WorldWideScience

Sample records for boiler soot blowers

  1. Continuous boiler cleaning with explosion generators. The alternative to soot blowers; Heizflaechenabreinigung mit Explosionsgeneratoren. Die Alternative zu Russblaesern

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, Christian; Rueegg, Hans [Explosion Power GmbH, Lenzburg (Switzerland); Pajarskas, Arno [Explosion Power DE GmbH, Duesseldorf (Germany)

    2011-07-01

    The explosion generator was recently developed by Explosion Power GmbH. With explosion generators, the boiler is cleaned by pressure waves, which are created by controlled gas explosions of natural gas and oxygen. The experience of 22 months of operation in the WtE plant in Lucerne shows that the cleaning efficiency of the explosion generators is much higher than that of soot blowers. Explosion generators are installed Europe-wide in more than 13 different boiler lines. (orig.)

  2. Optimum geometry for boiler soot blowers nozzles; Geometria optima de toberas para deshollinadores de caldera

    Energy Technology Data Exchange (ETDEWEB)

    Espinoza Garza, Jesus; Garcia Tinoco, Guillermo J.; Martinez Flores, Jose Oscar [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1989-12-31

    For boiler soot blowing converging-diverging nozzles are employed, whose function is to convert thermal energy of a gas into kinetic energy to remove the deposits that adhere to the heat exchanger surfaces. In this paper are described the experimental equipment and the methods for flow, dynamic pressure, discharge velocity and air expansion factor calculation in each nozzle, as a function of its design geometry, utilizing air from a five stage centrifugal compressor. The graphic analysis of the results, concludes that the most efficient nozzles are not the ones than develop the greatest velocity, but the ones of highest dynamic pressure at the outlet. The nozzle geometry that allows obtaining the maximum dynamic air pressure at the discharge is A{sub 2}/A{sub g}=1.3676 [Espanol] Para el deshollinado de calderas se utilizan las toberas convergentes-divergentes, cuya funcion es convertir la energia termica de un gas en energia cinetica para remover los depositos que se adhieren a las superficies de intercambio de calor. En este trabajo se describen el equipo experimental y los metodos de calculo para flujo, presion dinamica, velocidad a la descarga y factor de expansion del aire en cada tobera, como funcion de su geometria de diseno. Durante la experimentacion se evaluaron siete disenos diferentes de toberas, empleando aire de un compresor centrifugo de cinco etapas. Del analisis grafico de los resultados, se concluye que las toberas mas eficientes no son las que desarrollan mayor velocidad sino las de mayor presion dinamica de la salida. La geometria de tobera que permite obtener la maxima presion dinamica del aire a la descarga es A{sub 2}/A{sub g} = 1.3676.

  3. Application of Steam Soot Blower in the Water Cooled Walls of Pulverized Coal Boiler%蒸汽吹灰装置在煤粉锅炉水冷壁上的应用

    Institute of Scientific and Technical Information of China (English)

    赵华; 王菲

    2015-01-01

    主要介绍了马钢220 t/h锅炉蒸汽吹灰系统的设备特性及运行情况,分析了蒸汽吹灰器在运行中存在的问题以及解决措施,估算了蒸汽吹灰所带来的经济效益。%The equipment characteristics and operation state of the steam soot blowing system at the 220 t/h boiler of MaSteel are mainly introduced, problems in operation of the steam soot blower and solutions are analyzed and the economic benefit brought by the steam soot blowing is also estimated.

  4. 声波吹灰器在旋风炉脱硝改造中的应用%The Application of Sonic Soot-Blower in the Cyclone-type Boiler of Denitration Transformation

    Institute of Scientific and Technical Information of China (English)

    李晓贺; 徐欣欣

    2016-01-01

    介绍了天津大沽化工股份有限公司热电分厂130,t/h旋风炉经过烟气脱硝改造后,空气预热器出现大量积灰,管束堵塞非常严重,最终导致烟气阻力增大,严重影响了锅炉运行的安全性和经济性。通过在空气预热器加装声波吹灰器,空气预热器的积灰问题得到了有效解决,锅炉运行的安全性和经济效益得到了保证。%The 130,t/h cyclone-type boiler of Tianjin Dagu Chemical Co.,LTD.Thermal Power Plant,which after flue gas denitration transformation,in the process of running,has been found a large amount of ash accumulation in the air preheater,resulting in tube bundle,eventually led to increased flue gas resistance.It seriously affects the safety and econ-omy of boiler operation.By adding sound wave soot blower in air preheater,the fouling problem of air preheater has been effectively solved,the safety and economy of boiler operation are thus guaranteed.

  5. Soot blower using fuel gas as blowing medium

    Science.gov (United States)

    Tanca, Michael C.

    1982-01-01

    A soot blower assembly (10) for use in combination with a coal gasifier (14). The soot blower assembly is adapted for use in the hot combustible product gas generated in the gasifier as the blowing medium. The soot blower lance (20) and the drive means (30) by which it is moved into and out of the gasifier is housed in a gas tight enclosure (40) which completely surrounds the combination. The interior of the enclosure (40) is pressurized by an inert gas to a pressure level higher than that present in the gasifier so that any combustible product gas leaking from the soot blower lance (20) is forced into the gasifier rather than accumulating within the enclosure.

  6. Results from installation of waterlance soot blowers at Dairyland Power Cooperative`s JPM station

    Energy Technology Data Exchange (ETDEWEB)

    Hill, D.L. [Dairyland Power Cooperative, La Crosse, WI (United States)

    1995-06-01

    Waterlance soot blowers were installed at the John P. Madgett (JPM) Station in 1992. Improvements in cleaning the furnace and wing wall areas have reduced furnace exit temperature, superheat and reheat sprays, the gas temperature entering the hot side precipitator and NO{sub x} emissions from the Boiler. Overall savings from the waterlances exceeds $11,000,000 in avoided costs and fuel savings. This paper discusses the installation and savings realized from the waterlances at the JPM station.

  7. Damage to soot blowers in a high-dust DENOX plant

    Energy Technology Data Exchange (ETDEWEB)

    Bolte, C.; Farwick, H. (STEAG-RWE OHG, Voerde (Germany). Voerde Power Plant)

    1993-06-01

    The two 710 MW Units A and B at Voerde are equipped with selective catalytic reduction reactors in the high dust range. Following commissioning of the DENOX plant, the prescribed soot blowing conditions were proven to be adequate. About nine months later, the first operating problems occurred on the soot blowers and these intensified in the course of time. Following the failure of several steam supply pipes, the soot blowing then had to be adjusted to two-way since leaky blast valves became permeable to the condensate and dampening of the catalyser had to be feared. 2 refs., 9 figs.

  8. Intelligent soot blowing for boilers co-firing waste and biofuel; Behovsstyrd sotblaasning foer bio- och avfallseldade pannor - inventering och teknikval

    Energy Technology Data Exchange (ETDEWEB)

    Kjoerk, Anders [S.E.P. Scandinavian Energy Project AB, Goeteborg (Sweden)

    2003-11-01

    To achieve optimum boiler operation and performance it is necessary to control the cleanliness and limit the fouling of the heat transfer surfaces. Historically, the heating surfaces in boilers firing biomass and waste are cleaned by steamblowing soot blowers on scheduled time-based and/or parameter-based intervals or by mechanical methods. With the advent of fuel switching strategies and use of mixed-in industrial waste, the control of heating surface cleanliness has become even more crucial for these boilers. Scheduled and/or parameter based approaches do not easily address operational changes. As plant operators push to achieve greater efficiency and performance from their boilers, the ability to more effectively optimize cleaning cycles has become increasingly important. If soot blowing is done only when and where it is required rather than at set intervals, unit performance can be maintained with reduced blowing, which saves steam. Two philosophical approaches toward intelligent soot blowing are currently being applied in the industry. One incorporates heat flux monitors to gather real-time heat transfer data to determine which areas of the furnace need cleaning. The other uses indirect temperature and pressure data to infer locations where soot blowing is needed, and is mainly applied for controlling soot blowers in the superheater and economiser area. The heat flux monitors are so fare used for control of the furnace wall blowers. A system using temperature, pressure and flow data does not require much additional instrumentation as compared with what is available on a standard boiler. However the blower control system must be capable of operating blowers on an individual basis. For advanced options it should also be possible to adjust the speed of the soot blower and the steam pressure. The control program could be more or less advanced but the ability to model heating surfaces and determine real-time cleanliness is crucial for an intelligent soot blowing

  9. Optimization in the design and efficiency of retractable soot blowers; Optimacion del diseno y la eficiencia de sopladores de hollin retractiles

    Energy Technology Data Exchange (ETDEWEB)

    Diego Marin, Antonio [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1987-12-31

    In this article the importance of soot blowers in the subject of design, operation and maintenance are described and the effects that its inefficient functioning causes in the steam generators. The activities and the results of a project for the evaluation of the functioning of the soot blowers in the Comision Federal de Electricidad (CFE) boilers. Finally, the scope of a new project oriented towards the retractable soot blowers efficiency optimization, and to the creation of the infra-structure to substitute the import of its components. [Espanol] En este articulo se describe la importancia de los sopladores de hollin en los aspectos de diseno, operacion y mantenimiento, y los efectos que su funcionamiento deficiente produce en los generadores de vapor. Se presentan tambien las actividades y los resultados de un proyecto para evaluar el funcionamiento de los deshollinadores de las calderas de la Comision Federal de Electricidad (CFE). Finalmente, se presenta el alcance de un nuevo proyecto que se orienta a optimar la eficiencia de los sopladores de hollin retractiles y a crear la infraestructura para sustituir las importaciones de sus componentes.

  10. Bergemann lance-type water blowers for coal boilers; Bergemann-Wasserlanzenblaeser fuer Kohlekessel

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, F.; Weber, H.G.

    1995-12-31

    Residues from coal combustion create considerable problems for boilers. Slag and ashes on heating surfaces have a negative influence on steam generator efficiency and reduce boiler cycles. If different types of coal are used there are not only specific demands for stable furnace operation but problems of slag control at the different steam generator surfaces. Vaporiser heating surfaces of combustion chambers show extra-tough slag which can not always be removed by steam or air blowers. Forty years ago one therefore started using water as an alternative cleaning agent. At first, hand-held lances were used. Due to its high kinetic energy, water jets penetrate the pores of the slag layers on the vaporiser pipes where it evaporates and makes the slag pop off due to the sudden considerable increase in volume. These results consequently lead to the mechanisation of water-blowing as early as the 1950s; steam soot blowers were retrofitted for water. The Bergemann company used its own system of wall-blowers and improved the water blowing technology with the help of RWE by testing the technology under real life conditions in one or RWE`s lignite power stations. (orig.) [Deutsch] Rueckstaende aus der Verbrennung von Kohle-Brennstoffen fuehren beim Betrieb von Kesselanlagen zu erheblichen Problemen. Der Wirkungsgrad der Dampferzeuger wird durch zum Teil hartnaeckige Ansaetze von Schlacken und Aschen auf den Heizflaechen negativ beeinflusst und die Kessel-Reisezeit herabgesetzt. Besonders die Verbrennung von verschiedenen Kohlearten mit einem breiten Brennstoffband fuehrt neben spezifischen Anforderungen an den stabilen Feuerungsbetrieb vor allem auch zu den Fragen der Beherrschung von Verschlackungen an den unterschiedlichen Dampferzeugerheizflaechen. An den Verdampferheizflaechen der Brennkammern koennen besonders hartnaeckige Verschlackungen auftreten, die mit Dampf und Luft als Blasmedium nicht immer zu entfernen sind. Wasser wurde deshalb als alternatives Reinigungsmedium

  11. Damage to soot blowers in a high dust DENOX plant. Schaeden an Russblaesern in einer High-dust-DENOX-Anlage

    Energy Technology Data Exchange (ETDEWEB)

    Bolte, C. (Kraftwerk Voerde, STEAG-RWE oHG (Germany)); Farwick, H. (Kraftwerk Voerde, STEAG-RWE oHG (Germany))

    1993-06-01

    The two 710 MW Units A and B at Voerde are equipped with selective catalytic reduction reactors in the high dust range. Following commissioning of the DENOX plant, the prescribed soot blowing conditions were proven to be adequate. About nine months later, the first operating problems occurred on the soot blowers and these intensified in the course of time. Following the failure of several steam supply pipes, the soot blowing then had to be adjusted to two-way since leaky blast valves became permeable to the condensate and dampening of the catalyser had to be feared. (orig.)

  12. Soot blowing methods and soot steam consumption in Swedish recovery boilers; Sotningsmetoder och sotaangfoerbrukning i svenska sodapannor

    Energy Technology Data Exchange (ETDEWEB)

    Svedin, Kristoffer; Wallin, Erik; Ahlroth, Mikael

    2008-09-15

    The aim with the report was to put together a description of the current state of the sootblowing systems at Swedish recovery boilers, and to explain differences in cleanability and sootblowing efficiency. In chapter 4 a summary of new techniques and alternative soot blowing methods is found. The report is intended for persons working in the pulp industry. To facilitate the benchmarking the recovery boilers have been divided into two groups. Group A comprises recovery boilers which only have one stop per year and the remaining recovery boilers with more than one stop are classified into group B. The following conclusions, based on the recovery boiler design specifications, are of importance to achieve high boiler availability: Low furnace load; High recovery boiler, wide furnace bottom area; Modern air ports; Small or no correlation between cross pitch division in heat surfaces and cleanability could be seen. The expectation was to identify such a relation. However there are doubts on the correctness in reported data. The amount of chlorine and potassium is assumed to affect the cleanability for a few recovery boilers, but for the majority the amounts are low and most likely do not impact the operation. Because of the large impact of the recovery boilers design data (furnace area, load etc.) on the sootblowing, it has been hard to identify the relation cleanability contra sootblowing system. The relations that could be seen are: No distinction between normally designed nozzles and 'high efficiency' nozzles could be identified. The operational conditions for the different models differ a lot and the effect of nozzle type could not be distinguished. Only a minority of the soot blowing sequences are known from the study. In the recovery boilers with problematic areas improvements can be made in the soot blowing sequence. Four recovery boilers are using intelligent soot blowing of some kind. Two of these boilers have low availability and the other two have

  13. 气动旋转式吹灰器系统的技术应用%The Actual Application of Pneumatic Soot Blower in Heat Medium Heater

    Institute of Scientific and Technical Information of China (English)

    陈江波

    2000-01-01

    The pneumatic ratchet soot blower and the structure and control principle of CKQ—Ⅱ controller as well as its application in heat medium heater are introduced.The pneumatic ratchet soot blower has got many advantages,such as high level automation control(unattended),soot blower integrated with controller,stable control process,high efficiency and easier to repair compared with conventional soot blower.This soot blower can be adopted in heater and boiler.%介绍了气动旋转式吹灰器和CKQ-Ⅱ型吹灰控制器的结构、控制原理及在热媒炉上的应用,与电动吹灰器相比,气动旋转式吹灰器具有自动化程度高、吹灰器和控制器自成系统、可实现无人职守、控制过程稳定可靠、吹灰效果理想、操作灵活、维修方便等优点。可在各种加热炉、锅炉的吹扫系统中应用。

  14. Characterization and quantification of deposits build up and removal in straw suspension fired boilers

    DEFF Research Database (Denmark)

    Jensen, Peter Arendt; Shafique Bashir, Muhammad; Wedel, Stig;

    : 1) The influence of local boiler conditions on deposit formation in suspension fired boilers using wood or co-firing straw and wood, 2) quantification of deposit removal in biomass suspension firing boilers with regards both to natural shedding and soot blower induced shedding, 3) established...

  15. Blower burner market development. Boiler management by electronics; Ventilatorbrandermarkt in beweging. Elektronica maakt ketelmanagement mogelijk

    Energy Technology Data Exchange (ETDEWEB)

    Harms, R. [Monarch Nederland, Diemen (Netherlands)

    2004-09-01

    A brief overview is given of the developments in the market for blower burners. New technology concerns digital control techniques. [Dutch] De Nederlandse ventilatorbrandermarkt ondergaat de laatste jaren aanzienlijke wijzigingen. 25 jaar geleden trof men tientallen producenten en importeurs van gas-en oliebrandersnaar op een vakbeurs voor verwarming. Nu zijn er nog maar tien. Technische ontwikkelingen spelen zich op dit moment af op het terrein van de digitale besturingstechniek wat extra mogelijkheden biedt.

  16. 锅炉烟尘污染治理措施探讨%Boiler soot pollution control measures to discuss

    Institute of Scientific and Technical Information of China (English)

    张静

    2013-01-01

    Through nearly a year atmospheric environment serious pollution in our country , analysis of the cause of the haze weather and coal-fired boiler's contribution to the atmospheric pollution , The status quo of the coal -fired boiler pollution are pointed out , boiler soot pollution control measures are put forward .%通过近一年来我国大气环境的严重污染,分析了雾霾天气的成因及燃煤锅炉对大气污染的贡献,指出了燃煤锅炉污染的现状,探讨了在锅炉烟尘污染治理方面的措施。

  17. Boilers a practical reference

    CERN Document Server

    Rayaprolu, Kumar

    2012-01-01

    AAbrasion and Abrasion Index (see Wear)Absolute or Dynamic Viscosity (æ) (see Viscosity in Fluid Characteristics)Acid Cleaning (see Commissioning)Acid Rain (also see Air Pollution Emissions and Controls and Gas Cleaning)Acid Sludge (see Refuse Fuels from Refinery in Liquid Fuels)Acid Smuts (see Oil Ash)Acoustic Soot Blowers (see Sonic Horns)Acoustic Enclosure (see Noise Control)Acoustic Leak Detection SystemAdiabatic Flame Temperature (see Combustion)Aeroderivative (see Types of GTs in Turbines, Gas)Ageing of Boiler ComponentsAgro-Fuels and FiringAir Ducts (see Draught Plant)Air Flow Measureme

  18. Ring blowers. Ring blower

    Energy Technology Data Exchange (ETDEWEB)

    Nakahara, Y.; Okamura, T.; Takahashi, M. (Fuji Electric Co. Ltd., Tokyo (Japan))

    1991-06-10

    Features, structures and several products of ring blowers were outlined. The ring blower is featured by its medium characteristics because it is higher in air pressure than a turboblower and larger in airflow than a vane blower, and it is applicable flexibly to not only air blasting but various industrial fields such as suction transfer. As several products corresponding to various fields, the followings were outlined: the low noise type with optimum shapes of inlet, outlet and casing cover for reducing noises by 10 dB or more, the heat resistant, water-tight and explosion-proof types suitable for severe environmental conditions, the multi-voltage type for every country served at different voltages, the high air pressure type with two pressure rise stages, and the large airflow type with a wide impeller. In addition, as special use products, the glass fiber reinforced unsatulated polyester ring blower for respiration apparatus, and the variable speed blushless DC motor-driven one for medical beds were outlined. 2 refs., 9 figs., 1 tab.

  19. Needs-driven soot blowing in waste boilers; Behovsstyrd sotblaasning i avfallspannor

    Energy Technology Data Exchange (ETDEWEB)

    Niklasson, Fredrik; Davidsson, Kent

    2009-09-15

    The increased use of alternative and waste fuels has resulted in an increased number of plants having trouble with fouling and corrosion on boiler banks and superheater tubes. Frequent sootblowing will keep the surfaces relatively clean, but on the other hand, it may erode the tube material. An intelligent sootblowing system will initiate sootblowings on individual tube banks only when needed for that specific tube bank. Such a system depends on the detection of the degree of fouling of specific tube banks. In this project, the conditions for an intelligent sootblowing system at the waste fired boilers in Boraas are investigated from measured flows, temperatures and pressure drop. New thermocouples at the water tubes between the banks of the economiser have been installed and connected to the control and monitoring system of the boiler. From measured temperatures and flows, heat transfer coefficients are calculated and used to detect the fouling on the heat exchangers. A pressure transducer has been altered to measure the pressure over the boiler bank. At the superheaters, the measurements show a significant improvement of the heat transfer coefficients immediately following sootblowing. Thereafter, the heat transfer coefficients decline more slowly, almost linearly. The measurements indicate that the fouling rate is almost same for the two superheaters and do not motivate individual sootblowing sequences of the two superheaters. The pressure drop over the boiler bank was found too insensitive a measure to be used as an indicator for an intelligent sootblowing system, at least in this specific boiler. In the economiser, the decline of calculated heat transfer coefficients showed a relative rate of fouling on individual tube banks. The results show that the fouling rate is significantly higher in the top tube banks, which comes first in the direction of the flue gas, compared to downstream banks. Experiments by sootblowing the top tube bank more frequently than the

  20. Slag monitoring system for combustion chambers of steam boilers

    Energy Technology Data Exchange (ETDEWEB)

    Taler, J.; Taler, D. [Cracow University of Technology, Krakow (Poland)

    2009-07-01

    The computer-based boiler performance system presented in this article has been developed to provide a direct and quantitative assessment of furnace and convective surface cleanliness. Temperature, pressure, and flow measurements and gas analysis data are used to perform heat transfer analysis in the boiler furnace and evaporator. Power boiler efficiency is calculated using an indirect method. The on-line calculation of the exit flue gas temperature in a combustion chamber allows for an on-line heat flow rate determination, which is transferred to the boiler evaporator. Based on the energy balance for the boiler evaporator, the superheated steam mass flow rate is calculated taking into the account water flow rate in attemperators. Comparing the calculated and the measured superheated steam mass flow rate, the effectiveness of the combustion chamber water walls is determined in an on-line mode. Soot-blower sequencing can be optimized based on actual cleaning requirements rather than on fixed time cycles contributing to lowering of the medium usage in soot blowers and increasing of the water-wall lifetime.

  1. Extension of Weighted Sum of Gray Gas Data to Mathematical Simulation of Radiative Heat Transfer in a Boiler with Gas-Soot Media

    Directory of Open Access Journals (Sweden)

    Samira Gharehkhani

    2014-01-01

    Full Text Available In this study an expression for soot absorption coefficient is introduced to extend the weighted-sum-of-gray gases data to the furnace medium containing gas-soot mixture in a utility boiler 150 MWe. Heat transfer and temperature distribution of walls and within the furnace space are predicted by zone method technique. Analyses have been done considering both cases of presence and absence of soot particles at 100% load. To validate the proposed soot absorption coefficient, the expression is coupled with the Taylor and Foster's data as well as Truelove's data for CO2-H2O mixture and the total emissivities are calculated and compared with the Truelove's parameters for 3-term and 4-term gray gases plus two soot absorption coefficients. In addition, some experiments were conducted at 100% and 75% loads to measure furnace exit gas temperature as well as the rate of steam production. The predicted results show good agreement with the measured data at the power plant site.

  2. Extension of weighted sum of gray gas data to mathematical simulation of radiative heat transfer in a boiler with gas-soot media.

    Science.gov (United States)

    Gharehkhani, Samira; Nouri-Borujerdi, Ali; Kazi, Salim Newaz; Yarmand, Hooman

    2014-01-01

    In this study an expression for soot absorption coefficient is introduced to extend the weighted-sum-of-gray gases data to the furnace medium containing gas-soot mixture in a utility boiler 150 MWe. Heat transfer and temperature distribution of walls and within the furnace space are predicted by zone method technique. Analyses have been done considering both cases of presence and absence of soot particles at 100% load. To validate the proposed soot absorption coefficient, the expression is coupled with the Taylor and Foster's data as well as Truelove's data for CO2-H2O mixture and the total emissivities are calculated and compared with the Truelove's parameters for 3-term and 4-term gray gases plus two soot absorption coefficients. In addition, some experiments were conducted at 100% and 75% loads to measure furnace exit gas temperature as well as the rate of steam production. The predicted results show good agreement with the measured data at the power plant site.

  3. Blowers; Ventilatoren

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, C. [Forschungsstelle fuer Energiewirtschaft, Muenchen (Germany); Pfitzner, G. [Forschungsstelle fuer Energiewirtschaft, Muenchen (Germany)

    1994-11-01

    In the framework of the partial project ``Interdisciplinary Technologies`, Vol. 8.06 reports on problems of blower engineering: System requiremsnts (applications of blowers); Technical descriptions (characteristics, capacity, performance, cost, similarity laws, types, control processes); Descriptions of systems and plants (design, circuiting); Data compilations and data sheets; Summary analysis. (HW) [Deutsch] Im Rahmen der Teilprojekte ``Querschnittstechniken`` wird hier in Band 8.06 ueber Probleme der Ventilatortechnik berichtet. - Systemanforderungen (Einsatzbereiche von Ventilatoren); - Technikbeschreibung (Kennlinien, Leistung, Wirkungsgrad, Kosten, Aehnlichkeitsgesetze, Bauartenuebersicht, Regelverfahren); - Anlagen und Systembeschreibung (Auslegung, Schaltungsverfahren); - Datensammlung und Datenblatt; - Uebergreifende Analyse. (HW)

  4. Application of high strength sonic soot blower in air preheater of 1 000 MW units%高强声波吹灰器在1000 MW机组空预器中的应用

    Institute of Scientific and Technical Information of China (English)

    李彦民; 王俊杰

    2016-01-01

    There are some problems existed in the running of air preheater in CLP vote of Henan Electric Power co. LTD. ,Pingdingshan Power 2 x 1 000 MW ultra supercritical units. The air preheater had a large amount of dust ,so the resistance increased which is one of the important reasons affecting the safe and economic opera-tion. The sonic soot blower is applied in air preheater to prevent the dust and its effect is analyzed. The practi-cal application results show that the efficient acoustic wave sootblower are deposited in the air preheater and has obvious effect, the safety benefit, economic benefit and social benefit are remarkable.%介绍了中电投河南电力有限公司平顶山发电分公司2×1000 MW超超临界机组空预器在运行中出现的大量积灰情况,空预器阻力的大幅增加是影响机组安全、经济运行的重要原因。分析通过空预器加装声波吹灰器后对防止空预器大量积灰的效果,根据实践应用结果表明,高效声波吹灰器对空预器积灰有明显效果,安全效益、经济效益及社会效益显著。

  5. Constant-pressure Blowers

    Science.gov (United States)

    Sorensen, E

    1940-01-01

    The conventional axial blowers operate on the high-pressure principle. One drawback of this type of blower is the relatively low pressure head, which one attempts to overcome with axial blowers producing very high pressure at a given circumferential speed. The Schicht constant-pressure blower affords pressure ratios considerably higher than those of axial blowers of conventional design with approximately the same efficiency.

  6. Evaluation of the behavior of shrouded plasma spray coatings in the platen superheater of coal-fired boilers

    Science.gov (United States)

    Sidhu, Buta Singh; Prakash, S.

    2006-06-01

    Nickel- and cobalt-based coatings were formulated by a shrouded plasma spray process on boiler tube steels, namely, ASTM-SA210-grade A1 (GrA1), ASTM-SA213-T-11 (T11), and ASTM-SA213-T-22 (T22). The Ni-22Cr-10Al-1Y alloy powder was sprayed as a bond in each case before the final coating. The degradation behavior of the bared and coated steels was studied in the platen superheater of the coal-fired boiler. The samples were inserted through the soot blower dummy points with the help of stainless steel wires. The coatings were found to be effective in increasing resistance to degradation in the given boiler environment. The maximum protection was observed in the case of Stellite-6 (St-6) coating.

  7. Evaluation of the behavior of shrouded plasma spray coatings in the platen superheater of coal-fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    Sidhu, B.S.; Prakash, S. [GZS College of Engineering & Technology, Bathinda (India). Dept. of Mechanical Engineering

    2006-06-15

    Nickel- and cobalt-based coatings were formulated by a shrouded plasma spray process on boiler tube steels, namely, ASTM-SA210-grade A1 (GrA1), ASTM-SA213-T-11 (T11), and ASTM-SA213-T-22 (T22). The Ni-22Cr-10A1-1Y alloy powder was sprayed as a bond in each case before the final coating. The degradation behavior of the bared and coated steels was studied in the platen superheater of the coal-fired boiler. The samples were inserted through the soot blower dummy points with the help of stainless steel wires. The coatings were found to be effective in increasing resistance to degradation in the given boiler environment. The maximum protection was observed in the case of Stellite-6 (St-6) coating.

  8. Blower test stand; Luftleistungspruefstand

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2003-04-01

    Blowers move air, but how much air? Extensive measurements are required for assessing blower performance in terms of the actual air flow volume. The most precise results are obtained in a test stand. [German] Luefter bewegen Luft. Aber wie viel wird tatsaechlich bewegt? Fuer die Bestimmung der tatsaechlichen Luftfoerderleistung ist ein grosser Messaufwand notwendig, die praezisesten Ergebnisse bringt ein Luftleistungsmessstand. (orig.)

  9. Air conditioning and blowers. Special issue; Airconditioning en ventilatoren. Themanummer

    Energy Technology Data Exchange (ETDEWEB)

    Nekeman, H.E. [Multi Import, Rotterdam (Netherlands); Hol, M. [Aircool Klimaattechniek, Ridderkerk (Netherlands); Bassa, E. [ed.

    1997-06-01

    In four articles several aspects of air conditioners and blowers are discussed: the application of the newly developed electronically commutated direct current engine in high-efficiency boilers, air conditioners and cooling systems, the future for flexible synthetic cooling pipes, a description of a Mitsubishi-developed air conditioner: the Inverter Driven Multi-indoor unit, also known as the KX-system, and the importance of the private sector (houses, small businesses, cars) for the use of air conditioning installations. 8 figs.

  10. 停运汽动风机高压加热器提高煤气锅炉效率的实践%Practice of Improving Gas Boiler Efficiency by Stopping the Steam-driven High Pressure Blower Heater

    Institute of Scientific and Technical Information of China (English)

    赵晓雷; 彭建军

    2015-01-01

    兴澄特钢一台SG-260/9.8-Q8501型全烧高炉煤气锅炉,利用停运对应的汽动鼓风机高压加热器,降低给水温度,从而降低锅炉排烟温度,达到节约蒸汽,提高锅炉效率的作用。%The SG 260/9.8 Q8501 type all-BFG boiler at Xingcheng Special Steel is introduced. Steam was saved and efficiency of the boiler was improved by shutting down the corresponding steam-driven high pressure fan heater to reduce the temperature of feed water and thereby lower the temperature of boiler flue gas.

  11. Variable displacement blower

    Science.gov (United States)

    Bookout, Charles C.; Stotts, Robert E.; Waring, Douglass R.; Folsom, Lawrence R.

    1986-01-01

    A blower having a stationary casing for rotatably supporting a rotor assembly having a series of open ended chambers arranged to close against the surrounding walls of the casing. Pistons are slidably mounted within each chamber with the center of rotation of the pistons being offset in regard to the center of rotation of the rotor assembly whereby the pistons reciprocate in the chambers as the rotor assembly turns. As inlet port communicates with the rotor assembly to deliver a working substance into the chamber as the pistons approach a top dead center position in the chamber while an outlet port also communicates with the rotor to exhaust the working substance as the pistons approach a bottom dead center position. The displacement of the blower is varied by adjusting the amount of eccentricity between the center of rotation of the pistons and the center of rotation of the rotor assembly.

  12. Blowers. 2. ed.; Ventilatoren

    Energy Technology Data Exchange (ETDEWEB)

    Bommes, L.; Fricke, J.; Grundmann, R. (eds.)

    2003-07-01

    Economic efficiency, high availability, materials and wear resistance are still the main goals of development on the blower sector, together with noise reduction. Subjects: (a) Modified methods for calculation and design of axial and radial blowers; (b) Test stand measurements of aerodynamic and acoustic performance; (c) Problems of experimental determination of performance data; (d) effects of the installation conditions and thre resulting electric field disturbances influencing the aerodynamic and acoustic blower characteristics; (e) Centrifugal and vibration loads on the rotors; (f) Determination of the axial thrust of radial blowers; (g) Special designs and specifications for special applications; (h) Blower noise: Sources, measurement, prediction; (i) Noise reduction measures; (j) Specific aspects of working with solid-gas mixtures. The book presents a wide range of research findings, modern design methods and problem solutions. Fundamentals of fluidics, thermodynamics, similarity mechanics and aeroacoustics are discussed in detail in as far as they are of importance for blower construction. This second edition was revised with a view to practical applicability and to the latest state of research. (orig.) [German] Ventilatoren sind zentraler Bestandteil aller lueftungstechnischen Anlagen- und Geraetesysteme und daher fuer deren Funktionstuechtigkeit von ausschlaggebender Bedeutung. Sie zaehlen nach der heute gueltigen Definition zu den Stroemungsmaschinen, in denen mechanische Energie in Stroemungsenergie umgewandelt wird. Nach der Norm reicht bei Ventilatoren der Bereich der Druckerhoehung des Foerdermediums zwischen Ventilatoreintritt und -austritt bis zu 30 000 Pa, entsprechend einem Druckverhaeltnis bis zu 1,3. Hauptentwicklungsziele bei Ventilatoren sind nach wie vor die Steigerung der Wirtschaftlichkeit, Betriebssicherheit, Werkstoffbelastbarkeit und Verschleissfestigkeit. Darueber hinaus spielen im Rahmen des staendig wachsenden Umweltbewusstseins

  13. The Sonic Soot-blower%声波吹灰器

    Institute of Scientific and Technical Information of China (English)

    赵旺初

    2000-01-01

    声波吹灰器在欧美和日本已得到广泛的应用,在我国属待推广的新技术.介绍了声波吹灰器优于传统吹灰器的机理、结构,进行了具体的经济和节能效果分析,并举例说明之.

  14. [Respiratory function in glass blowers].

    Science.gov (United States)

    Zuskin, E; Butković, D; Mustajbegović, J

    1992-01-01

    The prevalence of chronic and acute respiratory symptoms and diseases and changes in lung function in a group of 80 glass blowers have been investigated. In addition a group of 80 not exposed workers was used as a control group for respiratory symptoms and diseases. In glass blowers, there was significant increase in prevalence of chronic bronchitis, nasal catarrh, and sinusitis than in the controls. Glass blowers exposed for more and less than 10 years had similar prevalences of respiratory symptoms. A large number of glass blowers complained of acute across-shift symptoms. Significant increase in FVC, FEF50 and FEF25 was documented at the end of the work shift. Comparison with predicted normal values showed that glass blowers had FVC and FEF25 significantly lower than predicted. RV and RV/TLC were significantly increased compared with the predicted normal values. DLCO was within the normal values in most glass blowers. It is concluded that work in the glass blower industry is likely to lead the development of chronic respiratory disorders.

  15. 锅炉鼓风机、引风机加装变频器的节能改造%The Boiler Blower and Fan Installation of Inverter for Energy-Saving Renovation

    Institute of Scientific and Technical Information of China (English)

    石凤霞; 李敏

    2013-01-01

    Using frequency converter to control the boiler drum and induced draft fan VVVF,it solves the problem of the energy waste, also reduces the labor intensity of operators,and extends the service life of the motor.%  用变频器对锅炉鼓、引风机进行了变频调速控制改造,解决了部分能源的浪费问题,也减轻了操作工的劳动强度,同时延长了电机的使用寿命。

  16. Improved soot blowing, based on needs, using the mechanical characteristics of the steam pipe - stage 2; Foerbaettrad behovsstyrd sotning med hjaelp av vaermeoeverfoerande tubens mekaniska egenskaper - etapp 2

    Energy Technology Data Exchange (ETDEWEB)

    Blom, Elisabet; Fredoe, Claes; Gabrielsson, Lars; Eriksson, Daniel

    2011-10-15

    The detection of contamination of the boiler tubes through the tube mechanical properties has been studied. The project has carried out measurements and detection of three different boilers with different conditions in terms of sooting philosophy, combustion method and sooting method. The assembly of the detecting strain gauge takes place on a clip which is screwed and glued onto the tube.

  17. Noise Emission from Laboratory Air Blowers

    Science.gov (United States)

    Rossing, Thomas D.; Windham, Betty

    1978-01-01

    Product noise ratings for a number of laboratory air blowers are reported and several recommendations for reducing laboratory noise from air blowers are given. Relevant noise ratings and methods for measuring noise emission of appliances are discussed. (BB)

  18. High temperature corrosion in biomass- and waste fired boilers. A status report; Kunskapslaeget betraeffande hoegtemperaturkorrosion i aangpannor foer biobraensle och avfall

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, P.; Ifwer, K.; Staalenheim, A.; Montgomery, M.; Hoegberg, J.; Hjoernhede, A.

    2006-12-15

    Many biomass- or waste-fired plants have problems with high temperature corrosion on the furnace walls or at the superheaters, especially if the steam temperature is greater than 500 deg C. An increase in the combustion of waste fuels means that an increasing number of boilers have had problems. Therefore, there is great interest from plant owners to reduce the costs associated with high temperature corrosion. At the same time there exists a considerable driving force towards improving the electrical efficiency of a plant by the use of more advanced steam data. The purpose of the work presented here was to answer three main questions: What can be done to reduce high temperature corrosion with current fuel blends and steam temperatures? How can more waste fuels be burnt without an increased risk for corrosion? What needs to be done to reach higher steam temperatures in the future? The level of knowledge of high temperature corrosion in biomass- and waste-fired boilers has been described and summarised. The following measures are recommended to reduce corrosion in existing plant: Make sure that the fuel is well mixed and improve fuel feeding to obtain a more even spread of the fuel over the cross-section of the boiler. Use combustion technology methods to stabilize the oxygen content of the flue gases near the membrane walls and other heat transfer surfaces. Experiment with additives and/or supplementary fuels which contain sulphur in some form, for example peat. Reduce the flue gas temperature at the superheaters. Review soot-blowing procedures or protect heat transfer surfaces from soot blowers. Evaluate coated membrane wall panels in parts of the furnace that experience the worst corrosion. Test more highly alloyed steels suitable for superheaters and when replacing a superheater change to a more highly alloyed steel. For the future, the following should be considered: The role of sulphur needs to be investigated more and other additives should be investigated

  19. Investigations on Experimental Impellers for Axial Blowers

    Science.gov (United States)

    Encke, W.

    1947-01-01

    A selection of measurements obtained on experimental impellers for axial blowers will be reported. In addition to characteristic curves plotted for low and for high peripheral velocities, proportions and blade sections for six different blower models and remarks on the design of blowers will be presented.

  20. Increasing loads on mine centrifugal blowers

    Energy Technology Data Exchange (ETDEWEB)

    Kovalevskaya, V.I.; Pak, V.V. (Donetskii Politekhnicheskii Institut (USSR))

    1991-03-01

    Increasing output of blowers for ventilation of deep coal mines by enlarging their dimensions and increasing revolution rate is uneconomic and technically complicated. Optimization of aerodynamic characteristics of the blowers is most economic. Effects of blower blade geometry (shape and cross-section) on blower output, air pressure and efficiency are analyzed. On the basis of Euler's equations a method is discussed for determining optimum aerodynamic parameters of the modified blade geometry that guarantees the most economic blower operation. 7 refs.

  1. New controls spark boiler efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Engels, T. (Monsanto, University Park, IL (United States))

    1993-09-01

    Monsanto's NutraSweet plant in University Park, IL, produces aspartame, the patented NutraSweet artificial sweetener product. Until recently, boiler control was managed by a '60s-era Fireye jackshaft system in which air and natural gas were mechanically linked with an offset to compensate for oxygen trim. The interlocking devices on the Fireye system were becoming obsolete, and the boiler needed a new front end retrofitted for low emissions. In order to improve boiler control efficiency, we decided to modernize and automate the entire boiler control system. We replaced the original jackshaft system, and installed a Gordon-Piet burner system, including gas valves, air dampers, blowers, and burner. The upgrade challenges included developing a control strategy and selecting and implementing a process control system. Since our plant has standardized on the PROVOX process management information system from Fisher Controls (now Fisher-Rosemount Systems) to support most of our process, it was a natural and logical choice for boiler controls as well. 2 figs.

  2. Improved soot blowing, based on needs, through measurement of the natural frequency of the heat transferring tubes; Foerbaettrad behovsstyrd sotning genom maetning av oeverfoerande tubernas egenfrekvens

    Energy Technology Data Exchange (ETDEWEB)

    Blom, Elisabet; Ivarsson, Christofer

    2007-11-15

    The aim of the project is to develop a method for detecting soot on the transferring tubes by measuring the Eigen frequency of the tubes as a function of the soot deposit growth. The project is a pilot study independent of boiler type and it is applicable to all boilers where soot deposit on transferring tubes is a repeating issue. The report is supposed to answer two major questions. Is it possible to make use of Eigen frequencies in order to trace soot deposit on transferring tubes? What governing parameters are related to the Eigen frequency of transferring tubes? By today, soot blowing is executed after recommendations from the manufacturer in terms of number of soot blowing per time unit. The fuel type as well as boiler type has great influence on the soot deposit growth. The objective of the project is to investigate whether the mechanical properties of the transferring tube can be used to detect soot deposit. The project is divided into a theoretical and a practical part. The theoretical part covers the design of the probe and the change of its mechanical properties when soot deposit is present. Practical experiments were then carried out in a laboratory were the probes mechanical properties with and without soot deposit were investigated. It was shown that the Eigen frequency of the probe decreased with an increased mass due to soot deposit. A test was also made in a boiler at SAKAB but difficulties in attaching the probe to the inspection hatch. The results varied and the interpretation of the results become difficult. However, it was obvious that the mechanical properties of the probe changed with the amount of soot deposit. It was concluded that detection of soot deposit by studying the mechanical properties of the transferring tubes is possible. Yet, using a probe is no optimal solution, instead measurements should be done directly on the heat transferring tubes. In addition, a strategy for controlling the soot deposit has to be developed

  3. VARIABLE SPEED INTEGRATED INTELLIGENT HVAC BLOWER

    Energy Technology Data Exchange (ETDEWEB)

    Shixiao Wang; Herman Wiegman; Wilson Wu; John Down; Luana Iorio; Asha Devarajan; Jing Wang; Ralph Carl; Charlie Stephens; Jeannine Jones; Paul Szczesny

    2001-11-14

    This comprehensive topical report discusses the key findings in the development of a intelligent integrated blower for HVAC applications. The benefits of rearward inclined blades over that of traditional forward inclined blades is well documented and a prototype blower design is presented. A comparison of the proposed blower to that of three typical units from the industry is presented. The design of the blower housing is also addressed and the impact of size limitations on static efficiency is discussed. Issues of air flow controllability in the rearward inclined blower is addressed and a solution to this problem is proposed. Several motor design options are discussed including inside-out radial flux designs and novel axial flux designs, all are focused on the various blower needs. The control of the motor-blower and airflow through the use of a high density inverter stage and modern digital signal processor is presented. The key technical challenges of the approach are discussed. The use of the motor as a sensor in the larger heating/ventilating system is also discussed. Diagnostic results for both the motor itself and the blower system are presented.

  4. 33 CFR 154.826 - Vapor compressors and blowers.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Vapor compressors and blowers....826 Vapor compressors and blowers. (a) Each inlet and outlet to a compressor or blower which handles...) Excessive shaft bearing temperature. (d) If a centrifugal compressor, fan, or lobe blower handles vapor...

  5. Air injection vacuum blower noise control

    Energy Technology Data Exchange (ETDEWEB)

    Mose, Tyler L.A.; Faszer, Andrew C. [Noise Solutions Inc. (Canada)], email: tmose@noisesolutions.com, email: afaszer@noisesolutions.com

    2011-07-01

    Air injection vacuum blowers, with applications in waste removal, central vacuum systems, and aeration systems, are widely used when high vacuum levels are required. Noise generated by those blowers must be addressed for operator health and residential disturbance. This paper describes a project led by Noise Solutions Inc., to identify noise sources in a blower, and design and test a noise mitigation system. First the predominant noise sources in the blower must be determined, this is done with a sound level meter used to quantify the contribution of each individual noise source and the dominant tonal noise from the blower. Design of a noise abatement system must take into account constraints arising from blower mobile use, blower optimal performance, and the resulting overall vibration of the structure. The design was based on calculations from the sound attenuation of a reactive expansion chamber and two prototypes of custom silencers were then tested, showing a significant noise reduction both in total sound levels and tonal noise.

  6. Regenerative Blower for EVA Suit Ventilation Fan

    Science.gov (United States)

    Izenson, Michael G.; Chen, Weibo; Paul, Heather L.

    2010-01-01

    Portable life support systems in future space suits will include a ventilation subsystem driven by a dedicated fan. This ventilation fan must meet challenging requirements for pressure rise, flow rate, efficiency, size, safety, and reliability. This paper describes research and development that showed the feasibility of a regenerative blower that is uniquely suited to meet these requirements. We proved feasibility through component tests, blower tests, and design analysis. Based on the requirements for the Constellation Space Suit Element (CSSE) Portable Life Support System (PLSS) ventilation fan, we designed the critical elements of the blower. We measured the effects of key design parameters on blower performance using separate effects tests, and used the results of these tests to design a regenerative blower that will meet the ventilation fan requirements. We assembled a proof-of-concept blower and measured its performance at sub-atmospheric pressures that simulate a PLSS ventilation loop environment. Head/flow performance and maximum efficiency point data were used to specify the design and operating conditions for the ventilation fan. We identified materials for the blower that will enhance safety for operation in a lunar environment, and produced a solid model that illustrates the final design. The proof-of-concept blower produced the flow rate and pressure rise needed for the CSSE ventilation subsystem while running at 5400 rpm, consuming only 9 W of electric power using a non-optimized, commercial motor and controller and inefficient bearings. Scaling the test results to a complete design shows that a lightweight, compact, reliable, and low power regenerative blower can meet the performance requirements for future space suit life support systems.

  7. VARIABLE SPEED INTEGRATED INTELLIGENT HVAC BLOWER

    Energy Technology Data Exchange (ETDEWEB)

    Herman Wiegman; Charlie Stephens; Xiaoyue Liu; Ralph Carl; Sunny Zhuang; Paul Szczesny; Kamron Wright

    2003-09-23

    This comprehensive topical report discusses the key findings in the development of an advanced blower for HVAC applications. The benefits of rearward inclined blades over that of traditional forward inclined blades is well documented, and several prototype wheels are demonstrated in various housings. A comparison of retrofitted blowers to that of three typical units from the industry is presented. The design and modification of the blower housing is addressed and the impact of size limitations on static efficiency is discussed. The roadmap to rearward-inclined wheel technology insertion is presented and typical static efficiency gains are documented.

  8. Blower Cooling of Finned Cylinders

    Science.gov (United States)

    Schey, Oscar W; Ellerbrock, Herman H , Jr

    1937-01-01

    Several electrically heated finned steel cylinders enclosed in jackets were cooled by air from a blower. The effect of the air conditions and fin dimensions on the average surface heat-transfer coefficient q and the power required to force the air around the cylinders were determined. Tests were conducted at air velocities between the fins from 10 to 130 miles per hour and at specific weights of the air varying from 0.046 to 0.074 pound per cubic foot. The fin dimensions of the cylinders covered a range in pitches from 0.057 to 0.25 inch average fin thicknesses from 0.035 to 0.04 inch, and fin widths from 0.67 to 1.22 inches.

  9. Soot morphology in laser pyrolysis

    Science.gov (United States)

    Sandu, Ion C.; Pasuk, I.; Morjan, Ion G.; Voicu, Ion N.; Alexandrescu, Rodica; Fleaca, Claudiu T.; Ciupina, Victor; Dumitrache, Florian V.; Soare, Iuliana; Ploscaru, Mihaela I.; Daniels, H.; Westwood, A.; Rand, B.

    2004-10-01

    Soots obtained by laser pyrolysis of different gaseous/vapor hydrocarbons were investigated. The morphology variation of carbon soot versus process parameters and nature of reactants was analyzed and discussed. The role of oxygen is essential in obtaining soot particles having considerable curved-layer content.

  10. Use of lance-type water blowers in refuse incineration plants; Einsatz von Wasserlanzenblaesern in Muellverbrennungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Schaefers, W.; Fey, W. [Babcock-Steinmueller GmbH, Gummersbach (Germany); Simon, S.; Kahle, F.D. [Clyde Bergemann GmbH, Wesel (Germany)

    1999-10-01

    In order to achieve the desired boiler campaign lengths in refuse incineration plants, cleaning devices are an absolute necessity. Whereas the cleaning of convective heating surfaces in vertical-pass and horizontal-pass boilers presents no great difficulty, the possibilities for effective cleaning of the radiant passes were up to now limited. The use of lance-type water blowers has considerably improved this situation. (orig.) [German] Um die gewuenschten Reisezeiten bei Muellverbrennungsanlagen einhalten zu koennen, ist der Einsatz von Reinigungseinrichtungen notwendig. Waehrend die Reinigung der Konvektivheizflaechen bei Vertikal- und Horizontalzugkesseln keine Probleme bereitet, waren bisher die Moeglichkeiten zur Reinhaltung der Strahlungszuege begrenzt. Durch den Einsatz von Wasserlanzenblaesern ergibt sich hier eine deutlich verbesserte Situation. (orig.)

  11. Pulmonary function in commercial glass blowers.

    Science.gov (United States)

    Munn, N J; Thomas, S W; DeMesquita, S

    1990-10-01

    This study examined the pulmonary function of 87 male commercial glass factory workers. Statistical analysis of the data indicated that workers with full-time glass blowing job descriptions had significantly higher percent predicted values for FVC, FEV1 and significantly higher maximal inspiratory and expiratory muscle pressures than their cohorts with minimal or nonglass blowing job descriptions. The results of this study indicate that persons using their respiratory muscles as full-time blowers to manufacture commercial blown glass products have significantly greater lung function values than part-time blowers or their nonglass blowing co-workers.

  12. Cool Sooting Flames of Hydrocarbons

    Institute of Scientific and Technical Information of China (English)

    Z.A. MANSUROV

    2001-01-01

    This paper presents the study of polycyclic aromatic hydrocarbons (PAH) and paramagnetism of soot particles sampled from cool sooting flames of methane and propane in a separately-heated two-sectional reactor under atmospheric pressure at the reactor temperatures of 670-1170 K. The temperature profiles of the flames were studied. The sampling was carried out with a quartz sampler and the samples were frozen with liquid nitrogen. A number of polyaromatic hydrocarbons such as pyrene, fluoranthene, coronene, anthanthrene, 1,12-benzperylene,were identified by spectroscopic methods in the extract of soot. The processes of soot formation at methaneoxygen mixture combustion in the electric field with applied potential changed from 0 to 2,2 kV at different polarity of electrodes have been investigated. It has been stated that at the electrical field application, an increase in soot particle sizes and soot yield occurs; besides, at the application of the field, speeding up the positively charged particles, the interplanar distance decreases. On the basis of investigation of soot particles paramagnetism, it was shown that initially soot particles have high carcinogetic activity and pollute the environment owing to a rapid decrease of the number of these radical centers. The reduction of the radical concentration is connected with radical recombination on soot.

  13. Accuracy of the blower door measurement; Genauigkeit der Blower Door-Messung. Der Einfluss von Aussenklimaparametern

    Energy Technology Data Exchange (ETDEWEB)

    Weier, H. [Hochschule fuer Technik, Wirtschaft und Sozialwesen Zittau/Goerlitz (FH), Zittau (Germany)

    2000-04-01

    The blower door is a simple to use measuring device for determing the seal of the external surfaces of buildings. The accuracy of the measurement is dependent to a considerable extent on the external climatic conditions that prevail at the time of taking the measurement. (orig.) [German] Die Blower Door ist ein einfach anzuwendendes Messgeraet zum Bestimmen der Dichtheit von Gebaeudeaussenflaechen. Die Genauigkeit der Messung ist in starkem Masse von den zum Messzeitpunkt herrschenden Aussenklimabedingungen abhaengig. (orig.)

  14. Liquid Cloud Responses to Soot

    Science.gov (United States)

    Koch, D. M.

    2010-12-01

    Although soot absorption warms the atmosphere, soot may cause climate cooling due to its effects on liquid clouds, including contribution to cloud condensation nuclei (CCN) and semi-direct effects. Six global models that include aerosol microphysical schemes conducted three soot experiments. The average model cloud radiative response to biofuel soot (black and organic carbon), including both indirect and semi-direct effects, is -0.12 Wm-2, comparable in size but opposite in sign to the respective direct atmospheric warming. In a more idealized fossil fuel black carbon only experiment, some models calculated a positive cloud response because the soot provided a deposition sink for sulfate, decreasing formation of more viable CCN. Biofuel soot particles were typically assumed to be larger and more hygroscopic than for fossil fuel soot and therefore caused more negative forcing, as also found in previous studies. Diesel soot (black and organic carbon) experiments had relatively smaller cloud impacts with five of the models effect alone may also be negative in global models, as found by several previous studies. The soot-cloud effects are quite uncertain. The range of model responses was large and interrannual variability for each model can also be large. Furthermore the aerosol microphysical schemes are poorly constrained, and the non-linearities resulting from the competition of opposing effects on the CCN population make it difficult to extrapolate from idealized experiments to likely impacts of realistic potential emission changes. However, results so far suggest that soot-induced cloud-cooling effects are comparable in magnitude to the direct warming effects from soot absorption.

  15. Production Facility Prototype Blower Installation Report

    Energy Technology Data Exchange (ETDEWEB)

    Woloshun, Keith Albert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalmas, Dale Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Romero, Frank Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-07-28

    The roots blower in use at ANL for in-beam experiments and also at LANL for flow tests was sized for 12 mm diameter disks and significantly less beam heating.  Currently, the disks are 29 mm in diameter, with a 12 mm FWHM Gaussian beam spot at 42 MeV and 2.86 μA on each side of the target, 5.72 μA total. The target design itself is reported elsewhere.  With the increased beam heating, the helium flow requirement increased so that a larger blower was need for a mass flow rate of 400 g/s at 2.76 MPa (400 psig).  An Aerzen GM 12.4 blower was selected, and is currently being installed at the LANL facility for target and component flow testing.  This report describes this blower/motor/ppressure vessel package and the status of the facility preparations.

  16. Soot formation and burnout in flames

    Science.gov (United States)

    Prado, B.; Bittner, J. D.; Neoh, K.; Howard, J. B.

    1980-01-01

    The amount of soot formed when burning a benzene/hexane mixture in a turbulent combustor was examined. Soot concentration profiles in the same combustor for kerosene fuel are given. The chemistry of the formation of soot precursors, the nucleation, growth and subsequent burnout of soot particles, and the effect of mixing on the previous steps were considered.

  17. Energy efficiency in boilers; Eficiencia energetica em caldeiras

    Energy Technology Data Exchange (ETDEWEB)

    Ponte, Ricardo Silva The [Universidade Federal do Ceara (UFCE), Fortaleza, CE (Brazil). Dept. de Engenharia Eletrica], email: ricthe@dee.ufc.br; Barbosa, Marcos Antonio Pinheiro; Rufino, Maria da Gracas [Universidade de Fortaleza (UNIFOR), CE (Brazil). Dept. de Engenharia Eletrica], emails: marcos_apb@unifor.br, gsrufino@unifor.br

    2010-07-01

    The boiler is vapor generator equipment that has been widely used in industrial milieu as in electric energy generation in thermoelectric plants. Since their first conception, the boilers have been changed in order to provide security and energetic efficiency. They can present high losses of energy if they don't be operated according to some criteria. A considerable part of boilers operation cost include fuel expenses. So, the adoption of effective steps in order to reduce fuel consumption is important to industry economy, besides it brings environmental benefits through the reduction of pollution liberation. The present article has the objective of emphasizing the effective steps for the economy of energy in boilers, such as, the regulation of combustion; the control of soot and incrustations; the installation of economizers, air heaters and super heaters; the reduction in purges and reintroduction of condensed steam. (author)

  18. Development of a Sonic Soot Blower%声波吹灰器的研制

    Institute of Scientific and Technical Information of China (English)

    李强; 孙曾润; 宣益民

    1999-01-01

    根据流体动力学和声学共振理论,研制了一种用于换热设备清除灰尘的声波吹灰器,并对其声强性能进行了相应的实验测试,从测试及工业应用结果来看,该声波吹灰器可以达到清除灰尘的目的.

  19. Reformation of soot blower control system%吹灰器控制系统改造

    Institute of Scientific and Technical Information of China (English)

    吴晓洲

    2009-01-01

    介绍了用Symphony/Melody分散控制系统控制吹灰系统的方法,分析了控制方案、电气回路控制原理及控制逻辑的实现等,对系统调试时发现的一些缺陷进行了探讨,并给出了解决办法.

  20. Production Facility Prototype Blower 1000 Hour Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Woloshun, Keith Albert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Romero, Frank Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalmas, Dale Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-18

    The roots blower in use at ANL for in-beam experiments and also at LANL for flow tests was sized for 12 mm diameter disks and significantly less beam heating. Currently, the disks are 29 mm in diameter, with a 12 mm FWHM Gaussian beam spot at 42 MeV and 2.86 μA on each side of the target, 5.72 μA total. The target design itself is reported elsewhere. With the increased beam heating, the helium flow requirement increased so that a larger blower was needed for a mass flow rate of 400 g/s at 2.76 MPa (400 psig). An Aerzen GM 12.4 blower was selected, and is now installed at the LANL facility for target and component flow testing. Two extended tests of >1000 hr operation have been completed. Those results and discussion thereof are reported herein. Also included in Appendix A is the detailed description of the blower and its installation, while Appendix B documents the pressure vessel design analysis. The blower has been operated for 1000 hours as a preliminary investigation of long-term performance, operation and possible maintenance issues. The blower performed well, with no significant change in blower head or mass flow rate developed under the operating conditions. Upon inspection, some oil had leaked out of the shaft seal of the blower. The shaft seal and bearing race have been replaced. Test results and conclusions are in Appendix B.

  1. Production Facility Prototype Blower 1000 Hour Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Woloshun, Keith Albert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Romero, Frank Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalmas, Dale Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-18

    The roots blower in use at ANL for in-beam experiments and also at LANL for flow tests was sized for 12 mm diameter disks and significantly less beam heating. Currently, the disks are 29 mm in diameter, with a 12 mm FWHM Gaussian beam spot at 42 MeV and 2.86 μA on each side of the target, 5.72 μA total. The target design itself is reported elsewhere. With the increased beam heating, the helium flow requirement increased so that a larger blower was need for a mass flow rate of 400 g/s at 2.76 MPa (400 psig). An Aerzen GM 12.4 blower was selected, and is now installed at the LANL facility for target and component flow testing. Two extended test of >1000 hr operation have been completed. Those results and discussion thereof are reported herein. Also included in Appendix A is the detailed description of the blower and its installation, while Appendix B documents the pressure vessel design analysis. The blower has been operated for 1000 hours as a preliminary investigation of long term performance, operation and possible maintenance issues. The blower performed well, with no significant change in blower head or mass flow rate developed under the operating conditions. Upon inspection, some oil had leaked out of the shaft seal of the blower. The shaft seal and bearing race have been replaced. Test results and conclusions are in Appendix B.

  2. Laboratory Evaluation of Residential Furnace BlowerPerformance

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Iain S.; Lutz, Jim D.

    2005-09-01

    A testing program was undertaken at Lawrence Berkeley National Laboratory and an electric utility (Pacific Gas and Electric Co.) to compare the performance of furnace blowers. This laboratory testing program was undertaken to support potential changes to California Building Standards regarding in-field furnace blower energy use. This technical support includes identifying suitable performance metrics and target performance levels for use in standards. Five different combinations of blowers and residential furnaces were tested for air moving performance. Three different types of blower and motor combinations were tested in two different furnace cabinets. The blowers were standard forward--curved impellors and a prototype impeller with reverse-inclined blades. The motors were two 6-pole permanent split capacitor (PSC) single-phase induction motors, a brushless permanent magnet (BPM) motor and a prototype BPM designed for use with a prototype reverse-inclined impellor. The laboratory testing operated each blower and furnace combination over a range of air flows and pressure differences to determine air flow performance, power consumption and efficiency. Additional tests varied the clearance between the blower housing and the furnace cabinet, and the routing of air flow into the blower cabinet.

  3. Vettath's blower and blower/mister - a simple device for OPCAB surgery.

    Science.gov (United States)

    Vettath, Murali P; Vellachamy, Kannan A; Talya, Rameshwara; Thazhakuni, Ismail; Moothencheri, Jayaprakash; Thomas, Jiji

    2008-01-01

    Since the advent of off-pump coronary artery bypass surgery, a blower/mister has been routinely used in cardiac operation theatres. In our setup, in an attempt to reduce the cost of coronary artery bypass grafting by performing off-pump coronary artery bypass, reusable materials have been routinely used.

  4. Blower door measurements - extended measuring methods; Blower Door-Messungen - erweiterte Messmethoden

    Energy Technology Data Exchange (ETDEWEB)

    Geissler, A.; Bolender, T.; Hauser, G. [Kassel Univ. (Germany). Fachgebiet Bauphysik

    1997-05-01

    To determine the air tightness of the external envelope, blower door measurements are normally carried out. The thus determined integral figure for the complete structure is an insufficient basis for carrying out specific insulation procedures in existing buildings. Within the scope of the air tightness measurements with the blower door, additional measuring methods permit the determination of additional information on the leakage distribution and the leakage routes. The expanded measuring methods that are known from the bibliography `opening a door` and `adding a hole` as well as the new method of `adding a hole plus` are explained, compared by means of exemplary measurements, and are considered for their suitability during field trials. (orig.) [Deutsch] Zur Bestimmung der Luftdichtheit der Gebaeudehuelle werden im allgemeinen Blower Door-Messungen durchgefuehrt. Der hierbei bestimmte integrale Wert fuer das gesamte Gebaeude stellt fuer das Ergreifen von gezielten Abdichtungsmassnahmen im Gebaeudebestand eine zu geringe Basis dar. Weiterfuehrende Messmethoden erlauben, im Rahmen von Luftdichtheitsmessungen mit der Blower Door zusaetzliche Informationen ueber die Leckageverteilung und ueber Leckagewege zu bestimmen. Die aus der Literatur bekannten erweiterten Messmethoden `Opening A Door` und `Adding A Hole` sowie die neue Methode `Adding A Hole Plus` werden erlaeutert, anhand von exemplarischen Messungen verglichen und im Feldeinsatz auf ihre Anwendbarkeit hin betrachtet. (orig.)

  5. Recent Results on High-Pressure Axial Blowers

    Science.gov (United States)

    Eckert, B.

    1947-01-01

    Considerable progress has, in recent times, been attained in the development of the high-pressure axial blower by well-planned research. The efforts are directed toward improving the efficiencies, which are already high for the axial blower, and in particular the delivery pressure heads. For high pressures multistage arrangements are used. Of fundamental importance is the careful design of all structural parts of the blower that are subject to the effects of the flow. In the present report, several recent results and experiences are reported, which are based on results of German engine research.

  6. Central heating: package boilers

    Energy Technology Data Exchange (ETDEWEB)

    Farahan, E.

    1977-05-01

    Performance and cost data for electrical and fossil-fired package boilers currently available from manufacturers are provided. Performance characteristics investigated include: unit efficiency, rated capacity, and average expected lifetime of units. Costs are tabulated for equipment and installation of various package boilers. The information supplied in this report will simplify the process of selecting package boilers required for industrial, commercial, and residential applications.

  7. Burner blower technology: Adjustable blower with minimum loss and noise; Brennergeblaesetechnik: Regelbares Brennergeblaese mit minimalen Verlusten und Geraeuschen

    Energy Technology Data Exchange (ETDEWEB)

    Kanis, P.G.

    1999-11-01

    The problem of blower control was mentioned in an earlier issue (Waermetechnik 1993, No. 5/6). This contribution presents a novel blower which enables practically loss-free adaptation of the air volume flow and thus helps to save electrical energy and minimize blower noise. [German] In der Waermetechnik 1993, Heft 5 und 6, wurden die Grundlagen der Brennergeblaesetechnik zusammengefasst und dabei auch die Problematik der Geblaeseregelung angesprochen. Im heutigen Beitrag soll ein neues Brennergeblaese vorgestellt werden, welches eine nahezu verlustfreie Anpassung des Luftvolumenstroms an den jeweiligen Bedarf ermoeglicht und dadurch hilft, elektrische Energie einzusparen und die Geblaesegeraeusche zu minimieren. (orig.)

  8. Optimization of repair cycles of VOMD-24 blowers

    Energy Technology Data Exchange (ETDEWEB)

    Kosarev, N.P.; Kuznetsov, S.V. (Sverdlovskii Gornyi Institut (USSR))

    1990-04-01

    Evaluates service life, reliability and repair of VOMD-24 blowers used for ventilation in underground coal mines in the USSR. Depending on operational conditions and ventilation systems, the overhaul life ranges from 7.2 to 14.7 months or 17.7 and 22.5 months (if general overhauls are considered). The mean-time-to repair ranges from 23.3 to 24.0 months, mean-time-to general overhaul from 32.6 to 38.0 months. The average labor consumption of blower repair and of general overhauls is analyzed along with labor consumption of service operations and repair. The recommended and actual standard repair cost, labor consumption and repair intervals are comparatively evaluated. Mathematical models for optimization of repair intervals are evaluated. Use of mathematical modeling for reducing repair cost, increasing blower reliability and reducing losses caused by blower failures is analyzed. 4 refs.

  9. EC motors for blowers; EC-Motoren fuer Luefter

    Energy Technology Data Exchange (ETDEWEB)

    Sauer, Thomas; Reiff, Ellen-Christine

    2009-10-15

    There are highly flexible commercial ventilation and air conditioning systems for server rooms which combine energy savings with optimum room air quality. EC blowers contribute to this and reduce also body sound. (orig./GL)

  10. Vibration and Stability of 3000-hp, Titanium Chemical Process Blower

    Directory of Open Access Journals (Sweden)

    Les Gutzwiller

    2003-01-01

    Full Text Available This 74-in-diameter blower had an overhung rotor design of titanium construction, operating at 50 pounds per square inch gauge in a critical chemical plant process. The shaft was supported by oil-film bearings and was directdriven by a 3000-hp electric motor through a metal disk type of coupling. The operating speed was 1780 rpm. The blower shaft and motor shaft motion was monitored by Bently Nevada proximity probes and a Model 3100 monitoring system.

  11. Optimization of axial blowers. Optimierung von Axial-Ventilatoren

    Energy Technology Data Exchange (ETDEWEB)

    Bolte, W.

    1992-08-01

    For the optimum possible design of axial blowers, trials are evaluated in the article, which are based on the grid profile examined by N. Scholz. The computation for the pressure number and the primary degree of efficiency are shown as well as the evaluation of the effect of the Reynolds and mach number on the degree of efficiency and determination of the secondary losses. In a final example, the dimensions of a blower are computed from the data determined during the trials. (orig.).

  12. Integrated high efficiency blower apparatus for HVAC systems

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaoyue; Weigman, Herman; Wang, Shixiao

    2007-07-24

    An integrated centrifugal blower wheel for a heating, ventilation and air conditioning (HVAC) blower unit includes a first blade support, a second blade support, and a plurality of S-shaped blades disposed between the first and second blade supports, wherein each of the S-shaped blades has a trailing edge bent in a forward direction with respect to a defined direction of rotation of the wheel.

  13. Dynamical system analysis of unstable flow phenomena in centrifugal blower

    Directory of Open Access Journals (Sweden)

    Garcia David

    2015-09-01

    Full Text Available Methods of dynamical system analysis were employed to analyze unsteady phenomena in a centrifugal blower. Pressure signals gathered at different control points were decomposed into their Principal Components (PCs by means of Singular Spectrum Analysis (SSA. Certain number of PCs was considered in the analysis based on their statistical correlation. Projection of the original signal onto its PCs allowed to draw the phase trajectory that clearly separated non-stable blower working conditions from its regular operation.

  14. Fuel sulfur and boiler fouling

    Energy Technology Data Exchange (ETDEWEB)

    Litzke, W.; Celebi, Y.; Butcher, T. [Brookhaven National Lab., Upton, NY (United States)

    1995-04-01

    Fouling of the heat transfer surfaces of boilers and furnaces by `soot` leads to reduced efficiency and increased service requirements. The average level of annual efficiency reduction as a result of fouling if generally accepted as 2% per year. Improving the efficiency of equipment in the field may be the most important oil heat conservation opportunity at present. Improvements can be realized by reducing fouling rates, promoting lower firing rates in existing equipment, and enabling excess air levels to be set lower without raising concerns about increased service requirements. In spite of the importance of efficiency in the field there is very little data available on efficiency degradation rates with modern equipment, actual field operating conditions (excess air and smoke number settings) and service problems which affect efficiency. During 1993-94 field tests were initiated to obtain such data and to obtain information that would compliment existing and current laboratory work. Experimental work conducted on a bench scale level have included tests with various advanced burners, fuel types, and different operating conditions which have been done at the BNL Rapid Fouling Test Facility. This report will focus on the field study of fouling effects on ten residential heating service problems at each site are summarized. In addition, the technical difficulties involved with conducting such a field study shall also be discussed as the findings should serve to improve future work in this area.

  15. Furnace Blower Electricity: National and Regional Savings Potential

    Energy Technology Data Exchange (ETDEWEB)

    Florida Solar Energy Center; Franco, Victor; Franco, Victor; Lutz, Jim; Lekov, Alex; Gu, Lixing

    2008-05-16

    Currently, total electricity consumption of furnaces is unregulated, tested at laboratory conditions using the DOE test procedure, and is reported in the GAMA directory as varying from 76 kWh/year to 1,953 kWh/year. Furnace blowers account for about 80percent of the total furnace electricity consumption and are primarily used to distribute warm air throughout the home during furnace operation as well as distribute cold air during air conditioning operation. Yet the furnace test procedure does not provide a means to calculate the electricity consumption during cooling operation or standby, which account for a large fraction of the total electricity consumption. Furthermore, blower electricity consumption is strongly affected by static pressure. Field data shows that static pressure in the house distribution ducts varies widely and that the static pressure used in the test procedure as well as the calculated fan power is not representative of actual field installations. Therefore, accurate determination of the blower electricity consumption is important to address electricity consumption of furnaces and air conditioners. This paper compares the potential regional and national energy savings of two-stage brushless permanent magnet (BPM) blower motors (the blower design option with the most potential savings that is currently available in the market) to single-stage permanent split capacitor (PSC) blower motors (the most common blower design option). Computer models were used to generate the heating and cooling loads for typical homes in 16 different climates which represent houses throughout the United States. The results show that the potential savings of using BPM motors vary by region and house characteristics, and are very strongly tied to improving house distribution ducts. Savings decrease dramatically with increased duct pressure. Cold climate locations will see savings even in the high static pressure duct situations, while warm climate locations will see less

  16. Optimized inflow in radial blowers. Efficient blowers; Optimaler Radeinlauf von Radialventilatoren. Effiziente Ventilatoren

    Energy Technology Data Exchange (ETDEWEB)

    Siepert, Heinz [VENTAPP GmbH und CO. KG, Kempen (Germany)

    2002-05-01

    It is well known that the inflow configuration of radial blowers influences the filling level of the rotor wheel and the rotor blade flow loss significantly. The author shows how losses can be minimized, thus improving the hydraulic efficiency. [German] Schon lange ist bekannt, dass die gewaehlte Radeinlaufkonfiguration bei Radialventilatoren einen grossen Einfluss auf den Fuellungsgrad des Laufrades und somit auch auf die Verluste der Laufschaufelstroemung hat. In der vorliegenden Arbeit wird gezeigt, wie die hydraulischen Radverluste aufgrund dieses Sachverhaltes minimiert und dadurch auch der hydraulische Wirkungsgrad verbessert werden koennen. (orig.)

  17. Boiler conversions for biomass

    Energy Technology Data Exchange (ETDEWEB)

    Kinni, J. [Tampella Power Inc., Tampere (Finland)

    1996-12-31

    Boiler conversions from grate- and oil-fired boilers to bubbling fluidized bed combustion have been most common in pulp and paper industry. Water treatment sludge combustion, need for additional capacity and tightened emission limits have been the driving forces for the conversion. To accomplish a boiler conversion for biofuel, the lower part of the boiler is replaced with a fluidized bed bottom and new fuel, ash and air systems are added. The Imatran Voima Rauhalahti pulverized-peat-fired boiler was converted to bubbling fluidized bed firing in 1993. In the conversion the boiler capacity was increased by 10 % to 295 MWth and NO{sub x} emissions dropped. In the Kymmene Kuusankoski boiler, the reason for conversion was the combustion of high chlorine content biosludge. The emissions have been under general European limits. During the next years, the emission limits will tighten and the boilers will be designed for most complete combustion and compounds, which can be removed from flue gases, will be taken care of after the boiler. (orig.) 3 refs.

  18. Noise analysis of ring blowers; Ring blow no soon kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Ota, S.; Miyazawa, M. [Fuji Electric Co. Ltd., Tokyo (Japan)

    1996-11-10

    The Ring Blower (a commercial product name of a vortex flow blower developed and marketed by Fuji Electric) consists integratedly of a blower, a motor and a silencer. The blower has an impeller attached with 40 to 52 forward-inclined blades, and is small in size capable of outputting high wind pressure. This paper describes the noise analyzing technology used in developing the low-noise Ring Blower, mainly referring to practical applications. A spectral analysis revealed that the noise is composed of rotor blade rotation noise forming several peaks and turbulent noise showing gently-sloping distribution over a wide range of frequency band. Vibration of outer walls of a casing would generate noise which propagates as a sound wave. For such vibration noise as this noise which spreads out into endless space, a BEM analysis is an effective tool. For analyzing flows to optimize blade shapes and analyzing sound pressure distribution in a silencer, an FEM analysis is effective. As a result of applying these technologies, noise has been reduced by over 10 dB from that in conventional products. 2 refs., 12 figs.

  19. 46 CFR 154.1868 - Portable blowers in personnel access openings.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Portable blowers in personnel access openings. 154.1868 Section 154.1868 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS... Portable blowers in personnel access openings. The master shall ensure that a portable blower in...

  20. 42 CFR 84.144 - Hand-operated blower test; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Hand-operated blower test; minimum requirements. 84... Supplied-Air Respirators § 84.144 Hand-operated blower test; minimum requirements. (a) Hand-operated blowers shall be tested by attaching them to a mechanical drive and operating them 6 to 8 hours daily...

  1. Building America Top Innovations 2013 Profile – High-Performance Furnace Blowers

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-09-01

    This Top Innovations profile describes Lawrence Berkeley National Laboratory's work with furnace blower design that led to the creation of a standard for rating blowers, credits for the use of good blowers in Federal tax credit programs and energy codes, and consideration in current federal rulemaking procedures.

  2. 42 CFR 84.145 - Motor-operated blower test; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Motor-operated blower test; minimum requirements... Supplied-Air Respirators § 84.145 Motor-operated blower test; minimum requirements. (a) Motor-operated... connection between the motor and the blower shall be so constructed that the motor may be disengaged from...

  3. NASA: Black soot fuels global warming

    CERN Multimedia

    2003-01-01

    New research from NASA's Goddard Space Center scientists suggests emissions of black soot have been altering the way sunlight reflects off Earth's snow. The research indicates the soot could be responsible for as much as 25 percent of global warming over the past century (assorted news items, 1 paragraph each).

  4. Research of Performance Rapid Determination Method of the Forced Draught Blower in Power Plant%电站送风机性能的快捷测试方法

    Institute of Scientific and Technical Information of China (English)

    李斌; 李建锋; 王键; 吕俊复; 冷杰; 张全胜; 黄海涛

    2012-01-01

    为了降低风机性能试验的工作量,为电站锅炉运行人员提供一种较为准确的风机性能检测手段,提出了一种基于热力学原理的风机性能测试与计算方法.通过对某200MW机组送风机性能的快捷测试并与已有的风机性能试验报告结果相比较,新的方法具有较高的准确性,能够用来指导电厂锅炉操作人员的现场运行与燃烧调整.%In order to reducing the workload of performance test for the blower and to providing a more accurate performance measuring method of the blower for the operators of boiler unit, a fan performance testing and calculation method based on ther-modynamic principle was proposed. Through comparing the results of quick test using the new method on the blower of a 200MW unit and the results of the existing fan performance test report, the new method has high accuracy and can be used to guide the power plant boiler operators field operation and combustion adjustment.

  5. Performance of Air-cooled Engine Cylinders Using Blower Cooling

    Science.gov (United States)

    Schey, Oscar W; Ellerbrock, Herman H , Jr

    1936-01-01

    An investigation was made to obtain information on the minimum quantity of air and power required to cool conventional air cooled cylinders at various operating conditions when using a blower. The results of these tests show that the minimum power required for satisfactory cooling with an overall blower efficiency of 100 percent varied from 2 to 6 percent of the engine power depending on the operating conditions. The shape of the jacket had a large effect on the cylinder temperatures. Increasing the air speed over the front of the cylinder by keeping the greater part of the circumference of the cylinder covered by the jacket reduced the temperatures over the entire cylinder.

  6. The seismic design of axial blower using Ansys

    Energy Technology Data Exchange (ETDEWEB)

    Im, Hyung Bin; Kim, Kang Sung; Heo, Jin Wook; Chung, Jin Tai [Hanyang Univ., Seoul (Korea, Republic of)

    2001-07-01

    The seismic design for an axial blower is the procedure in which the Required Response Spectrum(RRS) is computed by using the Floor Response Spectrum(FRS). The seismic design is very important to reduce severe damages from an earthquake; therefore, the seismic design has been a great concern in engineering society. In this study, after finite element modeling is established by using Ansys, the modal data are obtained such as the natural frequencies, the participation factor, and so on. With these data, the RRS is acquired by a numerical approach. The seismic safety of the axial blower is evaluated.

  7. Performance characteristics of turbo blower in a refuse collecting system according to operation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Jang, C. M.; Kim, D. W. [Korea Institute of Construction Technology, Goyang (Korea, Republic of); Lee, S. Y. [ANST, Seoul (Korea, Republic of)

    2008-10-15

    A simulator for a refuse collecting system is designed to investigate the performance characteristics of a turbo blower operating at different rotational frequencies. The simulator consists of an air intake, a waste chute, circular duct, waste collector and turbo blower. Experimental measurements and numerical simulation with three-dimensional Navier- Stokes equations have been performed to analyze the performance of the turbo blower. Throughout numerical simulation of the simulator, it is found that the input energy of the blower can be reduced by controlling the rotational frequency of impeller while the efficiency of the blower keeps constant. The required outlet pressure and flow rate of the blower can be also adjusted along the system resistance of the refuse collecting system. Detailed flow characteristics inside the blower are analyzed for different rotational frequencies

  8. Effect of strain rate on sooting limits in counterflow diffusion flames of gaseous hydrocarbon fuels: Sooting temperature index and sooting sensitivity index

    KAUST Repository

    Wang, Yu

    2014-05-01

    The effect of the strain rate on the sooting limits in counterflow diffusion flames was investigated in various gaseous hydrocarbon fuels by varying the nitrogen dilution in the fuel and oxidizer streams. The sooting limit was defined as the critical fuel and oxygen mole fraction at which soot started to appear in the elastic light scattering signal. The sooting region for normal alkane fuels at a specified strain rate, in terms of the fuel and oxygen mole fraction, expanded as the number of carbon atoms increased. The alkene fuels (ethylene, propene) tested had a higher propensity for sooting as compared with alkane fuels with the same carbon numbers (ethane, propane). Branched iso-butane had a higher propensity for sooting than did n-butane. An increase in the strain rate reduced the tendency for sooting in all the fuels tested. The sensitivity of the sooting limit to the strain rate was more pronounced for less sooting fuels. When plotted in terms of calculated flame temperature, the critical oxygen mole fraction exhibited an Arrhenius form under sooting limit conditions, which can be utilized to significantly reduce the effort required to determine sooting limits at different strain rates. We found that the limiting temperatures of soot formation flames are viable sooting metrics for quantitatively rating the sooting tendency of various fuels, based on comparisons with threshold soot index and normalized smoke point data. We also introduce a sooting temperature index and a sooting sensitivity index, two quantitative measures to describe sooting propensity and its dependence on strain rate. © 2013 The Combustion Institute.

  9. SEM Investigation of Superheater Deposits from Biomass-Fired Boilers

    DEFF Research Database (Denmark)

    Jensen, Peter Arendt; Frandsen, Flemming; Hansen, Jørn;

    2004-01-01

    are adopted to minimize deposit problems at the two boilers. At Masnedø the final superheater steam temperature is 520 °C, no soot blowing of the superheaters is applied and a relatively large superheater area is used. At Ensted, an external wood-fired superheater is used in order to obtain a final steam...... temperature of 542 °C, while the steam exit temperature of the straw-fired boiler is 470 °C. The mature Masnedø deposit had a thickness of 2 to 15 centimeters and consisted of three distinct main layers. The thick intermediate layer was depleted in chlorine but rich in Si, K, and Ca. This Masnedø intermediate......Straw is used as fuel in relatively small-scale combined heat and power producing (CHP) grate boilers in Denmark. The large content of potassium and chlorine in straw greatly increases the deposit formation and corrosion of the superheater coils, compared to boilers firing coal. In this study...

  10. Soot Aerosol Properties in Laminar Soot-Emitting Microgravity Nonpremixed Flames

    Science.gov (United States)

    Konsur, Bogdan; Megaridis, Constantine M.; Griffin, Devon W.

    1999-01-01

    The 0-g flame soot measurements reported in previous studies are extended by adding new 0-g data for different fuel flow rates and burner diameters. The new flame conditions allow more conclusive comparisons regarding the effect of characteristic flow residence times on soot field structure, the influence of fuel preheat on fuel pyrolysis rates near the flame centerline, and the premature cessation of soot growth along the soot annulus in 0-g when the fuel is preheated. The paper also reports on the implementation of thermophoretic soot sampling in a specific 0-g flame featuring burner exit velocities typical of buoyant flames and presents quantitative data on the radial variation of soot microstructure at a fixed height above the burner mouth.

  11. Energy conservation in cooling systems. Blowers; Energiebesparing in koelsystemen. Ventilatoren

    Energy Technology Data Exchange (ETDEWEB)

    Huijgens, G.

    2009-03-15

    On the role of blowers with regard to the options to save energy with cooling systems. In particular attention is paid to so-called Electronically Commutated (EC) Motors. [Dutch] Over de rol van ventilatoren in de mogelijkheden om energie te besparen met koelsystemen. In het bijzonder wordt aandacht besteed aan de zogenaamde Electronically Commutated (EC) Motors.

  12. Blower-door techniques for measuring interzonal leakage

    Energy Technology Data Exchange (ETDEWEB)

    Hult, Erin L.; Sherman, Max H.; Walker, Iain

    2013-01-01

    Abstract The standard blower door test methods, such as ASTM E779, describe how to use a single blower door to determine the total leakage of a single-zone structure such as a detached single-family home. There are no standard test methods for measuring interzonal leakage in a two-zone or multi-zone building envelope such as might be encountered in with an attached garage or in a multifamily building. Some practitioners have been using techniques that involve making multiple measurements with a single blower door as well as combined measurements using multiple blower doors. Even for just two zones there are dozens of combinations of one-door and two-door test protocols that could conceivably be used to determine the interzonal air tightness. We examined many of these two-zone configurations using both simulation and measured data to estimate the accuracy and precision of each technique for realistic measurement scenarios. We also considered the impact of taking measurements at a single pressure versus over multiple pressures. We compared the various techniques and evaluated them for specific uses. Some techniques work better in one leakage regime; some are more sensitive to wind and other noise; some are more suited to determining only a subset of the leakage values. This paper makes recommendations on which techniques to use or not use for various cases and provides data that could be used to develop future test methods.

  13. Monte carlo simulation for soot dynamics

    KAUST Repository

    Zhou, Kun

    2012-01-01

    A new Monte Carlo method termed Comb-like frame Monte Carlo is developed to simulate the soot dynamics. Detailed stochastic error analysis is provided. Comb-like frame Monte Carlo is coupled with the gas phase solver Chemkin II to simulate soot formation in a 1-D premixed burner stabilized flame. The simulated soot number density, volume fraction, and particle size distribution all agree well with the measurement available in literature. The origin of the bimodal distribution of particle size distribution is revealed with quantitative proof.

  14. Electrically heated particulate matter filter soot control system

    Energy Technology Data Exchange (ETDEWEB)

    Gonze, Eugene V.; Paratore, Jr., Michael J.; Bhatia, Garima

    2016-03-15

    A regeneration system includes a particulate matter (PM) filter with an upstream end for receiving exhaust gas and a downstream end. A control module determines a current soot loading level of the PM filter and compares the current soot loading level to a predetermined soot loading level. The control module permits regeneration of the PM filter when the current soot loading level is less than the predetermined soot loading level.

  15. Dynamic Boiler Performance

    DEFF Research Database (Denmark)

    Sørensen, Kim

    Traditionally, boilers have been designed mainly focussing on the static operation of the plant. The dynamic capability has been given lower priority and the analysis has typically been limited to assuring that the plant was not over-stressed due to large temperature gradients. New possibilities...... for buying and selling energy has increased the focus on the dynamic operation capability, efciency, emissions etc. For optimizing the design of boilers for dynamic operation a quantication of the dynamic capability is needed. A framework for optimizing design of boilers for dynamic operation has been...... developed. Analyzing boilers for dynamic operation gives rise to a number of opposing aims: shrinking and swelling, steam quality, stress levels, control system/philosophy, pressurization etc. Common for these opposing aims is that an optimum can be found for selected operation conditions. The framework has...

  16. ENERGY STAR Certified Boilers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Boilers that are effective as of October 1,...

  17. Thermometric Soots on Hot Jupiters?

    CERN Document Server

    Zahnle, K; Fortney, J J

    2009-01-01

    We use a 1D thermochemical and photochemical kinetics model to predict that the stratospheric chemistry of hot Jupiters should change dramatically as temperature drops from 1200 to 1000 K. At 1200 K methane is too unstable to reach the stratosphere in significant quantities, while thermal decomposition of water is a strong source of OH radicals that oxidize any hydrocarbons that do form to CO and CO$_2$. At 1000 K methane, although very reactive, survives long enough to reach the lower stratosphere, and the greater stability of water coupled with efficient scavenging of OH by H$_2$ raise the effective C/O ratio in the reacting gases above unity. Reduced products such as ethylene, acetylene, and hydrogen cyanide become abundant; such conditions favor polymerization and possible formation of PAHs and soots. Although low temperature is the most important factor favoring hydrocarbons in hot Jupiters, higher rates of vertical mixing and generally lower metallicities also favor organic synthesis. The peculiar prope...

  18. NOx Control Options and Integration for US Coal Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Marc Cremer; Kevin Davis; Martin Denison; Adel Sarofim; Connie Senior; Hong-Shig Shim; Dave Swenson; Bob Hurt; Eric Suuberg; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker

    2006-06-30

    This is the Final Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project was to develop cost-effective analysis tools and techniques for demonstrating and evaluating low-NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) provided co-funding for this program. This project included research on: (1) In furnace NOx control; (2) Impacts of combustion modifications on boiler operation; (3) Selective Catalytic Reduction (SCR) catalyst testing and (4) Ammonia adsorption/removal on fly ash. Important accomplishments were achieved in all aspects of the project. Rich Reagent Injection (RRI), an in-furnace NOx reduction strategy based on injecting urea or anhydrous ammonia into fuel rich regions in the lower furnace, was evaluated for cyclone-barrel and PC fired utility boilers. Field tests successfully demonstrated the ability of the RRI process to significantly reduce NOx emissions from a staged cyclone-fired furnace operating with overfire air. The field tests also verified the accuracy of the Computational Fluid Dynamic (CFD) modeling used to develop the RRI design and highlighted the importance of using CFD modeling to properly locate and configure the reagent injectors within the furnace. Low NOx firing conditions can adversely impact boiler operation due to increased waterwall wastage (corrosion) and increased soot production. A corrosion monitoring system that uses electrochemical noise (ECN) corrosion probes to monitor, on a real-time basis, high temperature corrosion events within the boiler was evaluated. Field tests were successfully conducted at two plants. The Ohio Coal Development Office provided financial assistance to perform the field tests. To investigate soot behavior, an advanced model to predict soot production and destruction was implemented into an existing reacting CFD modeling tool. Comparisons between experimental data collected

  19. Non-Thermal Soot Denuder Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a non-thermal soot denuder for measuring chemical components of the nucleation mode particulate matter emissions from gas turbine engines, in...

  20. Sooting limit in counterflow diffusion flames of ethylene/propane fuels and implication to threshold soot index

    KAUST Repository

    Joo, Peter H.

    2013-01-01

    Sooting limits in counterflow diffusion flames of propane/ethylene fuels have been studied experimentally using a light scattering technique, including the effects of dilution, fuel mixing, and strain rate. The results are discussed in view of the threshold soot index (TSI). In soot-formation (SF) flames, where the flame is located on the oxidizer side of the stagnation plane, the sooting limit depends critically on fuel type and subsequently on flame temperature. The sooting limit has a non-linear dependence on the fuel-mixing ratio, which is similar to the non-linear mixing rule for TSI observed experimentally in rich premixed flames, where soot oxidation is absent for both SF and rich premixed flames. In soot-formation-oxidation (SFO) flames, where the flame is located on the fuel side, the sooting limit depends critically on flame temperature, while it is relatively independent on fuel type. This result suggests a linear mixing rule for sooting limits in SFO flames, which is similar to the TSI behavior for coflow diffusion flames. Soot oxidation takes place for both types of flames. The aerodynamic strain effect on the sooting limits has also been studied and an appreciable influence has been observed. Under sooting conditions, soot volume fraction was measured using a light extinction technique. The soot loadings in SF flames of the mixture fuels demonstrated a synergistic effect, i.e., soot production increased for certain mixture fuels as compared to the respective singlecomponent fuels. © 2012 The Combustion Institute.

  1. NATO Workshop on Soot in Combustion Systems

    CERN Document Server

    Prado, G

    1983-01-01

    Our interest in Mulhouse for carbon black and soot began some 30 years ago when J.B. Donnet developed the concept of surface chemistry of carbon and its involvement in interactions with gas, liquid and solid phases. In the late sixties, we began to study soot formation in pyrolytic systems and later on in flames. The idea of organ1z1ng a meeting on soot formation originated some four or five years ago, through discussions among Professor J.B. Howard, Dr. A. D'Alessio and ourselves. At that time the scientific community was becoming aware of the necessity to strictly control soot formation and emission. Being involved in the study of surface properties of carbon black as well as of formation of soot, we realized that the combustion community was not always fully aware of the progress made by the physical-chemists on carbon black. Reciprocally, the carbon specialists were often ignoring the research carried out on soot in flames. One objective of this workshop was to stimulate discussions between these two scie...

  2. Aromatics Oxidation and Soot Formation in Flames

    Energy Technology Data Exchange (ETDEWEB)

    Howard, J. B.; Richter, H.

    2005-03-29

    This project is concerned with the kinetics and mechanisms of aromatics oxidation and the growth process to polycyclic aromatic hydrocarbons (PAH) of increasing size, soot and fullerenes formation in flames. The overall objective of the experimental aromatics oxidation work is to extend the set of available data by measuring concentration profiles for decomposition intermediates such as phenyl, cyclopentadienyl, phenoxy or indenyl radicals which could not be measured with molecular-beam mass spectrometry to permit further refinement and testing of benzene oxidation mechanisms. The focus includes PAH radicals which are thought to play a major role in the soot formation process while their concentrations are in many cases too low to permit measurement with conventional mass spectrometry. The radical species measurements are used in critical testing and improvement of a kinetic model describing benzene oxidation and PAH growth. Thermodynamic property data of selected species are determined computationally, for instance using density functional theory (DFT). Potential energy surfaces are explored in order to identify additional reaction pathways. The ultimate goal is to understand the conversion of high molecular weight compounds to nascent soot particles, to assess the roles of planar and curved PAH and relationships between soot and fullerenes formation. The specific aims are to characterize both the high molecular weight compounds involved in the nucleation of soot particles and the structure of soot including internal nanoscale features indicative of contributions of planar and/or curved PAH to particle inception.

  3. 燃煤炉鼓风机中变频器的节能分析%Energy conservation analysis of the inverter in coal-fired furnace blower

    Institute of Scientific and Technical Information of China (English)

    武欣

    2011-01-01

    In order to lower the power consumption rate of coal-fired furnace blower, to reduce the starting current, to increase the power factor, and to improve the fireman's working intensity, frequency converter was proposed to be used in coal-fired furnace blower. Compared to the traditional coal-fired furnace blower system,this system used converter to control the flow (air volume), which could save a lot of power. Through a detailed analysis of the pressure H-flow Q curve, it is clear that after the frequency conversion, the required power of blower is reduced. Meanwhile, the soft-start function of the converter and the feature of smooth speed governing could realized the smooth adjustment of the system,which made the system worked stable and extended the service life of various components of the boiler. Finally, the practice data shows it is energy-efficient to use the frequency converter in coal-fired furnace blower.%为了降低燃煤炉鼓风机的用电率、减少起动电流、提高功率因数、改善司炉工工作强度,提出了将变频器用在燃煤炉鼓风机中.与传统的燃煤炉鼓风机系统相比较,该系统利用变频器进行流量(风量)控制时,可节约大量电能.通过详细分析压力H-流量Q曲线,得出变频调速后风机所需功率明显减少.同时,变频器的软启动功能和平滑调速的特点可实现对系统的平稳调节,使系统工作状态稳定,延长锅炉各部件的使用寿命.最后通过实际数据可知使用变频器后的燃煤炉鼓风机是节能的.

  4. Design and Development of a Regenerative Blower for EVA Suit Ventilation

    Science.gov (United States)

    Izenson, Michael G.; Chen, Weibo; Hill, Roger W.; Phillips, Scott D.; Paul, Heather L.

    2011-01-01

    Ventilation subsystems in future space suits require a dedicated ventilation fan. The unique requirements for the ventilation fan - including stringent safety requirements and the ability to increase output to operate in buddy mode - combine to make a regenerative blower an attractive choice. This paper describes progress in the design, development, and testing of a regenerative blower designed to meet requirements for ventilation subsystems in future space suits. We have developed analysis methods for the blower s complex, internal flows and identified impeller geometries that enable significant improvements in blower efficiency. We verified these predictions by test, measuring aerodynamic efficiencies of 45% at operating conditions that correspond to the ventilation fan s design point. We have developed a compact motor/controller to drive the blower efficiently at low rotating speed (4500 rpm). Finally, we have assembled a low-pressure oxygen test loop to demonstrate the blower s reliability under prototypical conditions.

  5. Design and Development of a Regenerative Blower for Space Suit Ventilation

    Science.gov (United States)

    Izenson, Mike; Chen, Weibo; Paul, Heather

    2010-01-01

    The ventilation subsystem in future space suits will require a dedicated ventilation fan. The unique requirements for the ventilation fan, including stringent safety requirements and the ability to increase output to operate in buddy mode, combine to make a regenerative blower an attractive technology choice. This paper describes progress in the design, development, and testing of a regenerative blower designed to meet requirements for a ventilation subsystem for future space suit life support. Analysis methods were developed for the blower s complex internal flows and impeller geometries were identified that enable significant improvements in blower efficiency. Performance predictions were verified by test, measuring aerodynamic efficiencies of 45% at operating conditions that correspond to the ventilation fan s design point. A compact motor/controller was developed to drive the blower efficiently at low rotating speed (4500 rpm). Finally, a low-pressure oxygen test loop was assembled to demonstrate the blower s reliability under prototypical conditions.

  6. Performance Enhancement of Dual-Inlet Centrifugal Blower by Optimal Design of Splitter

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Sung; Jang, Choon Man [Korea Institute of Construction Technology, Goyang (Korea, Republic of)

    2014-12-15

    The shape of an impeller splitter for a dual-inlet centrifugal blower was optimized to enhance the blower performance. Two design variable, the normalized chord and pitch of a splitter, were used to evaluate the blower performance and internal flow fields based on the three-dimensional flow analysis. The blower performance obtained using this numerical simulation had a maximum error of 4 percent compared to that in an experiment at the design flow condition. The shape optimization of the splitter successfully increased the blower efficiency and pressure by 3.65 and 1.14 percent compared to the reference values. The blower performance was increased by reducing the flow separation near the blade suction surface by optimizing the shape of the splitter, which produced a pressure increase at the outlet of the volute casing.

  7. MODELLING, SIMULATING AND OPTIMIZING BOILERS

    DEFF Research Database (Denmark)

    Sørensen, Kim; Condra, Thomas Joseph; Houbak, Niels

    2004-01-01

    on the boiler) have been dened. Furthermore a number of constraints related to: minimum and maximum boiler load gradient, minimum boiler size, Shrinking and Swelling and Steam Space Load have been dened. For dening the constraints related to the required boiler volume a dynamic model for simulating the boiler...... size. The model has been formulated with a specied building-up of the pressure during the start-up of the plant, i.e. the steam production during start-up of the boiler is output from the model. The steam outputs together with requirements with respect to steam space load have been utilized to dene...... of the boiler is (with an acceptable accuracy) proportional with the volume of the boiler. For the dynamic operation capability a cost function penalizing limited dynamic operation capability and vise-versa has been dened. The main idea is that it by mean of the parameters in this function is possible to t its...

  8. Ultraviolet-visible bulk optical properties of randomly distributed soot.

    Science.gov (United States)

    Renard, J B; Hadamcik, E; Brogniez, C; Berthet, G; Worms, J C; Chartier, M; Pirre, M; Ovarlez, J; Ovarlez, H

    2001-12-20

    The presence of soot in the lower stratosphere was recently established by in situ measurements. To isolate their contribution to optical measurements from that of background aerosol, the soot's bulk optical properties must be determined. Laboratory measurements of extinction and polarization of randomly distributed soot were conducted. For all soot, measurements show a slight reddening extinction between 400 and 700 nm and exhibit a maximum of 100% polarization at a scattering angle of 75 +/- 5 degrees. Such results cannot be reproduced by use of Mie theory assumptions. The different optical properties of soot and background stratospheric aerosol could allow isolation of soot in future analyses of stratospheric measurements.

  9. 锅炉监测中的问题探讨和监测质量的控制%Problems in boiler monitoring and monitoring of quality control

    Institute of Scientific and Technical Information of China (English)

    陈晨

    2015-01-01

    锅炉是重要的工业生产设备,在使用中会产生大量烟尘颗粒物、气态污染物及其他污染物。准确监测锅炉污染物排放情况是防治污染的重要举措。本文旨在对锅炉监测中碰到的问题进行总结探讨,提升锅炉监测的质量。%Boiler is an important industrial production equipment, It will produce a large amount of soot particles, gaseous pollutants and other pollutants in the use of the boiler. Accurate monitoring of pollutant discharge of boiler is an important measure to prevent and control pollution. This paper aims to summarize the problems encountered in the boiler monitoring, improve the quality of boiler monitoring.

  10. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Marc Cremer; Kevin Davis; Connie Senior; Bob Hurt; Eric Eddings; Larry Baxter

    2001-10-10

    This is the fifth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing cofunding for this program. This program contains multiple tasks and good progress is being made on all fronts. Field tests for NOx reduction in a cyclone fired utility boiler due to using Rich Reagent Injection (RRI) have been started. CFD modeling studies have been started to evaluate the use of RRI for NOx reduction in a corner fired utility boiler using pulverized coal. Field tests of a corrosion monitor to measure waterwall wastage in a utility boiler have been completed. Computational studies to evaluate a soot model within a boiler simulation program are continuing. Research to evaluate SCR catalyst performance has started. A literature survey was completed. Experiments have been outlined and two flow reactor systems have been designed and are under construction. Commercial catalyst vendors have been contacted about supplying catalyst samples. Several sets of new experiments have been performed to investigate ammonia removal processes and mechanisms for fly ash. Work has focused on a promising class of processes in which ammonia is destroyed by strong oxidizing agents at ambient temperature during semi-dry processing (the use of moisture amounts less than 5 wt-%). Both ozone and an ozone/peroxide combination have been used to treat both basic and acidic ammonia-laden ashes.

  11. Curbing Air Pollution and Greenhouse Gas Emissions from Industrial Boilers in China

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Bo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Price, Lynn K [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lu, Hongyou [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Liu, Xu [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tsen, Katherine [Univ. of California, Berkeley, CA (United States); Xiangyang, Wei [National Energy Conservation Center (China); Yunpeng, Zhang [National Energy Conservation Center (China); Jian, Guan [China Special Equipment Inspection & Test Inst. (China); Rui, Hou [China Machinery Industry Conservation & Resource Utilization Center (China); Junfeng, Zhang [China National Offshore Oil Corp. (China); Yuqun, Zhuo [Tsinghua Univ., Beijing (China); Shumao, Xia [China Energy Conservation & Environmental Protection Group (China); Yafeng, Han [Xi' an Jiatong Univ. (China); Manzhi, Liu [China Univ. of Mining and Technology (China)

    2015-10-28

    China’s industrial boiler systems consume 700 million tons of coal annually, accounting for 18% of the nation’s total coal consumption. Together these boiler systems are one of the major sources of China’s greenhouse gas (GHG) emissions, producing approximately 1.3 gigatons (Gt) of carbon dioxide (CO2) annually. These boiler systems are also responsible for 33% and 27% of total soot and sulfur dioxide (SO2) emissions in China, respectively, making a substantial contribution to China’s local environmental degradation. The Chinese government - at both the national and local level - is taking actions to mitigate the significant greenhouse gas (GHG) emissions and air pollution related to the country’s extensive use of coal-fired industrial boilers. The United States and China are pursuing a collaborative effort under the U.S.-China Climate Change Working Group to conduct a comprehensive assessment of China’s coal-fired industrial boilers and to develop an implementation roadmap that will improve industrial boiler efficiency and maximize fuel-switching opportunities. Two Chinese cities – Ningbo and Xi’an – have been selected for the assessment. These cities represent coastal areas with access to liquefied natural gas (LNG) imports and inland regions with access to interprovincial natural gas pipelines, respectively.

  12. Energy savings using medium voltage softstarts on chip blowers

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, J. R. [E. B. Eddy Forest Products, Ltd., Espanola, ON (Canada)

    1997-05-01

    Wood chip blowers are used to pneumatically blow hardwood and softwood chips to storage piles, chip bins and batch digesters. In the past they were allowed to run continuously because it was believed that frequent stops and starts would damage the equipment. Excellent energy paybacks have been achieved with the 1994 installation of silicon controlled rectifier softstarts on the blowers, thus eliminating the cost of running the equipment under no load conditions. Installation and operation of these medium voltage softstarts on both induction and synchronous motors, the project costs and the savings realized, were described. The installation of softstarts is only one example of saving energy in the paper and pulp industry. With advances in silicon controlled rectifier technology , variable speed drives, etc., there are many other opportunities which could be implemented at relatively low cost.

  13. Practically orientated noise laws for blowers. Praxisorientierte Geraeuschgesetze fuer Ventilatoren

    Energy Technology Data Exchange (ETDEWEB)

    Bommes, H.U.; Laoutoumai, D.

    1994-08-01

    The emphasis of the present work is a general noise law for blowers, derived from the strict rules of the simiarity theory, which was first published in 1985. This noise law is of special interest, inasmuch as it implicitly contains a multitude of practical noise laws such as, for example, the oldest noise law from madison or the noise law from Daly, which can easily be attuned to the relevant requirements in practice. (orig.)

  14. Centrifugal Blower for Personal Air Ventilation System (PAVS) - Phase 1

    Science.gov (United States)

    2015-02-01

    functionality. 15. SUBJECT TERMS COOLING SBIR REPORTS AXIAL FLOW FANS OFF THE SHELF EQUIPMENT BLOWERS LIGHTWEIGHT CENTRIFUGAL FORCE...HEAT STRESS (PHYSIOLOGY) AIR FLOW VENTILATION PORTABLE EQUIPMENT PERSONAL COOLING SYSTEMS EFFICIENCY EVAPORATION INTEGRATED SYSTEMS PROTOTYPES...gH Vn ad s ad s 4 1 4 3     is angular speed (2rpm) V is volumetric flow rate Had is the fan pumping head (in meters) g is the

  15. 声波吹灰器的原理和应用%Principal and Application of Acoustic Soot Blower

    Institute of Scientific and Technical Information of China (English)

    赵旺初

    2002-01-01

    声波吹灰器在欧美和日本得到了广泛的应用,在我国尚属待推广和深化的新技术.文章介绍了声波吹灰器优于传统吹灰器的机理、结构、经济分析和节能效果,并举例说明.

  16. Design and Optimization of GGH Soot-blower%GGH吹灰器的设计与优化

    Institute of Scientific and Technical Information of China (English)

    符琦弘

    2015-01-01

    我国对环保问题日趋重视,火电厂纷纷上马脱硫项目.在国内电厂的烟气脱硫系统中,普遍安装了GGH吹灰器.目前市场上的GGH吹灰器常常存在烟气泄漏、提升阀和吹灰外管的使用寿命低、吹灰效果不理想等问题.通过分析,针对正压风系统、吹灰器喷嘴头、开关阀装置等方面的问题,提出了优化设计的思路和方向.

  17. Analysis for damages of HPT bearings and generator blower

    Energy Technology Data Exchange (ETDEWEB)

    Gho, W. S.; Kim, G. Y.; Lee, W. G. [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    2003-10-01

    During normal operation of nuclear turbine-generator, we have found the gap volt increased on the HP turbine bearings. After a week, turbine-generator was tripped due to activating the mechanical overspeed trigger during coast down operation for refueling. On disassembling, we have found the HPT bearings melted and generator blower blades broken. Reviewing the operation and vibration data and damaged components, we have concluded 2{approx}3 blades were broken during transient operation, when generator was vented and filled with CO2 in short time after tripping of turbine-generator due to leaking hydrogen from generator 2 months ago. At this time, the surge or stall through generator blower made reverse force on the rotating blades and made 2{approx}3 blades broken. Blower blades were broken and damaged more during additional transient operation and made rotor current increased due to rubbing of damaged parts. The HPT bearings were corroded electrically and melted down by breaking minimum oil film during speed down operation. The analysis and actions were properly performed and made safe operation of nuclear turbine-generator.

  18. Sooting limit of a double diffusion flame

    Energy Technology Data Exchange (ETDEWEB)

    Kitano, Michio; Kobayashi, Hideaki; Nishiki, Nobuhiko (Tohoku Univ., Faculty of Engineering, Sendai, Japan Sony Corp., Tokyo (Japan))

    1989-07-25

    The soot exhaust from the flame of pot type burner for the domestic heating use was basically studied. Inside a fuel (secondary) diffusion flame in air atmosphere, which was an ordinary diffusion flame, an air (primary) diffusion flame in fuel atmosphere, which was reverse in relation between them, was formed by using propane fuel. For the sooting limit of that double diffusion flame, the effect of primary air ratio, distance between primary and secondary flames, thermal condition on wall surface and flow stretch being investigated by use of three different types of burner, the double diffusion flame method was studied in effectiveness on the soot exhaust and known to heighten the control against it, which heightening however depended in degree upon the locative relation between both the flames. The control was more heightened with a more lengthening in the secondary flame. Because the sooting limit is governed by the secondary flame temperature, the establishment of condition so as to heighten the flame temperature is necessary for the effective control against the soot exhaust. 11 refs., 11 figs.

  19. Blowers: Analysis of characteristic fields of swirl-controlled radial blowers; Ventilatoren: Analyse von Kennfeldern drallgesteuerter Radialventilatoren

    Energy Technology Data Exchange (ETDEWEB)

    Grundmann, R. [I.F.I. Inst. fuer Industrieaerodynamik GmbH, Inst. der Fachhochschule, Aachen (Germany); Bommes, L. [VBI, Korschenbroich (Germany)

    2004-08-01

    Until now, the characteristic fields for different guide blade angles had to be defined experimentally. Characteristic data are derived which enable calculation of the influence of the swirl control unit on the blower characteristic field. (orig.) [German] Das Kennfeld fuer verschiedene Leitschaufelwinkel musste bisher experimentell bestimmt werden. Aus derartig gewonnenen Kennfeldern werden Kenngroessen abgeleitet, die eine rechnerische Abschaetzung des Drallreglereinflusses auf das Ventilatorkennfeld ermoeglichen. (orig.)

  20. MODELLING, SIMULATING AND OPTIMIZING BOILERS

    DEFF Research Database (Denmark)

    Sørensen, K.; Condra, T.; Houbak, Niels

    2003-01-01

    This paper describes the modelling, simulating and optimizing including experimental verification as being carried out as part of a Ph.D. project being written resp. supervised by the authors. The work covers dynamic performance of both water-tube boilers and fire tube boilers. A detailed dynamic...... model of the boiler has been developed and simulations carried out by means of the Matlab integration routines. The model is prepared as a dynamic model consisting of both ordinary differential equations and algebraic equations, together formulated as a Differential-Algebraic-Equation system. Being able...... to operate a boiler plant dynamically means that the boiler designs must be able to absorb any fluctuations in water level and temperature gradients resulting from the pressure change in the boiler. On the one hand a large water-/steam space may be required, i.e. to build the boiler as big as possible. Due...

  1. Modelling, simulating and optimizing Boilers

    DEFF Research Database (Denmark)

    Sørensen, Kim; Condra, Thomas Joseph; Houbak, Niels

    2003-01-01

    This paper describes the modelling, simulating and optimizing including experimental verication as being carried out as part of a Ph.D. project being written resp. supervised by the authors. The work covers dynamic performance of both water-tube boilers and re tube boilers. A detailed dynamic model...... of the boiler has been developed and simulations carried out by means of the Matlab integration routines. The model is prepared as a dynamic model consisting of both ordinary differential equations and algebraic equations, together formulated as a Differential-Algebraic- Equation system. Being able to operate...... a boiler plant dynamically means that the boiler designs must be able to absorb any uctuations in water level and temperature gradients resulting from the pressure change in the boiler. On the one hand a large water-/steam space may be required, i.e. to build the boiler as big as possible. Due...

  2. Optimising boiler performance.

    Science.gov (United States)

    Mayoh, Paul

    2009-01-01

    Soaring fuel costs continue to put the squeeze on already tight health service budgets. Yet it is estimated that combining established good practice with improved technologies could save between 10% and 30% of fuel costs for boilers. Paul Mayoh, UK technical manager at Spirax Sarco, examines some of the practical measures that healthcare organisations can take to gain their share of these potential savings.

  3. Laminar Soot Processes Experiment Shedding Light on Flame Radiation

    Science.gov (United States)

    Urban, David L.

    1998-01-01

    The Laminar Soot Processes (LSP) experiment investigated soot processes in nonturbulent, round gas jet diffusion flames in still air. The soot processes within these flames are relevant to practical combustion in aircraft propulsion systems, diesel engines, and furnaces. However, for the LSP experiment, the flames were slowed and spread out to allow measurements that are not tractable for practical, Earth-bound flames.

  4. Optimization of Load Assignment to Boilers in Industrial Boiler Plants

    Institute of Scientific and Technical Information of China (English)

    CAO Jia-cong; QIU Guang; CAO Shuang-hua; LIU Feng-qiang

    2004-01-01

    Along with the increasing importance of sustainable energy, the optimization of load assignment to boilers in an industrial boiler plant becomes one of the major projects for the optimal operation of boiler plants. Optimal load assignment for power systems has been a long-lasting subject, while it is quite new for industrial boiler plants. The existing methods of optimal load assignment for boiler plants are explained and analyzed briefly in the paper. They all need the fuel cost curves of boilers. Thanks to some special features of the curves for industrial boilers, a new model referred to as minimized departure model (MDM) of optimization of load assignment for boiler plants is developed and proposed in the paper. It merely relies upon the accessible data of two typical working conditions to build the model, viz. the working conditions with the highest efficiency of a boiler and with no-load. Explanation of the algorithm of computer program is given, and effort is made so as to determine in advance how many and which boilers are going to work. Comparison between the results using MDM and the results reported in references is carried out, which proves that MDM is preferable and practicable.

  5. Production Facility Prototype Blower Installation Report with 1000 Hour Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Woloshun, Keith Albert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Romero, Frank Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalmas, Dale Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-04-01

    The roots blower in use at ANL for in-beam experiments and also at LANL for flow tests was sized for 12 mm diameter disks and significantly less beam heating. Currently, the disks are 29 mm in diameter, with a 12 mm FWHM Gaussian beam spot at 42 MeV and 2.86 μA on each side of the target, 5.72 μA total. The target design itself is reported elsewhere. With the increased beam heating, the helium flow requirement increased so that a larger blower was needed for a mass flow rate of 400 g/s at 2.76 MPa (400 psig). An Aerzen GM 12.4 blower was selected, and is currently being installed at the LANL facility for target and component flow testing. This report describes this blower/motor/pressure vessel package and the status of the facility preparations. The blower has been operated for 1000 hours as a preliminary investigation of long term performance, operation and possible maintenance issues. The blower performed well, with no significant change in blower head or mass flow rate developed under the operating conditions. Upon inspection, some oil had leaked out of the shaft seal of the blower. The shaft seal and bearing race have been replaced. Test results and conclusions are reported.

  6. Production Facility Prototype Blower Installation Report with 1000 Hr Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Woloshun, Keith Albert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Olivas, Eric Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Romero, Frank Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalmas, Dale Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-23

    The roots blower in use at ANL for in-beam experiments and also at LANL for flow tests was sized for 12 mm diameter disks and significantly less beam heating. Currently, the disks are 29 mm in diameter, with a 12 mm FWHM Gaussian beam spot at 42 MeV and 2.86 μA on each side of the target, 5.72 μA total. The target design itself is reported elsewhere. With the increased beam heating, the helium flow requirement increased so that a larger blower was needed for a mass flow rate of 400 g/s at 2.76 MPa (400 psig). An Aerzen GM 12.4 blower was selected, and is currently being installed at the LANL facility for target and component flow testing. This report describes this blower/motor/pressure vessel package and the status of the facility preparations. The blower has been operated for 1000 hours as a preliminary investigation of long-term performance, operation and possible maintenance issues. The blower performed well, with no significant change in blower head or mass flow rate developed under the operating conditions. Upon inspection, some oil had leaked out of the shaft seal of the blower. The shaft seal and bearing race have been replaced.

  7. CHP Integrated with Burners for Packaged Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Castaldini, Carlo; Darby, Eric

    2013-09-30

    division of Sempra Energy. These match funds were provided via concurrent contracts and investments available via CMCE, Altex, and Leva Energy The project attained all its objectives and is considered a success. CMCE secured the support of GI&E from Italy to supply 100 kW Turbec T-100 microturbines for the project. One was purchased by the project’s subcontractor, Altex, and a second spare was purchased by CMCE under this project. The microturbines were then modified to convert from their original recuperated design to a simple cycle configuration. Replacement low-NOx silo combustors were designed and bench tested in order to achieve compliance with the California Air Resources Board (CARB) 2007 emission limits for NOx and CO when in CHP operation. The converted microturbine was then mated with a low NOx burner provided by Altex via an integration section that allowed flow control and heat recovery to minimize combustion blower requirements; manage burner turndown; and recover waste heat. A new fully integrated control system was designed and developed that allowed one-touch system operation in all three available modes of operation: (1) CHP with both microturbine and burner firing for boiler heat input greater than 2 MMBtu/hr; (2) burner head only (BHO) when the microturbine is under service; and (3) microturbine only when boiler heat input requirements fall below 2 MMBtu/hr. This capability resulted in a burner turndown performance of nearly 10/1, a key advantage for this technology over conventional low NOx burners. Key components were then assembled into a cabinet with additional support systems for generator cooling and fuel supply. System checkout and performance tests were performed in the laboratory. The assembled system and its support equipment were then shipped and installed at a host facility where final performance tests were conducted following efforts to secure fabrication, air, and operating permits. The installed power burner is now in commercial

  8. Performance and Life Tests of a Regenerative Blower for EVA Suit Ventilation

    Science.gov (United States)

    Izenson, Michael G.; Chen, Weibo; McCormick, John; Paul, Heather L.; Jennings, Mallory A.

    2012-01-01

    Ventilation fans for future space suits must meet demanding performance specifications, satisfy stringent safety requirements for operation in an oxygen atmosphere, and be able to increase output to operate in buddy mode. A regenerative blower is an attractive choice due to its ability to meet these requirements at low operating speed. This paper describes progress in the development and testing of a regenerative blower designed to meet requirements for ventilation subsystems in future space suits. The blower includes a custom-designed motor that has significantly improved its efficiency. We have measured the blower s head/flow performance and power consumption under conditions that simulate both the normal and buddy mode operating points. We have operated the blower for TBD hours and demonstrated safe operation in an oxygen test loop at prototypical pressures. We also demonstrated operation with simulated lunar dust.

  9. Testing the rated parameters of new blowers in the Stara Jama coal mine

    Energy Technology Data Exchange (ETDEWEB)

    Zugic, M.

    1987-04-01

    Presents the findings of a joint commision of specialists from the Mining Institute in Belgrade, the Zenica coal mine and the Korfman company at the trials of two KGL-160 blowers manufactured by Korfman in the FRG. These axial blowers were being offered as replacement for old blower equipment at the Stara Jama coal mine. Describes tests carried out by the commission under various operating conditions and with differing settings of the blower blades. A special note was made of electrical consumption, noise and vibration. Details the mesurement procedures together with the instrumentation used and presents the results in three tables and one diagram. Concludes that both of the blowers tested fully met their design ratings and also complied with all the operational requirements of the Stara Jama mine. 3 refs.

  10. Relation fullerene-PAH-soot in laser pyrolysis: FTIR investigations

    Science.gov (United States)

    Alexandrescu, Rodica; Armand, Xavier; Dumitrache, Florian V.; Fleaca, Claudiu T.; Herlin-Boime, Nathalie; Marino, Emanuela; Mayne, Martine; Morjan, Ion G.; Reynaud, Cecile; Sandu, Ion C.; Soare, Iuliana; Tenegal, Francois; Voicu, Ion N.

    2004-10-01

    Laser pyrolysis of a hydrocarbon-based mixture is a continuous method for the synthesis of soot-containing fullerene. In this synthesis process, the mechanism of fullerene formation and soot is the radical mechanism of the PAH formation. In the flames producing both fullerenes and soot, exactly forming carbon cages require particular types of reaction sequences. The fullerene concentrations are strongly correlated with those of PAHs in the flame. The equilibrium soot-PAHs-fullerene is dependent on experimental parameters. FTIR spectra of soot extracts and exhaust gases are discussed in the frame of this dependence.

  11. Blower Gun pellet injection system for W7-X

    Energy Technology Data Exchange (ETDEWEB)

    Dibon, M., E-mail: mathias.dibon@ipp.mpg.de [Max-Planck-Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany); Baldzuhn, J.; Beck, M. [Max-Planck-Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany); Cardella, A. [Lehrstuhl für Nukleartechnik, TU Munich, Boltzmannstr. 15, 85748 Garching (Germany); Köchl, F. [Atominstitut, TU Wien, 1020 Vienna (Austria); Kocsis, G. [Wigner RCP, RMI, P.O. Box 49, H-1525 Budapest-114 (Hungary); Lang, P.T. [Max-Planck-Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany); Macian-Juan, R. [Lehrstuhl für Nukleartechnik, TU Munich, Boltzmannstr. 15, 85748 Garching (Germany); Ploeckl, B. [Max-Planck-Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany); Szepesi, T. [Wigner RCP, RMI, P.O. Box 49, H-1525 Budapest-114 (Hungary); Weisbart, W. [Max-Planck-Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany)

    2015-10-15

    Highlights: • Operational principle of the ASDEX Upgrade Blower Gun. • Guiding tube properties for pellet guiding according to the requirements of W7-X. • Diagnostics for the characterization of the injection system. • Experimental procedure to investigate the performance of the Blower Gun. • Results concerning pellet speeds, mass loss, delivery efficiency and exit angle. - Abstract: Foreseen to perform pellet investigations in the new stellarator W7-X, the former ASDEX Upgrade Blower Gun was revised and revitalized. The systems operational characteristics have been surveyed in a test bed. The gun is designed to launch cylindrical pellets with 2 mm diameter and 2 mm length, produced from frozen deuterium D{sub 2}, hydrogen H{sub 2} or a gas mixture consisting of 50% H{sub 2} and 50% D{sub 2}. Pellets are accelerated by a short pulse of pressurized helium propellant gas to velocities in the range of 100–250 m/s. Delivery reliabilities at the launcher exit reach almost unity. The initial pellet mass is reduced to about 50% during the acceleration process. Pellet transfer to the plasma vessel was investigated by a first mock up guiding tube version. Transfer through this S-shaped stainless steel guiding tube (inner diameter 8 mm; length 6 m) containing two 1 m curvature radii was investigated for all pellet types. Tests were performed applying repetition rates from 2 Hz to 50 Hz and propellant gas pressures ranging from 0.1 to 0.6 MPa. For both H{sub 2} and D{sub 2}, low overall delivery efficiencies were observed at slow repetition rates, but stable efficiencies of about 90% above 10 Hz. About 10% of the mass is eroded while flying through the guiding tube. Pellets exit the guiding tube with an angular spread of less than 14°.

  12. Hand injuries from snow blowers: a report of an epidemic.

    Science.gov (United States)

    Tetz, D J; Aghababian, R

    1995-01-01

    During a record snowfall in Worcester, Massachusetts, 11-13 December 1992, 37 male patients with hand injuries suffered during snow blower operation were seen at three area hospitals. Two previous reports describe 13 patients seen over a 3-year period and 28 patients over a 12-year period. This report describes the largest number of hand injuries from snow blowers that have occurred over a 48-hour period. The snow was unusual because of the high water density in the initial 9 inches (23 cm) that fell at an average temperature of 33 degrees F (0.6 degree C) with the final depth of 30 inches (76 cm), causing the machines to become clogged. Patients admitted to reaching into a running machine in 35/37 (95%) cases, 11/37 (30%) claimed the auger and impeller blades were disengaged, and 2/37 (5%) patients claimed their injuries occurred with the engines turned off. All injuries occurred when the patients placed their hands down the chute, contacting the impeller blades. Injuries involved 32 long, 15 ring, 13 index, and five small fingers and ranged from simple lacerations to partial phalangeal amputations. The majority, 27/37 (73%), were managed in emergency departments without interventions in the operating suites. Infection occurred in one patient who had the lesion repaired in the operating suite. As in previous studies, no differences were found for the variables of snow-blower age, type, or horsepower, or on experience level or age of the operators.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Shaanxi Blower Group: One Brand with Two "China Top Brand"

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Shaanxi Blower (Group) Co., Ltd.is a group company of large engineering technology and equipment focused on design and manufacturing of turbo-machinery, a large key enterprise in China, one of the top 500 enterprises for machinery industries, one of the best 100 enterprises in income from sales of Chinese Machinery Industries in 2004,one of the largest 1000 group enterprises in China in 2004, one of the vanguard enterprises in Chinese industries in 2005,the key support enterprise aiming at 10billion in production value during the "Eleventh Five-year Plan" by Xi'an Municipal government.

  14. Characteristic estimation of radial blowers; Kennfeldabschaetzung fuer Radialventilatoren

    Energy Technology Data Exchange (ETDEWEB)

    Draxler, D. [Architekturbuero F. Draxler, Duesseldorf (Germany)

    2002-12-01

    Radial blowers are an important cost factor in space HVAC systems. For cost reduction purposes, designers are interested in a simple, time-saving method of calculating dimensions and characteristics of radial rotors with minimum hydraulic losses. The solution is based primarily on knowledge of the power loss factor. [German] Radialventilatoren verursachen einen hohen Anteil an den laufenden Betriebskosten vieler lufttechnischer Anlagen. Um diese moeglichst gering zu halten, ist der Konstrukteur an einem einfachen und zeitsparenden Entwurfsverfahren interessiert, welches die Bemessungsgroessen und Kennlinien radialer Laufraeder liefert, die minimale hydraulische Verluste aufweisen. Unter diesen Voraussetzungen basiert die Loesung des Problems im Wesentlichen auf der Kenntnis des Minderleistungsfaktors. (orig.)

  15. Shaanxi Blower Group: One Brand with Two "China Top Brand"

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

      Shaanxi Blower (Group) Co., Ltd.is a group company of large engineering technology and equipment focused on design and manufacturing of turbo-machinery, a large key enterprise in China, one of the top 500 enterprises for machinery industries, one of the best 100 enterprises in income from sales of Chinese Machinery Industries in 2004,one of the largest 1000 group enterprises in China in 2004, one of the vanguard enterprises in Chinese industries in 2005,the key support enterprise aiming at 10billion in production value during the "Eleventh Five-year Plan" by Xi'an Municipal government.……

  16. Thermal fragmentation and deactivation of combustion-generated soot particles

    KAUST Repository

    Raj, Abhijeet

    2014-09-01

    The effect of thermal treatment on diesel soot and on a commercial soot in an inert environment under isothermal conditions at intermediate temperatures (400-900°C) is studied. Two important phenomena are observed in both the soot samples: soot fragmentation leading to its mass loss, and loss of soot reactivity towards O2. Several experimental techniques such as high resolution transmission electron microscopy, electron energy loss spectroscopy, thermo-gravimetric analysis with mass spectrometry, elemental analysis, Fourier transform infrared spectroscopy and X-ray diffraction have been used to identify the changes in structures, functional groups such as oxygenates and aliphatics, σ and π bonding, O/C and H/C ratios, and crystallite parameters of soot particles, introduced by heat. A decrease in the size of primary particles and an increase in the average polycyclic aromatic hydrocarbon (PAH) size was observed in soots after thermal treatment. The activation energies of soot oxidation for thermally treated soot samples were found to be higher than those for the untreated ones at most conversion levels. The cyclic or acyclic aliphatics with sp3 hybridization were present in significant amounts in all the soot samples, but their concentration decreased with thermal treatment. Interestingly, the H/C and the O/C ratios of soot particles increased after thermal treatment, and thus, they do not support the decrease in soot reactivity. The increase in the concentration of oxygenates on soot surface indicate that their desorption from soot surface in the form of CO, CO2 and other oxygenated compounds may not be significant at the temperatures (400-900°C) studied in this work. © 2014 The Combustion Institute.

  17. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Marc Cremer; Kevin Davis; Connie Senior; Bob Hurt; Eric Eddings; Larry Baxter

    2002-04-30

    This is the seventh Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. A series of field tests for RRI at the Ameren Sioux Unit No.1 have demonstrated that RRI can provide up to 30% NOx reduction over the use of over fire air in large scale (480MW) cyclone fired utility boilers. The field tests and modeling results are in good agreement. Final data analysis has been completed for tests performed at Eastlake Power Station of a real-time waterwall corrosion monitoring system. The tests demonstrated that corrosion could be measured accurately in real-time in normal boiler operations, and an assessment of waterwall wastage could be made without impacting boiler availability. Detailed measurements of soot volume fraction have been performed for a coal burner in a pilot scale test furnace. The measured values are in good agreement with the expected trends for soot generation and destruction. Catalysts from four commercial manufacturers have been ordered and one of the samples was received this quarter. Several in situ analyses of vanadium-based SCR catalyst systems were completed at BYU. Results to date indicate that the system produces results that represent improvements compared to literature examples of similar experiments. Construction of the catalyst characterization system (CCS) reactor is nearly complete, with a few remaining details discussed in this report. A literature review originally commissioned from other parties is being updated and will be made available under separate cover as part of this investigation. Fabrication of the multi-catalyst slipstream

  18. DOWNSCALE APPLICATION OF BOILER THERMAL CALCULATION APPROACH

    OpenAIRE

    Zelený, Zbynĕk; Hrdlička, Jan

    2016-01-01

    Commonly used thermal calculation methods are intended primarily for large scale boilers. Hot water small scale boilers, which are commonly used for home heating have many specifics, that distinguish them from large scale boilers especially steam boilers. This paper is focused on application of thermal calculation procedure that is designed for large scale boilers, on a small scale boiler for biomass combustion of load capacity 25 kW. Special issue solved here is influence of formation of dep...

  19. Super Boiler 2nd Generation Technology for Watertube Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Mr. David Cygan; Dr. Joseph Rabovitser

    2012-03-31

    This report describes Phase I of a proposed two phase project to develop and demonstrate an advanced industrial watertube boiler system with the capability of reaching 94% (HHV) fuel-to-steam efficiency and emissions below 2 ppmv NOx, 2 ppmv CO, and 1 ppmv VOC on natural gas fuel. The boiler design would have the capability to produce >1500 F, >1500 psig superheated steam, burn multiple fuels, and will be 50% smaller/lighter than currently available watertube boilers of similar capacity. This project is built upon the successful Super Boiler project at GTI. In that project that employed a unique two-staged intercooled combustion system and an innovative heat recovery system to reduce NOx to below 5 ppmv and demonstrated fuel-to-steam efficiency of 94% (HHV). This project was carried out under the leadership of GTI with project partners Cleaver-Brooks, Inc., Nebraska Boiler, a Division of Cleaver-Brooks, and Media and Process Technology Inc., and project advisors Georgia Institute of Technology, Alstom Power Inc., Pacific Northwest National Laboratory and Oak Ridge National Laboratory. Phase I of efforts focused on developing 2nd generation boiler concepts and performance modeling; incorporating multi-fuel (natural gas and oil) capabilities; assessing heat recovery, heat transfer and steam superheating approaches; and developing the overall conceptual engineering boiler design. Based on our analysis, the 2nd generation Industrial Watertube Boiler when developed and commercialized, could potentially save 265 trillion Btu and $1.6 billion in fuel costs across U.S. industry through increased efficiency. Its ultra-clean combustion could eliminate 57,000 tons of NOx, 460,000 tons of CO, and 8.8 million tons of CO2 annually from the atmosphere. Reduction in boiler size will bring cost-effective package boilers into a size range previously dominated by more expensive field-erected boilers, benefiting manufacturers and end users through lower capital costs.

  20. Fullerene Soot in Eastern China Air: Results from Soot Particle-Aerosol Mass Spectrometer

    Science.gov (United States)

    Wang, J.; Ge, X.; Chen, M.; Zhang, Q.; Yu, H.; Sun, Y.; Worsnop, D. R.; Collier, S.

    2015-12-01

    In this work, we present for the first time, the observation and quantification of fullerenes in ambient airborne particulate using an Aerodyne Soot Particle - Aerosol Mass Spectrometer (SP-AMS) deployed during 2015 winter in suburban Nanjing, a megacity in eastern China. The laser desorption and electron impact ionization techniques employed by the SP-AMS allow us to differentiate various fullerenes from other aerosol components. Mass spectrum of the identified fullerene soot is consisted by a series of high molecular weight carbon clusters (up to m/z of 2000 in this study), almost identical to the spectral features of commercially available fullerene soot, both with C70 and C60 clusters as the first and second most abundant species. This type of soot was observed throughout the entire study period, with an average mass loading of 0.18 μg/m3, accounting for 6.4% of the black carbon mass, 1.2% of the total organic mass. Temporal variation and diurnal pattern of fullerene soot are overall similar to those of black carbon, but are clearly different in some periods. Combining the positive matrix factorization, back-trajectory and analyses of the meteorological parameters, we identified the petrochemical industrial plants situating upwind from the sampling site, as the major source of fullerene soot. In this regard, our findings imply the ubiquitous presence of fullerene soot in ambient air of industry-influenced area, especially the oil and gas production regions. This study also offers new insights into the characterization of fullerenes from other environmental samples via the advanced SP-AMS technique.

  1. Regenerative blowers for higher pressure ratios; Seitenkanalverdichter fuer erhoehte Druckverhaeltnisse

    Energy Technology Data Exchange (ETDEWEB)

    Surek, D. [Fachhochschule Merseburg (Germany). Fachbereich Maschinenbau

    1997-10-01

    Up to now regnerative blowers are built and used only for low pressure ratios in the working range of {pi}=1.10 to 1.30 despite of their high pressure coefficients. The small outer dimensions are their essential advantage compared to other flow machines but they are mostly used with low peripheral speed. The reachable stage pressure ratio can be increased by rising the peripheral speed but the expansion flow on the block has to be considered. With regard to the expansion flow on the block two pressure ranges on the block result. The undercritical and the supercritical range of the expansion flow on the block have to be taken into consideration when designing such machines. With a multistage realization of regenerative blowers higher pressure ratios up to {pi}>2.0 are within reach. (orig.) [Deutsch] Bisher werden Seitenkanalverdichter trotz ihrer grossen Druckzahlen nur fuer geringe Druckverhaeltnisse im Auslegungsbereich von {pi}=1,10 bis 1,30 gebaut und betrieben. Ihr wesentlicher Vorteil liegt in den geringen Bauabmessungen im Vergleich zu anderen Stroemungsmaschinen, wobei sie vorwiegend mit geringen Umfangsgeschwindigkeiten betrieben werden. Durch Erhoehung der Umfangsgeschwindigkeit kann das erreichbare Stufendruckverhaeltnis betraechtlich gesteigert werden, wobei aber die Expansionsstroemung im Unterbrecher zu beruecksichtigen ist. Unter Beachtung der Expansionsstroemung im Unterbrecher ergeben sich zwei Druckbereiche fuer die Expansionsstroemung im Unterbrecher. Der unterkritische und der ueberkritische Bereich der Expansionsstroemung im Unterbrecher sind bei der konstruktiven Gestaltung der Maschinen zu beachten. Mit einer mehrstufigen Ausfuehrung von Seitenkanalverdichtern sind hoehere Druckverhaeltnisse bis {pi}>2,0 erreichbar. (orig.)

  2. Towards advanced aeration modelling: from blower to bubbles to bulk.

    Science.gov (United States)

    Amaral, Andreia; Schraa, Oliver; Rieger, Leiv; Gillot, Sylvie; Fayolle, Yannick; Bellandi, Giacomo; Amerlinck, Youri; Mortier, Séverine T F C; Gori, Riccardo; Neves, Ramiro; Nopens, Ingmar

    2017-02-01

    Aeration is an essential component of aerobic biological wastewater treatment and is the largest energy consumer at most water resource recovery facilities. Most modelling studies neglect the inherent complexity of the aeration systems used. Typically, the blowers, air piping, and diffusers are not modelled in detail, completely mixed reactors in a series are used to represent plug-flow reactors, and empirical correlations are used to describe the impact of operating conditions on bubble formation and transport, and oxygen transfer from the bubbles to the bulk liquid. However, the mechanisms involved are very complex in nature and require significant research efforts. This contribution highlights why and where there is a need for more detail in the different aspects of the aeration system and compiles recent efforts to develop physical models of the entire aeration system (blower, valves, air piping and diffusers), as well as adding rigour to the oxygen transfer efficiency modelling (impact of viscosity, bubble size distribution, shear and hydrodynamics). As a result of these model extensions, more realistic predictions of dissolved oxygen profiles and energy consumption have been achieved. Finally, the current needs for further model development are highlighted.

  3. A realistic dynamic blower energy consumption model for wastewater applications.

    Science.gov (United States)

    Amerlinck, Y; De Keyser, W; Urchegui, G; Nopens, I

    2016-10-01

    At wastewater treatment plants (WWTPs) aeration is the largest energy consumer. This high energy consumption requires an accurate assessment in view of plant optimization. Despite the ever increasing detail in process models, models for energy production still lack detail to enable a global optimization of WWTPs. A new dynamic model for a more accurate prediction of aeration energy costs in activated sludge systems, equipped with submerged air distributing diffusers (producing coarse or fine bubbles) connected via piping to blowers, has been developed and demonstrated. This paper addresses the model structure, its calibration and application to the WWTP of Mekolalde (Spain). The new model proved to give an accurate prediction of the real energy consumption by the blowers and captures the trends better than the constant average power consumption models currently being used. This enhanced prediction of energy peak demand, which dominates the price setting of energy, illustrates that the dynamic model is preferably used in multi-criteria optimization exercises for minimizing the energy consumption.

  4. The advantage of variable speed for multistage centrifugal blowers used in waste-water treatment plants

    Energy Technology Data Exchange (ETDEWEB)

    Huang, X. [Gardner Denver Incorp., Peachtree City, GA (United States)

    1999-07-01

    The multistage centrifugal blower is primarily a 60 Hz market product. A two-pole AC induction motor directly drives the blower at 3600 RPM. These blowers have been used widely for the last three decades in the US for waste water treatment plant applications (WWTP) due to their simple design and rugged construction. The cost of energy drives the market towards not only an efficient single design point but also an efficient operating range when both flow and pressure are varied. On the other hand, if a blower is running at 3000 RPM as in the 50 Hz market, about 20% of flow and 40% of pressure are lost comparing to a 60 Hz application. To meet these new market challenges, the Variable Frequency Drive (VFD) multistage centrifugal blower was designed, where the VFD serves not only as speed adjusting device to maximise the efficiency but also as a speed increaser to minimise the blower size. For existing WWTP installations, retrofit to a VFD drive requires minimum investment and leadtime while achieving drastic energy savings. A comparison with the gear drive high-speed single stage blower concept is also made. (Author)

  5. Uji Performansi Getaran Mekanis dan Kebisingan Mist Blower Yanmar MK 150-B

    Directory of Open Access Journals (Sweden)

    Ahmad Noval Irvani

    2012-10-01

    Full Text Available Mist blower is one of the mechanization tool of agriculture considered as a tool that can assist humans in fertilizer and pesticides spreading activities. Levels of motor speed in the used mist blower were 1915, 4009, and 7227 rpm. Vibration measurements were conducted on the engine and handlebar control mist blower with the three-dimensional axes namely X, Y, and Z. Mist blower noise measurements were performed on the engine, operator's right ear and left ear. Based on the analysis of vibration and noise from the mist blower of type MK 150-B was obtained the safe limit values from the use of these tools. The safe limit of the use of mist blower in motor rotation speed of 1915, 4009, and 7227 rpm after being compared with the vibration and noise were 1 hour, 1 hour and 24 minutes respectively. The farther the distance from noise source, the lower the noise level too. Moreover objectivity study of operator was conducted. The first farmer was tired faster than the second farmer. In terms of age of farmer, the second farmer (60 years older than the first farmers (40 years, but this should not affect significantly. Activity on the previous day greatly affects the level of fatigue when operating the mist blower. This was because the first farmers did more activities and had rest periods that less than second farmer.

  6. Review of soot measurement in hydrocarbon-air flames

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Soot,which is produced in fuel-rich parts of flames as a result of incomplete combustion of hydrocarbons,is the No.2 contributor to global warming after carbon dioxide.Developing soot measurement techniques is important to understand soot formation mechanism and control soot emission.The various soot measurement techniques,such as thermophoretic sampling par-ticles diagnostics followed by electron microscopy analysis,thermocouple particle densitometry,light extinction,laser-induced incandescence,two-color method,and emission computed tomography,are reviewed in this paper.The measurement principle and application cases of these measurement methods are described in detail.The development trend of soot measurement is to realize the on-line measurement of multi-dimensional distributions of temperature,soot volume fraction,soot particle size and other parameters in hydrocarbon-air flames.Soot measurement techniques suitable for both small flames in laboratories and large-scale flames in industrial combustion devices should be developed.Besides,in some special situations,such as high-pressure,zero gravity and micro-gravity flames,soot measurement also should be provided.

  7. Boiler design for fuel economy

    Energy Technology Data Exchange (ETDEWEB)

    Ramaswamy, M.P.; Sastry, C.V.R.L.; Tharakraj, M.

    1980-03-01

    In view of the limited fuel resources and ever increasing demand, Bharat Heavy Electricals, Ltd. (BHEL), as the leading boiler manufacturer, always endeavours to effect fuel economy in all possible avenues, leaving no stone unturned in this effort. This paper outlines some of the major efforts of BHEL in the area of boiler design to effect fuel economy.

  8. Boiler for ships; Hakuyo boira

    Energy Technology Data Exchange (ETDEWEB)

    Shimoda, F. [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan)

    1999-07-20

    In this paper, production and technology trend of boiler for ships in 1998 are described. The actual results of main boiler are as follows. As the main boiler for LNG ships, 4 boilers produced by Mitsui Engineering and Shipbuilding for Qatar Project, 8 produced by Kawasaki Heavy Industries for South Korea and 10 produced by Mitsubishi Heavy Industries for domestic use and South Korea. 1998 was an active year for the main boiler for ships. The auxiliary boiler of steam pressure of 16k to 25k equipping for tanker ships was 115 (4,441t/h of steam quantity in total), it greatly increased in comparison with 88 (3,172t/h) produced in the proceeding year. Donkey boilers of steam pressure of 6k to 10k equipping for container ships and bulk cargo was 147 (672t/h), and it substantially decreased in comparison with 274 (693t/h) of the proceeding year, but capacity per boiler increased. The gas exhaust economizer for turbo power generation plants was 6 produced for VLCC. (NEDO)

  9. Time-frequency analysis of the Surge Onset in the Centrifugal Blower

    Directory of Open Access Journals (Sweden)

    Liskiewicz Grzegorz

    2015-09-01

    Full Text Available Time frequency analysis of the surge onset was performed in the centrifugal blower. A pressure signal was registered at the blower inlet, outlet and three locations at the impeller shroud. The time-frequency scalograms were obtained by means of the Continuous Wavelet Transform (CWT. The blower was found to successively operate in four different conditions: stable working condition, inlet recirculation, transient phase and deep surge. Scalograms revealed different spectral structures of aforementioned phases and suggest possible ways of detecting the surge predecessors.

  10. Sooting Characteristics and Modeling in Counterflow Diffusion Flames

    KAUST Repository

    Wang, Yu

    2013-11-01

    Soot formation is one of the most complex phenomena in combustion science and an understanding of the underlying physico-chemical mechanisms is important. This work adopted both experimental and numerical approaches to study soot formation in laminar counterfl ow diffusion flames. As polycyclic aromatic hydrocarbons (PAHs) are the precursors of soot particles, a detailed gas-phase chemical mechanism describing PAH growth upto coronene for fuels with 1 to 4 carbon atoms was validated against laminar premixed and counter- flow diffusion fl ames. Built upon this gas-phase mechanism, a soot model was then developed to describe soot inception and surface growth. This soot model was sub- sequently used to study fuel mixing effect on soot formation in counterfl ow diffusion flames. Simulation results showed that compared to the baseline case of the ethylene flame, the doping of 5% (by volume) propane or ethane in ethylene tends to increase the soot volume fraction and number density while keeping the average soot size almost unchanged. These results are in agreement with experimental observations. Laser light extinction/scattering as well as laser induced fluorescence techniques were used to study the effect of strain rate on soot and PAH formation in counterfl ow diffusion ames. The results showed that as strain rate increased both soot volume fraction and PAH concentrations decreased. The concentrations of larger PAH were more sensitive to strain rate compared to smaller ones. The effect of CO2 addition on soot formation was also studied using similar experimental techniques. Soot loading was reduced with CO2 dilution. Subsequent numerical modeling studies were able to reproduce the experimental trend. In addition, the chemical effect of CO2 addition was analyzed using numerical data. Critical conditions for the onset of soot were systematically studied in counterfl ow diffusion ames for various gaseous hydrocarbon fuels and at different strain rates. A sooting

  11. Pellet wood gasification boiler / Combination boiler. Market review. 7. ed.; Scheitholzvergaser-/Kombikessel. Marktuebersicht

    Energy Technology Data Exchange (ETDEWEB)

    Uth, Joern

    2010-08-15

    In the market review under consideration on pellet wood gasification boilers and combination boilers, the Federal Ministry of Food, Agriculture and Consumer Protection (Bonn, Federal Republic of Germany) report on planning and installation of wood-fired heating systems, recommendations regarding to the technical assessment of boiler systems, buffers/combination boilers, prices of pellet wood gasification boilers, data sheets of the compared pellet wood gasification boilers, pellet wood combination boilers, prices of pellet wood combination boilers, data sheets of the compared pellet wood gasification boilers, list of providers.

  12. Market review. Pellet wood gasification boiler / combination boiler. 8. ed.; Marktuebersicht. Scheitholzvergaser-/Kombikessel

    Energy Technology Data Exchange (ETDEWEB)

    Uth, Joern

    2012-01-15

    In the market review under consideration on pellet wood gasification boilers and combination boilers, the Federal Ministry of Food, Agriculture and Consumer Protection (Bonn, Federal Republic of Germany) reports on planning and installation of wood-fired heating systems, recommendations regarding to the technical assessment of boiler systems, buffers/combination boilers, prices of pellet wood gasification boilers, data sheets of the compared pellet wood gasification boilers, pellet wood combination boilers, prices of pellet wood combination boilers, data sheets of the compared pellet wood gasification boilers, list of providers.

  13. Boiler Stack Gas Heat Recovery

    Science.gov (United States)

    1987-09-01

    recover about 17 million Btu/hr. The fact that the exhaust gas was loaded with fiber made the spray recu- perator a prime candidate since it could also wash... properties of water, heating feedwater is more effective than heating air. Research in heat-recovery material technology has identified materials which are...and Acidic fluids up to 180 OF. Piping Fans and Blowers 350 OF flue gas. Scrubbers 300 to 350 OF bagasse flue gas, trash burner flue gas. Electrostatic

  14. Operation method of circulation blower of fuel cell power generation system; Nenryo denchi hatsuden sochi no junkan buroa unten hoho

    Energy Technology Data Exchange (ETDEWEB)

    Iida, T. [Fuji Electric Co. Ltd., Tokyo (Japan)

    1998-02-13

    The conventional circulation blower of fuel cell power generation system has such problem as generating a big pressure difference between electrodes. When the blower is started, the pressure difference is caused by sudden start of suction of cell exhaust gas from the upper stream of the circulation blower since the starting is done in total voltage start by switch. When the blower is stopped, the pressure difference is also caused by sudden stop of suction of cell exhaust gas from the upper stream of the circulation blower. In the invention, the motor driving the circulation blower which circulates the cell exhaust gas of fuel cell power generation system to the cell inlet is equipped with a rotation control system (VVVF). When the blower is started, a smooth start of blower, or smooth start of suction of exhaust gas is given by the control system because the rotation speed is gradually increased from low speed. When the blower is stopped, a smooth stop of blower, or smooth stop of suction of exhaust gas is given by the control system because the rotation speed is gradually decreased from high speed to low speed. In this way, the generation of extreme pressure difference between electrodes of fuel cell can be suppressed. 2 figs.

  15. 30 CFR 77.413 - Boilers.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Boilers. 77.413 Section 77.413 Mineral... Mechanical Equipment § 77.413 Boilers. (a) Boilers shall be equipped with guarded, well-maintained water... the gages shall be kept clean and free of scale and rust. (b) Boilers shall be equipped with...

  16. 29 CFR 1915.162 - Ship's boilers.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Ship's boilers. 1915.162 Section 1915.162 Labor Regulations... Ship's boilers. (a) Before work is performed in the fire, steam, or water spaces of a boiler where... dead boiler with the live system or systems shall be secured, blanked, and tagged indicating...

  17. 49 CFR 230.47 - Boiler number.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Boiler number. 230.47 Section 230.47..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Gauges § 230.47 Boiler number. (a) Generally. The builder's number of the boiler, if known,...

  18. 46 CFR 61.05-10 - Boilers in service.

    Science.gov (United States)

    2010-10-01

    ... INSPECTIONS Tests and Inspections of Boilers § 61.05-10 Boilers in service. (a) Each boiler, including superheater, reheater, economizer, auxiliary boiler, low-pressure heating boiler, and unfired steam boiler... 46 Shipping 2 2010-10-01 2010-10-01 false Boilers in service. 61.05-10 Section 61.05-10...

  19. Role of the hydroxyl radical in soot formation

    Science.gov (United States)

    King, Galen B.; Laurendeau, Normand M.

    1983-01-01

    The goal of this project is to determine the role of the hydroxyl radical during formation of soot. Correlations will be sought between OH concentration and (1) the critical equivalence ratio for incipient soot formation and (2) soot yield as a function of higher equivalence ratios. The ultimate aim is the development of a quasi-global kinetic model for the pre-particulate chemistry leading to soot nucleation. Hydroxyl radical concentration profiles are measured directly in both laminar premixed and diffusion flames using the newly developed technique, laser saturated fluorescence (LSF). This method is capable of measuring OH in the presence of soot particles. Aliphatic and aromatic fuels will be used to assess the influence of fuel type on soot formation. The influence of flame temperature on the critical equivalence ratio and soot yield will be related to changes in the OH concentration profiles. LSF measurements will be augmented with auxiliary measurements of soot and PAH concentrations to allow the development of a quasi-global model for soot formation.

  20. Electrochemical supercapacitor behaviour of functionalized candle flame carbon soot

    Indian Academy of Sciences (India)

    C Justin Raj; Byung Chul Kim; Bo-Bae Cho; Won-Je Cho; Sung-Jin Kim; Sang Yeup Park; Kook Hyun Yu

    2016-02-01

    The electrochemical supercapacitor behaviour of bare, washed and nitric acid functionalized candle flame carbon soots were reported. Crystallinity and the morphology of the candle soots were recorded using X-ray diffraction analysis, scanning and transmission electron microscopy, respectively. The nitric acid functionalized candle soot showed an improved Brunauer–Emmett–Teller surface area of 137.93 from 87.495 m$^2$ g$^{−1}$ of washed candle soot. The presence of various functional groups in candle soots and the development of oxygen functionalities in the functionalized candle soot were examined through Fourier transform infrared spectroscopy and energy-dispersive X-ray analysis. Raman spectra showed the characteristic peaks corresponding to the D (diamond) and G (graphite) phase of carbon present in the candle soots. The electrochemical characterization was performed by cyclic voltammetry, galvanostatic charge/discharge test and impedance spectroscopy in 1MH2SO4 electrolyte. The functionalized candle soot electrode showed an enhanced specific capacitance value of 187 F g$^{−1}$ at 0.15 A g$^{−1}$ discharge current density, which is much higher than that of bare and washed candle soot electrodes.

  1. Soot Formation in Freely-Propagating Laminar Premixed Flames

    Science.gov (United States)

    Lin, K.-C.; Hassan, M. I.; Faeth, G. M.

    1997-01-01

    Soot formation within hydrocarbon-fueled flames is an important unresolved problem of combustion science. Thus, the present study is considering soot formation in freely-propagating laminar premixed flames, exploiting the microgravity environment to simplify measurements at the high-pressure conditions of interest for many practical applications. The findings of the investigation are relevant to reducing emissions of soot and continuum radiation from combustion processes, to improving terrestrial and spacecraft fire safety, and to developing methods of computational combustion, among others. Laminar premixed flames are attractive for studying soot formation because they are simple one-dimensional flows that are computationally tractable for detailed numerical simulations. Nevertheless, studying soot-containing burner-stabilized laminar premixed flames is problematical: spatial resolution and residence times are limited at the pressures of interest for practical applications, flame structure is sensitive to minor burner construction details so that experimental reproducibility is not very good, consistent burner behavior over the lengthy test programs needed to measure soot formation properties is hard to achieve, and burners have poor durability. Fortunately, many of these problems are mitigated for soot-containing, freely-propagating laminar premixed flames. The present investigation seeks to extend work in this laboratory for various soot processes in flames by observing soot formation in freely-propagating laminar premixed flames. Measurements are being made at both Normal Gravity (NG) and MicroGravity (MG), using a short-drop free-fall facility to provide MG conditions.

  2. Technical Note: The single particle soot photometer fails to detect PALAS soot nanoparticles

    Directory of Open Access Journals (Sweden)

    M. Gysel

    2012-07-01

    Full Text Available The single particle soot photometer (SP2 uses laser-induced incandescence (LII for the measurement of atmospheric black carbon (BC particles. The BC mass concentration is obtained by combining quantitative detection of BC mass in single particles with a counting efficiency of 100% above its lower detection limit (LDL. It is commonly accepted that a particle must contain at least several tenths of femtograms BC in order to be detected by the SP2.

    Here we show the unexpected result that BC particles from a PALAS spark discharge soot generator remain undetected by the SP2, even if their BC mass, as independently determined with an aerosol particle mass analyser (APM, is clearly above the typical LDL of the SP2. Comparison of counting efficiency and effective density data of PALAS soot with flame generated soot (combustion aerosol standard burner, CAST, fullerene soot and carbon black particles (Cabot Regal 400R reveals that particle morphology can affect the SP2's LDL. PALAS soot particles are fractal-like agglomerates of very small primary particles with a low fractal dimension, resulting in a very low effective density. Such loosely-packed particles behave like "the sum of individual primary particles" in the SP2's laser. Accordingly, the PALAS soot particles remain undetected as the SP2's laser intensity is insufficient to heat the primary particles to vaporisation because of their small size (primary particle diameter ~5–10 nm. It is not surprising that particle morphology can have an effect on the SP2's LDL, however, such a dramatic effect as reported here for PALAS soot was not expected. In conclusion, the SP2's LDL at a certain laser power depends on total BC mass per particle for compact particles with sufficiently high effective density. However, for fractal-like agglomerates of very small primary particles and low fractal dimension, the BC mass per primary particle determines the limit of detection, independent of the total

  3. Technical Note: The single particle soot photometer fails to reliably detect PALAS soot nanoparticles

    Directory of Open Access Journals (Sweden)

    M. Gysel

    2012-12-01

    Full Text Available The single particle soot photometer (SP2 uses laser-induced incandescence (LII for the measurement of atmospheric black carbon (BC particles. The BC mass concentration is obtained by combining quantitative detection of BC mass in single particles with a counting efficiency of 100% above its lower detection limit. It is commonly accepted that a particle must contain at least several tenths of a femtogram BC in order to be detected by the SP2.

    Here we show the result that most BC particles from a PALAS spark discharge soot generator remain undetected by the SP2, even if their BC mass, as independently determined with an aerosol particle mass analyser (APM, is clearly above the typical lower detection limit of the SP2. Comparison of counting efficiency and effective density data of PALAS soot with flame generated soot (combustion aerosol standard burner, CAST, fullerene soot and carbon black particles (Cabot Regal 400R reveals that particle morphology can affect the SP2's lower detection limit. PALAS soot particles are fractal-like agglomerates of very small primary particles with a low fractal dimension, resulting in a very low effective density. Such loosely packed particles behave like "the sum of individual primary particles" in the SP2's laser. Accordingly, most PALAS soot particles remain undetected as the SP2's laser intensity is insufficient to heat the primary particles to their vaporisation temperature because of their small size (Dpp ≈ 5–10 nm. Previous knowledge from pulsed laser-induced incandescence indicated that particle morphology might have an effect on the SP2's lower detection limit, however, an increase of the lower detection limit by a factor of ∼5–10, as reported here for PALAS soot, was not expected.

    In conclusion, the SP2's lower detection limit at a certain laser power depends primarily on the total BC mass per particle for compact particles with sufficiently high effective

  4. 催化裂化装置德尔塔型余热锅炉技术改造%Technical Transformation of DELTAK Waste Heat Boiler for Catalytic Cracking Unit

    Institute of Scientific and Technical Information of China (English)

    叶发强; 樊帆; 郑军如; 李传凯

    2016-01-01

    When the waste heat boiler which is designed by DELTAK,Inc.and equipped with FCC device in a refinery was operating,there were some problems,such as evaporating section tube bank cavitation and leakage,economizer tube bank and elbows corrosion and leakage at the dew point temperature,too high exhaust gas temperature,high furnace pressure caused by heavy dust on heating surface.On the basis of steel structure frames and space of old heating surface e-quipment,we carried out technical transformation through changing the evaporating section into a forced circulation mode,changing the heat exchanger components of economizer and improving technology and processes,adding long nozzle hole shock wave soot blower,etc.After the trans-formation,the amount of boiler steam production increased from 16.4 t/h to 23.57 t/h,operation cycle was over 1 a,the exhaust temperature decreased from over 240 ℃to 170~180 ℃.The pro-j ect achieved good economic and social benefits and accumulated experience for the similar Deltak-type waste heat boiler transformation.%某炼油厂催化裂化装置配套的由美国德尔塔公司设计的余热锅炉运行时,存在蒸发段管束气蚀泄漏、省煤器管束弯头露点腐蚀泄漏、锅炉排烟温度过高、受热面积灰严重导致炉膛压力偏高等问题。在利旧原受热面设备钢结构框架的基础上,利用原受热面布置空间,采取了蒸发段改为强制循环方式、更换省煤器换热元件和工艺流程、增设长喷管多孔激波吹灰器等技术进行改造,改造之后余热锅炉蒸汽产量由16.4 t/h上升到23.57 t/h、运行周期延长至1 a以上、排烟温度由240℃以上下降至170~180℃,取得了良好的经济效益和社会效益,为类似德尔塔型余热锅炉改造积累了经验。

  5. Surge investigations in a radial single-stage blower with adjustable inlet guide vanes

    Energy Technology Data Exchange (ETDEWEB)

    Kryllowicz, W.; Horodko, L.; Hanausek, P.

    1996-12-31

    Experimental investigations of the influence of adjustable inlet guide vanes on the surge propagation in a radial single-stage blower system were carried out. The object of the investigations was a blower with a semi-open impeller with radially ended blades and a vaneless diffuser. The blower maximum pressure rate was {Pi} = 1.52 at the mass flow equal to m = 13.8 kg/s. The test instrumentation used consisted of classic probes and thermocouples and fast response semi-conductor pressure transducers located in flow path walls. Additionally, the noise level for different blower operating points was measured. These investigations made it possible to identify the mild and deep surge regions, the region of an inlet recirculation phenomenon as well as an inlet reverse flow phenomenon in the function of the IGV adjustment angle. (orig.)

  6. Production Facility Prototype Blower Installation Report with 1000 Hr Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Woloshun, Keith Albert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Olivas, Eric Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Romero, Frank Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalmas, Dale Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-23

    The roots blower in use at ANL for in-beam experiments and also at LANL for flow tests was sized for 12 mm diameter disks and significantly less beam heating. Currently, the disks are 29 mm in diameter, with a 12 mm FWHM Gaussian beam spot at 42 MeV and 2.86 μA on each side of the target, 5.72 μA total. The target design itself is reported elsewhere. With the increased beam heating, the helium flow requirement increased so that a larger blower was need for a mass flow rate of 400 g/s at 2.76 MPa (400 psig). An Aerzen GM 12.4 blower was selected, and is currently being installed at the LANL facility for target and component flow testing. This report describes this blower/motor/pressure vessel package and the status of the facility preparations.

  7. Residential Forced Air System Cabinet Leakage and Blower Performance

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Iain S.; Dickerhoff, Darryl J.; Delp, William W.

    2010-03-01

    This project evaluated the air leakage and electric power consumption of Residential HVAC components, with a particular focus on air leakage of furnace cabinets. Laboratory testing of HVAC components indicated that air leakage can be significant and highly variable from unit to unit ? indicating the need for a standard test method and specifying maximum allowable air leakage in California State energy codes. To further this effort, this project provided technical assistance for the development of a national standard for Residential HVAC equipment air leakage. This standard is being developed by ASHRAE and is called"ASHRAE Standard 193P - Method of test for Determining the Air Leakage Rate of HVAC Equipment". The final part of this project evaluated techniques for measurement of furnace blower power consumption. A draft test procedure for power consumption was developed in collaboration with the Canadian General Standards Board: CSA 823"Performance Standard for air handlers in residential space conditioning systems".

  8. Pumping characteristics of roots blower pumps for light element gases

    Energy Technology Data Exchange (ETDEWEB)

    Hiroki, Seiji; Abe, Tetsuya; Tanzawa, Sadamitsu; Nakamura, Jun-ichi; Ohbayashi, Tetsuro [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2002-07-01

    The pumping speed and compression ratio of the two-stage roots blower pumping system were measured for light element gases (H{sub 2}, D{sub 2} and He) and for N{sub 2}, in order to assess validity of the ITER torus roughing system as an ITER R and D task (T234). The pumping system of an Edwards EH1200 (nominal pumping speed of 1200 m{sup 3}/s), two EH250s (ibid. 250 m{sup 3}/s) and a backing pump (ibid. 100 m{sup 3}/s) in series connection was tested under PNEUROP standards. The maximum pumping speeds of the two-stage system for D{sub 2} and N{sub 2} were 1200 and 1300 m{sup 3}/h, respectively at 60 Hz, which satisfied the nominal pumping speed. These experimental data support the design validity of the ITER torus roughing system. (author)

  9. Experimental optimization of an electric blower by corona wind

    Energy Technology Data Exchange (ETDEWEB)

    Rashkovan, A.; Sher, E.; Kalman, H. [Ben-Gurion University of the Negev, Beer Sheva (Israel). Dept. of Mechanical Engineering

    2002-10-01

    The effect of corona wind produced by stretched steel wire and two copper wings on the heat transfer from a heated horizontal plate was investigated experimentally. Although in such an arrangement the heat transfer augmentation is expected to be lower, some advantages may be postulated. In such a construction, the plate to be cooled is not a part of the wind generation system, it is not charged, the electrical field next to it is negligible, and it may be constructed from non-metallic materials. In the course of the study, optimal geometric parameters of the electric blower together with optimal value of high voltage supply have been established. Under these optimal conditions, augmentation by three times of the heat transfer coefficient over that for the natural convection has been achieved. (author)

  10. Preliminary Tests of Nose- and Side- Entrance Blower Cooling Systems for Radial Engines, Special Report

    Science.gov (United States)

    Biermann, David; Valentine, E. Floyd

    1939-01-01

    Two cowling systems intended to reduce the drag and improve the low-speed cooling characteristics of conventional radial engine cowlings were tested in model form to determine the practicability of the methods. One cowling included a blower mounted on the rear face of a large propeller spinner which drew cooling air in through side entrance ducts located behind the equivalent engine orifice plate. The air was passed through the equivalent engine orifice plate from rear to front and out through a slot between the spinner and the engine plate. The blower produced substantially all the power necessary to circulate the cooling air in some cases, so the quantity of air flowing was independent of the air speed, Two types of blowers were used, a centrifugal type and one using airfoil blades which forced the air outward from the center of rotation. The other cowling was similar to the conventional N.A.C.A. cowling except for the addition of a large propeller spinner nose. The spinner was provided with a hole in the nose to admit cooling air and blower blades to increase the pressure for cooling at low speeds. The tests show that with both cowling types the basic drag of the nacelle was reduced substantially below that for the N.A.C.A. cowling by virtue of the better nose shape made possible by the spinner . The drag due to the side-entrance ducts was nearly zero when the openings were closed or when the blower was drawing in a certain quantity of air in proportion to the air speed. The drag increased, however, when air mas allowed to spill from the openings. The nose-entrance blower showed considerable promise as a cooling means although the blower tested was relatively inefficient, owing to the fact that the blower compartments evidently were expanded too rapidly under the conditions imposed. by the design.

  11. Coronary air embolism in off-pump surgery caused by blower-mister device.

    Science.gov (United States)

    Korkmaz, Askin Ali; Guden, Mustafa; Korkmaz, Feride; Yuce, Murat

    2008-01-01

    Gaseous emboli caused by the blower-mister result in air locks within coronary vessels. We describe the case of a coronary air embolism caused by a blower-mister device on off-pump surgery. The tip of the device unexpectedly entered the coronary artery through arteriotomy and caused the air emboli. Air locks in the coronary circulation led to hemodynamic deterioration, and cardiopulmonary bypass was started following the emergency cannulation.

  12. Large eddy simulation of soot evolution in an aircraft combustor

    Science.gov (United States)

    Mueller, Michael E.; Pitsch, Heinz

    2013-11-01

    An integrated kinetics-based Large Eddy Simulation (LES) approach for soot evolution in turbulent reacting flows is applied to the simulation of a Pratt & Whitney aircraft gas turbine combustor, and the results are analyzed to provide insights into the complex interactions of the hydrodynamics, mixing, chemistry, and soot. The integrated approach includes detailed models for soot, combustion, and the unresolved interactions between soot, chemistry, and turbulence. The soot model is based on the Hybrid Method of Moments and detailed descriptions of soot aggregates and the various physical and chemical processes governing their evolution. The detailed kinetics of jet fuel oxidation and soot precursor formation is described with the Radiation Flamelet/Progress Variable model, which has been modified to account for the removal of soot precursors from the gas-phase. The unclosed filtered quantities in the soot and combustion models, such as source terms, are closed with a novel presumed subfilter PDF approach that accounts for the high subfilter spatial intermittency of soot. For the combustor simulation, the integrated approach is combined with a Lagrangian parcel method for the liquid spray and state-of-the-art unstructured LES technology for complex geometries. Two overall fuel-to-air ratios are simulated to evaluate the ability of the model to make not only absolute predictions but also quantitative predictions of trends. The Pratt & Whitney combustor is a Rich-Quench-Lean combustor in which combustion first occurs in a fuel-rich primary zone characterized by a large recirculation zone. Dilution air is then added downstream of the recirculation zone, and combustion continues in a fuel-lean secondary zone. The simulations show that large quantities of soot are formed in the fuel-rich recirculation zone, and, furthermore, the overall fuel-to-air ratio dictates both the dominant soot growth process and the location of maximum soot volume fraction. At the higher fuel

  13. Design of a Centrifugal Blower for a 400kg Rotary Furnace.

    Directory of Open Access Journals (Sweden)

    Sani Malami Suleiman

    2016-10-01

    Full Text Available Poor performance of a rotary furnace cannot be unconnected to failure in the design of the blower among others, This paper discuss the design of a centrifugal blower for a rotary furnace which will give the required manometric efficiency that will aid adequate combustion as required. The blower was designed to convert ‘driver’ energy to kinetic energy in the fluid by accelerating it to the outer rim of the revolving device known as the impeller. The impeller, driven by the blower shaft adds the velocity component to the fluid by centrifugally casting the fluid away from the impeller vane tips. The amount of energy given to the fluid corresponds to the velocity at the edge or vane tip of the impeller. Significance: Centrifugal blowers are applicable in furnaces such as Rotary and cupola furnace, the efficiency of these furnaces depend on the blast rate and air delivery from a well design blower. This paper will guide to achieve this aims.

  14. Are laptop ventilation-blowers a potential source of nosocomial infections for patients?

    Science.gov (United States)

    Siegmund, Katja; Hübner, Nils; Heidecke, Claus-Dieter; Brandenburg, Ronny; Rackow, Kristian; Benkhai, Hicham; Schnaak, Volker; Below, Harald; Dornquast, Tina; Assadian, Ojan; Kramer, Axel

    2010-09-21

    Inadequately performed hand hygiene and non-disinfected surfaces are two reasons why the keys and mouse-buttons of laptops could be sources of microbial contamination resulting consequently in indirect transmission of potential pathogens and nosocomial infections. Until now the question has not been addressed whether the ventilation-blowers in laptops are actually responsible for the spreading of nosocomial pathogens. Therefore, an investigational experimental model was developed which was capable of differentiating between the microorganisms originating from the external surfaces of the laptop, and from those being blown out via the ventilation-blower duct. Culture samples were taken at the site of the external exhaust vent and temperature controls were collected through the use of a thermo-camera at the site of the blower exhaust vent as well as from surfaces which were directly exposed to the cooling ventilation air projected by the laptop. Control of 20 laptops yielded no evidence of microbial emission originating from the internal compartment following switching-on of the ventilation blower. Cultures obtained at the site of the blower exhaust vent also showed no evidence of nosocomial potential. High internal temperatures on the inner surfaces of the laptops (up to 73°C) as well as those documented at the site of the blower exhaust vent (up to 56°C) might be responsible for these findings.

  15. Optimal scheduling of sootblowers in power plant boilers

    Science.gov (United States)

    Vasquez-Urbano, Pedro Manuel

    1997-11-01

    Burning coal or other fossil fuels in a utility boiler fouls the surfaces of its heat exchangers with ash and soot residues. These deposits affect the performance of the power plant since they reduce heat transfer from the combustion gases to the water or steam. Fouling can be removed during the operation of the plant with the use of lances, called sootblowers, that direct high-pressure air or steam onto the fouled surfaces. Sootblowing operations are key to plant efficiency and boiler maintenance, but they also incur operating costs. A utility boiler may have a hundred or so sootblowers placed in fixed locations. Deciding which of these should be used at any moment is complicated by the lack of instrumentation that can monitor fouling levels. This dissertation studies the optimization problem of scheduling sootblowing activities at a utility plant. The objective is to develop an optimization approach to determine which sootblowers should be activated at any moment in order to maximize plant efficiency. To accomplish this, three issues are addressed. First, models are developed that can estimate fouling conditions indirectly during plant operation using commonly available data. The approach used relies on a sequential application of linear regression fits. Secondly, autoregressive exogenous (ARX) models are used to describe the dynamics of the fouling process and to estimate the consequences of fouling on plant efficiency. All the foregoing empirical models are developed using data from a power plant. Finally, using the empirical models, an optimization model is formulated for the sootblowing scheduling problem and different optimization approaches that combine nonlinear programming with heuristics methods are investigated for its solution. The applicability of dynamic programming to this optimization problem is also explored.

  16. Soot Formation in Laminar Acetylene/Air Diffusion Flames at Atmospheric Pressure. Appendix J

    Science.gov (United States)

    Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2001-01-01

    The flame structure and soot-formation (soot nucleation and growth) properties of axisymmetric laminar coflowing jet diffusion flames were studied experimentally. Test conditions involved acetylene-nitrogen jets burning in coflowing air at atmospheric pressure. Measurements were limited to the axes of the flames and included soot concentrations, soot temperatures, soot structure, major gas species concentrations, radical species (H, OH, and O) concentrations, and gas velocities. The results show that as distance increases along the axes of the flames, detectable soot formation begins when significant H concentrations are present, and ends when acetylene concentrations become small. Species potentially associated with soot oxidation--O2, CO2, H2O, O, and OH-are present throughout the soot-formation region so that soot formation and oxidation proceed at the same time. Strong rates of soot growth compared to soot nucleation early in the soot-formation process, combined with increased rates of soot nucleation and oxidation as soot formation proceeds, causes primary soot particle diameters to reach a maximum relatively early in the soot-formation process. Aggregation of primary soot particles proceeds, however, until the final stages of soot oxidation. Present measurements of soot growth (corrected for soot oxidation) in laminar diffusion flames were consistent with earlier measurements of soot growth in laminar premixed flames and exhibited encouraging agreement with existing hydrogen-abstraction/carbon-addition (HACA) soot growth mechanisms in the literature that were developed based on measurements within laminar premixed flames. Measured primary soot particle nucleation rates in the present laminar diffusion flames also were consistent with corresponding rates measured in laminar premixed flames and yielded a crude correlation in terms of acetylene and H concentrations and the temperature.

  17. Soot Formation in Laminar Acetylene/Air Diffusion Flames at Atmospheric Pressure. Appendix H

    Science.gov (United States)

    Xu, F.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2001-01-01

    The flame structure and soot-formation (soot nucleation and growth) properties of axisymmetric laminar coflowing jet diffusion flames were studied experimentally. Test conditions involved acetylene-nitrogen jets burning in coflowing air at atmospheric pressure. Measurements were limited to the axes of the flames and included soot concentrations, soot temperatures, soot structure, major gas species concentrations, radical species (H, OH, and O) concentrations, and gas velocities. The results show that as distance increases along the axes of the flames, detectable soot formation begins when significant H concentrations are present, and ends when acetylene concentrations become small. Species potentially associated with soot oxidation-O2, CO2, H2O, O, and OH-are present throughout the soot-formation region so that soot formation and oxidation proceed at the same time. Strong rates of soot growth compared to soot nucleation early in the soot-formation process, combined with increased rates of soot nucleation and oxidation as soot formation proceeds, causes primary soot particle diameters to reach a maximum relatively early in the soot-formation process. Aggregation of primary soot particles proceeds, however, until the final stages of soot oxidation. Present measurements of soot growth (corrected for soot oxidation) in laminar diffusion flames were consistent with earlier measurements of soot growth in laminar premixed flames and exhibited encouraging agreement with existing hydrogen-abstraction/carbon-addition (HACA) soot growth mechanisms in the literature that were developed based on measurements within laminar premixed flames. Measured primary soot particle nucleation rates in the present laminar diffusion flames also were consistent with corresponding rates measured in laminar premixed flames and yielded a crude correlation in terms of acetylene and H concentrations and the temperature.

  18. Soot Formation in Laminar Acetylene/Air Diffusion Flames at Atmospheric Pressure. Appendix C

    Science.gov (United States)

    Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2000-01-01

    The flame structure and soot-formation (soot nucleation and growth) properties of axisymmetric laminar coflowing jet diffusion flames were studied experimentally. Test conditions involved acetylene-nitrogen jets burning in coflowing air at atmospheric pressure. Measurements were limited to the axes of the flames and included soot concentrations, soot temperatures, soot structure, major gas species concentrations, radical species (H, OH, and O) concentrations, and gas velocities. The results show that as distance increases along the axes of the flames, detectable soot formation begins when significant H concentrations are present, and ends when acetylene concentrations become small. Species potentially associated with soot oxidation-O2, CO2, H2O, O, and OH-are present throughout the soot-formation region so that soot formation and oxidation proceed at the same time. Strong rates of soot growth compared to soot nucleation early in the soot-formation process, combined with increased rates of soot nucleation and oxidation as soot formation proceeds, causes primary soot particle diameters to reach a maximum relatively early in the soot-formation process. Aggregation of primary soot particles proceeds, however, until the final stages of soot oxidation. Present measurements of soot growth (corrected for soot oxidation) in laminar diffusion flames were consistent with earlier measurements of soot growth in laminar premixed flames and exhibited encouraging agreement with existing hydrogen-abstraction/carbon-addition (HACA) soot growth mechanisms in the literature that were developed based on measurements within laminar premixed flames. Measured primary soot particle nucleation rates in the present laminar diffusion flames also were consistent with corresponding rates measured in laminar premixed flames and yielded a crude correlation in terms of acetylene and H concentrations and the temperature.

  19. Disturbances in the afflux of aerodynamically highly stressed axial blowers. Stoerungen in der Zustroemung von aerodynamisch hochbelasteten Axialventilatoren

    Energy Technology Data Exchange (ETDEWEB)

    Kosyna, G.; Krasmann, H. (Technische Univ. Braunschweig, Pfleiderer-Inst. fuer Stroemungsmaschinen (Germany))

    1992-08-01

    When installing blowers, it is not always possible to ensure an optimum fluidic afflux, which can thus produce a change in the operating behaviour compared with the design. Using as an example an axial blower blade with small hub ratio and high aerodynamic blade load, under simulated non-rotation symmetrical allflux conditions, it was possible to show that with the examined distrubance configuration no extreme worsening was produced with regard to the achievable pressure increases and efficiencies of the blower stage. (orig.).

  20. Green boilers; La chaudiere verte

    Energy Technology Data Exchange (ETDEWEB)

    Scrive, L.; Lebois, P.; Schlienger, M.; Moser, D. [Gaz de France (GDF), 75 - Paris (France)

    1997-12-31

    The ``green`` boiler was designed and developed by the Gaz de France and GEC Alsthom Stein Fasel partnership. It is a new make of steam boiler with smoke tubes from 4 to 15 MW. This range meets tow of the requirements guaranteed by the engineer: a NOx emission level lower than 100 mg/m{sup 3} (n) with 3% of oxygen and an combustion output of no less than 95 + 2% on n.v.c. A pilot operation was carried out by CNI Technologies in France. This 8.6 MW boiler was installed in June 1995 and performances checks were carried out by Apave Normandie in September 1995. This environmentally friendly boiler as well as the results obtained during the pilot operation are addressed in this article. (authors)

  1. Fractal-like dimension of nanometer Diesel soot particles

    Energy Technology Data Exchange (ETDEWEB)

    Skillas, G.; Baltensperger, U. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Siegmann, K. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-11-01

    Measurements with a low-pressure impactor and a differential mobility analyser were conducted for Diesel soot at various engine loads. By means of these measurements a fractal-like dimension of Diesel soot particles, with diameters ranging from 55 up to 260 nm, was established. (author) 2 figs., 7 refs.

  2. Boiler-turbine life extension

    Energy Technology Data Exchange (ETDEWEB)

    Natzkov, S. [TOTEMA, Ltd., Sofia (Bulgaria); Nikolov, M. [CERB, Sofia (Bulgaria)

    1995-12-01

    The design life of the main power equipment-boilers and turbines is about 105 working hours. The possibilities for life extension are after normatively regulated control tests. The diagnostics and methodology for Boilers and Turbines Elements Remaining Life Assessment using up to date computer programs, destructive and nondestructive control of metal of key elements of units equipment, metal creep and low cycle fatigue calculations. As well as data for most common damages and some technical decisions for elements life extension are presented.

  3. Photoacoustic Soot Spectrometer (PASS) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Dubey, M [Los Alamos National Laboratory; Springston, S [Brookhaven National Laboratory; Koontz, A [Pacific Northwest National Laboratory; Aiken, A [Los Alamos National Laboratory

    2013-01-17

    The photoacoustic soot spectrometer (PASS) measures light absorption by aerosol particles. As the particles pass through a laser beam, the absorbed energy heats the particles and in turn the surrounding air, which sets off a pressure wave that can be detected by a microphone. The PASS instruments deployed by ARM can also simultaneously measure the scattered laser light at three wavelengths and therefore provide a direct measure of the single-scattering albedo. The Operator Manual for the PASS-3100 is included here with the permission of Droplet Measurement Technologies, the instrument’s manufacturer.

  4. Aromatics oxidation and soot formation in flames

    Energy Technology Data Exchange (ETDEWEB)

    Howard, J.B.; Pope, C.J.; Shandross, R.A.; Yadav, T. [Massachusetts Institute of Technology, Cambridge (United States)

    1993-12-01

    This project is concerned with the kinetics and mechanisms of aromatics oxidation and soot and fullerenes formation in flames. The scope includes detailed measurements of profiles of stable and radical species concentrations in low-pressure one-dimensional premixed flames. Intermediate species identifications and mole fractions, fluxes, and net reaction rates calculated from the measured profiles are used to test postulated reaction mechanisms. Particular objectives are to identify and to determine or confirm rate constants for the main benzene oxidation reactions in flames, and to characterize fullerenes and their formation mechanisms and kinetics.

  5. CFD Simulation On CFBC Boiler

    Directory of Open Access Journals (Sweden)

    Amol S. Kinkar

    2015-02-01

    Full Text Available Abstract Heavy industrialization amp modernization of society demands in increasing of power cause to research amp develop new technology amp efficient utilization of existing power units. Variety of sources are available for power generation such as conventional sources like thermal hydro nuclear and renewable sources like wind tidal biomass geothermal amp solar. Out of these most common amp economical way for producing the power is by thermal power stations. Various industrial boilers plays an important role to complete the power generation cycle such as CFBC Circulating Fluidized Bed Combustion FBC Fluidized Bed Combustion AFBC Atmospheric Fluidized Bed Combustion Boiler CO Boiler RG amp WHR Boiler Waster heat recovery Boiler. This paper is intended to comprehensively give an account of knowledge related to refractory amp its failure in CFBC boiler with due effect of flue gas flow during operation on refractory by using latest technology of CAD Computer aided Design amp CAE Computer aided Engineering. By conceptual application of these technology the full scale model is able to analyze in regards the flow of flue gas amp bed material flow inside the CFBC loop via CFD Computational Fluid Dynamics software. The results obtained are helpful to understand the impact of gas amp particles on refractory in different areas amp also helped to choose suitable refractory material in different regions.

  6. Morphology, composition, and atmospheric processing of soot particles

    Science.gov (United States)

    Slowik, Jay G.

    Combustion-generated soot aerosols play an important role in climate forcing due to their strong light-absorbing properties. Quantitative measurement of BC is challenging because BC often occurs in highly non-spherical soot particles of complex morphology. The task is further complicated because of the lack of an unambiguous chemical definition of the material. Here we present the development and application of a new technique for determining particle morphology and composition. Simultaneous measurements of mobility diameter, vacuum aerodynamic diameter, and non-refractory composition were used to determine the particle mass, volume, density, composition, dynamic shape factor, and fractal dimension. Under certain conditions, particle surface area and the number and size of the primary spherules composing the soot fractal aggregates were also determined. The particle characterization technique described above was applied to the following four studies: (1) Characterization of flame-generated soot particles. Depending on flame conditions, either fractal or near-spherical particles were generated and their properties interpreted in terms of the mechanism for soot formation. (2) Coating and denuding experiments were performed on soot particles. The results yielded information about morphology changes to the entire soot particle and to the internal black carbon structure due to atmospheric processing. The denuding experiments also provided particle surface area, which was used to determine the atmospheric lifetime of fractal soot particles relative to spheres. (3) An inter-comparison study of instruments measuring the black carbon content of soot particles was conducted. The detailed characterization of soot particles enabled a number of assumptions about the operation of the selected instruments to be tested. (4) Ambient particles were sampled in Mexico City. In the early morning, ambient particles were detected with a fractal morphology similar to that of diesel

  7. Ice nucleation activity of diesel soot particles at Cirrus relevant conditions: Effects of hydration, secondary organics coating, hydration, soot morphology, and coagulation

    Energy Technology Data Exchange (ETDEWEB)

    Kulkarni, Gourihar R.; China, Swarup; Liu, Shang; Nandasiri, Manjula I.; Sharma, Noopur; Wilson, Jacqueline M.; Aiken, A. C.; Chand, Duli; Laskin, Alexander; Mazzoleni, Claudio; Pekour, Mikhail S.; Shilling, John E.; Shutthanandan, V.; Zelenyuk, Alla; Zaveri, Rahul A.

    2016-04-16

    The role of atmospheric relevant soot particles that are processed in the atmosphere toward ice nucleation at cirrus cloud condition is poorly understood. In this study, the ice nucleating properties of diesel soot particles subjected to various physical and chemical aging treatments were investigated at temperatures ranging from -40 to -50 °C. We show that bare soot particles nucleate ice in deposition mode, but coating with secondary organics suppresses the heterogeneous ice nucleation potential of soot particles requiring homogeneous freezing threshold conditions. However, the ice nucleation efficiency of soot particles coated with an aqueous organic layer was similar to bare soot particles. Hydration of bare soot particles slightly enhanced the ice nucleation efficiency, and the IN abilities of compact soot particles (roundness = ~ 0.6) were similar to bare lacey soot particles (roundness = ~ 0.4). These results indicate that ice nucleation properties are sensitive to the various aging treatments.

  8. Studies of propane flame soot acting as heterogeneous ice nuclei in conjunction with single particle soot photometer measurements

    Directory of Open Access Journals (Sweden)

    I. Crawford

    2011-09-01

    Full Text Available The ice nucleation efficiency of propane flame soot particles with and without a sulphuric acid coating was investigated using the aerosol and cloud chamber facility AIDA (Aerosol Interaction and Dynamics in the Atmosphere. The test soot for cloud formation simulations was produced using a propane flame Combustion Aerosol Standard generator (CAST, Jing-CAST Technologies. The organic carbon content (OC of the test soot was altered in a reproducible fashion by changing the fuel/air mixture of the generator. The soot content of ice nuclei was subsequently investigated using a combination of a pumped counterflow virtual impactor (PCVI to separate and evaporate the ice crystals, and a DMT single particle soot photometer (SP2 to examine the mixing state of the BC containing ice residuals.

    Ice nucleation was found to be most efficient for uncoated soot of low organic carbon content (~5 % organic carbon content where deposition freezing occurred at an ice saturation ratio Sice ~ 1.22 at a temperature T = 226.6 K with 25 % of the test soot becoming active as ice nuclei. Propane flame soot of higher organic carbon content (~30 % and ~70 % organic carbon content showed significantly lower ice nucleation efficiency (an activated fraction of the order of a few percent in the experiments than the low organic carbon content soot, with water saturation being required for freezing to occur. Ice nucleation occurred over the range Sice = 1.22–1.70, and T = 223.2–226.6 K. Analysis of the SP2 data showed that the 5 % organic carbon content soot had an undetectable OC coating whereas the 30 % organic carbon content soot had a thicker or less volatile OC coating.

    The application of a sulphuric acid coating to the flame soot shifted the threshold of the onset of freezing towards that of the homogeneous freezing of sulphuric acid; for the minimum OC flame soot this inhibited nucleation since the

  9. Studies of propane flame soot acting as heterogeneous ice nuclei in conjunction with single particle soot photometer measurements

    Directory of Open Access Journals (Sweden)

    I. Crawford

    2011-04-01

    Full Text Available The ice nucleation efficiency of propane flame soot particles with and without a sulphuric acid coating was investigated using the aerosol and cloud chamber facility AIDA (Aerosol Interaction and Dynamics in the Atmosphere. The test soot for cloud formation simulations was produced using a propane flame Combustion Aerosol Standard generator (CAST, Jing-CAST Technologies. The organic carbon content (OC of the test soot was altered in a reproducible fashion by changing the fuel/air mixture of the generator. The soot content of ice nuclei was subsequently investigated using a combination of a pumped counterflow virtual impactor (PCVI to separate and evaporate the ice crystals, and a DMT single particle soot photometer (SP2 to examine the mixing state of the BC containing ice residuals.

    Ice nucleation was found to be most efficient for uncoated soot of low organic carbon content (~5% organic carbon content where deposition freezing occurred at an ice saturation ratio Sice~1.22 at a temperature T = 226.6 K with 25% of the test soot becoming active as ice nuclei. Propane flame soot of higher organic carbon content (~30% and ~70% organic carbon content showed significantly lower ice nucleation efficiency (an activated fraction of the order of a few percent in the experiments than the low organic carbon content soot, with water saturation being required for freezing to occur. Ice nucleation occurred over the range Sice = 1.22–1.70, and T = 223.2–226.6 K. Analysis of the SP2 data showed that the 5% organic carbon content soot had an undetectable OC coating whereas the 30% organic carbon content soot had a thicker or less volatile OC coating.

    The application of a sulphuric acid coating to the flame soot shifted the threshold of the onset of freezing towards that of the homogeneous freezing of sulphuric acid; for the minimum OC flame soot this inhibited nucleation since the onset of

  10. Measuring soot particles from automotive exhaust emissions

    Science.gov (United States)

    Andres, Hanspeter; Lüönd, Felix; Schlatter, Jürg; Auderset, Kevin; Jordan-Gerkens, Anke; Nowak, Andreas; Ebert, Volker; Buhr, Egbert; Klein, Tobias; Tuch, Thomas; Wiedensohler, Alfred; Mamakos, Athanasios; Riccobono, Francesco; Discher, Kai; Högström, Richard; Yli-Ojanperä, Jaakko; Quincey, Paul

    2014-08-01

    The European Metrology Research Programme participating countries and the European Union jointly fund a three year project to address the need of the automotive industry for a metrological sound base for exhaust measurements. The collaborative work on particle emissions involves five European National Metrology Institutes, the Tampere University of Technology, the Joint Research Centre for Energy and Transport and the Leibniz Institute for Tropospheric Research. On one hand, a particle number and size standard for soot particles is aimed for. Eventually this will allow the partners to provide accurate and comparable calibrations of measurement instruments for the type approval of Euro 5b and Euro 6 vehicles. Calibration aerosols of combustion particles, silver and graphite proof partially suitable. Yet, a consensus choice together with instrument manufactures is pending as the aerosol choice considerably affects the number concentration measurement. Furthermore, the consortium issued consistent requirements for novel measuring instruments foreseen to replace today's opacimeters in regulatory periodic emission controls of soot and compared them with European legislative requirements. Four partners are conducting a metrological validation of prototype measurement instruments. The novel instruments base on light scattering, electrical, ionisation chamber and diffusion charging sensors and will be tested at low and high particle concentrations. Results shall allow manufacturers to further improve their instruments to comply with legal requirements.

  11. Measuring soot particles from automotive exhaust emissions

    Directory of Open Access Journals (Sweden)

    Andres Hanspeter

    2014-01-01

    Full Text Available The European Metrology Research Programme participating countries and the European Union jointly fund a three year project to address the need of the automotive industry for a metrological sound base for exhaust measurements. The collaborative work on particle emissions involves five European National Metrology Institutes, the Tampere University of Technology, the Joint Research Centre for Energy and Transport and the Leibniz Institute for Tropospheric Research. On one hand, a particle number and size standard for soot particles is aimed for. Eventually this will allow the partners to provide accurate and comparable calibrations of measurement instruments for the type approval of Euro 5b and Euro 6 vehicles. Calibration aerosols of combustion particles, silver and graphite proof partially suitable. Yet, a consensus choice together with instrument manufactures is pending as the aerosol choice considerably affects the number concentration measurement. Furthermore, the consortium issued consistent requirements for novel measuring instruments foreseen to replace today’s opacimeters in regulatory periodic emission controls of soot and compared them with European legislative requirements. Four partners are conducting a metrological validation of prototype measurement instruments. The novel instruments base on light scattering, electrical, ionisation chamber and diffusion charging sensors and will be tested at low and high particle concentrations. Results shall allow manufacturers to further improve their instruments to comply with legal requirements.

  12. Boiler using combustible fluid

    Science.gov (United States)

    Baumgartner, H.; Meier, J.G.

    1974-07-03

    A fluid fuel boiler is described comprising a combustion chamber, a cover on the combustion chamber having an opening for introducing a combustion-supporting gaseous fluid through said openings, means to impart rotation to the gaseous fluid about an axis of the combustion chamber, a burner for introducing a fluid fuel into the chamber mixed with the gaseous fluid for combustion thereof, the cover having a generally frustro-conical configuration diverging from the opening toward the interior of the chamber at an angle of between 15/sup 0/ and 55/sup 0/; means defining said combustion chamber having means defining a plurality of axial hot gas flow paths from a downstream portion of the combustion chamber to flow hot gases into an upstream portion of the combustion chamber, and means for diverting some of the hot gas flow along paths in a direction circumferentially of the combustion chamber, with the latter paths being immersed in the water flow path thereby to improve heat transfer and terminating in a gas outlet, the combustion chamber comprising at least one modular element, joined axially to the frustro-conical cover and coaxial therewith. The modular element comprises an inner ring and means of defining the circumferential, radial, and spiral flow paths of the hot gases.

  13. Damages of satsuma mandarine due to soot and sulfur dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Matsushima, J.

    1976-01-01

    Small spots like a citrus melanose spot (disease spot by Diaporthe Citri) and relatively larger spots occurred on satsuma mandarine fruit due to soot of factories in Shikoku district in 1973. Thirteen kinds of soot collected from various districts of Japan were used for this experiment. Several soots showed pH 0.47 in 25% suspension and 1.60 in 1% suspension. These strong acid soots caused severe injuries with 2 mg per square centimeter of fruit surface, or injuries with 0.5 ml of 0.2% solution per fruit. Acidity of soot could be related to content of sulfur in fuel. Soot which was desulfurized by ammonia and contained much of ammonium also had a strong effect of fruit in spite of their rather weak acidity. Pure ammonium sulfide also caused severe injury on satusma mandarine fruit, and the salt diluted by 50% active carbon also injured fruit. A term of contact of soot on fruit was a factor for injury. Because sulfur content of leaves generally well indicate the integrating concentration of sulfur dioxide, sulfur content of satsuma mandarine leaves was determined, and the other nutritional elements of leaves and soils were also analyzed. According to leaf analysis, nutritional status of satsuma mandarine trees was normal, and content of nutritional elements of soils was also normal.

  14. Acetylene soot reaction with NO in the presence of CO.

    Science.gov (United States)

    Mendiara, T; Alzueta, M U; Millera, A; Bilbao, R

    2009-07-30

    The heterogeneous reaction of soot with NO can be considered as a means of reduction of the emissions of both pollutants from combustion systems. In this paper, the influence of the presence of CO in the soot-NO reaction is studied. Soot was obtained by pyrolysis at 1373 K of 5000 ppmv acetylene in nitrogen. The study of the influence of CO on the soot-NO reaction was performed in experiments fixing NO concentration at 900 ppmv and introducing different CO concentrations among 0 and 9900 ppmv. An increase in both the carbon consumption rate and NO reduction by acetylene soot was observed as the concentration of CO increases. These results can be explained by the oxide-stripping reaction, CO+C(f)(O)-->CO(2)+C(f). The direct reaction of CO with NO catalyzed by the carbon surface, CO+NO-->CO(2)+1/2N(2) may not be considered in this case the dominant process due to the absence of mineral impurities in the acetylene soot. The influence of CO in the acetylene soot-NO reaction was also tested in the presence of oxygen (250-5000 ppmv). In these conditions and for relatively high CO/O(2) ratios, CO seems to also contribute to NO reduction by the previous oxide-stripping reaction.

  15. Blower Gun pellet injection system for W7-X

    Energy Technology Data Exchange (ETDEWEB)

    Dibon, Mathias; Baldzuhn, Juergen; Beck, Michael; Lang, Peter; Ploeckl, Bernhard; Weisbart, Wolfgang [MPI fuer Plasmaphysik, EURATOM Association, Boltzmannstr. 2, 85748 Garching (Germany); Cardella, Antonio; Macian-Juan, Rafael [Lehrstuhl fuer Nukleartechnik, TU Munich, Boltzmannstr. 15, 85748 Garching (Germany); Koechl, Florian [Association EURATOM-OeAW/ATI, Atominstitut, TU Wien, 1020 Vienna (Austria); Kocsis, Gabor; Szepesi, Tamas [Wigner RCP, RMI, EURATOM Association, P.O.Box 49, H-1525 Budapest-114 (Hungary)

    2014-07-01

    Foreseen to serve for the new stellarator W7-X for pellet investigations, the former ASDEX Upgrade Blower Gun was revised and revitalized in a test bed. The gun is able now to launch cylindrical pellets of 2 mm diameter and 2 mm length, produced from frozen Deuterium (D{sub 2}) or Hydrogen (H{sub 2}). Pellets are accelerated by a short pulse of pressurized helium propellant gas to velocities in the range of 100-250 m/s. Delivery reliabilities at the launcher exit close to unity are achieved. For pellet transfer to the plasma vessel a first mock up guiding tube version was investigated. Transfer through this S-shaped (inner diameter 8 mm; length 6 m) stainless steel guiding tube containing two 1 m curvature radii was investigated for both H{sub 2} and D{sub 2} pellets. Tests were performed applying repetition rates from 2 Hz to 50 Hz and propellant gas pressures ranging from 1 bar to 6 bar. For both H{sub 2} and D{sub 2}, low overall delivery efficiencies were observed at slow repetition rates, but stable efficiencies of about 90% above 10 Hz.

  16. Hermatically sealed motor blower unit with stator inside hollow armature

    Science.gov (United States)

    Donelian, Khatchik O.

    1976-01-20

    13. A hermetically sealed motor blower unit comprising, in combination, a sealed housing having a thrust plate mounted therein and having a re-entrant wall forming a central cavity in said housing, a rotor within said housing, said rotor comprising an impeller, a hollow shaft embracing said cavity and a thrust collar adapted to cooperate with said thrust plate to support the axial thrust of said shaft, one or more journal bearings within said housing for supporting the radial load of said shaft and electric motor means for rotating said rotor, said motor means comprising a motor-stator located within said cavity and adapted to cooperate through a portion of said re-entrant wall with a motor-rotor mounted within said hollow shaft, the portion of said re-entrant wall located between said motor-stator and said motor-rotor being made relatively thin to reduce electrical losses, the bearing surfaces of said thrust plate, thrust collar and journal bearings being in communication with the discharge of said impeller, whereby fluid pumped by said impeller can flow directly to said bearing surfaces to lubricate them.

  17. Whistle-blower accuses VA inspector general of a "whitewash"

    Directory of Open Access Journals (Sweden)

    Robbins RA

    2014-09-01

    Full Text Available No abstract available. Article truncated after 150 words. Yesterday, Dr. Sam Foote, the initial whistle-blower at the Phoenix VA, criticized the Department of Veterans Affairs inspector general's (VAOIG report on delays in healthcare at the Phoenix VA at a hearing before the House Committee of Veterans Affairs (1,2. Foote accused the VAOIG of minimizing bad patient outcomes and deliberately confusing readers, downplaying the impact of delayed health care at Phoenix VA facilities. "At its best, this report is a whitewash. At its worst, it is a feeble attempt at a cover-up," said Foote. Foote earlier this year revealed that as many as 40 Phoenix patients died while awaiting care and that the Phoenix VA maintained secret waiting lists while under-reporting patient wait times for appointments. His disclosures triggered the national VA scandal. Richard Griffin, the acting VAOIG, said that nearly 300 patients died while on backlogged wait lists in the Phoenix VA Health Care System, a much higher ...

  18. Structured Mathematical Modeling of Industrial Boiler

    Directory of Open Access Journals (Sweden)

    Abdullah Nur Aziz

    2014-04-01

    Full Text Available As a major utility system in industry, boilers consume a large portion of the total energy and costs. Significant reduction of boiler cost operation can be gained through improvements in efficiency. In accomplishing such a goal, an adequate dynamic model that comprehensively reflects boiler characteristics is required. This paper outlines the idea of developing a mathematical model of a water-tube industrial boiler based on first principles guided by the bond graph method in its derivation. The model describes the temperature dynamics of the boiler subsystems such as economizer, steam drum, desuperheater, and superheater. The mathematical model was examined using industrial boiler performance test data.It can be used to build a boiler simulator or help operators run a boiler effectively.

  19. Boiler for generating high quality vapor

    Science.gov (United States)

    Gray, V. H.; Marto, P. J.; Joslyn, A. W.

    1972-01-01

    Boiler supplies vapor for use in turbines by imparting a high angular velocity to the liquid annulus in heated rotating drum. Drum boiler provides a sharp interface between boiling liquid and vapor, thereby, inhibiting the formation of unwanted liquid droplets.

  20. LES study of intermittency in soot formation in a model aircraft combustor

    Science.gov (United States)

    Koo, Heeseok; Raman, Venkat; Mueller, Michael; Geigle, Klaus Peter

    2015-11-01

    Intermittent soot formation is one of the modeling challenges that prevent accurate predictions of soot concentration in a turbulent reacting flow. Due to the highly unsteady and irregular sooting behavior, formation of soot is acutely sensitive to the flow and gas phase history. Therefore, we need to accurately capture interactions between soot chemistry, particle dynamics, and turbulent flame as well as the turbulent reacting flow. In this study, large eddy simulation (LES) is used to understand the model sensitivity to the soot prediction. Hybrid method of moment (HMOM) soot model is used that accommodates detailed process of soot particle and soot precursor evolution. Gas phase chemistry uses flamelet progress variable approach with an additional enthalpy dimension to include soot radiation effect. The developed numerical model is tested on the DLR swirl combustor that emulates the rich-quench-lean (RQL) configuration using secondary oxidation air injection.

  1. 42 CFR 84.142 - Air supply source; hand-operated or motor driven air blowers; Type A supplied-air respirators...

    Science.gov (United States)

    2010-10-01

    ... air blowers; Type A supplied-air respirators; minimum requirements. 84.142 Section 84.142 Public....142 Air supply source; hand-operated or motor driven air blowers; Type A supplied-air respirators; minimum requirements. (a) Blowers shall be designed and constructed to deliver an adequate amount of...

  2. Fluxes of soot black carbon to South Atlantic sediments

    Science.gov (United States)

    Lohmann, Rainer; Bollinger, Kevyn; Cantwell, Mark; Feichter, Johann; Fischer-Bruns, Irene; Zabel, Matthias

    2009-03-01

    Deep sea sediment samples from the South Atlantic Ocean were analyzed for soot black carbon (BC), total organic carbon (TOC), stable carbon isotope ratios (δ13C), and polycyclic aromatic hydrocarbons (PAHs). Soot BC was present at low concentrations (0.04-0.17% dry weight), but accounted for 3-35% of TOC. Fluxes of soot BC were calculated on the basis of known sedimentation rates and ranged from 0.5 to 7.8 μg cm-2 a-1, with higher fluxes near Africa compared to South America. Values of δ13C indicated a marine origin for the organic carbon but terrestrial sources for the soot BC. PAH ratios implied a pyrogenic origin for most samples and possibly a predominance of traffic emissions over wood burning off the African coast. A coupled ocean-atmosphere-aerosol-climate model was used to determine fluxes of BC from 1860 to 2000 to the South Atlantic. Model simulation and measurements both yielded higher soot BC fluxes off the African coast and lower fluxes off the South American coast; however, measured sedimentary soot BC fluxes exceeded simulated values by ˜1 μg cm-2 a-1 on average (within a factor of 2-4). For the sediments off the African coast, soot BC delivery from the Congo River could possibly explain the higher flux rates, but no elevated soot BC fluxes were detected in the Amazon River basin. In total, fluxes of soot BC to the South Atlantic were ˜480-700 Gg a-1 in deep sea sediments. Our results suggest that attempts to construct a global mass balance of BC should include estimates of the atmospheric deposition of BC.

  3. Speed adjustment of blowers in refrigeration engineering. Exemplary applications; Verfahren der Drehzahlveraenderung von Ventilatoren in der Kaeltetechnik. Beispiel verschiedener Anwendungsfaelle

    Energy Technology Data Exchange (ETDEWEB)

    Albig, J. [Ziehl-Abegg AG, Kuenzelsau (Germany)

    2007-02-15

    Apart from the motor performance, also the investment cost of speed adjustment systems decide the economic efficiency of blowers. The blower performance itself is left out of account in this investigation. The most common control strategies are investigated, i.e. voltage control, frequence control, and EC technology. (orig.)

  4. ECUT energy data reference series: boilers

    Energy Technology Data Exchange (ETDEWEB)

    Chockie, A.D.; Johnson, D.R.

    1984-09-01

    Information on the population and fuel consumption of water-tube, fire-tube and cast iron boilers is summarized. The use of each boiler type in the industrial and commercial sector is examined. Specific information on each boiler type includes (for both 1980 and 2000) the average efficiency of the boiler, the capital stock, the amount of fuel consumed, and the activity level as measured by operational load factor.

  5. Structured Mathematical Modeling of Industrial Boiler

    OpenAIRE

    Abdullah Nur Aziz; Yul Yunazwin Nazaruddin; Parsaulian Siregar; Yazid Bindar

    2014-01-01

    As a major utility system in industry, boilers consume a large portion of the total energy and costs. Significant reduction of boiler cost operation can be gained through improvements in efficiency. In accomplishing such a goal, an adequate dynamic model that comprehensively reflects boiler characteristics is required. This paper outlines the idea of developing a mathematical model of a water-tube industrial boiler based on first principles guided by the bond graph method in its derivation. T...

  6. Towards the development of standard reference materials for soot measurements – Part 1: Tailored graphitized soot

    Directory of Open Access Journals (Sweden)

    T. Khokhlova

    2010-04-01

    Full Text Available The lack of standard reference materials for calibrating, troubleshooting and intercomparing instruments that measure the properties of black carbon, commonly referred to as soot, has been a major obstacle that hinders improved understanding of how climate and health is impacted by this ubiquitous component of the atmosphere. A different approach is offered here as a means of constructing precisely controlled material with fractions of organic carbon (OC on the surface of elemental carbon (EC whose structure reflects that of combustion particles found in the atmosphere. The proposed soot reference material (SRM uses elemental carbon as a basis substrate for surface coatings of organic compounds that are representative of main classes of organics identified in the coverage of soot produced by fossil fuel burning. A number of methods are used to demonstrate the quality and stability of the reference EC and SRM. Comparison of the nominal fraction of OC deposited on the EC substrate with the fraction measured with thermal/optical analysis (TOA shows excellent agreement. Application of this type of reference material for evaluating the different methods of carbon analysis may help resolve differences that currently exist between comparable measurement techniques when trying to separate OC and EC from ambient samples.

  7. Visualizing the mobility of silver during catalytic soot oxidation

    DEFF Research Database (Denmark)

    Gardini, Diego; Christensen, Jakob M.; Damsgaard, Christian Danvad;

    2016-01-01

    The catalytic activity and mobility of silver nanoparticles used as catalysts in temperature programmed oxidation of soot:silver (1:5 wt:wt) mixtures have been investigated by means of flow reactor experiments and in situ environmental transmission electron microscopy (ETEM). The carbon oxidation...... mobility during the soot oxidation, and this mobility, which increases the soot/catalyst contact, is expected to be an important factor for the lower oxidation temperature. In the intimate tight contact mixture the initial dispersion of the silver particles is greater,,and the onset of mobility occurs...

  8. Towards predictive simulations of soot formation: from surrogate to turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Blanquart, Guillaume [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2017-03-31

    The combustion of transportation fuels leads to the formation of several kinds of pollutants, among which are soot particles. These particles, also formed during coal combustion and in fires, are the source of several health problems and environmental issues. Unfortunately, our current understanding of the chemical and physical phenomena leading to the formation of soot particles remains incomplete, and as a result, the predictive capability of our numerical tools is lacking. The objective of the work was to reduce the gap in the present understanding and modeling of soot formation both in laminar and turbulent flames. The effort spanned several length scales from the molecular level to large scale turbulent transport.

  9. Investigations of Sooting Laminar Coflow Diffusion Flames at Elevated Pressures

    KAUST Repository

    Steinmetz, Scott A.

    2016-12-01

    Soot is a common byproduct of hydrocarbon based combustion systems. It poses a risk to human and environmental health, and can negatively or positively affect combustor performance. As a result, there is significant interest in understanding soot formation in order to better control it. More recently, the need to study soot formation in engine relevant conditions has become apparent. One engine relevant parameter that has had little focus is the ambient pressure. This body of work focuses on the formation of soot in elevated pressure environments, and a number of investigations are carried out with this purpose. Laminar coflow diffusion flames are used as steady, simple soot producers. First, a commonly studied flame configuration is further characterized. Coflow flames are frequently used for fundamental flame studies, particularly at elevated pressures. However, they are more susceptible to buoyancy induced instabilities at elevated pressures. The velocity of the coflow is known to have an effect on flame stability and soot formation, though these have not been characterized at elevated pressures. A series of flames are investigated covering a range of flowrates, pressures, and nozzle diameters. The stability limits of coflow flames in this range is investigated. Additionally, an alternative strategy for scaling these flames to elevated pressures is proposed. Finally, the effect of coflow rate on soot formation is evaluated. Identification of fundamental flames for coordinated research can facilitate our understanding of soot formation. The next study of this work focuses on adding soot concentration and particle size information to an existing fundamental flame dataset for the purpose of numerical model validation. Soot volume fraction and average particle diameters are successfully measured in nitrogen-diluted ethylene-air laminar coflow flames at pressures of 4, 8, 12, and 16 atm. An increase in particle size with pressure is found up to 12 atm, where particle

  10. Sootblowing optimization for improved boiler performance

    Science.gov (United States)

    James, John Robert; McDermott, John; Piche, Stephen; Pickard, Fred; Parikh, Neel J

    2013-07-30

    A sootblowing control system that uses predictive models to bridge the gap between sootblower operation and boiler performance goals. The system uses predictive modeling and heuristics (rules) associated with different zones in a boiler to determine an optimal sequence of sootblower operations and achieve boiler performance targets. The system performs the sootblower optimization while observing any operational constraints placed on the sootblowers.

  11. Four-channel accelerometer for diagnostic testing of roller bearings of mine blowers

    Energy Technology Data Exchange (ETDEWEB)

    Lebiedzki, A.

    1992-01-01

    Discusses design, operation and use of a four-channel vibroacoustic monitoring system for control of the main blowers driven by electric motors with a revolution rate of 500 rpm and 1 MW power. The PPWa-22PN piezoelectric acceleration converters manufactured by the EKCEL plant in Katowice were used. The converters were equipped with built-in preamplifiers that enabled measuring cables up to 100 m long to be used. The converters were mounted on the casings of blower roller bearings. Rising acoustic emission and mechanical vibrations measured and recorded by the system were signalled to a driver by three lamps (green, yellow and red ones) showing acoustic emission increase by 2 dB, 4 dB or 6 dB. Reliability of blower control using the system is discussed. 3 refs.

  12. Blowers in industrial use III. Proceedings; Ventilatoren im industriellen Einsatz III. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This VDI Report comprises 36 papers presented at this conference which deal with calculation, design and performance of blowers in industrial use. The proceedings volume addresses engineers and scientists in the research, development and design departments of blower production and plant construction companies. Blower operators, researchers and university teachers may be interested as well. (orig/AKF) [Deutsch] Der VDI Bericht enthaelt 36 Vortraege dieser Tagung, die die Fortschritte auf den Gebieten fer Berechnung, Kostruktion and des Betriebsverhaltens von Ventilatoren fuer verschiedene industrielle Anwendungsfaelle wiedergeben. Der Tagungsband richtet sich an Ingenieure und Wissenschaftler von Unternehmen der Ventilatorherstellung und des Anlagebaus aus den Bereichen Forschung und Entwicklung sowie Konstruktion. Ebenfalls werden damit Betreiber und auf diesem Gebiet taetige Forscher und Hochschullehrer angesprochen. (orig/AKF)

  13. The blower: a useful tool to complete thrombectomy of the mechanical prosthetic valve.

    Science.gov (United States)

    Aroussi, Aziz Alami; Sami, Ibrahim Mohamed; Leguerrier, Alain; Verhoye, Jean Phillippe

    2006-05-01

    Thrombectomy could be an excellent approach on one condition (ie, that all parts of the thrombus are removed). We propose to use a tool (ie, the blower) to complete thrombectomy of the prosthetic mechanical valve. The blower is a vaporizer that mixes air and heparinized saline with regulator of flow and proportion used in beating heart surgery. For thrombectomy, we have modified the air-water mixing part and intensity until we obtained a jet that enabled us to remove the micro thrombus that covered the prosthetic valve and surrounding tissues. The blower completely cleaned the prosthetic valve. With this tool, thrombectomy seems easier, more complete, and more reliable with the advantages of short cross-clamping time.

  14. Effect of diffuser width on rotating stall in centrifugal blower with vaneless diffuser

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.H. [Small and Medium Industry Promotion Corporation (Korea); Cho, K.R. [Yonsei University, Seoul (Korea)

    2001-10-01

    It is generally known that radial vane blowers with vaneless diffuser may generate mostly only a rotating stall but backward curved vane blowers may do both an impeller and a diffuser rotating stalls. In this study, it was found from the numerical and experimental results that the diffuser rotating stall does not appear in a radial vane because of the suppression for the diffuser stall appearance by occuring of impeller rotating stall in a large flow rate coefficient. The diffuser rotating stalls occurring when the width of diffuser is broaden for a backward curved vane blower are classified definitely by the diffuser flow rate coefficient defined by adopting the varying diffuser width. (author). 12 refs., 9 figs.

  15. OPTIMIZING IMPELLER GEOMETRY FOR PERFORMANCE ENHANCEMENT OF A CENTRIFUGAL BLOWER USING THE TAGUCHI QUALITY CONCEPT

    Directory of Open Access Journals (Sweden)

    R RAGOTH SINGH

    2012-10-01

    Full Text Available As the diffusion of flow process is highly complex in centrifugal blower operation, it is necessary to design / develop the geometry of impeller and casing to reduce the flow losses significantly. In the present study, the methodology to find near optimum combination of blower operating variables for performance enhancement were analyzed using computational fluid dynamics(CFD. Taguchi orthogonal array (OA based design of experiments (DoE technique determines the required experimental trials. The experimental results are justifiedby Analysis of Variance (ANOVA and confirmed by conformation experiments. The parameters chosen for design optimization are Impeller outlet diameter, Impeller wheel width, Thickness of blade and Impeller inlet diameter. The levels for the parametric specification are chosen from the ranges where the blower will get thebest efficiency. CFD results were validated by the fine conformity between the CFD results and the experimental results.

  16. Retrofit device to improve vapor compression cooling system performance by dynamic blower speed modulation

    Science.gov (United States)

    Roth, Robert Paul; Hahn, David C.; Scaringe, Robert P.

    2015-12-08

    A device and method are provided to improve performance of a vapor compression system using a retrofittable control board to start up the vapor compression system with the evaporator blower initially set to a high speed. A baseline evaporator operating temperature with the evaporator blower operating at the high speed is recorded, and then the device detects if a predetermined acceptable change in evaporator temperature has occurred. The evaporator blower speed is reduced from the initially set high speed as long as there is only a negligible change in the measured evaporator temperature and therefore a negligible difference in the compressor's power consumption so as to obtain a net increase in the Coefficient of Performance.

  17. Retrofit device to improve vapor compression cooling system performance by dynamic blower speed modulation

    Energy Technology Data Exchange (ETDEWEB)

    Roth, Robert Paul; Hahn, David C.; Scaringe, Robert P.

    2015-12-08

    A device and method are provided to improve performance of a vapor compression system using a retrofittable control board to start up the vapor compression system with the evaporator blower initially set to a high speed. A baseline evaporator operating temperature with the evaporator blower operating at the high speed is recorded, and then the device detects if a predetermined acceptable change in evaporator temperature has occurred. The evaporator blower speed is reduced from the initially set high speed as long as there is only a negligible change in the measured evaporator temperature and therefore a negligible difference in the compressor's power consumption so as to obtain a net increase in the Coefficient of Performance.

  18. Pulmonary embolism caused by a carbon dioxide blower during off-pump coronary artery bypass grafting.

    Science.gov (United States)

    Hirata, Naoyuki; Kanaya, Noriaki; Yamazaki, Yutaka; Sonoda, Hajime; Namiki, Akiyoshi

    2010-02-01

    We report a rare case of pulmonary embolism (PE) caused by a carbon dioxide (CO2) blower during off-pump coronary artery bypass grafting (OPCAB). When the anastomosis of the right internal thoracic artery to left anterior descending artery was performed, the operator tore the right ventricle outflow track (RVOT) that was adjacent to the left anterior descending artery. Immediately after the anastomosis and repair of the torn RVOT with CO2 blower, the systolic pulmonary artery pressure (PAP) increased from 28 to 64 mmHg, and end-tidal CO2 decreased from 32 to 12 mmHg. Because transesophageal echocardiograph (TEE) showed numerous gas bubbles in the main pulmonary artery, we diagnosed PE caused by invasion of CO2 gas bubbles via the torn RVOT. Although a CO2 blower is useful to enhance visualization of the anastomosis during OPCAB, it should not be used for the venous system because it may cause CO2 embolism.

  19. Cracking and corrosion recovery boiler

    Energy Technology Data Exchange (ETDEWEB)

    Suik, H. [Tallinn Technical University, Horizon Pulp and Paper, Tallinn (Estonia)

    1998-12-31

    The corrosion of heat surfaces and the cracking the drums are the main problems of the recovery boiler. These phenomena have been appeared during long-term operation of boiler `Mitsubishi - 315` erected at 1964. Depth of the crack is depending on the number of shutdowns and on operation time. Corrosion intensity of different heat surfaces is varying depend on the metal temperature and the conditions at place of positioning of tube. The lowest intensity of corrosion is on the bank tubes and the greatest is on the tubes of the second stage superheater and on the tubes at the openings of air ports. (orig.) 5 refs.

  20. Using CO to Determine Inhaled Contaminant Volumes and Blower Effectiveness in Several Types of Respirators

    Directory of Open Access Journals (Sweden)

    Arthur T. Johnson

    2011-01-01

    Full Text Available This experiment was conducted to determine how much contaminant could be expected to be inhaled when overbreathing several different types of respirators. These included several tight-fitting and loose-fitting powered air-purifying respirators (PAPRs and one air-purifying respirator (APR. CO2 was used as a tracer gas in the ambient air, and several loose-and tight-fitting respirators were tested on the head form of a breathing machine. CO2 concentration in the exhaled breath was monitored as well as CO2 concentration in the ambient air. This concentration ratio was able to give a measurement of protection factor, not for the respirator necessarily, but for the wearer. Flow rates in the filter/blower inlet and breathing machine outlet were also monitored, so blower effectiveness (defined as the blower contribution to inhaled air could also be determined. Wearer protection factors were found to range from 1.1 for the Racal AirMate loose-fitting PAPR to infinity for the 3M Hood, 3M Breath-Easy PAPR, and SE 400 breath-responsive PAPR. Inhaled contaminant volumes depended on tidal volume but ranged from 2.02 L to 0 L for the same respirators, respectively. Blower effectiveness was about 1.0 for tight-fitting APRs, 0.18 for the Racal, and greater than 1.0 for two of the loose-fitting PAPRs. With blower effectiveness greater than 1.0, some blower flow during the exhalation phase contributes to the subsequent inhalation. Results from this experiment point to different ways to measure respirator efficacy.

  1. Using CO(2) to determine inhaled contaminant volumes and blower effectiveness in several types of respirators.

    Science.gov (United States)

    Johnson, Arthur T; Koh, Frank C; Scott, William H; Rehak, Timothy E

    2011-01-01

    This experiment was conducted to determine how much contaminant could be expected to be inhaled when overbreathing several different types of respirators. These included several tight-fitting and loose-fitting powered air-purifying respirators (PAPRs) and one air-purifying respirator (APR). CO(2) was used as a tracer gas in the ambient air, and several loose-and tight-fitting respirators were tested on the head form of a breathing machine. CO(2) concentration in the exhaled breath was monitored as well as CO(2) concentration in the ambient air. This concentration ratio was able to give a measurement of protection factor, not for the respirator necessarily, but for the wearer. Flow rates in the filter/blower inlet and breathing machine outlet were also monitored, so blower effectiveness (defined as the blower contribution to inhaled air) could also be determined. Wearer protection factors were found to range from 1.1 for the Racal AirMate loose-fitting PAPR to infinity for the 3M Hood, 3M Breath-Easy PAPR, and SE 400 breath-responsive PAPR. Inhaled contaminant volumes depended on tidal volume but ranged from 2.02  L to 0  L for the same respirators, respectively. Blower effectiveness was about 1.0 for tight-fitting APRs, 0.18 for the Racal, and greater than 1.0 for two of the loose-fitting PAPRs. With blower effectiveness greater than 1.0, some blower flow during the exhalation phase contributes to the subsequent inhalation. Results from this experiment point to different ways to measure respirator efficacy.

  2. Aerosol generation by blower motors as a bias in assessing aerosol penetration into cabin filtration systems.

    Science.gov (United States)

    Heitbrink, William A; Collingwood, Scott

    2005-01-01

    In cabin filtration systems, blower motors pressurize a vehicle cabin with clean filtered air and recirculate air through an air-conditioning evaporator coil and a heater core. The exposure reduction offered by these cabins is evaluated by optical particle counters that measure size-dependent aerosol concentration inside and outside the cabin. The ratio of the inside-to-outside concentration is termed penetration. Blower motors use stationary carbon brushes to transmit an electrical current through a rotating armature that abrades the carbon brushes. This creates airborne dust that may affect experimental evaluations of aerosol penetration. To evaluate the magnitude of these dust emissions, blower motors were placed in a test chamber and operated at 12 and 13.5 volts DC. A vacuum cleaner drew 76 m3/hour (45 cfm) of air through HEPA filters, the test chamber, and through a 5 cm diameter pipe. An optical particle counter drew air through an isokinetic sampling probe and measured the size-dependent particle concentrations from 0.3 to 15 microm. The concentration of blower motor aerosol was between 2 x 10(5) and 1.8 x 10(6) particles/m3. Aerosol penetration into three stationary vehicles, two pesticide application vehicles and one tractor were measured at two conditions: low concentration (outside in the winter) and high concentration (inside repair shops and burning incense sticks used as a supplemental aerosol source). For particles smaller than 1 microm, the in-cabin concentrations can be explained by the blower motor emissions. For particles larger than 1 microm, other aerosol sources, such as resuspended dirt, are present. Aerosol generated by the operation of the blower motor and by other sources can bias the exposure reduction measured by optical particle counters.

  3. Using CO2 to Determine Inhaled Contaminant Volumes and Blower Effectiveness in Several Types of Respirators

    Science.gov (United States)

    Johnson, Arthur T.; Koh, Frank C.; Scott, William H.; Rehak, Timothy E.

    2011-01-01

    This experiment was conducted to determine how much contaminant could be expected to be inhaled when overbreathing several different types of respirators. These included several tight-fitting and loose-fitting powered air-purifying respirators (PAPRs) and one air-purifying respirator (APR). CO2 was used as a tracer gas in the ambient air, and several loose-and tight-fitting respirators were tested on the head form of a breathing machine. CO2 concentration in the exhaled breath was monitored as well as CO2 concentration in the ambient air. This concentration ratio was able to give a measurement of protection factor, not for the respirator necessarily, but for the wearer. Flow rates in the filter/blower inlet and breathing machine outlet were also monitored, so blower effectiveness (defined as the blower contribution to inhaled air) could also be determined. Wearer protection factors were found to range from 1.1 for the Racal AirMate loose-fitting PAPR to infinity for the 3M Hood, 3M Breath-Easy PAPR, and SE 400 breath-responsive PAPR. Inhaled contaminant volumes depended on tidal volume but ranged from 2.02 L to 0 L for the same respirators, respectively. Blower effectiveness was about 1.0 for tight-fitting APRs, 0.18 for the Racal, and greater than 1.0 for two of the loose-fitting PAPRs. With blower effectiveness greater than 1.0, some blower flow during the exhalation phase contributes to the subsequent inhalation. Results from this experiment point to different ways to measure respirator efficacy. PMID:21792358

  4. HETEROGENEOUS SOOT NANOSTRUCTURE IN ATMOSPHERIC AND COMBUSTION SOURCE AEROSOLS

    Science.gov (United States)

    Microscopic images of soot emissions from wildfire and a wide range of anthropogenic combustion sources show that the nanostructures of individual particles in these emissions are predominantly heterogeneous, decidedly influenced by the fuel composition and by the particular comb...

  5. Ultrasensitive, Fast-Response Size-Dependent Soot Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a "black carbon" (soot) monitor for measuring non-volatile particulate emissions from gas turbine engines employing a proprietary optical...

  6. Blowers in technical systems - with and without spiral casing; Ventilatoreinsatz in Geraeten - mit oder ohne Spiralgehaeuse

    Energy Technology Data Exchange (ETDEWEB)

    Anschuetz, J. [Gebhardt Ventilatoren, Waldenburg (Germany); Haertel, S. [Gebhardt Ventilatoren, Waldenburg (Germany)

    1996-08-01

    Blowers without casings are used wherever there is little space for installation - in recent years increasingly also in air conditioning systems. This contribution shows how the economic efficiency of the two types of systems can be compared in order to facilitate the choice of blower. (orig.) [Deutsch] In engsten Einbauraeumen ist in einer Vielzahl von Geraeten ein Ventilatorlaufrad ohne Ventilatorgehaeuse zu finden - seit einigen Jahren auch zunehmend in Klimageraeten als Alternative zum herkoemmlichen Spiralgehaeuseventilator. Im folgenden soll verdeutlicht werden, wie diese Konzepte in ihrem physikalischen Wirkungsprinzip, vorranging unter Beruecksichtigung der Wirtschaftlichkeit im Betrieb, verglichen werden koennen, um eine Auswahl zu erleichtern. (orig.)

  7. Characteristics of faces and centrifugal blowers in a system for air distribution control in a mine

    Energy Technology Data Exchange (ETDEWEB)

    Vasilenko, V.I.; Frolov, M.A. (Novocherkasskii Politekhnicheskii Institut (USSR))

    1990-04-01

    Analyzes operation of ventilation systems of underground coal mines on the example of the Rostovugol' mines in the USSR. Systems with types VTs and VTsD main centrifugal blowers are evaluated. Mathematical formulae and functions that characterize ventilation of longwall faces and mining levels are derived and plotted. Static and dynamic characteristics of working faces and the main centrifugal blowers are analyzed. A method for optimization of ventilation systems of underground coal mines is developed; its accuracy was verified on the basis of statistical data from Rostovugol'. 6 refs.

  8. New computer-assisted design of blower convectors; Neue computerunterstuetzte Auslegung von Geblaesekonvektoren

    Energy Technology Data Exchange (ETDEWEB)

    Enzensperger, M. [Axair GmbH, Garching-Hochbrueck (Germany)

    1999-08-01

    The problem is well-known: in the air conditioning market, an increasing trends towards blower convectors has emerged recently. Often the devices are exactly tailored to special applications, requiring accurate rating. The design of blower convectors must correspond to planning specifications. The available technical data deviate from the standard data sheets of manufacturers. (orig.) [German] Wer kennt das Problem nicht: In letzter Zeit ist auf dem Klimamarkt ein verstaerkter Trend zu Geblaesekonvektoren festzustellen. Die Projekte werden oft speziell auf die Anwendungsfaelle zugeschnitten und erfordern eine genauere Auslegung. Gemaess den Angaben eines Planers muss ein Geblaesekonvektor ausgelegt werden. Die vorliegenden technischen Daten weichen von den Standard-Herstellerangaben ab. (orig.)

  9. A constant air flow rate control of blower for residential applications

    Energy Technology Data Exchange (ETDEWEB)

    Yang, S.M. [Tamkang Univ., Taipei (Taiwan, Province of China). Dept. of Mechanical Engineering

    1998-03-01

    This paper presents a technique to control a blower for residential applications at constant air flow rate using an induction motor drive. The control scheme combines a variable volt/hertz ratio inverter drive and an average motor current regulation loop to achieve control of the motor torque-speed characteristics, consequently controlling the air flow rate of the blower which the motor is driving. The controller is simple to implement and practical for commercialization. It is also reliable, since no external pressure or air flow sensor is required. Both a theoretical derivation and an experimental verification for the control scheme are presented in this paper.

  10. Failure Analysis of 600 MW Supercritical Boiler Water Wall

    OpenAIRE

    Fu Huilin; Cai Zhengchun; Yan Xiaozhong; He Jinqiao; Zhou Yucai

    2013-01-01

    Boiler tube often causes abnormal boiler outage, bringing greater economic losses. This thesis mainly comes from the dynamics of boiler water, boiler furnace accident location of wall temperature distribution to explore the cause of the accident boiler. Calculation results show that the deformation will seriously reduce the boiler allowable maximum temperature difference between the screens. And the boiler is not over-temperature, low temperature difference between the screens, which have bur...

  11. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Marc Cremer; Kevin Davis; Temi Linjewile; Connie Senior; Hong-Shig Shim; Bob Hurt; Eric Eddings; Larry Baxter

    2003-01-30

    This is the tenth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NO{sub x} control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing cofunding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, progress was made on the computational simulation of a full-scale boiler with the purpose of understanding the potential impacts of burner operating conditions on soot and NO{sub x} generation. Sulfation tests on both the titania support and vanadia/titania catalysts were completed using BYU's in situ spectroscopy reactor this quarter. These experiments focus on the extent to which vanadia and titania sulfate in an SO{sub 2}-laden, moist environment. Construction of the CCS reactor system is essentially complete and the control hardware and software are largely in place. A large batch of vanadia/titania catalyst in powder form has been prepared for use in poisoning tests. During this quarter, minor modifications were made to the multi-catalyst slipstream reactor and to the control system. The slipstream reactor was installed at AEP's Rockport plant at the end of November 2002. In this report, we describe the reactor system, particularly the control system, which was created by REI specifically for the reactor, as well as the installation at Rockport.

  12. Emission of ions and charged soot particles by aircraft engines

    Directory of Open Access Journals (Sweden)

    A. Sorokin

    2003-01-01

    Full Text Available In this article, a model which examines the formation and evolution of chemiions in an aircraft engine is proposed. This model which includes chemiionisation, electron thermo-emission, electron attachment to soot particles and to neutral molecules, electron-ion and ion-ion recombination, ion-soot interaction, allows the determination of the ion concentration at the exit of the combustor and at the nozzle exit of the engine. It also allows the determination of the charge of the soot particles. For the engine considered, the upper limit for the ion emission index EIi is of the order of (2-5 x1016 ions/kg-fuel if ion-soot interactions are ignored and the introduction of ion-soot interactions lead about to a 50% reduction. The results also show that most of the soot particles are either positively or negatively charged, the remaining neutral particles representing approximately 20% of the total particles. A comparison of the model results with the available ground-based experimental data obtained on the ATTAS research aircraft engines during the SULFUR experiments (Schumann, 2002 shows an excellent agreement.

  13. Durable superhydrophobic carbon soot coatings for sensor applications

    Science.gov (United States)

    Esmeryan, K. D.; Radeva, E. I.; Avramov, I. D.

    2016-01-01

    A novel approach for the fabrication of durable superhydrophobic (SH) carbon soot coatings used in quartz crystal microbalance (QCM) based gas or liquid sensors is reported. The method uses modification of the carbon soot through polymerization of hexamethyldisiloxane (HMDSO) by means of glow discharge RF plasma. The surface characterization shows a fractal-like network of carbon nanoparticles with diameter of ~50 nm. These particles form islands and cavities in the nanometer range, between which the plasma polymerized hexamethyldisiloxane (PPHMDSO) embeds and binds to the carbon chains and QCM surface. Such modified surface structure retains the hydrophobic nature of the soot and enhances its robustness upon water droplet interactions. Moreover, it significantly reduces the insertion loss and dynamic resistance of the QCM compared to the commonly used carbon soot/epoxy resin approach. Furthermore, the PPHMDSO/carbon soot coating demonstrates durability and no aging after more than 40 probing cycles in water based liquid environments. In addition, the surface layer keeps its superhydrophobicity even upon thermal annealing up to 540 °C. These experiments reveal an opportunity for the development of soot based SH QCMs with improved electrical characteristics, as required for high-resolution gas or liquid measurements.

  14. Measurements of airtightness of building components using the blower door method - DB Hamm; Bestimmung der Luftdichtheit von einzelnen Gebaeudeteilen mit Hilfe der Blower-Door-Methode - DB Hamm

    Energy Technology Data Exchange (ETDEWEB)

    Heinrich, H.; Dahlem, K.H.; Rechenbach, O.

    2001-08-24

    The blower door measuring system consisted of a variable frame with airtight foil and integrated speed-controlled blower, a volume flow meter and differential pressure manometer. It was not possible in all cases to generate sufficient volume flow for achieving the desired pressure gradient, both in the atrium and the building as a whole. In these cases, only the volume flow for a pressure gradient was measured. The curve was approximated using typical curves, and an n{sub 50} value was extrapolated which is not a real n{sub 50} value but an estimated value based on the values measured for low pressure gradients. Extensive measurements were carried out on different parts of the building.

  15. Influence of sulfur in fuel on the properties of diffusion flame soot

    Science.gov (United States)

    Zhao, Yan; Ma, Qingxin; Liu, Yongchun; He, Hong

    2016-10-01

    Previous studies indicate that sulfur in fuel affects the hygroscopicity of soot. However, the issue of the effect of sulfur in fuel on soot properties is not fully understood. Here, the properties of soot prepared from fuel with a variable sulfur content were investigated under lean and rich flame conditions. Lean flame soot was influenced more by sulfur in fuel than rich flame soot. The majority of sulfur in fuel in lean flame was converted to gaseous SO2, while a small fraction appeared as sulfate and bisulfate (referred to as sulfate species) in soot. As the sulfur content in fuel increased, sulfate species in lean flame soot increased nonlinearly, while sulfate species on the surface of lean flame soot increased linearly. The hygroscopicity of lean flame soot from sulfur-containing fuel was enhanced mainly due to sulfate species. Meanwhile, more alkynes were formed in lean flame. The diameter of primary lean flame soot particles increased and accumulation mode particle number concentrations of lean flame soot from sulfur-containing fuel increased as a result of more alkynes. Because the potential effects of soot particles on air pollution development greatly depend on the soot properties, which are related to both chemical aging and combustion conditions, this work will aid in understanding the impacts of soot on air quality and climate.

  16. Experimental study on the aerodynamic performance of 3-dimensional vortex-blowers. Sanjigen uzuryu blower no kuriki seino ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, S.; Ito, E.; Fujio, M.; Fujita, H. (Hitachi, Ltd., Tokyo (Japan))

    1992-10-25

    Vortex blowers with two-dimensional blades have such deficiencies as low aerodynamic performance and high noise. Accordingly, discussions have been given on effects of three-dimensionalized blades on internal flows and aerodynamic performance with the objective of making the vortex blowers smaller in size, higher in performance, and lower in noise. A spiral flow exists in the flow path in a casing, which has its flow velocity increased as the flow rate is decreased. The flow velocity at the closing point reaches about two times as large as the circumferential speed of the blades in the case of having three-dimensional leading blades. The spiral flow outflowing from outer circumference of the blades into the casing flow path has its flow velocity nearly halved while swirling in semi-circular form in the casing flow path, by which a vortex blower converts the total pressure in the casing flow path to a static pressure. When the outlet angle in the axial direction is changed from 90[degree] (two-dimensional blade) to 50[degree](three-dimensional leading blade), the flow velocity components increase largely in the circumferential direction, with the pressure coefficient and the dynamic coefficient increasing by about two fold respectively. When the inlet angle in the axial direction is reduced to 40[degree] , the blade incident loss reduces, while the pressure coefficient improves by about 20% and the heat insulation efficiency by about 30%. 4 refs., 15 figs., 1 tab.

  17. 46 CFR 52.25-20 - Exhaust gas boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Exhaust gas boilers. 52.25-20 Section 52.25-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Other Boiler Types § 52.25-20 Exhaust gas boilers. Exhaust gas boilers with a maximum allowable working...

  18. `CMLe` blower for houses saves 50% energy; Woonhuisventilator CMLe bespaart 50% energie

    Energy Technology Data Exchange (ETDEWEB)

    De Vries, H. [J.E. Stork Ventilatoren, Zwolle (Netherlands)

    1998-01-01

    One of the energy saving techniques to reduce the emission of CO2 is the use of an energy efficient direct current motor in a newly StorkAir developed blower for houses. A brief description of the innovation is given. 1 fig., 2 ills.

  19. Safety and efficiency keys to {open_quotes}surgeless blower{close_quotes}

    Energy Technology Data Exchange (ETDEWEB)

    Banyay, H.D.; Gutzwiller, L.

    1997-01-01

    When exhausting combustible hydrocarbon vapors form sea-going tankers, vapor recovery systems must be spark resistant and gas tight while maintaining stable operation over a wide flow range and minimizing noise, resisting corrosion and providing low maintenance. A {open_quotes}surgeless blower{close_quotes} has met these challenges in 17 US marine vapor emission control systems. The blower, which mounts on a dock, helps move vapors emitted during tanker loading from the tankers through long exhaust ducts to processing plants. The duct-work typically included valves, detonation arresters and other components that increase resistance to gas flow. The volume flow requirement of the exhaust system varies widely depending on the loading rate. A high-pressure blower is therefore needed to allow for a wide range of operating volumes-from 100 CFM to 13,000 CFM-without causing instability or surging. The materials used to construct blowers must be corrosion resistant on inside surfaces to withstand the corrosive effects of hydrocarbon vapor and outside surfaces to operate in the salt-spray environment of seaside docks.

  20. Modification and application of a leaf blower-vac for field sampling of arthropods

    NARCIS (Netherlands)

    Zou, Yi; Telgen, van Mario D.; Chen, Junhui; Xiao, Haijun; Kraker, de Joop; Bianchi, Felix J.J.A.; Werf, van der Wopke

    2016-01-01

    Rice fields host a large diversity of arthropods, but investigating their population dynamics and interactions is challenging. Here we describe the modification and application of a leaf blower-vac for suction sampling of arthropod populations in rice. When used in combination with an enclosure,

  1. Coronary artery surgery without cardiopulmonary bypass: usefulness of the surgical blower-humidifier.

    Science.gov (United States)

    Maddaus, M; Ali, I S; Birnbaum, P L; Panos, A L; Salerno, T A

    1992-12-01

    Coronary artery bypass surgery can be performed without cardiopulmonary bypass (CPB). Bleeding obscuring the operative field and hemodilution of shed blood with irrigating saline are some of the drawbacks of this technique. We report the use of a newly developed surgical blower-humidifier (custom made [Research Medical, Inc.]) for improved visualization and facilitation of coronary artery surgery without CPB.

  2. 42 CFR 84.146 - Method of measuring the power and torque required to operate blowers.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Method of measuring the power and torque required... RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.146 Method of measuring the power and torque... blower, the drum is started in rotation manually at or slightly above the speed at which the...

  3. Shock tube studies of soot formation

    Science.gov (United States)

    Kern, R. D.

    1983-01-01

    The objective of this research is to record the time histories of the major and minor species which appear in the pyrolysis of toluene, benzene, butadiene, allene, and acetylene; to develop a set of reactions that will model the observed profiles over a wide temperature and concentration range; to identify the critical reactions that influence the pre-particle soot formation process. Toluene and benzene were chosen as two key aromatic compounds which are representative of the pyrolytic process. Butadiene, allene, and acetylene were selected to investigate the formation of aromatic compounds from non-cyclic species. The experimental apparatus used for the study consists of a shock tube coupled to a time-of-flight mass spectrometer Spectra are recorded at 30 microsecond intervals for a total observation time of 0.50 - 1.20 milliseconds. Peak heights of the species of interest in the m/e range 12-300 are measured as a function of reaction time. Calibration curves are constructed which aid the conversion of peak heights to concentrations. The mixtures range from 1 percent-6 percent fuel; the balance is neon diluent.

  4. Ice nucleation activity of diesel soot particles at cirrus relevant temperature conditions: Effects of hydration, secondary organics coating, soot morphology, and coagulation

    Science.gov (United States)

    Kulkarni, Gourihar; China, Swarup; Liu, Shang; Nandasiri, Manjula; Sharma, Noopur; Wilson, Jacqueline; Aiken, Allison C.; Chand, Duli; Laskin, Alexander; Mazzoleni, Claudio; Pekour, Mikhail; Shilling, John; Shutthanandan, Vaithiyalingam; Zelenyuk, Alla; Zaveri, Rahul A.

    2016-04-01

    Ice formation by diesel soot particles was investigated at temperatures ranging from -40 to -50°C. Size-selected soot particles were physically and chemically aged in an environmental chamber, and their ice nucleating properties were determined using a continuous flow diffusion type ice nucleation chamber. Bare (freshly formed), hydrated, and compacted soot particles, as well as α-pinene secondary organic aerosol (SOA)-coated soot particles at high relative humidity conditions, showed ice formation activity at subsaturation conditions with respect to water but below the homogeneous freezing threshold conditions. However, SOA-coated soot particles at dry conditions were observed to freeze at homogeneous freezing threshold conditions. Overall, our results suggest that heterogeneous ice nucleation activity of freshly emitted diesel soot particles are sensitive to some of the aging processes that soot can undergo in the atmosphere.

  5. Ignition delay and soot oxidative reactivity of MTBE blended diesel fuel

    KAUST Repository

    Yang, Seung Yeon

    2014-04-01

    Methyl tert-butyl ether (MTBE) was added to diesel fuel to investigate the effect on ignition delay and soot oxidative reactivity. An ignition quality tester (IQT) was used to study the ignition propensity of MTBE blended diesel fuels in a reactive spray environment. The IQT data showed that ignition delay increases linearly as the MTBE fraction increases in the fuel. A four-stroke single cylinder diesel engine was used to generate soot samples for a soot oxidation study. Soot samples were pre-treated using a tube furnace in a nitrogen environment to remove any soluble organic fractions and moisture content. Non-isothermal oxidation of soot samples was conducted using a thermogravimetric analyzer (TGA). It was observed that oxidation of \\'MTBE soot\\' started began at a lower temperature and had higher reaction rate than \\'diesel soot\\' across a range of temperatures. Several kinetic analyses including an isoconversional method and a combined model fitting method were carried out to evaluate kinetic parameters. The results showed that Diesel and MTBE soot samples had similar activation energy but the pre-exponential factor of MTBE soot was much higher than that of the Diesel soot. This may explain why MTBE soot was more reactive than Diesel soot. It is suggested that adding MTBE to diesel fuel is better for DPF regeneration since an MTBE blend can significantly influence the ignition characteristics and, consequently, the oxidative reactivity of soot. Copyright © 2014 SAE International.

  6. An experimental design for the investigation of water repellent property of candle soot particles

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, Bichitra Nanda; Kandasubramanian, Balasubramanian, E-mail: meetkbs@gmail.com

    2014-11-14

    The mechanistic aspect of candle soot particles under controlled atmosphere has been reported. The soot particles were characterized using Fourier transformation Infrared Spectroscopy, Raman spectroscopy, Transmission electron microscopy and X-ray diffraction. Hydrophobicity of the candle soot particles was confirmed from the presence of C–H group which enhances water repellency and can be used as filler material for fabrication of superhydrophobic coatings. The layered soot particle on the glass slide exhibits maximum water contact angle of 168°. Roughness of soot particle and various hydrophobic groups involved for obtaining superhydrophobicity were exposed. The Raman spectrum of soot particles revealed the presence of disorder graphene which was confirmed from appearance of D1 band. The agglomeration of candle soot particles has been discussed by measuring fractal dimension (D{sub f}) of the particles. The in-depth investigation for bringing the mechanism of formation of soot particle inside the flame reveals the inception of the first particles, growth of soot particles, particle coalescence, agglomeration and oxidation. Here, we have found that the mechanism of particle formation in candle flame involves various steps, in which the sintering as well as coalescence/collision process plays a major role. - Highlights: • Mechanistic aspect for hydrophobicity of candle soot is demonstrated. • Hydrophobicity of soot particles at different exposure time is described. • Agglomeration of soot particles related to fractal dimension is reported. • Mechanism of formation of soot particles in the candle flame is also described.

  7. Machining of the Blower Shroud%静叶片座的加工

    Institute of Scientific and Technical Information of China (English)

    王林锋; 张雪萍

    2013-01-01

    静叶片(导风叶)座为6个弧段拼装而成,其外径达Φ2012 m m,加工后内径为Φ1804 m m,壁厚较薄(最薄厚度仅为20 m m),整个部件重量达到了2.6 T。静叶片装配通过橡胶压缩量进行撑紧,若装配补偿量不足,易导致导风叶松动,影响后续静叶片座的加工。同时,由于静叶片座壁厚较薄,加工易导致变形。文章通过改善静叶片装配与改变静叶片座加工装夹及吊运翻身方式来控制它的变形。%The blower shroud was composed of 6pcs of segment with outside diameter of¢2 012mm and machined inner diameter of¢1 804mm, being a thin wall thickness part (the thinnest thickness was only 20mm) and totaling 2.6T. The blower blade was held tightly depending on the rubber compression in this assembly. In case of that assem-bling compensation was not sufifcient, loosing of the blower blade would occur, thus, influencing the following proce-dure of the machining of the blower shroud. Meanwhile, deformation frequently happened after machining because of the thin wall of the blower shroud. Suggestions were pre-sented in the ifelds of improvement of the blade assembling, clamping way for machining process, machining method and hoisting/turning-over method, to control deformation during process.

  8. Further development of recovery boiler; Soodakattilan kehitystyoe

    Energy Technology Data Exchange (ETDEWEB)

    Janka, K.; Siiskonen, P.; Sundstroem, K. [Tampella Power Oy, Tampere (Finland)] [and others

    1996-12-01

    The global model of a recovery boiler was further developed. The aim is to be able to model the velocity, temperature and concentration fields in a boiler. At this moment the model includes submodels for: droplet drying, pyrolysis, char burning, gas burning and for droplet trajectory. The preliminary study of NO{sub x} and fly ash behaviour in a boiler was carried out. The study concerning flow field in the superheater area was carried out a 2-dimensional case in which the inflow parameters were taken from global model of a recovery boiler. Further the prediction methods of fouling in a recovery boiler were developed based on theoretical calculations of smelting behaviour of multicomponent mixtures and measurements at operating recovery boilers. (author)

  9. Inception report and gap analysis. Boiler inspection

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-06-01

    This inception and gap analysis report on boilers in Latvia, has been prepared in the framework of the 'Implementation of the EU directive on energy performance of buildings: development of the Latvian Scheme for energy auditing of building and inspection of boilers'. The report is the basis for the establishment of training of boiler inspectors; it develops a gap analysis for better understanding and estimating the number of installations in Latvia and develops suggestions for the institutional set up. In particular includes information on existing standard and regulation on boiler, suggestion for the content of the training material of experts for boiler inspections and a syllabus of the training course. A specific section is dedicated to the suggestion for certification system of trained boiler inspectors. (au)

  10. Shock-tube pyrolysis of chlorinated hydrocarbons - Formation of soot

    Science.gov (United States)

    Frenklach, M.; Hsu, J. P.; Miller, D. L.; Matula, R. A.

    1986-01-01

    Soot formation in pyrolysis of chlorinated methanes, their mixtures with methane, and chlorinated ethylenes were studied behind reflected shock waves by monitoring the attenuation of an He-Ne laser beam. An additional single-pulse shock-tube study was conducted for the pyrolysis of methane, methyl chloride, and dichloromethane. The experiments were performed at temperatures 1300-3000 K, pressures of 0.4-3.6 bar, and total carbon atom concentrations of 1-5 x 10 to the 17th atoms cu cm. The amounts of soot produced in the pyrolysis of chlorinated hydrocarbons are larger than that of their nonchlorinated counterparts. The sooting behavior and product distribution can be generally explained in terms of chlorine-catalyzed chemical reaction mechanisms. The pathway to soot from chlorinated methanes and ethylenes with high H:Cl ratio proceeds via the formation of C2H, C2H2, and C2H3 species. For chlorinated hydrocarbons with low H:Cl ratio, the formation of C2 and its contribution to soot formation at high temperatures becomes significant. There is evidence for the importance of CHCl radical and its reactions in the pyrolysis of dichloromethane.

  11. Soot-driven reactive oxygen species formation from incense burning.

    Science.gov (United States)

    Chuang, Hsiao-Chi; Jones, Tim P; Lung, Shih-Chun C; BéruBé, Kelly A

    2011-10-15

    This study investigated the effects of reactive oxygen species (ROS) generated as a function of the physicochemistry of incense particulate matter (IPM), diesel exhaust particles (DEP) and carbon black (CB). Microscopical and elemental analyses were used to determine particle morphology and inorganic compounds. ROS was determined using the reactive dye, Dichlorodihydrofluorescin (DCFH), and the Plasmid Scission Assay (PSA), which determine DNA damage. Two common types of soot were observed within IPM, including nano-soot and micro-soot, whereas DEP and CB mainly consisted of nano-soot. These PM were capable of causing oxidative stress in a dose-dependent manner, especially IPM and DEP. A dose of IPM (36.6-102.3μg/ml) was capable of causing 50% oxidative DNA damage. ROS formation was positively correlated to smaller nano-soot aggregates and bulk metallic compounds, particularly Cu. These observations have important implications for respiratory health given that inflammation has been recognised as an important factor in the development of lung injury/diseases by oxidative stress. This study supports the view that ROS formation by combustion-derived PM is related to PM physicochemistry, and also provides new data for IPM.

  12. CFD Simulation On CFBC Boiler

    OpenAIRE

    Amol S. Kinkar; G. M. Dhote; R.R. Chokkar

    2015-01-01

    Abstract Heavy industrialization amp modernization of society demands in increasing of power cause to research amp develop new technology amp efficient utilization of existing power units. Variety of sources are available for power generation such as conventional sources like thermal hydro nuclear and renewable sources like wind tidal biomass geothermal amp solar. Out of these most common amp economical way for producing the power is by thermal power stations. Various industrial boilers plays...

  13. Energy storage-boiler tank

    Science.gov (United States)

    Chubb, T. A.; Nemecek, J. J.; Simmons, D. E.

    1980-01-01

    Activities performed in an effort to demonstrate heat of fusion energy storage in containerized salts are reported. The properties and cycle life characteristics of a eutectic salt having a boiling point of about 385 C (NaCl, KCl, Mg Cl2) were determined. M-terphenyl was chosen as the heat transfer fluid. Compatibility studies were conducted and mild steel containers were selected. The design and fabrication of a 2MWh storage boiler tank are discussed.

  14. Research of Boiler Combustion Regulation for Reducing Nox Emission and its Effect on Boiler Efficiency

    Institute of Scientific and Technical Information of China (English)

    WANG Xue-dong; LUAN Tao; CHENG Lin; XIAO Kun

    2007-01-01

    The effect of boiler combustion regulation on Nox emission of two 1025t/h boilers has been studied. The researches show that Nox emission is influenced by coal species, operation conditions, etc, and can be reduced by regulating the combustion conditions. The effect of combustion regulation on boiler efficiency has also been checked.

  15. Design specifications for explosion protection blowers. Effects of the geometry of a radial blower on its dimensionless characteristics; Entwurfsanforderungen fuer Explosionsschutzventilatoren. Einfluss der geometrischen Konstruktionsgestaltungen eines Radialventilators auf seine dimensionslosen Kennzahlen

    Energy Technology Data Exchange (ETDEWEB)

    Prysok, E. [Forschungs- und Entwicklungszentrum Barowent, Katowice (Poland)

    2003-08-01

    Blowers transporting explosive mixtures of gases and vapours and/or explosive atmospheric dust require special safety measures. The contribution discusses general design principles for explosion protection blowers. [German] Ventilatoren, die zur Foerderung von explosionsfaehigen Gemischen brennbarer Gase und Daempfe sowie explosionsfaehiger Staeube in der Atmosphaere bestimmt sind, benoetigen die Anwendung entsprechender Sicherung fuer ihre Konstruktion. Im folgenden Beitrag werden allgemeine, Explosionsschutzventilatoren betreffende Konstruktionsprinzipien dargestellt. (orig.)

  16. Chinese Soot on a Vietnamese Soup

    Science.gov (United States)

    Mari, X.

    2015-12-01

    Black Carbon (BC) is an aerosol emitted as soot during biomass burning and fossil fuels combustion together with other carbonaceous aerosols such as organic carbon (OC) and polyaromatic hydrocarbons (PAHs). While the impacts of BC on health and climate have been studied for many years, studies about its deposition and impact on marine ecosystems are scares. This is rather surprising considering that a large fraction of atmospheric BC deposits on the surface of the ocean via dry or wet deposition. On a global scale, deposition on the ocean is about 45 Tg C per year, with higher fluxes in the northern hemisphere and in inter-tropical regions, following the occurrence of the hot-spots of concentration. In the present study conducted on shore, in Haiphong and Halong cities, North Vietnam, we measured the seasonal variations of atmospheric BC, OC and PAHs during a complete annual cycle. The presentation will discuss the atmospheric results in terms of seasonal variability and sources. Inputs to the marine system are higher during the dry season, concomitantly with the arrival of air masses enriched in BC coming from the North. However, the carbon fingerprint can significantly differ at shorter time periods depending on the air mass pathway and speed. Our work leads to the characterization and the determination of the relative contribution of more specific sources like local traffic, which includes tourism and fishing boats, coal dust emitted from the nearby mine, and long-range transported aerosols. This variable input of carbonaceous aerosols might have consequences for the cycling and the repartition of carbon and nutrients in the marine ecosystem of Halong Bay.

  17. Stress-Assisted Corrosion in Boiler Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Preet M Singh; Steven J Pawel

    2006-05-27

    A number of industrial boilers, including in the pulp and paper industry, needed to replace their lower furnace tubes or decommission many recovery boilers due to stress-assisted corrosion (SAC) on the waterside of boiler tubes. More than half of the power and recovery boilers that have been inspected reveal SAC damage, which portends significant energy and economic impacts. The goal of this project was to clarify the mechanism of stress-assisted corrosion (SAC) of boiler tubes for the purpose of determining key parameters in its mitigation and control. To accomplish this in-situ strain measurements on boiler tubes were made. Boiler water environment was simulated in the laboratory and effects of water chemistry on SAC initiation and growth were evaluated in terms of industrial operations. Results from this project have shown that the dissolved oxygen is single most important factor in SAC initiation on carbon steel samples. Control of dissolved oxygen can be used to mitigate SAC in industrial boilers. Results have also shown that sharp corrosion fatigue and bulbous SAC cracks have similar mechanism but the morphology is different due to availability of oxygen during boiler shutdown conditions. Results are described in the final technical report.

  18. Low flow rates and high air throughput: Cross-flow blowers; Niedrige Stroemungsgeschwindigkeiten bei hohem Luftdurchsatz: Querstromventilatoren

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, J. [ebm-papst Landshut GmbH (Germany)

    2006-05-15

    Cross-flow blowers are everywhere, in electric towel driers, heaters, night storage heaters, floor heating systems, and open chimneys. With a diameter of only 30 mm, they are compact and effective. (orig.)

  19. Catalytic ceramic filter for Diesel soot removal. Preliminary investigations

    Energy Technology Data Exchange (ETDEWEB)

    Ciambelli, P.; Palma, V.; Russo, P. [Dipartimento di Ingegneria Chimica e Alimentare, Universita di Salerno, Fisciano, Salerno (Italy); Vaccaro, S. [Dipartimento di Chimica, Universita di Napoli Federico II,, Napoli (Italy)

    1998-12-31

    The catalytic combustion of Diesel soot was studied performing reactivity tests of soot-catalyst mixtures in a tubular flow reactor. The dependence of the reaction rate on the temperature was found. With respect to the uncatalysed combustion the reactivity of the soot in the presence of catalyst increased of some orders of magnitude while the apparent activation energy was found to be less than half. Complementary tests were carried out for studying the regeneration process of ceramic sintered filter samples by uncatalysed and catalysed combustion of the accumulated carbon particles. With respect to the uncatalysed case, the presence of catalyst reduces the carbon ignition temperature so favouring spontaneous filter regeneration. However, the catalyst activity appears to be lower than that observed in the reactivity tests. The results of both series of tests were discussed and compared in order to assess the role of carbon-catalyst contact and of catalyst preparation on its performances. 20 refs.

  20. Laser-induced incandescence: Towards quantitative soot volume fraction measurements

    Energy Technology Data Exchange (ETDEWEB)

    Tzannis, A.P.; Wienbeucker, F.; Beaud, P.; Frey, H.-M.; Gerber, T.; Mischler, B.; Radi, P.P. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Laser-Induced Incandescence has recently emerged as a versatile tool for measuring soot volume fraction in a wide range of combustion systems. In this work we investigate the essential features of the method. LII is based on the acquisition of the incandescence of soot when heated through a high power laser pulse. Initial experiments have been performed on a model laboratory flame. The behaviour of the LII signal is studied experimentally. By applying numerical calculations we investigate the possibility to obtain two-dimensional soot volume fraction distributions. For this purpose a combination of LII with other techniques is required. This part is discussed in some extent and the future work is outlined. (author) 4 figs., 3 refs.

  1. Emission of ions and charged soot particles by aircraft engines

    Directory of Open Access Journals (Sweden)

    A. Sorokin

    2002-11-01

    Full Text Available In this article, a model which examines the formation and evolution of chemiions in an aircraft engine is proposed. This model which includes chemiionisation, electron thermo-emission, electron attachment to soot particles and to neutral molecules, electron-ion and ion-ion recombination, ion-soot interaction, allows the determination of the ion concentration at the exit of the combustor and at the nozzle exit of the engine. It also allows the determination of the charge of the soot particles. A comparison of the model results with the available ground-based experimental data obtained on the ATTAS research aircraft engines during the SULFUR experiments (Schumann, 2002 shows an excellent agreement.

  2. Flow optimization in blowers by means of LDA measurements; Stroemungstechnische Optimierung von Ventilatoren mit Hilfe der LDA-Messtechnik

    Energy Technology Data Exchange (ETDEWEB)

    Reichert, E.; Strehle, M. [ebm Werke GmbH und Co. KG, Mulfingen (Germany); Bohl, K. [Heilbronn Fachhochschule (Germany)

    2003-06-01

    The contribution describes the application of LDA techniques for flow measurements and optimization of blowers. Three examples are presented to show how LDA measurements can be used for optimization and design of industrial blowers. [German] Der Beitrag beschreibt die Anwendung der LDA-Messtechnik fuer die stroemungstechnische Entwicklung und Optimierung von Ventilatoren. An drei Beispielen wird gezeigt, wie im industriellen Einsatz mit LDA-Messungen wesentliche Informationen ermittelt werden koennen, die dann zur Verbesserung oder zur Auslegung von Ventilatoren eingesetzt werden. (orig.)

  3. New Nanotech from an Ancient Material: Chemistry Demonstrations Involving Carbon-Based Soot

    Science.gov (United States)

    Campbell, Dean J.; Andrews, Mark J.; Stevenson, Keith J.

    2012-01-01

    Carbon soot has been known since antiquity, but has recently been finding new uses as a robust, inexpensive nanomaterial. This paper describes the superhydrophobic properties of carbon soot films prepared by combustion of candle wax or propane gas and introduces some of the optical absorption and fluorescence properties of carbon soot particles.…

  4. Measurement and Analysis of the Noise Radiated by Low Mach Number Centrifugal Blowers.

    Science.gov (United States)

    Yeager, David Marvin

    An investigation was performed of the broad band, aerodynamically generated noise in low tip-speed Mach number, centrifugal air moving devices. An interdisciplinary experimental approach was taken which involved investigation of the aerodynamic and acoustic fields, and their mutual relationship. The noise generation process was studied using two experimental vehicles: (1) a scale model of a homologous family of centrifugal blowers typical of those used to cool computer and business equipment, and (2) a single blade from a centrifugal blower impeller placed in a known, controllable flow field. The radiation characteristics of the model blower were investigated by measuring the acoustic intensity distribution near the blower inlet and comparing it with the intensity near the inlet to an axial flow fan. Results showed that the centrifugal blower is a distributed, random noise source, unlike an axial fan which exhibited the effects of a coherent, interacting source distribution. Aerodynamic studies of the flow field in the inlet and at the discharge to the rotating impeller were used to assess the mean flow distribution through the impeller blade channels and to identify regions of excessive turbulence near the rotating blade row. Both circumferential and spanwise mean flow nonuniformities were identified along with a region of increased turbulence just downstream of the scroll cutoff. The fluid incidence angle, normally taken as an indicator of blower performance, was estimated from mean flow data as deviating considerably from an ideal impeller design. An investigation of the noise radiated from the single, isolated airfoil was performed using modern correlation and spectral analysis techniques. Radiation from the single blade in flow was characterized using newly developed expressions for the correlation area and the dipole source strength per unit area, and from the relationship between the blade surface pressure and the incident turbulent flow field. Results

  5. Study on soot purifying of molding shop in coking factory

    Institute of Scientific and Technical Information of China (English)

    LI Duo-song; ZHANG Hui; BAI Xiang-yu

    2006-01-01

    Exhaust gas in molding shop was complicated in component and characteristic in Iow thickness asphalt smoke, mass steam-gas and dust. It was difficult to purify the soot with common purifier. So we must consider them roundly and develop new multifunction purifier. PFP multifunction soot purifier was made on the base of design optimization and was installed at Shenhuo Coking Factory in 2004. The combined effects of multi- mechanism in purifier make purifying ratio keep in high level. The remove ratio of smut reaches at 92.8%, and asphalt smoke at 83.7%.

  6. HyBlade sets new standards in axial blowers. Combination of metals and fibre-reinforced plastics; HyBlade setzt neue Massstaebe bei Axialventilatoren. Kombination von Metallen und faserverstaerkten Kunststoffen

    Energy Technology Data Exchange (ETDEWEB)

    Streng, G. [ebm-papst, Mulfingen (Germany)

    2008-03-15

    Motors with external rotors are common as a blower drives as the blower wheel can be mounted directly on the rotor. This simplifies blower construction and makes the blowers comparatively compact. This is an advantage not only in ari conditioning engineering where large blowers are commonly used, e.g. for passing air through heat exchangers. Demands on blowers are ever-increasing, i.e. maximum power, low noise, high efficiency, optimum corrosion protection, low weight, environmentally acceptable production technologies with a favourable energy balance, and - last but not least - an aesthetically pleasing design. (orig.)

  7. Boiler corrosion. Corrosion of boilers at low boiler water temperatures. Heizkessel-Korrosion. Korrosion von Heizkesseln bei tiefen Kesselwassertemperaturen

    Energy Technology Data Exchange (ETDEWEB)

    Koebel, M.; Elsener, M.

    1989-02-01

    Thermostatic cast iron and steel 35.8 specimens were inserted between the fire tubes of a test boiler and exposed to flue gases for a period of three weeks. The corrosion rates at material temperatures between 20 and 60deg C as well as the effects of continuous and intermittent boiler operation were determined. Details are given on the specimens alloying constituents, the testing and test conditions (schematic representation of the experimental set-up). Diagrams and tables facilitate access to test results informing about corrosion rates and corrosion product structure analyses for continuous burner operation. While low boiler water temperatures (below 60deg C in the case of extra light heating oils) are found to necessarily involve higher risks and shorter boiler service lives, low flue gas temperatures alone are considered not to be increasing the risk of boiler corrosion. (HWJ).

  8. Soot Surface Oxidation in Laminar Hydrocarbon/Air Diffusion Flames at Atmospheric Pressure. Appendix I

    Science.gov (United States)

    Xu, F.; El-Leathy, A. M.; Kim, C. H.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2003-01-01

    Soot surface oxidation was studied experimentally in laminar hydrocarbon/air diffusion flames at atmospheric pressure. Measurements were carried out along the axes of round fuel jets burning in coflowing dry air considering acetylene-nitrogen, ethylene, propyiene-nitrogen, propane and acetylene-benzene-nitrogen in the fuel stream. Measurements were limited to the initial stages of soot oxidation (carbon consumption less than 70%) where soot oxidation occurs at the surface of primary soot particles. The following properties were measured as a function of distance above the burner exit: soot concentrations by deconvoluted laser extinction, soot temperatures by deconvoluted multiline emission, soot structure by thermophoretic sampling and analysis using Transmission Electron Microscopy (TEM), concentrations of major stable gas species (N2, H2O, H2, O2, CO, CO2, CH4, C2H2, C2H6, C3H6, C3H8, and C6H6) by sampling and gas chromatography, concentrations of some radical species (H, OH, O) by deconvoluted Li/LiOH atomic absorption and flow velocities by laser velocimetry. For present test conditions, it was found that soot surface oxidation rates were not affected by fuel type, that direct rates of soot surface oxidation by O2 estimated from Nagle and Strickland-Constable (1962) were small compared to observed soot surface oxidation rates because soot surface oxidation was completed near the flame sheet where O2 concentrations were less than 3% by volume, and that soot surface oxidation rates were described by the OH soot surface oxidation mechanism with a collision efficiency of 0.14 and an uncertainty (95% confidence) of +/- 0.04 when allowing for direct soot surface oxidation by O2, which is in reasonably good agreement with earlier observations of soot surface oxidation rates in both premixed and diffusion flames at atmospheric pressure.

  9. Dynamics of flow–soot interaction in wrinkled non-premixed ethylene–air flames

    KAUST Repository

    Arias, Paul G.

    2015-08-17

    A two-dimensional simulation of a non-premixed ethylene–air flame was conducted by employing a detailed gas-phase reaction mechanism considering polycyclic aromatic hydrocarbons, an aerosol-dynamics-based soot model using a method of moments with interpolative closure, and a grey gas and soot radiation model using the discrete transfer method. Interaction of the sooting flame with a prescribed decaying random velocity field was investigated, with a primary interest in the effects of velocity fluctuations on the flame structure and the associated soot formation process for a fuel-strip configuration and a composition with mature soot growth. The temporally evolving simulation revealed a multi-layered soot formation process within the flame, at a level of detail not properly described by previous studies based on simplified soot models utilizing acetylene or naphthalene precursors for initial soot inception. The overall effect of the flame topology on the soot formation was found to be consistent with previous experimental studies, while a unique behaviour of localised strong oxidation was also noted. The imposed velocity fluctuations led to an increase of the scalar dissipation rate in the sooting zone, causing a net suppression in the soot production rate. Considering the complex structure of the soot formation layer, the effects of the imposed fluctuations vary depending on the individual soot reactions. For the conditions under study, the soot oxidation reaction was identified as the most sensitive to the fluctuations and was mainly responsible for the local suppression of the net soot production. © 2015 Taylor & Francis

  10. 46 CFR 109.555 - Propulsion boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Propulsion boilers. 109.555 Section 109.555 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.555 Propulsion boilers. The master or person in charge and the engineer in charge...

  11. Impact of blower performance on residential forced-air heating system performance

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, B.G. [UNIES Ltd., Winnipeg, Manitoba (Canada)

    1998-10-01

    A Canadian association of electric utilities commissioned a study on Blower Efficiency in Domestic Heating Systems because furnace blowers have undesirable load characteristics for electrical utilities; their loads often peak coincident with utility system winter (heating) and summer (air-conditioning) peaks. The study examined air-handling technologies used in domestic furnaces, surveyed residential heating and cooling system installer practices, and measured air-handling performance of 71 existing forced-air heating systems installed between 1960 and 1994. This paper summarizes study findings, including changes in furnace airflows, static pressures, air-handling efficiencies, power requirements, and noise levels. It relates air-handling power requirements and airflows of new furnaces to furnace thermal efficiency.

  12. Boundary model-based reference control of blower cooled high temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Jensen, Hans-Christian Becker; Kær, Søren Knudsen

    2011-01-01

    Fuel cells have, by design, a limited effective life time, which depends on how they are operated. The general consent is that operation of the fuel cell at the extreme of the operational range, or operation of the fuel cell without sufficient reactants (a.k.a. starvation), will lower the effective...... life time of a fuel cell significantly. On air cooled HTPEMFCs, the blower, which supplies the fuel cell with oxygen for the chemical process, also functions as the cooling system. This makes the blower bi-functional and as a result a higher supply of oxygen is often available, hence changes...... in the fuel cell output can be optimised by the knowledge of how much oxygen is supplied to the fuel cell at any given time, without reducing the effective life time of a fuel cell by starvation....

  13. Developing Boiler Concepts as Integrated Units

    DEFF Research Database (Denmark)

    Sørensen, Kim; Condra, Thomas Joseph; Houbak, Niels

    2004-01-01

    With the objective to be able to optimize the design and operation of steam boiler concepts Aalborg Industries A/S [1] has together with Aalborg University, Institute of Energy Technology [9] carried out a development project paying special attention to the boiler concept as an integrated unit...... - consisting of pressure part, burner and control system. The Technical University of Denmark, MEK - Energy Engineering Section [12] has participated in the modelling process. The project has included static and dynamic modelling of the boiler concept. For optimization of operation, verication of performance......, emissions and to obtain long time operation experiences with the boiler concept, a full scale prototype has been built and these tests have been accomplished on the prototype. By applying this integrated unit approach to the boiler concept development it has been possible to optimize the different building...

  14. Study of Jet-Propulsion System Comprising Blower, Burner, and Nozzle

    Science.gov (United States)

    Hall, Eldon W

    1944-01-01

    A study was made of the performance of a jet-propulsion system composed of an engine-driven blower, a combustion chamber, and a discharge nozzle. A simplified analysis is made of this system for the purpose of showing in concise form the effect of the important design variables and operating conditions on jet thrust, thrust horsepower, and fuel consumption. Curves are presented that permit a rapid evaluation of the performance of this system for a range of operating conditions. The performance for an illustrative case of a power plant of the type under consideration id discussed in detail. It is shown that for a given airplane velocity the jet thrust horsepower depends mainly on the blower power and the amount of fuel burned in the jet; the higher the thrust horsepower is for a given blower power, the higher the fuel consumption per thrust horsepower. Within limits the amount of air pumped has only a secondary effect on the thrust horsepower and efficiency. A lower limit on air flow for a given fuel flow occurs where the combustion-chamber temperature becomes excessive on the basis of the strength of the structure. As the air-flow rate is increased, an upper limit is reached where, for a given blower power, fuel-flow rate, and combustion-chamber size, further increase in air flow causes a decrease in power and efficiency. This decrease in power is caused by excessive velocity through the combustion chamber, attended by an excessive pressure drop caused by momentum changes occurring during combustion.

  15. Recognizing and avoiding wrong selections. Blowers in practice; Anwendungsfehler erkennen und vermeiden. Ventilatoren in der Praxis

    Energy Technology Data Exchange (ETDEWEB)

    Pielke, R.

    2002-02-01

    The contribution stresses that blower selection, i.e. design, material, integration in a system, drives and control units, should remain in the hand of experts. [German] Ventilatoren sind Stroemungsmaschinen zur Foerderung von Luft, die wir nicht sehen und fassen koennen. Die auf den Bedarfsfall zugeschnittene, optimale Auswahl eines Ventilators, die Klaerung der Materialfrage, die Einbindung des Ventilators in eine Anlage, die Festlegung des Antriebes sowie die erforderliche Regelung und Steuerung, das alles sind Fragen, die von einem Fachmann zu bearbeiten sind. (orig.)

  16. PAH emission from the industrial boilers.

    Science.gov (United States)

    Li, C; Mi, H; Lee, W; You, W; Wang, Y

    1999-10-01

    Polycyclic aromatic hydrocarbons (PAHs) emitted from 25 industrial boilers were investigated. The fuels used for these 25 boilers included 21 heavy oil, two diesel, a co-combustion of heavy oil and natural gas (HO+NG) and a co-combustion of coke oven gas and blast furnace gas (COG+BFG) boilers. PAH samples from the stack flue gas (gas and particle phases) of these 25 boilers were collected by using a PAH stack sampling system. Twenty one individual PAHs were analyzed primarily by a gas chromatography/mass spectrometer (GC/MS). Total-PAH concentration in the flue gas of 83 measured data for these 25 boiler stacks ranged between 29.0 and 4250 microg/m(3) and averaged 488 microg/m(3). The average of PAH-homologue mass (F%) counted for the total-PAH mass was 54.7%, 9.47% and 15.3% for the 2-ring, 3-ring and 4-ring PAHs, respectively. The PAHs in the stack flue gas were dominant in the lower molecular weight PAHs. The emission factors (EFs) of total-PAHs were 13,300, 2920, 2880 and 208 microg/kg-fuel for the heavy oil, diesel, HO+NG and COG+BFG fueled-boiler, respectively. Nap was the most predominant PAH occurring in the stack flue gas. In addition, the EF of 21 individual PAHs in heavy-oil boiler were almost the highest among the four various fueled-boilers except for those of FL and BkF in the diesel boiler. Furthermore, the EF of total-PAHs or BaP for heavy oil were both one order of magnitude higher than that for the diesel-fueled boiler.

  17. Computer system for monitoring power boiler operation

    Energy Technology Data Exchange (ETDEWEB)

    Taler, J.; Weglowski, B.; Zima, W.; Duda, P.; Gradziel, S.; Sobota, T.; Cebula, A.; Taler, D. [Cracow University of Technology, Krakow (Poland). Inst. for Process & Power Engineering

    2008-02-15

    The computer-based boiler performance monitoring system was developed to perform thermal-hydraulic computations of the boiler working parameters in an on-line mode. Measurements of temperatures, heat flux, pressures, mass flowrates, and gas analysis data were used to perform the heat transfer analysis in the evaporator, furnace, and convection pass. A new construction technique of heat flux tubes for determining heat flux absorbed by membrane water-walls is also presented. The current paper presents the results of heat flux measurement in coal-fired steam boilers. During changes of the boiler load, the necessary natural water circulation cannot be exceeded. A rapid increase of pressure may cause fading of the boiling process in water-wall tubes, whereas a rapid decrease of pressure leads to water boiling in all elements of the boiler's evaporator - water-wall tubes and downcomers. Both cases can cause flow stagnation in the water circulation leading to pipe cracking. Two flowmeters were assembled on central downcomers, and an investigation of natural water circulation in an OP-210 boiler was carried out. On the basis of these measurements, the maximum rates of pressure change in the boiler evaporator were determined. The on-line computation of the conditions in the combustion chamber allows for real-time determination of the heat flowrate transferred to the power boiler evaporator. Furthermore, with a quantitative indication of surface cleanliness, selective sootblowing can be directed at specific problem areas. A boiler monitoring system is also incorporated to provide details of changes in boiler efficiency and operating conditions following sootblowing, so that the effects of a particular sootblowing sequence can be analysed and optimized at a later stage.

  18. Nanoparticle production by UV irradiation of combustion generated soot particles

    Energy Technology Data Exchange (ETDEWEB)

    Stipe, Christopher B.; Choi, Jong Hyun; Lucas, Donald; Koshland, Catherine P.; Sawyer, Robert F.

    2004-07-01

    Laser ablation of surfaces normally produce high temperature plasmas that are difficult to control. By irradiating small particles in the gas phase, we can better control the size and concentration of the resulting particles when different materials are photofragmented. Here, we irradiate soot with 193 nm light from an ArF excimer laser. Irradiating the original agglomerated particles at fluences ranging from 0.07 to 0.26 J/cm{sup 2} with repetition rates of 20 and 100 Hz produces a large number of small, unagglomerated particles, and a smaller number of spherical agglomerated particles. Mean particle diameters from 20 to 50 nm are produced from soot originally having a mean electric mobility diameter of 265nm. We use a non-dimensional parameter, called the photon/atom ratio (PAR), to aid in understanding the photofragmentation process. This parameter is the ratio of the number of photons striking the soot particles to the number of the carbon atoms contained in the soot particles, and is a better metric than the laser fluence for analyzing laser-particle interactions. These results suggest that UV photofragmentation can be effective in controlling particle size and morphology, and can be a useful diagnostic for studying elements of the laser ablation process.

  19. Soot particle disintegration and detection using two laserELFFS

    Energy Technology Data Exchange (ETDEWEB)

    Stipe, Christopher B.; Lucas, Donald; Koshland, Catherine P.; Sawyer, Robert F.

    2004-11-17

    A two laser technique is used to study laser-particle interactions and the disintegration of soot by high power UV light. Two separate 20 ns laser pulses irradiate combustion generated soot nanoparticles with 193 nm photons. The first laser pulse, from 0 to 14.7 J/cm{sup 2}, photofragments the soot particles and electronically excites the liberated carbon atoms. The second laser pulse, held constant at 13 J/cm{sup 2}, irradiates the remaining particle fragments and other products of the first laser pulse. The atomic carbon fluorescence at 248 nm produced by the first laser pulse increases linearly with laser fluence from 1 to 6 J/cm{sup 2}. At higher fluences, the signal from atomic carbon signal saturates. The carbon fluorescence from the second laser pulse decreases as the fluence from the first laser increases, ultimately approaching zero as first laser fluence approaches 10 J/cm{sup 2}, suggesting that the particles fully disintegrate at high laser fluences. We use an energy balance parameter, called the photon-atom ratio (PAR), to aid in understanding laser-particle interactions. These results help define the regimes where photofragmentation fluorescence methods quantitatively measure total soot concentrations.

  20. Soot Combustion over Nanostructured Ceria with Different Morphologies

    Science.gov (United States)

    Zhang, Wen; Niu, Xiaoyu; Chen, Liqiang; Yuan, Fulong; Zhu, Yujun

    2016-06-01

    In this study, nano-structure ceria with three different morphologies (nanorod, nanoparticle and flake) have been prepared by hydrothermal and solvothermal methods. The ceria samples were deeply characterized by XRD, SEM, TEM, H2-TPR, XPS and in-situ DRIFTS, and tested for soot combustion in absence/presence NO atmospheres under loose and tight contact conditions. The prepared ceria samples exhibit excellent catalytic activities, especially, the CeO2 with nanorod (Ce-R) shows the best catalytic activity, for which the peak temperature of soot combustion (Tm) is about 500 and 368 °C in loose and tight contact conditions, respectively. The catalytic activity for Ce-R is higher than that of the reported CeO2 catalysts and reaches a level that of precious metals. The characterization results reveal that the maximal amounts of adsorbed oxygen species on the surface of the nanostructure Ce-R catalyst should be the crucial role to decide the catalytic soot performance. High BET surface area may also be a positive effect on soot oxidation activity under loose contact conditions.

  1. Laser-saturated fluorescence measurements in laminar sooting diffusion flames

    Science.gov (United States)

    Wey, Changlie

    1993-01-01

    The hydroxyl radical is known to be one of the most important intermediate species in the combustion processes. The hydroxyl radical has also been considered a dominant oxidizer of soot particles in flames. In this investigation the hydroxyl concentration profiles in sooting diffusion flames were measured by the laser-saturated fluorescence (LSF) method. The temperature distributions in the flames were measured by the two-line LSF technique and by thermocouple. In the sooting region the OH fluorescence was too weak to make accurate temperature measurements. The hydroxyl fluorescence profiles for all four flames presented herein show that the OH fluorescence intensities peaked near the flame front. The OH fluorescence intensity dropped sharply toward the dark region of the flame and continued declining to the sooting region. The OH fluorescence profiles also indicate that the OH fluorescence decreased with increasing height in the flames for all flames investigated. Varying the oxidizer composition resulted in a corresponding variation in the maximum OH concentration and the flame temperature. Furthermore, it appears that the maximum OH concentration for each flame increased with increasing flame temperature.

  2. Modification and Application of a Leaf Blower-vac for Field Sampling of Arthropods

    Science.gov (United States)

    Zou, Yi; van Telgen, Mario D.; Chen, Junhui; Xiao, Haijun; de Kraker, Joop; Bianchi, Felix J. J. A.; van der Werf, Wopke

    2016-01-01

    Rice fields host a large diversity of arthropods, but investigating their population dynamics and interactions is challenging. Here we describe the modification and application of a leaf blower-vac for suction sampling of arthropod populations in rice. When used in combination with an enclosure, application of this sampling device provides absolute estimates of the populations of arthropods as numbers per standardized sampling area. The sampling efficiency depends critically on the sampling duration. In a mature rice crop, a two-minute sampling in an enclosure of 0.13 m2 yields more than 90% of the arthropod population. The device also allows sampling of arthropods dwelling on the water surface or the soil in rice paddies, but it is not suitable for sampling fast flying insects, such as predatory Odonata or larger hymenopterous parasitoids. The modified blower-vac is simple to construct, and cheaper and easier to handle than traditional suction sampling devices, such as D-vac. The low cost makes the modified blower-vac also accessible to researchers in developing countries. PMID:27584040

  3. Modification and Application of a Leaf Blower-vac for Field Sampling of Arthropods.

    Science.gov (United States)

    Zou, Yi; van Telgen, Mario D; Chen, Junhui; Xiao, Haijun; de Kraker, Joop; Bianchi, Felix J J A; van der Werf, Wopke

    2016-08-10

    Rice fields host a large diversity of arthropods, but investigating their population dynamics and interactions is challenging. Here we describe the modification and application of a leaf blower-vac for suction sampling of arthropod populations in rice. When used in combination with an enclosure, application of this sampling device provides absolute estimates of the populations of arthropods as numbers per standardized sampling area. The sampling efficiency depends critically on the sampling duration. In a mature rice crop, a two-minute sampling in an enclosure of 0.13 m(2) yields more than 90% of the arthropod population. The device also allows sampling of arthropods dwelling on the water surface or the soil in rice paddies, but it is not suitable for sampling fast flying insects, such as predatory Odonata or larger hymenopterous parasitoids. The modified blower-vac is simple to construct, and cheaper and easier to handle than traditional suction sampling devices, such as D-vac. The low cost makes the modified blower-vac also accessible to researchers in developing countries.

  4. Numerical Simulation of Unsteady Discharge Flow with Fluctuation in Positive Discharge Blower

    Institute of Scientific and Technical Information of China (English)

    LIU Zhengxian; WANG Dou; XU Lianhuan

    2009-01-01

    The operating performance of positive discharge blower/s markedly influenced by the pulsation of the discharge flow, but difficult to be measured with experimental methods. The internal and discharge flow of positive discharge blower with involute type three-lobe are numerically investigated, both in air cooling and countercurrent cooling conditions by means of computational fluid dynamics (CFD). The unsteady compressible flow equations are solved using RNG κ-ε turbulent model. The finite difference method and the second order upwind difference scheme are applied into discrete equations. In the numerical simulation, the dynamic mesh techniques are used to approach the rotating displacement of cell cubage and the alterability of inlet, outlet flow area. The non-uniform mesh is applied to the rotor-stator coupled area. The reliability of the numerical method is verified by simulating the inner flow and comparing with the semi-empirical theory. The flow flux curves and the distributing of velocity vector showed obvious vortex motion in all the discharge process, both in air cooling and countercurrent cooling conditions. These vortexes with different positions, intension and numbers at different rotating angles have remarkable influences on the discharge flux. For air cooling, the vortex produced a second pulsation with big-amplitude in a cycle, and led to the early appearance of maximum of backflow. For countercurrent cooling, the frequency of pulsation increased due to the pre-inflow, but the hackflow at the outlet is prevented, also the pulsation strength has greatly decreased.

  5. An analytical model to describe the compression in turbomolecular pumps and roots blowers

    Energy Technology Data Exchange (ETDEWEB)

    Voss, G [Oerlikon Leybold Vacuum Bonner Str. 498, D - 50968 Cologne (Germany)], E-mail: gerhard.voss@oerlikon.com

    2008-05-01

    An analytical model is presented, useful in practice, for calculating and analysing the compression curves of classical turbomolecular pumps, wide range turbomolecular pumps and Roots blowers. It is demonstrated that the model, primarily proposed for classical turbomolecular pumps, can be applied to wide range turbomolecular pumps and Roots blowers as well. The model is based on an ordinary differential equation for the pressure as a function of position inside the pump. Solving the differential equation makes it possible both to calculate the compression curves for a finite gas throughput (Q > 0) and for zero gas throughput. A hypothesis is posed holding that the compression curve for zero gas throughput can be derived from a compression curve for a finite gas throughput, e.g., Q = 1 sccm in the case of turbomolecular pumps. In the case of Roots blowers a proposal is made how to describe the backleakage phenomenon quantitatively. For each type of vacuum pump mentioned above the comparison with experimental data shows that the model provides an excellent qualitative and quantitative reproduction of the observed phenomena in the whole relevant pressure range, i.e., perfect agreement over more than five pressure decades is achieved.

  6. Deficiencies in building envelope performance. Quantitative results with blower-door and thermography

    Energy Technology Data Exchange (ETDEWEB)

    Popp, G.; Kalender, V.; Heidt, F.D. [Dept. of Physics, Univ. of Siegen (Germany)

    1996-12-31

    Air-tightness and lack of thermal bridges are indispensable characteristics of low energy houses and passive solar buildings. Although the German heating demand regulation (Waermeschutzverordnung) does not require a verification as yet, only measurements can give the proof of assured quality. Blower doors are well suited to test the air-tightness of buildings and thermographic records can identify and visualize thermal bridges. A new software-tool was developed to evaluate blower door measurements in accordance with the prescriptions of ISO 9972. Further, a new control of pressure differences across blower doors was developed to enable precise air flow measurements through single, small leakages in low-energy buildings by the balanced fan pressurization method. For quantitative analysis of thermographic pictures an evaluation software package was developed including an algorithm to determine lengths and surface areas of objects. Based on various assumptions and boundary conditions it is possible to determine the relative deviations of local U-values from their mean value. Measurements were carried out at 39 buildings of several construction techniques. Typical examples of commonly occuring thermal bridges and air leakages are rolling shutter boxes, window and floor joints as well as wall sockets. The total heat loss through thermal bridges can be reduced by up to 15% - as shown in simulations - with only few constructive measures. (orig.)

  7. Near-fatal methemoglobinemia after recreational inhalation of amyl nitrite aerosolized with a compressed gas blower.

    Science.gov (United States)

    Lin, Chih-Hao; Fang, Cheng-Chung; Lee, Chien-Chang; Ko, Patrick Chow-In; Chen, Wen-Jone

    2005-11-01

    Adverse effects associated with recreational inhalation of nitrites are usually mild and rarely life-threatening. We report a rare case of near-fatal methemoglobinemia after inhalation of amyl nitrite after aerosolizing the liquid using a compressed gas blower designed to clean photographic equipment that employed hydrofluoroalkane-134a as a propellant. A 31-year-old previously healthy male became dyspneic and fainted soon after the recreational inhalation of amyl nitrite aerosolized using a compressed gas blower. He was brought to the emergency department with severe cyanotic appearance and profound shock. Oxygen saturation was 82%, unresponsive to oxygen supply. His methemoglobin blood level was 52.2%. After 100 mg of methylene blue (2 mg/kg body weight) was administered intravenously, he recovered consciousness, and dyspnea and cyanosis subsided gradually. This case illustrates the extraordinary hazard of the use of a compressed gas blower in the recreational inhalation of nitrites. Prompt recognition and rapid antidotal treatment may adequately correct near-fatal overdose associated with recreational use of amyl nitrite.

  8. Ceria Prepared by Flame Spray Pyrolysis as an Efficient Catalyst for Oxidation of Diesel Soot

    DEFF Research Database (Denmark)

    Christensen, Jakob Munkholt; Deiana, Davide; Grunwaldt, Jan-Dierk

    2014-01-01

    Ceria has been prepared by flame spray pyrolysis and tested for activity in catalytic soot oxidation. In tight contact with soot the oxidation activity (measured in terms of the temperature of maximal oxidation rate, Tmax) of the flame made ceria is among the highest reported for CeO2. This can...... to a significant degree be ascribed to the large surface area achieved with the flame spray pyrolysis method. The importance of the inherent soot reactivity for the catalytic oxidation was studied using various soot samples, and the reactivity of the soot was found to have a significant impact, as the Tmax......-value for oxidation in tight contact with a catalyst scaled linearly with the Tmax-value in non-catalytic soot oxidation. The Tmax-value in non-catalytic soot oxidation was in turn observed to scale linearly with the H/C ratio of the carbonaceous materials....

  9. 10 CFR 431.82 - Definitions concerning commercial packaged boilers.

    Science.gov (United States)

    2010-01-01

    ... COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Packaged Boilers § 431.82 Definitions concerning commercial...). Commercial packaged boiler means a type of packaged low pressure boiler that is industrial equipment with a... 10 Energy 3 2010-01-01 2010-01-01 false Definitions concerning commercial packaged boilers....

  10. 49 CFR 230.36 - Hydrostatic testing of boilers.

    Science.gov (United States)

    2010-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Pressure Testing of Boilers § 230.36 Hydrostatic testing of boilers. (a) Time of test. The... 49 Transportation 4 2010-10-01 2010-10-01 false Hydrostatic testing of boilers. 230.36 Section...

  11. 46 CFR 63.25-7 - Exhaust gas boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Exhaust gas boilers. 63.25-7 Section 63.25-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING AUTOMATIC AUXILIARY BOILERS Requirements for Specific Types of Automatic Auxiliary Boilers § 63.25-7 Exhaust gas boilers. (a)...

  12. 49 CFR 230.30 - Lap-joint seam boilers.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Lap-joint seam boilers. 230.30 Section 230.30..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Inspection and Repair § 230.30 Lap-joint seam boilers. Every boiler having lap-joint longitudinal...

  13. 46 CFR 61.05-20 - Boiler safety valves.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Boiler safety valves. 61.05-20 Section 61.05-20 Shipping... INSPECTIONS Tests and Inspections of Boilers § 61.05-20 Boiler safety valves. Each safety valve for a drum, superheater, or reheater of a boiler shall be tested at the interval specified by table 61.05-10....

  14. 46 CFR 61.05-15 - Boiler mountings and attachments.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Boiler mountings and attachments. 61.05-15 Section 61.05... TESTS AND INSPECTIONS Tests and Inspections of Boilers § 61.05-15 Boiler mountings and attachments. (a....05-10. (b) Each stud or bolt for each boiler mounting that paragraph (c) of this section requires...

  15. 40 CFR 65.149 - Boilers and process heaters.

    Science.gov (United States)

    2010-07-01

    ... thermal units per hour) or greater. (ii) A boiler or process heater into which the vent stream is... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Boilers and process heaters. 65.149... System or a Process § 65.149 Boilers and process heaters. (a) Boiler and process heater equipment...

  16. Soot modeling of counterflow diffusion flames of ethylene-based binary mixture fuels

    KAUST Repository

    Wang, Yu

    2015-03-01

    A soot model was developed based on the recently proposed PAH growth mechanism for C1-C4 gaseous fuels (KAUST PAH Mechanism 2, KM2) that included molecular growth up to coronene (A7) to simulate soot formation in counterflow diffusion flames of ethylene and its binary mixtures with methane, ethane and propane based on the method of moments. The soot model has 36 soot nucleation reactions from 8 PAH molecules including pyrene and larger PAHs. Soot surface growth reactions were based on a modified hydrogen-abstraction-acetylene-addition (HACA) mechanism in which CH3, C3H3 and C2H radicals were included in the hydrogen abstraction reactions in addition to H atoms. PAH condensation on soot particles was also considered. The experimentally measured profiles of soot volume fraction, number density, and particle size were well captured by the model for the baseline case of ethylene along with the cases involving mixtures of fuels. The simulation results, which were in qualitative agreement with the experimental data in the effects of binary fuel mixing on the sooting structures of the measured flames, showed in particular that 5% addition of propane (ethane) led to an increase in the soot volume fraction of the ethylene flame by 32% (6%), despite the fact that propane and ethane are less sooting fuels than is ethylene, which is in reasonable agreement with experiments of 37% (14%). The model revealed that with 5% addition of methane, there was an increase of 6% in the soot volume fraction. The average soot particle sizes were only minimally influenced while the soot number densities were increased by the fuel mixing. Further analysis of the numerical data indicated that the chemical cross-linking effect between ethylene and the dopant fuels resulted in an increase in PAH formation, which led to higher soot nucleation rates and therefore higher soot number densities. On the other hand, the rates of soot surface growth per unit surface area through the HACA mechanism were

  17. Extremely slowly desorbing polycyclic aromatic hydrocarbons from soot and soot-like materials: Evidence by supercritical fluid extraction

    NARCIS (Netherlands)

    Jonker, M.T.O.; Hawthorne, S.B.; Koelmans, A.A.

    2005-01-01

    Combustion-derived PAHs are strongly sorbed to their particulate carrier (i.e., soot, charcoal), and therefore, very slow desorption kinetics of the chemicals might be anticipated. Measurements are however lacking, because conventional methods (Tenax, XAD, gas-purging) fail to accurately determine d

  18. An investigation of late-combustion soot burnout in a DI diesel engine using simultaneous planar imaging of soot and OH radical

    Energy Technology Data Exchange (ETDEWEB)

    John E. Dec; Peter L. Kelly-Zion

    1999-10-01

    Diesel engine design continues to be driven by the need to improve performance while at the same time achieving further reductions in emissions. The development of new designs to accomplish these goals requires an understanding of how the emissions are produced in the engine. Laser-imaging diagnostics are uniquely capable of providing this information, and the understanding of diesel combustion and emissions formation has been advanced considerably in recent years by their application. However, previous studies have generally focused on the early and middle stages of diesel combustion. These previous laser-imaging studies do provide important insight into the soot formation and oxidation processes during the main combustion event. They indicate that prior to the end of injection, soot formation is initiated by fuel-rich premixed combustion (equivalence ratio > 4) near the upstream limit of the luminous portion of the reacting fuel jet. The soot is then oxidized at the diffusion flame around the periphery of the luminous plume. Under typical diesel engine conditions, the diffusion flame does not burn the remaining fuel and soot as rapidly as it is supplied, resulting in an expanding region of rich combustion products and soot. This is evident in natural emission images by the increasing size of the luminous soot cloud prior to the end of injection. Hence, the amount of soot in the combustion chamber typically increases until shortly after the end of fuel injection, at which time the main soot formation period ends and the burnout phase begins. Sampling valve and two-color pyrometry data indicate that the vast majority (more than 90%) of the soot formed is oxidized before combustion ends; however, it is generally thought that a small fraction of this soot from the main combustion zones is not consumed and is the source of tail pipe soot emissions.

  19. Simultaneous measurement of the concentrations of soot particles and gas species in light hydrocarbon flames using mass spectrometry

    Science.gov (United States)

    Li, Qingxun; Liu, Fang; Wang, Dezheng; Wang, Tiefeng

    2014-10-01

    Besides gas species concentrations, soot volume fractions are also important data in the study of flames. This work describes the simultaneous measurement of the concentrations of soot and gas species in light hydrocarbon flames by in situ sampling and mass spectrometry (MS).The reaction medium was frozen by sampling into a very low-pressure tube, and the soot selectivity (proportion of carbon atoms in the reactant converted to soot) was determined from the C and H mass balances using the measured concentrations of the gas species and the mass of soot present per unit gas volume. The H/C ratio of the soot was measured by a thermogravimetry-mass spectrometry combination. The soot volume fraction was calculated from the soot selectivity and density of the soot. The soot selectivity measured by this reduced pressure sampling mass spectrometry (RPSMS) method was verified by measurements using the gravimetric sampling technique where the mass of soot collected in a volume of gas was weighed by a high precision balance. For most of the measurements, the uncertainty in the soot volume fraction was ±5%, but this would be larger when the soot volume fractions are less than 1 ppm. For demonstration, the RPSMS method was used to study a methane fuel-rich flame where the soot volume fractions were 1-5 ppm. The simultaneous measurement of concentrations of soot and gas species is useful for the quantitative study of flames.

  20. Physical and chemical characterization of residential oil boiler emissions.

    Science.gov (United States)

    Hays, Michael D; Beck, Lee; Barfield, Pamela; Lavrich, Richard J; Dong, Yuanji; Vander Wal, Randy L

    2008-04-01

    The toxicity of emissions from the combustion of home heating oil coupled with the regional proximity and seasonal use of residential oil boilers (ROB) is an important public health concern. Yet scant physical and chemical information about the emissions from this source is available for climate and air quality modeling and for improving our understanding of aerosol-related human health effects. The gas- and particle-phase emissions from an active ROB firing distillate fuel oil (commonly known as diesel fuel) were evaluated to address this deficiency. Ion chromatography of impactor samples showed that the ultrafine ROB aerosol emissions were approximately 45% (w/w) sulfate. Gas chromatography-mass spectrometry detected various n-alkanes at trace levels, sometimes in accumulation mode particles, and out of phase with the size distributions of aerosol mass and sulfate. The carbonaceous matter in the ROB aerosol was primarily light-adsorbing elemental carbon. Gas chromatography-atomic emission spectroscopy measured a previously unrecognized organosulfur compound group in the ROB aerosol emissions. High-resolution transmission electron microscopy of ROB soot indicated the presence of a highly ordered primary particle nanostructure embedded in larger aggregates. Organic gas emissions were measured using EPA Methods TO-15 and TO-11A. The ROB emitted volatile oxygenates (8 mg/(kg of oil burned)) and olefins (5 mg/(kg of oil burned)) mostly unrelated to the base fuel composition. In the final analysis, the ROB tested was a source of numerous hazardous air pollutants as defined in the Clean Air Act Amendments. Approximations conducted using emissions data from the ROB tests show relatively low contributions to a regional-level anthropogenic emissions inventory for volitile organic compounds, PM2.5, and SO2 mass.

  1. Effect of Dimethyl Ether Mixing on Soot Size Distribution in Premixed Ethylene Flame

    KAUST Repository

    Li, Zepeng

    2016-04-21

    As a byproduct of incomplete combustion, soot attracts increasing attentions as extensive researches exploring serious health and environmental effects from soot particles. Soot emission reduction requires a comprehensive understanding of the mechanism for polycyclic aromatic hydrocarbons and of soot formation and aging processes. Therefore, advanced experimental techniques and numerical simulations have been conducted to investigate this procedure. In order to investigate the effects of dimethyl ether (DME) mixing on soot particle size distribution functions (PSDFs), DME was mixed in premixed ethylene/oxygen/argon at flames at the equivalence ratio of 2.0 with a range of mixing ratio from 0% to 30% of the total carbon fed. Two series of atmospheric pressure flames were tested in which cold gas velocity was varied to obtain different flame temperatures. The evolution of PSDFs along the centerline of the flame was determined by burner stabilized stagnation probe and scanning mobility particle sizer (SMPS) techniques, yielding the PSDFs for various separation distances above the burner surface. Meanwhile, the flame temperature profiles were carefully measured by a thermocouple and the comparison to that of simulated laminar premixed burner-stabilized stagnation flame was satisfactory. Additionally, to understand the chemical role of DME mixing in soot properties, characterization measurements were conducted on soot samples using thermo-gravimetric analysis (TGA) and elemental analysis (EA). Results of the evolution of PSDFs and soot volume fraction showed that adding DME into ethylene flame could reduce soot yield significantly. The addition of DME led to the decrease of both the soot nucleation rate and the particle mass growth rate. To explain the possible mechanism for the observation, numerical simulations were performed. Although DME addition resulted in the slight increase of methyl radicals from pyrolysis, the decrease in acetylene and propargyl radicals

  2. On the formation and early evolution of soot in turbulent nonpremixed flames

    KAUST Repository

    Bisetti, Fabrizio

    2012-01-01

    A Direct Numerical Simulation (DNS) of soot formation in an n-heptane/air turbulent nonpremixed flame has been performed to investigate unsteady strain effects on soot growth and transport. For the first time in a DNS of turbulent combustion, Polycyclic Aromatic Hydrocarbons (PAH) are included via a validated, reduced chemical mechanism. A novel statistical representation of soot aggregates based on the Hybrid Method of Moments is used [M.E. Mueller, G. Blanquart, H. Pitsch, Combust. Flame 156 (2009) 1143-1155], which allows for an accurate state-of-the-art description of soot number density, volume fraction, and morphology of the aggregates. In agreement with previous experimental studies in laminar flames, Damköhler number effects are found to be significant for PAH. Soot nucleation and growth from PAH are locally inhibited by high scalar dissipation rate, thus providing a possible explanation for the experimentally observed reduction of soot yields at increasing levels of mixing in turbulent sooting flames. Furthermore, our data indicate that soot growth models that rely on smaller hydrocarbon species such as acetylene as a proxy for large PAH molecules ignore or misrepresent the effects of turbulent mixing and hydrodynamic strain on soot formation due to differences in the species Damköhler number. Upon formation on the rich side of the flame, soot is displaced relative to curved mixture fraction iso-surfaces due to differential diffusion effects between soot and the gas-phase. Soot traveling towards the flame is oxidized, and aggregates displaced away from the flame grow primarily by condensation of PAH on the particle surface. In contrast to previous DNS studies based on simplified soot and chemistry models, surface reactions are found to contribute barely to the growth of soot, for nucleation and condensation processes occurring in the fuel stream are responsible for the most of soot mass generation. Furthermore, the morphology of the soot aggregates is

  3. Formation of Soot in Counterflow Diffusion Flames with Carbon Dioxide Dilution

    KAUST Repository

    Wang, Yu

    2016-05-04

    Experimental and numerical modeling studies have been performed to investigate the effect of CO2 dilution on soot formation in ethylene counterflow diffusion flames. Thermal and chemical effects of CO2 addition on soot growth was numerically identified by using a fictitious CO2 species, which was treated as inert in terms of chemical reactions. The results showed that CO2 addition reduces soot formation both thermodynamically and chemically. In terms of chemical effect, the addition of CO2 decreases soot formation through various pathways, including: (1) reduced soot precursor (PAH) formation leading to lower inception rates and soot number density, which in turn results in lower surface area for soot mass addition; (2) reduced H, CH3, and C3H3 concentrations causing lower H abstraction rate and therefore less active site per surface area for soot growth; and (3) reduced C2H2 mole fraction and thus a slower C2H2 mass addition rate. In addition, the sooting limits were also measured for ethylene counterflow flames in both N2 and CO2 atmosphere and the results showed that sooting region was significantly reduced in the CO2 case compared to the N2 case. © 2016 Taylor & Francis.

  4. Optical properties of soot particles: measurement - model comparison

    Science.gov (United States)

    Forestieri, S.; Lambe, A. T.; Lack, D.; Massoli, P.; Cross, E. S.; Dubey, M.; Mazzoleni, C.; Olfert, J.; Freedman, A.; Davidovits, P.; Onasch, T. B.; Cappa, C. D.

    2013-12-01

    Soot, a product of incomplete combustion, plays an important role in the earth's climate system through the absorption and scattering of solar radiation. In order to accurately model the direct radiative impact of black carbon (BC), the refractive index and shape dependent scattering and absorption characteristics must be known. At present, the assumed shape remains highly uncertain because BC particles are fractal-like, being agglomerates of smaller (20-40 nm) spherules, yet traditional optical models such as Mie theory typically assume a spherical particle morphology. To investigate the ability of various optical models to reproduce observed BC optical properties, we measured light absorption and extinction coefficients of methane and ethylene flame soot particles. Optical properties were measured by multiple instruments: absorption by a dual cavity ringdown photoacoustic spectrometer (CRD-PAS), absorption and scattering by a 3-wavelength photoacoustic/nephelometer spectrometer (PASS-3) and extinction and scattering by a cavity attenuated phase shift spectrometer (CAPS). Soot particle mass was quantified using a centrifugal particle mass analyzer (CPMA) and mobility size was measured with a scanning mobility particle sizer (SMPS). Measurements were made for nascent soot particles and for collapsed soot particles following coating with dioctyl sebacate or sulfuric acid and thermal denuding to remove the coating. Wavelength-dependent refractive indices for the sampled particles were derived by fitting the observed absorption and extinction cross-sections to spherical particle Mie theory and Rayleigh-Debye-Gans theory. The Rayleigh-Debye-Gans approximation assumes that the absorption properties of soot are dictated by the individual spherules and neglects interaction between them. In general, Mie theory reproduces the observed absorption and extinction cross-sections for particles with volume equivalent diameters (VED) VED > ~160 nm. The discrepancy is most

  5. Strain rate effect on sooting characteristics in laminar counterflow diffusion flames

    KAUST Repository

    Wang, Yu

    2016-01-20

    The effects of strain rate, oxygen enrichment and fuel type on the sooting characteristics of counterflow diffusion flames were studied. The sooting structures and relative PAH concentrations were measured with laser diagnostics. Detailed soot modeling using recently developed PAH chemistry and surface reaction mechanism was performed and the results were compared with experimental data for ethylene flames, focusing on the effects of strain rates. The results showed that increase in strain rate reduced soot volume fraction, average size and peak number density. Increase in oxygen mole fraction increased soot loading and decreased its sensitivity on strain rate. The soot volume fractions of ethane, propene and propane flames were also measured as a function of global strain rate. The sensitivity of soot volume fraction to strain rate was observed to be fuel dependent at a fixed oxygen mole fraction, with the sensitivity being higher for more sooting fuels. However, when the soot loadings were matched at a reference strain rate for different fuels by adjusting oxygen mole fraction, the dependence of soot loading on strain rate became comparable among the tested fuels. PAH concentrations were shown to decrease with increase in strain rate and the dependence on strain rate is more pronounced for larger PAHs. Soot modeling was performed using detailed PAH growth chemistry with molecular growth up to coronene. A qualitative agreement was obtained between experimental and simulation results, which was then used to explain the experimentally observed strain rate effect on soot growth. However, quantitatively, the simulation result exhibits higher sensitivity to strain rate, especially for large PAHs and soot volume fractions.

  6. Molecular mechanics and quantum mechanical modeling of hexane soot structure and interactions with pyrene

    Directory of Open Access Journals (Sweden)

    Kubicki JD

    2000-09-01

    Full Text Available Molecular simulations (energy minimizations and molecular dynamics of an n-hexane soot model developed by Smith and co-workers (M. S. Akhter, A. R. Chughtai and D. M. Smith, Appl. Spectrosc., 1985, 39, 143; ref. 1 were performed. The MM+ (N. L. Allinger, J. Am. Chem. Soc., 1977, 395, 157; ref. 2 and COMPASS (H. Sun, J. Phys. Chem., 1998, 102, 7338; ref. 3 force fields were tested for their ability to produce realistic soot nanoparticle structure. The interaction of pyrene with the model soot was simulated. Quantum mechanical calculations on smaller soot fragments were carried out. Starting from an initial 2D structure, energy minimizations are not able to produce the observed layering within soot with either force field. Results of molecular dynamics simulations indicate that the COMPASS force field does a reasonably accurate job of reproducing observations of soot structure. Increasing the system size from a 683 to a 2732 atom soot model does not have a significant effect on predicted structures. Neither does the addition of water molecules surrounding the soot model. Pyrene fits within the soot structure without disrupting the interlayer spacing. Polycyclic aromatic hydrocarbons (PAH, such as pyrene, may strongly partition into soot and have slow desorption kinetics because the PAH-soot bonding is similar to soot–soot interactions. Diffusion of PAH into soot micropores may allow the PAH to be irreversibly adsorbed and sequestered so that they partition slowly back into an aqueous phase causing dis-equilibrium between soil organic matter and porewater.

  7. 30 CFR 56.13030 - Boilers.

    Science.gov (United States)

    2010-07-01

    ... Valves BNon-ASME Code Boilers and Pressure Vessels CStorage of Mild Steel Covered Arc Welding Electrodes... American Society of Mechanical Engineers, 22 Law Drive, P.O. Box 2900, Fairfield, New Jersey 07007,...

  8. Modelling and simulating fire tube boiler performance

    DEFF Research Database (Denmark)

    Sørensen, K.; Condra, T.; Houbak, Niels;

    2003-01-01

    A model for a flue gas boiler covering the flue gas and the water-/steam side has been formulated. The model has been formulated as a number of sub models that are merged into an overall model for the complete boiler. Sub models have been defined for the furnace, the convection zone (split in 2......: a zone submerged in water and a zone covered by steam), a model for the material in the boiler (the steel) and 2 models for resp. the water/steam zone (the boiling) and the steam. The dynamic model has been developed as a number of Differential-Algebraic-Equation system (DAE). Subsequently Mat......Lab/Simulink has been applied for carrying out the simulations. To be able to verify the simulated results experiments has been carried out on a full scale boiler plant....

  9. Modelling and simulating fire tube boiler performance

    DEFF Research Database (Denmark)

    Sørensen, Kim; Karstensen, Claus; Condra, Thomas Joseph;

    2003-01-01

    A model for a ue gas boiler covering the ue gas and the water-/steam side has been formulated. The model has been formulated as a number of sub models that are merged into an overall model for the complete boiler. Sub models have been dened for the furnace, the convection zone (split in 2: a zone...... submerged in water and a zone covered by steam), a model for the material in the boiler (the steel) and 2 models for resp. the water/steam zone (the boiling) and the steam. The dynamic model has been developed as a number of Differential-Algebraic- Equation system (DAE). Subsequently MatLab/Simulink has...... been applied for carrying out the simulations. To be able to verify the simulated results an experiments has been carried out on a full scale boiler plant....

  10. Boiler scale prevention employing an organic chelant

    Science.gov (United States)

    Wallace, Steven L.; Griffin, Jr., Freddie; Tvedt, Jr., Thorwald J.

    1984-01-01

    An improved method of treating boiler water which employs an oxygen scavenging compound and a compound to control pH together with a chelating agent, wherein the chelating agent is hydroxyethylethylenediaminetriacetic acid.

  11. New thinking for the boiler room.

    Science.gov (United States)

    Rose, Wayne

    2008-09-01

    Wayne Rose, marketing manager at integrated plant room manufacturer Armstrong Integrated Systems, explains how increasing use of off-site manufacture, the latest 3D modelling technology, and advances in control technology, are revolutionising boiler room design and construction.

  12. Shock tube study of the fuel structure effects on the chemical kinetic mechanisms responsible for soot formation

    Science.gov (United States)

    Frenklach, M.

    1983-01-01

    Soot formation in toluene-, benzene-, and acetylene-oxygen-argon mixtures was investigated to study soot formation in a combustion environment. High concentrations of oxygen completely suppress soot formation. The addition of oxygen at relatively low concentrations uniformly suppresses soot formation at high pressures, while at relatively lower pressures it suppresses soot formation at higher temperatures while promoting soot production at lower temperatures. The observed behavior indicates that oxidation reactions compete with ring fragmentation. The main conclusion to be drawn from the results is that the soot formation mechanism is probably the same for the pyrolysis and oxidation of hydrocarbons. That is, the addition of oxygen does not alter the soot route but rather promotes or inhibits this route by means of competitive reactions. An approach to empirical modeling of soot formation during pyrolysis of aromatic hydrocarbons is also presented.

  13. Characterization of Oxy-combustion Impacts in Existing Coal-fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Bradley [Univ. of Utah, Salt Lake City, UT (United States); Davis, Kevin [Univ. of Utah, Salt Lake City, UT (United States); Senior, Constance [Univ. of Utah, Salt Lake City, UT (United States); Shim, Hong Shim [Univ. of Utah, Salt Lake City, UT (United States); Otten, Brydger Van [Univ. of Utah, Salt Lake City, UT (United States); Fry, Andrew [Univ. of Utah, Salt Lake City, UT (United States); Wendt, Jost [Univ. of Utah, Salt Lake City, UT (United States); Eddings, Eric [Univ. of Utah, Salt Lake City, UT (United States); Paschedag, Alan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Shaddix, Christopher [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cox, William [Brigham Young Univ., Provo, UT (United States); Tree, Dale [Brigham Young Univ., Provo, UT (United States)

    2013-09-30

    Reaction Engineering International (REI) managed a team of experts from University of Utah, Siemens Energy, Praxair, Vattenfall AB, Sandia National Laboratories, Brigham Young University (BYU) and Corrosion Management Ltd. to perform multi-scale experiments, coupled with mechanism development, process modeling and CFD modeling, for both applied and fundamental investigations. The primary objective of this program was to acquire data and develop tools to characterize and predict impacts of CO{sub 2} flue gas recycle and burner feed design on flame characteristics (burnout, NO{sub x}, SO{sub x}, mercury and fine particle emissions, heat transfer) and operational concerns (fouling, slagging and corrosion) inherent in the retrofit of existing coal-fired boilers for oxy-coal combustion. Experimental work was conducted at Sandia National Laboratories’ Entrained Flow Reactor, the University of Utah Industrial Combustion Research Facility, and Brigham Young University. Process modeling and computational fluid dynamics (CFD) modeling was performed at REI. Successful completion of the project objectives resulted in the following key deliverables: 1) Multi-scale test data from 0.1 kW bench-scale, 100 kW and 200 kW laboratory-scale, and 1 MW semi-industrial scale combustors that describe differences in flame characteristics, fouling, slagging and corrosion for coal combustion under air-firing and oxygen-firing conditions, including sensitivity to oxy-burner design and flue gas recycle composition. 2) Validated mechanisms developed from test data that describe fouling, slagging, waterwall corrosion, heat transfer, char burnout and sooting under coal oxy-combustion conditions. The mechanisms were presented in a form suitable for inclusion in CFD models or process models. 3) Principles to guide design of pilot-scale and full-scale coal oxy-firing systems and flue gas recycle configurations, such that boiler operational impacts from oxy-combustion retrofits are minimized. 4

  14. Single Particle Soot Photometer intercomparison at the AIDA chamber

    Directory of Open Access Journals (Sweden)

    M. Laborde

    2012-12-01

    Full Text Available Soot particles, consisting of black carbon (BC, organic carbon (OC, inorganic salts, and trace elements, are emitted into the atmosphere during incomplete combustion. Accurate measurements of atmospheric BC are important as BC particles cause adverse health effects and impact the climate.

    Unfortunately, the accurate measurement of the properties and mass concentrations of BC particles remains difficult. The Single Particle Soot Photometer (SP2 can contribute to improving this situation by measuring the mass of refractory BC in individual particles as well as its mixing state.

    Here, the results of the first detailed SP2 intercomparison, involving 6 SP2s from 6 different research groups, are presented, including the most evolved data products that can presently be calculated from SP2 measurements.

    It was shown that a detection efficiency of almost 100% down to 1 fg BC per particle can readily be achieved, and that this limit can be pushed down to ∼0.2 fg BC with optimal SP2 setup. Number and mass size distributions of BC cores agreed within ±5% and ±10%, respectively, in between the SP2s, with larger deviations in the range below 1 fg BC.

    The accuracy of the SP2's mass concentration measurement depends on the calibration material chosen. The SP2 has previously been shown to be equally sensitive to fullerene soot and ambient BC from sources where fossil fuel was dominant and less sensitive to fullerene soot than to Aquadag. Fullerene soot was therefore chosen as the standard calibration material by the SP2 user community; however, many data sets rely solely on Aquadag calibration measurements. The difference in SP2 sensitivity was found to be almost equal (fullerene soot to Aquadag response ratio of ∼0.75 at 8.9 fg BC for all SP2s. This allows the calculation of a fullerene soot equivalent calibration curve from a measured Aquadag calibration, when no fullerene soot calibration is available. It could be

  15. Single Particle Soot Photometer intercomparison at the AIDA chamber

    Directory of Open Access Journals (Sweden)

    M. Laborde

    2012-05-01

    Full Text Available Soot particles, consisting of black carbon (BC, organic carbon (OC, inorganic salts, and trace elements, are emitted into the atmosphere during incomplete combustion. Accurate measurements of atmospheric BC are important as BC particles cause adverse health effects and impact the climate.

    Unfortunately, the accurate measurement of the properties and mass concentrations of BC particles remains difficult. The Single Particle Soot Photometer (SP2 can contribute to improving this situation by measuring the mass of refractory BC in individual particles as well as its mixing state.

    Here, the results of the first detailed SP2 intercomparison, involving 6 SP2s from 6 different research groups, are presented, including the most evolved data products that can presently be calculated from SP2 measurements.

    It was shown that a detection efficiency of almost 100% down to 1 fg BC per particle can readily be achieved, and that this limit can be pushed down to ~0.3 fg BC with optimal SP2 setup. Number and mass size distributions of BC cores agreed within ±5% and ±10%, respectively, in between the SP2s, with larger deviations in the range below 1 fg BC.

    The accuracy of the SP2's mass concentration measurement depends on the calibration material chosen. The SP2 has previously been shown to be equally sensitive to fullerene soot and ambient BC from sources where fossil fuel were dominant and less sensitive to fullerene soot than to Aquadag. Fullerene soot was therefore chosen as the standard calibration material by the SP2 user community, however many datasets rely solely on Aquadag calibration measurements. The difference in SP2 sensitivity was found to be almost equal (fullerene soot to Aquadag response ratio of ~0.75 at 8.9 fg BC for all SP2s. This allows the calculation of a fullerene soot equivalent calibration curve from a measured Aquadag calibration, when no fullerene soot calibration is available. It could be shown

  16. Removal of External Deposits on Boiler Tubes

    Directory of Open Access Journals (Sweden)

    C. P. De

    1970-07-01

    Full Text Available The superheater tubes in Port and Starboard boilers were found to have completely clogged by heavy deposits, which on analysis mainly vanadium pentoxide and sodium sulphmatter. The cleaning of the deposits was accomplished by alternate spraying with 15-20 per cent hydrogen peroxide and washing with hot water jets. Over the past two years, since the date of cleaning, the IN ship is operating without any trouble in the boilers.

  17. Boiler burden reduced at Bedford site.

    Science.gov (United States)

    Horsley, Chris

    2011-10-01

    With the NHS aiming to reduce its 2007 carbon footprint by 10% by 2015, Chris Horsley, managing director of Babcock Wanson UK, a provider of industrial boilers and burners, thermal oxidisers, air treatment, water treatment, and associated services, looks at how one NHS Trust has approached the challenge, and considerably reduced its carbon emissions, by refurbishing its boiler house and moving from oil to gas-fired steam generation.

  18. Preventing resonance problems in speed-controlled blowers. Destruction of the blower-motor unit may result; Resonanzprobleme drehzahlgeregelter Ventilatoren vermeiden. Zerstoerung der Ventilator-Motoreinheit nicht ausgeschlossen

    Energy Technology Data Exchange (ETDEWEB)

    Lexis, J.

    2004-05-01

    The economic efficiency of a ventilation depends not least on the ease with which air volumes can be adapted to changing operating conditions. Speed control is the most common method, but undesired resonance phenomena may occur in certain operating conditions. This must be prevented at all cost as resonances will cause noise problems and may even destroy the blower-motor unit. (orig.) [German] Die Wirtschaftlichkeit einer lufttechnischen Anlage wird entscheidend dadurch bestimmt, wie gut oder wie schlecht sich die Anpassung der Luftmengen an veraenderte Betriebssituationen realisieren laesst. Die am haeufigsten verwendete Methode ist die Drehzahlregelung des Ventilators. Dabei kann es unter bestimmten Betriebsbedingungen zu unerwuenschten Resonanzerscheinungen kommen. Der Betrieb eines Ventilators in diesem Bereich ist aber auf keinen Fall zulaessig, denn Resonanzen koennen zu Geraeuschproblemen und zur Zerstoerung der Ventilator-Motoreinheit fuehren. (orig.)

  19. A method of forecasting wide band noise in axial blowers. Part 2; Prognoseverfahren fuer den Breitbandlaerm bei Axialventilatoren. Teil 2

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, M.; Carolus, T. [Siegen Univ. (Germany). Inst. fuer Fluid- und Thermodynamik

    2003-05-01

    Apart from the aerodynamic data of blowers, their acoustic properties are gaining importance. In industrial practice, blower noise is commonly estimated by very simple methods which only take account of very basic machine parameters. On the other hand, many semi-empirical models have been published for calculating blower noise which require more detailed input parameters, e.g. the velocity field around the blades, boundary layer parameters, etc. These models promise to be more accurate than the simple methods. [German] Neben den aerodynamischen Daten gewinnt die Schallleistung von Ventilatoren in zunehmendem Masse an Bedeutung. In der industriellen Praxis wird das Ventilatorgeraeusch bislang mit sehr einfachen Verfahren abgeschaetzt, die nur grundlegende Maschinengroessen beruecksichtigen. In der Literatur findet man allerdings eine Vielzahl semi-empirischer Modelle fuer die Schallleistungsberechnung von Ventilatoren, die detailliertere Eingangsparameter wie das Geschwindigkeitsfeld um die Schaufeln, Grenzschichtparameter usw. erfordern. Diese Modelle versprechen eine bessere Schallprognose als die einfachen Verfahren. (orig.)

  20. Theoretical model with experimental validation of a regenerative blower for hydrogen recirculation in a PEM fuel cell system

    Energy Technology Data Exchange (ETDEWEB)

    Badami, M.; Mura, M. [Dipartimento di Energetica, Politecnico di Torino, C.so Duca degli Abruzzi 24, Torino (Italy)

    2010-03-15

    A theoretical model of a regenerative blower used for the hydrogen recirculation of a Proton Exchange Membrane (PEM) fuel cell (FC) for automotive applications has been implemented and validated by means of experimental data. A momentum exchange theory was used to determine the head-flow rate curves, whereas the circulatory flow rate was determined through a theory based on the consideration of the centrifugal force field in the side channel and in the impeller vane grooves. The model allows a good forecast to be made of the blower behaviour, and only needs its main geometrical characteristics and some fluid-dynamic data as input. For this reason, the model could be very interesting, especially during the first sizing and the design activity of the blower. (author)

  1. Effects of Fuel Specification and Additives on Soot Formation.

    Science.gov (United States)

    1983-12-01

    not an equilibrium product of combustion, is influenced not only by the reaction kinetics and paths of the gaseous species, but by the physical...chemical reaction rates result from the high-pressure environment and concentrate the fuel combustion in a fuel-rich soot-forming region just...Octane P-Xylene Isooctane Cumene 1-Octene Tetralin Cyclo-Octane Di cyclopentadi ene Decalin Thus, the indications are that fuel molecular structure plays a

  2. Wear effects and mechanisms of soot-contaminated automotive lubricants

    OpenAIRE

    Green, D. A.; Lewis, R; Dwyer-Joyce, R.S.

    2006-01-01

    A study has been carried out to investigate the influence of soot-contaminated automotive lubricants in the wear process of a simulated engine valve train contact. Previous research on this topic has been mainly performed from a chemical point of view in fundamental studies, with insufficient relevance to real engine conditions, i.e. load and geometry. This study investigates the conditions under which wear occurs through specimen testing. The objective of the work was to understand the wear ...

  3. IHI-FW circulating fluidized bed boiler

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, S.; Omata, K.; Ishimoto, R.; Asai, M. (Ishikawajima-Harima Heavy Industries, Co. Ltd., Tokyo (Japan))

    1993-07-01

    The technology and application of the circulating fluidized bed boiler (IHI-FW) are outlined. Circulating fluidized bed boilers have various features as compared with bubbling fluidized bed boilers as follows; a high combustion efficiency, efficient use of limestone for desulfurization, low NOx emission, adaptability to various fuels and capability to cope with load change. The IHI-FW boiler is furthermore featured by water-wall furnace of all-welded structure, water-cooled/steam cooled cyclone, and simple circulating system. The 30 t/h circulating fluidized bed boiler was introduced into the Tsu Works, Omikenshi Co., Ltd., Japan for private power generation. The boiler equipped with a backup heavy oil burner mainly uses semi-anthracite coal, and besides sulfur capture and NOx reduction functions of a bed, a bag filter with a high dust collecting efficiency is installed in an exhaust gas system. The installation period was reduced to 2.5 months, a half of conventional ones, by more assembly in a factory followed by less field works. 7 figs., 2 tabs.

  4. Assessment of physical workload in boiler operations.

    Science.gov (United States)

    Rodrigues, Valéria Antônia Justino; Braga, Camila Soares; Campos, Julio César Costa; Souza, Amaury Paulo de; Minette, Luciano José; Sensato, Guilherme Luciano; Moraes, Angelo Casali de; Silva, Emília Pio da

    2012-01-01

    The use of boiler wood-fired is fairly common equipment utilized in steam generation for energy production in small industries. The boiler activities are considered dangerous and heavy, mainly due to risks of explosions and the lack of mechanization of the process. This study assessed the burden of physical labor that operators of boilers are subjected during the workday. Assessment of these conditions was carried out through quantitative and qualitative measurements. A heart rate monitor, a wet-bulb globe thermometer (WBGT), a tape-measure and a digital infrared camera were the instruments used to collect the quantitative data. The Nordic Questionnaire and the Painful Areas Diagram were used to relate the health problems of the boiler operator with activity. With study, was concluded that the boiler activity may cause pains in the body of intensity different, muscle fatigue and diseases due to excessive weight and the exposure to heat. The research contributed to improve the boiler operator's workplace and working conditions.

  5. Investigation of Sooting in Microgravity Droplet Combustion: Fuel-Dependent Effects

    Science.gov (United States)

    Manzello, Samuel L.; Hua, Ming; Choi, Mun Young

    1999-01-01

    Kumagai and coworkers first performed microgravity droplet combustion experiments [Kumagai, 1957]. The primary goal of these early experiments were to validate simple 'd(sup 2)-law models [Spalding, 1954, Godsave, 1954] Inherent in the 'd(sup 2) -law' formulation and in the scope of the experimental observation is the neglect of sooting behavior. In fact, the influence of sooting has not received much attention until more recent works [Choi et al., 1990; Jackson et al., 1991; Jackson and Avedisian, 1994; Choi and Lee, 1996; Jackson and Avedisian, 1996; Lee et al., 1998]:. Choi and Lee measured soot volume fraction for microgravity droplet flames using full-field light extinction and subsequent tomographic inversion [Choi and Lee, 1996]. In this investigation, soot concentrations were measured for heptane droplets and it was reported that soot concentrations were considerably higher in microgravity compared to the normal gravity flame. It was reasoned that the absence of buoyancy and the effects of thermophoresis resulted in the higher soot concentrations. Lee et al. [1998] performed soot measurement experiments by varying the initial droplet diameter and found marked influence of sooting on the droplet burning behavior. There is growing sentiment that sooting in droplet combustion must no longer be neglected and that "perhaps one of the most important outstanding contributions of (micro)g droplet combustion is the observation that in the absence of asymmetrical forced and natural convection, a soot shell is formed between the droplet surface and the flame, exerting an influence on the droplet combustion response far greater than previously recognized." [Law and Faeth, 1994]. One of the methods that we are exploring to control the degree of sooting in microgravity is to use different fuels. The effect of fuel structure on sooting propensity has been investigated for over-ventilated concentric coflowing buoyant diffusion flames. (Glassman, 1996]. In these

  6. Conductometric Sensor for Soot Mass Flow Detection in Exhausts of Internal Combustion Engines

    Directory of Open Access Journals (Sweden)

    Markus Feulner

    2015-11-01

    Full Text Available Soot sensors are required for on-board diagnostics (OBD of automotive diesel particulate filters (DPF to detect filter failures. Widely used for this purpose are conductometric sensors, measuring an electrical current or resistance between two electrodes. Soot particles deposit on the electrodes, which leads to an increase in current or decrease in resistance. If installed upstream of a DPF, the “engine-out” soot emissions can also be determined directly by soot sensors. Sensors were characterized in diesel engine real exhausts under varying operation conditions and with two different kinds of diesel fuel. The sensor signal was correlated to the actual soot mass and particle number, measured with an SMPS. Sensor data and soot analytics (SMPS agreed very well, an impressing linear correlation in a double logarithmic representation was found. This behavior was even independent of the used engine settings or of the biodiesel content.

  7. Low excess air operations of oil boilers

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, T.A.; Celebi, Y.; Litzke, Wai Lin [Brookhaven National Labs., Upton, NY (United States)

    1997-09-01

    To quantify the benefits which operation at very low excess air operation may have on heat exchanger fouling BNL has recently started a test project. The test allows simultaneous measurement of fouling rate, flue gas filterable soot, flue gas sulfuric acid content, and flue gas sulfur dioxide.

  8. Performance of a newly designed continuous soot monitoring system (COSMOS).

    Science.gov (United States)

    Miyazaki, Yuzo; Kondo, Yutaka; Sahu, Lokesh K; Imaru, Junichi; Fukushima, Nobuhiko; Kano, Minoru

    2008-10-01

    We designed a continuous soot monitoring system (COSMOS) for fully automated, high-sensitivity, continuous measurement of light absorption by black carbon (BC) aerosols. The instrument monitors changes in transmittance across an automatically advancing quartz fiber filter tape using an LED at a 565 nm wavelength. To achieve measurements with high sensitivity and a lower detectable light absorption coefficient, COSMOS uses a double-convex lens and optical bundle pipes to maintain high light intensity and signal data are obtained at 1000 Hz. In addition, sampling flow rate and optical unit temperature are actively controlled. The inlet line for COSMOS is heated to 400 degrees C to effectively volatilize non-refractory aerosol components that are internally mixed with BC. In its current form, COSMOS provides BC light absorption measurements with a detection limit of 0.45 Mm(-1) (0.045 microg m(-3) for soot) for 10 min. The unit-to-unit variability is estimated to be within +/- 1%, demonstrating its high reproducibility. The absorption coefficients determined by COSMOS agreed with those by a particle soot absorption photometer (PSAP) to within 1% (r2 = 0.97). The precision (+/- 0.60 Mm(-1)) for 10 min integrated data was better than that of PSAP and an aethalometer under our operating conditions. These results showed that COSMOS achieved both an improved detection limit and higher precision for the filter-based light absorption measurements of BC compared to the existing methods.

  9. Intermediate blades in slow radial blowers. Final report; Zwischenschaufeln - Zwischenschaufeln in langsamlaeufigen Radialventilatoren. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Carolus, T.; Basile, R.

    2001-05-01

    The effects of intermediate blades on the aerodynamic characteristics of slow radial blowers was investigated. It was found that the installation of intermediate blades of optimized design will slightly raise the pressure coefficients at comparable performance, especially if the initial number of blades was low. Stall will be reduced as well. On the basis of extensive investigations, a design diagram was drawn up which enables producers of blowers to assess the optimal intermediate blade configuration for a given blower quickly and easily. (orig.) [German] Der Einfluss von Zwischenschaufeln auf die aerodynamischen Kennwerte langsamlaeufiger Radialventilatorlaufraeder mit rueckwaertsgekruemmten Schaufeln wurde untersucht. Als Einflussparameter wurden die Hauptschaufelzahl, der Schaufelwinkel, das Breitenverhaeltnis, das Durchmesserverhaeltnis und die Zwischenschaufellaenge und -position in Betracht gezogen. Um eine moeglichst umfassende Bewertung dieser Zwischenschaufeln zu erhalten, wurden fuer eine Vielzahl von Parameterkombinationen die Stromfelder numerisch berechnet und daraus die aerodynamischen Kennwerte ermittelt. Dazu wurden zunaechst verschiedene Rechenverfahren und Rechenraumgrenzen untersucht und anhand von Messungen und Plausibilitaetsbetrachtungen bewertet. Als taugliches Rechenverfahren erwies sich ein dreidimensionales Navier-Stokes-Verfahren mit einem Rechenraum, der Einlaufduese, Radialspalt, Saugmund und Schaufelkanal umfasst. Die Ergebnisse systematischer Variationen der Einflussparameter zeigen, dass die aerodynamischen Kennwerte von allen oben genannten Parametern abhaengen. Der Einbau optimal ausgefuehrter Zwischenschaufeln in ein Ausgangsrad ohne Zwischenschaufeln fuehrt zu einer - wenn auch moderaten - Steigerung der Druckzahlen bei vergleichbaren Wirkungsgraden, insbesondere bei niedriger Hauptschaufelzahl des Ausgangsrades. Eine Minderung der Versperrung (d.h. eine Reduktion der Volumenzahl) ist mit Zwischenschaufeln moeglich. Mit den

  10. Gas blower for use in potentially explosive atmosphere; Ventilatoren fuer den Einsatz in explosionsgefaehrdeten Bereichen

    Energy Technology Data Exchange (ETDEWEB)

    Frobese, D.-H.; Waldmann, R.

    1996-12-31

    The extension of emission control requirements during the last years lead to an increasing demand for blowers suited for the transport of explosive waste gas. Concerning hazardous explosive atmosphere which is classified as zone 1 or zone 2, the ``VDMA-Einheitsblaetter`` give guidance to appropriate constructional requirements for blowers. However, for zone 0-applications, there do not exist fixed construction requirements up til now. In the range of validity of the ``Verordnung fuer brennbare Fluessigkeiten - VbF`` a type approval is requested for blowers to be used for zone 0. Equipment intended for use in potentially explosive atmospheres will fall under the new Directive 94/9/EC (explosion protection directive) in future; equipment to be used for zone 0 will need an EC-type-examination certificate which shall be issued by a notified body in accordance to the Directive. (orig.) [Deutsch] Die zunehmende Erfassung von Anlagen durch emissionsrechtliche Anforderungen hat in den letzten Jahren zu einem immer groesseren Bedarf an Ventilatoren zur Foerderung von explosionsfaehiger Abluft gefuehrt. Fuer den Einsatz in explosionsgefaehrdeten Bereichen der Zonen 1 und 2 gelten VDMA-Einheitsblaetter, nach denen Ventilatoren konstruiert werden koennen; fuer den Einsatz im Bereich der Zone 0 hingegen existieren bislang keine festgelegten Konstruktionsanforderungen. Im Geltungsbereich der Verordnung ueber brennbare Fluessigkeiten (VbF) wird fuer den Einsatz in Zone 0 eine Bauartzulassung gefordert. Zukuenftig unterliegen Geraete, die in explosionsgefaehrdeten Bereichen eingesetzt werden, der neuen EG-Richtlinie 94/9/EG (Explosionsschutzrichtlinie), wonach fuer Geraete, die in Zone 0 eingesetzt werden, eine Baumusterpruefbescheinigung einer benannten Zertifizierstelle erforderlich ist. (orig.)

  11. The sequestration sink of soot black carbon in the Northern European Shelf sediments

    Science.gov (United States)

    SáNchez-GarcíA, Laura; Cato, Ingemar; Gustafsson, Örjan

    2012-03-01

    To test the hypothesis that ocean margin sediments are a key final repository in the large-scale biogeospheric cycling of soot black carbon (soot-BC), an extensive survey was conducted along the ˜2,000 km stretch of the Swedish Continental Shelf (SCS). The soot-BC content in the 120 spatially distributed SCS sediments was 0.180.130.26% dw (median with interquartile ranges), corresponding to ˜5% of total organic carbon. Using side-scan sonar constraints to estimate the areal fraction of postglacial clay sediments that are accumulation bottoms (15% of SCS), the soot-BC inventory in the SCS mixed surface sediment was estimated at ˜4,000 Gg. Combining this with radiochronological constraints on sediment mass accumulation fluxes, the soot-BC sink on the SCS was ˜300 Gg/yr, which yielded an area-extrapolated estimate for the Northern European Shelf (NES) of ˜1,100 Gg/yr. This sediment soot-BC sink is ˜50 times larger than the river discharge fluxes of soot-BC to these coastal waters, however, of similar magnitude as estimates of atmospheric soot-BC emission from the upwind European continent. While large uncertainties remain regarding the large-scale to global BC cycle, this study combines with two previous investigations to suggest that continental shelf sediments are a major final repository of atmospheric soot-BC. Future progress on the soot-BC cycle and how it interacts with the full carbon cycle is likely to benefit from14C determinations of the sedimentary soot-BC and similar extensive studies of coastal sediment in complementary regimes such as off heavily soot-BC-producing areas in S and E Asia and on the large pan-Arctic shelf.

  12. Hygroscopic growth and droplet activation of soot particles: uncoated, succinic or sulfuric acid coated

    Science.gov (United States)

    Henning, S.; Ziese, M.; Kiselev, A.; Saathoff, H.; Möhler, O.; Mentel, T. F.; Buchholz, A.; Spindler, C.; Michaud, V.; Monier, M.; Sellegri, K.; Stratmann, F.

    2012-05-01

    The hygroscopic growth and droplet activation of uncoated soot particles and such coated with succinic acid and sulfuric acid were investigated during the IN-11 campaign at the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) facility. A GFG-1000 soot generator applying either nitrogen or argon as carrier gas and a miniCAST soot generator were utilized to generate soot particles. Different organic carbon (OC) to black carbon (BC) ratios were adjusted for the CAST-soot by varying the fuel to air ratio. The hygroscopic growth was investigated by means of the mobile Leipzig Aerosol Cloud Interaction Simulator (LACIS-mobile) and two different Hygroscopicity Tandem Differential Mobility Analyzers (HTDMA, VHTDMA). Two Cloud Condensation Nucleus Counter (CCNC) were applied to measure the activation of the particles. For the untreated soot particles neither hygroscopic growth nor activation was observed at a supersaturation of 1%, with exception of a partial activation of GFG-soot generated with argon as carrier gas. Coatings of succinic acid lead to a detectable hygroscopic growth of GFG-soot and enhanced the activated fraction of GFG- (carrier gas: argon) and CAST-soot, whereas no hygroscopic growth of the coated CAST-soot was found. Sulfuric acid coatings led to an OC-content dependent hygroscopic growth of CAST-soot. Such a dependence was not observed for activation measurements. Coating with sulfuric acid decreased the amount of Polycyclic Aromatic Hydrocarbons (PAH), which were detected by AMS-measurements in the CAST-soot, and increased the amount of substances with lower molecular weight than the initial PAHs. We assume that these reaction products increased the hygroscopicity of the coated particles in addition to the coating substance itself.

  13. Hygroscopic growth and droplet activation of soot particles: uncoated, succinic or sulfuric acid coated

    Directory of Open Access Journals (Sweden)

    S. Henning

    2012-05-01

    Full Text Available The hygroscopic growth and droplet activation of uncoated soot particles and such coated with succinic acid and sulfuric acid were investigated during the IN-11 campaign at the Aerosol Interaction and Dynamics in the Atmosphere (AIDA facility. A GFG-1000 soot generator applying either nitrogen or argon as carrier gas and a miniCAST soot generator were utilized to generate soot particles. Different organic carbon (OC to black carbon (BC ratios were adjusted for the CAST-soot by varying the fuel to air ratio. The hygroscopic growth was investigated by means of the mobile Leipzig Aerosol Cloud Interaction Simulator (LACIS-mobile and two different Hygroscopicity Tandem Differential Mobility Analyzers (HTDMA, VHTDMA. Two Cloud Condensation Nucleus Counter (CCNC were applied to measure the activation of the particles. For the untreated soot particles neither hygroscopic growth nor activation was observed at a supersaturation of 1%, with exception of a partial activation of GFG-soot generated with argon as carrier gas. Coatings of succinic acid lead to a detectable hygroscopic growth of GFG-soot and enhanced the activated fraction of GFG- (carrier gas: argon and CAST-soot, whereas no hygroscopic growth of the coated CAST-soot was found. Sulfuric acid coatings led to an OC-content dependent hygroscopic growth of CAST-soot. Such a dependence was not observed for activation measurements. Coating with sulfuric acid decreased the amount of Polycyclic Aromatic Hydrocarbons (PAH, which were detected by AMS-measurements in the CAST-soot, and increased the amount of substances with lower molecular weight than the initial PAHs. We assume that these reaction products increased the hygroscopicity of the coated particles in addition to the coating substance itself.

  14. Hygroscopic growth and droplet activation of soot particles: uncoated, succinic or sulfuric acid coated

    Directory of Open Access Journals (Sweden)

    S. Henning

    2011-10-01

    Full Text Available The hygroscopic growth and droplet activation of uncoated soot particles and such coated with succinic acid and sulfuric acid were investigated during the IN-11 campaign at the Aerosol Interaction and Dynamics in the Atmosphere (AIDA facility. A GFG-1000 soot generator applying nitrogen, respectively argon as carrier gas and a miniCAST soot generator were utilized to generate soot particles. Different organic carbon (OC to black carbon (BC ratios were adjusted for the CAST-soot by varying the fuel to air ratio. The hygroscopic growth was investigated by means of the mobile Leipzig Aerosol Cloud Interaction Simulator (LACIS-mobile and two different Hygroscopicity Tandem Differential Mobility Analyzers (HTDMA, VHTDMA. Two Cloud Condensation Nucleus Counter (CCNC were applied to measure the activation of the particles. For the untreated soot particles neither hygroscopic growth nor activation was observed, with exception of a partial activation of GFG-soot generated with argon as carrier gas. Coatings of succinic acid lead to a detectable hygroscopic growth of GFG-soot and enhanced the activated fraction of GFG- (carrier gas: argon and CAST-soot, whereas no hygroscopic growth of the coated CAST-soot was found. Sulfuric acid coatings lead to an OC-content dependent hygroscopic growth of CAST-soot. Such a dependence was not observed for activation measurements. Coating with sulfuric acid decreased the amount of Polycyclic Aromatic Hydrocarbons (PAH, which were detected by AMS-measurements in the CAST-soot, and increased the amount of substances with lower molecular weight than the initial PAHs. We assume, that these reaction products increased the hygroscopicity of the coated particles in addition to the coating substance itself.

  15. Regenerative Soot-IX: C3 as the dominant, stable carbon cluster in high pressure sooting discharges

    CERN Document Server

    Janjua, Sohail Ahmad; Khan, S D; Khalid, R; Aleem, A; Ahmad, Shoaib

    2016-01-01

    Results are presented that have been obtained while operating the graphite hollow cathode duoplasmatron ion source in dual mode under constant discharge current. This dual mode operation enabled us to obtain the mass and emission spectra simultaneously. In mass spectra C3 is the main feature but C4 and C5 are also prominent, whereas in emission spectra C2 is also there and its presence shows that it is in an excited state rather than in an ionic state. These facts provide evidence that C3 is produced due to the regeneration of a soot forming sequence and leave it in ionic state. C3 is a stable molecule and the only dominant species among the carbon clusters that survives in a regenerative sooting environment at high-pressure discharges.

  16. Use of EC-blowers contribute to green investment; Gebruik van EC-ventilatoren levert bijdrage aan groene investering

    Energy Technology Data Exchange (ETDEWEB)

    Huijgens, G.; Ridder, A.

    2009-07-01

    Despite their small share in the entire use, applying EC blowers (electronically commutated) in coolers and condensers can provide an interesting contribution to a sound green investment. This additional investment with EC blowers will pay off through more efficient energy use and easy operation with rpm control. [Dutch] Door gebruik te maken van EC-ventilatoren (EC staat voor 'electronically commutated') op koelers en condensors kan, ondanks het kleine aandeel in het totaalverbruik, toch een interessante bijdrage geleverd worden aan een verantwoorde groene investering. Deze meerinvestering met EC-ventilatoren betaalt zich uit in zuinig energieverbruik en eenvoudige aansturing met toerenregeling.

  17. 罗茨鼓风机设计结构探讨%Discussion of Design Construction for Roots Blower

    Institute of Scientific and Technical Information of China (English)

    冯育棠; 杨光; 李文英

    2001-01-01

    Comparative discussion is done for the design construction of various types of Roots blowers.Advantages & shortcomings are pointed out.The constructive feature of series SL three lobe Roots blower is mainly introduced.%对各种类型的罗茨鼓风机的设计结构做了对比性的探讨,指出了其优缺点。重点介绍了SL系列三叶罗茨鼓风机的结构特点。

  18. In-cylinder gas velocity measurements comparing crankcase and blower scavenging in a fired two-stroke cycle engine

    Science.gov (United States)

    Miles, P. C.; Green, R. M.; Witze, P. O.

    1994-01-01

    The in-cylinder flow field of a Schnuerle (loop) scavenged two-stroke engine has been examined under conditions simulating both blower and crankcase driven scavenging. Measurements of the radial component of velocity were obtained along the cylinder centerline during fired operation at delivery ratios of 0.4, 0.6, and 0.8. Both mean velocity profiles and root mean square velocity fluctuations near top center show a strong dependence on the scavenging method. Complementary in-cylinder pressure measurements indicate that combustion performance is better under blower driven scavenging for the engine geometry studied.

  19. When Whistle-blowers Become the Story: The Problem of the ‘Third Victim’

    Science.gov (United States)

    Waring, Justin

    2016-01-01

    In the healthcare context, whistleblowing has come to the fore of political, professional and public attention in the wake of major service scandals and mounting evidence of the routine threats to safety that patients face in their care. This paper offers a commentary and wider contextualisation of Mannion and Davies, ‘Cultures of silence and cultures of voice: the role of whistleblowing in healthcare organisations.’ It argues that closer attention is needed to the way in which whistle-blowers can become the focus and victim of raising concerns and speaking up. PMID:26927403

  20. The blower characteristic. What information does it provide?; Die Ventilator-Kennlinie. Welche Informationen bietet sie?

    Energy Technology Data Exchange (ETDEWEB)

    Lexis, J.

    2002-05-01

    The blower characteristic as a rule is difficult to interpret. The contribution therefore discusses how it should be read and what information can be derived. It also goes into the influence of pressure changes on the operating point. [German] Die Kennliniendarstellung von Ventilatoren zeigt in der Regel eine verwirrende Fuelle von Linien, Kurven und Skalenstaeben, deren Bedeutung und Information zum gewaehlten Betriebspunkt nicht immer auf Anhieb erkennbar wird. Im folgenden soll daher einmal ausfuehrlich und detailliert auf die Informationen, die ein Kennlinienfeld bietet, eingegangen werden. Des weiteren werden die Betriebspunktaenderungen infolge von Druckverschiebungen erlaeutert. (orig.)

  1. Room acoustic analysis of blower unit and noise control plan in the typical steel industry

    Directory of Open Access Journals (Sweden)

    2013-02-01

    Full Text Available Introduction: In the steel industry,air blowers used to supply compressed air are considered as sources of annoying noise. This study aims to acoustics analysis of theairblower workroomand sound source characteristics in order to present noise controlmeasuresinthe steel industry. .Material and Method: Measurement of noiselevel and its frequency analysis was performed usingsound levelmetermodelof CASELLA-Cell.450. Distribution of noise level in the investigated workroom in form of noise map was provided using Surfer software. In addition, acoustic analysis of workroom and control room was performed in view point of soundabsorption andinsulation. Redesignofdoor and window of controlroom and installation of soundabsorbing materialson theceiling of the workroom were proposed and the efficiency of these interventionswasestimated. .Result: The totalsound pressurelevelin the blower workroom was 95.4 dB(L and the dominant frequency was 2000Hz. Sound pressure level inside the room control was 80.1dB(A. The average absorption coefficient and reverberation time in the blower workroom was estimated equal to 0.082 Sab.m2 and 3.9 seconds respectively. These value in control room was 0.04 Sab.m2 and 3/4 seconds respectively. In control room, sound transmission loss between the two parts of the wall dividing was 13.7 dB(A. The average of noise dose in blower operators was 230%. With the installation of sound absorber on ceiling of workroom, average of absorption coefficient can increase to 0.33 Sab.m2 and sound transmission loss of the new designed door and window was estimated equal to 20dB. . Conclusion: The main cause of noise leakage in the control room was insufficient insulation properties of door and windows. By replacing the door and window and installation of sound absorbing on ceiling of workroom, the noise dose can reduce to 49.6%. New Improved door and window of control room can reduce noise dose to 69.65% solely.

  2. Dynamics of very small soot particles during soot burnout in diesel engines; Dynamik kleinster Russteilchen waehrend der Russausbrandphase im Dieselmotor

    Energy Technology Data Exchange (ETDEWEB)

    Bockhorn, H. [Karlsruhe Univ. (T.H.) (Germany). Inst. fuer Chemische Technik; Peters, N. [RWTH Aachen (DE). Institut fuer Technische Mechanik (ITM); Pittermann, R. [WTZ fuer Motoren- und Maschinenforschung Rosslau gGmbH (Germany); Hentschel, J.; Weber, J.

    2003-07-01

    The investigations used advanced laser-optical methods for measuring soot particle size distributions, temporally and spectrally resolved measurements of engine combustion, measurements of composition and size distribution of particles in exhaust, and further development and validation of reaction-kinetic models. In all, it can be stated that mixing will affect not only soot particle formation but also soot particle emissions. Mixing can be influenced by using a fuel-water emulsion and by CR injection. Experiments and models both showed the advantageous effects of water added to the diesel fuels and of CR injection. The higher OH radical concentrations in the later combustion stages also serve to ensure faster oxidation of soot. (orig.) [German] Ziel des Projektes war es, Informationen ueber die Bildung und Oxidation von Russ sowie die Teilchendynamik der Russteilchen waehrend der Ausbrandphase zu erhalten. Dies wurde erreicht durch die Weiterentwicklung laseroptischer Methoden zur Bestimmung der Groessenverteilung von Russpartikeln, durch zeit- und spektral aufgeloeste Erfassung der motorischen Verbrennung, durch die Bestimmung von Zusammensetzung und Groessenverteilung von Partikeln im Abgas sowie durch die Weiterentwicklung und Validierung von reaktionskinetischen Modellen. Zusammenfassend laesst sich sagen, dass sich die Gemischbildung im Dieselmotor nicht nur auf die Bildung der Russpartikel sondern auch auf die Russpartikelemission auswirkt. Die Verwendung einer Kraftstoff-Wasser-Emulsion und die Common-Rail-Einspritzung stellen zwei Verfahren zur Beeinflussung der Gemischbildung dar. Sowohl die experimentellen Untersuchungen als auch die Modellierung zeigen den die Gemischbildung foerdernden Einfluss des Zusatzes von Wasser zum Dieselbrennstoff. Ein erhoehter Anteil an vorgemischter Verbrennung, wie er auch durch die Verwendung hoher Einspritzdruecke bei der Common-Rail-Einspritzung erreicht werden kann, verringert die waehrend der Verbrennung entstehende

  3. Soot formation characteristics of gasoline surrogate fuels in counterflow diffusion flames

    KAUST Repository

    Choi, Byungchul

    2011-01-01

    The characteristics of polycyclic aromatic hydrocarbon (PAH) and soot for gasoline surrogate fuels have been investigated in counterflow diffusion flames by adopting laser-induced fluorescence (LIF) and laser-induced incandescence (LII) techniques for both soot formation and soot formation/oxidation flames. Tested fuels were three binary mixtures from the primary reference fuels of n-heptane, iso-octane, and toluene. The result showed that PAH and soot maintained near zero level for all mixtures of n-heptane/iso-octane case under present experimental conditions. For n-heptane/toluene and iso-octane/toluene mixtures, PAH initially increased and then decreased with the toluene ratio, exhibiting a synergistic effect. The soot formation increased monotonically with the toluene ratio, however the effect of toluene on soot formation was minimal for relatively small toluene ratios. These results implied that even though toluene had a dominant role in soot and PAH formations, small amount of toluene had a minimal effect on soot formation. Numerical simulations have also been conducted by adopting recently proposed two kinetic mechanisms. The synergistic behavior of aromatic rings was predicted similar to the experimental PAH measurement, however, the degree of the synergistic effect was over-predicted for the soot formation flame, indicating the need for refinements in the kinetic mechanisms. © 2010 Published by Elsevier Inc. on behalf of The Combustion Institute. All rights reserved.

  4. Soot Reference Materials for instrument calibration and intercomparisons: a workshop summary with recommendations

    Directory of Open Access Journals (Sweden)

    D. Baumgardner

    2012-03-01

    Full Text Available Soot, which is produced from biomass burning and the incomplete combustion of fossil and biomass fuels, has been linked to regional and global climate change and to negative health problems. Scientists measure soot using a variety of methods in order to quantify source emissions and understand its atmospheric chemistry, reactivity under emission conditions, interaction with solar radiation, influence on clouds, and health impacts. A major obstacle currently limiting progress is the absence of established standards or reference materials for calibrating the many instruments used to measure the various properties of soot.

    The current state of availability and practicability of soot standard reference materials (SRMs was reviewed by a group of 50 international experts during a workshop in June of 2011. The workshop was convened to summarize the current knowledge on soot measurement techniques, identify the measurement uncertainties and limitations related to the lack of SRMs, and identify attributes of SRMs that, if developed, would reduce measurement uncertainties. The workshop established that suitable SRMs are available for calibrating some, but not all, measurement methods. The community of single-particle sootphotometer (SP2 users identified a suitable SRM, fullerene soot, but users of instruments that measure light absorption by soot collected on filters did not. Similarly, those who use thermal optical analysis (TOA to analyze the organic and elemental carbon components of soot were not satisfied with current SRMs. The workshop produced recommendations for the development of new SRMs that would be suitable for the different soot measurement methods.

  5. Internally mixed soot, sulfates, and organic matter in aerosol particles from Mexico City

    Directory of Open Access Journals (Sweden)

    K. Adachi

    2008-11-01

    Full Text Available Soot particles, which are aggregated carbonaceous spherules with graphitic structures, are major aerosol constituents that result from burning of fossil fuel, biofuel, and biomass. Their properties commonly change through reaction with other particles or gases, resulting in complex internal mixtures. Using a transmission electron microscope (TEM for both imaging and chemical analysis, we measured ~8000 particles (25 samples with aerodynamic diameters from 0.05 to 0.3 μm that were collected in March 2006 from aircraft over Mexico City (MC and adjacent areas. Most particles are coated, consist of aggregates, or both. For example, almost all analyzed particles contain S and 70% also contain K, suggesting coagulation and condensation of sulfates and particles derived from biomass and biofuel burning. In the MC plumes, over half of all particles contained soot coated by organic matter and sulfates. The median value of the soot volume fraction in such coated particles is about 15%. In contrast to the assumptions used in many climate models, the soot particles did not become compact even when coated. Moreover, about 80% by volume of the particles consisting of organic matter with sulfate also contained soot, indicating the important role of soot in the formation of secondary aerosol particles. Coatings on soot particles can amplify their light absorption, and coagulation with sulfates changes their hygroscopic properties, resulting in shorter lifetimes. Through changes in their optical and hygroscopic properties, internally mixed soot particles have a greater effect on the regional climate of MC than uncoated soot particles.

  6. Soot Formation in Laminar Premixed Methane/Oxygen Flames at Atmospheric Pressure

    Science.gov (United States)

    Xu, F.; Lin, K.-C.; Faeth, G. M.

    1998-01-01

    Flame structure and soot formation were studied within soot-containing laminar premixed mc1hane/oxygen flames at atmospheric pressure. The following measurements were made: soot volume fractions by laser extinction, soot temperatures by multiline emission, gas temperatures (where soot was absent) by corrected fine-wire thermocouples, soot structure by thermophoretic sampling and transmission electron microscope (TEM), major gas species concentrations by sampling and gas chromatography, and gas velocities by laser velocimetry. Present measurements of gas species concentrations were in reasonably good agreement with earlier measurements due to Ramer et al. as well as predictions based on the detailed mechanisms of Frenklach and co-workers and Leung and Lindstedt: the predictions also suggest that H atom concentrations are in local thermodynamic equilibrium throughout the soot formation region. Using this information, it was found that measured soot surface growth rates could be correlated successfully by predictions based on the hydrogen-abstraction/carbon-addition (HACA) mechanisms of both Frenklach and co-workers and Colket and Hall, extending an earlier assessment of these mechanisms for premixed ethylene/air flames to conditions having larger H/C ratios and acetylene concentrations. Measured primary soot particle nucleation rates were somewhat lower than the earlier observations for laminar premixed ethylene/air flames and were significantly lower than corresponding rates in laminar diffusion flames. for reasons that still must be explained.

  7. Soot Formation in Laminar Premixed Methane/Oxygen Flames at Atmospheric Pressure. Appendix H

    Science.gov (United States)

    Xu, F.; Lin, K.-C.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2001-01-01

    Flame structure and soot formation were studied within soot-containing laminar premixed methanefoxygen flames at atmospheric pressure. The following measurements were made: soot volume fractions by laser extinction, soot temperatures by multiline emission, gas temperatures (where soot was absent) by corrected fine-wire thermocouples, soot structure by thermophoretic sampling and transmission electron microscope (TEM), major gas species concentrations by sampling and gas chromatography, and gas velocities by laser velocimetry. Present measurements of gas species concentrations were in reasonably good agreement with earlier measurements due to Ramer et al. as well as predictions based on the detailed mechanisms of Frenklach and co-workers and Leung and Lindstedt; the predictions also suggest that H atom concentrations are in local thermodynamic equilibrium throughout the soot formation region. Using this information, it was found that measured soot surface growth rates could be correlated successfully by predictions based on the hydrogenabstraction/carbon-addition (HACA) mechanisms of both Frenklach and co-workers and Colket and Hall, extending an earlier assessment of these mechanisms for premixed ethylene/air flames to conditions having larger H/C ratios and acetylene concentrations. Measured primary soot particle nucleation rates were somewhat lower than the earlier observations for laminar premixed ethylene/air flames and were significantly lower than corresponding rates in laminar diffusion flames, for reasons that still must be explained.

  8. Comparative Study of Different Methods for Soot Sensing and Filter Monitoring in Diesel Exhausts

    Science.gov (United States)

    Feulner, Markus; Hagen, Gunter; Hottner, Kathrin; Redel, Sabrina; Müller, Andreas; Moos, Ralf

    2017-01-01

    Due to increasingly tighter emission limits for diesel and gasoline engines, especially concerning particulate matter emissions, particulate filters are becoming indispensable devices for exhaust gas after treatment. Thereby, for an efficient engine and filter control strategy and a cost-efficient filter design, reliable technologies to determine the soot load of the filters and to measure particulate matter concentrations in the exhaust gas during vehicle operation are highly needed. In this study, different approaches for soot sensing are compared. Measurements were conducted on a dynamometer diesel engine test bench with a diesel particulate filter (DPF). The DPF was monitored by a relatively new microwave-based approach. Simultaneously, a resistive type soot sensor and a Pegasor soot sensing device as a reference system measured the soot concentration exhaust upstream of the DPF. By changing engine parameters, different engine out soot emission rates were set. It was found that the microwave-based signal may not only indicate directly the filter loading, but by a time derivative, the engine out soot emission rate can be deduced. Furthermore, by integrating the measured particulate mass in the exhaust, the soot load of the filter can be determined. In summary, all systems coincide well within certain boundaries and the filter itself can act as a soot sensor. PMID:28218700

  9. Soot reduction under DC electric fields in counterflow non-premixed laminar ethylene flames

    KAUST Repository

    Park, Daegeun

    2014-04-23

    The effects of DC electric fields on non-premixed ethylene flames in a counterflow burner were studied experimentally with a focus on the reduction of soot particles. The experiment was conducted by connecting a high voltage terminal and a ground terminal to a lower (fuel) and upper (oxidizer) nozzle, respectively. We applied direct current (DC) potentials in a range of -5 kV < Vdc < 5 kV. Uniform electric fields were then generated in the gap between the two nozzles. The experimental conditions were selected to cover both soot formation (SF) and soot formation oxidation (SFO) flames. The flames subjected to the negative electric fields moved toward the fuel nozzle because of an ionic wind due to the Lorentz force acting on the positive ions in the flames. In addition, the yellow luminosity significantly decreased, indicating changes in the sooting characteristics. To analyze the sooting characteristics under the electric fields, planar laser induced incandescence (PLII) and fluorescence (PLIF) techniques were used to visualize the soot, polycyclic aromatic hydrocarbons (PAHs), and OH radicals. The sooting limits in terms of the fuel and oxygen mole fractions were measured. No substantial soot formation due to the effects of the DC electric fields for the tested range of voltages and reactant mole fractions could be identified. The detailed flame behaviors and sooting characteristics under the DC electric fields are discussed. Copyright © Taylor & Francis Group, LLC.

  10. Corrosion of oil-fired domestic boilers

    Energy Technology Data Exchange (ETDEWEB)

    Koebel, M.; Elsener, M.

    1989-05-01

    Depending on the surface temperature of the flue gas side the corrosion of oil fired domestic boilers proceeds either mainly by acid corrosion or by oxygen corrosion: (1) At surface temperatures of 60/sup 0/C and higher the corrosion mechanism of acid corrosion prevails and the corrosion rates amount to 0.1-0.3 mm/year (values referred to continuous burner operation). The corrosion products consist of soluble iron(II)- and iron(III)sulfates. Higher corrosion rates can be attributed to an appreciable catalytic formation of sulfur trioxide on the corrosion products formed on the convective heating surfaces. (2) At surface temperatures of 40/sup 0/C the mechanism of oxygen corrosion already dominates and the corrosion rates are about ten times higher (1.5-3 mm/year, referred to continuous burner operation). The high portion of iron oxide hydrates, especially goethit (/alpha/-FeOOH), makes the corrosion products difficult to remove. (3) Distinctly reduced service lives are also expected for the so called reduced temperature boilers ('Niedertemperaturkessel') and low temperature boilers ('Tieftemperaturkessel'): According to the manufacturers these boilers may be operated at boiler water temperatures well below 60/sup 0/C, as they are equipped with constructive measures to enhance the surface temperature on the flue gas side. However, these measures are only fully effective under stationary conditions. Some of the results were obtained from weight loss measurements on test specimen made from St 35.8 and gray cast iron, that were exposed to the flue gases of an fired experimental boiler. Other important results come from field measurements of the sulfuric acid content of about 30 boilers that are in practical use. (orig.).

  11. Variation of diesel soot characteristics by different types and blends of biodiesel in a laboratory combustion chamber

    Energy Technology Data Exchange (ETDEWEB)

    Omidvarborna, Hamid; Kumar, Ashok [Department of Civil Engineering, The University of Toledo, Toledo, OH (United States); Kim, Dong-Shik, E-mail: dong.kim@utoledo.edu [Department of Chemical and Environmental Engineering, The University of Toledo, Toledo, OH (United States)

    2016-02-15

    Very little information is available on the physical and chemical properties of soot particles produced in the combustion of different types and blends of biodiesel fuels. A variety of feedstock can be used to produce biodiesel, and it is necessary to better understand the effects of feedstock-specific characteristics on soot particle emissions. Characteristics of soot particles, collected from a laboratory combustion chamber, are investigated from the blends of ultra-low sulfur diesel (ULSD) and biodiesel with various proportions. Biodiesel samples were derived from three different feedstocks, soybean methyl ester (SME), tallow oil (TO), and waste cooking oil (WCO). Experimental results showed a significant reduction in soot particle emissions when using biodiesel compared with ULSD. For the pure biodiesel, no soot particles were observed from the combustion regardless of their feedstock origins. The overall morphology of soot particles showed that the average diameter of ULSD soot particles is greater than the average soot particles from the biodiesel blends. Transmission electron microscopy (TEM) images of oxidized soot particles are presented to investigate how the addition of biodiesel fuels may affect structures of soot particles. In addition, inductively coupled plasma mass spectrometry (ICP-MS), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA) were conducted for characterization of soot particles. Unsaturated methyl esters and high oxygen content of biodiesel are thought to be the major factors that help reduce the formation of soot particles in a laboratory combustion chamber. - Highlights: • The unsaturation of biodiesel fuel was correlated with soot characteristics. • Average diameters of biodiesel soot were smaller than that of ULSD. • Eight elements were detected as the marker metals in biodiesel soot particles. • As the degree of unsaturation increased, the oxygen content in FAMEs increased. • Biodiesel

  12. Heterogeneous reaction of SO2 with soot: The roles of relative humidity and surface composition of soot in surface sulfate formation

    Science.gov (United States)

    Zhao, Yan; Liu, Yongchun; Ma, Jinzhu; Ma, Qingxin; He, Hong

    2017-03-01

    The conversion of SO2 to sulfates on the surface of soot is still poorly understood. Soot samples with different fractions of unsaturated hydrocarbons and oxygen-containing groups were prepared by combusting n-hexane under well-controlled conditions. The heterogeneous reaction of SO2 with soot was investigated using in situ attenuated total internal reflection infrared (ATR-IR) spectroscopy, ion chromatography (IC) and a flow tube reactor at the ambient pressure and relative humidity (RH). Water promoted SO2 adsorption and sulfate formation at the RH range from 6% to 70%, while exceeded water condensed on soot was unfavorable for sulfate formation due to inhibition of SO2 adsorption when RH was higher than 80%. The surface composition of soot, which was governed by combustion conditions, also played an important role in the heterogeneous reaction of SO2 with soot. This effect was found to greatly depend on RH. At low RH of 6%, soot with the highest fuel/oxygen ratio of 0.162 exhibited a maximum uptake capacity for SO2 because it contained a large amount of aromatic Csbnd H groups, which acted as active sites for SO2 adsorption. At RH of 54%, soot produced with a fuel/oxygen ratio of 0.134 showed the highest reactivity toward SO2 because it contained appropriate amounts of aromatic Csbnd H groups and oxygen-containing groups, subsequently leading to the optimal surface concentrations of both SO2 and water. These results suggest that variation in the surface composition of soot from different sources and/or resulting from chemical aging in the atmosphere likely affects the conversion of SO2 to sulfates.

  13. Scandinavian baffle boiler design revisited

    Directory of Open Access Journals (Sweden)

    Stepanov Borivoj Lj.

    2015-01-01

    Full Text Available The aim of this paper is to examine whether the use of baffles in a combustion chamber, one of the well-known low-cost methods for the boiler performance improvement, can be enhanced. Modern day tools like computational fluid dynamics were not present at the time when these measures were invented, developed and successfully applied. The objective of this study is to determine the influence of location and length of a baffle in a furnace, for different mass flows, on gas residence time. The numerical simulations have been performed of a simple Scandinavian stove like furnace. The isothermal model is used, while air is used as a medium and turbulence is modeled by realizable k-epsilon model. The Lagrange particle tracking is used for the residence time distribution determination. The statistical analysis yielded the average residence time. The results of the computational fluid dynamics studies for different baffle positions, dimensions and flow rates show from up to 17% decrease to up to 13 % increase of residence time. The conclusion is that vertical position of the baffle is the most important factor, followed by the length of the baffle, while the least important showed to be the mass flow. [Projekat Ministarstva nauke Republike Srbije, br. III 43008: Development of methods, sensors and systems for monitoring of quality of water, air and land

  14. Blower door measurements. Guide 'Airtightness-testing' for house owners and planners; Blower-Door-Messung. Leitfaden 'Gebaeudedichtigkeits-Pruefung' fuer Bauherren und Planer. Fachtext 3.4. Maerz 2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-03-01

    To determine the air tightness of the external envelope, blower door measurements are normally carried out. The thus determined integral figure for the complete structure is an insufficient basis for carrying out specific insulation procedures in existing buildings. Within the scope of the air tightness measurements with the blower door, additional measuring methods permit the determination of additional information on the leakage distribution and the leakage routes. The expanded measuring methods that are known from the bibliography 'opening a door' and 'adding a hole' as well as the new method of 'adding a hole plus' are explained, compared by means of exemplary measurements, and are considered for their suitability during field trials. [German] Zur Bestimmung der Luftdichtheit der Gebaeudehuelle werden im allgemeinen Blower Door-Messungen durchgefuehrt. Der hierbei bestimmte integrale Wert fuer das gesamte Gebaeude stellt fuer das Ergreifen von gezielten Abdichtungsmassnahmen im Gebaeudebestand eine zu geringe Basis dar. Weiterfuehrende Messmethoden erlauben, im Rahmen von Luftdichtheitsmessungen mit der Blower Door zusaetzliche Informationen ueber die Leckageverteilung und ueber Leckagewege zu bestimmen. Die aus der Literatur bekannten erweiterten Messmethoden 'Opening A Door' und 'Adding A Hole' sowie die neue Methode 'Adding A Hole Plus' werden erlaeutert, anhand von exemplarischen Messungen verglichen und im Feldeinsatz auf ihre Anwendbarkeit hin betrachtet.

  15. Blower door measurement. Guide 'Airtightness-testing' for house owners and planners; Blower-Door-Messung. Leitfaden 'Gebaeudedichtigkeits-Pruefung' fuer Bauherren und Planer. Fachtext 3.4

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-08-15

    The blower door is a simple to use measuring device for determining the seal of the external surfaces of buildings. The accuracy of the measurement is dependent to a considerable extent on the external climatic conditions that prevail at the time of taking the measurement. (orig.)

  16. Blower door measurements. Guide 'Airtightness-testing' for house owners and planners; Blower-Door-Messung. Leitfaden 'Gebaeudedichtigkeits-Pruefung' fuer Bauherren und Planer. Fachtext 3.4. Mai 2006

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-05-15

    The blower door is a simple to use measuring device for determining the seal of the external surfaces of buildings. The accuracy of the measurement is dependent to a considerable extent on the external climatic conditions that prevail at the time of taking the measurement. (GL)

  17. A robust and quick method for the estimation of long-term average indoor radon concentrations (extended Blower-Door method); Ein robustes und schnelles Verfahren zur Abschaetzung der langzeitlich mittleren Radonkonzentration in einem Gebaeude (erweiterte Blower-Door-Methode)

    Energy Technology Data Exchange (ETDEWEB)

    Maringer, F.J. [Bundesversuchs- und Forschungsanstalt Arsenal, Vienna (Austria); Akis, M.C.; Stadtmann, H. [Oesterreichisches Forschungszentrum Seibersdorf GmbH (Austria); Kaineder, H. [Amt der Oberoesterreichischen Landesregierung, Linz (Austria); Kindl, P. [Technische Univ., Graz (Austria); Kralik, C. [Bundesanstalt fuer Lebensmitteluntersuchung und -forschung, Vienna (Austria); Lettner, H.; Winkler, R. [Salzburg Univ. (Austria); Ringer, W. [Salzburg Univ. (Austria)]|[Atominstitut der Oesterreichischen Universitaeten, Vienna (Austria)

    1998-12-31

    Within the Austrian radon mitigation project `SARAH` different methods of radon diagnosis had been used. For these investigations a `Blower-Door` had been employed to apply a low pressure and to look for radon entry paths. On the occasion of the radon sniffing the team got the idea to measure the radon concentration in the Blower-Door exhaust air to get an estimate of the long-term average radon concentration in the building. In this paper the new method and their application possibilities are given. The estimation of the average radon entry rate, the average long-term radon concentration, and the evaluation of the mitigation success are described and discussed. The advantage of this procedure is to obtain a result for the annual mean indoor radon concentration after only about three hours. (orig.) [Deutsch] Im Rahmen des oesterreichischen Radonsanierungsprojekts `SARAH` wurden verschiedene Methoden zur Radondiagnose von Gebaeuden angewandt. Zum raschen Auffinden von Radoneintrittspfaden wurde auch ein `Blower-Door` zur Applikation eines Unterdrucks (-50 Pa) innerhalb der untersuchten Haeuser verwendet. Dabei entsprang die Idee, durch Messung der Radonkonzentration der Blower-Door-Abluft einen Hinweis auf die durchschnittliche Radonkonzentration im Gebaeude zu erhalten. In dieser Arbeit werden die neue Methode und deren Anwendungsmoeglichkeit zur Abschaetzung der mittleren Radoneintrittsrate und der langzeitlich mittleren Radonkonzentrationen (`Jahresmittelwert`) sowie des Sanierungserfolges (Ausmass der Radonreduktion) eines Gebaeudes beschrieben und diskutiert. Der Vorteil der Methode liegt darin, dass innerhalb von etwa drei Stunden Messzeit eine Abschaetzung fuer den Jahresmittelwert der Radonkonzentration eines Gebaeudes vorliegt. (orig.)

  18. Pumice in the interglacial Whidbey Formation at Blowers Bluff, central Whidbey Island, WA, USA

    Science.gov (United States)

    Dethier, D.P.; Dragovich, J.D.; Sarna-Wojcicki, A. M.; Fleck, R.J.

    2008-01-01

    A new 40Ar/39Ar age of 128??9 ka and chemical analyses of pumice layers from interglacial alluvium at Blowers Bluff, Whidbey Island, WA, show that the deposits are part of the Whidbey Formation, a widespread, mainly subsurface unit. Glass chemistry of the dated dacitic pumice does not match any analyzed northern Cascade source, but upper Pleistocene dacites from Glacier Peak and early Pleistocene silicic rocks from the Kulshan caldera are chemically similar. The chemistry of pumiceous dacite in younger units, including the latest Pleistocene Partridge Gravel, is similar to that of the dated material. The deep troughs of the modern northern Puget lowland must have been filled during deposition of the Whidbey Formation, allowing volcanic-rich sediment to reach what is now Whidbey Island. Topographic analysis of LIDAR images demonstrates that extensive erosion occurred during latest Pleistocene ice retreat. The Partridge Gravel likely records subglacial fluvial erosion along an ice tunnel and ice-marginal deposition into adjacent marine waters. Pumice in the Partridge Gravel probably was reworked from stratigraphically and topographically lower deposits, including those at Blowers Bluff. ?? 2007 Elsevier Ltd and INQUA.

  19. Design of the working channel for regenerative blowers; Dimensionierung des Arbeitskanals von Seitenkanalverdichtern

    Energy Technology Data Exchange (ETDEWEB)

    Surek, D. [Fachbereich Maschinenbau, Fachhochschule Merseburg (Germany); Galinsky, H. [Fachbereich Maschinenbau, Fachhochschule Merseburg (Germany)

    1996-04-01

    Regenerative blowers were built for pressure ratios from 1.2 to 1.5. They are used in many industrial areas for the compression of air and technical gases. They are also used as a compressor for coarse vacuum in the paper and polygraphic industrie. The design of the blower, especially the side channel, was done for incompression flow with a constant cross section of the side channel over all of the perimeter. The accessible pressure ratios make it necessary, to consider the alternation of the density by the designing of the machine and to have optimal flow in the side channel over all of the perimeter. In this article was shown the designing calculation for the cross section dependent on the peripheral angle and the most important quantities for the calculation given. (orig.) [Deutsch] Seitenkanalverdichter werden fuer Druckverhaeltnisse von {pi}=1,2 bis 1,5 gebaut und in vielen Industriebereichen zur Verdichtung von Luft und technischen Gasen sowie als Verdichter im Grobvakuumbereich in der Papier- und polygraphischen Industrie eingesetzt. Die Auslegung der Verdichter, insbesondere des Seitenkanals erfolgt bisher fuer inkompressible Stroemung mit konstantem Querschnitt im gesamten Umfangsbereich. Die angestrebten Druckverhaeltnisse zwingen jedoch dazu, die Dichteaenderung im Seitenkanal bei der Auslegung zu beruecksichtigen, wenn optimale Stroemungsverhaeltnisse im gesamten Seitenkanal angestrebt werden. Die Auslegungsrechnung mit dem Querschnittsverlauf des Seitenkanals in Abhaengigkeit des Umfangswinkels werden dargestellt und die wichtigsten Einflussgroessen fuer die Berechnung angegeben. (orig.)

  20. On the radiative properties of soot aggregates - Part 2: Effects of coating

    Science.gov (United States)

    Liu, Fengshan; Yon, Jérôme; Bescond, Alexandre

    2016-03-01

    The effects of weakly absorbing material coating on soot have attracted considerable research attention in recent years due to the significant influence of such coating on soot radiative properties and the large differences predicted by different numerical models. Soot aggregates were first numerically generated using the diffusion limited cluster aggregation algorithm to produce fractal aggregates formed by log-normally distributed polydisperse spherical primary particles in point-touch. These aggregates were then processed by adding a certain amount of primary particle overlapping and necking to simulate the soot morphology observed from transmission electron microscopy images. After this process, a layer of WAM coating of different thicknesses was added to these more realistic soot aggregates. The radiative properties of these coated soot aggregates over the spectral range of 266-1064 nm were calculated by the discrete dipole approximation (DDA) using the spectrally dependent refractive index of soot for four aggregates containing Np=1, 20, 51 and 96 primary particles. The considered coating thicknesses range from 0% (no coating) up to 100% coating in terms of the primary particle diameter. Coating enhances both the particle absorption and scattering cross sections, with much stronger enhancement to the scattering one, as well as the asymmetry factor and the single scattering albedo. The absorption enhancement is stronger in the UV than in the visible and the near infrared. The simple corrections to the Rayleigh-Debye-Gans fractal aggregates theory for uncoated soot aggregates are found not working for coated soot aggregates. The core-shell model significantly overestimates the absorption enhancement by coating in the visible and the near infrared compared to the DDA results of the coated soot particle. Treating an externally coated soot aggregate as an aggregate formed by individually coated primary particles significantly underestimates the absorption

  1. Characterization of soot properties in two-meter JP-8 pool fires.

    Energy Technology Data Exchange (ETDEWEB)

    Suo-Anttila, Jill Marie; Jensen, Kirk A.; Blevins, Linda Gail (Sandia National Laboratories, Livermore, CA)

    2005-02-01

    The thermal hazard posed by large hydrocarbon fires is dominated by the radiative emission from high temperature soot. Since the optical properties of soot, especially in the infrared region of the electromagnetic spectrum, as well as its morphological properties, are not well known, efforts are underway to characterize these properties. Measurements of these soot properties in large fires are important for heat transfer calculations, for interpretation of laser-based diagnostics, and for developing soot property models for fire field models. This research uses extractive measurement diagnostics to characterize soot optical properties, morphology, and composition in 2 m pool fires. For measurement of the extinction coefficient, soot extracted from the flame zone is transported to a transmission cell where measurements are made using both visible and infrared lasers. Soot morphological properties are obtained by analysis via transmission electron microscopy of soot samples obtained thermophoretically within the flame zone, in the overfire region, and in the transmission cell. Soot composition, including carbon-to-hydrogen ratio and polycyclic aromatic hydrocarbon concentration, is obtained by analysis of soot collected on filters. Average dimensionless extinction coefficients of 8.4 {+-} 1.2 at 635 nm and 8.7 {+-} 1.1 at 1310 nm agree well with recent measurements in the overfire region of JP-8 and other fuels in lab-scale burners and fires. Average soot primary particle diameters, radius of gyration, and fractal dimensions agree with these recent studies. Rayleigh-Debye-Gans theory of scattering applied to the measured fractal parameters shows qualitative agreement with the trends in measured dimensionless extinction coefficients. Results of the density and chemistry are detailed in the report.

  2. A computational study of ethylene–air sooting flames: Effects of large polycyclic aromatic hydrocarbons

    KAUST Repository

    Selvaraj, Prabhu

    2015-11-05

    An updated reduced gas-phase kinetic mechanism was developed and integrated with aerosol models to predict soot formation characteristics in ethylene nonpremixed and premixed flames. A primary objective is to investigate the sensitivity of the soot formation to various chemical pathways for large polycyclic aromatic hydrocarbons (PAH). The gas-phase chemical mechanism adopted the KAUST-Aramco PAH Mech 1.0, which utilized the AramcoMech 1.3 for gas-phase reactions validated for up to C2 fuels. In addition, PAH species up to coronene (C24H12 or A7) were included to describe the detailed formation pathways of soot precursors. In this study, the detailed chemical mechanism was reduced from 397 to 99 species using directed relation graph with expert knowledge (DRG-X) and sensitivity analysis. The method of moments with interpolative closure (MOMIC) was employed for the soot aerosol model. Counterflow nonpremixed flames at low strain rate sooting conditions were considered, for which the sensitivity of soot formation characteristics to different nucleation pathways were investigated. Premixed flame experiment data at different equivalence ratios were also used for validation. The findings show that higher PAH concentrations result in a higher soot nucleation rate, and that the total soot volume and average size of the particles are predicted in good agreement with experimental results. Subsequently, the effects of different pathways, with respect to pyrene- or coronene-based nucleation models, on the net soot formation rate were analyzed. It was found that the nucleation processes (i.e., soot inception) are sensitive to the choice of PAH precursors, and consideration of higher PAH species beyond pyrene is critical for accurate prediction of the overall soot formation.

  3. Soot reference materials for instrument calibration and intercomparisons: a workshop summary with recommendations

    Directory of Open Access Journals (Sweden)

    D. Baumgardner

    2012-08-01

    Full Text Available Soot, which is produced from biomass burning and the incomplete combustion of fossil and biomass fuels, has been linked to regional and global climate change and to negative health problems. Scientists measure the properties of soot using a variety of methods in order to quantify source emissions and understand its atmospheric chemistry, reactivity under emission conditions, interaction with solar radiation, influence on clouds, and health impacts. A major obstacle currently limiting progress is the absence of established standards or reference materials for calibrating the many instruments used to measure the various properties of soot.

    The current state of availability and practicability of soot standard reference materials (SRMs was reviewed by a group of 50 international experts during a workshop in June of 2011. The workshop was convened to summarize the current knowledge on soot measurement techniques, identify the measurement uncertainties and limitations related to the lack of soot SRMs, and identify attributes of SRMs that, if developed, would reduce measurement uncertainties. The workshop established that suitable SRMs are available for calibrating some, but not all, measurement methods. The community of users of the single-particle soot-photometer (SP2, an instrument using laser-induced incandescence, identified a suitable SRM, fullerene soot, but users of instruments that measure light absorption by soot collected on filters did not. Similarly, those who use thermal optical analysis (TOA to analyze the organic and elemental carbon components of soot were not satisfied with current SRMs. The workshop, and subsequent, interactive discussions, produced a number of recommendations for the development of new SRMs, and their implementation, that would be suitable for the different soot measurement methods.

  4. Electron microscopic study of soot particulate matter emissions from aircraft turbine engines.

    Science.gov (United States)

    Liati, Anthi; Brem, Benjamin T; Durdina, Lukas; Vögtli, Melanie; Dasilva, Yadira Arroyo Rojas; Eggenschwiler, Panayotis Dimopoulos; Wang, Jing

    2014-09-16

    The microscopic characteristics of soot particulate matter (PM) in gas turbine exhaust are critical for an accurate assessment of the potential impacts of the aviation industry on the environment and human health. The morphology and internal structure of soot particles emitted from a CFM 56-7B26/3 turbofan engine were analyzed in an electron microscopic study, down to the nanoscale, for ∼ 100%, ∼ 65%, and ∼ 7% static engine thrust as a proxy for takeoff, cruising, and taxiing, respectively. Sampling was performed directly on transmission electron microscopy (TEM) grids with a state-of-the-art sampling system designed for nonvolatile particulate matter. The electron microscopy results reveal that ∼ 100% thrust produces the highest amount of soot, the highest soot particle volume, and the largest and most crystalline primary soot particles with the lowest oxidative reactivity. The opposite is the case for soot produced during taxiing, where primary soot particles are smallest and most reactive and the soot amount and volume are lowest. The microscopic characteristics of cruising condition soot resemble the ones of the ∼ 100% thrust conditions, but they are more moderate. Real time online measurements of number and mass concentration show also a clear correlation with engine thrust level, comparable with the TEM study. The results of the present work, in particular the small size of primary soot particles present in the exhaust (modes of 24, 20, and 13 nm in diameter for ∼ 100%, ∼ 65% and ∼ 7% engine thrust, respectively) could be a concern for human health and the environment and merit further study. This work further emphasizes the significance of the detailed morphological characteristics of soot for assessing environmental impacts.

  5. Explosion-protected blowers for removing explosive atmospheres from zone 0; Explosionsgeschuetzte Ventilatoren fuer die Foerderung von explosionsfaehiger Atmosphaere aus Zone 0

    Energy Technology Data Exchange (ETDEWEB)

    Frobese, D.H. [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany)

    2006-09-15

    Blowers for use in areas with high explosion hazards and/or for removal of explosive fluids are subject to directive 94/9/EG and must be explosion-protected according to Appendix II of that directive. So far, Germany only had VDMA specification leaflet 24169, which lists requirements on blowers for use in zones 1, 2, or 11. In the meantime, prEN 14986 has been elaborated which lists speciications for construction and testing of explosion-protected blowers. It applies to blower categories 1G, 2G or 3G, i.e. blowers for zones 0, 1, 2 or for explosive atmospheres in zones 1 or 2. It also applies to blowers of categories 2D and 3D, i.e. for transport of and/or use in areas with explosive dust/air mixtures of zones 21 and 22 but not air/dust mixtures of zone 20. The standard enables producers to assess the ignition hazard of an explosion-protected lower and lists constructional requirements and testing requirements. This enables the producer to construct explosion-proof blowers. The standard was intended for publication in the first half of 2006. (orig.)

  6. Boiler house modernization through shared savings program

    Energy Technology Data Exchange (ETDEWEB)

    Breault, R.W. [Tecogen, Waltham, MA (United States)

    1995-12-31

    Throughout Poland as well as the rest of Eastern Europe, communities and industries rely on small heat only boilers to provide district and process heat. Together these two sectors produce about 85,000 MW from boilers in the 2 to 35 MW size range. The bulk of these units were installed prior to 1992 and must be completely overhauled to meet the emission regulations which will be coming into effect on January 1, 1998. Since the only practical fuel is coal in most cases, these boilers must be either retrofit with emission control technology or be replaced entirely. The question that arises is how to accomplish this given the current tight control of capital in Poland and other East European countries. A solution that we have for this problem is shared savings. These boilers are typically operating with a quiet low efficiency as compared to western standards and with excessive manual labor. Installing modernization equipment to improve the efficiency and to automate the process provides savings. ECOGY provides the funds for the modernization to improve the efficiency, add automation and install emission control equipment. The savings that are generated during the operation of the modernized boiler system are split between the client company and ECOGY for a number of years and then the system is turned over in entirety to the client. Depending on the operating capacity, the shared savings agreement will usually span 6 to 10 years.

  7. Computer simulation of the fire-tube boiler hydrodynamics

    Directory of Open Access Journals (Sweden)

    Khaustov Sergei A.

    2015-01-01

    Full Text Available Finite element method was used for simulating the hydrodynamics of fire-tube boiler with the ANSYS Fluent 12.1.4 engineering simulation software. Hydrodynamic structure and volumetric temperature distribution were calculated. The results are presented in graphical form. Complete geometric model of the fire-tube boiler based on boiler drawings was considered. Obtained results are suitable for qualitative analysis of hydrodynamics and singularities identification in fire-tube boiler water shell.

  8. Independent Research and Design of 600-MW Supercritical CFB Boiler

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In order to further develop and improve the technologies for large-capacity supercritical CFB boiler, the key technologies for large CFB boiler were systematically studied, based on the development of first domestically-made 210-MW and 330-MW CFB boilers. The scheme of 600-MW supercritical CFB boiler was designed, including the furnace structure, key components, steam-water system and auxiliary systems, which laid a technical foundation for the engineering applications.

  9. Application of GPRS and GIS in Boiler Remote Monitoring System

    OpenAIRE

    Hongchao Wang; Yifeng Wu

    2012-01-01

    Application of GPRS and GIS in boiler remote monitoring system was designed in this paper by combining the advantage of GPRS and GIS in remote data transmission with configuration monitoring technology. The detail information of the operating conditions of the industrial boiler can be viewed by marking the location of boiler on the electronic map dynamically which can realize the unified management for industrial boiler of a region or city conveniently. Experimental application show that the ...

  10. Computer simulation of the fire-tube boiler hydrodynamics

    OpenAIRE

    Khaustov Sergei A.; Zavorin Alexander S.; Buvakov Konstantin V.; Sheikin Vyacheslav A.

    2015-01-01

    Finite element method was used for simulating the hydrodynamics of fire-tube boiler with the ANSYS Fluent 12.1.4 engineering simulation software. Hydrodynamic structure and volumetric temperature distribution were calculated. The results are presented in graphical form. Complete geometric model of the fire-tube boiler based on boiler drawings was considered. Obtained results are suitable for qualitative analysis of hydrodynamics and singularities identification in fire-tube boiler water shell.

  11. Simple on-site assembled blower-mister device provides sufficient humidification and visualization in off-pump surgery.

    Science.gov (United States)

    Wippermann, Jens; Albes, Johannes M; Liebing, Kai; Breuer, Martin; Kaluza, Mirko; Strauch, Justus; Wahlers, Thorsten

    2006-09-01

    To effectively perform an anastomosis on a coronary artery under beating heart conditions, the anastomotic site must be cleared of blood to allow visualization for accurate suturing. We describe a simple, cost effective, on-site assembled blower-mister system.

  12. The impact of rotary lobe blower seal upgrades at INCO's Copper Cliff Nickel Refinery

    Energy Technology Data Exchange (ETDEWEB)

    Corless, C; Costigan, J. [INCO Copper Cliff Nickel Refinery, Copper Cliff, ON (Canada)

    2000-10-01

    INCO's Pressure Carbonyl (IPC) plant at Copper Cliff is unique in the world in that it utilizes the same basic chemistry, but forms the nickel carbonyl at high pressure to accelerate the reaction and utilize less pure refinery feeds. Two main process gases are used, namely carbon monoxide and nickel carbonyl which are transported throughout the plant using various compressors and blowers depending on whether the gas is at high pressure or at low pressure. The high-pressure transport is accomplished by three five-stage reciprocating compressors. There are numerous low pressure gas blowers; all of them must have seals to ensure that the gas does not escape into the plant atmosphere, and just as importantly, to prevent the lubricating oil from entering the process gases. This paper describes an incident in 1997 when Castrol R40, a lubricant, entered the IPC plant carrier gas stream, adversely affecting equipment availability and process control. The main source of the Castrol R40 was determined to be the carrier gas and low pressure gas blowers. The entry of Castrol R40 into the carrier gas stream was successfully prevented when the mechanical shaft seals were replaced with Ferrofluidics seals. Details of the resulting new sealing arrangements, the status of blower upgrade project and results achieved to date are reviewed.

  13. Blower door tests of a group of identical flats in a new student accommodation in the Arctic

    DEFF Research Database (Denmark)

    Kotol, Martin; Rode, Carsten; Vahala, Jan

    air quality (IAQ) as well as performance of some single components. In summer 2012 a blower door test was performed on all 37 living units out of which 33 are identical single room flats and 4 are larger double room flats. The purpose was to evaluate the air tightness of the envelope and to find out...

  14. 46 CFR 176.812 - Pressure vessels and boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Pressure vessels and boilers. 176.812 Section 176.812... TONS) INSPECTION AND CERTIFICATION Material Inspections § 176.812 Pressure vessels and boilers. (a.... (b) Periodic inspection and testing requirements for boilers are contained in § 61.05 in subchapter...

  15. 40 CFR 761.71 - High efficiency boilers.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false High efficiency boilers. 761.71... PROHIBITIONS Storage and Disposal § 761.71 High efficiency boilers. (a) To burn mineral oil dielectric fluid containing a PCB concentration of ≥50 ppm, but boiler shall comply with the...

  16. 46 CFR 56.50-30 - Boiler feed piping.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Boiler feed piping. 56.50-30 Section 56.50-30 Shipping... APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-30 Boiler feed piping. (a) General... least two separate means of supplying feed water for the boilers. All feed pumps shall be fitted...

  17. 46 CFR 109.205 - Inspection of boilers and machinery.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Inspection of boilers and machinery. 109.205 Section 109... OPERATIONS Tests, Drills, and Inspections § 109.205 Inspection of boilers and machinery. The chief engineer or engineer in charge, before he assumes charge of the boilers and machinery of a unit shall...

  18. Drum rotor blowers in EC technology. Energy conservation, comfortable control, low noise; Trommellaeufer-Ventilatoren in EC-Technik. Energieersparnis, komfortable Regelung und geringe Geraeuschentwicklung

    Energy Technology Data Exchange (ETDEWEB)

    Sigloch, U. [ebm-papst Mulfingen GmbH und Co. KG (Germany). Projektmanagement Vertrieb Europa; Reiff, E.C. [Redaktionsbuero Stutensee (Germany)

    2008-07-01

    Compact drum rotor blowers with forward-curved blades are quite common in air conditioning and ventilation because of their high efficiency and compact dimensions. They are found in air conditioner boxes, in air current systems in department stores, or in fan coils in hotel rooms, wherever other types of blowers would be too big. Until recently, EC technology was not available for the blower motors so the users had do accept low efficiency and the poor control options of conventional AC drives. This has changed by now. (orig.)

  19. Energy conservation measures cause damage to radial blowers; Mechanical consequences are not always taken into account. Energiebesparing kraakt radiale ventilatoren; Mechanische consequenties worden niet altijd onderkend

    Energy Technology Data Exchange (ETDEWEB)

    Hillebrand, A.F. (Hoogovens IJmuiden (Netherlands))

    1991-02-01

    Hoogovens IJmuiden, the iron and steel division of the Hoogovens Groep, has tried to save energy by changing the operation mode of installed blowers, which have capacities to 2.5 MW. Instead of continuous operation a start-stop procedure has been introduced. However, service life of the blowers can be affected seriously because mechanical damage of impellers by fatigue has been observed. Replacement or better constructed impellers increase costs or investment and the latter demands skill of blower producers which is not always available. 3 figs., 2 refs., 1 ill.

  20. THERMAL BOUNDARY LAYER IN CFB BOILER RISER

    Institute of Scientific and Technical Information of China (English)

    Jinwei; Wang; Xinmu; Zhao; Yu; Wang; Xing; Xing; Jiansheng; Zhang; Guangxi; Yue

    2006-01-01

    Measurement of temperature profiles of gas-solid two-phase flow at different heights in commercial-scale circulating fluidized bed (CFB) boilers was carried out. Experimental results showed that the thickness of thermal boundary layer was generally independent of the distance from the air distributor, except when close to the riser outlet. Through analysis of flow and combustion characteristics in the riser, it was found that the main reasons for the phenomena were: 1) the hydrodynamic boundary layer was thinner than the thermal layer and hardly changed along the CFB boiler height, and 2) both radial and axial mass and heat exchanges were strong in the CFB boiler. Numerical simulation of gas flow in the outlet zone confirmed that the distribution of the thermal boundary layer was dominated by the flow field characteristics.

  1. Evaluation of thermal overload in boiler operators.

    Science.gov (United States)

    Braga, Camila Soares; Rodrigues, Valéria Antônia Justino; Campos, Julio César Costa; de Souza, Amaury Paulo; Minette, Luciano José; de Moraes, Angêlo Casali; Sensato, Guilherme Luciano

    2012-01-01

    The Brazilians educational institutions need a large energy demand for the operation of laundries, restaurants and accommodation of students. Much of that energy comes from steam generated in boilers with wood fuel. The laboral activity in boiler may present problems for the operator's health due to exposure to excessive heat, and its operation has a high degree of risk. This paper describes an analysis made the conditions of thermal environment in the operation of a B category boiler, located at a Higher Education Institution, located in the Zona da Mata Mineira The equipments used to collect data were Meter WBGT of the Heat Index; Meter of Wet Bulb Index and Globe Thermometer (WBGT); Politeste Instruments, an anemometer and an Infrared Thermometer. By the application of questionnaires, the second phase consisted of collecting data on environmental factors (temperature natural environment, globe temperature, relative humidity and air velocity). The study concluded that during the period evaluated, the activity had thermal overload.

  2. Direct contact, binary fluid geothermal boiler

    Science.gov (United States)

    Rapier, Pascal M.

    1982-01-01

    Energy is extracted from geothermal brines by direct contact with a working fluid such as isobutane which is immiscible with the brine in a geothermal boiler. The geothermal boiler provides a distributor arrangement which efficiently contacts geothermal brine with the isobutane in order to prevent the entrainment of geothermal brine in the isobutane vapor which is directed to a turbine. Accordingly the problem of brine carry-over through the turbine causes corrosion and scaling thereof is eliminated. Additionally the heat exchanger includes straightening vanes for preventing startup and other temporary fluctuations in the transitional zone of the boiler from causing brine carryover into the turbine. Also a screen is provided in the heat exchanger to coalesce the working fluid and to assist in defining the location of the transitional zone where the geothermal brine and the isobutane are initially mixed.

  3. Effects of Large Polycyclic Aromatic Hydrocarbons on the Soot Formation in Ethylene-Air Nonpremixed Flames

    KAUST Repository

    Prabhu, S.

    2015-03-30

    This study presents updated comprehensive gas-phase kinetic mechanism and aerosol models to predict soot formation characteristics in ethylene-air nonpremixed flames. A main objective is to investigate the sensitivity of the soot formation rate to various chemical pathways for large polycyclic aromatic hydrocarbons (PAH). In this study, the detailed chemical mechanism was reduced from 397 to 99 species using directed relation graph (DRG) and sensitivity analysis. The method of moments with interpolative closure (MOMIC) was employed for the soot aerosol model. Counterflow nonpremixed flames of pure ethylene at low strain rate sooting conditions are considered, for which the sensitivity of soot formation characteristics with respect to hetrogeneous nucleation is investigated. Results show that higher PAH concentrations result in higher soot nucleation rate, and that the average size of the particles are in good agreement with experimental results. It is found that the nucleation processes (i.e., soot inception) from higher PAH precursors, coronene in particular, is critical for accurate prediction of the overall soot formation.

  4. Ceria-catlyzed soot oxidation studied by environmental transmission electron microscopy

    DEFF Research Database (Denmark)

    Simonsen, S.B.; Dahl, S.; Johnson, Erik

    2008-01-01

    Environmental tranmission electron microscopy (ETEM) was used to monitor in situ ceria-catalyzed oxidation of soot in relation to diesel engine emission control.  From time-lapsed ETEM image series of soot particles in contact with CeO2. or with Al2O3 as inert reference, mechanistic and kinetic...

  5. Extinction characterization of soot produced by laser ablating carbon fiber composite materials in air flow

    Science.gov (United States)

    Liu, Weiping; Ma, Zhiliang; Zhang, Zhenrong; Zhou, Menglian; Wei, Chenghua

    2015-05-01

    In order to research the dynamic process of energy coupling between an incident laser and a carbon fiber/epoxy resin composite material, an extinction characterization analysis of soot, which is produced by laser ablating and located in an air flow that is tangential to the surface of the composite material, is carried out. By the theory analyses, a relationship of mass extinction coefficient and extinction cross section of the soot is derived. It is obtained that the mass extinction coefficients of soot aggregates are the same as those of the primary particles when they contain only a few primary particles. This conclusion is significant when the soot is located in an air flow field, where the generations of the big soot aggregates are suppressed. A verification experiment is designed. The experiment employs Laser Induced Incandescence technology and laser extinction method for the soot synchronization diagnosis. It can derive a temporal curve of the mass extinction coefficient from the soot concentration and laser transmittance. The experiment results show that the mass extinction coefficient becomes smaller when the air flow velocity is higher. The reason is due to the decrease of the scatter effects of the soot particles. The experiment results agree with the theory analysis conclusion.

  6. Soot microphysical effects on liquid clouds, a multi-model investigation

    Science.gov (United States)

    Koch, D.; Balkanski, Y.; Bauer, S. E.; Easter, R. C.; Ferrachat, S.; Ghan, S. J.; Hoose, C.; Iversen, T.; Kirkevåg, A.; Kristjansson, J. E.; Liu, X.; Lohmann, U.; Menon, S.; Quaas, J.; Schulz, M.; Seland, Ø.; Takemura, T.; Yan, N.

    2011-02-01

    We use global models to explore the microphysical effects of carbonaceous aerosols on liquid clouds. Although absorption of solar radiation by soot warms the atmosphere, soot may cause climate cooling due to its contribution to cloud condensation nuclei (CCN) and therefore cloud brightness. Six global models conducted three soot experiments; four of the models had detailed aerosol microphysical schemes. The average cloud radiative response to biofuel soot (black and organic carbon), including both indirect and semi-direct effects, is -0.11 Wm-2, comparable in size but opposite in sign to the respective direct effect. In a more idealized fossil fuel black carbon experiment, some models calculated a positive cloud response because soot provides a deposition sink for sulfuric and nitric acids and secondary organics, decreasing nucleation and evolution of viable CCN. Biofuel soot particles were also typically assumed to be larger and more hygroscopic than for fossil fuel soot and therefore caused more negative forcing, as also found in previous studies. Diesel soot (black and organic carbon) experiments had relatively smaller cloud impacts with five of the models effects on the CCN population make it difficult to extrapolate from idealized experiments to likely impacts of realistic potential emission changes.

  7. Simulations of sooting turbulent jet flames using a hybrid flamelet/stochastic Eulerian field method

    Science.gov (United States)

    Consalvi, Jean-Louis; Nmira, Fatiha; Burot, Daria

    2016-03-01

    The stochastic Eulerian field method is applied to simulate 12 turbulent C1-C3 hydrocarbon jet diffusion flames covering a wide range of Reynolds numbers and fuel sooting propensities. The joint scalar probability density function (PDF) is a function of the mixture fraction, enthalpy defect, scalar dissipation rate and representative soot properties. Soot production is modelled by a semi-empirical acetylene/benzene-based soot model. Spectral gas and soot radiation is modelled using a wide-band correlated-k model. Emission turbulent radiation interactions (TRIs) are taken into account by means of the PDF method, whereas absorption TRIs are modelled using the optically thin fluctuation approximation. Model predictions are found to be in reasonable agreement with experimental data in terms of flame structure, soot quantities and radiative loss. Mean soot volume fractions are predicted within a factor of two of the experiments whereas radiant fractions and peaks of wall radiative fluxes are within 20%. The study also aims to assess approximate radiative models, namely the optically thin approximation (OTA) and grey medium approximation. These approximations affect significantly the radiative loss and should be avoided if accurate predictions of the radiative flux are desired. At atmospheric pressure, the relative errors that they produced on the peaks of temperature and soot volume fraction are within both experimental and model uncertainties. However, these discrepancies are found to increase with pressure, suggesting that spectral models describing properly the self-absorption should be considered at over-atmospheric pressure.

  8. Soot Reactivity in Conventional Combustion and Oxy-fuel Combustion Environments

    DEFF Research Database (Denmark)

    Abián, María; Jensen, Anker D.; Glarborg, Peter

    2012-01-01

    A study of the reactivity of soot produced from ethylene pyrolysis at different temperatures and CO2 atmospheres toward O2 and CO2 has been carried out using a thermogravimetric analyzer. The purpose was to quantify how soot reactivity is affected by the gas environment and temperature history of...

  9. Investigation of Chemical Kinetics on Soot Formation Event of n-Heptane Spray Combustion

    DEFF Research Database (Denmark)

    Pang, Kar Mun; Jangi, Mehdi; Bai, Xue-Song

    2014-01-01

    In this reported work, 2-dimsensional computational fluid dynamics studies of n-heptane combustion and soot formation processes in the Sandia constant-volume vessel are carried out. The key interest here is to elucidate how the chemical kinetics affects the combustion and soot formation events. N...

  10. Soot Formation Modeling of n-dodecane and Diesel Sprays under Engine-Like Conditions

    DEFF Research Database (Denmark)

    Pang, Kar Mun; Poon, Hiew Mun; Ng, Hoon Kiat

    2015-01-01

    This work concerns the modelling of soot formation process in diesel spray combustion under engine-like conditions. The key aim is to investigate the soot formation characteristics at different ambient temperatures. Prior to simulating the diesel combustion, numerical models including a revised m...

  11. Experimental validation of extended NO and soot model for advanced HD diesel engine combustion

    NARCIS (Netherlands)

    Seykens, X.L.J.; Baert, R.S.G.; Somers, L.M.T.; Willems, F.P.T.

    2009-01-01

    A computationally efficient engine model is developed based on an extended NO emission model and state-of-the-art soot model. The model predicts exhaust NO and soot emission for both conventional and advanced, high-EGR (up to 50%), heavy-duty DI diesel combustion. Modeling activities have aimed at l

  12. CoFlame: A refined and validated numerical algorithm for modeling sooting laminar coflow diffusion flames

    Science.gov (United States)

    Eaves, Nick A.; Zhang, Qingan; Liu, Fengshan; Guo, Hongsheng; Dworkin, Seth B.; Thomson, Murray J.

    2016-10-01

    Mitigation of soot emissions from combustion devices is a global concern. For example, recent EURO 6 regulations for vehicles have placed stringent limits on soot emissions. In order to allow design engineers to achieve the goal of reduced soot emissions, they must have the tools to so. Due to the complex nature of soot formation, which includes growth and oxidation, detailed numerical models are required to gain fundamental insights into the mechanisms of soot formation. A detailed description of the CoFlame FORTRAN code which models sooting laminar coflow diffusion flames is given. The code solves axial and radial velocity, temperature, species conservation, and soot aggregate and primary particle number density equations. The sectional particle dynamics model includes nucleation, PAH condensation and HACA surface growth, surface oxidation, coagulation, fragmentation, particle diffusion, and thermophoresis. The code utilizes a distributed memory parallelization scheme with strip-domain decomposition. The public release of the CoFlame code, which has been refined in terms of coding structure, to the research community accompanies this paper. CoFlame is validated against experimental data for reattachment length in an axi-symmetric pipe with a sudden expansion, and ethylene-air and methane-air diffusion flames for multiple soot morphological parameters and gas-phase species. Finally, the parallel performance and computational costs of the code is investigated.

  13. Carbon Nanostructure: Its Evolution During its Impact Upon Soot Growth and Oxidation

    Science.gov (United States)

    2001-01-01

    The proposed work is a ground-based study to define and quantify soot nanostructural changes in response to growth conditions, thermal and oxidative treatments and to quantify their impact upon further oxidation and growth of highly ordered carbon materials. Experimental data relating soot oxidation rates to multiple oxidizing species concentrations will directly test for additive or synergistic soot oxidation rates. Such validation is central for assessing the applicability of individual soot oxidation rates and designing oxidative strategies for controlling soot loadings in and emissions from turbulent combustion processes. Through these experiments, new insights into soot nanostructure evolution during and its impact upon oxidation by O2 and OH will be realized. It is expected that the results of this effort will spawn new research directions in future microgravity and 1g environments. Issues raised by positive or even negative demonstration of the hypotheses of this proposal have direct bearing on modelling and controlling soot formation and its destruction in nearly every combustion process producing soot.

  14. Effects of sedimentary soot-like materials on bioaccumulation and sorption of polychlorinated biphenyls

    NARCIS (Netherlands)

    Jonker, M.T.O.; Hoenderboom, A.M.; Koelmans, A.A.

    2004-01-01

    Bioaccumulation of hydrophobic organic chemicals from sediments containing soot or sootlike materials has been hypothesized to be limited by strong sorption of the chemicals to the soot matrixes. To test this hypothesis, we quantified bioaccumulation of 11 polychlorinated biphenyls (PCBs) into the a

  15. Nanostructure and Oxidation Reactivity of Nascent Soot Particles in Ethylene/Pentanol Flames

    Directory of Open Access Journals (Sweden)

    Yaoyao Ying

    2017-01-01

    Full Text Available As byproducts of the combustion process of hydrocarbon fuels, soot particles are difficult to remove, and they can greatly harm human health and pollute the environment. Therefore, the formation and growth processes of the soot particles has become a study focus of researchers. In this paper, the nanostructure and oxidation reactivity of carbonaceous particles collected from ethylene inverse diffusion flames with or without the additions of three pentanol isomers (1-pentanol, 3-methyl-1-butanol, and 2-methyl-1-butanol were investigated in detail. The nanostructure and oxidation characteristics of nascent soot particles were characterized using high resolution transmission electron microscopy (HRTEM, X-ray diffractometry (XRD and thermogravimetric analysis (TGA. It was found that the nascent soot cluster of pure ethylene flame had a loose structure, while the additions of pentanol isomers made the soot agglomerates more compact and delayed the growth of graphitic structures. The pentanol isomer additions also contributed to a higher disorder of the crystallite arrangement in the soot nanostructure. According to the TGA experiments, the results showed that the addition of pentanol isomers enhanced the oxidation reactivity of soot particles, which could help to reduce soot particle emissions.

  16. Soot particles at an elevated site in eastern China during the passage of a strong cyclone.

    Science.gov (United States)

    Niu, Hongya; Shao, Longyi; Zhang, Daizhou

    2012-07-15

    Atmospheric particles larger than 0.2 μm were collected at the top of Mt. Tai (36.25°N, 117.10°E, 1534 m a.s.l.) in eastern China in May 2008 during the passage of a strong cyclone. The particles were analyzed with electron microscopes and characterized by morphology, equivalent diameter and elemental composition. Soot particles with coating (coated soot particles) and those without apparent coating (naked soot particles) were predominant in the diameter range smaller than 0.6 μm in all samples. The number-size distribution of the relative abundance of naked soot particles in the prefrontal air was similar to that in the postfrontal air and their size modes were around 0.2-0.3 μm. However, the distribution of inclusions of coated soot particles showed a mode in the range of 0.1-0.3 μm. The coating degree of coated soot particles, which was defined by the ratio of the diameter of inclusion to the diameter of particle body, showed a mode around 0.5 with the range of 0.3-0.6. These results indicate that the status of soot particles in the prefrontal and postfrontal air was similar although air pollution levels were dramatically different. In addition, the relative abundance of accumulation mode particles increased with the decrease of soot particles after the front passage.

  17. Microwave-assisted in-situ regeneration of a perovskite coated diesel soot filter

    NARCIS (Netherlands)

    Zhang-Steenwinkel, Y.; van der Zande, L.M.; Castricum, H.L.; Bliek, A.; van den Brink, R.W.; Elzinga, G.D.

    2005-01-01

    Dielectric heating may be used as an in situ technique for the periodic regeneration of soot filters, as those used in Diesel engines. As generally the Diesel exhaust temperatures are below the soot light-off temperature, passive regeneration is not possible. Presently, we have investigated the diel

  18. A mechanistic study on the simultaneous elimination of soot and nitric oxide from engine exhaust

    KAUST Repository

    Raj, Abhijeet

    2011-04-01

    The non-catalytic interaction between soot and nitric oxide (NO) resulting in their simultaneous elimination was studied on different types of reactive site present on soot. The reaction mechanism proposed previously was extended by including seven new reaction pathways for which the reaction energetics and kinetics were studied using density functional theory and transition state theory. This has led to the calculation of a new rate for the removal of carbon monoxide (CO) from soot. The new pathways have been added to our polycyclic aromatic hydrocarbon (PAH) growth model and used to simulate the NO-soot interaction to form CO, N2 and N2O. The simulation results show satisfactory agreement with experiment for the new CO removal rate. The NO-soot reaction was found to depend strongly on the soot site type and temperature. For a set of temperatures, computed PAH structures were analysed to determine the functional groups responsible for the decrease in the reactivity of soot with NO with increasing reaction time. In isothermal conditions, it was found that as temperature is increased, the number of oxygen atoms remaining on the soot surface decreases, while the number of nitrogen atoms increases for a given reaction time. © 2010 Elsevier Ltd. All rights reserved.

  19. Dexpler: Converting Android Dalvik Bytecode to Jimple for Static Analysis with Soot

    CERN Document Server

    Bartel, Alexandre; Monperrus, Martin; Traon, Yves Le

    2012-01-01

    This paper introduces Dexpler, a software package which converts Dalvik bytecode to Jimple. Dexpler is built on top of Dedexer and Soot. As Jimple is Soot's main internal rep- resentation of code, the Dalvik bytecode can be manipu- lated with any Jimple based tool, for instance for performing point-to or flow analysis.

  20. Phenomenological Models of Soot Processes in Combustion Systems

    Science.gov (United States)

    1979-07-01

    I . HeC re. the hi vb..r the tempt-tAt tire . the gre- ter is Ch r-iCe ot t i ;l .61 a I ’l ’ C h. r ! It’ It) %,,,,t. Thos I ue struccures which...during pyrolysis torm ittrongly conjugated (polar) species most readily soot. A pure acetylenic polymerlsation route is too slow to predict the early...Research Laboratory at Princeton on the pyrolysis uad uxi- dation of aliphatic hydrocarbons (Dryer and Glasnrttir, 19701 Glassman, et &l., 1975

  1. High-Energy-Density Fuel Blending Strategies and Drop Dispersion for Fuel Cost Reduction and Soot Propensity Control

    Science.gov (United States)

    Bellan, J.; Harstad, K.

    1998-01-01

    The idea that low soot propensity of high-energy-density (HED) liquid sooting fuels and cost reduction of a multicomponent energetic fuel can be achieved by doping a less expensive, less sooting liquid fuel with HED is tested through numerical simulations.

  2. Planning Annual Shutdown Inspection for BFB Boiler

    OpenAIRE

    Sorsa, Tatu

    2014-01-01

    The goal of this thesis was to create an illustrative guidebook of annual inspection planning for BFB boiler to help power plant operator when planning of annual inspection is topical. This thesis was made for Andritz Oy and it is based on inspection reports and experiences of BFB boiler’s maintenance and inspection staff. In this thesis it is shown how to plan an annual inspection for BFB boiler and thesis gives good tools and hints for operator to manage inspection from the beginning ...

  3. Transients in a circulating fluidized bed boiler

    Science.gov (United States)

    Baskakov, A. P.; Munts, V. A.; Pavlyuk, E. Yu.

    2013-11-01

    Transients in a circulating fluidized bed boiler firing biomass are considered. An attempt is made to describe transients with the use of concepts applied in the automatic control theory. The parameters calculated from an analysis of unsteady heat balance equations are compared with the experimental data obtained in the 12-MW boiler of the Chalmers University of Technology. It is demonstrated that these equations describe the transient modes of operation with good accuracy. Dependences for calculating the time constants of unsteady processes are obtained.

  4. Control Properties of Bottom Fired Marine Boilers

    DEFF Research Database (Denmark)

    Solberg, Brian; Andersen, Palle; Karstensen, Claus M. S.

    2005-01-01

    This paper focuses on model analysis of a dynamic model of a bottom fired one-pass smoke tube boiler. Linearised versions of the model are analysed to determine how gain, time constants and right half plane zeros (caused by the shrink-and-swell phenomenon) depend on the steam flow load. Furthermore...... the interactions in the system are inspected to analyse potential benefit from using a multivariable control strategy in favour of the current strategy based on single loop theory. An analysis of the nonlinear model is carried out to further determine the nonlinear characteristics of the boiler system...

  5. Central heating: fossil-fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    Blazek, C.F.; Baker, N.R.; Tison, R.R.

    1979-05-01

    This evaluation provides performance and cost data for fossil-fuel-fired steam boilers, hot-water generators, and thermal fluid generators currently available from manufacturers. Advanced-technology fluidized-bed boilers also are covered. Performance characteristics investigated include unit efficiencies, turndown capacity, and pollution requirements. Costs are tabulated for equipment and installation of both field-erected and packaged units. The information compiled in this evaluation will assist in the process of selecting energy-conversion units required for industrial, commercial, and residential applications.

  6. Detection of Soot Using a Resistivity Sensor Device Employing Thermophoretic Particle Deposition

    Directory of Open Access Journals (Sweden)

    Doina Lutic

    2010-01-01

    Full Text Available Results are reported for thermophoretic deposition of soot particles on resistivity sensors as a monitoring technique for diesel exhaust particles with the potential of improved detection limit and sensitivity. Soot with similar characteristics as from diesel exhausts was generated by a propane flame and diluted in stages. The soot in a gas flow at 240–270C∘ was collected on an interdigitated electrode structure held at a considerably lower temperature, 105–125C∘. The time delay for reaching measurable resistance values, the subsequent rate, and magnitude of resistance decrease were a function of the distance between the fingers in the electrodes and the degree of dilution of the soot containing flow. Soot deposition and subsequent removal by heating the sensor support was also performed in a real diesel exhaust. Good similarities between the behavior in our laboratory system and the real diesel exhaust were noticed.

  7. A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

    KAUST Repository

    Skeen, Scott A.

    2016-04-05

    The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.

  8. Effect of NO2 and water on the catalytic oxidation of soot

    DEFF Research Database (Denmark)

    Christensen, Jakob Munkholt; Grunwaldt, Jan-Dierk; Jensen, Anker Degn

    2017-01-01

    from the oxide, and where the reaction thus has reached the zero order kinetics regime in the gaseous reactant. In loose contact with a catalyst the presence of NO2 causes a pronounced enhancement of the oxidation rate. The rate constants for loose contact soot oxidation in the presence of NO2......The influence of adding NO2 to 10 vol% O2/N2 on non-catalytic soot oxidation and soot oxidation in intimate or loose contact with a catalyst has been investigated. In non-catalytic soot oxidation the oxidation rate is increased significantly at lower temperatures by NO2. For soot oxidation in tight...... contact with a Co3O4 catalyst a more reactive NO2-containg atmosphere did not change the oxidation profile significantly during temperature programmed oxidation. This is consistent with the expected Mars van Krevelen mechanism, where the rate limiting step is reaction between carbon and lattice oxygen...

  9. Determination of heavy metals in domestic, commercial and industrial soot samples

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Yousaf; Sohail, Syed Muhammad; Ahmad, Imtiaz [Peshawar Univ., Khyber Pakhtoonkhwa (Pakistan). Inst. of Chemical Sciences; Saeed, Khalid [Peshawar Univ., Khyber Pakhtoonkhwa (Pakistan). Inst. of Chemical Sciences; Malakand Univ., Khyber Pakhtoonkhwa (Pakistan). Dept. of Chemistry

    2012-07-15

    The heavy metals such as manganese (Mn), cadmium (Cd), zinc (Zn), chromium (Cr), lead (Pb), nickel (Ni), copper (Cu) and iron (Fe) were determined in domestic, commercial and industrial soot samples via atomic absorption spectrophotometer. The vehicle soot samples showed highest concentration of investigated heavy metals as compared to other soot samples. It was also found that the concentration of Fe was high in the soot samples (range 5.75-1105 mg/Kg) followed by Cu (70-990 mg/Kg) while the concentration of Ni was lower (range 0.5-3 mg/Kg). It was also found that the concentration of Mn and Fe was decreased as decreased the size of the soot samples while the concentration of other investigated heavy metals increased as decreased the size fraction. (orig.)

  10. Insights into the role of soot aerosols in cirrus cloud formation

    Directory of Open Access Journals (Sweden)

    B. Kärcher

    2007-08-01

    Full Text Available Cirrus cloud formation is believed to be dominated by homogeneous freezing of supercooled liquid aerosols in many instances. Heterogeneous ice nuclei such as mineral dust, metallic, and soot particles, and some crystalline solids within partially soluble aerosols are suspected to modulate cirrus properties. Among those, the role of ubiquitous soot particles is perhaps the least understood. Because aviation is a major source of upper tropospheric soot particles, we put emphasis on ice formation in dispersing aircraft plumes. The effect of aircraft soot on cirrus formation in the absence of contrails is highly complex and depends on a wide array of emission and environmental parameters. We use a microphysical-chemical model predicting the formation of internally mixed, soot-containing particles up to two days after emission, and suggest two principal scenarios: high concentrations of original soot emissions could slightly increase the number of ice crystals; low concentrations of particles originating from coagulation of emitted soot with background aerosols could lead to a significant reduction in ice crystal number. Both scenarios assume soot particles to be moderate ice nuclei relative to cirrus formation by homogeneous freezing in the presence of few efficient dust ice nuclei. A critical discussion of laboratory experiments reveals that the ice nucleation efficiency of soot particles depends strongly on their source, and, by inference, on atmospheric aging processes. Mass and chemistry of soluble surface coatings appear to be crucial factors. Immersed soot particles tend to be poor ice nuclei, some bare ones nucleate ice at low supersaturations. However, a fundamental understanding of these studies is lacking, rendering extrapolations to atmospheric conditions speculative. In particular, we cannot yet decide which indirect aircraft effect scenario is more plausible, and options suggested to mitigate the problem remain uncertain.

  11. Insights into the role of soot aerosols in cirrus cloud formation

    Directory of Open Access Journals (Sweden)

    B. Kärcher

    2007-06-01

    Full Text Available Cirrus cloud formation is believed to be domi-nated by homogeneous freezing of supercooled liquid aerosols in many instances. Heterogeneous ice nuclei such as mineral dust, metallic, and soot particles, and some crystalline solids within partially soluble aerosols are suspected to modulate cirrus properties. Among those, the role of ubiqui-tous soot particles is perhaps the least understood. Because aviation is a major source of upper tropospheric soot particles, we put emphasis on ice formation in dispersing aircraft plumes. The effect of aircraft soot on cirrus formation in the absence of contrails is highly complex and depends on a wide array of emission and environmental parameters. We use a microphysical-chemical model predicting the formation of internally mixed, soot-containing particles up to two days after emission, and suggest two principal scenarios, both assuming soot particles to be moderate ice nuclei relative to cirrus formation by homogeneous freezing in the presence of few efficient dust ice nuclei: high concentrations of original soot emissions could slightly increase the number of ice crystals; low concentrations of particles originating from coagulation of emitted soot with background aerosols could lead to a significant reduction in ice crystal number. A critical discussion of laboratory experiments reveals that the ice nucleation efficiency of soot particles depends strongly on their source, and, by inference, on atmospheric aging processes. Mass and chemistry of soluble surface coatings appear to be crucial factors. Immersed soot particles tend to be poor ice nuclei, some bare ones nucleate ice at low supersaturations. However, a fundamental understanding of these studies is lacking, rendering extrapolations to atmospheric conditions speculative. In particular, we cannot yet decide which indirect aircraft effect scenario is more plausible, and options suggested to mitigate the problem remain uncertain.

  12. Application of GPRS and GIS in Boiler Remote Monitoring System

    Directory of Open Access Journals (Sweden)

    Hongchao Wang

    2012-12-01

    Full Text Available Application of GPRS and GIS in boiler remote monitoring system was designed in this paper by combining the advantage of GPRS and GIS in remote data transmission with configuration monitoring technology. The detail information of the operating conditions of the industrial boiler can be viewed by marking the location of boiler on the electronic map dynamically which can realize the unified management for industrial boiler of a region or city conveniently. Experimental application show that the system has convenience to use, high reliability, which play an active role to improve the operating efficiency, to prevent the boiler accident, and to decrease the energy consumption.

  13. Super Boiler: Packed Media/Transport Membrane Boiler Development and Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Liss, William E; Cygan, David F

    2013-04-17

    Gas Technology Institute (GTI) and Cleaver-Brooks developed a new gas-fired steam generation system the Super Boiler for increased energy efficiency, reduced equipment size, and reduced emissions. The system consists of a firetube boiler with a unique staged furnace design, a two-stage burner system with engineered internal recirculation and inter-stage cooling integral to the boiler, unique convective pass design with extended internal surfaces for enhanced heat transfer, and a novel integrated heat recovery system to extract maximum energy from the flue gas. With these combined innovations, the Super Boiler technical goals were set at 94% HHV fuel efficiency, operation on natural gas with <5 ppmv NOx (referenced to 3%O2), and 50% smaller than conventional boilers of similar steam output. To demonstrate these technical goals, the project culminated in the industrial demonstration of this new high-efficiency technology on a 300 HP boiler at Clement Pappas, a juice bottler located in Ontario, California. The Super Boiler combustion system is based on two stage combustion which combines air staging, internal flue gas recirculation, inter-stage cooling, and unique fuel-air mixing technology to achieve low emissions rather than external flue gas recirculation which is most commonly used today. The two-stage combustion provides lower emissions because of the integrated design of the boiler and combustion system which permit precise control of peak flame temperatures in both primary and secondary stages of combustion. To reduce equipment size, the Super Boiler's dual furnace design increases radiant heat transfer to the furnace walls, allowing shorter overall furnace length, and also employs convective tubes with extended surfaces that increase heat transfer by up to 18-fold compared to conventional bare tubes. In this way, a two-pass boiler can achieve the same efficiency as a traditional three or four-pass firetube boiler design. The Super Boiler is consequently

  14. Soot particle density determination from a laser extinction multipass technique

    Science.gov (United States)

    Glaros, Gregory E.

    1994-09-01

    Methods of measuring soot particle densities have been of interest for several decades. Plume signature determination of both rocket and air-breathing engines is of concern when applied to pollution and theater missile ballistic defense strategies. Application of non-intrusive traditional techniques employing Bouguer's law relied on Sauter mean diameter statistical deviation and the probability density function in order to compensate for the ambiguities present in the extension of classical Mie theory. Our investigation developed an apparatus which will determine soot particle densities by measuring extinction from absorption of light energy transmitted through an exhaust plume. The method used was a two-pass technique using an optical phase conjugator (OPC) which returned the non-absorbed portion of light energy. When the apparatus was used with a retroreflector, it produced accurate results but did not compensate for thermal blooming or beam steering. Characteristics of a photorefractive crystal used in the QPC process allowed for the return of an incident beam corrected for aberrations. Although the OPC returned the phase conjugate of the incident beam its size precluded the return of all of the transmitted data because data was lost on the blossomed beam.

  15. Soot filter for the exhaust gas of internal combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Abthoff, J.; Schuster, H.D.; Langer, H.J.

    1980-06-19

    In the previously known soot filters, the exhaust gas flows through the cylindrical filter radially from the outside to the inside. The exhaust gas touches a relatively large area of the filter housing and therefore loses a large part of the thermal energy required for post-combustion. According to the invention, these disadvantages are avoided in the new filter, where the filter material forms hollow spaces at the internal wall of the filter, which take the exhaust gas after it has flowed through the filter and carry it in an axial direction of the filter housing to the exhaust. Due to this design of the filter and the saving in heat, the areas on which the exhaust gas impinges can be kept appreciably smaller and better use can be made of the heat in the exhaust gas. The ceramic filter material can consist of an outer layer of loose ceramic fibres and an inner woven ceramic fibre mat. In order to increase the effectiveness of the filter, the soot filter can be used as a fine filter after a coarse filter.

  16. Modeling polychlorinated biphenyl sorption isotherms for soot and coal

    Energy Technology Data Exchange (ETDEWEB)

    Jantunen, A.P.K.; Koelmans, A.A.; Jonker, M.T.O. [University of Utrecht, Utrecht (Netherlands)

    2010-08-15

    Sorption isotherms (pg-ng/L) were measured for 11 polychlorinated biphenyls (PCBs) of varying molecular planarity from aqueous solution to two carbonaceous geosorbents, anthracite coal and traffic soot. All isotherms were reasonably log-log-linear, but smooth for traffic soot and staircase-shaped for coal, to which sorption was stronger and more nonlinear. The isotherms were modeled using seven sorption models, including Freundlich, (dual) Langmuir, and Polanyi-Dubinin-Manes (PDM). PDM provided the best combination of reliability and mechanistically-interpretable parameters. The PDM normalizing factor Z appeared to correlate negatively with sorbate molecular volume, dependent on the degree of molecular planarity. The modeling results supported the hypothesis that maximum adsorption capacities (Q{sub max}) correlate positively with the sorbent's specific surface area. Q{sub max} did not decrease with increasing sorbate molecular size, and adsorption affinities clearly differed between the sorbents. Sorption was consistently stronger but not less linear for planar than for nonplanar PCBs, suggesting surface rather than pore sorption.

  17. Enhancing the operational dependability of oil and gas burners: radial blowers with compression in two stages; Zur Erhoehung der Betriebssicherheit von Oel- und Gasbrennern: Radialgeblaese mit zweistufiger Verdichtung

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, H. [Produktmanagement Anwendungstechnik, Oertli-Rohleder Waermetechnik GmbH, Moeglingen (Germany)

    1999-02-01

    A blower system for oil and gas burners with blowers (Duopress) is described which achieves high blower compression at low rates of air intake. The high starting resistance of burners is thus easily overcome and operational dependability is much enhanced. Moreover, the system permits modular construction of burner blowers. As a consequence, different sizes of burners can be built and their ease of maintenance is enhanced. (orig.) [Deutsch] Es wird ein Geblaesesystem fuer Oel- oder Gasgeblaesebrenner (Duopress) vorgestellt, welches es ermoeglicht, hohe Geblaesepressungen bei niedrigem Luftvolumenstrom zu erreichen. So lassen sich die hohen Anfahrwiderstaende bei den Brennerstarts muehelos ueberwinden, und man kann eine deutlich gesteigerte Betriebssicherheit erreichen. Das vorgestellte System ermoeglicht zudem eine modulare Bauweise der Brennergeblaese. Dadurch koennen auf einfache Art verschiedene Baugroessen eines Brenners realisiert und die Wartungsfreundlichkeit der Brenner gesteigert werden. (orig.)

  18. Blower speed variation in refrigeration engineering and potential applications; Verschiedene Verfahren der Drehzahlveraenderung von Ventilatoren in der Kaeltetechnik mit einer Betrachtung moeglicher Anwendungsfaelle

    Energy Technology Data Exchange (ETDEWEB)

    Albig, J. [Ziehl-Abegg AG, Kuenzelsau (Germany)

    2006-07-01

    Various methods of blower speed control in refrigeration engineering enable user-oriented efficiency increase in axial blowers in refrigeration engineering. Apart from the motor efficiency, the economic efficiency of a blower is also determined by the investment cost of speed control systems. The blower efficiency is left out of account in this contribution. The most common control systems were compared, i.e. voltage control, frequency control and EC control. For an optimum result, the optimum system must be selected already in the planning stage. For this, the advantages and shortcomings must be known for each solution and application. Exemplary recommendations are given for various applications, and the speed control systems described are compared with regard to their efficiency and investment cost. (orig.)

  19. Understanding and predicting soot generation in turbulent non-premixed jet flames.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hai (University of Southern California, Los Angeles, CA); Kook, Sanghoon; Doom, Jeffrey; Oefelein, Joseph Charles; Zhang, Jiayao; Shaddix, Christopher R.; Schefer, Robert W.; Pickett, Lyle M.

    2010-10-01

    This report documents the results of a project funded by DoD's Strategic Environmental Research and Development Program (SERDP) on the science behind development of predictive models for soot emission from gas turbine engines. Measurements of soot formation were performed in laminar flat premixed flames and turbulent non-premixed jet flames at 1 atm pressure and in turbulent liquid spray flames under representative conditions for takeoff in a gas turbine engine. The laminar flames and open jet flames used both ethylene and a prevaporized JP-8 surrogate fuel composed of n-dodecane and m-xylene. The pressurized turbulent jet flame measurements used the JP-8 surrogate fuel and compared its combustion and sooting characteristics to a world-average JP-8 fuel sample. The pressurized jet flame measurements demonstrated that the surrogate was representative of JP-8, with a somewhat higher tendency to soot formation. The premixed flame measurements revealed that flame temperature has a strong impact on the rate of soot nucleation and particle coagulation, but little sensitivity in the overall trends was found with different fuels. An extensive array of non-intrusive optical and laser-based measurements was performed in turbulent non-premixed jet flames established on specially designed piloted burners. Soot concentration data was collected throughout the flames, together with instantaneous images showing the relationship between soot and the OH radical and soot and PAH. A detailed chemical kinetic mechanism for ethylene combustion, including fuel-rich chemistry and benzene formation steps, was compiled, validated, and reduced. The reduced ethylene mechanism was incorporated into a high-fidelity LES code, together with a moment-based soot model and models for thermal radiation, to evaluate the ability of the chemistry and soot models to predict soot formation in the jet diffusion flame. The LES results highlight the importance of including an optically-thick radiation

  20. Soot measurements for diesel and biodiesel spray combustion under high temperature highly diluted ambient conditions

    KAUST Repository

    Zhang, Ji

    2014-11-01

    This paper presents the soot temperature and KL factor for biodiesel, namely fatty acid methyl ester (FAME) and diesel fuel combustion in a constant volume chamber using a two-color technique. The KL factor is a parameter for soot concentration, where K is an absorption coefficient and proportional to the number density of soot particles, L is the geometric thickness of the flame along the optical detection axis, and KL factor is proportional to soot volume fraction. The main objective is to explore a combustion regime called high-temperature and highly-diluted combustion (HTHDC) and compare it with the conventional and low-temperature combustion (LTC) modes. The three different combustion regimes are implemented under different ambient temperatures (800 K, 1000 K, and 1400 K) and ambient oxygen concentrations (10%, 15%, and 21%). Results are presented in terms of soot temperature and KL factor images, time-resolved pixel-averaged soot temperature, KL factor, and spatially integrated KL factor over the soot area. The time-averaged results for these three regimes are compared for both diesel and biodiesel fuels. Results show complex combined effects of the ambient temperature and oxygen concentration, and that two-color temperature for the HTHDC mode at the 10% oxygen level can actually be lower than the conventional mode. Increasing ambient oxygen and temperature increases soot temperature. Diesel fuel results in higher soot temperature than biodiesel for all three regimes. Results also show that diesel and biodiesel fuels have very different burning and sooting behavior under the three different combustion regimes. For diesel fuel, the HTHDC regime offers better results in terms of lower soot than the conventional and LTC regimes, and the 10% O2, 1400 K ambient condition shows the lowest soot concentration while maintaining a moderate two-color temperature. For biodiesel, the 15% O2, 800 K ambient condition shows some advantages in terms of reducing soot

  1. Control Properties of Bottom Fired Marine Boilers

    DEFF Research Database (Denmark)

    Solberg, Brian; Andersen, Palle; Karstensen, Claus M. S.

    2007-01-01

    This paper focuses on model analysis of a dynamic model of a bottom fired one-pass smoke tube boiler. Linearized versions of the model are analyzed and show large variations in system gains at steady state as function of load whereas gain variations near the desired bandwidth are small. An analysis...

  2. Selecting Actuator Configuration for a Benson Boiler

    DEFF Research Database (Denmark)

    Kragelund, Martin Nygaard; Leth, John-Josef; Wisniewski, Rafal

    2009-01-01

    with particular focus on a boiler in a power plant operated by DONG Energy - a Danish energy supplier. The problem has been reformulated using mathematic notions from economics. The selection of actuator configuration has been limited to the fuel system which in the considered plant consists of three different...

  3. Environmental control during steam boiler washing

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Marcio A.B.; Abreu Pereira, Vera L. de [Companhia Petroquimica do Nordeste (COPENE), Camacari, BA (Brazil). Div. de Engenharia Ambiental; Ringler, Ulrich E.S. [PROMON Engenharia Ltda., Salvador, BA (Brazil)

    1993-12-31

    The washing and chemical cleaning of boilers, activities of a high polluting potential, are responsible for the generation of wastewater of high contents of heavy metals, suspended solids and chemical oxygen demand (COD). This paper describes the actions carried out by COPENE - Petroquimica do Nordeste S/A - in order to reduce this problem. (author). 10 refs., 3 figs., 2 tabs.

  4. Debugging and Rectification of Electric Heating Boilers

    Institute of Scientific and Technical Information of China (English)

    GE; Cheng-song

    2015-01-01

    Steam system of CRARL mainly provides steam for dissolving system,and steam was transported through pipes.The major equipment is a150kW steam electric heating boiler(FH-JZ-003),with rated evaporation 0.2T/h and rated pressure 1.0MPa.It was found during debugging

  5. Is That Boiler Ready To Blow?

    Science.gov (United States)

    Robinson, Glenn S.; Trombley, Robert E.

    2001-01-01

    Discusses implementation of a thorough assessment program to determine the condition of boilers, pressure vessels and other plant equipment to determine the feasibility of part or entire system replacement. Assessment basics are examined as are tips for selecting the right inspection and engineering contractor for assessments. (GR)

  6. Thermal Analysis of Superheater Platen Tubesin Boilers

    Directory of Open Access Journals (Sweden)

    Shahram Falahatkar

    2014-01-01

    Full Text Available Superheaters are among the most important components of boilers and have major importance due to this operation in high temperatures and pressures. Turbines are sensitive to the fluctuation of superheaterstemperature;therefore even the slightest fluctuation in the outlet vapor temperature from the superheaters does damage the turbine axis and fins. Examining the potential damages of combustion in the boilers and components such as the superheaters can have a vital contribution to the progression of the productivity of boiler, turbine and the power plant altogether it solutions are to be fund to improve such systems. In this study, the focus is on the nearest tube set of superheaters to the combustion chamber.These types of tubes are exposed to a wide range ofcombustion flames such that the most heat transfer to them is radiation type.Here, the 320 MW boiler of Isfahan power plant (Iran, the combustion chamber, 16 burners and the platensuperheater tubes were remodeled by CFD technique. The fluid motion, the heat transfer and combustion processes are analyzed. The two-equation turbulence model of k-εis adopted to measure the eddy viscosity. The eddy dissipation model is used to calculate the combustion as well as the P-1 radiation model to quantify the radiation. The overheated zones of superheater tubes and the combustion chamber are identified in order toimprove this problem by applying the radiation thermal shields and knees with porous crust which are introduced as the new techniques.

  7. Blowers in bus systems; Einsatz von Ventilatoren in BUS-Systemen

    Energy Technology Data Exchange (ETDEWEB)

    Schneeweiss, H. [ebm - Werke GmbH und Co., Mulfingen (Germany). R und D

    2000-07-01

    Modern industrial blowers are compact and have good control characteristics. Centralized or decentralized monitoring has become a state-of-the-art technology. Bus systems make it possible to monitor and analyze component status at any time. Electronically commutated external rotor motors with bus interfaces offer a wide spectrum of applications. [German] Beim Einsatz von Ventilatoren und Geblaesen in der Industrie ist es heute Standard, dass die Geraete einen kompakten Aufbau und gute Regel- bzw. Steuereigenschaften aufweisen. Immer mehr setzt sich auch die zentrale und dezentrale Ueberwachung von Geraeten durch. Mit einem BUS-System kann der aktuelle Status jeder Komponente jederzeit abgefragt und der Zustand analysiert werden. Durch spezielle Einsatzbedingungen werden heute elektronisch kommutierte Aussenlaeufermotoren mit BUS-Schnittstellen versehen. Damit steht ein breites Anwendungsspektrum zur Verfuegung. (orig.)

  8. A Blower-Like Approach to Predict the Effectiveness of Vaccines in a TB Dynamic Carlos

    Directory of Open Access Journals (Sweden)

    Frederico Fronza

    2014-06-01

    Full Text Available In this paper we present an extension of an automata approach proposed by S. Blower (1998 to describe the tuberculosis progression in a bi-dimensional space. In our extended model, the vaccination was included as an inhibitory variable in order to study its influence on the behavior of the tuberculosis spread. Our simulations showed that the earlier the vaccine is administered in the population, the lower the number of infected individuals, as expected for an in vivo system. However, our results also indicated that although the usual vaccination processes help reducing the strength of infection, the disease is not extinct, remaining the endemic state at low levels. These results strongly suggest that further actions are needed to increase the effectiveness of immunizations.

  9. Testicular cancer trends as 'whistle blowers' of testicular developmental problems in populations

    DEFF Research Database (Denmark)

    Skakkebaek, N E; Rajpert-De Meyts, Ewa; Jørgensen, N;

    2007-01-01

    in TGCC rates of a population may be 'whistle blowers' of other reproductive health problems. As cancer registries are often of excellent quality - in contrast to registries for congenital abnormalities - health authorities should consider an increase in TGCC as a warning that other reproductive health......Recently a worldwide rise in the incidence of testicular germ cell cancer (TGCC) has been repeatedly reported. The changing disease pattern may signal that other testicular problems may also be increasing. We have reviewed recent research progress, in particular evidence gathered in the Nordic....../disorders of sex differentiation and male fertility problems may be symptoms with varying penetration. In spite of their fetal origin, most of the TDS symptoms, including TGCC and poor semen quality, can only be diagnosed in adulthood. Data from a Danish-Finnish research collaboration strongly suggest that trends...

  10. Testicular cancer trends as 'whistle blowers' of testicular developmental problems in populations

    DEFF Research Database (Denmark)

    Skakkebaek, N E; Rajpert-De Meyts, E; Jørgensen, N

    2007-01-01

    Recently a worldwide rise in the incidence of testicular germ cell cancer (TGCC) has been repeatedly reported. The changing disease pattern may signal that other testicular problems may also be increasing. We have reviewed recent research progress, in particular evidence gathered in the Nordic...... countries, which shows strong associations between testicular cancer, undescended testis, hypospadias, poor testicular development and function, and male infertility. These studies have led us to suggest the existence of a testicular dysgenesis syndrome (TDS), of which TGCC, undescended testis, hypospadias...... in TGCC rates of a population may be 'whistle blowers' of other reproductive health problems. As cancer registries are often of excellent quality - in contrast to registries for congenital abnormalities - health authorities should consider an increase in TGCC as a warning that other reproductive health...

  11. Soot effects on clouds and solar absorption: Understanding the differences in recently published soot mitigation experiments. (Invited)

    Science.gov (United States)

    Bauer, S. E.; Menon, S.

    2010-12-01

    Attention has been drawn to black carbon aerosols, as a target for short-term mitigation of climate warming. This measure seems attractive because soot is assumed to warm the atmosphere and at the same time has a lifetime of just a few days. Therefore regulating soot emissions could, as a short-term action, potentially buy time by slowing global warming until regulations for longer lived greenhouse gases are set in place. Currently the scientific community debates the impacts of such mitigation measures, especially when considering indirect effects. We tested with the GISS/MATRIX model, a global climate model including detailed aerosol microphysics, the effect of reducing fossil fuel emissions and bio-fuel emissions and found that opposite changes in cloud droplet number concentration lead to positive cloud forcing numbers in the bio-fuel reduction case and negative forcing numbers in the diesel mitigation case. Similar experiments have been carried out and have recently been published by other modeling groups, finding partly similar partly contradicting results to our study. In this presentation we want to explain the differences in black carbon research carried out with complex microphysical models, by focusing on the treatment of mixing state, and separation between forcings and feedbacks.

  12. Some issues on soot removal from exhaust gases by means of a catalytic ceramic filter

    Energy Technology Data Exchange (ETDEWEB)

    Ciambelli, P.; Palma, V.; Russo, P. [Dipt. di Ingegneria Chimica e Alimentare, Univ. di Salerno, Fisciano (Italy); Vaccaro, S. [Dipt. di Chemica, Univ. di Napoli Federico II, Napoli (Italy)

    1999-07-01

    A catalytic filter for soot oxidation was made by deposition of a TiO{sub 2} supported Cu/V/K/Cl based catalyst on the surface of a porous ceramic filter. The filter performances were evaluated and compared with those of powder catalyst and uncatalytic filter. Filter testing was performed by either temperature programmed oxidation of soot previously deposited on the filter or simultaneous soot filtration and filter regeneration performed at a gas-oil burner exhaust. Both experiments showed that the catalyst significantly increases the rate of soot combustion and reduces both light-off and burnout temperatures of soot. At 375 C the catalytic filter was continuously regenerated at the burner exhaust with a soot combustion rate of about 0.1 g/min. Tests performed in the presence of NO showed a further increase of the rate of catalytic combustion together with NO consumption. It is suggested that such a consumption was the result of two competitive reactions, i.e. the catalytic oxidation of NO to NO{sub 2} and the reaction of NO{sub x} with soot. A specific feature of the catalyst is that it is active for both reactions. (orig.)

  13. Implementation of two-equation soot flamelet models for laminar diffusion flames

    Energy Technology Data Exchange (ETDEWEB)

    Carbonell, D.; Oliva, A.; Perez-Segarra, C.D. [Centre Tecnologic de Transferencia de Calor (CTTC), Universitat Politecnica de Catalunya (UPC), ETSEIAT, Colom 11, E-08222, Terrassa (Barcelona) (Spain)

    2009-03-15

    The two-equation soot model proposed by Leung et al. [K.M. Leung, R.P. Lindstedt, W.P. Jones, Combust. Flame 87 (1991) 289-305] has been derived in the mixture fraction space. The model has been implemented using both Interactive and Non-Interactive flamelet strategies. An Extended Enthalpy Defect Flamelet Model (E-EDFM) which uses a flamelet library obtained neglecting the soot formation is proposed as a Non-Interactive method. The Lagrangian Flamelet Model (LFM) is used to represent the Interactive models. This model uses direct values of soot mass fraction from flamelet calculations. An Extended version (E-LFM) of this model is also suggested in which soot mass fraction reaction rates are used from flamelet calculations. Results presented in this work show that the E-EDFM predict acceptable results. However, it overpredicts the soot volume fraction due to the inability of this model to couple the soot and gas-phase mechanisms. It has been demonstrated that the LFM is not able to predict accurately the soot volume fraction. On the other hand, the extended version proposed here has been shown to be very accurate. The different flamelet mathematical formulations have been tested and compared using well verified reference calculations obtained solving the set of the Full Transport Equations (FTE) in the physical space. (author)

  14. Soot formation, transport, and radiation in unsteady diffusion flames : LDRD final report.

    Energy Technology Data Exchange (ETDEWEB)

    Suo-Anttila, Jill Marie (Sandia National Laboratories, Albuquerque, NM); Williams, Timothy C.; Shaddix, Christopher R.; Jensen, Kirk A. (Sandia National Laboratories, Albuquerque, NM); Blevins, Linda Gail; Kearney, Sean Patrick (Sandia National Laboratories, Albuquerque, NM); Schefer, Robert W.

    2004-10-01

    Fires pose the dominant risk to the safety and security of nuclear weapons, nuclear transport containers, and DOE and DoD facilities. The thermal hazard from these fires primarily results from radiant emission from high-temperature flame soot. Therefore, it is necessary to understand the local transport and chemical phenomena that determine the distributions of soot concentration, optical properties, and temperature in order to develop and validate constitutive models for large-scale, high-fidelity fire simulations. This report summarizes the findings of a Laboratory Directed Research and Development (LDRD) project devoted to obtaining the critical experimental information needed to develop such constitutive models. A combination of laser diagnostics and extractive measurement techniques have been employed in both steady and pulsed laminar diffusion flames of methane, ethylene, and JP-8 surrogate burning in air. For methane and ethylene, both slot and coannular flame geometries were investigated, as well as normal and inverse diffusion flame geometries. For the JP-8 surrogate, coannular normal diffusion flames were investigated. Soot concentrations, polycyclic aromatic hydrocarbon (PAH) laser-induced fluorescence (LIF) signals, hydroxyl radical (OH) LIF, acetylene and water vapor concentrations, soot zone temperatures, and the velocity field were all successfully measured in both steady and unsteady versions of these various flames. In addition, measurements were made of the soot microstructure, soot dimensionless extinction coefficient (&), and the local radiant heat flux. Taken together, these measurements comprise a unique, extensive database for future development and validation of models of soot formation, transport, and radiation.

  15. Soot formation and oxidation during bio-oil gasification:experiments and modeling

    Institute of Scientific and Technical Information of China (English)

    Younes; Chhiti; Marine; Peyrot; Sylvain; Salvador

    2013-01-01

    A model is proposed to describe soot formation and oxidation during bio-oil gasification.It is based on the description of bio-oil heating,devolatilization,reforming of gases and conversion of both char and soot solids.Detailed chemistry (159 species and 773 reactions) is used in the gas phase.Soot production is described by a single reaction based on C2H2species concentration and three heterogeneous soot oxidation reactions.To support the validation of the model,three sets of experiments were carried out in a lab-scale Entrained Flow Reactor (EFR) equipped with soot quantification device.The temperature was varied from 1000 to 1400 C and three gaseous atmospheres were considered:default of steam,large excess of steam(H2O/C=8),and the presence of oxygen in the O/C range of 0.075–0.5.The model is shown to accurately describe the evolution of the concentration of the main gas species and to satisfactorily describe the soot concentration under the three atmospheres using a single set of identified kinetic parameters.Thanks to this model the contribution of different mechanisms involved in soot formation and oxidation in various situations can be assessed.

  16. Numerical study on soot removal in partial oxidation of methane to syngas reactors

    Institute of Scientific and Technical Information of China (English)

    Weisheng; Wei; Tao; Zhang; Jian; Xu; Wei; Du

    2014-01-01

    The serious carbon deposition existing in catalytic partial oxidation of methane(CPOM) to syngas process is one of the key problems that impede its industrialization. In this study, 3-dimensional unsteady numerical simulations of the soot formation and oxidation in oxidation section in a heat coupling reactor were carried out by computational fluid dynamics(CFD) approach incorporating the Moss-Brookes model for soot formation. The model has been validated and proven to be in good agreement with experiment results. Effects of nozzle type,nozzle convergence angle, channel spacing, number of channels, radius/height ratio, oxygen/carbon ratio, preheat temperature and additional introduction of steam on the soot formation were simulated. Results show that the soot formation in oxidation section of the heat coupling reactor depends on both nozzle structures and operation conditions, and the soot concentration can be greatly reduced by optimization with the maximum mass fraction of soot inside the oxidation reactor from 2.28% to 0.0501%, and so that the soot mass fraction at the exit reduces from0.74% to 0.03%.

  17. Reduced Bed Temperature in FB-Boilers Burning Waste - part II; Saenkt baeddtemperatur i FB-pannor foer avfallsfoerbraenning - etapp 2

    Energy Technology Data Exchange (ETDEWEB)

    Niklasson, Fredrik; Pettersson, Anita; Claesson, Frida; Johansson, Andreas; Gunnarsson, Anders; Gyllenhammar, Marianne; Victoren, Anders; Gustafsson, Goeran

    2010-07-01

    This project focuses on evaluating whether lowered bed temperature in FB-boilers for waste combustion gives operational benefits, such as reduced fouling in the convection pass. If so, this mode of operation could reduce the number of unplanned boiler outages, reduce the need for soot blowing, and extend the lifetime of the superheaters at unaltered steam temperature. The project is based on full-scale experiments performed at Ryaverket in Boraas. The plant has two waste-fired 20 MW{sub t} FB-boilers. The study is based on a comparison between operational data and measurement results from two different operating conditions of the boilers. In addition to the data that normally are logged by the control system, samples of fuel, ashes, particles, and deposits were taken and subsequently analyzed. The structure of the bed ash was altered by lowering the bed temperature. Under normal boiler operation, the bed ash contains many small agglomerates that disappeared when the bed temperature was lowered. Due to this, the sand consumption of the plant could be reduced by roughly 25 %. At lowered bed temperature, the concentration of chlorine increased in the bed ash and in the recycled sand while it decreased in the ashes from the cyclone and fabric filter. The concentration of HCl in the flue gas increased as the bed temperature was lowered. This is considered a consequence of less chlorine forming alkali chlorides. Moreover, the particle measurements showed that the amount of submicron particles decreased during lowered bed temperature, which also is an indication of less alkali chlorides in the flue gas. The deposit probes showed an approximate 20 % reduction of the fouling rate when the bed temperature was lowered from 876 to 714 deg C. The chlorine content also decreased in the deposits. For the deposit probes at 500 deg C, (corresponds to a steam temperature of 465 deg C) significant amounts of KCl were found in the deposits, even when the bed temperature was lowered

  18. Hydrotalcite-derived MnxMg3-xAlO catalysts used for soot combustion, NOx storage and simultaneous soot-NOx removal.

    Science.gov (United States)

    Li, Qian; Meng, Ming; Xian, Hui; Tsubaki, Noritatsu; Li, Xingang; Xie, Yaning; Hu, Tiandou; Zhang, Jing

    2010-06-15

    The hydrotalcite-based Mn(x)Mg(3-x)AlO catalysts with different Mn:Mg atomic ratios were synthesized by coprecipitation, and employed for soot combustion, NOx storage and simultaneous soot-NO(x) removal. It is shown that with the increase of Mn content in the hydrotalcite-based Mn(x)Mg(3-x)AlO catalysts the major Mn-related species vary from MnAl(2)O(4) and Mg(2)MnO(4) to Mn(3)O(4) and Mn(2)O(3). The catalyst Mn(1.5)Mg(1.5)AlO displays the highest soot combustion activity with the temperature for maximal soot combustion rate decreased by 210 degrees C, as compared with the Mn-free catalyst. The highly reducible Mn(4+) ions in Mg(2)MnO(4) are identified as the most active species for soot combustion. For NO(x) storage, introduction of Mn greatly influences bulk NO(x) storage, with the adsorbed NO(x) species varying from linear nitrites to ionic and chelating bidentate nitrates gradually. The coexistence of highly oxidative Mn(4+) and highly reductive Mn(2+) in Mn(1.0)Mg(2.0)AlO is favorable to the simultaneous soot-NO(x) removal, giving a NO(x) reduction percentage of 24%. In situ DRIFTS reveals that the ionic nitrate species are more reactive with soot than nitrites and chelating bidentate nitrates, showing higher NO(x) reduction efficiency.

  19. Soot Oxidation in Laminar Hydrocarbon/Air Diffusion Flames at Atmospheric Pressure. Appendix D

    Science.gov (United States)

    Xu, F.; El-Leathy, A. M.; Faeth, G. M.

    2000-01-01

    Soot oxidation was studied experimentally in laminar hydrocarbon/air diffusion flames at atmospheric pressure. Measurements were carried out along the axes of round jets burning in coflowing air considering acetylene, ethylene, proplyene and propane as fuels. Measurements were limited to the initial stages of soot oxidation (carbon consumption less than 70%) where soot oxidation mainly occurs at the surface of primary soot particles. The following properties were measured as a function of distance above the burner exit: soot concentrations by deconvoluted laser extinction, soot temperatures by deconvoluted multiline emission, soot structure by thermophoretic sampling and analysis using Transmission Electron Microscopy (TEM), concentrations of stable major gas species (N2, H2O, H2, 02, CO, CO2, CH4, C2H2, C2H4, C2H6, C3H6, and C3H8) by sampling and gas chromatography, concentrations of some radical species (H, OH, O) by the deconvoluted Li/LiOH atomic absorption technique and flow velocities by laser velocimetry. It was found that soot surface oxidation rates are not particularly affected by fuel type for laminar diffusion flames and are described reasonably well by the OH surface oxidation mechanism with a collision efficiency of 0.10, (standard deviation of 0.07) with no significant effect of fuel type in this behavior; these findings are in good agreement with the classical laminar premixed flame measurements of Neoh et al. Finally, direct rates of surface oxidation by O2 were small compared to OH oxidation for present conditions, based on estimated O2 oxidation rates due to Nagle and Strickland-Constable, because soot oxidation was completed near the flame sheet where O2 concentrations were less than 1.2% by volume.

  20. Soot Oxidation in Hydrocarbon/Air Diffusion Flames at Atmospheric Pressure. Appendix K

    Science.gov (United States)

    Xu, F.; El-Leathy, A. M.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2001-01-01

    Soot oxidation was studied experimentally in laminar hydrocarbon/air diffusion flames at atmospheric pressure. Measurements were carried out along the axes of round jets burning in coflowing air considering acetylene, ethylene, propylene and propane as fuels. Measurements were limited to the initial stages of soot oxidation (carbon consumption less than 70%) where soot oxidation mainly occurs at the surface of primary soot particles. The following properties were measured as a function of distance above the burner exit: soot concentrations by deconvoluted laser extinction, soot temperatures by deconvoluted multiline emission, soot structure by thermophoretic sampling and analysis using Transmission Electron Microscopy (TEM), concentrations of stable major gas species (N2, H2O, H2, O2, CO, CO2, CH4, C2H2,C2H4, C2H6, C3H6, and C3H8) by sampling and gas chromatography, concentrations of some radical species (H, OH, O) by the deconvoluted Li/LiOH atomic absorption technique and flow velocities by laser velocimetry. It was found that soot surface oxidation rates are not particularly affected by fuel type for laminar diffusion flames and are described reasonably well by the OH surface oxidation mechanism with a collision efficiency of 0.10, (standard deviation of 0.07) with no significant effect of fuel type in this behavior; these findings are in good agreement with the classical laminar premixed flame measurements of Neoh et al. Finally, direct rates of surface oxidation by O2 were small compared to OH oxidation for present conditions, based on estimated O2 oxidation rates due to Nagle and Strickland-Constable (1962), because soot oxidation was completed near the flame sheet where O2 concentrations were less than 1.2% by volume.

  1. Damköhler number effects on soot formation and growth in turbulent nonpremixed flames

    KAUST Repository

    Attili, Antonio

    2015-01-01

    The effect of Damköhler number on turbulent nonpremixed sooting flames is investigated via large scale direct numerical simulation in three-dimensional n-heptane/air jet flames at a jet Reynolds number of 15,000 and at three different Damköhler numbers. A reduced chemical mechanism, which includes the soot precursor naphthalene, and a high-order method of moments are employed. At the highest Damköhler number, local extinction is negligible, while flames holes are observed in the two lowest Damköhler number cases. Compared to temperature and other species controlled by fuel oxidation chemistry, naphthalene is found to be affected more significantly by the Damköhler number. Consequently, the overall soot mass fraction decreases by more than one order of magnitude for a fourfold decrease of the Damköhler number. On the contrary, the overall number density of soot particles is approximately the same, but its distribution in mixture fraction space is different in the three cases. The total soot mass growth rate is found to be proportional to the Damköhler number. In the two lowest Da number cases, soot leakage across the flame is observed. Leveraging Lagrangian statistics, it is concluded that soot leakage is due to patches of soot that cross the stoichiometric surface through flame holes. These results show the leading order effects of turbulent mixing in controlling the dynamics of soot in turbulent flames. © 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

  2. The Influences of Electric Fields on Soot Formation and Flame Structure of Diffusion Flames

    Institute of Scientific and Technical Information of China (English)

    LinXie; TakeyukiKishi; 等

    1993-01-01

    The influences of DC and AC electric fields,at frequencies up to 1.48 MHz and the maximum strength of about 6 kV/cm,on soot formation and flame structure were investigated using a counterflow type acetylene diffusion flame.The distributioons of flame luminosity,soot volume fraction,Flame temperature and OH concentration in flame were measured by non-invasive detection methods.Under the influence of electric fields,the changes in distribution of the soot volume fraction were confirmed.Electric fields of high frequency and high intensity reduced the soot volume fraction.whereas other electric fields increased it.The maximum values of flame temperature and OH concentration decreased.In the relationship between the maximum value of the soot volume fraction and the maximum temperature,the maximum soot volum fraction showed toth increase and decrease with maximum temperatures depending on the frequencies and intensities of the electric fields,and both of them occurred at temperatures lower than 1990 K.The production of the incipient particles seemed to be the dominant process controlling the soot volume fraction due to the electric fields.The luminosity of a sooting diffusion flame was found to depend on the volume fraction and temperature of the soot particles in the flame,As for the behavior of the flame in the electric fields.the ionic wind effect was not found to be dominant in the present work,and the result of the precious simulation based on the ionic wind theory was not consistent with the present experimental results.

  3. Isotopic study of ceria-catalyzed soot oxidation in the presence of NOx

    OpenAIRE

    Guillén Hurtado, Noelia; García García, Avelina; Bueno López, Agustín

    2013-01-01

    The ceria-catalyzed soot oxidation mechanism has been studied by a pulse technique with labeled O2 in the absence and presence of NO, using ceria–soot mixtures prepared in the loose contact mode. In the absence of soot, the ceria-catalyzed oxidation of NO to NO2 takes place with ceria oxygen and not with gas-phase O2. However, the oxygen exchange process between gas-phase O2 and ceria oxygen (to yield back O2, but with oxygen atoms coming from ceria) prevailed with regard to the ceria-catalyz...

  4. Subsonic aircraft soot. A tracer documenting barriers to inter-hemispheric mixing

    Energy Technology Data Exchange (ETDEWEB)

    Pueschel, R.F. [NASA Ames Research Center, Moffett Field, CA (United States)

    1997-12-31

    Meridional observations of soot aerosols and radioactive {sup 14}C, and models of the geographic distribution of nuclear bomb-released {sup 14}C and aircraft-emitted NO{sub x}, all show strong gradients between the hemispheres. Reason for it are decade-long inter-hemispheric mixing times which are much in excess of yearlong stratospheric residence times of tracers. Vertical mixing of soot aerosol is not corroborated by {sup 14}C observations. The reason could be radiometric forces that act on strongly absorbing soot. (author) 10 refs.

  5. Potential atmospheric production of small volatile organic compounds from soot oxidation

    Science.gov (United States)

    Horn, A.; Carpenter, L.; Daly, H.; Jones, C.

    2003-04-01

    In the polluted troposphere, VOCs are involved in a range of interlinked chemical and photochemical cycles with a direct bearing on the production of ozone. The rates of emission, production and reaction of VOC are therefore an important component of atmospheric models. Recent urban measurements using 2D-GC methods show that there are a large number of unidentified and unattributed VOC components. Any new sources of such material with high photochemical ozone creation potentials may therefore be significant. Hydrocarbon, fossil fuel and biomass burning produces particulate carbonaceous aerosols (soot) in addition to gas phase products. Soot in the atmosphere is known to undergo oxidation becoming hydrophilic in aged urban plumes and the process is also known to produce water soluble organic compounds. In our experiments, soot samples are prepared by combustion of appropriate liquid hydrocarbons and reacted with ozone in a glass reaction vessel. Analysis of the surface and gas-phase during the course of this reaction confirms kinetic measurements showing irreversible uptake of O_3 on soot and further identify that the reaction has oxidised the surface. Transmission electron micrographs of the fresh and ozonised soot reveal small, coagulated particles: fresh soot particle size ranges from 50--90 nm which reduces to 40--50 nm after ozonolysis. Separation of the soluble components of fresh and ozonised soot samples analysed by GC/MS reveal the presence of polyaromatic and unsaturated components in unreacted soot and partially oxidised components post-ozonolysis. ATR-IR spectra of soot extracts and ozonised soot confirm that surface features due to the creation of oxidised surface products grow in with exposure time. These include carbonyl, ester and alcohol functional groups. Direct sampling of the gas-phase during the ozone reaction allows some gaseous products to be identified as small organic acids, ketones and alcohols. Overall, the reaction of ozone with soot

  6. Experimental Study of the Oxidation, Ignition, and Soot Formation Characteristics of Jet Fuel

    Science.gov (United States)

    2010-09-29

    by liquid vol Derived cetane number ( DNC ) = 47.1 Threshold soot index (TSI) = 14.1 Liquid density (kg/m3) = 750 RPI surrogate 1 Molar: 25.8% n...20% n-propylbenzene H/C = 1.87 MW =151 kg/kmol Aromatic content = 20% by liquid vol Derived cetane number ( DNC ) = 42.8 Threshold soot index... DNC ) = 32-57, avg = 44 Threshold soot index (TSI) = 16-26, avg = 18 Liquid density (kg/m3) = ~804 POSF 4658: average Jet A, blended from several Jet

  7. Guide to Low-Emission Boiler and Combustion Equipment Selection

    Energy Technology Data Exchange (ETDEWEB)

    Oland, CB

    2002-05-06

    Boiler owners and operators who need additional generating capacity face a number of legal, political, environmental, economic, and technical challenges. Their key to success requires selection of an adequately sized low-emission boiler and combustion equipment that can be operated in compliance with emission standards established by state and federal regulatory agencies. Recognizing that many issues are involved in making informed selection decisions, the U.S. Department of Energy (DOE), Office of Industrial Technologies (OIT) sponsored efforts at the Oak Ridge National Laboratory (ORNL) to develop a guide for use in choosing low-emission boilers and combustion equipment. To ensure that the guide covers a broad range of technical and regulatory issues of particular interest to the commercial boiler industry, the guide was developed in cooperation with the American Boiler Manufacturers Association (ABMA), the Council of Industrial Boiler Owners (CIBO), and the U.S. Environmental Protection Agency (EPA). The guide presents topics pertaining to industrial, commercial, and institutional (ICI) boilers. Background information about various types of commercially available boilers is provided along with discussions about the fuels that they burn and the emissions that they produce. Also included are discussions about emissions standards and compliance issues, technical details related to emissions control techniques, and other important selection considerations. Although information in the guide is primarily applicable to new ICI boilers, it may also apply to existing boiler installations.

  8. Oxy-Combustion Boiler Material Development

    Energy Technology Data Exchange (ETDEWEB)

    Michael Gagliano; Andrew Seltzer; Hans Agarwal; Archie Robertson; Lun Wang

    2012-01-31

    Under U.S. Department of Energy Cooperative Agreement No. DE-NT0005262 Foster Wheeler North America Corp conducted a laboratory test program to determine the effect of oxy-combustion on boiler tube corrosion. In this program, CFD modeling was used to predict the gas compositions that will exist throughout and along the walls of air-fired and oxy-fired boilers operating with low to high sulfur coals. Test coupons of boiler tube materials were coated with deposits representative of those coals and exposed to the CFD predicted flue gases for up to 1000 hours. The tests were conducted in electric tube furnaces using oxy-combustion and air-fired flue gases synthesized from pressurized cylinders. Following exposure, the test coupons were evaluated to determine the total metal wastage experienced under air and oxy-combustions conditions and materials recommendations were made. Similar to air-fired operation, oxy-combustion corrosion rates were found to vary with the boiler material, test temperature, deposit composition, and gas composition. Despite this, comparison of air-fired and oxy-fired corrosion rates showed that oxy-firing rates were, for the most part, similar to, if not lower than those of air-firing; this finding applied to the seven furnace waterwall materials (wrought and weld overlay) and the ten superheater/reheater materials (wrought and weld overlay) that were tested. The results of the laboratory oxy-combustion tests, which are based on a maximum bulk flue gas SO{sub 2} level of 3200 ppmv (wet) / 4050 ppmv (dry), suggest that, from a corrosion standpoint, the materials used in conventional subcritical and supercritical, air-fired boilers should also be suitable for oxy-combustion retrofits. Although the laboratory test results are encouraging, they are only the first step of a material evaluation process and it is recommended that follow-on corrosion tests be conducted in coal-fired boilers operating under oxy-combustion to provide longer term (one to

  9. Oxy-Combustion Boiler Material Development

    Energy Technology Data Exchange (ETDEWEB)

    Gagliano, Michael; Seltzer, Andrew; Agarwal, Hans; Robertson, Archie; Wang, Lun

    2012-01-31

    Under U.S. Department of Energy Cooperative Agreement No. DE-NT0005262 Foster Wheeler North America Corp conducted a laboratory test program to determine the effect of oxy-combustion on boiler tube corrosion. In this program, CFD modeling was used to predict the gas compositions that will exist throughout and along the walls of air-fired and oxy-fired boilers operating with low to high sulfur coals. Test coupons of boiler tube materials were coated with deposits representative of those coals and exposed to the CFD predicted flue gases for up to 1000 hours. The tests were conducted in electric tube furnaces using oxy-combustion and air-fired flue gases synthesized from pressurized cylinders. Following exposure, the test coupons were evaluated to determine the total metal wastage experienced under air and oxy-combustions conditions and materials recommendations were made. Similar to air-fired operation, oxy-combustion corrosion rates were found to vary with the boiler material, test temperature, deposit composition, and gas composition. Despite this, comparison of air-fired and oxy-fired corrosion rates showed that oxy-firing rates were, for the most part, similar to, if not lower than those of air-firing; this finding applied to the seven furnace waterwall materials (wrought and weld overlay) and the ten superheater/reheater materials (wrought and weld overlay) that were tested. The results of the laboratory oxy-combustion tests, which are based on a maximum bulk flue gas SO2 level of 3200 ppmv (wet) / 4050 ppmv (dry), suggest that, from a corrosion standpoint, the materials used in conventional subcritical and supercritical, air-fired boilers should also be suitable for oxy-combustion retrofits. Although the laboratory test results are encouraging, they are only the first step of a material evaluation process and it is recommended that follow-on corrosion tests be conducted in coal-fired boilers operating under oxy-combustion to provide longer term (one to two year

  10. Cosmet'eau-Changes in the personal care product consumption practices: from whistle-blowers to impacts on aquatic environments.

    Science.gov (United States)

    Bressy, Adèle; Carré, Catherine; Caupos, Émilie; de Gouvello, Bernard; Deroubaix, José-Frédéric; Deutsch, Jean-Claude; Mailler, Romain; Marconi, Anthony; Neveu, Pascale; Paulic, Laurent; Pichon, Sébastien; Rocher, Vincent; Severin, Irina; Soyer, Mathilde; Moilleron, Régis

    2016-07-01

    The Cosmet'eau project (2015-2018) investigates the "changes in the personal care product (PCP) consumption practices: from whistle-blowers to impacts on aquatic environments." In this project, the example of PCPs will be used to understand how public health concerns related to micropollutants can be addressed by public authorities-including local authorities, industries, and consumers. The project aims to characterize the possible changes in PCP consumption practices and to evaluate the impact of their implementation on aquatic contamination. Our goals are to study the whistle-blowers, the risk perception of consumers linked with their practices, and the contamination in parabens and their substitutes, triclosan, and triclocarban from wastewater to surface water. The project investigates the following potential solutions: modifications of industrial formulation or changes in consumption practices. The final purpose is to provide policy instruments for local authorities aiming at building effective strategies to fight against micropollutants in receiving waters.

  11. The Screw Blower Use for Save Energy%螺杆风机的节能改造

    Institute of Scientific and Technical Information of China (English)

    梁恒伟

    2015-01-01

    本文通过对负责单位污水处理车间改造螺杆风机为变频器控制,较好地使设备运转更平稳,降低了用电及维护费用,同时减少了单位生产成本,提高了设备的运行效率,响应了当今节能降耗的号召。%To change screw blower controlling and save electric cost for the company waste water treatment Plant.It is improve to screw blower use efficient as well as responded to the call of saving energy and reducing consumption today.

  12. MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    E.G. Eddings; A. Molina; D.W. Pershing; A.F. Sarofim; T.H. Fletcher; H. Zhang; K.A. Davis; M. Denison; H. Shim

    2002-01-01

    The focus of this program is to provide insight into the formation and minimization of NO{sub x} in multi-burner arrays, such as those that would be found in a typical utility boiler. Most detailed studies are performed in single-burner test facilities, and may not capture significant burner-to-burner interactions that could influence NO{sub x} emissions. Thus, investigations of such interactions were made by performing a combination of single and multiple burner experiments in a pilot-scale coal-fired test facility at the University of Utah, and by the use of computational combustion simulations to evaluate full-scale utility boilers. In addition, fundamental studies on nitrogen release from coal were performed to develop greater understanding of the physical processes that control NO formation in pulverized coal flames--particularly under low NO{sub x} conditions. A CO/H{sub 2}/O{sub 2}/N{sub 2} flame was operated under fuel-rich conditions in a flat flame reactor to provide a high temperature, oxygen-free post-flame environment to study secondary reactions of coal volatiles. Effects of temperature, residence time and coal rank on nitrogen evolution and soot formation were examined. Elemental compositions of the char, tar and soot were determined by elemental analysis, gas species distributions were determined using FTIR, and the chemical structure of the tar and soot was analyzed by solid-state {sup 13}C NMR spectroscopy. A laminar flow drop tube furnace was used to study char nitrogen conversion to NO. The experimental evidence and simulation results indicated that some of the nitrogen present in the char is converted to nitric oxide after direct attack of oxygen on the particle, while another portion of the nitrogen, present in more labile functionalities, is released as HCN and further reacts in the bulk gas. The reaction of HCN with NO in the bulk gas has a strong influence on the overall conversion of char-nitrogen to nitric oxide; therefore, any model that

  13. Cosmet'eau -Changes in the personal care product consumption practices: from whistle-blowers to impacts on aquatic environments

    OpenAIRE

    Bressy, Adèle; Carré, Catherine; Caupos, Émilie; Gouvello, Bernard de; Deroubaix, José-Frédéric; Deutsch, Jean-Claude; Mailler, Romain; Marconi, Anthony; Neveu, Pascale; Paulic, Laurent; Pichon, Sébastien; Rocher, Vincent; Severin, Irina; SOYER, Mathilde; Moilleron, Régis

    2016-01-01

    International audience; The Cosmet'eau project (2015-2018) investigates the " changes in the personal care product (PCP) consumption practices: from whistle-blowers to impacts on aquatic environments. " In this project, the example of PCPs will be used to understand how public health concerns related to micropollutants can be addressed by public authorities – including local authorities –, industries and consumers. The project aims to characterize the possible changes in PCP consumption pract...

  14. Effects of inlet radius and bell mouth radius on flow rate and sound quality of centrifugal blower

    Energy Technology Data Exchange (ETDEWEB)

    Son, Pham Ngoc; Kim, Jae Won; Byun, S. M. [Sunmoon University, Asan (Korea, Republic of); Ahn, E. Y. [Hanbat National University, Daejeon (Korea, Republic of)

    2012-05-15

    The effect of inlet radius and bell mouth radius on flow rate of centrifugal blower were numerically simulated using a commercial CFD program, FLUENT. In this research, a total of eight numerical models were prepared by combining different values of bell mouth radii and inlet radii (the cross section of bell mouth was chosen as a circular arc in this research). The frozen rotor method combined with a realizable k-epsilon turbulence model and non-equilibrium wall function was used to simulate the three-dimensional flow inside the centrifugal blowers. The inlet radius was then revealed to have significant impact on flow rate with the maximum difference between analyzed models was about 4.5% while the bell mouth radius had about 3% impact on flow rate. Parallel experiments were carried out to confirm the results of CFD analysis. The CFD results were thereafter validated owning to the good agreement between CFD results and the parallel experiment results. In addition to performance analysis, noise experiments were carried out to analyze the dependence of sound quality on inlet radius and bell mouth radius with different flow rate. The noise experiment results showed that the loudness and sharpness value of different models were quite similar, which mean the inlet radius and the bell mouth radius didn't have a clear impact on sound quality of centrifugal blower.

  15. Safety demonstration tests on pressure rise in ventilation system and blower integrity of a fuel-reprocessing plant

    Energy Technology Data Exchange (ETDEWEB)

    Takada, Junichi; Suzuki, Motoe; Tsukamoto, Michio; Koike, Tadao; Nishio, Gunji [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-12-01

    In JAERI, the demonstration test was carried out as a part of safety researches of the fuel-reprocessing plant using a large-scale facility consist of cells, ducts, dumpers, HEPA filters and a blower, when an explosive burning due to a rapid reaction of thermal decomposition for solvent/nitric acid occurs in a cell of the reprocessing plant. In the demonstration test, pressure response propagating through the facility was measured under a blowing of air from a pressurized tank into the cell in the facility to elucidate an influence of pressure rise in the ventilation system. Consequently, effective pressure decrease in the facility was given by a configuration of cells and ducts in the facility. In the test, transient responses of HEPA filters and the blower by the blowing of air were also measured to confirm the integrity. So that, it is confirmed that HEPA filters and the blower under pressure loading were sufficient to maintain the integrity. The content described in this report will contribute to safety assessment of the ventilation system in the event of explosive burning in the reprocessing plant. (author)

  16. Field Test of Boiler Primary Loop Temperature Controller

    Energy Technology Data Exchange (ETDEWEB)

    Glanville, P. [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Rowley, P. [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Schroeder, D. [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Brand, L. [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States)

    2014-09-01

    Beyond these initial system efficiency upgrades are an emerging class of Advanced Load Monitoring (ALM) aftermarket controllers that dynamically respond to the boiler load, with claims of 10% to 30% of fuel savings over a heating season. For hydronic boilers specifically, these devices perform load monitoring, with continuous measurement of supply and, in some cases, return water temperatures. Energy savings from these ALM controllers are derived from dynamic management of the boiler differential, where a microprocessor with memory of past boiler cycles prevents the boiler from firing for a period of time, to limit cycling losses and inefficient operation during perceived low load conditions. These differ from OTR controllers, which vary boiler setpoint temperatures with ambient conditions while maintaining a fixed differential.

  17. Life extension of boilers using weld overlay protection

    Energy Technology Data Exchange (ETDEWEB)

    Lai, G.; Hulsizer, P. [Welding Services Inc., Norcross, GA (United States); Brooks, R. [Welding Services Inc., Welding Services Europe, Spijkenisse (Netherlands)

    1998-12-31

    The presentation describes the status of modern weld overlay technology for refurbishment, upgrading and life extension of boilers. The approaches to life extension of boilers include field overlay application, shop-fabricated panels for replacement of the worn, corroded waterwall and shop-fabricated overlay tubing for replacement of individual tubes in superheaters, generating banks and other areas. The characteristics of weld overlay products are briefly described. Also discussed are successful applications of various corrosion-resistant overlays for life extension of boiler tubes in waste-to-energy boilers, coal-fired boilers and chemical recovery boilers. Types of corrosion and selection of weld overlay alloys in these systems are also discussed. (orig.) 14 refs.

  18. A Rule-Based Industrial Boiler Selection System

    Science.gov (United States)

    Tan, C. F.; Khalil, S. N.; Karjanto, J.; Tee, B. T.; Wahidin, L. S.; Chen, W.; Rauterberg, G. W. M.; Sivarao, S.; Lim, T. L.

    2015-09-01

    Boiler is a device used for generating the steam for power generation, process use or heating, and hot water for heating purposes. Steam boiler consists of the containing vessel and convection heating surfaces only, whereas a steam generator covers the whole unit, encompassing water wall tubes, super heaters, air heaters and economizers. The selection of the boiler is very important to the industry for conducting the operation system successfully. The selection criteria are based on rule based expert system and multi-criteria weighted average method. The developed system consists of Knowledge Acquisition Module, Boiler Selection Module, User Interface Module and Help Module. The system capable of selecting the suitable boiler based on criteria weighted. The main benefits from using the system is to reduce the complexity in the decision making for selecting the most appropriate boiler to palm oil process plant.

  19. Modelling, simulating and optimizing boiler heating surfaces and evaporator circuits

    DEFF Research Database (Denmark)

    Sørensen, K.; Condra, T.; Houbak, Niels

    2003-01-01

    A model for optimizing the dynamic performance of boiler have been developed. Design variables related to the size of the boiler and its dynamic performance have been defined. The object function to be optimized takes the weight of the boiler and its dynamic capability into account. As constraints...... for the optimization a dynamic model for the boiler is applied. Furthermore a function for the value of the dynamic performance is included in the model. The dynamic models for simulating boiler performance consists of a model for the flue gas side, a model for the evaporator circuit and a model for the drum....... The dynamic model has been developed for the purpose of determining boiler material temperatures and heat transfer from the flue gas side to the water-/steam side in order to simulate the circulation in the evaporator circuit and hereby the water level fluctuations in the drum. The dynamic model has been...

  20. Modelling, simulating and optimizing boiler heating surfaces and evaporator circuits

    DEFF Research Database (Denmark)

    Sørensen, Kim; Condra, Thomas Joseph; Houbak, Niels

    2003-01-01

    A model for optimizing the dynamic performance of boiler have been developed. Design variables related to the size of the boiler and its dynamic performance have been dened. The object function to be optimized takes the weight of the boiler and its dynamic capability into account. As constraints...... for the optimization a dynamic model for the boiler is applied. Furthermore a function for the value of the dynamic performance is included in the model. The dynamic models for simulating boiler performance consists of a model for the ue gas side, a model for the evaporator circuit and a model for the drum....... The dynamic model has been developed for the purpose of determining boiler material temperatures and heat transfer from the ue gas side to the water-/steam side in order to simulate the circulation in the evaporator circuit and hereby the water level uctuations in the drum. The dynamic model has been...

  1. R&D and Demonstration of Large Domestic CFB Boilers

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ In order to develop large CFB boilers with independent intellectual property,Xi'an Thermal Power Research Institute (TPRI) established a laboratory with complete functions for the technical development of CFB boilers.This laboratory consists ofa 1-MW and a 4-MW CFB combustion test facilities and a laboratory for limestone desulphurization performance evaluation.It carried out tests on CFB combustion and desulphurization for Chinese typical coals and limestone and research on heat-transfer characteristics and key parts,and developed the first home-made 100-MW CFB boiler.Based on the experience of R&D,the laboratory further researched key techniques for enlarging capacity systematically,and cooperating with Harbin Boiler Co.(HBC),developed the first domestic 210-MW CFB boiler with independent intellectual property and put it into engineering demonstration,laying a solid foundation for the development of CFB boilers of even larger capacity.

  2. Maximising safety in the boiler house.

    Science.gov (United States)

    Derry, Carr

    2013-03-01

    Last month's HEJ featured an article, the second in our new series of guidance pieces aimed principally at Technician-level engineers, highlighting some of the key steps that boiler operators can take to maximise system performance and efficiency, and thus reduce running both costs and carbon footprint. In the third such article, Derry Carr, C.Env, I.Eng, BSc (Hons), M.I.Plant.E., M.S.O.E., technical manager & group gas manager at Dalkia, who is vice-chairman of the Combustion Engineering Association, examines the key regulatory and safety obligations for hospital energy managers and boiler technicians, a number of which have seen changes in recent years with revision to guidance and other documentation.

  3. Recovery boiler model; Soodakattilan kehitystyoe III

    Energy Technology Data Exchange (ETDEWEB)

    Janka, K.; Ylitalo, M.; Sundstroem, K.; Helke, R.; Heinola, M. [Kvaerner Pulping Oy, Tampere (Finland)

    1997-10-01

    The recovery boiler model was further tested and developed. At this moment the model includes submodels for: droplet drying, pyrolysis, char burning, gas burning and for droplet trajectory. During 1996 the formation of CH{sub 4} during pyrolysis and release of sulfur was included to the model. Further the formation of NO from fuel nitrogen and formation of thermal- NO were included to the model using Arrhenius type reaction rate equations. The calculated results are realistic and the model is used as a tool to find out methods to increase the efficiency and availability and decrease the emissions. Analysing the results of the earlier field study of 8 boilers showed that the furnace heat load, fuming rate, find the black liquor composition have influence on the enrichment of the potassium to the fly ash. (orig.)

  4. Effects of methyl group on aromatic hydrocarbons on the nanostructures and oxidative reactivity of combustion-generated soot

    KAUST Repository

    Guerrero Peña, Gerardo D.J.

    2016-07-23

    The substituted and unsubstituted aromatic hydrocarbons, present in transportation fuels such as gasoline and diesel, are thought to be responsible for most of the soot particles produced during their combustion. However, the effects of the substituted alkyl groups on the aromatic hydrocarbons on their sooting tendencies, and on the physical and chemical properties of soot produced from them are not well understood. In this work, the effect of the presence of methyl groups on aromatic hydrocarbons on their sooting propensity, and on the oxidative reactivity, morphology, and chemical composition of soot generated from them in diffusion flames is studied using benzene, toluene, and m-xylene as fuels. Several experimental techniques including high resolution transmission electron microscopy and X-ray diffraction are used to identify the morphological changes in soot, whereas the elemental and thermo-gravimetric analyses, electron energy loss spectroscopy, and Fourier transform infrared spectroscopy are used to study the changes in its chemical properties and reactivity. The activation energies for soot oxidation are calculated at different conversion levels, and a trend in the reactivity of soots from benzene, toluene and m-xylene is reported. It is observed that the sizes of primary particles and graphene-like sheets, and the concentrations of aliphatics and oxygenated groups in soot particles decreased with the addition of methyl group(s) on the aromatic ring. The physicochemical changes in soot are found to support the oxidative reactivity trends. © 2016 The Combustion Institute

  5. Development of a Burner System and Rayleigh Scattering Method to Measure Soot Concentration for Diesel-Relevant Fuels

    Science.gov (United States)

    Fletcher, Sara; Fisher, Brian

    2013-11-01

    Soot, a harmful component of particulate matter, is found in high concentrations in diesel exhaust. This work aims to develop a better understanding of the relationship between chemical structure and soot evolution, which is expected to inform methods to reduce or eliminate soot in diesel combustion. Successful aspects of previous experiments have been combined into a new method to characterize soot formation, growth, and oxidation. Soot is quantified via combined Rayleigh scattering and extinction, using a pulsed 532-nm Nd:YAG laser and sensitive photodetectors. A methane/oxygen diffusion flame serves as a baseline, then species of interest are doped into the fuel stream in low concentration and the change in soot is quantified relative to the base flame. This perturbation method enables study of soot for different species in a flame that has nominally constant global properties. This study focused on fuel components n-heptane and toluene, which have straight-chain and aromatic molecular structures, respectively. Soot was quantified throughout the flame, and it was found that the soot scattering signal was significantly higher for toluene than for n-heptane. Analysis of the signals to quantify actual soot concentrations remains a topic of future work. Funding from NSF REU grant 1062611.

  6. Soot formation in shock-tube pyrolysis and oxidation of vinylacetylene

    Science.gov (United States)

    Frenklach, M.; Yuan, T.; Ramachandra, M. K.

    1990-01-01

    Soot formation in vinylacetylene, and vinylacetylene-oxygen argon-diluted mixtures was studied behind reflected shock waves by monitoring the attenuation of a 632.8-nm He-Ne laser beam. The experiments were performed at temperatures of 1600-2500 K, pressures of 2.08-3.09 bar, and total carbon atom concentrations of (1.99-2.05) x 10 to the 17th atoms/cu cm. The experimental results obtained in pyrolysis of vinylacetylene are similar to those of acetylene, both in the order of magnitude of the soot yield and the shape of its temperature dependence. The addition of oxygen to vinylacetylene shifts the soot bell to lower temperature and, distinct from all other hydrocarbons studied in this laboratory, accelerates the production of soot with reaction time. The experimental results are interpreted in terms of possible chemical reaction.

  7. Time-resolved LII signals from aggregates of soot particles levitated in room temperature air

    CERN Document Server

    Mitrani, James M

    2015-01-01

    We observed and modeled time-resolved laser-induced incandescence (LII) signals from soot aggregates. Time-resolved LII signals were observed from research-grade soot particles, levitated in room temperature air. We were able to measure sizes and structural properties of our soot particles ex situ, and use those measurements as input parameters when modeling the observed LII signals. We showed that at low laser fluences, aggregation significantly influences LII signals by reducing conductive cooling to the ambient air. At moderate laser fluences, laser-induced disintegration of aggregates occurs, so the effects of aggregation on LII signals are negligible. These results can be applied to extend LII for monitoring formation of soot and nanoparticle aggregates.

  8. Instabilities and soot formation in spherically expanding, high pressure, rich, iso-octane-air flames

    Energy Technology Data Exchange (ETDEWEB)

    Lockett, R D [School of Engineering and Mathematical Sciences, City University, Northampton Square, London EC1V OHB (United Kingdom)

    2006-07-15

    Flame instabilities, cellular structures and soot formed in high pressure, rich, spherically expanding iso-octane-air flames have been studied experimentally using high speed Schlieren cinematography, OH fluorescence, Mie scattering and laser induced incandescence. Cellular structures with two wavelength ranges developed on the flame surface. The larger wavelength cellular structure was produced by the Landau-Darrieus hydrodynamic instability, while the short wavelength cellular structure was produced by the thermal-diffusive instability. Large negative curvature in the short wavelength cusps caused local flame quenching and fracture of the flame surface. In rich flames with equivalence ratio {phi} > 1.8, soot was formed in a honeycomb-like structure behind flame cracks associated with the large wavelength cellular structure induced by the hydrodynamic instability. The formation of soot precursors through low temperature pyrolysis was suggested as a suitable mechanism for the initiation of soot formation behind the large wavelength flame cracks.

  9. Laser-Induced Emissions Sensor for Soot Mass in Rocket Plumes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A method is proposed to measure soot mass concentration non-intrusively from a distance in a rocket engine exhaust stream during ground tests using laser-induced...

  10. TRIO specification of a steam boiler controller

    Energy Technology Data Exchange (ETDEWEB)

    Gargantini, A. [Politecnico di Milano (Italy). Dipt. di Electronica e Informazione; Morzenti, A. [Politecnico di Milano (Italy). Dipt. di Electronica e Informazione

    1996-12-31

    We specify a controller for a steam boiler starting from an informal descriptions of its requirements. The specification is formalized in the temporal logic TRIO and its object-oriented extension TRIO+. To obtain a maximum of abstraction and reuse we make the specification parametric with respect to all equipment and hardware features, and we avoid to impose any particular strategy in the management of the available resources and in the control of the critical physical quantities. (orig.)

  11. Circulating fluidized bed boilers design and operations

    CERN Document Server

    Basu, Prabir

    1991-01-01

    This book provides practicing engineers and students with insight into the design and operation of circulating fluidized bed (CFB) boilers. Through a combination of theoretical concepts and practical experience, this book gives the reader a basic understanding of the many aspects of this subject.Important environmental considerations, including solid waste disposal and predicted emissions, are addressed individually in separate chapters. This book places an emphasis on combustion, hydrodynamics, heat transfer, and material issues, and illustrates these concepts with numerous examples of pres

  12. Computer monitoring and optimization of the steam boiler performance

    OpenAIRE

    Sobota Tomasz

    2017-01-01

    The paper presents a method for determination of thermo-flow parameters for steam boilers. This method allows to perform the calculations of the boiler furnace chamber and heat flow rates absorbed by superheater stages. These parameters are important for monitoring the performance of the power unit. Knowledge of these parameters allows determining the degree of the furnace chamber slagging. The calculation can be performed in online mode and use to monitoring of steam boiler. The presented me...

  13. Transient performance characteristics of uncontrolled and controlled ventilation systems with a single blower, two blowers connected in parallel, or two blowers connected in series; Das instationaere Betriebsverhalten ungeregelter und geregelter lufttechnischer Anlagen mit einem, zwei in Reihe oder zwei parallelgeschalteten Ventilatoren

    Energy Technology Data Exchange (ETDEWEB)

    Schulze Dieckhoff, B.

    1999-07-01

    Transient performance characteristics of uncontrolled and controlled ventilation systems with single blowers and blowers connected in series and in parallel are investigated. The model comprises mathematical models of transient, frictional and one-dimensional flow in the plant components. The pipeline component is modelled using so-called distributed parameters. The controller assumed in the model is a randomly parametrizable PID controller. The effects of time-dependent controlled controller actions are investigated to begin with in order to identify global system instabilities. An important class of flow-linduced instabilities are continuous, self-excited pressure and mass flow pulsations (pumping) or, in case of blowers connected in parallel, periodic alternating blower volume increase (oscillation). These two types of oscillation are based on fundamentally different, nonlinear physical mechanisms. Control of pressures and mass flow in ventilation systems is investigated, e.g. by analyzing controller-induced oscillations. [German] Es wird das instationaere Betriebsverhalten ungeregelter und geregelter lufttechnischer Anlagen mit Ventilatoren in Einzelanordnung, Reihen- und Parallelschaltung untersucht. Wesentliche Elemente des Rechenmodells sind mathematische Modelle fuer die instationaere, reibungsbehaftete und eindimensionale Stroemung in den Anlagenkomponenten. Die Komponente 'Rohrleitung' ist mit sog. verteilten Parametern modelliert. Als Regler ist ein beliebig parametrierbarer PID-Regler modelliert. Zunaechst werden die Auswirkungen zeitabhaengiger, gesteuerter Stelleingriffe untersucht. Ein wesentliches Ergebnis ist die Identifikation globaler Systeminstabilitaeten. Eine wichtige Klasse stroemungsbedingter Instabilitaeten sind kontinuierliche, selbsterregte Druck- und Massenstrompulsationen (Pumpen) oder, bei parallelgeschalteten Ventilatoren, eine periodische, wechselweise Mehrfoerderung der Ventilatoren (Pendeln). Diesen beiden

  14. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    R. Viswanathan; K. Coleman; R.W. Swindeman; J. Sarver; J. Blough; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2003-10-20

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

  15. Optimised control of coal-fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    Owens, D.H.; MacConnell, P.F.A.; Neuffer, D.; Dando, R. [University of Exeter, Exeter (United Kingdom). Centre for System and Control Engineering

    1997-07-01

    The objective of the project is to develop and specify a control methodology that will enable existing coal combustion plant to take maximum advantage of modern control techniques. The research is specifically aimed at chain-grate stoker plant (such as the test facility at the Coal Research Establishment, Cheltenham) on which little work has been done for thirty years yet which still represents a large proportion of industrial coal-fired plant in operation worldwide. In detail, the project: reviewed existing control strategies for moving grate stokers, highlighting their limitations and areas for improvements; carried out plant trials to identify the system characteristics such as response time and input/output behaviour; developed a theoretical process based on physical and chemical laws and backed up by trial data; specified control strategies for a single boiler; simulated and evaluated the control strategies using model simulations; developed of an optimised. Control strategy for a single boiler; and assessed the applicability and effects of this control strategy on multiple boiler installations. 67 refs., 34 figs.

  16. Particulate emission abatement for Krakow boiler houses

    Energy Technology Data Exchange (ETDEWEB)

    Wysk, R.

    1995-12-31

    Among the many strategies for improving air quality in Krakow, one possible method is to adapt new and improved emission control technology. This project focuses on such a strategy. In order to reduce dust emissions from coal-fueled boilers, a new device called a Core Separator has been introduced in several boiler house applications. This advanced technology has been successfully demonstrated in Poland and several commercial units are now in operation. Particulate emissions from the Core Separator are typically 3 to 5 times lower than those from the best cyclone collectors. It can easily meet the new standard for dust emissions which will be in effect in Poland after 1997. The Core Separator is a completely inertial collector and is based on a unique recirculation method. It can effectively remove dust particles below 10 microns in diameter, the so-called PM-10 emissions. Its performance approaches that of fabric filters, but without the attendant cost and maintenance. It is well-suited to the industrial size boilers located in Krakow. Core Separators are now being marketed and sold by EcoInstal, one of the leading environmental firms in Poland, through a cooperative agreement with LSR Technologies.

  17. Measurements of Soot Mass Absorption Coefficients from 300 to 660 nm

    Science.gov (United States)

    Renbaum-Wolff, Lindsay; Fisher, Al; Helgestad, Taylor; Lambe, Andrew; Sedlacek, Arthur; Smith, Geoffrey; Cappa, Christopher; Davidovits, Paul; Onasch, Timothy; Freedman, Andrew

    2016-04-01

    Soot, a product of incomplete combustion, plays an important role in the earth's climate system through the absorption and scattering of solar radiation. In particular, the assumed mass absorption coefficient (MAC) of soot and its variation with wavelength presents a significant uncertainty in the calculation of radiative forcing in global climate change models. As part of the fourth Boston College/Aerodyne soot properties measurement campaign, we have measured the mass absorption coefficient of soot produced by an inverted methane diffusion flame over a spectral range of 300-660 nm using a variety of optical absorption techniques. Extinction and absorption were measured using a dual cavity ringdown photoacoustic spectrometer (CRD-PAS, UC Davis) at 405 nm and 532 nm. Scattering and extinction were measured using a CAPS PMssa single scattering albedo monitor (Aerodyne) at 630 nm; the absorption coefficient was determined by subtraction. In addition, the absorption coefficients in 8 wavelength bands from 300 to 660 nm were measured using a new broadband photoacoustic absorption monitor (UGA). Soot particle mass was quantified using a centrifugal particle mass analyzer (CPMA, Cambustion), mobility size with a scanning mobility particle sizer (SMPS, TSI) and soot concentration with a CPC (Brechtel). The contribution of doubly charged particles to the sample mass was determined using a Single Particle Soot Photometer (DMT). Over a mass range of 1-8 fg, corresponding to differential mobility diameters of ~150 nm to 550 nm, the value of the soot MAC proved to be independent of mass for all wavelengths. The wavelength dependence of the MAC was best fit to a power law with an Absorption Ångstrom Coefficient slightly greater than 1.

  18. Effects of ambient oxygen concentration on soot temperature and concentration for biodiesel and diesel spray combustion

    KAUST Repository

    Zhang, Ji

    2015-06-01

    Ambient oxygen concentration, a key variable directly related to exhaust gas recirculation (EGR) levels in diesel engines, plays a significant role in particulate matter (PM) and nitrogen oxides (NOx) emissions. The utilization of biodiesel in diesel engines has been investigated over the last decades for its renewable characteristics and lower emissions compared to diesel. In an earlier work, we demonstrated that the soot temperature and concentration of biodiesel were lower than diesel under regular diesel engine conditions without EGR. Soot concentration was quantified by a parameter called KL factor. As a continuous effort, this paper presents an experimental investigation of the ambient oxygen concentration on soot temperature and KL factor during biodiesel and diesel spray combustion. The experiment was implemented in a constant volume chamber system, where the ambient oxygen concentration varied from 21 to 10% and the ambient temperature was kept to 1,000 K. A high speed two-color pyrometry technique was used to measure transient soot temperature and the KL factor of the spray flame. The soot temperature of biodiesel is found to be lower than that of diesel under the same conditions, which follows the same trend from our previous results found when the ambient temperature changes to 21% oxygen conditions. A reduction in ambient oxygen concentration generally reduces the soot temperature for both fuels. However, this is a complicated effect on soot processes as the change of oxygen concentration greatly affects the balance between soot formation and oxidation. The KL factor is observed to be the highest at 12% O2 for diesel and 18% O2 for biodiesel, respectively. On the other hand, the 10% O2 condition shows the lowest KL factor for both fuels. These results can provide quantitative experimental evidences to optimize the ambient oxygen concentration for diesel engines using different fuels for better emissions characteristics. © 2014 American Society of

  19. INFRARED and PHOTOELECTRON SPECTROSCOPIC STUDY OF S02 OXIDATION ON SOOT PARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S.G.; Novakov, T.

    1975-12-01

    Results obtained by means of x-ray photoelectron spectroscopy and internal reflection infrared spectroscopy demonstrate the feasibility of heterogeneous oxidation of sulfur dioxide on soot particles in air. Sulfuric acid formed in this process can be neutralized on basic surface sites of soot particles, resulting in the formation of carbonium and/or oxonium sulfate. Hydrolysis of these salts into cyclic hemiacetals and sulfuric acid is expected.

  20. Comparison of Preparation Methods of Copper Based PGMFree Diesel-Soot Oxidation Catalysts

    Directory of Open Access Journals (Sweden)

    R. Prasad

    2011-05-01

    Full Text Available CuO-CeO2 systems have been proposed as a promising catalyst for low temperature diesel-soot oxidation. CuO-CeO2 catalysts prepared by various methods were examined for air oxidation of the soot in a semi batch tubular flow reactor. The air oxidation of soot was carried out under tight contact with soot/catalyst ratio of 1/10. Air flow rate was 150 ml/min, soot-catalyst mixture was 110 mg, heating rate was 5 0C/min. Prepared catalysts were calcined at 500 0C and their stability was examined by further heating to 800 0C for 4 hours. It was found that the selectivity of all the catalysts was nearly 100% to CO2 production. It was observed that the activity and stability of the catalysts greatly influenced by the preparation methods. The strong interaction between CuO and CeO2 is closely related to the preparation route that plays a crucial role in the soot oxidation over the CuO-CeO2 catalysts. The ranking order of the preparation methods of the catalysts in the soot oxidation performance is as follows: sol-gel > urea nitrate combustion > Urea gelation method > thermal decomposition > co-precipitation. Copyright © 2011 BCREC UNDIP. All rights reserved.(Received: 27th June 2010, Revised: 7th August 2010; Accepted: 13rd October 2010[How to Cite: R. Prasad, V.R. Bella. (2011. Comparison of Preparation Methods of Copper Based PGMFree Diesel-Soot Oxidation Catalysts. Bulletin of Chemical Reaction Engineering and Catalysis, 6(1: 15-21. doi:10.9767/bcrec.6.1.822.15-21][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.6.1.822.15-21 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/822 | View in 

  1. Soot Formation in Laminar Premixed Ethylene/Air Flames at Atmospheric Pressure. Appendix G

    Science.gov (United States)

    Xu, F.; Sunderland, P. B.; Faeth, G. M.; Urban, D. L. (Technical Monitor)

    2001-01-01

    Soot formation was studied within laminar premixed ethylene/air flames (C/O ratios of 0.78-0.98) stabilized on a flat-flame burner operating at atmospheric pressure. Measurements included soot volume fractions by both laser extinction and gravimetric methods, temperatures by multiline emission, soot structure by thermophoretic sampling and transmission electron microscopy, major gas species concentrations by sampling and gas chromatography, concentrations of condensable hydrocarbons by gravimetric sampling. and velocities by laser velocimetry. These data were used to find soot surface growth rates and primary soot particle nucleation rates along the axes of the flames. Present measurements of soot surface growth rates were correlated successfully by predictions based on typical hydrogen-abstraction/carbon-addition (HACA) mechanisms of Frenklach and co-workers and Colket and Hall. These results suavest that reduced soot surface growth rates with increasing residence time seen in the present and other similar flames were mainly caused by reduced rates of surface activation due to reduced H atom concentrations as temperatures decrease as a result of radiative heat losses. Primary soot particle nucleation rates exhibited variations with temperature and acetylene concentrations that were similar to recent observations for diffusion flames; however, nucleation rates in the premixed flames were significantly lower than in, the diffusion flames for reasons that still must be explained. Finally, predictions of yields of major gas species based on mechanisms from both Frenklach and co-workers and Leung and Lindstedt were in good agreement with present measurements and suggest that H atom concentrations (relevant to HACA mechanisms) approximate estimates based on local thermodynamic equilibrium in the present flames.

  2. Electric-arc synthesis of soot with high content of higher fullerenes in parallel arc

    Science.gov (United States)

    Dutlov, A. E.; Nekrasov, V. M.; Sergeev, A. G.; Bubnov, V. P.; Kareev, I. E.

    2016-12-01

    Soot with a relatively high content of higher fullerenes (C76, C78, C80, C82, C84, C86, etc.) is synthesized in a parallel arc upon evaporation of pure carbon electrodes. The content of higher fullerenes in soot extract amounts to 13.8 wt % when two electrodes are simultaneously burnt in electric-arc reactor. Such a content is comparable with the content obtained upon evaporation of composite graphite electrodes with potassium carbonate impurity.

  3. Soot microphysical effects on liquid clouds, a multi-model investigation

    Directory of Open Access Journals (Sweden)

    D. Koch

    2011-02-01

    Full Text Available We use global models to explore the microphysical effects of carbonaceous aerosols on liquid clouds. Although absorption of solar radiation by soot warms the atmosphere, soot may cause climate cooling due to its contribution to cloud condensation nuclei (CCN and therefore cloud brightness. Six global models conducted three soot experiments; four of the models had detailed aerosol microphysical schemes. The average cloud radiative response to biofuel soot (black and organic carbon, including both indirect and semi-direct effects, is −0.11 Wm−2, comparable in size but opposite in sign to the respective direct effect. In a more idealized fossil fuel black carbon experiment, some models calculated a positive cloud response because soot provides a deposition sink for sulfuric and nitric acids and secondary organics, decreasing nucleation and evolution of viable CCN. Biofuel soot particles were also typically assumed to be larger and more hygroscopic than for fossil fuel soot and therefore caused more negative forcing, as also found in previous studies. Diesel soot (black and organic carbon experiments had relatively smaller cloud impacts with five of the models <±0.06 Wm−2 from clouds. The results are subject to the caveats that variability among models, and regional and interrannual variability for each model, are large. This comparison together with previously published results stresses the need to further constrain aerosol microphysical schemes. The non-linearities resulting from the competition of opposing effects on the CCN population make it difficult to extrapolate from idealized experiments to likely impacts of realistic potential emission changes.

  4. Field Test of Boiler Primary Loop Temperature Controller

    Energy Technology Data Exchange (ETDEWEB)

    Glanville, P.; Rowley, P.; Schroeder, D.; Brand, L.

    2014-09-01

    Beyond these initial system efficiency upgrades are an emerging class of Advanced Load Monitoring (ALM) aftermarket controllers that dynamically respond to the boiler load, with claims of 10% to 30% of fuel savings over a heating season. For hydronic boilers specifically, these devices perform load monitoring, with continuous measurement of supply and in some cases return water temperatures. Energy savings from these ALM controllers are derived from dynamic management of the boiler differential, where a microprocessor with memory of past boiler cycles prevents the boiler from firing for a period of time, to limit cycling losses and inefficient operation during perceived low load conditions. These differ from OTR controllers, which vary boiler setpoint temperatures with ambient conditions while maintaining a fixed differential. PARR installed and monitored the performance of one type of ALM controller, the M2G from Greffen Systems, at multifamily sites in the city of Chicago and its suburb Cary, IL, both with existing OTR control. Results show that energy savings depend on the degree to which boilers are over-sized for their load, represented by cycling rates. Also savings vary over the heating season with cycling rates, with greater savings observed in shoulder months. Over the monitoring period, over-sized boilers at one site showed reductions in cycling and energy consumption in line with prior laboratory studies, while less over-sized boilers at another site showed muted savings.

  5. Development of high fidelity soot aerosol dynamics models using method of moments with interpolative closure

    KAUST Repository

    Roy, Subrata P.

    2014-01-28

    The method of moments with interpolative closure (MOMIC) for soot formation and growth provides a detailed modeling framework maintaining a good balance in generality, accuracy, robustness, and computational efficiency. This study presents several computational issues in the development and implementation of the MOMIC-based soot modeling for direct numerical simulations (DNS). The issues of concern include a wide dynamic range of numbers, choice of normalization, high effective Schmidt number of soot particles, and realizability of the soot particle size distribution function (PSDF). These problems are not unique to DNS, but they are often exacerbated by the high-order numerical schemes used in DNS. Four specific issues are discussed in this article: the treatment of soot diffusion, choice of interpolation scheme for MOMIC, an approach to deal with strongly oxidizing environments, and realizability of the PSDF. General, robust, and stable approaches are sought to address these issues, minimizing the use of ad hoc treatments such as clipping. The solutions proposed and demonstrated here are being applied to generate new physical insight into complex turbulence-chemistry-soot-radiation interactions in turbulent reacting flows using DNS. © 2014 Copyright Taylor and Francis Group, LLC.

  6. The recovery of finger marks from soot-covered glass fire debris.

    Science.gov (United States)

    Stow, K M; McGurry, J

    2006-01-01

    This study aimed to expand the scope of previous research by assessing the effectiveness of soot-removal techniques on glass from petrol-bomb debris using methods of 1% and 2% sodium hydroxide (NaOH) solutions, ultrasonic bath and vacuum suction. Of particular interest were the 1% and 2% NaOH solutions applied to the soot-covered surfaces. Petrol bombs containing petrol or a 50:50 mix of petrol and motor oil were exploded and the debris was collected for analysis. Favourable results were found to varying degrees using each of the soot-removal methods with the 1% and 2% NaOH wash solutions, being the most useful. The 2% NaOH solution also proved successful as a soak to loosen and remove heavy contamination of soot and accelerants without damaging the finger mark beneath. This study also found that recovery of finger marks in blood from beneath soot using the 2% NaOH solution was possible. Finger marks were also applied to glass bottles with plastic adhesive labels, and providing the fire damage is not too great marks were also retrievable. Results from this study lead to the conclusion that the NaOH wash solution is ideally suited for soot removal to reveal latent and blood-contaminated marks both within the laboratory and at crime scenes.

  7. A multi-probe thermophoretic soot sampling system for high-pressure diffusion flames

    Science.gov (United States)

    Vargas, Alex M.; Gülder, Ömer L.

    2016-05-01

    Optical diagnostics and physical probing of the soot processes in high pressure combustion pose challenges that are not faced in atmospheric flames. One of the preferred methods of studying soot in atmospheric flames is in situ thermophoretic sampling followed by transmission electron microscopy imaging and analysis for soot sizing and morphology. The application of this method of sampling to high pressures has been held back by various operational and mechanical problems. In this work, we describe a rotating disk multi-probe thermophoretic soot sampling system, driven by a microstepping stepper motor, fitted into a high-pressure chamber capable of producing sooting laminar diffusion flames up to 100 atm. Innovative aspects of the sampling system design include an easy and precise control of the sampling time down to 2.6 ms, avoidance of the drawbacks of the pneumatic drivers used in conventional thermophoretic sampling systems, and the capability to collect ten consecutive samples in a single experimental run. Proof of principle experiments were performed using this system in a laminar diffusion flame of methane, and primary soot diameter distributions at various pressures up to 10 atm were determined. High-speed images of the flame during thermophoretic sampling were recorded to assess the influence of probe intrusion on the flow field of the flame.

  8. Internally mixed soot, sulfates, and organic matter in aerosol particles from Mexico City

    Directory of Open Access Journals (Sweden)

    K. Adachi

    2008-05-01

    Full Text Available Soot particles are major aerosol constituents that result from emissions of burning of fossil fuel and biomass. Because they both absorb sunlight and contribute to cloud formation, they are an influence on climate on local, regional, and global scales. It is therefore important to evaluate their optical and hygroscopic properties and those effects on the radiation budget. Those properties commonly change through reaction with other particles or gases, resulting in complex internal mixtures. Using transmission electron microscopy, we measured ~8000 particles (25 samples with aerodynamic diameters from 0.05 to 0.3 μm that were collected in March 2006 from aircraft over Mexico City (MC and adjacent areas. More than 50% of the particles consist of internally mixed soot, organic matter, and sulfate. Imaging combined with chemical analysis of individual particles show that many are coated, consist of aggregates, or both. Coatings on soot particles can amplify their light absorption, and coagulation with sulfates changes their hygroscopic properties, resulting in shorter lifetime. Our results suggest that a mixture of materials from multiple sources such as vehicles, power plants, and biomass burning occurs in individual particles, thereby increasing their complexity. Through changes in their optical and hygroscopic properties, internally mixed soot particles have a greater effect on the regional climate than uncoated soot particles. Moreover, soot occurs in more than 60% of all particles in the MC plumes, suggesting its important role in the formation of secondary aerosol particles.

  9. Model compound study of the pathways for aromatic hydrocarbon formation in soot

    Energy Technology Data Exchange (ETDEWEB)

    Randall E. Winans; Nancy A. Tomczyk; Jerry E. Hunt; Mark S. Solum; Ronald J. Pugmire; Yi Jin Jiang; Thomas H. Fletcher [University of Utah, Salt Lake City, UT (United States). Department of Chemistry

    2007-07-01

    A previous study was conducted to determine the early sooting pathways of biphenyl and pyrene. Soot/pah samples from biphenyl were collected in a fuel-rich flat-flame burner at temperatures of 1365, 1410, and 1470 K and from pyrene at 1410 and 1470K. A more detailed analysis of the pyrolitic products has been performed using additional NMR data obtained on the whole soot sample correlated with detailed high resolution as well as GC mass spectrometry data on the solvent extracted portion of the same samples. These latter data complement the earlier NMR data with details of the pre-sooting structures, referred to as 'young soot.' The data reveal the roles played by free radical assisted polymerization reactions as well as the hydrogen abstraction carbon addition (HACA) reactions for the biphenyl pyrolysis. The mass spectroscopy data of pyrene describe a much different set of reactions due to polymerization which employs free radical reactions of the pyrene due primarily to hydrogen abstraction followed by the formation of biaryl linkages at mass numbers up to five times that of the parent pyrene. Conceptual schema of reaction mechanisms are proposed to explain the formation pathways to materials detected in the soot extracts. 21 refs., 6 figs., 4 tabs.

  10. Electric Field Prediction using Micro-plasma Inside a Microwave Cavity for Soot Oxidation

    Directory of Open Access Journals (Sweden)

    Al-Wakeel Haitham B.

    2014-07-01

    Full Text Available The reduction of the harmful emission soot is necessary in recent years due to the environmental protection regulation. Soot is a carbonaceous matter and a strong absorber of microwave energy. Microwave heating offers the advantage over conventional heating to oxide soot. Where plasma is high electric field that leads to instantaneous temperature rising. This paper proposes a recent concept for soot oxidation using micro-plasma in a microwave cavity. The concept was presented by simulating the electric field using microwave heating and thin metal object. Five cases were examined numerically in a mono-mode TE10 microwave cavity WR430 having closed surfaces of perfect electric conductors working under 2.45 GHz frequency and 1500 W power supply to predict the electric field and dissipated heat distribution. The methodology of prediction was implemented using ANSYS based on FEM. The present prediction results showed higher electric field (400 kV/m and high dissipated heat (3.7×1010 W/m3 can be obtained for a soot sample backed with metal rods inserted vertically with gaps not exceeding 1.5 mm between the rods tips. Also increasing the number of metal rods, from 8 to 14 increases the maximum value of electric field formed in the soot sample to 575 kV/m. The simulation results revealed the ability of achieving high electric field by using microwave heating with the assistance of metal objects.

  11. Diffusion air effects on the soot axial distribution concentration in a premixed acetylene/air flame

    Energy Technology Data Exchange (ETDEWEB)

    Fassani, Fabio Luis; Santos, Alex Alisson Bandeira; Goldstein Junior, Leonardo [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Engenharia Termica e de Fluidos]. E-mails: fassani@fem.unicamp.br; absantos@fem.unicamp.br; leonardo@fem.unicamp.br; Ferrari, Carlos Alberto [Universidade Estadual de Campinas, SP (Brazil). Inst. de Fisica. Dept. de Eletronica Quantica]. E-mail: ferrari@ifi.unicamp.br

    2000-07-01

    Soot particles are produced during the high temperature pyrolysis or combustion of hydrocarbons. The emission of soot from a combustor, or from a flame, is determined by the competition between soot formation and its oxidation. Several factors affect these processes, including the type of fuel, the air-to-fuel ratio, flame temperature, pressure, and flow pattern. In this paper, the influence of the induced air diffusion on the soot axial distribution concentration in a premixed acetylene/air flame was studied. The flame was generated in a vertical axis burner in which the fuel - oxidant mixture flow was surrounded by a nitrogen discharge coming from the annular region between the burner tube and an external concentric tube. The nitrogen flow provided a shield that protected the flame from the diffusion of external air, enabling its control. The burner was mounted on a step-motor driven, vertical translation table. The use of several air-to-fuel ratios made possible to establish the sooting characteristics of this flame, by measuring soot concentration along the flame height with a non-intrusive laser light absorption technique. (author)

  12. Changes to the chemical composition of soot from heterogeneous oxidation reactions.

    Science.gov (United States)

    Browne, Eleanor C; Franklin, Jonathan P; Canagaratna, Manjula R; Massoli, Paola; Kirchstetter, Thomas W; Worsnop, Douglas R; Wilson, Kevin R; Kroll, Jesse H

    2015-02-19

    The atmospheric aging of soot particles, in which various atmospheric processes alter the particles' chemical and physical properties, is poorly understood and consequently is not well-represented in models. In this work, soot aging via heterogeneous oxidation by OH and ozone is investigated using an aerosol flow reactor coupled to a new high-resolution aerosol mass spectrometric technique that utilizes infrared vaporization and single-photon vacuum ultraviolet ionization. This analytical technique simultaneously measures the elemental and organic carbon components of soot, allowing for the composition of both fractions to be monitored. At oxidant exposures relevant to the particles' atmospheric lifetimes (the equivalent of several days of oxidation), the elemental carbon portion of the soot, which makes up the majority of the particle mass, undergoes no discernible changes in mass or composition. In contrast, the organic carbon (which in the case of methane flame soot is dominated by aliphatic species) is highly reactive, undergoing first the addition of oxygen-containing functional groups and ultimately the loss of organic carbon mass from fragmentation reactions that form volatile products. These changes occur on time scales comparable to those of other nonoxidative aging processes such as condensation, suggesting that further research into the combined effects of heterogeneous and condensational aging is needed to improve our ability to accurately predict the climate and health impacts of soot particles.

  13. SOOT PARTICLES ANALYSIS IN LAMINAR PREMIXED PROPANE/OXYGEN (C3H8/O2) FLAMES USING PUBLISHED MEASUREMENT DATA

    Institute of Scientific and Technical Information of China (English)

    Jinling Li; Suyuan Yu

    2003-01-01

    A laminar premixed Propane/Air flame with a fuel equivalence ratio of 2.1 was employed for analysis of soot particles. Zeroth-order Iognormal distributions (ZOLD) were used in the analysis of experimental distribution phenomena at different residence times during soot formation in the flame. Rayleigh's theory and Mie's scattering theory were combined with agglomerate analysis using scattering and extinction data to determine the following soot characteristics: agglomerate parameters, volumetric fractions, mass flow rates and surface growth rate. Soot density measurements were carried out to determine density variations at different stages of growth. The measured results show that metric fraction and mass flow rate indicate that the surface growth rate of soot particles exceeds the oxidation rates in the flame studied. The data obtained in this work would be used to study soot oxidation rate under flaming condition.

  14. Design requirements to magnetic bearings for primary circuit blowers of high-temperature reactors. Final report; Auslegungsanforderungen an Magnetlager fuer Primaerkuehlgasgeblaese von Hochtemperaturreaktoren. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-12

    To study the operational behaviour of blower shafts with magnetic bearings, a modular computer model was set up based on model laws, which permits to simulate shaft behaviour during dynamic loads acting on the blower shaft. During simulation runs, essential properties of position regulation (guide behaviour, secondary behaviour, and fault behaviour), and the behaviour of the blower shaft in the event of failure of a final stage of magnetic bearing electronics, with not-single-failure-proof and with failure-tolerant design of the final stages, as well as the effects of mechanical vibrations, e.g. as a result of earthquakes, on the behaviour of blower shafts were investigated. In order to transfer the results of the catch bearing tests to other designs of blowers with a vertical blower shaft, transmission laws and procedures were derived from theoretical considerations and from a dimension analysis which, however, could not be verified by means of tests. Application of the test results to horizontally placed blower shafts is possible only in part. The computer simulation model set up for the behaviour of the blower shafts is applicable without significant limitations to other blower shaft arrangements. (orig.). [Deutsch] Zur Untersuchung des Betriebsverhaltens magnetisch gelagerter Geblaesewellen wurde anhand von Modellgesetzen ein modulares Rechenmodell aufgebaut, das die Simulation des Wellenverhaltens bei auf die Geblaesewelle wirkenden dynamischen Belastungen erlaubt. In Simulationslaeufen wurden wesentliche Eigenschaften der Lageregelung (Fuehrungsverhalten, Folgeverhalten und Stoerungsverhalten) und das Verhalten der Geblaesewellen bei Ausfall einer Endstufe der Magnetlagerelektronik bei nicht einzelfehlersicherer und bei fehlertoleranter Ausfuehrung der Endstufen sowie die Auswirkungen mechanischer Erschuetterungen z.B. infolge von Erdbeben auf das Verhalten der Geblaesewelle untersucht. Zur Uebertragung der Ergebnisse der Fanglagerversuche auf andere

  15. Evaluation and optimisation of phenomenological multi-step soot model for spray combustion under diesel engine-like operating conditions

    Science.gov (United States)

    Pang, Kar Mun; Jangi, Mehdi; Bai, Xue-Song; Schramm, Jesper

    2015-05-01

    In this work, a two-dimensional computational fluid dynamics study is reported of an n-heptane combustion event and the associated soot formation process in a constant volume combustion chamber. The key interest here is to evaluate the sensitivity of the chemical kinetics and submodels of a semi-empirical soot model in predicting the associated events. Numerical computation is performed using an open-source code and a chemistry coordinate mapping approach is used to expedite the calculation. A library consisting of various phenomenological multi-step soot models is constructed and integrated with the spray combustion solver. Prior to the soot modelling, combustion simulations are carried out. Numerical results show that the ignition delay times and lift-off lengths exhibit good agreement with the experimental measurements across a wide range of operating conditions, apart from those in the cases with ambient temperature lower than 850 K. The variation of the soot precursor production with respect to the change of ambient oxygen levels qualitatively agrees with that of the conceptual models when the skeletal n-heptane mechanism is integrated with a reduced pyrene chemistry. Subsequently, a comprehensive sensitivity analysis is carried out to appraise the existing soot formation and oxidation submodels. It is revealed that the soot formation is captured when the surface growth rate is calculated using a square root function of the soot specific surface area and when a pressure-dependent model constant is considered. An optimised soot model is then proposed based on the knowledge gained through this exercise. With the implementation of optimised model, the simulated soot onset and transport phenomena before reaching quasi-steady state agree reasonably well with the experimental observation. Also, variation of spatial soot distribution and soot mass produced at oxygen molar fractions ranging from 10.0 to 21.0% for both low and high density conditions are reproduced.

  16. Testicular cancer trends as 'whistle blowers' of testicular developmental problems in populations.

    Science.gov (United States)

    Skakkebaek, N E; Rajpert-De Meyts, E; Jørgensen, N; Main, K M; Leffers, H; Andersson, A-M; Juul, A; Jensen, T K; Toppari, J

    2007-08-01

    Recently a worldwide rise in the incidence of testicular germ cell cancer (TGCC) has been repeatedly reported. The changing disease pattern may signal that other testicular problems may also be increasing. We have reviewed recent research progress, in particular evidence gathered in the Nordic countries, which shows strong associations between testicular cancer, undescended testis, hypospadias, poor testicular development and function, and male infertility. These studies have led us to suggest the existence of a testicular dysgenesis syndrome (TDS), of which TGCC, undescended testis, hypospadias/disorders of sex differentiation and male fertility problems may be symptoms with varying penetration. In spite of their fetal origin, most of the TDS symptoms, including TGCC and poor semen quality, can only be diagnosed in adulthood. Data from a Danish-Finnish research collaboration strongly suggest that trends in TGCC rates of a population may be 'whistle blowers' of other reproductive health problems. As cancer registries are often of excellent quality - in contrast to registries for congenital abnormalities - health authorities should consider an increase in TGCC as a warning that other reproductive health problems may also be rising.

  17. Effect of Inlet Clearance on the Aerodynamic Performance of a Centrifugal Blower

    Science.gov (United States)

    Hariharan, C.; Govardhan, M.

    2016-09-01

    The present work reports the effect of inlet clearance on the performance of a centrifugal blower, with parallel wall volute, over its full operating range. For a particular impeller configuration, four volutes based on constant angular momentum principle, have been designed and analysed numerically for varying inlet clearances ranging from 0 mm (ideal clearance) to 5 mm. The computational methodology is validated using experimental data. The results indicate that as the clearance increases, the impeller performance in terms of both static and total pressure rise deteriorate. Further, the stage performances deteriorate in terms of efficiency and specific work for all mass flow rates. However, the performance of volute improves at lower mass flow rates compared to the Best Efficiency Point (BEP). A set of correlations have been developed to predict the change in stage performance as a function of clearance ratio. The non-dimensional values of change in specific work, isentropic efficiency and static pressure are found to be same irrespective of the shape of the volute.

  18. Blower/air cooler with internally finned tubes; Ventilator-Luftkuehler mit innenberippten Rohren

    Energy Technology Data Exchange (ETDEWEB)

    Arnemann, M. [FKU - Forschungszentrum fuer Kaelte- und Umwelttechnik, Berlin (Germany)

    1997-12-31

    Heat transfer is higher in finned tubes than in smooth tubes. In order to assess the extent of improvement, internal heat tranfer coefficients and pressure losses of smooth and finned tubes were investigated on behalf of Walter Roller GmbH and Co. Two blower-type air coolers of identical design (except for the tubes) were investigated in a calorimeter using R22 and different refrigerant mass flows, evaporation temperatures and air temperatures. The results are the basis for new develoments by Walter Roller. Energetic assessment of the new type of evaporator was made on the basis of the DIN 8955 and ENV 328 standards. The results and findings are presented. (orig.) [Deutsch] Der Einsatz von innenberippten Rohren laesst im Vergleich mit glatten Rohren einen deutlich verbesserten inneren Waermeuebergang erwarten. Zur Abschaetzung der Groessenordnung dieser Verbesserungen wurden im Auftrag der Firma Walter Roller GmbH and Co. die inneren Waermeuebergangskoeffizienten und die Druckverluste von glatten und innenberippten Rohren experimentell bestimmt. Dazu wurden zwei bis auf die Rohre baugleiche Ventilator-Luftkuehler ineinem Kalorimeter untersucht. Mit dem Kaeltemittel R22 wurden fuer verschiedene Kaeltemittelmassenstroeme, Verdampfungstemperaturen und Lufttemperaturen die Kennzahlen bestimmt, die zur Charakterisierung der Rohre dienlich sind. Die Ergebnisse bildeten die Grundlage fuer eine Neuentwicklung im Hause Walter Roller. Die energetische Bewertung des neuen Verdampfertyps erfolgte in Anlehnung an die Normen DIN 8955 bzw. ENV 328. Die Untersuchungen und die Ergebnisse werden praesentiert. (orig.)

  19. A noninvasive high frequency oscillation ventilator: Achieved by utilizing a blower and a valve.

    Science.gov (United States)

    Yuan, YueYang; Sun, JianGuo; Wang, Baicun; Feng, Pei; Yang, ChongChang

    2016-02-01

    After the High Frequency Oscillatory Ventilation (HFOV) has been applied in the invasive ventilator, the new technique of noninvasive High Frequency Oscillatory Ventilation (nHFOV) which does not require opening the patient's airway has attracted much attention from the field. This paper proposes the design of an experimental positive pressure-controlled nHFOV ventilator which utilizes a blower and a special valve and has three ventilation modes: spontaneous controlled ventilation combining HFOV, time-cycled ventilation combining HFOV (T-HFOV), and continuous positive airway pressure ventilation combining HFOV. Experiments on respiratory model are conducted and demonstrated the feasibility of using nHFOV through the control of fan and valve. The experimental ventilator is able to produce an air flow with small tidal volume (VT) and a large minute ventilation volume (MV) using regular breath tubes and nasal mask (e.g., under T-HFOV mode, with a maximum tidal volume of 100 ml, the minute ventilation volume reached 14,400 ml). In the process of transmission, there is only a minor loss of oscillation pressure. (Under experimental condition and with an oscillation frequency of 2-10 Hz, peak pressure loss was around 0%-50% when it reaches the mask.).

  20. Condition Monitoring of Forward Curved Centrifugal Blower Using Coast Down Time Analysis

    Directory of Open Access Journals (Sweden)

    G. R. Rameshkumar

    2010-01-01

    Full Text Available Mechanical malfunctions such as, rotor unbalance and shaft misalignment are the most common causes of vibration in rotating machineries. Vibration is the most widely used parameter to monitor and asses the machine health condition. In this work, the Coast Down Time (CDT, which is an indicator of faults, is used to assess the condition of the rotating machine as a condition monitoring parameter. CDT is the total time taken by the system to dissipate the momentum acquired during sustained operation. Extensive experiments were conducted on Forward Curved Centrifugal Blower Test Rig at selected cutoff speeds for several combinations of combined horizontal and vertical parallel misalignment, combined parallel and angular misalignment, as well as for various unbalance conditions. As mechanical faults increase, a drastic decrease in CDT is found and this is represented as CDT reduction percentage. A specific correlation between the CDT reduction percentage, level of mechanical faults, and rotational cutoff speeds is observed. The results are analyzed and compared with vibration analysis for potential use of CDT as one of the condition monitoring parameter.