WorldWideScience

Sample records for boiler soot blowers

  1. Optimum geometry for boiler soot blowers nozzles; Geometria optima de toberas para deshollinadores de caldera

    Energy Technology Data Exchange (ETDEWEB)

    Espinoza Garza, Jesus; Garcia Tinoco, Guillermo J.; Martinez Flores, Jose Oscar [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1989-12-31

    For boiler soot blowing converging-diverging nozzles are employed, whose function is to convert thermal energy of a gas into kinetic energy to remove the deposits that adhere to the heat exchanger surfaces. In this paper are described the experimental equipment and the methods for flow, dynamic pressure, discharge velocity and air expansion factor calculation in each nozzle, as a function of its design geometry, utilizing air from a five stage centrifugal compressor. The graphic analysis of the results, concludes that the most efficient nozzles are not the ones than develop the greatest velocity, but the ones of highest dynamic pressure at the outlet. The nozzle geometry that allows obtaining the maximum dynamic air pressure at the discharge is A{sub 2}/A{sub g}=1.3676 [Espanol] Para el deshollinado de calderas se utilizan las toberas convergentes-divergentes, cuya funcion es convertir la energia termica de un gas en energia cinetica para remover los depositos que se adhieren a las superficies de intercambio de calor. En este trabajo se describen el equipo experimental y los metodos de calculo para flujo, presion dinamica, velocidad a la descarga y factor de expansion del aire en cada tobera, como funcion de su geometria de diseno. Durante la experimentacion se evaluaron siete disenos diferentes de toberas, empleando aire de un compresor centrifugo de cinco etapas. Del analisis grafico de los resultados, se concluye que las toberas mas eficientes no son las que desarrollan mayor velocidad sino las de mayor presion dinamica de la salida. La geometria de tobera que permite obtener la maxima presion dinamica del aire a la descarga es A{sub 2}/A{sub g} = 1.3676.

  2. Application of Steam Soot Blower in the Water Cooled Walls of Pulverized Coal Boiler%蒸汽吹灰装置在煤粉锅炉水冷壁上的应用

    Institute of Scientific and Technical Information of China (English)

    赵华; 王菲

    2015-01-01

    主要介绍了马钢220 t/h锅炉蒸汽吹灰系统的设备特性及运行情况,分析了蒸汽吹灰器在运行中存在的问题以及解决措施,估算了蒸汽吹灰所带来的经济效益。%The equipment characteristics and operation state of the steam soot blowing system at the 220 t/h boiler of MaSteel are mainly introduced, problems in operation of the steam soot blower and solutions are analyzed and the economic benefit brought by the steam soot blowing is also estimated.

  3. Soot blower using fuel gas as blowing medium

    Science.gov (United States)

    Tanca, Michael C.

    1982-01-01

    A soot blower assembly (10) for use in combination with a coal gasifier (14). The soot blower assembly is adapted for use in the hot combustible product gas generated in the gasifier as the blowing medium. The soot blower lance (20) and the drive means (30) by which it is moved into and out of the gasifier is housed in a gas tight enclosure (40) which completely surrounds the combination. The interior of the enclosure (40) is pressurized by an inert gas to a pressure level higher than that present in the gasifier so that any combustible product gas leaking from the soot blower lance (20) is forced into the gasifier rather than accumulating within the enclosure.

  4. Optimization in the design and efficiency of retractable soot blowers; Optimacion del diseno y la eficiencia de sopladores de hollin retractiles

    Energy Technology Data Exchange (ETDEWEB)

    Diego Marin, Antonio [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1987-12-31

    In this article the importance of soot blowers in the subject of design, operation and maintenance are described and the effects that its inefficient functioning causes in the steam generators. The activities and the results of a project for the evaluation of the functioning of the soot blowers in the Comision Federal de Electricidad (CFE) boilers. Finally, the scope of a new project oriented towards the retractable soot blowers efficiency optimization, and to the creation of the infra-structure to substitute the import of its components. [Espanol] En este articulo se describe la importancia de los sopladores de hollin en los aspectos de diseno, operacion y mantenimiento, y los efectos que su funcionamiento deficiente produce en los generadores de vapor. Se presentan tambien las actividades y los resultados de un proyecto para evaluar el funcionamiento de los deshollinadores de las calderas de la Comision Federal de Electricidad (CFE). Finalmente, se presenta el alcance de un nuevo proyecto que se orienta a optimar la eficiencia de los sopladores de hollin retractiles y a crear la infraestructura para sustituir las importaciones de sus componentes.

  5. Intelligent soot blowing for boilers co-firing waste and biofuel; Behovsstyrd sotblaasning foer bio- och avfallseldade pannor - inventering och teknikval

    Energy Technology Data Exchange (ETDEWEB)

    Kjoerk, Anders [S.E.P. Scandinavian Energy Project AB, Goeteborg (Sweden)

    2003-11-01

    To achieve optimum boiler operation and performance it is necessary to control the cleanliness and limit the fouling of the heat transfer surfaces. Historically, the heating surfaces in boilers firing biomass and waste are cleaned by steamblowing soot blowers on scheduled time-based and/or parameter-based intervals or by mechanical methods. With the advent of fuel switching strategies and use of mixed-in industrial waste, the control of heating surface cleanliness has become even more crucial for these boilers. Scheduled and/or parameter based approaches do not easily address operational changes. As plant operators push to achieve greater efficiency and performance from their boilers, the ability to more effectively optimize cleaning cycles has become increasingly important. If soot blowing is done only when and where it is required rather than at set intervals, unit performance can be maintained with reduced blowing, which saves steam. Two philosophical approaches toward intelligent soot blowing are currently being applied in the industry. One incorporates heat flux monitors to gather real-time heat transfer data to determine which areas of the furnace need cleaning. The other uses indirect temperature and pressure data to infer locations where soot blowing is needed, and is mainly applied for controlling soot blowers in the superheater and economiser area. The heat flux monitors are so fare used for control of the furnace wall blowers. A system using temperature, pressure and flow data does not require much additional instrumentation as compared with what is available on a standard boiler. However the blower control system must be capable of operating blowers on an individual basis. For advanced options it should also be possible to adjust the speed of the soot blower and the steam pressure. The control program could be more or less advanced but the ability to model heating surfaces and determine real-time cleanliness is crucial for an intelligent soot blowing

  6. 气动旋转式吹灰器系统的技术应用%The Actual Application of Pneumatic Soot Blower in Heat Medium Heater

    Institute of Scientific and Technical Information of China (English)

    陈江波

    2000-01-01

    The pneumatic ratchet soot blower and the structure and control principle of CKQ—Ⅱ controller as well as its application in heat medium heater are introduced.The pneumatic ratchet soot blower has got many advantages,such as high level automation control(unattended),soot blower integrated with controller,stable control process,high efficiency and easier to repair compared with conventional soot blower.This soot blower can be adopted in heater and boiler.%介绍了气动旋转式吹灰器和CKQ-Ⅱ型吹灰控制器的结构、控制原理及在热媒炉上的应用,与电动吹灰器相比,气动旋转式吹灰器具有自动化程度高、吹灰器和控制器自成系统、可实现无人职守、控制过程稳定可靠、吹灰效果理想、操作灵活、维修方便等优点。可在各种加热炉、锅炉的吹扫系统中应用。

  7. Soot blowing methods and soot steam consumption in Swedish recovery boilers; Sotningsmetoder och sotaangfoerbrukning i svenska sodapannor

    Energy Technology Data Exchange (ETDEWEB)

    Svedin, Kristoffer; Wallin, Erik; Ahlroth, Mikael

    2008-09-15

    The aim with the report was to put together a description of the current state of the sootblowing systems at Swedish recovery boilers, and to explain differences in cleanability and sootblowing efficiency. In chapter 4 a summary of new techniques and alternative soot blowing methods is found. The report is intended for persons working in the pulp industry. To facilitate the benchmarking the recovery boilers have been divided into two groups. Group A comprises recovery boilers which only have one stop per year and the remaining recovery boilers with more than one stop are classified into group B. The following conclusions, based on the recovery boiler design specifications, are of importance to achieve high boiler availability: Low furnace load; High recovery boiler, wide furnace bottom area; Modern air ports; Small or no correlation between cross pitch division in heat surfaces and cleanability could be seen. The expectation was to identify such a relation. However there are doubts on the correctness in reported data. The amount of chlorine and potassium is assumed to affect the cleanability for a few recovery boilers, but for the majority the amounts are low and most likely do not impact the operation. Because of the large impact of the recovery boilers design data (furnace area, load etc.) on the sootblowing, it has been hard to identify the relation cleanability contra sootblowing system. The relations that could be seen are: No distinction between normally designed nozzles and 'high efficiency' nozzles could be identified. The operational conditions for the different models differ a lot and the effect of nozzle type could not be distinguished. Only a minority of the soot blowing sequences are known from the study. In the recovery boilers with problematic areas improvements can be made in the soot blowing sequence. Four recovery boilers are using intelligent soot blowing of some kind. Two of these boilers have low availability and the other two have

  8. Boilers a practical reference

    CERN Document Server

    Rayaprolu, Kumar

    2012-01-01

    AAbrasion and Abrasion Index (see Wear)Absolute or Dynamic Viscosity (æ) (see Viscosity in Fluid Characteristics)Acid Cleaning (see Commissioning)Acid Rain (also see Air Pollution Emissions and Controls and Gas Cleaning)Acid Sludge (see Refuse Fuels from Refinery in Liquid Fuels)Acid Smuts (see Oil Ash)Acoustic Soot Blowers (see Sonic Horns)Acoustic Enclosure (see Noise Control)Acoustic Leak Detection SystemAdiabatic Flame Temperature (see Combustion)Aeroderivative (see Types of GTs in Turbines, Gas)Ageing of Boiler ComponentsAgro-Fuels and FiringAir Ducts (see Draught Plant)Air Flow Measureme

  9. Deposit Probe Measurements in Large Biomass-Fired Grate Boilers and Pulverized-Fuel Boilers

    DEFF Research Database (Denmark)

    Hansen, Stine Broholm; Jensen, Peter Arendt; Jappe Frandsen, Flemming;

    2014-01-01

    temperatures (>900 °C). At lower flue gas temperatures, the deposits can be removed by soot blowing. The required soot blower impact pressure is strongly influenced by the surface temperature, such that a high surface temperature makes the deposit more difficult to remove. During straw/wood......-up increased with the K-content of the fuel ash and fly ash for grate-fired boilers. For suspension-fired boilers, deposition rates are comparatively low for wood-firing and increase with increasing fuel straw shares. Shedding of deposits occurs by melting during straw-firing on a grate at high flue gas......-firing in suspension-fired boilers, shedding occurred by debonding with incomplete removal at flue gas temperatures of 600–1000 °C and by debonding with complete removal during wood-firing in suspension-fired boilers at high flue gas temperatures (1300 °C). Shedding events were not observed during wood suspension...

  10. Efficiency and effect of different soot blowing methods on boilers using different types of fuels; Sotningsmetodernas effektivitet och konsekvenser paa foerbraenningsanlaeggningar foer olika typer av braenslen

    Energy Technology Data Exchange (ETDEWEB)

    Eklund, Anders; Rodin, Aasa

    2004-09-01

    Increased use of recovered wood fuel, waste fuel and new types of wood fuel, have increased the amount of fouling in the superheater and economizer. Deposits in the boilers heat-absorbing banks reduces the boiler efficiency and increases the exit flue gas temperatures. Thus, efficient soot blowing practice is now in focus with the aim of reducing the amount of fouling. This report evaluates the function and efficiency of the commonly used soot blowing methods at boilers in the range of 10 to 130 MW. The investigated soot blowing methods are: steam-, acoustic-, shot-, water-, hammer- and detonation cleaning. Plant experience and data has been acquired from the following six plants: Fortum Hoegdalen, Haesselby and Brista, Stora Enso Hyltebruk, Tekniska Verken i Linkoeping, kraftvaermeverket and C4-Energi, Alloeverket. Participating plants have shown a wide variety in: different boiler designs, different design of superheater and economizer, different kinds of used fuels and different kinds of fouling problems. Soot blowing efficiency is basically a function of three parameters: 1. Characteristics of the deposit regarding to hardness, toughness, homogeneity, amount and coverage, this is often due to the characteristics of the fired fuel. 2. Design of the heat absorbing banks regarding the risk of deposit formation and clogging. 3. Characteristics of the soot blowing method regarding the cleaning effect, bank penetration, high temperature endurance and suitability in different parts of the boiler. These three parameters coincide and together they decide the performance efficiency of the soot blowing method. Used fuel can be divided in to three groups depending on the formed deposits: Firing of mainly wood fuels resulted in no or minor problem with fouling. Firing of waste fuels resulted in hard and tough deposits. Participating waste fired boilers was, however, designed with consideration to these types of deposits and, therefore, these deposits was in reality not a

  11. Characterization and quantification of deposits build up and removal in straw suspension fired boilers. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Arendt Jensen, Peter; Wedel, S.; Jappe Frandsen, F.; Dam-Johansen, K.; Shafique Bashir, M. [Technical Univ. of Denmark. CHEC Research Centre, Kgs. Lyngby (Denmark); Wadenback, J.; Thaaning Pedersen, S. [Vattenfall A/S, Copenhagen (Denmark)

    2013-07-15

    This project deals with ash deposit formation in suspension fired biomass power plant boilers. The project has been conducted in a tight collaboration between Vattenfall and the CHEC Research Centre at DTU Department of Chemical Engineering. A large part of the project has been performed by conducting advanced probe measurements at the Amagervaerkets Vattenfall owed boilers. It was the objective of the project to provide an improved understanding of ash deposit formation and removal in biomass suspension fired boilers. The project have provided a large amount of knowledge on the following issues: 1) The influence of local boiler conditions on deposit formation in suspension fired boilers using wood or co-firing straw and wood, 2) quantification of deposit removal in biomass suspension firing boilers with regards both to natural shedding and soot blower induced shedding, 3) established relations of the properties of fuel ash, fly ash and deposits, 4) use of coal ash to remedy biomass ash induced boiler deposit problems. (Author)

  12. Needs-driven soot blowing in waste boilers; Behovsstyrd sotblaasning i avfallspannor

    Energy Technology Data Exchange (ETDEWEB)

    Niklasson, Fredrik; Davidsson, Kent

    2009-09-15

    The increased use of alternative and waste fuels has resulted in an increased number of plants having trouble with fouling and corrosion on boiler banks and superheater tubes. Frequent sootblowing will keep the surfaces relatively clean, but on the other hand, it may erode the tube material. An intelligent sootblowing system will initiate sootblowings on individual tube banks only when needed for that specific tube bank. Such a system depends on the detection of the degree of fouling of specific tube banks. In this project, the conditions for an intelligent sootblowing system at the waste fired boilers in Boraas are investigated from measured flows, temperatures and pressure drop. New thermocouples at the water tubes between the banks of the economiser have been installed and connected to the control and monitoring system of the boiler. From measured temperatures and flows, heat transfer coefficients are calculated and used to detect the fouling on the heat exchangers. A pressure transducer has been altered to measure the pressure over the boiler bank. At the superheaters, the measurements show a significant improvement of the heat transfer coefficients immediately following sootblowing. Thereafter, the heat transfer coefficients decline more slowly, almost linearly. The measurements indicate that the fouling rate is almost same for the two superheaters and do not motivate individual sootblowing sequences of the two superheaters. The pressure drop over the boiler bank was found too insensitive a measure to be used as an indicator for an intelligent sootblowing system, at least in this specific boiler. In the economiser, the decline of calculated heat transfer coefficients showed a relative rate of fouling on individual tube banks. The results show that the fouling rate is significantly higher in the top tube banks, which comes first in the direction of the flue gas, compared to downstream banks. Experiments by sootblowing the top tube bank more frequently than the

  13. Extension of Weighted Sum of Gray Gas Data to Mathematical Simulation of Radiative Heat Transfer in a Boiler with Gas-Soot Media

    Directory of Open Access Journals (Sweden)

    Samira Gharehkhani

    2014-01-01

    Full Text Available In this study an expression for soot absorption coefficient is introduced to extend the weighted-sum-of-gray gases data to the furnace medium containing gas-soot mixture in a utility boiler 150 MWe. Heat transfer and temperature distribution of walls and within the furnace space are predicted by zone method technique. Analyses have been done considering both cases of presence and absence of soot particles at 100% load. To validate the proposed soot absorption coefficient, the expression is coupled with the Taylor and Foster's data as well as Truelove's data for CO2-H2O mixture and the total emissivities are calculated and compared with the Truelove's parameters for 3-term and 4-term gray gases plus two soot absorption coefficients. In addition, some experiments were conducted at 100% and 75% loads to measure furnace exit gas temperature as well as the rate of steam production. The predicted results show good agreement with the measured data at the power plant site.

  14. Extension of weighted sum of gray gas data to mathematical simulation of radiative heat transfer in a boiler with gas-soot media.

    Science.gov (United States)

    Gharehkhani, Samira; Nouri-Borujerdi, Ali; Kazi, Salim Newaz; Yarmand, Hooman

    2014-01-01

    In this study an expression for soot absorption coefficient is introduced to extend the weighted-sum-of-gray gases data to the furnace medium containing gas-soot mixture in a utility boiler 150 MWe. Heat transfer and temperature distribution of walls and within the furnace space are predicted by zone method technique. Analyses have been done considering both cases of presence and absence of soot particles at 100% load. To validate the proposed soot absorption coefficient, the expression is coupled with the Taylor and Foster's data as well as Truelove's data for CO2-H2O mixture and the total emissivities are calculated and compared with the Truelove's parameters for 3-term and 4-term gray gases plus two soot absorption coefficients. In addition, some experiments were conducted at 100% and 75% loads to measure furnace exit gas temperature as well as the rate of steam production. The predicted results show good agreement with the measured data at the power plant site.

  15. Characterization and quantification of deposits build up and removal in straw suspension fired boilers

    DEFF Research Database (Denmark)

    Jensen, Peter Arendt; Shafique Bashir, Muhammad; Wedel, Stig;

    This project deals with ash deposit formation in suspension fired biomass power plant boilers. The project has been conducted in a tight collaboration between Vattenfall and the CHEC Research Centre at DTU Department of Chemical Engineering. A large part of the project has been performed...... by conducting advanced probe measurements at the Amagerværkets Vattenfall owed boilers. It was the objective of the project to provide an improved understanding of ash deposit formation and removal in biomass suspension fired boilers. The project have provided a large amount of knowledge on the following issues......: 1) The influence of local boiler conditions on deposit formation in suspension fired boilers using wood or co-firing straw and wood, 2) quantification of deposit removal in biomass suspension firing boilers with regards both to natural shedding and soot blower induced shedding, 3) established...

  16. Online soot cleaning using infrasound

    Energy Technology Data Exchange (ETDEWEB)

    Torra i Fernandez, Eric; Ellebro, Martin [Infrafone AB, Stockholm (Sweden)

    2013-10-01

    The company Infrafone has been using infrasound as a soot cleaning method for more than 30 years. Infrasonic soot cleaning increases the efficiency, the availability and the lifetime of marine and industrial boilers. The properties and the description of infrasound and Infrafone's soot cleaning method are presented. Moreover, a brief comparison with audible sonic horns is carried out. The results and the savings of installing Infrafone's infrasonic cleaners are presented here with several case studies. (orig.)

  17. Size distribution and concentration of soot generated in oil and gas-fired residential boilers under different combustion conditions

    Science.gov (United States)

    Jiménez, Santiago; Barroso, Jorge; Pina, Antonio; Ballester, Javier

    2016-05-01

    In spite of the relevance of residential heating burners in the global emission of soot particles to the atmosphere, relatively little information on their properties (concentration, size distribution) is available in the literature, and even less regarding the dependence of those properties on the operating conditions. Instead, the usual procedure to characterize those emissions is to measure the smoke opacity by several methods, among which the blackening of a paper after filtering a fixed amount of gas (Bacharach test) is predominant. In this work, the size distributions of the particles generated in the combustion of a variety of gaseous and liquid fuels in a laboratory facility equipped with commercial burners have been measured with a size classifier coupled to a particle counter in a broad range of operating conditions (air excesses), with simultaneous determination of the Bacharach index. The shape and evolution of the distribution with progressively smaller oxygen concentrations depends essentially on the state of the fuel: whereas the combustion of the gases results in monomodal distributions that 'shift' towards larger diameters, in the case of the gas-oils an ultrafine mode is always observed, and a secondary mode of coarse particle grows in relevance. In both cases, there is a strong, exponential correlation between the total mass concentration and the Bacharach opacity index, quite similar for both groups of fuels. The empirical expressions proposed may allow other researchers to at least estimate the emissions of numerous combustion facilities routinely characterized by their smoke opacities.

  18. Evaluation of the behavior of shrouded plasma spray coatings in the platen superheater of coal-fired boilers

    Science.gov (United States)

    Sidhu, Buta Singh; Prakash, S.

    2006-06-01

    Nickel- and cobalt-based coatings were formulated by a shrouded plasma spray process on boiler tube steels, namely, ASTM-SA210-grade A1 (GrA1), ASTM-SA213-T-11 (T11), and ASTM-SA213-T-22 (T22). The Ni-22Cr-10Al-1Y alloy powder was sprayed as a bond in each case before the final coating. The degradation behavior of the bared and coated steels was studied in the platen superheater of the coal-fired boiler. The samples were inserted through the soot blower dummy points with the help of stainless steel wires. The coatings were found to be effective in increasing resistance to degradation in the given boiler environment. The maximum protection was observed in the case of Stellite-6 (St-6) coating.

  19. 停运汽动风机高压加热器提高煤气锅炉效率的实践%Practice of Improving Gas Boiler Efficiency by Stopping the Steam-driven High Pressure Blower Heater

    Institute of Scientific and Technical Information of China (English)

    赵晓雷; 彭建军

    2015-01-01

    兴澄特钢一台SG-260/9.8-Q8501型全烧高炉煤气锅炉,利用停运对应的汽动鼓风机高压加热器,降低给水温度,从而降低锅炉排烟温度,达到节约蒸汽,提高锅炉效率的作用。%The SG 260/9.8 Q8501 type all-BFG boiler at Xingcheng Special Steel is introduced. Steam was saved and efficiency of the boiler was improved by shutting down the corresponding steam-driven high pressure fan heater to reduce the temperature of feed water and thereby lower the temperature of boiler flue gas.

  20. VARIABLE SPEED INTEGRATED INTELLIGENT HVAC BLOWER

    Energy Technology Data Exchange (ETDEWEB)

    Shixiao Wang; Herman Wiegman; Wilson Wu; John Down; Luana Iorio; Asha Devarajan; Jing Wang; Ralph Carl; Charlie Stephens; Jeannine Jones; Paul Szczesny

    2001-11-14

    This comprehensive topical report discusses the key findings in the development of a intelligent integrated blower for HVAC applications. The benefits of rearward inclined blades over that of traditional forward inclined blades is well documented and a prototype blower design is presented. A comparison of the proposed blower to that of three typical units from the industry is presented. The design of the blower housing is also addressed and the impact of size limitations on static efficiency is discussed. Issues of air flow controllability in the rearward inclined blower is addressed and a solution to this problem is proposed. Several motor design options are discussed including inside-out radial flux designs and novel axial flux designs, all are focused on the various blower needs. The control of the motor-blower and airflow through the use of a high density inverter stage and modern digital signal processor is presented. The key technical challenges of the approach are discussed. The use of the motor as a sensor in the larger heating/ventilating system is also discussed. Diagnostic results for both the motor itself and the blower system are presented.

  1. Air injection vacuum blower noise control

    Energy Technology Data Exchange (ETDEWEB)

    Mose, Tyler L.A.; Faszer, Andrew C. [Noise Solutions Inc. (Canada)], email: tmose@noisesolutions.com, email: afaszer@noisesolutions.com

    2011-07-01

    Air injection vacuum blowers, with applications in waste removal, central vacuum systems, and aeration systems, are widely used when high vacuum levels are required. Noise generated by those blowers must be addressed for operator health and residential disturbance. This paper describes a project led by Noise Solutions Inc., to identify noise sources in a blower, and design and test a noise mitigation system. First the predominant noise sources in the blower must be determined, this is done with a sound level meter used to quantify the contribution of each individual noise source and the dominant tonal noise from the blower. Design of a noise abatement system must take into account constraints arising from blower mobile use, blower optimal performance, and the resulting overall vibration of the structure. The design was based on calculations from the sound attenuation of a reactive expansion chamber and two prototypes of custom silencers were then tested, showing a significant noise reduction both in total sound levels and tonal noise.

  2. Improved soot blowing, based on needs, using the mechanical characteristics of the steam pipe - stage 2; Foerbaettrad behovsstyrd sotning med hjaelp av vaermeoeverfoerande tubens mekaniska egenskaper - etapp 2

    Energy Technology Data Exchange (ETDEWEB)

    Blom, Elisabet; Fredoe, Claes; Gabrielsson, Lars; Eriksson, Daniel

    2011-10-15

    The detection of contamination of the boiler tubes through the tube mechanical properties has been studied. The project has carried out measurements and detection of three different boilers with different conditions in terms of sooting philosophy, combustion method and sooting method. The assembly of the detecting strain gauge takes place on a clip which is screwed and glued onto the tube.

  3. High temperature corrosion in biomass- and waste fired boilers. A status report; Kunskapslaeget betraeffande hoegtemperaturkorrosion i aangpannor foer biobraensle och avfall

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, P.; Ifwer, K.; Staalenheim, A.; Montgomery, M.; Hoegberg, J.; Hjoernhede, A.

    2006-12-15

    Many biomass- or waste-fired plants have problems with high temperature corrosion on the furnace walls or at the superheaters, especially if the steam temperature is greater than 500 deg C. An increase in the combustion of waste fuels means that an increasing number of boilers have had problems. Therefore, there is great interest from plant owners to reduce the costs associated with high temperature corrosion. At the same time there exists a considerable driving force towards improving the electrical efficiency of a plant by the use of more advanced steam data. The purpose of the work presented here was to answer three main questions: What can be done to reduce high temperature corrosion with current fuel blends and steam temperatures? How can more waste fuels be burnt without an increased risk for corrosion? What needs to be done to reach higher steam temperatures in the future? The level of knowledge of high temperature corrosion in biomass- and waste-fired boilers has been described and summarised. The following measures are recommended to reduce corrosion in existing plant: Make sure that the fuel is well mixed and improve fuel feeding to obtain a more even spread of the fuel over the cross-section of the boiler. Use combustion technology methods to stabilize the oxygen content of the flue gases near the membrane walls and other heat transfer surfaces. Experiment with additives and/or supplementary fuels which contain sulphur in some form, for example peat. Reduce the flue gas temperature at the superheaters. Review soot-blowing procedures or protect heat transfer surfaces from soot blowers. Evaluate coated membrane wall panels in parts of the furnace that experience the worst corrosion. Test more highly alloyed steels suitable for superheaters and when replacing a superheater change to a more highly alloyed steel. For the future, the following should be considered: The role of sulphur needs to be investigated more and other additives should be investigated

  4. 33 CFR 154.826 - Vapor compressors and blowers.

    Science.gov (United States)

    2010-07-01

    ... system acceptable to the Commandant (CG-522). (b) If a reciprocating or screw-type compressor handles... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Vapor compressors and blowers....826 Vapor compressors and blowers. (a) Each inlet and outlet to a compressor or blower which...

  5. Production Facility Prototype Blower Installation Report

    Energy Technology Data Exchange (ETDEWEB)

    Woloshun, Keith Albert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalmas, Dale Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Romero, Frank Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-07-28

    The roots blower in use at ANL for in-beam experiments and also at LANL for flow tests was sized for 12 mm diameter disks and significantly less beam heating.  Currently, the disks are 29 mm in diameter, with a 12 mm FWHM Gaussian beam spot at 42 MeV and 2.86 μA on each side of the target, 5.72 μA total. The target design itself is reported elsewhere.  With the increased beam heating, the helium flow requirement increased so that a larger blower was need for a mass flow rate of 400 g/s at 2.76 MPa (400 psig).  An Aerzen GM 12.4 blower was selected, and is currently being installed at the LANL facility for target and component flow testing.  This report describes this blower/motor/ppressure vessel package and the status of the facility preparations.

  6. New controls spark boiler efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Engels, T. (Monsanto, University Park, IL (United States))

    1993-09-01

    Monsanto's NutraSweet plant in University Park, IL, produces aspartame, the patented NutraSweet artificial sweetener product. Until recently, boiler control was managed by a '60s-era Fireye jackshaft system in which air and natural gas were mechanically linked with an offset to compensate for oxygen trim. The interlocking devices on the Fireye system were becoming obsolete, and the boiler needed a new front end retrofitted for low emissions. In order to improve boiler control efficiency, we decided to modernize and automate the entire boiler control system. We replaced the original jackshaft system, and installed a Gordon-Piet burner system, including gas valves, air dampers, blowers, and burner. The upgrade challenges included developing a control strategy and selecting and implementing a process control system. Since our plant has standardized on the PROVOX process management information system from Fisher Controls (now Fisher-Rosemount Systems) to support most of our process, it was a natural and logical choice for boiler controls as well. 2 figs.

  7. Improved soot blowing, based on needs, through measurement of the natural frequency of the heat transferring tubes; Foerbaettrad behovsstyrd sotning genom maetning av oeverfoerande tubernas egenfrekvens

    Energy Technology Data Exchange (ETDEWEB)

    Blom, Elisabet; Ivarsson, Christofer

    2007-11-15

    The aim of the project is to develop a method for detecting soot on the transferring tubes by measuring the Eigen frequency of the tubes as a function of the soot deposit growth. The project is a pilot study independent of boiler type and it is applicable to all boilers where soot deposit on transferring tubes is a repeating issue. The report is supposed to answer two major questions. Is it possible to make use of Eigen frequencies in order to trace soot deposit on transferring tubes? What governing parameters are related to the Eigen frequency of transferring tubes? By today, soot blowing is executed after recommendations from the manufacturer in terms of number of soot blowing per time unit. The fuel type as well as boiler type has great influence on the soot deposit growth. The objective of the project is to investigate whether the mechanical properties of the transferring tube can be used to detect soot deposit. The project is divided into a theoretical and a practical part. The theoretical part covers the design of the probe and the change of its mechanical properties when soot deposit is present. Practical experiments were then carried out in a laboratory were the probes mechanical properties with and without soot deposit were investigated. It was shown that the Eigen frequency of the probe decreased with an increased mass due to soot deposit. A test was also made in a boiler at SAKAB but difficulties in attaching the probe to the inspection hatch. The results varied and the interpretation of the results become difficult. However, it was obvious that the mechanical properties of the probe changed with the amount of soot deposit. It was concluded that detection of soot deposit by studying the mechanical properties of the transferring tubes is possible. Yet, using a probe is no optimal solution, instead measurements should be done directly on the heat transferring tubes. In addition, a strategy for controlling the soot deposit has to be developed

  8. Simplified multizone blower door techniques for multifamily buildings. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This research focused on the applicability of (a) two-blower-door and (b) single-blower-door multi-zone pressurization techniques for estimating the air leakage characteristics of New York State multi-family apartment buildings. The research also investigated the magnitude of external leakage area in multi-family buildings and used computer simulations to estimate the effect of decreasing external and internal leakage areas on air infiltration rates. This research investigates whether two blower doors can be used to determine the ELA of the exterior envelope and the ELA of partitions. Two multi-zone versions of the single-blower-door pressurization method are also examined.

  9. Production Facility Prototype Blower 1000 Hour Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Woloshun, Keith Albert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Romero, Frank Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalmas, Dale Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-18

    The roots blower in use at ANL for in-beam experiments and also at LANL for flow tests was sized for 12 mm diameter disks and significantly less beam heating. Currently, the disks are 29 mm in diameter, with a 12 mm FWHM Gaussian beam spot at 42 MeV and 2.86 μA on each side of the target, 5.72 μA total. The target design itself is reported elsewhere. With the increased beam heating, the helium flow requirement increased so that a larger blower was need for a mass flow rate of 400 g/s at 2.76 MPa (400 psig). An Aerzen GM 12.4 blower was selected, and is now installed at the LANL facility for target and component flow testing. Two extended test of >1000 hr operation have been completed. Those results and discussion thereof are reported herein. Also included in Appendix A is the detailed description of the blower and its installation, while Appendix B documents the pressure vessel design analysis. The blower has been operated for 1000 hours as a preliminary investigation of long term performance, operation and possible maintenance issues. The blower performed well, with no significant change in blower head or mass flow rate developed under the operating conditions. Upon inspection, some oil had leaked out of the shaft seal of the blower. The shaft seal and bearing race have been replaced. Test results and conclusions are in Appendix B.

  10. Biomass boilers

    OpenAIRE

    Nahodil, Jiří

    2011-01-01

    Bachelor’s thesis deals with the use of biomass for heating houses and apartment houses. The first part is dedicated to biomass. Here are mentioned the possibility of energy recovery, treatment and transformation of biomass into a form suitable for burning, its properties and combustion process itself. The second part is devoted to biomass boilers, their separation and description. The last section compares the specific biomass boiler with a boiler to natural gas, particularly from an economi...

  11. Liquid Cloud Responses to Soot

    Science.gov (United States)

    Koch, D. M.

    2010-12-01

    Although soot absorption warms the atmosphere, soot may cause climate cooling due to its effects on liquid clouds, including contribution to cloud condensation nuclei (CCN) and semi-direct effects. Six global models that include aerosol microphysical schemes conducted three soot experiments. The average model cloud radiative response to biofuel soot (black and organic carbon), including both indirect and semi-direct effects, is -0.12 Wm-2, comparable in size but opposite in sign to the respective direct atmospheric warming. In a more idealized fossil fuel black carbon only experiment, some models calculated a positive cloud response because the soot provided a deposition sink for sulfate, decreasing formation of more viable CCN. Biofuel soot particles were typically assumed to be larger and more hygroscopic than for fossil fuel soot and therefore caused more negative forcing, as also found in previous studies. Diesel soot (black and organic carbon) experiments had relatively smaller cloud impacts with five of the models competition of opposing effects on the CCN population make it difficult to extrapolate from idealized experiments to likely impacts of realistic potential emission changes. However, results so far suggest that soot-induced cloud-cooling effects are comparable in magnitude to the direct warming effects from soot absorption.

  12. Dynamical system analysis of unstable flow phenomena in centrifugal blower

    Directory of Open Access Journals (Sweden)

    Garcia David

    2015-09-01

    Full Text Available Methods of dynamical system analysis were employed to analyze unsteady phenomena in a centrifugal blower. Pressure signals gathered at different control points were decomposed into their Principal Components (PCs by means of Singular Spectrum Analysis (SSA. Certain number of PCs was considered in the analysis based on their statistical correlation. Projection of the original signal onto its PCs allowed to draw the phase trajectory that clearly separated non-stable blower working conditions from its regular operation.

  13. Vibration and Stability of 3000-hp, Titanium Chemical Process Blower

    Directory of Open Access Journals (Sweden)

    Les Gutzwiller

    2003-01-01

    Full Text Available This 74-in-diameter blower had an overhung rotor design of titanium construction, operating at 50 pounds per square inch gauge in a critical chemical plant process. The shaft was supported by oil-film bearings and was directdriven by a 3000-hp electric motor through a metal disk type of coupling. The operating speed was 1780 rpm. The blower shaft and motor shaft motion was monitored by Bently Nevada proximity probes and a Model 3100 monitoring system.

  14. Integrated high efficiency blower apparatus for HVAC systems

    Science.gov (United States)

    Liu, Xiaoyue; Weigman, Herman; Wang, Shixiao

    2007-07-24

    An integrated centrifugal blower wheel for a heating, ventilation and air conditioning (HVAC) blower unit includes a first blade support, a second blade support, and a plurality of S-shaped blades disposed between the first and second blade supports, wherein each of the S-shaped blades has a trailing edge bent in a forward direction with respect to a defined direction of rotation of the wheel.

  15. Cool Sooting Flames of Hydrocarbons

    Institute of Scientific and Technical Information of China (English)

    Z.A. MANSUROV

    2001-01-01

    This paper presents the study of polycyclic aromatic hydrocarbons (PAH) and paramagnetism of soot particles sampled from cool sooting flames of methane and propane in a separately-heated two-sectional reactor under atmospheric pressure at the reactor temperatures of 670-1170 K. The temperature profiles of the flames were studied. The sampling was carried out with a quartz sampler and the samples were frozen with liquid nitrogen. A number of polyaromatic hydrocarbons such as pyrene, fluoranthene, coronene, anthanthrene, 1,12-benzperylene,were identified by spectroscopic methods in the extract of soot. The processes of soot formation at methaneoxygen mixture combustion in the electric field with applied potential changed from 0 to 2,2 kV at different polarity of electrodes have been investigated. It has been stated that at the electrical field application, an increase in soot particle sizes and soot yield occurs; besides, at the application of the field, speeding up the positively charged particles, the interplanar distance decreases. On the basis of investigation of soot particles paramagnetism, it was shown that initially soot particles have high carcinogetic activity and pollute the environment owing to a rapid decrease of the number of these radical centers. The reduction of the radical concentration is connected with radical recombination on soot.

  16. Soot formation and burnout in flames

    Science.gov (United States)

    Prado, B.; Bittner, J. D.; Neoh, K.; Howard, J. B.

    1980-01-01

    The amount of soot formed when burning a benzene/hexane mixture in a turbulent combustor was examined. Soot concentration profiles in the same combustor for kerosene fuel are given. The chemistry of the formation of soot precursors, the nucleation, growth and subsequent burnout of soot particles, and the effect of mixing on the previous steps were considered.

  17. Uji Performansi Getaran Mekanis dan Kebisingan Mist Blower Yanmar MK 150-B

    OpenAIRE

    Ahmad Noval Irvani; Mad Yamin

    2012-01-01

    Mist blower is one of the mechanization tool of agriculture considered as a tool that can assist humans in fertilizer and pesticides spreading activities. Levels of motor speed in the used mist blower were 1915, 4009, and 7227 rpm. Vibration measurements were conducted on the engine and handlebar control mist blower with the three-dimensional axes namely X, Y, and Z. Mist blower noise measurements were performed on the engine, operator's right ear and left ear. Based on the analysis of vibrat...

  18. Building America Top Innovations 2013 Profile – High-Performance Furnace Blowers

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-09-01

    This Top Innovations profile describes Lawrence Berkeley National Laboratory's work with furnace blower design that led to the creation of a standard for rating blowers, credits for the use of good blowers in Federal tax credit programs and energy codes, and consideration in current federal rulemaking procedures.

  19. Blower-door techniques for measuring interzonal leakage

    Energy Technology Data Exchange (ETDEWEB)

    Hult, Erin L.; Sherman, Max H.; Walker, Iain

    2013-01-01

    Abstract The standard blower door test methods, such as ASTM E779, describe how to use a single blower door to determine the total leakage of a single-zone structure such as a detached single-family home. There are no standard test methods for measuring interzonal leakage in a two-zone or multi-zone building envelope such as might be encountered in with an attached garage or in a multifamily building. Some practitioners have been using techniques that involve making multiple measurements with a single blower door as well as combined measurements using multiple blower doors. Even for just two zones there are dozens of combinations of one-door and two-door test protocols that could conceivably be used to determine the interzonal air tightness. We examined many of these two-zone configurations using both simulation and measured data to estimate the accuracy and precision of each technique for realistic measurement scenarios. We also considered the impact of taking measurements at a single pressure versus over multiple pressures. We compared the various techniques and evaluated them for specific uses. Some techniques work better in one leakage regime; some are more sensitive to wind and other noise; some are more suited to determining only a subset of the leakage values. This paper makes recommendations on which techniques to use or not use for various cases and provides data that could be used to develop future test methods.

  20. Energy efficiency in boilers; Eficiencia energetica em caldeiras

    Energy Technology Data Exchange (ETDEWEB)

    Ponte, Ricardo Silva The [Universidade Federal do Ceara (UFCE), Fortaleza, CE (Brazil). Dept. de Engenharia Eletrica], email: ricthe@dee.ufc.br; Barbosa, Marcos Antonio Pinheiro; Rufino, Maria da Gracas [Universidade de Fortaleza (UNIFOR), CE (Brazil). Dept. de Engenharia Eletrica], emails: marcos_apb@unifor.br, gsrufino@unifor.br

    2010-07-01

    The boiler is vapor generator equipment that has been widely used in industrial milieu as in electric energy generation in thermoelectric plants. Since their first conception, the boilers have been changed in order to provide security and energetic efficiency. They can present high losses of energy if they don't be operated according to some criteria. A considerable part of boilers operation cost include fuel expenses. So, the adoption of effective steps in order to reduce fuel consumption is important to industry economy, besides it brings environmental benefits through the reduction of pollution liberation. The present article has the objective of emphasizing the effective steps for the economy of energy in boilers, such as, the regulation of combustion; the control of soot and incrustations; the installation of economizers, air heaters and super heaters; the reduction in purges and reintroduction of condensed steam. (author)

  1. Performance Enhancement of Dual-Inlet Centrifugal Blower by Optimal Design of Splitter

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Sung; Jang, Choon Man [Korea Institute of Construction Technology, Goyang (Korea, Republic of)

    2014-12-15

    The shape of an impeller splitter for a dual-inlet centrifugal blower was optimized to enhance the blower performance. Two design variable, the normalized chord and pitch of a splitter, were used to evaluate the blower performance and internal flow fields based on the three-dimensional flow analysis. The blower performance obtained using this numerical simulation had a maximum error of 4 percent compared to that in an experiment at the design flow condition. The shape optimization of the splitter successfully increased the blower efficiency and pressure by 3.65 and 1.14 percent compared to the reference values. The blower performance was increased by reducing the flow separation near the blade suction surface by optimizing the shape of the splitter, which produced a pressure increase at the outlet of the volute casing.

  2. Time-frequency analysis of the Surge Onset in the Centrifugal Blower

    Science.gov (United States)

    Liskiewicz, Grzegorz; Horodko, Longin

    2015-09-01

    Time frequency analysis of the surge onset was performed in the centrifugal blower. A pressure signal was registered at the blower inlet, outlet and three locations at the impeller shroud. The time-frequency scalograms were obtained by means of the Continuous Wavelet Transform (CWT). The blower was found to successively operate in four different conditions: stable working condition, inlet recirculation, transient phase and deep surge. Scalograms revealed different spectral structures of aforementioned phases and suggest possible ways of detecting the surge predecessors.

  3. Steam boiler technology

    Energy Technology Data Exchange (ETDEWEB)

    Teir, S.

    2002-07-01

    The steam boiler technology e-Book is provided by the Laboratory of Energy Engineering and Environmental Protection at Helsinki University of Technology. The book covers the basics and the history of steam generation, modern boilers types and applications, steam/water circulation design, feedwater and steam systems components, heat exchangers in steam boilers, boiler calculations, thermal design of heat exchangers.

  4. Ash fouling monitoring and key variables analysis for coal fired power plant boiler

    Directory of Open Access Journals (Sweden)

    Shi Yuanhao

    2015-01-01

    Full Text Available Ash deposition on heat transfer surfaces is still a significant problem in coal-fired power plant utility boilers. The effective ways to deal with this problem are accurate on-line monitoring of ash fouling and soot-blowing. In this paper, an online ash fouling monitoring model based on dynamic mass and energy balance method is developed and key variables analysis technique is introduced to study the internal behavior of soot-blowing system. In this process, artificial neural networks (ANN are used to optimize the boiler soot-blowing model and mean impact values method is utilized to determine a set of key variables. The validity of the models has been illustrated in a real case-study boiler, a 300MW Chinese power station. The results on same real plant data show that both models have good prediction accuracy, while the ANN model II has less input parameters. This work will be the basis of a future development in order to control and optimize the soot-blowing of the coal-fired power plant utility boilers.

  5. Gas-cooled reactor coolant circulator and blower technology

    International Nuclear Information System (INIS)

    In the previous 17 meetings held within the framework of the International Working Group on Gas-Cooled Reactors, a wide variety of topics and components have been addressed, but the San Diego meeting represented the first time that a group of specialists had been convened to discuss circulator and blower related technology. A total of 20 specialists from 6 countries attended the meeting in which 15 technical papers were presented in 5 sessions: circulator operating experience I and II (6 papers); circulator design considerations I and II (6 papers); bearing technology (3 papers). A separate abstract was prepared for each of these papers. Refs, figs and tabs

  6. Shaanxi Blower Group: One Brand with Two "China Top Brand"

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Shaanxi Blower (Group) Co., Ltd.is a group company of large engineering technology and equipment focused on design and manufacturing of turbo-machinery, a large key enterprise in China, one of the top 500 enterprises for machinery industries, one of the best 100 enterprises in income from sales of Chinese Machinery Industries in 2004,one of the largest 1000 group enterprises in China in 2004, one of the vanguard enterprises in Chinese industries in 2005,the key support enterprise aiming at 10billion in production value during the "Eleventh Five-year Plan" by Xi'an Municipal government.

  7. Shaanxi Blower Group: One Brand with Two "China Top Brand"

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

      Shaanxi Blower (Group) Co., Ltd.is a group company of large engineering technology and equipment focused on design and manufacturing of turbo-machinery, a large key enterprise in China, one of the top 500 enterprises for machinery industries, one of the best 100 enterprises in income from sales of Chinese Machinery Industries in 2004,one of the largest 1000 group enterprises in China in 2004, one of the vanguard enterprises in Chinese industries in 2005,the key support enterprise aiming at 10billion in production value during the "Eleventh Five-year Plan" by Xi'an Municipal government.……

  8. Ago Soots tuli Võrru "Peole" / Ago Soots ; intervjueerinud Kaile Kabun

    Index Scriptorium Estoniae

    Soots, Ago

    2009-01-01

    Intervjuu Võrumaalt pärit VAT Teatri näitleja ja lavastaja Ago Sootsiga, kes mängib peaosa Võru linnateatri suvelavastuses "Pidu". Slawomir Mrožeki näidendi lavastab Uku Uusberg, esietendus 17. juunil Võru vanas viinavabrikus. Ago Soots oma kooliajast, tööst VAT Teatris, huvist muusika ja spordi vastu, näitlejaametist, lavastusest

  9. 燃煤炉鼓风机中变频器的节能分析%Energy conservation analysis of the inverter in coal-fired furnace blower

    Institute of Scientific and Technical Information of China (English)

    武欣

    2011-01-01

    In order to lower the power consumption rate of coal-fired furnace blower, to reduce the starting current, to increase the power factor, and to improve the fireman's working intensity, frequency converter was proposed to be used in coal-fired furnace blower. Compared to the traditional coal-fired furnace blower system,this system used converter to control the flow (air volume), which could save a lot of power. Through a detailed analysis of the pressure H-flow Q curve, it is clear that after the frequency conversion, the required power of blower is reduced. Meanwhile, the soft-start function of the converter and the feature of smooth speed governing could realized the smooth adjustment of the system,which made the system worked stable and extended the service life of various components of the boiler. Finally, the practice data shows it is energy-efficient to use the frequency converter in coal-fired furnace blower.%为了降低燃煤炉鼓风机的用电率、减少起动电流、提高功率因数、改善司炉工工作强度,提出了将变频器用在燃煤炉鼓风机中.与传统的燃煤炉鼓风机系统相比较,该系统利用变频器进行流量(风量)控制时,可节约大量电能.通过详细分析压力H-流量Q曲线,得出变频调速后风机所需功率明显减少.同时,变频器的软启动功能和平滑调速的特点可实现对系统的平稳调节,使系统工作状态稳定,延长锅炉各部件的使用寿命.最后通过实际数据可知使用变频器后的燃煤炉鼓风机是节能的.

  10. Production Facility Prototype Blower Installation Report with 1000 Hour Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Woloshun, Keith Albert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Romero, Frank Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalmas, Dale Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-04-01

    The roots blower in use at ANL for in-beam experiments and also at LANL for flow tests was sized for 12 mm diameter disks and significantly less beam heating. Currently, the disks are 29 mm in diameter, with a 12 mm FWHM Gaussian beam spot at 42 MeV and 2.86 μA on each side of the target, 5.72 μA total. The target design itself is reported elsewhere. With the increased beam heating, the helium flow requirement increased so that a larger blower was needed for a mass flow rate of 400 g/s at 2.76 MPa (400 psig). An Aerzen GM 12.4 blower was selected, and is currently being installed at the LANL facility for target and component flow testing. This report describes this blower/motor/pressure vessel package and the status of the facility preparations. The blower has been operated for 1000 hours as a preliminary investigation of long term performance, operation and possible maintenance issues. The blower performed well, with no significant change in blower head or mass flow rate developed under the operating conditions. Upon inspection, some oil had leaked out of the shaft seal of the blower. The shaft seal and bearing race have been replaced. Test results and conclusions are reported.

  11. Production Facility Prototype Blower Installation Report with 1000 Hour Test Results

    International Nuclear Information System (INIS)

    The roots blower in use at ANL for in-beam experiments and also at LANL for flow tests was sized for 12 mm diameter disks and significantly less beam heating. Currently, the disks are 29 mm in diameter, with a 12 mm FWHM Gaussian beam spot at 42 MeV and 2.86 μA on each side of the target, 5.72 μA total. The target design itself is reported elsewhere. With the increased beam heating, the helium flow requirement increased so that a larger blower was needed for a mass flow rate of 400 g/s at 2.76 MPa (400 psig). An Aerzen GM 12.4 blower was selected, and is currently being installed at the LANL facility for target and component flow testing. This report describes this blower/motor/pressure vessel package and the status of the facility preparations. The blower has been operated for 1000 hours as a preliminary investigation of long term performance, operation and possible maintenance issues. The blower performed well, with no significant change in blower head or mass flow rate developed under the operating conditions. Upon inspection, some oil had leaked out of the shaft seal of the blower. The shaft seal and bearing race have been replaced. Test results and conclusions are reported.

  12. Boilers, evaporators, and condensers

    International Nuclear Information System (INIS)

    This book reports on the boilers, evaporators and condensers that are used in power plants including nuclear power plants. Topics included are forced convection for single-phase side heat exchangers, heat exchanger fouling, industrial heat exchanger design, fossil-fuel-fired boilers, once through boilers, thermodynamic designs of fossil fuel-first boilers, evaporators and condensers in refrigeration and air conditioning systems (with respect to reducing CFC's) and nuclear steam generators

  13. Central heating: package boilers

    Energy Technology Data Exchange (ETDEWEB)

    Farahan, E.

    1977-05-01

    Performance and cost data for electrical and fossil-fired package boilers currently available from manufacturers are provided. Performance characteristics investigated include: unit efficiency, rated capacity, and average expected lifetime of units. Costs are tabulated for equipment and installation of various package boilers. The information supplied in this report will simplify the process of selecting package boilers required for industrial, commercial, and residential applications.

  14. Pumping characteristics of roots blower pumps for light element gases

    International Nuclear Information System (INIS)

    The pumping speed and compression ratio of the two-stage roots blower pumping system were measured for light element gases (H2, D2 and He) and for N2, in order to assess validity of the ITER torus roughing system as an ITER R and D task (T234). The pumping system of an Edwards EH1200 (nominal pumping speed of 1200 m3/s), two EH250s (ibid. 250 m3/s) and a backing pump (ibid. 100 m3/s) in series connection was tested under PNEUROP standards. The maximum pumping speeds of the two-stage system for D2 and N2 were 1200 and 1300 m3/h, respectively at 60 Hz, which satisfied the nominal pumping speed. These experimental data support the design validity of the ITER torus roughing system. (author)

  15. Residential Forced Air System Cabinet Leakage and Blower Performance

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Iain S.; Dickerhoff, Darryl J.; Delp, William W.

    2010-03-01

    This project evaluated the air leakage and electric power consumption of Residential HVAC components, with a particular focus on air leakage of furnace cabinets. Laboratory testing of HVAC components indicated that air leakage can be significant and highly variable from unit to unit ? indicating the need for a standard test method and specifying maximum allowable air leakage in California State energy codes. To further this effort, this project provided technical assistance for the development of a national standard for Residential HVAC equipment air leakage. This standard is being developed by ASHRAE and is called"ASHRAE Standard 193P - Method of test for Determining the Air Leakage Rate of HVAC Equipment". The final part of this project evaluated techniques for measurement of furnace blower power consumption. A draft test procedure for power consumption was developed in collaboration with the Canadian General Standards Board: CSA 823"Performance Standard for air handlers in residential space conditioning systems".

  16. Enhancement of performance by blade optimization in two-stage ring blower

    Science.gov (United States)

    Jang, Choon-Man; Han, Gi-Young

    2010-10-01

    This paper describes the shape optimization of an impeller used for two-stage high pressure ring blower. Two shape variables, which are used to define an impeller shape, are introduced to increase the blower performance. The pressure of a blower is selected as an object function, and the blade optimization is performed by a response surface method. Three-dimensional Navier-Stokes equations are introduced to analyze the internal flow of the blower and to find the value of object function for the training data. Relatively good agreement between experimental measurements and numerical simulation is obtained in the present study. Throughout the shape optimization, it is found that a hub height is effective to increase pressure in the ring blower. The pressure rise for the optimal two-stage ring blower is successfully increased up to 1.86% compared with that of reference at the design flow rate. Local recirculation flow having low velocity is formed in both sides of the impeller outlet by different flow direction of the inlet and outlet of the impeller. Detailed flow field inside the ring blower is also analyzed and discussed.

  17. NASA: Black soot fuels global warming

    CERN Multimedia

    2003-01-01

    New research from NASA's Goddard Space Center scientists suggests emissions of black soot have been altering the way sunlight reflects off Earth's snow. The research indicates the soot could be responsible for as much as 25 percent of global warming over the past century (assorted news items, 1 paragraph each).

  18. Time-frequency analysis of the Surge Onset in the Centrifugal Blower

    Directory of Open Access Journals (Sweden)

    Liskiewicz Grzegorz

    2015-09-01

    Full Text Available Time frequency analysis of the surge onset was performed in the centrifugal blower. A pressure signal was registered at the blower inlet, outlet and three locations at the impeller shroud. The time-frequency scalograms were obtained by means of the Continuous Wavelet Transform (CWT. The blower was found to successively operate in four different conditions: stable working condition, inlet recirculation, transient phase and deep surge. Scalograms revealed different spectral structures of aforementioned phases and suggest possible ways of detecting the surge predecessors.

  19. Fuel sulfur and boiler fouling

    Energy Technology Data Exchange (ETDEWEB)

    Litzke, W.; Celebi, Y.; Butcher, T. [Brookhaven National Lab., Upton, NY (United States)

    1995-04-01

    Fouling of the heat transfer surfaces of boilers and furnaces by `soot` leads to reduced efficiency and increased service requirements. The average level of annual efficiency reduction as a result of fouling if generally accepted as 2% per year. Improving the efficiency of equipment in the field may be the most important oil heat conservation opportunity at present. Improvements can be realized by reducing fouling rates, promoting lower firing rates in existing equipment, and enabling excess air levels to be set lower without raising concerns about increased service requirements. In spite of the importance of efficiency in the field there is very little data available on efficiency degradation rates with modern equipment, actual field operating conditions (excess air and smoke number settings) and service problems which affect efficiency. During 1993-94 field tests were initiated to obtain such data and to obtain information that would compliment existing and current laboratory work. Experimental work conducted on a bench scale level have included tests with various advanced burners, fuel types, and different operating conditions which have been done at the BNL Rapid Fouling Test Facility. This report will focus on the field study of fouling effects on ten residential heating service problems at each site are summarized. In addition, the technical difficulties involved with conducting such a field study shall also be discussed as the findings should serve to improve future work in this area.

  20. Response of centrifugal blowers to simulated tornado transients, July-September 1981

    International Nuclear Information System (INIS)

    During this quarter, quasi-steady and dynamic testing of the 24-in. centrifugal blower was completed using the blowdown facility located at New Mexico State University. The data were obtained using a new digital data-acquisition system. Software was developed at the Los Alamos National Laboratory to reduce the dynamic test data and create computer-generated movies showing the dynamic performance of the blower under simulated tornado transient pressure conditions relative to its quasi-steady-state performance. Currently, quadrant-four (outrunning flow) data have been reduced for the most severe and a less severe tornado pressure transient. The results indicate that both the quasi-steady and dynamic blower performance are very similar. Some hysteresis in the dynamic performance occurs because of rotational inertia effects in the blower rotor and drive system. Currently quadrant-two (backflow) data are being transferred to the LTSS computer system at Los Alamos and will be reduced shortly

  1. Production Facility Prototype Blower Installation Report with 1000 Hr Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Woloshun, Keith Albert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Olivas, Eric Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Romero, Frank Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalmas, Dale Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-23

    The roots blower in use at ANL for in-beam experiments and also at LANL for flow tests was sized for 12 mm diameter disks and significantly less beam heating. Currently, the disks are 29 mm in diameter, with a 12 mm FWHM Gaussian beam spot at 42 MeV and 2.86 μA on each side of the target, 5.72 μA total. The target design itself is reported elsewhere. With the increased beam heating, the helium flow requirement increased so that a larger blower was need for a mass flow rate of 400 g/s at 2.76 MPa (400 psig). An Aerzen GM 12.4 blower was selected, and is currently being installed at the LANL facility for target and component flow testing. This report describes this blower/motor/pressure vessel package and the status of the facility preparations.

  2. Effect of strain rate on sooting limits in counterflow diffusion flames of gaseous hydrocarbon fuels: Sooting temperature index and sooting sensitivity index

    KAUST Repository

    Wang, Yu

    2014-05-01

    The effect of the strain rate on the sooting limits in counterflow diffusion flames was investigated in various gaseous hydrocarbon fuels by varying the nitrogen dilution in the fuel and oxidizer streams. The sooting limit was defined as the critical fuel and oxygen mole fraction at which soot started to appear in the elastic light scattering signal. The sooting region for normal alkane fuels at a specified strain rate, in terms of the fuel and oxygen mole fraction, expanded as the number of carbon atoms increased. The alkene fuels (ethylene, propene) tested had a higher propensity for sooting as compared with alkane fuels with the same carbon numbers (ethane, propane). Branched iso-butane had a higher propensity for sooting than did n-butane. An increase in the strain rate reduced the tendency for sooting in all the fuels tested. The sensitivity of the sooting limit to the strain rate was more pronounced for less sooting fuels. When plotted in terms of calculated flame temperature, the critical oxygen mole fraction exhibited an Arrhenius form under sooting limit conditions, which can be utilized to significantly reduce the effort required to determine sooting limits at different strain rates. We found that the limiting temperatures of soot formation flames are viable sooting metrics for quantitatively rating the sooting tendency of various fuels, based on comparisons with threshold soot index and normalized smoke point data. We also introduce a sooting temperature index and a sooting sensitivity index, two quantitative measures to describe sooting propensity and its dependence on strain rate. © 2013 The Combustion Institute.

  3. Using jet blowers in order to increase the intake capacity of pumping wells

    Energy Technology Data Exchange (ETDEWEB)

    Voznyy, V.R.; Goy, I.M.; Kifor, B.M.; Lotovskiy, V.N.; Yatsura, Ya.V.

    1983-01-01

    Methods for increasing the intake capacity of pumping wells are analyzed and a new technology is proposed for clearing the near shaft zone of a stratum using jet blowers. Experience in operations to restore the filtration properties of productive levels by the complex effect of acetic processing and cyclic action using the jet blowers on a stratum is described. Conclusions and recommendations for using the developed technology for clearing the near shaft zone of a stratum are given.

  4. OPTIMIZING IMPELLER GEOMETRY FOR PERFORMANCE ENHANCEMENT OF A CENTRIFUGAL BLOWER USING THE TAGUCHI QUALITY CONCEPT

    OpenAIRE

    R RAGOTH SINGH; M.Nataraj

    2012-01-01

    As the diffusion of flow process is highly complex in centrifugal blower operation, it is necessary to design / develop the geometry of impeller and casing to reduce the flow losses significantly. In the present study, the methodology to find near optimum combination of blower operating variables for performance enhancement were analyzed using computational fluid dynamics(CFD). Taguchi orthogonal array (OA) based design of experiments (DoE) technique determines the required experimental trial...

  5. Monte carlo simulation for soot dynamics

    KAUST Repository

    Zhou, Kun

    2012-01-01

    A new Monte Carlo method termed Comb-like frame Monte Carlo is developed to simulate the soot dynamics. Detailed stochastic error analysis is provided. Comb-like frame Monte Carlo is coupled with the gas phase solver Chemkin II to simulate soot formation in a 1-D premixed burner stabilized flame. The simulated soot number density, volume fraction, and particle size distribution all agree well with the measurement available in literature. The origin of the bimodal distribution of particle size distribution is revealed with quantitative proof.

  6. Design of a Centrifugal Blower for a 400kg Rotary Furnace.

    Directory of Open Access Journals (Sweden)

    Sani Malami Suleiman

    2016-10-01

    Full Text Available Poor performance of a rotary furnace cannot be unconnected to failure in the design of the blower among others, This paper discuss the design of a centrifugal blower for a rotary furnace which will give the required manometric efficiency that will aid adequate combustion as required. The blower was designed to convert ‘driver’ energy to kinetic energy in the fluid by accelerating it to the outer rim of the revolving device known as the impeller. The impeller, driven by the blower shaft adds the velocity component to the fluid by centrifugally casting the fluid away from the impeller vane tips. The amount of energy given to the fluid corresponds to the velocity at the edge or vane tip of the impeller. Significance: Centrifugal blowers are applicable in furnaces such as Rotary and cupola furnace, the efficiency of these furnaces depend on the blast rate and air delivery from a well design blower. This paper will guide to achieve this aims.

  7. Boiler conversions for biomass

    Energy Technology Data Exchange (ETDEWEB)

    Kinni, J. [Tampella Power Inc., Tampere (Finland)

    1996-12-31

    Boiler conversions from grate- and oil-fired boilers to bubbling fluidized bed combustion have been most common in pulp and paper industry. Water treatment sludge combustion, need for additional capacity and tightened emission limits have been the driving forces for the conversion. To accomplish a boiler conversion for biofuel, the lower part of the boiler is replaced with a fluidized bed bottom and new fuel, ash and air systems are added. The Imatran Voima Rauhalahti pulverized-peat-fired boiler was converted to bubbling fluidized bed firing in 1993. In the conversion the boiler capacity was increased by 10 % to 295 MWth and NO{sub x} emissions dropped. In the Kymmene Kuusankoski boiler, the reason for conversion was the combustion of high chlorine content biosludge. The emissions have been under general European limits. During the next years, the emission limits will tighten and the boilers will be designed for most complete combustion and compounds, which can be removed from flue gases, will be taken care of after the boiler. (orig.) 3 refs.

  8. Electrically heated particulate matter filter soot control system

    Energy Technology Data Exchange (ETDEWEB)

    Gonze, Eugene V.; Paratore, Jr., Michael J.; Bhatia, Garima

    2016-03-15

    A regeneration system includes a particulate matter (PM) filter with an upstream end for receiving exhaust gas and a downstream end. A control module determines a current soot loading level of the PM filter and compares the current soot loading level to a predetermined soot loading level. The control module permits regeneration of the PM filter when the current soot loading level is less than the predetermined soot loading level.

  9. Research on soot of black smoke from ceramic furnace flue gas: Characterization of soot

    International Nuclear Information System (INIS)

    Highlights: ► The characterization of soot was comprehensively studied by various means. ► The soot was fine particle with large specific surface area. ► Heavy metals and organic compounds were also detected in soot. ► The soot was a hazardous material and could severely impact environment and human health. - Abstract: In this study, the characterizations of soot from ceramic furnace flue gas were studied using environmental scanning electron microscopy, energy dispersive spectroscopy, particle size distribution, specific surface area measurements, crystal characterizations and organic pollutant analysis. Soot particles were mainly spherical nanoparticles with diameters less than 100 nm. However, the particles could be aggregated into larger ones with a median diameter of 3.66 μm. Nanometer pores with diameters ranging 2–4 nm were also detected in the soot particles. Because of their large surface areas and pore volumes, other pollutants in the environment can be adsorbed to soot particles potentially making them more hazardous. Several elements, including C, O and Pb, were detected in the soot, but only small amounts of crystalline materials were observed. This is because most of the detected carbon and metals/metal oxides/metal salts were amorphous. Approximately 90 different organic pollutants were detected in the soot, including aromatic compounds and other hydrocarbons. Because of the carcinogenic properties of aromatic compounds and the photochemical effects of hydrocarbons, soot could have serious health and environmental impacts. The results suggest that soot particles are hazardous material and urgently need to be controlled.

  10. Blower Gun pellet injection system for W7-X

    International Nuclear Information System (INIS)

    Foreseen to serve for the new stellarator W7-X for pellet investigations, the former ASDEX Upgrade Blower Gun was revised and revitalized in a test bed. The gun is able now to launch cylindrical pellets of 2 mm diameter and 2 mm length, produced from frozen Deuterium (D2) or Hydrogen (H2). Pellets are accelerated by a short pulse of pressurized helium propellant gas to velocities in the range of 100-250 m/s. Delivery reliabilities at the launcher exit close to unity are achieved. For pellet transfer to the plasma vessel a first mock up guiding tube version was investigated. Transfer through this S-shaped (inner diameter 8 mm; length 6 m) stainless steel guiding tube containing two 1 m curvature radii was investigated for both H2 and D2 pellets. Tests were performed applying repetition rates from 2 Hz to 50 Hz and propellant gas pressures ranging from 1 bar to 6 bar. For both H2 and D2, low overall delivery efficiencies were observed at slow repetition rates, but stable efficiencies of about 90% above 10 Hz.

  11. Whistle-blower accuses VA inspector general of a "whitewash"

    Directory of Open Access Journals (Sweden)

    Robbins RA

    2014-09-01

    Full Text Available No abstract available. Article truncated after 150 words. Yesterday, Dr. Sam Foote, the initial whistle-blower at the Phoenix VA, criticized the Department of Veterans Affairs inspector general's (VAOIG report on delays in healthcare at the Phoenix VA at a hearing before the House Committee of Veterans Affairs (1,2. Foote accused the VAOIG of minimizing bad patient outcomes and deliberately confusing readers, downplaying the impact of delayed health care at Phoenix VA facilities. "At its best, this report is a whitewash. At its worst, it is a feeble attempt at a cover-up," said Foote. Foote earlier this year revealed that as many as 40 Phoenix patients died while awaiting care and that the Phoenix VA maintained secret waiting lists while under-reporting patient wait times for appointments. His disclosures triggered the national VA scandal. Richard Griffin, the acting VAOIG, said that nearly 300 patients died while on backlogged wait lists in the Phoenix VA Health Care System, a much higher ...

  12. Non-Thermal Soot Denuder Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a non-thermal soot denuder for measuring chemical components of the nucleation mode particulate matter emissions from gas turbine engines, in...

  13. Sooting limit in counterflow diffusion flames of ethylene/propane fuels and implication to threshold soot index

    KAUST Repository

    Joo, Peter H.

    2013-01-01

    Sooting limits in counterflow diffusion flames of propane/ethylene fuels have been studied experimentally using a light scattering technique, including the effects of dilution, fuel mixing, and strain rate. The results are discussed in view of the threshold soot index (TSI). In soot-formation (SF) flames, where the flame is located on the oxidizer side of the stagnation plane, the sooting limit depends critically on fuel type and subsequently on flame temperature. The sooting limit has a non-linear dependence on the fuel-mixing ratio, which is similar to the non-linear mixing rule for TSI observed experimentally in rich premixed flames, where soot oxidation is absent for both SF and rich premixed flames. In soot-formation-oxidation (SFO) flames, where the flame is located on the fuel side, the sooting limit depends critically on flame temperature, while it is relatively independent on fuel type. This result suggests a linear mixing rule for sooting limits in SFO flames, which is similar to the TSI behavior for coflow diffusion flames. Soot oxidation takes place for both types of flames. The aerodynamic strain effect on the sooting limits has also been studied and an appreciable influence has been observed. Under sooting conditions, soot volume fraction was measured using a light extinction technique. The soot loadings in SF flames of the mixture fuels demonstrated a synergistic effect, i.e., soot production increased for certain mixture fuels as compared to the respective singlecomponent fuels. © 2012 The Combustion Institute.

  14. Aromatics Oxidation and Soot Formation in Flames

    Energy Technology Data Exchange (ETDEWEB)

    Howard, J. B.; Richter, H.

    2005-03-29

    This project is concerned with the kinetics and mechanisms of aromatics oxidation and the growth process to polycyclic aromatic hydrocarbons (PAH) of increasing size, soot and fullerenes formation in flames. The overall objective of the experimental aromatics oxidation work is to extend the set of available data by measuring concentration profiles for decomposition intermediates such as phenyl, cyclopentadienyl, phenoxy or indenyl radicals which could not be measured with molecular-beam mass spectrometry to permit further refinement and testing of benzene oxidation mechanisms. The focus includes PAH radicals which are thought to play a major role in the soot formation process while their concentrations are in many cases too low to permit measurement with conventional mass spectrometry. The radical species measurements are used in critical testing and improvement of a kinetic model describing benzene oxidation and PAH growth. Thermodynamic property data of selected species are determined computationally, for instance using density functional theory (DFT). Potential energy surfaces are explored in order to identify additional reaction pathways. The ultimate goal is to understand the conversion of high molecular weight compounds to nascent soot particles, to assess the roles of planar and curved PAH and relationships between soot and fullerenes formation. The specific aims are to characterize both the high molecular weight compounds involved in the nucleation of soot particles and the structure of soot including internal nanoscale features indicative of contributions of planar and/or curved PAH to particle inception.

  15. NATO Workshop on Soot in Combustion Systems

    CERN Document Server

    Prado, G

    1983-01-01

    Our interest in Mulhouse for carbon black and soot began some 30 years ago when J.B. Donnet developed the concept of surface chemistry of carbon and its involvement in interactions with gas, liquid and solid phases. In the late sixties, we began to study soot formation in pyrolytic systems and later on in flames. The idea of organ1z1ng a meeting on soot formation originated some four or five years ago, through discussions among Professor J.B. Howard, Dr. A. D'Alessio and ourselves. At that time the scientific community was becoming aware of the necessity to strictly control soot formation and emission. Being involved in the study of surface properties of carbon black as well as of formation of soot, we realized that the combustion community was not always fully aware of the progress made by the physical-chemists on carbon black. Reciprocally, the carbon specialists were often ignoring the research carried out on soot in flames. One objective of this workshop was to stimulate discussions between these two scie...

  16. Ultraviolet-visible bulk optical properties of randomly distributed soot.

    Science.gov (United States)

    Renard, J B; Hadamcik, E; Brogniez, C; Berthet, G; Worms, J C; Chartier, M; Pirre, M; Ovarlez, J; Ovarlez, H

    2001-12-20

    The presence of soot in the lower stratosphere was recently established by in situ measurements. To isolate their contribution to optical measurements from that of background aerosol, the soot's bulk optical properties must be determined. Laboratory measurements of extinction and polarization of randomly distributed soot were conducted. For all soot, measurements show a slight reddening extinction between 400 and 700 nm and exhibit a maximum of 100% polarization at a scattering angle of 75 +/- 5 degrees. Such results cannot be reproduced by use of Mie theory assumptions. The different optical properties of soot and background stratospheric aerosol could allow isolation of soot in future analyses of stratospheric measurements.

  17. Drying Milk With Boiler Exhaust

    Science.gov (United States)

    Broussard, M. R.

    1984-01-01

    Considerable energy saved in powdered-milk industry. Only special requirement boiler fired with natural gas or other clean fuel. Boiler flue gas fed to spray drier where it directly contacts product to be dried. Additional heat supplied by auxillary combustor when boiler output is low. Approach adaptable to existing plants with minimal investment because most already equipped with natural-gas-fired boilers.

  18. Are black carbon and soot the same?

    Directory of Open Access Journals (Sweden)

    P. R. Buseck

    2012-09-01

    Full Text Available The climate change and environmental literature, including that on aerosols, is replete with mention of black carbon (BC, but neither reliable samples nor standards exist. Thus, there is uncertainty about its exact nature. That confusion can be avoided if terms are defined and widely understood. Here we discuss an ambiguity between BC and soot and propose a more precise definition for soot as a specific material, which we call ns-soot, where "ns" refers to carbon nanospheres. We define ns-soot as particles that consist of nanospheres, typically with diameters < 100 nm, that possess distinct structures of concentrically wrapped, graphene-like layers of carbon and with grape-like (acinoform morphologies. We additionally propose that, because of their importance for climate modeling and health issues, distinctions are made among bare, coated, and embedded ns-soot. BC, on the other hand, is not a well-defined material. We propose that the term should be restricted to light-absorbing refractory carbonaceous matter of uncertain character and that the uncertainty is stated explicitly.

  19. 10 CFR 504.6 - Prohibitions by order (case-by-case).

    Science.gov (United States)

    2010-01-01

    ... insubstantial if significant alterations to the boiler, such as a change to the furnace configuration or a complete respacing of the tubes, are not required. Minor alterations such as replacement of burners or additions of soot blowers, and additions or alterations outside the boiler, shall not cause the...

  20. Retrofit device to improve vapor compression cooling system performance by dynamic blower speed modulation

    Science.gov (United States)

    Roth, Robert Paul; Hahn, David C.; Scaringe, Robert P.

    2015-12-08

    A device and method are provided to improve performance of a vapor compression system using a retrofittable control board to start up the vapor compression system with the evaporator blower initially set to a high speed. A baseline evaporator operating temperature with the evaporator blower operating at the high speed is recorded, and then the device detects if a predetermined acceptable change in evaporator temperature has occurred. The evaporator blower speed is reduced from the initially set high speed as long as there is only a negligible change in the measured evaporator temperature and therefore a negligible difference in the compressor's power consumption so as to obtain a net increase in the Coefficient of Performance.

  1. OPTIMIZING IMPELLER GEOMETRY FOR PERFORMANCE ENHANCEMENT OF A CENTRIFUGAL BLOWER USING THE TAGUCHI QUALITY CONCEPT

    Directory of Open Access Journals (Sweden)

    R RAGOTH SINGH

    2012-10-01

    Full Text Available As the diffusion of flow process is highly complex in centrifugal blower operation, it is necessary to design / develop the geometry of impeller and casing to reduce the flow losses significantly. In the present study, the methodology to find near optimum combination of blower operating variables for performance enhancement were analyzed using computational fluid dynamics(CFD. Taguchi orthogonal array (OA based design of experiments (DoE technique determines the required experimental trials. The experimental results are justifiedby Analysis of Variance (ANOVA and confirmed by conformation experiments. The parameters chosen for design optimization are Impeller outlet diameter, Impeller wheel width, Thickness of blade and Impeller inlet diameter. The levels for the parametric specification are chosen from the ranges where the blower will get thebest efficiency. CFD results were validated by the fine conformity between the CFD results and the experimental results.

  2. NOx Control Options and Integration for US Coal Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Marc Cremer; Kevin Davis; Martin Denison; Adel Sarofim; Connie Senior; Hong-Shig Shim; Dave Swenson; Bob Hurt; Eric Suuberg; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker

    2006-06-30

    This is the Final Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project was to develop cost-effective analysis tools and techniques for demonstrating and evaluating low-NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) provided co-funding for this program. This project included research on: (1) In furnace NOx control; (2) Impacts of combustion modifications on boiler operation; (3) Selective Catalytic Reduction (SCR) catalyst testing and (4) Ammonia adsorption/removal on fly ash. Important accomplishments were achieved in all aspects of the project. Rich Reagent Injection (RRI), an in-furnace NOx reduction strategy based on injecting urea or anhydrous ammonia into fuel rich regions in the lower furnace, was evaluated for cyclone-barrel and PC fired utility boilers. Field tests successfully demonstrated the ability of the RRI process to significantly reduce NOx emissions from a staged cyclone-fired furnace operating with overfire air. The field tests also verified the accuracy of the Computational Fluid Dynamic (CFD) modeling used to develop the RRI design and highlighted the importance of using CFD modeling to properly locate and configure the reagent injectors within the furnace. Low NOx firing conditions can adversely impact boiler operation due to increased waterwall wastage (corrosion) and increased soot production. A corrosion monitoring system that uses electrochemical noise (ECN) corrosion probes to monitor, on a real-time basis, high temperature corrosion events within the boiler was evaluated. Field tests were successfully conducted at two plants. The Ohio Coal Development Office provided financial assistance to perform the field tests. To investigate soot behavior, an advanced model to predict soot production and destruction was implemented into an existing reacting CFD modeling tool. Comparisons between experimental data collected

  3. ENERGY STAR Certified Boilers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Boilers that are effective as of October 1,...

  4. Aerosol generation by blower motors as a bias in assessing aerosol penetration into cabin filtration systems.

    Science.gov (United States)

    Heitbrink, William A; Collingwood, Scott

    2005-01-01

    In cabin filtration systems, blower motors pressurize a vehicle cabin with clean filtered air and recirculate air through an air-conditioning evaporator coil and a heater core. The exposure reduction offered by these cabins is evaluated by optical particle counters that measure size-dependent aerosol concentration inside and outside the cabin. The ratio of the inside-to-outside concentration is termed penetration. Blower motors use stationary carbon brushes to transmit an electrical current through a rotating armature that abrades the carbon brushes. This creates airborne dust that may affect experimental evaluations of aerosol penetration. To evaluate the magnitude of these dust emissions, blower motors were placed in a test chamber and operated at 12 and 13.5 volts DC. A vacuum cleaner drew 76 m3/hour (45 cfm) of air through HEPA filters, the test chamber, and through a 5 cm diameter pipe. An optical particle counter drew air through an isokinetic sampling probe and measured the size-dependent particle concentrations from 0.3 to 15 microm. The concentration of blower motor aerosol was between 2 x 10(5) and 1.8 x 10(6) particles/m3. Aerosol penetration into three stationary vehicles, two pesticide application vehicles and one tractor were measured at two conditions: low concentration (outside in the winter) and high concentration (inside repair shops and burning incense sticks used as a supplemental aerosol source). For particles smaller than 1 microm, the in-cabin concentrations can be explained by the blower motor emissions. For particles larger than 1 microm, other aerosol sources, such as resuspended dirt, are present. Aerosol generated by the operation of the blower motor and by other sources can bias the exposure reduction measured by optical particle counters. PMID:15764523

  5. Speed adjustment of blowers in refrigeration engineering. Exemplary applications; Verfahren der Drehzahlveraenderung von Ventilatoren in der Kaeltetechnik. Beispiel verschiedener Anwendungsfaelle

    Energy Technology Data Exchange (ETDEWEB)

    Albig, J. [Ziehl-Abegg AG, Kuenzelsau (Germany)

    2007-02-15

    Apart from the motor performance, also the investment cost of speed adjustment systems decide the economic efficiency of blowers. The blower performance itself is left out of account in this investigation. The most common control strategies are investigated, i.e. voltage control, frequence control, and EC technology. (orig.)

  6. Response of air cleaning system dampers and blowers to simulated tornado transients

    International Nuclear Information System (INIS)

    The effects of tornado-like pressure transients upon dampers and blowers in nuclear air cleaning systems were studied. For the dampers pressure drop as a function of flow rate was obtained and an empirical relationship developed. Transient response was examined for several types of dampers, as was structural integrity. Both centrifugal and axi-vane blowers were tested and transient characteristic curves were generated in outrunning and backflow situations. The transient characteristic curves do not necessarily match the quasi-steady characteristic curves

  7. Steam boiler technology

    Energy Technology Data Exchange (ETDEWEB)

    Teir, S.

    2003-07-01

    This book is the published version of the e-book with the same name. The interactive lecture slides, which accompany most chapters, exist only in the online version and on the attached CD-Rom. The Steam Boiler Technology e-book is the main course book for the course on steam boiler technology provided by the Laboratory of Energy Engineering and Environmental Protection at Helsinki University of Technology. The steam boiler technology e-Book is provided by the Laboratory of Energy Engineering and Environmental Protection at Helsinki University of Technology. The book covers the basics and the history of steam generation, modern boilers types and applications, steam/water circulation design, feedwater and steam systems components, heat exchangers in steam boilers, boiler calculations, thermal design of heat exchangers. The chapters of the second edition have been corrected based on reader and reviewer comments, and four new chapters have been added. The user interface of the electronic version has also been updated. The password for the online book will be changed once a year. If you have problems accessing the online book, or need a new password, please contact sebastian.teir@hut.fi.

  8. Tribology of soot suspension in hexadecane as distinguished by the physical structure and chemistry of soot particles

    International Nuclear Information System (INIS)

    Ethylene gas is burnt to generate soot which is collected thermophoretically from different locations of the flame. Tribological performance of the collected soot in hexadecane suspension is compared with that of carbon black and diesel soot. The soots are analysed to yield a range of mechanical properties, physical structures and chemistry. The paper correlates these property variations with the corresponding variations in friction and wear when the soot suspended in hexadecane is used to lubricate a steel on steel sliding interaction. The particles are dispersed in hexadecane by a non-ionic surfactant, poly-isobutylene succinimide (PIBS), which is mono-functional with no free amine group. The grafting of the surfactant on the soot particles is found to have a profound effect on the dispersion of the soot, in general, while, between the different soot types, the tribology is differentiated by the physical structure and chemistry. (paper)

  9. Laminar Soot Processes Experiment Shedding Light on Flame Radiation

    Science.gov (United States)

    Urban, David L.

    1998-01-01

    The Laminar Soot Processes (LSP) experiment investigated soot processes in nonturbulent, round gas jet diffusion flames in still air. The soot processes within these flames are relevant to practical combustion in aircraft propulsion systems, diesel engines, and furnaces. However, for the LSP experiment, the flames were slowed and spread out to allow measurements that are not tractable for practical, Earth-bound flames.

  10. Kinetics and mechanism of soot formation in hydrocarbon combustion

    Science.gov (United States)

    Frenklach, Michael

    1990-01-01

    The focus of this work was on kinetic modeling. The specific objectives were: detailed modeling of soot formation in premixed flames, elucidation of the effects of fuel structure on the pathway to soot, and the development of a numerical technique for accurate modeling of soot particle coagulation and surface growth. Those tasks were successfully completed and are briefly summarized.

  11. TECHNOLOGY OF SMOKE PREVENTION AND DUST CONTROL FOR HORIZONTAL GRATE-FIRED BOILERS%卧式层状燃煤锅炉炉内消烟除尘技术

    Institute of Scientific and Technical Information of China (English)

    王擎; 孙东红; 孙佰仲; 闫跃升; 孙键

    2003-01-01

    In China, a number of horizontal grate-fired boilers have been used in industry and black soot and fly ash are emitted out of the furnace. A smoke prevention and dust control device suited for horizontal grate-fired boilers is invented so as to solve these two problems. The technical feature of the device is presented and aerodynamic field in the furnace is simulated. It shows many advantages,such as simple structure, easy arrangement, effective inhibition of soot formation and realizing dust-removal in furnace.

  12. STUDY ON BLASTING DESCALING IN THE SOOT-DELIVERY PIPE

    Institute of Scientific and Technical Information of China (English)

    杨仁树; 田运生; 商厚胜; 杨永琦; 齐郁周

    1997-01-01

    An experiment model, scaled 1:1, designed for studying a blasting method to clear away soot in a soot-delivery pipe in coal-burning power plant is described. By mixing RDX and Nitramon on a particular scale and sticking the explosive cartridge on the outwall surface of the pipe, the experimental result makes clear that the controlled blasting method can get rid of the soot effectively. Under the action of the blasting compression wave and reflectance tension wave, the soot is destroyed effectively in the region of-60°~60° around the blasting site, that creates a condition for the second blasting in the surplus soot.

  13. Testicular cancer trends as 'whistle blowers' of testicular developmental problems in populations

    DEFF Research Database (Denmark)

    Skakkebaek, N E; Rajpert-De Meyts, Ewa; Jørgensen, N;

    2007-01-01

    in TGCC rates of a population may be 'whistle blowers' of other reproductive health problems. As cancer registries are often of excellent quality - in contrast to registries for congenital abnormalities - health authorities should consider an increase in TGCC as a warning that other reproductive health...

  14. Velocity and turbulence measurements of impellers discharge flow for multi-stage centrifugal blower

    International Nuclear Information System (INIS)

    This paper assesses some results of an experimental investigation on a 4-stage centrifugal blower. The two-dimensional velocity and turbulence field at the exit of the first and fourth stage was measured in some working conditions of the machine, by a single hot-wire anemometer rotated twice about its own axis

  15. Modification and application of a leaf blower-vac for field sampling of arthropods

    NARCIS (Netherlands)

    Zou, Yi; Telgen, van Mario D.; Chen, Junhui; Xiao, Haijun; Kraker, de Joop; Bianchi, Felix J.J.A.; Werf, van der Wopke

    2016-01-01

    Rice fields host a large diversity of arthropods, but investigating their population dynamics and interactions is challenging. Here we describe the modification and application of a leaf blower-vac for suction sampling of arthropod populations in rice. When used in combination with an enclosure,

  16. Auxiliary bearing design and rotor dynamics analysis of blower fan for HTR-10

    International Nuclear Information System (INIS)

    The electromagnetic bearing instead of ordinary mechanical bearing was chosen to support the rotor in the blower fan system with helium of 10 MW high temperature gas-cooled test reactor (HTR-10), and the auxiliary bearing was applied in the HTR-10 as the backup protector. When the electromagnetic bearing doesn't work suddenly for the power broken, the auxiliary bearing is used to support the falling rotor with high rotating speed. The rotor system will be protected by the auxiliary bearing. The design of auxiliary bearing is the ultimate safeguard for the system. This rotor is vertically mounted to hold the blower fan. The rotor's length is about 1.5 m, its weight is about 240 kg and the rotating speed is about 5400 r/min. Auxiliary bearing design and rotor dynamics analysis are very important for the design of blower fan to make success. The research status of the auxiliary bearing was summarized in the paper. A sort of auxiliary bearing scheme was proposed. MSC.Marc was selected to analyze the vibration mode and the natural frequency of the rotor. The scheme design of auxiliary bearing and analysis result of rotor dynamics offer the important theoretical base for the protector design and control system of electromagnetic bearing of the blower fan. (authors)

  17. Precursor soot synthesis of fullerenes and nanotubes without formation of carbonaceous soot

    Science.gov (United States)

    Reilly, Peter T. A.

    2007-03-20

    The present invention is a method for the synthesis of fullerenes and/or nanotubes from precursor soot without the formation of carbonaceous soot. The method comprises the pyrolysis of a hydrocarbon fuel source by heating the fuel source at a sufficient temperature to transform the fuel source to a condensed hydrocarbon. The condensed hydrocarbon is a reaction medium comprising precursor soot wherein hydrogen exchange occurs within the reaction medium to form reactive radicals which cause continuous rearrangement of the carbon skeletal structure of the condensed hydrocarbon. Then, inducing dehydrogenation of the precursor soot to form fullerenes and/or nanotubes free from the formation of carbonaceous soot by continued heating at the sufficient temperature and by regulating the carbon to hydrogen ratio within the reaction medium. The dehydrogenation process produces hydrogen gas as a by-product. The method of the present invention in another embodiment is also a continuous synthesis process having a continuous supply of the fuel source. The method of the present invention can also be a continuous cyclic synthesis process wherein the reaction medium is fed back into the system as a fuel source after extraction of the fullerenes and/or nanotube products. The method of the present invention is also a method for producing precursor soot in bulk quantity, then forming fullerenes and/or nanotubes from the precursor bulk.

  18. Thermal fragmentation and deactivation of combustion-generated soot particles

    KAUST Repository

    Raj, Abhijeet

    2014-09-01

    The effect of thermal treatment on diesel soot and on a commercial soot in an inert environment under isothermal conditions at intermediate temperatures (400-900°C) is studied. Two important phenomena are observed in both the soot samples: soot fragmentation leading to its mass loss, and loss of soot reactivity towards O2. Several experimental techniques such as high resolution transmission electron microscopy, electron energy loss spectroscopy, thermo-gravimetric analysis with mass spectrometry, elemental analysis, Fourier transform infrared spectroscopy and X-ray diffraction have been used to identify the changes in structures, functional groups such as oxygenates and aliphatics, σ and π bonding, O/C and H/C ratios, and crystallite parameters of soot particles, introduced by heat. A decrease in the size of primary particles and an increase in the average polycyclic aromatic hydrocarbon (PAH) size was observed in soots after thermal treatment. The activation energies of soot oxidation for thermally treated soot samples were found to be higher than those for the untreated ones at most conversion levels. The cyclic or acyclic aliphatics with sp3 hybridization were present in significant amounts in all the soot samples, but their concentration decreased with thermal treatment. Interestingly, the H/C and the O/C ratios of soot particles increased after thermal treatment, and thus, they do not support the decrease in soot reactivity. The increase in the concentration of oxygenates on soot surface indicate that their desorption from soot surface in the form of CO, CO2 and other oxygenated compounds may not be significant at the temperatures (400-900°C) studied in this work. © 2014 The Combustion Institute.

  19. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Marc Cremer; Kevin Davis; Connie Senior; Bob Hurt; Eric Eddings; Larry Baxter

    2001-10-10

    This is the fifth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing cofunding for this program. This program contains multiple tasks and good progress is being made on all fronts. Field tests for NOx reduction in a cyclone fired utility boiler due to using Rich Reagent Injection (RRI) have been started. CFD modeling studies have been started to evaluate the use of RRI for NOx reduction in a corner fired utility boiler using pulverized coal. Field tests of a corrosion monitor to measure waterwall wastage in a utility boiler have been completed. Computational studies to evaluate a soot model within a boiler simulation program are continuing. Research to evaluate SCR catalyst performance has started. A literature survey was completed. Experiments have been outlined and two flow reactor systems have been designed and are under construction. Commercial catalyst vendors have been contacted about supplying catalyst samples. Several sets of new experiments have been performed to investigate ammonia removal processes and mechanisms for fly ash. Work has focused on a promising class of processes in which ammonia is destroyed by strong oxidizing agents at ambient temperature during semi-dry processing (the use of moisture amounts less than 5 wt-%). Both ozone and an ozone/peroxide combination have been used to treat both basic and acidic ammonia-laden ashes.

  20. Curbing Air Pollution and Greenhouse Gas Emissions from Industrial Boilers in China

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Bo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Price, Lynn K [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lu, Hongyou [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Liu, Xu [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tsen, Katherine [Univ. of California, Berkeley, CA (United States); Xiangyang, Wei [National Energy Conservation Center (China); Yunpeng, Zhang [National Energy Conservation Center (China); Jian, Guan [China Special Equipment Inspection & Test Inst. (China); Rui, Hou [China Machinery Industry Conservation & Resource Utilization Center (China); Junfeng, Zhang [China National Offshore Oil Corp. (China); Yuqun, Zhuo [Tsinghua Univ., Beijing (China); Shumao, Xia [China Energy Conservation & Environmental Protection Group (China); Yafeng, Han [Xi' an Jiatong Univ. (China); Manzhi, Liu [China Univ. of Mining and Technology (China)

    2015-10-28

    China’s industrial boiler systems consume 700 million tons of coal annually, accounting for 18% of the nation’s total coal consumption. Together these boiler systems are one of the major sources of China’s greenhouse gas (GHG) emissions, producing approximately 1.3 gigatons (Gt) of carbon dioxide (CO2) annually. These boiler systems are also responsible for 33% and 27% of total soot and sulfur dioxide (SO2) emissions in China, respectively, making a substantial contribution to China’s local environmental degradation. The Chinese government - at both the national and local level - is taking actions to mitigate the significant greenhouse gas (GHG) emissions and air pollution related to the country’s extensive use of coal-fired industrial boilers. The United States and China are pursuing a collaborative effort under the U.S.-China Climate Change Working Group to conduct a comprehensive assessment of China’s coal-fired industrial boilers and to develop an implementation roadmap that will improve industrial boiler efficiency and maximize fuel-switching opportunities. Two Chinese cities – Ningbo and Xi’an – have been selected for the assessment. These cities represent coastal areas with access to liquefied natural gas (LNG) imports and inland regions with access to interprovincial natural gas pipelines, respectively.

  1. Fullerene Soot in Eastern China Air: Results from Soot Particle-Aerosol Mass Spectrometer

    Science.gov (United States)

    Wang, J.; Ge, X.; Chen, M.; Zhang, Q.; Yu, H.; Sun, Y.; Worsnop, D. R.; Collier, S.

    2015-12-01

    In this work, we present for the first time, the observation and quantification of fullerenes in ambient airborne particulate using an Aerodyne Soot Particle - Aerosol Mass Spectrometer (SP-AMS) deployed during 2015 winter in suburban Nanjing, a megacity in eastern China. The laser desorption and electron impact ionization techniques employed by the SP-AMS allow us to differentiate various fullerenes from other aerosol components. Mass spectrum of the identified fullerene soot is consisted by a series of high molecular weight carbon clusters (up to m/z of 2000 in this study), almost identical to the spectral features of commercially available fullerene soot, both with C70 and C60 clusters as the first and second most abundant species. This type of soot was observed throughout the entire study period, with an average mass loading of 0.18 μg/m3, accounting for 6.4% of the black carbon mass, 1.2% of the total organic mass. Temporal variation and diurnal pattern of fullerene soot are overall similar to those of black carbon, but are clearly different in some periods. Combining the positive matrix factorization, back-trajectory and analyses of the meteorological parameters, we identified the petrochemical industrial plants situating upwind from the sampling site, as the major source of fullerene soot. In this regard, our findings imply the ubiquitous presence of fullerene soot in ambient air of industry-influenced area, especially the oil and gas production regions. This study also offers new insights into the characterization of fullerenes from other environmental samples via the advanced SP-AMS technique.

  2. Soot oxidation over NOx storage catalysts. Activity and deactivation

    International Nuclear Information System (INIS)

    Soot oxidation activity and deactivation of NOx storage and reduction (NSR) catalysts containing Pt, K, and Ba supported on Al2O3, are studied under a variety of reaction conditions. K-containing catalysts decrease soot oxidation temperature with O2 alone and the presence of Pt further enhance the activity due to synergetic effect. The active species responsible for synergism on Pt/K-Al2O3 are unstable and cannot be regenerated. Soot oxidation temperature decreases by about 150oC with NO+O2 exhaust feed gas and under lean conditions NSR system acts as catalysed soot filter (CSF). The reactions that are mainly responsible for decreasing soot oxidation temperature are: (1) soot oxidation with NO2 followed by NO recycles to NO2, and (2) soot oxidation with O2 assisted by NO2. Only a part of the stored NOx that is decomposed at high temperatures under lean conditions is found to be useful for soot oxidation. NOx storage capacity of NSR catalysts decreases upon ageing under soot oxidising conditions. This will lead to a decreased soot oxidation activity on stored nitrate decomposition. Pt/K-Al2O3 catalyst is more active, but least stable compared with Pt/Ba-Al2O3. (author)

  3. Review of soot measurement in hydrocarbon-air flames

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Soot,which is produced in fuel-rich parts of flames as a result of incomplete combustion of hydrocarbons,is the No.2 contributor to global warming after carbon dioxide.Developing soot measurement techniques is important to understand soot formation mechanism and control soot emission.The various soot measurement techniques,such as thermophoretic sampling par-ticles diagnostics followed by electron microscopy analysis,thermocouple particle densitometry,light extinction,laser-induced incandescence,two-color method,and emission computed tomography,are reviewed in this paper.The measurement principle and application cases of these measurement methods are described in detail.The development trend of soot measurement is to realize the on-line measurement of multi-dimensional distributions of temperature,soot volume fraction,soot particle size and other parameters in hydrocarbon-air flames.Soot measurement techniques suitable for both small flames in laboratories and large-scale flames in industrial combustion devices should be developed.Besides,in some special situations,such as high-pressure,zero gravity and micro-gravity flames,soot measurement also should be provided.

  4. MODELLING, SIMULATING AND OPTIMIZING BOILERS

    DEFF Research Database (Denmark)

    Sørensen, Kim; Condra, Thomas Joseph; Houbak, Niels

    2004-01-01

    of the boiler is (with an acceptable accuracy) proportional with the volume of the boiler. For the dynamic operation capability a cost function penalizing limited dynamic operation capability and vise-versa has been dened. The main idea is that it by mean of the parameters in this function is possible to t its...... shape to the actual application. In the paper an optimization example is shown and the results discussed. By means of the developed model it is shown how the optimum changes from a boiler favoring a good dynamic capability (i.e. a boiler with a relatively large volume) to a boiler not penalizing...

  5. Measurement and Analysis of the Noise Radiated by Low Mach Number Centrifugal Blowers.

    Science.gov (United States)

    Yeager, David Marvin

    An investigation was performed of the broad band, aerodynamically generated noise in low tip-speed Mach number, centrifugal air moving devices. An interdisciplinary experimental approach was taken which involved investigation of the aerodynamic and acoustic fields, and their mutual relationship. The noise generation process was studied using two experimental vehicles: (1) a scale model of a homologous family of centrifugal blowers typical of those used to cool computer and business equipment, and (2) a single blade from a centrifugal blower impeller placed in a known, controllable flow field. The radiation characteristics of the model blower were investigated by measuring the acoustic intensity distribution near the blower inlet and comparing it with the intensity near the inlet to an axial flow fan. Results showed that the centrifugal blower is a distributed, random noise source, unlike an axial fan which exhibited the effects of a coherent, interacting source distribution. Aerodynamic studies of the flow field in the inlet and at the discharge to the rotating impeller were used to assess the mean flow distribution through the impeller blade channels and to identify regions of excessive turbulence near the rotating blade row. Both circumferential and spanwise mean flow nonuniformities were identified along with a region of increased turbulence just downstream of the scroll cutoff. The fluid incidence angle, normally taken as an indicator of blower performance, was estimated from mean flow data as deviating considerably from an ideal impeller design. An investigation of the noise radiated from the single, isolated airfoil was performed using modern correlation and spectral analysis techniques. Radiation from the single blade in flow was characterized using newly developed expressions for the correlation area and the dipole source strength per unit area, and from the relationship between the blade surface pressure and the incident turbulent flow field. Results

  6. CHP Integrated with Burners for Packaged Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Castaldini, Carlo; Darby, Eric

    2013-09-30

    division of Sempra Energy. These match funds were provided via concurrent contracts and investments available via CMCE, Altex, and Leva Energy The project attained all its objectives and is considered a success. CMCE secured the support of GI&E from Italy to supply 100 kW Turbec T-100 microturbines for the project. One was purchased by the project’s subcontractor, Altex, and a second spare was purchased by CMCE under this project. The microturbines were then modified to convert from their original recuperated design to a simple cycle configuration. Replacement low-NOx silo combustors were designed and bench tested in order to achieve compliance with the California Air Resources Board (CARB) 2007 emission limits for NOx and CO when in CHP operation. The converted microturbine was then mated with a low NOx burner provided by Altex via an integration section that allowed flow control and heat recovery to minimize combustion blower requirements; manage burner turndown; and recover waste heat. A new fully integrated control system was designed and developed that allowed one-touch system operation in all three available modes of operation: (1) CHP with both microturbine and burner firing for boiler heat input greater than 2 MMBtu/hr; (2) burner head only (BHO) when the microturbine is under service; and (3) microturbine only when boiler heat input requirements fall below 2 MMBtu/hr. This capability resulted in a burner turndown performance of nearly 10/1, a key advantage for this technology over conventional low NOx burners. Key components were then assembled into a cabinet with additional support systems for generator cooling and fuel supply. System checkout and performance tests were performed in the laboratory. The assembled system and its support equipment were then shipped and installed at a host facility where final performance tests were conducted following efforts to secure fabrication, air, and operating permits. The installed power burner is now in commercial

  7. Sooting Characteristics and Modeling in Counterflow Diffusion Flames

    KAUST Repository

    Wang, Yu

    2013-11-01

    Soot formation is one of the most complex phenomena in combustion science and an understanding of the underlying physico-chemical mechanisms is important. This work adopted both experimental and numerical approaches to study soot formation in laminar counterfl ow diffusion flames. As polycyclic aromatic hydrocarbons (PAHs) are the precursors of soot particles, a detailed gas-phase chemical mechanism describing PAH growth upto coronene for fuels with 1 to 4 carbon atoms was validated against laminar premixed and counter- flow diffusion fl ames. Built upon this gas-phase mechanism, a soot model was then developed to describe soot inception and surface growth. This soot model was sub- sequently used to study fuel mixing effect on soot formation in counterfl ow diffusion flames. Simulation results showed that compared to the baseline case of the ethylene flame, the doping of 5% (by volume) propane or ethane in ethylene tends to increase the soot volume fraction and number density while keeping the average soot size almost unchanged. These results are in agreement with experimental observations. Laser light extinction/scattering as well as laser induced fluorescence techniques were used to study the effect of strain rate on soot and PAH formation in counterfl ow diffusion ames. The results showed that as strain rate increased both soot volume fraction and PAH concentrations decreased. The concentrations of larger PAH were more sensitive to strain rate compared to smaller ones. The effect of CO2 addition on soot formation was also studied using similar experimental techniques. Soot loading was reduced with CO2 dilution. Subsequent numerical modeling studies were able to reproduce the experimental trend. In addition, the chemical effect of CO2 addition was analyzed using numerical data. Critical conditions for the onset of soot were systematically studied in counterfl ow diffusion ames for various gaseous hydrocarbon fuels and at different strain rates. A sooting

  8. Oxidation of soot on iron oxide catalysts

    OpenAIRE

    Waglöhner, Steffen

    2012-01-01

    This thesis addresses the rational development of an iron oxide based catalyst for soot oxidation. The approach of this development process comprises three research methods, namely mechanistic and kinetic experiments, kinetic and fluid dynamic modelling and structure-activity relations of different types of iron oxides. A combination of this enables the synthesis of an advanced catalytic material, which is transferred to a real DPF system and tested under real diesel exhaust conditions.

  9. Optimization of Load Assignment to Boilers in Industrial Boiler Plants

    Institute of Scientific and Technical Information of China (English)

    CAO Jia-cong; QIU Guang; CAO Shuang-hua; LIU Feng-qiang

    2004-01-01

    Along with the increasing importance of sustainable energy, the optimization of load assignment to boilers in an industrial boiler plant becomes one of the major projects for the optimal operation of boiler plants. Optimal load assignment for power systems has been a long-lasting subject, while it is quite new for industrial boiler plants. The existing methods of optimal load assignment for boiler plants are explained and analyzed briefly in the paper. They all need the fuel cost curves of boilers. Thanks to some special features of the curves for industrial boilers, a new model referred to as minimized departure model (MDM) of optimization of load assignment for boiler plants is developed and proposed in the paper. It merely relies upon the accessible data of two typical working conditions to build the model, viz. the working conditions with the highest efficiency of a boiler and with no-load. Explanation of the algorithm of computer program is given, and effort is made so as to determine in advance how many and which boilers are going to work. Comparison between the results using MDM and the results reported in references is carried out, which proves that MDM is preferable and practicable.

  10. Effects of Gas Temperature Fluctuation on the Soot Formation Reactions

    Institute of Scientific and Technical Information of China (English)

    CHEN Ying; ZHANG Jian

    2013-01-01

    The effects of gas temperature fluctuations on soot formation and oxidation reactions are investigated numerically in a reacting flow.The instantaneous variations of soot mass fraction with time are obtained under the time-averaged gas temperature of 1500 1700 K.The simulation results show that the gas temperature fluctuation has obvious influence on the instantaneous processes of soot formation and oxidation.Within the present range of gas temperature,the gas temperature fluctuation results in generally lower soot mass fraction comparing to that without gas temperature fluctuation.The increase in the fluctuation amplitude of gas temperature leads to decrease in time-averaged soot mass fraction and increase in time-averaged soot particle number density.

  11. Flow optimization in blowers by means of LDA measurements; Stroemungstechnische Optimierung von Ventilatoren mit Hilfe der LDA-Messtechnik

    Energy Technology Data Exchange (ETDEWEB)

    Reichert, E.; Strehle, M. [ebm Werke GmbH und Co. KG, Mulfingen (Germany); Bohl, K. [Heilbronn Fachhochschule (Germany)

    2003-06-01

    The contribution describes the application of LDA techniques for flow measurements and optimization of blowers. Three examples are presented to show how LDA measurements can be used for optimization and design of industrial blowers. [German] Der Beitrag beschreibt die Anwendung der LDA-Messtechnik fuer die stroemungstechnische Entwicklung und Optimierung von Ventilatoren. An drei Beispielen wird gezeigt, wie im industriellen Einsatz mit LDA-Messungen wesentliche Informationen ermittelt werden koennen, die dann zur Verbesserung oder zur Auslegung von Ventilatoren eingesetzt werden. (orig.)

  12. Electrochemical supercapacitor behaviour of functionalized candle flame carbon soot

    Indian Academy of Sciences (India)

    C Justin Raj; Byung Chul Kim; Bo-Bae Cho; Won-Je Cho; Sung-Jin Kim; Sang Yeup Park; Kook Hyun Yu

    2016-02-01

    The electrochemical supercapacitor behaviour of bare, washed and nitric acid functionalized candle flame carbon soots were reported. Crystallinity and the morphology of the candle soots were recorded using X-ray diffraction analysis, scanning and transmission electron microscopy, respectively. The nitric acid functionalized candle soot showed an improved Brunauer–Emmett–Teller surface area of 137.93 from 87.495 m$^2$ g$^{−1}$ of washed candle soot. The presence of various functional groups in candle soots and the development of oxygen functionalities in the functionalized candle soot were examined through Fourier transform infrared spectroscopy and energy-dispersive X-ray analysis. Raman spectra showed the characteristic peaks corresponding to the D (diamond) and G (graphite) phase of carbon present in the candle soots. The electrochemical characterization was performed by cyclic voltammetry, galvanostatic charge/discharge test and impedance spectroscopy in 1MH2SO4 electrolyte. The functionalized candle soot electrode showed an enhanced specific capacitance value of 187 F g$^{−1}$ at 0.15 A g$^{−1}$ discharge current density, which is much higher than that of bare and washed candle soot electrodes.

  13. Soot Formation in Freely-Propagating Laminar Premixed Flames

    Science.gov (United States)

    Lin, K.-C.; Hassan, M. I.; Faeth, G. M.

    1997-01-01

    Soot formation within hydrocarbon-fueled flames is an important unresolved problem of combustion science. Thus, the present study is considering soot formation in freely-propagating laminar premixed flames, exploiting the microgravity environment to simplify measurements at the high-pressure conditions of interest for many practical applications. The findings of the investigation are relevant to reducing emissions of soot and continuum radiation from combustion processes, to improving terrestrial and spacecraft fire safety, and to developing methods of computational combustion, among others. Laminar premixed flames are attractive for studying soot formation because they are simple one-dimensional flows that are computationally tractable for detailed numerical simulations. Nevertheless, studying soot-containing burner-stabilized laminar premixed flames is problematical: spatial resolution and residence times are limited at the pressures of interest for practical applications, flame structure is sensitive to minor burner construction details so that experimental reproducibility is not very good, consistent burner behavior over the lengthy test programs needed to measure soot formation properties is hard to achieve, and burners have poor durability. Fortunately, many of these problems are mitigated for soot-containing, freely-propagating laminar premixed flames. The present investigation seeks to extend work in this laboratory for various soot processes in flames by observing soot formation in freely-propagating laminar premixed flames. Measurements are being made at both Normal Gravity (NG) and MicroGravity (MG), using a short-drop free-fall facility to provide MG conditions.

  14. Technical Note: The single particle soot photometer fails to reliably detect PALAS soot nanoparticles

    Directory of Open Access Journals (Sweden)

    M. Gysel

    2012-12-01

    Full Text Available The single particle soot photometer (SP2 uses laser-induced incandescence (LII for the measurement of atmospheric black carbon (BC particles. The BC mass concentration is obtained by combining quantitative detection of BC mass in single particles with a counting efficiency of 100% above its lower detection limit. It is commonly accepted that a particle must contain at least several tenths of a femtogram BC in order to be detected by the SP2.

    Here we show the result that most BC particles from a PALAS spark discharge soot generator remain undetected by the SP2, even if their BC mass, as independently determined with an aerosol particle mass analyser (APM, is clearly above the typical lower detection limit of the SP2. Comparison of counting efficiency and effective density data of PALAS soot with flame generated soot (combustion aerosol standard burner, CAST, fullerene soot and carbon black particles (Cabot Regal 400R reveals that particle morphology can affect the SP2's lower detection limit. PALAS soot particles are fractal-like agglomerates of very small primary particles with a low fractal dimension, resulting in a very low effective density. Such loosely packed particles behave like "the sum of individual primary particles" in the SP2's laser. Accordingly, most PALAS soot particles remain undetected as the SP2's laser intensity is insufficient to heat the primary particles to their vaporisation temperature because of their small size (Dpp ≈ 5–10 nm. Previous knowledge from pulsed laser-induced incandescence indicated that particle morphology might have an effect on the SP2's lower detection limit, however, an increase of the lower detection limit by a factor of ∼5–10, as reported here for PALAS soot, was not expected.

    In conclusion, the SP2's lower detection limit at a certain laser power depends primarily on the total BC mass per particle for compact particles with sufficiently high effective

  15. Technical Note: The single particle soot photometer fails to detect PALAS soot nanoparticles

    Directory of Open Access Journals (Sweden)

    M. Gysel

    2012-07-01

    Full Text Available The single particle soot photometer (SP2 uses laser-induced incandescence (LII for the measurement of atmospheric black carbon (BC particles. The BC mass concentration is obtained by combining quantitative detection of BC mass in single particles with a counting efficiency of 100% above its lower detection limit (LDL. It is commonly accepted that a particle must contain at least several tenths of femtograms BC in order to be detected by the SP2.

    Here we show the unexpected result that BC particles from a PALAS spark discharge soot generator remain undetected by the SP2, even if their BC mass, as independently determined with an aerosol particle mass analyser (APM, is clearly above the typical LDL of the SP2. Comparison of counting efficiency and effective density data of PALAS soot with flame generated soot (combustion aerosol standard burner, CAST, fullerene soot and carbon black particles (Cabot Regal 400R reveals that particle morphology can affect the SP2's LDL. PALAS soot particles are fractal-like agglomerates of very small primary particles with a low fractal dimension, resulting in a very low effective density. Such loosely-packed particles behave like "the sum of individual primary particles" in the SP2's laser. Accordingly, the PALAS soot particles remain undetected as the SP2's laser intensity is insufficient to heat the primary particles to vaporisation because of their small size (primary particle diameter ~5–10 nm. It is not surprising that particle morphology can have an effect on the SP2's LDL, however, such a dramatic effect as reported here for PALAS soot was not expected. In conclusion, the SP2's LDL at a certain laser power depends on total BC mass per particle for compact particles with sufficiently high effective density. However, for fractal-like agglomerates of very small primary particles and low fractal dimension, the BC mass per primary particle determines the limit of detection, independent of the total

  16. Modification and Application of a Leaf Blower-vac for Field Sampling of Arthropods.

    Science.gov (United States)

    Zou, Yi; van Telgen, Mario D; Chen, Junhui; Xiao, Haijun; de Kraker, Joop; Bianchi, Felix J J A; van der Werf, Wopke

    2016-01-01

    Rice fields host a large diversity of arthropods, but investigating their population dynamics and interactions is challenging. Here we describe the modification and application of a leaf blower-vac for suction sampling of arthropod populations in rice. When used in combination with an enclosure, application of this sampling device provides absolute estimates of the populations of arthropods as numbers per standardized sampling area. The sampling efficiency depends critically on the sampling duration. In a mature rice crop, a two-minute sampling in an enclosure of 0.13 m(2) yields more than 90% of the arthropod population. The device also allows sampling of arthropods dwelling on the water surface or the soil in rice paddies, but it is not suitable for sampling fast flying insects, such as predatory Odonata or larger hymenopterous parasitoids. The modified blower-vac is simple to construct, and cheaper and easier to handle than traditional suction sampling devices, such as D-vac. The low cost makes the modified blower-vac also accessible to researchers in developing countries. PMID:27584040

  17. Numerical Simulation of Unsteady Discharge Flow with Fluctuation in Positive Discharge Blower

    Institute of Scientific and Technical Information of China (English)

    LIU Zhengxian; WANG Dou; XU Lianhuan

    2009-01-01

    The operating performance of positive discharge blower/s markedly influenced by the pulsation of the discharge flow, but difficult to be measured with experimental methods. The internal and discharge flow of positive discharge blower with involute type three-lobe are numerically investigated, both in air cooling and countercurrent cooling conditions by means of computational fluid dynamics (CFD). The unsteady compressible flow equations are solved using RNG κ-ε turbulent model. The finite difference method and the second order upwind difference scheme are applied into discrete equations. In the numerical simulation, the dynamic mesh techniques are used to approach the rotating displacement of cell cubage and the alterability of inlet, outlet flow area. The non-uniform mesh is applied to the rotor-stator coupled area. The reliability of the numerical method is verified by simulating the inner flow and comparing with the semi-empirical theory. The flow flux curves and the distributing of velocity vector showed obvious vortex motion in all the discharge process, both in air cooling and countercurrent cooling conditions. These vortexes with different positions, intension and numbers at different rotating angles have remarkable influences on the discharge flux. For air cooling, the vortex produced a second pulsation with big-amplitude in a cycle, and led to the early appearance of maximum of backflow. For countercurrent cooling, the frequency of pulsation increased due to the pre-inflow, but the hackflow at the outlet is prevented, also the pulsation strength has greatly decreased.

  18. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    International Nuclear Information System (INIS)

    This is the seventh Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. A series of field tests for RRI at the Ameren Sioux Unit No.1 have demonstrated that RRI can provide up to 30% NOx reduction over the use of over fire air in large scale (480MW) cyclone fired utility boilers. The field tests and modeling results are in good agreement. Final data analysis has been completed for tests performed at Eastlake Power Station of a real-time waterwall corrosion monitoring system. The tests demonstrated that corrosion could be measured accurately in real-time in normal boiler operations, and an assessment of waterwall wastage could be made without impacting boiler availability. Detailed measurements of soot volume fraction have been performed for a coal burner in a pilot scale test furnace. The measured values are in good agreement with the expected trends for soot generation and destruction. Catalysts from four commercial manufacturers have been ordered and one of the samples was received this quarter. Several in situ analyses of vanadium-based SCR catalyst systems were completed at BYU. Results to date indicate that the system produces results that represent improvements compared to literature examples of similar experiments. Construction of the catalyst characterization system (CCS) reactor is nearly complete, with a few remaining details discussed in this report. A literature review originally commissioned from other parties is being updated and will be made available under separate cover as part of this investigation. Fabrication of the multi-catalyst slipstream

  19. Study on soot formation characteristics in the diesel combustion process based on an improved detailed soot model

    International Nuclear Information System (INIS)

    Highlights: • An improved model to predict soot formation in a diesel engine has been proposed. • The physical process of PAHs deposition on the particle surface was considered. • Model validation carried out with a complete experimental matrix in two engines. • Good agreement between experimental and simulated results was found. • Particle size distribution and mass concentration in diesel engines are determined. - Abstract: Although much research has been done on soot formation in engines, the mechanisms involved in the process are poorly understood and models of the process are overly simplistic. An improved detailed soot model is developed that couples a reduced diesel surrogate fuel chemical reaction mechanism of n-heptane/toluene, implemented into KIVA-3V2 code, for the numerical investigation of soot formation, mass concentration, and size distribution in diesel engines. This detailed soot model incorporates the effects of soot precursors, including isomers of acetylene and polycyclic aromatic hydrocarbons (PAHs), and the physical processes of PAH deposition on the particle surface, soot formation, and particle surface growth. Compared with experiment results in an optical engine and a single-cylinder diesel engine, the improved detailed soot model was effective: the simulated in-cylinder combustion pressure, heat release rate, and ignition timing were in excellent agreement with the experimental results. The simulated two-dimensional, transient distribution of soot concentration was in good agreement with that obtained by using the two-color method, and the simulated changing trend of soot emission was consistent with the experimental results. Therefore, the detailed soot model can be used to accurately simulate and predict soot emission at different conditions in diesel engines. Furthermore, at the initial stage of combustion, large amounts of small-size soot particles were produced by the pyrolysis reactions and polymerization of the hydrocarbon

  20. Large eddy simulation of soot evolution in an aircraft combustor

    Science.gov (United States)

    Mueller, Michael E.; Pitsch, Heinz

    2013-11-01

    An integrated kinetics-based Large Eddy Simulation (LES) approach for soot evolution in turbulent reacting flows is applied to the simulation of a Pratt & Whitney aircraft gas turbine combustor, and the results are analyzed to provide insights into the complex interactions of the hydrodynamics, mixing, chemistry, and soot. The integrated approach includes detailed models for soot, combustion, and the unresolved interactions between soot, chemistry, and turbulence. The soot model is based on the Hybrid Method of Moments and detailed descriptions of soot aggregates and the various physical and chemical processes governing their evolution. The detailed kinetics of jet fuel oxidation and soot precursor formation is described with the Radiation Flamelet/Progress Variable model, which has been modified to account for the removal of soot precursors from the gas-phase. The unclosed filtered quantities in the soot and combustion models, such as source terms, are closed with a novel presumed subfilter PDF approach that accounts for the high subfilter spatial intermittency of soot. For the combustor simulation, the integrated approach is combined with a Lagrangian parcel method for the liquid spray and state-of-the-art unstructured LES technology for complex geometries. Two overall fuel-to-air ratios are simulated to evaluate the ability of the model to make not only absolute predictions but also quantitative predictions of trends. The Pratt & Whitney combustor is a Rich-Quench-Lean combustor in which combustion first occurs in a fuel-rich primary zone characterized by a large recirculation zone. Dilution air is then added downstream of the recirculation zone, and combustion continues in a fuel-lean secondary zone. The simulations show that large quantities of soot are formed in the fuel-rich recirculation zone, and, furthermore, the overall fuel-to-air ratio dictates both the dominant soot growth process and the location of maximum soot volume fraction. At the higher fuel

  1. Emission of volatile organic compounds from oil-fired and gas-fired heating boilers

    International Nuclear Information System (INIS)

    The emissions of Volatile Organic Compounds (VOC) and nitrogen oxides (NOx) from different types of oil-fired and gas-fired boilers have been investigated. Measurements have been made at three excess air ratios for two different burners for domestic boilers using light fuel oil, as well as at larger plants using WRD, heavy fuel oil and LPG. Significant emissions of VOC, in this case methane, ethylene and acetylene, could only be found in one case with a burner for domestic boilers adjusted to a soot number of 9, according to Bacharach. However, this represents practically unrealistic operating conditions. In all other cases the concentrations of VOC were below the detection limits. The emissions of NOx varied between 26 mg NO2/MJ in one case for a burner for domestic boilers, to 183 NO2/MJ for one of the heavy fuel oil plants. In conclusion, the survey shows that the VOC emissions from oil-fired and gas-fired boiler plants are very low. (3 refs., 17 figs., 6 tabs.)

  2. Super Boiler 2nd Generation Technology for Watertube Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Mr. David Cygan; Dr. Joseph Rabovitser

    2012-03-31

    This report describes Phase I of a proposed two phase project to develop and demonstrate an advanced industrial watertube boiler system with the capability of reaching 94% (HHV) fuel-to-steam efficiency and emissions below 2 ppmv NOx, 2 ppmv CO, and 1 ppmv VOC on natural gas fuel. The boiler design would have the capability to produce >1500 F, >1500 psig superheated steam, burn multiple fuels, and will be 50% smaller/lighter than currently available watertube boilers of similar capacity. This project is built upon the successful Super Boiler project at GTI. In that project that employed a unique two-staged intercooled combustion system and an innovative heat recovery system to reduce NOx to below 5 ppmv and demonstrated fuel-to-steam efficiency of 94% (HHV). This project was carried out under the leadership of GTI with project partners Cleaver-Brooks, Inc., Nebraska Boiler, a Division of Cleaver-Brooks, and Media and Process Technology Inc., and project advisors Georgia Institute of Technology, Alstom Power Inc., Pacific Northwest National Laboratory and Oak Ridge National Laboratory. Phase I of efforts focused on developing 2nd generation boiler concepts and performance modeling; incorporating multi-fuel (natural gas and oil) capabilities; assessing heat recovery, heat transfer and steam superheating approaches; and developing the overall conceptual engineering boiler design. Based on our analysis, the 2nd generation Industrial Watertube Boiler when developed and commercialized, could potentially save 265 trillion Btu and $1.6 billion in fuel costs across U.S. industry through increased efficiency. Its ultra-clean combustion could eliminate 57,000 tons of NOx, 460,000 tons of CO, and 8.8 million tons of CO2 annually from the atmosphere. Reduction in boiler size will bring cost-effective package boilers into a size range previously dominated by more expensive field-erected boilers, benefiting manufacturers and end users through lower capital costs.

  3. Photoacoustic Soot Spectrometer (PASS) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Dubey, M [Los Alamos National Laboratory; Springston, S [Brookhaven National Laboratory; Koontz, A [Pacific Northwest National Laboratory; Aiken, A [Los Alamos National Laboratory

    2013-01-17

    The photoacoustic soot spectrometer (PASS) measures light absorption by aerosol particles. As the particles pass through a laser beam, the absorbed energy heats the particles and in turn the surrounding air, which sets off a pressure wave that can be detected by a microphone. The PASS instruments deployed by ARM can also simultaneously measure the scattered laser light at three wavelengths and therefore provide a direct measure of the single-scattering albedo. The Operator Manual for the PASS-3100 is included here with the permission of Droplet Measurement Technologies, the instrument’s manufacturer.

  4. Aromatics oxidation and soot formation in flames

    Energy Technology Data Exchange (ETDEWEB)

    Howard, J.B.; Pope, C.J.; Shandross, R.A.; Yadav, T. [Massachusetts Institute of Technology, Cambridge (United States)

    1993-12-01

    This project is concerned with the kinetics and mechanisms of aromatics oxidation and soot and fullerenes formation in flames. The scope includes detailed measurements of profiles of stable and radical species concentrations in low-pressure one-dimensional premixed flames. Intermediate species identifications and mole fractions, fluxes, and net reaction rates calculated from the measured profiles are used to test postulated reaction mechanisms. Particular objectives are to identify and to determine or confirm rate constants for the main benzene oxidation reactions in flames, and to characterize fullerenes and their formation mechanisms and kinetics.

  5. Measurement of nanotube content in pyrolytically generated carbon soot

    OpenAIRE

    Coleman, Jonathan; Blau, Werner; DRURY, ANNA

    2000-01-01

    PUBLISHED Carbon nanotubes can be efficiently separated from impurity material in carbon soot using a conjugated polymer filtration system as monitored by EPR, allowing the calculation of purity of the crude carbon soot. The authors wish to thank the Irish Higher Educational Authority for partly funding this work.

  6. Fractal-like dimension of nanometer Diesel soot particles

    Energy Technology Data Exchange (ETDEWEB)

    Skillas, G.; Baltensperger, U. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Siegmann, K. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-11-01

    Measurements with a low-pressure impactor and a differential mobility analyser were conducted for Diesel soot at various engine loads. By means of these measurements a fractal-like dimension of Diesel soot particles, with diameters ranging from 55 up to 260 nm, was established. (author) 2 figs., 7 refs.

  7. Mutagenicity of diesel exhaust soot dispersed in phospholipid surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, W.; Keane, M.; Xing, S.; Harrison, J.; Gautam, M.; Ong, T.

    1994-06-01

    Organics extractable from respirable diesel exhaust soot particles by organic solvents have been known for some time to be direct acting frameshift mutagens in the Ames Salmonella typhimurium histidine reversion assay. Upon deposition in a pulmonary alveolus or respiratory bronchiole, respirable diesel soot particles will contact first the hypophase which is coated by and laden with surfactants. To model interactions of soot and pulmonary surfactant, the authors dispersed soots in vitro in the primary phospholipid pulmonary surfactant dipalmitoyl glycerophosphorylcholine (lecithin) (DPL) in physiological saline. They have shown that diesel soots dispersed in lecithin surfactant can express mutagenic activity, in the Ames assay system using S. typhimurium TA98, comparable to that expressed by equal amounts of soot extracted by dichloromethane/dimethylsulfoxide (DCM/DMSO). Here the authors report additional data on the same system using additional exhaust soots and also using two other phospholipids, dipalmitoyl glycerophosphoryl ethanolamine (DPPE), and dipalmitoyl phosphatidic acid (DPPA), with different ionic character hydrophilic moieties. A preliminary study of the surfactant dispersed soot in an eucaryotic cell test system also is reported.

  8. Small boiler uses waste coal

    Energy Technology Data Exchange (ETDEWEB)

    Virr, M.J. [Spinheat Ltd. (United States)

    2009-07-15

    Burning coal waste in small boilers at low emissions poses considerable problem. While larger boiler suppliers have successfully installed designs in the 40 to 80 MW range for some years, the author has been developing small automated fluid bed boiler plants for 25 years that can be applied in the range of 10,000 to 140,000 lbs/hr of steam. Development has centered on the use of an internally circulating fluid bed (CFB) boiler, which will burn waste fuels of most types. The boiler is based on the traditional D-shaped watertable boiler, with a new type of combustion chamber that enables a three-to-one turndown to be achieved. The boilers have all the advantages of low emissions of the large fluid boilers while offering a much lower height incorporated into the package boiler concept. Recent tests with a waste coal that had a high nitrogen content of 1.45% demonstrated a NOx emission below the federal limit of 0.6 lbs/mm Btu. Thus a NOx reduction on the order of 85% can be demonstrate by combustion modification alone. Further reductions can be made by using a selective non-catalytic reduction (SNCR) system and sulfur absorption of up to 90% retention is possible. The article describes the operation of a 30,000 lbs/hr boiler at the Fayette Thermal LLC plant. Spinheat has installed three ICFB boilers at a nursing home and a prison, which has been tested on poor-grade anthracite and bituminous coal. 2 figs.

  9. Visualizing the mobility of silver during catalytic soot oxidation

    DEFF Research Database (Denmark)

    Gardini, Diego; Christensen, Jakob M.; Damsgaard, Christian Danvad;

    2016-01-01

    The catalytic activity and mobility of silver nanoparticles used as catalysts in temperature programmed oxidation of soot:silver (1:5 wt:wt) mixtures have been investigated by means of flow reactor experiments and in situ environmental transmission electron microscopy (ETEM). The carbon oxidation...... temperature was significantly lower compared to uncatalyzed soot oxidation with soot and silver loosely stirred together (loose contact) and lowered further with the two components crushed together (tight contact). The in situ TEM investigations revealed that the silver particles exhibited significant...... mobility during the soot oxidation, and this mobility, which increases the soot/catalyst contact, is expected to be an important factor for the lower oxidation temperature. In the intimate tight contact mixture the initial dispersion of the silver particles is greater,,and the onset of mobility occurs...

  10. Morphology, composition, and atmospheric processing of soot particles

    Science.gov (United States)

    Slowik, Jay G.

    Combustion-generated soot aerosols play an important role in climate forcing due to their strong light-absorbing properties. Quantitative measurement of BC is challenging because BC often occurs in highly non-spherical soot particles of complex morphology. The task is further complicated because of the lack of an unambiguous chemical definition of the material. Here we present the development and application of a new technique for determining particle morphology and composition. Simultaneous measurements of mobility diameter, vacuum aerodynamic diameter, and non-refractory composition were used to determine the particle mass, volume, density, composition, dynamic shape factor, and fractal dimension. Under certain conditions, particle surface area and the number and size of the primary spherules composing the soot fractal aggregates were also determined. The particle characterization technique described above was applied to the following four studies: (1) Characterization of flame-generated soot particles. Depending on flame conditions, either fractal or near-spherical particles were generated and their properties interpreted in terms of the mechanism for soot formation. (2) Coating and denuding experiments were performed on soot particles. The results yielded information about morphology changes to the entire soot particle and to the internal black carbon structure due to atmospheric processing. The denuding experiments also provided particle surface area, which was used to determine the atmospheric lifetime of fractal soot particles relative to spheres. (3) An inter-comparison study of instruments measuring the black carbon content of soot particles was conducted. The detailed characterization of soot particles enabled a number of assumptions about the operation of the selected instruments to be tested. (4) Ambient particles were sampled in Mexico City. In the early morning, ambient particles were detected with a fractal morphology similar to that of diesel

  11. COMBINED BOILER WITH TPV

    OpenAIRE

    Björk, Magnus

    2013-01-01

    A TPV-system consists of a hot surface emitting heat radiation on a solar cell with a narrow bandgap.  A unit consisting of a boiler and a TPV-system has been constructed for testing of the performance of TPV cells. The emitter is heated by a fuel consisting of RME-oil. The radiation is collected and concentrated through two reflecting cones formed like a Faberge-egg, with an edge-type optical filter between the cones. The Faberge-egg is treated with electro-polishing in order to obtain a hig...

  12. Modelling, simulating and optimizing Boilers

    DEFF Research Database (Denmark)

    Sørensen, Kim; Condra, Thomas Joseph; Houbak, Niels

    2003-01-01

    This paper describes the modelling, simulating and optimizing including experimental verication as being carried out as part of a Ph.D. project being written resp. supervised by the authors. The work covers dynamic performance of both water-tube boilers and re tube boilers. A detailed dynamic mod...

  13. Measuring soot particles from automotive exhaust emissions

    Directory of Open Access Journals (Sweden)

    Andres Hanspeter

    2014-01-01

    Full Text Available The European Metrology Research Programme participating countries and the European Union jointly fund a three year project to address the need of the automotive industry for a metrological sound base for exhaust measurements. The collaborative work on particle emissions involves five European National Metrology Institutes, the Tampere University of Technology, the Joint Research Centre for Energy and Transport and the Leibniz Institute for Tropospheric Research. On one hand, a particle number and size standard for soot particles is aimed for. Eventually this will allow the partners to provide accurate and comparable calibrations of measurement instruments for the type approval of Euro 5b and Euro 6 vehicles. Calibration aerosols of combustion particles, silver and graphite proof partially suitable. Yet, a consensus choice together with instrument manufactures is pending as the aerosol choice considerably affects the number concentration measurement. Furthermore, the consortium issued consistent requirements for novel measuring instruments foreseen to replace today’s opacimeters in regulatory periodic emission controls of soot and compared them with European legislative requirements. Four partners are conducting a metrological validation of prototype measurement instruments. The novel instruments base on light scattering, electrical, ionisation chamber and diffusion charging sensors and will be tested at low and high particle concentrations. Results shall allow manufacturers to further improve their instruments to comply with legal requirements.

  14. Measuring soot particles from automotive exhaust emissions

    Science.gov (United States)

    Andres, Hanspeter; Lüönd, Felix; Schlatter, Jürg; Auderset, Kevin; Jordan-Gerkens, Anke; Nowak, Andreas; Ebert, Volker; Buhr, Egbert; Klein, Tobias; Tuch, Thomas; Wiedensohler, Alfred; Mamakos, Athanasios; Riccobono, Francesco; Discher, Kai; Högström, Richard; Yli-Ojanperä, Jaakko; Quincey, Paul

    2014-08-01

    The European Metrology Research Programme participating countries and the European Union jointly fund a three year project to address the need of the automotive industry for a metrological sound base for exhaust measurements. The collaborative work on particle emissions involves five European National Metrology Institutes, the Tampere University of Technology, the Joint Research Centre for Energy and Transport and the Leibniz Institute for Tropospheric Research. On one hand, a particle number and size standard for soot particles is aimed for. Eventually this will allow the partners to provide accurate and comparable calibrations of measurement instruments for the type approval of Euro 5b and Euro 6 vehicles. Calibration aerosols of combustion particles, silver and graphite proof partially suitable. Yet, a consensus choice together with instrument manufactures is pending as the aerosol choice considerably affects the number concentration measurement. Furthermore, the consortium issued consistent requirements for novel measuring instruments foreseen to replace today's opacimeters in regulatory periodic emission controls of soot and compared them with European legislative requirements. Four partners are conducting a metrological validation of prototype measurement instruments. The novel instruments base on light scattering, electrical, ionisation chamber and diffusion charging sensors and will be tested at low and high particle concentrations. Results shall allow manufacturers to further improve their instruments to comply with legal requirements.

  15. Studies of propane flame soot acting as heterogeneous ice nuclei in conjunction with single particle soot photometer measurements

    Directory of Open Access Journals (Sweden)

    I. Crawford

    2011-09-01

    Full Text Available The ice nucleation efficiency of propane flame soot particles with and without a sulphuric acid coating was investigated using the aerosol and cloud chamber facility AIDA (Aerosol Interaction and Dynamics in the Atmosphere. The test soot for cloud formation simulations was produced using a propane flame Combustion Aerosol Standard generator (CAST, Jing-CAST Technologies. The organic carbon content (OC of the test soot was altered in a reproducible fashion by changing the fuel/air mixture of the generator. The soot content of ice nuclei was subsequently investigated using a combination of a pumped counterflow virtual impactor (PCVI to separate and evaporate the ice crystals, and a DMT single particle soot photometer (SP2 to examine the mixing state of the BC containing ice residuals.

    Ice nucleation was found to be most efficient for uncoated soot of low organic carbon content (~5 % organic carbon content where deposition freezing occurred at an ice saturation ratio Sice ~ 1.22 at a temperature T = 226.6 K with 25 % of the test soot becoming active as ice nuclei. Propane flame soot of higher organic carbon content (~30 % and ~70 % organic carbon content showed significantly lower ice nucleation efficiency (an activated fraction of the order of a few percent in the experiments than the low organic carbon content soot, with water saturation being required for freezing to occur. Ice nucleation occurred over the range Sice = 1.22–1.70, and T = 223.2–226.6 K. Analysis of the SP2 data showed that the 5 % organic carbon content soot had an undetectable OC coating whereas the 30 % organic carbon content soot had a thicker or less volatile OC coating.

    The application of a sulphuric acid coating to the flame soot shifted the threshold of the onset of freezing towards that of the homogeneous freezing of sulphuric acid; for the minimum OC flame soot this inhibited nucleation since the

  16. Studies of propane flame soot acting as heterogeneous ice nuclei in conjunction with single particle soot photometer measurements

    Directory of Open Access Journals (Sweden)

    I. Crawford

    2011-04-01

    Full Text Available The ice nucleation efficiency of propane flame soot particles with and without a sulphuric acid coating was investigated using the aerosol and cloud chamber facility AIDA (Aerosol Interaction and Dynamics in the Atmosphere. The test soot for cloud formation simulations was produced using a propane flame Combustion Aerosol Standard generator (CAST, Jing-CAST Technologies. The organic carbon content (OC of the test soot was altered in a reproducible fashion by changing the fuel/air mixture of the generator. The soot content of ice nuclei was subsequently investigated using a combination of a pumped counterflow virtual impactor (PCVI to separate and evaporate the ice crystals, and a DMT single particle soot photometer (SP2 to examine the mixing state of the BC containing ice residuals.

    Ice nucleation was found to be most efficient for uncoated soot of low organic carbon content (~5% organic carbon content where deposition freezing occurred at an ice saturation ratio Sice~1.22 at a temperature T = 226.6 K with 25% of the test soot becoming active as ice nuclei. Propane flame soot of higher organic carbon content (~30% and ~70% organic carbon content showed significantly lower ice nucleation efficiency (an activated fraction of the order of a few percent in the experiments than the low organic carbon content soot, with water saturation being required for freezing to occur. Ice nucleation occurred over the range Sice = 1.22–1.70, and T = 223.2–226.6 K. Analysis of the SP2 data showed that the 5% organic carbon content soot had an undetectable OC coating whereas the 30% organic carbon content soot had a thicker or less volatile OC coating.

    The application of a sulphuric acid coating to the flame soot shifted the threshold of the onset of freezing towards that of the homogeneous freezing of sulphuric acid; for the minimum OC flame soot this inhibited nucleation since the onset of

  17. Ice nucleation activity of diesel soot particles at Cirrus relevant conditions: Effects of hydration, secondary organics coating, hydration, soot morphology, and coagulation

    Energy Technology Data Exchange (ETDEWEB)

    Kulkarni, Gourihar R.; China, Swarup; Liu, Shang; Nandasiri, Manjula I.; Sharma, Noopur; Wilson, Jacqueline M.; Aiken, A. C.; Chand, Duli; Laskin, Alexander; Mazzoleni, Claudio; Pekour, Mikhail S.; Shilling, John E.; Shutthanandan, V.; Zelenyuk, Alla; Zaveri, Rahul A.

    2016-04-16

    The role of atmospheric relevant soot particles that are processed in the atmosphere toward ice nucleation at cirrus cloud condition is poorly understood. In this study, the ice nucleating properties of diesel soot particles subjected to various physical and chemical aging treatments were investigated at temperatures ranging from -40 to -50 °C. We show that bare soot particles nucleate ice in deposition mode, but coating with secondary organics suppresses the heterogeneous ice nucleation potential of soot particles requiring homogeneous freezing threshold conditions. However, the ice nucleation efficiency of soot particles coated with an aqueous organic layer was similar to bare soot particles. Hydration of bare soot particles slightly enhanced the ice nucleation efficiency, and the IN abilities of compact soot particles (roundness = ~ 0.6) were similar to bare lacey soot particles (roundness = ~ 0.4). These results indicate that ice nucleation properties are sensitive to the various aging treatments.

  18. [Carbon monoxide poisoning due to lack of maintenance of a natural gas boiler].

    Science.gov (United States)

    Nielsen, H; Johannessen, A C

    1994-01-17

    Carbon monoxide causes one third of all poisoning deaths in Denmark, but is probably grossly underdiagnosed. We present a case where an elderly couple was admitted on several occasions to local hospitals with a variety of symptoms and signs; e.g. flu-like symptoms, generalized seizures, polycythaemia, chest pain, and ventricular tachycardia. The correct diagnosis, carbon monoxide poisoning, was made when the dog in the family was found dead; examination of the natural gas boiler revealed sooting, clogging of the flue, and a carbon monoxide concentration above 0.2 percent. The natural gas boiler had not been checked after installation five years earlier. Natural gas installations are becoming still more prevalent in Danish homes, but present regulations regarding the installations are apparently not yet able to prevent new incidents of carbon monoxide poisoning. PMID:8296426

  19. Pellet wood gasification boiler / Combination boiler. Market review. 7. ed.; Scheitholzvergaser-/Kombikessel. Marktuebersicht

    Energy Technology Data Exchange (ETDEWEB)

    Uth, Joern

    2010-08-15

    In the market review under consideration on pellet wood gasification boilers and combination boilers, the Federal Ministry of Food, Agriculture and Consumer Protection (Bonn, Federal Republic of Germany) report on planning and installation of wood-fired heating systems, recommendations regarding to the technical assessment of boiler systems, buffers/combination boilers, prices of pellet wood gasification boilers, data sheets of the compared pellet wood gasification boilers, pellet wood combination boilers, prices of pellet wood combination boilers, data sheets of the compared pellet wood gasification boilers, list of providers.

  20. Market review. Pellet wood gasification boiler / combination boiler. 8. ed.; Marktuebersicht. Scheitholzvergaser-/Kombikessel

    Energy Technology Data Exchange (ETDEWEB)

    Uth, Joern

    2012-01-15

    In the market review under consideration on pellet wood gasification boilers and combination boilers, the Federal Ministry of Food, Agriculture and Consumer Protection (Bonn, Federal Republic of Germany) reports on planning and installation of wood-fired heating systems, recommendations regarding to the technical assessment of boiler systems, buffers/combination boilers, prices of pellet wood gasification boilers, data sheets of the compared pellet wood gasification boilers, pellet wood combination boilers, prices of pellet wood combination boilers, data sheets of the compared pellet wood gasification boilers, list of providers.

  1. 49 CFR 230.47 - Boiler number.

    Science.gov (United States)

    2010-10-01

    ..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Gauges § 230.47 Boiler number. (a) Generally. The builder's number of the boiler, if known, shall... 49 Transportation 4 2010-10-01 2010-10-01 false Boiler number. 230.47 Section...

  2. Towards the development of standard reference materials for soot measurements – Part 1: Tailored graphitized soot

    Directory of Open Access Journals (Sweden)

    T. Khokhlova

    2010-04-01

    Full Text Available The lack of standard reference materials for calibrating, troubleshooting and intercomparing instruments that measure the properties of black carbon, commonly referred to as soot, has been a major obstacle that hinders improved understanding of how climate and health is impacted by this ubiquitous component of the atmosphere. A different approach is offered here as a means of constructing precisely controlled material with fractions of organic carbon (OC on the surface of elemental carbon (EC whose structure reflects that of combustion particles found in the atmosphere. The proposed soot reference material (SRM uses elemental carbon as a basis substrate for surface coatings of organic compounds that are representative of main classes of organics identified in the coverage of soot produced by fossil fuel burning. A number of methods are used to demonstrate the quality and stability of the reference EC and SRM. Comparison of the nominal fraction of OC deposited on the EC substrate with the fraction measured with thermal/optical analysis (TOA shows excellent agreement. Application of this type of reference material for evaluating the different methods of carbon analysis may help resolve differences that currently exist between comparable measurement techniques when trying to separate OC and EC from ambient samples.

  3. 46 CFR 61.05-10 - Boilers in service.

    Science.gov (United States)

    2010-10-01

    ... INSPECTIONS Tests and Inspections of Boilers § 61.05-10 Boilers in service. (a) Each boiler, including superheater, reheater, economizer, auxiliary boiler, low-pressure heating boiler, and unfired steam boiler... 46 Shipping 2 2010-10-01 2010-10-01 false Boilers in service. 61.05-10 Section 61.05-10...

  4. Optimal scheduling of sootblowers in power plant boilers

    Science.gov (United States)

    Vasquez-Urbano, Pedro Manuel

    1997-11-01

    Burning coal or other fossil fuels in a utility boiler fouls the surfaces of its heat exchangers with ash and soot residues. These deposits affect the performance of the power plant since they reduce heat transfer from the combustion gases to the water or steam. Fouling can be removed during the operation of the plant with the use of lances, called sootblowers, that direct high-pressure air or steam onto the fouled surfaces. Sootblowing operations are key to plant efficiency and boiler maintenance, but they also incur operating costs. A utility boiler may have a hundred or so sootblowers placed in fixed locations. Deciding which of these should be used at any moment is complicated by the lack of instrumentation that can monitor fouling levels. This dissertation studies the optimization problem of scheduling sootblowing activities at a utility plant. The objective is to develop an optimization approach to determine which sootblowers should be activated at any moment in order to maximize plant efficiency. To accomplish this, three issues are addressed. First, models are developed that can estimate fouling conditions indirectly during plant operation using commonly available data. The approach used relies on a sequential application of linear regression fits. Secondly, autoregressive exogenous (ARX) models are used to describe the dynamics of the fouling process and to estimate the consequences of fouling on plant efficiency. All the foregoing empirical models are developed using data from a power plant. Finally, using the empirical models, an optimization model is formulated for the sootblowing scheduling problem and different optimization approaches that combine nonlinear programming with heuristics methods are investigated for its solution. The applicability of dynamic programming to this optimization problem is also explored.

  5. Chemical and morphological characterization of soot and soot precursors generated in an inverse diffusion flame with aromatic and aliphatic fuels

    Energy Technology Data Exchange (ETDEWEB)

    Santamaria, Alexander; Mondragon, Fanor [Institute of Chemistry, University of Antioquia, AA 1226, Medellin (Colombia); Yang, Nancy [Sandia National Laboratories, Livermore, CA 94551-0969 (United States); Eddings, Eric [Department of Chemical Engineering, University of Utah, Salt Sake City, UT 84112 (United States)

    2010-01-15

    Knowledge of the chemical and physical structure of young soot and its precursors is very useful in understanding the paths leading to soot particle inception. This paper presents chemical and morphological characterization of the products generated in ethylene and benzene inverse diffusion flames (IDF) using different analytical techniques. The trend in the data indicates that the soot precursor material and soot particles generated in the benzene IDF have a higher degree of complexity than the samples obtained in the ethylene IDF, which is reflected by an increase in the aromaticity of the chloroform extracts observed by {sup 1}H NMR and FT-IR, and shape and size of soot particles obtained by TEM and HR-TEM. It is important to highlight that the soot precursor material obtained at the lower positions in the ethylene IDF has a significant contribution of aliphatic groups, which play an important role in the particle inception and mass growth processes during the early stages of soot formation. However, these groups progressively disappear in the samples taken at higher positions in the flame, due to thermal decomposition processes. (author)

  6. In-cylinder gas velocity measurements comparing crankcase and blower scavenging in a fired two-stroke cycle engine

    Science.gov (United States)

    Miles, P. C.; Green, R. M.; Witze, P. O.

    1994-01-01

    The in-cylinder flow field of a Schnuerle (loop) scavenged two-stroke engine has been examined under conditions simulating both blower and crankcase driven scavenging. Measurements of the radial component of velocity were obtained along the cylinder centerline during fired operation at delivery ratios of 0.4, 0.6, and 0.8. Both mean velocity profiles and root mean square velocity fluctuations near top center show a strong dependence on the scavenging method. Complementary in-cylinder pressure measurements indicate that combustion performance is better under blower driven scavenging for the engine geometry studied.

  7. R+D works for the further development of high temperature reactors. (1) Captive bearing experiments for active magnetic bearings. (2) Captive bearing test for HTR blowers

    International Nuclear Information System (INIS)

    When using active magnetic bearings as blower shaft bearings, blower motors and bearings must be protected against mechanical damage in case of faults (example: total electrical supply failure due to the supply cables breaking). So-called captive bearings are provided, in order to be able to shut the blowers down safely in such faults. These captive bearings are roller bearings which are additionally fitted in the area of the blower shaft bearings, to prevent mechanical contact between the blower rotor and stator. As there was little experience available for the given boundary conditions, such as - speed, - acceleration, - bearing load, - bearing dimensions, - ambient conditions, appropriate development and tests had to be carried out. It was important to determine suitable captive bearings and the necessary ambient conditions, which will make it possible to support the failures of the magnetic bearings to be expected in 40 years' operation of the reactor without damage and to meet the requirements of the captive bearings. (orig./GL)

  8. HETEROGENEOUS SOOT NANOSTRUCTURE IN ATMOSPHERIC AND COMBUSTION SOURCE AEROSOLS

    Science.gov (United States)

    Microscopic images of soot emissions from wildfire and a wide range of anthropogenic combustion sources show that the nanostructures of individual particles in these emissions are predominantly heterogeneous, decidedly influenced by the fuel composition and by the particular comb...

  9. Ultrasensitive, Fast-Response Size-Dependent Soot Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a "black carbon" (soot) monitor for measuring non-volatile particulate emissions from gas turbine engines employing a proprietary optical...

  10. Boiler-turbine life extension

    Energy Technology Data Exchange (ETDEWEB)

    Natzkov, S. [TOTEMA, Ltd., Sofia (Bulgaria); Nikolov, M. [CERB, Sofia (Bulgaria)

    1995-12-01

    The design life of the main power equipment-boilers and turbines is about 105 working hours. The possibilities for life extension are after normatively regulated control tests. The diagnostics and methodology for Boilers and Turbines Elements Remaining Life Assessment using up to date computer programs, destructive and nondestructive control of metal of key elements of units equipment, metal creep and low cycle fatigue calculations. As well as data for most common damages and some technical decisions for elements life extension are presented.

  11. Phototransformation Rate Constants of PAHs Associated with Soot Particles

    OpenAIRE

    Kim, Daekyun; Young, Thomas M.; Anastasio, Cort

    2012-01-01

    Photodegradation is a key process governing the residence time and fate of polycyclic aromatic hydrocarbons (PAHs) in particles, both in the atmosphere and after deposition. We have measured photodegradation rate constants of PAHs in bulk deposits of soot particles illuminated with simulated sunlight. The photodegradation rate constants at the surface (k0p), the effective diffusion coefficients (Deff), and the light penetration depths (z0.5) for PAHs on soot layers of variable thickness were ...

  12. Oxygen extended sooting index of FAME blends with aviation kerosene

    OpenAIRE

    Llamas Lois, Alberto; Canoira López, Laureano

    2013-01-01

    The use of biofuels in the aviation sector has economic and environmental benefits. Among the options for the production of renewable jet fuels, hydroprocessed esters and fatty acids (HEFA) have received predominant attention in comparison with fatty acid methyl esters (FAME), which are not approved as additives for jet fuels. However, the presence of oxygen in methyl esters tends to reduce soot emissions and therefore particulate matter emissions. This sooting tendency is quantified in this ...

  13. CFD Simulation On CFBC Boiler

    Directory of Open Access Journals (Sweden)

    Amol S. Kinkar

    2015-02-01

    Full Text Available Abstract Heavy industrialization amp modernization of society demands in increasing of power cause to research amp develop new technology amp efficient utilization of existing power units. Variety of sources are available for power generation such as conventional sources like thermal hydro nuclear and renewable sources like wind tidal biomass geothermal amp solar. Out of these most common amp economical way for producing the power is by thermal power stations. Various industrial boilers plays an important role to complete the power generation cycle such as CFBC Circulating Fluidized Bed Combustion FBC Fluidized Bed Combustion AFBC Atmospheric Fluidized Bed Combustion Boiler CO Boiler RG amp WHR Boiler Waster heat recovery Boiler. This paper is intended to comprehensively give an account of knowledge related to refractory amp its failure in CFBC boiler with due effect of flue gas flow during operation on refractory by using latest technology of CAD Computer aided Design amp CAE Computer aided Engineering. By conceptual application of these technology the full scale model is able to analyze in regards the flow of flue gas amp bed material flow inside the CFBC loop via CFD Computational Fluid Dynamics software. The results obtained are helpful to understand the impact of gas amp particles on refractory in different areas amp also helped to choose suitable refractory material in different regions.

  14. Response to Comment on “Modeling Maximum Adsorption Capacities of Soot and Soot-like Materials for PAHs and PCBs”

    NARCIS (Netherlands)

    Noort, van P.C.M.; Jonker, M.T.O.; Koelmans, A.A.

    2005-01-01

    A comment by John C. Fetzer on modeling maximum adsorption capacities of soot and soot-like materials for PAH and PCB and the adsorption behavior of PAH on soots and on other adsorptive materials is presented. The authors (van Noort et al.) base their model on van der Waal's forces only. This may be

  15. Emission of ions and charged soot particles by aircraft engines

    Directory of Open Access Journals (Sweden)

    A. Sorokin

    2003-01-01

    Full Text Available In this article, a model which examines the formation and evolution of chemiions in an aircraft engine is proposed. This model which includes chemiionisation, electron thermo-emission, electron attachment to soot particles and to neutral molecules, electron-ion and ion-ion recombination, ion-soot interaction, allows the determination of the ion concentration at the exit of the combustor and at the nozzle exit of the engine. It also allows the determination of the charge of the soot particles. For the engine considered, the upper limit for the ion emission index EIi is of the order of (2-5 x1016 ions/kg-fuel if ion-soot interactions are ignored and the introduction of ion-soot interactions lead about to a 50% reduction. The results also show that most of the soot particles are either positively or negatively charged, the remaining neutral particles representing approximately 20% of the total particles. A comparison of the model results with the available ground-based experimental data obtained on the ATTAS research aircraft engines during the SULFUR experiments (Schumann, 2002 shows an excellent agreement.

  16. The reduction of soot formation from fuels using oxygenates additives

    International Nuclear Information System (INIS)

    Highlights: ► Understanding of the performance of thermo chemical heat pump. ► Tool for storing thermal energy. ► Parameters that affect the amount of thermal stored energy. ► Lithium chloride has better effect on storing thermal energy. - Abstract: This work presents an experimental technique for the measurement of the soot formation in pure fuel, biofuel and emulsified fuel, that constitute this fuels was studied in heated shock tube and investigated the possibility of reducing soot production in locally refined diesel, locally produced biofuel and emulsified fuel. This reduction was conducted using certain oxygenated additives (methane, ethane and acetone). It was found that soot concentration is maximum when pure diesel was burned, followed by emulsified fuels and the lease concentration was obtained when biofuel was burned. Further, methanol has the most significant effect on the reduction of soot once added to each fuel, while acetone has the lease effect on soot reduction. The results gave good indication of the effect for oxygenated additives in reduction the soot formation.

  17. Isothermal Kinetics of Catalyzed Air Oxidation of Diesel Soot

    Directory of Open Access Journals (Sweden)

    R. Prasad

    2011-01-01

    Full Text Available To comply with the stringent emission regulations on soot, diesel vehicles manufacturers more and more commonly use diesel particulate filters (DPF. These systems need to be regenerated periodically by burning soot that has been accumulated during the loading of the DPF. Design of the DPF requires rate of soot oxidation. This paper describes the kinetics of catalytic oxidation of diesel soot with air under isothermal conditions. Kinetics data were collected in a specially designed mini-semi-batch reactor. Under the high air flow rate assuming pseudo first order reaction the activation energy of soot oxidation was found to be, Ea = 160 kJ/ mol. ©2010 BCREC UNDIP. All rights reserved(Received: 14th June 2010, Revised: 18th July 2010, Accepted: 9th August 2010[How to Cite: R. Prasad, V.R. Bella. (2010. Isothermal Kinetics of Catalyzed Air Oxidation of Diesel Soot. Bulletin of Chemical Reaction Engineering and Catalysis, 5(2: 95-101. doi:10.9767/bcrec.5.2.796.95-101][DOI:http://dx.doi.org/10.9767/bcrec.5.2.796.95-101 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/796]Cited by in: ACS 1 |

  18. Influence of sulfur in fuel on the properties of diffusion flame soot

    Science.gov (United States)

    Zhao, Yan; Ma, Qingxin; Liu, Yongchun; He, Hong

    2016-10-01

    Previous studies indicate that sulfur in fuel affects the hygroscopicity of soot. However, the issue of the effect of sulfur in fuel on soot properties is not fully understood. Here, the properties of soot prepared from fuel with a variable sulfur content were investigated under lean and rich flame conditions. Lean flame soot was influenced more by sulfur in fuel than rich flame soot. The majority of sulfur in fuel in lean flame was converted to gaseous SO2, while a small fraction appeared as sulfate and bisulfate (referred to as sulfate species) in soot. As the sulfur content in fuel increased, sulfate species in lean flame soot increased nonlinearly, while sulfate species on the surface of lean flame soot increased linearly. The hygroscopicity of lean flame soot from sulfur-containing fuel was enhanced mainly due to sulfate species. Meanwhile, more alkynes were formed in lean flame. The diameter of primary lean flame soot particles increased and accumulation mode particle number concentrations of lean flame soot from sulfur-containing fuel increased as a result of more alkynes. Because the potential effects of soot particles on air pollution development greatly depend on the soot properties, which are related to both chemical aging and combustion conditions, this work will aid in understanding the impacts of soot on air quality and climate.

  19. A Blower-Like Approach to Predict the Effectiveness of Vaccines in a TB Dynamic Carlos

    Directory of Open Access Journals (Sweden)

    Frederico Fronza

    2014-06-01

    Full Text Available In this paper we present an extension of an automata approach proposed by S. Blower (1998 to describe the tuberculosis progression in a bi-dimensional space. In our extended model, the vaccination was included as an inhibitory variable in order to study its influence on the behavior of the tuberculosis spread. Our simulations showed that the earlier the vaccine is administered in the population, the lower the number of infected individuals, as expected for an in vivo system. However, our results also indicated that although the usual vaccination processes help reducing the strength of infection, the disease is not extinct, remaining the endemic state at low levels. These results strongly suggest that further actions are needed to increase the effectiveness of immunizations.

  20. Soot Reactivity in Conventional Combustion and Oxy-fuel Combustion Environments

    DEFF Research Database (Denmark)

    Abián, María; Jensen, Anker D.; Glarborg, Peter;

    2012-01-01

    A study of the reactivity of soot produced from ethylene pyrolysis at different temperatures and CO2 atmospheres toward O2 and CO2 has been carried out using a thermogravimetric analyzer. The purpose was to quantify how soot reactivity is affected by the gas environment and temperature history...... of the carbon, as well as to compare the soot reactivity toward O2 and CO2. Soot samples were either oxidized in 5% O2 or gasified in 10, 50, and 90% CO2 atmospheres, during non-isothermal runs at 10 K/min. Soot oxidation was observed at temperatures of 400–500 K lower than soot gasification, showing higher...

  1. A Review on Diesel Soot Emission, its Effect and Control

    Directory of Open Access Journals (Sweden)

    R. Prasad

    2011-01-01

    Full Text Available The diesel engines are energy efficient, but their particulate (soot emissions are responsible of severe environmental and health problems. This review provides a survey on published information regarding diesel soot emission, its adverse effects on the human health, environment, vegetations, climate, etc. The legislations to limit diesel emissions and ways to minimize soot emission are also summarized. Soot particles are suspected to the development of cancer; cardiovascular and respiratory health effects; pollution of air, water, and soil; impact agriculture productivity, soiling of buildings; reductions in visibility; and global climate change. The review covers important recent developments on technologies for control of particulate matter (PM; diesel particulate filters (DPFs, summarizing new filter and catalyst materials and DPM measurement. DPF technology is in a state of optimization and cost reduction. New DPF regeneration strategies (active, passive and plasma-assisted regenerations as well as the new learning on the fundamentals of soot/catalyst interaction are described. Recent developments in diesel oxidation catalysts (DOC are also summarized showing potential issues with advanced combustion strategies, important interactions on NO2 formation, and new formulations for durability. Finally, systematic compilation of the concerned newer literature on catalytic oxidation of soot in a well conceivable tabular form is given. A total of 156 references are cited. ©2010 BCREC UNDIP. All rights reserved(Received: 2nd June 2010, Revised: 17th June 2010; Accepted: 24th June 2010[How to Cite: R. Prasad, V.R. Bella. (2010. Review on Diesel Soot Emission, its Effect and Control. Bulletin of Chemical Reaction Engineering and Catalysis, 5(2: 69-86. doi:10.9767/bcrec.5.2.794.69-86][DOI: http://dx.doi.org/10.9767/bcrec.5.2.794.69-86 || or local:   http://ejournal.undip.ac.id/index.php/bcrec/article/view/794 ]Cited by in: ACS 1 |

  2. Ice nucleation activity of diesel soot particles at cirrus relevant temperature conditions: Effects of hydration, secondary organics coating, soot morphology, and coagulation

    Science.gov (United States)

    Kulkarni, Gourihar; China, Swarup; Liu, Shang; Nandasiri, Manjula; Sharma, Noopur; Wilson, Jacqueline; Aiken, Allison C.; Chand, Duli; Laskin, Alexander; Mazzoleni, Claudio; Pekour, Mikhail; Shilling, John; Shutthanandan, Vaithiyalingam; Zelenyuk, Alla; Zaveri, Rahul A.

    2016-04-01

    Ice formation by diesel soot particles was investigated at temperatures ranging from -40 to -50°C. Size-selected soot particles were physically and chemically aged in an environmental chamber, and their ice nucleating properties were determined using a continuous flow diffusion type ice nucleation chamber. Bare (freshly formed), hydrated, and compacted soot particles, as well as α-pinene secondary organic aerosol (SOA)-coated soot particles at high relative humidity conditions, showed ice formation activity at subsaturation conditions with respect to water but below the homogeneous freezing threshold conditions. However, SOA-coated soot particles at dry conditions were observed to freeze at homogeneous freezing threshold conditions. Overall, our results suggest that heterogeneous ice nucleation activity of freshly emitted diesel soot particles are sensitive to some of the aging processes that soot can undergo in the atmosphere.

  3. 10 CFR 431.82 - Definitions concerning commercial packaged boilers.

    Science.gov (United States)

    2010-01-01

    ... pressure boiler means a packaged boiler that is: (1) A steam boiler designed to operate at a steam pressure... steam boiler designed to operate at or below a steam pressure of 15 psig; or (2) A hot water boiler... 10 Energy 3 2010-01-01 2010-01-01 false Definitions concerning commercial packaged boilers....

  4. Ignition delay and soot oxidative reactivity of MTBE blended diesel fuel

    KAUST Repository

    Yang, Seung Yeon

    2014-04-01

    Methyl tert-butyl ether (MTBE) was added to diesel fuel to investigate the effect on ignition delay and soot oxidative reactivity. An ignition quality tester (IQT) was used to study the ignition propensity of MTBE blended diesel fuels in a reactive spray environment. The IQT data showed that ignition delay increases linearly as the MTBE fraction increases in the fuel. A four-stroke single cylinder diesel engine was used to generate soot samples for a soot oxidation study. Soot samples were pre-treated using a tube furnace in a nitrogen environment to remove any soluble organic fractions and moisture content. Non-isothermal oxidation of soot samples was conducted using a thermogravimetric analyzer (TGA). It was observed that oxidation of \\'MTBE soot\\' started began at a lower temperature and had higher reaction rate than \\'diesel soot\\' across a range of temperatures. Several kinetic analyses including an isoconversional method and a combined model fitting method were carried out to evaluate kinetic parameters. The results showed that Diesel and MTBE soot samples had similar activation energy but the pre-exponential factor of MTBE soot was much higher than that of the Diesel soot. This may explain why MTBE soot was more reactive than Diesel soot. It is suggested that adding MTBE to diesel fuel is better for DPF regeneration since an MTBE blend can significantly influence the ignition characteristics and, consequently, the oxidative reactivity of soot. Copyright © 2014 SAE International.

  5. An experimental design for the investigation of water repellent property of candle soot particles

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, Bichitra Nanda; Kandasubramanian, Balasubramanian, E-mail: meetkbs@gmail.com

    2014-11-14

    The mechanistic aspect of candle soot particles under controlled atmosphere has been reported. The soot particles were characterized using Fourier transformation Infrared Spectroscopy, Raman spectroscopy, Transmission electron microscopy and X-ray diffraction. Hydrophobicity of the candle soot particles was confirmed from the presence of C–H group which enhances water repellency and can be used as filler material for fabrication of superhydrophobic coatings. The layered soot particle on the glass slide exhibits maximum water contact angle of 168°. Roughness of soot particle and various hydrophobic groups involved for obtaining superhydrophobicity were exposed. The Raman spectrum of soot particles revealed the presence of disorder graphene which was confirmed from appearance of D1 band. The agglomeration of candle soot particles has been discussed by measuring fractal dimension (D{sub f}) of the particles. The in-depth investigation for bringing the mechanism of formation of soot particle inside the flame reveals the inception of the first particles, growth of soot particles, particle coalescence, agglomeration and oxidation. Here, we have found that the mechanism of particle formation in candle flame involves various steps, in which the sintering as well as coalescence/collision process plays a major role. - Highlights: • Mechanistic aspect for hydrophobicity of candle soot is demonstrated. • Hydrophobicity of soot particles at different exposure time is described. • Agglomeration of soot particles related to fractal dimension is reported. • Mechanism of formation of soot particles in the candle flame is also described.

  6. An experimental design for the investigation of water repellent property of candle soot particles

    International Nuclear Information System (INIS)

    The mechanistic aspect of candle soot particles under controlled atmosphere has been reported. The soot particles were characterized using Fourier transformation Infrared Spectroscopy, Raman spectroscopy, Transmission electron microscopy and X-ray diffraction. Hydrophobicity of the candle soot particles was confirmed from the presence of C–H group which enhances water repellency and can be used as filler material for fabrication of superhydrophobic coatings. The layered soot particle on the glass slide exhibits maximum water contact angle of 168°. Roughness of soot particle and various hydrophobic groups involved for obtaining superhydrophobicity were exposed. The Raman spectrum of soot particles revealed the presence of disorder graphene which was confirmed from appearance of D1 band. The agglomeration of candle soot particles has been discussed by measuring fractal dimension (Df) of the particles. The in-depth investigation for bringing the mechanism of formation of soot particle inside the flame reveals the inception of the first particles, growth of soot particles, particle coalescence, agglomeration and oxidation. Here, we have found that the mechanism of particle formation in candle flame involves various steps, in which the sintering as well as coalescence/collision process plays a major role. - Highlights: • Mechanistic aspect for hydrophobicity of candle soot is demonstrated. • Hydrophobicity of soot particles at different exposure time is described. • Agglomeration of soot particles related to fractal dimension is reported. • Mechanism of formation of soot particles in the candle flame is also described

  7. MODELLING, SIMULATING AND OPTIMIZING BOILERS

    DEFF Research Database (Denmark)

    Sørensen, K.; Condra, T.; Houbak, Niels

    2003-01-01

    model of the boiler has been developed and simulations carried out by means of the Matlab integration routines. The model is prepared as a dynamic model consisting of both ordinary differential equations and algebraic equations, together formulated as a Differential-Algebraic-Equation system. Being able...... to the internal pressure the consequence of the increased volume (i.e. water-/steam space) is an increased wall thickness in the pressure part of the boiler. The stresses introduced in the boiler pressure part as a result of the temperature gradients are proportional to the square of the wall thickness......, and the total stress level (i.e. stresses introduced due to internal pressure plus stresses introduced due to temperature gradients) must always be kept below the allowable stress level. In this way, the increased water-/steam space that should allow for better dynamic performance, in the end causes limited...

  8. Changes of hygroscopicity and morphology during ageing of diesel soot

    Energy Technology Data Exchange (ETDEWEB)

    Tritscher, Torsten; Juranyi, Zsofia; Chirico, Roberto; Gysel, Martin; Heringa, Maarten F; DeCarlo, Peter F; Prevot, Andre S H; Weingartner, Ernest; Baltensperger, Urs [Laboratory of Atmospheric Chemistry, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Martin, Maria; Sierau, Berko, E-mail: Ernest.Weingartner@psi.ch [Institute of Atmospheric and Climate Sciences, ETH Zurich, Universitaetsstrasse 16, 8092 Zurich (Switzerland)

    2011-07-15

    Soot particles are an important component of atmospheric aerosol and their interaction with water is important for their climate effects. The hygroscopicity of fresh and photochemically aged soot and secondary organic aerosol (SOA) from diesel passenger car emissions was studied under atmospherically relevant conditions in a smog chamber at sub-and supersaturation of water vapor. Fresh soot particles show no significant hygroscopic growth nor cloud condensation nucleus (CCN) activity. Ageing by condensation of SOA formed by photooxidation of the volatile organic carbon (VOC) emission leads to increased water uptake and CCN activity as well as to a compaction of the initially non-spherical soot particles when exposed to high relative humidity (RH). It is important to consider the latter effect for the interpretation of mobility based measurements. The vehicle with oxidation catalyst (EURO3) emits much fewer VOCs than the vehicle without after-treatment (EURO2). Consequently, more SOA is formed for the latter, resulting in more pronounced effects on particle hygroscopicity and CCN activity. Nevertheless, the aged soot particles did not reach the hygroscopicity of pure SOA particles formed from diesel VOC emissions, which are similarly hygroscopic (0.06 < {kappa}{sub H-TDMA} < 0.12 and 0.09 < {kappa}{sub CCN} < 0.14) as SOA from other precursor gases investigated in previous studies.

  9. Soot-driven reactive oxygen species formation from incense burning.

    Science.gov (United States)

    Chuang, Hsiao-Chi; Jones, Tim P; Lung, Shih-Chun C; BéruBé, Kelly A

    2011-10-15

    This study investigated the effects of reactive oxygen species (ROS) generated as a function of the physicochemistry of incense particulate matter (IPM), diesel exhaust particles (DEP) and carbon black (CB). Microscopical and elemental analyses were used to determine particle morphology and inorganic compounds. ROS was determined using the reactive dye, Dichlorodihydrofluorescin (DCFH), and the Plasmid Scission Assay (PSA), which determine DNA damage. Two common types of soot were observed within IPM, including nano-soot and micro-soot, whereas DEP and CB mainly consisted of nano-soot. These PM were capable of causing oxidative stress in a dose-dependent manner, especially IPM and DEP. A dose of IPM (36.6-102.3μg/ml) was capable of causing 50% oxidative DNA damage. ROS formation was positively correlated to smaller nano-soot aggregates and bulk metallic compounds, particularly Cu. These observations have important implications for respiratory health given that inflammation has been recognised as an important factor in the development of lung injury/diseases by oxidative stress. This study supports the view that ROS formation by combustion-derived PM is related to PM physicochemistry, and also provides new data for IPM.

  10. Changes of hygroscopicity and morphology during ageing of diesel soot

    International Nuclear Information System (INIS)

    Soot particles are an important component of atmospheric aerosol and their interaction with water is important for their climate effects. The hygroscopicity of fresh and photochemically aged soot and secondary organic aerosol (SOA) from diesel passenger car emissions was studied under atmospherically relevant conditions in a smog chamber at sub-and supersaturation of water vapor. Fresh soot particles show no significant hygroscopic growth nor cloud condensation nucleus (CCN) activity. Ageing by condensation of SOA formed by photooxidation of the volatile organic carbon (VOC) emission leads to increased water uptake and CCN activity as well as to a compaction of the initially non-spherical soot particles when exposed to high relative humidity (RH). It is important to consider the latter effect for the interpretation of mobility based measurements. The vehicle with oxidation catalyst (EURO3) emits much fewer VOCs than the vehicle without after-treatment (EURO2). Consequently, more SOA is formed for the latter, resulting in more pronounced effects on particle hygroscopicity and CCN activity. Nevertheless, the aged soot particles did not reach the hygroscopicity of pure SOA particles formed from diesel VOC emissions, which are similarly hygroscopic (0.06 H-TDMA CCN < 0.14) as SOA from other precursor gases investigated in previous studies.

  11. Chinese Soot on a Vietnamese Soup

    Science.gov (United States)

    Mari, X.

    2015-12-01

    Black Carbon (BC) is an aerosol emitted as soot during biomass burning and fossil fuels combustion together with other carbonaceous aerosols such as organic carbon (OC) and polyaromatic hydrocarbons (PAHs). While the impacts of BC on health and climate have been studied for many years, studies about its deposition and impact on marine ecosystems are scares. This is rather surprising considering that a large fraction of atmospheric BC deposits on the surface of the ocean via dry or wet deposition. On a global scale, deposition on the ocean is about 45 Tg C per year, with higher fluxes in the northern hemisphere and in inter-tropical regions, following the occurrence of the hot-spots of concentration. In the present study conducted on shore, in Haiphong and Halong cities, North Vietnam, we measured the seasonal variations of atmospheric BC, OC and PAHs during a complete annual cycle. The presentation will discuss the atmospheric results in terms of seasonal variability and sources. Inputs to the marine system are higher during the dry season, concomitantly with the arrival of air masses enriched in BC coming from the North. However, the carbon fingerprint can significantly differ at shorter time periods depending on the air mass pathway and speed. Our work leads to the characterization and the determination of the relative contribution of more specific sources like local traffic, which includes tourism and fishing boats, coal dust emitted from the nearby mine, and long-range transported aerosols. This variable input of carbonaceous aerosols might have consequences for the cycling and the repartition of carbon and nutrients in the marine ecosystem of Halong Bay.

  12. Optimizing the integrated design of boilers - simulation

    DEFF Research Database (Denmark)

    Sørensen, Kim; Karstensen, Claus M. S.; Condra, Thomas Joseph;

    2004-01-01

    Boilers can be considered as consisting of three main components: (i) the pressure part, (ii) the burner and (iii) the control system. To be able to develop the boilers of the future (i.e. the boilers with the lowest emissions, the highest efciency, the best dynamic performance etc.) it is import...

  13. 29 CFR 1915.162 - Ship's boilers.

    Science.gov (United States)

    2010-07-01

    ... Ship's boilers. (a) Before work is performed in the fire, steam, or water spaces of a boiler where employees may be subject to injury from the direct escape of a high temperature medium such as steam, or... 29 Labor 7 2010-07-01 2010-07-01 false Ship's boilers. 1915.162 Section 1915.162 Labor...

  14. Cracking and corrosion recovery boiler

    Energy Technology Data Exchange (ETDEWEB)

    Suik, H. [Tallinn Technical University, Horizon Pulp and Paper, Tallinn (Estonia)

    1998-12-31

    The corrosion of heat surfaces and the cracking the drums are the main problems of the recovery boiler. These phenomena have been appeared during long-term operation of boiler `Mitsubishi - 315` erected at 1964. Depth of the crack is depending on the number of shutdowns and on operation time. Corrosion intensity of different heat surfaces is varying depend on the metal temperature and the conditions at place of positioning of tube. The lowest intensity of corrosion is on the bank tubes and the greatest is on the tubes of the second stage superheater and on the tubes at the openings of air ports. (orig.) 5 refs.

  15. Steady State Investigations of DPF Soot Burn Rates and DPF Modeling

    DEFF Research Database (Denmark)

    Cordtz, Rasmus Lage; Ivarsson, Anders; Schramm, Jesper

    2011-01-01

    soot mass concentrations are used as model boundary conditions. An in-house developed raw exhaust gas sampling technique is used to measure the soot concentration upstream the DPF which is also needed to find the DPF soot burn rate. The soot concentration is measured basically by filtering the soot...... characteristics are used to fit model constants of soot and filter properties. Measured DPF gas conversions and soot burn rates are used to fit model activation energies of four DPF regeneration reactions using O2 and NO2 as reactants. Modeled DPF pressure drops and soot burn rates are compared to the steady...... mass of a sample gas continuously extracted from the engine exhaust pipe for 1-2 hours while also measuring the gas flow passed through the filter. A small silicon carbide wall flow DPF protected in a sealed stainless steel filter housing is used as sample filter. Measured DPF pressure drop...

  16. Morphological effects on the radiative properties of soot aerosols in different internally mixing states with sulfate

    International Nuclear Information System (INIS)

    The radiative properties of soot aerosols largely depend on their mixing state and morphology factors. In this paper, we generated soot aggregates in four mixing states with sulfate, including bare soot, partly coated soot, heavily coated soot and soot with inclusion. The number of monomers and fractal dimension of soot were varied in each mixing state while the radius of monomers was fixed at 0.025 μm. Using the discrete dipole approximation method (DDA), we calculated optical parameters relevant for climate forcing simulation at mid-visible wavelength (0.55 μm). Internal mixing results in enhanced absorption, scattering cross sections as well as the single scattering albedo. The enhancement ratio of the absorption is largest for heavily coated soot, which ranges from 1.5 to 1.65 with a soot volume fraction of 0.15 and is larger for soot with larger fractal dimension. The scattering cross section can be dramatically increased by factors larger than 10 when soot is heavily coated. The increasing of both the scattering cross section and the single scattering albedo is larger for soot aggregates with smaller number of monomers and fractal dimension. The asymmetry parameter is insensitive to the fractal dimension for heavily coated soot and soot with inclusion. Two simplified models including the homogeneous sphere model (HS) and the core shell sphere model (CS) were examined using the DDA results as references. The performance of the HS and CS model largely depends on the morphology factors and the mixing state of soot. For bare and partly coated soot, both the HS and CS model can introduce relative errors as large as several tens percent. For heavily coated soot, the HS model predicts the absorption with relative errors within 10%, while it overestimates the absorption with relative errors no larger than 20% for soot with inclusion. The HS model predicts the single scattering albedo and the asymmetry parameter with relative errors no larger than 10% for heavily

  17. Laser-induced incandescence: Towards quantitative soot volume fraction measurements

    Energy Technology Data Exchange (ETDEWEB)

    Tzannis, A.P.; Wienbeucker, F.; Beaud, P.; Frey, H.-M.; Gerber, T.; Mischler, B.; Radi, P.P. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Laser-Induced Incandescence has recently emerged as a versatile tool for measuring soot volume fraction in a wide range of combustion systems. In this work we investigate the essential features of the method. LII is based on the acquisition of the incandescence of soot when heated through a high power laser pulse. Initial experiments have been performed on a model laboratory flame. The behaviour of the LII signal is studied experimentally. By applying numerical calculations we investigate the possibility to obtain two-dimensional soot volume fraction distributions. For this purpose a combination of LII with other techniques is required. This part is discussed in some extent and the future work is outlined. (author) 4 figs., 3 refs.

  18. Emission of ions and charged soot particles by aircraft engines

    Directory of Open Access Journals (Sweden)

    A. Sorokin

    2002-11-01

    Full Text Available In this article, a model which examines the formation and evolution of chemiions in an aircraft engine is proposed. This model which includes chemiionisation, electron thermo-emission, electron attachment to soot particles and to neutral molecules, electron-ion and ion-ion recombination, ion-soot interaction, allows the determination of the ion concentration at the exit of the combustor and at the nozzle exit of the engine. It also allows the determination of the charge of the soot particles. A comparison of the model results with the available ground-based experimental data obtained on the ATTAS research aircraft engines during the SULFUR experiments (Schumann, 2002 shows an excellent agreement.

  19. Ceria-based catalysts for soot oxidation:a review

    Institute of Scientific and Technical Information of China (English)

    刘爽; 吴晓东; 翁端; 冉锐

    2015-01-01

    Developments in ceria-based soot oxidation catalysts, especially during the last decade, are reviewed. Based on the com-parisons of the activity, durability and cost-efficiency of different soot oxidation catalysts, four kinds of applicable ceria-based cata-lysts have been screened out, which are: (1) CexZr1–xO2 catalyst with high cerium content (x>0.76), (2) rare-earth metals (especially Pr) modified ceria, (3) transition metals (especially Mn and Cu) modified ceria, and (4) Ag/CeO2. Moreover, a general review of recent developments on the morphology-controlled ceria-based catalysts, as well as that on the soot oxidation mechanisms over different ceria-based catalysts, is also presented.

  20. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Marc Cremer; Kevin Davis; Temi Linjewile; Connie Senior; Hong-Shig Shim; Bob Hurt; Eric Eddings; Larry Baxter

    2003-01-30

    This is the tenth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NO{sub x} control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing cofunding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, progress was made on the computational simulation of a full-scale boiler with the purpose of understanding the potential impacts of burner operating conditions on soot and NO{sub x} generation. Sulfation tests on both the titania support and vanadia/titania catalysts were completed using BYU's in situ spectroscopy reactor this quarter. These experiments focus on the extent to which vanadia and titania sulfate in an SO{sub 2}-laden, moist environment. Construction of the CCS reactor system is essentially complete and the control hardware and software are largely in place. A large batch of vanadia/titania catalyst in powder form has been prepared for use in poisoning tests. During this quarter, minor modifications were made to the multi-catalyst slipstream reactor and to the control system. The slipstream reactor was installed at AEP's Rockport plant at the end of November 2002. In this report, we describe the reactor system, particularly the control system, which was created by REI specifically for the reactor, as well as the installation at Rockport.

  1. Blower speed variation in refrigeration engineering and potential applications; Verschiedene Verfahren der Drehzahlveraenderung von Ventilatoren in der Kaeltetechnik mit einer Betrachtung moeglicher Anwendungsfaelle

    Energy Technology Data Exchange (ETDEWEB)

    Albig, J. [Ziehl-Abegg AG, Kuenzelsau (Germany)

    2006-07-01

    Various methods of blower speed control in refrigeration engineering enable user-oriented efficiency increase in axial blowers in refrigeration engineering. Apart from the motor efficiency, the economic efficiency of a blower is also determined by the investment cost of speed control systems. The blower efficiency is left out of account in this contribution. The most common control systems were compared, i.e. voltage control, frequency control and EC control. For an optimum result, the optimum system must be selected already in the planning stage. For this, the advantages and shortcomings must be known for each solution and application. Exemplary recommendations are given for various applications, and the speed control systems described are compared with regard to their efficiency and investment cost. (orig.)

  2. Study on soot purifying of molding shop in coking factory

    Institute of Scientific and Technical Information of China (English)

    LI Duo-song; ZHANG Hui; BAI Xiang-yu

    2006-01-01

    Exhaust gas in molding shop was complicated in component and characteristic in Iow thickness asphalt smoke, mass steam-gas and dust. It was difficult to purify the soot with common purifier. So we must consider them roundly and develop new multifunction purifier. PFP multifunction soot purifier was made on the base of design optimization and was installed at Shenhuo Coking Factory in 2004. The combined effects of multi- mechanism in purifier make purifying ratio keep in high level. The remove ratio of smut reaches at 92.8%, and asphalt smoke at 83.7%.

  3. Cosmet'eau-Changes in the personal care product consumption practices: from whistle-blowers to impacts on aquatic environments.

    Science.gov (United States)

    Bressy, Adèle; Carré, Catherine; Caupos, Émilie; de Gouvello, Bernard; Deroubaix, José-Frédéric; Deutsch, Jean-Claude; Mailler, Romain; Marconi, Anthony; Neveu, Pascale; Paulic, Laurent; Pichon, Sébastien; Rocher, Vincent; Severin, Irina; Soyer, Mathilde; Moilleron, Régis

    2016-07-01

    The Cosmet'eau project (2015-2018) investigates the "changes in the personal care product (PCP) consumption practices: from whistle-blowers to impacts on aquatic environments." In this project, the example of PCPs will be used to understand how public health concerns related to micropollutants can be addressed by public authorities-including local authorities, industries, and consumers. The project aims to characterize the possible changes in PCP consumption practices and to evaluate the impact of their implementation on aquatic contamination. Our goals are to study the whistle-blowers, the risk perception of consumers linked with their practices, and the contamination in parabens and their substitutes, triclosan, and triclocarban from wastewater to surface water. The project investigates the following potential solutions: modifications of industrial formulation or changes in consumption practices. The final purpose is to provide policy instruments for local authorities aiming at building effective strategies to fight against micropollutants in receiving waters. PMID:27179812

  4. Investigations into effects of blade number in a booster blower for forced ventilation on noise level caused by stream heterogeneity

    Energy Technology Data Exchange (ETDEWEB)

    Sowa, A.

    1985-09-01

    Noise level is analyzed caused by WLE-603A booster mine blowers used for local ventilation in underground coal mines in Poland. The blowers have two impellers rotating in opposite directions. One impeller is equipped with 10 or 11 blades, the other with 9, 8, 7, 6 or 5 blades. Revolution rate of 2940 rpm is used. A formula for optimizing blade number on two impellers and the relation of impeller number is derived. Effects of optimizing blade number on the air streams produced by two impellers and their interaction are analyzed. Effects of stream heterogeneity on noise level are determined. Recommendations for the optimum blade number which reduces noise level are made. 3 references.

  5. Cosmet'eau -Changes in the personal care product consumption practices: from whistle-blowers to impacts on aquatic environments

    OpenAIRE

    Bressy, Adèle; Carré, Catherine; Caupos, Émilie; De Gouvello, Bernard; Deroubaix, José-Frédéric; Deutsch, Jean-Claude; Mailler, Romain; Marconi, Anthony; Neveu, Pascale; Paulic, Laurent; Pichon, Sébastien; Rocher, Vincent; Severin, Irina; SOYER, Mathilde; Moilleron, Régis

    2016-01-01

    International audience The Cosmet'eau project (2015-2018) investigates the " changes in the personal care product (PCP) consumption practices: from whistle-blowers to impacts on aquatic environments. " In this project, the example of PCPs will be used to understand how public health concerns related to micropollutants can be addressed by public authorities – including local authorities –, industries and consumers. The project aims to characterize the possible changes in PCP consumption pra...

  6. Failure Analysis of 600 MW Supercritical Boiler Water Wall

    OpenAIRE

    Fu Huilin; Cai Zhengchun; Yan Xiaozhong; He Jinqiao; Zhou Yucai

    2013-01-01

    Boiler tube often causes abnormal boiler outage, bringing greater economic losses. This thesis mainly comes from the dynamics of boiler water, boiler furnace accident location of wall temperature distribution to explore the cause of the accident boiler. Calculation results show that the deformation will seriously reduce the boiler allowable maximum temperature difference between the screens. And the boiler is not over-temperature, low temperature difference between the screens, which have bur...

  7. Safety demonstration tests on pressure rise in ventilation system and blower integrity of a fuel-reprocessing plant

    International Nuclear Information System (INIS)

    In JAERI, the demonstration test was carried out as a part of safety researches of the fuel-reprocessing plant using a large-scale facility consist of cells, ducts, dumpers, HEPA filters and a blower, when an explosive burning due to a rapid reaction of thermal decomposition for solvent/nitric acid occurs in a cell of the reprocessing plant. In the demonstration test, pressure response propagating through the facility was measured under a blowing of air from a pressurized tank into the cell in the facility to elucidate an influence of pressure rise in the ventilation system. Consequently, effective pressure decrease in the facility was given by a configuration of cells and ducts in the facility. In the test, transient responses of HEPA filters and the blower by the blowing of air were also measured to confirm the integrity. So that, it is confirmed that HEPA filters and the blower under pressure loading were sufficient to maintain the integrity. The content described in this report will contribute to safety assessment of the ventilation system in the event of explosive burning in the reprocessing plant. (author)

  8. Effects of inlet radius and bell mouth radius on flow rate and sound quality of centrifugal blower

    International Nuclear Information System (INIS)

    The effect of inlet radius and bell mouth radius on flow rate of centrifugal blower were numerically simulated using a commercial CFD program, FLUENT. In this research, a total of eight numerical models were prepared by combining different values of bell mouth radii and inlet radii (the cross section of bell mouth was chosen as a circular arc in this research). The frozen rotor method combined with a realizable k-epsilon turbulence model and non-equilibrium wall function was used to simulate the three-dimensional flow inside the centrifugal blowers. The inlet radius was then revealed to have significant impact on flow rate with the maximum difference between analyzed models was about 4.5% while the bell mouth radius had about 3% impact on flow rate. Parallel experiments were carried out to confirm the results of CFD analysis. The CFD results were thereafter validated owning to the good agreement between CFD results and the parallel experiment results. In addition to performance analysis, noise experiments were carried out to analyze the dependence of sound quality on inlet radius and bell mouth radius with different flow rate. The noise experiment results showed that the loudness and sharpness value of different models were quite similar, which mean the inlet radius and the bell mouth radius didn't have a clear impact on sound quality of centrifugal blower

  9. Dynamics of flow–soot interaction in wrinkled non-premixed ethylene–air flames

    KAUST Repository

    Arias, Paul G.

    2015-08-17

    A two-dimensional simulation of a non-premixed ethylene–air flame was conducted by employing a detailed gas-phase reaction mechanism considering polycyclic aromatic hydrocarbons, an aerosol-dynamics-based soot model using a method of moments with interpolative closure, and a grey gas and soot radiation model using the discrete transfer method. Interaction of the sooting flame with a prescribed decaying random velocity field was investigated, with a primary interest in the effects of velocity fluctuations on the flame structure and the associated soot formation process for a fuel-strip configuration and a composition with mature soot growth. The temporally evolving simulation revealed a multi-layered soot formation process within the flame, at a level of detail not properly described by previous studies based on simplified soot models utilizing acetylene or naphthalene precursors for initial soot inception. The overall effect of the flame topology on the soot formation was found to be consistent with previous experimental studies, while a unique behaviour of localised strong oxidation was also noted. The imposed velocity fluctuations led to an increase of the scalar dissipation rate in the sooting zone, causing a net suppression in the soot production rate. Considering the complex structure of the soot formation layer, the effects of the imposed fluctuations vary depending on the individual soot reactions. For the conditions under study, the soot oxidation reaction was identified as the most sensitive to the fluctuations and was mainly responsible for the local suppression of the net soot production. © 2015 Taylor & Francis

  10. Effect of Inlet Clearance on the Aerodynamic Performance of a Centrifugal Blower

    Science.gov (United States)

    Hariharan, C.; Govardhan, M.

    2016-09-01

    The present work reports the effect of inlet clearance on the performance of a centrifugal blower, with parallel wall volute, over its full operating range. For a particular impeller configuration, four volutes based on constant angular momentum principle, have been designed and analysed numerically for varying inlet clearances ranging from 0 mm (ideal clearance) to 5 mm. The computational methodology is validated using experimental data. The results indicate that as the clearance increases, the impeller performance in terms of both static and total pressure rise deteriorate. Further, the stage performances deteriorate in terms of efficiency and specific work for all mass flow rates. However, the performance of volute improves at lower mass flow rates compared to the Best Efficiency Point (BEP). A set of correlations have been developed to predict the change in stage performance as a function of clearance ratio. The non-dimensional values of change in specific work, isentropic efficiency and static pressure are found to be same irrespective of the shape of the volute.

  11. Ceria Prepared by Flame Spray Pyrolysis as an Efficient Catalyst for Oxidation of Diesel Soot

    DEFF Research Database (Denmark)

    Christensen, Jakob Munkholt; Deiana, Davide; Grunwaldt, Jan-Dierk;

    2014-01-01

    Ceria has been prepared by flame spray pyrolysis and tested for activity in catalytic soot oxidation. In tight contact with soot the oxidation activity (measured in terms of the temperature of maximal oxidation rate, Tmax) of the flame made ceria is among the highest reported for CeO2. This can to...... a significant degree be ascribed to the large surface area achieved with the flame spray pyrolysis method. The importance of the inherent soot reactivity for the catalytic oxidation was studied using various soot samples, and the reactivity of the soot was found to have a significant impact, as the...

  12. Soot Combustion over Nanostructured Ceria with Different Morphologies

    Science.gov (United States)

    Zhang, Wen; Niu, Xiaoyu; Chen, Liqiang; Yuan, Fulong; Zhu, Yujun

    2016-06-01

    In this study, nano-structure ceria with three different morphologies (nanorod, nanoparticle and flake) have been prepared by hydrothermal and solvothermal methods. The ceria samples were deeply characterized by XRD, SEM, TEM, H2-TPR, XPS and in-situ DRIFTS, and tested for soot combustion in absence/presence NO atmospheres under loose and tight contact conditions. The prepared ceria samples exhibit excellent catalytic activities, especially, the CeO2 with nanorod (Ce-R) shows the best catalytic activity, for which the peak temperature of soot combustion (Tm) is about 500 and 368 °C in loose and tight contact conditions, respectively. The catalytic activity for Ce-R is higher than that of the reported CeO2 catalysts and reaches a level that of precious metals. The characterization results reveal that the maximal amounts of adsorbed oxygen species on the surface of the nanostructure Ce-R catalyst should be the crucial role to decide the catalytic soot performance. High BET surface area may also be a positive effect on soot oxidation activity under loose contact conditions.

  13. Soot Combustion over Nanostructured Ceria with Different Morphologies

    Science.gov (United States)

    Zhang, Wen; Niu, Xiaoyu; Chen, Liqiang; Yuan, Fulong; Zhu, Yujun

    2016-01-01

    In this study, nano-structure ceria with three different morphologies (nanorod, nanoparticle and flake) have been prepared by hydrothermal and solvothermal methods. The ceria samples were deeply characterized by XRD, SEM, TEM, H2-TPR, XPS and in-situ DRIFTS, and tested for soot combustion in absence/presence NO atmospheres under loose and tight contact conditions. The prepared ceria samples exhibit excellent catalytic activities, especially, the CeO2 with nanorod (Ce-R) shows the best catalytic activity, for which the peak temperature of soot combustion (Tm) is about 500 and 368 °C in loose and tight contact conditions, respectively. The catalytic activity for Ce-R is higher than that of the reported CeO2 catalysts and reaches a level that of precious metals. The characterization results reveal that the maximal amounts of adsorbed oxygen species on the surface of the nanostructure Ce-R catalyst should be the crucial role to decide the catalytic soot performance. High BET surface area may also be a positive effect on soot oxidation activity under loose contact conditions. PMID:27353143

  14. Fragmentation and bond strength of airborne diesel soot agglomerates

    Directory of Open Access Journals (Sweden)

    Messerer Armin

    2008-06-01

    Full Text Available Abstract Background The potential of diesel soot aerosol particles to break up into smaller units under mechanical stress was investigated by a direct impaction technique which measures the degree of fragmentation of individual agglomerates vs. impact energy. Diesel aerosol was generated by an idling diesel engine used for passenger vehicles. Both the aerosol emitted directly and aerosol that had undergone additional growth by Brownian coagulation ("aging" was investigated. Optionally a thermo-desoption technique at 280°C was used to remove all high-volatility and the majority of low-volatility HC adsorbates from the aerosol before aging. Results It was found that the primary soot agglomerates emitted directly from the engine could not be fragmented at all. Soot agglomerates permitted to grow additionally by Brownian coagulation of the primary emitted particles could be fragmented to a maximum of 75% and 60% respectively, depending on whether adsorbates were removed from their surface prior to aging or not. At most, these aged agglomerates could be broken down to roughly the size of the agglomerates from the primary emission. The energy required for a 50% fragmentation probability of all bonds within an agglomerate was reduced by roughly a factor of 2 when aging "dry" agglomerates. Average bond energies derived from the data were 0.52*10-16 and 1.2*10-16 J, respectively. This is about 2 orders of magnitude higher than estimates for pure van-der-Waals agglomerates, but agrees quite well with other observations. Conclusion Although direct conclusions regarding the behavior of inhaled diesel aerosol in contact with body fluids cannot be drawn from such measurements, the results imply that highly agglomerated soot aerosol particles are unlikely to break up into units smaller than roughly the size distribution emitted as tail pipe soot.

  15. Modelling thermal radiation and soot formation in buoyant diffusion flames

    International Nuclear Information System (INIS)

    The radiative heat transfer plays an important role in fire problems since it is the dominant mode of heat transfer between flames and surroundings. It controls the pyrolysis, and therefore the heat release rate, and the growth rate of the fire. In the present work a numerical study of buoyant diffusion flames is carried out, with the main objective of modelling the thermal radiative transfer and the soot formation/destruction processes. In a first step, different radiative property models were tested in benchmark configurations. It was found that the FSCK coupled with the Modest and Riazzi mixing scheme was the best compromise in terms of accuracy and computational requirements, and was a good candidate to be implemented in CFD codes dealing with fire problems. In a second step, a semi-empirical soot model, considering acetylene and benzene as precursor species for soot nucleation, was validated in laminar co flow diffusion flames over a wide range of hydrocarbons (C1-C3) and conditions. In addition, the optically-thin approximation was found to produce large discrepancies in the upper part of these small laminar flames. Reliable predictions of soot volume fractions require the use of an advanced radiation model. Then the FSCK and the semi-empirical soot model were applied to simulate laboratory-scale and intermediate-scale pool fires of methane and propane. Predicted flame structures as well as the radiant heat flux transferred to the surroundings were found to be in good agreement with the available experimental data. Finally, the interaction between radiation and turbulence was quantified. (author)

  16. Extremely slowly desorbing polycyclic aromatic hydrocarbons from soot and soot-like materials: Evidence by supercritical fluid extraction

    NARCIS (Netherlands)

    Jonker, M.T.O.; Hawthorne, S.B.; Koelmans, A.A.

    2005-01-01

    Combustion-derived PAHs are strongly sorbed to their particulate carrier (i.e., soot, charcoal), and therefore, very slow desorption kinetics of the chemicals might be anticipated. Measurements are however lacking, because conventional methods (Tenax, XAD, gas-purging) fail to accurately determine d

  17. Soot modeling of counterflow diffusion flames of ethylene-based binary mixture fuels

    KAUST Repository

    Wang, Yu

    2015-03-01

    A soot model was developed based on the recently proposed PAH growth mechanism for C1-C4 gaseous fuels (KAUST PAH Mechanism 2, KM2) that included molecular growth up to coronene (A7) to simulate soot formation in counterflow diffusion flames of ethylene and its binary mixtures with methane, ethane and propane based on the method of moments. The soot model has 36 soot nucleation reactions from 8 PAH molecules including pyrene and larger PAHs. Soot surface growth reactions were based on a modified hydrogen-abstraction-acetylene-addition (HACA) mechanism in which CH3, C3H3 and C2H radicals were included in the hydrogen abstraction reactions in addition to H atoms. PAH condensation on soot particles was also considered. The experimentally measured profiles of soot volume fraction, number density, and particle size were well captured by the model for the baseline case of ethylene along with the cases involving mixtures of fuels. The simulation results, which were in qualitative agreement with the experimental data in the effects of binary fuel mixing on the sooting structures of the measured flames, showed in particular that 5% addition of propane (ethane) led to an increase in the soot volume fraction of the ethylene flame by 32% (6%), despite the fact that propane and ethane are less sooting fuels than is ethylene, which is in reasonable agreement with experiments of 37% (14%). The model revealed that with 5% addition of methane, there was an increase of 6% in the soot volume fraction. The average soot particle sizes were only minimally influenced while the soot number densities were increased by the fuel mixing. Further analysis of the numerical data indicated that the chemical cross-linking effect between ethylene and the dopant fuels resulted in an increase in PAH formation, which led to higher soot nucleation rates and therefore higher soot number densities. On the other hand, the rates of soot surface growth per unit surface area through the HACA mechanism were

  18. CFD Simulation On CFBC Boiler

    OpenAIRE

    Amol S. Kinkar; G. M. Dhote; R.R. Chokkar

    2015-01-01

    Abstract Heavy industrialization amp modernization of society demands in increasing of power cause to research amp develop new technology amp efficient utilization of existing power units. Variety of sources are available for power generation such as conventional sources like thermal hydro nuclear and renewable sources like wind tidal biomass geothermal amp solar. Out of these most common amp economical way for producing the power is by thermal power stations. Various industrial boilers plays...

  19. Developing Boiler Concepts as Integrated Units

    DEFF Research Database (Denmark)

    Sørensen, Kim; Condra, Thomas Joseph; Houbak, Niels

    2004-01-01

    With the objective to be able to optimize the design and operation of steam boiler concepts Aalborg Industries A/S [1] has together with Aalborg University, Institute of Energy Technology [9] carried out a development project paying special attention to the boiler concept as an integrated unit...... - consisting of pressure part, burner and control system. The Technical University of Denmark, MEK - Energy Engineering Section [12] has participated in the modelling process. The project has included static and dynamic modelling of the boiler concept. For optimization of operation, verication of performance...... bricks in the boiler concept to each other and hereby obtain signicant reductions in the boiler concepts weight and foot-print . The actual development project has focused on an heavy fuel oil-red boiler for the marine market with a capacity in the range 1-10 t/h saturated steam. The development project...

  20. Inception report and gap analysis. Boiler inspection

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-06-01

    This inception and gap analysis report on boilers in Latvia, has been prepared in the framework of the 'Implementation of the EU directive on energy performance of buildings: development of the Latvian Scheme for energy auditing of building and inspection of boilers'. The report is the basis for the establishment of training of boiler inspectors; it develops a gap analysis for better understanding and estimating the number of installations in Latvia and develops suggestions for the institutional set up. In particular includes information on existing standard and regulation on boiler, suggestion for the content of the training material of experts for boiler inspections and a syllabus of the training course. A specific section is dedicated to the suggestion for certification system of trained boiler inspectors. (au)

  1. Further development of recovery boiler; Soodakattilan kehitystyoe

    Energy Technology Data Exchange (ETDEWEB)

    Janka, K.; Siiskonen, P.; Sundstroem, K. [Tampella Power Oy, Tampere (Finland)] [and others

    1996-12-01

    The global model of a recovery boiler was further developed. The aim is to be able to model the velocity, temperature and concentration fields in a boiler. At this moment the model includes submodels for: droplet drying, pyrolysis, char burning, gas burning and for droplet trajectory. The preliminary study of NO{sub x} and fly ash behaviour in a boiler was carried out. The study concerning flow field in the superheater area was carried out a 2-dimensional case in which the inflow parameters were taken from global model of a recovery boiler. Further the prediction methods of fouling in a recovery boiler were developed based on theoretical calculations of smelting behaviour of multicomponent mixtures and measurements at operating recovery boilers. (author)

  2. An investigation of late-combustion soot burnout in a DI diesel engine using simultaneous planar imaging of soot and OH radical

    Energy Technology Data Exchange (ETDEWEB)

    John E. Dec; Peter L. Kelly-Zion

    1999-10-01

    Diesel engine design continues to be driven by the need to improve performance while at the same time achieving further reductions in emissions. The development of new designs to accomplish these goals requires an understanding of how the emissions are produced in the engine. Laser-imaging diagnostics are uniquely capable of providing this information, and the understanding of diesel combustion and emissions formation has been advanced considerably in recent years by their application. However, previous studies have generally focused on the early and middle stages of diesel combustion. These previous laser-imaging studies do provide important insight into the soot formation and oxidation processes during the main combustion event. They indicate that prior to the end of injection, soot formation is initiated by fuel-rich premixed combustion (equivalence ratio > 4) near the upstream limit of the luminous portion of the reacting fuel jet. The soot is then oxidized at the diffusion flame around the periphery of the luminous plume. Under typical diesel engine conditions, the diffusion flame does not burn the remaining fuel and soot as rapidly as it is supplied, resulting in an expanding region of rich combustion products and soot. This is evident in natural emission images by the increasing size of the luminous soot cloud prior to the end of injection. Hence, the amount of soot in the combustion chamber typically increases until shortly after the end of fuel injection, at which time the main soot formation period ends and the burnout phase begins. Sampling valve and two-color pyrometry data indicate that the vast majority (more than 90%) of the soot formed is oxidized before combustion ends; however, it is generally thought that a small fraction of this soot from the main combustion zones is not consumed and is the source of tail pipe soot emissions.

  3. T-Matrix Modeling of Linear Depolarization by Morphologically Complex Soot and Soot-Containing Aerosols

    Science.gov (United States)

    Mishchenko, Michael I.; Liu, Li; Mackowski, Daniel W.

    2013-01-01

    We use state-of-the-art public-domain Fortran codes based on the T-matrix method to calculate orientation and ensemble averaged scattering matrix elements for a variety of morphologically complex black carbon (BC) and BC-containing aerosol particles, with a special emphasis on the linear depolarization ratio (LDR). We explain theoretically the quasi-Rayleigh LDR peak at side-scattering angles typical of low-density soot fractals and conclude that the measurement of this feature enables one to evaluate the compactness state of BC clusters and trace the evolution of low-density fluffy fractals into densely packed aggregates. We show that small backscattering LDRs measured with groundbased, airborne, and spaceborne lidars for fresh smoke generally agree with the values predicted theoretically for fluffy BC fractals and densely packed near-spheroidal BC aggregates. To reproduce higher lidar LDRs observed for aged smoke, one needs alternative particle models such as shape mixtures of BC spheroids or cylinders.

  4. Research of Boiler Combustion Regulation for Reducing Nox Emission and its Effect on Boiler Efficiency

    Institute of Scientific and Technical Information of China (English)

    WANG Xue-dong; LUAN Tao; CHENG Lin; XIAO Kun

    2007-01-01

    The effect of boiler combustion regulation on Nox emission of two 1025t/h boilers has been studied. The researches show that Nox emission is influenced by coal species, operation conditions, etc, and can be reduced by regulating the combustion conditions. The effect of combustion regulation on boiler efficiency has also been checked.

  5. Stress-Assisted Corrosion in Boiler Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Preet M Singh; Steven J Pawel

    2006-05-27

    A number of industrial boilers, including in the pulp and paper industry, needed to replace their lower furnace tubes or decommission many recovery boilers due to stress-assisted corrosion (SAC) on the waterside of boiler tubes. More than half of the power and recovery boilers that have been inspected reveal SAC damage, which portends significant energy and economic impacts. The goal of this project was to clarify the mechanism of stress-assisted corrosion (SAC) of boiler tubes for the purpose of determining key parameters in its mitigation and control. To accomplish this in-situ strain measurements on boiler tubes were made. Boiler water environment was simulated in the laboratory and effects of water chemistry on SAC initiation and growth were evaluated in terms of industrial operations. Results from this project have shown that the dissolved oxygen is single most important factor in SAC initiation on carbon steel samples. Control of dissolved oxygen can be used to mitigate SAC in industrial boilers. Results have also shown that sharp corrosion fatigue and bulbous SAC cracks have similar mechanism but the morphology is different due to availability of oxygen during boiler shutdown conditions. Results are described in the final technical report.

  6. On the formation and early evolution of soot in turbulent nonpremixed flames

    KAUST Repository

    Bisetti, Fabrizio

    2012-01-01

    A Direct Numerical Simulation (DNS) of soot formation in an n-heptane/air turbulent nonpremixed flame has been performed to investigate unsteady strain effects on soot growth and transport. For the first time in a DNS of turbulent combustion, Polycyclic Aromatic Hydrocarbons (PAH) are included via a validated, reduced chemical mechanism. A novel statistical representation of soot aggregates based on the Hybrid Method of Moments is used [M.E. Mueller, G. Blanquart, H. Pitsch, Combust. Flame 156 (2009) 1143-1155], which allows for an accurate state-of-the-art description of soot number density, volume fraction, and morphology of the aggregates. In agreement with previous experimental studies in laminar flames, Damköhler number effects are found to be significant for PAH. Soot nucleation and growth from PAH are locally inhibited by high scalar dissipation rate, thus providing a possible explanation for the experimentally observed reduction of soot yields at increasing levels of mixing in turbulent sooting flames. Furthermore, our data indicate that soot growth models that rely on smaller hydrocarbon species such as acetylene as a proxy for large PAH molecules ignore or misrepresent the effects of turbulent mixing and hydrodynamic strain on soot formation due to differences in the species Damköhler number. Upon formation on the rich side of the flame, soot is displaced relative to curved mixture fraction iso-surfaces due to differential diffusion effects between soot and the gas-phase. Soot traveling towards the flame is oxidized, and aggregates displaced away from the flame grow primarily by condensation of PAH on the particle surface. In contrast to previous DNS studies based on simplified soot and chemistry models, surface reactions are found to contribute barely to the growth of soot, for nucleation and condensation processes occurring in the fuel stream are responsible for the most of soot mass generation. Furthermore, the morphology of the soot aggregates is

  7. Effect of Dimethyl Ether Mixing on Soot Size Distribution in Premixed Ethylene Flame

    KAUST Repository

    Li, Zepeng

    2016-04-21

    As a byproduct of incomplete combustion, soot attracts increasing attentions as extensive researches exploring serious health and environmental effects from soot particles. Soot emission reduction requires a comprehensive understanding of the mechanism for polycyclic aromatic hydrocarbons and of soot formation and aging processes. Therefore, advanced experimental techniques and numerical simulations have been conducted to investigate this procedure. In order to investigate the effects of dimethyl ether (DME) mixing on soot particle size distribution functions (PSDFs), DME was mixed in premixed ethylene/oxygen/argon at flames at the equivalence ratio of 2.0 with a range of mixing ratio from 0% to 30% of the total carbon fed. Two series of atmospheric pressure flames were tested in which cold gas velocity was varied to obtain different flame temperatures. The evolution of PSDFs along the centerline of the flame was determined by burner stabilized stagnation probe and scanning mobility particle sizer (SMPS) techniques, yielding the PSDFs for various separation distances above the burner surface. Meanwhile, the flame temperature profiles were carefully measured by a thermocouple and the comparison to that of simulated laminar premixed burner-stabilized stagnation flame was satisfactory. Additionally, to understand the chemical role of DME mixing in soot properties, characterization measurements were conducted on soot samples using thermo-gravimetric analysis (TGA) and elemental analysis (EA). Results of the evolution of PSDFs and soot volume fraction showed that adding DME into ethylene flame could reduce soot yield significantly. The addition of DME led to the decrease of both the soot nucleation rate and the particle mass growth rate. To explain the possible mechanism for the observation, numerical simulations were performed. Although DME addition resulted in the slight increase of methyl radicals from pyrolysis, the decrease in acetylene and propargyl radicals

  8. Optical properties of soot particles: measurement - model comparison

    Science.gov (United States)

    Forestieri, S.; Lambe, A. T.; Lack, D.; Massoli, P.; Cross, E. S.; Dubey, M.; Mazzoleni, C.; Olfert, J.; Freedman, A.; Davidovits, P.; Onasch, T. B.; Cappa, C. D.

    2013-12-01

    Soot, a product of incomplete combustion, plays an important role in the earth's climate system through the absorption and scattering of solar radiation. In order to accurately model the direct radiative impact of black carbon (BC), the refractive index and shape dependent scattering and absorption characteristics must be known. At present, the assumed shape remains highly uncertain because BC particles are fractal-like, being agglomerates of smaller (20-40 nm) spherules, yet traditional optical models such as Mie theory typically assume a spherical particle morphology. To investigate the ability of various optical models to reproduce observed BC optical properties, we measured light absorption and extinction coefficients of methane and ethylene flame soot particles. Optical properties were measured by multiple instruments: absorption by a dual cavity ringdown photoacoustic spectrometer (CRD-PAS), absorption and scattering by a 3-wavelength photoacoustic/nephelometer spectrometer (PASS-3) and extinction and scattering by a cavity attenuated phase shift spectrometer (CAPS). Soot particle mass was quantified using a centrifugal particle mass analyzer (CPMA) and mobility size was measured with a scanning mobility particle sizer (SMPS). Measurements were made for nascent soot particles and for collapsed soot particles following coating with dioctyl sebacate or sulfuric acid and thermal denuding to remove the coating. Wavelength-dependent refractive indices for the sampled particles were derived by fitting the observed absorption and extinction cross-sections to spherical particle Mie theory and Rayleigh-Debye-Gans theory. The Rayleigh-Debye-Gans approximation assumes that the absorption properties of soot are dictated by the individual spherules and neglects interaction between them. In general, Mie theory reproduces the observed absorption and extinction cross-sections for particles with volume equivalent diameters (VED) VED > ~160 nm. The discrepancy is most

  9. Formation of Soot in Counterflow Diffusion Flames with Carbon Dioxide Dilution

    KAUST Repository

    Wang, Yu

    2016-05-04

    Experimental and numerical modeling studies have been performed to investigate the effect of CO2 dilution on soot formation in ethylene counterflow diffusion flames. Thermal and chemical effects of CO2 addition on soot growth was numerically identified by using a fictitious CO2 species, which was treated as inert in terms of chemical reactions. The results showed that CO2 addition reduces soot formation both thermodynamically and chemically. In terms of chemical effect, the addition of CO2 decreases soot formation through various pathways, including: (1) reduced soot precursor (PAH) formation leading to lower inception rates and soot number density, which in turn results in lower surface area for soot mass addition; (2) reduced H, CH3, and C3H3 concentrations causing lower H abstraction rate and therefore less active site per surface area for soot growth; and (3) reduced C2H2 mole fraction and thus a slower C2H2 mass addition rate. In addition, the sooting limits were also measured for ethylene counterflow flames in both N2 and CO2 atmosphere and the results showed that sooting region was significantly reduced in the CO2 case compared to the N2 case. © 2016 Taylor & Francis.

  10. Strain rate effect on sooting characteristics in laminar counterflow diffusion flames

    KAUST Repository

    Wang, Yu

    2016-01-20

    The effects of strain rate, oxygen enrichment and fuel type on the sooting characteristics of counterflow diffusion flames were studied. The sooting structures and relative PAH concentrations were measured with laser diagnostics. Detailed soot modeling using recently developed PAH chemistry and surface reaction mechanism was performed and the results were compared with experimental data for ethylene flames, focusing on the effects of strain rates. The results showed that increase in strain rate reduced soot volume fraction, average size and peak number density. Increase in oxygen mole fraction increased soot loading and decreased its sensitivity on strain rate. The soot volume fractions of ethane, propene and propane flames were also measured as a function of global strain rate. The sensitivity of soot volume fraction to strain rate was observed to be fuel dependent at a fixed oxygen mole fraction, with the sensitivity being higher for more sooting fuels. However, when the soot loadings were matched at a reference strain rate for different fuels by adjusting oxygen mole fraction, the dependence of soot loading on strain rate became comparable among the tested fuels. PAH concentrations were shown to decrease with increase in strain rate and the dependence on strain rate is more pronounced for larger PAHs. Soot modeling was performed using detailed PAH growth chemistry with molecular growth up to coronene. A qualitative agreement was obtained between experimental and simulation results, which was then used to explain the experimentally observed strain rate effect on soot growth. However, quantitatively, the simulation result exhibits higher sensitivity to strain rate, especially for large PAHs and soot volume fractions.

  11. Impacts of fuel formulation and engine operating parameters on the nanostructure and reactivity of diesel soot

    Science.gov (United States)

    Yehliu, Kuen

    This study focuses on the impacts of fuel formulations on the reactivity and nanostructure of diesel soot. A 2.5L, 4-cylinder, turbocharged, common rail, direct injection light-duty diesel engine was used in generating soot samples. The impacts of engine operating modes and the start of combustion on soot reactivity were investigated first. Based on preliminary investigations, a test condition of 2400 rpm and 64 Nm, with single and split injection strategies, was chosen for studying the impacts of fuel formulation on the characteristics of diesel soot. Three test fuels were used: an ultra low sulfur diesel fuel (BP15), a pure soybean methyl-ester (B100), and a synthetic Fischer-Tropsch fuel (FT) produced in a gas-to-liquid process. The start of injection (SOI) and fuel rail pressures were adjusted such that the three test fuels have similar combustion phasing, thereby facilitating comparisons between soots from the different fuels. Soot reactivity was investigated by thermogravimetric analysis (TGA). According to TGA, B100 soot exhibits the fastest oxidation on a mass basis followed by BP15 and FT derived soots in order of apparent rate constant. X-ray photoelectron spectroscopy (XPS) indicates no relation between the surface oxygen content and the soot reactivity. Crystalline information for the soot samples was obtained using X-ray diffraction (XRD). The basal plane diameter obtained from XRD was inversely related to the apparent rate constants for soot oxidation. For comparison, high resolution transmission electron microscopy (HRTEM) provided images of the graphene layers. Quantitative image analysis proceeded by a custom algorithm. B100 derived soot possessed the shortest mean fringe length and greatest mean fringe tortuosity. This suggests soot (nano)structural disorder correlates with a faster oxidation rate. Such results are in agreement with the X-ray analysis, as the observed fringe length is a measure of basal plane diameter. Moreover the relation

  12. Failure Analysis of 600 MW Supercritical Boiler Water Wall

    Directory of Open Access Journals (Sweden)

    Fu Huilin

    2013-07-01

    Full Text Available Boiler tube often causes abnormal boiler outage, bringing greater economic losses. This thesis mainly comes from the dynamics of boiler water, boiler furnace accident location of wall temperature distribution to explore the cause of the accident boiler. Calculation results show that the deformation will seriously reduce the boiler allowable maximum temperature difference between the screens. And the boiler is not over-temperature, low temperature difference between the screens, which have burst pipe. Analysis of the deformation of the boiler and propose solutions.

  13. Chaotic map models of soot fluctuations in turbulent diffusion flames

    Energy Technology Data Exchange (ETDEWEB)

    Mukerji, S.; McDonough, J.M.; Menguec, M.P.; Manickavasagam, S. [Univ. of Kentucky, Lexington, KY (United States). Dept. of Mechanical Engineering; Chung, S. [Univ. of Illinois, Urbana, IL (United States). Dept. of Chemical Engineering

    1998-10-01

    In this paper, the authors introduce a methodology to characterize time-dependent soot volume fraction fluctuations in turbulent diffusion flames via chaotic maps. The approach is based on the hypothesis that fluctuations of properties in turbulent flames are deterministic in nature, rather than statistical. The objective is to develop models of these fluctuations to be used in comprehensive algorithms to study the nature of turbulent flames and the interaction of turbulence with radiation. To this end the authors measured the time series of soot scattering coefficient in an ethylene diffusion flame from light scattering experiments and fit these data to linear combinations of chaotic maps of the unit interval. Both time series and power spectra can be modeled with reasonable accuracy in this way.

  14. Single Particle Soot Photometer intercomparison at the AIDA chamber

    Directory of Open Access Journals (Sweden)

    M. Laborde

    2012-12-01

    Full Text Available Soot particles, consisting of black carbon (BC, organic carbon (OC, inorganic salts, and trace elements, are emitted into the atmosphere during incomplete combustion. Accurate measurements of atmospheric BC are important as BC particles cause adverse health effects and impact the climate.

    Unfortunately, the accurate measurement of the properties and mass concentrations of BC particles remains difficult. The Single Particle Soot Photometer (SP2 can contribute to improving this situation by measuring the mass of refractory BC in individual particles as well as its mixing state.

    Here, the results of the first detailed SP2 intercomparison, involving 6 SP2s from 6 different research groups, are presented, including the most evolved data products that can presently be calculated from SP2 measurements.

    It was shown that a detection efficiency of almost 100% down to 1 fg BC per particle can readily be achieved, and that this limit can be pushed down to ∼0.2 fg BC with optimal SP2 setup. Number and mass size distributions of BC cores agreed within ±5% and ±10%, respectively, in between the SP2s, with larger deviations in the range below 1 fg BC.

    The accuracy of the SP2's mass concentration measurement depends on the calibration material chosen. The SP2 has previously been shown to be equally sensitive to fullerene soot and ambient BC from sources where fossil fuel was dominant and less sensitive to fullerene soot than to Aquadag. Fullerene soot was therefore chosen as the standard calibration material by the SP2 user community; however, many data sets rely solely on Aquadag calibration measurements. The difference in SP2 sensitivity was found to be almost equal (fullerene soot to Aquadag response ratio of ∼0.75 at 8.9 fg BC for all SP2s. This allows the calculation of a fullerene soot equivalent calibration curve from a measured Aquadag calibration, when no fullerene soot calibration is available. It could be

  15. Soot in the atmosphere and snow surface of Antarctica

    International Nuclear Information System (INIS)

    Samples of snow collected near the south pole during January and February 1986 were analyzed for the presence of light-absorbing particles by passing the melted snow through a nuclepore filter. Transmission of light through the filter showed that snow far from the station contains the equivalent of 0.1-0.3 ng of carbon per gram of snow (ng/g). Samples of ambient air were filtered and found to contain about 1-2 ng of carbon per kilogram of air, giving a scavenging ratio of about 150. The snow downwind of the station exhibited a well-defined plume of soot due to the burning of diesel fuel, but even in the center of the plume 1 km downwind, the soot concentration was only 3 ng/g, too small to affect snow albedo significantly. Measurements of snow albedo near large inland stations are therefore probably representative of their surrounding regions

  16. Conductometric soot sensor for automotive exhausts: initial studies.

    Science.gov (United States)

    Hagen, Gunter; Feistkorn, Constanze; Wiegärtner, Sven; Heinrich, Andreas; Brüggemann, Dieter; Moos, Ralf

    2010-01-01

    In order to reduce the tailpipe particulate matter emissions of Diesel engines, Diesel particulate filters (DPFs) are commonly used. Initial studies using a conductometric soot sensor to monitor their filtering efficiency, i.e., to detect a malfunction of the DPF, are presented. The sensors consist of a planar substrate equipped with electrodes on one side and with a heater on the other. It is shown that at constant speed-load points, the time until soot percolation occurs or the resistance itself are reproducible means that can be well correlated with the filtering efficiency of a DPF. It is suggested to use such a sensor setup for the detection of a DPF malfunction. PMID:22294888

  17. Single Particle Soot Photometer intercomparison at the AIDA chamber

    Directory of Open Access Journals (Sweden)

    M. Laborde

    2012-05-01

    Full Text Available Soot particles, consisting of black carbon (BC, organic carbon (OC, inorganic salts, and trace elements, are emitted into the atmosphere during incomplete combustion. Accurate measurements of atmospheric BC are important as BC particles cause adverse health effects and impact the climate.

    Unfortunately, the accurate measurement of the properties and mass concentrations of BC particles remains difficult. The Single Particle Soot Photometer (SP2 can contribute to improving this situation by measuring the mass of refractory BC in individual particles as well as its mixing state.

    Here, the results of the first detailed SP2 intercomparison, involving 6 SP2s from 6 different research groups, are presented, including the most evolved data products that can presently be calculated from SP2 measurements.

    It was shown that a detection efficiency of almost 100% down to 1 fg BC per particle can readily be achieved, and that this limit can be pushed down to ~0.3 fg BC with optimal SP2 setup. Number and mass size distributions of BC cores agreed within ±5% and ±10%, respectively, in between the SP2s, with larger deviations in the range below 1 fg BC.

    The accuracy of the SP2's mass concentration measurement depends on the calibration material chosen. The SP2 has previously been shown to be equally sensitive to fullerene soot and ambient BC from sources where fossil fuel were dominant and less sensitive to fullerene soot than to Aquadag. Fullerene soot was therefore chosen as the standard calibration material by the SP2 user community, however many datasets rely solely on Aquadag calibration measurements. The difference in SP2 sensitivity was found to be almost equal (fullerene soot to Aquadag response ratio of ~0.75 at 8.9 fg BC for all SP2s. This allows the calculation of a fullerene soot equivalent calibration curve from a measured Aquadag calibration, when no fullerene soot calibration is available. It could be shown

  18. Temperature and velocity profiles in sooting free boundary layer flames

    Science.gov (United States)

    Ang, J. A.; Pagni, P. J.; Mataga, T. G.; Margle, J. M.; Lyons, V. J.

    1986-01-01

    Temperature and velocity profiles are presented for cyclohexane, n-heptane, and iso-octane free, laminar, boundary layer, sooting, diffusion flames. Temperatures are measured with 3 mil Pt/Pt-13 percent Rh thermocouples. Corrected gas temperatures are derived by performing an energy balance of convection to and radiation from the thermocouple bead incorporating the variation of air conductivity and platinum emissivity with temperature. Velocities are measured using laser doppler velocimetry techniques. Profiles are compared with previously reported analytic temperature and velocity fields. Comparison of theoretical and experimental temperature profiles suggests improvement in the analytical treatment is needed, which accounts more accurately for the local soot radiation. The velocity profiles are in good agreement, with the departure of the theory from observation partially due to the small fluctuations inherent in these free flows.

  19. Boiler corrosion. Corrosion of boilers at low boiler water temperatures. Heizkessel-Korrosion. Korrosion von Heizkesseln bei tiefen Kesselwassertemperaturen

    Energy Technology Data Exchange (ETDEWEB)

    Koebel, M.; Elsener, M.

    1989-02-01

    Thermostatic cast iron and steel 35.8 specimens were inserted between the fire tubes of a test boiler and exposed to flue gases for a period of three weeks. The corrosion rates at material temperatures between 20 and 60deg C as well as the effects of continuous and intermittent boiler operation were determined. Details are given on the specimens alloying constituents, the testing and test conditions (schematic representation of the experimental set-up). Diagrams and tables facilitate access to test results informing about corrosion rates and corrosion product structure analyses for continuous burner operation. While low boiler water temperatures (below 60deg C in the case of extra light heating oils) are found to necessarily involve higher risks and shorter boiler service lives, low flue gas temperatures alone are considered not to be increasing the risk of boiler corrosion. (HWJ).

  20. Blower door tests of a group of identical flats in a new student accommodation in the Arctic

    OpenAIRE

    Kotol, Martin; Rode, Carsten; Vahala, Jan

    2012-01-01

    A new student accommodation for engineering students “Apisseq” was built in the town of Sisimiut, Greenland in 2010. Its purpose is not only to provide accommodation for students. Thanks to its complex monitoring system it enables researchers to evaluate the building’s energy performance and indoor air quality (IAQ) as well as performance of some single components. In summer 2012 a blower door test was performed on all 37 living units out of which 33 are identical single room flats and 4 are ...

  1. Performance of a newly designed continuous soot monitoring system (COSMOS).

    Science.gov (United States)

    Miyazaki, Yuzo; Kondo, Yutaka; Sahu, Lokesh K; Imaru, Junichi; Fukushima, Nobuhiko; Kano, Minoru

    2008-10-01

    We designed a continuous soot monitoring system (COSMOS) for fully automated, high-sensitivity, continuous measurement of light absorption by black carbon (BC) aerosols. The instrument monitors changes in transmittance across an automatically advancing quartz fiber filter tape using an LED at a 565 nm wavelength. To achieve measurements with high sensitivity and a lower detectable light absorption coefficient, COSMOS uses a double-convex lens and optical bundle pipes to maintain high light intensity and signal data are obtained at 1000 Hz. In addition, sampling flow rate and optical unit temperature are actively controlled. The inlet line for COSMOS is heated to 400 degrees C to effectively volatilize non-refractory aerosol components that are internally mixed with BC. In its current form, COSMOS provides BC light absorption measurements with a detection limit of 0.45 Mm(-1) (0.045 microg m(-3) for soot) for 10 min. The unit-to-unit variability is estimated to be within +/- 1%, demonstrating its high reproducibility. The absorption coefficients determined by COSMOS agreed with those by a particle soot absorption photometer (PSAP) to within 1% (r2 = 0.97). The precision (+/- 0.60 Mm(-1)) for 10 min integrated data was better than that of PSAP and an aethalometer under our operating conditions. These results showed that COSMOS achieved both an improved detection limit and higher precision for the filter-based light absorption measurements of BC compared to the existing methods.

  2. Investigation of Chemical Kinetics on Soot Formation Event of n-Heptane Spray Combustion

    DEFF Research Database (Denmark)

    Pang, Kar Mun; Jangi, Mehdi; Bai, Xue-Song;

    2014-01-01

    In this reported work, 2-dimsensional computational fluid dynamics studies of n-heptane combustion and soot formation processes in the Sandia constant-volume vessel are carried out. The key interest here is to elucidate how the chemical kinetics affects the combustion and soot formation events....... Numerical computation is performed using OpenFOAM and chemistry coordinate mapping (CCM) approach is used to expedite the calculation. Three n-heptane kinetic mechanisms with different chemistry sizes and comprehensiveness in oxidation pathways and soot precursor formation are adopted. The three examined...... chemical models use acetylene (C2H2), benzene ring (A1) and pyrene (A4) as soot precursor. They are henceforth addressed as nhepC2H2, nhepA1 and nhepA4, respectively for brevity. Here, a multistep soot model is coupled with the spray combustion solver to simulate the soot formation/oxidation processes...

  3. Comparison of Three Soot Models Applied to Multi-Dimensional Diesel Combustion Simulations

    Science.gov (United States)

    Tao, Feng; Srinivas, Sukhin; Reitz, Rolf D.; Foster, David E.

    In this paper, three soot models previously proposed for diesel combustion and soot formation studies are briefly reviewed and compared. The three models are (1) two-step empirical soot model, (2) eight-step phenomenological soot model, and (3) complex-chemistry coupled phenomenological soot model. All three models have been implemented into the KIVA-3V simulation code. For comparison, a heavy-duty DI diesel engine case with fuel injection typical of standard DI diesel operating conditions was studied. Flame structures of a single diesel spray predicted using these three models were compared, and the results offer our perspective on the application of these three models to soot modeling in diesel engines.

  4. Conductometric Sensor for Soot Mass Flow Detection in Exhausts of Internal Combustion Engines.

    Science.gov (United States)

    Feulner, Markus; Hagen, Gunter; Müller, Andreas; Schott, Andreas; Zöllner, Christian; Brüggemann, Dieter; Moos, Ralf

    2015-01-01

    Soot sensors are required for on-board diagnostics (OBD) of automotive diesel particulate filters (DPF) to detect filter failures. Widely used for this purpose are conductometric sensors, measuring an electrical current or resistance between two electrodes. Soot particles deposit on the electrodes, which leads to an increase in current or decrease in resistance. If installed upstream of a DPF, the "engine-out" soot emissions can also be determined directly by soot sensors. Sensors were characterized in diesel engine real exhausts under varying operation conditions and with two different kinds of diesel fuel. The sensor signal was correlated to the actual soot mass and particle number, measured with an SMPS. Sensor data and soot analytics (SMPS) agreed very well, an impressing linear correlation in a double logarithmic representation was found. This behavior was even independent of the used engine settings or of the biodiesel content. PMID:26580621

  5. Modelling and simulating fire tube boiler performance

    DEFF Research Database (Denmark)

    Sørensen, Kim; Karstensen, Claus; Condra, Thomas Joseph;

    2003-01-01

    A model for a ue gas boiler covering the ue gas and the water-/steam side has been formulated. The model has been formulated as a number of sub models that are merged into an overall model for the complete boiler. Sub models have been dened for the furnace, the convection zone (split in 2: a zone...

  6. 46 CFR 109.555 - Propulsion boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Propulsion boilers. 109.555 Section 109.555 Shipping... Miscellaneous § 109.555 Propulsion boilers. The master or person in charge and the engineer in charge shall ensure that— (a) Steam pressure does not exceed that allowed by the certificate of inspection; and...

  7. Laser Soot-Scattering Imaging of a Large Buoyant Diffusion Flame

    OpenAIRE

    Miake-Lye, Richard C.; Toner, Stephen J.

    1987-01-01

    A novel diagnostic technique, which makes use of laser light scattered by soot particles, was used in an effort to identify the flame sheets within a natural gas diffusion flame. Soot particles, inherently created and consumed in the flame, were used as the scattering medium, which obviated the need for externally supplied seed material. Since no foreign material was added to the flame, the current technique can be considered truly nonintrusive. The soot distribution within a large buoyant...

  8. Measurement of Fuel Concentration Distribution in a Sooting Flame through Raman Scattering

    OpenAIRE

    HAYASHIDA, Kazuhiro; AMAGAI, Kenji; SATOH, Keiji; Arai, Masataka

    2006-01-01

    Spontaneous Raman spectroscopy with KrF excimer laser was applied to obtain a fuel concentration distribution in a sooting flame. In the case of sooting flame, fluorescence from polycyclic aromatic hydrocarbons (PAH) and laser-induced incandescence (LII) from soot particles appeared with Raman scattering. These background emissions overlapped on the Raman scattering. In order to separate the Raman scattering and the background emissions, polarization property of laser-induced emissions was ut...

  9. Hygroscopic growth and droplet activation of soot particles: uncoated, succinic or sulfuric acid coated

    Directory of Open Access Journals (Sweden)

    S. Henning

    2011-10-01

    Full Text Available The hygroscopic growth and droplet activation of uncoated soot particles and such coated with succinic acid and sulfuric acid were investigated during the IN-11 campaign at the Aerosol Interaction and Dynamics in the Atmosphere (AIDA facility. A GFG-1000 soot generator applying nitrogen, respectively argon as carrier gas and a miniCAST soot generator were utilized to generate soot particles. Different organic carbon (OC to black carbon (BC ratios were adjusted for the CAST-soot by varying the fuel to air ratio. The hygroscopic growth was investigated by means of the mobile Leipzig Aerosol Cloud Interaction Simulator (LACIS-mobile and two different Hygroscopicity Tandem Differential Mobility Analyzers (HTDMA, VHTDMA. Two Cloud Condensation Nucleus Counter (CCNC were applied to measure the activation of the particles. For the untreated soot particles neither hygroscopic growth nor activation was observed, with exception of a partial activation of GFG-soot generated with argon as carrier gas. Coatings of succinic acid lead to a detectable hygroscopic growth of GFG-soot and enhanced the activated fraction of GFG- (carrier gas: argon and CAST-soot, whereas no hygroscopic growth of the coated CAST-soot was found. Sulfuric acid coatings lead to an OC-content dependent hygroscopic growth of CAST-soot. Such a dependence was not observed for activation measurements. Coating with sulfuric acid decreased the amount of Polycyclic Aromatic Hydrocarbons (PAH, which were detected by AMS-measurements in the CAST-soot, and increased the amount of substances with lower molecular weight than the initial PAHs. We assume, that these reaction products increased the hygroscopicity of the coated particles in addition to the coating substance itself.

  10. Hygroscopic growth and droplet activation of soot particles: uncoated, succinic or sulfuric acid coated

    Directory of Open Access Journals (Sweden)

    S. Henning

    2012-05-01

    Full Text Available The hygroscopic growth and droplet activation of uncoated soot particles and such coated with succinic acid and sulfuric acid were investigated during the IN-11 campaign at the Aerosol Interaction and Dynamics in the Atmosphere (AIDA facility. A GFG-1000 soot generator applying either nitrogen or argon as carrier gas and a miniCAST soot generator were utilized to generate soot particles. Different organic carbon (OC to black carbon (BC ratios were adjusted for the CAST-soot by varying the fuel to air ratio. The hygroscopic growth was investigated by means of the mobile Leipzig Aerosol Cloud Interaction Simulator (LACIS-mobile and two different Hygroscopicity Tandem Differential Mobility Analyzers (HTDMA, VHTDMA. Two Cloud Condensation Nucleus Counter (CCNC were applied to measure the activation of the particles. For the untreated soot particles neither hygroscopic growth nor activation was observed at a supersaturation of 1%, with exception of a partial activation of GFG-soot generated with argon as carrier gas. Coatings of succinic acid lead to a detectable hygroscopic growth of GFG-soot and enhanced the activated fraction of GFG- (carrier gas: argon and CAST-soot, whereas no hygroscopic growth of the coated CAST-soot was found. Sulfuric acid coatings led to an OC-content dependent hygroscopic growth of CAST-soot. Such a dependence was not observed for activation measurements. Coating with sulfuric acid decreased the amount of Polycyclic Aromatic Hydrocarbons (PAH, which were detected by AMS-measurements in the CAST-soot, and increased the amount of substances with lower molecular weight than the initial PAHs. We assume that these reaction products increased the hygroscopicity of the coated particles in addition to the coating substance itself.

  11. Dynamics of very small soot particles during soot burnout in diesel engines; Dynamik kleinster Russteilchen waehrend der Russausbrandphase im Dieselmotor

    Energy Technology Data Exchange (ETDEWEB)

    Bockhorn, H. [Karlsruhe Univ. (T.H.) (Germany). Inst. fuer Chemische Technik; Peters, N. [RWTH Aachen (DE). Institut fuer Technische Mechanik (ITM); Pittermann, R. [WTZ fuer Motoren- und Maschinenforschung Rosslau gGmbH (Germany); Hentschel, J.; Weber, J.

    2003-07-01

    The investigations used advanced laser-optical methods for measuring soot particle size distributions, temporally and spectrally resolved measurements of engine combustion, measurements of composition and size distribution of particles in exhaust, and further development and validation of reaction-kinetic models. In all, it can be stated that mixing will affect not only soot particle formation but also soot particle emissions. Mixing can be influenced by using a fuel-water emulsion and by CR injection. Experiments and models both showed the advantageous effects of water added to the diesel fuels and of CR injection. The higher OH radical concentrations in the later combustion stages also serve to ensure faster oxidation of soot. (orig.) [German] Ziel des Projektes war es, Informationen ueber die Bildung und Oxidation von Russ sowie die Teilchendynamik der Russteilchen waehrend der Ausbrandphase zu erhalten. Dies wurde erreicht durch die Weiterentwicklung laseroptischer Methoden zur Bestimmung der Groessenverteilung von Russpartikeln, durch zeit- und spektral aufgeloeste Erfassung der motorischen Verbrennung, durch die Bestimmung von Zusammensetzung und Groessenverteilung von Partikeln im Abgas sowie durch die Weiterentwicklung und Validierung von reaktionskinetischen Modellen. Zusammenfassend laesst sich sagen, dass sich die Gemischbildung im Dieselmotor nicht nur auf die Bildung der Russpartikel sondern auch auf die Russpartikelemission auswirkt. Die Verwendung einer Kraftstoff-Wasser-Emulsion und die Common-Rail-Einspritzung stellen zwei Verfahren zur Beeinflussung der Gemischbildung dar. Sowohl die experimentellen Untersuchungen als auch die Modellierung zeigen den die Gemischbildung foerdernden Einfluss des Zusatzes von Wasser zum Dieselbrennstoff. Ein erhoehter Anteil an vorgemischter Verbrennung, wie er auch durch die Verwendung hoher Einspritzdruecke bei der Common-Rail-Einspritzung erreicht werden kann, verringert die waehrend der Verbrennung entstehende

  12. PAH emission from the industrial boilers.

    Science.gov (United States)

    Li, C; Mi, H; Lee, W; You, W; Wang, Y

    1999-10-01

    Polycyclic aromatic hydrocarbons (PAHs) emitted from 25 industrial boilers were investigated. The fuels used for these 25 boilers included 21 heavy oil, two diesel, a co-combustion of heavy oil and natural gas (HO+NG) and a co-combustion of coke oven gas and blast furnace gas (COG+BFG) boilers. PAH samples from the stack flue gas (gas and particle phases) of these 25 boilers were collected by using a PAH stack sampling system. Twenty one individual PAHs were analyzed primarily by a gas chromatography/mass spectrometer (GC/MS). Total-PAH concentration in the flue gas of 83 measured data for these 25 boiler stacks ranged between 29.0 and 4250 microg/m(3) and averaged 488 microg/m(3). The average of PAH-homologue mass (F%) counted for the total-PAH mass was 54.7%, 9.47% and 15.3% for the 2-ring, 3-ring and 4-ring PAHs, respectively. The PAHs in the stack flue gas were dominant in the lower molecular weight PAHs. The emission factors (EFs) of total-PAHs were 13,300, 2920, 2880 and 208 microg/kg-fuel for the heavy oil, diesel, HO+NG and COG+BFG fueled-boiler, respectively. Nap was the most predominant PAH occurring in the stack flue gas. In addition, the EF of 21 individual PAHs in heavy-oil boiler were almost the highest among the four various fueled-boilers except for those of FL and BkF in the diesel boiler. Furthermore, the EF of total-PAHs or BaP for heavy oil were both one order of magnitude higher than that for the diesel-fueled boiler.

  13. Soot reduction under DC electric fields in counterflow non-premixed laminar ethylene flames

    KAUST Repository

    Park, Daegeun

    2014-04-23

    The effects of DC electric fields on non-premixed ethylene flames in a counterflow burner were studied experimentally with a focus on the reduction of soot particles. The experiment was conducted by connecting a high voltage terminal and a ground terminal to a lower (fuel) and upper (oxidizer) nozzle, respectively. We applied direct current (DC) potentials in a range of -5 kV < Vdc < 5 kV. Uniform electric fields were then generated in the gap between the two nozzles. The experimental conditions were selected to cover both soot formation (SF) and soot formation oxidation (SFO) flames. The flames subjected to the negative electric fields moved toward the fuel nozzle because of an ionic wind due to the Lorentz force acting on the positive ions in the flames. In addition, the yellow luminosity significantly decreased, indicating changes in the sooting characteristics. To analyze the sooting characteristics under the electric fields, planar laser induced incandescence (PLII) and fluorescence (PLIF) techniques were used to visualize the soot, polycyclic aromatic hydrocarbons (PAHs), and OH radicals. The sooting limits in terms of the fuel and oxygen mole fractions were measured. No substantial soot formation due to the effects of the DC electric fields for the tested range of voltages and reactant mole fractions could be identified. The detailed flame behaviors and sooting characteristics under the DC electric fields are discussed. Copyright © Taylor & Francis Group, LLC.

  14. Soot Reference Materials for instrument calibration and intercomparisons: a workshop summary with recommendations

    Directory of Open Access Journals (Sweden)

    D. Baumgardner

    2012-03-01

    Full Text Available Soot, which is produced from biomass burning and the incomplete combustion of fossil and biomass fuels, has been linked to regional and global climate change and to negative health problems. Scientists measure soot using a variety of methods in order to quantify source emissions and understand its atmospheric chemistry, reactivity under emission conditions, interaction with solar radiation, influence on clouds, and health impacts. A major obstacle currently limiting progress is the absence of established standards or reference materials for calibrating the many instruments used to measure the various properties of soot.

    The current state of availability and practicability of soot standard reference materials (SRMs was reviewed by a group of 50 international experts during a workshop in June of 2011. The workshop was convened to summarize the current knowledge on soot measurement techniques, identify the measurement uncertainties and limitations related to the lack of SRMs, and identify attributes of SRMs that, if developed, would reduce measurement uncertainties. The workshop established that suitable SRMs are available for calibrating some, but not all, measurement methods. The community of single-particle sootphotometer (SP2 users identified a suitable SRM, fullerene soot, but users of instruments that measure light absorption by soot collected on filters did not. Similarly, those who use thermal optical analysis (TOA to analyze the organic and elemental carbon components of soot were not satisfied with current SRMs. The workshop produced recommendations for the development of new SRMs that would be suitable for the different soot measurement methods.

  15. Internally mixed soot, sulfates, and organic matter in aerosol particles from Mexico City

    Directory of Open Access Journals (Sweden)

    K. Adachi

    2008-11-01

    Full Text Available Soot particles, which are aggregated carbonaceous spherules with graphitic structures, are major aerosol constituents that result from burning of fossil fuel, biofuel, and biomass. Their properties commonly change through reaction with other particles or gases, resulting in complex internal mixtures. Using a transmission electron microscope (TEM for both imaging and chemical analysis, we measured ~8000 particles (25 samples with aerodynamic diameters from 0.05 to 0.3 μm that were collected in March 2006 from aircraft over Mexico City (MC and adjacent areas. Most particles are coated, consist of aggregates, or both. For example, almost all analyzed particles contain S and 70% also contain K, suggesting coagulation and condensation of sulfates and particles derived from biomass and biofuel burning. In the MC plumes, over half of all particles contained soot coated by organic matter and sulfates. The median value of the soot volume fraction in such coated particles is about 15%. In contrast to the assumptions used in many climate models, the soot particles did not become compact even when coated. Moreover, about 80% by volume of the particles consisting of organic matter with sulfate also contained soot, indicating the important role of soot in the formation of secondary aerosol particles. Coatings on soot particles can amplify their light absorption, and coagulation with sulfates changes their hygroscopic properties, resulting in shorter lifetimes. Through changes in their optical and hygroscopic properties, internally mixed soot particles have a greater effect on the regional climate of MC than uncoated soot particles.

  16. Soot Formation in Laminar Premixed Methane/Oxygen Flames at Atmospheric Pressure

    Science.gov (United States)

    Xu, F.; Lin, K.-C.; Faeth, G. M.

    1998-01-01

    Flame structure and soot formation were studied within soot-containing laminar premixed mc1hane/oxygen flames at atmospheric pressure. The following measurements were made: soot volume fractions by laser extinction, soot temperatures by multiline emission, gas temperatures (where soot was absent) by corrected fine-wire thermocouples, soot structure by thermophoretic sampling and transmission electron microscope (TEM), major gas species concentrations by sampling and gas chromatography, and gas velocities by laser velocimetry. Present measurements of gas species concentrations were in reasonably good agreement with earlier measurements due to Ramer et al. as well as predictions based on the detailed mechanisms of Frenklach and co-workers and Leung and Lindstedt: the predictions also suggest that H atom concentrations are in local thermodynamic equilibrium throughout the soot formation region. Using this information, it was found that measured soot surface growth rates could be correlated successfully by predictions based on the hydrogen-abstraction/carbon-addition (HACA) mechanisms of both Frenklach and co-workers and Colket and Hall, extending an earlier assessment of these mechanisms for premixed ethylene/air flames to conditions having larger H/C ratios and acetylene concentrations. Measured primary soot particle nucleation rates were somewhat lower than the earlier observations for laminar premixed ethylene/air flames and were significantly lower than corresponding rates in laminar diffusion flames. for reasons that still must be explained.

  17. Soot formation characteristics of gasoline surrogate fuels in counterflow diffusion flames

    KAUST Repository

    Choi, Byungchul

    2011-01-01

    The characteristics of polycyclic aromatic hydrocarbon (PAH) and soot for gasoline surrogate fuels have been investigated in counterflow diffusion flames by adopting laser-induced fluorescence (LIF) and laser-induced incandescence (LII) techniques for both soot formation and soot formation/oxidation flames. Tested fuels were three binary mixtures from the primary reference fuels of n-heptane, iso-octane, and toluene. The result showed that PAH and soot maintained near zero level for all mixtures of n-heptane/iso-octane case under present experimental conditions. For n-heptane/toluene and iso-octane/toluene mixtures, PAH initially increased and then decreased with the toluene ratio, exhibiting a synergistic effect. The soot formation increased monotonically with the toluene ratio, however the effect of toluene on soot formation was minimal for relatively small toluene ratios. These results implied that even though toluene had a dominant role in soot and PAH formations, small amount of toluene had a minimal effect on soot formation. Numerical simulations have also been conducted by adopting recently proposed two kinetic mechanisms. The synergistic behavior of aromatic rings was predicted similar to the experimental PAH measurement, however, the degree of the synergistic effect was over-predicted for the soot formation flame, indicating the need for refinements in the kinetic mechanisms. © 2010 Published by Elsevier Inc. on behalf of The Combustion Institute. All rights reserved.

  18. Morphology Of Diesel Soot Residuals From Supercooled Water Droplets And Ice Crystals: Implications For Optical Properties

    Energy Technology Data Exchange (ETDEWEB)

    China, Swarup; Kulkarni, Gourihar R.; Scarnatio, Barbara; Sharma, Noopur; Pekour, Mikhail S.; Shilling, John E.; Wilson, Jacqueline M.; Zelenyuk, Alla; Chand, Duli; Liu, Shang; Aiken, Allison; Dubey, Manvendra K.; Laskin, Alexander; Zaveri, Rahul A.; Mazzoleni, Claudio

    2015-11-04

    Freshly emitted soot particles are fractal-like aggregates, but atmospheric processing often transforms their morphology. Morphology of soot particles plays an important role in determining their optical properties, life cycle and hence their effect on Earth’s radiative balance. However, little is known about the morphology of soot particles that participated in cold cloud processes. Here we report results from laboratory experiments that simulate cold cloud processing of diesel soot particles by allowing them to form supercooled droplets and ice crystals at -20 and -40°C, respectively. Electron microscopy revealed that soot residuals from ice crystals were more compact (roundness~0.55) than those from supercooled droplets (roundness ~0.45), while nascent soot particles were the least compact (roundness~0.41). Optical simulations using the discrete dipole approximation showed that the more compact structure enhances soot single scattering albedo by a factor up to 1.4, thereby reducing the top-of-the-atmosphere direct radiative forcing by ~63%. These results underscore that climate models should consider the morphological evolution of soot particles due to cold cloud processing to improve the estimate of direct radiative forcing of soot.

  19. Life assessment for vintage boilers

    Energy Technology Data Exchange (ETDEWEB)

    Auerkari, P.; Salonen, J.; Holmstroem, S. (VTT Technical Research Centre of Finland, Espoo (Finland)); Laaksonen, L.; Lehtinen, O. (Fortum, Naantali (Finland)); McNiven, U. (Fortum, Jyvaeskylae (Finland)); Maekinen, S.; Vaeaenaenen, V. (Helsingin Energia, Helsinki (Finland)); Nikkarila, R. (Inspecta, Espoo (Finland))

    2010-05-15

    The high temperature sections of power and combined heat and power (CHP) boilers are designed for some de facto expected but finite life. Several significant damage mechanisms must be taken into account, particularly in superheaters and reheaters that are designed for creep but also suffer from thermal degradation, external erosion and corrosion, and internal steam oxidation that will gradually increase the metal temperature. As rising temperature tends to accelerate all damage mechanisms, major effects can be expected from the internal oxide growth. The feedback loop is taken into account in procedures to predict superheater life from known tube dimensions, time in operation, and other initial data. The oxide effect can be mitigated by internal cleaning, but in-service spallation of a relatively thick internal oxide can also become significant in old plants. Spallation can create problems but extends the tube life by keeping the wall cooler than with an adherent oxide. Examples are shown for boilers with more than 150 000 h of service. (orig.)

  20. 49 CFR 230.36 - Hydrostatic testing of boilers.

    Science.gov (United States)

    2010-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Pressure Testing of Boilers § 230.36 Hydrostatic testing of boilers. (a) Time of test. The... 49 Transportation 4 2010-10-01 2010-10-01 false Hydrostatic testing of boilers. 230.36 Section...

  1. 49 CFR 230.30 - Lap-joint seam boilers.

    Science.gov (United States)

    2010-10-01

    ..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Inspection and Repair § 230.30 Lap-joint seam boilers. Every boiler having lap-joint longitudinal seams... 49 Transportation 4 2010-10-01 2010-10-01 false Lap-joint seam boilers. 230.30 Section...

  2. 46 CFR 61.05-15 - Boiler mountings and attachments.

    Science.gov (United States)

    2010-10-01

    ... gauge for a boiler or a main steam line may be examined and checked for accuracy by the marine inspector... 46 Shipping 2 2010-10-01 2010-10-01 false Boiler mountings and attachments. 61.05-15 Section 61.05... TESTS AND INSPECTIONS Tests and Inspections of Boilers § 61.05-15 Boiler mountings and attachments....

  3. Electrical design requirements for electrode boilers for nuclear plants

    International Nuclear Information System (INIS)

    Medium-voltage steam electrode boilers, in the 20- to 50-MW range, have become an attractive alternative to comparable fossil-fueled boilers as a source of auxiliary steam during the startup and normal shutdown of nuclear power plants. The electrode boiler represents a favorable option because of environmental, fire protection, and licensing considerations. However, this electrical option brings some difficult design problems for which solutions are required in order to integrate the electrode boiler into the plant low resistance grounded power system. These considerations include the effects of an unbalanced electrode boiler on the performance of polyphase induction motors, boiler grounding for personnel safety, boiler neutral grounding, and ground relaying

  4. On the radiative properties of soot aggregates - Part 2: Effects of coating

    Science.gov (United States)

    Liu, Fengshan; Yon, Jérôme; Bescond, Alexandre

    2016-03-01

    The effects of weakly absorbing material coating on soot have attracted considerable research attention in recent years due to the significant influence of such coating on soot radiative properties and the large differences predicted by different numerical models. Soot aggregates were first numerically generated using the diffusion limited cluster aggregation algorithm to produce fractal aggregates formed by log-normally distributed polydisperse spherical primary particles in point-touch. These aggregates were then processed by adding a certain amount of primary particle overlapping and necking to simulate the soot morphology observed from transmission electron microscopy images. After this process, a layer of WAM coating of different thicknesses was added to these more realistic soot aggregates. The radiative properties of these coated soot aggregates over the spectral range of 266-1064 nm were calculated by the discrete dipole approximation (DDA) using the spectrally dependent refractive index of soot for four aggregates containing Np=1, 20, 51 and 96 primary particles. The considered coating thicknesses range from 0% (no coating) up to 100% coating in terms of the primary particle diameter. Coating enhances both the particle absorption and scattering cross sections, with much stronger enhancement to the scattering one, as well as the asymmetry factor and the single scattering albedo. The absorption enhancement is stronger in the UV than in the visible and the near infrared. The simple corrections to the Rayleigh-Debye-Gans fractal aggregates theory for uncoated soot aggregates are found not working for coated soot aggregates. The core-shell model significantly overestimates the absorption enhancement by coating in the visible and the near infrared compared to the DDA results of the coated soot particle. Treating an externally coated soot aggregate as an aggregate formed by individually coated primary particles significantly underestimates the absorption

  5. A computational study of ethylene–air sooting flames: Effects of large polycyclic aromatic hydrocarbons

    KAUST Repository

    Selvaraj, Prabhu

    2015-11-05

    An updated reduced gas-phase kinetic mechanism was developed and integrated with aerosol models to predict soot formation characteristics in ethylene nonpremixed and premixed flames. A primary objective is to investigate the sensitivity of the soot formation to various chemical pathways for large polycyclic aromatic hydrocarbons (PAH). The gas-phase chemical mechanism adopted the KAUST-Aramco PAH Mech 1.0, which utilized the AramcoMech 1.3 for gas-phase reactions validated for up to C2 fuels. In addition, PAH species up to coronene (C24H12 or A7) were included to describe the detailed formation pathways of soot precursors. In this study, the detailed chemical mechanism was reduced from 397 to 99 species using directed relation graph with expert knowledge (DRG-X) and sensitivity analysis. The method of moments with interpolative closure (MOMIC) was employed for the soot aerosol model. Counterflow nonpremixed flames at low strain rate sooting conditions were considered, for which the sensitivity of soot formation characteristics to different nucleation pathways were investigated. Premixed flame experiment data at different equivalence ratios were also used for validation. The findings show that higher PAH concentrations result in a higher soot nucleation rate, and that the total soot volume and average size of the particles are predicted in good agreement with experimental results. Subsequently, the effects of different pathways, with respect to pyrene- or coronene-based nucleation models, on the net soot formation rate were analyzed. It was found that the nucleation processes (i.e., soot inception) are sensitive to the choice of PAH precursors, and consideration of higher PAH species beyond pyrene is critical for accurate prediction of the overall soot formation.

  6. Effects of atmospheric water on the optical properties of soot aerosols with different mixing states

    International Nuclear Information System (INIS)

    Soot aerosols have become the second most important contributor to global warming after carbon dioxide in terms of direct forcing, which is the dominant absorber of visible solar radiation. The optical properties of soot aerosols depend strongly on the mixing mechanism of black carbon with other aerosol components and its hygroscopic properties. In this study, the effects of atmospheric water on the optical properties of soot aerosols have been investigated using a superposition T-matrix method that accounts for the mixing mechanism of soot aerosols with atmospheric water. The dramatic changes in the optical properties of soot aerosols were attributed to its different mixing states with atmospheric water (externally mixed, semi-embedded mixed, and internally mixed). Increased absorption is accompanied by a larger increase in scattering, which is reflected by the increased single scattering albedo. The asymmetry parameter also increased when increasing the atmospheric water content. Moreover, atmospheric water intensified the radiative absorption enhancement attributed to the mixing states of the soot aerosols, with values ranging from 1.5 to 2.5 on average at 0.870 μm. The increased absorption and scattering ability of soot aerosols, which is attributed to atmospheric water, exerted an opposing effect on climate change. These findings should improve our understanding of the effects of atmospheric water on the optical properties of soot aerosols and their effects on climate. The mixing mechanism for soot aerosols and atmospheric water is important when evaluating the climate effects of soot aerosols, which should be explicitly considered in radiative forcing models. - Highlights: • Effects of atmospheric water on optical properties of soot aerosols are investigated. • Increased absorption is accompanied by a larger increase in scattering. • Atmospheric water intensified the absorption enhancement due the mixing states

  7. Soot reference materials for instrument calibration and intercomparisons: a workshop summary with recommendations

    Directory of Open Access Journals (Sweden)

    D. Baumgardner

    2012-08-01

    Full Text Available Soot, which is produced from biomass burning and the incomplete combustion of fossil and biomass fuels, has been linked to regional and global climate change and to negative health problems. Scientists measure the properties of soot using a variety of methods in order to quantify source emissions and understand its atmospheric chemistry, reactivity under emission conditions, interaction with solar radiation, influence on clouds, and health impacts. A major obstacle currently limiting progress is the absence of established standards or reference materials for calibrating the many instruments used to measure the various properties of soot.

    The current state of availability and practicability of soot standard reference materials (SRMs was reviewed by a group of 50 international experts during a workshop in June of 2011. The workshop was convened to summarize the current knowledge on soot measurement techniques, identify the measurement uncertainties and limitations related to the lack of soot SRMs, and identify attributes of SRMs that, if developed, would reduce measurement uncertainties. The workshop established that suitable SRMs are available for calibrating some, but not all, measurement methods. The community of users of the single-particle soot-photometer (SP2, an instrument using laser-induced incandescence, identified a suitable SRM, fullerene soot, but users of instruments that measure light absorption by soot collected on filters did not. Similarly, those who use thermal optical analysis (TOA to analyze the organic and elemental carbon components of soot were not satisfied with current SRMs. The workshop, and subsequent, interactive discussions, produced a number of recommendations for the development of new SRMs, and their implementation, that would be suitable for the different soot measurement methods.

  8. Electron microscopic study of soot particulate matter emissions from aircraft turbine engines.

    Science.gov (United States)

    Liati, Anthi; Brem, Benjamin T; Durdina, Lukas; Vögtli, Melanie; Dasilva, Yadira Arroyo Rojas; Eggenschwiler, Panayotis Dimopoulos; Wang, Jing

    2014-09-16

    The microscopic characteristics of soot particulate matter (PM) in gas turbine exhaust are critical for an accurate assessment of the potential impacts of the aviation industry on the environment and human health. The morphology and internal structure of soot particles emitted from a CFM 56-7B26/3 turbofan engine were analyzed in an electron microscopic study, down to the nanoscale, for ∼ 100%, ∼ 65%, and ∼ 7% static engine thrust as a proxy for takeoff, cruising, and taxiing, respectively. Sampling was performed directly on transmission electron microscopy (TEM) grids with a state-of-the-art sampling system designed for nonvolatile particulate matter. The electron microscopy results reveal that ∼ 100% thrust produces the highest amount of soot, the highest soot particle volume, and the largest and most crystalline primary soot particles with the lowest oxidative reactivity. The opposite is the case for soot produced during taxiing, where primary soot particles are smallest and most reactive and the soot amount and volume are lowest. The microscopic characteristics of cruising condition soot resemble the ones of the ∼ 100% thrust conditions, but they are more moderate. Real time online measurements of number and mass concentration show also a clear correlation with engine thrust level, comparable with the TEM study. The results of the present work, in particular the small size of primary soot particles present in the exhaust (modes of 24, 20, and 13 nm in diameter for ∼ 100%, ∼ 65% and ∼ 7% engine thrust, respectively) could be a concern for human health and the environment and merit further study. This work further emphasizes the significance of the detailed morphological characteristics of soot for assessing environmental impacts.

  9. Boiler Retrofit for the Utilization of Biodiesel

    Directory of Open Access Journals (Sweden)

    Leily Nurul Komariah

    2016-02-01

    Full Text Available Fuel oil used in the boiler is able to substitute with biodiesel. In lower blends, there are no engine modification needed, but some researchers recommended some technical adjustments in order to maintain the boiler's performance and equipment durability. This study consists of the comparison between the performance of boiler before and after retrofitting on the use of biodiesel. The diesel oil was introduced in biodiesel blends of 10% (B10, 20% (B20 and 25% (B25. A fire tube boiler was used for the test with pressure of 3 bar and heat input capacity of 60,000 kcal. The boiler retrofit is conducted by fine tuning the fan damper scale (FDS and adding a heating feature on fuel system. It was specifically intended to maintain the quality of combustion and boiler efficiency as well as to avoid an increase in fuel consumption. The combustion behaviour was monitored by exhaust emissions of CO, NOx, and SO2. The fan damper scale (FDS and fuel temperature is adjusted by the increasing portion of biodiesel used. The fuel heating apparatus was set at temperature of 40oC for the use of B10, and 60oC for B20 and B25. The FDS adjustment was successfully resulted a reduction in rate of combustion air by average of 9.2%. The boiler retrofitting for the utilization of B10, B20 and B25 showed an increase in boiler efficiency by 0.64%, 0.42% and 2.6% respectively. The boiler retrofitting is surprisingly reduced the fuel consumption by average of 11.2%.

  10. Power for the industrial age: a brief history of boilers

    Energy Technology Data Exchange (ETDEWEB)

    Kuehn, S.E.

    1996-02-01

    Boilers were first designed in Greece during the Hellenistic period by Hero, but they were regarded purely as a novelty and no industrial application was found for these toys until the seventeenth century when mining engineers used them for steam-powered pumps. By the end of the 17th century the early shell boilers were replaced by tube boilers, the direct ancestors of the modern boiler. Among the best known of the early boiler manufacturers was Babcock and Wilcox, and they supplied boilers to one of the first electric power plants. In the early 20th century superheaters, economizers, stokers and pulverizers were added to the design of the utility boiler. Fusion-welded boiler drums added to safety. More recently environmental concerns have initiated a new generation of boilers, such as the pressurised fluidised bed combustion boilers and their advanced versions. 5 refs., 3 figs.

  11. Boiler efficiency methodology for solar heat applications

    Science.gov (United States)

    Maples, D.; Conwell, J. C.; Pacheco, J. E.

    1992-08-01

    This report contains a summary of boiler efficiency measurements which can be applied to evaluate the performance of steam-generating boilers via both the direct and indirect methods. This methodology was written to assist industries in calculating the boiler efficiency for determining the applicability and value of thermal industrial heat, as part of the efforts of the Solar Thermal Design Assistance Center (STDAC) funded by Sandia National Laboratories. Tables of combustion efficiencies are enclosed as functions of stack temperatures and the amount of carbon dioxide and carbon monoxide in the gas stream.

  12. Chemical cleaning of UK AGR boilers

    International Nuclear Information System (INIS)

    For a number of years, the waterside pressure drops across the advanced gas-cooled reactor (AGR) pod boilers have been increasing. The pressure drop increases have accelerated with time, which is the converse behaviour to that expected for rippled magnetite formation (rapid initial increase slowing down with time). Nonetheless, magnetite deposition remains the most likely cause for the increasing boiler resistances. A number of potential countermeasures have been considered in response to the boiler pressure drop increases. However, there was no detectable reduction in the rate of pressure drop increase. Chemical cleaning was therefore considered and a project to substantiate and then implement chemical cleaning was initiated. (authors)

  13. Effects of Biomass Feedstock on the Yield and Reactivity of Soot from Fast Pyrolysis at High Temperatures

    DEFF Research Database (Denmark)

    Trubetskaya, Anna; Jensen, Peter A.; Glarborg, Peter;

    that of beechwood soot (from 33.2 to 102 nm) and wheat straw soot (from 11.5 to 165.3 nm). In addition, pinewood soot particles contained mainly multi-core structures at 1250°C. The potassium content played a more important role on the soot reactivity than the particle size and nanostructure.......This study investigated the effect of feedstock on the yield, nanostructure and reactivity of soot. Woody and herbaceous biomass were pyrolyzed at high heating rates and temperatures of 1250 and 1400°C in a drop tube furnace. The collected solid residues were structurally characterized by electron...... respect to the alkali content, particle size and nanostructure. Potassium was incorporated in the soot matrix and to a significant extent influenced the soot reactivity. The particle size distribution of pinewood soot produced at 1250°C was in the range from 27.2 to 263 nm which was broader compared to...

  14. Low excess air operations of oil boilers

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, T.A.; Celebi, Y.; Litzke, Wai Lin [Brookhaven National Labs., Upton, NY (United States)

    1997-09-01

    To quantify the benefits which operation at very low excess air operation may have on heat exchanger fouling BNL has recently started a test project. The test allows simultaneous measurement of fouling rate, flue gas filterable soot, flue gas sulfuric acid content, and flue gas sulfur dioxide.

  15. Optical measurement of gas turbine engine soot particle effluents

    Energy Technology Data Exchange (ETDEWEB)

    Litchford, R.J.; Sun, F. [ERC Inc., Tullahoma, TN (United States); Few, J.D.; Lewis, J.W.L. [Univ. of Tennessee Space Inst., Tullahoma, TN (United States). Center for Laser Applications

    1998-01-01

    This paper addresses optical-based techniques for measuring soot particulate loading in the exhaust stream of gas turbine engines. The multi-angle scattering and multi-wavelength extinction of light beams by ensembles of submicrometer soot particles was investigated as a diagnostic means of inferring particle field characteristics. That is, the particle size distribution function and particle number density were deduced using an innovative downhill simplex inversion algorithm for fitting the deconvolved Mie-based scattering/extinction integral to the measured scattering/extinction signals. In this work, the particle size distribution was characterized by the widely accepted two-parameter log-normal distribution function, which is fully defined with the specification of the mean particle diameter and the standard deviation of the distribution. The accuracy and precision of the algorithm were evaluated for soot particle applications by applying the technique to noise-perturbed synthetic data in which the signal noise component is obtained by Monte Carlo sampling of Gaussian distributed experimental errors of 4, 6, and 10%. The algorithm was shown to yield results having an inaccuracy of less than 10% for the highest noise levels and an imprecision equal to or less than the experimental error. Multi-wavelength extinction experiments with a laboratory bench-top burner yielded a mean particle diameter of 0.039 {micro}m and indicated that molecular absorption by organic vapor-phase molecules in the ultraviolet region should not significantly influence the measurements. A field demonstration test was conducted on one of the JT-12D engines of a Sabre Liner jet aircraft. This experiment yielded mean diameters of 0.040 {micro}m and 0.036 {micro}m and standard deviations of 0.032 {micro}m for scattering and extinction methods, respectively. The total particulate mass flow rate at idle was estimated to be 0.54 kg/h.

  16. Development of Filter-Blower Unit for use in the Advanced Nuclear Biological Chemical Protection System (ANBCPS) Helicopter/Transport-aircraft version

    NARCIS (Netherlands)

    Sabel, R.; Reffeltrath, P.A.; Jonkman, A.; Post, T.

    2006-01-01

    As a participant in the three-nation partnership for development of the ANBCP-S for use in Helicopters, Transport Aircraft and Fast Jet, the Royal Netherlands Airforce (RNLAF) picked up the challenge to design a Filter- Blower-Unit (FBU). Major Command (MajCom) of the RNLAF set priority to develop a

  17. Investigation of Chemical Kinetics on Soot Formation Event of n-Heptane Spray Combustion

    DEFF Research Database (Denmark)

    Pang, Kar Mun; Jangi, Mehdi; Bai, Xue-Song;

    2014-01-01

    In this reported work, 2-dimsensional computational fluid dynamics studies of n-heptane combustion and soot formation processes in the Sandia constant-volume vessel are carried out. The key interest here is to elucidate how the chemical kinetics affects the combustion and soot formation events. N...

  18. Soot Formation Modeling of n-dodecane and Diesel Sprays under Engine-Like Conditions

    DEFF Research Database (Denmark)

    Pang, Kar Mun; Poon, Hiew Mun; Ng, Hoon Kiat;

    2015-01-01

    This work concerns the modelling of soot formation process in diesel spray combustion under engine-like conditions. The key aim is to investigate the soot formation characteristics at different ambient temperatures. Prior to simulating the diesel combustion, numerical models including a revised m...

  19. Carbon Nanostructure: Its Evolution During its Impact Upon Soot Growth and Oxidation

    Science.gov (United States)

    2001-01-01

    The proposed work is a ground-based study to define and quantify soot nanostructural changes in response to growth conditions, thermal and oxidative treatments and to quantify their impact upon further oxidation and growth of highly ordered carbon materials. Experimental data relating soot oxidation rates to multiple oxidizing species concentrations will directly test for additive or synergistic soot oxidation rates. Such validation is central for assessing the applicability of individual soot oxidation rates and designing oxidative strategies for controlling soot loadings in and emissions from turbulent combustion processes. Through these experiments, new insights into soot nanostructure evolution during and its impact upon oxidation by O2 and OH will be realized. It is expected that the results of this effort will spawn new research directions in future microgravity and 1g environments. Issues raised by positive or even negative demonstration of the hypotheses of this proposal have direct bearing on modelling and controlling soot formation and its destruction in nearly every combustion process producing soot.

  20. Effects of sedimentary soot-like materials on bioaccumulation and sorption of polychlorinated biphenyls

    NARCIS (Netherlands)

    Jonker, M.T.O.; Hoenderboom, A.M.; Koelmans, A.A.

    2004-01-01

    Bioaccumulation of hydrophobic organic chemicals from sediments containing soot or sootlike materials has been hypothesized to be limited by strong sorption of the chemicals to the soot matrixes. To test this hypothesis, we quantified bioaccumulation of 11 polychlorinated biphenyls (PCBs) into the a

  1. Microwave-assisted in-situ regeneration of a perovskite coated diesel soot filter

    NARCIS (Netherlands)

    Y. Zhang-Steenwinkel; L.M. van der Zande; H.L. Castricum; A. Bliek; R.W. van den Brink; G.D. Elzinga

    2005-01-01

    Dielectric heating may be used as an in situ technique for the periodic regeneration of soot filters, as those used in Diesel engines. As generally the Diesel exhaust temperatures are below the soot light-off temperature, passive regeneration is not possible. Presently, we have investigated the diel

  2. Simulations of sooting turbulent jet flames using a hybrid flamelet/stochastic Eulerian field method

    Science.gov (United States)

    Consalvi, Jean-Louis; Nmira, Fatiha; Burot, Daria

    2016-03-01

    The stochastic Eulerian field method is applied to simulate 12 turbulent C1-C3 hydrocarbon jet diffusion flames covering a wide range of Reynolds numbers and fuel sooting propensities. The joint scalar probability density function (PDF) is a function of the mixture fraction, enthalpy defect, scalar dissipation rate and representative soot properties. Soot production is modelled by a semi-empirical acetylene/benzene-based soot model. Spectral gas and soot radiation is modelled using a wide-band correlated-k model. Emission turbulent radiation interactions (TRIs) are taken into account by means of the PDF method, whereas absorption TRIs are modelled using the optically thin fluctuation approximation. Model predictions are found to be in reasonable agreement with experimental data in terms of flame structure, soot quantities and radiative loss. Mean soot volume fractions are predicted within a factor of two of the experiments whereas radiant fractions and peaks of wall radiative fluxes are within 20%. The study also aims to assess approximate radiative models, namely the optically thin approximation (OTA) and grey medium approximation. These approximations affect significantly the radiative loss and should be avoided if accurate predictions of the radiative flux are desired. At atmospheric pressure, the relative errors that they produced on the peaks of temperature and soot volume fraction are within both experimental and model uncertainties. However, these discrepancies are found to increase with pressure, suggesting that spectral models describing properly the self-absorption should be considered at over-atmospheric pressure.

  3. Soot microphysical effects on liquid clouds, a multi-model investigation

    Science.gov (United States)

    Koch, D.; Balkanski, Y.; Bauer, S. E.; Easter, R. C.; Ferrachat, S.; Ghan, S. J.; Hoose, C.; Iversen, T.; Kirkevåg, A.; Kristjansson, J. E.; Liu, X.; Lohmann, U.; Menon, S.; Quaas, J.; Schulz, M.; Seland, Ø.; Takemura, T.; Yan, N.

    2011-02-01

    We use global models to explore the microphysical effects of carbonaceous aerosols on liquid clouds. Although absorption of solar radiation by soot warms the atmosphere, soot may cause climate cooling due to its contribution to cloud condensation nuclei (CCN) and therefore cloud brightness. Six global models conducted three soot experiments; four of the models had detailed aerosol microphysical schemes. The average cloud radiative response to biofuel soot (black and organic carbon), including both indirect and semi-direct effects, is -0.11 Wm-2, comparable in size but opposite in sign to the respective direct effect. In a more idealized fossil fuel black carbon experiment, some models calculated a positive cloud response because soot provides a deposition sink for sulfuric and nitric acids and secondary organics, decreasing nucleation and evolution of viable CCN. Biofuel soot particles were also typically assumed to be larger and more hygroscopic than for fossil fuel soot and therefore caused more negative forcing, as also found in previous studies. Diesel soot (black and organic carbon) experiments had relatively smaller cloud impacts with five of the models competition of opposing effects on the CCN population make it difficult to extrapolate from idealized experiments to likely impacts of realistic potential emission changes.

  4. Ceria-catlyzed soot oxidation studied by environmental transmission electron microscopy

    DEFF Research Database (Denmark)

    Simonsen, S.B.; Dahl, S.; Johnson, Erik;

    2008-01-01

    Environmental tranmission electron microscopy (ETEM) was used to monitor in situ ceria-catalyzed oxidation of soot in relation to diesel engine emission control.  From time-lapsed ETEM image series of soot particles in contact with CeO2. or with Al2O3 as inert reference, mechanistic and kinetic...

  5. Extraction of polycyclic aromatic hydrocarbons from soot and sediment : solvent selection and implications for sorption mechanism

    NARCIS (Netherlands)

    Jonker, M.T.O.; Koelmans, A.A.

    2002-01-01

    Soot contains high levels of toxic compounds such as polycyclic aromatic hydrocarbons (PAHs). Extraction of PAHs from soot for quantitative analysis is difficult because the compounds are extremely tightly bound to the sorbent matrix. This study was designed to investigate the effect of solvent type

  6. Extinction characterization of soot produced by laser ablating carbon fiber composite materials in air flow

    Science.gov (United States)

    Liu, Weiping; Ma, Zhiliang; Zhang, Zhenrong; Zhou, Menglian; Wei, Chenghua

    2015-05-01

    In order to research the dynamic process of energy coupling between an incident laser and a carbon fiber/epoxy resin composite material, an extinction characterization analysis of soot, which is produced by laser ablating and located in an air flow that is tangential to the surface of the composite material, is carried out. By the theory analyses, a relationship of mass extinction coefficient and extinction cross section of the soot is derived. It is obtained that the mass extinction coefficients of soot aggregates are the same as those of the primary particles when they contain only a few primary particles. This conclusion is significant when the soot is located in an air flow field, where the generations of the big soot aggregates are suppressed. A verification experiment is designed. The experiment employs Laser Induced Incandescence technology and laser extinction method for the soot synchronization diagnosis. It can derive a temporal curve of the mass extinction coefficient from the soot concentration and laser transmittance. The experiment results show that the mass extinction coefficient becomes smaller when the air flow velocity is higher. The reason is due to the decrease of the scatter effects of the soot particles. The experiment results agree with the theory analysis conclusion.

  7. Effects of Large Polycyclic Aromatic Hydrocarbons on the Soot Formation in Ethylene-Air Nonpremixed Flames

    KAUST Repository

    Prabhu, S.

    2015-03-30

    This study presents updated comprehensive gas-phase kinetic mechanism and aerosol models to predict soot formation characteristics in ethylene-air nonpremixed flames. A main objective is to investigate the sensitivity of the soot formation rate to various chemical pathways for large polycyclic aromatic hydrocarbons (PAH). In this study, the detailed chemical mechanism was reduced from 397 to 99 species using directed relation graph (DRG) and sensitivity analysis. The method of moments with interpolative closure (MOMIC) was employed for the soot aerosol model. Counterflow nonpremixed flames of pure ethylene at low strain rate sooting conditions are considered, for which the sensitivity of soot formation characteristics with respect to hetrogeneous nucleation is investigated. Results show that higher PAH concentrations result in higher soot nucleation rate, and that the average size of the particles are in good agreement with experimental results. It is found that the nucleation processes (i.e., soot inception) from higher PAH precursors, coronene in particular, is critical for accurate prediction of the overall soot formation.

  8. A mechanistic study on the simultaneous elimination of soot and nitric oxide from engine exhaust

    KAUST Repository

    Raj, Abhijeet

    2011-04-01

    The non-catalytic interaction between soot and nitric oxide (NO) resulting in their simultaneous elimination was studied on different types of reactive site present on soot. The reaction mechanism proposed previously was extended by including seven new reaction pathways for which the reaction energetics and kinetics were studied using density functional theory and transition state theory. This has led to the calculation of a new rate for the removal of carbon monoxide (CO) from soot. The new pathways have been added to our polycyclic aromatic hydrocarbon (PAH) growth model and used to simulate the NO-soot interaction to form CO, N2 and N2O. The simulation results show satisfactory agreement with experiment for the new CO removal rate. The NO-soot reaction was found to depend strongly on the soot site type and temperature. For a set of temperatures, computed PAH structures were analysed to determine the functional groups responsible for the decrease in the reactivity of soot with NO with increasing reaction time. In isothermal conditions, it was found that as temperature is increased, the number of oxygen atoms remaining on the soot surface decreases, while the number of nitrogen atoms increases for a given reaction time. © 2010 Elsevier Ltd. All rights reserved.

  9. Dexpler: Converting Android Dalvik Bytecode to Jimple for Static Analysis with Soot

    CERN Document Server

    Bartel, Alexandre; Monperrus, Martin; Traon, Yves Le

    2012-01-01

    This paper introduces Dexpler, a software package which converts Dalvik bytecode to Jimple. Dexpler is built on top of Dedexer and Soot. As Jimple is Soot's main internal rep- resentation of code, the Dalvik bytecode can be manipu- lated with any Jimple based tool, for instance for performing point-to or flow analysis.

  10. Modelling and simulating fire tube boiler performance

    DEFF Research Database (Denmark)

    Sørensen, K.; Condra, T.; Houbak, Niels;

    2003-01-01

    A model for a flue gas boiler covering the flue gas and the water-/steam side has been formulated. The model has been formulated as a number of sub models that are merged into an overall model for the complete boiler. Sub models have been defined for the furnace, the convection zone (split in 2......: a zone submerged in water and a zone covered by steam), a model for the material in the boiler (the steel) and 2 models for resp. the water/steam zone (the boiling) and the steam. The dynamic model has been developed as a number of Differential-Algebraic-Equation system (DAE). Subsequently Mat......Lab/Simulink has been applied for carrying out the simulations. To be able to verify the simulated results experiments has been carried out on a full scale boiler plant....

  11. Determination of heavy metals in domestic, commercial and industrial soot samples

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Yousaf; Sohail, Syed Muhammad; Ahmad, Imtiaz [Peshawar Univ., Khyber Pakhtoonkhwa (Pakistan). Inst. of Chemical Sciences; Saeed, Khalid [Peshawar Univ., Khyber Pakhtoonkhwa (Pakistan). Inst. of Chemical Sciences; Malakand Univ., Khyber Pakhtoonkhwa (Pakistan). Dept. of Chemistry

    2012-07-15

    The heavy metals such as manganese (Mn), cadmium (Cd), zinc (Zn), chromium (Cr), lead (Pb), nickel (Ni), copper (Cu) and iron (Fe) were determined in domestic, commercial and industrial soot samples via atomic absorption spectrophotometer. The vehicle soot samples showed highest concentration of investigated heavy metals as compared to other soot samples. It was also found that the concentration of Fe was high in the soot samples (range 5.75-1105 mg/Kg) followed by Cu (70-990 mg/Kg) while the concentration of Ni was lower (range 0.5-3 mg/Kg). It was also found that the concentration of Mn and Fe was decreased as decreased the size of the soot samples while the concentration of other investigated heavy metals increased as decreased the size fraction. (orig.)

  12. A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

    KAUST Repository

    Skeen, Scott A.

    2016-04-05

    The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.

  13. Direct numerical simulation of temporally evolving turbulent luminous jet flames with detailed fuel and soot chemistry

    Science.gov (United States)

    Lecoustre, Vivien; Arias, Paul; Roy, Somesh; Wang, Wei; Luo, Zhaoyu; Haworth, Dan; Im, Hong; Lu, Tianfeng; Ma, Kwan-Liu; Sankaran, Ramanan; Trouve, Arnaud

    2011-11-01

    Direct numerical simulations of 2D temporally-evolving luminous turbulent ethylene-air jet diffusion flames are performed using a high-order compressible Navier-Stokes solver. The simulations use a reduced mechanism derived from a detailed ethylene-air chemical kinetic mechanism that includes the reaction pathways for the formation of polycyclic aromatic hydrocarbons. The gas-phase chemistry is coupled with a detailed soot particle model based on the method of moments with interpolative closure that accounts for soot nucleation, coagulation, surface growth through HACA mechanism, and oxidation. Radiative heat transfer of CO2, H2O, and soot is treated by solving the radiative transfer equation using the discrete transfer method. This work presents preliminary results of radiation effects on soot dynamics at the tip of a jet diffusion flame with a particular focus on soot formation/oxidation.

  14. Direct numerical simulation of temporally evolving luminous jet flames with detailed fuel and soot chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Sankaran, Ramanan [ORNL

    2011-01-01

    Direct numerical simulations of 2D temporally-evolving luminous turbulent ethylene-air jet diffusion flames are performed using a high-order compressible Navier-Stokes solver. The simulations use a reduced mechanism derived from a detailed ethylene-air chemical kinetic mechanism that includes the reaction pathways for the formation of polycyclic aromatic hydrocarbons. The gas-phase chemistry is coupled with a detailed soot particle model based on the method of moments with interpolative closure that accounts for soot nucleation, coagulation, surface growth through HACA mechanism, and oxidation. Radiative heat transfer of CO{sub 2}, H{sub 2}O, and soot is treated by solving the radiative transfer equation using the discrete transfer method. This work presents preliminary results of radiation effects on soot dynamics at the tip of a jet diffusion flame with a particular focus on soot formation/oxidation.

  15. Two-dimensional quantification of soot and flame-soot interaction in spray combustion at elevated pressures - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, T.

    2008-07-15

    Single-pulse time-resolved laser-induced incandescence (TiRe-LII) signal transients from soot particulates were acquired during unsteady high pressure Diesel combustion in a constant volume cell near top dead centre conditions typically found in a Diesel engine. Measurements were performed for initial gas pressures between 1 MPa and 3 MPa, injection pressures between 50 MPa and 130 MPa and laser probe timings between 5 ms and 16 ms after start of fuel injection. In separate experiments and for the same cell operating conditions, gas temperatures were deduced from spectrally resolved soot pyrometry measurements. Implementing the LII model of Kock et al. ensemble mean soot particle diameters were evaluated from least-squares fitting of theoretical cooling curves to experimental TiRe-LII signal transients. Since in the experiments the environmental gas temperature and the width of an assumed particle size distribution were not known, the effects of the initial choice of these parameters on retrieved particle diameters were investigated. It is shown that evaluated mean particle diameters are only slightly biased by the choice of typical size distribution widths and gas temperatures. For a fixed combustion phase mean particle diameters are not much affected by gas pressure, however they become smaller at high fuel injection pressure. At a mean chamber pressure of 1.4 MPa evaluated mean particle diameters increased by a factor of two for probe delays between 5 ms and 16 ms after start of injection, irrespective of the choices of first-guess fitting variables, indicating a certain robustness of data analysis procedure. (author)

  16. Characterization of Oxy-combustion Impacts in Existing Coal-fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Bradley; Davis, Kevin; Senior, Constance; Shim, Hong Shim; Otten, Brydger; Fry, Andrew; Wendt, Jost; Eddings, Eric; Paschedag, Alan; Shaddix, Christopher; Cox, William; Tree, Dale

    2013-09-30

    Reaction Engineering International (REI) managed a team of experts from University of Utah, Siemens Energy, Praxair, Vattenfall AB, Sandia National Laboratories, Brigham Young University (BYU) and Corrosion Management Ltd. to perform multi-scale experiments, coupled with mechanism development, process modeling and CFD modeling, for both applied and fundamental investigations. The primary objective of this program was to acquire data and develop tools to characterize and predict impacts of CO{sub 2} flue gas recycle and burner feed design on flame characteristics (burnout, NO{sub x}, SO{sub x}, mercury and fine particle emissions, heat transfer) and operational concerns (fouling, slagging and corrosion) inherent in the retrofit of existing coal-fired boilers for oxy-coal combustion. Experimental work was conducted at Sandia National Laboratories’ Entrained Flow Reactor, the University of Utah Industrial Combustion Research Facility, and Brigham Young University. Process modeling and computational fluid dynamics (CFD) modeling was performed at REI. Successful completion of the project objectives resulted in the following key deliverables: 1) Multi-scale test data from 0.1 kW bench-scale, 100 kW and 200 kW laboratory-scale, and 1 MW semi-industrial scale combustors that describe differences in flame characteristics, fouling, slagging and corrosion for coal combustion under air-firing and oxygen-firing conditions, including sensitivity to oxy-burner design and flue gas recycle composition. 2) Validated mechanisms developed from test data that describe fouling, slagging, waterwall corrosion, heat transfer, char burnout and sooting under coal oxy-combustion conditions. The mechanisms were presented in a form suitable for inclusion in CFD models or process models. 3) Principles to guide design of pilot-scale and full-scale coal oxy-firing systems and flue gas recycle configurations, such that boiler operational impacts from oxy-combustion retrofits are minimized. 4

  17. Ecological boiler modernization, feasible energy solutions

    International Nuclear Information System (INIS)

    Alstom Power, s.r.o., ALSTOM GROUP in Brno, Czech Republic is a successor of PBS (First Brno Machine Works). PBS was a well-known company in Bulgaria - mainly as Heating Power Plant (HPP) and Industrial Plant supplier of boilers, industrial steam turbines, milling systems, heat exchangers Btc. PBS has been privatised in two stages starting at1993 year. Alstom recently deals with boiler and heat exchanger products. Industrial turbine but has been sold to Siemens in 2004

  18. Removal of External Deposits on Boiler Tubes

    Directory of Open Access Journals (Sweden)

    C. P. De

    1970-07-01

    Full Text Available The superheater tubes in Port and Starboard boilers were found to have completely clogged by heavy deposits, which on analysis mainly vanadium pentoxide and sodium sulphmatter. The cleaning of the deposits was accomplished by alternate spraying with 15-20 per cent hydrogen peroxide and washing with hot water jets. Over the past two years, since the date of cleaning, the IN ship is operating without any trouble in the boilers.

  19. Boiler burden reduced at Bedford site.

    Science.gov (United States)

    Horsley, Chris

    2011-10-01

    With the NHS aiming to reduce its 2007 carbon footprint by 10% by 2015, Chris Horsley, managing director of Babcock Wanson UK, a provider of industrial boilers and burners, thermal oxidisers, air treatment, water treatment, and associated services, looks at how one NHS Trust has approached the challenge, and considerably reduced its carbon emissions, by refurbishing its boiler house and moving from oil to gas-fired steam generation. PMID:22049674

  20. Insights into the role of soot aerosols in cirrus cloud formation

    Directory of Open Access Journals (Sweden)

    B. Kärcher

    2007-06-01

    Full Text Available Cirrus cloud formation is believed to be domi-nated by homogeneous freezing of supercooled liquid aerosols in many instances. Heterogeneous ice nuclei such as mineral dust, metallic, and soot particles, and some crystalline solids within partially soluble aerosols are suspected to modulate cirrus properties. Among those, the role of ubiqui-tous soot particles is perhaps the least understood. Because aviation is a major source of upper tropospheric soot particles, we put emphasis on ice formation in dispersing aircraft plumes. The effect of aircraft soot on cirrus formation in the absence of contrails is highly complex and depends on a wide array of emission and environmental parameters. We use a microphysical-chemical model predicting the formation of internally mixed, soot-containing particles up to two days after emission, and suggest two principal scenarios, both assuming soot particles to be moderate ice nuclei relative to cirrus formation by homogeneous freezing in the presence of few efficient dust ice nuclei: high concentrations of original soot emissions could slightly increase the number of ice crystals; low concentrations of particles originating from coagulation of emitted soot with background aerosols could lead to a significant reduction in ice crystal number. A critical discussion of laboratory experiments reveals that the ice nucleation efficiency of soot particles depends strongly on their source, and, by inference, on atmospheric aging processes. Mass and chemistry of soluble surface coatings appear to be crucial factors. Immersed soot particles tend to be poor ice nuclei, some bare ones nucleate ice at low supersaturations. However, a fundamental understanding of these studies is lacking, rendering extrapolations to atmospheric conditions speculative. In particular, we cannot yet decide which indirect aircraft effect scenario is more plausible, and options suggested to mitigate the problem remain uncertain.

  1. Application of a compliant foil bearing for the thrust force estimation in the single stage radial blower

    Science.gov (United States)

    Łagodzinski, Jakub; Miazga, Kacper; Musiał, Izabela

    2015-08-01

    The paper presents the application of a compliant foil bearing for estimation of the thrust force in a single stage radial blower under operational conditions. The bump foil of the thrust bearing behaves as a nonlinear spring. The knowledge of the spring deflection curve allows estimation of the actual thrust force for a measured bump deflection at the given rotational speed. To acquire the deflection curve, static calibration of the axial shaft displacement sensor was performed. During the calibration, the information about voltage signals of the sensor for the given loading force was collected. The measured voltage values at different speeds and loadswere then converted into the thrust force. The results were verified by comparison to the thrust force resulting from the pressure distribution on the impeller.

  2. Dewetting Process of Blast Furnace Blower%高炉鼓风机前脱湿技术

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

      高炉脱湿鼓风是高炉节能的重要措施,并对高炉的稳定生产具有重要作用。对高炉鼓风机前脱湿的工艺和特点进行说明,并简述其在钢铁企业推广的意义。%Blast furnace dewetting blast is an important measure for energy conservation of blast furnace and it plays an important role in stabilizing production of blast furnace. The dewetting process and features of blast blower are described. The significance to popularize the process in steel enterprises is introduced briefly.

  3. Candle soot nanoparticles-polydimethylsiloxane composites for laser ultrasound transducers

    Science.gov (United States)

    Chang, Wei-Yi; Huang, Wenbin; Kim, Jinwook; Li, Sibo; Jiang, Xiaoning

    2015-10-01

    Generation of high power laser ultrasound strongly demands the advanced materials with efficient laser energy absorption, fast thermal diffusion, and large thermoelastic expansion capabilities. In this study, candle soot nanoparticles-polydimethylsiloxane (CSNPs-PDMS) composite was investigated as the functional layer for an optoacoustic transducer with high-energy conversion efficiency. The mean diameter of the collected candle soot carbon nanoparticles is about 45 nm, and the light absorption ratio at 532 nm wavelength is up to 96.24%. The prototyped CSNPs-PDMS nano-composite laser ultrasound transducer was characterized and compared with transducers using Cr-PDMS, carbon black (CB)-PDMS, and carbon nano-fiber (CNFs)-PDMS composites, respectively. Energy conversion coefficient and -6 dB frequency bandwidth of the CSNPs-PDMS composite laser ultrasound transducer were measured to be 4.41 × 10-3 and 21 MHz, respectively. The unprecedented laser ultrasound transduction performance using CSNPs-PDMS nano-composites is promising for a broad range of ultrasound therapy applications.

  4. Changes in radiative properties of soot contaminated maize canopy

    Science.gov (United States)

    Illes, B.; Anda, A.

    2012-04-01

    The effect of particle (Black Carbon, BC) on certain radiative characteristics of maize plants was studied over 2011 growing season in a field experiment carried out in Keszthely Agrometeorological Research Station. As the main constituent of BC, the soot that is almost exclusively responsible for light absorption by particles in the atmosphere, thus changing the radiation balance of the Earth and contributing to global warming. Maize hybrid Perlona (FAO 340) with short-season was applied as test plant. Of the two water supply treatments, the rainfed variant was sown in field plots, while compensation evapotranspirometers of the Thornthwaite type were used for the "ad libitum" treatment. The BC applied as pollutant was coming from the Hankook Tyre Company (Dunaújváros, Hungary), where it is used to improve the wear resistance of the tyres. The black carbon was chemically "pure", i.e. it is free of other contaminants (heavy metals etc.), so the reproducibility of the experiment is not problematic, unlike that of tests on other atmospheric air pollutants. Road traffic was simulated by using frequent low particle rates (3 g m-2 week-1) with a motorised sprayer of SP 415 type, during the season. The leaf area index was measured each week on the same 12 sample plants in each treatment using an LI 3000A automatic planimeter (LI-COR, Lincoln, NE). The impact of black carbon on plant radiative properties were analysed in the field (about 0.3 ha/treatment). Pyranometers of the CMA-11 type (Kipp & Zonen, Vaisala) were installed on columns of adjustable height in the centre of the 0.3 ha plots designated for albedo measurements. Data were collected using a Logbox SD (Kipp & Zonen, Vaisala) datalogger in the form of 10-minute means of samples taken every 6 seconds. BC pollution had no effect on maize growth and development. Compared with soot contaminated and control plants, we concluded that the LAI was a few percent higher in polluted plants, but this increment was not

  5. Understanding and predicting soot generation in turbulent non-premixed jet flames.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hai (University of Southern California, Los Angeles, CA); Kook, Sanghoon; Doom, Jeffrey; Oefelein, Joseph Charles; Zhang, Jiayao; Shaddix, Christopher R.; Schefer, Robert W.; Pickett, Lyle M.

    2010-10-01

    This report documents the results of a project funded by DoD's Strategic Environmental Research and Development Program (SERDP) on the science behind development of predictive models for soot emission from gas turbine engines. Measurements of soot formation were performed in laminar flat premixed flames and turbulent non-premixed jet flames at 1 atm pressure and in turbulent liquid spray flames under representative conditions for takeoff in a gas turbine engine. The laminar flames and open jet flames used both ethylene and a prevaporized JP-8 surrogate fuel composed of n-dodecane and m-xylene. The pressurized turbulent jet flame measurements used the JP-8 surrogate fuel and compared its combustion and sooting characteristics to a world-average JP-8 fuel sample. The pressurized jet flame measurements demonstrated that the surrogate was representative of JP-8, with a somewhat higher tendency to soot formation. The premixed flame measurements revealed that flame temperature has a strong impact on the rate of soot nucleation and particle coagulation, but little sensitivity in the overall trends was found with different fuels. An extensive array of non-intrusive optical and laser-based measurements was performed in turbulent non-premixed jet flames established on specially designed piloted burners. Soot concentration data was collected throughout the flames, together with instantaneous images showing the relationship between soot and the OH radical and soot and PAH. A detailed chemical kinetic mechanism for ethylene combustion, including fuel-rich chemistry and benzene formation steps, was compiled, validated, and reduced. The reduced ethylene mechanism was incorporated into a high-fidelity LES code, together with a moment-based soot model and models for thermal radiation, to evaluate the ability of the chemistry and soot models to predict soot formation in the jet diffusion flame. The LES results highlight the importance of including an optically-thick radiation

  6. Soot measurements for diesel and biodiesel spray combustion under high temperature highly diluted ambient conditions

    KAUST Repository

    Zhang, Ji

    2014-11-01

    This paper presents the soot temperature and KL factor for biodiesel, namely fatty acid methyl ester (FAME) and diesel fuel combustion in a constant volume chamber using a two-color technique. The KL factor is a parameter for soot concentration, where K is an absorption coefficient and proportional to the number density of soot particles, L is the geometric thickness of the flame along the optical detection axis, and KL factor is proportional to soot volume fraction. The main objective is to explore a combustion regime called high-temperature and highly-diluted combustion (HTHDC) and compare it with the conventional and low-temperature combustion (LTC) modes. The three different combustion regimes are implemented under different ambient temperatures (800 K, 1000 K, and 1400 K) and ambient oxygen concentrations (10%, 15%, and 21%). Results are presented in terms of soot temperature and KL factor images, time-resolved pixel-averaged soot temperature, KL factor, and spatially integrated KL factor over the soot area. The time-averaged results for these three regimes are compared for both diesel and biodiesel fuels. Results show complex combined effects of the ambient temperature and oxygen concentration, and that two-color temperature for the HTHDC mode at the 10% oxygen level can actually be lower than the conventional mode. Increasing ambient oxygen and temperature increases soot temperature. Diesel fuel results in higher soot temperature than biodiesel for all three regimes. Results also show that diesel and biodiesel fuels have very different burning and sooting behavior under the three different combustion regimes. For diesel fuel, the HTHDC regime offers better results in terms of lower soot than the conventional and LTC regimes, and the 10% O2, 1400 K ambient condition shows the lowest soot concentration while maintaining a moderate two-color temperature. For biodiesel, the 15% O2, 800 K ambient condition shows some advantages in terms of reducing soot

  7. Corrosion of oil-fired domestic boilers

    Energy Technology Data Exchange (ETDEWEB)

    Koebel, M.; Elsener, M.

    1989-05-01

    Depending on the surface temperature of the flue gas side the corrosion of oil fired domestic boilers proceeds either mainly by acid corrosion or by oxygen corrosion: (1) At surface temperatures of 60/sup 0/C and higher the corrosion mechanism of acid corrosion prevails and the corrosion rates amount to 0.1-0.3 mm/year (values referred to continuous burner operation). The corrosion products consist of soluble iron(II)- and iron(III)sulfates. Higher corrosion rates can be attributed to an appreciable catalytic formation of sulfur trioxide on the corrosion products formed on the convective heating surfaces. (2) At surface temperatures of 40/sup 0/C the mechanism of oxygen corrosion already dominates and the corrosion rates are about ten times higher (1.5-3 mm/year, referred to continuous burner operation). The high portion of iron oxide hydrates, especially goethit (/alpha/-FeOOH), makes the corrosion products difficult to remove. (3) Distinctly reduced service lives are also expected for the so called reduced temperature boilers ('Niedertemperaturkessel') and low temperature boilers ('Tieftemperaturkessel'): According to the manufacturers these boilers may be operated at boiler water temperatures well below 60/sup 0/C, as they are equipped with constructive measures to enhance the surface temperature on the flue gas side. However, these measures are only fully effective under stationary conditions. Some of the results were obtained from weight loss measurements on test specimen made from St 35.8 and gray cast iron, that were exposed to the flue gases of an fired experimental boiler. Other important results come from field measurements of the sulfuric acid content of about 30 boilers that are in practical use. (orig.).

  8. Soot formation, transport, and radiation in unsteady diffusion flames : LDRD final report.

    Energy Technology Data Exchange (ETDEWEB)

    Suo-Anttila, Jill Marie (Sandia National Laboratories, Albuquerque, NM); Williams, Timothy C.; Shaddix, Christopher R.; Jensen, Kirk A. (Sandia National Laboratories, Albuquerque, NM); Blevins, Linda Gail; Kearney, Sean Patrick (Sandia National Laboratories, Albuquerque, NM); Schefer, Robert W.

    2004-10-01

    Fires pose the dominant risk to the safety and security of nuclear weapons, nuclear transport containers, and DOE and DoD facilities. The thermal hazard from these fires primarily results from radiant emission from high-temperature flame soot. Therefore, it is necessary to understand the local transport and chemical phenomena that determine the distributions of soot concentration, optical properties, and temperature in order to develop and validate constitutive models for large-scale, high-fidelity fire simulations. This report summarizes the findings of a Laboratory Directed Research and Development (LDRD) project devoted to obtaining the critical experimental information needed to develop such constitutive models. A combination of laser diagnostics and extractive measurement techniques have been employed in both steady and pulsed laminar diffusion flames of methane, ethylene, and JP-8 surrogate burning in air. For methane and ethylene, both slot and coannular flame geometries were investigated, as well as normal and inverse diffusion flame geometries. For the JP-8 surrogate, coannular normal diffusion flames were investigated. Soot concentrations, polycyclic aromatic hydrocarbon (PAH) laser-induced fluorescence (LIF) signals, hydroxyl radical (OH) LIF, acetylene and water vapor concentrations, soot zone temperatures, and the velocity field were all successfully measured in both steady and unsteady versions of these various flames. In addition, measurements were made of the soot microstructure, soot dimensionless extinction coefficient (&), and the local radiant heat flux. Taken together, these measurements comprise a unique, extensive database for future development and validation of models of soot formation, transport, and radiation.

  9. Asymptotic analysis soot model and experiment for a directed injection engine

    Science.gov (United States)

    Liu, Yongfeng; Pei, Pucheng; Xiong, Qinghui; Lu, Yong

    2012-09-01

    The existing soot models are either too complex and can not be applied to the internal combustion engine, or too simple to make calculation errors. Exploring the soot model becomes the pursuit of the goal of many researchers within the error range in the current computer speed. On the basis of the latest experimental results, TP (temperature phases) model is presented as a new soot model to carry out optimization calculation for a high-pressure common rail diesel engine. Temperature and excess air factor are the most important two parameters in this model. When zone temperature T0.6, only the soot precursors—polycyclic aromatic hydrocarbons(PAH) is created and there is no soot emission. When zone temperature T ⩾ 1 500 K and excess air factor ΦKIVA code instead of original model to carry out optimizing. KIVA standard model and experimental data are analyzed for the results of cylinder pressures, the corresponding heat release rates, and soot with variation of injection time, variation of rail pressure and variation of speed among TP models. The experimental results indicate that the TP model can carry out optimization and computational fluid dynamics can be a tool to calculate for a high-pressure common rail directed injection diesel engine. The TP model result is closer than the use of the original KIVA-3V results of soot model accuracy by about 50% and TP model gives a new method for engine researchers.

  10. Numerical study on soot removal in partial oxidation of methane to syngas reactors

    Institute of Scientific and Technical Information of China (English)

    Weisheng; Wei; Tao; Zhang; Jian; Xu; Wei; Du

    2014-01-01

    The serious carbon deposition existing in catalytic partial oxidation of methane(CPOM) to syngas process is one of the key problems that impede its industrialization. In this study, 3-dimensional unsteady numerical simulations of the soot formation and oxidation in oxidation section in a heat coupling reactor were carried out by computational fluid dynamics(CFD) approach incorporating the Moss-Brookes model for soot formation. The model has been validated and proven to be in good agreement with experiment results. Effects of nozzle type,nozzle convergence angle, channel spacing, number of channels, radius/height ratio, oxygen/carbon ratio, preheat temperature and additional introduction of steam on the soot formation were simulated. Results show that the soot formation in oxidation section of the heat coupling reactor depends on both nozzle structures and operation conditions, and the soot concentration can be greatly reduced by optimization with the maximum mass fraction of soot inside the oxidation reactor from 2.28% to 0.0501%, and so that the soot mass fraction at the exit reduces from0.74% to 0.03%.

  11. Optimizing electro-thermo Helds for soot oxidation using microwave heating and metal

    Science.gov (United States)

    Al-Wakeel, Haitham B.; Karim, Z. A. Abdul; Al-Kayiem, Hussain H.

    2015-04-01

    Soot is produced by incomplete combustion of various carbon-containing compounds. Soot is one of the main environmental pollutants and has become an important environmental and specific objective. To reduce soot from exhaust emission of diesel engine, a new technique is proposed and implemented by using metal inserted in the soot exposed to electromagnetic radiation. This paper presents a simulation to obtain optimum metal length and shape that give optimum electric field for attaining temperature enough for soot oxidation using microwave heating and a thin metal rod. Four cases were numerically examined to investigate the electric field and temperature distributions in a mono-mode TE10 microwave cavity having closed surfaces of perfect electric conductors. The operating frequency is 2.45 GHz, and power supply is 1500 W. The simulation methodology is coupling the absorbed electromagnetic energy with heat transfer energy. The absorbed electromagnetic energy is found from the electric field within the soot. The simulation was run using ANSYS based on finite element method. The results of the four simulation cases show that the optimum simulation is represented by case 2 where the value of electric field is 39000 V/m and heating time to arrive at the oxidation temperature (873 K) is 35 s using cylindrical metal rod of 8 mm length. It is revealed that the concept of achieving high temperature for soot oxidation by using thin metal rod inside a microwave cavity can be applied.

  12. Experimental and numerical study on soot formation and oxidation by using diesel fuel in constant volume chamber with various ambient oxygen concentrations

    International Nuclear Information System (INIS)

    Highlights: • Improved soot model reproduced soot formation/oxidation at various O2 concentrations. • C2H2, precursor and soot mass increased with decreasing O2 but decreased at 12% O2. • The total area of soot reaction zone shrank remarkably at 12% oxygen. • Higher soot was from stronger formation at 18% O2 but from weaker oxidation at 15%. • The suppressed soot inception at lower O2 led to the retarded and reduced soot mass. - Abstract: The study on effects of exhaust gas recirculation (EGR) on soot behavior is very important to reduce soot emissions and control the low temperature combustion process in diesel engines. In this work, high time-resolved quantitative soot measurements were experimented on a constant volume chamber by using European low-sulfur diesel fuel at three ambient oxygen concentrations (21%, 18%, 15%). Meanwhile, an improved semi-empirical soot model was coupled into computational fluid dynamics (KIVA-3V Release 2) code for in-depth understanding the soot formation and oxidation processes. Results demonstrated that numerical results of the improved semi-empirical soot model showed good agreement with experimental data in the whole processes of soot formation/oxidation and soot distribution under different oxygen concentrations. The mass concentration of acetylene, soot precursor species and soot mass initially increased with decreasing ambient oxygen concentrations from 21% to 15% and then began to decrease at 12% oxygen, while OH radicals reduced monotonically from 21% oxygen to 12%. At 12% oxygen, the concentrations of local rich sooty zone, acetylene and soot precursor species were as high as those under higher oxygen concentrations, but the total area of soot zone shrank remarkably at 12% oxygen. Compared to 21% ambient oxygen concentration, both soot formation and oxidation rates were increased under 18% oxygen, while the higher soot mass under 18% oxygen was the result of stronger soot formation mechanism. At 15% oxygen, both

  13. Simultaneous removal of soot and nitrogen oxides from diesel engine exhausts

    Energy Technology Data Exchange (ETDEWEB)

    Pisarello, M.L.; Milt, V.; Peralta, M.A.; Querini, C.A.; Miro, E.E. [INCAPE, CONICET, Fac. Ingenieria Quimica, UNL, Santiago del Estero 2829, 3000 Santa Fe (Argentina)

    2002-07-03

    In this paper, previously reported findings and new results presented here are discussed with the main objective of establishing the reaction mechanism for soot oxidation on different supports and catalysts formulations. Catalysts containing Co, K and/or Ba supported on MgO, La{sub 2}O{sub 3} and CeO{sub 2} have been studied for diesel soot catalytic combustion. Among them, K/La{sub 2}O{sub 3} and K/CeO{sub 2} showed the best activity and stability for the combustion of soot with oxygen. A reaction mechanism involving the redox sites and the surface-carbonate species takes place on these catalysts. On the other hand, Co,K/La{sub 2}O{sub 3} and Co,K/CeO{sub 2} catalysts display activity for the simultaneous removal of soot and nitric oxide. The soot-catalyst contacting phenomenon was also addressed. A synergic La-K effect was observed in which the mechanical mixtures of soot with K-La{sub 2}O{sub 3} showed higher combustion rates than those observed when K and La were directly deposited on the soot surface. The effect of the addition of Ba was explored with the aim of promoting the interaction of the solid with NO{sub 2}, thus combining the NO{sub x} catalytic trap concept with the soot combustion for filter regeneration. Ba/CeO{sub 2} and Ba,K/CeO{sub 2} were effective in NO{sub x} absorption as shown in the microbalance experiments. However, the formation of stable nitrate species inhibits the soot combustion reaction.

  14. The Influences of Electric Fields on Soot Formation and Flame Structure of Diffusion Flames

    Institute of Scientific and Technical Information of China (English)

    LinXie; TakeyukiKishi; 等

    1993-01-01

    The influences of DC and AC electric fields,at frequencies up to 1.48 MHz and the maximum strength of about 6 kV/cm,on soot formation and flame structure were investigated using a counterflow type acetylene diffusion flame.The distributioons of flame luminosity,soot volume fraction,Flame temperature and OH concentration in flame were measured by non-invasive detection methods.Under the influence of electric fields,the changes in distribution of the soot volume fraction were confirmed.Electric fields of high frequency and high intensity reduced the soot volume fraction.whereas other electric fields increased it.The maximum values of flame temperature and OH concentration decreased.In the relationship between the maximum value of the soot volume fraction and the maximum temperature,the maximum soot volum fraction showed toth increase and decrease with maximum temperatures depending on the frequencies and intensities of the electric fields,and both of them occurred at temperatures lower than 1990 K.The production of the incipient particles seemed to be the dominant process controlling the soot volume fraction due to the electric fields.The luminosity of a sooting diffusion flame was found to depend on the volume fraction and temperature of the soot particles in the flame,As for the behavior of the flame in the electric fields.the ionic wind effect was not found to be dominant in the present work,and the result of the precious simulation based on the ionic wind theory was not consistent with the present experimental results.

  15. Damköhler number effects on soot formation and growth in turbulent nonpremixed flames

    KAUST Repository

    Attili, Antonio

    2015-01-01

    The effect of Damköhler number on turbulent nonpremixed sooting flames is investigated via large scale direct numerical simulation in three-dimensional n-heptane/air jet flames at a jet Reynolds number of 15,000 and at three different Damköhler numbers. A reduced chemical mechanism, which includes the soot precursor naphthalene, and a high-order method of moments are employed. At the highest Damköhler number, local extinction is negligible, while flames holes are observed in the two lowest Damköhler number cases. Compared to temperature and other species controlled by fuel oxidation chemistry, naphthalene is found to be affected more significantly by the Damköhler number. Consequently, the overall soot mass fraction decreases by more than one order of magnitude for a fourfold decrease of the Damköhler number. On the contrary, the overall number density of soot particles is approximately the same, but its distribution in mixture fraction space is different in the three cases. The total soot mass growth rate is found to be proportional to the Damköhler number. In the two lowest Da number cases, soot leakage across the flame is observed. Leveraging Lagrangian statistics, it is concluded that soot leakage is due to patches of soot that cross the stoichiometric surface through flame holes. These results show the leading order effects of turbulent mixing in controlling the dynamics of soot in turbulent flames. © 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

  16. Is Carbon Black a Suitable Model Colloidal Substrate for Diesel Soot?

    Science.gov (United States)

    Growney, David J; Mykhaylyk, Oleksandr O; Middlemiss, Laurence; Fielding, Lee A; Derry, Matthew J; Aragrag, Najib; Lamb, Gordon D; Armes, Steven P

    2015-09-29

    Soot formation in diesel engines is known to cause premature engine wear. Unfortunately, genuine diesel soot is expensive to generate, so carbon blacks are often used as diesel soot mimics. Herein, the suitability of a commercial carbon black (Regal 250R) as a surrogate for diesel soot dispersed in engine base oil is examined in the presence of two commonly used polymeric lubricant additives. The particle size, morphology, and surface composition of both substrates are assessed using BET surface area analysis, TEM, and XPS. The extent of adsorption of a poly(ethylene-co-propylene) (dOCP) statistical copolymer or a polystyrene-block-poly(ethylene-co-propylene) (PS-PEP) diblock copolymer onto carbon black or diesel soot from n-dodecane is compared indirectly using a supernatant depletion assay technique via UV spectroscopy. Thermogravimetric analysis is also used to directly determine the extent of copolymer adsorption. Degrees of dispersion are examined using optical microscopy, TEM, and analytical centrifugation. SAXS studies reveal some structural differences between carbon black and diesel soot particles. The mean radius of gyration determined for the latter is significantly smaller than that calculated for the former, and in the absence of any copolymer, diesel soot suspended in n-dodecane forms relatively loose mass fractals compared to carbon black. SAXS provides evidence for copolymer adsorption and indicates that addition of either copolymer transforms the initially compact agglomerates into relatively loose aggregates. Addition of dOCP or PS-PEP does not significantly affect the structure of the carbon black primary particles, with similar results being observed for diesel soot. In favorable cases, remarkably similar data can be obtained for carbon black and diesel soot when using dOCP and PS-PEP as copolymer dispersants. However, it is not difficult to identify simple copolymer-particle-solvent combinations for which substantial differences can be observed

  17. Visualization of sooting field in an emulsion droplet flame by using microgravity environment; Bisho juryoku kankyo wo riyoshita nyuka nenryo ekiteki kaennai susu nodoba no kashika

    Energy Technology Data Exchange (ETDEWEB)

    Segawa, D.; Kadota, T. [University of Osaka Prefecture, Osaka (Japan). Faculty of Engineering; Tsue, M.; Kono, M. [The University of Tokyo, Tokyo (Japan); Yamasaki, H. [Ehime Univ., Ehime (Japan). Faculty of Education

    1999-07-25

    Sooting field in a flame formed around a suspended droplet was visualized under microgravity using the planar laser light scattering technique. The soot concentration and the instantaneous soot amount were approximately estimated from the intensity of the scattered light using the image analysis system. The fuels employed were water-in-oil emulsions composed of n-dodecane, water and surfactant. The water content was varied from 0 to 0.2 in volume. A soot layer which was concentric with the droplet was observed inside the luminous flame. The results show the unsteadiness of the sooting behavior as well as the flame behavior. The maximum of the soot concentration is located near the inner edge of the soot layer. The time history of the instantaneous soot amount is similar to that of the instantaneous flame radius. The maximum of the soot concentration does not vary with the water content, while the soot amount decreases significantly with the water emulsification. (author)

  18. 加热炉风机噪声特征及控制方法%Characteristics of noise from blower of reheating furnace and its control method

    Institute of Scientific and Technical Information of China (English)

    张天久; 丁岳明

    2011-01-01

    The noise coming from running blowers of the reheating furnace installed in the technical revamp of a specific mill severely contaminates the environments and hurts the health of the worker and staff.In light of the character of the noise from the blower of the reheating furnace a series counter measures have been taken such as installing a silencers at the inlet of the blower,improving the flexible link of the tuyeres,strengthening the stiffness of the blade of rotors,making proper balance between the dynamic and static status of the blade of rotors and checking and examining their vibration,controlling the value of vibration speed within the range of less than 5 mm/s,selecting proper sound insulation door and windows and wrapping the shell of the blower and network of tubes with selected sound absorb materials,well adjusting the wind blow rate,controlling the angle of the wind door and avoiding the abnormal noise from the ventilation system and mutation.By adoption of the above mentioned noise reduction measures the noise from the reheating furnace blowers has been lowered to about 78 db(A) from original 84 db(A),an average reduction of noise about 6 db(A),therefore the environmental conditions around the blower chamber have been greatly improved.%某厂在技术改造中所安装的加热炉风机运行时产生的噪声严重污染环境并有损职工健康。针对加热炉风机噪声特征,在风机进口处设计安装了阻性复合消声器,改进风口的软连接,增强转子叶轮刚度,做好转子叶轮的动静平衡及振动检测,把振动速度值控制在5 mm/s以下;选用隔声门和隔声窗并采用吸声材料包扎风机外壳和管网,调整风量,控制风门角度,避开通风系统异常噪声及突变。实施一系列降噪措施后使加热炉风机的噪声从84 dB(A)左右降低到78 dB(A)左右,平均降低了6 dB(A),使风机室周边环境得到了改善。

  19. Subsonic aircraft soot. A tracer documenting barriers to inter-hemispheric mixing

    Energy Technology Data Exchange (ETDEWEB)

    Pueschel, R.F. [NASA Ames Research Center, Moffett Field, CA (United States)

    1997-12-31

    Meridional observations of soot aerosols and radioactive {sup 14}C, and models of the geographic distribution of nuclear bomb-released {sup 14}C and aircraft-emitted NO{sub x}, all show strong gradients between the hemispheres. Reason for it are decade-long inter-hemispheric mixing times which are much in excess of yearlong stratospheric residence times of tracers. Vertical mixing of soot aerosol is not corroborated by {sup 14}C observations. The reason could be radiometric forces that act on strongly absorbing soot. (author) 10 refs.

  20. Boiler house modernization through shared savings program

    Energy Technology Data Exchange (ETDEWEB)

    Breault, R.W. [Tecogen, Waltham, MA (United States)

    1995-12-31

    Throughout Poland as well as the rest of Eastern Europe, communities and industries rely on small heat only boilers to provide district and process heat. Together these two sectors produce about 85,000 MW from boilers in the 2 to 35 MW size range. The bulk of these units were installed prior to 1992 and must be completely overhauled to meet the emission regulations which will be coming into effect on January 1, 1998. Since the only practical fuel is coal in most cases, these boilers must be either retrofit with emission control technology or be replaced entirely. The question that arises is how to accomplish this given the current tight control of capital in Poland and other East European countries. A solution that we have for this problem is shared savings. These boilers are typically operating with a quiet low efficiency as compared to western standards and with excessive manual labor. Installing modernization equipment to improve the efficiency and to automate the process provides savings. ECOGY provides the funds for the modernization to improve the efficiency, add automation and install emission control equipment. The savings that are generated during the operation of the modernized boiler system are split between the client company and ECOGY for a number of years and then the system is turned over in entirety to the client. Depending on the operating capacity, the shared savings agreement will usually span 6 to 10 years.

  1. THERMAL BOUNDARY LAYER IN CFB BOILER RISER

    Institute of Scientific and Technical Information of China (English)

    Jinwei; Wang; Xinmu; Zhao; Yu; Wang; Xing; Xing; Jiansheng; Zhang; Guangxi; Yue

    2006-01-01

    Measurement of temperature profiles of gas-solid two-phase flow at different heights in commercial-scale circulating fluidized bed (CFB) boilers was carried out. Experimental results showed that the thickness of thermal boundary layer was generally independent of the distance from the air distributor, except when close to the riser outlet. Through analysis of flow and combustion characteristics in the riser, it was found that the main reasons for the phenomena were: 1) the hydrodynamic boundary layer was thinner than the thermal layer and hardly changed along the CFB boiler height, and 2) both radial and axial mass and heat exchanges were strong in the CFB boiler. Numerical simulation of gas flow in the outlet zone confirmed that the distribution of the thermal boundary layer was dominated by the flow field characteristics.

  2. Experimental installation with pressurized fluidized bed boiler

    Energy Technology Data Exchange (ETDEWEB)

    Dobrzanski, W.; Szwarc, W.; Jurek, K.; Prokop, A. (Politechnika Warszawska (Poland). Instytut Techniki Cieplnej)

    1990-01-01

    Describes a test installation with a 3 MW pressurized fluidized bed boiler. The installation was commissioned at the Institute of Heat Engineering at the Technical University in Warsaw. Predesign assumptions and the lay-out of the installation are given. A schematic diagram of the pressurized (0.6 MPa) fluidized bed boiler with an inner diameter of 1.4 m and a total height of 5.45 m is shown. The fuel feeding system consists of a coal and adsorbent container, two feeders and an air jet pump for pneumatic transport. A water type boiler is integrated into the pressure vessel. Flue gas cyclones are also integrated into a separate pressure vessel. The computerized control system and instrumentation are described. Temperatures, pressures, pressure differences, rotational speeds and the chemical composition of gases are monitored.

  3. Computer simulation of the fire-tube boiler hydrodynamics

    Science.gov (United States)

    Khaustov, Sergei A.; Zavorin, Alexander S.; Buvakov, Konstantin V.; Sheikin, Vyacheslav A.

    2015-01-01

    Finite element method was used for simulating the hydrodynamics of fire-tube boiler with the ANSYS Fluent 12.1.4 engineering simulation software. Hydrodynamic structure and volumetric temperature distribution were calculated. The results are presented in graphical form. Complete geometric model of the fire-tube boiler based on boiler drawings was considered. Obtained results are suitable for qualitative analysis of hydrodynamics and singularities identification in fire-tube boiler water shell.

  4. Computer simulation of the fire-tube boiler hydrodynamics

    Directory of Open Access Journals (Sweden)

    Khaustov Sergei A.

    2015-01-01

    Full Text Available Finite element method was used for simulating the hydrodynamics of fire-tube boiler with the ANSYS Fluent 12.1.4 engineering simulation software. Hydrodynamic structure and volumetric temperature distribution were calculated. The results are presented in graphical form. Complete geometric model of the fire-tube boiler based on boiler drawings was considered. Obtained results are suitable for qualitative analysis of hydrodynamics and singularities identification in fire-tube boiler water shell.

  5. Independent Research and Design of 600-MW Supercritical CFB Boiler

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In order to further develop and improve the technologies for large-capacity supercritical CFB boiler, the key technologies for large CFB boiler were systematically studied, based on the development of first domestically-made 210-MW and 330-MW CFB boilers. The scheme of 600-MW supercritical CFB boiler was designed, including the furnace structure, key components, steam-water system and auxiliary systems, which laid a technical foundation for the engineering applications.

  6. 46 CFR 56.50-30 - Boiler feed piping.

    Science.gov (United States)

    2010-10-01

    ... for water tube boilers shall have fresh water connections only. Care shall be taken to prevent the... 46 Shipping 2 2010-10-01 2010-10-01 false Boiler feed piping. 56.50-30 Section 56.50-30 Shipping... APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-30 Boiler feed piping. (a)...

  7. 46 CFR 61.05-20 - Boiler safety valves.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Boiler safety valves. 61.05-20 Section 61.05-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PERIODIC TESTS AND INSPECTIONS Tests and Inspections of Boilers § 61.05-20 Boiler safety valves. Each safety valve for a...

  8. Lower price for solar boilers must improve market penetration

    International Nuclear Information System (INIS)

    The Dutch government aims at 1.7 PJ thermal energy for the year 2007 to be supplied by solar water heaters. For that target the number of installed solar boilers must increase seven times the number of installed solar boilers in 1998. This can be stimulated by a considerable reduction of the market price for such boilers

  9. 46 CFR 109.205 - Inspection of boilers and machinery.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Inspection of boilers and machinery. 109.205 Section 109... OPERATIONS Tests, Drills, and Inspections § 109.205 Inspection of boilers and machinery. The chief engineer or engineer in charge, before he assumes charge of the boilers and machinery of a unit shall...

  10. Planning Annual Shutdown Inspection for BFB Boiler

    OpenAIRE

    Sorsa, Tatu

    2014-01-01

    The goal of this thesis was to create an illustrative guidebook of annual inspection planning for BFB boiler to help power plant operator when planning of annual inspection is topical. This thesis was made for Andritz Oy and it is based on inspection reports and experiences of BFB boiler’s maintenance and inspection staff. In this thesis it is shown how to plan an annual inspection for BFB boiler and thesis gives good tools and hints for operator to manage inspection from the beginning ...

  11. Transients in a circulating fluidized bed boiler

    Science.gov (United States)

    Baskakov, A. P.; Munts, V. A.; Pavlyuk, E. Yu.

    2013-11-01

    Transients in a circulating fluidized bed boiler firing biomass are considered. An attempt is made to describe transients with the use of concepts applied in the automatic control theory. The parameters calculated from an analysis of unsteady heat balance equations are compared with the experimental data obtained in the 12-MW boiler of the Chalmers University of Technology. It is demonstrated that these equations describe the transient modes of operation with good accuracy. Dependences for calculating the time constants of unsteady processes are obtained.

  12. Central heating: fossil-fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    Blazek, C.F.; Baker, N.R.; Tison, R.R.

    1979-05-01

    This evaluation provides performance and cost data for fossil-fuel-fired steam boilers, hot-water generators, and thermal fluid generators currently available from manufacturers. Advanced-technology fluidized-bed boilers also are covered. Performance characteristics investigated include unit efficiencies, turndown capacity, and pollution requirements. Costs are tabulated for equipment and installation of both field-erected and packaged units. The information compiled in this evaluation will assist in the process of selecting energy-conversion units required for industrial, commercial, and residential applications.

  13. TA-2 Water Boiler Reactor Decommissioning Project

    Energy Technology Data Exchange (ETDEWEB)

    Durbin, M.E. (ed.); Montoya, G.M.

    1991-06-01

    This final report addresses the Phase 2 decommissioning of the Water Boiler Reactor, biological shield, other components within the biological shield, and piping pits in the floor of the reactor building. External structures and underground piping associated with the gaseous effluent (stack) line from Technical Area 2 (TA-2) Water Boiler Reactor were removed in 1985--1986 as Phase 1 of reactor decommissioning. The cost of Phase 2 was approximately $623K. The decommissioning operation produced 173 m{sup 3} of low-level solid radioactive waste and 35 m{sup 3} of mixed waste. 15 refs., 25 figs., 3 tabs.

  14. Time-resolved LII signals from aggregates of soot particles levitated in room temperature air

    CERN Document Server

    Mitrani, James M

    2015-01-01

    We observed and modeled time-resolved laser-induced incandescence (LII) signals from soot aggregates. Time-resolved LII signals were observed from research-grade soot particles, levitated in room temperature air. We were able to measure sizes and structural properties of our soot particles ex situ, and use those measurements as input parameters when modeling the observed LII signals. We showed that at low laser fluences, aggregation significantly influences LII signals by reducing conductive cooling to the ambient air. At moderate laser fluences, laser-induced disintegration of aggregates occurs, so the effects of aggregation on LII signals are negligible. These results can be applied to extend LII for monitoring formation of soot and nanoparticle aggregates.

  15. Facile preparation of superhydrophobic candle soot coating and its wettability under condensation

    Science.gov (United States)

    Yuan, Zhiqing; Huang, Juan; Peng, Chaoyi; Wang, Menglei; Wang, Xian; Bin, Jiping; Xing, Suli; Xiao, Jiayu; Zeng, Jingcheng; Xiao, Ximei; Fu, Xin; Gong, Huifang; Zhao, Dejian; Chen, Hong

    2016-02-01

    A facile method was developed to prepare a superhydrophobic candle soot coating by burning candle and simple deposition on a low-density polyethylene substrate. The water contact angle and sliding angle of the as-prepared superhydrophobic candle soot coating were, respectively, 160 ± 2° and 1° under common condition. ESEM images showed that the superhydrophobic candle soot coating was comprised of many nanoparticles with the size range of about 30-50 nm. After condensation for 30 min, the average contact angle of the condensed water droplets was 150° ± 2°, showing excellent superhydrophobicity under condensation. The mechanism of the candle soot coating remaining superhydrophobicity under condensation was analyzed. This work is helpful for the design and preparation of superhydrophobic surface which can remain superhydrophobicity in future.

  16. Laser-Induced Emissions Sensor for Soot Mass in Rocket Plumes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A method is proposed to measure soot mass concentration non-intrusively from a distance in a rocket engine exhaust stream during ground tests using laser-induced...

  17. Instabilities and soot formation in spherically expanding, high pressure, rich, iso-octane-air flames

    Energy Technology Data Exchange (ETDEWEB)

    Lockett, R D [School of Engineering and Mathematical Sciences, City University, Northampton Square, London EC1V OHB (United Kingdom)

    2006-07-15

    Flame instabilities, cellular structures and soot formed in high pressure, rich, spherically expanding iso-octane-air flames have been studied experimentally using high speed Schlieren cinematography, OH fluorescence, Mie scattering and laser induced incandescence. Cellular structures with two wavelength ranges developed on the flame surface. The larger wavelength cellular structure was produced by the Landau-Darrieus hydrodynamic instability, while the short wavelength cellular structure was produced by the thermal-diffusive instability. Large negative curvature in the short wavelength cusps caused local flame quenching and fracture of the flame surface. In rich flames with equivalence ratio {phi} > 1.8, soot was formed in a honeycomb-like structure behind flame cracks associated with the large wavelength cellular structure induced by the hydrodynamic instability. The formation of soot precursors through low temperature pyrolysis was suggested as a suitable mechanism for the initiation of soot formation behind the large wavelength flame cracks.

  18. Development of a novel heterogeneous flow reactor -- Soot formation and nanoparticle catalysis

    Science.gov (United States)

    Camacho, Joaquin

    The development of novel experimental approaches to investigate fundamental surface kinetics is presented. Specifically, fundamental soot formation and surface catalysis processes are examined in isolation from other competing processes. In terms of soot formation, two experimental techniques are presented: the Burner Stabilized Stagnation (BSS) flame configuration is extended to isolate the effect of the parent fuel structure on soot formation and the fundamental rate of surface oxidation for nascent soot is measured in a novel aerosol flow reactor. In terms of nanoparticles, the physical and chemical properties of freely suspended nanoparticles are investigated in a novel aerosol flow reactor for methane oxidation catalyzed by palladium. The role of parent fuel structure within soot formation is examined by following the time resolved formation nascent soot from the onset of nucleation to later growth stages for premixed BSS flames. Specifically, the evolution of the detailed particle size distribution function (PSDF) is compared for butanol, butane and C6 hydrocarbons in two separate studies where the C/O ratio and temperature are fixed. Under this constraint, the overall sooting process were comparable as evidenced by similar time resolved bimodal PSDF. However, the nucleation time and the persistence of nucleation with time is strongly dependent upon the structure of the parent fuel. For the C6 hydrocarbon fuels, the fastest onset of soot nucleation is observed in cyclohexane and benzene flames and this may be due to significant aromatic formation that is predicted in the pre-flame region. In addition, the evolution of the PSDF shows that nucleation ends sooner in cylclohexane and benzene flames and this may be due to relatively quick depletion of soot precursors such as acetylene and benzene. Interestingly,within the butanol fuels studied the effect of the branched chain in i-butanol and i-butane was more significant than the presence of fuel bound oxygen. A

  19. Development of a Burner System and Rayleigh Scattering Method to Measure Soot Concentration for Diesel-Relevant Fuels

    Science.gov (United States)

    Fletcher, Sara; Fisher, Brian

    2013-11-01

    Soot, a harmful component of particulate matter, is found in high concentrations in diesel exhaust. This work aims to develop a better understanding of the relationship between chemical structure and soot evolution, which is expected to inform methods to reduce or eliminate soot in diesel combustion. Successful aspects of previous experiments have been combined into a new method to characterize soot formation, growth, and oxidation. Soot is quantified via combined Rayleigh scattering and extinction, using a pulsed 532-nm Nd:YAG laser and sensitive photodetectors. A methane/oxygen diffusion flame serves as a baseline, then species of interest are doped into the fuel stream in low concentration and the change in soot is quantified relative to the base flame. This perturbation method enables study of soot for different species in a flame that has nominally constant global properties. This study focused on fuel components n-heptane and toluene, which have straight-chain and aromatic molecular structures, respectively. Soot was quantified throughout the flame, and it was found that the soot scattering signal was significantly higher for toluene than for n-heptane. Analysis of the signals to quantify actual soot concentrations remains a topic of future work. Funding from NSF REU grant 1062611.

  20. Effects of methyl group on aromatic hydrocarbons on the nanostructures and oxidative reactivity of combustion-generated soot

    KAUST Repository

    Guerrero Peña, Gerardo D.J.

    2016-07-23

    The substituted and unsubstituted aromatic hydrocarbons, present in transportation fuels such as gasoline and diesel, are thought to be responsible for most of the soot particles produced during their combustion. However, the effects of the substituted alkyl groups on the aromatic hydrocarbons on their sooting tendencies, and on the physical and chemical properties of soot produced from them are not well understood. In this work, the effect of the presence of methyl groups on aromatic hydrocarbons on their sooting propensity, and on the oxidative reactivity, morphology, and chemical composition of soot generated from them in diffusion flames is studied using benzene, toluene, and m-xylene as fuels. Several experimental techniques including high resolution transmission electron microscopy and X-ray diffraction are used to identify the morphological changes in soot, whereas the elemental and thermo-gravimetric analyses, electron energy loss spectroscopy, and Fourier transform infrared spectroscopy are used to study the changes in its chemical properties and reactivity. The activation energies for soot oxidation are calculated at different conversion levels, and a trend in the reactivity of soots from benzene, toluene and m-xylene is reported. It is observed that the sizes of primary particles and graphene-like sheets, and the concentrations of aliphatics and oxygenated groups in soot particles decreased with the addition of methyl group(s) on the aromatic ring. The physicochemical changes in soot are found to support the oxidative reactivity trends. © 2016 The Combustion Institute

  1. Noise Characteristics of Centrifugal Blower with Low Solidity Cascade Diffuser (Noise Reduction by means of Small Groove Located at LSD Blade Leading Tip)

    Institute of Scientific and Technical Information of China (English)

    Tengen MURAKAMI; Masahiro ISHIDA; Daisaku SAKAGUCHI; Yu KOBA

    2009-01-01

    This paper deals with the effect of the blade tip-groove of the low solidity cascade diffuser (LSD) on the blower characteristic and the noise generated by the LSD. The small grooves were set up at the root and/or tip near the leading edge of the LSD blade. In order to clarify the mechanism of noise increase due to LSD and also to reduce the noise, the relationships between the noise increase based on the LSD, the LSD performance and the secondary flow formed additionally by the tip-groove were investigated experimentally as well as numerically, especially analyzing flow behaviors in the LSD in view points of flow separation on the suction surface of the LSD blade and the secondary flow on the side walls. By reducing the stagnation region smaller near the root and/or tip of the LSD blade leading edge, the secondary flow behavior changes remarkably around the LSD blade, as a result, the noise level and the blower characteristics vary. It can be concluded that, by means of a small tip-groove located only at the shroud side near the LSD blade leading edge, the noise generated by the LSD can be reduced without deteriorations of the LSD performance and the blower characteristics as well.

  2. 旋涡风机叶片侧边型线的研究%Research on the Shape of Blade Side of Vortex Blower

    Institute of Scientific and Technical Information of China (English)

    唐照付; 聂波; 张俊林; 满建楠

    2013-01-01

    旋涡风机叶轮叶片侧边型线影响流体进出叶轮流道的速度三角形,对风机的性能有一定的影响.本文从试验和数值计算的角度对径向直叶片侧边倒角情况进行了研究,发现叶片侧边吸力面倒角比压力面倒角更能提高风机的性能,小流量区更为明显.本文用理论分析了该现象的原因,并推断前弯和后弯叶片也具有同样的性质.%The shape of impeller blade side of vortex blower can influence velocity triangle of fluid flowing in and out of impeller , so as to influence the performance of blower. The chamfer of radial side blade was studied by using methods of experiment and numerical simulation,and It finds that chamfer on the suction side is the best situation for improving the performance of vortex blower specially when little flux. The paper explains the roots of such phenomenon by theoretical analysis, and deduces that forward and backward bending blades own the same properties.

  3. INFRARED and PHOTOELECTRON SPECTROSCOPIC STUDY OF S02 OXIDATION ON SOOT PARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S.G.; Novakov, T.

    1975-12-01

    Results obtained by means of x-ray photoelectron spectroscopy and internal reflection infrared spectroscopy demonstrate the feasibility of heterogeneous oxidation of sulfur dioxide on soot particles in air. Sulfuric acid formed in this process can be neutralized on basic surface sites of soot particles, resulting in the formation of carbonium and/or oxonium sulfate. Hydrolysis of these salts into cyclic hemiacetals and sulfuric acid is expected.

  4. Measurements of Soot Mass Absorption Coefficients from 300 to 660 nm

    Science.gov (United States)

    Renbaum-Wolff, Lindsay; Fisher, Al; Helgestad, Taylor; Lambe, Andrew; Sedlacek, Arthur; Smith, Geoffrey; Cappa, Christopher; Davidovits, Paul; Onasch, Timothy; Freedman, Andrew

    2016-04-01

    Soot, a product of incomplete combustion, plays an important role in the earth's climate system through the absorption and scattering of solar radiation. In particular, the assumed mass absorption coefficient (MAC) of soot and its variation with wavelength presents a significant uncertainty in the calculation of radiative forcing in global climate change models. As part of the fourth Boston College/Aerodyne soot properties measurement campaign, we have measured the mass absorption coefficient of soot produced by an inverted methane diffusion flame over a spectral range of 300-660 nm using a variety of optical absorption techniques. Extinction and absorption were measured using a dual cavity ringdown photoacoustic spectrometer (CRD-PAS, UC Davis) at 405 nm and 532 nm. Scattering and extinction were measured using a CAPS PMssa single scattering albedo monitor (Aerodyne) at 630 nm; the absorption coefficient was determined by subtraction. In addition, the absorption coefficients in 8 wavelength bands from 300 to 660 nm were measured using a new broadband photoacoustic absorption monitor (UGA). Soot particle mass was quantified using a centrifugal particle mass analyzer (CPMA, Cambustion), mobility size with a scanning mobility particle sizer (SMPS, TSI) and soot concentration with a CPC (Brechtel). The contribution of doubly charged particles to the sample mass was determined using a Single Particle Soot Photometer (DMT). Over a mass range of 1-8 fg, corresponding to differential mobility diameters of ~150 nm to 550 nm, the value of the soot MAC proved to be independent of mass for all wavelengths. The wavelength dependence of the MAC was best fit to a power law with an Absorption Ångstrom Coefficient slightly greater than 1.

  5. Effects of ambient oxygen concentration on soot temperature and concentration for biodiesel and diesel spray combustion

    KAUST Repository

    Zhang, Ji

    2015-06-01

    Ambient oxygen concentration, a key variable directly related to exhaust gas recirculation (EGR) levels in diesel engines, plays a significant role in particulate matter (PM) and nitrogen oxides (NOx) emissions. The utilization of biodiesel in diesel engines has been investigated over the last decades for its renewable characteristics and lower emissions compared to diesel. In an earlier work, we demonstrated that the soot temperature and concentration of biodiesel were lower than diesel under regular diesel engine conditions without EGR. Soot concentration was quantified by a parameter called KL factor. As a continuous effort, this paper presents an experimental investigation of the ambient oxygen concentration on soot temperature and KL factor during biodiesel and diesel spray combustion. The experiment was implemented in a constant volume chamber system, where the ambient oxygen concentration varied from 21 to 10% and the ambient temperature was kept to 1,000 K. A high speed two-color pyrometry technique was used to measure transient soot temperature and the KL factor of the spray flame. The soot temperature of biodiesel is found to be lower than that of diesel under the same conditions, which follows the same trend from our previous results found when the ambient temperature changes to 21% oxygen conditions. A reduction in ambient oxygen concentration generally reduces the soot temperature for both fuels. However, this is a complicated effect on soot processes as the change of oxygen concentration greatly affects the balance between soot formation and oxidation. The KL factor is observed to be the highest at 12% O2 for diesel and 18% O2 for biodiesel, respectively. On the other hand, the 10% O2 condition shows the lowest KL factor for both fuels. These results can provide quantitative experimental evidences to optimize the ambient oxygen concentration for diesel engines using different fuels for better emissions characteristics. © 2014 American Society of

  6. Soot microphysical effects on liquid clouds, a multi-model investigation

    Energy Technology Data Exchange (ETDEWEB)

    Koch, D; Balkanski, Y; Bauer, S; Easter, Richard C; Ferrachat, S; Ghan, Steven J; Hoose, C; Iversen, T; Kirkevag, A; Kristjansson, J E; Liu, Xiaohong; Lohmann, U; Menon, Surabi; Quaas, J; Schulz, M; Seland, O; Takemura, T; Yan, N

    2011-02-10

    We use global models to explore the microphysical effects of carbonaceous aerosols on liquid clouds. Although absorption of solar radiation by soot warms the atmosphere, soot may cause climate cooling due to its contribution to cloud condensation nuclei (CCN) and therefore cloud brightness. Six global models conducted three soot experiments; four of the models had detailed aerosol microphysical schemes. The average cloud radiative response to biofuel soot (black and organic carbon), including both indirect and semi-direct effects, is -0.11Wm-2, comparable in size but opposite in sign to the respective direct effect. In a more idealized fossil fuel black carbon experiment, some models calculated a positive cloud response because soot provides a deposition sink for sulfuric and nitric acids and secondary organics, decreasing nucleation and evolution of viable CCN. Biofuel soot particles were also typically assumed to be larger and more hygroscopic than for fossil fuel soot and therefore caused more negative forcing, as also found in previous studies. Diesel soot (black and organic carbon) experiments had relatively smaller cloud impacts with five Correspondence to: D. Koch (dorothy.koch@science.doe.gov) of the models <±0.06Wm-2 from clouds. The results are subject to the caveats that variability among models, and regional and interrannual variability for each model, are large. This comparison together with previously published results stresses the need to further constrain aerosol microphysical schemes. The non-linearities resulting from the competition of opposing effects on the CCN population make it difficult to extrapolate from idealized experimen

  7. Comparison of Preparation Methods of Copper Based PGMFree Diesel-Soot Oxidation Catalysts

    Directory of Open Access Journals (Sweden)

    R. Prasad

    2011-05-01

    Full Text Available CuO-CeO2 systems have been proposed as a promising catalyst for low temperature diesel-soot oxidation. CuO-CeO2 catalysts prepared by various methods were examined for air oxidation of the soot in a semi batch tubular flow reactor. The air oxidation of soot was carried out under tight contact with soot/catalyst ratio of 1/10. Air flow rate was 150 ml/min, soot-catalyst mixture was 110 mg, heating rate was 5 0C/min. Prepared catalysts were calcined at 500 0C and their stability was examined by further heating to 800 0C for 4 hours. It was found that the selectivity of all the catalysts was nearly 100% to CO2 production. It was observed that the activity and stability of the catalysts greatly influenced by the preparation methods. The strong interaction between CuO and CeO2 is closely related to the preparation route that plays a crucial role in the soot oxidation over the CuO-CeO2 catalysts. The ranking order of the preparation methods of the catalysts in the soot oxidation performance is as follows: sol-gel > urea nitrate combustion > Urea gelation method > thermal decomposition > co-precipitation. Copyright © 2011 BCREC UNDIP. All rights reserved.(Received: 27th June 2010, Revised: 7th August 2010; Accepted: 13rd October 2010[How to Cite: R. Prasad, V.R. Bella. (2011. Comparison of Preparation Methods of Copper Based PGMFree Diesel-Soot Oxidation Catalysts. Bulletin of Chemical Reaction Engineering and Catalysis, 6(1: 15-21. doi:10.9767/bcrec.6.1.822.15-21][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.6.1.822.15-21 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/822 | View in 

  8. Impacts of vehicle exhaust black soot on germination of gram seed (Cicer arietinum L.)

    OpenAIRE

    Naba Kumar Mondal; Debopriya Panja; Chittaranjan Das; Uttiya Dey; Kousik Das

    2014-01-01

    An investigation was initiated to examine the effects of carbon soot collected from exhaust tube of 15 years old petrol and diesel operated vehicles on gram seed germination and biochemical changes of seedling. In view of the widespread cultivation of gram seed in India and long-term impact of black carbon is the warming of the atmosphere as per the recommendation of IPCC (2007). Black soot were separately treated with different doses and the effects of these treatment had on seed germination...

  9. The excited states of the neutral and ionized carbon in the regenerative sooting discharges

    International Nuclear Information System (INIS)

    We report the mechanisms of production and the state of excitation of the neutral and singly charged monatomic carbon in the regenerative soot as a function of the discharge parameters in graphite hollow cathode (HC) sources. Two distinctly different source configurations have been investigated. Comparisons of the level densities of various charged states of C1 have identified the regenerative properties of the C radicals in graphite HC soot

  10. Diffusion air effects on the soot axial distribution concentration in a premixed acetylene/air flame

    Energy Technology Data Exchange (ETDEWEB)

    Fassani, Fabio Luis; Santos, Alex Alisson Bandeira; Goldstein Junior, Leonardo [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Engenharia Termica e de Fluidos]. E-mails: fassani@fem.unicamp.br; absantos@fem.unicamp.br; leonardo@fem.unicamp.br; Ferrari, Carlos Alberto [Universidade Estadual de Campinas, SP (Brazil). Inst. de Fisica. Dept. de Eletronica Quantica]. E-mail: ferrari@ifi.unicamp.br

    2000-07-01

    Soot particles are produced during the high temperature pyrolysis or combustion of hydrocarbons. The emission of soot from a combustor, or from a flame, is determined by the competition between soot formation and its oxidation. Several factors affect these processes, including the type of fuel, the air-to-fuel ratio, flame temperature, pressure, and flow pattern. In this paper, the influence of the induced air diffusion on the soot axial distribution concentration in a premixed acetylene/air flame was studied. The flame was generated in a vertical axis burner in which the fuel - oxidant mixture flow was surrounded by a nitrogen discharge coming from the annular region between the burner tube and an external concentric tube. The nitrogen flow provided a shield that protected the flame from the diffusion of external air, enabling its control. The burner was mounted on a step-motor driven, vertical translation table. The use of several air-to-fuel ratios made possible to establish the sooting characteristics of this flame, by measuring soot concentration along the flame height with a non-intrusive laser light absorption technique. (author)

  11. Development of high fidelity soot aerosol dynamics models using method of moments with interpolative closure

    KAUST Repository

    Roy, Subrata P.

    2014-01-28

    The method of moments with interpolative closure (MOMIC) for soot formation and growth provides a detailed modeling framework maintaining a good balance in generality, accuracy, robustness, and computational efficiency. This study presents several computational issues in the development and implementation of the MOMIC-based soot modeling for direct numerical simulations (DNS). The issues of concern include a wide dynamic range of numbers, choice of normalization, high effective Schmidt number of soot particles, and realizability of the soot particle size distribution function (PSDF). These problems are not unique to DNS, but they are often exacerbated by the high-order numerical schemes used in DNS. Four specific issues are discussed in this article: the treatment of soot diffusion, choice of interpolation scheme for MOMIC, an approach to deal with strongly oxidizing environments, and realizability of the PSDF. General, robust, and stable approaches are sought to address these issues, minimizing the use of ad hoc treatments such as clipping. The solutions proposed and demonstrated here are being applied to generate new physical insight into complex turbulence-chemistry-soot-radiation interactions in turbulent reacting flows using DNS. © 2014 Copyright Taylor and Francis Group, LLC.

  12. A multi-probe thermophoretic soot sampling system for high-pressure diffusion flames

    Science.gov (United States)

    Vargas, Alex M.; Gülder, Ömer L.

    2016-05-01

    Optical diagnostics and physical probing of the soot processes in high pressure combustion pose challenges that are not faced in atmospheric flames. One of the preferred methods of studying soot in atmospheric flames is in situ thermophoretic sampling followed by transmission electron microscopy imaging and analysis for soot sizing and morphology. The application of this method of sampling to high pressures has been held back by various operational and mechanical problems. In this work, we describe a rotating disk multi-probe thermophoretic soot sampling system, driven by a microstepping stepper motor, fitted into a high-pressure chamber capable of producing sooting laminar diffusion flames up to 100 atm. Innovative aspects of the sampling system design include an easy and precise control of the sampling time down to 2.6 ms, avoidance of the drawbacks of the pneumatic drivers used in conventional thermophoretic sampling systems, and the capability to collect ten consecutive samples in a single experimental run. Proof of principle experiments were performed using this system in a laminar diffusion flame of methane, and primary soot diameter distributions at various pressures up to 10 atm were determined. High-speed images of the flame during thermophoretic sampling were recorded to assess the influence of probe intrusion on the flow field of the flame.

  13. Internally mixed soot, sulfates, and organic matter in aerosol particles from Mexico City

    Directory of Open Access Journals (Sweden)

    K. Adachi

    2008-05-01

    Full Text Available Soot particles are major aerosol constituents that result from emissions of burning of fossil fuel and biomass. Because they both absorb sunlight and contribute to cloud formation, they are an influence on climate on local, regional, and global scales. It is therefore important to evaluate their optical and hygroscopic properties and those effects on the radiation budget. Those properties commonly change through reaction with other particles or gases, resulting in complex internal mixtures. Using transmission electron microscopy, we measured ~8000 particles (25 samples with aerodynamic diameters from 0.05 to 0.3 μm that were collected in March 2006 from aircraft over Mexico City (MC and adjacent areas. More than 50% of the particles consist of internally mixed soot, organic matter, and sulfate. Imaging combined with chemical analysis of individual particles show that many are coated, consist of aggregates, or both. Coatings on soot particles can amplify their light absorption, and coagulation with sulfates changes their hygroscopic properties, resulting in shorter lifetime. Our results suggest that a mixture of materials from multiple sources such as vehicles, power plants, and biomass burning occurs in individual particles, thereby increasing their complexity. Through changes in their optical and hygroscopic properties, internally mixed soot particles have a greater effect on the regional climate than uncoated soot particles. Moreover, soot occurs in more than 60% of all particles in the MC plumes, suggesting its important role in the formation of secondary aerosol particles.

  14. Model compound study of the pathways for aromatic hydrocarbon formation in soot

    Energy Technology Data Exchange (ETDEWEB)

    Randall E. Winans; Nancy A. Tomczyk; Jerry E. Hunt; Mark S. Solum; Ronald J. Pugmire; Yi Jin Jiang; Thomas H. Fletcher [University of Utah, Salt Lake City, UT (United States). Department of Chemistry

    2007-07-01

    A previous study was conducted to determine the early sooting pathways of biphenyl and pyrene. Soot/pah samples from biphenyl were collected in a fuel-rich flat-flame burner at temperatures of 1365, 1410, and 1470 K and from pyrene at 1410 and 1470K. A more detailed analysis of the pyrolitic products has been performed using additional NMR data obtained on the whole soot sample correlated with detailed high resolution as well as GC mass spectrometry data on the solvent extracted portion of the same samples. These latter data complement the earlier NMR data with details of the pre-sooting structures, referred to as 'young soot.' The data reveal the roles played by free radical assisted polymerization reactions as well as the hydrogen abstraction carbon addition (HACA) reactions for the biphenyl pyrolysis. The mass spectroscopy data of pyrene describe a much different set of reactions due to polymerization which employs free radical reactions of the pyrene due primarily to hydrogen abstraction followed by the formation of biaryl linkages at mass numbers up to five times that of the parent pyrene. Conceptual schema of reaction mechanisms are proposed to explain the formation pathways to materials detected in the soot extracts. 21 refs., 6 figs., 4 tabs.

  15. Ice Nucleation and Droplet Formation by Bare and Coated Soot Particles

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, Beth J.; Kulkarni, Gourihar R.; Beranek, Josef; Zelenyuk, Alla; Thornton, Joel A.; Cziczo, Daniel J.

    2011-09-13

    We have studied ice formation at temperatures relevant to homogeneous and heterogeneous ice nucleation, as well as droplet activation and hygroscopicity, of soot particles of variable size and composition. Coatings of adipic, malic, and oleic acid were applied to span an atmospherically relevant range of solubility, and both uncoated and oleic acid coated soot particles were exposed to ozone to simulate atmospheric oxidation. The results are interpreted in terms of onset ice nucleation, with a comparison to a mineral dust particle that acts as an efficient ice nucleus, and particle hygroscopicity. At 253K and 243K, we found no evidence of heterogeneous ice nucleation occurring above the level of detection for our experimental conditions. Above water saturation, only droplet formation was observed. At 233K, we observe the occurrence of homogeneous ice nucleation for all particles studied. Coatings also did not significantly alter the ice nucleation behavior of soot particles, but aided in the uptake of water. Hygroscopicity studies confirmed that pure soot particles were hydrophobic, and coated soot particles activated as droplets at high water supersaturations. A small amount of heterogeneous ice nucleation either below the detection limit of our instrument or concurrent with droplet formation and/or homogeneous freezing cannot be precluded, but we are able to set limits for its frequency. We conclude that both uncoated and coated soot particles representative of those generated in our studies are unlikely to significantly contribute to the global budget of heterogeneous ice nuclei at temperatures between 233K and 253K.

  16. Super Boiler: Packed Media/Transport Membrane Boiler Development and Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Liss, William E; Cygan, David F

    2013-04-17

    Gas Technology Institute (GTI) and Cleaver-Brooks developed a new gas-fired steam generation system the Super Boiler for increased energy efficiency, reduced equipment size, and reduced emissions. The system consists of a firetube boiler with a unique staged furnace design, a two-stage burner system with engineered internal recirculation and inter-stage cooling integral to the boiler, unique convective pass design with extended internal surfaces for enhanced heat transfer, and a novel integrated heat recovery system to extract maximum energy from the flue gas. With these combined innovations, the Super Boiler technical goals were set at 94% HHV fuel efficiency, operation on natural gas with <5 ppmv NOx (referenced to 3%O2), and 50% smaller than conventional boilers of similar steam output. To demonstrate these technical goals, the project culminated in the industrial demonstration of this new high-efficiency technology on a 300 HP boiler at Clement Pappas, a juice bottler located in Ontario, California. The Super Boiler combustion system is based on two stage combustion which combines air staging, internal flue gas recirculation, inter-stage cooling, and unique fuel-air mixing technology to achieve low emissions rather than external flue gas recirculation which is most commonly used today. The two-stage combustion provides lower emissions because of the integrated design of the boiler and combustion system which permit precise control of peak flame temperatures in both primary and secondary stages of combustion. To reduce equipment size, the Super Boiler's dual furnace design increases radiant heat transfer to the furnace walls, allowing shorter overall furnace length, and also employs convective tubes with extended surfaces that increase heat transfer by up to 18-fold compared to conventional bare tubes. In this way, a two-pass boiler can achieve the same efficiency as a traditional three or four-pass firetube boiler design. The Super Boiler is consequently

  17. Optimal DO Setpoint Decision and Electric Cost Saving in Aerobic Reactor Using Respirometer and Air Blower Control

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwang Su; Yoo, Changkyoo [Kyung Hee University, Yongin (Korea, Republic of); Kim, Minhan [Pangaea21 Ltd., Seongnam (Korea, Republic of); Kim, Jongrack [UnUsoft Ltd., Seoul (Korea, Republic of)

    2014-10-15

    Main objects for wastewater treatment operation are to maintain effluent water quality and minimize operation cost. However, the optimal operation is difficult because of the change of influent flow rate and concentrations, the nonlinear dynamics of microbiology growth rate and other environmental factors. Therefore, many wastewater treatment plants are operated for much more redundant oxygen or chemical dosing than the necessary. In this study, the optimal control scheme for dissolved oxygen (DO) is suggested to prevent over-aeration and the reduction of the electric cost in plant operation while maintaining the dissolved oxygen (DO) concentration for the metabolism of microorganisms in oxic reactor. The oxygen uptake rate (OUR) is real-time measured for the identification of influent characterization and the identification of microorganisms' oxygen requirement in oxic reactor. Optimal DO set-point needed for the micro-organism is suggested based on real-time measurement of oxygen uptake of micro-organism and the control of air blower. Therefore, both stable effluent quality and minimization of electric cost are satisfied with a suggested optimal set-point decision system by providing the necessary oxygen supply requirement to the micro-organisms coping with the variations of influent loading.

  18. Environmental control during steam boiler washing

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Marcio A.B.; Abreu Pereira, Vera L. de [Companhia Petroquimica do Nordeste (COPENE), Camacari, BA (Brazil). Div. de Engenharia Ambiental; Ringler, Ulrich E.S. [PROMON Engenharia Ltda., Salvador, BA (Brazil)

    1993-12-31

    The washing and chemical cleaning of boilers, activities of a high polluting potential, are responsible for the generation of wastewater of high contents of heavy metals, suspended solids and chemical oxygen demand (COD). This paper describes the actions carried out by COPENE - Petroquimica do Nordeste S/A - in order to reduce this problem. (author). 10 refs., 3 figs., 2 tabs.

  19. Control Properties of Bottom Fired Marine Boilers

    DEFF Research Database (Denmark)

    Solberg, Brian; Andersen, Palle; Karstensen, Claus M. S.

    2005-01-01

    the interactions in the system are inspected to analyse potential benefit from using a multivariable control strategy in favour of the current strategy based on single loop theory. An analysis of the nonlinear model is carried out to further determine the nonlinear characteristics of the boiler system...

  20. Microphone Detects Boiler-Tube Leaks

    Science.gov (United States)

    Parthasarathy, S. P.

    1985-01-01

    Unit simple, sensitive, rugged, and reliable. Diaphragmless microphone detects leaks from small boiler tubes. Porous plug retains carbon granules in tube while allowing pressure changes to penetrate to granules. Has greater life expectancy than previous controllers and used in variety of hot corrosive atmospheres.

  1. Model boiler studies on deposition and corrosion

    International Nuclear Information System (INIS)

    Deposit formation was studied in a model boiler, with sea-water injections to simulate the in-leakage which could occur from sea-water cooled condensers. When All Volatile Treatment (AVT) was used for chemistry control the deposits consisted of the sea-water salts and corrosion products. With sodium phosphate added to the boiler water, the deposits also contained the phosphates derived from the sea-water salts. The deposits were formed in layers of differing compositions. There was no significant corrosion of the Fe-Ni-Cr alloy boiler tube under deposits, either on the open area of the tube or in crevices. However, carbon steel that formed a crevice around the tube was corroded severely when the boiler water did not contain phosphate. The observed corrosion of carbon steel was caused by the presence of acidic, highly concentrated chloride solution produced from the sea-water within the crevice. Results of theoretical calculations of the composition of the concentrated solution are presented. (author)

  2. Thermal Analysis of Superheater Platen Tubesin Boilers

    Directory of Open Access Journals (Sweden)

    Shahram Falahatkar

    2014-01-01

    Full Text Available Superheaters are among the most important components of boilers and have major importance due to this operation in high temperatures and pressures. Turbines are sensitive to the fluctuation of superheaterstemperature;therefore even the slightest fluctuation in the outlet vapor temperature from the superheaters does damage the turbine axis and fins. Examining the potential damages of combustion in the boilers and components such as the superheaters can have a vital contribution to the progression of the productivity of boiler, turbine and the power plant altogether it solutions are to be fund to improve such systems. In this study, the focus is on the nearest tube set of superheaters to the combustion chamber.These types of tubes are exposed to a wide range ofcombustion flames such that the most heat transfer to them is radiation type.Here, the 320 MW boiler of Isfahan power plant (Iran, the combustion chamber, 16 burners and the platensuperheater tubes were remodeled by CFD technique. The fluid motion, the heat transfer and combustion processes are analyzed. The two-equation turbulence model of k-εis adopted to measure the eddy viscosity. The eddy dissipation model is used to calculate the combustion as well as the P-1 radiation model to quantify the radiation. The overheated zones of superheater tubes and the combustion chamber are identified in order toimprove this problem by applying the radiation thermal shields and knees with porous crust which are introduced as the new techniques.

  3. Infrared imaging of fossil fuel power plant boiler interiors

    Science.gov (United States)

    Howard, James W.; Cranton, Brian W.; Armstrong, Karen L.; Hammaker, Robert G.

    1997-08-01

    Fossil fuel power plant boilers operate continuously for months at a time, typically shutting down only for routine maintenance or to address serious equipment failures. These shutdowns are very costly, and diagnostic tools and techniques which could be used to minimize shutdown duration and frequency are highly desirable. Due to the extremely hostile environment in these boilers, few tools exist to inspect and monitor operating boiler interiors. This paper presents the design of a passively cooled, infrared borescope used to inspect the interior of operating boilers. The borescope operates at 3.9 micrometer, where flame is partially transparent. The primary obstacles overcome in the instrument design were the harsh industrial environment surrounding the boilers and the high temperatures encountered inside the boilers. A portable yet durable lens system and enclosure was developed to work with a scanning radiometer to address these two problems by both shielding the radiometer from the environment and by extending the optical train into a snout designed to be inserted into access ports on the sides of the boiler. In this manner, interior images of the boiler can be made while keeping the radiometer safely outside the boiler. The lens views a 40 degree field of view through any 2.5' or larger opening in a foot thick boiler wall. Three of these borescopes have been built, and high resolution images of boiler interiors have been obtained.

  4. SOOT PARTICLES ANALYSIS IN LAMINAR PREMIXED PROPANE/OXYGEN (C3H8/O2) FLAMES USING PUBLISHED MEASUREMENT DATA

    Institute of Scientific and Technical Information of China (English)

    Jinling Li; Suyuan Yu

    2003-01-01

    A laminar premixed Propane/Air flame with a fuel equivalence ratio of 2.1 was employed for analysis of soot particles. Zeroth-order Iognormal distributions (ZOLD) were used in the analysis of experimental distribution phenomena at different residence times during soot formation in the flame. Rayleigh's theory and Mie's scattering theory were combined with agglomerate analysis using scattering and extinction data to determine the following soot characteristics: agglomerate parameters, volumetric fractions, mass flow rates and surface growth rate. Soot density measurements were carried out to determine density variations at different stages of growth. The measured results show that metric fraction and mass flow rate indicate that the surface growth rate of soot particles exceeds the oxidation rates in the flame studied. The data obtained in this work would be used to study soot oxidation rate under flaming condition.

  5. CoFlame: A refined and validated numerical algorithm for modeling sooting laminar coflow diffusion flames

    Science.gov (United States)

    Eaves, Nick A.; Zhang, Qingan; Liu, Fengshan; Guo, Hongsheng; Dworkin, Seth B.; Thomson, Murray J.

    2016-10-01

    Mitigation of soot emissions from combustion devices is a global concern. For example, recent EURO 6 regulations for vehicles have placed stringent limits on soot emissions. In order to allow design engineers to achieve the goal of reduced soot emissions, they must have the tools to so. Due to the complex nature of soot formation, which includes growth and oxidation, detailed numerical models are required to gain fundamental insights into the mechanisms of soot formation. A detailed description of the CoFlame FORTRAN code which models sooting laminar coflow diffusion flames is given. The code solves axial and radial velocity, temperature, species conservation, and soot aggregate and primary particle number density equations. The sectional particle dynamics model includes nucleation, PAH condensation and HACA surface growth, surface oxidation, coagulation, fragmentation, particle diffusion, and thermophoresis. The code utilizes a distributed memory parallelization scheme with strip-domain decomposition. The public release of the CoFlame code, which has been refined in terms of coding structure, to the research community accompanies this paper. CoFlame is validated against experimental data for reattachment length in an axi-symmetric pipe with a sudden expansion, and ethylene-air and methane-air diffusion flames for multiple soot morphological parameters and gas-phase species. Finally, the parallel performance and computational costs of the code is investigated. Catalogue identifier: AFAU_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AFAU_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 94964 No. of bytes in distributed program, including test data, etc.: 6242986 Distribution format: tar.gz Programming language: Fortran 90, MPI. (Requires an Intel compiler). Computer: Workstations

  6. The Boiler Booster design: Feasibility study for an implementation of the Climate Well absorption technology in conventional boilers in order to improve its performance

    OpenAIRE

    Pallarols Farreras, Jordina

    2008-01-01

    European Union has recently made a new directive to impose a classification system based on boilers efficiency. This new regulation generates the necessity of create new boilers more energy efficient like the one developed throughout this thesis. An innovative combined heat and power boiler (CHP boiler) called Boiler Booster is studied in this thesis. The main focus will therefore be to design the Boiler Booster taking the advantage of using the patented absorption technology ...

  7. Reduced Bed Temperature in FB-Boilers Burning Waste - part II; Saenkt baeddtemperatur i FB-pannor foer avfallsfoerbraenning - etapp 2

    Energy Technology Data Exchange (ETDEWEB)

    Niklasson, Fredrik; Pettersson, Anita; Claesson, Frida; Johansson, Andreas; Gunnarsson, Anders; Gyllenhammar, Marianne; Victoren, Anders; Gustafsson, Goeran

    2010-07-01

    This project focuses on evaluating whether lowered bed temperature in FB-boilers for waste combustion gives operational benefits, such as reduced fouling in the convection pass. If so, this mode of operation could reduce the number of unplanned boiler outages, reduce the need for soot blowing, and extend the lifetime of the superheaters at unaltered steam temperature. The project is based on full-scale experiments performed at Ryaverket in Boraas. The plant has two waste-fired 20 MW{sub t} FB-boilers. The study is based on a comparison between operational data and measurement results from two different operating conditions of the boilers. In addition to the data that normally are logged by the control system, samples of fuel, ashes, particles, and deposits were taken and subsequently analyzed. The structure of the bed ash was altered by lowering the bed temperature. Under normal boiler operation, the bed ash contains many small agglomerates that disappeared when the bed temperature was lowered. Due to this, the sand consumption of the plant could be reduced by roughly 25 %. At lowered bed temperature, the concentration of chlorine increased in the bed ash and in the recycled sand while it decreased in the ashes from the cyclone and fabric filter. The concentration of HCl in the flue gas increased as the bed temperature was lowered. This is considered a consequence of less chlorine forming alkali chlorides. Moreover, the particle measurements showed that the amount of submicron particles decreased during lowered bed temperature, which also is an indication of less alkali chlorides in the flue gas. The deposit probes showed an approximate 20 % reduction of the fouling rate when the bed temperature was lowered from 876 to 714 deg C. The chlorine content also decreased in the deposits. For the deposit probes at 500 deg C, (corresponds to a steam temperature of 465 deg C) significant amounts of KCl were found in the deposits, even when the bed temperature was lowered

  8. Formation of polycyclic aromatic hydrocarbons and soot in fuel-rich oxidation of methane in a laminar flow reactor

    DEFF Research Database (Denmark)

    Skjøth-Rasmussen, Martin Skov; Glarborg, Peter; Østberg, M.;

    2004-01-01

    Conversion of methane to higher hydrocarbons, polycyclic aromatic hydrocarbons (PAHs), and soot was investigated under fuel-rich conditions in a laminar flow reactor. The effects of stoichiometry, dilution, and water vapor addition were studied at temperatures between 1073 and 1823 K. A chemical......, and the model predicts inception of soot to occur approximately 100 K below experimental observations. Addition of water vapor has a considerable effect on the measured acetylene concentration and on soot formation at 1500 K and above. In this temperature regime, concentrations of both acetylene and soot...

  9. Evaluation and optimisation of phenomenological multi-step soot model for spray combustion under diesel engine-like operating conditions

    DEFF Research Database (Denmark)

    Pang, Kar Mun; Jangi, Mehdi; Bai, Xue-Song;

    2015-01-01

    In this work, a two-dimensional computational fluid dynamics study is reported of an n-heptane combustion event and the associated soot formation process in a constant volume combustion chamber. The key interest here is to evaluate the sensitivity of the chemical kinetics and submodels of a semi......, a comprehensive sensitivity analysis is carried out to appraise the existing soot formation and oxidation submodels. It is revealed that the soot formation is captured when the surface growth rate is calculated using a square root function of the soot specific surface area and when a pressure-dependent model...

  10. MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    E.G. Eddings; A. Molina; D.W. Pershing; A.F. Sarofim; T.H. Fletcher; H. Zhang; K.A. Davis; M. Denison; H. Shim

    2002-01-01

    The focus of this program is to provide insight into the formation and minimization of NO{sub x} in multi-burner arrays, such as those that would be found in a typical utility boiler. Most detailed studies are performed in single-burner test facilities, and may not capture significant burner-to-burner interactions that could influence NO{sub x} emissions. Thus, investigations of such interactions were made by performing a combination of single and multiple burner experiments in a pilot-scale coal-fired test facility at the University of Utah, and by the use of computational combustion simulations to evaluate full-scale utility boilers. In addition, fundamental studies on nitrogen release from coal were performed to develop greater understanding of the physical processes that control NO formation in pulverized coal flames--particularly under low NO{sub x} conditions. A CO/H{sub 2}/O{sub 2}/N{sub 2} flame was operated under fuel-rich conditions in a flat flame reactor to provide a high temperature, oxygen-free post-flame environment to study secondary reactions of coal volatiles. Effects of temperature, residence time and coal rank on nitrogen evolution and soot formation were examined. Elemental compositions of the char, tar and soot were determined by elemental analysis, gas species distributions were determined using FTIR, and the chemical structure of the tar and soot was analyzed by solid-state {sup 13}C NMR spectroscopy. A laminar flow drop tube furnace was used to study char nitrogen conversion to NO. The experimental evidence and simulation results indicated that some of the nitrogen present in the char is converted to nitric oxide after direct attack of oxygen on the particle, while another portion of the nitrogen, present in more labile functionalities, is released as HCN and further reacts in the bulk gas. The reaction of HCN with NO in the bulk gas has a strong influence on the overall conversion of char-nitrogen to nitric oxide; therefore, any model that

  11. Subchronic oral toxicity in guinea pigs of soot from a polychlorinated biphenyl-containing transformer fire

    Energy Technology Data Exchange (ETDEWEB)

    DeCaprio, A.P.; McMartin, D.N.; Silkworth, J.B.; Rej, R.; Pause, R.; Kaminsky, L.S.

    1983-04-01

    The soot was determined to contain polychlorinated biphenyls, biphenylenes, dibenzodioxins, and dibenzofurans. The present study evaluates soot toxicity in guinea pigs receiving 0, 0.2, 1.9, 9.3, or 46.3 ppm soot in the feed for 90 days or 231.5 ppm for 32 days. At 231.5 ppm, body weight loss, thymic atrophy, bone marrow depletion, skeletal muscle and gastrointestinal tract epithelial degeneration, and fatty infiltration of hepatocytes were observed. Mortality had reached 35% by Day 32 (when survivors were killed), with total soot consumption of approximately 400 mg/kg. At 46.3 or 9.3 ppm soot, a reduced rate of body weight gain was observed, and at 46.3 ppm, the mortality by Day 90 was 30%. Relative (to body) thymus weights were decreased in both groups, while relative spleen weights were increased at 46.3 ppm soot only. Salivary gland interlobular duct squamous metaplasia and focal lacrimal gland adenitis were detected histopathologically, while bone marrow depletion was noted only in females at the higher dose. Diminished serum alanine aminotransferase (ALT) activity in both sexes and decreased serum sodium levels in male and potassium levels in female animals were detected at both dose levels. No effectse were noted in animals receiving 0.2 ppm soot for 90 days. Salivary gland duct metaplasia has not been previously reported. Toxic effects of this subchronic exposure were observed at lower total doses than with acute exposure, although variations in absorption due to the effects of different vehicles (aqueous in the acute study versus the feed in this study) could account for some or all of this difference.

  12. Cloud condensation nuclei and ice nucleation activity of hydrophobic and hydrophilic soot particles.

    Science.gov (United States)

    Koehler, Kirsten A; DeMott, Paul J; Kreidenweis, Sonia M; Popovicheva, Olga B; Petters, Markus D; Carrico, Christian M; Kireeva, Elena D; Khokhlova, Tatiana D; Shonija, Natalia K

    2009-09-28

    Cloud condensation nuclei (CCN) activity and ice nucleation behavior (for temperaturesactivity at or below water supersaturations required for wettable, insoluble particles (the Kelvin limit). TC1 soot particles, despite classification as hydrophilic, did not show CCN activity at or below the Kelvin limit. We attribute this result to the microporosity of this soot. In contrast, oxidized, non-porous, and hydrophilic TOS particles exhibited CCN activation at very near the Kelvin limit, with a small percentage of these particles CCN-active even at lower supersaturations. Due to containing a range of surface coverage of organic and inorganic hydrophilic and hygroscopic compounds, up to approximately 35% of hygroscopic AEC particles were active as CCN, with a small percentage of these particles CCN-active at lower supersaturations. In ice nucleation experiments below -40 degrees C, AEC particles nucleated ice near the expected condition for homogeneous freezing of water from aqueous solutions. In contrast, GTS, TS, and TC1 required relative humidity well in excess of water saturation at -40 degrees C for ice formation. GTS particles required water supersaturation conditions for ice activation even at -51 degrees C. At -51 to -57 degrees C, ice formation in particles with electrical mobility diameter of 200 nm occurred in up to 1 in 1000 TS and TC1 particles, and 1 in 100 TOS particles, at relative humidities below those required for homogeneous freezing in aqueous solutions. Our results suggest that heterogeneous ice nucleation is favored in cirrus conditions on oxidized hydrophilic soot of intermediate polarity. Simple considerations suggest that the impact of hydrophilic soot particles on cirrus cloud formation would be most likely in regions of elevated atmospheric soot number concentrations. The ice formation properties of AEC soot are reasonably consistent with present understanding of the conditions required for aircraft contrail formation and the proportion of

  13. Catalytic combustion of soot over Ru-doped mixed oxides catalysts

    Institute of Scientific and Technical Information of China (English)

    LF Nascimento; RF Martins; OA Serra

    2014-01-01

    We employed modified substrates as outer heterogeneous catalysts to reduce the soot originating from the incomplete die-sel combustion. Here, we proposed that ceria (CeO2)-based catalysts could lower the temperature at which soot combustion occurred from 610 ºC to values included in the operation range of diesel exhausts (270-400 ºC). Here, we used the sol-gel method to synthesize catalysts based on mixed oxides (ZnO:CeO2) deposited on cordierite substrates, and modified by ruthenium nanoparticles. The presence of ZnO in these mixed oxides produced defects associated with oxygen vacancies, improving thermal stability, redox potential, sulfur resistance, and oxygen storage. We evaluated the morphological and structural properties of the material by X-ray diffraction (XRD), Brumauer-emmett-teller method (BET), temperature programmed reduction (H2-TPR), scanning electron micros-copy (SEM), and transmission electron microscopy (TEM). We investigated how the addition of Ru (0.5 wt.%) affected the catalytic activity of ZnO:CeO2 in terms of soot combustion. Thermogravimetric analysis (TG/DTA) revealed that presence of the catalyst de-creased the soot combustion temperature by 250 ºC, indicating that the oxygen species arose at low temperatures, which was the main reason for the high reactivity of the oxidation reactions. Comparative analysis of soot emission by diffuse reflectance spectroscopy (DRS) showed that the catalyst containing Ru on the mixed oxide-impregnated cordierite samples efficiently oxidized soot in a diesel stationary motor:soot emission decreased 80%.

  14. On the radiative properties of soot aggregates part 1: Necking and overlapping

    International Nuclear Information System (INIS)

    There is a strong interest in accurately modelling the radiative properties of soot aggregates (also known as black carbon particles) emitted from combustion systems and fires to gain improved understanding of the role of black carbon to global warming. This study conducted a systematic investigation of the effects of overlapping and necking between neighbouring primary particles on the radiative properties of soot aggregates using the discrete dipole approximation. The degrees of overlapping and necking are quantified by the overlapping and necking parameters. Realistic soot aggregates were generated numerically by constructing overlapping and necking to fractal aggregates formed by point-touch primary particles simulated using a diffusion-limited cluster aggregation algorithm. Radiative properties (differential scattering, absorption, total scattering, specific extinction, asymmetry factor and single scattering albedo) were calculated using the experimentally measured soot refractive index over the spectral range of 266–1064 nm for 9 combinations of the overlapping and necking parameters. Overlapping and necking affect significantly the absorption and scattering properties of soot aggregates, especially in the near UV spectrum due to the enhanced multiple scattering effects within an aggregate. By using correctly modified aggregate properties (fractal dimension, prefactor, primary particle radius, and the number of primary particle) and by accounting for the effects of multiple scattering, the simple Rayleigh–Debye–Gans theory for fractal aggregates can reproduce reasonably accurate radiative properties of realistic soot aggregates. - Highlights: • We determine the radiative properties of realistic virtual soot aggregates. • We consider the primary sphere polydispersity, their necking and overlapping. • Scattering and absorption are decreased by considering these effects in the UV. • The single scattering albedo and asymmetry factor are also deeply

  15. Oxy-Combustion Boiler Material Development

    Energy Technology Data Exchange (ETDEWEB)

    Michael Gagliano; Andrew Seltzer; Hans Agarwal; Archie Robertson; Lun Wang

    2012-01-31

    Under U.S. Department of Energy Cooperative Agreement No. DE-NT0005262 Foster Wheeler North America Corp conducted a laboratory test program to determine the effect of oxy-combustion on boiler tube corrosion. In this program, CFD modeling was used to predict the gas compositions that will exist throughout and along the walls of air-fired and oxy-fired boilers operating with low to high sulfur coals. Test coupons of boiler tube materials were coated with deposits representative of those coals and exposed to the CFD predicted flue gases for up to 1000 hours. The tests were conducted in electric tube furnaces using oxy-combustion and air-fired flue gases synthesized from pressurized cylinders. Following exposure, the test coupons were evaluated to determine the total metal wastage experienced under air and oxy-combustions conditions and materials recommendations were made. Similar to air-fired operation, oxy-combustion corrosion rates were found to vary with the boiler material, test temperature, deposit composition, and gas composition. Despite this, comparison of air-fired and oxy-fired corrosion rates showed that oxy-firing rates were, for the most part, similar to, if not lower than those of air-firing; this finding applied to the seven furnace waterwall materials (wrought and weld overlay) and the ten superheater/reheater materials (wrought and weld overlay) that were tested. The results of the laboratory oxy-combustion tests, which are based on a maximum bulk flue gas SO{sub 2} level of 3200 ppmv (wet) / 4050 ppmv (dry), suggest that, from a corrosion standpoint, the materials used in conventional subcritical and supercritical, air-fired boilers should also be suitable for oxy-combustion retrofits. Although the laboratory test results are encouraging, they are only the first step of a material evaluation process and it is recommended that follow-on corrosion tests be conducted in coal-fired boilers operating under oxy-combustion to provide longer term (one to

  16. Oxy-Combustion Boiler Material Development

    Energy Technology Data Exchange (ETDEWEB)

    Gagliano, Michael; Seltzer, Andrew; Agarwal, Hans; Robertson, Archie; Wang, Lun

    2012-01-31

    Under U.S. Department of Energy Cooperative Agreement No. DE-NT0005262 Foster Wheeler North America Corp conducted a laboratory test program to determine the effect of oxy-combustion on boiler tube corrosion. In this program, CFD modeling was used to predict the gas compositions that will exist throughout and along the walls of air-fired and oxy-fired boilers operating with low to high sulfur coals. Test coupons of boiler tube materials were coated with deposits representative of those coals and exposed to the CFD predicted flue gases for up to 1000 hours. The tests were conducted in electric tube furnaces using oxy-combustion and air-fired flue gases synthesized from pressurized cylinders. Following exposure, the test coupons were evaluated to determine the total metal wastage experienced under air and oxy-combustions conditions and materials recommendations were made. Similar to air-fired operation, oxy-combustion corrosion rates were found to vary with the boiler material, test temperature, deposit composition, and gas composition. Despite this, comparison of air-fired and oxy-fired corrosion rates showed that oxy-firing rates were, for the most part, similar to, if not lower than those of air-firing; this finding applied to the seven furnace waterwall materials (wrought and weld overlay) and the ten superheater/reheater materials (wrought and weld overlay) that were tested. The results of the laboratory oxy-combustion tests, which are based on a maximum bulk flue gas SO2 level of 3200 ppmv (wet) / 4050 ppmv (dry), suggest that, from a corrosion standpoint, the materials used in conventional subcritical and supercritical, air-fired boilers should also be suitable for oxy-combustion retrofits. Although the laboratory test results are encouraging, they are only the first step of a material evaluation process and it is recommended that follow-on corrosion tests be conducted in coal-fired boilers operating under oxy-combustion to provide longer term (one to two year

  17. Guide to Low-Emission Boiler and Combustion Equipment Selection

    Energy Technology Data Exchange (ETDEWEB)

    Oland, CB

    2002-05-06

    Boiler owners and operators who need additional generating capacity face a number of legal, political, environmental, economic, and technical challenges. Their key to success requires selection of an adequately sized low-emission boiler and combustion equipment that can be operated in compliance with emission standards established by state and federal regulatory agencies. Recognizing that many issues are involved in making informed selection decisions, the U.S. Department of Energy (DOE), Office of Industrial Technologies (OIT) sponsored efforts at the Oak Ridge National Laboratory (ORNL) to develop a guide for use in choosing low-emission boilers and combustion equipment. To ensure that the guide covers a broad range of technical and regulatory issues of particular interest to the commercial boiler industry, the guide was developed in cooperation with the American Boiler Manufacturers Association (ABMA), the Council of Industrial Boiler Owners (CIBO), and the U.S. Environmental Protection Agency (EPA). The guide presents topics pertaining to industrial, commercial, and institutional (ICI) boilers. Background information about various types of commercially available boilers is provided along with discussions about the fuels that they burn and the emissions that they produce. Also included are discussions about emissions standards and compliance issues, technical details related to emissions control techniques, and other important selection considerations. Although information in the guide is primarily applicable to new ICI boilers, it may also apply to existing boiler installations.

  18. Mixing state of regionally transported soot particles and the coating effect on their size and shape at a mountain site in Japan

    Science.gov (United States)

    Adachi, Kouji; Zaizen, Yuji; Kajino, Mizuo; Igarashi, Yasuhito

    2014-05-01

    Soot particles influence the global climate through interactions with sunlight. A coating on soot particles increases their light absorption by increasing their absorption cross section and cloud condensation nuclei activity when mixed with other hygroscopic aerosol components. Therefore, it is important to understand how soot internally mixes with other materials to accurately simulate its effects in climate models. In this study, we used a transmission electron microscope (TEM) with an auto particle analysis system, which enables more particles to be analyzed than a conventional TEM. Using the TEM, soot particle size and shape (shape factor) were determined with and without coating from samples collected at a remote mountain site in Japan. The results indicate that ~10% of aerosol particles between 60 and 350 nm in aerodynamic diameters contain or consist of soot particles and ~75% of soot particles were internally mixed with nonvolatile ammonium sulfate or other materials. In contrast to an assumption that coatings change soot shape, both internally and externally mixed soot particles had similar shape and size distributions. Larger aerosol particles had higher soot mixing ratios, i.e., more than 40% of aerosol particles with diameters >1 µm had soot inclusions, whereas <20% of aerosol particles with diameters <1 µm included soot. Our results suggest that climate models may use the same size distributions and shapes for both internally and externally mixed soot; however, changing the soot mixing ratios in the different aerosol size bins is necessary.

  19. Characterization of Air Plane Soot Surrogates using Raman spectroscopy and laser ablation techniques

    Science.gov (United States)

    Chazallon, Bertrand; Ortega, Ismael Kenneth; Ikhenazene, Raouf; Pirim, Claire; Carpentier, Yvain; Irimiea, Cornelia; Focsa, Cristian; Ouf, François-Xavier

    2016-04-01

    Aviation alters the composition of the atmosphere globally and can thus drive climate change and ozone depletion [1]. Aircraft exhaust plumes contain species (gases and soot particles) produced by the combustion of kerosene with ambient air in the combustion chamber of the engine. Soot particles emitted by air-planes produce persistent contrails in the upper troposphere in ice-supersaturated air masses that contribute to cloudiness and impact the radiative properties of the atmosphere. These aerosol-cloud interactions represent one of the largest sources of uncertainty in global climate models [2]. Though the formation of atmospheric ice particles has been studied for many years [3], there are still numerous opened questions on nucleation properties of soot particles [4], as the ice nucleation experiments showed a large spread in results depending on the nucleation mode chosen and origin of the soot produced. The reasons behind these discrepancies reside in the different physico-chemical properties (composition, structure) of soot particles produced in different conditions, e.g., with respect to fuel or combustion techniques. In this work, we use Raman microscopy (514 and 785 nm excitation wavelengths) and ablation techniques (Secondary Ions Mass Spectrometry, and Laser Desorption Mass Spectrometry) to characterize soot particle surrogates produced from a CAST generator (propane fuel, four different global equivalence ratios). They are produced as analogues of air-plane soot collected at different engine regimes (PowerJet SaM-146 turbofan) simulating a landing and take-off (LTO) cycle (MERMOSE project (http://mermose.onera.fr/)) [6]. The spectral parameters of the first-order Raman bands of these soot samples are analyzed using a de-convolution approach described by Sadezky et al. (2005) [5]. A systematic Raman analysis is carried out to select a number of parameters (laser wavelength, irradiance at sample, exposure time) that will alter the sample and the

  20. Cloud droplet activity changes of soot aerosol upon smog chamber ageing

    Directory of Open Access Journals (Sweden)

    C. Wittbom

    2014-04-01

    Full Text Available Particles containing soot, or black carbon, are generally considered to contribute to global warming. However, large uncertainties remain in the net climate forcing resulting from anthropogenic emissions of black carbon (BC, to a large extent due to the fact that BC is co-emitted with gases and primary particles, both organic and inorganic, and subject to atmospheric ageing processes. In this study, diesel exhaust particles and particles from a flame soot generator spiked with light aromatic secondary organic aerosol (SOA precursors were processed by UV-radiation in a 6 m3 Teflon chamber in the presence of NOx. The time-dependent changes of the soot nanoparticle properties were characterised using a Cloud Condensation Nuclei Counter, an Aerosol Particle Mass Analyzer and a Soot Particle Aerosol Mass Spectrometer. The results show that freshly emitted soot particles do not activate into cloud droplets at supersaturations ≤ 2%, i.e. the black carbon core coated with primary organic aerosol (POA from the exhaust is limited in hygroscopicity. Before the onset of UV radiation it is unlikely that any substantial SOA formation is taking place. An immediate change in cloud-activation properties occurs at the onset of UV exposure. This change in hygroscopicity is likely attributed to SOA formed from intermediate volatile organic compounds (IVOC in the diesel engine exhaust. The change of cloud condensation nuclei (CCN properties at the onset of UV radiation implies that the lifetime of soot particles in the atmosphere is affected by the access to sunlight, which differs between latitudes. The ageing of soot particles progressively enhances their ability to act as cloud condensation nuclei, due to changes in: (I organic fraction of the particle, (II chemical properties of this fraction (POA or SOA, (III particle size, and (IV particle morphology. Applying κ-Köhler theory, using a κSOA value of 0.13 (derived from independent input parameters

  1. Insights on postinjection-associated soot emissions in direct injection diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Arregle, Jean; Pastor, Jose V.; Lopez, J. Javier; Garcia, Antonio [CMT-Motores Termicos, Universidad Politecnica de Valencia, Camino de Vera, s/n 46022, Valencia (Spain)

    2008-08-15

    A comprehensive study was carried out in order to better understand combustion behavior in a direct injection diesel engine when using postinjections. More specifically, the aim of the study is twofold: (1) to better understand the mechanism of a postinjection to reduce soot and (2) to improve the understanding of the contribution of the postinjection combustion on the total soot emissions by looking at the effect of the postinjection timing variation and the postinjection mass variation on the soot emissions associated with the postinjection. The study is focused only on far postinjections, and the explored operating conditions include the use of EGR. The first objective was fulfilled analyzing some results from a previous work adding only a few complementary results. Concerning the second objective, the basic idea behind the analysis performed is the search of appropriate parameters physically linked to the processes under analysis. These parameters are found based on the state-of-the-art of diesel combustion. For the effect of the postinjection timing, the physical parameter found was the temperature of the unburned gases at the end of injection, T{sub ug{sub E}}{sub oI}. It was checked that a threshold level of T{sub ug{sub E}}{sub oI} ({proportional_to}700 K for the cases explored here) exists below which soot is unable to be formed, independently of the postinjection size, and the amount of soot increases as the temperature increases beyond this threshold. For the effect of the postinjection size, the physical parameter that was found was DoI/ACT (the ratio between the actual duration of injection and the time necessary for mixing - the apparent combustion time). This parameter can quantify when the postinjection is able to produce soot (the threshold value is {proportional_to}0.37 for the cases explored here), and the amount of soot produced increases as this parameter increases beyond this threshold value. A function containing these two parameters has been

  2. Structural effects on the oxidation of soot particles by O2: Experimental and theoretical study

    KAUST Repository

    Raj, Abhijeet

    2013-09-01

    Soot particles are composed of polycyclic aromatic hydrocarbons (PAHs), which have either planar or curved structures. The oxidation behaviors of soot particles differ depending on their structures, arrangement of PAHs, and the type of surface functional groups. The oxidation rate of curved PAHs in soot is thought to be higher than that of planar ones. To understand the role that PAH structure plays in soot reactivity towards O2, experimental studies are conducted on two types of commercially produced soot, Printex-U and Fullerene soot, using high resolution transmission electron microscopy, electron energy loss spectroscopy, thermo-gravimetric analysis and elemental analysis. The relative concentrations of active sites, oxygenated functional groups, aliphatics and aromatics present in soots are evaluated. The activation energies for soot oxidation at different conversion levels are determined. The average activation energies of the two soots are found to differ by 26kJ/mol. To understand the reason for this difference, quantum calculations using density functional (B3LYP) and Hartree-Fock theories are conducted to study the reaction pathways of the oxidation by O2 of planar and curved PAHs using 4-pyrenyl and 1-corannulenyl as their model molecules, respectively. The energetically preferred channels for curved PAH oxidation differ from the planar one. The addition of O2 on a radical site of a six-membered ring to form a peroxyl radical is found to be barrierless for both the model PAHs. For peroxyl decomposition, three pathways are suggested, each of which involve the activation energies of 108, 170 and 121kJ/mol to form stable molecules in the case of planar PAH, and 94, 155 and 125kJ/mol in the case of curved PAH. During the oxidation of a five-membered ring, to form stable molecules, the activation energies of 90kJ/mol for the curved PAH and 169kJ/mol for the planar PAH relative to the energy of the peroxyl radical are required. The low activation barriers of

  3. Molecular characterization of organic content of soot along the centerline of a coflow diffusion flame.

    Science.gov (United States)

    Cain, Jeremy; Laskin, Alexander; Kholghy, Mohammad Reza; Thomson, Murray J; Wang, Hai

    2014-12-21

    High-resolution mass spectrometry coupled with nanospray desorption electrospray ionization was used to probe chemical constituents of young soot particles sampled along the centerline of a coflow diffusion flame of a three-component Jet-A1 surrogate. In lower positions where particles are transparent to light extinction (λ = 632.8 nm), peri-condensed polycyclic aromatic hydrocarbons (PAHs) are found to be the major components of the particle material. These particles become enriched with aliphatic components as they grow in mass and size. Before carbonization occurs, the constituent species in young soot particles are aliphatic and aromatic compounds 200-600 amu in mass, some of which are oxygenated. Particles dominated by PAHs or mixtures of PAHs and aliphatics can exhibit liquid-like appearance observed by electron microscopy and be transparent to visible light. The variations in chemical composition observed here indicate that the molecular processes of soot formation in coflow diffusion flames may be more complex than previously thought. For example, the mass growth and enrichment of aliphatic components in an initial mostly aromatic structure region of the flame that is absent of H atoms or other free radicals indicates that there must exist at least another mechanism of soot mass growth in addition to the hydrogen abstraction-carbon addition mechanism currently considered in fundamental models of soot formation. PMID:25354231

  4. Sensing the soot load in automotive diesel particulate filters by microwave methods

    International Nuclear Information System (INIS)

    Modern vehicles with diesel engines need to be equipped with particulate filters (DPFs) to meet today's and tomorrow's stringent emission regulations. Such filters must be regenerated on a regular basis to burn off the soot adsorbed in the course of time. As the regeneration processes consume fuel, they must be kept to the bare minimum which requires a detailed knowledge of the actual soot load in the filter. We have investigated if the soot load can be determined in situ by the cavity perturbation method at operating frequencies in the low GHz range. We will show that, indeed, current microwave technology as used, for instance, in cellular phones is capable of detecting the soot load in a diesel particulate filter. Experimentally observed sensitivities of cavity resonance frequencies to soot load (adsorbed mass) were as high as 3 MHz g−1. This contribution reports on the measurement approach, experimental results obtained in industrial dynamometer test benches and the conclusions to be drawn from the results

  5. Comparison of the tribology performance of nano-diesel soot and graphite particles as lubricant additives

    International Nuclear Information System (INIS)

    The tribology behavior of exhaust diesel soot as a lubricant additive was investigated and then compared with that of a selection of commercial nano-graphite particles. Specifically, 0.01 wt% particles were dispersed in PAO4 oil with 1 wt% sorbitan monooleate (Span 80) as a dispersing agent, and wear tests based on the ball against plate mode were conducted at various temperatures. Different analytical techniques (e.g. transmission electron, scanning electron and infrared microscopy; energy dispersive x-ray and Raman spectroscopy; and charge measurement) were employed to characterize the chemistry and morphology of the additives and their tribology performance. The oil containing only 0.01 wt% diesel soot clearly improved wear resistance over 60 °C. In particular, at 100 °C the wear rate decreased by approximately 90% compared to the function of base oil. In the same test conditions, diesel soot exhibited better anti-wear performance than nano-graphite at high temperatures. The potential measure showed that the nano-graphite had positive charge and the diesel soot had negative charge. Electrochemical action may play an important role in the lubricant mechanisms of diesel soot and graphite as oil additives. (paper)

  6. Comparison of the tribology performance of nano-diesel soot and graphite particles as lubricant additives

    Science.gov (United States)

    Zhang, Zu-chuan; Cai, Zhen-bing; Peng, Jin-fang; Zhu, Min-hao

    2016-02-01

    The tribology behavior of exhaust diesel soot as a lubricant additive was investigated and then compared with that of a selection of commercial nano-graphite particles. Specifically, 0.01 wt% particles were dispersed in PAO4 oil with 1 wt% sorbitan monooleate (Span 80) as a dispersing agent, and wear tests based on the ball against plate mode were conducted at various temperatures. Different analytical techniques (e.g. transmission electron, scanning electron and infrared microscopy; energy dispersive x-ray and Raman spectroscopy; and charge measurement) were employed to characterize the chemistry and morphology of the additives and their tribology performance. The oil containing only 0.01 wt% diesel soot clearly improved wear resistance over 60 °C. In particular, at 100 °C the wear rate decreased by approximately 90% compared to the function of base oil. In the same test conditions, diesel soot exhibited better anti-wear performance than nano-graphite at high temperatures. The potential measure showed that the nano-graphite had positive charge and the diesel soot had negative charge. Electrochemical action may play an important role in the lubricant mechanisms of diesel soot and graphite as oil additives.

  7. Measurements of the mass absorption cross section of atmospheric soot particles using Raman spectroscopy

    Science.gov (United States)

    Nordmann, S.; Birmili, W.; Weinhold, K.; Müller, K.; Spindler, G.; Wiedensohler, A.

    2013-11-01

    Soot particles are a major absorber of shortwave radiation in the atmosphere. The mass absorption cross section is an essential quantity to describe this light absorption process. This work presents new experimental data on the mass absorption cross section of soot particles in the troposphere over Central Europe. Mass absorption cross sections were derived as the ratio between the light absorption coefficient determined by multiangle absorption photometry (MAAP) and the soot mass concentration determined by Raman spectroscopy. The Raman method is sensitive to graphitic structures present in the particle samples and was calibrated in the laboratory using Printex®90 model particles. Mass absorption cross sections were determined for a number of seven observation sites, ranging between 3.9 and 7.4 m2 g-1depending on measurement site and observational period. The highest values were found in a continentally aged air mass in winter, where soot particles were assumed to be mainly internally mixed. Our values are in the lower range of previously reported values, possibly due to instrumental differences to the former photometer and mass measurements. Overall, a value of 5.3m2 g-1from orthogonal regression over all samples is considered to be representative for the soot mass absorption cross section in the troposphere over Central Europe.

  8. Molecular Characterization of Organic Content of Soot along the Centerline of a Coflow Diffusion Flame

    Energy Technology Data Exchange (ETDEWEB)

    Cain, Jeremy P.; Laskin, Alexander; Kholghy, Mohammad Reza; Thomson, Murray; Wang, Hai

    2014-10-29

    High-resolution mass spectrometry coupled with nanospray desorption electrospray ionization was used to probe chemical constituents of young soot particles sampled along the centerline of a coflow diffusion flame of a three-component Jet-A1 surrogate. In lower positions where particles are transparent to light extinction (n= 632.8 nm), peri-condensed polycyclic aromatic hydrocarbons (PAHs) are found to be the major components of the particle material. These particles become enriched with aliphatic components as they grow in mass and size. Before carbonization occurs, the constituent species in young soot particles are aliphatic and aromatic compounds 200-600 amu in mass, some of which are oxygenated. Particles dominated by PAHs or mixtures of PAHs and aliphatics can both exhibit liquid-like appearance observed by electron microscopy and be transparent to visible light. The variations in chemical composition observed here indicate that the molecular processes of soot formation in coflow diffusion flames may be more complex than previously thought. For example, the mass growth and enrichment of aliphatic components in an initially, mostly aromatic structure region of the flame that is absent of H atoms or other free radicals indicates that there must exist at least another mechanism of soot mass growth in addition to the hydrogen-abstraction-carbon addition mechanism currently considered in fundamental models of soot formation.

  9. Effects of diluents on soot surface temperature and volume fraction in diluted ethylene diffusion flames at pressure

    KAUST Repository

    Kailasanathan, Ranjith Kumar Abhinavam

    2014-05-20

    Soot surface temperature and volume fraction are measured in ethylene/air coflowing laminar diffusion flames at high pressures, diluted with one of four diluents (argon, helium, nitrogen, and carbon dioxide) using a two-color technique. Both temperature and soot measurements presented are line-of-sight averages. The results aid in understanding the kinetic and thermodynamic behavior of the soot formation and oxidation chemistry with changes in diluents, ultimately leading to possible methods of reducing soot emission from practical combustion hardware. The diluted fuel and coflow exit velocities (top-hat profiles) were matched at all pressures to minimize shear effects. In addition to the velocity-matched flow rates, the mass fluxes were held constant for all pressures. Addition of a diluent has a pronounced effect on both the soot surface temperature and volume fraction, with the helium diluted flame yielding the maximum and carbon dioxide diluted flame yielding minimum soot surface temperature and volume fraction. At low pressures, peak soot volume fraction exists at the tip of the flame, and with an increase in pressure, the location shifts lower to the wings of the flame. Due to the very high diffusivity of helium, significantly higher temperature and volume fraction are measured and explained. Carbon dioxide has the most dramatic soot suppression effect. By comparing the soot yield with previously measured soot precursor concentrations in the same flame, it is clear that the lower soot yield is a result of enhanced oxidation rates rather than a reduction in precursor formation. Copyright © 2014 Taylor & Francis Group, LLC.

  10. Recovery boiler model; Soodakattilan kehitystyoe III

    Energy Technology Data Exchange (ETDEWEB)

    Janka, K.; Ylitalo, M.; Sundstroem, K.; Helke, R.; Heinola, M. [Kvaerner Pulping Oy, Tampere (Finland)

    1997-10-01

    The recovery boiler model was further tested and developed. At this moment the model includes submodels for: droplet drying, pyrolysis, char burning, gas burning and for droplet trajectory. During 1996 the formation of CH{sub 4} during pyrolysis and release of sulfur was included to the model. Further the formation of NO from fuel nitrogen and formation of thermal- NO were included to the model using Arrhenius type reaction rate equations. The calculated results are realistic and the model is used as a tool to find out methods to increase the efficiency and availability and decrease the emissions. Analysing the results of the earlier field study of 8 boilers showed that the furnace heat load, fuming rate, find the black liquor composition have influence on the enrichment of the potassium to the fly ash. (orig.)

  11. Circulating fluidized bed boilers design and operations

    CERN Document Server

    Basu, Prabir

    1991-01-01

    This book provides practicing engineers and students with insight into the design and operation of circulating fluidized bed (CFB) boilers. Through a combination of theoretical concepts and practical experience, this book gives the reader a basic understanding of the many aspects of this subject.Important environmental considerations, including solid waste disposal and predicted emissions, are addressed individually in separate chapters. This book places an emphasis on combustion, hydrodynamics, heat transfer, and material issues, and illustrates these concepts with numerous examples of pres

  12. Particulate emission abatement for Krakow boiler houses

    Energy Technology Data Exchange (ETDEWEB)

    Wysk, R.

    1995-12-31

    Among the many strategies for improving air quality in Krakow, one possible method is to adapt new and improved emission control technology. This project focuses on such a strategy. In order to reduce dust emissions from coal-fueled boilers, a new device called a Core Separator has been introduced in several boiler house applications. This advanced technology has been successfully demonstrated in Poland and several commercial units are now in operation. Particulate emissions from the Core Separator are typically 3 to 5 times lower than those from the best cyclone collectors. It can easily meet the new standard for dust emissions which will be in effect in Poland after 1997. The Core Separator is a completely inertial collector and is based on a unique recirculation method. It can effectively remove dust particles below 10 microns in diameter, the so-called PM-10 emissions. Its performance approaches that of fabric filters, but without the attendant cost and maintenance. It is well-suited to the industrial size boilers located in Krakow. Core Separators are now being marketed and sold by EcoInstal, one of the leading environmental firms in Poland, through a cooperative agreement with LSR Technologies.

  13. Optimised control of coal-fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    Owens, D.H.; MacConnell, P.F.A.; Neuffer, D.; Dando, R. [University of Exeter, Exeter (United Kingdom). Centre for System and Control Engineering

    1997-07-01

    The objective of the project is to develop and specify a control methodology that will enable existing coal combustion plant to take maximum advantage of modern control techniques. The research is specifically aimed at chain-grate stoker plant (such as the test facility at the Coal Research Establishment, Cheltenham) on which little work has been done for thirty years yet which still represents a large proportion of industrial coal-fired plant in operation worldwide. In detail, the project: reviewed existing control strategies for moving grate stokers, highlighting their limitations and areas for improvements; carried out plant trials to identify the system characteristics such as response time and input/output behaviour; developed a theoretical process based on physical and chemical laws and backed up by trial data; specified control strategies for a single boiler; simulated and evaluated the control strategies using model simulations; developed of an optimised. Control strategy for a single boiler; and assessed the applicability and effects of this control strategy on multiple boiler installations. 67 refs., 34 figs.

  14. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    R. Viswanathan; K. Coleman; R.W. Swindeman; J. Sarver; J. Blough; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2003-10-20

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

  15. Life extension of boilers using weld overlay protection

    Energy Technology Data Exchange (ETDEWEB)

    Lai, G.; Hulsizer, P. [Welding Services Inc., Norcross, GA (United States); Brooks, R. [Welding Services Inc., Welding Services Europe, Spijkenisse (Netherlands)

    1998-12-31

    The presentation describes the status of modern weld overlay technology for refurbishment, upgrading and life extension of boilers. The approaches to life extension of boilers include field overlay application, shop-fabricated panels for replacement of the worn, corroded waterwall and shop-fabricated overlay tubing for replacement of individual tubes in superheaters, generating banks and other areas. The characteristics of weld overlay products are briefly described. Also discussed are successful applications of various corrosion-resistant overlays for life extension of boiler tubes in waste-to-energy boilers, coal-fired boilers and chemical recovery boilers. Types of corrosion and selection of weld overlay alloys in these systems are also discussed. (orig.) 14 refs.

  16. R&D and Demonstration of Large Domestic CFB Boilers

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ In order to develop large CFB boilers with independent intellectual property,Xi'an Thermal Power Research Institute (TPRI) established a laboratory with complete functions for the technical development of CFB boilers.This laboratory consists ofa 1-MW and a 4-MW CFB combustion test facilities and a laboratory for limestone desulphurization performance evaluation.It carried out tests on CFB combustion and desulphurization for Chinese typical coals and limestone and research on heat-transfer characteristics and key parts,and developed the first home-made 100-MW CFB boiler.Based on the experience of R&D,the laboratory further researched key techniques for enlarging capacity systematically,and cooperating with Harbin Boiler Co.(HBC),developed the first domestic 210-MW CFB boiler with independent intellectual property and put it into engineering demonstration,laying a solid foundation for the development of CFB boilers of even larger capacity.

  17. Behavioral study solar boilers 1994. Summary. Part 2 (households)

    International Nuclear Information System (INIS)

    The aim of the Dutch national solar boiler campaign of NOVEM and Holland Solar is to realize the installation of 300,000 solar boilers in the Netherlands in the year 2010. In 1995 10,000 boilers were installed. More knowledge of the decision making process and the backgrounds and motives of (potential) buyers is required. From September 1994 to March 1995 a survey has been carried out of the decision making processes in households and housing corporations. The most important results, conclusions and recommendations of the survey are summarized in this report. The parameters that can influence the decision whether to purchase a solar boiler or not are knowledge about the solar boiler, the attitude towards the solar boiler and towards the use of energy and the environment, risk perception, social aspects, information retrieval behavior, constraints, and socio-economic aspects. 44 tabs

  18. Modelling, simulating and optimizing boiler heating surfaces and evaporator circuits

    DEFF Research Database (Denmark)

    Sørensen, Kim; Condra, Thomas Joseph; Houbak, Niels

    2003-01-01

    . The dynamic model has been developed for the purpose of determining boiler material temperatures and heat transfer from the ue gas side to the water-/steam side in order to simulate the circulation in the evaporator circuit and hereby the water level uctuations in the drum. The dynamic model has been......A model for optimizing the dynamic performance of boiler have been developed. Design variables related to the size of the boiler and its dynamic performance have been dened. The object function to be optimized takes the weight of the boiler and its dynamic capability into account. As constraints...... for the optimization a dynamic model for the boiler is applied. Furthermore a function for the value of the dynamic performance is included in the model. The dynamic models for simulating boiler performance consists of a model for the ue gas side, a model for the evaporator circuit and a model for the drum...

  19. Modelling, simulating and optimizing boiler heating surfaces and evaporator circuits

    DEFF Research Database (Denmark)

    Sørensen, K.; Condra, T.; Houbak, Niels

    2003-01-01

    . The dynamic model has been developed for the purpose of determining boiler material temperatures and heat transfer from the flue gas side to the water-/steam side in order to simulate the circulation in the evaporator circuit and hereby the water level fluctuations in the drum. The dynamic model has been......A model for optimizing the dynamic performance of boiler have been developed. Design variables related to the size of the boiler and its dynamic performance have been defined. The object function to be optimized takes the weight of the boiler and its dynamic capability into account. As constraints...... for the optimization a dynamic model for the boiler is applied. Furthermore a function for the value of the dynamic performance is included in the model. The dynamic models for simulating boiler performance consists of a model for the flue gas side, a model for the evaporator circuit and a model for the drum...

  20. Field Test of Boiler Primary Loop Temperature Controller

    Energy Technology Data Exchange (ETDEWEB)

    Glanville, P. [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Rowley, P. [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Schroeder, D. [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Brand, L. [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States)

    2014-09-01

    Beyond these initial system efficiency upgrades are an emerging class of Advanced Load Monitoring (ALM) aftermarket controllers that dynamically respond to the boiler load, with claims of 10% to 30% of fuel savings over a heating season. For hydronic boilers specifically, these devices perform load monitoring, with continuous measurement of supply and, in some cases, return water temperatures. Energy savings from these ALM controllers are derived from dynamic management of the boiler differential, where a microprocessor with memory of past boiler cycles prevents the boiler from firing for a period of time, to limit cycling losses and inefficient operation during perceived low load conditions. These differ from OTR controllers, which vary boiler setpoint temperatures with ambient conditions while maintaining a fixed differential.

  1. A Rule-Based Industrial Boiler Selection System

    Science.gov (United States)

    Tan, C. F.; Khalil, S. N.; Karjanto, J.; Tee, B. T.; Wahidin, L. S.; Chen, W.; Rauterberg, G. W. M.; Sivarao, S.; Lim, T. L.

    2015-09-01

    Boiler is a device used for generating the steam for power generation, process use or heating, and hot water for heating purposes. Steam boiler consists of the containing vessel and convection heating surfaces only, whereas a steam generator covers the whole unit, encompassing water wall tubes, super heaters, air heaters and economizers. The selection of the boiler is very important to the industry for conducting the operation system successfully. The selection criteria are based on rule based expert system and multi-criteria weighted average method. The developed system consists of Knowledge Acquisition Module, Boiler Selection Module, User Interface Module and Help Module. The system capable of selecting the suitable boiler based on criteria weighted. The main benefits from using the system is to reduce the complexity in the decision making for selecting the most appropriate boiler to palm oil process plant.

  2. Health effects of combustion-generated soot and polycyclic aromatic hydrocarbons. Progress report, May 1, 1979-April 30, 1980. [Lead abstract

    Energy Technology Data Exchange (ETDEWEB)

    Thilly, W. G.

    1980-05-01

    Mutagen studies on soot and soot components are reported in aspects dealing from quantitative chemical analyses of samples and mutagenesis of cells and microorganisms exposed to mutagens, to bioassay developments and techniques. Several polycyclic aromatic hydrocarbons are characterized and discussed.

  3. Fuel to the nuclear debate : [Rezension von:] Nuclear power in crisis, Andrew Blowers and David Pepper (editors), New York, Nichols; London ..., Croom Helm, 1987

    OpenAIRE

    Renn, Ortwin

    1988-01-01

    Nuclear energy is one of the most popular topics of today’s publication market. The literature about the pros and cons of nuclear power may easily fill a whole library. Is there anything new to add to this voluminous body of arguments and contra-arguments that would justify editing another book on nuclear energy? Andrew Blowers and David Pepper obviously felt that way and published a reader on Nuclear Power in Crisis. The book consists of 13 articles covering mainly the political, social and ...

  4. 降低罗茨风机噪声的消声器研制%The noise depressing measures for Roots blower

    Institute of Scientific and Technical Information of China (English)

    程勒

    2001-01-01

    论述了自制消声器的设计计算及制造方法,举例说明这种降低罗茨风机噪声措施取得的明显效果,以及在石化企业中的应用。%The noise depressing measures for Roots blower,design,calculation and fabrication of the muffler are described.It shows that the m easures obtain obvious effect and can be applied in oil chemical plant.

  5. Candle soot-based super-amphiphobic coatings resist protein adsorption.

    Science.gov (United States)

    Schmüser, Lars; Encinas, Noemi; Paven, Maxime; Graham, Daniel J; Castner, David G; Vollmer, Doris; Butt, Hans Jürgen; Weidner, Tobias

    2016-01-01

    Super nonfouling surfaces resist protein adhesion and have a broad field of possible applications in implant technology, drug delivery, blood compatible materials, biosensors, and marine coatings. A promising route toward nonfouling surfaces involves liquid repelling architectures. The authors here show that soot-templated super-amphiphobic (SAP) surfaces prepared from fluorinated candle soot structures are super nonfouling. When exposed to bovine serum albumin or blood serum, x-ray photoelectron spectroscopy and time of flight secondary ion mass spectrometry analysis showed that less than 2 ng/cm(2) of protein was adsorbed onto the SAP surfaces. Since a broad variety of substrate shapes can be coated by soot-templated SAP surfaces, those are a promising route toward biocompatible materials design. PMID:27460261

  6. Numerical investigation of the effect of signal trapping on soot measurements using LII in laminar coflow diffusion flames

    Science.gov (United States)

    Liu, F.; Thomson, K. A.; Smallwood, G. J.

    2009-09-01

    Laser-induced incandescence has been rapidly developed into a powerful diagnostic technique for measurements of soot in many applications. The incandescence intensity generated by laser-heated soot particles at the measurement location suffers the signal trapping effect caused by absorption and scattering by soot particles present between the measurement location and the detector. The signal trapping effect was numerically investigated in soot measurements using both a 2D LII setup and the corresponding point LII setup at detection wavelengths of 400 and 780 nm in a laminar coflow ethylene/air flame. The radiative properties of aggregated soot particles were calculated using the Rayleigh-Debye-Gans polydisperse fractal aggregate theory. The radiative transfer equation in emitting, absorbing, and scattering media was solved using the discrete-ordinates method. The radiation intensity along an arbitrary direction was obtained using the infinitely small weight technique. The contribution of scattering to signal trapping was found to be negligible in atmospheric laminar diffusion flames. When uncorrected LII intensities are used to determine soot particle temperature and the soot volume fraction, the errors are smaller in 2D LII setup where soot particles are excited by a laser sheet. The simple Beer-Lambert exponential attenuation relationship holds in LII applications to axisymmetric flames as long as the effective extinction coefficient is adequately defined.

  7. X-ray scattering and spectroscopy studies on diesel soot from oxygenated fuel under various engine load conditions

    Science.gov (United States)

    Braun, Andreas; Shah, N.; Huggins, Frank E.; Kelly, K.E.; Sarofim, A.; Jacobsen, C.; Wirick, S.; Francis, H.; Ilavsky, J.; Thomas, G.E.; Huffman, G.P.

    2005-01-01

    Diesel soot from reference diesel fuel and oxygenated fuel under idle and load engine conditions was investigated with X-ray scattering and X-ray carbon K-edge absorption spectroscopy. Up to five characteristic size ranges were found. Idle soot was generally found to have larger primary particles and aggregates but smaller crystallites, than load soot. Load soot has a higher degree of crystallinity than idle soot. Adding oxygenates to diesel fuel enhanced differences in the characteristics of diesel soot, or even reversed them. Aromaticity of idle soot from oxygenated diesel fuel was significantly larger than from the corresponding load soot. Carbon near-edge X-ray absorption fine structure (NEXAFS) spectroscopy was applied to gather information about the presence of relative amounts of carbon double bonds (CC, CO) and carbon single bonds (C-H, C-OH, COOH). Using scanning X-ray transmission microspectroscopy (STXM), the relative amounts of these carbon bond states were shown to vary spatially over distances approximately 50 to 100 nm. The results from the X-ray techniques are supported by thermo-gravimetry analysis and high-resolution transmission electron microscopy. ?? 2005 Elsevier Ltd. All rights reserved.

  8. The behavior of ash species in suspension fired biomass boilers

    OpenAIRE

    Jensen, Peter Arendt

    2015-01-01

    While fluid bed and grate fired boilers initially was the choice of boilers used for power production from both wood and herbaceous biomass, in recent years suspension fired boilers have been increasingly used for biomass based power production. In Denmark several large pulverized fuel boilers have been converted from coal to biomass combustion in the last 15 years. This have included co-firing of coal and straw, up to 100% firing of wood or straw andthe use of coal ash as an additive to reme...

  9. Relocation of boilers to Gulbene, Latvia. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This report describes the relocation of two coal-fired boilers from Hoeje-Taastrup, Denmark to the City of Gulbene, Latvia and the conversion of one of these boilers to combustion of wood chips. The selection of Gulbene DHE as recipient of the two boilers was made by the Danish Energy Agency. The selection was based on e feasibility study, `Small Boilers Fuel Conversion Study` prepared by the Consulting Engineering Company Birch and Krogeoe/Esbensen in 1994. The recommendations regarding the relocation and conversion of the former coal-fired boilers to use wood chips have been given in a study performed by dk-TEKNIK in the year 1994. The objectives of the Consultant`s project can be summarized as follows: Prequalification of Contractors for the boiler relocation; Preparation of Tender Documents for relocation of two formerly coal-fired boilers placed in Hoeje-Taastrup to Gulbene and conversion of the boilers to combustion of wood fuel; Evaluation and Contracting; Site supervision; Handing-over. The scope of the report describes the final reporting of the boiler relocation to Gulbene. This includes: The process of the relocation; Financial calculations; Experience gained through the project. (EG)

  10. Field Test of Boiler Primary Loop Temperature Controller

    Energy Technology Data Exchange (ETDEWEB)

    Glanville, P.; Rowley, P.; Schroeder, D.; Brand, L.

    2014-09-01

    Beyond these initial system efficiency upgrades are an emerging class of Advanced Load Monitoring (ALM) aftermarket controllers that dynamically respond to the boiler load, with claims of 10% to 30% of fuel savings over a heating season. For hydronic boilers specifically, these devices perform load monitoring, with continuous measurement of supply and in some cases return water temperatures. Energy savings from these ALM controllers are derived from dynamic management of the boiler differential, where a microprocessor with memory of past boiler cycles prevents the boiler from firing for a period of time, to limit cycling losses and inefficient operation during perceived low load conditions. These differ from OTR controllers, which vary boiler setpoint temperatures with ambient conditions while maintaining a fixed differential. PARR installed and monitored the performance of one type of ALM controller, the M2G from Greffen Systems, at multifamily sites in the city of Chicago and its suburb Cary, IL, both with existing OTR control. Results show that energy savings depend on the degree to which boilers are over-sized for their load, represented by cycling rates. Also savings vary over the heating season with cycling rates, with greater savings observed in shoulder months. Over the monitoring period, over-sized boilers at one site showed reductions in cycling and energy consumption in line with prior laboratory studies, while less over-sized boilers at another site showed muted savings.

  11. 46 CFR 52.20-17 - Opening between boiler and safety valve (modifies PFT-44).

    Science.gov (United States)

    2010-10-01

    ... ENGINEERING POWER BOILERS Requirements for Firetube Boilers § 52.20-17 Opening between boiler and safety valve (modifies PFT-44). When a discharge pipe is used, it must be installed in accordance with the...

  12. A Chemical Kinetic Modeling Study of the Effects of Oxygenated Hydrocarbons on Soot Emissions from Diesel Engines

    Energy Technology Data Exchange (ETDEWEB)

    Westbrook, C K; Pitz, W J; Curran, H J

    2005-11-14

    A detailed chemical kinetic modeling approach is used to examine the phenomenon of suppression of sooting in diesel engines by addition of oxygenated hydrocarbon species to the fuel. This suppression, which has been observed experimentally for a few years, is explained kinetically as a reduction in concentrations of soot precursors present in the hot products of a fuel-rich diesel ignition zone when oxygenates are included. Oxygenates decrease the overall equivalence ratio of the igniting mixture, producing higher ignition temperatures and more radical species to consume more soot precursor species, leading to lower soot production. The kinetic model is also used to show how different oxygenates, ester structures in particular, can have different soot-suppression efficiencies due to differences in molecular structure of the oxygenated species.

  13. Reason Analysis of Unstable Operation of Wedge Ring Sealed Roots Blowers and Solutions%楔形环密封型罗茨风机运行不稳定原因分析及解决措施

    Institute of Scientific and Technical Information of China (English)

    韩振禹

    2012-01-01

    阐述了楔形环密封型罗茨风机在生产运行中存在的问题,分析了导致风机不能长周期运转的主要原因,针对设备运行中各种不利因素,对设备实行了多处改造后,提高了风机的运行稳定性,增加了聚乙烯产品的生产能力,为装置平稳生产做出了突出贡献.%Some problems of wedge ring sealed Roots blowers in the production operation were introduced,main reasons to cause the blowers not run for long time were analyzed.Aiming at various unfavorable factors,the equipment was transformed to enhance stability of the blowers and increase polyethylene production capacity.

  14. Soot formation in a blast furnace - Prediction via a parametric study, using detailed kinetic modeling

    Energy Technology Data Exchange (ETDEWEB)

    Nordstroem, T.; Kilpinen, P.; Hupa, M. [Aabo Akademi, Turku (Finland). Combustion Chemistry Group

    1996-12-31

    The objective of this work has been to investigate the soot formation in a blast furnace fired with heavy fuel oil, using detailed kinetic modelling. This work has been concentrated on parameter studies that could explain under which conditions soot is formed and how that formation could be avoided. The parameters investigated were temperature, pressure, stoichiometric ratio, pyrolysis gas composition and reactor model. The calculations were based on a reaction mechanism that consists of 100 species and 446 reactions including polyaromatic hydrocarbons (PAM) up to 7 aromatic rings SULA 2 Research Programme; 4 refs.

  15. Modelling and performance evaluation of a soot cyclone separator / by L.D.J. Bieldt

    OpenAIRE

    Bieldt, Lodewyk Dominico Jacobus

    2009-01-01

    This mini-dissertation reports on the performance of a cyclone separator used to remove excess soot that is typically formed during the production of pebble fuel for High Temperature Gas-cooled Reactors. A chemical vapour deposition process is used to manufacture TRISO-coated fuel particles and during this process soot is formed that needs to be removed. This removal process uses cyclone separators as pre-filters and a bag filter as the final means of preventing unwanted particles from bei...

  16. A Preliminary Examination of the Injection of Soot into the Stratosphere from Urban Firestorm Simulations

    Science.gov (United States)

    Reisner, J. M.; Linn, R.; Bos, R.

    2015-12-01

    It has been suggested that even a limited nuclear exchange between India and Pakistan would lead to a significant loss of life---on the order of a billion people. This claim is based upon the belief that a large amount of aerosol or soot from burning fires would be injected into the stratosphere eventually leading to significant cooling of the troposphere via nuclear winter. While a large amount of soot will be injected into the atmosphere, the fraction of soot getting into the stratosphere plays a primary role in subsequent climatological impacts and is the basis for this preliminary study. To examine soot transport from an urban firestorm, a computational fluid dynamics (CFD) code in conjunction with a simplified combustion model was utilized in the current study. Note, while simplified, the combustion model is based upon extensive simulations using a more refined, but expensive, combustion model that can simulate the propagation of a fire front through an array of buildings and vegation. The simulations conducted using the CFD model described in the next sections are designed to represent the worst case scenario for an urban firestorm: sufficient winds to propagate the fire but not prevent vertical plume rise; no impact of atmospheric water vapor or moisture within the fuel on damping the fire; buildings are wood and completely burn; soot particles do not have a settling velocity; and a grid resolution that maximizes plume rise at the expense of entrainment (no turbulence model active). Given these assumptions and preliminary analysis of several simulations, the following are a few tentative but important findings: 1) worst-case scenario leads to an over-shooting plume into the lower stratosphere; 2) this over-shoot transports a small portion of the total soot content produced by the urban firestorm into the stratosphere; and 3) departures from this worst-case scenario will lead, in some cases, to a significant reduction in the amount of soot that can be

  17. NO_x-assisted soot oxidation over K/CuCe catalyst

    Institute of Scientific and Technical Information of China (English)

    翁端; 李佳; 吴晓东; 司知蠢

    2010-01-01

    CeO2 and CuOx-CeO2 supported potassium catalysts were synthesized by wetness impregnation method. The catalysts were characterized by BET, NO-TPO, NOx-TPD and soot-TPO measurements. By the decoration of potassium and copper, the maximum soot combustion temperature of the ceria-based catalyst decreased to 338 and 379 °C in the presence and absence of NO under a loose contact mode, re- spectively. The pronouncedly enhanced NO oxidation ability by copper introduction and NOx storage capacity by potassium modif...

  18. Models for the optical simulations of fractal aggregated soot particles thinly coated with non-absorbing aerosols

    Science.gov (United States)

    Wu, Yu; Cheng, Tianhai; Zheng, Lijuan; Chen, Hao

    2016-10-01

    Light absorption enhancement of aged soot aerosols is highly sensitive to the morphologies and mixing states of soot aggregates and their non-absorbing coatings, such as organic materials. The quantification of these effects on the optical properties of thinly coated soot aerosols is simulated using an effective model with fixed volume fractions. Fractal aggregated soot was simulated using the diffusion limited aggregation (DLA) algorithm and discretized into soot dipoles. The dipoles of non-absorbing aerosols, whose number was fixed by the volume fraction, were further generated from the neighboring random edge dipoles. Their optical properties were calculated using the discrete dipole approximation (DDA) method and were compared with other commonly used models. The optical properties of thinly coated soot calculated using the fixed volume fraction model are close to (less than ~10% difference) the results of the fixed coating thickness model, except their asymmetry parameters (up to ~25% difference). In the optical simulations of thinly coated soot aerosols, this relative difference of asymmetry parameters and phase functions between these realistic models may be notable. The realizations of the fixed volume fraction model may introduce smaller variation of optical results than those of the fixed coating thickness model. Moreover, the core-shell monomers model and homogeneous aggregated spheres model with the Maxwell-Garnett (MG) theory may underestimate (up to ~20%) the cross sections of thinly coated soot aggregates. The single core-shell sphere model may largely overestimate (up to ~150%) the cross sections and single scattering albedo of thinly coated soot aggregates, and it underestimated (up to ~60%) their asymmetry parameters. It is suggested that the widely used single core-shell sphere approximation may not be suitable for the single scattering calculations of thinly coated soot aerosols.

  19. Application of 1-hydroxyethylidene-1, 1-diphosphonic acid in boiler water for industrial boilers.

    Science.gov (United States)

    Zeng, Bin; Li, Mao-Dong; Zhu, Zhi-Ping; Zhao, Jun-Ming; Zhang, Hui

    2013-01-01

    The primary method used for boiler water treatment is the addition of chemicals to industrial boilers to prevent corrosion and scaling. The static scale inhibition method was used to evaluate the scale inhibition performance of 1-hydroxyethylidene-1, 1-diphosphonic acid (HEDP). Autoclave static experiments were used to study the corrosion inhibition properties of the main material for industrial boilers (20# carbon steel) with an HEDP additive in the industrial boiler water medium. The electrochemical behavior of HEDP on carbon steel corrosion control was investigated using electrochemical impedance spectroscopy and Tafel polarization techniques. Experimental results indicate that HEDP can have a good scale inhibition effect when added at a quantity of 5 to 7 mg/L at a test temperature of not more than 100 °C. To achieve a high scale inhibition rate, the HEDP dosage must be increased when the test temperature exceeds 100 °C. Electrochemical and autoclave static experimental results suggest that HEDP has a good corrosion inhibition effect on 20# carbon steel at a concentration of 25 mg/L. HEDP is an excellent water treatment agent. PMID:23552243

  20. CFD modeling of a boiler's tubes rupture

    International Nuclear Information System (INIS)

    This paper reports the results of a study on the reason for tubes damage in the superheater Platen section of the 320 MW Bisotoun power plant, Iran. The boiler has three types of superheater tubes and the damage occurs in a series of elbows belongs to the long tubes. A three-dimensional modeling was performed using an in-house computational fluid dynamics (CFD) code in order to explore the reason. The code has ability of simultaneous solving of the continuity, the Reynolds-Averaged Navier-Stokes (RANS) equations and employing the turbulence, combustion and radiation models. The whole boiler including; walls, burners, air channels, three types of tubes, etc., was modeled in the real scale. The boiler was meshed into almost 2,000,000 tetrahedral control volumes and the standard k-ε turbulence model and the Rosseland radiation model were used in the model. The theoretical results showed that the inlet 18.9 MPa saturated steam becomes superheated inside the tubes and exit at a pressure of 17.8 MPa. The predicted results showed that the temperature of the steam and tube's wall in the long tubes is higher than the short and medium size tubes. In addition, the predicted steam mass flow rate in the long tube was lower than other ones. Therefore, it was concluded that the main reason for the rupture in the long tubes elbow is changing of the tube's metal microstructure due to working in a temperature higher than the design temperature. In addition, the structural fatigue tension makes the last elbow of the long tube more ready for rupture in comparison with the other places. The concluded result was validated by observations from the photomicrograph of the tube's metal samples taken from the damaged and undamaged sections

  1. Formation, growth, and transport of soot in a three-dimensional turbulent non-premixed jet flame

    KAUST Repository

    Attili, Antonio

    2014-07-01

    The formation, growth, and transport of soot is investigated via large scale numerical simulation in a three-dimensional turbulent non-premixed n-heptane/air jet flame at a jet Reynolds number of 15,000. For the first time, a detailed chemical mechanism, which includes the soot precursor naphthalene and a high-order method of moments are employed in a three-dimensional simulation of a turbulent sooting flame. The results are used to discuss the interaction of turbulence, chemistry, and the formation of soot. Compared to temperature and other species controlled by oxidation chemistry, naphthalene is found to be affected more significantly by the scalar dissipation rate. While the mixture fraction and temperature fields show fairly smooth spatial and temporal variations, the sensitivity of naphthalene to turbulent mixing causes large inhomogeneities in the precursor fields, which in turn generate even stronger intermittency in the soot fields. A strong correlation is apparent between soot number density and the concentration of naphthalene. On the contrary, while soot mass fraction is usually large where naphthalene is present, pockets of fluid with large soot mass are also frequent in regions with very low naphthalene mass fraction values. From the analysis of Lagrangian statistics, it is shown that soot nucleates and grows mainly in a layer close to the flame and spreads on the rich side of the flame due to the fluctuating mixing field, resulting in more than half of the total soot mass being located at mixture fractions larger than 0.6. Only a small fraction of soot is transported towards the flame and is completely oxidized in the vicinity of the stoichiometric surface. These results show the leading order effects of turbulent mixing in controlling the dynamics of soot in turbulent flames. Finally, given the difficulties in obtaining quantitative data in experiments of turbulent sooting flames, this simulation provides valuable data to guide the development of

  2. Nuclear reactors with auxiliary boiler circuit

    International Nuclear Information System (INIS)

    A gas-cooled nuclear reactor has a main circulatory system for the gaseous coolant incorporating one or more main energy converting units, such as gas turbines, and an auxiliary circulatory system for the gaseous coolant incorporating at least one steam generating boiler arranged to be heated by the coolant after its passage through the reactor core to provide steam for driving an auxiliary steam turbine, such an arrangement providing a simplified start-up procedure also providing emergency duties associated with long term heat removal on reactor shut down

  3. Control Properties of Bottom Fired Marine Boilers

    DEFF Research Database (Denmark)

    Solberg, Brian; Andersen, Palle; Karstensen, Claus M. S.

    2007-01-01

    This paper focuses on model analysis of a dynamic model of a bottom fired one-pass smoke tube boiler. Linearized versions of the model are analyzed and show large variations in system gains at steady state as function of load whereas gain variations near the desired bandwidth are small. An analysis...... showed substantial improvement compared to a decentralized scheme based on sequential loop closing. Similar or better result is expected to be obtainable using a full Multiple input Multiple output scheme. Furthermore closed loop simulations, applying a linear controller to the nonlinear plant model...... on states and control signals should be considered....

  4. Selecting Actuator Configuration for a Benson Boiler

    DEFF Research Database (Denmark)

    Kragelund, Martin Nygaard; Leth, John-Josef; Wisniewski, Rafal

    2009-01-01

    This paper addresses the problem of an optimal actuator configuration in an economic perspective. The objective is to minimize the economical cost of operating a given plant. Functionals encapsulating information of the business objectives given the different actuators has been established...... with particular focus on a boiler in a power plant operated by DONG Energy - a Danish energy supplier. The problem has been reformulated using mathematic notions from economics. The selection of actuator configuration has been limited to the fuel system which in the considered plant consists of three different...

  5. Controlling formaldehyde emissions with boiler ash.

    Science.gov (United States)

    Cowan, Jennifer; Abu-Daabes, Malyuba; Banerjee, Sujit

    2005-07-01

    Fluidized wood ash reduces formaldehyde in air from about 20 to formaldehyde reduction increases with increasing moisture content of the ash. Sorption of formaldehyde to ash can be substantially accounted for by partitioning to the water contained in the ash followed by rate-controlling binding to the ash solids. Adsorption occurs at temperatures of up to 165 degrees C; oxidation predominates thereafter. It is proposed that formaldehyde could be stripped from an air stream in a fluidized bed containing ash, which could then be returned to a boiler to incinerate the formaldehyde.

  6. Solved and unsolved problems in boiler systems. Learning from accidents

    International Nuclear Information System (INIS)

    This paper begins with a brief review on the similarity law of conventional fossil-fuel-fired boilers. The concept is based on the fact that the heat release due to combustion in the furnace is restricted by the furnace volume but the heat absorption is restricted by the heat transfer surface area. This means that a small-capacity boiler has relatively high specific furnace heat release rate, about 10 MW/m3, and on the contrary a large-capacity boiler has lower value. The surface-heat-flux limit is mainly dominated by the CHF inside the water-wall tubes of the boiler furnace, about 350 kW/m2. This heat-flux limit is almost the same order independently on the capacity of boilers. For the safety of water-walls, it is essential to retain suitable water circulation, i.e. circulation ratio and velocity of water. This principle is a common knowledge of boiler designer, but actual situation is not the case. Newly designed boilers often suffer from similar accidents, especially burnout due to circulation problems. This paper demonstrates recent accidents encountered in practical boilers, and raises problems of rather classical but important two-phase flow and heat transfer. (author)

  7. CFD investigation of flow through internally riffled boiler tubes

    DEFF Research Database (Denmark)

    Rasmussen, Christian; Houbak, Niels; Sørensen, Jens Nørkær

    1997-01-01

    In this paper we show how to model the swirling flow in an internally riffled boiler tube. The flow field is visualized and the results are compared with measurements.......In this paper we show how to model the swirling flow in an internally riffled boiler tube. The flow field is visualized and the results are compared with measurements....

  8. Assessment of the candidate markets for liquid boiler fuels

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-12-01

    Liquid fuels can be produced from coal in a number of indirect and direct liquefaction processes. While indirect coal liquefaction has been proved commercially outside the United States, most attention in this country has focused on the direct liquefaction processes, which include the processes under examination in this report; namely, the Exxon Donor Solvent (EDS), the H-Coal, and the Solvent Refined Coal (SRC) II processes. The objectives of the study were to: compare the boiler fuels of direct coal liquefaction with residual fuel oil (No. 6 fuel oil) including physical characteristics and environmental hazards, such as carcinogenic characteristics and toxic hazard characteristics; determine whether a boiler fuel market would exist for the coal liquefaction products given their physical characteristics and potential environmental hazards; determine the advantages of utilizing methanol as a boiler fuel on a continuous basis in commercial boilers utilizing existing technology; identify the potential regional candidate markets for direct coal liquefaction products as liquid boiler fuels; determine the distributing and handling costs associated with marketing coal liquefaction products as liquid boiler fuels; determine the current regulatory issues associated with the marketing of coal liquefaction products as boiler fuels; and determine and evaluate other institutional issues associated with the marketing of direct coal liquefaction products as boiler fuels.

  9. 46 CFR 176.812 - Pressure vessels and boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Pressure vessels and boilers. 176.812 Section 176.812... TONS) INSPECTION AND CERTIFICATION Material Inspections § 176.812 Pressure vessels and boilers. (a) Pressure vessels must be tested and inspected in accordance with part 61, subpart 61.10, of this...

  10. 46 CFR 115.812 - Pressure vessels and boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Pressure vessels and boilers. 115.812 Section 115.812 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE... CERTIFICATION Material Inspections § 115.812 Pressure vessels and boilers. (a) Pressure vessels must be...

  11. Quality assurance in fabrication of boilers and pressure vessels

    International Nuclear Information System (INIS)

    Quality assurance for safety and reliability of boilers and pressure vessels is a systematic approach involving various stages right from material identification to final stages of testing, transportation and storage before commissioning. This paper brings out various quality . Assurance aspects to be implemented by manufacturers of boilers and pressure vessels. 1 fig

  12. DESIGN REPORT LOW-NOX BURNERS FOR PACKAGE BOILERS

    Science.gov (United States)

    The report describes a low-NOx burner design, presented for residual-oil-fired industrial boilers and boilers cofiring conventional fuels and nitrated hazardous wastes. The burner offers lower NOx emission levels for these applications than conventional commercial burners. The bu...

  13. DESIGN REPORT: LOW-NOX BURNERS FOR PACKAGE BOILERS

    Science.gov (United States)

    The report describes a low-NOx burner design, presented for residual-oil-fired industrial boilers and boilers cofiring conventional fuels and nitrated hazardous wastes. The burner offers lower NOx emission levels for these applications than conventional commercial burners. The bu...

  14. Numerical simulation of a biomass fired grate boiler

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse; Kær, Søren Knudsen

    2006-01-01

    Computational fluid dynamic (CFD) analysis of the thermal flow in the combustion furnace of a biomass-fired grate boiler provides crucial insight into the boiler's performance. Quite a few factors play important roles in a general CFD analysis, such as grid, models, discretization scheme and so on...

  15. Thermomechanical finite element analysis of hot water boiler structure

    Directory of Open Access Journals (Sweden)

    Živković Dragoljub S.

    2012-01-01

    Full Text Available The paper presents an application of the Finite Elements Method for stress and strain analysis of the hot water boiler structure. The aim of the research was to investigate the influence of the boiler scale on the thermal stresses and strains of the structure of hot water boilers. Results show that maximum thermal stresses appear in the zone of the pipe carrying wall of the first reversing chamber. This indicates that the most critical part of the boiler are weld spots of the smoke pipes and pipe carrying plate, which in the case of significant scale deposits can lead to cracks in the welds and water leakage from the boiler. The nonlinear effects were taken into account by defining the bilinear isotropic hardening model for all boiler elements. Temperature dependency was defined for all relevant material properties, i. e. isotropic coefficient of thermal expansion, Young’s modulus, and isotropic thermal conductivity. The verification of the FEA model was performed by comparing the measured deformations of the hot water boiler with the simulation results. As a reference object, a Viessmann - Vitomax 200 HW boiler was used, with the installed power of 18.2 MW. CAD modeling was done within the Autodesk Inventor, and stress and strain analysis was performed in the ANSYS Software.

  16. 46 CFR 63.25-7 - Exhaust gas boilers.

    Science.gov (United States)

    2010-10-01

    ... drum type exhaust gas steam boiler must have a feed water control system. The system must automatically... 46 Shipping 2 2010-10-01 2010-10-01 false Exhaust gas boilers. 63.25-7 Section 63.25-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING AUTOMATIC AUXILIARY...

  17. Soot and chemiluminescence in diesel combustion of bio-derived, oxygenated and reference fuels

    NARCIS (Netherlands)

    Klein-Douwel, R. J. H.; Donkerbroek, A. J.; van Vliet, A. P.; Boot, M. D.; Somers, L. M. T.; Baert, R. S. G.; Dam, N. J.; ter Meulen, J. J.

    2009-01-01

    High-speed imaging, spectroscopy and thermodynamical characterization are applied to an optically accessible, heavy-duty diesel engine in order to compare sooting and chemilunlinescence behaviour of bio-derived, oxygenated fuels and various reference fuels. The fuels concerned include the bio-derive

  18. Controlling soot formation with filtered EGR for diesel and biodiesel fuelled engines.

    Science.gov (United States)

    Gill, S S; Turner, D; Tsolakis, A; York, A P E

    2012-04-01

    Although exhaust gas recirculation (EGR) is an effective strategy for controlling the levels of nitrogen oxides (NO(X)) emitted from a diesel engine, the full potential of EGR in NO(X)/PM trade-off and engine performance (i.e., fuel economy) has not fully been exploited. Significant work into the cause and control of particulate matter (PM) has been made over the past decade with new cleaner fuels and after-treatment devices emerging to comply with the current and forthcoming emission regulations. In earlier work, we demonstrated that engine operation with oxygenated fuels (e.g., biodiesel) reduces the PM emissions and extends the engine tolerance to EGR before it reaches smoke-limited conditions. The same result has also been reported when high cetane number fuels such as gas-to-liquid (GTL) are used. To further our understanding of the relationship between EGR and PM formation, a diesel particulate filter (DPF) was integrated into the EGR loop to filter the recirculated soot particulates. The control of the soot recirculation penalty through filtered EGR (FEGR) resulted in a 50% engine-out soot reduction, thus showing the possibility of extending the maximum EGR limit or being able to run at the same level of EGR with an improved NO(X)/soot trade-off.

  19. Quantitative Surface Emissivity and Temperature Measurements of a Burning Solid Fuel Accompanied by Soot Formation

    Science.gov (United States)

    Piltch, Nancy D.; Pettegrew, Richard D.; Ferkul, Paul; Sacksteder, K. (Technical Monitor)

    2001-01-01

    Surface radiometry is an established technique for noncontact temperature measurement of solids. We adapt this technique to the study of solid surface combustion where the solid fuel undergoes physical and chemical changes as pyrolysis proceeds, and additionally may produce soot. The physical and chemical changes alter the fuel surface emissivity, and soot contributes to the infrared signature in the same spectral band as the signal of interest. We have developed a measurement that isolates the fuel's surface emissions in the presence of soot, and determine the surface emissivity as a function of temperature. A commercially available infrared camera images the two-dimensional surface of ashless filter paper burning in concurrent flow. The camera is sensitive in the 2 to 5 gm band, but spectrally filtered to reduce the interference from hot gas phase combustion products. Results show a strong functional dependence of emissivity on temperature, attributed to the combined effects of thermal and oxidative processes. Using the measured emissivity, radiance measurements from several burning samples were corrected for the presence of soot and for changes in emissivity, to yield quantitative surface temperature measurements. Ultimately the results will be used to develop a full-field, non-contact temperature measurement that will be used in spacebased combustion investigations.

  20. Effective density of Aquadag and fullerene soot black carbon reference materials used for SP2 calibration

    Directory of Open Access Journals (Sweden)

    M. Gysel

    2011-08-01

    Full Text Available The mass and effective density of black carbon (BC particles generated from aqueous suspensions of Aquadag and fullerene soot was measured and parametrized as a function of their mobility diameter. The measurements were made by two independent research groups by operating a differential mobility analyser (DMA in series with an aerosol particle mass analyser (APM or a Couette centrifugal particle mass analyser (CPMA. Consistent and reproducible results were found in this study for different production lots of Aquadag, indicating that the effective density of these particles is a stable quantity and largely unaffected by differences in aerosol generation procedures and suspension treatments. The effective density of fullerene soot particles from one production lot was also found to be stable and independent of suspension treatments. Some difference to previous literature data was observed for both Aquadag and fullerene soot at larger particle diameters. Knowledge of the exact relationship between mobility diameter and particle mass is of great importance, as DMAs are commonly used to size-select particles from BC reference materials for calibration of single particle soot photometers (SP2, which quantitatively detect the BC mass in single particles.

  1. Effective density of Aquadag and fullerene soot black carbon reference materials used for SP2 calibration

    Directory of Open Access Journals (Sweden)

    M. Gysel

    2011-12-01

    Full Text Available The mass and effective density of black carbon (BC particles generated from aqueous suspensions of Aquadag and fullerene soot was measured and parametrized as a function of their mobility diameter. The measurements were made by two independent research groups by operating a differential mobility analyser (DMA in series with an aerosol particle mass analyser (APM or a Couette centrifugal particle mass analyser (CPMA. Consistent and reproducible results were found in this study for different production lots of Aquadag, indicating that the effective density of these particles is a stable quantity and largely unaffected by differences in aerosol generation procedures and suspension treatments. The effective density of fullerene soot particles from one production lot was also found to be stable and independent of suspension treatments. Some differences to previous literature data were observed for both Aquadag and fullerene soot at larger particle diameters. Knowledge of the exact relationship between mobility diameter and particle mass is of great importance, as DMAs are commonly used to size-select particles from BC reference materials for calibration of single particle soot photometers (SP2, which quantitatively detect the BC mass in single particles.

  2. Investigation of soot by two-color four-wave mixing

    Energy Technology Data Exchange (ETDEWEB)

    Hemmerling, B.; Stampanoni-Panariello, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    A novel, non-intrusive technique has been used for the temporally resolved investigation of the interaction of laser radiation and soot in a flame. While there is a fairly good agreement between measurement and simulation remaining discrepancies indicate some shortcomings of the model employed. (author) 2 figs., 2 refs.

  3. Soot aggregate restructuring due to coatings of secondary organic aerosol derived from aromatic precursors.

    Science.gov (United States)

    Schnitzler, Elijah G; Dutt, Ashneil; Charbonneau, André M; Olfert, Jason S; Jäger, Wolfgang

    2014-12-16

    Restructuring of monodisperse soot aggregates due to coatings of secondary organic aerosol (SOA) derived from hydroxyl radical-initiated oxidation of toluene, p-xylene, ethylbenzene, and benzene was investigated in a series of photo-oxidation (smog) chamber experiments. Soot aggregates were generated by combustion of ethylene using a McKenna burner, treated by denuding, size-selected by a differential mobility analyzer, and injected into a smog chamber, where they were exposed to low vapor pressure products of aromatic hydrocarbon oxidation, which formed SOA coatings. Aggregate restructuring began once a threshold coating mass was reached, and the degree of the subsequent restructuring increased with mass growth factor. Although significantly compacted, fully processed aggregates were not spherical, with a mass-mobility exponent of 2.78, so additional SOA was required to fill indentations between collapsed branches of the restructured aggregates before the dynamic shape factor of coated particles approached 1. Trends in diameter growth factor, effective density, and dynamic shape factor with increasing mass growth factor indicate distinct stages in soot aggregate processing by SOA coatings. The final degree and coating mass dependence of soot restructuring were found to be the same for SOA coatings from all four aromatic precursors, indicating that the surface tensions of the SOA coatings are similar. PMID:25390075

  4. Model compound study of the pathways for aromatic hydrocarbon formation in soot.

    Energy Technology Data Exchange (ETDEWEB)

    Winans, R. E.; Tomczyk, N. A.; Hunt, J. E.; Solum, M. S.; Pugmire, R. J.; Jiang, Y. J.; Fletcher, T. H.; Univ. of Utah; Brigham Young Univ.

    2007-09-01

    As a follow-up of previous work on the flame pyrolysis of biphenyl and pyrene, a more detailed analysis of the pyrolytic products has been done using additional NMR data obtained on the whole soot sample correlated with detailed high-resolution and GC mass spectrometry data on the solvent-extracted portion of the same samples. These latter data complement the earlier NMR data with details of the pre-sooting structures, referred to as 'young soot', in pyrolyzed biphenyl samples collected at 1365, 1410, and 1470 K and pyrene at 1410 and 1470 K. The data reveal the roles played by free-radical-assisted polymerization reactions as well as the hydrogen-abstraction carbon-addition (HACA) reactions for the biphenyl pyrolysis. The mass spectroscopy data of pyrene describe a much different set of reactions due to polymerization which employs free-radical reactions of the pyrene due primarily to hydrogen abstraction followed by the formation of biaryl linkages at mass numbers up to five times that of the parent pyrene. Conceptual schema of reaction mechanisms are proposed to explain the formation pathways to materials detected in the soot extracts.

  5. Rapid synthesis of inherently robust and stable superhydrophobic carbon soot coatings

    Science.gov (United States)

    Esmeryan, Karekin D.; Castano, Carlos E.; Bressler, Ashton H.; Abolghasemibizaki, Mehran; Mohammadi, Reza

    2016-04-01

    The fabrication of superhydrophobic coatings using a candle flame or rapeseed oil has become very attractive as a novel approach for synthesis of water repellent surfaces. Here, we report an improved, simplified and time-efficient method for the preparation of robust superhydrophobic carbon soot that does not require any additional stabilizers or chemical treatment. The soot's inherent stabilization is achieved using a specially-designed cone-shaped aluminum chimney, mounted over an ignited paper-based wick immersed in a rapeseed oil. Such configuration decreases the level of oxygen during the process of combustion; altering the ratio of chemical bonds in the soot. As a result, the fractal-like network of the carbon nanoparticles is converted into dense and fused carbon chains, rigidly coupled to the substrate surface. The modified carbon coating shows thermal sustainability and retains superhydrophobicity up to ∼300 °C. Furthermore, it demonstrates a low contact angle hysteresis of 0.7-1.2° accompanied by enhanced surface adhesion and mechanical durability under random water flows. In addition, the soot's deposition rate of ∼1.5 μm/s reduces the exposure time of the substrate to heat and consequently minimizes the thermal effects, allowing the creation of superhydrophobic coatings on materials with low thermal stability (e.g. wood or polyethylene).

  6. Influence of complex component and particle polydispersity on radiative properties of soot aggregate in atmosphere

    International Nuclear Information System (INIS)

    The effects of morphological structure, water coating, dust mixing and primary particle size distribution on the radiative properties of soot fractal aggregates in atmosphere are investigated using T-matrix method. These fractal aggregates are numerically generated using a combination of the particle-cluster and cluster-cluster aggregation algorithms with fractal parameters representing soot aggregate in atmosphere. The radiative properties of compact aggregate notably deviate from that of the branched one, and the effect of morphology changes on the radiative properties in wet air cannot be neglected. However it is reasonable to use realization-averaged radiative properties to represent that of the aggregates with certain morphology. In wet air, the scattering, absorption and extinction cross-section and symmetry parameter of soot aggregates coated with water notably increase with water shell thickness. The mixing structures of dust have little effect on radiative properties of aggregates, but the volume fraction of dust has an obvious effect on extinction, scattering and absorption cross-section of aggregates when the size parameters are above the Rayleigh limit. Although the primary particle size distribution of soot aggregate has mild effect on the scattering albedo and asymmetry parameter, the deviations of the extinction, scattering, absorption cross-section among the three size distributions are significant in this study. The size distribution has a significant effect on forward scattering of phase function, while the effect can be neglected as the size parameter approaches to the Rayleigh limit.

  7. Soot and chemiluminescence in diesel combustion of bio-derived, oxygenated and reference fuels

    NARCIS (Netherlands)

    Klein-Douwel, R.J.H.; Donkerbroek, A.J.; Vliet, A.P. van; Boot, M.D.; Somers, L.M.T.; Baert, R.S.G.; Dam, N.J.; Meulen, J.J. ter

    2009-01-01

    High-speed imaging, spectroscopy and thermodynamical characterization are applied to an optically accessible, heavy-duty diesel engine in order to compare sooting and chemiluminescence behaviour of bio-derived, oxygenated fuels and various reference fuels. The fuels concerned include the bio-derived

  8. Analysis of error in soot characterization using scattering-based techniques

    Institute of Scientific and Technical Information of China (English)

    Lin Ma

    2011-01-01

    The increasing concern of the health and environmental effects of ultrafine soot particles emitted by modern combustion devices calls for new techniques to monitor such particles. Techniques based on light scattering represent one possible monitoring method. In this study, numerical simulations were conducted to examine the errors involved in soot characterization using light scattering techniques.Specifically, this study focused on examining the error caused by the approximate fractal scattering models based on the Rayleigh-Deybe-Gans theory (the RDG-FA model). When the angular scattering properties were used to retrieve parameters of soot aggregates (the radius of gyration and the fractal dimension), the RDG-FA method was observed to cause a relative error of ~10% for a representative set of soot parameters. The effects of measurement uncertainties were also investigated. Our results revealed the pattern of the errors: the errors consisted of a relatively constant baseline error caused by the RDG-FA approximation and an error increasing with the measurement uncertainties. These results are expected to be useful in the analysis and interpretation of experimental data, and also in the determination of the accuracy and applicable range of scattering techniques.

  9. The structure and behavior of salts in kraft recovery boilers

    Energy Technology Data Exchange (ETDEWEB)

    Backman, R.; Badoi, R.D.; Enestam, S. [Aabo Akademi Univ., Turku (Finland). Combustion Chemistry Research Group

    1997-10-01

    The melting behavior in the salt system (Na,K)(CO{sub 3},SO{sub 4},S,Cl,OH) is investigated by laboratory methods to enhance and further develop a chemical model for salt mixtures with compositions relevant for recovery boilers. The model, based on both literature data and experimental work can be used as (a) submodel in models for the over-all chemistry in recovery boilers and to estimate (b) deposit formation on heat transfer surfaces (fouling), (c) the melting properties of the fly ash, and (d) the smelt bed in recovery boilers. Experimental techniques used are thermal analysis, high temperature microscopy` and scanning electron microscopy. The model is implemented in a global calculation model which can handle both gas phases and condensed phases in the recovery boiler. The model gives a detailed description of the chemical reactions involved in the fume and dust formation in different locations of the flue gas channel in the boiler. (orig.)

  10. The behavior of ash species in suspension fired biomass boilers

    DEFF Research Database (Denmark)

    Jensen, Peter Arendt

    formation in suspension fired boilers. The presentation provides an overview of the knowledge obtained with respect to ash species behavior insuspension fired biomass boilers. A mechanistic understanding of the fly ash formation process in biomass fired PF boilers isobtained today. A high fraction of alkali...... salt species are released to the gas phase during the initial fuel combustion process. The salt species are present in gas phase in the boil chamberand upon cooling in the convective pass aerosols are formed. Recent studies indicates that a large fraction of the residual condensed phase ash fragments...... to generate ash particles typically in the size range of 50 to 200 μm on biomass suspension fired power plant boilers. A fragmentation rate of fuel particles of 3 have been used to describe both the residual ash formation process in laboratory entrained flow reactors and in full scale boilers.A range...

  11. Investigation of in-flame soot optical properties in laminar coflow diffusion flames using thermophoretic particle sampling and spectral light extinction

    Science.gov (United States)

    Kempema, Nathan J.; Ma, Bin; Long, Marshall B.

    2016-09-01

    Soot optical properties are essential to the noninvasive study of the in-flame evolution of soot particles since they allow quantitative interpretation of optical diagnostics. Such experimental data are critical for comparison to results from computational models and soot sub-models. In this study, the thermophoretic sampling particle diagnostic (TSPD) technique is applied along with data from a previous spectrally resolved line-of-sight light attenuation experiment to determine the soot volume fraction and absorption function. The TSPD technique is applied in a flame stabilized on the Yale burner, and the soot scattering-to-absorption ratio is calculated using the Rayleigh-Debye-Gans theory for fractal aggregates and morphology information from a previous sampling experiment. The soot absorption function is determined as a function of wavelength and found to be in excellent agreement with previous in-flame measurements of the soot absorption function in coflow laminar diffusion flames. Two-dimensional maps of the soot dispersion exponent are calculated and show that the soot absorption function may have a positive or negative exponential wavelength dependence depending on the in-flame location. Finally, the wavelength dependence of the soot absorption function is related to the ratio of soot absorption functions, as would be found using two-excitation-wavelength laser-induced incandescence.

  12. Influence of polydisperse distributions of both primary particle and aggregate size on soot temperature in low-fluence LII

    Science.gov (United States)

    Liu, F.; Yang, M.; Hill, F. A.; Snelling, D. R.; Smallwood, G. J.

    2006-06-01

    An improved aggregate-based low-fluence laser-induced incandescence (LII) model has been developed. The shielding effect in heat conduction between aggregated soot particles and the surrounding gas was modeled using the concept of the equivalent heat transfer sphere. The diameter of such an equivalent sphere was determined from direct simulation Monte Carlo calculations in the free molecular regime as functions of the aggregate size and the thermal accommodation coefficient of soot. Both the primary soot particle diameter and the aggregate size distributions are assumed to be lognormal. The effective temperature of a soot particle ensemble containing different primary particle diameters and aggregate sizes in the laser probe volume was calculated based on the ratio of the total thermal radiation intensities of soot particles at 400 and 780 nm to simulate the experimentally measured soot particle temperature using two-color optical pyrometry. The effect of primary particle diameter polydispersity is in general important and should be considered. The effect of aggregate size polydispersity is relatively unimportant when the heat conduction between the primary particles and the surrounding gas takes place in the free-molecular regime; however, it starts to become important when the heat conduction process occurs in the near transition regime. The model developed in this study was also applied to the re-determination of the thermal accommodation coefficient of soot in an atmospheric pressure laminar ethylene diffusion flame.

  13. Experimental study on thermophoretic deposition of soot particles in laminar diffusion flames along a solid wall in microgravity

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jae-Hyuk; Chung, Suk Ho [School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-742 (Korea); Fujita, Osamu; Tsuiki, Takafumi [Division of Mechanical and Space Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Kim, Junhong [Laboratoire E.M2.C., UPR 288 C.N.R.S Ecole Centrale Paris, Grande Voie des Vignes 92295 (France)

    2008-09-15

    Soot deposition process in diffusion flames along a solid wall has been investigated experimentally under a microgravity environment. An ethylene (C{sub 2}H{sub 4}) diffusion flame was formed around a cylindrical rod-burner with the surrounding air velocities of V{sub a} = 2.5, 5, and 10 cm/s, the oxygen concentration of 35%, and the burner wall temperature of 300 K. A laser extinction method was adopted to measure the distribution of soot volume fraction. The experiments determined the trace of maximum soot concentration together with the relative distance of the trace of flame. Results showed that the distance was about 2-5 mm. As the surrounding air velocity increased, the region of the soot particle distribution moved closer to the burner wall. The soot particles near the flame zone tended to move away from the flame zone because of the thermophoretic force and to concentrate at a certain narrow region inside the flame. Because of the simultaneous effects of convection and the thermophoresis, soot particles finally adhered to the burner wall. It has been found that there existed an optimal air velocity for the early deposition of soot on the furnace wall. (author)

  14. Synthetic fuel combustion: pollutant formation. Soot initiation mechanisms in burning aromatics. First quarterly report, 19 September-31 December 1980

    Energy Technology Data Exchange (ETDEWEB)

    Rawlins, W. T.; Tanzawa, T.

    1981-01-01

    Although considerable progress has been made in recent years in understanding the phenomenology of soot formation in the combustion of hydrocarbon fuels, relatively little attention has been focused upon aromatic fuels of the types commonly found in coal liquids. In particular, the effects of gas-phase free radicals, formed during combustion, on the kinetics of formation of incipient soot particles have not been characterized. Accordingly, an experimental investigation of the detailed kinetics of incipient soot formation in the combustion and pyrolysis of aromatic fuels of the benzene, anisole, phenol, and pyrrole families has been initiated in order to determine soot formation mechanisms and rate parameters. The experiments will be performed in a shock tube over the temperature range 1300 to 2500 K, using multiple ultraviolet, visible, and infrared diagnostics to monitor the kinetic behavior of free radicals (such as OH), incipient soot particles, and combustion products. Experiments will be conducted with artificially enhanced concentrations of free radicals such as OH and O to determine their effects on the kinetics of soot and soot precursors. The experimental work will be supported and directed by a parallel analytical effort using a detailed mechanistic model of the chemical kinetics and dynamics of the reacting systems. In this report, the design and configuration of the experimental apparatus are described, the details of the kinetic model are outlined, and possible reaction pathways are discussed.

  15. Th effectiveness of soot removal techniques for the recovery of fingerprints on glass fire debris in petrol bomb cases

    International Nuclear Information System (INIS)

    The increased use of petrol bombs as an act of vengeance in Malaysia has heightened awareness for the need of research relating physical evidence found at the crime scene to the perpetrator of the crime. A study was therefore carried out to assess the effectiveness of soot removal techniques on glass fire debris without affecting the fingerprints found on the evidence. Soot was removed using three methods which were brushing, 2 % NaOH solution and tape lifting. Depending on the visibility of prints recovered, prints which were visible after soot removal were lifted directly while prints that were not visible were subjected to enhancement. Glass microscope slides were used in laboratory experiment and subjected to control burn for the formation of soot. Soot was later removed following enhancement of the prints over time (within 1 day, within 2 days and after 2 days). While in simulated petrol bomb ground experiment, petrol bombs were hurled in glass bottles and the fragments were collected. Favorable results were obtained in varying degrees using each soot removal methods. In laboratory testing, brushing and 2 % NaOH solution revealed fingerprints that were visible after removal of excess soot and were lifted directly. As for tape lifting technique, some prints were visible and were successfully lifted while those that were not visible were subjected to super glue fuming for effective fingerprint identification. (author)

  16. Oil condensation boilers and problems with sulphur. Sulphur separation for oil-fired condensation boilers and flue gas scrubbers - six measurements at different boilers

    Energy Technology Data Exchange (ETDEWEB)

    Koebel, M.; Elsener, M.

    1988-11-01

    Three condensation boilers, one condensating scrubber boiler and two waste gas scrubbers were the objects of measurements made to determine to what degree sulphur is separated. The three condensation boilers which are only equipped with a condenser for the condensation of the combustion water shaved separation levels of between 0.5 and 3.5%. They are therefore not suitable for cutting the SO/sub 2/-emissions from the combustion of sulphur-containing fuel oil. The washer boilers showed better results (40-45%) despite the fact that it works with acid washing liquid (2.85 pH). To explain the high level of separation one must assume that under oxygen influence a large part of the sulphur dioxide is further oxidised to sulphuric acid. Alkaline washers showed very good separations of up to 90%. Here again a large part of the sulphur dioxide further oxidises to sulfates.

  17. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2004-10-30

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of April to June 30, 2004.

  18. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2004-07-30

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of April to June 30, 2004.

  19. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2004-04-23

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of October 1 to December 30, 2003.

  20. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2005-01-31

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2004.

  1. 'Boilers' along the southeast coast of Bermuda

    Science.gov (United States)

    2002-01-01

    Along the south shore of Bermuda, waves break continuously along algal/vermetid reefs (composed of algae and molluscs, not coral), forming 'boilers.' Boilers are named because the continuous breaking of waves makes it look as if the sea is boiling. This photograph taken from the International Space Station shows the eastern half of the main islands of Bermuda. Land use is about 6 percent cropland, 55 percent developed and 34 percent rural. Reflective white-colored areas are buildings and other developments surrounded by green areas of vegetation. St. David's Island is also home to the airport, with runways built out into Castle Harbour. Hurricane Erin passed northeast of Bermuda early on September 10 with 115 mile-per-hour winds (a Category 3 storm on the Saffir-Simpson Scale), but causing very minimal damage. Astronauts aboard Space Station Alpha photographed the area on September 14, 2001. By then, the skies had cleared and Erin had become an extratropical low near Newfoundland. Image ISS003-E-5735, was provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography of Earth.

  2. 7th wood energy symposium - Air-pollution control and explosion-proofing for wood-fired boilers and the state of the art of wood gasification; 7. Holzenergie-Symposium. Luftreinhaltung und Explosionsschutz bei Holzfeuerungen und Stand der Technik der Holzvergasung

    Energy Technology Data Exchange (ETDEWEB)

    Nussbaumer, T.

    2002-07-01

    These conference proceedings published by the Swiss Federal Office of Energy (SFOE) contains the 13 papers presented at the 7th Wood Energy Symposium held in Zurich in October 2002. The topics covered include the role of wood energy in Swiss energy policy, the latest regulations on emissions and the use of used wood, aerosol production, dust filtering, wood gasification fundamentals and system optimisation for automatic wood-fired boilers in practice. Also, reports are presented on the development of a combined underfeed and blower-feed stoker, experience gained with a solid-bed gasifier for a combined heat and power installation and organic Rankine-cycle plants for power production. Finally, two papers deal with explosion mechanisms and explosion protection both in general and for wood-fired plant in particular. The proceedings are completed with details on the 18 authors involved in the symposium.

  3. Effect of intrinsic organic carbon on the optical properties of fresh diesel soot.

    Science.gov (United States)

    Adler, Gabriella; Riziq, Ali Abo; Erlick, Carynelisa; Rudich, Yinon

    2010-04-13

    This study focuses on the retrieval of the normalized mass absorption cross section (MAC) of soot using theoretical calculations that incorporate new measurements of the optical properties of organic carbon (OC) intrinsic to fresh diesel soot. Intrinsic OC was extracted by water and an organic solvent, and the complex refractive index of the extracted OC was derived at 532 and 355-nm wavelengths using cavity ring-down aerosol spectrometry. The extracted OC was found to absorb weakly in the visible wavelengths and moderately at blue wavelengths. The mass ratio of OC and elemental carbon (EC) in the collected particles was evaluated using a thermo-optical method. The measured EC/OC ratio in the soot exhibited substantial variability from measurement to measurement, ranging between 2 and 5. To test the sensitivity of the MAC to this variability, three different EC/OC ratios (21, 11, and 12) were chosen as representative. Particle size and spherule morphology were estimated using scanning electron microscopy, and the soot was found to be primarily in the form of aggregates with a dominant aggregate diameter mode in the range 200-250 nm. The measured refractive index of the extracted OC was used with a variety of theoretical models to calculate the MAC of internally mixed diesel soot at 532 and 355 nm. We conclude that Rayleigh-Debye-Gans theory on clusters of coated spherules and T-matrix of a solid EC spheroid coated by intrinsic OC are both consistent with previous measurements; however, Rayleigh-Debye-Gans theory provides a more realistic physical model for the calculation. PMID:20018649

  4. Effect of diluents on soot precursor formation and temperature in ethylene laminar diffusion flames

    KAUST Repository

    Abhinavam Kailasanathan, Ranjith Kumar

    2013-03-01

    Soot precursor species concentrations and flame temperature were measured in a diluted laminar co-flow jet diffusion flame at pressures up to eight atmospheres while varying diluent type. The objective of this study was to gain a better understanding of soot production and oxidation mechanisms, which could potentially lead to a reduction in soot emissions from practical combustion devices. Gaseous samples were extracted from the centerline of an ethylene-air laminar diffusion flame, which was diluted individually with four diluents (argon, helium, nitrogen, and carbon dioxide) to manipulate flame temperature and transport properties. The diluted fuel and co-flow exit velocities (top-hat profiles) were matched at all pressures to minimize shear-layer effects, and the mass fluxes were fixed over the pressure range to maintain constant Reynolds number. The flame temperature was measured using a fine gauge R-type thermocouple at pressures up to four atmospheres. Centerline concentration profiles of major non-fuel hydrocarbons collected via extractive sampling with a quartz microprobe and quantification using GC/MS+FID are reported within. The measured hydrocarbon species concentrations are vary dramatically with pressure and diluent, with the helium and carbon dioxide diluted flames yielding the largest and smallest concentrations of soot precursors, respectively. In the case of C2H2 and C6H6, two key soot precursors, helium diluted flames had concentrations more than three times higher compared with the carbon dioxide diluted flame. The peak flame temperature vary with diluents tested, as expected, with carbon dioxide diluted flame being the coolest, with a peak temperature of 1760K at 1atm, and the helium diluted flame being the hottest, with a peak temperature of 2140K. At four atmospheres, the helium diluted flame increased to 2240K, but the CO2 flame temperature increased more, decreasing the difference to approximately 250K. © 2012 The Combustion Institute.

  5. Adsorption of Organic Compounds to Diesel Soot: Frontal Analysis and Polyparameter Linear Free-Energy Relationship.

    Science.gov (United States)

    Lu, Zhijiang; MacFarlane, John K; Gschwend, Philip M

    2016-01-01

    Black carbons (BCs) dominate the sorption of many hydrophobic organic compounds (HOCs) in soils and sediments, thereby reducing the HOCs' mobilities and bioavailabilities. However, we do not have data for diverse HOCs' sorption to BC because it is time-consuming and labor-intensive to obtain isotherms on soot and other BCs. In this study, we developed a frontal analysis chromatographic method to investigate the adsorption of 21 organic compounds with diverse functional groups to NIST diesel soot. This method was precise and time-efficient, typically taking only a few hours to obtain an isotherm. Based on 102 soot-carbon normalized sorption coefficients (KsootC) acquired at different sorbate concentrations, a sorbate-activity-dependent polyparameter linear free-energy relationship was established: logKsootC = (3.74 ± 0.11)V + ((-0.35 ± 0.02)log ai)E + (-0.62 ± 0.10)A + (-3.35 ± 0.11)B + (-1.45 ± 0.09); (N = 102, R(2) = 0.96, SE = 0.18), where V, E, A, and B are the sorbate's McGowan's characteristic volume, excess molar refraction, and hydrogen acidity and basicity, respectively; and ai is the sorbate's aqueous activity reflecting the system's approach to saturation. The difference in dispersive interactions with the soot versus with the water was the dominant factor encouraging adsorption, and H-bonding interactions discouraged this process. Using this relationship, soot-water and sediment-water or soil-water adsorption coefficients of HOCs of interest (PAHs and PCBs) were estimated and compared with the results reported in the literature. PMID:26587648

  6. An Experimental and Computational Study on Soot Formation in a Coflow Jet Flame Under Microgravity and Normal Gravity

    Science.gov (United States)

    Ma, Bin; Cao, Su; Giassi, Davide; Stocker, Dennis P.; Takahashi, Fumiaki; Bennett, Beth Anne V.; Smooke, Mitchell D.; Long, Marshall B.

    2014-01-01

    Upon the completion of the Structure and Liftoff in Combustion Experiment (SLICE) in March 2012, a comprehensive and unique set of microgravity coflow diffusion flame data was obtained. This data covers a range of conditions from weak flames near extinction to strong, highly sooting flames, and enabled the study of gravitational effects on phenomena such as liftoff, blowout and soot formation. The microgravity experiment was carried out in the Microgravity Science Glovebox (MSG) on board the International Space Station (ISS), while the normal gravity experiment was performed at Yale utilizing a copy of the flight hardware. Computational simulations of microgravity and normal gravity flames were also carried out to facilitate understanding of the experimental observations. This paper focuses on the different sooting behaviors of CH4 coflow jet flames in microgravity and normal gravity. The unique set of data serves as an excellent test case for developing more accurate computational models.Experimentally, the flame shape and size, lift-off height, and soot temperature were determined from line-of-sight flame emission images taken with a color digital camera. Soot volume fraction was determined by performing an absolute light calibration using the incandescence from a flame-heated thermocouple. Computationally, the MC-Smooth vorticity-velocity formulation was employed to describe the chemically reacting flow, and the soot evolution was modeled by the sectional aerosol equations. The governing equations and boundary conditions were discretized on an axisymmetric computational domain by finite differences, and the resulting system of fully coupled, highly nonlinear equations was solved by a damped, modified Newtons method. The microgravity sooting flames were found to have lower soot temperatures and higher volume fraction than their normal gravity counterparts. The soot distribution tends to shift from the centerline of the flame to the wings from normal gravity to

  7. Numerical Modelling of Soot Formation in Laminar Axisymmetric Ethylene-Air Coflow Flames at Atmospheric and Elevated Pressures

    KAUST Repository

    Rakha, Ihsan Allah

    2015-05-01

    The steady coflow diffusion flame is a widely used configuration for studying combustion kinetics, flame dynamics, and pollutant formation. In the current work, a set of diluted ethylene-air coflow flames are simulated to study the formation, growth, and oxidation of soot, with a focus on the effects of pressure on soot yield. Firstly, we assess the ability of a high performance CFD solver, coupled with detailed transport and kinetic models, to reproduce experimental measurements, like the temperature field, the species’ concentrations and the soot volume fraction. Fully coupled conservation equations for mass, momentum, energy, and species mass fractions are solved using a low Mach number formulation. Detailed finite rate chemistry describing the formation of Polycyclic Aromatic Hydrocarbons up to cyclopenta[cd]pyrene is used. Soot is modeled using a moment method and the resulting moment transport equations are solved with a Lagrangian numerical scheme. Numerical and experimental results are compared for various pressures. Reasonable agreement is observed for the flame height, temperature, and the concentrations of various species. In each case, the peak soot volume fraction is predicted along the centerline as observed in the experiments. The predicted integrated soot mass at pressures ranging from 4-8 atm, scales as P2.1, in satisfactory agreement with the measured integrated soot pressure scaling (P2.27). Significant differences in the mole fractions of benzene and PAHs, and the predicted soot volume fractions are found, using two well-validated chemical kinetic mechanisms. At 4 atm, one mechanism over-predicts the peak soot volume fraction by a factor of 5, while the other under-predicts it by a factor of 5. A detailed analysis shows that the fuel tube wall temperature has an effect on flame stabilization.

  8. A comparison of chemical structures of soot precursor nanoparticles from liquid fuel combustion in flames and engine

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Bireswar; Datta, Amitava, E-mail: amdatta_ju@yahoo.com [Jadavpur University, Department of Power Engineering (India); Datta, Aparna; Saha, Abhijit [UGC-DAE Consortium for Scientific Research, Kolkata Centre (India)

    2013-04-15

    A comparative study of the chemical structures of soot precursor nanoparticles from the liquid fuel flame and engine exhaust has been performed in this work to establish an association between the particles from both the sources. Different ex-situ measurement techniques have been used to characterize the nanoparticles in samples collected from the laboratory petrol/air and iso-octane/air flames, as well as from a gasoline engine. The TEM images of the sampled material along with the EDS spectra corroborate the existence of carbonaceous nanoparticles. The nature of the UV absorption and fluorescence spectra of the samples from the iso-octane flame environment further confirms the sampled materials to be soot precursor nanoparticles. The DLS size distribution of the particles shows them to be below 10 nm size. FTIR spectrum of the precursor nanoparticles collected form the non-sooting zone of the flame and that of fully grown soot particles show few similarities and dissimilarities among them. The soot particles are found to be much more aromatized as compared to its precursor nanoparticles. The presence of carbonyl functional group (C=O) at around 1,720 cm{sup -1} has been observed in soot precursor nanoparticles, while such oxygenated functional groups are not prominent in soot structure. The absorption (UV and IR) and fluorescence spectra of the carbonaceous material collected from the gasoline engine exhaust show many resemblances with those of soot precursor nanoparticles from flames. These spectroscopic resemblances of the soot precursor nanoparticles from the flame environment and engine exhaust gives the evidence that the in-cylinder combustion is the source of these particles in the engine exhaust.

  9. 重整装置余热锅炉节能改造%Renovation of Waste Heat Boiler to Save Energy for Reforming Unit

    Institute of Scientific and Technical Information of China (English)

    于强

    2012-01-01

    为了回收重整加热炉系统烟气余热,多生产中压蒸汽,同时提高设备的运行的可靠性,消除安全隐患,对余热炉的烟筒、风机、炉管、保温材料等进行了改造和维修,改造后中压蒸汽产量有了较大幅度提高,同时增加了设备运行可靠性和运转周期,减少了安全隐患和维修费用。%To recover flue gas waste heat emitted from the reforming heaters, generate more medium-pressure steam and improve the reliability of equipment in its operation while eliminating potential safety hazard, renovation and maintenance were performed on such facilities as waste heat boiler stacks, blowers, furnace tubes and insulation materials. The renovation has not only raised the output of medium-pressure steam but improved the reliability and operational cycle of the equipment as well, reducing hence the potential safety hazard and maintenance cost.

  10. Comparison of soot formation for diesel and jet-a in a constant volume combustion chamber using two-color pyrometry

    KAUST Repository

    Jing, Wei

    2014-04-01

    The measurement of the two-color line of sight soot and KL factor for NO.2 diesel and jet-A fuels was conducted in an optical constant volume combustion chamber by using a high speed camera under 1000 K ambient temperature and varied oxygen concentration conditions. The ambient conditions were set as follows: four oxygen cases including 10%, 15%, 18% and 21% at 1000 K ambient temperature. KL factor and soot temperature were determined based on the two-color pyrometry technique using two band-pass filters with wavelengths of 650 nm and 550 nm. The results show that low soot temperature is observed in the upstream inner flame along the centerline, which is surrounded by high soot temperature regions, and a high KL factor is found in the same region with a low soot temperature. The results under different times suggest that soot temperature is higher for high O2 conditions during the entire flame development; meanwhile, both integrated KL factor and soot area decrease with the increase of O2 concentration. The two fuels share a similar trend of soot temperature and KL factor, however, diesel flame has a higher soot temperature and a larger high soot temperature area compared to jet-A flame. On the other hand, diesel flame shows a lower soot level during the quasi-steady state with a higher total soot level at the end of the combustion under low O2 conditions. A lower O2 concentration range from 10% to 15% is expected to have the possibility to achieve a simultaneous reduction of soot and NOx in sooting flames under the 1000 K ambient temperature condition. Copyright © 2014 SAE International.

  11. Effects of compositional heterogeneity and nanoporosity of raw and treated biomass-generated soot on adsorption and absorption of organic contaminants

    International Nuclear Information System (INIS)

    A biomass-generated soot was sequentially treated by HCl-HF solution, organic solvent, and oxidative acid to remove ash, extractable native organic matter (EOM), and amorphous carbon. The compositional heterogeneity and nano-structure of the untreated and treated soot samples were characterized by elemental analysis, thermal gravimetric analysis, BET-N2 surface area, and electron microscopic analysis. Sorption properties of polar and nonpolar organic pollutants onto the soot samples were compared, and individual contributions of adsorption and absorption were quantified. The sorption isotherms for raw sample were practically linear, while were nonlinear for the pretreated-soot. The removal of EOM enhanced adsorption and reduced absorption, indicating that EOM served as a partitioning phase and simultaneously masked the adsorptive sites. By drastic-oxidation, the outer amorphous carbon and the inner disordered core of the soot particles were completely removed, and a fullerene-like nanoporous structure (aromatic shell) was created, which promoted additional π-π interaction between phenanthrene and the soot. - Graphical abstract: The dual sorptive nature of the biomass-generated soot, i.e., the adsorptive effect of the carbonized soot fraction and the partition effect of the amorphous soot component. Research highlights: → The biomass-generated soot owns the heterogeneous compositions and nano-structures. → The soot exhibits the dual sorptive nature, i.e., adsorption and absorption. → Removal of the amorphous component weakens absorption, but strengthens adsorption. → The exposed adsorptive sites with highly aromatic nature promotes π-π interaction. → The dual sorptive nature of the soot depends on the various soot components. - The compositional heterogeneity and nano-structure play a regulating role in the adsorption and absorption of organic contaminants with the untreated and treated soot samples.

  12. Power consumption and parameter optimization of stalk impeller blowers%叶片式秸秆抛送装置功耗分析与参数优化

    Institute of Scientific and Technical Information of China (English)

    翟之平; 高搏; 杨忠义; 吴雅梅

    2013-01-01

    The impeller blower is widely used in various forage harvesters, such as crop straw choppers, rubbing, and breaking machines, to convey materials because of its simplicity, reliability, easy maintenance and adjustment, high capacity and low manufacturing cost. However, some undesired problems such as high power consumption, low throwing/blowing efficiency and high clogging probability also exist in the process of throwing/blowing the materials. In order to reduce the power consumption of the impeller blower and increase its blowing efficiency, the theoretical analyzing method was used to establish the mathematical models of the power consumption, firstly based on considering the airflow, which is suitable for forward-slant, backward-slant and radial paddle. The power consumption includes two parts. One part is the energy required to accelerate the materials that will obtain kinetic energy by means of the mechanical centrifugal force when the paddle rotates at high speed. The other part is the energy that accelerates the airflow in the impeller blower and helps the materials conveying under the condition of high rotating speed of the paddle. The first power consumption is related to the material-threw angle, namely, the rotation angle of the paddle in the course of hitting, carrying and throwing out of the material. When the material-threw angle is in the range from approximately 60°to 130°, all materials are thrown out of the housing under the condition of low energy consumption, high throwing/blowing efficiency and low clogging probability. However, when the material-threw angle is less than 60°or more than 130°, few materials are thrown out of the housing directly. Most of the materials will hit the housing, which causes most of the energy lost under the hitting energy E4c and a frictional energy E4f. Through validation by using the test data of the corn stalk, it shows that the computing power consumption by using this mathematical model of the power

  13. 30 CFR 56.13001 - General requirements for boilers and pressure vessels.

    Science.gov (United States)

    2010-07-01

    ... MINES Compressed Air and Boilers § 56.13001 General requirements for boilers and pressure vessels. All boilers and pressure vessels shall be constructed, installed, and maintained in accordance with the standards and specifications of the American Society of Mechanical Engineers Boiler and Pressure Vessel Code....

  14. 30 CFR 57.13001 - General requirements for boilers and pressure vessels.

    Science.gov (United States)

    2010-07-01

    ... NONMETAL MINES Compressed Air and Boilers § 57.13001 General requirements for boilers and pressure vessels. All boilers and pressure vessels shall be constructed, installed, and maintained in accordance with... 30 Mineral Resources 1 2010-07-01 2010-07-01 false General requirements for boilers and...

  15. 46 CFR 63.25-3 - Electric hot water supply boilers.

    Science.gov (United States)

    2010-10-01

    ... as required by 46 CFR part 52 or part 53, as applicable. Electric hot water supply boilers that meet... 46 Shipping 2 2010-10-01 2010-10-01 false Electric hot water supply boilers. 63.25-3 Section 63.25... water supply boilers. (a) Electric hot water supply boilers that have a capacity not greater than...

  16. 49 CFR 230.20 - Alteration and repair report for steam locomotive boilers.

    Science.gov (United States)

    2010-10-01

    ... boilers. (a) Alterations. When an alteration is made to a steam locomotive boiler, the steam locomotive... steam locomotive boiler, the steam locomotive owner and/or operator shall file with the FRA Regional... the boiler. Whenever welded or riveted repairs are performed on stayed portions of a steam...

  17. 46 CFR 91.15-1 - Standards in inspection of hulls, boilers, and machinery.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Standards in inspection of hulls, boilers, and machinery... hulls, boilers, and machinery. In the inspection of hulls, boilers, and machinery of vessels, the..., respecting material and inspection of hulls, boilers, and machinery, and the certificate of...

  18. 46 CFR 189.15-1 - Standards in inspection of hulls, boilers, and machinery.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Standards in inspection of hulls, boilers, and machinery... inspection of hulls, boilers, and machinery. In the inspection of hulls, boilers, and machinery of vessels... chapter, respecting material and construction of hulls, boilers, and machinery, and certificate...

  19. 46 CFR 71.15-1 - Standards in inspection of hulls, boilers, and machinery.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Standards in inspection of hulls, boilers, and machinery..., boilers, and machinery. In the inspection of hulls, boilers, and machinery of vessels, the standards... and inspection of hulls, boilers, and machinery, and the certificate of classification...

  20. Up-date on cyclone combustion and cyclone boilers

    Energy Technology Data Exchange (ETDEWEB)

    Carmo, Felipe Alfaia do; Nogueira, Manoel Fernandes Martins; Rocha, Rodrigo Carnera Castro da; Gazel, Hussein Felix; Martins, Diego Henrique dos Reis [Universidade Federal do Para (UFPA), Belem, PA (Brazil). Campus Universitario Jose da Silveira Netto], E-mails: mfmn@ufpa.br, mfmn@ufpa.br

    2010-07-01

    The boiler concept has been around for more than 70 years, and there are many types available. Boilers provide steam or hot water for industrial and commercial use. The Federal University of Para (UFPA) through the research group EBMA (Energy,Biomass and Environment) has been developing cyclonic furnace with a water wall, a boiler, aiming to use regional timbers (sawdust) and agro-industries residues as fuel to produce steam to be used in industrial processes as well as in power generation,. The use of cyclonic combustion for burning waste instead of burning in a fixed bed is mainly due to two factors efficiency improvement causing a more compact boiler and less risk of explosion, since their process does not generate an accumulation of volatile. Present state-of-art for commercial cyclone boilers has as set up a cyclone combustor with two combustion chambers, in fluid communication, where there ducts for supplying air and fuel directly into the first chamber and for forming a cyclonic flow pattern and a heat exchanger surrounding the second chamber for keeping low combustion temperature in both chambers. This paper shows the results of a literature review about design, construction and operation of cyclonic boilers using solid, liquid or gaseous fuel. This information has been used for the design of a cyclone boiler to be constructed at UFPA for research purposes and its basic concept is presented at the end of this article. (author)

  1. Supercritical boiler material selection using fuzzy analytic network process

    Directory of Open Access Journals (Sweden)

    Saikat Ranjan Maity

    2012-08-01

    Full Text Available The recent development of world is being adversely affected by the scarcity of power and energy. To survive in the next generation, it is thus necessary to explore the non-conventional energy sources and efficiently consume the available sources. For efficient exploitation of the existing energy sources, a great scope lies in the use of Rankin cycle-based thermal power plants. Today, the gross efficiency of Rankin cycle-based thermal power plants is less than 28% which has been increased up to 40% with reheating and regenerative cycles. But, it can be further improved up to 47% by using supercritical power plant technology. Supercritical power plants use supercritical boilers which are able to withstand a very high temperature (650-720˚C and pressure (22.1 MPa while producing superheated steam. The thermal efficiency of a supercritical boiler greatly depends on the material of its different components. The supercritical boiler material should possess high creep rupture strength, high thermal conductivity, low thermal expansion, high specific heat and very high temperature withstandability. This paper considers a list of seven supercritical boiler materials whose performance is evaluated based on seven pivotal criteria. Given the intricacy and difficulty of this supercritical boiler material selection problem having interactions and interdependencies between different criteria, this paper applies fuzzy analytic network process to select the most appropriate material for a supercritical boiler. Rene 41 is the best supercritical boiler material, whereas, Haynes 230 is the worst preferred choice.

  2. Modeling operation mode of pellet boilers for residential heating

    Science.gov (United States)

    Petrocelli, D.; Lezzi, A. M.

    2014-11-01

    In recent years the consumption of wood pellets as energy source for residential heating lias increased, not only as fuel for stoves, but also for small-scale residential boilers that, produce hot water used for both space heating and domestic hot water. Reduction of fuel consumption and pollutant emissions (CO, dust., HC) is an obvious target of wood pellet boiler manufacturers, however they are also quite interested in producing low- maintenance appliances. The need of frequent maintenance turns in higher operating costs and inconvenience for the user, and in lower boiler efficiency and higher emissions also. The aim of this paper is to present a theoretical model able to simulate the dynamic behavior of a pellet boiler. The model takes into account many features of real pellet boilers. Furthermore, with this model, it is possible to pay more attention to the influence of the boiler control strategy. Control strategy evaluation is based not only on pellet consumption and on total emissions, but also on critical operating conditions such as start-up and stop or prolonged operation at substantially reduced power level. Results are obtained for a residential heating system based on a wood pellet boiler coupled with a thermal energy storage. Results obtained so far show a weak dependence of performance in terms of fuel consumption and total emissions on control strategy, however some control strategies present some critical issues regarding maintenance frequency.

  3. MSWI Boiler Ashes: Production and Quality Through the Horizontal Section of a Boiler

    DEFF Research Database (Denmark)

    Allegrini, Elisa; Boldrin, Alessio; Astrup, Thomas Fruergaard

    SUMMARY: the central role of waste-to-energy (WtE) plants in Denmark asks for a deep knowledge of all different residues produced by these facilities. The main objective of solid residues characterization is the optimization of their management system. In this study we present the results of the...... first phase of a wider study about the solid residues produced at the heat recovery system (boiler) of a waste incineration plant. The characterization was carried out not on the total output of the boiler but on the different solid residues produced at ten different horizontal sections. The aim was to...... characterize the different streams in order to identify differences that can justify potentially different utilization/disposal options. First results showed differences between sections in terms of chemical composition, leaching behavior and content of dioxins, but additional results are needed to cope with...

  4. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    R. Viswanathan

    2002-04-15

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), and up to 5500 psi with emphasis upon 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced

  5. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    R. Viswanathan; K. Coleman

    2003-01-20

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to

  6. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    R. Viswanathan; K. Coleman

    2002-10-15

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to

  7. COAL COMBUSTION EFFICIENCY IN CFB BOILER

    Institute of Scientific and Technical Information of China (English)

    Hairui; Yang; Guangxi; Yue

    2005-01-01

    The carbon content in the fly ash from most Chinese circulating fluidized bed (CFB) boilers is much higher than expected, thus directly influencing the combustion efficiency. In the present paper, carbon burnout was investigated both in field tests and laboratory experiments. The effect of coal property, operation condition, gas-solid mixing, char deactivation,residence time and cyclone performance are analyzed seriatim based on large amount of experimental results.A coal index is proposed to describe the coal rank, defined by the ratio of the volatile content to the coal heat value, is a useful parameter to analyze the char burnout. The carbon content in the fly ash depends on the coal rank strongly. CFB boilers burning anthracite, which has low coal index, usually have high carbon content in the fly ash. On the contrary, the CFB boilers burning brown coal, which has high coal index, normally have low carbon content.Poor gas-solid mixing in the furnace is another important reason of the higher carbon content in the fly ash. Increasing the velocity and rigidity of the secondary air could extend the penetration depth and induce more oxygen into the furnace center. Better gas solid mixing will decrease the lean oxygen core area and increase char combustion efficiency.The fine char particles could be divided into two groups according to their reactivity. One group is "fresh" char particles with high reactivity and certain amount of volatile content. The other group of char particles has experienced sufficient combustion time both in the furnace and in the cyclone, with nearly no volatile. These "old" chars in the fly ash will be deactivated during combustion of large coal particles and have very low carbon reactivity. The generated fine inert char particles by attrition of large coal particles could not easily burn out even with the fly ash recirculation. The fraction of large coal particles in coal feed should be reduced during fuel preparation process.The cyclone

  8. 燃气锅炉鼓、引风机变频节能改造实践与分析%Practice and Analysis of Energy Saving Reconstruction of Blower Fan and Induced Draft Fan for Gas-fired Boiler

    Institute of Scientific and Technical Information of China (English)

    章建华; 徐小燕

    2012-01-01

    通常锅炉上的鼓、引风机都是电机以定速运转,再通过改变风机入口的档板开度来调节风量.而风机的最大特点是负载转矩与转速的平方成正比,而轴功率与转速的立方成正比,因此如将电机的定速运转改为根据需要的流量来调节电机的转速就可节约大量的电能.介绍了南通宝钢钢铁有限公司BFG锅炉鼓、引风机的变频改造项目.

  9. Modelling transition states of a small once-through boiler

    Energy Technology Data Exchange (ETDEWEB)

    Talonpoika, T. [Lappeenranta Univ. of Technology (Finland). Dept. of Energy Technology

    1997-12-31

    This article presents a model for the unsteady dynamic behaviour of a once-through counter flow boiler that uses an organic working fluid. The boiler is a compact waste-heat boiler without a furnace and it has a preheater, a vaporiser and a superheater. The relative lengths of the boiler parts vary with the operating conditions since they are all parts of a single tube. The boiler model is presented using a selected example case that uses toluene as the process fluid and flue gas from natural gas combustion as the heat source. The dynamic behaviour of the boiler means transition from the steady initial state towards another steady state that corresponds to the changed process conditions. The solution method chosen is to find such a pressure of the process fluid that the mass of the process fluid in the boiler equals the mass calculated using the mass flows into and out of the boiler during a time step, using the finite difference method. A special method of fast calculation of the thermal properties is used, because most of the calculation time is spent in calculating the fluid properties. The boiler is divided into elements. The values of the thermodynamic properties and mass flows are calculated in the nodes that connect the elements. Dynamic behaviour is limited to the process fluid and tube wall, and the heat source is regarded as to be steady. The elements that connect the preheater to the vaporiser and the vaporiser to the superheater are treated in a special way that takes into account a flexible change from one part to the other. The initial state of the boiler is received from a steady process model that is not a part of the boiler model. The known boundary values that may vary during the dynamic calculation were the inlet temperature and mass flow rates of both the heat source fluid and the process fluid. The dynamic boiler model is analysed for linear and step charges of the entering fluid temperatures and flow rates. The heat source side tests show that

  10. Maintenance of immersion ultrasonic testing on the water tube boiler

    International Nuclear Information System (INIS)

    There are 4-boiler in nuclear fuel cycle engineering laboratories (NCL). These boilers have been operated in the long term over 20 years. One of them, the leakage of boiler water was found at one of the generating tubes, and 2 adjoining generating tubes were corroded in Dec, 2011. These generating tubes were investigated by immersion ultrasonic testing (UT) for measure thickness of the tube. As a result, thinner tube was found in a part of a bend and near the water drum. These parts are covered with sulfide deposit, it seems that the generating tubes were corroded by sulfide. (author)

  11. Extending EMMS-based models to CFB boiler applications

    Institute of Scientific and Technical Information of China (English)

    Bona Lu; Nan Zhang; Wei Wang; Jinghai Li

    2012-01-01

    Recently,EMMS-based models are being widely applied in simulations of high-throughput circulating fluidized beds (CFBs) with fine particles.Its use for low flux systems,such as CFB boiler (CFBB),still remains unexplored.In this work,it has been found that the original definition of cluster diameter in EMMS model is unsuitable for simulations of the CFB boiler with low solids flux.To remedy this,we propose a new model of cluster diameter.The EMMS-based drag model (EMMS/matrix model) with this revised cluster definition is validated through the computational fluid dynamics (CFD) simulation of a CFB boiler.

  12. Failure of marine boiler tube: A case history

    Directory of Open Access Journals (Sweden)

    V. A. Dere

    1963-01-01

    Full Text Available An interesting case of marine boiler tube failure is described. As a result of local overheating, a ballooning burst occurred in a boiler tube. Evidence showed that a temperature of over 1600/degree/F (87/degree/C had been reached before rupture. The presence of a thin film of copper arising from the auxiliary equipments of the boiler, caused pittings in the metal. failure was thus attributed to local overheating accelerated by an inner deposit of heat insulating scale.

  13. Model-based Control of a Bottom Fired Marine Boiler

    DEFF Research Database (Denmark)

    Solberg, Brian; Karstensen, Claus M. S.; Andersen, Palle;

    relying on estimates of the disturbance. Preliminary tests at the boiler system show that the designed controller is able to control the boiler process. Furthermore it can be concluded that relying on estimates of the steam flow in the control strategy does not decrease the controller performance......This paper focuses on applying model based MIMO control to minimize variations in water level for a specific boiler type. A first principles model is put up. The model is linearized and an LQG controller is designed. Furthermore the benefit of using a steam °ow measurement is compared to a strategy...

  14. Model-based Control of a Bottom Fired Marine Boiler

    DEFF Research Database (Denmark)

    Solberg, Brian; Karstensen, Claus M. S.; Andersen, Palle;

    2005-01-01

    relying on estimates of the disturbance. Preliminary tests at the boiler system show that the designed controller is able to control the boiler process. Furthermore it can be concluded that relying on estimates of the steam flow in the control strategy does not decrease the controller performance......This paper focuses on applying model based MIMO control to minimize variations in water level for a specific boiler type. A first principles model is put up. The model is linearized and an LQG controller is designed. Furthermore the benefit of using a steam °ow measurement is compared to a strategy...

  15. Improvement of steam temperature control in supercritical once thru boilers

    OpenAIRE

    黒石, 卓司; 藤川, 卓爾

    2009-01-01

     New steam temperature control logic for supercritical once thru boilers was developed from the view point of simplicity similar to that of the conventional sub-critical drum type boilers. Water wall outlet steam temperature can be controlled more easily due to larger specific heat capacity of steam than super heater outlet steam temperature. By dividing temperature control into two parts, one at water wall outlet by fuel flow and the other at SH(super heater) outlet by SH spray flow, boiler ...

  16. Corrective Action Decision Document/Closure Report for Corrective Action Unit 559: T Tunnel Compressor/Blower Pad, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2010-03-15

    This Corrective Action Decision Document (CADD)/Closure Report (CR) was prepared by the Defense Threat Reduction Agency (DTRA) for Corrective Action Unit (CAU) 559, T-Tunnel Compressor/Blower Pad. This CADD/CR is consistent with the requirements of the Federal Facility Agreement and Consent Order (FFACO) agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. Corrective Action Unit 559 is comprised of one Corrective Action Site (CAS): • 12-25-13, Oil Stained Soil and Concrete The purpose of this CADD/CR is to provide justification and documentation supporting the recommendation for closure in place with use restrictions for CAU 559.

  17. Black carbon surface oxidation and organic composition of beech-wood soot aerosols

    Science.gov (United States)

    Corbin, J. C.; Lohmann, U.; Sierau, B.; Keller, A.; Burtscher, H.; Mensah, A. A.

    2015-10-01

    Soot particles are the most strongly light-absorbing particles commonly found in the atmosphere. They are major contributors to the radiative budget of the Earth and to the toxicity of atmospheric pollution. Atmospheric aging of soot may change its health- and climate-relevant properties by oxidizing the primary black carbon (BC) or organic particulate matter (OM) which, together with ash, comprise soot. This atmospheric aging, which entails the condensation of secondary particulate matter as well as the oxidation of the primary OM and BC emissions, is currently poorly understood. In this study, atmospheric aging of wood-stove soot aerosols was simulated in a continuous-flow reactor. The composition of fresh and aged soot particles was measured in real time by a dual-vaporizer aerosol-particle mass spectrometer (SP-AMS). The dual-vaporizer SP-AMS provided information on the OM and BC components of the soot as well as on refractory components internally mixed with BC. By switching the SP-AMS laser vaporizer off and using only the AMS thermal vaporizer (at 600 °C), information on the OM component only was obtained. In both modes, OM appeared to be generated largely by cellulose and/or hemicellulose pyrolysis and was only present in large amounts when new wood was added to the stove. In SP-AMS mode, BC signals otherwise dominated the mass spectrum. These signals consisted of ions related to refractory BC (rBC, C1-5+), oxygenated carbonaceous ions (CO1-2+), potassium (K+), and water (H2O+ and related fragments). The C4+ : C3+ ratio, but not the C1+ : C3+ ratio, was consistent with the BC-structure trends of Corbin et al. (2015c). The CO1-2+ signals likely originated from BC surface groups: upon aging, both CO+ and CO2+ increased relative to C1-3+ while CO2+ simultaneously increased relative to CO+. Factor analysis (positive matrix factorization) of SP-AMS and AMS data, using a modified error model to address peak-integration uncertainties, indicated that the surface

  18. Soot Aerosol Particles as Cloud Condensation Nuclei: from Ice Nucleation Activity to Ice Crystal Morphology

    Science.gov (United States)

    Pirim, Claire; Ikhenazene, Raouf; Ortega, Isamel Kenneth; Carpentier, Yvain; Focsa, Cristian; Chazallon, Bertrand; Ouf, François-Xavier

    2016-04-01

    Emissions of solid-state particles (soot) from engine exhausts due to incomplete fuel combustion is considered to influence ice and liquid water cloud droplet activation [1]. The activity of these aerosols would originate from their ability to be important centers of ice-particle nucleation, as they would promote ice formation above water homogeneous freezing point. Soot particles are reported to be generally worse ice nuclei than mineral dust because they activate nucleation at higher ice-supersaturations for deposition nucleation and at lower temperatures for immersion freezing than ratios usually expected for homogeneous nucleation [2]. In fact, there are still numerous opened questions as to whether and how soot's physico-chemical properties (structure, morphology and chemical composition) can influence their nucleation ability. Therefore, systematic investigations of soot aerosol nucleation activity via one specific nucleation mode, here deposition nucleation, combined with thorough structural and compositional analyzes are needed in order to establish any association between the particles' activity and their physico-chemical properties. In addition, since the morphology of the ice crystals can influence their radiative properties [3], we investigated their morphology as they grow over both soot and pristine substrates at different temperatures and humidity ratios. In the present work, Combustion Aerosol STandart soot samples were produced from propane using various experimental conditions. Their nucleation activity was studied in deposition mode (from water vapor), and monitored using a temperature-controlled reactor in which the sample's relative humidity is precisely measured with a cryo-hygrometer. Formation of water/ice onto the particles is followed both optically and spectroscopically, using a microscope coupled to a Raman spectrometer. Vibrational signatures of hydroxyls (O-H) emerge when the particle becomes hydrated and are used to characterize ice

  19. Black-carbon-surface oxidation and organic composition of beech-wood soot aerosols

    Directory of Open Access Journals (Sweden)

    J. C. Corbin

    2015-03-01

    Full Text Available Soot particles are the most strongly light-absorbing particles commonly found in the atmosphere. They are major contributors to the radiative budget of the Earth and to the toxicity of atmospheric pollution. Atmospheric aging of soot may change its health- and climate-relevant properties by oxidizing the primary black carbon (BC or organic particulate matter (OM which, together with ash, comprise soot. This atmospheric aging, which entails the condensation of secondary particulate matter as well as the oxidation of the primary OM and BC emissions, is currently poorly understood. In this study, atmospheric aging of wood-stove soot aerosols was simulated in a continuous-flow reactor. The composition of fresh and aged soot particles was measured in real time by a dual-vaporizer aerosol-particle mass spectrometer (SP-AMS. The SP-AMS provided information on the OM, BC, and surface composition of the soot. The OM appeared to be generated largely by cellulose and/or hemicellulose pyrolysis, and was only present in large amounts when new wood was added to the stove. BC signals otherwise dominated the mass spectrum. These signals consisted of ions related to refractory BC (rBC, C+1−5, oxygenated surface groups (CO+1−2, potassium (K+ and water (H+2O and related fragments. The C+4 : C+3 ratio, but not the C+1 : C+3 ratio, was consistent with the BC-structure trends of Corbin et al. (2015c. The CO+1−2 signals likely originated from BC surface groups: upon aging, both CO+ and CO+2 increased relative to C+1−3 while CO+2 simultaneously increased relative to CO+. Factor analysis (PMF of SP-AMS and AMS data, using a new error model to account for peak-integration uncertainties, indicated that the surface composition of the BC was approximately constant across all stages of combustion for both fresh and aged samples. These results represent the first time-resolved measurements of in-situ BC-surface aging and suggest that the surface of beech-wood BC may

  20. FORMATION OF POLYCYCLIC AROMATIC HYDROCARBONS AND THEIR GROWTH TO SOOT -A REVIEW OF CHEMICAL REACTION PATHWAYS. (R824970)

    Science.gov (United States)

    The generation by combustion processes of airborne species of current health concern such as polycyclic aromatic hydrocarbons (PAH) and soot particles necessitates a detailed understanding of chemical reaction pathways responsible for their formation. The present review discus...

  1. Study of Corrosion in a Biomass Boiler

    Directory of Open Access Journals (Sweden)

    C. Berlanga

    2013-01-01

    Full Text Available Biomass plants, apart from producing energy, help to reduce CO2(g emissions. One of the biggest problems for their development is superheater corrosion due to fuel corrosivity, especially of the straw. This limits both the temperature of the vapour and also the effectiveness of the plant. In order to know more about the reactions which happen inside the boiler of biomass, thermodynamic calculations using software (HSC Chemistry have been carried out. Field tests have been carried out in the Sangüesa Biomass Plant in Navarra (Spain: determination of the types of oxides and the deposits formed on the superheaters tubes as well as a program to measure temperatures. Finally, the global results are discussed.

  2. Film-forming amines in shell boilers

    Energy Technology Data Exchange (ETDEWEB)

    Topp, Holger [Astrium RST Rostock GmbH, Rostock (Germany); Hater, Wolfgang [BK Giulini, Ludwigshafen (Germany); BKG Water Solutions, Ludwigshafen (Germany); Bache, Andre de [BK Giulini, Ludwigshafen (Germany); Kolk, Christian zum [BKG Water Solutions, Ludwigshafen (Germany)

    2012-01-15

    Studies were conducted with the aim of providing answers to important questions concerning the use of film-forming amines in steam generators. Tests were carried out in test steam generators under controlled conditions to study the three following application areas: the influence of film-forming amines on boiling behavior and heat transfer, the influence of film-forming amines on oxidic protective film formation, and the influence of film-forming amines on critical operating conditions. In the experiments water treatment with trisodium phosphate (which is normally used with shell boilers) was compared with treatment with film-forming amines. In all three areas the treatment with film-forming amines achieved comparable or better results than the treatment with trisodium phosphate. (orig.)

  3. Effect of Water Quality on the Performance of Boiler in Nigerian Petroleum Industry

    OpenAIRE

    J. O. ODIGURE; A. S. ABDULKAREEM; E. T. ASUQUO

    2005-01-01

    This work investigates quality of water used in boilers of Refinery Company in Nigeria. The results shows that the quality of water fed to boilers are off specification. Low water quality used in boilers led to frequent failure of the boilers as a result of tube rupture. This has resulted into low capacity utilization and loss of processing fees. The poor performance of the boiler feed treatment plant is attributable to the deplorable condition of water intake plant, raw water treatment, demi...

  4. Smooth Surfaces: A review of current and planned smooth surface technologies for fouling resistance in boiler

    Energy Technology Data Exchange (ETDEWEB)

    Corkery, Robert; Baefver, Linda; Davidsson, Kent; Feiler, Adam

    2012-02-15

    Here we have described the basics of boilers, fuels, combustion, flue gas composition and mechanisms of deposition. We have reviewed coating technologies for boiler tubes, including their materials compositions, nano structures and performances. The surface forces in boilers, in particular those relevant to formation of unwanted deposits in boilers have also been reviewed, and some comparative calculations have been included to indicate the procedures needed for further study. Finally practical recommendations on the important considerations in minimizing deposition on boiler surfaces are made

  5. Vibration analysis and online thermodynamic assessment of a turbo-blower turbine; Analisis de vibraciones y evaluacion termodinamica en linea de la turbina de un turbosoplador

    Energy Technology Data Exchange (ETDEWEB)

    Munoz Q, Rodolfo; Marino L, Carlos; Ramirez S, Jose A.; Rivera G, Juan J. [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2007-11-15

    In this paper are presented the results of the analysis of dynamic and thermodynamic behavior analysis of a turbo-blower integrated by one 13,080 KW steam turbine and a blower with a flow of 131,520 ft{sup 3}/m, to determine the cause of the excessive wearing of the axial trust bearing of the steam turbine. The main cause of failure is the wearing and severe dirtiness of the turbine stages that contributes with an increment of the turbine axial load. The consequences of the turbine deterioration are: greater axial load due to the additional heating rotor (requires greater steam to generate the same power that in design conditions); turbine motive power reduction and the reduction of isentropic efficiency of the same, for similar average steam consumption between reference and test. Due to the former the turbine power represents a deviation of the 34.74% in Steam Specific Consumption (SSC). [Spanish] Se presenta los resultados del analisis del comportamiento dinamico y termodinamico de un turbosoplador integrado por una turbina de vapor de 13,080 KW y un soplador con un caudal de 131,520 pies{sup 3}/m, para determinar la causa del desgaste excesivo de la chumacera de empuje axial de la turbina de vapor. La causa principal de la falla es el desgaste y ensuciamiento severo de las etapas de la turbina que contribuye con un incremento de la carga axial de la turbina. Las consecuencias del deterioro de la turbina son: mayor carga axial debida al calentamiento adicional del rotor (requiere mayor vapor para generar la misma potencia que en condiciones de diseno); reduccion de la potencia motriz de la turbina y de la eficiencia isoentropica de las mismas, para un consumo de vapor promedio similar entre referencia y prueba. Debido a lo anterior la potencia de la turbina representa una desviacion del 34.74% en el Consumo Especifico de Vapor (CVE).

  6. Alumina-Supported Manganese Catalysts for Soot Combustion Prepared by Thermal Decomposition of KMnO4

    Directory of Open Access Journals (Sweden)

    Agustin Bueno-López

    2012-09-01

    Full Text Available Alumina-supported manganese catalysts with cryptomelane and/or birnessite structure have been prepared using a simple method based on the thermal decomposition of potassium permanganate. The samples have been characterized by XRD, FTIR, TGA, DSC, N2 adsorption at −196 °C, SEM, H2-TPR and XPS, and their catalytic activity for soot combustion has been tested and compared to that of a reference Pt/alumina catalyst. The thermal decomposition of alumina-supported KMnO4 yields a mixture of supported birnessite and potassium manganate which is the most effective, among those prepared, to lower the soot combustion temperature. However, this material is not useful for soot combustion because the accelerating effect is not based on a catalytic process but on the oxidation of soot by potassium manganate. A suitable soot combustion catalyst is obtained after potassium manganate is removed by water washing, yielding only the birnessite phase on the γ-Al2O3 support. This birnessite phase can be transformed into cryptomelane by calcination at 600 °C. These two samples, γ-Al2O3-supported birnessite and cryptomelane are suitable catalysts for soot combustion in NOx/O2 mixtures, as their catalytic activity is based on the NO2-assited mechanism, that is, both catalysts accelerate the oxidation of NO to NO2 and NO2 promotes soot oxidation. The soot combustion temperatures obtained with these birnessite/cryptomelane alumina-supported catalysts are similar to that obtained with the reference Pt/alumina catalyst.

  7. SO2 influence on the K/La2O3 soot combustion catalyst deactivation

    International Nuclear Information System (INIS)

    In the present work, K/La2O3 was prepared and tested as a potential catalyst to be used in a diesel engine exhaust. The soot combustion activity was evaluated by temperature-programmed-oxidation (TPO), and the NOx-catalyst interaction was studied using a microbalance experiment. The SO2 poisoning process and the regeneration of a poisoned K/La2O3 catalyst were analyzed. The fresh catalyst presented a good soot combustion activity. After being treated with a 1000 ppm SO2 stream, the catalyst was poisoned due to lanthanum sulfate and potassium sulfate formation. The NOx treatment contributed to the K2(SO4) decomposition at the expense of extra La2(SO4)3 formation and the H2 treatment contributed to the La2(SO4)3 decomposition. (author)

  8. Shock-tube pyrolysis of acetylene - Sensitivity analysis of the reaction mechanism for soot formation

    Science.gov (United States)

    Frenklach, M.; Clary, D. W.; Gardiner, W. C., Jr.; Stein, S. E.

    1986-01-01

    The impact of thermodynamic parameters on the sensitivity of model predictions of soot formation by shock-tube pyrolysis of acetylene were assessed analytically. The pyrolysis process was treated as having three components: initiation, the initial pyrolysis stages; cyclization, formation of larger molecules and radicals and small aromatic molecules; and polymerization, further growth of aromatic rings. Rate equations are reviewed for each component. Thermodynamic effects were assessed by varying the C2H-H and C2H3-H bond energies and the Ct-(Ct) group additivity value. Any change in the C2H-H bond energy had a significant impact on the temperature and the maximum amount of the soot yield. The findings underscore the necessity of using accurate thermodynamic data for modeling high-temperature chemical kinetics.

  9. Biomass Gasification Behavior in an Entrained Flow Reactor: Gas Product Distribution and Soot Formation

    DEFF Research Database (Denmark)

    Qin, Ke; Jensen, Peter Arendt; Lin, Weigang;

    2012-01-01

    . In comparison to pyrolysis, lower yields of soot, H2, and CO were produced during gasification. The yield of soot could be reduced by a longer residence time, larger feeder air flow, lower oxygen concentration, higher excess air ratio, higher steam/carbon ratio, and higher reactor temperature. Changes...... in residence time, feeder air flow, and oxygen concentration did not show a noticeable influence on H2 and CO yields. Increasing the excess air ratio decreased both the H2 and CO yields; increasing the steam/carbon ratio increased the H2 yield but decreased the CO yield; and increasing the reactor temperature......Biomass gasification and pyrolysis were studied in a laboratory-scale atmospheric pressure entrained flow reactor. Effects of operating parameters and biomass types on the syngas composition were investigated. In general, the carbon conversion during biomass gasification was higher than 90...

  10. Determination of polyaromatic hydrocarbons in domestic, commercial and industrial soot samples

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Yousaf; Sohail, Syed Muhammad; Ahmad, Imtiaz [Peshawar Univ., Khyber Pakhtunkhawa (Pakistan). Inst. of Chemical Sciences; Saeed, Khalid [Malakand Univ., Khyber Pakhtunkhawa (Pakistan). Dept. of Chemistry

    2013-05-15

    Polycyclic aromatic hydrocarbons (PAHs) were determined in domestic, commercial and industrial soot samples via HPLC. The study showed that benzo[a]pyrene (bap) was not present in most of the samples. The highest quantity of BaP was found in Pakistan Particle Board where its concentration was 259.12 mg/kg. The high quantity of other PAHs such as chrysene (CHR), anthracene (ANT), fluorene (FL), naphthalene (NAP), phenanthrene (PHE), acenaphthylene (ACP) and flouranthene (FTH) were found in tandoor, kabab karayi, tabakhee, brick kiln and motor car soot samples. The low concentration of most of the PAH compounds in most of the samples might be due to their photooxidative, biological and microbial degradation. (orig.)

  11. Soot Nanostructure And Its Impact Upon The O2 Oxidation Rate

    Science.gov (United States)

    Wal, Randy L. Vander; Tomasek, Aaron J.

    2003-01-01

    Studies of soot oxidation have ranged from in situ flame studies to shock tubes to flow reactors. Each of these systems possesses particular advantages and limitations related to temperature, time and chemical environments. Despite the aforementioned differences, these soot oxidation investigations share three striking features. First and foremost is the wide variation in the rates of oxidation. Reported oxidation rates vary by factors of +6 to - 20 relative to the Nagle Strickland-Constable (NSC) rate for graphite oxidation [3]. Rate variations are not surprising, as the temperatures, residence times, types of oxidants and methods of oxidation differ from study to study. Nevertheless, a valid explanation for rate differences of this magnitude has yet to be presented.

  12. Hydrothermal Synthesis of Lanthanide Stannates Pyrochlore Nanocrystals for Catalytic Combustion of Soot Particulates.

    Science.gov (United States)

    Zhang, Xiaomin; Liu, Xuhui; Lu, Peng; Wang, Liguo; Zhang, Zhaoliang; Wang, Xiuju; Wang, Zhongpeng

    2015-01-01

    Nanocrystalline La2Sn2O7 and La2Sn1.8Co0.2O7 with a phase-pure pyrochlore structure were synthesized by a hydrothermal method, and their catalytic activity was investigated for soot combustion. The as-synthesized catalysts presented relatively larger surface area, and pore volume, which was benefit to the gas molecule diffusion in the reaction. A uniform spherical structure with particle size of 200-500 nm was found in SEM. The samples via hydrothermal route are more active for catalytic soot combustion, ascribing to the spherical morphology, high surface area and improved oxygen mobility. After Co, the reducibility was improved and surface oxygen vacancy was produced, resulting in the enhanced activity and selectivity to CO2 formation.

  13. Hydrothermal Synthesis of Lanthanide Stannates Pyrochlore Nanocrystals for Catalytic Combustion of Soot Particulates

    Directory of Open Access Journals (Sweden)

    Xiaomin Zhang

    2015-01-01

    Full Text Available Nanocrystalline La2Sn2O7 and La2Sn1.8Co0.2O7 with a phase-pure pyrochlore structure were synthesized by a hydrothermal method, and their catalytic activity was investigated for soot combustion. The as-synthesized catalysts presented relatively larger surface area, and pore volume, which was benefit to the gas molecule diffusion in the reaction. A uniform spherical structure with particle size of 200–500 nm was found in SEM. The samples via hydrothermal route are more active for catalytic soot combustion, ascribing to the spherical morphology, high surface area and improved oxygen mobility. After Co, the reducibility was improved and surface oxygen vacancy was produced, resulting in the enhanced activity and selectivity to CO2 formation.

  14. Knowledge based system for fouling assessment of power plant boiler

    International Nuclear Information System (INIS)

    The paper presents the design of an expert system for fouling assessment in power plant boilers. It is an on-line expert system based on selected criteria for the fouling assessment. Using criteria for fouling assessment based on 'clean' and 'not-clean' radiation heat flux measurements, the diagnostic variable are defined for the boiler heat transfer surface. The development of the prototype knowledge-based system for fouling assessment in power plants boiler comprise the integrations of the elements including knowledge base, inference procedure and prototype configuration. Demonstration of the prototype knowledge-based system for fouling assessment was performed on the Sines power plant. It is a 300 MW coal fired power plant. 12 fields are used with 3 on each side of boiler

  15. Emissions from Power Plant and Industrial Boiler Sector

    Data.gov (United States)

    U.S. Environmental Protection Agency — This asset provides hourly data on SO2, NOx, and CO2 emissions; gross load, steam load, and heat input; from electricity generation units and industrial boilers...

  16. Seismic model of the nuclear boiler SPX2

    International Nuclear Information System (INIS)

    A model of the nuclear boiler SPX2 is proposed in this paper enabling to carry out comparative calculations on the response to seismic effects. The calculations are made in CISE and SEPTEN departments of Electricite de France

  17. TRD, technical codes and instructions on steam boilers

    International Nuclear Information System (INIS)

    Condensed edition informing about layout and applications of the TRDs, materials, manufacture and dimensioning, calculations, equipment and installation, testing and operation, and boilers of groups I, II and III. (DG)

  18. Shock resistance of supercharged boilers through integration with ship structure

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The non-linear finite element software ABAQUS was used to simulate the dynamic response of a marine supercharged boiler when subjected to impact loading.Shock resistance was analyzed by the time-domain simulation method.After exhaustive simulations, the effect of air pressure induced by different working conditions on the shock response of a supercharged boiler was reviewed, leading to conclusions about the variability of structural response with different loading parameters.In order to simulate the real impulsive environments of supercharged boilers, the integration of equipment and ship structure was then primarily used to analyze shock response.These distinctly different equipment shock test methods, run under equivalent work conditions, were compared and the causes of discrepancy were analyzed.The main purpose of this paper is to present references for the anti-shock design of marine supercharged boilers.

  19. Numerical Analysis of the Factors about Combustion Stability on Boiler

    Directory of Open Access Journals (Sweden)

    Yan Weiping

    2012-06-01

    Full Text Available Through the research of the coal pulverized catches fire and steadily combustion mechanism and the numerical Simulation of the 300MW Tangentially Pulverized Coal Fired Boiler by Coal-fire software?combine the operating data of the boiler, establish the corresponding relation between the result of numerical simulation and combustion stability. The result indicates that the higher volatile matter, lower content of ash and moisture of the coal, it helps the coal pulverized air current to catch fire . More fineness coal pulverized is favorable to catch fire. When boiler load reduced, it will influence the characteristic" lighted by itself " of the tangentially pulverized coal fired boiler, and it will cause combustion unstably.

  20. Chemical Effects of CO2 Concentration on Soot Formation in Jet-stirred/Plug-flow Reactor

    Institute of Scientific and Technical Information of China (English)

    张引弟; 娄春; 刘德华; 李勇; 阮龙飞

    2013-01-01

    Soot formation was investigated numerically with CO2 addition in a jet-stirred/plug-flow reactor (JSR/PFR) C2H4/O2/N2 reactor (C/O ratio of 2.2) at atmospheric pressure. An updated Kazakov mechanism empha-sizes the effect of the O2/CO2 atmosphere instead of an O2/N2 one in the premixed flame. The soot formation was taken into account in the JSR/PFR for C2H4/O2/N2. The effects of CO2 addition on soot formation in different C2H4/O2/CO2/N2 atmospheres were studied, with special emphasis on the chemical effect. The simulation shows that the endothermic reaction CO2+H CO+OH is responsible of the reduction of hydrocarbon intermediates in the CO2 added combustion through the supplementary formation of hydroxyl radicals. The competition of CO2 for H radical through the above forward reaction with the single most important chain branching reaction H+O2 O+OH reduces significantly the fuel burning rate. The chemical effects of CO2 cause a significant increase in residence time and mole fractions of CO and OH, significant decreases in some intermediates (H, C2H2), polycyclic aromatic hydrocarbons (PAHs, C6H6 and C16H10, etc.) and soot volume fraction. The CO2 addition will leads to a decrease by only about 5%to 20%of the maximum mole fractions of some C3 to C10 hydrocarbon intermediates. The sensitivity analysis and reaction-path analysis results show that C2H4 reaction path and products are altered due to the CO2 addition.