simple steps. All thermophysical property computations are illustrated using diagrams within text and on the compani
International Nuclear Information System (INIS)
Critical heat flux (CHF) means interfacial heat flux between nucleate boiling which heat transfer is effective during boiling by evaporization of fluid that contact with heating surface and film boiling which heat transfer coefficient decreases dramatically by phase change of fluid of heating surface to vapor. Therefore, enhancement of CHF can achieve higher thermal limit and safety margin of plants. Many enhancing CHF methods exist and one of the methods is use of nanofluids due to advantage of nanoparticles like large surface area that can effective on heat transfer. Graphene is in spotlight by many engineering field due to excellent properties. Thermal conductivity of graphene is also high. So, Graphene Oxide (GO)/water nanofluid (0.01 v%) was used in order to enhance CHF in this experiment
Energy Technology Data Exchange (ETDEWEB)
Kim, Kyung Mo; Park, Seong Dae; Lee, Seung Won; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)
2012-05-15
Critical heat flux (CHF) means interfacial heat flux between nucleate boiling which heat transfer is effective during boiling by evaporization of fluid that contact with heating surface and film boiling which heat transfer coefficient decreases dramatically by phase change of fluid of heating surface to vapor. Therefore, enhancement of CHF can achieve higher thermal limit and safety margin of plants. Many enhancing CHF methods exist and one of the methods is use of nanofluids due to advantage of nanoparticles like large surface area that can effective on heat transfer. Graphene is in spotlight by many engineering field due to excellent properties. Thermal conductivity of graphene is also high. So, Graphene Oxide (GO)/water nanofluid (0.01 v%) was used in order to enhance CHF in this experiment
Burnout heat flux in natural flow boiling
International Nuclear Information System (INIS)
Twenty runs of experiments were conducted to determine the critical heat flux for natural flow boiling with water flowing upwards through annuli of centrally heated stainless steel tube. The test section has concentric heated tube of 14mm diameter and heated lengthes of 15 and 25 cm. The outside surface of the annulus was formed by various glass tubes of 17.25, 20 and 25.9mm diameter. System pressure is atmospheric. Inlet subcooling varied from 18 to 50C. Obtained critical heat flux varied from 24.46 to 62.9 watts/cm2. A number of parameters having dominant influence on the critical heat flux and hydrodynamic instability (flow and pressure oscillations) preceeding the burnout have been studied. These parameters are mass flow rate, mass velocity, throttling, channel geometry (diameters ratio, length to diameter ratio, and test section length), and inlet subcooling. Flow regimes before and at the moments of burnout were observed, discussed, and compared with the existing physical model of burnout
Directory of Open Access Journals (Sweden)
César Arnaldo Cisneros‐Ramírez
2014-05-01
Full Text Available La necesidad de disipar altas densidades de flujo de calor ha llevado a los investigadores y diseñadores a emplear el cambio de fase como mecanismo para lograr tal objetivo y con ello lograr equipos intercambiadores de calor más compactos. En el presente trabajo se realizó un estudio de la bibliográfica sobre la ebullición en minicanales y microcanales. Para ello se consultaron bibliografíasque datan desde los años 90 hasta la actualidad, con lo cual se revelaron los principales parámetros o tópicos que caracterizan a este proceso en minicanales y microcanales. Es así que se abordan los términos minicanales y microcanales, ebullición en flujo forzado y regímenes (mapa de flujo.Además se presenta un resumen de las ecuaciones para la determinación del coeficiente de traspaso de calor en régimen bifásico (hdf.Palabras claves: ebullición, microcanales, minicanales, coeficiente de traspaso de calor.____________________________________________________________________________AbstractThe necessity of transfer high heat flux had led to researchers and designers to use the change of phase in order to get this objective. In this work was made a review in more of seventy sources of information dating since 90´s up to the present, where were revealed the main parameters that characterize the boiling process in minichanels-microchannels. It deals with terms minimicrochannels,flow boiling and flow pattern map. Also, it is presented a summary of equations used for calculate the two-phase heat transfer coefficient.Key words: boiling, minichannels, microchannels, heat transfer coefficient.
Model evaluation of flow boiling heat characteristics calculation in narrow rectangular channels
International Nuclear Information System (INIS)
Both the flow boiling heat transfer characteristics and its influence factors in narrow rectangular channel were studied experimentally. The applicability of the empirical correlations for calculating boiling heat transfer was evaluated against the experimental data. The results show that the effect of the mass flux appears to be primary, the heat transfer coefficients increase with the mass flux under the same void fraction. The correlations based on conventional channels are not suitable for mini-channels very much. The LEELEE correlation based on narrow channels give better agreement than the other evaluated. (authors)
Critical heat flux in subcooled flow boiling
Hall, David Douglas
The critical heat flux (CHF) phenomenon was investigated for water flow in tubes with particular emphasis on the development of methods for predicting CHF in the subcooled flow boiling regime. The Purdue University Boiling and Two-Phase Flow Laboratory (PU-BTPFL) CHF database for water flow in a uniformly heated tube was compiled from the world literature dating back to 1949 and represents the largest CHF database ever assembled with 32,544 data points from over 100 sources. The superiority of this database was proven via a detailed examination of previous databases. The PU-BTPFL CHF database is an invaluable tool for the development of CHF correlations and mechanistic models that are superior to existing ones developed with smaller, less comprehensive CHF databases. In response to the many inaccurate and inordinately complex correlations, two nondimensional, subcooled CHF correlations were formulated, containing only five adjustable constants and whose unique functional forms were determined without using a statistical analysis but rather using the parametric trends observed in less than 10% of the subcooled CHF data. The correlation based on inlet conditions (diameter, heated length, mass velocity, pressure, inlet quality) was by far the most accurate of all known subcooled CHF correlations, having mean absolute and root-mean-square (RMS) errors of 10.3% and 14.3%, respectively. The outlet (local) conditions correlation was the most accurate correlation based on local CHF conditions (diameter, mass velocity, pressure, outlet quality) and may be used with a nonuniform axial heat flux. Both correlations proved more accurate than a recent CHF look-up table commonly employed in nuclear reactor thermal hydraulic computer codes. An interfacial lift-off, subcooled CHF model was developed from a consideration of the instability of the vapor-liquid interface and the fraction of heat required for liquid-vapor conversion as opposed to that for bulk liquid heating. Severe
Critical Heat Flux during Flow Boiling Experiment with Surfactant Solutions
International Nuclear Information System (INIS)
Some additives enhance heat transfer, although, the magnitude and mechanism of enhancement are not consistent or clearly understood. A low concentration of surfactant can also reduce the solution's surface tension considerably, and its level of reduction depends on the amount and type of surfactant present in solution. The surfactant concentrations are usually low enough that the addition of surfactant to water causes no significant change in saturation temperature and most other physical properties, except viscosity and surface tension. Reduced surface tension influences the activation of nucleation sites, bubble growth and dynamics, affecting the boiling heat transfer coefficient. Surfactants effect on CHF (Critical Heat Flux) was determined during flow boiling at atmospheric pressure in closed loop filled with water solutions of tri-sodium phosphate (TSP, Na3PO4.12H2O). TSP was added to the containment sump water to adjust pH level during accidents in nuclear power plants. CHF was measured for four water surfactant solutions at different mass fluxes (100 - 500 kg/m2sec) and two inlet subcooling temperatures (50 .deg. C and 75 .deg. C). Wettability was determined by measuring the contact angle at different concentration cases that will substantiate any CHF increase
Energy Technology Data Exchange (ETDEWEB)
Wetzel, Markus; Dietrich, Benjamin; Wetzel, Thomas [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. fuer Thermische Verfahrenstechnik
2012-07-01
The contribution under consideration describes experimental results for the heat transfer and pressure drop when flow boiling of CO{sub 2} and CO{sub 2}-oil mixtures. A comparison of these data with current correlations from the literature shall present the accuracy of the evaluation of the technical evaporator critically, and demonstrate the need for further research. Due to the required oil lubrication, for technical compression chillers, the refrigerant oil is also a part of the circulatory fluid. Thereby, the material properties of the fluid (density, viscosity, surface tension, thermal conductivity, specific heat capacity) can be significantly affected. These characteristics affect both, the form of the flow (for example, foaming, enhanced wall wetting), and the heat transfer as well as the pressure drop. The change of the material properties particularly is affected by the oil content. When flow boiling, an oil concentration of 1 wt.% already may result in a significantly different behavior in comparison to the pure refrigerant. In this case, the oil content may amount up to 8 wt.% in industrial refrigeration systems. The experiments on heat transfer and pressure drop were carried out on a pilot plant at the Institute of Thermal Process Engineering of the Karlsruhe Institute of Technology (Karlsruhe, Federal Republic of Germany). The fluid (CO{sub 2} or CO{sub 2}-oil mixture) circulates in a horizontal cycle consisting of four pre-evaporators in order to adjust the vapor content, the measurement path with a subsequent protective heat section for the determination of heat transfer and pressure loss under isothermal wall boundary condition, a sight glass to determine the flow pattern and a brine-cooled condenser for back-condensation of CO{sub 2} and adjustment of temperature and pressure. The discontinuous feeding of oil is carried out on an oil circuit, and the oil content is determined gravimetrically by sampling. The measurement section consists of a nickel
International Nuclear Information System (INIS)
Thermal-Hydraulic Test Facility (THTF) test series 3.07.9 was conducted by members of the Oak Ridge National Laboratory Pressurized-Water Reactor (ORNL-PWR) Blowdown Heat Transfer (BDHT) Separate-Effects Program on September 11, September 18, and October 1, 1980. The objective of the program is to investigate heat transfer phenomena believed to occur in PWRs during accidents, including small- and large-break loss-of-coolant accidents. Test series 3.07.9 was designed to provide steady-state film boiling data in rod bundle geometry under reactor accident-type conditions. This report presents the reduced instrument responses for THTF test series 3.07.9. Also included are uncertainties in the instrument responses, calculated mass flows, and calculated rod powers
International Nuclear Information System (INIS)
Reduced instrument responses are presented for Thermal-Hyraulic Test Facility (THTF) Test 3.06.6B. This test was conducted by members of the Oak Ridge National Laboratory Pressurized-Water-Reactor (PWR) Blowdown Heat Transfer (BDHT) Separate-Effects Program on August 29, 1980. The objective of the program was to investigate heat transfer phenomena believed to occur in PWR's during accidents, including small and large break loss-of-coolant accidents. Test 3.06.6B was conducted to obtain transient film boiling data in rod bundle geometry under reactor accident-type conditions. The primary purpose of this report is to make the reduced instrument responses for THTF Test 3.06.6B available. Included in the report are uncertainties in the instrument responses, calculated mass flows, and calculated rod powers
BOILING OF WATER AND ORGANIC LIQUIDS ON LOW-TEMPERATURE POROUS SURFACES OF HEAT PIPES
Шаповал, Андрій Андрійович; Панов, Євген Миколайович; Сауліна, Юлія Валеріївна; Романчук, Борис Васильович; Трубійчук, Р. П.
2015-01-01
The experimental study results of the influence of porous metal fiber structures on the intensity of two-phase heat transfer of water and acetone boiling on porous surfaces in conditions of free movement and capillary transport of liquids are presented in the article. The experiments were realized using specially designed experimental installation simulated the operating conditions of heat pipes and thermosyphons. Such conditions are typical for two-phase heat transfer devices – heat pipes an...
Occurrence conditions of sustainable minute bubble emission boiling for high heat flux cooling
International Nuclear Information System (INIS)
In order to investigate the conditions causing minute bubble emission boiling, critical heat flux experiments were conducted in the pool boiling system with different thermal capacities of heat transfer surfaces and method of heating. Stable minute bubble emission boiling was observed for a 10 mm-thick copper cylinder heated by thermal radiation. The critical heat flux obtained was 6.0 MW/m2. When the heat flux exceeded above approximately 3 MW/m2, a large vapor bubble formed on the heat transfer surface, then was condensed immediately and dispersed into minute bubbles. A 4 mm-thick silicon carbide heat transfer surface burnout at 1.9 MW/m2. When the heat transfer surface has a small thermal capacity such as the metal foil, commonly used in CHF experiments, a temporary loss of heat removal due to large bubble formation will cause a rapid temperature increase and will result in burnout. Minute bubble emission boiling could occur stably when the time constant determined by the heating method and thermal capacity exceeds the time required for a large bubble to condense in the subcooled fluid. (author)
International Nuclear Information System (INIS)
In connection with reactor safety problems (LOCA) a measuring technique has been developed which enables, within the parameter range of medium pressure (0.11 MPa - 1.20 MPa) and low mass flow densities (10 kg/m2s - 500 kg/m2s), exact experimental investigations of critical heat flux and transition boiling of water under quasi-stationary conditions. The system consists of a vertical, temperature-controlled short test section with water flowing upwards inside; an experimental loop controllable to a large extent; a quick automatic data acquisition, and numeric evaluation procedures. Quasi-stationary measured boiling curves, from nucleate boiling to film boiling (circa 450deg C), demonstrate the importance of pressure, mass flow density, and inlet subcooling, the boiling pressure being the most important parameter. The linear course of the boiling curves during transition boiling is remarkable. A frequently suspected hysteresis of the boiling curve could not be detected. The influence of surface effects (contact angle) clearly decreases with increasing pressure. For the empirical correlation of the measured data by means of indices, a statement was chosen that normalizes the heat flux density of transition boiling to the maximum heat flux density at the beginning of the post-CHF range. As a result, the experimental data obtained, and the correlation developed from them, show a better heat transfer in transition boiling than conservatively assumed in general in literature. The temperature-controlled measurements of complete boiling curves supply data for critical heat flow density and the corresponding wall overheating. A comparison with the uncontrolled operation of the test section shows differences of 5-6% only within the range of measurement accuracy of such experiments. (orig.) With 36 figs., 5 tabs
Heat Transfer Basics and Practice
Böckh, Peter
2012-01-01
The book provides an easy way to understand the fundamentals of heat transfer. The reader will acquire the ability to design and analyze heat exchangers. Without extensive derivation of the fundamentals, the latest correlations for heat transfer coefficients and their application are discussed. The following topics are presented - Steady state and transient heat conduction - Free and forced convection - Finned surfaces - Condensation and boiling - Radiation - Heat exchanger design - Problem-solving After introducing the basic terminology, the reader is made familiar with the different mechanisms of heat transfer. Their practical application is demonstrated in examples, which are available in the Internet as MathCad files for further use. Tables of material properties and formulas for their use in programs are included in the appendix. This book will serve as a valuable resource for both students and engineers in the industry. The author’s experience indicates that students, after 40 lectures and exercises ...
International Nuclear Information System (INIS)
To continue with the equipment of the thermal hydraulics laboratory, it was designed thermal and mechanically an heat exchanger, to satisfy the requirements to have circuit that allows to carry out heat transfer experiments. The heat exchanger was manufactured and proven in the workshops of the Prototypes and Models Management, and it is expected that to obtain the foreseen results once completely installed the circuit, in the laboratory of thermal hydraulics of the Management of Nuclear Systems. (Author)
International Nuclear Information System (INIS)
The present work focuses on the generation of the flow regime map for two-phase water flow in microchannels of a hydraulic diameter of 140 µm. An image analysis algorithm has been developed and utilized to obtain the local void fraction. The image processing technique is also employed to identify and estimate the percentage of different flow regimes and heat transfer coefficient, as a function of position, heat flux and mass flow rate. Both void fraction and heat transfer coefficient are found to increase monotonically along the length of the microchannel. At low heat flux and low flow rates, bubbly, slug and annular flow regimes are apparent. However, the flow is predominately annular at high heat flux and high flow rate. A breakup of the flow frequency suggests that the flow is bistable in the annular regime, in that at a fixed location, the flow periodically switches from single-phase liquid to annular and vice versa. Otherwise, the occurrence of three regimes—single-phase liquid, bubbly and slug are observed. These results provide several useful insights about two-phase flow in microchannels besides being of fundamental interest
Institute of Scientific and Technical Information of China (English)
高学农; 尹辉斌; 黄玉优; 凌双梅; 张正国; 方玉堂
2008-01-01
The objective of this work was to investigate nucleate pool boiling heat transfer performance and mechanism of R134a and R142b on a twisted tube with machine processed porous surface (T-MPPS tube) as well as to determine its potential application to flooded refrigerant evaporators. In the experimental range, the boiling heat transfer coefficients of R134a on a T-MPPS tube were 1.8-2.0 times larger than those of R134a on a plain tube. In addition, the developed experimental correlations verified that the predictions of the heat transfer coefficients of boiling R134a and R142b on a T-MPPS tube at the experimental conditions were considerably accurate.
Barron, Randall F
2016-01-01
Cryogenic Heat Transfer, Second Edition continues to address specific heat transfer problems that occur in the cryogenic temperature range where there are distinct differences from conventional heat transfer problems. This updated version examines the use of computer-aided design in cryogenic engineering and emphasizes commonly used computer programs to address modern cryogenic heat transfer problems. It introduces additional topics in cryogenic heat transfer that include latent heat expressions; lumped-capacity transient heat transfer; thermal stresses; Laplace transform solutions; oscillating flow heat transfer, and computer-aided heat exchanger design. It also includes new examples and homework problems throughout the book, and provides ample references for further study.
International Nuclear Information System (INIS)
This paper presents recent advances in the validation of an advanced Computational Fluid Dynamics (CFD) computer code (CFD-BWR) that allows the detailed analysis of two-phase flow and heat transfer phenomena in Boiling Water Reactor (BWR) fuel bundles. The CFD-BWR code is being developed as a customized module built on the foundation of the commercial CFD-code STAR-CD which provides general two-phase flow modeling capabilities. We have described the model development strategy that has been adopted by the development team for the prediction of boiling flow regimes in a BWR fuel bundle. This strategy includes the use of local flow topology maps and flow topology specific phenomenological models. The paper reviews the key boiling phenomenological models and focuses on recent results of experiment analyses for the validation of two-phase BWR phenomena models including cladding-to-coolant heat transfer and Critical Heat Flux experiments and the BWR Full-size Assembly Boiling Test (BFBT). The two-phase flow models implemented in the CFD-BWR code can be grouped into three broad categories: models describing the vapor generation at the heated cladding surface, models describing the interactions between the vapor and the liquid coolant, and models describing the heat transfer between the fuel pin and the two-phase coolant. These models have been described and will be briefly reviewed. The boiling model used in the second generation of the CFD-BWR code includes a local flow topology map which allows the cell-by-cell selection of the local flow topology. Local flow topologies can range from a bubbly flow topology where the continuous phase is liquid, to a transition flow topology, to a droplet flow topology where the continuous phase is vapor, depending primarily on the local void fraction. The models describing the cladding-to-coolant heat transfer and the interplay between these models and the local flow topology are important in Critical Heat Flux (CHF) analyses, and will
Investigation Status of Heat Exchange while Boiling Hydrocarbon Fuel
Directory of Open Access Journals (Sweden)
D. S. Obukhov
2006-01-01
Full Text Available The paper contains analysis of heat exchange investigations while boiling hydrocarbon fuel. The obtained data are within the limits of the S.S. Kutateladze dependence proposed in 1939. Heat exchange at non-stationary heat release has not been investigated. The data for hydrocarbon fuel with respect to critical density of heat flow are not available even for stationary conditions.
Investigation Status of Heat Exchange while Boiling Hydrocarbon Fuel
D. S. Obukhov
2014-01-01
The paper contains analysis of heat exchange investigations while boiling hydrocarbon fuel. The obtained data are within the limits of the S.S. Kutateladze dependence proposed in 1939. Heat exchange at non-stationary heat release has not been investigated. The data for hydrocarbon fuel with respect to critical density of heat flow are not available even for stationary conditions.
International Nuclear Information System (INIS)
By using the nanofluid as a working fluid, we can expect the enhancement in the flow boiling critical heat flux mainly due to the deposition of nanoparticles on the heat transfer surface. In this study, we suggest the magnetic nanofluid, or magnetite-water nanofluid, as a working fluid which is regarded as a controllable nanofluid, that is, nanoparticles or magnetite nanoparticles in a nanofluid can be controlled by an external magnetic field. Therefore, we can expect the advantages of magnetic nanofluid such as, i) control of nanofluid concentration to maintain nanoparticle suspension and to localize nanofluid concentration, and ii) removal of nanoparticle from nanofluid when we want. In this study, we focused on the investigation of flow boiling critical heat flux characteristics for the magnetic nanofluid. Series of experiments were performed under the low pressure and low flow conditions, and based on the experimental results; we can conclude that the use of magnetic nanofluid improves the flow boiling critical heat flux characteristics. This is mainly due to the deposition of magnetite nanoparticles on the heat transfer surface, which results in the improvement of wettability and re-wetting characteristics of heat transfer surface. Preliminary results of the magnetic field effects on the flow boiling critical heat flux would be presented also. (author)
满液式蒸发器中螺旋扁管的池沸腾传热%Pool boiling heat transfer characteristics of twisted tube in flooded evaporator
Institute of Scientific and Technical Information of China (English)
朱冬生; 周吉成; 霍正齐; 李军; 李燕
2013-01-01
The objective of this paper is to study the pool boiling heat transfer characteristics of twisted tubes in a flooded evaporator. The twisted tubes are processed from common circular evaporating tubes with an outer diameter of 15.88 mm. The outer and inner diameters, wall thickness and length of the twisted tube are 19.50, 11.28, 1.09, and 3310 mm, respectively. With the same number of tubes, the twisted tube flooded evaporator (TFE) requires smaller heat exchange area than the common flooded evaporator (FE). The pool boiling heat transfer coefficients outside tubes, tube side Reynolds number Rei, wall superheat Tsup, saturation temperature of refrigerant Tsat, and heat flux qb are considered as the key parameters. The results show that pool boiling heat transfer coefficient increases with Rei, Tsat, and qb and decreases as Tsup increases. The case study shows that the overall heat transfer coefficient of TFE is about 1.15 times that of FE with the same heat capacity. It is proved that the application of TFE in the water-cooled screw chiller is feasible.%对螺旋扁管在满液式蒸发器中的池沸腾传热进行了实验研究.螺旋扁管由外径为15.88 mm的圆形满蒸管加工而得,其外径、壁厚以及长度分别为19.50 mm×11.28 mm、1.09 mm和3310 mm.通过实验研究了管程Reynolds数Rei、制冷剂饱和温度Tsat、管壁过热度Tsup以及热通量qb对于池沸腾传热性能的影响.结果表明,随着Rei、Tsat和qb的增加,螺旋扁管满液式蒸发器以及原有满液式蒸发器的沸腾传热性能都随之增强,而随着Tsup的增加,两者的沸腾传热性能却呈下降趋势.同时,对装有两种满液式蒸发器的螺杆式冷水机组分别进行了测试,结果表明在换热量相同的条件下,螺旋扁管满液式蒸发器比原有蒸发器的总传热系数提高了15％左右,证明螺旋扁管满液式蒸发器在螺杆式冷水机组中的应用是可行的.
International Nuclear Information System (INIS)
Subcooled flow boiling plays an important role in boiling water reactors because it influences the heat transfer performance from fuel rods, two-phase flow stabilities, and neutron moderation characteristics. In the present study, flow visualization of water subcooled flow boiling in a vertical heated channel was carried out to investigate the mechanisms of void fraction development. The two surfaces of distinctly different contact angles were used as the heated surface to investigate the effect of the surface wettability. It was observed that with an increase in the wall heat flux, more nucleation sites were activated and larger bubbles were produced at low-frequency. It was considered that formation of these large bubbles primarily contributed to the void fraction development. (author)
International Nuclear Information System (INIS)
Highlights: • A type of Ω-shaped reentrant porous microchannels (RPM) was developed. • Flow boiling performance of ethanol were accessed. • Flow boiling performance of RPM was strongly dependent on operation parameters. • Ethanol tests presented worse flow boiling performance than water. - Abstract: Porous-based microchannel heat sinks offer potential and attractive solutions for efficient thermal management of high heat-flux devices. In this study, a unique type of reentrant porous microchannels (RPM) with Ω-shaped configurations was developed and tested in heat sink cooling systems. They were totally constructed by sintered copper powder, and were of a hydraulic diameter of 786 μm. Flow boiling experiments of the coolant ethanol were conducted in RPM at inlet subcooling of 10 °C and 40 °C, mass fluxes of 125, 200 and 300 kg/m2 s, and a wide range of heat fluxes. Flow boiling heat transfer, pressure drop and two-phase flow instabilities were comprehensively evaluated. The operation parameter effects, i.e., inlet subcooling, heat flux, mass flux and coolants, on the flow boiling performance of RPM were accessed. The results show that the reentrant porous microchannels trigger the onset of nucleate boiling (ONB) at small wall superheat under all the ethanol boiling cases due to the significant increase of nucleation sites. The dependence of heat transfer performance on heat flux and mass flux were linked to the transition of dominated heat transfer mechanisms. The pressure drop and flow instabilities were found to be significantly dependent on the inlet subcooling and heat flux. Furthermore, the comparison of ethanol and water boiling performance were performed. The results in this study provide critical information for operation optimization of the newly developed heat sink cooling systems with reentrant porous microchannels, and are of considerable practical relevance
SUNDÉN, B
2012-01-01
Presenting the basic mechanisms for transfer of heat, Introduction to Heat Transfer gives a deeper and more comprehensive view than existing titles on the subject. Derivation and presentation of analytical and empirical methods are provided for calculation of heat transfer rates and temperature fields as well as pressure drop. The book covers thermal conduction, forced and natural laminar and turbulent convective heat transfer, thermal radiation including participating media, condensation, evaporation and heat exchangers.
Heat transfer. Basics and practice
Energy Technology Data Exchange (ETDEWEB)
Wetzel, Thomas [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany); Boeckh, Peter von
2012-07-01
The book provides an easy way to understand the fundamentals of heat transfer. The reader will acquire the ability to design and analyze heat exchangers. Without extensive derivation of the fundamentals, the latest correlations for heat transfer coefficients and their application are discussed. The following topics are presented - Steady state and transient heat conduction - Free and forced convection - Finned surfaces - Condensation and boiling - Radiation - Heat exchanger design - Problem-solving After introducing the basic terminology, the reader is made familiar with the different mechanisms of heat transfer. Their practical application is demonstrated in examples, which are available in the Internet as MathCad files for further use. Tables of material properties and formulas for their use in programs are included in the appendix. This book will serve as a valuable resource for both students and engineers in the industry. The author's experience indicates that students, after 40 lectures and exercises of 45 minutes based on this textbook, have proved capable of designing independently complex heat exchangers such as for cooling of rocket propulsion chambers, condensers and evaporators for heat pumps. (orig.)
Kakac, Sadik; Pramuanjaroenkij, Anchasa
2014-01-01
Intended for readers who have taken a basic heat transfer course and have a basic knowledge of thermodynamics, heat transfer, fluid mechanics, and differential equations, Convective Heat Transfer, Third Edition provides an overview of phenomenological convective heat transfer. This book combines applications of engineering with the basic concepts of convection. It offers a clear and balanced presentation of essential topics using both traditional and numerical methods. The text addresses emerging science and technology matters, and highlights biomedical applications and energy technologies. What’s New in the Third Edition: Includes updated chapters and two new chapters on heat transfer in microchannels and heat transfer with nanofluids Expands problem sets and introduces new correlations and solved examples Provides more coverage of numerical/computer methods The third edition details the new research areas of heat transfer in microchannels and the enhancement of convective heat transfer with nanofluids....
FILM-30: A Heat Transfer Properties Code for Water Coolant
International Nuclear Information System (INIS)
A FORTRAN computer code has been written to calculate the heat transfer properties at the wetted perimeter of a coolant channel when provided the bulk water conditions. This computer code is titled FILM-30 and the code calculates its heat transfer properties by using the following correlations: (1) Sieder-Tate: forced convection, (2) Bergles-Rohsenow: onset to nucleate boiling, (3) Bergles-Rohsenow: partially developed nucleate boiling, (4) Araki: fully developed nucleate boiling, (5) Tong-75: critical heat flux (CHF), and (6) Marshall-98: transition boiling. FILM-30 produces output files that provide the heat flux and heat transfer coefficient at the wetted perimeter as a function of temperature. To validate FILM-30, the calculated heat transfer properties were used in finite element analyses to predict internal temperatures for a water-cooled copper mockup under one-sided heating from a rastered electron beam. These predicted temperatures were compared with the measured temperatures from the author's 1994 and 1998 heat transfer experiments. There was excellent agreement between the predicted and experimentally measured temperatures, which confirmed the accuracy of FILM-30 within the experimental range of the tests. FILM-30 can accurately predict the CHF and transition boiling regimes, which is an important advantage over current heat transfer codes. Consequently, FILM-30 is ideal for predicting heat transfer properties for applications that feature high heat fluxes produced by one-sided heating
Institute of Scientific and Technical Information of China (English)
王淑香; 张伟; 徐进良; 牛志愿
2014-01-01
Within the ranges of pressure from 5.6 to 7.0 MPa, mass flux from 54.0 to 400.0 kg/(m2⋅s) and heat flux from 1.4 to 48.0 kW/m2, an experimental investigation was conducted on flow boiling heat transfer of CO2 through a helically coiled tube. The test helically coiled tube has an inner diameter of 9.0 mm, a wall thickness of 1.5 mm and a coil diameter of 283.0 mm. The effects of heat flux, mass flux and operating pressure on heat transfer coefficient and inner wall temperature distribution were discussed. The experimental results show that the inner wall temperature distributions along the circumference were non-uniform. For the sing-phase liquid flow and the superheated vapor flow, the inner wall temperature was highest in the inside and lowest in the outside, attributing to the centrifugal force. But in the two-phase area, the highest inner wall temperature appears at the top, which is because that the vapor phase gathers at the top due to the buoyancy force, tending to dry out. The location where the lowest temperature happened is determined by the combined effects of buoyancy force and centrifugal force. The local average heat transfer coefficient increases with increasing heat flux and inlet pressure, but the increment of mass flux has no effect on the heat transfer, suggesting that the nucleate boiling is the dominant mechanism while the forced convection effect is weak. The intensity of nucleate boiling changes with increasing heat flux and the variation of heat transfer coefficient with vapor quality can be divided into three different zones, which is induced by the alternative of wall dry-out and rewetting. A new correlation of local average heat transfer coefficient has been proposed based on the 2 124 data points.%在管内径9.0 mm、壁厚1.5 mm、螺旋管绕径283.0 mm的立式螺旋管内，对CO2流动沸腾换热特性进行实验研究。分析热流密度(q=1.4~48.0 kW/m2)、质量流速(G=54.0~400.0 kg/(m2⋅s))和运行压力(pin=5.6~7.0 MPa
... the boil is very bad or comes back. Antibacterial soaps and creams cannot help much once a boil ... following may help prevent the spread of infection: Antibacterial soaps Antiseptic (germ-killing) washes Keeping clean (such as ...
Bacon, D H
2013-01-01
Basic Heat Transfer aims to help readers use a computer to solve heat transfer problems and to promote greater understanding by changing data values and observing the effects, which are necessary in design and optimization calculations.The book is concerned with applications including insulation and heating in buildings and pipes, temperature distributions in solids for steady state and transient conditions, the determination of surface heat transfer coefficients for convection in various situations, radiation heat transfer in grey body problems, the use of finned surfaces, and simple heat exc
Free convection film flows and heat transfer
Shang, Deyi
2010-01-01
Presents development of systematic studies for hydrodynamics and heat and mass transfer in laminar free convection, accelerating film boiling and condensation of Newtonian fluids, and accelerating film flow of non-Newtonian power-law fluids. This book provides a system of analysis models with a developed velocity component method.
Thermal radiation heat transfer
Howell, John R; Siegel, Robert
2016-01-01
Further expanding on the changes made to the fifth edition, Thermal Radiation Heat Transfer, 6th Edition continues to highlight the relevance of thermal radiative transfer and focus on concepts that develop the radiative transfer equation (RTE). The book explains the fundamentals of radiative transfer, introduces the energy and radiative transfer equations, covers a variety of approaches used to gauge radiative heat exchange between different surfaces and structures, and provides solution techniques for solving the RTE.
Handbook of heat transfer fundamentals (2nd edition)
International Nuclear Information System (INIS)
Recent advances in heat transfer are discussed, providing data and methodology to solve a wide range of heat transfer problems. The topics considered include: basic concepts of heat transfer, mathematical methods, thermophysical properties, conduction, numerical methods in heat transfer, natural convection, and internal duct flow and external flows in forced convection. Also addressed are: rarefied gases, electric and magnetic fields, condensation, boiling, two-phase flow, and radiation
Enhancement of heat and mass transfer by cavitation
Zhang, Y. N.; Zhang, Y. N.; Du, X. Z.; Xian, H. Z.
2015-01-01
In this paper, a brief summary of effects of cavitation on the heat and mass transfer are given. The fundamental studies of cavitation bubbles, including its nonlinearity, rectified heat and mass diffusion, are initially introduced. Then selected topics of cavitation enhanced heat and mass transfer were discussed in details including whales stranding caused by active sonar activity, pool boiling heat transfer, oscillating heat pipe and high intensity focused ultrasound treatment.
Methods for calculating conjugate problems of heat transfer
Kalinin, E. K.; Dreitser, G. A.; Kostiuk, V. V.; Berlin, I. I.
Methods are examined for calculating various conjugate problems of heat transfer in channels and closed vessels in cases of single-phase and two-phase flow in steady and unsteady conditions. The single-phase-flow studies involve the investigation of gaseous and liquid heat-carriers in pipes, annular and plane channels, and pipe bundles in cases of cooling and heating. General relationships are presented for heat transfer in cases of film, transition, and nucleate boiling, as well as for boiling crises. Attention is given to methods for analyzing the filling and cooling of conduits and tanks by cryogenic liquids; and ways to intensify heat transfer in these conditions are examined.
Energy Technology Data Exchange (ETDEWEB)
NONE
2000-03-01
Research was made on improvement of the wettability and boiling heat transfer characteristics of a photocatalyst wall. Measurement experiment of the wettability was made for anatase type titan oxide-coated Al, SUS and Pb plates, rutil type titan oxide-flame coated SUS plate, raw plate, and oxide-plasma coated titan plate. In the ground experiment, the contact angles of distilled water and oil on specimen surfaces were measured. In the microgravity experiment, falling droplet images were recorded by using the facility of Japan Microgravity Center (JAMIC). For obtaining the effect of radioactive emission, UV irradiation, {gamma} ray and neutron beam irradiation by nuclear reactor, and {gamma} ray irradiation by Co-60 were carried out. As the experiment result, the rutil type titan oxide-flame coated SUS plate, nonconductor-coated titan plate, and zircaloy plate showed large improvement of the wettability by {gamma} ray irradiation with Co-60. It was also confirmed that in particular, titan shows the large effect of radioactive emission, and the wettability deteriorates rapidly after {gamma} ray irradiation. (NEDO)
Lenert, Andrej; Nam, Youngsuk; Wang, Evelyn N.
2012-01-01
The choice of heat transfer fluids has significant effects on the performance, cost, and reliability of solar thermal systems. In this chapter, we evaluate existing heat transfer fluids such as oils and molten salts based on a new figure of merit capturing the combined effects of thermal storage capacity, convective heat transfer characteristics, and hydraulic performance of the fluids. Thermal stability, freezing point, and safety issues are also discussed. Through a comparative analysis, we...
International Nuclear Information System (INIS)
As heat transfer technology increases in complexity, it becomes more difficult for those without thermal dynamics engineering training to choose between competitive heat transfer systems offered to meet their drying requirements. A step back to the basics of heat transfer can help professional managers and papermakers make informed decisions on alternative equipment and methods. The primary forms of heat and mass transfer are reviewed with emphasis on the basics, so a practical understanding of each is gained. Finally, the principles and benefits of generating infrared energy by combusting a gaseous hydrocarbon fuel are explained
Critical heat flux maxima during boiling crisis on textured surfaces
Dhillon, Navdeep Singh; Buongiorno, Jacopo; Varanasi, Kripa K.
2015-09-01
Enhancing the critical heat flux (CHF) of industrial boilers by surface texturing can lead to substantial energy savings and global reduction in greenhouse gas emissions, but fundamentally this phenomenon is not well understood. Prior studies on boiling crisis indicate that CHF monotonically increases with increasing texture density. Here we report on the existence of maxima in CHF enhancement at intermediate texture density using measurements on parametrically designed plain and nano-textured micropillar surfaces. Using high-speed optical and infrared imaging, we study the dynamics of dry spot heating and rewetting phenomena and reveal that the dry spot heating timescale is of the same order as that of the gravity and liquid imbibition-induced dry spot rewetting timescale. Based on these insights, we develop a coupled thermal-hydraulic model that relates CHF enhancement to rewetting of a hot dry spot on the boiling surface, thereby revealing the mechanism governing the hitherto unknown CHF enhancement maxima.
A parametric study of the heat flux partitioning model for nucleate boiling of nano-fluids
International Nuclear Information System (INIS)
The dramatic boiling heat transfer performances of nano-fluids have been widely attributed to the nanoparticle deposition during the boiling process. The deposited nanoparticles significantly change the microstructures and properties of the heater surface, and hence alter the characteristics of bubble nucleation and departure. Therefore, it is crucial to take into account the effects of nanoparticle deposition when modeling nucleate boiling of nano-fluids using the heat flux partitioning (HFP) model (Kurul N., Podowski M.Z., 1990) [1]. In this study, new closure correlations were incorporated for the nucleate boiling parameters including the active site density, the bubble departure diameter and frequency. Parametric studies were performed through 2-D computations to analyze the effects of surface wettability enhancement, the nanoparticle material and size, respectively. The results demonstrated that through appropriate considering the modifications induced by nanoparticle deposition, the HFP model achieved a satisfactory agreement with the experimental data available in the literature, and provided a more feasible and mechanistic approach than the classic Rohsenow correlation for predicting nucleate pool boiling of nano-fluids. (authors)
Institute of Scientific and Technical Information of China (English)
任晓光; 李铁凤; 赵起
2006-01-01
This paper reports the influence of heat transfer surface treatment on the formation of calcium sulphate deposit during flow boiling heat transfer. The surface of several test heaters was treated by surface modification techniques,such as dynamic mixing magnetron sputtering [DLC (diamond-like carbon), DLC-F (diamond-like carbon-fluorine) and AC (amorphous carbon)] and polishing to reduce surface energy. The results showed that heat transfer surface with low surface energy experienced significant reduction of formation of CaSO4 deposit. (1) Magnetron sputtering stainless steel heat transfer surface with DLC, DLC-F and plasma arc sputtering with AC did not change the surface roughness, but they reduced surface energy and improved heat transfer coefficient, so hindered CaSO4 deposit formation significantly. The DLC-F surface performed better than the DLC surface. (2) Surface energy played an important pole in improving heat transfer coefficient. The less the surface energy the more significant the heat transfer coefficient improved with other experimental conditions identical. (3) The polished surface improved the roughness of the heater, but owing to the high surface energy it was not better than the DLC-F surface for a long-term consideration on improving the heat transfer coefficient.
... or recurrent boils, which are usually due to Staph infections. The bacteria are picked up somewhere and then ... version of boils is folliculitis . This is an infection of hair follicles, usually with Staph bacteria. These often itch more than hurt. The ...
Evaporative heat transfer in beds of sensible heat pellets
Energy Technology Data Exchange (ETDEWEB)
Arimilli, R.V.; Moy, C.A. [Univ. of Tennessee, Knoxville, TN (United States)
1989-03-01
An experimental study of boiling/evaporative heat transfer from heated spheres in vertical packed beds with downward liquid-vapor flow of Refrigerant-113 was conducted. Surface superheats of 1 to 50{degrees}C, mass flow rates of 1.7 to 5.6 Kg/min, sphere diameters of 1.59 and 2.54 cm, quality (i.e., mass fraction of vapor) of the inlet flow of 0.02 to 1.0, and two surface conditions were considered. Instrumented smooth and rough aluminum spheres were used to measure the heat transfer coefficients under steady state conditions. Heat transfer coefficients were independently determined for each sphere at three values three values of surface superheat. The quantitative results of this extensive experimental study are successfully correlated. The correlation equation for the boiling heat transfer coefficients is presented in terms of a homogeneous model. The correlation may be used in the development of numerical models to simulate the transient thermal performance of packed bed thermal energy storage unit while operating as an evaporator. The boiling of the liquid-vapor flow around the spheres in the packed bed was visually observed with a fiber-optic baroscope and recorded on a videotape. The visualization results showed qualitatively the presence of four distinct flow regimes. One of these occurs under saturated inlet conditions and are referred to as the Low-quality, Medium-quality, and High-quality Regimes. The regimes are discussed in detail in this paper.
International Nuclear Information System (INIS)
To develop a highly stable boiling heat transfer microchannel heat sink, the three types of diverging microchannels, namely Type-1, Type-2 and Type-3, were designed to explore experimentally the effect of different distribution of artificial nucleation sites on enhancing boiling heat transfer in 10 parallel diverging microchannels with a mean hydraulic diameter of 120 μm. The Type-1 system is with no cavities, Type-2 is with cavities distributed uniformly along the downstream half of the channel, while Type-3 is with cavities distributed uniformly along the whole channel. The artificial nucleation sites are laser-etched pits on the channel bottom wall with a mouth diameter of about 20-22 μm based on the heterogeneous nucleation theory. The results of the present study reveal the presence of the artificial nucleation sites for flow boiling in parallel diverging microchannel significantly reduces the wall superheat and enhances the boiling heat transfer performance. Additionally, the Type-3 design demonstrates the best boiling heat transfer performance. (author)
Experimental study of undeveloped nucleate boiling on the horizontal tube heated by condensing steam
International Nuclear Information System (INIS)
The experimental study of undeveloped nucleate boiling on the horizontal tube heated by condensing steam has been carried out in the Institute for Physics and Power Engineering. The feature of the processes investigated was a presence of natural circulation in primary circuit of the facility. The experiments were carried out at heating steam pressure Ps1 = 0.35 MPa. On the base of the results of these experiments the empirical correlations for prediction of heat transfer coefficient was obtained. This correlation can be used for the substantiation of work of VVER steam generator in the condensation mode. (author)
Bejan, Adrian
2013-01-01
Written by an internationally recognized authority on heat transfer and thermodynamics, this second edition of Convection Heat Transfer contains new and updated problems and examples reflecting real-world research and applications, including heat exchanger design. Teaching not only structure but also technique, the book begins with the simplest problem solving method (scale analysis), and moves on to progressively more advanced and exact methods (integral method, self similarity, asymptotic behavior). A solutions manual is available for all problems and exercises.
Heat Transfer Enhancement by Fluidized Solid Particles in Gas Carrying Evaporation
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Heat transfer characteristics are studied for gas carrying evaporation with fluidized solid particles in a vertical rectangular conduit. Experimental results show that heat transfer of gas carrying evaporation is enhanced and the superheat of liquid in contact with heating surface lowers remarkably by introducing solid particles. Nucleate boiling on the heating surface is suppressed to a considerable degree. The mechanism of heat transfer enhancement by fluidized solid particles is analyzed with the consideration of collisions of solid particles with the boiling vapor bubbles.
Critical heat flux of an impinging water jet on a heated surface with boiling
Energy Technology Data Exchange (ETDEWEB)
Lee, J.S. [Andong Institute of Informaion Technology, Andong (Korea); Kim, H.D. [Andong National University, Andong (Korea); Choi, K.W. [Incheon University, Incheon (Korea)
2000-04-01
The purpose of this paper is to investigate a critical heat flux(CHF) during forced convective subcooled and saturated boiling in free water jet system impinged on a rectangular heated surface. The surface is supplied with subcooled or saturated water through a rectangular jet. Experimental parameters studied are a width of heated surface, a height of supplementary water and a degree of subcooling. Incipient boiling point is observed in the temperature of 6{approx}8 deg.C of superheat of test specimen. CHF depends on jet velocity for various boiling-involved coolant system. CHF also is proportional to the nozzle exit velocity to the power of n, where n is 0.55 and 0.8 for subcooled and saturated boiling, respectively. CHF is enhanced with a higher jet velocity, higher degree of subcooling and smaller width of a heated surface. (author). 18 refs., 13 figs., 1 tab.
International Nuclear Information System (INIS)
Highlights: • Proposed CHF prediction model is based on hot spot model. • Improved prediction model is more convenient for practical application. • Good CHF prediction on flat and hypervapotron experiment. • CHF is inversely proportional to bubble departure diameter. - Abstract: Based on fundamental nucleation boiling theory, nucleation site distribution and hot spot model, a theoretical critical heat flux (CHF) prediction model in subcooled flow boiling is presented in this paper. With the increase of heat flux, nucleation site density will finally approach the limit of site population. When the critical number of nucleation sites is reached in an area, it will cut off the supply of liquid for the central site, and then CHF emerges. In this paper, an improved hot spot model is proposed, which uses statistical bubble departure diameter and standard square shape. CHF prediction can be reasonably achieved based on fully developed boiling heat transfer curve, nucleation site density and distribution. Some related experimental data are referred and R134a subcooled flow boiling data on flat and hypervapotron test section are reported. Comparison results showed a good prediction of CHF
The effect of substrate conduction on boiling data on pin-fin heat sinks
International Nuclear Information System (INIS)
Heat-transfer experiments for a copper heat sink containing pin-fins with a cross section of 1 mm by 1 mm and a height of 1 mm have been reported previously. The pin-fins were manufactured on a 5 mm thick, 50 mm square base plate in a square, in-line arrangement with a pitch of 2 mm. Data were produced while boiling R113 and water at atmospheric pressure. The heat sink was heated from below through a 5 mm thick aluminium wall by an electrical heating method that is normally associated with the uniform heat flux boundary condition. However, variations in the heat-transfer coefficient and the liquid subcooling interacted with the high thermal conductivity of the aluminium and copper materials to produce a near isothermal wall boundary condition. Thus, heat conduction effects had to be taken into account when determining the heat-flux distribution required in the analysis of the data. Many experiments like these have used the uniform heat-flux assumption to analyse the data. The discrepancies produced from this approach are explored. Single-phase flows across a pin-fin surface produce a reasonably uniform distribution of heat-transfer coefficient. However, the liquid temperature increases as it moves across the heat sink. This produces a non-uniform heat flux distribution at the solid–fluid interface. The uniform heat-flux assumption is shown to lead to errors of ±17% in the estimation of the heat-transfer coefficient. The original boiling flow experiments found that the water data were confined and that the majority of the R113 data were not. The confined and unconfined data are processed with the thermal conduction in the walls taken into account and by assuming a uniform heat flux at the solid–fluid interface. The uniform heat-flux distribution analysis for unconfined flows shows errors in the heat-transfer coefficient to be typically ±17%. Confined flows produce smaller errors, typically ±12%, close to the onset of nucleation. However, these damp out
Modest, Michael F
2013-01-01
The third edition of Radiative Heat Transfer describes the basic physics of radiation heat transfer. The book provides models, methodologies, and calculations essential in solving research problems in a variety of industries, including solar and nuclear energy, nanotechnology, biomedical, and environmental. Every chapter of Radiative Heat Transfer offers uncluttered nomenclature, numerous worked examples, and a large number of problems-many based on real world situations-making it ideal for classroom use as well as for self-study. The book's 24 chapters cover the four major areas in the field: surface properties; surface transport; properties of participating media; and transfer through participating media. Within each chapter, all analytical methods are developed in substantial detail, and a number of examples show how the developed relations may be applied to practical problems. It is an extensive solution manual for adopting instructors. Features: most complete text in the field of radiative heat transfer;...
Experimental investigation of heat transfer in the transition region
International Nuclear Information System (INIS)
An experimental study of forced convective boiling heat transfer for upflow of water in a circular tube has been performed using a heat transfer system with temperature-controlled indirect Joule heating. By this way, complete boiling curves from incipience of boiling to fully established film boiling could be measured including the transition boiling regime. The boiling curves were traversed in a quasi-steady mode, usually by increasing the set-point wall temperature average at a constant time rate of 3.5 K/min. The vast majority of results covers the pressure range from 0.1 to 1.0 MPa, mass flux range from 25 to 200 kg/(m2s) and inlet subcooling from 5 to 30 K. The experimental results of transition boiling heat transfer obtained in the centre of the test section were correlated in terms of a heat flux/surface superheat relationship that was normalized by the maximum heat flux (local CHF) and its associated wall superheat, respectively, to anchor the transition boiling curve to its low temperature limit. The upper surface temperature limit of the transition boiling regime was determined by inspection of measured axial distributions of surface heat flux and corresponding wall temperature. The critical heat flux (CHF) and its corresponding wall superheat has been measured, too. These temperature-controlled results were compared also with power-controlled experiments. The data are presented in terms of a table and accurate empirical correlations following Katto's generalized correlation scheme. Taking into account previous CHF data at L/D ≤ 100 and same range of flow conditions the length effect was found to further depend on pressure and mass flux. The data for the critical wall superheat show a distinct dependence upon pressure, mass flux and inlet quality that has not been observed before with comparable clarity
Multi-scale Control and Enhancement of Reactor Boiling Heat Flux by Reagents and Nanoparticles
International Nuclear Information System (INIS)
The phenomenological characterization of the use of non-invasive and passive techniques to enhance the boiling heat transfer in water has been carried out in this extended study. It provides fundamental enhanced heat transfer data for nucleate boiling and discusses the associated physics with the aim of addressing future and next-generation reactor thermal-hydraulic management. It essentially addresses the hypothesis that in phase-change processes during boiling, the primary mechanisms can be related to the liquid-vapor interfacial tension and surface wetting at the solidliquid interface. These interfacial characteristics can be significantly altered and decoupled by introducing small quantities of additives in water, such as surface-active polymers, surfactants, and nanoparticles. The changes are fundamentally caused at a molecular-scale by the relative bulk molecular dynamics and adsorption-desorption of the additive at the liquid-vapor interface, and its physisorption and electrokinetics at the liquid-solid interface. At the micro-scale, the transient transport mechanisms at the solid-liquid-vapor interface during nucleation and bubblegrowth can be attributed to thin-film spreading, surface-micro-cavity activation, and micro-layer evaporation. Furthermore at the macro-scale, the heat transport is in turn governed by the bubble growth and distribution, macro-layer heat transfer, bubble dynamics (bubble coalescence, collapse, break-up, and translation), and liquid rheology. Some of these behaviors and processes are measured and characterized in this study, the outcomes of which advance the concomitant fundamental physics, as well as provide insights for developing control strategies for the molecular-scale manipulation of interfacial tension and surface wetting in boiling by means of polymeric reagents, surfactants, and other soluble surface-active additives.
Multi-scale Control and Enhancement of Reactor Boiling Heat Flux by Reagents and Nanoparticles
Energy Technology Data Exchange (ETDEWEB)
Manglik, R M; Athavale, A; Kalaikadal, D S; Deodhar, A; Verma, U
2011-09-02
The phenomenological characterization of the use of non-invasive and passive techniques to enhance the boiling heat transfer in water has been carried out in this extended study. It provides fundamental enhanced heat transfer data for nucleate boiling and discusses the associated physics with the aim of addressing future and next-generation reactor thermal-hydraulic management. It essentially addresses the hypothesis that in phase-change processes during boiling, the primary mechanisms can be related to the liquid-vapor interfacial tension and surface wetting at the solidliquid interface. These interfacial characteristics can be significantly altered and decoupled by introducing small quantities of additives in water, such as surface-active polymers, surfactants, and nanoparticles. The changes are fundamentally caused at a molecular-scale by the relative bulk molecular dynamics and adsorption-desorption of the additive at the liquid-vapor interface, and its physisorption and electrokinetics at the liquid-solid interface. At the micro-scale, the transient transport mechanisms at the solid-liquid-vapor interface during nucleation and bubblegrowth can be attributed to thin-film spreading, surface-micro-cavity activation, and micro-layer evaporation. Furthermore at the macro-scale, the heat transport is in turn governed by the bubble growth and distribution, macro-layer heat transfer, bubble dynamics (bubble coalescence, collapse, break-up, and translation), and liquid rheology. Some of these behaviors and processes are measured and characterized in this study, the outcomes of which advance the concomitant fundamental physics, as well as provide insights for developing control strategies for the molecular-scale manipulation of interfacial tension and surface wetting in boiling by means of polymeric reagents, surfactants, and other soluble surface-active additives.
International Nuclear Information System (INIS)
Aspects of heat transfer are addressed. The topics considered include: heat transfer in turbulent flows, boiling mixtures, the atmosphere, rheological systems, and combustion chambers; numerical methods and visualization of heat transfer; radiative, particle, and cryogenic heat transfer; flow boiling, heat exchanger technology and prediction of transport properties related to heat transfer. Also discussed are: advanced boundary-layer theory in heat transfer, enhancement of heat transfer, nuclear safety heat transfer, free convection, influence of fouling on heat transfer, heat and mass transfer to rivers, and buoyancy effect on heat transfer in forced channel flows
Han, Je-Chin
2012-01-01
… it will complete my library … [and] complement the existing literature on heat transfer. It will be of value for both graduate students and faculty members.-Bengt Sunden, Lund University, Sweden
Particle-water heat transfer during explosive volcanic eruptions
Woodcock, D. C.; Gilbert, Jennie; Lane, S. J.
2012-01-01
Thermal interaction between volcanic particles and water during explosive eruptions has been quantified using a numerical heat transfer model for spherical particles. The model couples intraparticle conduction with heat transfer from the particle surface by boiling water in order to explore heat loss with time for a range of particle diameters. The results are combined with estimates of particle settling times to provide insight into heat removal during eruption from samples of volcanic parti...
Lienhard, John H
2011-01-01
This introduction to heat transfer offers advanced undergraduate and graduate engineering students a solid foundation in the subjects of conduction, convection, radiation, and phase-change, in addition to the related topic of mass transfer. A staple of engineering courses around the world for more than three decades, it has been revised and updated regularly by the authors, a pair of recognized experts in the field. The text addresses the implications, limitations, and meanings of many aspects of heat transfer, connecting the subject to its real-world applications and developing students' ins
Ohta, Haruhiko; Ohno, Toshiyuki; Hioki, Fumiaki; Shinmoto, Yasuhisa
2004-11-01
A two-phase flow loop is a promising method for application to thermal management systems for large-scale space platforms handling large amounts of energy. Boiling heat transfer reduces the size and weight of cold plates. The transportation of latent heat reduces the mass flow rate of working fluid and pump power. To develop compact heat exchangers for the removal of waste heat from electronic devices with high heat generation density, experiments on a method to increase the critical heat flux for a narrow heated channel between parallel heated and unheated plates were conducted. Fine grooves are machined on the heating surface in a transverse direction to the flow and liquid is supplied underneath flattened bubbles by the capillary pressure difference from auxiliary liquid channels separated by porous metal plates from the main heated channel. The critical heat flux values for the present heated channel structure are more than twice those for a flat surface at gap sizes 2 mm and 0.7 mm. The validity of the present structure with auxiliary liquid channels is confirmed by experiments in which the liquid supply to the grooves is interrupted. The increment in the critical heat flux compared to those for a flat surface takes a maximum value at a certain flow rate of liquid supply to the heated channel. The increment is expected to become larger when the length of the heated channel is increased and/or the gravity level is reduced. PMID:15644358
Pressure drop across micro-pin heat sinks under boiling conditions
Koşar, Ali; Kosar, Ali; Özdemir, Mehmed Rafet; Ozdemir, Mehmed Rafet; Keskinöz, Mehmet; Keskinoz, Mehmet
2009-01-01
Two-phase pressure drop was studied in four different micro pin fin heat sinks. Micro pin fin heat sinks used in the current studies were operated under boiling conditions using water and R-123 as working fluids. It was observed that once boiling was initiated severe temperature fluctuations and flow oscillations were recorded for three of the micro pin fin heat sinks, which was characterized as unstable boiling. Pressure drop signals were presented just before and after the unstable boili...
Heat transport in boiling turbulent Rayleigh-B\\'{e}nard convection
Lakkaraju, Rajaram; Oresta, Paolo; Verzicco, Roberto; Lohse, Detlef; Prosperetti, Andrea
2014-01-01
Boiling is an extremely effective way to promote heat transfer from a hot surface to a liquid due to several mechanisms many of which are not understood in quantitative detail. An important component of the overall process is that the buoyancy of the bubbles compounds with that of the liquid to give rise to a much enhanced natural convection. In this paper we focus specifically on this enhancement and present a numerical study of the resulting two-phase Rayleigh-B\\'enard convection process. We make no attempt to model other aspects of the boiling process such as bubble nucleation and detachment. We consider a cylindrical cell with a diameter equal to its height. The cell base and top are held at temperatures above and below the boiling point of the liquid, respectively. By keeping the temperature difference constant and changing the liquid pressure we study the effect of the liquid superheat in a Rayleigh number range that, in the absence of boiling, would be between $2\\times10^6$ and $5\\times10^9$. We find a...
Baehr, Hans Dieter
2011-01-01
This comprehensive textbook provides a solid foundation of knowledge on the principles of heat and mass transfer and shows how to solve problems by applying modern methods. The basic theory is developed systematically, exploring in detail the solution methods to all important problems. The thoroughly revised 3rd edition includes an introduction to the numerical solution of Finite Elements. A new section on heat and mass transfer in porous media has also been added. The book will be useful not only to upper-level and graduate students, but also to practicing scientists and engineers, offering a firm understanding of the principles of heat and mass transfer, and showing how to solve problems by applying modern methods. Many completed examples and numerous exercises with solutions facilitate learning and understanding, and an appendix includes data on key properties of important substances.
Thermal radiation heat transfer
Howell, John R; Mengüç, M Pinar
2011-01-01
Providing a comprehensive overview of the radiative behavior and properties of materials, the fifth edition of this classic textbook describes the physics of radiative heat transfer, development of relevant analysis methods, and associated mathematical and numerical techniques. Retaining the salient features and fundamental coverage that have made it popular, Thermal Radiation Heat Transfer, Fifth Edition has been carefully streamlined to omit superfluous material, yet enhanced to update information with extensive references. Includes four new chapters on Inverse Methods, Electromagnetic Theory, Scattering and Absorption by Particles, and Near-Field Radiative Transfer Keeping pace with significant developments, this book begins by addressing the radiative properties of blackbody and opaque materials, and how they are predicted using electromagnetic theory and obtained through measurements. It discusses radiative exchange in enclosures without any radiating medium between the surfaces-and where heat conduction...
Heat transfer fluids containing nanoparticles
Energy Technology Data Exchange (ETDEWEB)
Singh, Dileep; Routbort, Jules; Routbort, A.J.; Yu, Wenhua; Timofeeva, Elena; Smith, David S.; France, David M.
2016-05-17
A nanofluid of a base heat transfer fluid and a plurality of ceramic nanoparticles suspended throughout the base heat transfer fluid applicable to commercial and industrial heat transfer applications. The nanofluid is stable, non-reactive and exhibits enhanced heat transfer properties relative to the base heat transfer fluid, with only minimal increases in pumping power required relative to the base heat transfer fluid. In a particular embodiment, the plurality of ceramic nanoparticles comprise silicon carbide and the base heat transfer fluid comprises water and water and ethylene glycol mixtures.
Favre-Marinet, Michel
2009-01-01
Convection heat transfer is an important topic both for industrial applications and fundamental aspects. It combines the complexity of the flow dynamics and of the active or passive scalar transport process. It is part of many university courses such as Mechanical, Aeronautical, Chemical and Biomechanical Engineering. The literature on convective heat transfer is large, but the present manuscript differs in many aspects from the existing ones, particularly from the pedagogical point of view. Each chapter begins with a brief yet complete presentation of the related topic. This is followed by a
Heat transfer and critical heat flux in a asymmetrically heated tube helicoidal flow
International Nuclear Information System (INIS)
The design of plasma facing components is crucial for plasma performance in next fusion reactors. These elements will be submitted to very high heat flux. They will be actively water-cooled by swirl tubes in the subcooled boiling regime. High heat flux experiments were conducted in order to analyse the heat transfer and to evaluate the critical heat flux. Water-cooled mock-ups were one-side heated by an electron beam gun for different thermal-hydraulic conditions. The critical heat flux was detected by an original method based on the isotherm modification on the heated surface. The wall heat transfer law including forced convection and subcooled boiling regimes was established. Numerical calculations of the material heat transfer conduction allowed the non-homogeneous distribution of the wall temperature and of the wall heat flux to be evaluated. The critical heat flux value was defined as the wall maximum heat flux. A critical heat flux model based on the liquid sublayer dryout under a vapor blanket was established. A good agreement with test results was found. (author). 198 refs., 126 figs., 21 tabs
Heat transfer and critical heat flux in a spiral flow in an asymmetrical heated tube
International Nuclear Information System (INIS)
The design of plasma facing components is crucial for plasma performance in next fusion reactors. These elements will be submitted to very high heat flux. They will be actively water-cooled by swirl tubes in the subcooled boiling regime. High heat flux experiments were conducted in order to analyse the heat transfer and to evaluate the critical heat flux. Water-cooled mock-ups were one-side heated by an electron beam gun for different thermal-hydraulic conditions. The critical heat flux was detected by an original method based on the isotherm modification on the heated surface. The wall heat transfer law including forced convection and subcooled boiling regimes was established. Numerical calculations of the material heat transfer conduction allowed the non-homogeneous distribution of the wall temperature and of the wall heat flux to be evaluated. The critical heat flux value was defined as the wall maximum heat flux. A critical heat flux model based on the liquid sublayer dryout under a vapor blanket was established. A good agreement with test results was found. (author)
Knapp, Henry H., III
This module on heat transfer is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies. The…
Burnout in a high heat-flux boiling system with an impinging jet
International Nuclear Information System (INIS)
An experimental study has been made on the fully-developed nucleate boiling at atmospheric pressure in a simple forced-convection boiling system, which consists of a heated flat surface and a small, high-speed jet of water or of freon-113 impinging on the heated surface. A generalized correlation for burnout heat flux data, that is applied to either water or freon-113 is successfully evolved, and it is shown that surface tension has an important role for the onset of burnout phenomenon, not only in the ordinary pool boiling, but also in the present boiling system with a forced flow. (author)
An introduction to heat transfer principles and calculations
Ede, A J; Ower, E
1967-01-01
An Introduction to Heat Transfer Principles and Calculations is an introductory text to the principles and calculations of heat transfer. The theory underlying heat transfer is described, and the principal results and formulae are presented. Available techniques for obtaining rapid, approximate solutions to complicated problems are also considered. This book is comprised of 12 chapters and begins with a brief account of some of the concepts, methods, nomenclature, and other relevant information about heat transfer. The reader is then introduced to radiation, conduction, convection, and boiling
Dry patch formed boiling and burnout in potassium pool boiling
International Nuclear Information System (INIS)
Experimental results are presented on dry patch formed boiling and burnout in saturated potassium pool boiling on a horizontal plane heater for system pressures from 30 to 760 torr and liquid levels from 5 to 50 mm. The dry patch formation occurs in the intermittent boiling which is often encountered when liquid alkali metals are used under relatively low pressure conditions. Burnout is caused from both continuous nucleate and dry patch formed boiling. The burnout heat flux together with nucleate boiling heat transfer coefficients are empirically correlated with system pressures. A model is also proposed to predict the minimum heat flux to form the dry patch. (author)
Heat transfer in vapour-liquid flow of carbon dioxide
International Nuclear Information System (INIS)
During the last decade a number of studies of boiling heat transfer in carbon dioxide notably increase. As a field of CO2 practical using corresponds to high reduced pressures, and a majority of available experimental data on CO2 flow boiling even in submillimetric channels relate to turbulent liquid flow regimes, a possibility arises to develop sufficiently general method for HTC predicting. Under the above conditions nucleate boiling occurs up to rather high flow quality, even in annular flow regime due to extremely small size of an equilibrium vapour bubble. This conclusion is in agreement with the available experimental data. The predicting equation for nucleate boiling heat transfer developed by the present author in 1988 is valid for any nonmetallic liquid. A contribution of forced convection in heat transfer is calculated according to the Petukhov et al. equation with correction factor, which accounted for an effect of velocity increase due to evaporation. This effect can be essential at relatively small heat fluxes and rather high mass flow rates. The Reynolds analogy and homogeneous model are used in order to account for the convective heat transfer augmentation in two-phase flow. Due to low ratio of liquid and vapour densities at high reduced pressures the homogeneous approximation of two-phase flow seems to be warranted. A total heat transfer coefficient is calculated as an interpolated value of boiling and convective HTCs. The experimental data on CO2 flow boiling related to regimes before heated wall dryout incipience are in rather good agreement with the calculations. (author)
Heat transfer in vapour-liquid flow of carbon dioxide
Energy Technology Data Exchange (ETDEWEB)
Yagov, V.V. [Moscow Power Engineering Institute (Technical University), Moscow (Russian Federation)], e-mail: YagovVV@mpei.ru
2009-07-01
During the last decade a number of studies of boiling heat transfer in carbon dioxide notably increase. As a field of CO{sub 2} practical using corresponds to high reduced pressures, and a majority of available experimental data on CO{sub 2} flow boiling even in submillimetric channels relate to turbulent liquid flow regimes, a possibility arises to develop sufficiently general method for HTC predicting. Under the above conditions nucleate boiling occurs up to rather high flow quality, even in annular flow regime due to extremely small size of an equilibrium vapour bubble. This conclusion is in agreement with the available experimental data. The predicting equation for nucleate boiling heat transfer developed by the present author in 1988 is valid for any nonmetallic liquid. A contribution of forced convection in heat transfer is calculated according to the Petukhov et al. equation with correction factor, which accounted for an effect of velocity increase due to evaporation. This effect can be essential at relatively small heat fluxes and rather high mass flow rates. The Reynolds analogy and homogeneous model are used in order to account for the convective heat transfer augmentation in two-phase flow. Due to low ratio of liquid and vapour densities at high reduced pressures the homogeneous approximation of two-phase flow seems to be warranted. A total heat transfer coefficient is calculated as an interpolated value of boiling and convective HTCs. The experimental data on CO{sub 2} flow boiling related to regimes before heated wall dryout incipience are in rather good agreement with the calculations. (author)
DEFF Research Database (Denmark)
Kærn, Martin Ryhl; Modi, Anish; Jensen, Jonas Kjær;
2016-01-01
Heat transfer correlations for pool and flow boiling are indispensable for boiler design. The correlations for predicting in-tube flow boiling heat transfer ofammonia-water mixtures are not well established in the open literature and there is a lack of experimental measurements for the full range...... of composition, vapor qualities, fluid conditions, etc. This paper presents a comparison of several flow boiling heat transfer prediction methods (correlations) for ammonia-water mixtures. Firstly, these methods are reviewed and compared at various fluid conditions. The methods include: (1) the......, their influence on the required heat exchanger size (surface area)is investigated during numerical design. For this purpose, two case studies related to the use of the Kalina cycle are considered: a flue gas based heat recovery boiler for acombined cycle power plant and a hot oil based boiler for a...
Microwave super-heated boiling of organic liquids: Origin, effect and application
Chemat, F.; Esveld, E.
2001-01-01
This paper reports the state of the art of the microwave super-heated boiling phenomenon. When a liquid is heated by microwaves, the temperature increases rapidly to reach a steady temperature while refluxing. It happens that this steady state temperature can be up to 40 K higher than the boiling po
Numerical Modeling and Investigation of Boiling Phenomena
Kunkelmann, Christian
2011-01-01
The subject of the present thesis is the numerical modeling and investigation of boiling phenomena. The heat transfer during boiling is highly efficient and therefore used for many applications in power generation, process engineering and cooling of high performance electronics. The precise knowledge of particular boiling processes, their relevant parameters and limitations is of utmost importance for an optimized application. Therefore, the fundamentals of boiling heat transfer have been...
Bubble spreading during the boiling crisis: modelling and experimenting in microgravity
Nikolayev, Vadim; Beysens, D.; Garrabos, Yves; Lecoutre, Carole; Chatain, D.
2006-01-01
International audience Boiling is a very efficient way to transfer heat from a heater to the liquid carrier. We discuss the boiling crisis, a transition between two regimes of boiling: nucleate and film boiling. The boiling crisis results in a sharp decrease in the heat transfer rate, which can cause a major accident in industrial heat exchangers. In this communication, we present a physical model of the boiling crisis based on the vapor recoil effect. Under the action of the vapor recoil ...
International Nuclear Information System (INIS)
This report contains descriptions of various analogues utilised to study different steady-state and unsteady-state heat transfer problems. The analogues covered are as follows: 1 . Hydraulic: a) water flow b) air flow 2. Membrane 3. Geometric Electrical: a) Electrolytic-tank b) Conducting sheet 4. Network; a) Resistance b) R-C A comparison of the different analogues is presented in the form of a table
Rathakrishnan, Ethirajan
2012-01-01
1 Basic Concepts and Definitions1.1 Introduction1.1.1 Driving Potential1.2 Dimensions and Units1.2.1 Dimensional Homogeneity1.3 Closed and Open Systems1.3.1 Closed System (ControlMass)1.3.2 Isolated System1.3.3 Open System (ControlVolume)1.4 Forms of Energy1.4.1 Internal Energy1.5 Properties of a System1.5.1 Intensive and Extensive Properties1.6 State and Equilibrium1.7 Thermal and Calorical Properties1.7.1 Specific Heat of an Incompressible Substance1.7.2 Thermally Perfect Gas 1.8 The Perfect Gas1.9 Summary1.10 Exercise ProblemsConduction Heat Transfer2.1 Introduction2.2 Conduction Heat Trans
Generalized reflood heat transfer correlation
International Nuclear Information System (INIS)
A reflood heat transfer correlation has been developed from the FLECHT reflood data for different axial power shapes and arbitrary variable flooding rate conditions. This correlation consists of a separate quench correlation and a heat transfer coefficient correlation. The reflood correlation predicts both the quench front, location and the heat transfer coefficient above the quench front.. The reflood heat transfer correlation prediction is in good agreement with both the cosine and the skewed axial power shape FLECHT reflooding data. (author)
Large molten pool heat transfer
International Nuclear Information System (INIS)
This workshop on large molten pool heat transfer is composed of 5 sessions which titles are: feasibility of in-vessel core debris cooling; experiments on molten pool heat transfer; calculational efforts on molten pool convection; heat transfer to the surrounding water, experimental techniques; future experiments and ex-vessel studies (RASPLAV, TOLBIAC, BALI, SULTAN, CORVIS, VULCANO, CORINE programs)
International Nuclear Information System (INIS)
Recently several researches on SiC material as an alternative of the nuclear fuel cladding have been conducted. From a fundamental point of view, Snead et al. did an extensive investigation on SiC properties. Their work revealed non-irradiated and irradiated material properties. In addition to the existing literature data, they even added new data, particularly in the high-temperature irradiation regime. Moreover, Carpenter has studied performance of a SiC fuel cladding in his Ph. D. thesis. With extensive in-core tests at MITR-II, his works showed the effects of cladding design for monolith and triplex types. He concluded that manufacturing techniques of the SiC cladding affected corrosion rates and swelling behavior after irradiation. For more practical nuclear applications, oxidation rates of a SiC cladding was investigated with a comparison assessment of those of a zircaloy-4 cladding. Lee et al. adopted an oxidation process under the conditions of the Loss of Coolant Accidents (LOCA) in LWRs. They found that SiC oxidation rates were greatly lower than those of zircaloy-4. In order to demonstrate the superiority of SiC cladding in terms of thermal performance, in this study pool boiling heat transfer experiments were carried out in a pool of saturated deionized water (DI water) at atmospheric pressure. For a comparison study, zircaloy-4 claddings, which are current fuel claddings in LWRs, were used as a reference case. Not only measuring nucleate boiling heat transfer coefficient (NBHTC) and critical heat flux (CHF) but also observing boiling behavior of both the claddings were conducted. In this study, pool boiling heat transfer experiments with zircaloy and SiC heaters were carried out. Comparison of the CHF and nucleate boiling heat transfer of the zircaloy-4 and SiC cladding were compared. Specifically, sophisticated high-speed photographs of nucleate boiling, the CHF, and film boiling phenomena were captured. · Structural integrity of the SiC heaters was
Development of heat transfer models for gap cooling
International Nuclear Information System (INIS)
In a severe accident of a light water reactor (LWR), heat transfer models in a narrow annular gap between superheated core debris and a reactor pressure vessel (RPV) are important to evaluate the integrity of RPV and emergency procedures. This paper discusses the effects of superheat on the heat flux based on existing data. In low superheat conditions, the heat flux in the narrow gap is higher than the heat flux in pool nucleate boiling due to restricted flow area. It approaches the nucleate boiling heat flux as superheat increasing and reaches a critical value subject to the counter-current flow limiting (CCFL) at the top end of the gap. A heat transfer correlation was derived as a function of dimensionless superheat and a Kutateladze-type CCFL correlation was deduced for critical heat flux (CHF) restricted by CCFL, which gave good prediction for a wide range of the CHF data. Effect of an angle of inclination of the gap could also be incorporated in the CCFL correlation. In high superheat conditions, the heat flux in the narrow gap maintains a similar shape to the pool boiling curve but shifts the position to a higher superheated side than the pool boiling except film boiling, which could be expressed by the typical pool film boiling correlation. Incorporating quench test data, the heat flux correlation was derived as a function of dimensionless superheat using the same formula for the low superheat and the Kutateladze-type CCFL correlation was deduced for CHF. The CHF at the high superheat was 3-4 times as large as CHF at the low superheat and this difference was well predicted by different flow patterns in the gap and the balance of pressure gradients between gas and liquid phases. (author)
Physical concept and calculation of boiling point in a pulsating heat pipe
Naumova A. N.; Kravets V. Yu.; Nikolaenko Yu. E.
2014-01-01
LED development is accompanied by the need to ensure a constructive solution for the thermal conditions problem. For this purpose one can use pulsating heat pipes (PHP), that operate more efficiently after the start of heat carrier boiling. This article describes the physical representation and formula that allows determining the boiling point, which is a lower bound of the PHP effective operating range. It is shown that the main factors influencing the required heat flow are driving capillar...
Local heat transfer from a hot plate to a water jet
Energy Technology Data Exchange (ETDEWEB)
Robidou, H.; Auracher, H. [TU Berlin, Institut fuer Energietechnik, Berlin (Germany); Gardin, P.; Lebouche, M.; Bogdanic, L.
2003-11-01
Jet impingement boiling is very efficient in cooling of hot surfaces as a part of the impinging liquid evaporates. Because of its importance to many cooling procedures, investigations on basic mechanisms of jet impingement boiling heat transfer are needed. Until now, most of the experimental studies, carried out under steady-state conditions, used a heat flux controlled system and were limited by the critical heat flux (CHF). The present study focuses on steady-state experiments along the entire boiling curve for hot plate temperatures of up to 700 C. A test section has been built up simulating a hot plate. It is divided into 8 independently heated modules of 10 mm length to enable local heat transfer measurements. By means of temperature controlled systems for each module local steady-state experiments in the whole range between single phase heat transfer and film boiling are possible. By solving the two dimensional inverse heat conduction problem, the local heat flux and the corresponding wall temperature on the surface of each module can be computed. The measurements show important differences between boiling curves measured at the stagnation line and those obtained in the parallel flow region. At the stagnation line, the transition boiling regime is characterised by very high heat fluxes, extended to large wall superheats. Inversely, boiling curves in the parallel flow region are very near to classical ones obtained for forced convection boiling. The analysis of temperature fluctuations measured at a depth of 0.8 mm from the boiling surface enables some conclusions on the boiling mechanism in the different boiling regimes. (orig.)
Nanoscale heat transfer and phase transformation surrounding intensely heated nanoparticles
Sasikumar, Kiran
Over the last decade there has been significant ongoing research to use nanoparticles for hyperthermia-based destruction of cancer cells. In this regard, the investigation of highly non-equilibrium thermal systems created by ultrafast laser excitation is a particularly challenging and important aspect of nanoscale heat transfer. It has been observed experimentally that noble metal nanoparticles, illuminated by radiation at the plasmon resonance wavelength, can act as localized heat sources at nanometer-length scales. Achieving biological response by delivering heat via nanoscale heat sources has also been demonstrated. However, an understanding of the thermal transport at these scales and associated phase transformations is lacking. A striking observation made in several laser-heating experiments is that embedded metal nanoparticles heated to extreme temperatures may even melt without an associated boiling of the surrounding fluid. This unusual phase stability is not well understood and designing experiments to understand the physics of this phenomenon is a challenging task. In this thesis, we will resort to molecular dynamics (MD) simulations, which offer a powerful tool to investigate this phenomenon, without assumptions underlying continuum-level model formulations. We present the results from a series of steady state and transient non-equilibrium MD simulations performed on an intensely heated nanoparticle immersed in a model liquid. For small nanoparticles (1-10 nm in diameter) we observe a stable liquid phase near the nanoparticle surface, which can be at a temperature well above the boiling point. Furthermore, we report the existence of a critical nanoparticle size (4 nm in diameter) below which we do not observe formation of vapor even when local fluid temperatures exceed the critical temperature. Instead, we report the existence of a stable fluid region with a density much larger than that of the vapor phase. We explain this stability in terms of the
Thin liquid film flow and heat transfer under spray impingement
International Nuclear Information System (INIS)
A mathematical model was derived to investigate thin liquid film flow under spray impingement. Based on predicted flow patterns, a heat transfer model was developed to investigate the heat transfer performance in the non-boiling regime of spray cooling. The film thickness predicted by the thin film flow model favourably compares with reported experimental results obtained at different measurement locations and nozzle inlet pressures. It is found that the film thickness is sensitive to droplet flux distribution but not the nozzle inlet pressure. The comparison of the heated surface temperature between the proposed heat transfer model and the published experimental data shows good agreement. - Highlights: ► Thin liquid film flow in spray cooling is theoretically studied. ► A thin liquid film flow model is derived to predict the thin film flow pattern under spray impingement. ► A heat transfer model is developed to predict the heat transfer performance in the non-boiling regime of spray cooling. ► Film thickness of the liquid film flow is sensitive to droplet flux distribution but not the nozzle inlet pressure. ► Droplet impingement cooling is the primary cooling mechanism in the non-boiling regime of spray cooling.
aerodynamics and heat transfer
Directory of Open Access Journals (Sweden)
J. N. Rajadas
1998-01-01
Full Text Available A multidisciplinary optimization procedure, with the integration of aerodynamic and heat transfer criteria, has been developed for the design of gas turbine blades. Two different optimization formulations have been used. In the first formulation, the maximum temperature in the blade section is chosen as the objective function to be minimized. An upper bound constraint is imposed on the blade average temperature and a lower bound constraint is imposed on the blade tangential force coefficient. In the second formulation, the blade average and maximum temperatures are chosen as objective functions. In both formulations, bounds are imposed on the velocity gradients at several points along the surface of the airfoil to eliminate leading edge velocity spikes which deteriorate aerodynamic performance. Shape optimization is performed using the blade external and coolant path geometric parameters as design variables. Aerodynamic analysis is performed using a panel code. Heat transfer analysis is performed using the finite element method. A gradient based procedure in conjunction with an approximate analysis technique is used for optimization. The results obtained using both optimization techniques are compared with a reference geometry. Both techniques yield significant improvements with the multiobjective formulation resulting in slightly superior design.
Critical heat flux for low flow boiling in vertical uniformly heated thin rectangular channels
International Nuclear Information System (INIS)
Steady-state, subcooled, low flow, critical heat flux (CHF) experiments simulating natural convection boiling are performed in a thin rectangular vertical channel. The aluminum channel is heated on one side: the other side of the channel is a Pyrex window allowing visual observation of the CHF event. Both upward and downward flow conditions are tested with exit pressure varying from 20 to 85 kPa, inlet water temperature varying from 295 to 343 K (inlet subcooling 5-72 K), and mass flux varying from 30 to 80 kg s-1 m-2. Measured test results indicate downward flow dryout CHF occurring at 85% of upward flow dryout CHF values. This percentage is believed to result from the flow instability and reduced inlet subcooling induced by the counter-current flow. New dryout CHF correlations for low flow rates, representative of natural convection boiling, are recommended for both upward and downward flow. (Author)
Conduction heat transfer solutions
International Nuclear Information System (INIS)
This text is a collection of solutions to a variety of heat conduction problems found in numerous publications, such as textbooks, handbooks, journals, reports, etc. Its purpose is to assemble these solutions into one source that can facilitate the search for a particular problem solution. Generally, it is intended to be a handbook on the subject of heat conduction. There are twelve sections of solutions which correspond with the class of problems found in each. Geometry, state, boundary conditions, and other categories are used to classify the problems. Each problem is concisely described by geometry and condition statements, and many times a descriptive sketch is also included. The introduction presents a synopsis on the theory, differential equations, and boundary conditions for conduction heat transfer. Some discussion is given on the use and interpretation of solutions. Supplementary data such as mathematical functions, convection correlations, and thermal properties are included for aiding the user in computing numerical values from the solutions. 155 figs., 92 refs., 9 tabs
Conduction heat transfer solutions
International Nuclear Information System (INIS)
This text is a collection of solutions to a variety of heat conduction problems found in numerous publications, such as textbooks, handbooks, journals, reports, etc. Its purpose is to assemble these solutions into one source that can facilitate the search for a particular problem solution. Generally, it is intended to be a handbook on the subject of heat conduction. This material is useful for engineers, scientists, technologists, and designers of all disciplines, particularly those who design thermal systems or estimate temperatures and heat transfer rates in structures. More than 500 problem solutions and relevant data are tabulated for easy retrieval. There are twelve sections of solutions which correspond with the class of problems found in each. Geometry, state, boundary conditions, and other categories are used to classify the problems. A case number is assigned to each problem for cross-referencing, and also for future reference. Each problem is concisely described by geometry and condition statements, and many times a descriptive sketch is also included. At least one source reference is given so that the user can review the methods used to derive the solutions. Problem solutions are given in the form of equations, graphs, and tables of data, all of which are also identified by problem case numbers and source references
Heat Transfer and Cooling Techniques at Low Temperature
Baudouy, B
2014-01-01
The first part of this chapter gives an introduction to heat transfer and cooling techniques at low temperature. We review the fundamental laws of heat transfer (conduction, convection and radiation) and give useful data specific to cryogenic conditions (thermal contact resistance, total emissivity of materials and heat transfer correlation in forced or boiling flow for example) used in the design of cooling systems. In the second part, we review the main cooling techniques at low temperature, with or without cryogen, from the simplest ones (bath cooling) to the ones involving the use of cryocoolers without forgetting the cooling flow techniques.
A dry-spot model for the prediction of critical heat flux in water boiling in bubbly flow regime
Energy Technology Data Exchange (ETDEWEB)
Ha, Sang Jun; No, Hee Cheon [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)
1997-12-31
This paper presents a prediction of critical heat flux (CHF) in bubbly flow regime using dry-spot model proposed recently by authors for pool and flow boiling CHF and existing correlations for forced convective heat transfer coefficient, active site density and bubble departure diameter in nucleate boiling region. Without any empirical constants always present in earlier models, comparisons of the model predictions with experimental data for upward flow of water in vertical, uniformly-heated round tubes are performed and show a good agreement. The parametric trends of CHF have been explored with respect to variations in pressure, tube diameter and length, mass flux and inlet subcooling. 16 refs., 6 figs., 1 tab. (Author)
Heat transfer by natural convection into an horizontal cavity
International Nuclear Information System (INIS)
At this thesis it is studied the heat transfer by natural convection in an horizontal cavity, it is involved a boiling's part that is described the regimes and correlations differences for boiling's curve. It is designed a horizontal cavity for realize the experimental part and it's mention from equipment or instrumentation to succeed in a experimentation that permits to realize the analysis of heat transfer, handling as water fluid at atmospheric pressure and where it's present process from natural convection involving part boiling's subcooled. The system consists of heater zone submerged in a horizontal cavity with water. Once part finished experimental with information to obtained it's proceeded to obtain a correlation, realized starting from analysis dimensionless such as: Jakob, Bond and Grasoft (Boiling) besides of knows in natural convection: Prandtl and Nusselt. The mathematical model explains the behavior for natural convection continued part boiling's subcooled. It is realize analysis graphics too where it's show comparing with Globe Dropkin and Catton equations by natural convection with bottom heating. (Author)
Kaviany, Massoud
2014-01-01
This graduate textbook describes atomic-level kinetics (mechanisms and rates) of thermal energy storage, transport (conduction, convection, and radiation), and transformation (various energy conversions) by principal energy carriers. The approach combines the fundamentals of molecular orbitals-potentials, statistical thermodynamics, computational molecular dynamics, quantum energy states, transport theories, solid-state and fluid-state physics, and quantum optics. The textbook presents a unified theory, over fine-structure/molecular-dynamics/Boltzmann/macroscopic length and time scales, of heat transfer kinetics in terms of transition rates and relaxation times, and its modern applications, including nano- and microscale size effects. Numerous examples, illustrations, and homework problems with answers that enhance learning are included. This new edition includes applications in energy conversion (including chemical bond, nuclear, and solar), expanded examples of size effects, inclusion of junction quantum tr...
Transient critical heat flux and blowdown heat-transfer studies
Energy Technology Data Exchange (ETDEWEB)
Leung, J.C.
1980-05-01
Objective of this study is to give a best-estimate prediction of transient critical heat flux (CHF) during reactor transients and hypothetical accidents. To accomplish this task, a predictional method has been developed. Basically it involves the thermal-hydraulic calculation of the heated core with boundary conditions supplied from experimental measurements. CHF predictions were based on the instantaneous ''local-conditions'' hypothesis, and eight correlations (consisting of round-tube, rod-bundle, and transient correlations) were tested against most recent blowdown heat-transfer test data obtained in major US facilities. The prediction results are summarized in a table in which both CISE and Biasi correlations are found to be capable of predicting the early CHF of approx. 1 s. The Griffith-Zuber correlation is credited for its prediction of the delay CHF that occurs in a more tranquil state with slowly decaying mass velocity. In many instances, the early CHF can be well correlated by the x = 1.0 criterion; this is certainly indicative of an annular-flow dryout-type crisis. The delay CHF occurred at near or above 80% void fraction, and the success of the modified Zuber pool-boiling correlation suggests that this CHF is caused by flooding and pool-boiling type hydrodynamic crisis.
Transient critical heat flux and blowdown heat-transfer studies
International Nuclear Information System (INIS)
Objective is to give a best-estimate prediction of transient critical heat flux (CHF) during reactor transients and hypothetical accidents. A predictional method has been developed which involves the thermal-hydraulic calculation of the heated core with boundary conditions supplied from experimental measurements. CHF predictions were based on the instantaneous local-conditions hypothesis, and eight correlations (consisting of round-tube, rod-bundle, and transient correlations) were tested against most recent blowdown heat-transfer test data obtained in major US facilities. The prediction results are summarized in a table in which both CISE and Biasi correlations are found to be capable of predicting the early CHF of approx. 1 s. The Griffith-Zuber correlation is credited for its prediction of the delay CHF that occurs in a more tranquil state with slowly decaying mass velocity. In many instances, the early CHF can be well correlated by the x = 1.0 criterion; this is certainly indicative of an annular-flow dryout-type crisis. The delay CHF occurred at near or above 80% void fraction, and the success of the modified Zuber pool-boiling correlation suggests that this CHF is caused by flooding and pool-boiling type hydrodynamic crisis. 234 figures, 13 tables
Transient critical heat flux and blowdown heat transfer studies
International Nuclear Information System (INIS)
The objective of this study was to give a best-estimate prediction of transient critical heat flux (CHF) during reactor transients and hypothetical accidents. To accomplish this task, a predictional method has been developed. Basically it involves the thermal-hydraulic calculation of the heated core with boundary conditions supplied from experimental measurements. CHF predictions were based on instantaneous local-conditions hypothesis and eight correlations (consisting of round-tube, rod-bundle, and transient correlations) were tested against most recent blowdown heat-transfer test data obtained in major US facilities. A summary of the prediction results is presented where both CISE and Biasi correlations are found to be capable of predicting the early CHF of approx. 1 s. The Griffith-Zuber correlation is credited for its prediction of the delay CHF which occurs in a more tranquil state with slowly decaying mass velocity. In many instances, the early CHF can be well correlated by the chi = 1.0 criterion; this is certainly indicative of an annular-flow dryout type crisis. The delay CHF was found to occur at near or above 80% void fraction, and the success of the modified Zuber pool-boiling correlation suggests that this CHF is caused by flooding and pool-boiling type hydrodynamic crisis
Experimental and numerical investigation of HyperVapotron heat transfer
Wang, Weihua; Deng, Haifei; Huang, Shenghong; Chu, Delin; Yang, Bin; Mei, Luoqin; Pan, Baoguo
2014-12-01
The divertor first wall and neutral beam injection (NBI) components of tokamak devices require high heat flux removal up to 20-30 MW m-2 for future fusion reactors. The water cooled HyperVapotron (HV) structure, which relies on internal grooves or fins and boiling heat transfer to maximize the heat transfer capability, is the most promising candidate. The HV devices, that are able to transfer large amounts of heat (1-20 MW m-2) efficiently, have therefore been developed specifically for this application. Until recently, there have been few attempts to observe the detailed bubble characteristics and vortex evolvement of coolant flowing inside their various parts and understand of the internal two-phase complex heat transfer mechanism behind the vapotron effect. This research builds the experimental facilities of HyperVapotron Loop-I (HVL-I) and Pressure Water HyperVapotron Loop-II (PWHL-II) to implement the subcooled boiling principle experiment in terms of typical flow parameters, geometrical parameters of test section and surface heat flux, which are similar to those of the ITER-like first wall and NBI components (EAST and MAST). The multiphase flow and heat transfer phenomena on the surface of grooves and triangular fins when the subcooled water flowed through were observed and measured with the planar laser induced fluorescence (PLIF) and high-speed photography (HSP) techniques. Particle image velocimetry (PIV) was selected to reveal vortex formation, the flow structure that promotes the vapotron effect during subcooled boiling. The coolant flow data for contributing to the understanding of the vapotron phenomenon and the assessment of how the design and operational conditions that might affect the thermal performance of the devices were collected and analysed. The subcooled flow boiling model and methods of HV heat transfer adopted in the considered computational fluid dynamics (CFD) code were evaluated by comparing the calculated wall temperatures with the
International Nuclear Information System (INIS)
The experiments were carried out for a horizontal pool boiling of saturated water using a transparent ITO heating surface. Details of boiling structure near the heated surface have been clearly observed by applying the total reflection and diagonal view techniques in a synchronized manner. Mechanisms for the bubble coalescence and dry area expansion processes were clearly identified. The base of the large massive bubble was mostly dry with some trapped liquid. The appearance of this large dry area at high heat flux close to CHF was basically resulted from the multiple steps of bubble coalescences which occur while the bubbles are growing, attached to the boiling surface not before they depart from the boiling surface. The thin liquid layer with distributed vapor stems was not observed under the large massive bubble. (author)
Gas turbine heat transfer and cooling technology
Han, Je-Chin; Ekkad, Srinath
2012-01-01
FundamentalsNeed for Turbine Blade CoolingTurbine-Cooling TechnologyTurbine Heat Transfer and Cooling IssuesStructure of the BookReview Articles and Book Chapters on Turbine Cooling and Heat TransferNew Information from 2000 to 2010ReferencesTurbine Heat TransferIntroductionTurbine-Stage Heat TransferCascade Vane Heat-Transfer ExperimentsCascade Blade Heat TransferAirfoil Endwall Heat TransferTurbine Rotor Blade Tip Heat TransferLeading-Edge Region Heat TransferFlat-Surface Heat TransferNew Information from 2000 to 20102.10 ClosureReferencesTurbine Film CoolingIntroductionFilm Cooling on Rotat
Energy Technology Data Exchange (ETDEWEB)
Hyvaerinen, J. [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland); Kouhia, J. [VTT Energy, Lappeenranta (Finland)
1997-12-31
The presentation summarises the highlights of experimental results obtained for VVER type horizontal steam generator heat transfer, primary side flow pattern, and mixing in the hot collector during secondary side boil-off with primary at single-phase natural circulation. The experiments were performed using the PACTEL facility with Large Diameter (LD) steam generator models, with collector instrumentation designed specifically for these tests. The key findings are as follows: (1) the primary to secondary heat transfer degrades as the secondary water inventory is depleted, following closely the wetted tube area; (2) a circulatory flow pattern exists in the tube bundle, resulting in reversed flow (from cold to the hot collector) in the lower part of the tube bundle, and continuous flow through the upper part, including the tubes that have already dried out; and (3) mixing of the hot leg flow entering the hot collector and reversed, cold, tube flow remains confined within the collector itself, extending only a row or two above the elevation at which tube flow reversal has taken place. 6 refs.
Heat transfer in two-phase flow at high reduced pressures
Yagov, V. V.; Minko, M. V.
2011-04-01
It is shown that heat transfer that takes place in vapor-liquid flows in the region of high reduced pressures is mainly due to the nucleate boiling mechanism even at high values of vapor quality. At relatively low heat fluxes, a noticeable enhancement of heat transfer is observed as vapor quality increases. A procedure for calculating heat transfer is proposed, which is confirmed by a comparison of calculated results with experimental data on the boiling of carbon dioxide and other liquids in channels.
Visualization of supercritical fluid pseudo-boiling under forced convection
International Nuclear Information System (INIS)
Supercritical carbon dioxide flow has been visualized by a white light to inspect forced convection heat transfer. A 'pseudo-boiling' phenomenon which occurred in supercritical range for carbon dioxide flow was supposed to cause heat transfer deterioration. The effect of the pseudo-boiling phenomenon to the heat transfer has been investigated by the visualized images in this study. (author)
Measuring of heat transfer coefficient
DEFF Research Database (Denmark)
Henningsen, Poul; Lindegren, Maria
Subtask 3.4 Measuring of heat transfer coefficient Subtask 3.4.1 Design and setting up of tests to measure heat transfer coefficient Objective: Complementary testing methods together with the relevant experimental equipment are to be designed by the two partners involved in order to measure the h...
Axial and radial void fraction profiles of sub-cooled boiling flow in vertically heated annulus
International Nuclear Information System (INIS)
One of the main challenges in operating this kind of a reactor system are in the complexities of two-phase flow around the rods driven by a vertically distributed heat flux in the rods. This is because the void fraction (vapour fraction) distribution significantly affects the reactor power and is one of the important parameters that determine the heat transfer capability and the possible occurrence of critical heat flux. Knowledge of the time averaged void fraction distribution as well as the velocity profiles of the liquid phase are of great relevance in design of these systems, for providing validation data for thermal-hydraulic CFD codes, as well as for design of nuclear safety systems. In this contribution, measurements for radial void fraction distribution will be reported for a vertical upward flowing sub-cooled boiling flows in an internally heated annulus of a cylinder. The annulus channel consists of an inner electrical-heater rod with a diameter of 25 mm and an outer round pipe with an inner diameter of 75 mm. The design of this unit is as per scale-down rules presented by Situ et al. A schematic of the experimental loop, and a photograph of the setup is shown
Optimization of Heat Transfer Mode Determination in TASS/SMR-S Core Heat Transfer Model
International Nuclear Information System (INIS)
TASS/SMR-S is a system analysis code for safety and performance analysis of SMART. In the core heat transfer model of TASS/SMR-S, the surface heat flux and the surface temperature on the fuel rod are calculated using the following equations. q' = K1(T1- Tsurf ) (1) q' = h(Tsurf - Tcoolant ) (2) where K1 is the conductivity per unit length at the outer surface(W/mK), T1 is the volume averaged temperature of the outermost mesh(K), Tsurf is the surface temperature of the fuel rod(K), h is heat transfer coefficient(W/m2K) and Tcoolant is the coolant average temperature(K). In the previous code logics critical heat flux (CHF) location and minimum film boiling (MFB) location must be calculated to determine the heat convection mode on the surface of the fuel rod. The calculation of CHF and MFB locations takes much time-consuming work because of many iterative calculations. To reduce the calculation time occupied by the core heat transfer model, new method to determine the heat convection mode is required. In this study the logics without calculation of CHF and MFB locations are introduced and applied to the analysis
Li, Fenfang; Nguyen, Dang Minh; Ohl, Claus-Dieter
2016-01-01
We report about an intriguing boiling regime occurring for small heaters embedded on the boundary in subcooled water. The microheater is realized by focusing a continuous wave laser beam to about $10\\,\\mu$m in diameter onto a 165\\,nm-thick layer of gold, which is submerged in water. After an initial vaporous explosion a single bubble oscillates continuously and repeatably at several $100\\,$kHz. The microbubble's oscillations are accompanied with bubble pinch-off leading to a stream of gaseous bubbles into the subcooled water. The self-driven bubble oscillation is explained with a thermally kicked oscillator caused by the non-spherical collapses and by surface pinning. Additionally, Marangoni stresses induce a recirculating streaming flow which transports cold liquid towards the microheater reducing diffusion of heat along the substrate and therefore stabilizing the phenomenon to many million cycles. We speculate that this oscillate boiling regime may allow to overcome the heat transfer thresholds observed dur...
Critical heat flux for free convection boiling in thin rectangular channels
International Nuclear Information System (INIS)
A review of the experimental data on free convection boiling critical heat flux (CHF) in vertical rectangular channels reveals three mechanisms of burnout. They are the pool boiling limit, the circulation limit, and the flooding limit associated with a transition in flow regime from churn to annular flow. The dominance of a particular mechanism depends on the dimensions of the channel. Analytical models were developed for each free convection boiling limit. Limited agreement with data is observed. A CHF correlation, which is valid for a wide range of gap sizes, was constructed from the CHFs calculated according to the three mechanisms of burnout. 17 refs., 7 figs
International Nuclear Information System (INIS)
Burnout heat flux was measured in subcooled pool boiling of water under attached boiling bubbles on heating surface with bubble holding plate in ground experiment. A thin stainless flat plate was employed for heating surface. The experimental setup and the heating procedures were same as used in reduced gravity experiment performed by a parabolic flight of jet aircraft. Same burnout heat flux as in the reduced gravity was obtained by adjusting the clearance between the bubble holder and the heating surface. They were 100 ∝ 400 percent higher than the widely accepted existing theories. As extending heating time longer than the reduced gravity duration until burnout occurred, burnout heat flux decreased gradually and became a constant value calculated from the existing theories. In a result of observing contact area of boiling bubbles with transparent heating surface, the contact area was smaller in quick heating time than that in long time heating at same heat flux. The experimental results suggest in microgravity that liquid layer is remained between rapidly expanded bubbles and heating surface. In microgravity experiment by a drop shaft facility, contact area of bubbles with heating surface increased considerably at starting of microgravity. (orig.)
Myers, Jerry G.; Hussey, Sam W.; Yee, Glenda F.; Yerramilli, Vamsee K.; Kim, Jungho
2005-01-01
The lack of temporally and spatially resolved measurements under nucleate bubbles has complicated efforts to fully explain pool-boiling phenomena. The objective of this current work is to acquire time and space resolved temperature distributions under nucleate bubbles on a constant heat flux surface. This was performed using a microheater array with 100 micron resolution that allowed effectively simultaneous measurements of surface temperature while supplying a constant dissipative heat flux. This data is then correlated with high speed (> 1000Hz) visual recordings of the bubble growth and departure from the heater surface acquired from below and from the side of the heater. The data indicate that a significant source of energy during bubble nucleation and initial growth is the superheated layer around the bubble. Bubble coalescence was not observed to decrease surface temperature as significantly as bubble departure from the surface. Since bubble departure is typically followed by a sharp increase in the heater surface temperature, it is surmised that the departing bubble effectively removes the superheated layer, allowing a high local heat transfer rate with the bulk fluid through transient conduction/micro-convection during rewetting.
Experimental investigations of heat transfer at dry patch location in annular two-phase flow
International Nuclear Information System (INIS)
New experiments have been performed to investigate heat transfer to water/steam two-phase mixture flowing in annular test section at trans-dryout conditions. The measurements have been carried out in the High-pressure Water Test (HWAT) loop at the Royal Institute of Technology, Stockholm, Sweden. The primary objective of the experiment investigations has been to study heat transfer at conditions typical for Boiling Water Reactors (BWR), when heat transfer regime changes from convective boiling to post-dryout heat transfer. The experiments indicate a significant enhancement of heat transfer just upstream of dryout patch. It has been observed that the measured heat transfer coefficient is in good agreement with the Chen correlation for quality less than 30%, however, increasing discrepancy is noted for near-critical quality. (author)
International Nuclear Information System (INIS)
A unified critical heat flux prediction model for flow boiling in uniformly heated tubes is suggested based on liquid film dryout. The model successively calculates CHF for bubbly and annular flow with implication of flow regime transition criteria using single governing equation for the liquid film on a heated wall with regard to the mass transfer at the film interface. Assessment was conducted with large experimental data (9821) from KAIST CHF data bank and the model was proved to have reasonable prediction accuracy with the average error and RMS error of 0.8 % and 19.2 %, respectively. The error and parametric CHF trend analysis of the model revealed needs for the implication of slug flow and mass transfer terms in bubbly flow for a more reliable model
Duan, Zhipeng; He, Boshu; Duan, Yuanyuan
2015-07-01
Modelling fluid flows past a body is a general problem in science and engineering. Historical sphere drag and heat transfer data are critically examined. The appropriate drag coefficient is proposed to replace the inertia type definition proposed by Newton. It is found that the appropriate drag coefficient is a desirable dimensionless parameter to describe fluid flow physical behavior so that fluid flow problems can be solved in the simple and intuitive manner. The appropriate drag coefficient is presented graphically, and appears more general and reasonable to reflect the fluid flow physical behavior than the traditional century old drag coefficient diagram. Here we present drag and heat transfer experimental results which indicate that there exists a relationship in nature between the sphere drag and heat transfer. The role played by the heat flux has similar nature as the drag. The appropriate drag coefficient can be related to the Nusselt number. This finding opens new possibilities in predicting heat transfer characteristics by drag data. As heat transfer for flow over a body is inherently complex, the proposed simple means may provide an insight into the mechanism of heat transfer for flow past a body.
McHale, John P.; Garimella, Suresh V.
2013-01-01
The effect of surface roughness on nucleate boiling heat transfer is not clearly understood. This study is devised to conduct detailed heat transfer and bubble measurements during boiling on a heater surface with controlled roughness. This second of two companion papers presents an analysis of heat transfer and bubble ebullition in nucleate boiling with new measures of surface roughness: area ratio, surface mean normal angle, and maximum idealized surface curvature. An additional length scale...
Widener, Edward L.
1992-01-01
The objective is to introduce some concepts of thermodynamics in existing heat-treating experiments using available items. The specific objectives are to define the thermal properties of materials and to visualize expansivity, conductivity, heat capacity, and the melting point of common metals. The experimental procedures are described.
An improved mechanistic critical heat flux model for subcooled flow boiling
Energy Technology Data Exchange (ETDEWEB)
Kwon, Young Min [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)
1997-12-31
Based on the bubble coalescence adjacent to the heated wall as a flow structure for CHF condition, Chang and Lee developed a mechanistic critical heat flux (CHF) model for subcooled flow boiling. In this paper, improvements of Chang-Lee model are implemented with more solid theoretical bases for subcooled and low-quality flow boiling in tubes. Nedderman-Shearer`s equations for the skin friction factor and universal velocity profile models are employed. Slip effect of movable bubbly layer is implemented to improve the predictability of low mass flow. Also, mechanistic subcooled flow boiling model is used to predict the flow quality and void fraction. The performance of the present model is verified using the KAIST CHF database of water in uniformly heated tubes. It is found that the present model can give a satisfactory agreement with experimental data within less than 9% RMS error. 9 refs., 5 figs. (Author)
Microscale and Nanoscale Heat Transfer
Volz, Sebastian
2007-01-01
The book constitutes a particularly complete and original collection of ideas, models, numerical methods and experimental tools which will prove invaluable in the study of microscale and nanoscale heat transfer. It should be of interest to research scientists and thermal engineers who wish to carry out theoretical research or metrology in this field, but also to physicists concerned with the problems of heat transfer, or teachers requiring a solid foundation for an undergraduate university course in this area.
Post DNB heat transfer experiments for PWR fuel assemblies
International Nuclear Information System (INIS)
Nuclear Power Engineering Corporation (NUPEC) and Mitsubishi performed heat transfer experiments on post DNB (departure from nucleate boiling) for the pressurized water reactor (PWR) fuel assemblies under the sponsorship of the Japanese Ministry of Economy, Trade and Industry (METI) as one of a series of fuel assembly verification tests. Based on the obtained experimental data, a new evaluation model for the fuel rod heat transfer behavior after DNB was developed. A large safety margin, which had remained in the present thermal-hydraulic design that did not allow DNB, was confirmed by applying the developed model to the PWR plant safety analysis. (author)
Heat transfer in turbulent mixed convection
International Nuclear Information System (INIS)
The contents of this book are: Basic Equations of Convective Heat Transfer; Basic Information on the Theory of Turbulent Heat Transfer in Flow Near Walls; Heat Transfer in Laminar Mixed Convection; Turbulent Mixed Convection in Boundary Layers; Turbulent Flow and Heat Transfer in Horizontal Channels; Turbulent Flow and Heat Transfer in Vertical Channels; and Gravitational Effects on Heat Transfer in a Single-Phase Fluid Near the Critical Point
Decay heat removal under boiling condition in a pin-bundle geometry
International Nuclear Information System (INIS)
Decay heat removal capability under boiling condition was investigated using an electrically heated 37-pin bundle test section. The flow was driven by natural circulation force of the out-of-pile sodium loop SIENA in O-arai Engineering Center, PNC. As the heater power was increased, the two-phase flow regime changed from bubbly flow to slug flow and then to annular or annular mist flow. In 15 runs, dry-out was not observed in the average exit quality region of less than 0.5. The results indicated the existance of a large ''boiling window'' for low flow rate and low power conditions. (author)
Physical concept and calculation of boiling point in a pulsating heat pipe
Directory of Open Access Journals (Sweden)
Naumova A. N.
2014-06-01
Full Text Available LED development is accompanied by the need to ensure a constructive solution for the thermal conditions problem. For this purpose one can use pulsating heat pipes (PHP, that operate more efficiently after the start of heat carrier boiling. This article describes the physical representation and formula that allows determining the boiling point, which is a lower bound of the PHP effective operating range. It is shown that the main factors influencing the required heat flow are driving capillary pressure and velocity of the vapor bubble. The formula was obtained for the closed PHP made of the copper with water as a heat carrier. Information about this heat flux can be used for further design of cooling systems for heat-sensitive elements, such as LED for promising lighting devices.
Shang, De-Yi
2012-01-01
This book presents recent developments in our systematic studies of hydrodynamics and heat and mass transfer in laminar free convection, accelerating film boiling and condensation of Newtonian fluids, as well as accelerating film flow of non-Newtonian power-law fluids (FFNF). These new developments provided in this book are (i) novel system of analysis models based on the developed New Similarity Analysis Method; (ii) a system of advanced methods for treatment of gas temperature- dependent physical properties, and liquid temperature- dependent physical properties; (iii) the organically combined models of the governing mathematical models with those on treatment model of variable physical properties; (iv) rigorous approach of overcoming a challenge on accurate solution of three-point boundary value problem related to two-phase film boiling and condensation; and (v) A pseudo-similarity method of dealing with thermal boundary layer of FFNF for greatly simplifies the heat-transfer analysis and numerical calculati...
International Nuclear Information System (INIS)
Drying in subresidually-saturated systems at elevated temperatures has been studied for two different operating conditions. One condition started with flowing nitrogen gas through the test section and simultaneously heating up the porous medium at the same time (denoted in what follows as the ''transient heating case''). The other condition started initially with heating up the porous medium with no flow, and then running the nitrogen gas flow through the test section after a steady-state temperature distribution had been reached (denoted in what follows as the ''steady heating case''). A 90 degrees C isothermal boundary condition was set on the aluminum wall. An average of 9% discrepancy in the mass balance calculation compared to the digital balance measurement has been found in the transient heating case. An average of 4.3% discrepancy in the mass balance calculation compared to the digital balance measurement has been found after the nitrogen gas flowed through test section for the steady heating case. A large discrepancy has also been found before the nitrogen gas admitted to the test section. This is because some of subresidual water in the test section has been drained out from the bottom due to the gravity effect and the strong convection flow in the porous medium before the nitrogen gas is admitted. This discrepancy may be reduced by closing the end tube at bottom before the nitrogen gas is admitted to the test section. The drying characteristics of this system are reported. A theoretical study has also been initiated in an attempt to supplement the experimental results, and this system is described in the report. A one-dimensional transient system is assumed in which a two-component (condensable and noncondensable) gas mixture flows through a porous medium with evaporation. The numerical calculation will be performed in the future work to compare to the experimental results
Heat transfer enhancement with nanofluids
Bianco, Vincenzo; Nardini, Sergio; Vafai, Kambiz
2015-01-01
Properties of NanofluidSamuel Paolucci and Gianluca PolitiExact Solutions and Their Implications in Anomalous Heat TransferWenhao Li, Chen Yang and Akira NakayamaMechanisms and Models of Thermal Conductivity in NanofluidsSeung-Hyun Lee and Seok Pil JangExperimental Methods for the Characterization of Thermophysical Properties of NanofluidsSergio Bobbo and Laura FedeleNanofluid Forced ConvectionGilles RoyExperimental Study of Convective Heat Transfer in NanofluidsEhsan B. Haghighi, Adi T. Utomo, Andrzej W. Pacek and Björn E. PalmPerformance of Heat Exchangers Using NanofluidsBengt Sundén and Za
Heat transfer from oriented heat exchange areas
Vantuch, Martin; Huzvar, Jozef; Kapjor, Andrej
2014-03-01
This paper deals with the transfer of heat-driven heat transfer surface area in relation to the construction of the criterion equation for "n" horizontal pipe one about another. On the bases of theoretical models have been developed for calculating the thermal performance of natural convection by Churilla and Morgan, for various pipe diameters and temperatures. These models were compared with models created in CFD-Fluent Ansys the same boundary conditions. The aim of the analyse of heat and fluxional pipe fields "n" pipes one about another at natural convection is the creation of criterion equation on the basis of which the heat output of heat transfer from pipe oriented areas one above another with given spacing could be quantified. At presence a sum of criterion equations exists for simple geometrical shapes of individual oriented geometrical areas but the criterion equation which would consider interaction of fluxional field generated by free convection from multiple oriented areas is not mentioned in standardly accessible technical literature and other magazine publications.
Burnout in a high heat flux boiling system with forced supply of liquid through a plane jet
International Nuclear Information System (INIS)
As for pool boiling, the non-dimensional formula for the burnout heat flux of a simple, basic boiling system has been obtained. On the other hand, in forced convection boiling, the studies on the burnout in forced flow boiling in a channel have been continued, but the derivation of a non-dimensional formula applicable generally is far away from the realization because the phenomena are too complex. Accordingly, in this study, the result of the experiment on the burnout of a boiling system to which liquid is supplied by the plane jet flowing out of a thin rectangular nozzle installed near the front edge of a rectangular heating surface is reported. The experimental apparatus is described, and the experiment was carried out in the ranges of two jet thicknesses at the nozzle outlet, two incident angles of jet and from 1.5 to 15 m/s of jet velocity. Burnout occurs under the situation of sufficiently developed nuclear boiling. A part of the liquid supplied from a plane jet is blown apart by the vapor blowing out of the nuclear boiling liquid layer covering the heating surface in the nuclear boiling with sufficiently developed high heat flux. However, the nuclear boiling liquid layer itself continues to exist on the heating surface till burnout occurs. Only the entering velocity of the plane jet affects burnout heat flux. (Kako, I.)
Energy Technology Data Exchange (ETDEWEB)
Boyer, B.D.; Parlatan, Y.; Slovik, G.C. [and others
1995-09-01
RELAP5 MOD3.1.1 is being used to simulate Loss of Coolant Accidents (LOCA) for the Simplified Boiling Water Reactor (SBWR) being proposed by General Electric (GE). One of the major components associated with the SBWR is the Passive Containment Cooling System (PCCS) which provides the long-term heat sink to reject decay heat. The RELAP5 MOD3.1.1 code is being assessed for its ability to represent accurately the PCCS. Data from the Phase 1, Step 1 Heat Transfer Tests performed at Toshiba`s Gravity-Driven Integral Full-Height Test for Passive Heat Removal (GIRAFFE) facility will be used for assessing the ability of RELAP5 to model condensation in the presence of noncondensables. The RELAP5 MOD3.1.1 condensation model uses the University of California at Berkeley (UCB) correlation developed by Vierow and Schrock. The RELAP5 code uses this heat transfer coefficient with the gas velocity effect multiplier being limited to 2. This heat transfer option was used to analyze the condensation heat transfer in the GIRAFFE PCCS heat exchanger tubes in the Phase 1, Step 1 Heat Transfer Tests which were at a pressure of 3 bar and had a range of nitrogen partial pressure fractions from 0.0 to 0.10. The results of a set of RELAP5 calculations at these conditions were compared with the GIRAFFE data. The effects of PCCS cell noding on the heat transfer process were also studied. The UCB correlation, as implemented in RELAP5, predicted the heat transfer to {plus_minus}5% of the data with a three--node model. The three-node model has a large cell in the entrance region which smeared out the entrance effects on the heat transfer, which tend to overpredict the condensation. Hence, the UCB correlation predicts condensation heat transfer correlation implemented in the code must be removed to allow for accurate calculations with smaller cell sizes.
International Nuclear Information System (INIS)
An approach for unification of theoretical critical hea flux (CHF) prediction is suggested based on liquid film dryout for flow boiling in uniformly heated tubes. The model successively calculates CHF for bubbly and annular flow with incorporating flow regime transition criteria using a single governing equation for the liquid film on a heated wall with regard to the mass transfer at the film interface. Assessment was conducted with large experimental data sets (9821) from KAIST CHF data bank and the model was proved to have reasonable prediction accuracy with the average error and RMS error of 0.8% and 19.2%, respectively. The error and parametric CHF trend analysis of the model revealed the need for the consideration of slug flow and mass transfer terms in bubbly flow for a more reliable model. (author)
Boiling water reactor stability analysis by stochastic transfer function identification
International Nuclear Information System (INIS)
The univariate and the bivariate ARMA models are proposed as the stochastic transfer function models for the identification of BWR systems. This technique has been developed as a new method for on-line system identification, optimum control, and malfunction monitoring of nuclear power plants. The relationships between the stochastic transfer function model and the differential equation model are derived. The estimation algorithms are developed through the related covariance functions and Green's function by the least squares method. It has been shown that the stochastic models can also be used for fitting the stochastic data which are contaminated with sinusoidal waves. Both the univariate and the bivariate modeling are applied in the BWR system identification and stability analysis. The univariate modeling is applied to decompose the pressure dynamics from the neutron data. From both of the normal operation data and the perturbation experiment data, the reactor dynamics are consistently estimated. The dynamics of the reactor core are estimated as a second order mode with a natural frequency of 0.4 Hz and a damping ratio of 0.1. The univariate modeling is also applied to monitor the local performance of the coolant channel in the reactor. The transfer functions between system's variables are obtained by use of bivariate modeling. The obtained transfer functions are closely related to the stability analysis of thermal-hydraulics in the reactor. The transition of the system dynamics from normal operation to the perturbation experiment are observed
Annaratone, Donatello
2010-01-01
This book is a generalist textbook; it is designed for anybody interested in heat transmission, including scholars, designers and students. Two criteria constitute the foundation of Annaratone's books, including the present one. The first one consists of indispensable scientific rigor without theoretical exasperation. The inclusion in the book of some theoretical studies, even if admirable for their scientific rigor, would have strengthened the scientific foundation of this publication, yet without providing the reader with further applicable know-how. The second criterion is to deliver practi
What Is the Boiling Point and Heat of Vaporization of Sulfuric Acid?
Myers, R. Thomas
1983-01-01
Discusses the values presented in various handbooks for the boiling point and heat of vaporization of sulfuric acid, noting discrepencies. Analyzes various approaches to data presentation, discussing the data on sulfuric acid in light of the Trouton constant. Points out the need for a more critical use of tables. (JM)
Heat transfer management in PEMFC
International Nuclear Information System (INIS)
Full text: Proton exchange membrane fuel cell (PEMFC) is a very promising type of fuel cell regarding energy efficiency, power density and specific power, though it is still facing major technical challenges to the commercialization, including water management, thermal management, R and D of new materials with lower cost and better performance, etc. Thermal management is a challenging issue due to the facts that PEM fuel cells must be operated in a narrow suitable temperature range, that it is difficult to remove the generated heat which is no less than the electric energy produced while the heat generation is usually non-uniform. It is critical to clearly understand the mechanism of heat and mass transfer issues in PEM fuel cells to realize better thermal management, including heat generation, heat transfer mechanism, temperature distribution, mass distribution, etc. Numerical modeling is a very useful tool in studying mechanism of heat generation, heat and mass transfer as well as other issues in PEM fuel cells but, the models should be validated with experimental measurements. In this respect, in-situ diagnosis is a crucial approach to the understanding of such issues and validation of modeling study. (authors)
An experimental study of flow boiling in a rectangular channel with offset strip fins
International Nuclear Information System (INIS)
An experimental study on saturated flow boiling heat transfer of R113 was performed in a vertical rectangular channel with offset strip fins. Two-phase pressure gradients and boiling heat transfer coefficients in an electrically heated test section were measured for the quality range of 0-0.6, mass flux range of 17-43 kg/m2 s and heat flux of 500-3000 W/m2. Two-phase frictional multiplier was determined as a function of Martinelli parameter. The two-phase forced convective component of the local boiling heat transfer coefficient was found to be well correlated with the Reynolds number factor. A superposition method for the flow boiling heat transfer coefficient that included the contribution of saturated nucleate boiling was verified also for flow boiling in a channel with offset strip fins. The predictions of local flow boiling heat transfer coefficients were found to be in good agreement with experimental data
International Nuclear Information System (INIS)
In order to realize steady-state operation of the neutral beam injection (NBI) system with high beam energy, an accurate thermal analysis and a prediction about working conditions of heat-removal structures inside high-heat-flux (HHF) components in the system are key issues. In this paper, taking the HHF ion dump with swirl tubes in NBI system as an example, an accurate thermal dynamic simulation method based on computational fluid dynamics (CFD) and the finite volume method is presented to predict performance of the HHF component. In this simulation method, the Eulerian multiphase method together with some empirical corrections about the inter-phase transfer model and the wall heat flux partitioning model are considered to describe the subcooled boiling. The reliability of the proposed method is validated by an experimental example with subcooled boiling inside swirl tube. The proposed method provides an important tool for the refined thermal and flow dynamic analysis of HHF components, and can be extended to study the thermal design of other complex HHF engineering structures in a straightforward way. The simulation results also verify that the swirl tube is a promising heat removing structure for the HHF components of the NBI system. (fusion engineering)
Essentials of radiation heat transfer
Balaji
2014-01-01
Essentials of Radiation Heat Transfer is a textbook presenting the essential, fundamental information required to gain an understanding of radiation heat transfer and equips the reader with enough knowledge to be able to tackle more challenging problems. All concepts are reinforced by carefully chosen and fully worked examples, and exercise problems are provided at the end of every chapter. In a significant departure from other books on this subject, this book completely dispenses with the network method to solve problems of radiation heat transfer in surfaces. It instead presents the powerful radiosity-irradiation method and shows how this technique can be used to solve problems of radiation in enclosures made of one to any number of surfaces. The network method is not easily scalable. Secondly, the book introduces atmospheric radiation, which is now being considered as a potentially important area, in which engineers can contribute to the technology of remote sensing and atmospheric sciences in general, b...
Heat transfer from rough surfaces
International Nuclear Information System (INIS)
Artificial roughness is often used in nuclear reactors to improve the thermal performance of the fuel elements. Although these are made up of clusters of rods, the experiments to measure the heat transfer and friction coefficients of roughness are performed with single rods contained in smooth tubes. This work illustrated a new transformation method to obtain data applicable to reactor fuel elements from these annulus experiments. New experimental friction data are presented for ten rods, each with a different artificial roughness made up of two-dimensional rectangular ribs. For each rod four tests have been performed, each in a different outer smooth tube. For two of these rods, each for two different outer tubes, heat transfer data are also given. The friction and heat transfer data, transformed with the present method, are correlated by simple equations. In the paper, these equations are applied to a case typical for a Gas Cooled Fast Reactor fuel element. (orig.)
Advances in heat transfer volume 21
Hartnett †, James P; Cho, Young I
1991-01-01
This volume in a series on heat transfer covers the modelling of the dynamics of turbulent transport processes, supercritical pressures, hydrodynamics, mass transfer near rotating surfaces, lost heat in entropy and the mechanics of heat transfer in a multifluid bubbling pool. Other related titles are "Advances in Heat Transfer", volumes 18, 19 and 20.
Heat Transfer in Steelmaking Ladle
Institute of Scientific and Technical Information of China (English)
André Zimmer; (A)lvaro Niedersberg Correia Lima; Rafael Mello Trommer; Saulo Roca Bragan(c)a; Carlos Pérez Bergmann
2008-01-01
The heat transfer in a steelmaking ladle was studied. The evaluation of heat transfer of the steel was performed by measuring steel temperature in points including all refining steel process. In the ladle, the temperatures in the refractories and the shell were also measured. To evaluate the thermal profile between the hot and cold faces of the ladle in the slag line position, an experiment which shows the importance of thermal contact resistance was car-ried out. Higher heat losses in the tapping and the vacuum were verified. The temperature measurements of the ladle indicate distinct thermal profiles in each stage of steel refining. Moreover, aseach stage of the process depends on the previous one, the complexity of the ladle thermal control is incremental. So a complete model of heat losses in the ladle is complex.
Heat transfer during piston compression
International Nuclear Information System (INIS)
An experimental and theoretical study has been carried out to determine the unsteady heat transfer from a nonreacting gas to the end wall of a channel during the piston compression of a single stroke. A thin platinum film resistance thermometer records the surface temperature of the wall during the compression. A conduction analysis in the wall, subject to the measured surface temperature variation, then yields the unsteady heat flux. A separate analysis based on the solution of the laminar boundary layer equations in the gas provides an independent determination of the heat flux. The two results are shown to be in good agreement. This is true for measurements that were made in air and in argon. Results for the heat transfer coefficient as a function of time are also presented and exhibit a nonmonotonic variation
Heat transfer correlations in mantle tanks
DEFF Research Database (Denmark)
Furbo, Simon; Knudsen, Søren
2005-01-01
the inlet increases, natural convection starts to dominate. The heat transfer between the wall of the inner hot water tank and the domestic water is governed by natural convection. The results of the CFD-calculations are used to determine improved heat transfer correlations based on dimensionless analysis....... The heat transfer determined by these correlations is compared to the heat transfer determined by the CFD-calculations. The comparisons showed a good agreement between the heat transfer determined by the heat transfer correlations and the heat transfer determined by CFD-calculations. Consequently, the heat...... transfer correlations are suitable as input for a detailed simulation model for mantle tanks. The heat transfer correlations determined in this study are somewhat different from previous reported heat transfer correlations. The reason is that this study includes more mantle tank designs and operation...
Natural heat transfer augmentation in passive advanced BWR plants
International Nuclear Information System (INIS)
In the European Simplified Boiling Water Reactor (ESBWR), the long-term post-accident containment pressure is determined by the combination of non condensable gas pressure and steam pressure in the wet well gas space. Since there are no active systems for heat removal in the wet well, energy transmitted to the wet well gas space, by a variety of means, must be removed by passive heat transfer to the walls and suppression pool (SP). The cold suppression pool located below the hotter gas space provides a stable configuration in which convection currents are suppressed thus limiting heat and mass transfer between the gas space and pool. However, heat transfer to the walls results in natural circulation currents that can augment the heat and mass transfer to the pool surface. Using a simplified model, parametric studies are carried out to show that augmentation of the order of magnitude expected can significantly impact the heat and mass transfer to the pool. Additionally a review of available literature in the area of augmentation and mixed convection of this type is presented and indicates the need for additional experimental work in order to develop adequate models for heat and mass transfer augmentation in the configuration of a BWR suppression pool. (author)
A theoretical prediction of critical heat flux in forced convection boiling during power transients
International Nuclear Information System (INIS)
In this paper, a theoretical prediction of critical heat flux (CHF) during power transients in forced convective boiling is presented. The analysis is restricted to the departure from nucleate boiling (DNB) type of CHF at low qualities. The developed theory is compared with the experimental data available in the literature. The agreement is favorable. The results are discussed in terms of the various parameters affecting the transient CHF. This new model also is compared with the semi-empirical transient CHF model in the literature
Directory of Open Access Journals (Sweden)
Piasecka Magdalena
2016-01-01
Full Text Available The aim of the paper is to estimate effect of the heating surface enhancement on FC-72 flow boiling heat transfer for a vertical minichannel 1.7 mm deep, 24 mm wide and 360 mm long. Two types of enhanced heating surfaces were used: one with minicavities distributed unevenly, and the other with capillary metal fibrous structure. It was to measure temperature field on the plain side of the heating surface by means of the infrared thermography and to observe the two-phase flow patterns on the enhanced foil side. The paper analyses mainly the impact of the microstructured heating surface on the heat transfer coefficient. The results are presented as heat transfer coefficient dependences on the distance along the minichannel length. The data obtained using two types of enhanced heating surfaces in experiments was compared with the data when smooth foil as the heating surface was used. The highest local values of heat transfer coefficient were obtained using enhanced foil with minicavities - in comparison to other cases. Local values of heat transfer coefficient received for capillary fibrous structure were the lowest, even compared with data obtained for smooth foil. Probably this porous structure caused local flow disturbances.
Uncertainty study on RELAP5 reflood post-CHF heat transfer model
International Nuclear Information System (INIS)
In the best estimate plus uncertainty analysis of large break loss of coolant accident (LBLOCA), the key is the study on uncertainty analysis of reflood post-CHF heat transfer model. In this paper, the uncertainty of RELAP5 reflood post-CHF heat transfer model was studied. The transition boiling model of reflood was evaluated through the transition boiling test data at 0.1-0.4 MPa by Weisman and the film boiling model of reflood was evaluated through the film boiling test data at low pressure by Idaho National Engineering Laboratory (INEL). The probability distribution function of the model was obtained, which can be used in the LBLOCA uncertainty analysis. (authors)
Determination of the heat transfer coefficient from IRT measurement data using the Trefftz method
Maciejewska Beata; Strąk Kinga; Piasecka Magdalena
2016-01-01
The paper presents the method of heat transfer coefficient determination for boiling research during FC-72 flow in the minichannels, each 1.7 mm deep, 24 mm wide and 360 mm long. The heating element was the thin foil, enhanced on the side which comes into contact with fluid in the minichannels. Local values of the heat transfer coefficient were calculated from the Robin boundary condition. The foil temperature distribution and the derivative of the foil temperature were obtained by solving th...
Flow visualization and critical heat flux measurement of a boundary layer pool boiling process
International Nuclear Information System (INIS)
As part of the effort to evaluate the concept of external passive cooling of core melt by cavity flooding under severe accident conditions, a subscale boundary layer boiling (SBLB) facility, consisting of a pressurized water tank with a condenser unit, a heated hemispherical test vessel, and a data acquisition/photographic system, was developed to simulate the boiling process on the external bottom surface of a fully submerged reactor vessel. Transient quenching and steady-state boiling experiments were conducted in the facility to measure the local critical heat flux (CHF) and observe the underlying mechanisms under well controlled saturated and subcooled conditions. Large elongated vapor slugs were observed in the bottom region of the vessel which gave rise to strong upstream influences in the resulting two-phase liquid-vapor boundary layer flow along the vessel outer surface. The local CHF values deduced from the transient quenching data appeared to be very close to those obtained in the steady-state boiling experiments. Comparison of the SBLB data was made with available 2-D full-scale data and the differences were found to be rather small except in a region near the bottom center of the vessel. The angular position of the vessel outer surface and the degree of subcooling of water had dominant effects on the local critical heat flux. They totally dwarfed the effect of the physical dimensions of the test vessels. (author)
Energy Technology Data Exchange (ETDEWEB)
Bankoff, S.G. [Northwestern Univ., Evanston, IL (United States)
1997-12-31
Subcooled boiling boiling refers to boiling from a solid surface where the bulk liquid temperature is below the saturation temperature (subcooled). Two classes are considered: (1) nucleate boiling, where, for large subcoolings, individual bubbles grow and collapse while remaining attached to the solid wall, and (2) film boiling, where a continuous vapor film separates the solid from the bulk liquid. One mechanism by which subcooled nucleate boiling results in very large surface heat transfer coefficient is thought to be latent heat transport within the bubble, resulting from simultaneous evaporation from a thin residual liquid layer at the bubble base, and condensation at the polar bubble cap. Another is the increased liquid microconvection around the oscillating bubble. Two related problems have been attacked. One is the rupture of a thin liquid film subject to attractive and repulsive dispersion forces, leading to the formation of mesoscopic drops, which then coalesce and evaporate. Another is the liquid motion in the vicinity of an oscillating contact line, where the bubble wall is idealized as a wedge of constant angle sliding on the solid wall. The subcooled film boiling problem has been attacked by deriving a general long-range nonlinear evolution equation for the local thickness of the vapor layer. Linear and weakly-nonlinear stability results have been obtained. A number of other related problems have been attacked.
International Nuclear Information System (INIS)
Flow induced vibrations (FIVs) are important and interesting phenomena from the view point of reactor safety. In nuclear power plants, fuel pins in reactor cores, heat exchange tubes in steam generators and some other complex structures can cause FIVs. Especially, in Boiling Water Reactor, subcooled or saturated boiling flows induce vibrations. These vibrations result in fretting wear of the structures and may cause a radioactive leakage. This paper deals with an experimental investigation of the cylindrical rod's vibrations induced from boiling an condensation phenomena on the circumferential surface of itself. The measurements were conducted changing the bulk water temperature from the saturation temperature at an atmospheric pressure to the degree of subcooling up to around 30 K. (author)
Heat transfer of contact resistance
International Nuclear Information System (INIS)
The coefficient of heat transfer h, which is defined as the ratio of the heat flux Q per unit area Asub(a) at a distance from the contact surface to the temperature drop ΔTsub(c) on the contact surfaces [h=Q/(Asub(a)ΔTsub(c))], was measured for fuel rods made of natural uranium cladded in pure aluminium of the type A5. A rod of stainless steel 304 and a rod of yellow brass, both cladded in aluminium, served as reference. Theoretical work was done to compute the coefficient of heat transfer h. The surfaces were rather rough, forming ''hills and valleys'', that could be observed under high magnification. Contact was made only at a few discrete points, and there was no heat flux beside the contact spots (the cladding was done in vacuum so that there was no fluid or gas between the contact surfaces). The numerical calculation was carried out by a computer. The size of the metal contact spots was found to depend on the pressure between the contact surfaces. It was established that a pressure of 4 kg/cm2 existed between the fuel and its cladding. The pressure increases as the fuel rods are heated to higer temperatures because of thermal expansion. The measured coefficients of heat transfer, h, were 650, 940, and 1300 kcal/[hr.m2.(deg C)] at contact temperatures of 27-33, 43-50, 69-76 deg C, respectively. Theoretical calculations yielded a value of 1100 kcal/[hr.m2.(deg C)]. In agreement with these calculations, experimental measurements showed that the coefficient of heat transfer depended highly on the contact pressure. Assuming exponential dependence (h=psup(m)), a coefficient of m=1.04 was found. (authors)
Contribution to the study of natural convection in a boiling medium with power density transfer
International Nuclear Information System (INIS)
This study has been carried out in the framework of fast reactor safety studies and deals with the fuel boiling problem in case of flow blockage at the bottom of a fuel assembly. The experimental part of this study bringss new informations characteristic of a boiling fluid bath (water) simulating in a transient and in a steady regime (pressure, temperature, void fraction, heat flux at the walls). It points out a relation between heat losses through the walls and the importance of the monophase zone of the bath. A model has been developed from the analysis of experimental results. It is based on a quasi-stationary state and allows to find the evolution of the characteristic values in confined transient regime
Observation of critical heat flux mechanism in horizontal pool boiling of saturated water
International Nuclear Information System (INIS)
Highlights: • A large dry patch is formed under a coalesced massive bubble. • A residual dry patch is produced at the departure of the coalesced massive bubble. • The residual dry patch expands to larger one due to enhanced nucleation activity. • Continuous re-expansion of the residual dry patch triggers the boiling crisis. - Abstract: We observed the global boiling structure and dynamic behavior of dry areas in a synchronized manner to identify the critical heat flux (CHF) triggering mechanism in a horizontal pool boiling of saturated water. A transparent Indium Tin Oxide (ITO) heating surface was used to accommodate a total reflection technique. The total reflection images captured the detailed processes of the generation of discrete dry spots, the formation and rewetting of large dry patches, and the irreversible expansion of the dry patch which led to the occurrence of the CHF. Contrary to the common postulation that a thin liquid film exists stably under a coalesced massive bubble, the base of hovering massive bubbles was almost dry at more than 10% below the CHF condition. The key element that determines the occurrence of the CHF was the production of the residual dry patch and consecutive re-expansion of the residual dry patch owing to the enhanced bubble nucleation activity with an increase in wall superheat, rather than the complete dryness of a boiling surface under a hovering massive bubble. The dry area fraction of the present water boiling test was similar to that of the R-113 boiling test in the literature in spite of significant differences in the wettability and physical properties
Heat transfer and fluid flow in nuclear systems
Fenech, Henri
1982-01-01
Heat Transfer and Fluid in Flow Nuclear Systems discusses topics that bridge the gap between the fundamental principles and the designed practices. The book is comprised of six chapters that cover analysis of the predicting thermal-hydraulics performance of large nuclear reactors and associated heat-exchangers or steam generators of various nuclear systems. Chapter 1 tackles the general considerations on thermal design and performance requirements of nuclear reactor cores. The second chapter deals with pressurized subcooled light water systems, and the third chapter covers boiling water reacto
Literature survey of heat transfer enhancement techniques in refrigeration applications
Energy Technology Data Exchange (ETDEWEB)
Jensen, M.K.; Shome, B. [Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Mechanical Engineering, Aeronautical Engineering and Mechanics
1994-05-01
A survey has been performed of the technical and patent literature on enhanced heat transfer of refrigerants in pool boiling, forced convection evaporation, and condensation. Extensive bibliographies of the technical literature and patents are given. Many passive and active techniques were examined for pure refrigerants, refrigerant-oil mixtures, and refrigerant mixtures. The citations were categorized according to enhancement technique, heat transfer mode, and tube or shell side focus. The effects of the enhancement techniques relative to smooth and/or pure refrigerants were illustrated through the discussion of selected papers. Patented enhancement techniques also are discussed. Enhanced heat transfer has demonstrated significant improvements in performance in many refrigerant applications. However, refrigerant mixtures and refrigerant-oil mixtures have not been studied extensively; no research has been performed with enhanced refrigerant mixtures with oil. Most studies have been of the parametric type; there has been inadequate examination of the fundamental processes governing enhanced refrigerant heat transfer, but some modeling is being done and correlations developed. It is clear that an enhancement technique must be optimized for the refrigerant and operating condition. Fundamental processes governing the heat transfer must be examined if models for enhancement techniques are to be developed; these models could provide the method to optimize a surface. Refrigerant mixtures, with and without oil present, must be studied with enhancement devices; there is too little known to be able to estimate the effects of mixtures (particularly NARMs) with enhanced heat transfer. Other conclusions and recommendations are offered.
Multidimensional mechanistic modeling of interfacial heat and mass transfer
International Nuclear Information System (INIS)
A combined theoretical and computational study in modeling multidimensional, diabatic vapor/liquid flows is presented. Models have been developed governing kinematic aspects of multiphase flow as well as interfacial mass and heat transfer for flows of condensable gas (vapor) and liquids. The modeling formulation is based on the Reynolds averaged Navier-Stokes (RANS) type multi-field approach which utilizes a complete set of conservation equations for each fluid component 1. The modeled interfacial interactions include energy, mass, and momentum transfer. Emphasis in the model development work has been placed on the mechanisms governing coupled interfacial heat and mass transfer between the liquid and vapor fields (condensation and/or boiling). A method for tracking changes in bubble size is presented and tested. Locally based models of multidimensional effects have been analyzed, including distributions of fluid temperatures and volume fractions. The overall model accounts for both kinematic and thermodynamic nonequilibrium between the component fluids including superheated vapor. The model has been implemented in the NPHASE-CMFD computer code. Results from the kinematic model are compared to experimental data and good agreement is demonstrated. The heat and mass transfer model is parametrically tested to show the multidimensional effects on the rate of heat and mass transfer. These effects are explained in terms of local characteristics of the two-phase flow. The model is applied to a scenario of saturated vapor injected into a subcooled flow through a heated, porous wall. This provides a reasonable approximation to subcooled boiling. The results are found to be dependent on the partitioning of the wall heat flux between direct liquid heating and vapor generation. However, the observed dependencies are explained and the modeling is considered consistent. (authors)
Upward Flow Boiling to DI-Water and Cuo Nanofluids Inside the Concentric Annuli
N. Vaeli; M. M. Sarafraz; Peyghambarzadeh, S. M.; F Hormozi
2015-01-01
In this work, flow boiling heat transfer coefficients of deionized water and copper oxide water-based nanofluids at different operating conditions have been experimentally measured and compared. The liquid flowed in an annular space. According to the experiments, two distinguished heat transfer regions with two different mechanisms can be seen namely forced convective and nucleate boiling regions. Results demonstrated that with increasing the applied heat flux, flow boiling heat transfer coef...
Assessment on Heat Transfer Prediction Capability of SPACE Code for PASCAL
Energy Technology Data Exchange (ETDEWEB)
Jeon, Seongsu; Lee, Kyungjin; Hong, Soonjoon [Heungdeok IT Valley, Yongin (Korea, Republic of); Cheon, Jong; KIm, Hangon [KHNP, Daejeon (Korea, Republic of)
2014-05-15
For this purpose, this study performed followings using SPACE 2.14, safety analysis code developed in South Korea: SPACE modeling for PAFS Condensing heat removal Assessment Loop (PASCAL), the comparison of main heat transfer parameters between PASCAL data and SPACE results. In this study, assessments on heat transfer prediction capability of SPACE code for PASCAL were performed. It was found that the both the condensation models of Shah and Chato and the boiling model of Chen under-predicted the PASCAL data. It is necessary to improve the condensation and boiling heat transfer models in SPACE code for the optimal safety analysis of PAFS. In APR+, a passive auxiliary feedwater system (PAFS) was adopted as an improved safety design concept; and then there have been many efforts to develop the PAFS. In order to perform the safety analysis of APR+, it is required to assess the heat transfer prediction capability of thermal hydraulic analysis code for PAFS.
Assessment on Heat Transfer Prediction Capability of SPACE Code for PASCAL
International Nuclear Information System (INIS)
For this purpose, this study performed followings using SPACE 2.14, safety analysis code developed in South Korea: SPACE modeling for PAFS Condensing heat removal Assessment Loop (PASCAL), the comparison of main heat transfer parameters between PASCAL data and SPACE results. In this study, assessments on heat transfer prediction capability of SPACE code for PASCAL were performed. It was found that the both the condensation models of Shah and Chato and the boiling model of Chen under-predicted the PASCAL data. It is necessary to improve the condensation and boiling heat transfer models in SPACE code for the optimal safety analysis of PAFS. In APR+, a passive auxiliary feedwater system (PAFS) was adopted as an improved safety design concept; and then there have been many efforts to develop the PAFS. In order to perform the safety analysis of APR+, it is required to assess the heat transfer prediction capability of thermal hydraulic analysis code for PAFS
Energy Technology Data Exchange (ETDEWEB)
Arevalo J, P
1998-12-31
At this thesis it is studied the heat transfer by natural convection in an horizontal cavity, it is involved a boiling`s part that is described the regimes and correlations differences for boiling`s curve. It is designed a horizontal cavity for realize the experimental part and it`s mention from equipment or instrumentation to succeed in a experimentation that permits to realize the analysis of heat transfer, handling as water fluid at atmospheric pressure and where it`s present process from natural convection involving part boiling`s subcooled. The system consists of heater zone submerged in a horizontal cavity with water. Once part finished experimental with information to obtained it`s proceeded to obtain a correlation, realized starting from analysis dimensionless such as: Jakob, Bond and Grasoft (Boiling) besides of knows in natural convection: Prandtl and Nusselt. The mathematical model explains the behavior for natural convection continued part boiling`s subcooled. It is realize analysis graphics too where it`s show comparing with Globe Dropkin and Catton equations by natural convection with bottom heating. (Author)
Transient Heat Transfer in Cylinpers.
Directory of Open Access Journals (Sweden)
M.G. Chopra
2000-07-01
Full Text Available A numerical solution has been obtained for transient heat transfer in cylinders by appropriate choice of body ,conforming grid points. The physical domain is transformed to computational domain using elliptic partial differential equation technique, wherein the grid spacing becomes uniform. The advantage of this method is that the discretisation of transformed equations. and accompanying boundary conditipns becdme very simple. The applicability of this method is very broad, as it can beused for carryinI giout study of any comple'x domain in contrast to finite difference methods, which have limited applicability. Detailedcalculations have been carried out to trace the evolution of temperaturedistribution frpm the initiial stages to the steadystate for circular cylinder, elliptical cylinder and square block with circular hole. This paper is aimed for general-shaped bodies and it has been applied to studytransient heat transfer in combustion-driven shock tube.
Downflow film boiling in a rod bundle at low pressure
International Nuclear Information System (INIS)
A series of low pressure downflow film boiling heat transfer experiments were conducted in a 14-foot (4.27 m) long electrically heater rod bundle containing 336 heater rods. The resulting data was compared with the Dougall-Rohsenow dispersed flow film boiling correlation. The data was found to lie below this correlation as the quality was increased. It is believed that buoyancy effects decreased the heat transfer in downflow film boiling. (author)
Energy Technology Data Exchange (ETDEWEB)
Koehler, W; Hein, D
1986-09-01
The influence of the wetting state of a heated surface on heat transfer and pressure loss in an evaporator tube was investigated for a parameter range occurring in fossil-fired steam generators. Included in the analysis are quantities which determine the wetting state in steady and transient flow. The experimental work consists of the following: Occurrence of critical heat flux (CHF) and post-CHF heat transfer in a vertical upflow evaporator tube; influence of pressure and enthalpy transients on heat transfer in the unwetted region; influence of pipe orientation on heat transfer; and two phase flow pressure loss in wetted and unwetted region. Based on these experiments a method of predicting CHF for a vertical upflow evaporator tube was developed. The heat transfer in the unwetted region was newly formulated taking into account thermal nonequilibrium between the water and steam phases. Wall temperature excursions during pressure and enthalpy transients are interpreted with the help of the boiling curve and the Leidenfrost phenomenon. A method is developed by means of which it is possible to determine the influence of the pipe orientation on the location of the boiling crisis as well as on the heat transfer in the unwetted region. The influence of the wetting state of the heated surface on the two phase flow pressure loss is interpreted as ''Wall effect'' and is calculated using a simplified computer model. 68 refs., 83 figs.
Channel orientation and geometry influence on heat transfer with two-phase forced flow of nitrogen
Klimenko, V. V.; Fyodorov, M. V.; Fomichyov, Yu. A.
The results of an investigation of tube diameter and orientation influence on two-phase forced flow heat transfer of nitrogen are presented. In vertical channels a diameter effect is revealed in a transition from convective to less intensive nucleate boiling when the Froude number of a mixture, Fr m = w m(gd) - 1/2 decreases from 40 to 10. On the contrary, in horizontal non-stratified flow, the reduction of the Frm number is accompanied by heat transfer enhancement in the upper part of the channel because of the formation of a thin liquid film there. This leads to a notable increase (20-30%), averaged over the cross-section, of heat transfer coefficient in the nucleate boiling region. If Frm ≳ 40 then geometry and orientation do not affect the heat transfer coefficient which can be calculated using the Klimenko correlation.
A Photographic study of subcooled flow boiling burnout at high heat flux and velocity
Energy Technology Data Exchange (ETDEWEB)
Celata, G.P.; Mariani, A.; Zummo, G. [ENEA, National Institute of Thermal-Fluid Dynamics, Rome (Italy); Cumo, M. [University of Rome (Italy); Gallo, D. [University of Palermo (Italy). Department of Nuclear Engineering
2007-01-15
The present paper reports the results of a visualization study of the burnout in subcooled flow boiling of water, with square cross section annular geometry (formed by a central heater rod contained in a duct characterized by a square cross section). The coolant velocity is in the range 3-10m/s. High speed movies of flow pattern in subcooled flow boiling of water from the onset of nucleate boiling up to physical burnout of the heater are recorded. From video images (single frames taken with a stroboscope light and an exposure time of 1{mu}s), the following general behaviour of vapour bubbles was observed: when the rate of bubble generation is increasing, with bubbles growing in the superheated layer close to the heating wall, their coalescence produces a type of elongated bubble called vapour blanket. One of the main features of the vapour blanket is that it is rooted to the nucleation site on the heated surface. Bubble dimensions are given as a function of thermal-hydraulic tested conditions for the whole range of velocity until the burnout region. A qualitative analysis of the behaviour of four stainless steel heater wires with different macroscopic surface finishes is also presented, showing the importance of this parameter on the dynamics of the bubbles and on the critical heat flux. (author)
Heat transfer enhancement by pin elements
Energy Technology Data Exchange (ETDEWEB)
Sahiti, N.; Durst, F.; Dewan, A. [LSTM-Erlangen, Institute of Fluid Mechanics, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Cauerstrasse 4, D-91058 Erlangen (Germany)
2005-11-01
Heat transfer enhancement is an active and important field of engineering research since increases in the effectiveness of heat exchangers through suitable heat transfer augmentation techniques can result in considerable technical advantages and savings of costs. Considerable enhancements were demonstrated in the present work by using small cylindrical pins on surfaces of heat exchangers. A partly quantitative theoretical treatment of the proposed method is presented. It uses simple relationships for the conductive and convective heat transfer to derive an equation that shows which parameters permit the achievement of heat transfer enhancements. Experiments are reported that demonstrate the effectiveness of the results of the proposed approach. It is shown that the suggested method of heat transfer enhancements is much more effective than existing methods, since it results in an increase in heat transfer area (like fins) and also an increase in the heat transfer coefficient. (author)
Post-DNB heat transfer experiments under PWR operating conditions in annular test sections
International Nuclear Information System (INIS)
Single channel post-DNB heat transfer tests were carried out in the high-pressure and high-flow region which bounds PWR operating conditions. They were planned as preliminary tests prior to testing rod bundles. The test section consists of a flow channel with an ID of 15.9mm and a heater rod with an OD of 10.7mm and a heated length of 1.5m. Two types of heater rods, using direct- and indirect- heating, were compared and the indirect sheathed heater has been chosen for the next rod bundle test. The test data were compared with several existing film boiling heat transfer correlations. It was shown that post-DNB heat transfer under PWR conditions is better than predicted by existing film boiling correlations. (author)
Flow and heat transfer characteristics of magnetic nanofluids: A review
International Nuclear Information System (INIS)
Magnetic nanofluids (MNFs) are suspensions which are comprised of a non-magnetic base fluid and magnetic nanoparticles. In this modern set of suspensions which can be called smart or functional fluids, fluid flow, particles movement and heat transfer process can be controlled by applying magnetic fields. Regarding unique characteristics of MNFs, studies in this field have witnessed a phenomenal growth. This paper reviews and summarizes recent investigations implemented on MNFs including those conducted on thermophysical properties, natural convection, forced convection, boiling as well as their practical applications. Moreover, this review identifies the challenges and opportunities for future research. - Highlights: • A review on recent studies on magnetic nanofluids in the field of thermal engineering. • Different categories such as properties, natural and forced convection, and boiling. • Practical applications of magnetic nanofluids in the field of thermal engineering. • Identifying the challenges and opportunities for future research
Flow and heat transfer characteristics of magnetic nanofluids: A review
Energy Technology Data Exchange (ETDEWEB)
Bahiraei, Mehdi, E-mail: m.bahiraei@kut.ac.ir [Mechanical Engineering Department, School of Energy, Kermanshah University of Technology, Kermanshah (Iran, Islamic Republic of); Hangi, Morteza [School of Mechanical Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)
2015-01-15
Magnetic nanofluids (MNFs) are suspensions which are comprised of a non-magnetic base fluid and magnetic nanoparticles. In this modern set of suspensions which can be called smart or functional fluids, fluid flow, particles movement and heat transfer process can be controlled by applying magnetic fields. Regarding unique characteristics of MNFs, studies in this field have witnessed a phenomenal growth. This paper reviews and summarizes recent investigations implemented on MNFs including those conducted on thermophysical properties, natural convection, forced convection, boiling as well as their practical applications. Moreover, this review identifies the challenges and opportunities for future research. - Highlights: • A review on recent studies on magnetic nanofluids in the field of thermal engineering. • Different categories such as properties, natural and forced convection, and boiling. • Practical applications of magnetic nanofluids in the field of thermal engineering. • Identifying the challenges and opportunities for future research.
Heat transfer in the post-dryout region of vertical and horizontal tubes uniformly heated
International Nuclear Information System (INIS)
Increased knowledge of the heat transfer in the post-dryout region is required for novel design of environmentally acceptable power plant technologies (e.g. fluidized bed combustion) and further development of proved steam generators. In particular, the influence of tube orientation and diameter are of consequence. Relating to the onset of critical boiling conditions and the heat transfer in the post-dryout region these aspects were investigated performing 357 tests which cover the operating conditions of fossil fired steam generators. In certain regions of parameters significant differences of the heat transfer behaviour of horizontal and vertical steam generator tubes occured. The experimental results were analysed and compared with theoretical models which were taken from the literature or developed within the frame of this project. (orig.)
Utilization of heat pipes for transfer heat from the flue gas into the heat transfer medium
Directory of Open Access Journals (Sweden)
Lenhard Richard
2014-03-01
Full Text Available The contribution is listed possible application of heat pipes in systems for obtaining heat from flue gas of small heat sources. It is also stated in the contribution design an experimental device on which to study the impact of fill (the quantity, type of load at various temperature parameters (temperature heating and cooling thermal power transferred to the heat pipe. Is listed measurement methodology using heat pipes designed experimental facility, measurement results and analysis of the results obtained.
International Nuclear Information System (INIS)
Forced convective, nonequilibrium post-CHF heat transfer data (766 points) have been obtained at high pressure and low mass flux ranges not previously tested. The data are unique in that the superheated vapor temperature was measured at multiple elevations allowing the direct calculation of vapor generation rates. The data are useful for verification or development of nonequilibrium heat and mass transfer models. Current film boiling heat transfer correlations do not predict the data well. The Dougall-Rohsenow equilibrium correlation is the only one investigated that reasonably predicts the measured wall heat fluxes. Current vapor generation rate models do not adequately predict the measured vapor generation rates
Study of transition to helium film boiling during step-by-step heat load increasing
International Nuclear Information System (INIS)
Transition to helium film boiling during step-by-step heat load increadse has been studied experimentally. The experiments are conducted with the test section of brass foils with the dimensions 65x4x0.05 mm, heated by electric current and heat-insulated from one side, in the range of helium saturation pressure 40-200 kPa at four different orientations of heat- liberating surface in the field of .o.ravitational forces. Experimental results have shown, that with the increase in thermal flow q the value of time tausub(kp) from the moment of thermal loading increase to the moment of film boiling decreases sharply. At that, orientation of heat-liberatin.g surface considerably affects the value tausub(kp). For horizontally oriented sample element its heating side turned upward, the values of tausub(kp) are the highest. With further increase in q the effect of orien-- tation is not observed, and relation of q to tausub(kp) can be described by a simple degree function q=Ctausub(kp)sup(-n), where degree index n for different pressures varies inconsiderably from 0.43 to 0.48. The value of proportionality coefficient C for any pressures of helium saturation can be calculated according to the known value C for atmospheric pressure, using the formula presented
SCDAP/RELAP5 Modeling of Heat Transfer and Flow Losses in Lower Head Porous Debris
International Nuclear Information System (INIS)
Designs are described for implementing models for calculating the heat transfer and flow losses in porous debris in the lower head of a reactor vessel. The COUPLE model in SCDAP/RELAP5 represents both the porous and non-porous debris that results from core material slumping into the lower head. Currently, the COUPLE model has the capability to model convective and radiative heat transfer from the surfaces of non-porous debris in a detailed manner and to model only in a simplistic manner the heat transfer from porous debris. In order to advance beyond the simplistic modeling for porous debris, designs are developed for detailed calculations of heat transfer and flow losses in porous debris. Correlations are identified for convective heat transfer in porous debris for the following modes of heat transfer; (1) forced convection to liquid, (2) forced convection to gas, (3) nucleate boiling, (4) transition boiling, and (5) film boiling. Interphase heat transfer is modeled in an approximate manner. A design is also described for implementing a model of heat transfer by radiation from debris to the interstitial fluid. A design is described for implementation of models for flow losses and interphase drag in porous debris. Since the models for heat transfer and flow losses in porous debris in the lower head are designed for general application, a design is also described for implementation of these models to the analysis of porous debris in the core region. A test matrix is proposed for assessing the capability of the implemented models to calculate the heat transfer and flow losses in porous debris. The implementation of the models described in this report is expected to improve the COUPLE code calculation of the temperature distribution in porous debris and in the lower head that supports the debris. The implementation of these models is also expected to improve the calculation of the temperature and flow distribution in porous debris in the core region
Heat transfer mechanisms in bubbly Rayleigh-Benard convection
Oresta, Paolo; Lohse, Detlef; Prosperetti, Andrea
2008-01-01
The heat transfer mechanism in Rayleigh-Benard convection in a liquid with a mean temperature close to its boiling point is studied through numerical simulations with point-like vapor bubbles, which are allowed to grow or shrink through evaporation and condensation and which act back on the flow both thermally and mechanically. It is shown that the effect of the bubbles is strongly dependent on the ratio of the sensible heat to the latent heat as embodied in the Jacob number Ja. For very small Ja the bubbles stabilize the flow by absorbing heat in the warmer regions and releasing it in the colder regions. With an increase in Ja, the added buoyancy due to the bubble growth destabilizes the flow with respect to single-phase convection and considerably increases the Nusselt number.
Heat exchanger device and method for heat removal or transfer
Koplow, Jeffrey P
2013-12-10
Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.
Heat Transfer in a Thermoacoustic Process
Beke, Tamas
2012-01-01
Thermoacoustic instability is defined as the excitation of acoustic modes in chambers with heat sources due to the coupling between acoustic perturbations and unsteady heat addition. The major objective of this paper is to achieve accurate theoretical results in a thermoacoustic heat transfer process. We carry out a detailed heat transfer analysis…
International Nuclear Information System (INIS)
The glossary defines terms used in the field of heat transfer. The English, French, and German terms in this glossary have been reworked and updated. A section of Japanese terms has also been provided. Terms covered are grouped into the following categories: (1) General Concepts; (2) Dimensional and Similarity Methods; (3) Heat Conduction; (4) Convective Heat Transfer in a Single-Phase Medium; (5) Convective Heat Transfer in Evaporation, Boiling, and Condensation; (6) Mass Transfer; and (7) Radiativae Heat Transfer. Alphabetical indexes of English,Russian, German, French, and Japanese terms are included
International Nuclear Information System (INIS)
One of the main concerns in In-Vessel Retention (IVR) for a severe accident is to guarantee the sufficient cooling performance in order to avoid melt-through of pressure vessel. Under a severe accident condition, the vessel is submerged in water, and then boiling is occurred. The heat removal is limited by critical heat flux (CHF) at the outer surface of the reactor vessel. Therefore, in order to enhance the capability of the IVR in the severe accident of the light-water reactors, methods to increase the CHF should be considered. Various surface modifications of the boiling surface, e.g., integrated surface structures, such as channels and micro-pin fins, and the coating of a micro-porous layer using sintered metal powders and nanoparticle deposition onto the heat transfer surface, have been proven to effectively enhance the CHF in saturated pool boiling. In particular, the critical heat flux by the attachment of a honeycomb-structured porous plate on a flat heated surface facing upward increases more than approximately twice compared to that of a plain surface under saturated pool boiling condition (Mori and Okuyama (2009)). This is attributed to the honeycomb porous plate which provides automatic liquid supply due to capillary action and the reduction of the vapor escape flow resistance due to the separation of the liquid and vapor flow paths. Moreover, it is well-known that the CHF with nanoparticle deposited heated surface is greatly enhanced. However, the effect of the heated surface orientation on the CHF with honeycomb porous plate on nanoparticle deposited surface is not clarified yet. Therefore, we focus on the use of honeycomb porous plate and nanoparticle coated surface to improve the IVR capability in the severe management strategy implemented by light-water reactors. (author)
Pavlov, Yu. M.; Yakovlev, I. V.; Terentiev, Yu. A.; Antipov, V. I.
Results of experimental investigation of transient heat transfer and hydrodynamics of two phase flow in the channel with forced nitrogen circulation under pulse heating conditions are presented. Experimental relationships of channel wall temperature, heat transfer coefficient, pressure in the channel and time of boiling onset and that of crisis of heat transfer from mass flow rate, amplitude of heat pulse and relative channel length are obtained. Experimental results illustrate some regularities of transient heat transfer and hydraulic processes in models of HTSC cable of ICCS type.
Blowdown heat transfer experiment, (1)
International Nuclear Information System (INIS)
Blowdown heat transfer experiment has been carried out with a transparent test section to observe phenomena in coolant behavior during blowdown process. Experimental parameters are discharge position, initial system pressure, initial coolant temperature, power supply to heater rods and number of heater rods. At initial pressure 7-12 ata and initial power 6-50 kw per one heater rod, the flow condition in the test section is a major factor in determining time of DNB occurrence and physical process to DNB during blowdown. (auth.)
Experimental research on heat transfer in a coupled heat exchanger
Liu Yin; Ma Jing; Zhou Guang-Hui; Guan Ren-Bo
2013-01-01
The heat exchanger is a devise used for transferring thermal energy between two or more different temperatures. The widespreadly used heat exchanger can only achieve heat exchange between two substances. In this paper, a coupled heat exchanger is proposed, which includes a finned heat exchanger and a double pipe heat exchanger, for multiple heat exchange simultaneously. An experiment is conducted, showing that the average heating capacity increases more tha...
Sensitivity Study for Wall Boiling Model in ANSYS CFX
International Nuclear Information System (INIS)
Because boiling heat transfer was crucial for the analysis of operation and safety of both nuclear reactors and conventional thermal power systems, extensive studies have been made to develop a variety of methods either to evaluate the boiling heat transfer coefficient or to assess the onset of critical heat flux (CHF) at various operating conditions of heating channels. Because of the limitation in grid resolution for a CFD simulation in comparison with the microscopic length scales of the wall boiling process, empirical closure for some underlying physical process is needed. The main objective of the present study is to conduct the sensitivity study for wall boiling related models in ANSYS CFX R.14 in order to examine the effect of model components on wall boiling heat transfer in an axis-symmetric vertical heated pipe
International Nuclear Information System (INIS)
Heat transfer experiments under steady and transient conditions were performed using molten Wood's metal and distilled water to study heat transfer on the liquid-liquid interface between molten fuel pool and coolant under severe accident conditions. In the steady state experiment, boiling curve was measured over the range from natural convection region to film boiling region. The boiling behavior was observed using a high-speed video camera. In the transient experiment, distilled water was poured onto the hot molten metal surface, and the boiling curve was obtained in the cooling process. Comparing the measured boiling curve with existing correlations and experimental data for solid-liquid and liquid-liquid systems, the following conclusions were drawn: (a) When the interface surge is negligible and oxide layer is formed on the interface, the boiling curve at the liquid-liquid surface could be approximately reproduced by the heat transfer correlations for nucleate boiling and film boiling regions and the critical heat flux correlation for a liquid-solid system. (b) When no oxide layer is formed on the interface, the boiling curve at the liquid-liquid surface moved towards higher wall superheat than that at the liquid-solid surface, as Novakovic et al. observed in their experiment using mercury. (c) Transient heat transfer coefficient for film boiling at the liquid-liquid surface was about 100% higher than that predicted by the heat transfer correlation for a solid-liquid system. (author)
Liquid neon heat transfer as applied to a 30 tesla cryomagnet
Papell, S. S.; Hendricks, R. C.
1975-01-01
Since superconducting magnets cooled by liquid helium are limited to magnetic fields of about 18 teslas, the design of a 30 tesla cryomagnet necessitates forced convection liquid neon heat transfer in small coolant channels. As these channels are too small to handle the vapor flow if the coolant were to boil, the design philosophy calls for suppressing boiling by subjecting the fluid to high pressures. Forced convection heat transfer data are obtained by using a blowdown technique to force the fluid vertically through a resistance-heated instrumented tube. The data are obtained at inlet temperatures between 28 and 34 K and system pressures between 28 to 29 bars. Data correlation is limited to a very narrow range of test conditions, since the tests were designed to simulate the heat transfer characteristics in the coolant channels of the 30 tesla cryomagnet concerned. The results can therefore be applied directly to the design of the magnet system.-
An integral equation model for critical heat flux at subcooled and low quality flow boiling
International Nuclear Information System (INIS)
A new theoretical model of critical heat flux (CHF) is developed for the flow boiling condition from bubble-detached to low quality range. The CHF condition is postulated to occur when the superheated liquid layer on the heated wall, which is formed under the bubbly layer from the point of the onset of significant void generation, is depleted due to the evaporation along the heated length. The model shows a very promising agreement with the uniformly heated round tube data for both water and refrigerants by simply applying well-known constitutive relationships without any tuning constant for the CHF data. The significance of the proposed model in unifying the existing models is also discussed. (orig.)
Reproducibility of heat transfer tests in a 5X5 bundle geometry
International Nuclear Information System (INIS)
This paper describes the repeatability and reliability of bundle heat transfer data obtained in a 5X5 PWR-type bundle subassembly operating at PWR conditions of interest. The 5X5 fuel bundle simulator, installed in the OMEGA-2 loop, is equipped with simple support grids, designed to have a low impact on the flow and heat transfer. The nine central heaters were equipped with the novel sliding thermocouple technique, capable of measuring the detailed axial and circumferential temperature distributions during single-phase and boiling heat transfer tests. In order to obtain highly accurate bundle heat transfer measurements, appropriate experimental procedures and in-situ calibrations of all essential instrumentation were employed. This includes (i) the employment of calibrated reference fluid temperature measurement devices, (ii) in-situ calibrations of fluid and heater-sheath thermocouples, (iii) calibration of heater wall thickness based on in-situ measurements, and (iv) selection of data that satisfy strict acceptance criteria. After applying these corrections and data screening criteria, the measurement accuracy and repeatability was assessed. This was done by means of three different tests: Single Phase Heat Transfer: The repeatability of heat transfer were assessed by comparing the measurements of two separate 5X5 bundles against the predictions from a Dittus-Boelter-type heat transfer correlation which provided very similar results. Also the single-phase heat transfer repeatability was assessed by performing several repeat runs and comparing results obtained on heaters in symmetric locations. Excellent repeatability was noted and the results for symmetric angular locations are almost identical; Boiling Tests: During the boiling heat transfer tests excellent repeatability and symmetry was observed. The saturation temperature (corresponding to the measured outlet temperature) was found to be in very good agreement with (i) the outlet temperature measured by the
Furci, H.; Baudouy, B.; Four, A.; Meuris, C.
2016-01-01
Experiments were conducted on a 2-m high two-phase helium natural circulation loop operating at 4.2 K and 1 atm. The same loop was used in two experiments with different heated section internal diameter (10 and 6 mm). The power applied on the heated section wall was controlled in increasing and decreasing sequences, and temperature along the section, mass flow rate and pressure drop evolutions were recorded. The values of critical heat flux (CHF) were found at different positions of the test section, and the post-CHF regime was studied. The predictions of CHF by existing correlations were good in the downstream portion of the section, however CHF anomalies have been observed near the entrance, in the low quality region. In resonance with this, the re-wetting of the surface has distinct hysteresis behavior in each of the two CHF regions. Furthermore, hydraulics effects of crisis, namely on friction, were studied (Part 2). This research is the starting point to future works addressing transients conducing to boiling crisis in helium natural circulation loops.
Dynamics of heat transfer between nano systems
Biehs, Svend-Age; Agarwal, Girish S.
2012-01-01
We develop a dynamical theory of heat transfer between two nano systems. In particular, we consider the resonant heat transfer between two nanoparticles due to the coupling of localized surface modes having a finite spectral width. We model the coupled nanosystem by two coupled quantum mechanical oscillators, each interacting with its own heat bath, and obtain a master equation for the dynamics of heat transfer. The damping rates in the master equation are related to the lifetimes of localize...
Fast photo-switchable surfaces for boiling heat transfer applications
Energy Technology Data Exchange (ETDEWEB)
Hunter, C. N.; Glavin, N. R.; Voevodin, A. A. [Air Force Research Laboratory, Materials and Manufacturing Directorate, 2941 Hobson Way, Wright-Patterson Air Force Base, Ohio 45433 (United States); Turner, D. B.; Check, M. H. [Universal Technology Corporation, 1270 North Fairfield Road, Dayton, Ohio 45532 (United States); Jespersen, M. L.; Borton, P. T. [University of Dayton Research Institute, 300 College Park, Dayton, Ohio 45469 (United States)
2012-11-05
Several milligrams of the ruthenium-centered organometallic complex, ruthenium bis-4,4 Prime -di(thiomethyl)-2,2 Prime -bipyridine, mono-2 -(2-pyridyl)-1,3-oxathiane ([Ru{l_brace}(HS-CH{sub 2}){sub 2}-bpy{r_brace}{sub 2}{l_brace}pox{r_brace}](PF{sub 6}){sub 2}) were synthesized and used to produce a self assembled monolayer film on a gold substrate. X-ray photoelectron spectroscopy analysis of the film detected the presence of bound thiolate, which is an indication of a chemisorbed film. Water contact angle measurements were performed before and after 5 min of visible light irradiation using an ozone-free 1000 W Xe(Hg) arc source with a 425-680 nm long pass mirror. The contact angle changed from 52 Degree-Sign pre-irradiation (hydrophilic state) to 95 Degree-Sign post-irradiation (hydrophobic state).
Discussion of heat transfer to liquid helium on surface orientation dependence
International Nuclear Information System (INIS)
The surface orientation dependence of heat transfer characteristics in liquid helium was discussed based on previous studies. Judging from their discussions and experimental data, the critical heat fluxes of our measurements come from the upper limit of the heat flux in the regime of continuous vapor columns and patches. To compensate the surface orientation dependence, we modified the gravitational force term in a theoretical equation for the critical heat flux with a horizontal surface. Then, the evaluations by the modified equation were compared with our experimental results. Film boiling heat transfer coefficient with the variation of surface orientation was also discussed based on two-phase boundary layer treatment of free convection film boiling. It was confirmed that our experiments were consistent with the theory. (author)
Energy Technology Data Exchange (ETDEWEB)
Boscary, J. [CEA Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Direction des Sciences de la Matiere]|[Association Euratom-CEA, Centre d`Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee
1997-03-01
The design of plasma facing components is crucial for plasma performance in next fusion reactors. These elements will be submitted to very high heat flux. They will be actively water-cooled by swirl tubes in the subcooled boiling regime. High heat flux experiments were conducted in order to analyse the heat transfer and to evaluate the critical heat flux. Water-cooled mock-ups were one-side heated by an electron beam gun for different thermal-hydraulic conditions. The critical heat flux was detected by an original method based on the isotherm modification on the heated surface. The wall heat transfer law including forced convection and subcooled boiling regimes was established. Numerical calculations of the material heat transfer conduction allowed the non-homogeneous distribution of the wall temperature and of the wall heat flux to be evaluated. The critical heat flux value was defined as the wall maximum heat flux. A critical heat flux model based on the liquid sublayer dryout under a vapor blanket was established. A good agreement with test results was found. (author) 197 refs.
Energy Technology Data Exchange (ETDEWEB)
Boscary, J.
1995-10-01
The design of plasma facing components is crucial for plasma performance in next fusion reactors. These elements will be submitted to very high heat flux. They will be actively water-cooled by swirl tubes in the subcooled boiling regime. High heat flux experiments were conducted in order to analyse the heat transfer and to evaluate the critical heat flux. Water-cooled mock-ups were one-side heated by an electron beam gun for different thermal-hydraulic conditions. The critical heat flux was detected by an original method based on the isotherm modification on the heated surface. The wall heat transfer law including forced convection and subcooled boiling regimes was established. Numerical calculations of the material heat transfer conduction allowed the non-homogeneous distribution of the wall temperature and of the wall heat flux to be evaluated. The critical heat flux value was defined as the wall maximum heat flux. A critical heat flux model based on the liquid sublayer dryout under a vapor blanket was established. A good agreement with test results was found. (author). 198 refs., 126 figs., 21 tabs.
International Nuclear Information System (INIS)
Boiling transition and inverted annular heat transfer for R-113 have been investigated experimentally in a horizontal tube of 1.2 X 10/sup -3/ meter inner diameter with heating length over inner diameter ratio of 50. Experiments cover a high mass flux density range, a high local subcooling range and a wide local pressure range. Heat transfer characteristics were obtained by using heat flux control steady-state apparatus. Film boiling treated here is limited to the case of inverted annular heat transfer with very thin vapor film, on the order of 10/sup -6/ meter. Moreover, film boiling region is always limited to a certain downstream part, since the system has a pressure gradient along the flow direction. Discussions are presented on the parametric trends of boiling heat transfer characteristic curves and characteristic points. The possible existence is suggested of a spontaneous nucleation control surface boiling phenomena. And boiling transition heat flux and inverted annular heat transfer were correlated
Experimental investigation on Heat Transfer Performance of Annular Flow Path Heat Pipe
Energy Technology Data Exchange (ETDEWEB)
Kim, In Guk; Kim, Kyung Mo; Jeong, Yeong Shin; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of)
2015-05-15
Mochizuki et al. was suggested the passive cooling system to spent nuclear fuel pool. Detail analysis of various heat pipe design cases was studied to determine the heat pipes cooling performance. Wang et al. suggested the concept PRHRS of MSR using sodium heat pipes, and the transient performance of high temperature sodium heat pipe was numerically simulated in the case of MSR accident. The meltdown at the Fukushima Daiichi nuclear power plants alarmed to the dangers of station blackout (SBO) accident. After the SBO accident, passive decay heat removal systems have been investigated to prevent the severe accidents. Mochizuki et al. suggested the heat pipes cooling system using loop heat pipes for decay heat removal cooling and analysis of heat pipe thermal resistance for boiling water reactor (BWR). The decay heat removal systems for pressurized water reactor (PWR) were suggested using natural convection mechanisms and modification of PWR design. Our group suggested the concept of a hybrid heat pipe with control rod as Passive IN-core Cooling System (PINCs) for decay heat removal for advanced nuclear power plant. Hybrid heat pipe is the combination of the heat pipe and control rod. In the present research, the main objective is to investigate the effect of the inner structure to the heat transfer performance of heat pipe containing neutron absorber material, B{sub 4}C. The main objective is to investigate the effect of the inner structure in heat pipe to the heat transfer performance with annular flow path. ABS pellet was used instead of B{sub 4}C pellet as cylindrical structures. The thermal performances of each heat pipes were measured experimentally. Among them, concentric heat pipe showed the best performance compared with others. 1. Annular evaporation section heat pipe and annular flow path heat pipe showed heat transfer degradation. 2. AHP also had annular vapor space and contact cooling surface per unit volume of vapor was increased. Heat transfer
Heat transfer in SiC compact heat exchanger
International Nuclear Information System (INIS)
For development of a compact SiC heat exchanger, numerical heat transfer analysis was conducted to investigate its performance for a wide range of thermal media, liquid LiPb and helium gas, flow rates. The numerical model used was based on the heat exchanger test module developed by the authors. Within the authors' experimental range, the heat quantity transferred from high temperature liquid LiPb to helium gas and the overall heat transfer coefficients obtained numerically are in agreement with the experimental results. Therefore, the numerical model has proved to be valid for estimation of heat transfer phenomena in the heat exchanger in incompressible regime. The heat quantity transferred from LiPb to He amounts up to 3.7 kW at helium pressure of 0.5 MPa. On the basis of the numerical results, a correlation for helium forced convection heat transfer in the heat exchanger is presented, which describes numerical results with an error of 1%. For heat transfer in LiPb, the Nusselt numbers calculated from an existing correlation for liquid metal heat transfer agree well with the present numerical results. The heat transfer of LiPb in the SiC compact heat exchanger would possibly be predicted from the conventional correlations based on the studies of liquid metal convective heat transfer. A concept of SiC compact heat exchanger studied could be applied to a design of intermediate heat exchangers operating at high temperatures in fusion reactor, as well as HTTR and VHTR systems.
Flow and Heat Transfer Characteristics in a Closed-Type Two-Phase Loop Thermosyphon
Imura, Hideaki; Saito, Yuji; Fujimoto, Hiromitsu
A closed-loop two-phase thermosyphon can transport a large amount of thermal energy with small temperature differences without any external power supply. A fundamental investigation of flow and heat transfer characteristics was performed experimentally and theoretically using water, ethanol and R113 as the working liquids. Heat transfer coefficients in an evaporator and a condenser, and circulation flow rates were measured experimentally. The effects of liquid fill charge, rotation angle, pressure in the loop and heat flux on the heat transfer coefficients were examined. The heat transfer coefficients in the evaporator and the condenser were correlated by the expressions for pool boiling and film condensation respectively. As a result, the heat transfer coefficients in the evaporator were correlated by the Stephan-Abdelsalam equations within a±40% error. Theoretically, the circulation flow rate was predicted by calculating pressure, temperature, quality and void fraction along the loop. And, the comparison between the calculated and experimental results was made.
Heat transfer models in narrow gap
International Nuclear Information System (INIS)
For severe accident assessment in a light water reactor (LWR), heat transfer models in a narrow annular gap between the overheated core debris and the reactor pressure vessel (RPV) are important to evaluate the integrity of RPV and emergency procedures. Some heat transfer models have been proposed as gap cooling CHF (critical heat flux) but the effects of superheat on the heat transfer surface were not taken into account. This paper presents the effects of superheat based on existing data and heat transfer models in a narrow gap. (author)
Engineering calculations in radiative heat transfer
Gray, W A; Hopkins, D W
1974-01-01
Engineering Calculations in Radiative Heat Transfer is a six-chapter book that first explains the basic principles of thermal radiation and direct radiative transfer. Total exchange of radiation within an enclosure containing an absorbing or non-absorbing medium is then described. Subsequent chapters detail the radiative heat transfer applications and measurement of radiation and temperature.
Stability of coaxial jets confined in a tube with heat and mass transfer
Mohanta, Lokanath; Cheung, Fan-Bill; Bajorek, Stephen M.
2016-02-01
A linear temporal stability of coaxial confined jets in a vertical tube involving heat and mass transfer at the interface is presented in this paper. A potential flow analysis that includes the effect of viscosity at the interface is performed in analyzing the stability of the system. Film boiling in a vertical tube gives rise to the flow configuration explored in this work. The effects of various non-dimensional parameters on the growth rate and the neutral curve are discussed. The heat transfer at the interface has been characterized by introducing a heat flux ratio between the conduction heat flux and the evaporation heat flux. Viscous forces and the heat and mass transfer at the interface are found to stabilize the flow both in the capillary instability region and Kelvin-Helmholtz instability region. Increasing heat and mass transfer at the interface stabilizes the flow to small as well as very large wave numbers.
International Nuclear Information System (INIS)
In the process of evaluation of safety margins, two categories of codes are used to assess the behavior of reactor systems under various accident and transient scenarios. These are: evaluation model (EM) codes for licensing evaluation and best estimate (BE) codes for realistic prediction. Comparison of calculational results from EM and BE codes provides indication of a safety margin. In BE codes, heat transfer correlations used are based upon available thermal-hydraulic data. Since the current data base does not cover the range of expected thermal-hydraulic conditions, an element of judgement has to be made in correlation recommendations. However, as new data become available, especially from bundle geometries, the BE recommendations are being continuously checked against new data and recommendations updated. This updating process takes place every 1 or 2 years. The most recent updating was done in the beginning of 1981 when a large amount of bundle heat transfer data became available from the thermal-hydraulic test facility (THTF), located at ORNL, in its heavily-instrumented bundle. Additional useful data from other U.S. and foreign facilities were also used. The application of various thermal-hydraulic models in the context of large-break LOCA, small-break LOCA, and transients are shown. The BE heat transfer packages that are undergoing updating are transient CHF, post-CHF film boiling, rewet and steam heat transfer. A complete package would also include transition boiling, critical flow, CCFL and entrainment. These items have not been updated pending comparison with more data in the future
Efficient solution of a three-dimensional inverse heat conduction problem in pool boiling
International Nuclear Information System (INIS)
In this paper, we consider a three-dimensional transient inverse heat conduction problem arising in pool boiling experiments, i.e., the reconstruction of the surface heat flux from pointwise temperature observations inside a heater. We show that the inverse problem is ill-posed and utilize Tikhonov regularization and conjugate gradient methods together with a discrepancy stopping rule for a stable solution. We investigate the proper choice of regularization terms, which not only affects stability of the reconstructions but also greatly influences the quality of reconstructions in the case of limited observations. For the numerical solution of the governing partial differential equation, a space-time finite element method is used. This allows us to compute exact gradients for the discretized Tikhonov functional, and enables the use of conjugate gradient methods for the solution of the regularized inverse problem. We discuss further aspects of an efficient implementation, including a multilevel optimization strategy, together with an implementable stopping criterion. Finally, the proposed algorithms are applied to the reconstruction of local boiling heat fluxes from experimental data
Garg, Vijay K.
2001-01-01
The turbine gas path is a very complex flow field. This is due to a variety of flow and heat transfer phenomena encountered in turbine passages. This manuscript provides an overview of the current work in this field at the NASA Glenn Research Center. Also, based on the author's preference, more emphasis is on the computational work. There is much more experimental work in progress at GRC than that reported here. While much has been achieved, more needs to be done in terms of validating the predictions against experimental data. More experimental data, especially on film cooled and rough turbine blades, are required for code validation. Also, the combined film cooling and internal cooling flow computation for a real blade is yet to be performed. While most computational work to date has assumed steady state conditions, the flow is clearly unsteady due to the presence of wakes. All this points to a long road ahead. However, we are well on course.
Heat and mass transfer in particulate suspensions
Michaelides, Efstathios E (Stathis)
2013-01-01
Heat and Mass Transfer in Particulate Suspensions is a critical review of the subject of heat and mass transfer related to particulate Suspensions, which include both fluid-particles and fluid-droplet Suspensions. Fundamentals, recent advances and industrial applications are examined. The subject of particulate heat and mass transfer is currently driven by two significant applications: energy transformations –primarily combustion – and heat transfer equipment. The first includes particle and droplet combustion processes in engineering Suspensions as diverse as the Fluidized Bed Reactors (FBR’s) and Internal Combustion Engines (ICE’s). On the heat transfer side, cooling with nanofluids, which include nanoparticles, has attracted a great deal of attention in the last decade both from the fundamental and the applied side and has produced several scientific publications. A monograph that combines the fundamentals of heat transfer with particulates as well as the modern applications of the subject would be...